
Hitachi Elastic Application Data Store

User's Guide

3020-3-V22-01(E)

In-Memory Data Grid

Notices

■ Relevant program products
For Red Hat Enterprise Linux Server 6 (64-bit x86_64)
P-9W43-8A41 Hitachi Elastic Application Data Store 04-00
P-9W43-8B41 Hitachi Elastic Application Data Store Client for Java 04-00
P-9W43-8C41 Hitachi Elastic Application Data Store Client for C 04-00

■ Trademarks
HITACHI, Cosminexus, JP1, uCosminexusare either trademarks or registered trademarks of Hitachi, Ltd. in Japan and
other countries.
AMD is a trademark of Advanced Micro Devices, Inc.
Intel is a trademark of Intel Corporation in the U.S. and/or other countries.
Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other countries.
RSA and BSAFE are registered trademarks or trademarks of EMC Corporation in the United States and other countries.

This product includes RSA BSAFE(R) Cryptographic software of EMC Corporation.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
This product includes software developed by IAIK of Graz University of Technology.
This product includes software developed by Ben Laurie for use in the Apache-SSL HTTP server project.
Portions of this software were developed at the National Center for Supercomputing Applications (NCSA) at the
University of Illinois at Urbana-Champaign.
This product includes software developed by the University of California, Berkeley and its contributors.
This software contains code derived from the RSA Data Security Inc. MD5 Message-Digest Algorithm, including
various modifications by Spyglass Inc., Carnegie Mellon University, and Bell Communications Research, Inc
(Bellcore).
Regular expression support is provided by the PCRE library package, which is open source software, written by Philip
Hazel, and copyright by the University of Cambridge, England. The original software is available from ftp://
ftp.csx.cam.ac.uk/pub/software/programming/pcre/
This product includes software developed by Ralf S. Engelschall <rse@engelschall.com> for use in the mod_ssl project
(http://www.modssl.org/).
This product includes software developed by the Java Apache Project for use in the Apache JServ
servlet engine project (http://java.apache.org/).
This product includes software developed by Daisuke Okajima and Kohsuke Kawaguchi (http://relaxngcc.sf.net/).

Hitachi Elastic Application Data Store 2

This product includes software developed by Andy Clark.

Other product and company names mentioned in this document may be the trademarks of their respective owners.
Throughout this document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name
with the capitalization used by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest
to the accuracy of this information. Use of a trademark in this document should not be regarded as affecting the validity
of the trademark.
This product includes uCosminexus Primary Server Base as a mass market encryption program.
For details about how to use this product, see the following manual:
Hitachi software manual: Online manual Cosminexus
http://itdoc.hitachi.co.jp/Pages/document_list/manuals/cosmiv9_en.html

■ Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of
Hitachi. The software described in this manual is furnished according to a license agreement with Hitachi. The license
agreement contains all of the terms and conditions governing your use of the software and documentation, including
all warranty rights, limitations of liability, and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your
country.
No part of this material may be reproduced in any form or by any means without permission in writing from the
publisher.

■ Issued
Aug. 2015: 3020-3-V22-01(E)

■ Copyright
All Rights Reserved. Copyright (C) 2015, Hitachi, Ltd.

Hitachi Elastic Application Data Store 3

Preface

This manual explains how to design, set up, and operate Hitachi Elastic Application Data Store, and how to develop
Hitachi Elastic Application Data Store application programs.

■ Intended readers
This manual is intended for readers who design, set up, or operate a system in which Hitachi Elastic Application Data
Store is deployed, and for developers of Hitachi Elastic Application Data Store application programs.

Readers of this manual must have:

• A basic knowledge of in-memory data grids

• Knowledge of Linux

• A basic knowledge of program development using the Java or C programming language (application program
developers)

■ Conventions: Abbreviations for product names
This manual uses the following abbreviations for product names and Java-related terms:

Abbreviation Full name or meaning

EADS EADS server Hitachi Elastic Application Data Store

EADS client EADS client (Java) Hitachi Elastic Application Data Store Client for Java

EADS client (C) Hitachi Elastic Application Data Store Client for C

JavaVM Java Virtual Machine

JDK Java Developer's Kit

■ Conventions: Acronyms
This manual also uses the following acronyms:

Acronym Full name or meaning

API Application Programming Interface

KVS Key-Value store

■ Conventions: Fonts and symbols
The following table explains the text formatting conventions used in this manual:

Text formatting Convention

Bold Bold characters indicate text in a window, other than the window title. Such text includes menus, menu
options, buttons, radio box options, or explanatory labels. For example:
• From the File menu, choose Open.

Hitachi Elastic Application Data Store 4

Text formatting Convention

• Click the Cancel button.
• In the Enter name entry box, type your name.

Italic Italic characters indicate a placeholder for some actual text to be provided by the user or system. For example:
• Write the command as follows:
copy source-file target-file

• The following message appears:
A file was not found. (file = file-name)

Italic characters are also used for emphasis. For example:
• Do not delete the configuration file.

Monospace Monospace characters indicate text that the user enters without change, or text (such as messages) output by
the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:
The password is incorrect.

The following table explains the symbols used in this manual:

Symbol Convention

| In syntax explanations, a vertical bar separates multiple items, and has the meaning of OR. For
example:
A|B|C means A, or B, or C.

{ } In syntax explanations, curly brackets indicate that only one of the enclosed items is to be selected.
For example:
{A|B|C} means only one of A, or B, or C.

[] In syntax explanations, square brackets indicate that the enclosed item or items are optional. For
example:
[A] means that you can specify A or nothing.
[B|C] means that you can specify B, or C, or nothing.

... In coding, an ellipsis (...) indicates that one or more lines of coding have been omitted.
In syntax explanations, an ellipsis indicates that the immediately preceding item can be repeated as
many times as necessary. For example:
A, B, B, ... means that, after you specify A, B, you can specify B as many times as necessary.

■ Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

Hitachi Elastic Application Data Store 5

■ Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of two digits each, separated by a
hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00.

• Version 2.05 is written as 02-05.

• Version 2.50 (or 2.5) is written as 02-50.

• Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same version number would be
written in the program as 02-00.

Hitachi Elastic Application Data Store 6

Contents

Notices 2

Preface 4

Part 1: Description

1 About Hitachi Elastic Application Data Store 19
1.1 In-memory data grid for efficient processing of large volumes of data in a manner appropriate to

the characteristics of your IT system 20
1.2 Overview of EADS 21

1.2.1 Easy data management and simple interface 21

1.2.2 Managing data in memory 21

1.2.3 Mass memory areas consisting of multiple servers 21

1.3 Features of EADS 22

1.3.1 Ability to achieve high scalability from a small starting point 22

1.3.2 Data redundancy to achieve a fault-tolerant system with high availability 22

1.3.3 High-speed data processing for faster response times 22

1.3.4 Flexible data operations to better match user needs 22

1.3.5 Management of persistent data using disk areas 23

1.4 Examples of EADS applications 24

1.4.1 Using EADS as a write buffer 24

1.4.2 Using EADS as a read cache 25

1.5 User tasks and corresponding parts of the manual 26

2 Architecture 27
2.1 Configuration of EADS 28

2.1.1 System configuration 28

2.1.2 Configuration of processes 29

2.2 Mechanisms of EADS communication processing 30

2.2.1 Protocols used for communication 30

2.2.2 Buffer used for communication 31

2.3 Areas storing keys and values 32

2.3.1 Cache types 32

2.4 Data access 34

2.4.1 Storing data (using put) 35

2.4.2 Storing new data (using create) 35

2.4.3 Updating data (using update) 36

2.4.4 Replacing data (using replace) 37

Hitachi Elastic Application Data Store 7

2.4.5 Acquiring data (using get) 39

2.4.6 Deleting data (remove) 40

2.4.7 Performing batch operations on a cache 40

2.4.8 Data access without having to be aware of the locations of individual EADS servers 41

2.4.9 General procedure for data access 42

2.4.10 Locking during data access 45

2.5 Data distribution by consistent hashing 47

2.5.1 Overview of data distribution 47

2.5.2 Details about data distribution 47

2.5.3 Adding EADS servers (scaling out) and distributing data 48

2.6 Placing data on a specific EADS server (grouping keys) 50

2.6.1 Grouping keys 50

2.6.2 Data distribution with grouped keys 51

2.7 Efficient data processing using user functions 53

2.7.1 Mechanism of user functions 53

2.8 Creating redundant copies of data 55

2.8.1 Overview of creating redundant copies of data 55

2.8.2 Continuing processing in the event of a failure when redundant copies of data have been created 55

2.9 Monitoring a cluster 57

2.9.1 Overview of monitoring a cluster by sending heartbeats 57

2.9.2 EADS server shutdown decided by the agreement of a specific number of EADS servers 58

2.10 Cluster information update check by the EADS client 60

2.11 Cluster and EADS server status transitions 61

2.11.1 Cluster status transitions 61

2.11.2 EADS servers' cluster participation status 62

2.11.3 EADS server status transitions 63

2.12 Improving throughput by using thread and connection pools 68

2.12.1 Thread pools 68

2.12.2 Connection pools 68

Part 2: Design and Configuration

3 General Procedure for Designing and Configuring a System 70
3.1 General procedure for designing and configuring a system 71

3.1.1 Checking the required resources 71

3.1.2 Installing and setting up 71

3.1.3 Designing the environment-dependent parameters 71

3.1.4 Designing the tuning parameters 71

4 Checking the Required Resources 73
4.1 Estimating the required memory 74

4.1.1 Memory configuration 74

Hitachi Elastic Application Data Store 8

4.1.2 Estimating the Java heap size 75

4.1.3 Estimating the explicit heap size 79

4.1.4 Estimating the size of memory used by an EADS server 82

4.2 Estimating the required disk capacity 83

4.2.1 Estimating the disk capacity required for EADS servers 83

4.2.2 Estimating the disk capacity required for EADS clients 86

4.3 Estimating the numbers of threads and file descriptors 88

4.3.1 Estimating the number of threads 88

4.3.2 Estimating the number of file descriptors 88

4.4 Estimating the sizes of cache files 90

4.4.1 Estimating the size and number of cache data files 90

4.4.2 Estimating the size of a cache index file 94

5 Installing and Setting Up (EADS Servers) 95
5.1 Installing an EADS server 96

5.1.1 Preparations before starting the installation 96

5.1.2 Installation procedure 96

5.1.3 Post-installation procedure 97

5.2 Setting up the EADS server 100

5.2.1 Creating the management directory 100

5.2.2 Editing the property files 101

5.2.3 Distributing application programs 101

5.3 Testing 102

5.3.1 Starting the EADS server (creating a cache) 102

5.3.2 Using commands to manipulate the test data 102

5.3.3 Terminating the EADS server 104

5.4 Canceling EADS server setup 105

5.5 Uninstalling an EADS server 106

6 Installing and Setting Up (EADS Clients) 107
6.1 Installing an EADS client 108

6.1.1 Post-installation procedures 108

6.2 Setting up an EADS client 110

6.2.1 Placement of the application programs 110

6.2.2 Editing the client property file 110

6.3 Uninstalling an EADS client 111

7 Designing the Environment-Dependent Parameters (EADS Servers) 112
7.1 Types of property files (used by EADS servers) 113

7.2 Format of property files 114

7.3 Designing the communication-dependent parameters 115

7.3.1 Specifying the IP address or host name and the port number 115

Hitachi Elastic Application Data Store 9

7.3.2 Communication-dependent parameters 116

7.4 Designing the log file-dependent parameters 119

7.4.1 Types of log files 119

7.4.2 Specifying the file output destinations 119

7.4.3 Specifying the file sizes and the numbers of files 122

7.4.4 Specifying the rotation of statistics files 122

7.4.5 Log file-dependent parameters 122

7.5 Designing the cluster configuration-dependent parameters 130

7.5.1 Specifying the locations of EADS servers 130

7.5.2 Specifying the data multiplicity 131

7.5.3 Cluster configuration-dependent parameters 131

7.6 Designing the backup file-dependent parameters 134

7.6.1 Specifying the file output destinations 134

7.6.2 Specifying the number of store data file generations 135

7.6.3 Backup file-dependent parameters 137

7.7 Designing the cache operation-dependent parameters 139

7.7.1 Specifying parameters for each type of cache type 139

7.7.2 Specifying the types of cache files and their storage locations 139

7.7.3 Specifying the sizes of cache files 142

7.7.4 Cache operation-dependent parameters 142

8 Designing the Environment-Dependent Parameters (EADS Clients) 148
8.1 Type of property file (used by EADS clients) 149

8.2 Format of property files 150

8.3 Designing the communication-dependent parameters 151

8.3.1 Specifying the connection-target EADS server, the IP address or host name, and the port number 151

8.3.2 Communication-dependent parameters 151

8.4 Designing the log file-dependent parameters 154

8.4.1 Types of log files 154

8.4.2 Specifying the file output destinations 154

8.4.3 Specifying the file sizes and the numbers of files 154

8.4.4 Log file-dependent parameters 155

9 Designing the Tuning Parameters 157
9.1 Designing the parameters related to memory and buffers 158

9.1.1 Specifying the memory sizes 158

9.1.2 Specifying the buffer size 159

9.1.3 Parameters related to memory and buffers 160

9.2 Designing the parameters related to thread pools and connection pools 167

9.2.1 Setting the maximum number of simultaneous connections 167

9.2.2 Setting the maximum number of simultaneous threads 167

9.2.3 Parameters related to thread pools and connection pools 168

Hitachi Elastic Application Data Store 10

9.3 Designing the timeout-related parameters 171

9.3.1 Setting the timers for monitoring communication 171

9.3.2 Setting the timers for monitoring the cluster 176

9.3.3 Timeout-related parameters 184

9.4 Designing the command operation-related parameters 193

9.4.1 Command operation-related parameters 193

9.5 Designing application program operation-related parameters 194

9.5.1 Application program operation-related parameters 194

9.6 Designing the compaction-related parameters 196

9.6.1 Specifying thresholds for compaction effects 196

9.6.2 Compaction-related parameters 196

Part 3: Operations

10 Normal Operations 198
10.1 The system operation administrator's tasks 199

10.2 Starting the EADS servers (and creating caches) 200

10.2.1 How to start the EADS servers (creating caches in memory) 200

10.2.2 Starting the EADS servers (creating caches on disk) 202

10.2.3 Notes about using multiple caches 205

10.3 Starting the EADS servers (and creating caches by importing data from files) 206

10.3.1 How to start the EADS servers (creating caches in memory) 206

10.3.2 How to start the EADS servers (resuming caches on disk) 208

10.4 Terminating the EADS servers (and discarding data from memory) 212

10.4.1 How to terminate the EADS servers 212

10.5 Terminating the EADS servers (after exporting data from memory to files) 214

10.5.1 How to terminate the EADS servers 214

10.6 Terminating the EADS servers (terminating caches on disk) 216

10.6.1 How to terminate the EADS servers 216

10.7 Checking the cluster and EADS server statuses 218

10.8 Displaying a list of caches 219

10.9 Reducing the data usage of cache data files (performing compaction on cache data files) 220

10.9.1 Performing compaction on cache data files 221

10.9.2 Stopping compaction processing 224

11 Maintenance Operations 225
11.1 Adding EADS servers to a cluster 226

11.1.1 How to add EADS servers to a cluster without stopping the cluster (scale-out processing) 226

11.1.2 How to add EADS servers to a cluster after stopping the cluster (using only memory caches) 229

11.1.3 How to add EADS servers to a cluster after stopping the cluster (using only disk caches) 230

11.2 Deleting EADS servers from a cluster 233

11.2.1 How to delete EADS servers from a cluster (using only memory caches) 233

Hitachi Elastic Application Data Store 11

11.2.2 How to delete EADS servers from a cluster (using disk caches) 234

11.3 Making the number of keys uniform in all ranges 236

11.3.1 How to make the number of keys uniform in all ranges 236

11.4 Changing the properties 237

11.4.1 How to change the properties 237

11.4.2 Notes about changing properties 238

11.5 Adding and deleting caches 239

11.5.1 How to add and delete memory caches 239

11.5.2 How to add and delete disk caches and two-way caches 241

11.6 Making a backup 246

11.6.1 How to back up data 246

11.7 Managing store data files 249

11.7.1 How to check and delete store data files 249

11.8 Checking the data storage location 250

11.9 Checking a list of group names 251

11.10 Checking a list of keys 253

11.11 Checking whether user functions have been placed correctly on individual EADS servers and
whether they can be executed 254

11.12 Applying EADS server patches while the cluster is running 255

11.12.1 How to apply EADS server patches 255

11.13 Obtaining statistics 257

11.13.1 Statistics storage locations 257

11.13.2 Statistics (eads_stats.csv) 257

11.13.3 Cache statistics (eads_cache_stats.csv) 260

11.13.4 User function statistics (eads_function_stats.csv) 265

11.13.5 Statistics by range (eads_store_stats.csv) 268

11.14 Managing available space in the data storage 270

11.14.1 How to manage available space in the data storage (using only memory caches) 271

11.14.2 How to manage available space in the data storage (using disk caches) 272

11.15 Managing cache files 274

11.15.1 How to check and delete cache files 274

12 Error Handling Operations 276
12.1 Preventing failures (error monitoring and detection) 277

12.1.1 Monitoring messages 277

12.1.2 Monitoring the EADS server processes 277

12.2 The system operation administrator's tasks in the event of a failure 279

12.2.1 If one or more EADS servers are isolated 279

12.2.2 If the cluster is unavailable (NOT_AVAILABLE) or is partially available (PARTIALLY_AVAILABLE) 283

12.2.3 If a poor response was reported 287

12.3 Acquiring error information 289

12.3.1 Error information needed for root cause investigation 289

Hitachi Elastic Application Data Store 12

12.3.2 Obtaining statistics 289

12.3.3 Obtaining thread dumps 289

13 Investigating the Causes of Failures 291
13.1 Investigating the cause of a poor response 292

13.1.1 General investigation procedure 292

13.1.2 Investigating the cause 293

14 Command Reference 298
14.1 Command storage location 299

14.2 EADS commands 300

14.2.1 ezstart (starts an EADS server) 300

14.2.2 ezserver (starts an EADS server in the foreground) 302

14.2.3 eztool (runs the cluster) 304

14.3 Subcommands of the eztool command 306

14.3.1 Locking between commands 307

14.3.2 close (closes the cluster) 309

14.3.3 open (opens the cluster) 310

14.3.4 status (checks the status of the cluster) 311

14.3.5 listconf (displays a list of most recent parameters) 320

14.3.6 listcache (displays a list of caches) 324

14.3.7 listesd (displays a list of store data files) 328

14.3.8 listgroup (displays a list of group names) 333

14.3.9 listkey (displays a list of keys) 337

14.3.10 getposition (displays data storage locations) 341

14.3.11 storeusage (checks the usage status of ranges and caches) 344

14.3.12 unlock (unlock) 349

14.3.13 createcache (creates a cache) 350

14.3.14 deletecache (deletes a cache) 352

14.3.15 export (exports data) 354

14.3.16 import (imports data) 356

14.3.17 deleteesd (deletes store data files) 359

14.3.18 put (stores specified data) 361

14.3.19 get (acquires specified data) 362

14.3.20 remove (deletes specified data) 364

14.3.21 removeall (deletes all data) 366

14.3.22 listfunc (displays which user functions are executable) 367

14.3.23 execfunc (executes user functions) 371

14.3.24 listecf (displays a list of information about persistent data) 374

14.3.25 resume (resumes caches) 382

14.3.26 importecf (relocates persistent data) 384

14.3.27 deleteecf (deletes cache files) 386

Hitachi Elastic Application Data Store 13

14.3.28 compaction (performs compaction on cache data files) 389

14.3.29 threaddump (outputs a thread dump) 391

14.3.30 snapshot (collects logs, settings, hardware information, and network information) 392

14.3.31 stop (terminates the cluster) 396

14.3.32 forcestop (forcibly terminates an EADS server) 397

14.3.33 isolate (isolates an EADS server) 398

14.4 Information displayed as execution results by the eztool command's subcommands 400

14.4.1 Components of the displayed information 400

14.4.2 How to specify the display format 401

14.4.3 How to specify column filters 402

14.4.4 How to specify row filters 402

14.4.5 How to specify a condition match 405

Part 4: Application Program Development

15 General Procedure for Developing Application Programs 410
15.1 General procedure for developing application programs 411

15.1.1 Configure a development environment 411

15.1.2 Create application programs 411

15.1.3 Test the application programs 412

15.1.4 Migrate the created application programs to the execution environment 412

15.2 Prerequisites for the development of application programs 413

15.2.1 Programming languages for application programs and EADS clients 413

15.2.2 Data that is supported as keys, group names, values, cache names, and EADS client names 414

15.2.3 Reserved package and system property names (applicable to Java) 418

16 Creating Client Application Programs (in Java) 419
16.1 Creating source programs (in Java) 420

16.1.1 General procedure for accessing caches and manipulating data 420

16.2 Notes about creating client application programs (in Java) 424

16.2.1 Notes about initializing an EADS client 424

16.2.2 Notes about starting access to caches 424

16.2.3 Notes about manipulating data 424

16.2.4 Notes about terminating access to caches 425

16.2.5 Notes about terminating use of the EADS client 426

16.3 Compiling source programs (in Java) 427

17 Creating User Functions 428
17.1 Prerequisites for creating user functions 429

17.1.1 Programming language for user functions 429

17.1.2 User function execution methods 429

17.1.3 Java class loaders used by EADS servers 429

Hitachi Elastic Application Data Store 14

17.1.4 General procedure for creating user functions 430

17.2 Creating a source program (user function) 432

17.2.1 Flow of a user function 432

17.3 Notes about creating user functions 434

17.3.1 Notes about jar file names 434

17.3.2 Notes about package names 434

17.3.3 Notes about implementing user functions 434

17.3.4 How to acquire a list of keys efficiently 435

17.4 Creating a function property file (optional) 437

17.5 Compiling source programs (user functions) 439

17.5.1 How to compile user functions 439

17.6 Packaging the user functions 440

17.6.1 How to package user functions 440

17.7 Deploying user functions 441

17.7.1 How to deploy user functions 441

17.8 Executing user functions 442

17.8.1 Call a user function 442

17.8.2 Output information to the user logs 442

17.8.3 Notes about running user functions 442

17.9 Distributing the directory to the execution environment 443

18 Application Programming Interface Reference (Java) 444
18.1 Classes provided by the Java client libraries 445

18.1.1 Cache class 446

18.1.2 CacheManager class 469

18.1.3 Node class 481

18.1.4 FailureOperationInfo class 484

18.1.5 CacheException class 485

18.1.6 InitializeException class 495

18.1.7 InternalClientException class 495

18.1.8 InternalServerException class 496

18.1.9 ServerCommunicationException class 496

18.1.10 UserOperationException class 496

18.1.11 BatchOperationException class 497

18.1.12 AllFailureException class 498

18.1.13 PartFailureException class 498

18.2 API interfaces supported in user functions 500

18.2.1 Function interface 501

18.2.2 FunctionContext interface 503

18.2.3 InitConfig interface 508

18.2.4 ClientInfo interface 509

18.2.5 ServerInfo interface 511

Hitachi Elastic Application Data Store 15

18.2.6 ClusterInfo interface 518

18.2.7 CacheInfo interface 524

18.2.8 Store interface 527

18.2.9 Group interface 543

18.2.10 Key interface 566

18.2.11 Value interface 567

18.2.12 UserLogger interface 570

18.2.13 EADsStoreException class 572

18.2.14 InternalServerException class 575

18.2.15 UserOperationException class 576

18.2.16 Enumeration CacheType 576

19 Creating a Client Application Program (in C) 578
19.1 Creating a source program (in C) 579

19.1.1 Flow of cache access and data operations 579

19.2 Notes on creating client application programs (in C) 585

19.2.1 Notes on initializing EADS clients 585

19.2.2 Notes on starting access to the cache 585

19.2.3 Notes on manipulating data 585

19.2.4 Notes on stopping access to the cache 587

19.2.5 Notes on terminating the EADS client 587

19.3 Compiling the source program (in C) 588

20 API Reference (C) 589
20.1 Functions provided by the C client library 590

20.1.1 ead_init_client() (initializes the EADS client) 593

20.1.2 ead_init_client_n() (initializes the EADS client) 594

20.1.3 ead_start_cache() (starts access to the cache) 595

20.1.4 ead_stop_cache() (stops access to the cache) 596

20.1.5 ead_get_cache_name() (acquires cache names) 596

20.1.6 ead_terminate_client() (terminates the EADS client) 597

20.1.7 ead_put() (store a key and value) 598

20.1.8 ead_put_array_value() (concatenates and stores multiple values) 598

20.1.9 ead_put_all() (stores keys and values by using a batch operation) 599

20.1.10 ead_create() (stores a new key and value) 601

20.1.11 ead_update() (updates a value) 602

20.1.12 ead_replace() (replaces a value) 603

20.1.13 ead_get() (retrieves a value) 603

20.1.14 ead_get_all() (acquires values by using a batch operation) 604

20.1.15 ead_get_group() (acquires values by using a batch operation with group specification) 606

20.1.16 ead_remove() (deletes a value) 607

20.1.17 ead_remove_all() (deletes values by using a batch operation) 608

Hitachi Elastic Application Data Store 16

20.1.18 ead_remove_group() (deletes values by using a batch operation with group specification) 609

20.1.19 ead_remove_node() (deletes values by using a batch operation with EADS server specification) 610

20.1.20 ead_get_group_names() (acquires a list of group names in the highest hierarchy) 612

20.1.21 ead_get_group_keys() (acquires a list of keys with group specification) 613

20.1.22 ead_get_node_keys() (acquires a list of keys with EADS server specification) 614

20.1.23 ead_get_group_count() (acquires the number of groups in the highest hierarchy) 615

20.1.24 ead_get_group_key_count() (acquires the number of keys with group specification) 616

20.1.25 ead_get_node_key_count() (acquires the number of keys with EADS server specification) 617

20.1.26 ead_get_group_first_key() (acquires the first key with group specification) 618

20.1.27 ead_get_node_first_key() (acquires the first key with EADS server specification) 619

20.1.28 ead_get_group_next_key() (acquires the next key with group specification) 620

20.1.29 ead_get_node_next_key() (acquires the next key with EADS server specification) 621

20.1.30 ead_execute_function() (executes a user function with key specification or group specification) 622

20.1.31 ead_execute_function_rt() (executes a user function with key specification or group specification
and reception timeout specification) 624

20.1.32 ead_execute_node_function() (executes a user function with an EADS server specified) 625

20.1.33 ead_execute_node_function_rt() (executes a user function with EADS server and reception
timeout specification) 627

20.1.34 ead_get_nodelist() (acquires information about the connection-target EADS servers) 628

20.1.35 [Deprecated] ead_get_node() (acquires information about the original source EADS server from
which a specified key was copied) 630

20.1.36 ead_get_slave_nodelist() (acquires information about the original target EADS server for data) 631

20.1.37 ead_get_current_master_node() (acquires information about the current source EADS server) 632

20.1.38 ead_get_original_master_node() (acquires information about the original source EADS server) 633

20.1.39 ead_value_element structure (value information) 634

20.1.40 ead_key_value_pair structure (key-value pairs) 635

20.1.41 ead_keys structure (multiple keys) 635

20.1.42 ead_group_names structure (multiple group names) 635

20.1.43 ead_put_all_results structure (execution results of ead_put_all()) 636

20.1.44 ead_get_all_results structure (execution results of ead_get_all()) 636

20.1.45 ead_get_group_results structure (execution results of ead_get_group()) 637

20.1.46 ead_remove_all_results structure (execution results of ead_remove_all()) 638

20.1.47 ead_failure_operation_info structure (information about the failed operation during batch
operation) 638

20.1.48 ead_object structure (object used in a user function) 639

20.1.49 ead_nodelist structure (EADS server information) 640

20.1.50 ead_node structure (object used in a user function with an EADS server specified) 640

20.1.51 ead_address structure (EADS server address information) 641

20.2 Error codes in the client library (C) 642

Hitachi Elastic Application Data Store 17

Part 5: Useful Lists and Messages

21 Useful Lists 654
21.1 List of minimum and maximum values 655

22 Messages 656
22.1 Message output format 657

22.2 KDEA00001 to KDEA01999 658

22.3 KDEA02000 to KDEA02999 674

22.4 KDEA03000 to KDEA03999 677

22.5 KDEA04000 to KDEA05999 680

22.6 KDEA06000 to KDEA07999 702

22.7 KDEA08000 to KDEA09999 713

22.8 KDEA10000 to KDEA11999 748

Appendix 750
A Glossary 751

Index 753

Hitachi Elastic Application Data Store 18

Part 1: Description

1 About Hitachi Elastic Application Data Store

Hitachi Elastic Application Data Store (EADS) is a software product that allows you to configure an
in-memory data grid. This chapter provides an overview of Hitachi Elastic Application Data Store
and describes its features.

Hitachi Elastic Application Data Store 19

1.1 In-memory data grid for efficient processing of large volumes of data
in a manner appropriate to the characteristics of your IT system

Hitachi Elastic Application Data Store (abbreviated hereafter to EADS) is a data processing infrastructure product for
configuring an in-memory data grid. An in-memory data grid is a data processing infrastructure that distributes a large
volume of data to multiple servers' memory for the purpose of efficient processing of that data.

Today's social environment is undergoing rapid changes that are being driven primarily by advances in IT technology
- especially in the development of Internet technology and in the expansion of services being deployed on the Internet.
The widespread use of high-performance mobile devices, such as mobile phones and smartphones, has made these
changes happen at unprecedented speeds.

With the evolution of the social environment, the amount of data handled by IT systems has increased exponentially.
Users desire fast response times even during peak access periods, and they might wish for servers to be added temporarily
in response to fluctuations in the volume of data and the number of accesses.

It has become difficult to satisfy such demands with IT systems that use only a relational database management system
(RDBMS) to manage data.

Data processing infrastructure software products based on a different concept from conventional RDBMSs are now
attracting attention, such as in-memory data grids. These software products, which are often called NoSQL (Not Only
SQL) databases, complement RDBMS.

With the advent of NoSQL, you can now satisfy various needs by combining an RDBMS and complementary software
products, rather than by relying solely on an RDBMS for all data management tasks.

EADS provides a data processing infrastructure that complements an RDBMS by configuring an in-memory data grid
that provides both high scalability and high reliability.

1. About Hitachi Elastic Application Data Store

Hitachi Elastic Application Data Store 20

1.2 Overview of EADS

This section provides an overview of EADS.

Figure 1‒1: Overview of EADS

1.2.1 Easy data management and simple interface
EADS employs a distributed in-memory KVS as one of the in-memory data grid implementation methods. KVS manages
data in a simple format that consists of data (values) and keys that uniquely identify the data. Its simple interface, which
prompts you to specify a key to obtain a value, makes developing application programs easy.

1.2.2 Managing data in memory
EADS manages data in memory areas. This method eliminates the overhead of disk access processing.

1.2.3 Mass memory areas consisting of multiple servers
EADS manages multiple servers as a group. This group is called a cluster. EADS treats the memory areas of the servers
in the cluster as a single memory area. This method can process a large volume of data that exceeds the memory capacity
of the individual servers.

Also, clients can access the data without needing to be aware of individual servers.

1. About Hitachi Elastic Application Data Store

Hitachi Elastic Application Data Store 21

1.3 Features of EADS

EADS has the following features:

• Ability to achieve high scalability from a small starting point

• Data redundancy to achieve a fault-tolerant system with high availability

• High-speed data processing for faster response times

• Flexible data manipulation to better match user needs

• Management of persistent data using disk areas

The following explains each of these features.

1.3.1 Ability to achieve high scalability from a small starting point
EADS makes it easy for you to change the configuration of your system, such as by adding or removing servers. When
you change the system configuration, you can scale in and out flexibly by relocating data. This feature gives you high
scalability.

Because it is easy to change the system configuration after operations have begun, you can minimize initial costs (by
starting small), and then expand your system as your business grows.

1.3.2 Data redundancy to achieve a fault-tolerant system with high
availability

EADS can create redundant copies of data by automatically copying it to multiple servers. If one of the servers fails,
the user can continue processing by using the data that was copied to another server.

By having redundant copies of data, you avoid losing data in memory in the event of a failure.

1.3.3 High-speed data processing for faster response times
EADS places all of the data to be processed in memory. This eliminates disk access overhead, resulting in high-speed
data processing.

The time required to access data is reduced, although complex queries (such as in SQL) cannot be performed due to the
simple data structure, which consists of keys and values.

This feature gives you fast response times.

1.3.4 Flexible data operations to better match user needs
EADS provides a set of API functions for basic data operations, and a set of API functions for performing flexible data
operations according to user needs. By using the API functions provided by EADS, the user can execute on servers a
program in which a series of data operations (user processing) has been defined, such as for totaling and analyzing data.

1. About Hitachi Elastic Application Data Store

Hitachi Elastic Application Data Store 22

1.3.5 Management of persistent data using disk areas
EADS manages data in memory areas. To make data persistent, EADS can manage data by using both memory areas
and disk areas or by using only disk areas.

Note that when disk areas are used for data management, response performance is poorer than when memory areas are
used because of the overhead required for disk access processing.

1. About Hitachi Elastic Application Data Store

Hitachi Elastic Application Data Store 23

1.4 Examples of EADS applications

This section presents an example of EADS deployment that benefits the user, and an example that does not benefit the
user.

 An example of EADS deployment that benefits the user
EADS is suitable for standard applications, such as high-speed processing of large amounts of data.
Because EADS creates redundant copies of data to achieve high-availability and fault-tolerant systems, it is also
suitable for enterprise systems that must provide high reliability.
1.4.1 Using EADS as a write buffer shows an example of using EADS as a write buffer, and 1.4.2 Using EADS as
a read cache shows an example of using EADS as a read cache.

 An example of EADS deployment that does not benefit the user
EADS is not suitable for atypical applications that require complex queries, such as in SQL, because EADS manages
data in a simple format consisting of keys and values.

1.4.1 Using EADS as a write buffer
You can use EADS as a write buffer in application systems. A write buffer is memory for storing data temporarily to
eliminate disk access overhead during data write operations.

The figure below shows an example of an update application program that uses EADS as a write buffer. This example
might be for a system that handles a large volume and wide variety of data, such as a reservations management system
or an online trading system.

Figure 1‒2: Using EADS as a write buffer

1. A client accesses EADS to update data such as reservation information.

2. EADS temporarily stores the data to be manipulated by the client (using EADS as a write buffer).

1. About Hitachi Elastic Application Data Store

Hitachi Elastic Application Data Store 24

3. EADS writes the updated data in the RDBMS.

You can eliminate disk access overhead and achieve high-speed data processing by using EADS as a write buffer, without
writing data directly in the database.

1.4.2 Using EADS as a read cache
You can use EADS as a read cache in application systems. A read cache is memory for storing data temporarily to
achieve high-speed data read operations.

The figure below shows an example of a reference application program that uses EADS as a read cache. This example
might be for a system that displays customer information and customer purchase histories, such as for an online order
fulfillment system.

Figure 1‒3: Using EADS as a read cache

1. First load the required data, such as a purchase history, from the RDBMS to EADS (read cache).

2. The client accesses EADS and references data.

You can eliminate disk access overhead and achieve high-speed data processing by using EADS as a read cache, without
reading data directly from the RDBMS.

1. About Hitachi Elastic Application Data Store

Hitachi Elastic Application Data Store 25

1.5 User tasks and corresponding parts of the manual

This manual is intended for the following readers:

• System designers

• System operation administrators

• Application program developers

This manual consists of the following five parts:

• Part 1 Description

• Part 2 Design and Configuration

• Part 3 Operations

• Part 4 Application Program Development

• Part 5 Useful Lists and Messages

The following figure shows tasks that the user performs, and the parts of the manual that describe those tasks.

1. About Hitachi Elastic Application Data Store

Hitachi Elastic Application Data Store 26

2 Architecture

This chapter explains the configuration and architecture of EADS.

Hitachi Elastic Application Data Store 27

2.1 Configuration of EADS

This section explains how to configure a system in which EADS is deployed, and how to configure processes.

2.1.1 System configuration
The following figure shows a system configuration.

Figure 2‒1: System configuration

(1) Execution environment
This is the environment you need in order to use the application programs that access the distributed KVS, as well as
the distributed KVS itself.

You must use a reliable network. To improve reliability, we recommend that you use dual networks between EADS
servers.

(a) EADS server
EADS server refers to a server process that manages data consisting of keys and values.

The following is the program product used to configure EADS servers:

• Hitachi Elastic Application Data Store

(b) Cluster
Normally, a system consists of multiple EADS servers. A group of EADS servers is called a cluster. EADS clients
recognize the cluster as a single unit of storage.

A cluster consists of a group of EADS servers that have the same multicast address and port number within the same
segment.

Important note
The number of EADS servers that make up the cluster must be at least the data multiplicity (the number of
redundant copies of data plus the original) 2 - 1.

2. Architecture

Hitachi Elastic Application Data Store 28

For details about the number of redundant copies of data, see 2.8 Creating redundant copies of data.

(c) EADS client
EADS clients refer to user programs that use client libraries provided by EADS to connect to EADS servers.

There are two types of EADS clients, corresponding to the programming languages used to create application programs
(Java or C):

• EADS client (Java)
Hitachi Elastic Application Data Store Client for Java

• EADS client (C)
Hitachi Elastic Application Data Store Client for C

Important note
EADS does not support a system configuration that involves conversion of IP addresses or port numbers for
communication between EADS clients and EADS servers.

2.1.2 Configuration of processes
A server with EADS deployed consists of the processes shown in the following figure.

Figure 2‒2: Configuration of processes

(1) EADS server
An EADS server refers to a server process that manages data consisting of keys and values.

(2) Startup shell
The startup shell starts the EADS server.

2. Architecture

Hitachi Elastic Application Data Store 29

2.2 Mechanisms of EADS communication processing

This section explains the mechanisms of EADS communication processing.

2.2.1 Protocols used for communication
The following figure shows the protocols used for communication between EADS clients and EADS servers, and among
EADS servers.

Figure 2‒3: Protocols used for communication

(1) Communication between an EADS client and an EADS server
Communication between EADS clients and EADS servers is performed using TCP (Transmission Control Protocol).

(2) Communication between EADS servers
Communication between EADS servers is performed using TCP and UDP (User Datagram Protocol).

TCP is used for the following communication between EADS servers:

• Creating redundant copies of data

• Checking for live servers#

• Restoration processing

• Scale-out processing (adding EADS servers)

UDP is used for the following communication between EADS servers:

• Heartbeat#

#
Heartbeats are multicast within a cluster.

2. Architecture

Hitachi Elastic Application Data Store 30

Heartbeats consist of packets distributed in a cluster to report that the EADS servers are running normally.
A check conducted by one EADS server to determine whether another EADS server that is not sending heartbeats
has gone down is called a check for live servers.
For details, see 2.9 Monitoring a cluster.

2.2.2 Buffer used for communication
The following types of buffers are used to send and receive data during communication between an EADS client and
an EADS server, as well as between EADS servers that use TCP:

• Buffer for transmitting and receiving data

• Buffer for transmitting and receiving consensus messages

You can improve communication efficiency by adjusting the buffer size according to the volume of data to be handled.
For details, see 9.1.2 Specifying the buffer size.

The following figure shows the buffers used for communication.

Figure 2‒4: Overview of the buffers used for communication

For details about consensus messages, see 2.4.9 General procedure for data access.

2. Architecture

Hitachi Elastic Application Data Store 31

2.3 Areas storing keys and values

Keys and values are stored in an area called a cache.

A cache is a logical data storage area that is created across multiple EADS servers. A group of EADS servers that share
a cache and make up a single logical KVS is called a cluster.

Figure 2‒5: Overview of caches

To create caches, use the eztool createcache command. You can create a maximum of 16 caches in a cluster.

For details about how to create caches, see 10.2 Starting the EADS servers (and creating caches) or 11.5 Adding and
deleting caches.

2.3.1 Cache types
EADS supports three types of caches, as explained below. You use the cache type that is appropriate to your operation
methods.

Table 2‒1: Cache types and their characteristics

No. Cache type Data storage Characteristics

1 Memory cache Memory area • Data can be referenced and updated at high speed.
• Data loss might occur in the event of a failure because data is

managed in memory.

2 Disk cache Disk area • Data can be made persistent by using files.
• Data referencing and data updating create disk access overhead.
• A volume of data greater in size than the size of the physical memory

can be stored.
• If redundant copies of data are created, data can be restored even

when more EADS servers fail than there are data copies.

3 Two-way cache Memory area and disk area • Data can be referenced at high speed.

2. Architecture

Hitachi Elastic Application Data Store 32

No. Cache type Data storage Characteristics

• Data can be made persistent by using files.
• Data updating creates disk access overhead.
• If redundant copies of data are created, data can be restored even

when more EADS servers fail than there are data copies.

2. Architecture

Hitachi Elastic Application Data Store 33

2.4 Data access

The following are the types of cache data operations that are available:

Data update operations

• put (storing data)

• create (storing new data)

• update (updating data)

• replace (replacing data)

• remove (deleting data)

Data reference operation

• get (acquiring data)

Depending on the type of data operation, you can perform batch operations on multiple data items in a cache.

You can use API functions and commands to manipulate data in a cache. The following table shows the use of the API
functions and the commands for data operations.

Table 2‒2: Use of the API functions and commands for data operations

Data operation API function Command

Data update operations • put
• create
• update
• replace
• remove

• eztool put command
• eztool remove command

Data update operations (batch operation) • putAll
• removeAll

eztool removeall command

Data reference operation get eztool get command

Data reference operation (batch operation) getAll There is no applicable command.

Important note
In terms of the data types and sizes that can be specified, there is not complete compatibility between the API
functions and the commands.

Differences in data update operations
The data update operation you can perform depends on whether you use an API function (put, create, update,
replace, putAll) or the eztool put command. The following table shows the data operations supported by
the API functions and the command:

API function or command Storing new data Updating existing data

• Put
• put All
• eztool put command

Y Y

create Y N

2. Architecture

Hitachi Elastic Application Data Store 34

API function or command Storing new data Updating existing data

update N Y

replace N Y#

Legend:
Y: Can be executed.
N: Cannot be executed.

#
Replaces only values that match the specified values.

2.4.1 Storing data (using put)
You use put to store data in a cache.

First, a key is associated with a value, and then the key-value pair is stored (using put). If the specified key already
exists in the cache, the value is updated (using put) unconditionally.

For the key, specify a value that is unique in the cache. Data with a duplicated key can be stored if the storage cache
name is different.

The following figure shows an example in which data having the same key is stored in caches 1 and 2.

Figure 2‒6: Overview of storing data (using put)

2.4.2 Storing new data (using create)
You use create to store new data in a cache.

Only when a new key is stored, a key is associated with a value, and then the key-value pair is stored (using create).

create only stores new data. If a specified key already exists in the cache, an error results.

2. Architecture

Hitachi Elastic Application Data Store 35

Figure 2‒7: Overview of storing new data (using create)

2.4.3 Updating data (using update)
You use update to update the data stored in a cache.

Only if the specified key is stored in a cache, update associates a value with the key, and then updates the data. If the
specified key is not stored in a cache, an error results.

2. Architecture

Hitachi Elastic Application Data Store 36

Figure 2‒8: Overview of updating data (using update)

2.4.4 Replacing data (using replace)
You use replace to replace data in a cache.

While put unconditionally updates values, replace replaces values only when they match the specified values.

The following figure shows an example in which a value whose key is 001 is replaced with BBBB.

Figure 2‒9: Overview of replacing data (using replace)

This example replaces the value with BBBB because it matches the specified value (AAAA).

2. Architecture

Hitachi Elastic Application Data Store 37

Reference note
Difference between put and replace

To check the contents of a stored value and then update the value, you might use get to obtain a value, an
application program checks the value, and then you execute put. However, the value might be updated by
another application program between the get and put processes. You can avoid this problem by using
replace.

The following figure shows the difference between put and replace by means of an example that replaces ABC with
DEF.

Figure 2‒10: Difference between put and replace

2. Architecture

Hitachi Elastic Application Data Store 38

2.4.5 Acquiring data (using get)
You use get to acquire data from a cache.

get specifies a key associated with the value to be acquired, and then acquires (gets) the value.

The following figure shows an example of getting the value whose key is 001.

2. Architecture

Hitachi Elastic Application Data Store 39

Figure 2‒11: Overview of acquiring data (using get)

2.4.6 Deleting data (remove)
You use remove to delete data from a cache.

remove specifies a key associated with the value to be deleted, and then deletes (removes) the key and value.

The following figure shows an example of deleting data whose key is 001.

Figure 2‒12: Overview of deleting data (using remove)

2.4.7 Performing batch operations on a cache
You can perform batch operations on multiple data items in a cache. The following types of batch operations are
supported:

• Batch data storage (putAll)

• Batch data acquisition (getAll)

• Batch data deletion (removeAll)

2. Architecture

Hitachi Elastic Application Data Store 40

Figure 2‒13: Overview of batch operations performed on a cache (example of putAll)

You can use the following methods to specify the data that is to be subject to a batch operation:

• Specify multiple keys or data items in a single batch operation.

• Specify the name of the group to which the target keys belong.

• Specify the EADS server at the data storage destination.

For details about group names (grouping keys), see 2.6 Placing data on a specific EADS server (grouping keys).

2.4.8 Data access without having to be aware of the locations of individual
EADS servers

EADS uses an algorithm called consistent hashing to distribute data to the EADS servers in the cluster.

To access distributed data, an EADS client identifies the EADS server that stores the data based on connection target
information (cluster information) that the EADS client maintains. Therefore, when you create application programs,
there is no need to know the physical locations of the EADS servers that store data.

2. Architecture

Hitachi Elastic Application Data Store 41

Figure 2‒14: Overview of accessing EADS servers

If there are redundant copies of the data, an EADS server storing the data is accessed. For details about how redundant
copies of data are created, see 2.8 Creating redundant copies of data.

For an overview of how cluster information is monitored, see 2.9.1 Overview of monitoring a cluster by sending
heartbeats .

For an overview of data distribution, see 2.5 Data distribution by consistent hashing.

2.4.9 General procedure for data access
This subsection explains the general procedure for data access.

(1) Data update operation
The EADS client identifies the EADS server that stores the data based on the cluster information that the EADS client
maintains and then updates the data.

The following figure shows the general procedure for data access by means of an example of put processing that sets
the multiplicity to 3.

2. Architecture

Hitachi Elastic Application Data Store 42

Figure 2‒15: General procedure for data access

The EADS client sends a put processing request.

When EADS server 1 receives the request, it sends a consensus message to the EADS servers to which the data is to be
copied to obtain consensus for performing the put processing.

EADS server 1 performs the put processing if it receives as many consensus messages from individual EADS servers
as there are data copies plus the original. This insures data consistency when redundant copies of the data are created.
This example needs consensus from three EADS servers to perform put processing because multiplicity has been set
to 3.

If consensus processing is not completed within a specified period of time (the default is 0.8 second), a timeout occurs
and the consensus processing is performed again.

If the EADS server receives three consensus responses including one from itself, it stores and creates redundant copies
of the data. Because the multiplicity is set to 3, this example copies data to EADS servers 2 and 3. The processing is
performed asynchronously at the EADS servers.

When the data has been stored in EADS server 1, which is the EADS server that received the request, the processing
results are returned to the EADS client.

The following explains the handling of data storage and redundancy errors.

The possible causes of a data storage or redundancy error are as follows:

• The connection-target EADS server or network has failed.

• The area for storing the value part of a key-value pair is inadequate.#

• There is more data than an EADS server can store.#

#
When the total data restriction function is enabled and a shortage of data storage capacity is foreseen, an error in
the corresponding processing can be set and the EADS server can be prevented from becoming isolated. For this
reason, we recommend that you enable the total data restriction function.

(a) When data storage fails
This subsection explains the handling of data storage errors by means of an example of put processing that sets
multiplicity to 3.

2. Architecture

Hitachi Elastic Application Data Store 43

In this example, data storage in EADS server 1 failed and an error is returned to the EADS client.

Redundant copies of the data are created.

The EADS server where storage of the data failed is isolated,# but the cluster continues operating. In this status, the data
multiplicity remains low. To restore the data multiplicity, eliminate the problem that isolated the EADS server and then
restore the EADS server.

#
An isolated EADS server no longer accepts requests from EADS clients.

(b) When data storage is successful, but creation of redundant copies of the data fails
This subsection explains the handling when data storage was successful, but creation of redundant copies of the data
fails, by way of an example of put processing that sets multiplicity to 3.

To perform put processing, this example requires consensus from three EADS servers. However, there is no response
from EADS server 3, one of the targets to which the data is to be copied. The example obtains consensus from another
EADS server (EADS server 4), and then performs the put processing. Note that EADS server 4 does not create
redundant copies of the data.

2. Architecture

Hitachi Elastic Application Data Store 44

The EADS server in which creation of a redundant copy of the data failed is isolated, but the cluster continues operating.
In this status, the data multiplicity remains low. To restore the data multiplicity, eliminate the problem that isolated the
EADS server and then restore the EADS server.

(2) Data reference operation
The EADS client identifies the EADS server where the desired data was stored based on the cluster information that
the EADS client maintains, and then references the data.

If the target EADS server in which the data was stored is down but redundant copies of the data had been created, the
EADS client accesses an EADS server containing a copy of the data and references the data there.

2.4.10 Locking during data access
If data were to be manipulated by multiple EADS clients and commands simultaneously, data consistency might be lost.
To prevent this, EADS servers lock data in units of ranges during update operations.

Range refers to data storage areas in which data in a cache is separated according to the location of the EADS servers.
For details, see 2.5.1 Overview of data distribution.

The following table shows whether the same range of data can be accessed by multiple EADS clients and commands
simultaneously.

Table 2‒3: Whether the same range of data can be accessed by multiple EADS clients and
commands simultaneously

Processing underway Processing to be executed simultaneously

Data update operation#1 Data reference operation#2

Data update operation#1 N Y

Data reference operation#2 Y Y

Legend:
Y: Can be performed simultaneously. The processing is performed without waiting for completion of the current processing.
N: Cannot be performed simultaneously. The processing is performed after the current processing has been completed.

#1
Data update operation means the following API functions or commands:

• API functions (put, putAll, create, update, replace, remove, removeAll)

• eztool put command

• eztool remove command

• eztool removeall command

The API functions include API functions executed within user functions.

#2
Data reference operation means the following API functions or command:

• API functions (get, getAll)

• The following Iterator methods of the Group interface:
 keyIterator()

2. Architecture

Hitachi Elastic Application Data Store 45

 descendingKeyIterator()
 higherKeyIterator()
 lowerDescendingKeyIterator()

• eztool get command

The API functions include API functions executed within user functions.

The following figure shows the scope of locking, using put as an example.

Figure 2‒16: Scope of locking

2. Architecture

Hitachi Elastic Application Data Store 46

2.5 Data distribution by consistent hashing

EADS uses an algorithm called consistent hashing to distribute data to the EADS servers in the cluster.

2.5.1 Overview of data distribution
This subsection provides an overview of data distribution.

Figure 2‒17: Data distribution by consistent hashing

In consistent hashing, the servers and keys are treated as being placed on the same circumference. Sequential integers
are assigned in ascending order to this circumference in a counterclockwise direction.

In this figure, first, the hash values of the EADS servers (from 1 through 5) and the keys for the data to be stored are
obtained. Then, the servers and keys are placed on the circumference according to their hash values.

The key for each data item is then stored on the first EADS server located clockwise from the location at which the key
was placed.

A range of hash values obtained by separating the consistent hashing circumference in a cache by the location of each
EADS server is called a range. Ranges are managed by range IDs. In this figure, a key placed in range 4 is stored in
EADS server 4.

This circle has nothing to do with the physical placement of the EADS servers.

2.5.2 Details about data distribution
This subsection provides details about data distribution.

2. Architecture

Hitachi Elastic Application Data Store 47

In consistent hashing, servers and keys are treated as being placed on a circumference. However, in this example, they
are represented on a straight line for convenience.

2.5.3 Adding EADS servers (scaling out) and distributing data
EADS enables you to add new EADS servers to a cluster without having to stop the cluster. This is called scale-out
processing. You can add an EADS server at any desired location on the consistent hashing circumference.

When scale-out processing is performed, the range within which a new EADS server is added is divided. The range
containing values that are greater than the value at the location of the added EADS server (hash value) becomes the new
range. The EADS server that had been managing the previous range transfers the newly added range of data to the added
EADS server.

2. Architecture

Hitachi Elastic Application Data Store 48

Adding new EADS servers to a cluster enables you to increase the overall size of the physical memory and improve
performance in the entire cluster. By dividing a range, you can reduce the memory usage by the EADS server that had
been managing the previous range and reduce its workload.

The following figure provides an overview of adding one new EADS server to a cluster.

Figure 2‒18: Overview of scale-out processing (adding an EADS server)

2. Architecture

Hitachi Elastic Application Data Store 49

2.6 Placing data on a specific EADS server (grouping keys)

EADS allows you to group multiple keys together so that related data resides on the same EADS server. This is called
grouping keys.

If keys are not grouped, the data is distributed among the EADS servers in the cluster. When data needs to be manipulated
for purposes such as obtaining totals, data distributed throughout the cluster must be accessed. Communication is
required each time data is acquired from each EADS server.

If you know the keys that will need to be processed and group those keys together, you can place related data on the
same EADS server. This enables processing using user functions to be performed on groups, thus improving the
efficiency of data processing.

For details about user functions, see 2.7 Efficient data processing using user functions.

Figure 2‒19: Placing data on a specific EADS server (grouping keys)

2.6.1 Grouping keys
You group keys by assigning a group name to the keys. This subsection explains group names, element names, and
group hierarchies.

(1) Group names and element names
You group keys by specifying a group name for the keys.

Define a key in the format group-name:element-name. Separate the group name and the element name with a colon (:).

The following figure shows the structure of keys when keys are grouped.

2. Architecture

Hitachi Elastic Application Data Store 50

Figure 2‒20: Structure of keys

Group name
This is a name of a group of specific keys.

Element name
This is a name used to uniquely identify a value.
If keys are not grouped, this becomes the key.

(2) Defining group and element names
Each key must be unique within the cache. Therefore, multiple keys that have the same group and element names cannot
be defined in the same cache.

As shown in the following figure, keys with identical group and element names can be defined as long as their storage
caches are different:

(3) Group hierarchies
You can arrange groups hierarchically by defining multiple group names, such as
Group1:Group2:Group3:ElementA. The name of each group is called the group hierarchy name.

By using group hierarchies, you can perform more detailed data manipulation involving a specific hierarchy, such as
totaling the data belonging to Group2 in the data in Group1.

When groups are configured in a hierarchy, a group name consists of the highest group hierarchy name through the
corresponding group hierarchy name. For example, in Group1:Group2:Group3:ElementA, group hierarchy
names are Group1, Group2, and Group3, and group names are Group1, Group1:Group2, and
Group1:Group2:Group3.

2.6.2 Data distribution with grouped keys
If a data item has a defined group name, its storage EADS server is determined by the hash value of that group name.

2. Architecture

Hitachi Elastic Application Data Store 51

If groups have hierarchies, the storage EADS server is determined by the hash value of the first group hierarchy name.
Multiple data items with the same first group hierarchy name are stored on the same EADS server because their hash
values are the same.

For example, the data items with the following keys are stored on the same EADS server:

• Group1:Group2:ElementA
• Group1:Group3:ElementB
• Group1:ElementC

For an overview of data distribution, see 2.5 Data distribution by consistent hashing.

Tip
You can also group keys by specifying the EADS server ID of the storage EADS server. Such a group is called
an EADS server ID specified group. If you use EADS server ID specified groups to group keys, specify the
EADS server ID enclosed in square brackets ([]) at the beginning of the keys (at the beginning of the highest
group hierarchy name).

For example, the key data shown below belongs to group [1]Group1 and is stored in the EADS server whose
EADS server ID is 1 (any character string following the EADS server ID, such as Group1, is ignored and the
storage EADS server is determined only by the specified EADS server ID).

• [1]Group1:Group2:ElementA
• [1]Group1:Group3:ElementB
• [1]Group1:ElementC

2. Architecture

Hitachi Elastic Application Data Store 52

2.7 Efficient data processing using user functions

A user function is a program that defines a series of data operations (user processing) on specific data in a cache, such
as totaling and analyzing data.

The user can first create a user function and place it on EADS servers, and then execute that user function by calling it
from the EADS client.

A user function accesses only the data stored on the EADS server on which the user function was executed. Therefore,
you can reduce communication overhead and achieve efficient data processing by using user functions instead of by
using the EADS client.

Use Java to create user functions.

2.7.1 Mechanism of user functions
There are two ways to execute user functions:

• By specifying a key or a group

• By specifying an EADS server

2. Architecture

Hitachi Elastic Application Data Store 53

Figure 2‒21: Mechanism of user functions

To use user functions, first create them and then place them on all EADS servers in the cluster.

The following explains the mechanism of user functions for each execution method.

(1) Execution by specifying a key or a group
Call the user function from the EADS client by specifying the key or group name and user function name. The EADS
server to be accessed is determined from the hash value of the specified key or group name.

(2) Execution by specifying an EADS server
Call the user function from the EADS client by specifying the EADS server and user function name. The EADS server
to be accessed is determined from the specified EADS server's address information (IP address and port number).

2. Architecture

Hitachi Elastic Application Data Store 54

2.8 Creating redundant copies of data

EADS can create redundant copies of data by automatically copying data to multiple EADS servers. If one of the EADS
servers fails, you can continue processing by using the data copied to the other EADS servers. By having redundant
copies of data, you can also avoid losing data from memory in the event of a failure.

The following provides an overview of how EADS creates redundant copies of data.

2.8.1 Overview of creating redundant copies of data
Figure 2‒22: Overview of how EADS creates redundant copies of data

EADS copies data to multiple EADS servers in a clockwise direction according to the specified multiplicity (the number
of data copies plus the original).

As shown in this figure, if the multiplicity is 3 and the data storage location is EADS server 1, EADS first stores data
on EADS server 1. EADS then copies data from EADS server 1 to EADS server 2 and EADS server 3 in a clockwise
direction.

2.8.2 Continuing processing in the event of a failure when redundant
copies of data have been created

When redundant copies of data have been created, the EADS client accesses the EADS server that stores the target data.
The EADS client does not access the EADS servers where copies of the data are stored.

If a failure prevents the EADS client from accessing the EADS server that stores the data, it automatically changes the
access target to an EADS server that stores a copy of the data and continues processing.

The following figure shows how data is accessed when EADS server 1 stores the data and how the access target is
changed when a failure occurs.

2. Architecture

Hitachi Elastic Application Data Store 55

Figure 2‒23: Data access when redundant copies of data have been created and changing the
access target in the event of a failure

Important note
The number of EADS servers that make up a cluster must be at least the data multiplicity 2 - 1.

Data consistency is maintained as long as the number of EADS servers that have shut down due to failures is
less than the number of data copies plus the original.

For example, if the data multiplicity is 3 and there are five EADS servers and two of the EADS servers are shut
down, no data loss occurs.

2. Architecture

Hitachi Elastic Application Data Store 56

2.9 Monitoring a cluster

The EADS servers in a cluster send heartbeats (packets distributed within the cluster) to notify each other that they are
running normally. If there is an EADS server that does not send heartbeats, the other EADS servers in the cluster check
whether that EADS server is alive. This is called cluster monitoring.

With cluster monitoring, the user can tune the speed at which errors are detected, by specifying settings such as the
heartbeat interval.

2.9.1 Overview of monitoring a cluster by sending heartbeats
The EADS servers in a cluster mutually send a heartbeat at a predefined interval (the default is every 0.4 seconds).

In a cluster, the EADS servers check the cluster status by comparing the cluster information managed by individual
EADS servers with the multicast heartbeats.

The cluster information provides information about that EADS servers' state of life or death within the cluster.

Figure 2‒24: Overview of monitoring a cluster

2. Architecture

Hitachi Elastic Application Data Store 57

2.9.2 EADS server shutdown decided by the agreement of a specific
number of EADS servers

If there is an EADS server that does not send a heartbeat within the specified timeout (the default is two seconds), the
other EADS servers in the cluster check whether that EADS server is alive (using check for live servers). If the check
for live servers times out, shutdown of the EADS server is decided by the agreement of a specific number of EADS
servers (the default is one EADS server). After the server shutdown is decided, the corresponding EADS server is
removed from the cluster.

Because the cluster is always monitored by heartbeat transmission from EADS servers, an EADS server shutdown can
be detected at an early stage.

The following figure shows the flow of detecting an EADS server shutdown.

Figure 2‒25: Flow of detecting an EADS server shutdown

2. Architecture

Hitachi Elastic Application Data Store 58

1. If no heartbeat is sent from EADS server 3, the EADS servers in the cluster perform a check for live servers on
EADS server 3.

2. If the check for live servers times out before a heartbeat is sent from EADS server 3, the EADS servers in the cluster
mutually send heartbeats with the attached information EADS server 3 is in crisis status.

3. If a specific number of EADS servers (the default is one EADS server) agree that EADS server 3 is in crisis status,
shutdown of EADS server 3 is decided.
The EADS servers in the cluster then decide whether EADS server 3 is to be removed from the cluster. If consensus
is reached by the majority in the cluster, EADS server 3 is removed from the cluster.
The removed EADS server is forcibly isolated. An isolated EADS server no longer accepts requests from the EADS
client.

Important note
The cluster can continue operating as long as the number of EADS servers that have shut down due to failures
is less than the number of data copies plus the original.

For example, if the data multiplicity is 3 and there are five EADS servers and two of the EADS servers are shut
down, monitoring of the cluster can continue.

2. Architecture

Hitachi Elastic Application Data Store 59

2.10 Cluster information update check by the EADS client

To access data in a cache, the EADS client identifies the EADS server that stores the data based on the cluster information
that the EADS client maintains. This means that you do not have to know which EADS server stores the data when you
have the EADS client access the data.

From the time the EADS client's initialization is completed to the time the EADS client terminates, it obtains cluster
information from each and every EADS server in the cluster at a specified interval (the default is every second). This
prevents the EADS client from managing outdated cluster information.

The EADS client obtains cluster information from the EADS servers by accessing the EADS servers in ascending order
of their logical locations (hash values) based on the cluster information that the EADS client maintains.

Figure 2‒26: Overview of cluster information update check

An error results when there is no response within the timeout value. Even though an error occurs, the EADS client
continues to perform cluster information update checks on all EADS servers.

2. Architecture

Hitachi Elastic Application Data Store 60

2.11 Cluster and EADS server status transitions

The available operations (API functions and commands) depend on the status of the cluster and EADS servers.

Note the following:

• An application program developer must be knowledgeable about cluster and EADS server statuses when designing
application programs.

• The system operation administrator must check the status of the cluster and EADS servers before executing
commands. You use the eztool status command to check the status of the cluster and EADS servers.

2.11.1 Cluster status transitions
The following figure shows the cluster status transitions.

Figure 2‒27: Cluster status transitions

The following table explains each status shown in the figure.

Table 2‒4: Cluster status

Cluster status Description

Status Status displayed by the eztool status
command

Cluster is available AVAILABLE The cluster is running normally.

Cluster is partially
available

PARTIALLY_AVAILABLE The cluster is partially running.
The cluster might not be accessible depending on the key.

2. Architecture

Hitachi Elastic Application Data Store 61

Cluster status Description

Status Status displayed by the eztool status
command

If the number of EADS servers that make up the cluster is at least the
data multiplicity 2 - 1, the cluster might be placed in this status if
more EADS servers are shut down than there are data copies plus the
original.
Once the cluster is placed in this status, it cannot be placed in
AVAILABLE (cluster available) status unless all EADS servers are
stopped.

Cluster is
unavailable

NOT_AVAILABLE The cluster is not running.
The cluster is placed in this status in either of the following cases:
• Split-brain occurred.
• At least half of the EADS servers in the cluster are shut down.

Once the cluster is recovered from split-brain, it can be placed in
AVAILABLE status (cluster available) or PARTIALLY_AVAILABLE
(cluster partially available).

2.11.2 EADS servers' cluster participation status
The following figure shows the EADS server cluster participation status transitions.

Figure 2‒28: Cluster participation status transitions

The following table explains the statuses shown in the figure.

2. Architecture

Hitachi Elastic Application Data Store 62

Table 2‒5: EADS server cluster participation statuses

Cluster participation status Description

Participation status Status displayed by
the eztool status
command

Participating in the
cluster

online The EADS server is participating in the active cluster.

Not participating in
the cluster

offline The EADS server is not participating in the active cluster.
An EADS server that has been deleted from the cluster for a reason such as a
communication error is placed in this status.
An EADS server in this status might not be available for data access processing or
command execution.
An EADS server in this status can resume participation in the cluster after its status has
been checked and it is recovered.

On standby to
participate in the
cluster

standby The EADS server has never participated in the active cluster.
An EADS server defined in the cluster properties is in this status when it has not started.
Once an EADS server in this status is started, it is participating in the cluster.

2.11.3 EADS server status transitions
The following figure shows the EADS server status transitions.

2. Architecture

Hitachi Elastic Application Data Store 63

Figure 2‒29: EADS server status transitions (normal start)

2. Architecture

Hitachi Elastic Application Data Store 64

Figure 2‒30: EADS server status transitions (restoration processing)

#
If restoration processing is successful, the restored EADS server is placed in the same status as that of the other
EADS servers that were already running in the cluster when the restoration processing started.
For example, if the status of the other EADS servers that were running when the restoration processing started was
running, the restored EADS server is also placed in running status.

2. Architecture

Hitachi Elastic Application Data Store 65

Figure 2‒31: EADS server status transitions (scale-out processing (adding EADS servers))

#
If EADS server addition processing is successful, the added EADS server is placed in the same status as that of the
other EADS servers that were already running in the cluster when the EADS server addition processing started.
For example, if the status of the other EADS servers that were running when the EADS server addition processing
started was running, the added EADS server is also placed in running status.

The following table explains each status shown in the figure.

2. Architecture

Hitachi Elastic Application Data Store 66

Table 2‒6: EADS server status

EADS server status Description

Status name Status displayed by the
eztool status command

Initializing initializing The EADS server is being initialized.
This status is also displayed when an EADS server is being restored by using the
ezstart -r command or being added by using the ezstart -ai command.Restoring

Adding

Initialized initialized The EADS server has just been initialized. As with closed status, the EADS server
cannot accept requests from EADS clients.

Running running The EADS server can accept requests from EADS clients.

Closing closing Although the EADS server cannot accept requests from EADS clients, there are threads
that are still running.

Closed closed The EADS server cannot accept requests from EADS clients.

Isolated isolated As with closed status, the EADS server cannot accept requests from EADS clients.
An EADS server that has been removed from the cluster for reasons such as a
communication error is forcibly placed in isolated status.
Use the eztool isolate --stop command to individually terminate the EADS
servers in isolated status.

Stopping stopping The EADS server is in the process of stopping.

Stopped ----------- The EADS server has stopped.

2. Architecture

Hitachi Elastic Application Data Store 67

2.12 Improving throughput by using thread and connection pools

Thread pools and connection pools are used for communication between an EADS client and an EADS server.

If threads and connections are pooled before requests become concentrated, decreases in overall EADS server response
speeds can be prevented.

Tune thread and connection pools according to the requirements of the system that uses EADS.

Figure 2‒32: Overview of thread and connection pools borrow

2.12.1 Thread pools
On an EADS server, the threads for processing requests from an EADS client are created and pooled in advance. This
is called a thread pool.

When the EADS server accepts a request, it allocates a thread from the thread pool and processes the request.

When an EADS server starts, the number of threads pooled in the thread pool equals the maximum number of
simultaneous connections.

If there are no more available threads in the thread pool, an error results and communication is cut off. If the number of
requests accepted exceeds the maximum number of simultaneous threads, processing is placed in wait status.

After the processing of one request is completed, the thread waits for the next request.

You can reduce the overhead of thread creation and deletion by using thread pools, because with them, repeated creation
and deletion of threads is no longer necessary.

2.12.2 Connection pools
The EADS client reuses the connection that has been established by pooling it for each connection target. This is called
a connection pool.

2. Architecture

Hitachi Elastic Application Data Store 68

When communication begins, the EADS client checks for an existing connection with the connection target. If a
connection has been pooled, EADS uses that connection to start communication.

When communication ends, EADS returns the connection to the connection pool.

If all connections in the connection pool are in use due to concentrated requests, as many new connections as can be
pooled can be established.

If the maximum number of connections that can be pooled has already been reached, processing is placed in wait status
until a connection is returned to the pool. Alternatively, you can set that an error is to be detected and processing is not
to be placed in wait status.

You can reduce communication overhead by using communication pools, because with them, it is not necessary to
establish connections repeatedly.

2. Architecture

Hitachi Elastic Application Data Store 69

Part 2: Design and Configuration

3 General Procedure for Designing and Configuring
a System

This chapter explains the general procedure for designing and configuring a system on which EADS
has been deployed.

Hitachi Elastic Application Data Store 70

3.1 General procedure for designing and configuring a system

The following figure shows the general procedure for designing and configuring a system.

3.1.1 Checking the required resources
Before you configure your system, estimate the amount of resources the system requires, and then determine the number
of machines and EADS servers needed to process them.

The number of EADS servers that make up a cluster must be at least the data multiplicity 2 - 1.

See 4. Checking the Required Resources.

3.1.2 Installing and setting up
Install the prerequisite program products, and then set up the EADS servers and EADS clients. Also, test the system by
applying loads close to actual operation in the prepared execution environment.

See 5. Installing and Setting Up (EADS Servers) or 6. Installing and Setting Up (EADS Clients).

3.1.3 Designing the environment-dependent parameters
Design the environment-dependent parameters for the system.

The environment-dependent parameters are the minimum parameters that need to be designed to start the system.

See 7. Designing the Environment-Dependent Parameters (EADS Servers) or 8. Designing the Environment-Dependent
Parameters (EADS Clients).

3.1.4 Designing the tuning parameters
Design the tuning parameters for the system.

The tuning parameters are parameters whose values need to be adjusted for your environment to achieve stable system
operations.

3. General Procedure for Designing and Configuring a System

Hitachi Elastic Application Data Store 71

See 9. Designing the Tuning Parameters.

3. General Procedure for Designing and Configuring a System

Hitachi Elastic Application Data Store 72

4 Checking the Required Resources

This chapter explains how to estimate the required amount of memory and disk capacity for the
system.

Hitachi Elastic Application Data Store 73

4.1 Estimating the required memory

This section explains how to estimate the memory capacity that is required to use EADS.

4.1.1 Memory configuration
The following figure shows the configuration of memory used by an EADS server.

Figure 4‒1: Memory configuration

(1) Java heap
A Java heap mainly consists of the new area and the tenured area. The key part of data is stored in the tenured area.

If the size of stored keys exceeds half of the tenured area size, FullGC (full garbage collection) occurs. Therefore, you
must estimate the Java heap size based on the tenured area size. For details about how to estimate the Java heap size,
see 4.1.2 Estimating the Java heap size.

(2) Explicit heap
The explicit heap consists of an area for storing the value part of key-value pairs and an area for storing the history of
update operations.

The history of update operations includes the API functions and information about keys and values.

4. Checking the Required Resources

Hitachi Elastic Application Data Store 74

Note that three percent of the explicit heap is used as a management area.

For details about how to estimate the explicit heap size, see 4.1.3 Estimating the explicit heap size.

4.1.2 Estimating the Java heap size
The following subsections show the formulas for estimating the Java heap size.

(1) Estimating the Java heap size per EADS server
The tenured area size per one EADS server times three equals the Java heap size.

Specify the obtained value in the eads.java.heapsize parameter in the shared properties. The default is 3
gigabytes.

Reference note
When you create a cache on disk, add to the Java heap size the memory size used by that cache per EADS
server. For details about estimating the size, see 4.1.2(2) Estimating the Java heap size used by a cache on disk.

Java heap size (megabytes) =
{ (maximum key size that can be stored in the cluster (bytes) + 850 bytes)

 number of data items stored per EADS server
+ (maximum key size that can be stored in the cluster (bytes) + 250 bytes)

 number of group names#

+ maximum number of simultaneous connections to EADS server
 (14 + data transmit and receive buffer size (bytes) 3)

+ number of EADS servers 409,600 bytes
+ Java heap area used for managing the history of update operations (bytes)
+ Java heap area used for isolation, restoration, and scale-out processing (bytes) }

 3 1,0242

#
If the groups are arranged hierarchically, the number of group names of the first group is used.

Maximum key size that can be stored in the cluster (bytes):
eads.cache.key.maxsize parameter value in the shared properties

Number of data items stored per EADS server
The following shows the formula for estimating the number of data items stored per EADS server:

Number of data items stored per EADS server =
number of data items per range data multiplicity

Number of data items per range:
The formulas for estimating the number of data items per range are shown below.
If you will be using the total data restriction function, specify the estimated value in the
eads.cache.keyCount shared property parameter.

Number of data items per range =
(number of data items stored per range in a memory cache

4. Checking the Required Resources

Hitachi Elastic Application Data Store 75

+ number of data items stored per range in a two-way cache
+ number of data items stored per range in a disk cache)

Number of data items stored per range in a memory cache:
The following shows the formula for estimating the number of data items stored per range in a memory cache:

Number of data items stored per range in a memory cache =
number of data items stored in cluster's memory cache

 number of EADS servers in the cluster
+ number of data items to be added to the memory cache for the total data restriction function

Number of data items to be added to the memory cache for the total data restriction function:
The formula for estimating the number of data items to be added to the memory cache for the total data restriction
function is shown below.
If you will not be using the total data restriction function, specify 0.
If you will be using only a memory cache, add this value. If you will be using a two-way cache or a disk cache,
specify 0.

Number of data items to be added to the memory cache for the total data restriction function =
maximum number of simultaneous connections to EADS server maximum number of data items that can be updated simultaneously

Maximum number of simultaneous connections to EADS server:
eads.server.maxConnections parameter value in the server properties
Maximum number of data items that can be updated simultaneously:
If you will be performing batch data operations, specify 10. Otherwise, specify 1.
Number of data items stored per range in a two-way cache:
The following shows the formula for estimating the number of data items stored per range in a two-way cache:

Number of data items stored per range in a two-way cache =
number of data items to be stored in the cluster's two-way cache

 number of EADS servers in the cluster
+ number of two-way cache data items to be added for the total data restriction function

Number of two-way cache data items to be added for the total data restriction function:
The formula for estimating the number of two-way cache data items to be added for the total data restriction
function is shown below.
If you will not be using the total data restriction function, specify 0.
Add this value if you will be using only two-way caches or if you will be using memory caches, disk caches,
and two-way caches together. If you will be using only memory caches or only disk caches, specify 0.

Number of two-way cache data items to be added for the total data restriction function =
maximum number of simultaneous connections to EADS server maximum number of data items that can be updated simultaneously

Maximum number of simultaneous connections to EADS server:
eads.server.maxConnections parameter value in the server properties
Maximum number of data items that can be updated simultaneously:
If you will be performing batch data operations using a memory cache, specify 10. Otherwise, specify 1.
Number of data items stored per range in a disk cache:
The following shows the formula for estimating the number of data items stored per range in a disk cache:

Number of data items stored per range in a disk cache =
number of data items stored in the cluster's disk cache

4. Checking the Required Resources

Hitachi Elastic Application Data Store 76

 number of EADS servers in the cluster
+ number of disk cache data items to be added for the total data restriction function

Number of disk cache data items to be added for the total data restriction function:
The formula for estimating the number of disk cache data items to be added for the total data restriction function
is shown below.
If you will not be using the total data restriction function, specify 0.
Add this value if you will be using only a disk cache. If you will be using a memory cache or a two-way cache,
specify 0.

Number of disk cache data items to be added for the total data restriction function =
maximum number of simultaneous connections to EADS server maximum number of data items that can be updated simultaneously

Maximum number of simultaneous connections to EADS server:
eads.server.maxConnections parameter value in the server properties
Maximum number of data items that can be updated simultaneously:
Specify 1.

Maximum number of simultaneous connections to EADS server:
eads.server.maxConnections parameter value in the server properties

Data multiplicity:
eads.replication.factor parameter value in the shared properties

Data transmit and receive buffer size (bytes):
eads.server.connection.buffersize parameter value in the server properties

Java heap area used for managing the history of update operations (bytes):
The following shows the formula for estimating the Java heap area used for managing the history of update
operations:

Java heap area used for managing the history of update operations (bytes) =
3,584 (maximum number of items that can be retained in the history of update operations
+ maximum number of consensus processes that can be executed simultaneously)

 (data multiplicity 2 - 1) numbers of caches
+ 16 length of the queue for sending consensus messages (number of EADS servers - 1)

Maximum number of items that can be retained in the history of update operations:
The following shows the formula for estimating the maximum number of items that can be retained in the history
of update operations.

Maximum number of items that can be retained in the history of update operations =
(heartbeat timeout value 1,000)

 throughput of data update operations on one EADS server (in operations/second)#

Heartbeat timeout value:
eads.failureDetector.heartbeat.timeout parameter value in the server properties
#
If the throughput varies greatly from one cache to another, determine the throughput for each cache and then
specify the largest such value.

Maximum number of consensus processes that can be executed simultaneously:
eads.replication.preparations parameter value in the shared properties

4. Checking the Required Resources

Hitachi Elastic Application Data Store 77

Data multiplicity:
eads.replication.factor parameter value in the shared properties

Length of the queue for sending consensus messages:
eads.replication.sendQueue.length parameter value in the server properties

Java heap area used for isolation, restoration, and scale-out processing (bytes):
Estimate the maximum sizes of the Java heap areas used for isolation, restoration, and scale-out processing and
specify the largest such value.

Java heap area used for isolation processing (bytes) =
(maximum number of consensus processes that can be executed simultaneously 2

 maximum size of the history of update operations (bytes)
 (maximum number of simultaneous threads for processing performed for caches

+ numbers of caches) + (data multiplicity - 1) numbers of caches
 size of data sent for complementary processing of the history of update operations (bytes))
 MIN(4 (data multiplicity - 1), number of EADS servers - 1)

Java heap area used for restoration and scale-out processing (bytes) =
size of area for storing the history of update operations (megabytes) 1,0242

 (data multiplicity 2 - 1)
+ size of data transmitted during restoration processing and scale-out processing (bytes)

Maximum number of consensus processes that can be executed simultaneously:
eads.replication.preparations parameter value in the shared properties

Maximum size of the history of update operations (bytes):
The following shows the formula for estimating the maximum size of the history of update operations.

Maximum size of the history of update operations (bytes) =
maximum key size that can be stored in the cluster + maximum value size MAX(2, maximum number of data items that can be updated
simultaneously)

Maximum key size that can be stored in the cluster:
eads.cache.key.maxsize parameter value in the shared properties
Maximum value size:
Maximum size that can be specified when put, create, update, or replace processing is performed.
MAX:
Choose the largest value within the parentheses that follow MAX.
Example: For MAX(2, 10), the calculation result is 10.
Maximum number of data items that can be updated simultaneously:
If you will be performing batch data operations using a memory cache, specify 10. Otherwise, specify 1.

Maximum number of simultaneous threads for processing performed for caches:
Number of redundant copies of data plus the original - 1 (use 1 if the number of redundant copies of data plus
the original is 1)

Data multiplicity:
eads.replication.factor parameter value in the shared properties

Size of data sent for complementary processing of the history of update operations (bytes):
eads.replication.fillgap.copy.datasize parameter value in the server properties

MIN:
Selects the smaller value of the calculation results.
Example: For MIN(3 6, 4 + 7), the calculation result is 11.

4. Checking the Required Resources

Hitachi Elastic Application Data Store 78

Size of area for storing the history of update operations:
eads.replication.external.heapsize parameter value in the shared properties
For details about how to estimate this value, see 4.1.3(2) Size of the area for storing the history of update
operations.

Size of data transmitted during restoration processing and scale-out processing:
Estimate the size of data transmitted during restoration processing and scale-out processing for each cache and
specify the largest such value.

• Memory caches
eads.transfer.datasize parameter value in the server properties

• Disk caches and two-way caches
eads.cache.disk.transfer.datasize parameter value in the cache properties

(2) Estimating the Java heap size used by a cache on disk
If you will be using a disk caches or a two-way cache, determine the Java heap size used by the cache.

The formulas for estimating the Java heap size for a disk cache and for a two-way cache are shown below. After estimating
the sizes, obtain the sum of the obtained values, and then add that sum to the Java heap size estimated in 4.1.2(1)
Estimating the Java heap size per EADS server.

• Two-way cache

Value to be added to the estimated Java heap size (megabytes) =
(1,600 + 8 number of cache data files per range
+ 0.8 number of data items stored per range in the two-way cache) data multiplicity 1,024

• Disk cache#

Value to be added to the estimated Java heap size (megabytes) =
(1,600 + 8 number of cache data files per range
- 0.4 number of data items stored per range in the disk cache) data multiplicity 1,024

#
If there are many data items to be stored, a negative value might result. If that occurs, specify that negative value
as is.

Number of cache data files per range:
eads.cache.disk.filenum parameter value in the cache properties
For details about how to estimate this value, see 4.4.1 Estimating the size and number of cache data files.

Data multiplicity:
eads.replication.factor parameter value in the shared properties

4.1.3 Estimating the explicit heap size
The following shows the formula for estimating the explicit heap size.

The explicit heap size is the size of the area for storing the value part of key-value pairs plus the size of the area for
storing the history of update operations. In addition, three percent of the explicit heap is used as a management area.

Specify the obtained value in the eads.java.external.heapsize parameter in the shared properties.

4. Checking the Required Resources

Hitachi Elastic Application Data Store 79

Explicit heap size (megabytes) =
(a 1,0242 + b 1,0242#) 0.97

Explanation of the variables
a: Size of the area for storing the value part
b: Size of the area for storing the history of update operations

#
If you will be using the total data restriction function, round up the value of a 1,0242 to the next multiple of the
number of redundant copies of data plus the original (megabytes).

The formula for estimating the size of each area is shown below.

(1) Size of the area for storing the value part
The following shows the formula for estimating the size of the area for storing the value part of key-value pairs. If values
are not stored in the explicit heap (a disk cache only is used), specify 0.

Size of the area for storing the value part (bytes) =
(size of the value per item that is stored in a memory cache or a two-way cache#1 (bytes)
+ 2 (bytes))#2

 (sum of the number of data items to be stored per range in memory caches or the number of data items to be stored per range in two-way
caches data multiplicity
+ sum of the number of memory caches and the number of two-way caches

 data multiplicity + 500)

#1
For details about the value size, see 15.2.2(3) Data types that can be specified as values.

#2
Round up the value in the parentheses to a multiple of 16 bytes.

Data multiplicity:
eads.replication.factor parameter value in the shared properties

(2) Size of the area for storing the history of update operations
The formula for estimating the size of the area for storing the history of update operations is shown below.

Round up the obtained value up to the closest megabyte, and then specify the value for the
eads.replication.external.heapsize parameter in the shared properties.

Size of the area for storing the history of update operations (bytes) =
{ (data multiplicity 2 - 1) numbers of caches maximum value for the history of update operations + 500 }

 (maximum size of the history of update operations (bytes) + 1,024) + 1,048,576

Note:
Round up the decimal places to the closest whole number.

Data multiplicity:
eads.replication.factor parameter value in the shared properties

4. Checking the Required Resources

Hitachi Elastic Application Data Store 80

Maximum value for the history of update operations:
The following shows the formula for estimating the maximum value for the history of update operations.

Maximum value for the history of update operations =
maximum number of items that can be retained in the history of update operations + maximum number of consensus processes that can be
executed simultaneously

Maximum number of items that can be retained in the history of update operations:
The following shows the formula for estimating the maximum number of items that can be retained in the history
of update operations:

Maximum number of items that can be retained in the history of update operations =
(heartbeat timeout value 1,000)

 throughput of data update operations on one EADS server (in operations/second)#

Heartbeat timeout value:
eads.failureDetector.heartbeat.timeout parameter value in the server properties
#
If the throughput varies greatly from one cache to another, determine the throughput for each cache and then
specify the largest such value.

Maximum number of consensus processes that can be executed simultaneously:
eads.replication.preparations parameter value in the shared properties

Maximum size of the history of update operations (bytes):
The following shows the formula for estimating the maximum size of the history of update operations.

Maximum size of the history of update operations (bytes) =
maximum key size that can be stored in the cluster + maximum value size MAX(2, maximum number of data items that can be updated
simultaneously)

Maximum key size that can be stored in the cluster:
eads.cache.key.maxsize parameter value in the shared properties

Maximum value size:
Maximum size that can be specified when put, create, update, or replace processing is performed.

MAX:
Choose the largest value in the parentheses that follow MAX.
Example: For MAX(2, 10), the calculation result is 10.

Maximum number of data items that can be updated simultaneously:
If you will be performing batch data operations using a memory cache, specify 10. Otherwise, specify 1.

Important note
• If the size estimated for the explicit heap is not accurate enough and there is not enough space in the explicit

heap, values and the history of update operations might be fragmented, resulting in poor performance. If
the total data restriction function is not used and the explicit heap runs out of space for storing values, EADS
servers will be isolated.

• If the explicit heap runs out of space for storing the history of update operations, the EADS servers attempt
to obtain more explicit heap by deleting existing update operations history information. As a result,
complementary processing of the history of update operations between EADS servers might fail. For details

4. Checking the Required Resources

Hitachi Elastic Application Data Store 81

about complementary processing of the history of update operations, see 9.3.2(7) Complementary
processing of the history of update operations.

4.1.4 Estimating the size of memory used by an EADS server
The following shows the formula for estimating the size of memory used by an EADS server.

Size of memory used by an EADS server (megabytes) =
Java heap size + explicit heap size + 150
+ (maximum number of simultaneous connections to the EADS server data multiplicity) 52 1,024

Maximum number of simultaneous connections to the EADS server:
eads.server.maxConnections parameter value in the server properties

Data multiplicity:
eads.replication.factor parameter value in the shared properties

4. Checking the Required Resources

Hitachi Elastic Application Data Store 82

4.2 Estimating the required disk capacity

This section explains how to estimate the disk capacity that is required to use EADS.

4.2.1 Estimating the disk capacity required for EADS servers
This subsection explains how to estimate the disk capacity required for EADS servers.

If you will be using disk caches and two-way caches, add the required disk capacity estimated in 4.4 Estimating the
sizes of cache files to the following values that are estimated here.

• Total size of log files per EADS server

• Size of store data files

(1) Estimating the total size of log files per EADS server
The following shows the formula for estimating the total size of log files per EADS server.

Total size of log files per EADS server (megabytes) =
a + b + c + d + e

Explanation of the variables
a: Size of message log files output by an EADS server
b: Size of message log files output during command execution
c: Size of Java log files
d: Size of statistics files
e: Size of user message log files

The following subsections explain the formulas used to estimate the sizes of individual log files.

For details about the log files managed by the EADS servers, see 7.4.1 Types of log files.

(a) Size of message log files output by an EADS server
The following shows the formula for estimating the size of message log files output by an EADS server.

Size of message log files output by an EADS server (megabytes) =
size of a message log file (bytes) 1,0242

 number of message log files + 100

Size of a message log file (bytes):
eads.logger.message.filesize parameter value in the server properties

Number of message log files:
eads.logger.message.filenum parameter value in the server properties

Round up the value to the next full megabyte because the value of the eads.logger.message.filesize
parameter in the server properties is specified in bytes.

4. Checking the Required Resources

Hitachi Elastic Application Data Store 83

(b) Size of message log files output during command execution
The following shows the formula for estimating the size of message log files output during command execution.

Size of message log files output during command execution (megabytes) =
size of a message log file (bytes) 1,0242

 number of message log files

Size of a message log file (bytes):
eads.command.logger.message.filesize parameter value in the command properties

Number of message log files:
eads.command.logger.message.filenum parameter value in the command properties

Round up the value to the next full megabyte because the value of the
eads.command.logger.message.filesize parameter in the command properties is specified in bytes.

(c) Size of Java log files
The following shows the formula for estimating the size of Java log files.

Size of Java log files (megabytes) =
(size of a Java log file (megabytes)

 number of Java log files) 2 + 32

Size of a Java log file (megabytes):
eads.java.log.filesize parameter value in the server properties

Number of Java log files:
eads.java.log.filenum parameter value in the server properties

(d) Size of statistics files
The following shows the formula for estimating the size of statistics files.

Size of statistics files (megabytes) =
(size of statistics files (eads_stats.csv)
+ size of statistics files for caches (eads_cache_stats.csv)
+ size of statistics files per range (eads_store_stats.csv)
+ size of statistics files for user functions (eads_function_stats.csv))

 1,0242

The following shows the formulas for estimating the sizes of individual statistics files.

■ Size of statistics files (eads_stats.csv)

Size of statistics files (eads_stats.csv) (bytes) =
{1,024 + 1,024 (86,400 statistics output interval)}

 (number of statistics files to be acquired + 1)

■ Size of statistics files for caches (eads_cache_stats.csv)

Size of statistics files for caches (eads_cache_stats.csv) (bytes) =
{1,024 + (2,048

4. Checking the Required Resources

Hitachi Elastic Application Data Store 84

 (number of memory caches + (number of disk caches + number of two-way caches) data multiplicity))
 (86,400 statistics output interval)}
 (number of statistics files to be acquired + 1)

■ Size of statistics files per range (eads_store_stats.csv)

 When using the total data restriction function
Size of statistics files per range (eads_store_stats.csv) (bytes) =
{1,024 + (2,048

 (data multiplicity + number of disk caches + number of two-way caches))
 (86,400 statistics output interval)}
 (number of statistics files to be acquired + 1)
 When not using the total data restriction function

Size of statistics files per range (eads_store_stats.csv) (bytes) =
0

■ Size of statistics files for user functions (eads_function_stats.csv)

Size of statistics files for user functions (eads_function_stats.csv) (bytes) =
{1,024 + (2,048 number of user functions)

 (86,400 statistics output interval)}
 (number of statistics files to be acquired + 1)

Statistics output interval:
eads.statistics.interval parameter value in the server properties

Number of statistics files to be acquired:
eads.statistics.filenum parameter value in the server properties

(e) Size of user message log files
The following shows the formula for estimating the size of user message log files.

Size of user message log files (megabytes) =
size of a user message log file (bytes) 1,0242

 number of user message log files

Size of a user message log file (bytes):
eads.user.logger.filesize parameter value in the server properties

Number of user message log files:
eads.user.logger.filenum parameter value in the server properties

Round up the value to the next full megabyte because the value of the eads.user.logger.filesize parameter
in the server properties is specified in bytes.

(2) Estimating the size of store data files
The following shows the formula for estimating the size of store data files.

Size of store data files (megabytes) =
(key size per data item#1 + value size per data item#1 + 100)

 number of data items stored per EADS server#2

4. Checking the Required Resources

Hitachi Elastic Application Data Store 85

 (maximum number of store-data-file generations that are output when the eztool export command is executed
+ maximum number of store-data-file generations that are output when the eztool stop command is executed + 1)

 1,0242

#1
This is the size obtained after serialization.
In C, this is the size obtained by adding 10 bytes to the value size specified in the EADS client.

#2
This includes the number of data items copied for redundancy.

Maximum number of store-data-file generations that are output when the eztool export command is executed:
eads.admin.backup.exportCommand.generation.maxNum parameter value in the shared properties

Maximum number of store-data-file generations that are output when the eztool stop command is executed:
eads.admin.backup.stopCommand.generation.maxNum parameter value in the shared properties

Important note
The management information is still stored even if data is exported to a store data file while there is no data in
memory, in which case a maximum of four kilobytes are used. Therefore, the size of the store data file in use
is never zero bytes.

For details about store data files, see 7.4.1 Types of log files.

(3) Estimating the total size of log files and store data files per EADS
server

Add the values obtained in (1) Estimating the total size of log files per EADS server and (2) Estimating the size of store
data files.

If you will be using disk caches and two-way caches, add the required disk capacity estimated in 4.4 Estimating the
sizes of cache files.

4.2.2 Estimating the disk capacity required for EADS clients
This subsection explains how to estimate the disk capacity required for EADS clients.

(1) Estimating the total size of log files per EADS client
The following shows the formula for estimating the total size of log files per EADS client.

Total size of log files per EADS client (megabytes) =
a + 70 megabytes

Explanation of the variables
a: Size of message log files output by an EADS client

For details about log files managed by EADS clients, see 8.4.1 Types of log files.

4. Checking the Required Resources

Hitachi Elastic Application Data Store 86

(a) Size of message log files output by an EADS client
The following shows the formula for estimating the size of a message log file output by an EADS client.

Size of message log files output by an EADS client (megabytes) =
size of a message log file (bytes) 1,0242

 number of message log files

Size of a message log file (bytes):
eads.client.logger.message.filesize parameter value in the client properties

Number of message log files:
eads.client.logger.message.filenum parameter value in the client properties

Round up the value to the next full megabyte because the value of the
eads.client.logger.message.filesize parameter in the client properties is specified in bytes.

4. Checking the Required Resources

Hitachi Elastic Application Data Store 87

4.3 Estimating the numbers of threads and file descriptors

This section explains how to estimate the numbers of threads and file descriptors required to use EADS.

4.3.1 Estimating the number of threads

(1) Number of threads per EADS server process
The following shows the formula for estimating the number of threads per EADS server process.

Number of threads per EADS server process =
numbers of caches (data multiplicity 2 - 1) 3 + number of EADS servers 6
+ maximum number of simultaneous threads for processing performed for caches
+ numbers of caches 2
+ maximum number of simultaneous connections to EADS server + 41

Data multiplicity:
eads.replication.factor parameter value in the shared properties

Maximum number of simultaneous threads for processing performed for caches:
Number of redundant copies of data plus the original - 1 (use 1 if the number of redundant copies of data plus the
original is 1)

Maximum number of simultaneous connections to EADS server:
eads.server.maxConnections parameter value in the server properties

(2) Number of threads per command process
The following shows the formula for estimating the number of threads per command process.

Number of threads per command process =
number of EADS server processes 2 + 50

4.3.2 Estimating the number of file descriptors

(1) Number of file descriptors per EADS server process
The following shows the formula for estimating the number of file descriptors per EADS server process.

Number of file descriptors per EADS server process =
number of EADS servers 15 + maximum number of simultaneous connections to EADS server
+ number of libraries created by the user# + number of Java libraries
+ number of statistics files to be acquired + 35
+ number of file descriptors used by caches on disk

#
This is the sum of the number of jar files for user-created user functions and the number of libraries used by all
user functions.

4. Checking the Required Resources

Hitachi Elastic Application Data Store 88

Maximum number of simultaneous connections to EADS server:
eads.server.maxConnections parameter value in the server properties

Number of statistics files to be acquired:
eads.statistics.filenum parameter value in the server properties

Number of file descriptors used by caches on disk:
If you will be using disk caches and two-way caches, add the value obtained from the following formula:

Number of file descriptors used by caches on disk =
5 data multiplicity number of caches that use the disk

Data multiplicity:
eads.replication.factor parameter value in the shared properties

Number of caches that use the disk:
Sum of the number of disk caches and the number of two-way caches

The following shows the formula for estimating the number of file descriptors required during eztool import
command execution.

Number of file descriptors required during eztool import command execution =
maximum number of simultaneous connections to EADS server (data multiplicity - 1) 2
+ number of EADS server processes 100 + number of libraries created by the user#

+ number of file descriptors required for user programs

#
This is the sum of the number of jar files for user-created user functions and the number of libraries used by all
user functions.

Maximum number of simultaneous connections to EADS server:
eads.server.maxConnections parameter value in the server properties

Data multiplicity:
eads.replication.factor parameter value in the shared properties

(2) Number of file descriptors per command process
The following shows the formula for estimating the number of file descriptors per command process.

Number of file descriptors per command process =
number of EADS server processes 10 + 100

4. Checking the Required Resources

Hitachi Elastic Application Data Store 89

4.4 Estimating the sizes of cache files

This section is applicable when you will be using disk caches and two-way caches.

If you will be using disk caches and two-way caches, estimate the sizes of the cache files listed below for disk caches
and two-way caches, and then add the obtained values to the required disk capacity estimated in 4.2.1 Estimating the
disk capacity required for EADS servers.

• Cache data files

• Cache index files

For details about cache data files and cache index files, see 7.7.2 Specifying the types of cache files and their storage
locations.

4.4.1 Estimating the size and number of cache data files
This subsection explains how to estimate the following values:

• Size of a cache data file

• Number of cache data files

To estimate the size and number of cache data files:

1. Determine the write block size for the medium.

2. Estimate the size of one record of data that is stored in a cache data file.

3. Estimate the size of one cache data file and the actual size of the data that can be stored.

4. Based on step 2, estimate the maximum size of valid data that can be managed in the system.

5. Determine a compaction interval.

6. Based on steps 2 and 5, estimate the capacity (for update data) required for storing data that is updated during
compaction.

7. From steps 4 and 6, estimate the capacity required for the cache data file.

8. From step 7, estimate the size of the cache data file per range that is specified in the
eads.cache.disk.filesize cache property parameter and the number of cache data files per range that is
specified in the eads.cache.disk.filenum cache property parameter.

9. Before starting system operation, make sure that there will be no problem including the time required for compaction.

The following subsections explain each step.

(1) Determining the write block size
The size of the data that is written to a cache data file at one time is called the write block size.

Specify the write block size according to the medium used to store cache data files. Specify this value in the
eads.cache.disk.blocksize cache property parameter.

• HDD storage medium
1 kilobyte (default)

4. Checking the Required Resources

Hitachi Elastic Application Data Store 90

• SDD storage medium
Page size of the SSD in use (in kilobytes)

(2) Estimating the size of one record
Data is stored in EADS servers in records that include the key, the value, and control information.

The following shows the formula for estimating the size of one record:

Size of one record (kilobytes) =
(size of key stored in EADS servers (bytes)
+ size of value stored in EADS servers (bytes) + 36)# 1,024

#
Round up the value in the parentheses to a multiple of the write block size (in kilobytes) determined in 4.4.1(1)
Determining the write block size (eads.cache.disk.blocksize parameter value in the cache properties).

Size of key stored in EADS servers:
The following shows the formula for estimating the size of a key stored in EADS servers:

Size of key stored in EADS servers (bytes) =
size of key in characters + 4

Size of value stored in EADS servers:
The formula for estimating the size of a value stored in EADS servers depends on the language used for creating
application programs. The formulas are shown in the following.

• When using C or when byte arrays are used in Java

Size of value stored in EADS servers (bytes) =
size of value in bytes specified in the API function + 2

• When using non-byte arrays in Java

Size of value stored in EADS servers (bytes) =
size of value in bytes that has been serialized by the java.io.ObjectOutputStream class + 2

Reference note
The formulas shown above must be used to estimate the sizes of keys and values stored in EADS servers,
because EADS servers store keys and values in a unique format for purposes of processing efficiency.

(3) Estimating the size of one cache data file and the amount of data that
can be stored in it

The size of one cache data file is specified in the eads.cache.disk.filesize cache property parameter. Because
a cache data file contains twice as much management information as the block size, the actual size of the data storage
area is estimated as follows:

Data storage area per cache data file (kilobytes) =
(size of one cache data file (megabytes) 1,024)
- (write block size (kilobytes) 2)

4. Checking the Required Resources

Hitachi Elastic Application Data Store 91

Size of one cache data file:
eads.cache.disk.filesize parameter value in the cache properties

Write block size:
Value determined in 4.4.1(1) Determining the write block size (eads.cache.disk.blocksize parameter
value in the cache properties)

You can determine the amount of data that can be stored in a cache data file from the size of the data storage area
estimated by the above formula and the record size estimated in 4.4.1(2) Estimating the size of one record.

(4) Estimating the maximum size of valid data
Estimate the maximum size of valid data that is managed in the system.

Valid data means the data that can be acquired by get and excludes any data that has become invalid due to update or
deletion processing.

The following shows the formula for estimating the maximum size of valid data:

Maximum size of valid data (kilobytes) =
number of data items stored per range in a disk cache size of one record (kilobytes)

Size of one record:
Value estimated in 4.4.1(2) Estimating the size of one record

Reference note
For details about data that becomes invalid during update and deletion processing, see 10.9 Reducing the data
usage of cache data files (performing compaction on cache data files).

(5) Determining a compaction interval
If you will be using disk caches and two-way caches, you will need to perform compaction on cache data files.

Determine the compaction interval (hours) according to the amount of data that is stored in EADS servers.

For details about compaction processing, see 10.9 Reducing the data usage of cache data files (performing compaction
on cache data files).

(6) Estimating the capacity required for update data
Because data is always appended to cache data files, the amount of data stored in cache data files increases each time
data is updated. Therefore, a cache data file must be large enough to accommodate the amount of data that is stored
during one round of compaction processing (in hours) at the compaction interval (in hours).

Estimate the amount of data (update data) that is updated during one round of compaction processing. The following
shows the formula for estimating the capacity for update data:

Capacity for update data (kilobytes) =
Number of update operations per hour in EADS servers size of one record (kilobytes)

 (compaction interval (in hours) + time required for one round of compaction processing (in hours))

4. Checking the Required Resources

Hitachi Elastic Application Data Store 92

Number of update operations per hour in EADS servers:
Number of times put, create, update, and replace are executed

Size of one record:
Value estimated in 4.4.1(2) Estimating the size of one record

Compaction interval:
Value determined in 4.4.1(5) Determining a compaction interval

Time required for one round of compaction processing:
This value depends on the system. Before you start system operations, check the time required for a round of
compaction processing, and specify that value.

(7) Estimating the capacity required for cache data files
The following shows the formula for estimating the capacity required for cache data files:

Capacity required for cache data files (megabytes) =
(maximum size of valid data (kilobytes) 2
+ capacity for update data (kilobytes)) 1,024

Maximum size of valid data:
Value determined in 4.4.1(4) Estimating the maximum size of valid data

Capacity for update data:
Value determined in 4.4.1(6) Estimating the capacity required for update data

(8) Designing the size and number of cache data files
Based on the capacity required for cache data files that was determined in 4.4.1(7) Estimating the capacity required for
cache data files, design the size of cache data files per range and the number of cache data files in such a manner that
the following condition is satisfied:

Capacity required for cache data files (megabytes)
size of cache data files per range (megabytes) number of cache data files#

#
If the number of cache data files is expected to increase in the future, also consider the capacity of those cache data
files.

Specify the capacity of cache data files per range in the eads.cache.disk.filesize cache property parameter.

The following shows the formula for estimating the number of cache data files per range:

Number of cache data files per range =
number of cache data files + 2#

#
If you will not be using the total data restriction function, specify 1.

Specify the obtained value in the eads.cache.disk.filenum parameter in the cache properties.

4. Checking the Required Resources

Hitachi Elastic Application Data Store 93

(9) Checking the compaction schedule
Before you start system operations, make sure that there is no problem with the time required for compaction and the
capacity that will be allocated.

If the condition shown below is not satisfied, an error might occur due to insufficient capacity because compaction
processing cannot keep up with data update operations:

Capacity for update data < capacity allocated by one round of compaction processing

Important note
If the reason for not satisfying the above condition is poor hardware performance, you must tune the number
of times compaction is to be performed and the compaction interval and also consider such measures as updating
hardware or adding hosts.

4.4.2 Estimating the size of a cache index file
The following shows the formula for estimating the size of one cache index file:

Size of one cache index file (bytes) =
48 + 4 {(size of cache data files per range (megabytes) 1,024

 write block size(kilobytes)) - 2}

Size of cache data files per range:
eads.cache.disk.filesize parameter value in the cache properties

Write block size:
Value determined in 4.4.1(1) Determining the write block size (eads.cache.disk.blocksize parameter
value in the cache properties)

4. Checking the Required Resources

Hitachi Elastic Application Data Store 94

5 Installing and Setting Up (EADS Servers)

This chapter explains how to configure EADS servers.

Hitachi Elastic Application Data Store 95

5.1 Installing an EADS server

This section explains how to install an EADS server.

Perform the installation procedure as the root user (superuser).

5.1.1 Preparations before starting the installation
Before you install an EADS server, perform the preparations described below as the root user (superuser).

(1) Setting up the hosts file
In the hosts file, establish a correspondence between IP address and host name.

Important note
EADS might not function correctly if any settings are wrong.

5.1.2 Installation procedure

Important note
If another version of EADS server is already installed, that EADS server will be overwritten (note that this
applies only to version 03-00 or later). Before you start the installation procedure, make sure that the EADS
server process is not running.

To install an EADS server:

1. Log in to the machine on which you plan to install the EADS server with root permissions.

2. Place the installation CD-ROM on the CD-ROM drive.

3. Use the OS's mount command to mount the CD-ROM file system.
An example of using the mount command is shown below.
For the underlined part, specify the name of the mount directory for the CD-ROM file system.

mount -r -o mode=0544 /dev/cdrom /mnt/cdrom

4. Use Hitachi Program Product Installer's setup command to start the setup program.
An example of using the setup command is shown below.
For the underlined part, specify the name of the mount directory for the CD-ROM file system.

/mnt/cdrom/X64LIN/setup /mnt/cdrom

5. In Hitachi Program Product Installer's main menu, press the I key.
The program selection window is displayed.

5. Installing and Setting Up (EADS Servers)

Hitachi Elastic Application Data Store 96

6. In the program selection window, move the cursor to the program that you want to install, and then press the Space
key.
Select the program that you want to install. An at mark (@) is displayed on the left of the selected program.

7. Verify that an at mark (@) is displayed on the left of the selected program, and then press the I key.
The following message is displayed on the last line.

Install PP? (y: install, n: cancel)==>

8. When a message asking whether you want to install the program is displayed, press the Y key.
Installation begins. If you press the N key, installation is cancelled and the program selection window is displayed
again.

9. When a message is displayed indicating that the installation is finished, press the Q key.
The main menu is displayed again.

10. In the main menu, press the Q key.

The installation is now finished.

5.1.3 Post-installation procedure
After you have installed the EADS server, perform the tasks described below as the root user (superuser).

(1) Checking the directory configuration
After you have installed the EADS server, check the EADS server's directory configuration.

5. Installing and Setting Up (EADS Servers)

Hitachi Elastic Application Data Store 97

Figure 5‒1: EADS server's directory configuration

The following table explains the EADS server's directory configuration shown in the figure:

Directory Description

/opt/hitachi/xeads/server/ EADS server installation directory

lib Stores the library files used for running the EADS server.
The library files cannot be edited.

sample Stores sample programs for the user functions that can be executed with
the eztool execfunc command.

servers Where the EADS server's management directory# is placed.

template A template for the management directory#

bin Stores the commands used to run the EADS server.
The commands cannot be edited.

conf Stores the following property files:
• Server property file
• Cluster property file
• Shared property file

5. Installing and Setting Up (EADS Servers)

Hitachi Elastic Application Data Store 98

Directory Description

• Command property file
• Cache property file

app Stores function property files and jar files (user functions).

lib Stores library files used in executing user functions.

logs Output destination (default) of log files

maintenance Output destination (default) of maintenance log files (used by the system)

stats Output destination (default) of statistics files

store Output destinations (defaults) for store data files, cache information files,
and cache index files.

/opt/hitachi/xeads/javaclient/ EADS client (Java) installation directory

conf Stores the client property file.

lib Stores the library files.

/opt/hitachi/xeads/PSB Directory for storing the JDK used by EADS.

jdk JDK installation directory

#
The management directory is used to run the EADS server. Such items as the property files required for running the
EADS server and the logs that are output during operation are stored in the management directory.

Important note
Do not change the directories and file owners, groups, and permissions that are created when EADS is installed.
Store user-specific files only under the management directory. If these restrictions are not observed, EADS
might not run correctly.

5. Installing and Setting Up (EADS Servers)

Hitachi Elastic Application Data Store 99

5.2 Setting up the EADS server

The tasks required after installation are performed by the OS user (system operation administrator).

5.2.1 Creating the management directory
The directory used for running an EADS server is called the management directory. Such items as the property files
required for running the EADS server and the logs that are output during operation are stored in the management
directory.

Log in as an OS user who runs the EADS server (system operation administrator), and then copy the /opt/hitachi/
xeads/server/servers/template directory, a template for the management directory, to the /opt/
hitachi/xeads/server/servers directory under an alias. The management directory name can consist of a
maximum of 32 characters, including alphanumeric characters (from 0 to 9, A to Z, and a to z) and underscores (_).

cp -rf /opt/hitachi/xeads/server/servers/template /opt/hitachi/xeads/server/
servers/any-management-directory-name

Note that in this manual, the term EADS server name means the management directory name.

You can assign a different OS user (system operation administrator) for each EADS server. Change the management
directory access permissions as needed.

Important note
If you will be using the existing management directory, either delete the following files and directories or move
them to another directory:

• All files and directories under the directory specified in the eads.logger.dir server property parameter

• All files and directories under the directory specified in the eads.command.logger.dir command
property parameter

If the existing management directory is used, the commands under management-directory/bin are overwritten
by the commands under the /opt/hitachi/xeads/server/servers/template/bin directory
during installation.

Reference note
You can use a symbolic link created under the /opt/hitachi/xeads/server/servers directory as
the management directory.

Use the symbolic link if you want to output to another disk the core dumps that are output directly under the
management directory. Note that commands cannot be executed in the actual management directory.

5. Installing and Setting Up (EADS Servers)

Hitachi Elastic Application Data Store 100

5.2.2 Editing the property files
Specify the parameter values designed in 7. Designing the Environment-Dependent Parameters (EADS Servers) in the
following property files under management-directory/conf:

• Server property file (eads_server.properties)

• Cluster property file (eads_cluster.properties)

• Shared property file (eads_shared.properties)

• Command property file (eads_management.properties)

• Cache property file (eads_cache.cache-name.properties)#

#: If you will be using a memory cache, creation of a cache property file is optional.

For the tuning parameters, design the parameter values by referencing 9. Designing the Tuning Parameters, and then
specify the values in the property files.

If you are using user functions, create an optional function property file. Copy the created function property file together
with the user functions to management-directory/app while the EADS server is stopped in the execution environment.
For details, see 17.4 Creating a function property file (optional) and 17.9 Distributing the directory to the execution
environment.

Important note
• The contents of the cluster property files and shared property files must be identical among all the EADS

servers that make up a cluster. If the properties differ, the EADS servers cannot start because the cluster
cannot be configured.

• The settings in the cache property files for the parameters shown below must be identical among all the
EADS servers that make up a cluster. If any settings are different, caches cannot be created.

 eads.cache.type
 eads.cache.disk.filesize
 eads.cache.disk.filenum
 eads.cache.disk.blocksize

5.2.3 Distributing application programs
Distribute the application programs developed in the development environment to the execution environment.

For details about distributing user functions to the execution environment, see 17.9 Distributing the directory to the
execution environment.

5. Installing and Setting Up (EADS Servers)

Hitachi Elastic Application Data Store 101

5.3 Testing

After you have configured an execution environment, test it to see if it runs successfully. To test the execution
environment, use commands. The following figure shows the general test procedure.

Figure 5‒2: General test procedure

5.3.1 Starting the EADS server (creating a cache)
Start the EADS server and create a cache.

For details about the procedure, see 10.2 Starting the EADS servers (and creating caches).

5.3.2 Using commands to manipulate the test data
After you have created a cache, use commands to manipulate the test data.

(1) Storing test data
Execute the eztool put command to store test data.

eztool put cache-name key value

Example of command execution

(2) Checking whether the command ran successfully
Use the eztool status -v command to display the number of keys held by the EADS server.

eztool status -v

5. Installing and Setting Up (EADS Servers)

Hitachi Elastic Application Data Store 102

Example of command execution

The KeyCount column displays the number of keys that were stored.

(3) Acquiring the stored data
Use the eztool get command to acquire the stored value.

eztool get cache-name key

Example of command execution

(4) Deleting the stored data
Use the eztool remove command to delete the stored value.

eztool remove cache-name key

Example of command execution

To delete keys stored in a specified cache and all the values associated with those keys, execute the eztool
removeall command.

eztool removeall [-g group-name] cache-name

Example of command execution

5. Installing and Setting Up (EADS Servers)

Hitachi Elastic Application Data Store 103

When you specify the -g option in the eztool removeall command, you delete only the keys in the specified cache
that belong to the specified group, and all the values associated with those keys.

5.3.3 Terminating the EADS server
Terminate the EADS server.

After the EADS server is terminated, all data is discarded from memory.

For details about the procedure, see 10.4 Terminating the EADS servers (and discarding data from memory).

5. Installing and Setting Up (EADS Servers)

Hitachi Elastic Application Data Store 104

5.4 Canceling EADS server setup

To cancel EADS server setup, execute the OS command shown below to delete the management directory that was set
up.

rm -rf /opt/hitachi/xeads/server/servers/management-directory-name

The EADS server is now reset to the status that existed immediately after it was installed.

5. Installing and Setting Up (EADS Servers)

Hitachi Elastic Application Data Store 105

5.5 Uninstalling an EADS server

Important note
Check that the EADS server process is not running before you start uninstalling an EADS server.

This section explains how to uninstall an EADS server.

If an EADS server is uninstalled, all files except the management directory are deleted. Therefore, do not store user-
specific files under the product directories.

To uninstall an EADS server:

1. Log in with root permissions to the machine from which you plan to uninstall the EADS server.

2. Use the OS command to start the setup program.

/etc/hitachi_x64setup

3. In Hitachi Program Product Installer's main menu, press the D key.
A list of programs currently installed is displayed.

4. Move the cursor to the program that you want to uninstall, and then press the Space key.
An at mark (@) is displayed on the left of the selected program.

5. Press the D key.
Uninstallation begins. When the uninstallation process is completed, the following message is displayed:

Delete procedure completed.

6. When a message is displayed indicating that uninstallation is finished, press the Q key.
The main menu is displayed again.

7. In the main menu, press the Q key.

Uninstallation is now finished.

5. Installing and Setting Up (EADS Servers)

Hitachi Elastic Application Data Store 106

6 Installing and Setting Up (EADS Clients)

This chapter explains how to configure EADS clients.

Hitachi Elastic Application Data Store 107

6.1 Installing an EADS client

This section explains how to install an EADS client.

Perform the installation procedure as the root user (superuser).

The installation procedure varies according to the application program language being used.

Java
First install an EADS server on a machine that will be used as an EADS server. An EADS client (Java) is stored in
the EADS server's installation directory.
For details about how to install an EADS server, see 5.1.2 Installation procedure.
After you have installed an EADS server, copy the following directory to another machine on which the EADS
client is to be installed:

/opt/hitachi/xeads/javaclient

C
Install the following program product:

• Hitachi Elastic Application Data Store Client for C

For details about the installation procedure, see 5.1.2 Installation procedure.

6.1.1 Post-installation procedures
Perform the tasks described in the following subsections after you have installed an EADS client.

(1) Checking the directory configuration
After you have installed the EADS client, check the EADS client's directory configuration.

Figure 6‒1: EADS client's directory configuration

The following table explains the EADS client's directory configuration shown in the figure:

Directory Description

any-directory/javaclient/ Directory to which the EADS client (Java) is copied

conf Stores the client property file.

6. Installing and Setting Up (EADS Clients)

Hitachi Elastic Application Data Store 108

Directory Description

lib Stores the library files.

/opt/hitachi/xeads/cclient/ EADS client (C) installation directory.

conf Stores the client property file.

include Stores the header files.

lib32 Stores 32-bit edition of library files.

lib64 Stores 64-bit edition of library files.

Important note
Do not change the directories and file owners, groups, and permissions that are created when EADS is installed.
Store user-specific files only under the management directory. If these restrictions are not observed, EADS
might not run correctly.

(2) Specifying the libraries
Specify the libraries.

(a) Java
Specify the following libraries in the class path:

• /opt/hitachi/xeads/javaclient/lib/eads-client.jar
• /opt/hitachi/xeads/javaclient/lib/eads-common.jar
• /opt/hitachi/xeads/javaclient/lib/hntrlib2-eads-j.jar

If you run the EADS client on a Java EE server (uCosminexus Application Server), you must include the following
libraries in the application program (WAR file (WEB-INF/lib directory)) On a Java EE server, you can use Servlet
or JSP.

• /opt/hitachi/xeads/javaclient/lib/eads-client.jar
• /opt/hitachi/xeads/javaclient/lib/eads-common.jar
• /opt/hitachi/xeads/javaclient/lib/hntrlib2-eads-j.jar

(b) C
Specify the following libraries in the LD_LIBRARY_PATH environment variable:

• 32-bit edition
/opt/hitachi/xeads/cclient/lib32

• 64-bit edition
/opt/hitachi/xeads/cclient/lib64

6. Installing and Setting Up (EADS Clients)

Hitachi Elastic Application Data Store 109

6.2 Setting up an EADS client

This section explains where to place the application programs and how to edit the client property file.

6.2.1 Placement of the application programs
Place the application programs in any directory.

Important note
If you run the EADS client on a Java EE server (uCosminexus Application Server), deploy the application
programs. Perform this task while Security Manager is released.

For details about how to create application programs, see PART 4. Application Program Development.

6.2.2 Editing the client property file
To edit the client property file:

1. Copy the client property file from the following directory to the directory specified in the application program (make
sure that the file name also matches the one specified in the application program):

• Java
/opt/hitachi/xeads/javaclient/conf/eads_sample_client.properties

• C
/opt/hitachi/xeads/cclient/conf/eads_sample_client.properties

2. Edit the client property file.
Specify in the client property file the values designed in 8. Designing the Environment-Dependent Parameters
(EADS Clients).

For the tuning parameters, design the parameter values by referencing 9. Designing the Tuning Parameters, and then
specify the parameter values in the client property file.

6. Installing and Setting Up (EADS Clients)

Hitachi Elastic Application Data Store 110

6.3 Uninstalling an EADS client

This section explains how to uninstall an EADS client. The procedure varies depending on the programming language
of the application program.

Java
Delete the directory to which the following EADS server directory was copied:

/opt/hitachi/xeads/javaclient

C
Uninstall the following program product:

• Hitachi Elastic Application Data Store Client for C

For the uninstallation procedure, see 5.5 Uninstalling an EADS server. In this context, replace EADS server with
EADS client.

6. Installing and Setting Up (EADS Clients)

Hitachi Elastic Application Data Store 111

7 Designing the Environment-Dependent
Parameters (EADS Servers)

This chapter provides guidelines for designing the environment-dependent parameters for EADS
servers.

Hitachi Elastic Application Data Store 112

7.1 Types of property files (used by EADS servers)

The table below lists and describes the types of property files used by the EADS servers.

This chapter explains only the environment-dependent parameters.

Table 7‒1: Types of property files (used by EADS servers)

No. Property file File name Description

1 Server property file eads_server.properties Defines an EADS server execution
environment.

2 Cluster property file eads_cluster.properties Defines a cluster configuration.

3 Shared property file eads_shared.properties Defines settings that are common to all
EADS servers.

4 Command property file eads_command.properties Defines the settings for command
execution.

5 Cache property file eads_cache.cache-name.properties Defines cache properties. This file is
created for each cache.
For a memory cache, this file is optional.
For a disk cache or a two-way cache, this
file is required.

6 Function property file This file can have any name. For details, see
17.4 Creating a function property file
(optional).

Defines the settings for user function
execution.
This file is optional.

Important note
• The contents of the cluster property files and the shared property files must be identical among all the EADS

servers that make up a cluster. If any properties are different, the EADS servers cannot start because the
cluster cannot be configured.

• The settings in the cache property files for the parameters shown below must be identical among all the
EADS servers that make up a cluster. If any settings are different, the caches cannot be created.

 eads.cache.type
 eads.cache.disk.filesize
 eads.cache.disk.filenum
 eads.cache.disk.blocksize

• Although the contents of all the property files need not be identical, we recommend that you use property
files whose contents are the same (except for IP addresses and port numbers) on all EADS servers.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 113

7.2 Format of property files

Specify parameters in the following format:

parameter=value

How to specify parameters

• A value extends up to an end-of-line character.

• A line beginning with a hash mark (#) is treated as a comment.

• A null line is ignored.

• A value cannot be followed by a character string such as a comment. If a character string is added, the value is
interpreted as being invalid.

• If the same parameter is specified more than once, the last specification takes effect. For example, false would
take effect if the following were specified:

eads.logger.message.console.enable=true
eads.logger.message.console.enable=false

Also note the following about shell scripts:

• The permitted characters are 0x20 through 0x7E in ASCII codes, the newline character (\n), the carriage return
character (\r), and the tab (\t).

• Specify one parameter per line. A line is through an end-of-line code (\n or \r\n) or the EOF (End of File).

• Only the equal sign (=) is supported as the separator between a parameter name and a specified value.

Example: a b = c
Note: indicates a space or a tab.
EADS interprets that a b is the parameter name and c is the value.

• A parameter name and a specified value can be preceded and followed by a single-byte space or a tab. EADS ignores
the specified space or tab when it interprets the parameter.

Example: a = b
Note: indicates a space or a tab.
EADS interprets that a is the parameter name and b is the value.

• If two consecutive separators, single-byte spaces, or tabs are specified, the second and subsequent such characters
are interpreted as part of the specified value.

Example: a==b
EADS interprets that a is the parameter name and =b is the value.

• If no value is specified (only a parameter name and a separator are specified), the value is interpreted as a null
character string.

• If a specified parameter name contains a control character or only a parameter name is specified, that parameter is
ignored.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 114

7.3 Designing the communication-dependent parameters

Design the communication-dependent parameters.

7.3.1 Specifying the IP address or host name and the port number
Specify the IP address (IPv4) or host name and the port number that the EADS server will use to communicate with the
EADS client and other EADS servers.

For details about the mechanism of communication processing, see 2.2 Mechanisms of EADS communication processing.

The following figure shows the communication ports used for communication between an EADS client and EADS
servers.

Figure 7‒1: Communication ports used for communication between an EADS client and EADS
servers

The alphabetical letters assigned to the port numbers in the figure correspond to the letters in the explanation provided
in 7.3.2 Communication-dependent parameters.

(b): 7.3.2(1)(b) eads.server.port

(c): 7.3.2(1)(c) eads.replication.port

(d): 7.3.2(1)(d) eads.failureDetector.port

(e): 7.3.2(1)(e) eads.transfer.port

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 115

(f): 7.3.2(1)(f) eads.admin.operation.port

If you specify connection-target EADS servers for the eztool command in the command properties and a connection
cannot be established on the initial connection establishment attempt by the eztool command with the EADS server
specified in the server properties, the command will attempt to establish a connection with another EADS server.

For details about the port numbers used for sending heartbeats between EADS servers, see 7.5.3(2)(b)
eads.failureDetector.heartbeat.port in 7.5.3 Cluster configuration-dependent parameters.

Reference note
Because the transmission of heartbeats uses multicast communication, you must pay close attention when you
set up the network. Specify a multicast address in the eads.failureDetector.heartbeat.address
parameter in the shared properties.

When you specify port numbers, do not use a port number that is assigned by the OS to avoid duplication with other
applications. The port numbers assigned by the OS depend on the type and version of the OS; for details, see the OS
documentation.

7.3.2 Communication-dependent parameters
The table below lists the communication-dependent parameters.

Bold typeface indicates a required parameter.

Table 7‒2: Communication-dependent parameters (EADS server)

No. Property file Parameter name Value to be
specified

Default value

1 Server property file eads.server.address IP address or host
name

None

2 eads.server.port Port number 24600

3 eads.replication.port Port number 24633

4 eads.failureDetector.port Port number 24631

5 eads.transfer.port Port number 24632

6 eads.admin.operation.port Port number 24620

7 Command property file eads.command.connect.sub.servers Name used to
identify the
connection-target
EADS server (any
name)

None

8 eads.command.connection-target-EADS-
server.address

IP address or host
name

None

9 eads.command.connection-target-EADS-
server.admin.operation.port

Port number 24620

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 116

(1) Server property file

(a) eads.server.address
This parameter specifies the IP address or host name of the EADS server.

If you specify a host name, make sure that a unique IP address can be identified from the specified host name.

(b) eads.server.port
This parameter specifies the port number of the EADS server that is used for communication with the EADS client.

(c) eads.replication.port
This parameter specifies the port number used for communication between EADS servers.

(d) eads.failureDetector.port
This parameter specifies the port number used to check for live servers among the EADS servers.

(e) eads.transfer.port
This parameter specifies the port number used for EADS server restoration processing or scale-out processing.

(f) eads.admin.operation.port
This parameter specifies the port number used by commands.

(2) Command property file

(a) eads.command.connect.sub.servers
This parameter specifies the names (any names) used to identify the eztool command's connection-target EADS
servers.

A name can consist of alphanumeric characters (0 to 9, A to Z, a to z).

When you specify multiple names, separate them with commas.

When the command is executed, it establishes an initial connection with the EADS server on which the command is
executed (connection target specified in the eads.server.address and eads.admin.operation.port
server property parameters).

When the eztool command is executed on the cluster and it fails to establish an initial connection with the EADS
server on which it is executed, it attempts to establish a connection with the next connection-target EADS server specified
in this parameter. When this parameter is omitted or a null character is specified in this parameter, establishment of an
initial connection is attempted only for the EADS server on which the command is executed.

When any of the following commands is executed, this parameter is ignored:

• eztool listgroup
• eztool listkey
• eztool removeall
• eztool execfunc

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 117

Among the connection targets specified in this parameter and the eads.command.connection-target-EADS-
server.admin.operation.port command property parameter, those that are specified in the
eads.server.address and eads.admin.operation.port server property parameters are ignored.

(b) eads.command.connection-target-EADS-server.address
This parameter specifies the IP address or host name of the eztool command's connection-target EADS server.

If you specify a host name, make sure that a unique IP address can be identified from the specified host name.

Specify this parameter paired with the eads.command.connect.sub.servers parameter. For connection-
target-EADS-server, specify the name used to identify the EADS server specified in the
eads.command.connect.sub.servers parameter.

(c) eads.command.connection-target-EADS-server.admin.operation.port
This parameter specifies the port number of the eztool command's connection-target EADS server.

Specify this parameter paired with the eads.command.connect.sub.servers parameter. For connection-
target-EADS-server, specify the name used to identify the EADS server specified in the
eads.command.connect.sub.servers parameter.

(d) Example of specifications of the eads.command.connect.sub.servers parameter
The following shows an example of specifications of the eads.command.connect.sub.servers parameter.

eads.command.connect.sub.servers=sv1,sv2,sv3
eads.command.sv1.address=XXX.XXX.X.138
eads.command.sv1.admin.operation.port=24600
eads.command.sv2.address=XXX.XXX.X.139
eads.command.sv2.admin.operation.port=24601
eads.command.sv3.address=XXX.XXX.X.140
eads.command.sv3.admin.operation.port=24602

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 118

7.4 Designing the log file-dependent parameters

Design the log file-dependent parameters.

7.4.1 Types of log files
The following table lists and describes the types of log files that are managed by the EADS servers.

Table 7‒3: Types of log files (managed by EADS servers)

No. Log file Description

1 Message log file This file is used to output message logs for checking operations and monitoring for
errors.
The messages logs are output by the EADS server or commands.

2 Exception log file This file is used to output track traces required for investigating the causes of errors.

3 User message log file This file is used to output information about the execution of user functions.

4 User exception log file This file is used to output stack traces for exceptions that occur in user functions.

5 Cache-file operation log file This file is used to output information needed for checking and monitoring cache data
file usage status and compaction status.

6 Maintenance log file This file is used by the system.
There is no parameter to be specified by the user.

7 Distribution maintenance log file This file is used by the system.
No parameter specification by the user is required.

8 Statistics file This file is used to output statistics used for evaluating tuning, measuring performance,
and estimating resources.

9 Java log file This file is used to output information about JavaVM's garbage collection (GC) and
memory.

10 Thread dump This file is used to output information about the threads running in Java processes.

11 Startup log file This file is used to output log information when the ezstart command starts EADS
servers.
No parameter specification by the user is required.

7.4.2 Specifying the file output destinations
You can change the output destinations of the log files and store data files. The following table lists the file output
destinations.

Table 7‒4: File output destinations (EADS servers)

No. Log file type Output destination File name

1 Message log file output by the EADS
server
(message log information)

Directory specified in the
eads.logger.dir
parameter in the server
properties

Wrap eads_server_message[n].log

Shift eads_server_message.log

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 119

No. Log file type Output destination File name

2 Exception log file output by the EADS
server
(Exception log information)

Directory specified in the
eads.logger.dir
parameter in the server
properties

Wrap eads_server_exception[n].log

Shift eads_server_exception.log

3 User message log file Directory specified in the
eads.logger.dir
parameter in the server
properties

Wrap eads_user_message[n].log

Shift eads_user_message.log

4 User exception log file Directory specified in the
eads.logger.dir
parameter in the server
properties

Wrap eads_user_exception[n].log

Shift eads_user_exception.log

5 Cache-file operation log file Directory specified in the
eads.logger.dir
parameter in the server
properties

Wrap eads_server_cache[n].log

Shift eads_server_cache.log

6 Maintenance log file output by the
EADS server
(maintenance log information)

directory-specified-in-the-
eads.logger.dir-parameter-
in-the-server-properties/
maintenance

eads_server_maintenance[n].log

7 Distribution maintenance log file output
by the EADS server
(maintenance log information)

directory-specified-in-the-
eads.logger.dir-parameter-
in-the-server-properties/
maintenance

eads_dist_maintenance[n].log

8 Message log file output during
command execution
(message log information)

Directory specified in the
eads.command.logge
r.dir parameter in the
command properties

Wrap eads_command_message[n].log

Shift eads_command_message.log

9 Exception log file output during
command execution
(Exception log information)

Directory specified in the
eads.command.logge
r.dir parameter in the
command properties

Wrap eads_command_exception[n].lo
g

Shift eads_command_exception.log

10 Maintenance log file output during
command execution
(maintenance log information)

directory-specified-in-the-
eads.command.logger.dir-
parameter-in-the-
command-properties/
maintenance

eads_command_maintenance[n].log

11 Statistics file (EADS server) directory-specified-in-the-
eads.logger.dir-parameter-
in-the-server-properties/
stats

• eads_stats.csv
• eads_stats_[n].csv#1

12 Statistics file
(cache)

directory-specified-in-the-
eads.logger.dir-parameter-
in-the-server-properties/
stats

• eads_cache_stats.csv
• eads_cache_stats_[n].csv#1

13 Statistics file (user functions) directory-specified-in-the-
eads.logger.dir-parameter-
in-the-server-properties/
stats

• eads_function_stats.csv
• eads_function_stats_[n].csv#1

14 Statistics file (range) directory-specified-in-the-
eads.logger.dir-parameter-

• eads_store_stats.csv
• eads_store_stats_[n].csv#1

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 120

No. Log file type Output destination File name

in-the-server-properties/
stats

15 Statistics file
(maintenance information)

directory-specified-in-the-
eads.logger.dir-parameter-
in-the-server-properties/
maintenance/stats

• eads_maintenance_stats.csv
• eads_maintenance_stats_[n].csv#1

16 Java log file Directory specified in the
eads.logger.dir
parameter in the server
properties

• javalog[nn].log
• ehjavalog[nn].log#2

17 Thread dump Directory specified in the
eads.logger.dir
parameter in the server
properties

javacore[PID].[YYMMDDhhmmss].txt

18 Startup log file Directory specified in the
eads.logger.dir
parameter in the server
properties

eads_start.log

Legend:
[n], [nn], [nnn]: Sequence number of the file
[PID]: EADS server's process ID
[YYMMDDhhmmss]: YY: year, MM: month, DD: day, hh: hour (00 through 23), mm: minute, ss: second
Wrap, Shift: Log rotation method
You can select either of the following log rotation methods:

• Wrap: Wrap-around method
The sequence number of the file is added to the file name.

• Shift: Shift method
The file name is fixed.
The sequence number of the file is added to the log file's backup file name.

#1
The statistics files are rotated each day and sequence numbers are assigned to the file names.
When the statistics files are rotated, as many statistics files as specified in the eads.statistics.filenum
parameter in the server properties are retained as backup files.
For details about the rotation of statistics files, see 7.4.4 Specifying the rotation of statistics files.

#2
This file is used to output logs related to the explicit heap.

Important note
A directory of another machine that is connected via a network cannot be specified as the file output destination.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 121

7.4.3 Specifying the file sizes and the numbers of files
Specify the default values for the sizes of log files and the numbers of files. After you have configured the EADS servers,
change the parameter values, if necessary.

7.4.4 Specifying the rotation of statistics files
The statistics are output to the file when statistics are updated.

Specify the number of statistics files to be acquired in the eads.statistics.filenum parameter in the server
properties.

One day's worth of statistics are output to one file. The statistics files are rotated each day.

The output destination is switched to a different file the first time the statistics are updated after a specific time (00:00)
has passed.

Each time a statistics file is rotated, it is renamed eads_stats_[n].csv, where [n] indicates the sequence number
of the file. The smaller the number, the newer the file, where eads_stats.csv (with no sequence number) is the
most recent file.

7.4.5 Log file-dependent parameters
The following table lists the parameters that depend on log files.

Table 7‒5: Log file-dependent parameters (EADS servers)

No. Property file Parameter name Value to be
specified

Default value

1 Server property file eads.logger.dir Path name management-directory/
logs

2 eads.logger.message.rotationStyl
e

• Wrap
• Shift

Wrap

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 122

No. Property file Parameter name Value to be
specified

Default value

3 eads.logger.message.filesize File size (4096 to
2147483647
(bytes))

1048576 (bytes)

4 eads.logger.message.filenum Number of files (1 to
16)

2

5 eads.logger.message.console.enab
le

• true
• false

false

6 eads.logger.exception.rotationSt
yle

• Wrap
• Shift

Wrap

7 eads.logger.exception.filesize File size (4096 to
2147483647
(bytes))

1048576 (bytes)

8 eads.logger.exception.filenum Number of files (1 to
16)

2

9 eads.user.logger.rotationStyle • Wrap
• Shift

Wrap

10 eads.user.logger.filesize File size (4096 to
2147483647
(bytes))

1048576 (bytes)

11 eads.user.logger.filenum Number of files (1 to
16)

2

12 eads.user.logger.exception.rotat
ionStyle

• Wrap
• Shift

Wrap

13 eads.user.logger.exception.files
ize

File size (4096 to
2147483647
(bytes))

1048576 (bytes)

14 eads.user.logger.exception.filen
um

Number of files (1 to
16)

2

15 eads.cache.logger.diskCache.rota
tionStyle

• Wrap
• Shift

Wrap

16 eads.cache.logger.diskCache.file
size

File size (4096 to
2147483647
(bytes))

1048576 (bytes)

17 eads.cache.logger.diskCache.file
num

Number of files (1 to
16)

2

18 eads.statistics.interval 1 to 3600 1

19 eads.statistics.filenum 1 to 366 7

20 eads.statistics.compaction.effec
t.division

1 to 10 5

21 eads.java.log.filesize File size (1 to
2097152
(megabytes))

8 (megabytes)

22 eads.java.log.filenum Number of files (1 to
99)

4

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 123

No. Property file Parameter name Value to be
specified

Default value

23 Command property file eads.command.logger.dir Path name management-directory/
logs

24 eads.command.logger.message.rota
tionStyle

• Wrap
• Shift

Wrap

25 eads.command.logger.message.file
size

File size (4096 to
2147483647
(bytes))

1048576 (bytes)

26 eads.command.logger.message.file
num

Number of files (1 to
64)

2

27 eads.command.logger.exception.ro
tationStyle

• Wrap
• Shift

Wrap

28 eads.command.logger.exception.fi
lesize

File size (4096 to
2147483647
(bytes))

1048576 (bytes)

29 eads.command.logger.exception.fi
lenum

Number of files (1 to
16)

2

(1) Server property file

(a) eads.logger.dir
This parameter specifies the path of the output destination directory for log files output by the EADS server.

If the specified path does not exist, it is created.

For details about the log files output under the directory specified in this parameter, see 7.4.2 Specifying the file output
destinations.

The path of an output destination directory can consist of a maximum of 96 characters, including alphanumeric characters
(0 to 9, A to Z, a to z), underscores (_), colons (:), and separators (forward slashes (/)).

If you have changed the value of this parameter, either move all files and directories specified in this parameter to another
directory or delete them.

(b) eads.logger.message.rotationStyle
This parameter specifies the rotation method for messages issued by the EADS server.

Wrap
Uses the wrap-around method.

Shift
Uses the shift method.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.logger.dir server property parameter to another directory or delete them.

(c) eads.logger.message.filesize
This parameter specifies the size (in bytes) of one file to which message logs are output by the EADS server.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 124

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.logger.dir server property parameter to another directory or delete them.

(d) eads.logger.message.filenum
This parameter specifies the number of files to which message logs are output by the EADS server.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.logger.dir server property parameter to another directory or delete them.

(e) eads.logger.message.console.enable
This parameter specifies whether output of message logs from the EADS server to standard output is enabled.

true
Enables output to standard output.

false
Disables output to standard output.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.logger.dir server property parameter to another directory or delete them.

(f) eads.logger.exception.rotationStyle
This parameter specifies the rotation method for the exception logs that are output by the EADS server.

Wrap
Uses the wrap-around method.

Shift
Uses the shift method.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.logger.dir server property parameter to another directory or delete them.

(g) eads.logger.exception.filesize
This parameter specifies the size (in bytes) of an exception log file that is output by the EADS server.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.logger.dir server property parameter to another directory or delete them.

(h) eads.logger.exception.filenum
This parameter specifies the number of exception log files to be output by the EADS server.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.logger.dir server property parameter to another directory or delete them.

(i) eads.user.logger.rotationStyle
This parameter specifies the rotation method for user logs.

Wrap
Uses the wrap-around method.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 125

Shift
Uses the shift method.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.logger.dir server property parameter to another directory or delete them.

(j) eads.user.logger.filesize
This parameter specifies the size (in bytes) of one user message log file.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.logger.dir server property parameter to another directory or delete them.

(k) eads.user.logger.filenum
This parameter specifies the number of user message log files.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.logger.dir server property parameter to another directory or delete them.

(l) eads.user.logger.exception.rotationStyle
This parameter specifies the rotation method for the user exception logs.

Wrap
Uses the wrap-around method.

Shift
Uses the shift method.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.logger.dir server property parameter to another directory or delete them.

(m) eads.user.logger.exception.filesize
This parameter specifies the size (in bytes) of a user exception log file.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.logger.dir server property parameter to another directory or delete them.

(n) eads.user.logger.exception.filenum
This parameter specifies the number of user exception log files.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.logger.dir server property parameter to another directory or delete them.

(o) eads.cache.logger.diskCache.rotationStyle
This parameter specifies the rotation method for the cache-file operation logs.

Wrap
Uses the wrap-around method.

Shift
Uses the shift method.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 126

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.logger.dir server property parameter to another directory or delete them.

(p) eads.cache.logger.diskCache.filesize
This parameter specifies the size (in bytes) of one cache-file operation log file.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.logger.dir server property parameter to another directory or delete them.

(q) eads.cache.logger.diskCache.filenum
This parameter specifies the number of cache-file operation log files.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.logger.dir server property parameter to another directory or delete them.

(r) eads.statistics.interval
This parameter specifies an interval (in seconds) at which statistics are output.

(s) eads.statistics.filenum
This parameter specifies the number of statistics files that are acquired.

If you have changed the value of this parameter, either move the following files to another directory or delete them:

• All files with the extension .mm under directory-specified-in-the-eads.logger.dir-parameter-in-the-server-
properties/stats

• All files with the extension .mm under directory-specified-in-the-eads.logger.dir-parameter-in-the-server-
properties/maintenance/stats

(t) eads.statistics.compaction.effect.division
This parameter specifies the number of distribution ranges to be used when indicating through use of a cache statistic
the distribution of the number of files in each compaction effects range.

For example, if 4 is specified in this parameter, the distribution is divided into four ranges, and the numbers of files in
the compaction effects ranges 0% to 25%, 26% to 50%, 51% to 75%, and 76% to 100% are displayed.

If the value indicating effects is not an integer, all digits following the decimal point are discarded.

(u) eads.java.log.filesize
This parameter specifies the size (in megabytes) of a Java log file.

(v) eads.java.log.filenum
This parameter specifies the number of Java log files.

(2) Command property file

(a) eads.command.logger.dir
This parameter specifies the path of the output destination directory for log files output during command execution.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 127

If the specified path does not exist, it is created.

For details about the log files output under the directory specified in this parameter, see 7.4.2 Specifying the file output
destinations.

The path of an output destination directory can consist of a maximum of 96 characters, including alphanumeric characters
(0 to 9, A to Z, a to z), underscores (_), colons (:), and separators (forward slashes (/)).

If you have changed the value of this parameter, either move all files and directories specified in this parameter to another
directory or delete them.

(b) eads.command.logger.message.rotationStyle
This parameter specifies the rotation method for messages that are issued during command execution.

Wrap
Uses the wrap-around method.

Shift
Uses the shift method.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.command.logger.dir command property parameter to another directory or delete them.

(c) eads.command.logger.message.filesize
This parameter specifies the size (in bytes) of one file to which message logs are output during command execution.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.command.logger.dir command property parameter to another directory or delete them.

(d) eads.command.logger.message.filenum
This parameter specifies the number of files to which message logs are output during command execution.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.command.logger.dir command property parameter to another directory or delete them.

(e) eads.command.logger.exception.rotationStyle
This parameter specifies the rotation method for the exception logs that are output during command execution.

Wrap
Uses the wrap-around method.

Shift
Uses the shift method.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.command.logger.dir command property parameter to another directory or delete them.

(f) eads.command.logger.exception.filesize
This parameter specifies the size of an exception log file (in bytes) that is output during command execution.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 128

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.command.logger.dir command property parameter to another directory or delete them.

(g) eads.command.logger.exception.filenum
This parameter specifies the number of exception log files to be output during command execution.

If you have changed the value of this parameter, either move all files and directories under the directory specified in the
eads.command.logger.dir command property parameter to another directory or delete them.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 129

7.5 Designing the cluster configuration-dependent parameters

Design the parameters that depend on the cluster configuration.

7.5.1 Specifying the locations of EADS servers
You use the eads.node.EADS-server-ID.position parameter to specify the location in the cluster where the
specified EADS server is to be placed. Specifying the locations of EADS servers (hash values) enables you to distribute
the workload.

If locations are not specified, the EADS servers are distributed evenly to logical locations in the cluster.

The placement of data (number of data items, data usage amounts, or data access counts) might become uneven
depending on the nature of keys and applications. As a result, a large load might be placed on some of the EADS servers,
resulting in poor response speeds and a shortage of resources.

Before you specify locations for the EADS servers, check the statistics (KeyCount, UsedMemorySize, and
RequestCount) and analyze the intended locations.

Figure 7‒2: Establishing a location for an EADS server

For details about data distribution, see 2.5 Data distribution by consistent hashing.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 130

7.5.2 Specifying the data multiplicity
Use the eads.replication.factor parameter to specify the multiplicity of data.

The number of EADS servers that make up a cluster must be at least the data multiplicity 2 - 1. Data consistency is
maintained as long as the number of EADS servers that have shut down due to failures is less than the number of data
copies plus the original. Therefore, as the multiplicity becomes higher, reliability and fault tolerance improve.

On the other hand, more memory might be required and communication overhead between EADS servers might increase.

You must take into account advantages and disadvantages such as these when you set the multiplicity.

The following example sets 3 as the multiplicity.

Figure 7‒3: Setting the data multiplicity

If the multiplicity is set to 3, at least five EADS servers are required. If there are five EADS servers and two of them
shut down due to failures, no data loss occurs.

For details about how redundant copies of data are created, see 2.8 Creating redundant copies of data.

7.5.3 Cluster configuration-dependent parameters
The table below lists the parameters that depend on the cluster configuration.

Bold typeface indicates a required parameter.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 131

Table 7‒6: List of cluster configuration-dependent parameters

No. Property file Parameter name Value to be specified Default value

1 Cluster property file eads.node.EADS-server-ID.address IP address or host name None

2 eads.node.EADS-server-ID.port Port number None

3 eads.node.EADS-server-ID.position -2147483648 to
2147483647

None

4 Shared property file eads.failureDetector.heartbeat
.address

IP address (multicast
address)

239.255.2.1

5 eads.failureDetector.heartbeat
.port

Port number 24630

6 eads.replication.factor 1 to 5 2

Important note
The contents of the cluster property files and the shared property files must be identical among all the EADS
servers that make up a cluster. If the properties differ, the EADS servers cannot start because the cluster cannot
be configured.

If a value that is specified is outside the range of permissible values, the default value is set.

(1) Cluster property file

(a) eads.node.EADS-server-ID.address
This parameter specifies the IP addresses or host names (the eads.server.address parameter value in the server
properties) of the EADS servers that make up the cluster.

If you specify a host name, make sure that a unique IP address can be identified from the specified host name.

EADS-server-ID is a user-assigned number (an integer from 1 through 96). The EADS server IDs are used for the store
data file names to uniquely identify the individual EADS servers in the cluster. Although the EADS server IDs need
not be sequential, they must be unique within the cluster.

(b) eads.node.EADS-server-ID.port
This parameter specifies the port numbers (the eads.server.port parameter value in the server properties) of the
EADS servers that make up the cluster.

EADS-server-ID is a user-assigned number (an integer from 1 through 96). The EADS server IDs are used for the store
data file names to uniquely identify the individual EADS servers in the cluster. Although the EADS server IDs need
not be sequential, they must be unique within the cluster.

(c) eads.node.EADS-server-ID.position
This parameter specifies a location for an EADS server (hash value).

EADS-server-ID is a user-assigned number (an integer from 1 through 96). The EADS server IDs are used for the store
data file names to uniquely identify the individual EADS servers in the cluster. Although the EADS server IDs need
not be sequential, they must be unique within the cluster.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 132

This parameter is optional. When this parameter is omitted, the EADS servers are distributed evenly to logical locations
in the cluster.

When you use this parameter, specify locations for all EADS servers that make up the cluster. If the parameter is specified
for some but not all of the EADS servers, an error occurs and EADS server startup fails.

(2) Shared property file

(a) eads.failureDetector.heartbeat.address
This parameter specifies the IP address (multicast address) used for transmitting heartbeats among the EADS servers.

You can also specify an alias of the IP address.

(b) eads.failureDetector.heartbeat.port
This parameter specifies the port number used for transmitting heartbeats among the EADS servers.

(c) eads.replication.factor
This parameter specifies the data multiplicity.

Important note
The number of EADS servers that make up the cluster must be at least the data multiplicity 2 - 1.

An error will result if the number of EADS servers making up the cluster is less than the data multiplicity 2
- 1, in which case startup of the EADS servers will fail.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 133

7.6 Designing the backup file-dependent parameters

Design the backup file-dependent parameters.

A backup file to which data stored in a memory cache is output is called a store data file.

7.6.1 Specifying the file output destinations
You can change the output destinations of the store data files. The following table lists the file output destinations.

Table 7‒7: Store data file output destinations

No. Type of store data file Output destination File name

1 Store data file output during execution of
the eztool export command

Directory specified in the
eads.admin.backup.
dir parameter in the server
properties

• eads_[xxx]_[EADS-server-ID].esd
• eads_single_[xxx]_[EADS-server-

ID].esd

2 Store data file output during execution of
the eztool stop command

Directory specified in the
eads.admin.backup.
dir parameter in the server
properties

eads_stop_[YYYYMMDDhhmmss]_[EADS-
server-ID].esd

Legend:
[xxx]: The store data file key specified during execution of the eztool export command
[YYMMDDhhmmss]: YY: year, MM: month, DD: day, hh: hour (00 through 23), mm: minute, ss: second

Notes:
A store data file name consists of a prefix, a store data file key (any value), and a suffix. The prefix depends on the
command that output the store data file.
In the case of a store data file that is output when the eztool export command is executed and its store data file
key is omitted, the command execution date and time become the store data file key, as shown in the table below.
In the case of a store data file that is output when the eztool stop command is executed, no store data file key
can be specified. Its store data file key is always the command execution date and time.

-s or --single
option

Store data file name Generation
management

Omitted eads_YYYYMMDDhhmmss_EADS-server-ID.esd Enabled

Specified eads_single_YYYYMMDDhhmmss_EADS-server-ID.esd Disabled

Legend:
YYYYMMDDhhmmss: Command execution date and time
YYYY: year, MM: month, DD: day, hh: hour (00 through 23), mm: minute, ss: second

Important note
A directory on another machine that is connected via a network cannot be specified as a file output destination.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 134

7.6.2 Specifying the number of store data file generations
A store data file is output when the eztool export or eztool stop command is executed.

(1) Store data file output when the eztool export command is executed
When you use the eztool export command to export data, you normally omit the store data file key. In this case,
the command execution date and time become the store data file key, as shown below:

eads_YYYYMMDDhhmmss_EADS-server-ID.esd

Legend:
YYYYMMDDhhmmss: Command execution date and time
YYYY: year, MM: month, DD: day, hh: hour (00 through 23), mm: minute, ss: second

The prefix eads_ and the suffix _EADS-server-ID.extension (where the extension is .esd) are added automatically
to the store data file key.

When the store data file key is in the format shown above and the eztool import command is executed, the store
data file with the most recent command execution date and time is imported.

All data maintained by the EADS server is output to the store data file. This includes copies of data created for
redundancy. The cache name and the key, update date, and value are output for each data item.

For details about the output destinations of store data files, see 7.4.2 Specifying the file output destinations.

If the output destination already contains a store data file with the same name, the eztool export command results
in an error; the existing file is not overwritten.

(2) Management of store data file generations
Store data files that have the same command execution date and time are treated as belonging to the same group, and
their generations are managed in the entire cluster until the maximum number of generations specified in the
eads.admin.backup.exportCommand.generation.maxNum parameter in the shared properties is reached.
This prevents a disk capacity shortage, which can occur when store data files increase.

The following example specifies two (the default value) as the maximum number of store data file generations to be
retained in the entire cluster.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 135

Figure 7‒4: Specifying the number of store data file generations

If more than this maximum number of generations of store data files are output, the eztool export command results
in an error. Execute the eztool deleteesd command to delete any unneeded store data.

For details about how to check and delete store data files, see 11.7 Managing store data files.

Important note
Generation management of store data files is not performed in the following cases:

• The value 0 is specified for the maximum number of generations (in the
eads.admin.backup.exportCommand.generation.maxNum parameter in the shared
properties)

• The -s or --single option is specified in the eztool export command

(3) Store data file output when the eztool stop command is executed
When the eztool stop command is executed to terminate the EADS server, data is exported to files and then the
EADS server is terminated.

A store data file key cannot be specified in this case; instead, the command's execution date and time become the store
data file key, as shown below.

The prefix eads_stop_ and the suffix _EADS-server-ID.extension (where the extension is .esd) are added
automatically to the store data file key:

eads_stop_YYYYMMDDhhmmss_EADS-server-ID.esd

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 136

Legend:
YYYYMMDDhhmmss: Command execution date and time
YYYY: year, MM: month, DD: day, hh: hour (00 through 23), mm: minute, ss: second

eads.admin.backup.stopCommand.generation.maxNum parameter in the shared properties, specify the
maximum number of store data file generations that can be output when the eztool stop command is executed.

If more than this maximum number of generations of store data files are output, the most recent store data files are
output and the oldest store data files are deleted.

Important note
If the --no_export option is specified in the eztool stop command, no data is output to a file when the
EADS server is terminated.

7.6.3 Backup file-dependent parameters
The following table lists the parameters that depend on the backup files.

Table 7‒8: Backup file-dependent parameters

No. Property file Parameter name Value to be
specified

Default value

1 Server property file eads.admin.backup.dir Path name management-
directory/store

2 Shared property file eads.admin.backup.exportCommand.ge
neration.maxNum

0 to 32 2

3 eads.admin.backup.stopCommand.gene
ration.maxNum

1 to 32 1

(1) Server property file

(a) eads.admin.backup.dir
This parameter specifies the path of the output destination directory for store data files.

(2) Shared property file

(a) eads.admin.backup.exportCommand.generation.maxNum
This parameter specifies the maximum number of store data file generations that can be output when the eztool
export command is executed.

If more store data file generations than this maximum value are output, the eztool export command results in an
error.

If the output destination already contains a store data file with the same name, the eztool export command results
in an error; the existing file is not overwritten.

When the value 0 is specified in this parameter, generation management of store data files is not performed.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 137

(b) eads.admin.backup.stopCommand.generation.maxNum
This parameter specifies the maximum number of store data file generations that can be output when the eztool stop
command is executed.

If more store data file generations than this maximum value are output, the most recent store data files are output and
the oldest store data files are deleted.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 138

7.7 Designing the cache operation-dependent parameters

This section is applicable when you will be using disk caches or two-way caches.

Design the cache operation-dependent parameters.

7.7.1 Specifying parameters for each type of cache type
The cache property parameter settings depend on the type of cache to be created.

For details about the cache types, see 2.3.1 Cache types.

(1) Creating memory caches
Creation of cache property files is optional for memory caches.

To create a cache property file for memory caches, specify Memory in the eads.cache.type parameter.

(2) Creating disk caches or two-way caches
If you create disk caches or two-way caches, creation of cache property files is required.

In such a case, you must also specify the following cache property parameters:

• eads.cache.type
To create a disk cache, specify Disk.
To create a two-way cache, specify 2Way.

• eads.cache.disk.n.dir
See 7.7.2(2) Specifying storage locations for cache files.

• eads.cache.disk.filesize
Specify the value estimated in 4.4.1 Estimating the size and number of cache data files.

• eads.cache.disk.filenum
Specify the value estimated in 4.4.1 Estimating the size and number of cache data files.

7.7.2 Specifying the types of cache files and their storage locations
If you will be using disk caches or two-way caches, specify the storage locations for the files that will store the cache
information.

A file storing cache information is called a cache file.

When you will be using disk caches or two-way caches, you must specify the storage locations for the cache files.

(1) Types of cache files
The following subsections describe the three types of cache files.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 139

(a) Cache data file
Cache data files store data (keys and values) that are stored in caches.

(b) Cache index file
Cache index files store indexes for the data in cache data files.

As many cache index files are created as there are cache data files.

(c) Cache information file
Cache information files store settings for caches.

One cache information file is created for each cache.

(2) Specifying storage locations for cache files
In this subsection, you specify storage locations for cache files.

You must specify storage locations for cache data files. The following table lists the storage locations for cache files.

Table 7‒9: Storage locations for cache files and the file names

No. Type of cache file Storage location File name

1 Cache data file directory-specified-in-the-
eads.cache.disk.n.dir-
parameter-in-the-cache-
properties/cache-name

eads_data_[EADS-server-ID]_[cache-
name]_[range-ID]_[nnnnn].ecf

2 Cache index file directory-specified-in-the-
eads.cache.disk.info.dir-
parameter-in-the-cache-
properties/cache-name

eads_index_[EADS-server-ID]_[cache-
name]_[range-ID]_[nnnnn].ecf

3 Cache information file directory-specified-in-the-
eads.cache.disk.info.dir-
parameter-in-the-cache-
properties/cache-name

eads_info_[EADS-server-ID]_[cache-
name].ecf

Legend:
[range-ID]: Number (integer 01 to 96) used to identify a range in a cache. The range ID matches the server ID of
the EADS server on which the data is stored.
[nnnnn]: Sequential file number (five-digit integer)

(3) Relationship between storage locations for cache data files and EADS
servers when redundant copies of data are created

Specify as many storage locations for cache data files as the multiplicity value specified in the
eads.cache.disk.n.dir parameter. For example, if the number of redundant copies of data plus the original is
set to 3, specify a value from 1 to 3 for n.

The following explains the relationship between storage locations for cache data files and EADS servers when the
number of redundant copies of data plus the original is set to 3, using EADS server 1 as an example.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 140

Figure 7‒5: Relationship between storage locations for cache data files and EADS servers

Because data is distributed in EADS, cache data files are stored in each EADS server.

The following cache data files are stored on EADS server 1:

• Cache data file that stores data in range 1 (original data)

• Cache data file that stores a copy of data in range 4

• Cache data file that stores a copy of data in range 5

Specify the storage locations for these cache data files in the eads.cache.disk.n.dir parameters in the cache
properties.

Example specification of the eads.cache.disk.n.dir parameter (when using the same directory to manage the
cache data files):

eads.cache.disk.1.dir=/hdd/cache_server01 # Storage location for the
original data
eads.cache.disk.2.dir=/hdd/cache_server01 # Storage location for the
data in range 5 (copy 1)

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 141

eads.cache.disk.3.dir=/hdd/cache_server01 # Storage location for the
data in range 4 (copy 2)

Example specification of the eads.cache.disk.n.dir parameter (when using different directories to manage the
cache data files):

eads.cache.disk.1.dir=/hdd/cache_server01_range01 # Storage location
for the original data
eads.cache.disk.2.dir=/hdd/cache_server01_range05 # Storage location
for the data in range 5 (copy 1)
eads.cache.disk.3.dir=/hdd/cache_server01_range04 # Storage location
for the data in range 4 (copy 2)

7.7.3 Specifying the sizes of cache files
For details about specifying the sizes of cache files, see 4.4 Estimating the sizes of cache files.

7.7.4 Cache operation-dependent parameters
The table below lists the parameters that depend on cache operations.

Bold typeface indicates a required parameter.

Table 7‒10: Cache operation-dependent parameters

No. Property file Parameter name Value to be
specified

Default value

1 Server property file eads.cache.disk.getError.isolate.e
nable

• true
• false

true

2 Cache property file eads.cache.type • Memory
• Disk
• 2Way

None

3 eads.cache.disk.info.dir Path name management-
directory/store

4 eads.cache.disk.n.dir Path name None

5 eads.cache.disk.filesize File size (16 to 128
(megabytes))

None

6 eads.cache.disk.filenum Number of files (8 to
32768)

None

7 eads.cache.disk.blocksize Data size
• 1 (kilobytes)
• 2 (kilobytes)
• 4 (kilobytes)
• 8 (kilobytes)
• 16

(kilobytes)
• 32

(kilobytes)

1 (kilobytes)

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 142

No. Property file Parameter name Value to be
specified

Default value

• 64
(kilobytes)

• 128
(kilobytes)

8 eads.cache.disk.transfer.interval 0 to 60000
(milliseconds)

1000 (milliseconds)

9 eads.cache.disk.transfer.datasize 10240 to
2147483647
(bytes)

102400 (bytes)

Important note
The settings in the cache property files for the parameters shown below must be identical among all the EADS
servers that make up the cluster. If any settings are different, caches cannot be created.

• eads.cache.type
• eads.cache.disk.filesize
• eads.cache.disk.filenum
• eads.cache.disk.blocksize

(1) Server property file

(a) eads.cache.disk.getError.isolate.enable
This parameter specifies whether the EADS server is to be isolated in the event of a disk I/O error when a disk cache
or two-way cache is used.

true
Isolates the EADS server when a disk I/O error occurs.

false
Does not isolate the EADS server when a disk I/O error occurs in the following API functions, because these do not
affect data integrity:

• API functions (get, getAll)

• The following methods of the Group interface:
 getLastUpdateTime()
 getValueUsageSize()

• The following methods of the Store interface:
 getLastUpdateTime()
 getEHeapUsageSize()
 getDiskUsageSize()

• eztool get command

The API functions include those that are executed in user functions.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 143

When false is specified in this parameter, the EADS server will not be isolated when a disk I/O error occurs in
processing such as a get because of a transient disk failure. This can be expected to improve availability.

However, in the case of an application program in which get processing is performed for a long period of time, isolation
processing will not occur even if a permanent disk failure occurs. As a result, the get processing might remain in error
status for a long time.

This parameter is ignored when neither disk caches nor two-way caches are used.

(2) Cache property file

(a) eads.cache.type
This parameter specifies the type of cache to use.

Memory
Uses the memory cache.

Disk
Uses the disk cache.

2Way
Uses the two-way cache.

(b) eads.cache.disk.info.dir
This parameter specifies the storage location for the cache information files and cache index files.

The path of a storage directory can consist of a maximum of 200 characters, including alphanumeric characters (0 to
9, A to Z, a to z), underscores (_), colons (:), and separators (forward slashes (/)).

For details about the file names of the files that are stored under the directory specified in this parameter, see 7.7.2(2)
Specifying storage locations for cache files.

Important note
Check that the absolute path of this parameter value differs from the absolute paths of the
eads.cache.disk.n.dir parameter values in the same EADS server.

(c) eads.cache.disk.n.dir
This parameter specifies the storage location for cache data files.

Specify for n an integer in the range from 1 to the number of redundant copies of data plus the original
(eads.replication.factor parameter value).

If you create redundant copies of data, specify this parameter as many times as there are data copies plus the original.

The path of a storage directory can consist of a maximum of 1,024 characters, including alphanumeric characters (0 to
9, A to Z, a to z), underscores (_), colons (:), and separators (forward slashes (/)).

For details about the file names of the files that are stored under the directory specified in this parameter, see 7.7.2(2)
Specifying storage locations for cache files.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 144

Important note
• Check that the absolute path of this parameter value differs from the absolute paths of the
eads.cache.disk.info.dir parameter values in the same EADS server.

• If you specify a directory immediately under the directory specified in the
eads.cache.disk.info.dir parameter, make sure that the specified directory name differs from
the cache name.

• Disks that operate at extremely different speeds cannot be used for the EADS servers that make up a cluster.
For example, SSDs and HDDs cannot be intermixed as storage locations for cache data files in the disk
configuration.

• If you run multiple EADS servers on the same physical machine, specify a different storage location for
each EADS server.

(d) eads.cache.disk.filesize
This parameter specifies the size (in megabytes) of the cache data files per range.

(e) eads.cache.disk.filenum
This parameter specifies the number of cache data files per range.

(f) eads.cache.disk.blocksize
This parameter specifies the amount of data (in kilobytes) that is to be written into cache data files at one time.

If the storage medium for cache data files is an HDD, specify one kilobyte (default) in this parameter. If an SSD is used,
specify the page size of the SSD.

(g) eads.cache.disk.transfer.interval
This parameter specifies a data transmission interval (in milliseconds) during restoration processing on disk caches and
two-way caches.

During restoration processing, this parameter value is applied to the EADS server subject to restoration processing.

Specify this parameter and the eads.cache.disk.transfer.datasize cache property parameter in such a
manner that the following condition is satisfied:

Bandwidth available for data transmission during restoration processing (bps)
MAX(bandwidth available for data transmission during restoration processing on each cache (bps))

MAX:
Choose the largest value in the parentheses that follow MAX.
Example: For MAX(3 6, 4 + 7), the calculation result is 18.

Bandwidth available for data transmission during restoration processing on each cache (bps):
Obtain the value for each cache by using the following formula.

• Memory caches

Bandwidth available for data transmission during restoration processing (bps)
(size of data transmitted during restoration processing (bytes) 8)

 {(data transmission interval during restoration processing (milliseconds)

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 145

+ time required for data transmission (milliseconds)) 1,000}

Size of data transmitted during restoration processing (bytes):
eads.transfer.datasize parameter value in the server properties

Data transmission interval during restoration processing (milliseconds):
eads.transfer.interval parameter value in the server properties

Time required for data transmission (milliseconds):
Time required to transmit the size of data specified in the eads.transfer.datasize server property
parameter (milliseconds)

• Disk caches and two-way caches

Bandwidth available for data transmission during restoration processing (bps)
(size of data transmitted during restoration processing (bytes) 8)

 {(data transmission interval during restoration processing (milliseconds)
+ time required for data transmission (milliseconds)) 1,000}

Size of data transmitted during restoration processing (bytes):
eads.cache.disk.transfer.datasize parameter value in the cache properties

Data transmission interval during restoration processing (milliseconds):
eads.cache.disk.transfer.interval parameter value in the cache properties

Time required for data transmission (milliseconds):
Time required to transmit the amount of data specified in the eads.cache.disk.transfer.datasize
cache property parameter (milliseconds)
This is the time required for Restoration processing (data transmission) in the figure in 9.3.2(5) Cluster recovery
processing. This time value depends on the environment.

As the time required for restoration processing becomes shorter, the communication workload for restoration
processing increases. Conversely, as the communication workload for restoration processing decreases, the time
required for restoration processing increases.

When memory caches are used, this parameter is ignored and the value of the eads.transfer.interval server
property parameter is used.

For details about restoration processing, see 9.3.2(5) Cluster recovery processing.

Important note
Determine the value of this parameter in such a manner that the disk's write performance is not exceeded.

(h) eads.cache.disk.transfer.datasize
This parameter specifies the size (in bytes) of the data that will be sent during restoration processing on disk caches and
two-way caches.

This parameter's value is applied during restoration processing to the EADS server subject to restoration processing.

During restoration processing, the active EADS servers send data to the EADS server being restored in order to recover
data consistency. Data is sent in units of 10 kilobytes at the interval specified in the
eads.cache.disk.transfer.interval parameter until this parameter's value is reached.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 146

When memory caches are used, this parameter is ignored and the value of the eads.transfer.datasize server
property parameter is used.

Important note
• Because at least one data item is always sent during restoration processing, the size of the send data might

exceed this parameter's value. The amount of data to be sent will not be limited if a value that is smaller
than the size of the data stored in the EADS server is specified in this parameter.

• Determine a value to specify for this parameter so that the transfer speed of the restore data does not exceed
the write speed of the disk.

7. Designing the Environment-Dependent Parameters (EADS Servers)

Hitachi Elastic Application Data Store 147

8 Designing the Environment-Dependent
Parameters (EADS Clients)

This chapter provides guidelines for designing the environment-dependent parameters for EADS
clients.

Hitachi Elastic Application Data Store 148

8.1 Type of property file (used by EADS clients)

The table below lists and describes the type of property file used by EADS clients.

This chapter explains only the environment-dependent parameters.

Table 8‒1: Type of property file (used by EADS clients)

Property file File name Description

Client property file Any name# Defines an EADS client execution environment.

#
Copy the client property file from the following directory to the directory specified in the application program and
edit it as needed (make sure that the file name also matches the one specified in the application program):

• Java
/opt/hitachi/xeads/javaclient/conf/eads_sample_client.properties

• C
/opt/hitachi/xeads/cclient/conf/eads_sample_client.properties

8. Designing the Environment-Dependent Parameters (EADS Clients)

Hitachi Elastic Application Data Store 149

8.2 Format of property files

Specify parameters in the following format:

parameter=value

How to specify parameters

• A value extends up to an end-of-line character.

• A line beginning with a hash mark (#) is treated as a comment.

• A null line is ignored.

• A value cannot be followed by a character string such as a comment. If a character string is added, the value is
interpreted as being invalid.

• If the same parameter is specified more than once, the last specification takes effect. For example, false would
take effect if the following were specified:

eads.client.logger.message.console.enable=true
eads.client.logger.message.console.enable=false

If the application programs are coded in C, also note the following:

• The permitted characters are 0x20 through 0x7E in ASCII codes, the newline character (\n), the carriage return
character (\r), and the tab (\t).

• Specify one parameter per line. One line extends through an end-of-line character (\n or \r\n) or an EOF (end of
file).

• The equal sign (=), space, and tab can be used as delimiters (between a parameter name and a value).

• If two or more delimiters are specified consecutively, the second and any subsequent delimiters are interpreted as a
part of the value.

Example 1: a=b=c
EADS interprets that a is the parameter name and b=c is the value.

Example 2: a b = c
EADS interprets that a is the parameter name and b = c is the value.

• If no value is specified (that is, if only a parameter name and a delimiter are specified), the value is interpreted as a
null character string.

• A line containing control characters or only a parameter name is ignored.

• Although a space or a tab can be specified before and after a parameter name and a value, EADS ignores the specified
space or tab when it interprets the parameter.

Example: a = b
Note: indicates a space or a tab.
EADS interprets that a is the parameter name and b is the value.

8. Designing the Environment-Dependent Parameters (EADS Clients)

Hitachi Elastic Application Data Store 150

8.3 Designing the communication-dependent parameters

Design the communication-dependent parameters.

8.3.1 Specifying the connection-target EADS server, the IP address or
host name, and the port number

The first time the EADS client connects to an EADS server, it selects randomly a connection target from among the
EADS servers specified in the eads.client.connect.servers parameter in the client properties (for
subsequent connections, the EADS client selects a connection target based on the cluster information acquired from the
first EADS server).

If multiple EADS servers are specified in the client properties and no connection can be established with a certain EADS
server, the EADS client can try to connect to another EADS server.

For details about the mechanism of communication processing, see 2.2 Mechanisms of EADS communication processing.

Figure 8‒1: Designing the communication-dependent parameters (for an EADS client)

8.3.2 Communication-dependent parameters
The table below lists the communication-dependent parameters.

Bold typeface indicates a required parameter.

Table 8‒2: Communication-dependent parameters (EADS clients)

No. Property file Parameter name Value to be
specified

Default value

1 Client property file eads.client.connect.servers Name used to
identify the
connection-target
EADS server (any
name)

None

8. Designing the Environment-Dependent Parameters (EADS Clients)

Hitachi Elastic Application Data Store 151

No. Property file Parameter name Value to be
specified

Default value

2 eads.client.connection-target-EADS-
server.address

IP address or host
name

None

3 eads.client.connection-target-EADS-
server.port

Port number 24600

(1) Client property file

(a) eads.client.connect.servers
This parameter specifies the name (any name) used to identify the connection-target EADS server when the EADS client
is initialized.

The name can consist of alphanumeric characters (0 to 9, A to Z, a to z).

If you specify multiple names, separate them with commas. When multiple names are specified, the first time the EADS
client connects to an EADS server, it selects randomly a connection target from among the EADS servers specified in
this parameter. For subsequent connections, the EADS client selects a connection target based on the cluster information
acquired from the first EADS server.

If an attempt to connect to an EADS server fails, the EADS client attempts to connect to the other EADS servers one
at a time in the order they were specified, starting from the one immediately following the last EADS server whose
connection failed.

Important note
If multiple names are specified (delimited by the comma) and there is a name consisting of the null character
string, the processing is as follows, depending on the language of the application program:

• EADS clients (Java) ignore a name consisting of a null character string and resume processing.

• EADS clients (C) treat such a name as invalid, resulting in an error.

(b) eads.client.connection-target-EADS-server.address
This parameter specifies the IP address or host name of the connection-target EADS server when the EADS client is
initialized.

If you specify a host name, make sure that a unique IP address can be identified from the specified host name.

Specify this parameter paired with the eads.client.connect.servers parameter. For connection-target-
EADS-server, specify the name used to identify the EADS server specified in the
eads.client.connect.servers parameter.

(c) eads.client.connection-target-EADS-server.port
This parameter specifies the port number of the connection-target EADS server when the EADS client is initialized.

Specify this parameter paired with the eads.client.connect.servers parameter. For connection-target-
EADS-server, specify the name used to identify the EADS server specified in the
eads.client.connect.servers parameter.

8. Designing the Environment-Dependent Parameters (EADS Clients)

Hitachi Elastic Application Data Store 152

(d) Example of specifications of the eads.client.connect.servers parameter
The following shows an example of specifications of the eads.client.connect.servers parameter.

eads.client.connect.servers=sv1,sv2,sv3
eads.client.sv1.address=XXX.XXX.X.138
eads.client.sv1.port=24600
eads.client.sv2.address=XXX.XXX.X.139
eads.client.sv2.port=24601
eads.client.sv3.address=XXX.XXX.X.140
eads.client.sv3.port=24602

8. Designing the Environment-Dependent Parameters (EADS Clients)

Hitachi Elastic Application Data Store 153

8.4 Designing the log file-dependent parameters

Design the log file-dependent parameters.

8.4.1 Types of log files
The following table lists and describes the types of log files that are managed by EADS clients.

Table 8‒3: Types of log files (managed by EADS clients)

No. Log file Description

1 Message log file This file is used to output message logs for checking operations and monitoring for
errors.

2 Maintenance log file This file is used by the system.
There is no parameter to be specified by the user.

8.4.2 Specifying the file output destinations
You can change the log file output destinations. The following table lists the file output destinations.

Table 8‒4: File output destinations (EADS client)

Log file name Output destination File name

Message log file directory-specified-in-the-
eads.client.logger.dir-parameter/EADS-
client-name#

eads_client_message[n].log

Maintenance log file directory-specified-in-the-
eads.client.logger.dir-parameter/EADS-
client-name#/maintenance

eads_client_maintenance[n].log

Legend:
[n]: Sequence number of the file

#
This is the EADS client name specified in the client API function. If the EADS client name is the null character
string, the subdirectory of the EADS client name is omitted.

Important note
A directory of another machine that is connected via a network cannot be specified as the file output destination.
If such a directory is specified, the operation is not guaranteed.

8.4.3 Specifying the file sizes and the numbers of files
Specify the default values for the sizes of log files and the numbers of files. After you have configured the EADS client,
change the parameter values, if necessary.

8. Designing the Environment-Dependent Parameters (EADS Clients)

Hitachi Elastic Application Data Store 154

8.4.4 Log file-dependent parameters
The table below lists the parameters that depend on the log files.

Bold typeface indicates a required parameter.

Table 8‒5: Log file-dependent parameters (EADS clients)

No. Property file Parameter name Value to be
specified

Default value

1 Client property file eads.client.logger.dir Path name None

2 eads.client.logger.message.filesiz
e

File size (4096 to
2147483647
(bytes))

1048576 (bytes)

3 eads.client.logger.message.filenum Number of files (1 to
16)

2

4 eads.client.logger.message.console
.enable

• true
• false

false

5 eads.client.logger.initErrorOut • true
• false

false

(1) Client property file

(a) eads.client.logger.dir
This parameter specifies the path of the output destination directory for log files.

If the specified path does not exist, it is created.

For details about the log files output under the directory specified in this parameter, see 8.4.2 Specifying the file output
destinations.

Do not specify the same output destination at the same time in multiple processes.

(b) eads.client.logger.message.filesize
This parameter specifies the size (in bytes) of one file to which message logs are output.

(c) eads.client.logger.message.filenum
This parameter specifies the number of message log files.

(d) eads.client.logger.message.console.enable
This parameter specifies whether output of message logs to standard output is enabled.

true
Enables output to standard output.

false
Disables output to standard output.

8. Designing the Environment-Dependent Parameters (EADS Clients)

Hitachi Elastic Application Data Store 155

(e) eads.client.logger.initErrorOut
This parameter specifies whether error message are to be output to the standard error output when initialization of a
logger fails.

true
Outputs error messages to the standard output.

false
Does not output error messages to the standard output.

8. Designing the Environment-Dependent Parameters (EADS Clients)

Hitachi Elastic Application Data Store 156

9 Designing the Tuning Parameters

This chapter provides guidelines for designing the tuning parameters.

Hitachi Elastic Application Data Store 157

9.1 Designing the parameters related to memory and buffers

Design the parameters related to memory and buffers.

9.1.1 Specifying the memory sizes
The following figure shows the configuration of memory used by an EADS server.

The explicit heap consists of the following areas:

• Area for storing the history of update operations

• In memory caches and two-way caches, the area for storing the value part of key-value pairs

The history of update operations includes the API functions and information about keys and values. The history of
update operations is used to ensure data consistency when data is being replicated.

If a failure occurs during consensus processing, another active EADS server takes the place of the EADS server where
the failure occurred, and this other active EADS server participates in the consensus processing on the basis of this
history. This history log is retained until the consensus and write processing for the previous update operation is
completed.

The history of update operations is deleted automatically when the EADS server determines it to be no longer needed.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 158

Approach
Determine the Java heap size and the explicit heap size per EADS server by referencing 4.1.2 Estimating the Java
heap size and 4.1.3 Estimating the explicit heap size.

9.1.2 Specifying the buffer size
The following figure provides an overview of the buffer used for communication by the EADS servers.

Requests sent from the EADS client are controlled in the EADS server as shown below.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 159

Requests (data update operations) sent from the EADS client are retained in the history, and then queued for sending
consensus messages. Queues for sending consensus messages are allocated for the number of EADS servers to which
the consensus messages will be sent.

You can also use the eads.replication.sendQueue.length parameter in the server properties to specify the
length of the queue for sending consensus messages. Use the eads.replication.sendQueue.datasize
parameter in the server properties to specify the maximum amount of data that can be stored in the send queue.

You can use the eads.replication.preparations parameter in the shared properties to specify the maximum
number of consensus processes that can be executed simultaneously.

For details about how to specify the maximum number of simultaneous connections and the maximum number of
simultaneous threads, see 9.2 Designing the parameters related to thread pools and connection pools.

Approach
You can send and receive data efficiently by adjusting the buffer size according to the amount of data handled.

9.1.3 Parameters related to memory and buffers
The following table lists the parameters related to memory and buffers.

Table 9‒1: Parameters related to memory and buffers

No. Property file Parameter name Value to be
specified

Default value

1 Server property file eads.server.connection.buffersize Buffer size (1024 to
16777216 (bytes))

4096 (bytes)

2 eads.replication.connection.buffer
size

Buffer size (1024 to
16777216 (bytes))

131071 (bytes)

3 eads.replication.sendQueue.length Queue size
(10000 to
1000000)

100000

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 160

No. Property file Parameter name Value to be
specified

Default value

4 eads.replication.sendQueue.datasiz
e

1048576 to
2147483647
(bytes)

16777216 (bytes)

5 eads.transfer.connection.buffersiz
e

Buffer size (1024 to
16777216 (bytes))

131071(bytes)

6 eads.transfer.datasize 10240 to
2147483647
(bytes)

1048576 (bytes)

7 eads.replication.fillgap.copy.data
size

1024 to 16777216
(bytes)

10240 (bytes)

8 eads.admin.operation.resume.send.d
atasize

0 to 2147483647
(bytes)

1048576 (bytes)

9 Shared property file eads.cache.key.maxsize 1 to 1024 (bytes) 1024 (bytes)

10 eads.replication.preparations 1 to 100 20

11 eads.replication.external.heapsize 1 to 268435456
(megabytes)

450 (megabytes)

12 eads.java.heapsize Heap size#1 3072 (megabytes)

13 eads.java.external.heapsize Heap size (2 to
2147483647
(megabytes))

1024 (megabytes)

14 eads.java.permanent.maxsize Memory size#2 83 (megabytes)

15 eads.cache.limiter.enable • true
• false

true

16 eads.cache.keyCount 1024 to
1073741824

1048576

17 Client property file eads.client.connection.buffersize Buffer size (1024 to
16777216 (bytes))

4096 (bytes)

#1
The specified values are applied to JavaVM's heap size options (-Xmx and -Xms).

#2
The specified values are applied to JavaVM's memory size options (-XX:PermSize and -XX:MaxPermSize).

(1) Server property file

(a) eads.server.connection.buffersize
This parameter specifies the size (in bytes) of the work area buffer that is allocated each time connection is established
and used to send and receive data.

(b) eads.replication.connection.buffersize
This parameter specifies the size (in bytes) of the transmit and receive buffer for consensus messages.

We recommend that you specify the TCP window size that is specified in the OS.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 161

Depending on the OS, a buffer of a size that is different from the value of this parameter might be used.

(c) eads.replication.sendQueue.length
This parameter specifies the size of the consensus message send queue.

As many send queues are allocated as there are EADS servers to which consensus messages are to be sent.

Use the following formula to estimate the queue length. If the estimate result is smaller than the minimum value of this
parameter, set the minimum value.

2 a b + 2 a numbers of caches + (c - 1) a numbers of caches

• a: eads.replication.preparations parameter value in the shared properties

• b: eads.replication.factor parameter value in the shared properties minus 1 (the value is 1 if the number
of redundant copies of data plus the original is 1)

• c: eads.replication.factor parameter value in the shared properties

Important note
If consensus messages exceeding the specified queue length enter the send queue, a communication error occurs.

(d) eads.replication.sendQueue.datasize
This parameter specifies the maximum amount (in bytes) of data that can be stored in a queue for sending consensus
messages.

Use the following formula to obtain the value you can specify:

2 a b (c + numbers of caches) + d (e - 1) numbers of caches

• a: eads.replication.preparations parameter value in the shared properties

• b: Maximum size of the history of update operations
The following shows the formula for estimating the maximum size (in bytes) of the history of update operations.
eads.cache.key.maxsize parameter value in the shared properties + maximum value size# MAX(2, maximum
number of data items that can be updated simultaneously)

#
Maximum size that can be specified when put, create, update, or replace processing is performed.

MAX:
Choose the largest value in the parentheses that follow MAX.
Example: For MAX(2, 10), the calculation result is 10.

Maximum number of data items that can be updated simultaneously:
If you will be performing batch data operations using a memory cache, specify 10. Otherwise, specify 1.

• c: eads.replication.factor parameter value in the shared properties minus 1 (the value is 1 if the number
of redundant copies of data plus the original is 1)

• d: eads.replication.fillgap.copy.datasize parameter value in the server properties

• e: eads.replication.factor parameter value in the shared properties

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 162

Important note
If you specify an excessively small value compared to the estimate result, retries might occur frequently due to
send queue overflows, and further processing might be disabled.

(e) eads.transfer.connection.buffersize
This parameter specifies the size (in bytes) of the data transmit and receive buffer that is used during restoration
processing and scale-out processing.

We recommend that you specify the TCP window size that is specified in the OS.

Depending on the OS, a buffer of a size that is different from the value of this parameter might be used.

(f) eads.transfer.datasize
This parameter specifies the size (in bytes) of data that will be transmitted during restoration processing and scale-out
processing.

During restoration processing and scale-out processing, this parameter value is applied to the EADS server subject to
restoration processing and to the EADS servers added during scale-out processing.

During restoration processing and scale-out processing, the active EADS servers send data to the EADS server being
restored and the EADS servers added by scale-out processing in order to recover data consistency. Data is sent in units
of 10 kilobytes at the interval specified in the eads.transfer.interval parameter until this parameter value is
reached.

For details about restoration processing, see 9.3.2(5) Cluster recovery processing. For details about scale-out processing,
see 9.3.2(6) Cluster scale-out processing (adding EADS servers).

When disk caches and two-way caches are restored, this parameter is ignored and the value of the
eads.cache.disk.transfer.datasize cache property parameter is restored.

Important note
Because at least one data item is always sent during restoration processing and scale-out processing, the amount
of data to be sent will not be limited if a value that is smaller than the size of the data stored in the EADS server
is specified in this parameter.

(g) eads.replication.fillgap.copy.datasize
This parameter specifies the amount (in bytes) of data that is sent each time data is copied to the EADS server during
complementary processing of history of update operations.

For details about the complementary processing of history of update operations, see 9.3.2(7) Complementary processing
of the history of update operations.

Use the following formula to obtain the value you can specify:

maximum size of the history of update operations maximum number of consensus processes that can be executed
simultaneously

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 163

Maximum size of the history of update operations:
The following shows the formula for estimating the maximum size (in bytes) of the history of update operations.
eads.cache.key.maxsize parameter value in the shared properties + maximum value size# MAX(2,
maximum number of data items that can be updated simultaneously)

#
Maximum size that can be specified when put, create, update, or replace processing is performed.

MAX:
Choose the largest value in the parentheses that follow MAX.
Example: For MAX(2, 10), the calculation result is 10.

Maximum number of data items that can be updated simultaneously:
If you will be performing batch data operations using a memory cache, specify 10. Otherwise, specify 1.

Maximum number of consensus processes that can be executed simultaneously:
eads.replication.preparations parameter value in the shared properties

Important note
• Do not specify an excessively large value, as that would adversely affect memory usage and CPU usage

rate.

• A larger amount of data than the amount specified by this parameter might be sent.

• Even if you specify a small data amount, complementary processing is performed for at least one history
item.

(h) eads.admin.operation.resume.send.datasize
This parameter specifies the size (in bytes) of differential data that is transferred at one time when the eztool resume
command is executed.

If 0 is specified, one data item is transmitted at a time.

(2) Shared property file

(a) eads.cache.key.maxsize
This parameter specifies the maximum size (in bytes) of any key that can be stored in the cluster.

The key storage area is allocated based on the size specified in this parameter.

By restricting the maximum key size, you can design a smaller Java heap size for storing keys compared to when the
default key size is used.

Important note
• A cluster whose maximum key size is set to a value smaller than that of another cluster might not be able

to import store data files that are output from that other cluster.

• If disk caches or two-way caches are used, cache data files and cache index files that have been output in
a cluster in which the maximum key size is set to a large value might not be usable for data relocation in a
cluster in which the maximum key size is set to a smaller value.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 164

(b) eads.replication.preparations
This parameter specifies the maximum number of consensus processes that can be performed simultaneously.

Specify the smaller of the values shown below. Note, however, that if the values are different between EADS servers,
specify the largest value in the cluster.

• eads.server.maxConnections parameter value in the server properties

• eads.server.cache.maxExecuteThreads parameter value in the server properties +
eads.server.function.maxExecuteThreads parameter value in the server properties

(c) eads.replication.external.heapsize
This parameter specifies the size (in megabytes) of the area for storing the history of update operations.

Be aware that if this parameter's value is greater than the eads.java.external.heapsize parameter value in the shared
properties 0.97 (in units of megabytes; digits to the right of the decimal point are discarded), EADS server startup
processing will fail.

(d) eads.java.heapsize
This parameter specifies the size (in megabytes) of the Java heap in which keys are stored.

(e) eads.java.external.heapsize
This parameter specifies the size (in megabytes) of the explicit heap in which values and the history of update operations
are stored.

Note that three percent of the specified explicit heap size is used as a management area (the value is rounded up in
megabytes).

Be aware that if the eads.replication.external.heapsize parameter value in the shared properties is
greater than this parameter value 0.97 (in units of megabytes; digits to the right of the decimal point are discarded),
EADS server startup processing will fail.

(f) eads.java.permanent.maxsize
This parameter specifies the size (in megabytes) of the Permanent area.

The Permanent area is used to store such information as the loaded EADS servers and the classes of user functions.

(g) eads.cache.limiter.enable
This parameter specifies whether the total data restriction function is to be enabled.

When the total data restriction function is enabled and a shortage of space at the data storage location is foreseen, the
EADS server can be protected from being shut down by setting an error in the corresponding processing.

true
Enables the total data restriction function.

false
Disables the total data restriction function.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 165

(h) eads.cache.keyCount
This parameter specifies the number of data items per range that will be monitored by the total data restriction function.

If false is specified in the eads.cache.limiter.enable parameter (total data restriction function is disabled),
this parameter's value is ignored.

(3) Client property file

(a) eads.client.connection.buffersize
This parameter specifies the size (in bytes) of the buffer that will be used by the EADS client to send and receive data.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 166

9.2 Designing the parameters related to thread pools and connection
pools

Design the parameters related to thread pools and connection pools according to the number of request processes that
are executed simultaneously.

9.2.1 Setting the maximum number of simultaneous connections
EADS reduces the overhead of generating threads and connections and improves throughput by using thread pools and
connection pools. For details about thread pools and connection pools, see 2.12 Improving throughput by using thread
and connection pools.

Approach
You can improve resource utilization efficiency by adjusting the maximum number of simultaneous connections
(the eads.server.maxConnections parameter value in the server properties).

9.2.2 Setting the maximum number of simultaneous threads
The EADS server controls the number of simultaneous connections from the EADS client and the number of
simultaneous threads.

For the number of simultaneous threads, the EADS server controls the requests for performing data operations separately
from the requests for user functions.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 167

• Number of simultaneous threads for data operation
This value is specified in the eads.server.cache.maxExecuteThreads parameter in the server properties.
Any request exceeding the maximum number of simultaneous threads is queued until the connection between the
EADS client and EADS server is released (the eads.server.connection.keepAlive.timeout
parameter value in the server properties).

• Number of simultaneous threads for user functions
The EADS server controls the number of simultaneous threads for each user function (eads.function.user-
function-name.maxExecuteThreads parameter in the function properties) and the number of simultaneous
threads for all user functions (eads.server.function.maxExecuteThreads parameter in the server
properties).

Approach
You can improve resource utilization efficiency by adjusting the maximum number of simultaneous threads.

9.2.3 Parameters related to thread pools and connection pools
The following table lists the parameters related to thread pools and connection pools.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 168

Table 9‒2: Parameters related to thread pools and connection pools

No. Property file Parameter name Value to be
specified

Default value

1 Server property file eads.server.maxConnections 1 to 1024 10

2 eads.server.cache.maxExecuteThread
s

1 to the
eads.server.m
axConnections
parameter value

eads.server.max
Connections
parameter value

3 eads.server.function.maxExecuteThr
eads

1 to the
eads.server.m
axConnections
parameter value

eads.server.max
Connections
parameter value

4 Function property file eads.function.user-function-
name.maxExecuteThreads

0 to the
eads.server.f
unction.maxEx
ecuteThreads
parameter value

0

5 Client property file eads.client.connectionPool.poolsiz
e

1 to 1024 10

6 eads.client.connectionPool.exceedM
axSizeError.enable

• true
• false

false

(1) Server property file

(a) eads.server.maxConnections
This parameter specifies the maximum number of simultaneous connections to the EADS server.

If an attempt is made to establish more connections than the specified maximum number of simultaneous connections,
an error is returned and communication is closed.

Specify at least the sum of the eads.client.connectionPool.poolsize parameter values specified in the
client properties of the EADS clients that will be connected.

Note that the eads.client.connectionPool.poolsize parameter's value is also set in backlog of the
Listen queue. If the value exceeds an OS limitation, the OS's limit value is set.

Extend the OS's limit value taking into account the value of the eads.client.connectionPool.poolsize
parameter in the client properties. For details about how to extend limit values, see the OS documentation.

(b) eads.server.cache.maxExecuteThreads
This parameter specifies the maximum number of simultaneous threads for performing data operations.

(c) eads.server.function.maxExecuteThreads
This parameter specifies the maximum number of simultaneous threads for user functions.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 169

(2) Function property file

(a) eads.function.user-function-name.maxExecuteThreads
This parameter specifies the maximum number of simultaneous threads for each user function.

For a user function name, specify a fully qualified class name.

If zero is specified, there is no limit to the number of simultaneous threads.

(3) Client property file

(a) eads.client.connectionPool.poolsize
This parameter specifies the maximum number of connections to be pooled for the same connection target.

As many connections as the value specified in this parameter can be established.

Specify the number of threads that can execute client API functions simultaneously.

(b) eads.client.connectionPool.exceedMaxSizeError.enable
This parameter specifies whether a request from an EADS client is to result in an error when the maximum number of
connections to be pooled for the same connection target is reached and all are in use.

true
The client API function is to result in an error.

false
The client API function is not to result in an error. Instead, the client API function is to be placed in wait status.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 170

9.3 Designing the timeout-related parameters

This section explains how to design the timeout-related parameters.

9.3.1 Setting the timers for monitoring communication
For communications between the EADS clients and EADS servers that use TCP, EADS detects communication errors
by monitoring the following durations:

• Duration from the start of connection to its completion, using a socket

• Duration from the start of a data write operation to its completion

• Duration from the start of a data read operation to its completion

Multiple data read operations might occur when a single message is received.

Approach
EADS detects communication errors more quickly by shortening the monitoring interval, and it prevents timeouts
from occurring frequently by increasing the monitoring interval.

(1) Specifying timeout values for communication between EADS client
and EADS server

You can specify timeout values for communication between EADS client and EADS server as shown in the following
figure.

Figure 9‒1: Specifying timeout values for communication between EADS client and EADS server

The table below lists the parameters used for specifying communication timeout values. The numbers 1 to 6 in the table
correspond to the numbers in Figure 9-1 Specifying timeout values for communication between EADS client and EADS
server.

Table 9‒3: Parameters used for specifying communication timeout values

No. Timeout value to be
specified

Property file Parameter name

1 Connection to the EADS
server

Client Property file eads.client.connection.send.timeout

2 Data transmission to the
EADS server

3 Data reception from the
EADS server

eads.client.connection.receive.timeout

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 171

No. Timeout value to be
specified

Property file Parameter name

4 Data reception from the
EADS client

Server Property file eads.server.connection.timeout

5 Data transmission to the
EADS client

6 Closing an idle
permanent connection

eads.server.connection.keepAlive.timeout

The following figure shows the locations at which timeout values can be specified for communication between EADS
client and EADS server.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 172

Figure 9‒2: Locations at which timeout values can be specified for communication between EADS
client and EADS server

Details of specifying timeout values ((1) to (6) in the figure) are explained in the following subsections:

• 9.3.1(2) Approach to specifying communication timeout values

• 9.3.1(3) Specifying a timeout value for closing a permanent connection

In addition, tips (1 to 5) are explained in 9.3.1(4) Tips for considering the timeout values to be specified.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 173

(2) Approach to specifying communication timeout values
The communication timeout values indicated by 1 to 5 in Figure 9-2 Locations at which timeout values can be specified
for communication between EADS client and EADS server are used to detect the following events, not as markers for
when the corresponding processing is to be completed:

• Physical closure of a channel

• Closure of a channel to the communication target for a reason such as a failure at the communication target

We do not recommend that you use the communication timeout function for closing the connection, even when no
response is returned within the expected time.

The EADS server processing continues regardless of the status of the communication channel to the EADS client. Data
is not rolled back when channel closure is detected when a response is sent to the EADS client. Therefore, if the
communication timeout function is used to close communication, the EADS client cannot obtain the data operation
results.

We recommend that you tune the communication timeout values so that failures at the communication target and channel
closure will be detected correctly, rather than using them to detect delays in the processing and the network.

(3) Specifying a timeout value for closing a permanent connection
A timeout value for closing a permanent connection (6 in Figure 9-2 Locations at which timeout values can be specified
for communication between EADS client and EADS server) is used to prevent the connection and thread from becoming
unavailable until the TCP keep-alive idle time set in the OS is reached when the EADS server cannot detect a shutdown
of the OS or host on which the application program (user program) is running.

We recommend that you consider the following two points and specify a sufficient value within a range that will not
affect other functions and that will avoid unnecessary communication closure and errors.

• Relationship with the number of connections on the EADS client
The EADS client maintains permanent connections even when there is no operation request from the application
program to the EADS server for a specified period of time. Permanent connections are used for periodic checking
of cluster information. The maximum number of permanent connections per EADS server is specified in the
eads.client.connectionPool.poolsize parameter in the client properties. The permanent connections
are used at the interval specified for each EADS server in the
eads.client.clusterInfo.update.interval parameter in the client properties.
Only one thread is used to check the cluster information. If an attempt is made to check the cluster information at
the address of a host whose OS is not running normally, the processing will be placed in wait status for a maximum
of the duration specified in the eads.client.connection.send.timeout parameter in the client
properties. During this time, communication with other EADS servers for checking the cluster information will be
placed on hold.
In such a situation, to prevent permanent connections from being closed when there is no request from the EADS
client, specify a sufficient value in the eads.server.connection.keepAlive.timeout parameter in the
server properties that can satisfy the following condition:

eads.server.connection.keepAlive.timeout parameter value in the server properties
> (eads.client.connection.send.timeout parameter value in the client properties permissible number of EADS server failures
+ eads.client.clusterInfo.update.interval parameter value in the client properties)

 eads.client.connectionPool.poolsize parameter value in the client properties

If the EADS server process is shut down but there is no problem on the OS, wait status does not last as long as the
duration specified in the above eads.client.connection.send.timeout parameter. Therefore, specify

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 174

the permissible number of EADS server failures taking into account permissible failures such as host failures, not
process failures.

• Relationship with the maximum number of connections on the EADS server
If the eads.server.maxConnections parameter is specified in the server properties, the number of
connections from the EADS client is limited and any connection attempted beyond the specified value will result
in an error.
If the minimum value is specified in this parameter and a network disconnection that cannot be detected from the
EADS server's network occurs due to a host or OS error, the EADS server's connection might be maintained until
the time specified in the eads.server.connection.keepAlive.timeout parameter in the server
properties is reached. As a result, the EADS client might not be able to reestablish connection after error recovery
processing. To resolve this problem, specify a parameter value that satisfies the following condition:

eads.server.connection.keepAlive.timeout parameter value in the server properties
< time required for the EADS client to reestablish connection after a failure

Note that the handling time depends greatly on the nature of the failure. If there is sufficient memory, we recommend
that you add the number of connections that will be used for reconnection to the
eads.server.maxConnections parameter value in advance and specify a sufficient value, such as 3600
seconds, in the eads.server.connection.keepAlive.timeout parameter.

(4) Tips for considering the timeout values to be specified
This subsection provides tips for considering the timeout values to be specified. These tips correspond to 1 to 5
in Figure 9-2.

Tip 1 (1)
Normally, a permanent connection is used for communication from the EADS client. Therefore, connection
processing occurs only when connection is established for the first time and when the number of threads that use
client libraries increases. For the connection timeout value, the same value is used as for the transmission timeout
value (eads.client.connection.send.timeout parameter value in the client properties).

Tip 2 (2)
Data send processing is treated as being complete when data has been stored in the sender's send buffer. Therefore,
data send processing succeeds regardless of the statuses of the receive process and channel as long as the data fits
in the send buffer (if there is a problem in the channel, the next receive processing results in an error).
If an attempt is made to send data that is larger than the size of the send buffer, a send error might occur due to a
problem (such as FullGC) at the receiving process. If you will be sending data that is larger than the send buffer
size, take into account the time required for processing events such as the receiving process's FullGC.

Tip 3 (3)
Send and receive processing takes place internally in multiple segments. The timeout values are applied to each
segment. Therefore, the timeout values are not for guaranteeing the length of time before replies are returned.

Tip 4 (4)
The EADS client performs the next read processing when its current send processing is completed. The EADS client
does not consider whether the EADS server has received the data that the EADS client sent.
The EADS client's receive timeout includes the time for performing data operations and executing user functions
on the EADS server. If there is a user function that requires a long time to process and the client properties are
specified to accommodate such a user function's processing time, the value might not be suitable for normal
communication processing. In such a case, we recommend that you use API functions with timeout settings instead
of specifying the timeout values in the client properties.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 175

Tip 5 (5)
After sending a response to the EADS client, the EADS server waits for the next request. For this receive processing,
the timeout value for permanent connections is used (eads.server.connection.keepAlive.timeout
parameter value specified in the server properties), not the normal communication timeout value
(eads.server.connection.timeout parameter value specified in the server properties). For details about
the timeout value for permanent connections, see 9.3.1(3) Specifying a timeout value for closing a permanent
connection.

9.3.2 Setting the timers for monitoring the cluster
The EADS servers in the cluster mutually send heartbeats to notify one another that they are operating normally within
the cluster.

EADS servers also detect communication errors by monitoring the communication with the EADS servers during
command execution and the time spent from start to completion of command execution.

Approach
EADS detects communication errors more quickly by shortening the monitoring interval, and prevents timeouts
from occurring frequently by increasing the monitoring interval.

(1) Sending heartbeats and checking for live servers
For details about monitoring the cluster by sending heartbeats, see 2.9 Monitoring a cluster.

The following figure shows the timers for heartbeat transmission and the check for live servers.

The alphabetical letters in the figure correspond to explanations provided in the following subsections of 9.3.3 Timeout-
related parameters:

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 176

(c): 9.3.3(1)(c) eads.failureDetector.heartbeat.interval

(d): 9.3.3(1)(d) eads.failureDetector.heartbeat.timeout

(e): 9.3.3(1)(e) eads.failureDetector.connection.timeout

(f): 9.3.3(1)(f) eads.failureDetector.read.timeout

(2) Starting the cluster
The following figure shows the timers used when the EADS servers are started, based on an example of executing the
ezstart command.

The alphabetical letters in the figure correspond to explanations provided in the following subsections of 9.3.3 Timeout-
related parameters:

(i): 9.3.3(1)(i) eads.admin.boot.timeout

The EADS server in the cluster that has the smallest EADS server ID (as specified in the cluster properties) is started
first. The EADS servers started sequentially thereafter receive heartbeats from the first EADS server and participate in
the cluster.

The first EADS server that was started updates its cluster information based on the heartbeats received from the other
EADS servers. This updated cluster information is then shared in the cluster.

(a) If the cluster properties differ from those of other EADS servers
An active EADS server sends a heartbeat with hashed cluster properties added.

The EADS server that receives the heartbeat checks the hash value. If the hash values do not match, the startup fails.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 177

(b) If an EADS server already participating in the cluster is shut down while the cluster
is starting

If an EADS server that is already participating in the cluster is shut down while the cluster is starting, that EADS server
is isolated. If this happens, the other EADS servers stop their start processing and startup fails.

When at least half of the EADS servers in the cluster are shut down, a timeout occurs.

(c) If an EADS server that is not yet participating in the cluster is shut down while the
cluster is starting

If an EADS server that is not yet participating in the cluster is shut down while the cluster is starting, any EADS server
that has already started results in a timeout because the start processing of all EADS servers has not been completed.

(3) Running cluster operations
The following figure shows the timers used for running the cluster by executing the eztool command.

The alphabetical letters in the figure correspond to explanations provided in the following subsections of 9.3.3 Timeout-
related parameters:

(a): 9.3.3(2)(a) eads.command.connection.timeout

(b): 9.3.3(2)(b) eads.command.common.read.timeout#1

(c): 9.3.3(2)(c) eads.command.common.execution.timeout#2

#1
If the eads.command.subcommand-name.read.timeout parameter is specified in the command properties,
its parameter value is used.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 178

#2
If the eads.command.subcommand-name.execution.timeout parameter is specified in the command
properties, its parameter value is used.

(4) EADS server isolation processing
The following figure shows the flow of EADS server isolation processing and the relation with timers:

The letters in the figure correspond to explanations provided in the following subsections of 9.3.3 Timeout-related
parameters:

(c): 9.3.3(3)(c) eads.client.clusterInfo.update.interval

(k): 9.3.3(1)(k) eads.admin.operation.isolate.gracefulstop.waitTime

If you use the eztool isolate command to isolate an EADS server, you can specify in the
eads.admin.operation.isolate.gracefulstop.waitTime parameter in the server properties the time
allowed for completion of isolation processing since the cluster information update operation was completed. By

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 179

specifying a value that is smaller than that value in the eads.client.clusterInfo.update.interval
parameter in the client properties, you can isolate the EADS server after the cluster information update operation is
completed on the EADS client.

Note that the specification of the eads.admin.operation.isolate.gracefulstop.waitTime parameter
is invalid if the EADS server is isolated by cluster monitoring.

For details about the complementary processing of history of update operations, see 9.3.2(7) Complementary processing
of the history of update operations.

(5) Cluster recovery processing
The following figure shows the timers used when the cluster is recovered.

The alphabetical letters in the figure correspond to explanations provided in the following subsections of 9.3.3 Timeout-
related parameters:

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 180

(m): 9.3.3(1)(m) eads.transfer.timeout

(n): 9.3.3(1)(n) eads.transfer.interval

Data is sent in units of 10 kilobytes until the size specified in the eads.transfer.datasize parameter in the
server properties for the EADS server subject to recovery is reached. For example, if a size of 25 kilobytes is specified,
30 kilobytes of data will be sent.

During restoration processing, the active EADS servers send data to the EADS server to be restored in order to recover
data consistency.

Therefore, note the following:

• To restore an EADS server, it takes at least the time required for obtaining data.

• The EADS server that sends data is affected correspondingly by the amount of CPU resources and network bandwidth
that are allocated for sending data.

• If the EADS server cannot keep up with the processing because both data operations and restoration processing must
be performed, the EADS server might place data operations on hold to avoid a memory shortage.

Reference note
If you will be restoring disk caches and two-way caches, specify the size of the data to be transmitted during
restoration processing in the eads.cache.disk.transfer.datasize parameter in the cache
properties. Also specify the data transmission interval during restoration processing in the
eads.cache.disk.transfer.interval parameter.

Even while the data is being updated, the isolated EADS server can be restored to the cluster with the data integrity
recovered. For the general procedure for restoring one or more isolated EADS servers, see 12.2.1 If one or more EADS
servers are isolated.

For details about the complementary processing of history of update operations, see 9.3.2(7) Complementary processing
of the history of update operations.

(6) Cluster scale-out processing (adding EADS servers)
The timer used for scaling out the cluster (adding EADS servers to the cluster) is also used for recovering the cluster.

For details about the timer used for recovering the cluster, see 9.3.2(5) Cluster recovery processing (replacing recovery
with scale-out).

(7) Complementary processing of the history of update operations
During EADS server isolation processing, restoration processing, scale-out processing, and locking, the EADS servers
check their histories of update operations with each other. If any difference is detected, complementary processing of
the history of update operations is performed. This ensures the consistency of the order in which data is written.

Complementary processing of the history of update operations consists of the following two processes:

• Complementary processing of the history of update operations on the remote EADS server

• Complementary processing of the history of update operations on the local EADS server

Here, the local EADS server means the following EADS server.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 181

For isolation processing:
The EADS server (copy-destination EADS server) that takes over the processing of the EADS server to be isolated

For restoration and scale-out processing:
The EADS server to be restored and the EADS server to be added during scale-out processing

The following figure shows the flow of complementary processing of the history of update operations and the relation
with timers:

The alphabetical letters in the figure correspond to explanations provided in the following subsections of 9.3.3 Timeout-
related parameters:

(o): 9.3.3(1)(o) eads.replication.fillgap.copy.timeout

Complementary processing of the history of update operations on the remote EADS server

1. The history of update operations on the local EADS server is sent to each EADS server.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 182

2. If the history of update operations on the local EADS server is different from that on a remote EADS server, the
local EADS server sends the history of update operations to the remote EADS server. At this time, the EADS
server sends the amount of data specified in the eads.replication.fillgap.copy.datasize
parameter in the server properties.

3. The history of update operations on the remote EADS server is complemented based on the history of update
operations sent from the local EADS server.
The history of update operations on the remote EADS server is complemented as shown below.

Complementary processing of the history of update operations on the remote EADS server is performed for the
number of differences in the history of update operations for the copy-destination EADS servers.

Complementary processing of the history of update operations on the local EADS server

1. A request for complementary processing of the history of update operations is sent to each EADS server to check
whether the history of update operations on the local EADS server is different from other servers.

2. Consensus processing of the history of update operations is performed in response to the request.
If the consensus processing does not finish within the time specified by the
eads.replication.consensus.timeout parameter in the server properties, a timeout occurs, and then
the consensus processing is performed again. This process is repeated until a consensus is built.

3. Via consensus processing, the remote EADS server sends the history of update operations to the local EADS
server.

4. The history of update operations on the local EADS server is complemented based on the history of update
operations sent by each EADS server.
The history of update operations on the local EADS server is complemented as shown in the following diagram:

Complementary processing of the history of update operations on the local EADS server is performed for the
number of differences in the history of update operations on the local EADS server.

Complementary processing of the history of update operations might be performed more than once for one operation
of restoration, isolation, or scale-out processing. The maximum number of times complementary processing can be
performed is as follows: (data multiplicity - 1) (number of caches).

The number of simultaneous threads for complementary processing of the history of update operations is the number
of redundant copies of data plus the original - 1 (the value is 1 if the number of redundant copies of data plus the original
is 1).

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 183

9.3.3 Timeout-related parameters
The following table lists the parameters related to timeouts.

Table 9‒4: Timeout-related parameters

No. Property file Parameter name Value to be
specified

Default value

1 Server property file eads.server.connection.timeout 100 to 3600000
(milliseconds)

60000

2 eads.admin.operation.connection.ti
meout

100 to 3600000
(milliseconds)

10000

3 eads.failureDetector.heartbeat.int
erval

10 to 60000
(milliseconds)

400

4 eads.failureDetector.heartbeat.tim
eout

10 to 86400000
(milliseconds)

2000

5 eads.failureDetector.connection.ti
meout

1 to 60000
(milliseconds)

500

6 eads.failureDetector.read.timeout 1 to 60000
(milliseconds)

500

7 eads.failureDetector.retry 0 to 100 0

8 eads.failureDetector.assertive.thr
eshold

1 to 49 1

9 eads.admin.boot.timeout 1 to 86400
(seconds)

60

10 eads.server.connection.keepAlive.t
imeout

0 to 3600 (seconds) 3600

11 eads.admin.operation.isolate.grace
fulstop.waitTime

0 to 60000
(milliseconds)

3000

12 eads.replication.consensus.timeout 10 to 3600000
(milliseconds)

800

13 eads.transfer.timeout 100 to 3600000
(milliseconds)

60000

14 eads.transfer.interval 0 to 60000
(milliseconds)

1000

15 eads.replication.fillgap.copy.time
out

100 to 3600000
(milliseconds)

2000

16 eads.admin.operation.resume.send.i
nterval

0 to 2147483647
(milliseconds)

0

17 Command property file eads.command.connection.timeout 0 to 2147483647
(milliseconds)

3000

18 eads.command.common.read.timeout 0 to 2147483647
(milliseconds)

60000

19 eads.command.common.execution.time
out

0 to 2147483647
(seconds)

600

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 184

No. Property file Parameter name Value to be
specified

Default value

20 eads.command.subcommand-
name.read.timeout

0 to 2147483647
(milliseconds)

600000

21 eads.command.subcommand-
name.execution.timeout

0 to 2147483647
(seconds)

600

22 Client property file eads.client.connection.send.timeou
t

100 to 3600000
(milliseconds)

60000

23 eads.client.connection.receive.tim
eout

100 to 3600000
(milliseconds)

60000

24 eads.client.clusterInfo.update.int
erval

10 to 60000
(milliseconds)

1000

(1) Server property file

(a) eads.server.connection.timeout
This parameter specifies a timeout value (in milliseconds) for cluster information update checks and data transfer
processing.

(b) eads.admin.operation.connection.timeout
This parameter specifies a timeout value (in milliseconds) for connection establishment and data transfer between EADS
servers during execution of the following commands:

• eztool import
• eztool resume
• eztool importecf

(c) eads.failureDetector.heartbeat.interval
This parameter specifies a heartbeat transmission interval (in milliseconds).

As this parameter's value becomes greater, adverse effects on the restoration and scale-out processing increase and
timeouts occur more frequently during cluster startup.

As this parameter's value decreases, the communication workload for processing increases.

Specify for this parameter a value that is smaller than the following parameter values:

• eads.admin.boot.timeout parameter in the server properties

• eads.transfer.timeout parameter in the server properties

• eads.command.common.read.timeout parameter in the command properties

• eads.command.common.execution.timeout parameter in the command properties

• eads.command.subcommand-name.read.timeout parameter in the command properties

• eads.command.subcommand-name.execution.timeout parameter in the command properties

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 185

(d) eads.failureDetector.heartbeat.timeout
This parameter specifies a heartbeat timeout value (in milliseconds).

As this parameter's value becomes greater, the time required for detecting failures increases. On the other hand, if this
parameter value is too small, failures might be detected erroneously.

As this parameter's value becomes greater, the sizes of the Java heap (eads.java.heapsize parameter value in
the shared properties) and explicit heap (eads.java.external.heapsize parameter value in the shared
properties) required for managing and storing the history of update operations become larger.

To perform consensus processing without isolating EADS servers in the event of a temporary failure, specify in this
parameter a value that is greater than the value of the eads.replication.consensus.timeout parameter in
the server properties. If this parameter's value is smaller than the value of the
eads.replication.consensus.timeout parameter in the server properties, a timeout might occur during
isolation processing, resulting in extra time being required to complete the processing.

(e) eads.failureDetector.connection.timeout
This parameter specifies a connection timeout value (in milliseconds) for the check for live servers.

As this parameter's value becomes greater, the time required for detecting failures becomes longer when a connection
cannot be established. On the other hand, if this parameter's value is too small, a timeout might occur before the
connection is established successfully.

We recommend that you specify for this parameter a value that is close to the value set in the
eads.replication.consensus.timeout parameter in the server properties.

(f) eads.failureDetector.read.timeout
This parameter specifies a reception timeout value (in milliseconds) for the check for live servers.

As this parameter's value becomes greater, the time required for detecting failures becomes longer. On the other hand,
if this parameter's value is too small, failures might be detected erroneously.

We recommend that you specify for this parameter a value that is close to the value set in the
eads.replication.consensus.timeout parameter in the server properties.

(g) eads.failureDetector.retry
This parameter specifies the number of retries if a check for live servers times out.

(h) eads.failureDetector.assertive.threshold
This parameter specifies the number of EADS servers that must agree before an EADS server can be shut down.

Specify a value less than or equal to the value that is obtained by rounding up (number of EADS servers constituting
the cluster + 1) 2. For example, if a cluster consists of five EADS servers, specify 3 or a smaller value in this
parameter.

If you specify a large value in this parameter, it might become impossible to isolate an EADS server that has been shut
down. On the other hand, in the event of a temporary network failure (such as split-brain), the EADS server can be
protected from being isolated prematurely.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 186

(i) eads.admin.boot.timeout
This parameter specifies the maximum wait time (in seconds) until all EADS servers making up the cluster start up.

(j) eads.server.connection.keepAlive.timeout
This parameter specifies the length of time (in seconds) before the connection between the EADS client and EADS
servers is released.

If request wait status (in which no communication takes place) lasts for the specified length of time or more, the
connection is released.

If zero is specified, no timeout occurs (there is no limit).

(k) eads.admin.operation.isolate.gracefulstop.waitTime
This parameter specifies the time (in milliseconds) allowed for completion of isolation processing since the cluster
information update operation was completed on the EADS server on which the eztool isolate command is
executed.

When the EADS server that received an update confirmation of cluster information from the EADS client is isolated,
if the connection is closed before the update of the cluster information on the EADS client is complete, a communication
error occurs. By adjusting the value of this parameter, you can isolate the EADS server after updating of the cluster
information on the EADS client has finished.

(l) eads.replication.consensus.timeout
This parameter specifies a timeout value (in milliseconds) for consensus processing.

If the consensus processing does not finish within the specified time, a timeout occurs, and then the consensus processing
is performed again.

(m) eads.transfer.timeout
This parameter specifies a data transmission timeout value (in milliseconds) during restoration processing and scale-
out processing.

Specify a value that is appropriate to the size of the data to be handled.

Specify this parameter to protect against the following events:

• If an EADS server that transfers data shuts down during restoration processing or scale-out processing, the EADS
server subject to restoration or the EADS server that was added during scale-out processing is placed in wait status.

• If an EADS server subject to restoration or an EADS server that was added during scale-out processing hangs without
releasing the connection, the EADS server that transfers data during restoration processing or scale-out processing
is placed in wait status.

(n) eads.transfer.interval
This parameter specifies a data transmission interval (in milliseconds) during restoration processing and scale-out
processing.

The value specified in this parameter is applied during restoration processing or scale-out processing to the EADS server
subject to restoration or the EADS server that was added during scale-out processing.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 187

Specify this parameter's value and the value of the eads.transfer.datasize parameter in the server properties
in such a manner that the following condition is satisfied:

Bandwidth available for data transmission during restoration processing and scale-out processing (bps)
(size of data transmitted during restoration processing and scale-out processing (bytes) 8)

 {(data transmission interval for restoration processing and scale-out processing (milliseconds)
+ time required for data transmission (milliseconds)) 1,000}

Size of data transmitted during restoration processing and scale-out processing (bytes):
eads.transfer.datasize parameter value in the server properties

Data transmission interval for restoration processing and scale-out processing (milliseconds):
eads.transfer.interval parameter value in the server properties

Time required for data transmission (milliseconds):
Time required for transmitting the amount of data specified in the eads.transfer.datasize server property
parameter (milliseconds)
This is the time required for Restoration processing (data transmission) in the figure in 9.3.2(5) Cluster recovery
processing (for scale-out processing, replace recovery processing with scale-out processing). This time value
depends on the environment.

As the time required for restoration processing or scale-out processing becomes shorter, the communication workload
for restoration processing increases. If the communication workload becomes large, the processing speed of an
application program that updates caches might decrease. Conversely, as the communication workload for restoration
processing or scale-out processing decreases, the time required for restoration processing or scale-out processing
increases.

When disk caches and two-way caches are restored, this parameter is ignored and the value of the
eads.cache.disk.transfer.interval cache property parameter is used.

(o) eads.replication.fillgap.copy.timeout
This parameter specifies the timeout period (in milliseconds) for transmission of the history of update operations during
complementary processing.

Specify the greater of the following values as the time available for processing:

• The amount of data that is sent at one time to a copy destination EADS server (the value of the
eads.replication.fillgap.copy.datasize parameter in the server properties)

• maximum key size + maximum value size# MAX(2, maximum number of data items that can be updated
simultaneously)

#
Maximum size that can be specified when put, create, update, or replace processing is performed.

MAX:
Choose the largest value in the parentheses that follow MAX.
Example: For MAX(2, 10), the calculation result is 10.

Maximum number of data items that can be updated simultaneously:
If you will be performing batch data operations using a memory cache, specify 10. Otherwise, specify 1.

For details about the complementary processing of history of update operations, see 9.3.2(7) Complementary processing
of the history of update operations.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 188

(p) eads.admin.operation.resume.send.interval
This parameter specifies a differential data transfer interval (in milliseconds) during execution of the eztool resume
command.

(2) Command property file

(a) eads.command.connection.timeout
This parameter specifies a connection timeout value (in milliseconds) for communication with the EADS server during
command execution.

If zero is specified in this parameter, no timeout occurs.

Note that the following commands ignore this parameter:

• eztool threaddump
• eztool snapshot
• eztool forcestop

(b) eads.command.common.read.timeout
This parameter specifies a reception timeout value (in milliseconds) for communication with the EADS server during
command execution.

Specify in this parameter a value that is greater than the value of the
eads.admin.operation.isolate.gracefulstop.waitTime parameter in the server properties.

If zero is specified in this parameter, no timeout occurs.

Note that the following commands ignore this parameter:

• eztool threaddump
• eztool snapshot
• eztool forcestop

When the following commands are executed, this parameter's value is applied in place of the value for the
eads.client.connection.receive.timeout parameter in the client properties:

• eztool put
• eztool get
• eztool remove
• eztool listgroup
• eztool listkey
• eztool removeall
• eztool execfunc

This parameter's value is not applied in the following cases:

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 189

• Zero is specified in this parameter or this parameter's value is equal to or greater than the maximum value for the
eads.client.connection.receive.timeout parameter in the client properties
In such a case, the maximum value for the eads.client.connection.receive.timeout parameter is
applied.

• This parameter's value is equal to or smaller than the minimum value set for the
eads.client.connection.receive.timeout parameter in the client properties
In such a case, the minimum value for the eads.client.connection.receive.timeout parameter is
applied.

(c) eads.command.common.execution.timeout
This parameter specifies a timeout value (in seconds) from the start of command execution.

If zero is specified in this parameter, no timeout occurs.

Note that the following commands ignore this parameter:

• eztool threaddump
• eztool snapshot
• eztool forcestop

(d) eads.command.subcommand-name.read.timeout
This parameter specifies a reception timeout value (in milliseconds) for communication with the EADS server while a
specified subcommand is executing.

For subcommand-name, specify the name of the subcommand to which you want to apply this parameter's value. When
this subcommand executes, its value takes precedence over the value set for the
eads.command.common.read.timeout parameter in the command properties.

Specify in this parameter a value that is greater than the value set for the
eads.admin.operation.isolate.gracefulstop.waitTime parameter in the server properties.

If zero is specified in this parameter, no timeout occurs.

Note that the following commands ignore this parameter:

• eztool threaddump
• eztool snapshot
• eztool forcestop

When the following commands are executed, this parameter's value is applied in place of the value set for the
eads.client.connection.receive.timeout parameter in the client properties:

• eztool put
• eztool get
• eztool remove
• eztool listgroup
• eztool listkey
• eztool removeall

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 190

• eztool execfunc

This parameter's value is not applied in the following cases:

• Zero is specified in this parameter or this parameter's value is equal to or greater than the maximum value for the
eads.client.connection.receive.timeout parameter in the client properties
In such a case, the maximum value for the eads.client.connection.receive.timeout parameter is
applied.

• This parameter's value is equal to or smaller than the minimum value set for the
eads.client.connection.receive.timeout parameter in the client properties
In such a case, the minimum value for the eads.client.connection.receive.timeout parameter is
applied.

(e) eads.command.subcommand-name.execution.timeout
This parameter specifies a timeout value (in seconds) since a specified subcommand started executing.

For subcommand-name, specify the name of the subcommand to which you want to apply this parameter's value. When
this subcommand executes, its value takes precedence over the value set for the
eads.command.common.execution.timeout parameter in the command properties.

If zero is specified in this parameter, no timeout occurs.

Note that the following commands ignore this parameter:

• eztool threaddump
• eztool snapshot
• eztool forcestop

(3) Client property file

(a) eads.client.connection.send.timeout
This parameter specifies a timeout value (in milliseconds) for cluster information update checks and data transmission.

(b) eads.client.connection.receive.timeout
This parameter specifies a timeout value (in milliseconds) for cluster information update checks and data reception.

Consider the following times:

• Execution times for the user functions allocated on the EADS server

(c) eads.client.clusterInfo.update.interval
This parameter specifies an interval (in milliseconds) at which the EADS client is to perform cluster information update
checks on each EADS server in the cluster.

Specify in this parameter a value that is smaller than the value set for the
eads.admin.operation.isolate.gracefulstop.waitTime parameter in the server properties.

When you specify this parameter, take into account the number of EADS servers that constitute the cluster.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 191

As the number of EADS servers that constitute the cluster increases, the number of times the EADS client must
communicate within the time specified in this parameter increases, resulting in an increase in the EADS client's
workload.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 192

9.4 Designing the command operation-related parameters

Design the command operation-related parameters.

9.4.1 Command operation-related parameters
The following table shows the command operation-related parameter.

Table 9‒5: Command operation-related parameter

No. Property file Parameter name Value to be
specified

Default value

1 Command property file eads.command.compat 0300 None

(1) Command property file

(a) eads.command.compat
This parameter specifies the version with which the commands are compatible.

If 0300 is specified, command display results and return codes are the same as for the commands of version 03-60 or
earlier.

If any other value is specified or this parameter is omitted, the command display results and return codes depend on the
version of the commands being used.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 193

9.5 Designing application program operation-related parameters

Design the application program operation-related parameters.

9.5.1 Application program operation-related parameters
The following table lists the application program operation-related parameters.

Table 9‒6: Application program operation-related parameters

No. Property file Parameter name Value to be
specified

Default value

1 Client property file eads.client.batchOperation.unit 1 to 1024 10

2 eads.client.compat 0300 None

(1) Client property file

(a) eads.client.batchOperation.unit
This parameter specifies the number of data operations to be performed in response to a single communication event
with the EADS server when a batch operation is performed on cache data. By specifying this parameter, you can adjust
the usage amount and rate for each resource during the batch operation.

The following are the effects of increasing this parameter's value:

• Improvement of performance can be expected because the number of times communication is established with the
EADS server is reduced.

• Performance might be affected adversely by locked resources, such as the network and memory, when a large amount
of data is transmitted.

Important note
An appropriate value depends on the environment. Test the operation and then specify an appropriate value.

This parameter's value is used in the following API functions and methods:

• Methods available in Java client libraries

• putAll() of the Cache class

• getAll() (with Set specified) of the Cache class

• getAll() (group specification) of the Cache class

• Functions available in C client libraries

• ead_put_all()
• ead_get_all()
• ead_get_group()

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 194

The API functions and methods listed below do not include values for communication. Therefore, regardless of this
parameter's value, these API functions and methods perform a maximum of 1,024 data operations in response to a single
communication event with the EADS server.

• Method available in Java client libraries
removeAll() (with Set specified) in the Cache class

• Function available in C client libraries
ead_remove_all()

The API functions and methods listed below perform all target operations in response to a single communication event
with the EADS server regardless of this parameter's value:

• Methods available in Java client libraries

• removeAll() (group specification) of the Cache class

• removeAll() (EADS server specification) of the Cache class

• Functions available in C client libraries

• ead_remove_group()
• ead_remove_node()

(b) eads.client.compat
This parameter specifies the version with which the EADS client is compatible.

If 0300 is specified, the same error codes as for EADS client version 03-60 or earlier are returned.

If any other value is specified or this parameter is omitted, the error codes for the EADS client version being used are
returned.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 195

9.6 Designing the compaction-related parameters

This section is applicable when you will be using disk caches or two-way caches.

Design the parameters related to compaction of cache data. For details about compaction, see 10.9 Reducing the data
usage of cache data files (performing compaction on cache data files).

9.6.1 Specifying thresholds for compaction effects
You can specify thresholds for compaction effects on cache data files. The following figure provides an overview of
thresholds for compaction effects.

Figure 9‒3: Overview of thresholds for compaction effects

Approach
The compaction effects depend on the cache data file. By specifying a threshold when you execute the eztool
compaction command, you can perform compaction on certain cache data files, for example, that will yield
desired compaction effects.
You can use the eads.command.compaction.effect.threshold parameter in the command properties
to specify a threshold of compaction effects that is to be set when the --threshold option is omitted from the
following commands:

• eztool listecf command

• eztool compaction command

In this figure, cache data files 2 and 5 yield at least the threshold of compaction effects. If the eztool compaction
command is executed with the --threshold option omitted, cache data files 2 and 5 become subject to
compaction processing.

9.6.2 Compaction-related parameters
The following table lists the compaction-related parameters.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 196

Table 9‒7: Compaction-related parameters

No. Property file Parameter name Value to be
specified

Default value

1 Command property file eads.command.compaction.effect.thr
eshold

1 to 100 (%) 50

2 eads.command.compaction.effect.div
ision

1 to 10 5

(1) Command property file

(a) eads.command.compaction.effect.threshold
This parameter specifies a threshold (%) of compaction effects to be used in the following commands:

• eztool listecf
• eztool compaction

(b) eads.command.compaction.effect.division
This parameter specifies the number of distribution ranges to be used when indicating by means of the eztool
listecf command the distribution of the numbers of files in each compaction effects range.

For example, if 4 is specified in this parameter, the distribution is divided into four ranges, and the numbers of files in
the compaction effects ranges 0% to 25%, 26% to 50%, 51% to 75%, and 76% to 100% are displayed.

If the value indicating effects is not an integer, all digits following the decimal point are discarded.

9. Designing the Tuning Parameters

Hitachi Elastic Application Data Store 197

Part 3: Operations

10 Normal Operations

This chapter explains the system operation administrator's main tasks and how to perform normal
operations in EADS.

Hitachi Elastic Application Data Store 198

10.1 The system operation administrator's tasks

The following figure shows the general procedure for normal operations.

Figure 10‒1: General procedure for normal operations

If system maintenance is needed, perform maintenance operations. For details about the maintenance operations, see
11. Maintenance Operations.

In the event of a failure in the system, perform error handling operations. For details about the error handling operations,
see 12. Error Handling Operations.

10. Normal Operations

Hitachi Elastic Application Data Store 199

10.2 Starting the EADS servers (and creating caches)

This section explains how to start EADS servers and then create caches.

10.2.1 How to start the EADS servers (creating caches in memory)
This subsection explains how to start the EADS servers and then create memory caches.

(1) Start the EADS servers
Log in to the host on which you plan to start an EADS server, and then execute the ezstart command to start the
EADS server. You must execute this command for each EADS server.

ezstart

(2) Verify that initialization is finished
After an EADS server starts up successfully, it changes to initialized status.

Execute the eztool status command to verify that the initialization of all EADS servers is finished.

eztool status

Command execution example

If the initialization is finished, initialized is displayed in the State column.

(3) Create caches
Execute the eztool createcache command to create a cache for storing keys and values.

eztool createcache cache-name

Command execution example

10. Normal Operations

Hitachi Elastic Application Data Store 200

(4) Verify that caches have been created
Execute the eztool listcache command to display a list of caches.

eztool listcache

Command execution example

Check the cache names in the CacheName column and the cache types in the CacheType column to verify that the
caches have been created as intended.

(5) Open the cluster
As is the case with closed status, in initialized status, the EADS servers do not accept requests from the EADS client.
Execute the eztool open command to open the cluster.

eztool open

Command execution example

(6) Verify that the EADS servers have been opened
Execute the eztool status command to verify that all EADS servers have been opened.

eztool status

Command execution example

10. Normal Operations

Hitachi Elastic Application Data Store 201

If the EADS servers have been opened, running is displayed in the State column.

10.2.2 Starting the EADS servers (creating caches on disk)
This subsection is applicable when you will be using disk caches or two-way caches.

This subsection explains how to start the EADS servers and then create disk caches or two-way caches.

(1) Create cache property files
Create cache property files for specifying cache information, such as the cache types and cache storage locations.

The file name of a cache property file is eads_cache.cache-name.properties.

For details about the cache property parameters, see 7.7 Designing the cache operation-dependent parameters.

Important note
The settings for the parameters shown below must be identical in the cache property files for all the EADS
servers that make up the cluster. If any settings are different, caches cannot be created.

• eads.cache.type
• eads.cache.disk.filesize
• eads.cache.disk.filenum
• eads.cache.disk.blocksize

The following shows an example of a cache property file for creating a disk cache with the number of EADS servers
set to 5 and the number of redundant copies of data plus the original set to 3:

eads.cache.type=Disk
eads.cache.disk.info.dir=store
eads.cache.disk.1.dir=/hdd/cache_server01_range01
eads.cache.disk.2.dir=/hdd/cache_server01_range05
eads.cache.disk.3.dir=/hdd/cache_server01_range04
eads.cache.disk.filesize=128

10. Normal Operations

Hitachi Elastic Application Data Store 202

eads.cache.disk.filenum=8
eads.cache.disk.blocksize=1

(2) Start the EADS servers
Log in to the host on which you plan to start an EADS server, and then execute the ezstart command to start the
EADS server. You must execute this command for each EADS server.

ezstart

(3) Verify that initialization is finished
After an EADS server starts up successfully, it changes to initialized status.

Execute the eztool status command to verify that the initialization of all EADS servers is finished.

eztool status

Command execution example

If the initialization is finished, initialized is displayed in the State column.

(4) Create caches
Execute the eztool createcache command to create a cache for storing keys and values.

eztool createcache cache-name

Command execution example

When a cache is created, cache files are created in the following directories:

• Cache data file

10. Normal Operations

Hitachi Elastic Application Data Store 203

directory-specified-in-the-eads.cache.disk.n.dir-parameter-in-the-cache-properties/cache-name

• Cache index file and cache information file
directory-specified-in-the-eads.cache.disk.info.dir-parameter-in-the-cache-properties/cache-name (the default is
management-directory/store/cache-name)

(5) Verify that caches have been created
Execute the eztool listcache command to display a list of caches.

eztool listcache

Command execution example

Check the cache names in the CacheName column and the cache types in the CacheType column to verify that the
caches have been created as intended.

(6) Open the cluster
As is the case with closed status, in initialized status, the EADS servers do not accept requests from the EADS client.
Execute the eztool open command to open the cluster.

eztool open

Command execution example

(7) Verify that the EADS servers have been opened
Execute the eztool status command to verify that all EADS servers have been opened.

eztool status

Command execution example

10. Normal Operations

Hitachi Elastic Application Data Store 204

If the EADS servers have been opened, running is displayed in the State column.

10.2.3 Notes about using multiple caches
Note the following when you use multiple caches:

• Fine-tuned operations cannot be performed for the caches individually, because the types of operations available to
individual caches are limited.

• The number of cache-related resources increases.

• Performance might be affected adversely due to garbage collection because the size of the Java heap used by one
process increases.

If there are too many caches, you can use the following methods to reduce the number of caches:

• Split the cluster instead of using multiple caches in the same cluster.

• When the same key name is used in different data items, use multiple groups, not multiple caches.

10. Normal Operations

Hitachi Elastic Application Data Store 205

10.3 Starting the EADS servers (and creating caches by importing data
from files)

After the EADS servers have started, data that was exported to the store data files during the previous session is imported
back into memory. Alternatively, you can resume the caches after the EADS servers have started by accessing the cache
files.

10.3.1 How to start the EADS servers (creating caches in memory)
This subsection explains how to start the EADS servers and then import back into memory cache the data that was
exported to the store data files during the previous session.

(1) Start the EADS servers
Log in to the host on which you plan to start the EADS server, and then execute the ezstart command to start the
EADS server. You must execute this command for each EADS server.

ezstart

(2) Verify that initialization is finished
After an EADS server starts up successfully, it changes to initialized status.

Execute the eztool status command to verify that the initialization of all EADS servers is finished.

eztool status

Command execution example

If the initialization is finished, initialized is displayed in the State column.

(3) Import data into memory
Execute the eztool import command to import back into memory the most recent data that was exported to the
store data files during the previous session.

10. Normal Operations

Hitachi Elastic Application Data Store 206

eztool import

Command execution example

As shown in this example, if a store data file key is omitted, the store data file with the most recent store data file key
displayed in latest by the eztool listesd command is imported automatically.

You can specify the store data file key of any store data file.

Important note
If memory was almost full when the eztool export command was executed during the previous session, a
data import operation might fail due to a memory shortage the next time the eztool import command is
executed. This situation occurs, for example, if the eztool export command is executed while there is a
memory shortage at the server on which a redundant copy of data is being created.

If this happens, increase the eads.java.external.heapsize parameter value in the shared properties,
and then re-execute the eztool import command.

(4) Verify that caches have been created
Execute the eztool listcache command to display a list of caches.

eztool listcache

Command execution example

Check the cache names in the CacheName column and the cache types in the CacheType column to verify that the
caches have been created as intended.

(5) Open the cluster
As is the case with closed status, in initialized status, the EADS servers do not accept requests from the EADS client.
Execute the eztool open command to open the cluster.

10. Normal Operations

Hitachi Elastic Application Data Store 207

eztool open

Command execution example

(6) Verify that the EADS servers have been opened
Execute the eztool status command to verify that all EADS servers have been opened.

eztool status

Command execution example

If the EADS servers have been opened, running is displayed in the State column.

10.3.2 How to start the EADS servers (resuming caches on disk)
This subsection is applicable when you will be using disk caches or two-way caches.

This subsection explains how to start the EADS servers and then resume disk caches and two-way caches by accessing
the cache files in the status they were in when the previous session terminated.

(1) Start the EADS servers
Log in to the host on which you plan to start the EADS server, and then execute the ezstart command to start the
EADS server. You must execute this command for each EADS server.

ezstart

10. Normal Operations

Hitachi Elastic Application Data Store 208

(2) Verify that initialization is finished
After an EADS server starts up successfully, it changes to initialized status.

Execute the eztool status command to verify that the initialization of all EADS servers is finished.

eztool status

Command execution example

If the initialization is finished, initialized is displayed in the State column.

(3) Access cache files to resume the caches
Execute the eztool resume command to access the cache files and resume the caches.

eztool resume

Command execution example

For a two-way cache, the contents of the cache data files are imported into memory when the cache is resumed.

(4) Verify that the caches have been resumed
Execute the eztool listcache command to display a list of caches.

eztool listcache

10. Normal Operations

Hitachi Elastic Application Data Store 209

Command execution example

Check the cache names in the CacheName column and the cache types in the CacheType column to verify that the
caches have been resumed as intended.

(5) Open the cluster
As is the case with closed status, in initialized status, the EADS servers do not accept requests from the EADS client.
Execute the eztool open command to open the cluster.

eztool open

Command execution example

(6) Verify that the EADS servers have been opened
Execute the eztool status command to verify that all EADS servers have been opened.

eztool status

Command execution example

10. Normal Operations

Hitachi Elastic Application Data Store 210

If the EADS servers have been opened, running is displayed in the State column.

10. Normal Operations

Hitachi Elastic Application Data Store 211

10.4 Terminating the EADS servers (and discarding data from memory)

The EADS servers are terminated without exporting data from memory caches to the store data files.

When the --no_export option is specified in the eztool stop command, all data is discarded from memory
caches.

If you want to inherit the data in memory caches the next time you start the EADS servers, you must first export the
data to store data files and then terminate the EADS servers. For details about this procedure, see 10.5 Terminating the
EADS servers (after exporting data from memory to files).

10.4.1 How to terminate the EADS servers
This subsection explains how to terminate the EADS servers without exporting data from memory caches to the store
data files.

(1) Close the cluster
Execute the eztool close command to close the cluster.

eztool close

Command execution example

(2) Verify that the cluster is closed
After you have closed the EADS servers, execute the eztool status command to check the status of the cluster.

eztool status

Command execution example

10. Normal Operations

Hitachi Elastic Application Data Store 212

If the cluster is closed, closed is displayed in the State column.

(3) Terminate the EADS servers
Execute the eztool stop --no_export command to terminate all EADS servers in the cluster without exporting
data from memory caches to the store data files.

eztool stop --no_export

Command execution example

(4) Verify that the EADS servers have been terminated
Check the message logs of the EADS servers.

10. Normal Operations

Hitachi Elastic Application Data Store 213

10.5 Terminating the EADS servers (after exporting data from memory to
files)

Data is exported from the memory caches to the store data files before terminating the EADS servers so that the data
can be reused the next time the EADS servers are started.

10.5.1 How to terminate the EADS servers
This subsection explains how to export data from memory caches to the store data files before terminating the EADS
servers so that the data can be reused the next time the EADS servers are started.

(1) Close the cluster
Execute the eztool close command to close the cluster.

eztool close

Command execution example

(2) Verify that the cluster is closed
After you have closed the EADS servers, execute the eztool status command to check the status of the cluster.

eztool status

Command execution example

If the cluster is closed, closed is displayed in the State column.

10. Normal Operations

Hitachi Elastic Application Data Store 214

(3) Terminate the EADS servers
Execute the eztool stop command to terminate all EADS servers in the cluster after exporting the most recent data
to the store data files.

eztool stop

Command execution example

(4) Verify that the EADS servers have been terminated
Check the message logs of the EADS servers.

10. Normal Operations

Hitachi Elastic Application Data Store 215

10.6 Terminating the EADS servers (terminating caches on disk)

This section is applicable when you will be using disk caches or two-way caches.

The EADS servers that use disk caches or two-way caches are terminated.

10.6.1 How to terminate the EADS servers
This subsection explains how to terminate disk caches and two-way caches.

(1) Close the cluster
Execute the eztool close command to close the cluster.

eztool close

Command execution example

(2) Verify that the cluster is closed
After you have closed the EADS servers, execute the eztool status command to check the status of the cluster.

eztool status

Command execution example

If the cluster is closed, closed is displayed in the State column.

10. Normal Operations

Hitachi Elastic Application Data Store 216

(3) Terminate the EADS servers
Execute the eztool stop command to terminate the disk caches and two-way caches and then terminate all EADS
servers in the cluster.

eztool stop

Command execution example

If there are no memory caches on the EADS servers, no store data files are created when the eztool stop command
is executed.

(4) Verify that the EADS servers have been terminated
Check the message logs of the EADS servers.

10. Normal Operations

Hitachi Elastic Application Data Store 217

10.7 Checking the cluster and EADS server statuses

Execute the eztool status command to check the statuses of the cluster and the EADS servers.

See 2.11 Cluster and EADS server status transitions.

eztool status [-v|--verbose]

Command execution example

You can display the detailed information by specifying the -v or --verbose option.

10. Normal Operations

Hitachi Elastic Application Data Store 218

10.8 Displaying a list of caches

Execute the eztool listcache command to display a list of caches.

eztool listcache [-v|--verbose]

Command execution example

You can display the details by specifying the -v or --verbose option.

10. Normal Operations

Hitachi Elastic Application Data Store 219

10.9 Reducing the data usage of cache data files (performing compaction
on cache data files)

This section is applicable when you will be using disk caches or two-way caches.

With disk caches and two-way caches, data is stored in cache data files by using an appending methodology. This means
that when data is updated or deleted, invalid data remains in the files. Deleting such invalid data to reduce the data usage
of the cache data files is called compaction.

The following figure illustrates compaction processing.

Figure 10‒2: Compaction processing

Note that the file size specified in the eads.cache.disk.filesize parameter in the cache properties remains
unchanged after compaction.

Reference note
EADS employs an appending methodology to update cache data files. Data that is deleted using this method
becomes invalid, but it is not actually deleted from the disk. When data is updated, the existing data that is
updated becomes invalid and new data is added. The existing data that has become invalid is not deleted from
the disk.

By performing compaction periodically, you can remove invalid data and use the disk efficiently.

10. Normal Operations

Hitachi Elastic Application Data Store 220

10.9.1 Performing compaction on cache data files
This subsection explains how to perform compaction on cache data files.

(1) Checking the compaction effects
Execute the eztool listecf -s command to check the compaction effects.

eztool listecf -s

Command execution example

• The UnusedFC column displays the number of unused cache data files. Monitor this column when you store (put)
or delete (remove) data randomly without regard to the order in which the data was stored (put).

• The MaxCE column displays the maximum compaction effects for the cache data files in each range. If you delete
(remove) data in the order in which the data was stored (put) and this column displays 100% or a value close to
100%, you need to perform compaction.

(2) Close the cluster (optional)
If necessary, execute the eztool close command to close the cluster.

Reference note
You can perform compaction while the EADS servers are running, but performance might be affected adversely.

eztool close

Command execution example

10. Normal Operations

Hitachi Elastic Application Data Store 221

(3) Verify that the cluster is closed (optional)
If you closed the cluster in 10.9.1(2) Close the cluster (optional), execute the eztool status command to check the
cluster status.

eztool status

Command execution example

If the cluster is closed, closed is displayed in the State column.

(4) Perform compaction on the cache data files
Execute the eztool compaction command to perform compaction.

eztool compaction

Command execution example

Important note
Because compaction processing might take a long time, design a timeout value, if necessary.

(a) When you delete data in the order in which the data was stored
When you delete (remove) data in the order in which the data was stored (put), invalid data is created in cache data
files each time data is deleted. In such a case, perform compaction on the cache data files whose entire contents are
invalid data. Execute the eztool compaction command with the --threshold option specifying a threshold of
100%.

10. Normal Operations

Hitachi Elastic Application Data Store 222

Reference note
If the order in which the data was stored (put) does not exactly match the order in which data is deleted
(remove), set the threshold to a value that is smaller than 100%.

(b) When you store or delete data randomly without regard to the order in which the
data was stored

When you store (put) or delete (remove) data randomly without regard to the order in which data is stored (put),
the file usage rate will differ from one cache data file to another. For this reason, you need to allocate unused files so
that data can be added and deleted. In this case, perform compaction periodically based on the number of unused files.
Execute the eztool compaction command with the --unused_fc option specifying the number of unused files
to be allocated.

If the planned number of unused files cannot be obtained after compaction processing, reduce the threshold with the
--threshold option and then perform compaction again.

(c) Allocating space to cache data files immediately
When the number of unused files is very small and you need to allocate space to the cache data files immediately,
perform compaction with a smaller threshold specified in the --threshold option. Execute the eztool
compaction command with the priority for caches and ranges specified in the --cache and --range options.

If compaction is already underway, stop the compaction processing and then re-execute the eztool compaction
command. For details about how to stop compaction processing, see 10.9.2 Stopping compaction processing.

Reference note
If the amount of available space in the cache data files is very small, we recommend that you close the cluster
before performing compaction processing, if possible.

(5) Open the cluster (optional)
If you closed the cluster in 10.9.1(2) Close the cluster (optional), execute the eztool open command to open the
cluster.

eztool open

Command execution example

(6) Verify that the EADS servers have been opened
If you closed the cluster in 10.9.1(2) Close the cluster (optional), execute the eztool status command to verify
that all EADS servers have been opened.

10. Normal Operations

Hitachi Elastic Application Data Store 223

eztool status

Command execution example

If the EADS servers have been opened, running is displayed in the State column.

10.9.2 Stopping compaction processing
This subsection explains how to stop compaction processing that is underway.

(1) Stop compaction processing
While compaction processing is underway, execute the eztool compaction --break command.

eztool compaction --break

Command execution example

Compaction processing is stopped after the compaction processing on the current cache data file has been completed.

10. Normal Operations

Hitachi Elastic Application Data Store 224

11 Maintenance Operations

This chapter explains how to run maintenance operations in EADS.

Hitachi Elastic Application Data Store 225

11.1 Adding EADS servers to a cluster

This section explains how to add EADS servers to a cluster.

11.1.1 How to add EADS servers to a cluster without stopping the cluster
(scale-out processing)

This subsection explains how to add EADS servers to a cluster without stopping the cluster (scale-out processing).

To add EADS servers to a cluster without stopping the cluster, the following conditions must be satisfied:

• All caches in the cluster are memory caches.

• The number of redundant copies of data is 2 or more.

If there are disk caches or two-way caches or the number of redundant copies of data plus the original is 1, stop the
cluster and then add EADS servers.

For details about how to add EADS servers after stopping a cluster, see 11.1.2 How to add EADS servers to a cluster
after stopping the cluster (using only memory caches) and 11.1.3 How to add EADS servers to a cluster after stopping
the cluster (using only disk caches).

(1) Check the data distribution among the ranges
Execute the eztool storeusage --replica command to check the distribution of the data among the ranges.

eztool storeusage --replica

Command execution example

Based on the execution results of the eztool storeusage --replica command, determine the ranges within
which EADS servers need to be added.

Tip
If keys are distributed evenly among the ranges, you can realize the benefits of scale-out processing over the
entire cluster by adding one or more EADS servers to each range.

On the other hand, sufficient benefits might not be obtained over the entire cluster in the following cases:

• Keys are distributed evenly among the ranges and no EADS server is added to some of the ranges.

• Keys are not distributed evenly among the ranges.

11. Maintenance Operations

Hitachi Elastic Application Data Store 226

(2) Back up the cluster property files (optional)
Back up the cluster property files, if necessary.

When EADS servers are added to an active cluster, the cluster property files are updated automatically based on the
information applicable after the EADS servers have been added.

A backup cluster property file containing the current information is created automatically at the path shown below. If
another file with the same name already exists, the backup file is not output.

management-directory/conf/eads_cluster.properties.ebf

If a backup cluster property file already exists, the cluster property file is updated during scale-out processing to reflect
the new information after the EADS servers have been added. Be aware that if you edit the cluster property file after
scale-out processing has been performed and then execute scale-out processing again, the edited information is lost. If
you need a backup copy of such an edited cluster property file, back up that cluster property file manually before you
perform scale-out processing.

(3) Verify that there are no errors in any of the EADS servers in the cluster
Execute the eztool status command to verify that none of the EADS servers in the cluster is in isolated status
(isolated) or stopped status (-----------).

eztool status

Command execution example

If there are isolated or stopped EADS servers in the cluster, restore them.

For details about the restoration procedure, see 12.2.1 If one or more EADS servers are isolated.

(4) Install and set up the EADS servers to be added
Install and set up the EADS servers you want to add. For details about how to install and set up EADS servers, see 5.
Installing and Setting Up (EADS Servers).

There is no need to create cluster property files because these files are created automatically when EADS servers are
added (if a cluster property file already exists for an EADS server to be added, that cluster property file is not imported).

11. Maintenance Operations

Hitachi Elastic Application Data Store 227

(5) Add an EADS server to the cluster
Execute on an EADS server to be added the ezstart or ezserver command to add it to the cluster.

The following are the methods for adding an EADS server to a cluster:

• Adding an EADS server to a cluster by specifying its EADS server ID

• Execute the ezstart -ai command on the EADS server to be added.

• Execute the ezserver -ai command on the EADS server to be added.

• Adding an EADS servers to a cluster by specifying the EADS server position (hash value)

• Execute the ezstart -ap command on the EADS server to be added.

• Execute the ezserver -ap command on the EADS server to be added.

Adding an EADS server to a cluster by specifying its EADS server ID (executing the ezstart -ai command)

ezstart -ai EADS-server-ID

Adding an EADS servers to a cluster by specifying its EADS server ID (executing the ezserver -ai command)

ezserver -ai EADS-server-ID

Adding an EADS server to a cluster by specifying the EADS server position (executing the ezstart -ap command)

ezstart -ap EADS-server-location-(hash-value)

Adding an EADS server to a cluster by specifying the EADS server position (executing the ezserver -ap command)

ezserver -ap EADS-server-location-(hash-value)

If the cluster property files have not been updated for some reason after an EADS server has been added, an error
message is displayed. In such a case, execute the eztool listconf command to check the most recent parameter
values and apply those values manually to the cluster property files.

(6) Verify that the added EADS server is participating in the cluster
Execute the eztool status command to verify that the added EADS server is participating in the cluster.

eztool status

Command execution example

11. Maintenance Operations

Hitachi Elastic Application Data Store 228

If an EADS server is participating in the cluster, online is displayed in the Cluster column.

You add multiple EADS servers by performing for each EADS server to be added the procedure that follows 11.1.1(4)
Install and set up the EADS servers to be added.

11.1.2 How to add EADS servers to a cluster after stopping the cluster
(using only memory caches)

This subsection explains how to add EADS servers to a cluster after stopping the cluster when using only memory
caches.

(1) Terminate all EADS servers in the cluster (after exporting data to files)
Export data to files and then terminate all EADS servers in the cluster.

For details about this procedure, see 10.5 Terminating the EADS servers (after exporting data from memory to files).

(2) Install and set up the EADS servers to be added
Install and set up the EADS servers you want to add. For details about how to install and set up EADS servers, see 5.
Installing and Setting Up (EADS Servers).

(3) Change the cluster properties
Because the number of EADS servers that make up the cluster is increasing, you must change the cluster properties.

For details about how to change the properties, see 11.4 Changing the properties.

(4) Start all EADS servers in the cluster (and import data from files)
Start all EADS servers in the cluster, and then import back into memory the data that was exported to files during the
previous session.

For details about the procedure, see 10.3 Starting the EADS servers (and creating caches by importing data from files).

11. Maintenance Operations

Hitachi Elastic Application Data Store 229

11.1.3 How to add EADS servers to a cluster after stopping the cluster
(using only disk caches)

This subsection is applicable when you will be using disk caches and two-way caches.

This subsection explains how to add EADS servers to a cluster after stopping the cluster when using disk caches or two-
way caches.

(1) Terminate all EADS servers in the cluster
Terminate all EADS servers in the cluster.

For details about this procedure, see 10.6 Terminating the EADS servers (terminating caches on disk).

(2) Move cache files for all EADS servers
Move the cache files for all EADS servers to desired directories.

For each server, move all files under the following directories (copy all files under the following directories and then
delete the source files):

• directory-specified-in-the-eads.cache.disk.n.dir-parameter-in-the-cache-properties/cache-name

• directory-specified-in-the-eads.cache.disk.info.dir-parameter-in-the-cache-properties/cache-name (the default is
management-directory/store/cache-name)

Make sure that the paths of the target directories are identical on all the EADS servers.

(3) Install and set up the EADS servers to be added
Install and set up the EADS servers you want to add. For details about how to install and set up EADS servers, see 5.
Installing and Setting Up (EADS Servers).

(4) Change the cluster properties
Because the number of EADS servers that make up the cluster is increasing, you must change the cluster properties.

For details about how to change the properties, see 11.4 Changing the properties.

(5) Start all EADS servers in the cluster
Log in to the host on which you plan to start the EADS server, and then execute the ezstart command to start the
EADS server. You must execute this command for each EADS server.

ezstart

(6) Verify that initialization is finished
After an EADS server starts up successfully, it changes to initialized status.

Execute the eztool status command to verify that the initialization of all EADS servers is finished.

eztool status

11. Maintenance Operations

Hitachi Elastic Application Data Store 230

Command execution example

If the initialization is finished, initialized is displayed in the State column.

(7) Relocate data
Execute the eztool importecf command to relocate data. For path-name-of-the-storage-for-cache-data-files-and-
cache-index-files, specify the directory to which cache data files and cache index files were moved in 11.1.3(2) Move
cache files for all EADS servers.

Important note
The following directories cannot be specified for path-name-of-the-storage-for-cache-data-files-and-cache-
index-files:

• directory-specified-in-the-eads.cache.disk.n.dir-parameter-in-the-cache-properties/cache-name

• directory-specified-in-the-eads.cache.disk.info.dir-parameter-in-the-cache-properties/cache-name (the
default is management-directory/store/cache-name)

eztool importecf path-name-of-the-storage-for-cache-data-files-and-cache-
index-files

Command execution example

(8) Open the cluster
As is the case with closed status, in initialized status, the EADS servers do not accept requests from the EADS client.
Execute the eztool open command to open the cluster.

eztool open

11. Maintenance Operations

Hitachi Elastic Application Data Store 231

Command execution example

(9) Verify that the EADS servers have been opened
Execute the eztool status command to verify that all EADS servers have been opened.

eztool status

Command execution example

If the EADS servers have been opened, running is displayed in the State column.

11. Maintenance Operations

Hitachi Elastic Application Data Store 232

11.2 Deleting EADS servers from a cluster

This section explains how to delete EADS servers from a cluster.

11.2.1 How to delete EADS servers from a cluster (using only memory
caches)

This subsection explains how to delete EADS servers from a cluster when only memory caches are used.

(1) Check the data distribution among the ranges
Execute the eztool storeusage --replica command to check the distribution of the data among the ranges.

eztool storeusage --replica

Command execution example

Based on the execution results of the eztool storeusage --replica command, determine the ranges from which
EADS servers need to be deleted.

(2) Terminate all EADS servers in the cluster (after exporting data to files)
Export data to files and then terminate all EADS servers in the cluster.

For details about this procedure, see 10.5 Terminating the EADS servers (after exporting data from memory to files).

(3) Change the cluster properties
Because the number of EADS servers that make up the cluster is decreasing, you must change the cluster properties.

Delete from the cluster property files for all the EADS servers the following parameters for each EADS server that will
be deleted:

• eads.node.EADS-server-ID.address
• eads.node.EADS-server-ID.port
• eads.node.EADS-server-ID.position

(4) Back up the store data files of the EADS servers to be deleted
Back up to any directory the store data files of the EADS servers you want to delete.

11. Maintenance Operations

Hitachi Elastic Application Data Store 233

Copy the store data files of the EADS servers you want to be delete to a storage location containing the store data files
of the EADS servers that you are not deleting.

(5) Start all EADS servers in the cluster (and importing data from files)
Start all EADS servers in the cluster, and then import back into memory the data that was exported to files during the
previous session.

For details about the procedure, see 10.3 Starting the EADS servers (and creating caches by importing data from files).

11.2.2 How to delete EADS servers from a cluster (using disk caches)
This subsection is applicable when you will be using disk caches and two-way caches.

This subsection explains how to delete EADS servers from a cluster when disk caches or two-way caches are used.

(1) Check the data distribution among the ranges
Execute the eztool storeusage --replica command to check the distribution of the data among the ranges.

eztool storeusage --replica

Command execution example

Based on the execution results of the eztool storeusage --replica command, determine the ranges from which
EADS servers need to be deleted.

(2) Terminate all EADS servers in the cluster
Terminate all EADS servers in the cluster.

For details about this procedure, see 10.6 Terminating the EADS servers (terminating caches on disk).

(3) Change the cluster properties
Because the number of EADS servers making up the cluster is to be decreased, you must change the cluster properties.

Delete from the cluster property files for all the EADS servers the following parameters for each EADS server that will
be deleted:

• eads.node.EADS-server-ID.address
• eads.node.EADS-server-ID.port
• eads.node.EADS-server-ID.position

11. Maintenance Operations

Hitachi Elastic Application Data Store 234

(4) Move the cache files of the EADS servers
Move to desired directories the cache files for all EADS servers except the EADS servers that are to be deleted.

For each server, move all files under the following directories (copy all files under the following directories and then
delete the source files):

• directory-specified-in-the-eads.cache.disk.n.dir-parameter-in-the-cache-properties/cache-name

• directory-specified-in-the-eads.cache.disk.info.dir-parameter-in-the-cache-properties/cache-name (the default is
management-directory/store/cache-name)

Make sure that the paths of the target directories are identical on all the EADS servers.

(5) Back up the cache files of the EADS servers to be deleted
Back up the cache files of the EADS servers to be deleted to the directories to which the cache files of one of the other
EADS servers were moved in 11.2.2(4) Move the cache files of the EADS servers.

Move all files under the following directories of the EADS servers to be deleted:

• directory-specified-in-the-eads.cache.disk.n.dir-parameter-in-the-cache-properties/cache-name

• directory-specified-in-the-eads.cache.disk.info.dir-parameter-in-the-cache-properties/cache-name (the default is
management-directory/store/cache-name)

(6) Start all EADS servers in the cluster (relocate data)
Relocate data after all EADS servers in the cluster have started.

For details about this procedure, see 11.1.3(5) Start all EADS servers in the cluster through 11.1.3(9) Verify that the
EADS servers have been opened.

11. Maintenance Operations

Hitachi Elastic Application Data Store 235

11.3 Making the number of keys uniform in all ranges

If the number of keys is not uniform among all ranges for a reason such as scale-out processing, you can make the
number of keys uniform by rearranging the cluster's EADS servers evenly on the consistent hashing circumference.

11.3.1 How to make the number of keys uniform in all ranges
This subsection explains how to arrange the EADS server positions (hash values) evenly to make the number of keys
uniform in all ranges.

(1) Terminate all EADS servers in the cluster (after exporting data to files)
Export data to files and then terminate all EADS servers in the cluster.

For details about this procedure, see 10.5 Terminating the EADS servers (after exporting data from memory to files).

(2) Change the cluster properties
To adjust the EADS server positions (hash values) automatically, change each EADS server's cluster properties.

Delete from each EADS server's cluster property file all the eads.node.EADS-server-ID.position parameters.

(3) Start the EADS servers (import data from files)
Start all EADS servers in the cluster, and then import back into memory the data that was exported to files during the
previous session.

For details about the procedure, see 10.3 Starting the EADS servers (and creating caches by importing data from files).

11. Maintenance Operations

Hitachi Elastic Application Data Store 236

11.4 Changing the properties

This section explains how to change the properties.

11.4.1 How to change the properties
This subsection explains how to change the properties.

(1) Terminate the EADS servers (after exporting data to files)
Export data to files and then terminate the EADS servers.

For details about this procedure, see 10.5 Terminating the EADS servers (after exporting data from memory to files) or
10.6 Terminating the EADS servers (terminating caches on disk).

Important note
There is no need to terminate the EADS servers when you are changing command properties.

(2) Change the properties
Change the properties.

If you change a server property parameter whose name begins with eads.logger., either move all files and
directories under the directory specified in the eads.logger.dir server property parameter to another directory or
delete them.

Whenever you change cluster properties or shared properties, make sure all properties are the same on all EADS servers
that make up the cluster.

Whenever you change cache properties, make sure the settings for the following parameters are the same on all EADS
servers that make up the cluster:

• eads.cache.type
• eads.cache.disk.filesize
• eads.cache.disk.filenum
• eads.cache.disk.blocksize

If you change a command property parameter whose name begins with eads.command.logger., either move all
files and directories under the directory specified in the eads.command.logger.dir command property parameter
to another directory or delete them.

(3) Start the EADS servers (and import data from files)
Start the EADS servers, and then import back into memory the data that was exported to files during the previous session.
For details about the procedure, see 10.3 Starting the EADS servers (and creating caches by importing data from files).

11. Maintenance Operations

Hitachi Elastic Application Data Store 237

11.4.2 Notes about changing properties
This subsection is applicable when you will be using disk caches or two-way caches.

If the parameters listed below are changed while you are using disk caches or two-way caches, the caches can no longer
be resumed. If you want to change these parameters, first relocate the data. For details about relocating data, see 11.1.3
How to add EADS servers to a cluster after stopping the cluster (using only disk caches).

• Cluster property parameter

• eads.node.EADS-server-ID.position parameter

• Shared property parameters

• eads.replication.factor parameter

• eads.cache.key.maxsize parameter

Do not change the parameters listed below while you are using disk caches or two-way caches. If this rule is violated,
the caches can no longer be resumed.

• Cache property parameters

• eads.cache.type parameter

• eads.cache.disk.filesize parameter

Note: The value of the eads.cache.disk.filenum parameter in the cache properties can be increased, but it
cannot be decreased.

11. Maintenance Operations

Hitachi Elastic Application Data Store 238

11.5 Adding and deleting caches

This section explains how to add and delete caches.

11.5.1 How to add and delete memory caches
This subsection explains how to add and delete memory caches.

(1) Close the cluster
Execute the eztool close command to close the cluster.

eztool close

Command execution example

(2) Verify that the cluster is closed
After you have closed the EADS servers, execute the eztool status command to check the status of the cluster.

eztool status

Command execution example

If the cluster is closed, closed is displayed in the State column.

11. Maintenance Operations

Hitachi Elastic Application Data Store 239

(3) Add or delete caches

(a) Adding caches
Execute the eztool createcache command to add a cache.

eztool createcache cache-name

Command execution example

(b) Deleting caches
Execute the eztool deletecache command to delete a cache.

eztool deletecache cache-name

Command execution example

(4) Verify that the caches have been added or deleted
Execute the eztool listcache command to display a list of caches.

Verify that the caches have been added or deleted.

eztool listcache

Command execution example

(5) Open the cluster
Execute the eztool open command to open the cluster.

11. Maintenance Operations

Hitachi Elastic Application Data Store 240

eztool open

Command execution example

(6) Verify that the EADS servers have been opened
Execute the eztool status command to verify that all EADS servers have been opened.

eztool status

Command execution example

If the EADS servers have been opened, running is displayed in the State column.

11.5.2 How to add and delete disk caches and two-way caches
This subsection is applicable when you will be using disk caches and two-way caches.

This subsection explains how to add and delete disk caches and two-way caches.

(1) Close the cluster
Execute the eztool close command to close the cluster.

eztool close

Command execution example

11. Maintenance Operations

Hitachi Elastic Application Data Store 241

(2) Verify that the cluster is closed
After you have closed the EADS servers, execute the eztool status command to check the status of the cluster.

eztool status

Command execution example

If the cluster is closed, closed is displayed in the State column.

(3) Add or delete caches

(a) Adding caches
Create a cache property file for a cache that is to be added. For details about this procedure, see 10.2.2(1) Create cache
property files.

Next, execute the eztool createcache command to add the cache.

eztool createcache cache-name

Command execution example

When a cache is created, cache files are created in the following directories:

• Cache data files
directory-specified-in-the-eads.cache.disk.n.dir-parameter-in-the-cache-properties/cache-name

• Cache index files and cache information files

11. Maintenance Operations

Hitachi Elastic Application Data Store 242

directory-specified-in-the-eads.cache.disk.info.dir-parameter-in-the-cache-properties/cache-name (the default is
management-directory/store/cache-name)

(b) Deleting caches
The following methods are provided for deleting a cache and its cache files:

• Execute the eztool deletecache --with_deleteecf command.

• Execute the eztool deletecache command and then execute the eztool deleteecf command.

Executing the eztool deletecache --with_deleteecf command

eztool deletecache cache-name --with_deleteecf

Command execution example

Executing the eztool deletecache command and then the eztool deleteecf command

eztool deletecache cache-name

eztool deleteecf cache-name

Command execution example

(4) Verify that the caches have been added or deleted
If you have added caches, execute the eztool listcache command to display a list of caches. Verify that the caches
have been added.

eztool listcache

Command execution example

11. Maintenance Operations

Hitachi Elastic Application Data Store 243

If you have deleted caches, execute the eztool listecf -v command to display information about persistent data.

eztool listecf -v

Command execution example

• Executing the eztool deletecache --with_deleteecf or eztool deletecache command and then
executing the eztool deleteecf command
If caches and cache files have been deleted successfully, false is displayed in the following columns:

• ExCache column

• ExCI column

• ExCD column

In the figure, cache1's cache and cache files have been deleted successfully.

• Executing only the eztool deletecache command

11. Maintenance Operations

Hitachi Elastic Application Data Store 244

If caches have been deleted successfully, false is displayed in the ExCache column and true is displayed in
the ExCI and ExCD columns. No values are displayed in the columns starting with UnusedFC.
In the figure, cache3's cache has been deleted successfully.

(5) Open the cluster
Execute the eztool open command to open the cluster.

eztool open

Command execution example

(6) Verify that the EADS servers have been opened
Execute the eztool status command to verify that all EADS servers have been opened.

eztool status

Command execution example

If the EADS servers have been opened, running is displayed in the State column.

11. Maintenance Operations

Hitachi Elastic Application Data Store 245

11.6 Making a backup

This section explains how to back up data.

11.6.1 How to back up data
This subsection explains how to back up data.

(1) Close the cluster
Execute the eztool close command to close the cluster.

eztool close

Command execution example

(2) Verify that the cluster is closed
After you have closed the EADS servers, execute the eztool status command to check the status of the cluster.

eztool status

Command execution example

If the cluster is closed, closed is displayed in the State column.

(3) Export data to files
Execute the eztool export command to export data to a store data file.

11. Maintenance Operations

Hitachi Elastic Application Data Store 246

eztool export

Command execution example

As shown in this example, the command execution date and time become the store data file key when no store data file
key is specified.

You can specify any store data file key.

(4) Back up the store data files
Execute the eztool listesd -v command to check the storage location for the acquired store data file.

eztool listesd -v

Command execution example

(5) Open the cluster
Execute the eztool open command to open the cluster.

eztool open

Command execution example

(6) Verify that the EADS servers have been opened
Execute the eztool status command to verify that all EADS servers have been opened.

eztool status

11. Maintenance Operations

Hitachi Elastic Application Data Store 247

Command execution example

If the EADS servers have been opened, running is displayed in the State column.

11. Maintenance Operations

Hitachi Elastic Application Data Store 248

11.7 Managing store data files

Because there is a limit to the number of store data file generations, you must delete store data files before the maximum
number of generations is reached.

For details about the number of store data file generations, see 7.6.2 Specifying the number of store data file generations.

This section explains how to check the store data and delete the store data files.

11.7.1 How to check and delete store data files
This subsection explains how to check and delete store data files.

(1) Display a list of store data files
Execute the eztool listesd command to display a list of the store data files in the cluster.

eztool listesd

Command execution example

The StoreDataFileKey column displays a list of the store data file keys of the store data files.

(2) Delete unneeded store data files
Execute the eztool deleteesd command to delete an unneeded store data file from the cluster.

eztool deleteesd store-data-file-key

Command execution example

11. Maintenance Operations

Hitachi Elastic Application Data Store 249

11.8 Checking the data storage location

Execute the eztool getposition command to display the EADS server that stores the specified key and group.

If you specify the -l or --local option, you can execute the command regardless of the status of the EADS server.
In this case, the command imports the cluster property file of the EADS server on which the command was executed,
not the cluster information currently in use.

eztool getposition key

Command execution example

If redundant copies of data have been created, the EADS servers to which data has been copied are displayed following
No. 2 in the example above.

11. Maintenance Operations

Hitachi Elastic Application Data Store 250

11.9 Checking a list of group names

Execute the eztool listgroup command to display a list of group names in the highest hierarchy in a specified
cache.

eztool listgroup [-v|--verbose] cache-name

Command execution example

The GroupName column displays the group hierarchy names in the highest hierarchy for each EADS server.

If you specify the -v or --verbose option, you can check the locations of the groups in the highest hierarchy and
the number of keys in each group.

11. Maintenance Operations

Hitachi Elastic Application Data Store 251

11. Maintenance Operations

Hitachi Elastic Application Data Store 252

11.10 Checking a list of keys

Execute the eztool listkey command to display a list of keys in a specified cache.

eztool listkey [-g group-name|--group group-name] cache-name

Command execution example

The Key column displays the keys for each EADS server.

If you specify the -g or --group option, you can display a list of keys that belong to the specified group.

11. Maintenance Operations

Hitachi Elastic Application Data Store 253

11.11 Checking whether user functions have been placed correctly on
individual EADS servers and whether they can be executed

Execute the eztool listfunc command to display whether user functions have been placed correctly on the
individual EADS servers and whether they can be executed.

eztool listfunc [-v|--verbose]

Command execution example

The Enable column displays the number of EADS servers on which each user function can be executed. If you specify
the -v or --verbose option, you can check the user functions placed on each EADS server. You can also check
whether they are executable.

To make a user function for which disable is displayed executable, terminate all EADS servers, determine the cause
of the problem from the message logs, and then eliminate the problem.

11. Maintenance Operations

Hitachi Elastic Application Data Store 254

11.12 Applying EADS server patches while the cluster is running

This section explains how to apply EADS server patches while the cluster is running.

Normally, we recommend that you terminate all EADS servers and then apply patches.

Apply patches to one machine at a time.

If the system configuration does not consist of one EADS server per machine, the following conditions must be satisfied:

• The number of EADS servers per machine must be less than the data multiplicity.

• The number of EADS servers per machine must be less than half the total number of the EADS servers that constitute
the cluster.

11.12.1 How to apply EADS server patches
This subsection explains how to apply EADS server patches.

(1) Verify that there are no errors in any of the EADS servers in the cluster
Execute the eztool status -v command to verify that there are no errors in any of the EADS servers in the cluster.

eztool status -v

(2) Isolate and terminate an EADS server to which patches are to be
applied

Execute the eztool isolate --stop command to isolate and terminate an EADS server on the machine to which
patches are to be applied.

eztool isolate --stop

If this machine contains other EADS servers, repeat step (2).

(3) Apply patches to the machine
Apply patches to the machine on which all EADS servers have been stopped.

(4) Restart the EADS servers
Execute the ezstart -r or ezserver -r command to restart the EADS servers to which patches were applied.

Executing the ezstart -r command

ezstart -r

Executing the ezserver -r command

ezserver -r

11. Maintenance Operations

Hitachi Elastic Application Data Store 255

(5) Verify that the restarted EADS servers are participating in the cluster
Execute the eztool status -v command to verify that the restarted EADS servers are participating in the cluster.

eztool status -v

Command execution example

If an EADS server is participating in the cluster, online is displayed in the Cluster column.

If there is any other EADS server that is stopped, repeat steps (4) and (5).

The Version column displays the version information. Verify that the correct version is displayed.

(6) Verify that all EADS servers in the cluster are participating in the
cluster

Execute the eztool status -v command to verify that all EADS servers in the cluster are participating in the cluster.

eztool status -v

Repeat steps (1) through (6) for all machines.

11. Maintenance Operations

Hitachi Elastic Application Data Store 256

11.13 Obtaining statistics

In EADS, you can obtain the following statistics:

• Statistics (eads_stats.csv)

• Cache statistics (eads_cache_stats.csv)

• User function statistics (eads_function_stats.csv)

• Statistics by range (eads_store_stats.csv)

This section explains the locations where statistics are stored, the information that is output as statistics, and the sources
of the statistics.

11.13.1 Statistics storage locations
The statistics are stored under directory-specified-in-the-eads.logger.dir-parameter-in-the-server-properties/stats.

11.13.2 Statistics (eads_stats.csv)
This subsection explains the information that is output as statistics (eads_stats.csv) and their source.

(1) Information output as statistics (eads_stats.csv)
The following table lists and describes the information that is output as statistics (eads_stats.csv).

Table 11‒1: Information output as statistics (eads_stats.csv)

No. Purpose Classification Item Column name Output
value

Related parameter

1 Checking
status

Common item Date statistics were output Date Current
value

--

2 Time statistics were output Time Current
value

3 IP address of EADS server for
which statistics are output and
the EADS server's port number
used for communication with
EADS clients

ThisNode Setting • eads.server
.address

• eads.server
.port

4 Re-evaluating
tuning

Memory and
buffer

Maximum size of receive data
between EADS client and
EADS servers (bytes)

CSReadMaxSize Statistic eads.server.c
onnection.buf
fersize

5 Total size of receive data
between EADS client and
EADS servers (bytes)

CSReadTotalSize Statistic • eads.server
.connection
.buffersize

• eads.replic
ation.conne
ction.buffe
rsize

6 Maximum size of send data
between EADS client and
EADS servers (bytes)

CSWriteMaxSize Statistic

11. Maintenance Operations

Hitachi Elastic Application Data Store 257

No. Purpose Classification Item Column name Output
value

Related parameter

7 Total size of send data between
EADS client and EADS
servers (bytes)

CSWriteTotalSiz
e

Statistic

8 Maximum size of receive data
between EADS servers (bytes)

SSReadMaxSize Statistic

9 Total size of receive data
between EADS servers (bytes)

SSReadTotalSize Statistic

10 Maximum size of send data
between EADS servers (bytes)

SSWriteMaxSize Statistic

11 Total size of send data between
EADS servers (bytes)

SSWriteTotalSiz
e

Statistic

12 Total size of data transmitted
from source EADS server in
order to copy data to EADS
server to be restored or EADS
server added by scale-out
processing (bytes)

TransferCopyDat
aWriteTotalSize

Statistic eads.transfer
.datasize

13 Total size of all data#3 sent
from source EADS server to
EADS server to be restored or
EADS server added by scale-
out processing (bytes)

TransferWriteTo
talSize

Statistic

14 Re-evaluating
resource
estimations

Number of data
items

Number of keys stord in cache KeyCount Current
value

eads.node.EAD
S-server-
ID.position

15 Memory usage
amount

Current memory usage amount
(sum of values in memory
caches) (megabytes)#4

UsedMemorySize Current
value

16 Maximum memory size for
storing values (megabytes)#4

MaxMemorySize Setting • eads.java.h
eapsize

• eads.java.e
xternal.hea
psize

17 Size of space being used in the
area for storing the history of
update operations
(megabytes)#4

HistoriesMemory
Size

Current
value

eads.replicat
ion.external.
heapsize

18 Maximum size of the area for
storing the history of update
operations (megabytes)#4

MaxHistoriesMem
orySize

Setting

19 Execution count Total number of requests
accepted (put, create,
update, replace, get,
remove)

RequestCount Statistic eads.node.EAD
S-server-
ID.position

20 Total number of times
individual user functions were
executed

AllFunctionExec
uteCount

Statistic

21 EADS server
performance
measurement

Performance Average internal processing
time#1 (microseconds)

InternalProcess
ingAverageTime

Statistic

11. Maintenance Operations

Hitachi Elastic Application Data Store 258

No. Purpose Classification Item Column name Output
value

Related parameter

22 Maximum request processing
time#2 (microseconds)

RequestProcessi
ngMaxTime

Statistic

23 Average request processing
time#2 (microseconds)

RequestProcessi
ngAverageTime

Statistic

24 Minimum request processing
time#2 (microseconds)

RequestProcessi
ngMinTime

Statistic

Legend:
--: There is no related parameter.

#1
This is the average time spent for the following request processing excluding creation of redundant copies of data:

• put and remove processing

• create, update, or replace processing to update data

#2
This is the time required to process the entire request (put or remove processing or create, update, or
replace processing to update data) on the first EADS server whose data is manipulated.

#3
During restoration or scale-out processing, the following data is sent to the EADS server subject to restoration or
the EADS server that was added during scale-out processing:

• Data to be copied

• If data was updated after restoration or scale-out processing started, a notification of the update operation

#4
The digits after the decimal point are truncated.

(2) Sources for statistics used for EADS server performance
measurement

The following figure gives an example of put processing, which shows the sources of the statistics used for EADS
server performance measurement.

11. Maintenance Operations

Hitachi Elastic Application Data Store 259

Figure 11‒1: Sources of statistics used for EADS server performance measurement (example of
put processing)

Explanation

• The EADS server determines the request processing time based on the difference in time between Nos. 1 and 4. The
EADS server also obtains the following statistics:

• Maximum request processing time (RequestProcessingMaxTime)

• Average request processing time (RequestProcessingAverageTime)

• Minimum request processing time (RequestProcessingMinTime)

• The EADS server determines the time spent on consensus processing based on the difference in time between Nos.
2 and 3.

• The internal processing time equals the request processing time minus the time spent on consensus processing. The
following statistics are obtained:

• Average internal processing time (InternalProcessingAverageTime)

11.13.3 Cache statistics (eads_cache_stats.csv)
This subsection explains the information that is output as cache statistics (eads_cache_stats.csv).

(1) Information output as cache statistics (eads_cache_stats.csv)
The following table lists and describes the information that is output as cache statistics (eads_cache_stats.csv).

11. Maintenance Operations

Hitachi Elastic Application Data Store 260

Table 11‒2: Information output as cache statistics (eads_cache_stats.csv)

No. Purpose Classification Item Column name Output
value

Related parameter

1 Checking
status

Common item Date statistics were output Date Current
value

--

2 Time statistics were output Time Current
value

3 IP address of EADS server for
which statistics are output and
the EADS server's port number
used for communication with
EADS clients

ThisNode Setting • eads.server
.address

• eads.server
.port

4 Re-evaluating
tuning

Cache settings Cache name#1 CacheName Setting --

5 Cache type CacheType Setting eads.cache.ty
pe

6 Range ID of the data stored in
the cache data file output
directory#2

RangeID Setting eads.replicat
ion.factor

7 Cache usage
amount

Number of keys stored in the
caches

CacheKeyCount Current
value

eads.node.EAD
S-server-
ID.position

8 Memory capacity currently
used by the caches (total of
values) (megabytes)#1

CacheUsedMemory
Size

Current
value

9 Disk capacity currently used
by the caches (total of values)
(megabytes)#3

CacheUsedDiskSi
ze

Current
value

10 Maximum size of cache data
files by cache (megabytes)#3

CacheMaxFileSiz
e

Setting eads.cache.di
sk.filesize

11 Maximum number of cache
data files by cache

CacheMaxFileCou
nt

Setting eads.cache.di
sk.filenum

12 Number of unused cache data
files by range

RangeUnusedFile
Count

Current
value

• eads.cache.
disk.filesi
ze

• eads.cache.
disk.filenu
m

13 Compaction File compression that has the
largest compaction effects
among all cache data files in
use by range (%)

RangeMaxFileCom
pactionEffect

Current
value

14 Number of files whose
compaction rate is within each
range in all cache data files in
use by range

RangeFileCompac
tionEffectCount

Current
value

• eads.cache.
disk.filesi
ze

• eads.cache.
disk.filenu
m

• eads.statis
tics.compac
tion.effect
.division

15 EADS server
performance
measurement

Performance Average internal processing
time by cache#4

(microseconds)

CacheInternalPr
ocessingAverage
Time

Statistic --

11. Maintenance Operations

Hitachi Elastic Application Data Store 261

No. Purpose Classification Item Column name Output
value

Related parameter

16 Maximum request processing
time by cache#5

(microseconds)

CacheRequestPro
cessingMaxTime

Statistic

17 Average request processing
time by cache#5

(microseconds)

CacheRequestPro
cessingAverageT
ime

Statistic

18 Minimum request processing
time by cache#5

(microseconds)

CacheRequestPro
cessingMinTime

Statistic

19 Total number of puts by
cache

PutCount Statistic

20 Total number of successful
puts by cache

PutSuccessCount Statistic

21 Total number of gets by
cache

GetCount Statistic

22 Total number of successful
gets by cache

GetSuccessCount Statistic

23 Total number of removes by
cache

RemoveCount Statistic

24 Total number of successful
removes by cache

RemoveSuccessCo
unt

Statistic

25 Total number of creates by
cache

CreateCount Statistic

26 Total number of successful
creates by cache

CreateSuccessCo
unt

Statistic

27 Total number of updates by
cache

UpdateCount Statistic

28 Total number of successful
updates by cache

UpdateSuccessCo
unt

Statistic

29 Total number of replaces by
cache

ReplaceCount Statistic

30 Total number of successful
replaces by cache

ReplaceSuccessC
ount

Statistic

31 Average internal processing
time#6 for putAll by cache
(microseconds)

PutAllInternalP
rocessingAverag
eTime

Statistic

32 Maximum time spent on entire
putAll processing#7 by
cache (microseconds)

PutAllProcessin
gMaxTime

Statistic

33 Average time spent on entire
putAll processing#7 by
cache (microseconds)

PutAllProcessin
gAverageTime

Statistic

34 Minimum time spent on entire
putAll processing#7 by
cache (microseconds)

PutAllProcessin
gMinTime

Statistic

11. Maintenance Operations

Hitachi Elastic Application Data Store 262

No. Purpose Classification Item Column name Output
value

Related parameter

35 Total number of putAlls by
cache#8

PutAllCount Statistic

36 Total number of successful
putAlls by cache#8

PutAllSuccessCo
unt

Statistic

37 Maximum number of data
items#9 manipulated by
putAll in batch mode by
cache

PutAllBatchData
MaxCount

Statistic

38 Average number of data
items#9 manipulated by
putAll in batch mode by
cache

PutAllBatchData
AverageCount

Statistic

39 Minimum number of data
items#9 manipulated by
putAll in batch mode by
cache

PutAllBatchData
MinCount

Statistic

40 Average internal processing
time#6 for getAll by cache
(microseconds)

GetAllInternalP
rocessingAverag
eTime

Statistic

41 Maximum time spent on entire
getAll processing#7 by
cache (microseconds)

GetAllProcessin
gMaxTime

Statistic

42 Average time spent on entire
getAll processing#7 by
cache (microseconds)

GetAllProcessin
gAverageTime

Statistic

43 Minimum time spent on entire
getAll processing#7 by
cache (microseconds)

GetAllProcessin
gMinTime

Statistic

44 Total number of getAlls by
cache#8

GetAllCount Statistic

45 Total number of successful
getAlls by cache#8

GetAllSuccessCo
unt

Statistic

46 Maximum number of data
items#9 manipulated by
getAll in batch mode by
cache

GetAllBatchData
MaxCount

Statistic

47 Average number of data
items#9 manipulated by
getAll in batch mode by
cache

GetAllBatchData
AverageCount

Statistic

48 Minimum number of data
items#9 manipulated by
getAll in batch mode by
cache

GetAllBatchData
MinCount

Statistic

49 Average internal processing
time#6 for removeAll by
cache (microseconds)

RemoveAllIntern
alProcessingAve
rageTime

Statistic

11. Maintenance Operations

Hitachi Elastic Application Data Store 263

No. Purpose Classification Item Column name Output
value

Related parameter

50 Maximum time spent on entire
removeAll processing#7 by
cache (microseconds)

RemoveAllProces
singMaxTime

Statistic

51 Average time spent on entire
removeAll processing#7 by
cache (microseconds)

RemoveAllProces
singAverageTime

Statistic

52 Minimum time spent on entire
removeAll processing#7 by
cache (microseconds)

RemoveAllProces
singMinTime

Statistic

53 Total number of
removeAlls by cache#8

RemoveAllCount Statistic

54 Total number of successful
removeAlls by cache#8

RemoveAllSucces
sCount

Statistic

55 Maximum number of data
items#9 manipulated by
removeAll in batch mode
by cache

RemoveAllBatchD
ataMaxCount

Statistic

56 Average number of data
items#9 manipulated by
removeAll in batch mode
by cache

RemoveAllBatchD
ataAverageCount

Statistic

57 Minimum number of data
items#9 manipulated by
removeAll in batch mode
by cache

RemoveAllBatchD
ataMinCount

Statistic

Legend:
--: There is no related parameter.

#1
When there are multiple caches, the items are displayed in the order of the cache names.

#2
If the number of redundant copies of data plus the original is 2 or greater, this item is displayed from the top in the
order of the target EADS servers into which data is stored, and then for the source EADS server from which the
data is copied.

#3
The digits after the decimal point are truncated.

#4
This is the average time spent for the following request processing excluding creation of redundant copies of data:

• put and remove processing

• create, update, or replace processing to update data

#5
This is the time required to process the entire request (put or remove processing or create, update, or
replace processing to update data) on the first EADS server whose data is manipulated.

11. Maintenance Operations

Hitachi Elastic Application Data Store 264

#6
This is the time required for the entire processing minus the time spent on communication between EADS servers.

#7
This does not include the processing time if any part of a batch operation fails.

#8
This is the execution count for EADS servers. It does not match the execution count for EADS clients.

#9
This does not include the number of data items if any part of a batch operation fails.

11.13.4 User function statistics (eads_function_stats.csv)
This subsection explains the information that is output as user function statistics (eads_function_stats.csv)
and their source.

(1) Information output as user function statistics
(eads_function_stats.csv)

The table below lists and describes the information that is output as user function statistics
(eads_function_stats.csv).

This information can be used for user function performance measurement.

Table 11‒3: Information output as user function statistics (eads_function_stats.csv)

No. Item Column name Output value

1 Date statistics were output Date Current value

2 Time statistics were output Time Current value

3 IP address of an EADS server for which
statistics are output and the EADS
server's port number used for
communication with EADS clients

ThisNode Setting

4 User function name FunctionName Setting

5 Total number of times user functions
were executed

FunctionExecuteCount Statistic

6 Maximum user function execution time
(microseconds)

FunctionExecuteMaxTime Statistic

7 Average user function execution time
(microseconds)

FunctionExecuteAverageTime Statistic

8 Minimum user function execution time
(microseconds)

FunctionExecuteMinTime Statistic

9 Maximum user function internal
processing time (microseconds)

FunctionInternalProcessingMaxTime Statistic

10 Average user function internal
processing time (microseconds)

FunctionInternalProcessingAverageTime Statistic

11 Minimum user function internal
processing time (microseconds)

FunctionInternalProcessingMinTime Statistic

11. Maintenance Operations

Hitachi Elastic Application Data Store 265

No. Item Column name Output value

12 Maximum user program processing time
in the user function (microseconds)

UserProgramProcessingMaxTime Statistic

13 Average user program processing time in
the user function (microseconds)

UserProgramProcessingAverageTime Statistic

14 Minimum user program processing time
in the user function (microseconds)

UserProgramProcessingMinTime Statistic

15 Total number of puts called by user
functions

PutCount Statistic

16 Total number of successful puts called
by user functions

PutSuccessCount Statistic

17 Total number of gets called by user
functions

GetCount Statistic

18 Total number of successful gets called
by user functions

GetSuccessCount Statistic

19 Total number of removes called by user
functions

RemoveCount Statistic

20 Total number of successful removes
called by user functions

RemoveSuccessCount Statistic

21 Total number of creates called by user
functions

CreateCount Statistic

22 Total number of successful creates
called by user functions

CreateSuccessCount Statistic

23 Total number of updates called by user
functions

UpdateCount Statistic

24 Total number of successful updates
called by user functions

UpdateSuccessCount Statistic

25 Total number of replaces called by
user functions

ReplaceCount Statistic

26 Total number of successful replaces
called by user functions

ReplaceSuccessCount Statistic

(2) Sources of statistics
The following figure shows the sources of the statistics.

11. Maintenance Operations

Hitachi Elastic Application Data Store 266

Figure 11‒2: Sources of statistics (user function statistics)

Explanation

• The user function execution time is the processing time between when a user function execution request is accepted
and a response is sent. The EADS server determines the user function execution time based on the difference in time
between Nos. 1 and 4. The EADS server also obtains the following statistics:

• Maximum user function execution time (FunctionExecuteMaxTime)

• Average user function execution time (FunctionExecuteAverageTime)

• Minimum user function execution time (FunctionExecuteMinTime)

• The EADS server determines the time spent on consensus processing based on the difference in time between Nos.
2 and 3.

• The user function internal processing time equals the user function execution time minus the time spent on consensus
processing. The EADS server also obtains the following statistics:

• Maximum user function internal processing time (FunctionInternalProcessingMaxTime)

• Average user function internal processing time (FunctionInternalProcessingAverageTime)

• Minimum user function internal processing time (FunctionInternalProcessingMinTime)

• The user program processing time equals the total time spent on user program processing minus the time spent on
consensus processing minus the API function processing time. The EADS server also obtains the following statistics:

11. Maintenance Operations

Hitachi Elastic Application Data Store 267

• Maximum user program processing time in the user function (UserProgramProcessingMaxTime)

• Average user program processing time in the user function (UserProgramProcessingAverageTime)

• Minimum user program processing time in the user function (UserProgramProcessingMinTime)

11.13.5 Statistics by range (eads_store_stats.csv)
This subsection explains the information that is output as statistics by range (eads_store_stats.csv).

Note that the statistics by range (eads_store_stats.csv) are output when the total data restriction function is
enabled.

(1) Information output as statistics by range (eads_store_stats.csv)
The following table lists and describes the information that is output as statistics by range
(eads_store_stats.csv).

Table 11‒4: Information output as statistics by range (eads_store_stats.csv)

No. Purpose Classification Item Column name Output
value

Related parameter

1 Checking
status

Common item Date statistics were output Date Current
value

--

2 Time statistics were output Time Current
value

3 IP address of an EADS server
for which statistics are output
and the EADS server's port
number used for
communication with EADS
clients

ThisNode Setting • eads.server
.address

• eads.server
.port

4 Restricting
the total
amount of
data

Range
information

Data range ID#1 RangeID Setting eads.replicat
ion.factor

5 Cache name#2 CacheName Setting --

6 Maximum number of keys that
can be stored in ranges

KeyCountLimit Setting eads.cache.ke
yCount

7 Number of keys stored in
ranges

StoredKeyMaxCou
nt

Statistic --

8 Number of keys that have not
been stored in ranges yet

ReservedKeyMaxC
ount

Statistic • eads.server
.cache.maxE
xecuteThrea
ds

• eads.server
.function.m
axExecuteTh
reads

9 Memory usage
amount

Maximum memory size
available to the values that can
be stored in ranges
(megabytes)

ExternalHeapSiz
eLimit

Setting eads.java.ext
ernal.heapsiz
e

11. Maintenance Operations

Hitachi Elastic Application Data Store 268

No. Purpose Classification Item Column name Output
value

Related parameter

10 Memory size in use by the
values that are stored in ranges
(megabytes)#3

UsedExternalHea
pMaxSize

Statistic --

11 Memory size available to the
values that have not been
stored in ranges yet (bytes)

ReservedExterna
lHeapMaxSize

Statistic • eads.server
.cache.maxE
xecuteThrea
ds

• eads.server
.function.m
axExecuteTh
reads

12 Disk usage
amount

Maximum disk capacity
available to the records that
can be stored in ranges
(megabytes)

DiskSizeLimit Setting • eads.cache.
disk.filesi
ze

• eads.cache.
disk.filenu
m

13 Disk capacity in use by the
records that are stored in
ranges (megabytes)#3

UsedDiskMaxSize Statistic --

14 Disk capacity available to the
records that have not been
stored in ranges yet (bytes)

ReservedDiskMax
Size

Statistic • eads.server
.cache.maxE
xecuteThrea
ds

• eads.server
.function.m
axExecuteTh
reads

Legend:
--: There is no related parameter.

#1
If the number of redundant copies of data plus the original is 2 or greater, this item is displayed from the top in the
order of the target EADS servers into which data is stored, and then for the source EADS server from which the
data is copied.

#2
When there are multiple caches, this item is displayed in the order of the cache names.

#3
The digits after the decimal point are truncated.

11. Maintenance Operations

Hitachi Elastic Application Data Store 269

11.14 Managing available space in the data storage

When true is specified in the eads.cache.limiter.enable parameter, the amount of data that can be stored
in EADS servers (number of stored keys, available space in the explicit heap, available space in cache files) is monitored.
If a shortage of storage space is foreseen, you can set an error in the corresponding processing to prevent the EADS
servers from being shut down. This is called the total data restriction function.

When the total data restriction function is enabled, the number of keys, the capacity of the explicit heap, and the capacity
of cache files are monitored so that the following maximum limits are not exceeded:

• Maximum number of keys
eads.cache.keyCount parameter value in the shared properties

• Maximum capacity of the explicit heap (megabytes)

Maximum capacity of the explicit heap (megabytes) =
(eads.java.external.heapsize parameter value in the shared properties 0.97
- eads.replication.external.heapsize parameter value in the shared properties)

 eads.replication.factor parameter value in the shared properties

Notes:
A value of less than 1 megabyte is truncated.

• Maximum capacity of cache files (megabytes)

Maximum capacity of cache files (megabytes) =
(eads.cache.disk.filenum parameter value in the cache properties - 2)

 (eads.cache.disk.filesize parameter value in the cache properties 1,024
- eads.cache.disk.blocksize parameter value in the cache properties 2) 1,024

Notes:
A value of less than 1 megabyte is truncated.

Tip
When the total data restriction function is enabled and any of these maxima is expected to be exceeded as a
result of storing data (a shortage of space might occur in the storage), the processing results in an error. Therefore,
if an attempt is made to perform multiple processes that store data concurrently when available storage space
is limited, the processes might result in an error.

When you use the total data restriction function, your estimates of the number of keys, the capacity of the
explicit heap, and the capacity of cache files need to be set to values that are larger than the actual values.

For details about the estimation method when using the total data restriction function, see 4. Checking the
Required Resources.

Note that the total data restriction function is disabled temporarily while any of the following types of processing is
being performed:

• Scale-out processing

• Importing data (eztool import command)

• Relocating persistent data (eztool importecf command)

• Resuming caches (eztool resume command)

11. Maintenance Operations

Hitachi Elastic Application Data Store 270

11.14.1 How to manage available space in the data storage (using only
memory caches)

This subsection explains how to monitor available space in the data storage and how to increase available space when
using only memory caches.

(1) Monitor available space by using statistics
Estimate the available space in the data storage from the information that is output as statistics by range
(eads_store_stats.csv). Monitor these values.

Statistics by range (eads_store_stats.csv) are output only when the total data restriction function is used.

For details about the statistics by range (eads_store_stats.csv), see 11.13.5 Statistics by range
(eads_store_stats.csv).

If the available space in the data storage is low, take the actions described in the following subsections.

(a) Deleting unneeded data
Increase the available space in the data storage by deleting unneeded data.

(b) Adding EADS servers to the cluster
If enough space cannot be obtained from (a), add EADS servers to the cluster. Adding EADS servers to the cluster
enables you to reduce the number of data items stored in each EADS server.

For details about how to add EADS servers to a cluster, see 11.1.1 How to add EADS servers to a cluster without stopping
the cluster (scale-out processing) or 11.1.2 How to add EADS servers to a cluster after stopping the cluster (using only
memory caches).

Note that because the total data restriction function is disabled during scale-out processing, sufficient space (at least
twice the number of data items and capacity that are added during scale-out processing) is required.

(2) If processing results in an error due to a space shortage
This subsection explains how to handle processing errors that result from a shortage of space.

(a) Check the storage that has reached the maximum amount of data that can be
stored on EADS servers

Execute the eztool storeusage command to determine from the number of keys and amount of memory usage
the storage that has reached the maximum amount of data that can be stored on EADS servers.

(b) Terminate all EADS servers in the cluster (after exporting data to files)
Export data to files and then terminate all EADS servers in the cluster.

For details about this procedure, see 10.5 Terminating the EADS servers (after exporting data from memory to files).

(c) Change the properties
Re-estimate the Java heap size and the explicit heap size, and then change the properties based on the estimation results.
If necessary, add server machines and memory.

11. Maintenance Operations

Hitachi Elastic Application Data Store 271

For details about how to estimate these values, see the following:

• Estimating the Java heap size
4.1.2 Estimating the Java heap size

• Estimating the explicit heap size
4.1.3 Estimating the explicit heap size

For details about how to change the properties, see 11.4 Changing the properties.

(3) Start all EADS servers in the cluster (and import data from files)
Start all EADS servers in the cluster, and then import back into memory the data that was exported to files during the
previous session.

For details about the procedure, see 10.3 Starting the EADS servers (and creating caches by importing data from files).

11.14.2 How to manage available space in the data storage (using disk
caches)

This subsection is applicable when you will be using disk caches and two-way caches.

Reference note
The range of applicability of the total data restriction function on cache files is only the source EADS servers
from which data is copied. If a shortage of space occurs on a target EADS server, the target EADS server is
isolated. If you will be performing compaction processing on cache files, make sure that the available space is
the same on all EADS servers.

Note that the total data restriction function is disabled on an EADS server while it is under restoration processing.

This subsection explains how to monitor available space in the data storage and how to increase available space when
using disk caches and two-way caches.

(1) Monitor available space by using statistics
Estimate the available space in the data storage from the information that is output as statistics by range
(eads_store_stats.csv). Monitor these values.

Statistics by range (eads_store_stats.csv) are output only when the total data restriction function is used.

For details about the statistics by range (eads_store_stats.csv), see 11.13.5 Statistics by range
(eads_store_stats.csv).

If the available space in the data storage is low, take the actions described in the following subsections.

(a) Deleting unneeded data
Increase the available space in the data storage by deleting unneeded data.

11. Maintenance Operations

Hitachi Elastic Application Data Store 272

(b) Performing compaction
Perform compaction to reduce the amount of data stored in cache data files.

For details about how to perform compaction on cache data files, see 10.9.1 Performing compaction on cache data files.

(c) Adding EADS servers to the cluster
If enough space cannot be obtained from (a) and (b), add EADS servers to the cluster. Adding EADS servers to the
cluster enables you to reduce the number of data items stored in each EADS server.

For details about how to add EADS servers to a cluster, see 11.1.3 How to add EADS servers to a cluster after stopping
the cluster (using only disk caches).

(2) If processing results in an error due to a space shortage
This subsection explains how to handle processing errors that result from a shortage of space.

(a) Check the storage that has reached the maximum amount of data that can be
stored on EADS servers

Execute the eztool storeusage --cache command to determine from the number of keys, amount of memory
usage, and amount of cache file usage the storage that has reached the maximum amount of data that can be stored on
EADS servers.

(b) Terminate all EADS servers in the cluster
Terminate all EADS servers in the cluster.

For details about this procedure, see 10.6 Terminating the EADS servers (terminating caches on disk).

(c) Change the properties
Re-estimate the Java heap size, the explicit heap size, and the capacity of cache files, and then change the properties
based on the estimation results. If necessary, add server machines, memory, and disks.

For details about how to estimate these values, see the following:

• Estimating the Java heap size
4.1.2 Estimating the Java heap size

• Estimating the explicit heap size
4.1.3 Estimating the explicit heap size

• Estimating the capacity of cache files
4.4 Estimating the sizes of cache files

For details about how to change the properties, see 11.4 Changing the properties.

(d) Start all EADS servers in the cluster (relocate data)
Relocate data after all EADS servers in the cluster have started.

For details about this procedure, see 11.1.3(5) Start all EADS servers in the cluster through 11.1.3(9) Verify that the
EADS servers have been opened.

11. Maintenance Operations

Hitachi Elastic Application Data Store 273

11.15 Managing cache files

This section is applicable when you will be using disk caches and two-way caches.

Delete unneeded cache files, such as when caches are created using incorrect properties.

11.15.1 How to check and delete cache files
This subsection explains how to check and delete cache files.

(1) Check for caches that have cache files
Execute the eztool listecf -v command to check for caches that have cache files.

eztool listecf -v

Command execution example

• For a cache that has a cache information file, true is displayed in the ExCI column.

• For a cache that has a cache data file, true is displayed in the ExCD column.

(2) Delete unneeded cache files
Execute the eztool deleteecf command to delete unneeded cache files from the cluster.

11. Maintenance Operations

Hitachi Elastic Application Data Store 274

eztool deleteecf cache-name

Command execution example

11. Maintenance Operations

Hitachi Elastic Application Data Store 275

12 Error Handling Operations

This chapter explains the tasks that the system operation administrator must perform in the event
of a failure.

Hitachi Elastic Application Data Store 276

12.1 Preventing failures (error monitoring and detection)

By using system operations management software such as JP1 to monitor messages issued by EADS and the EADS
server processes, the system operation administrator can be notified of failures and of the status of the EADS server
processes.

12.1.1 Monitoring messages
Monitoring messages involves monitoring the EADS system for messages and notifying the system operation
administrator of failures.

Monitoring messages means to monitor the following logs:

Monitored program Output destination Rotation
method

Log file name Format End-of-
line code

Process Log

EADS
server

Message log Directory specified in the
eads.logger.dir parameter

in the server properties

Wrap
(default)

eads_server_messa
ge[n].log

Wraparound
file#1

CR + LF

Shift eads_server_messa
ge.log

Commands Directory specified in the
eads.command.logger.di
r parameter in the command

properties

Wrap
(default)

eads_management_m
essage[n].log

Shift eads_command_mess
age.log

EADS client directory-specified-in-
eads.client.logger.dir-parameter-
in-the-client-properties/EADS-

client-name#2

Wrap eads_client_messa
ge[n].log

Legend:
[n]: Sequence number of the file
Wrap: Wrap-around method
Shift: Shift method

#1
When the file wraps around, existing data is deleted and new data is overwritten from the beginning of the file.

#2
This is the EADS client name specified in the client API function. If the EADS client name is the null character
string, the subdirectory of the EADS client name is omitted.

12.1.2 Monitoring the EADS server processes
Monitoring the EADS server processes involves monitoring the EADS server processes and notifying the system
operation administrator of process statuses and failures.

You monitor the EADS server processes by periodically executing the eztool status -s command. After executing
this command, check the return code to determine the EADS server status.

12. Error Handling Operations

Hitachi Elastic Application Data Store 277

For details about the return codes of the eztool status -s command, see 14.3.4(6) Return code.

12. Error Handling Operations

Hitachi Elastic Application Data Store 278

12.2 The system operation administrator's tasks in the event of a failure

In the event of a failure, the system operation administrator must check the contents of the error message and collect
error information. This section explains the system operation administrator's tasks, corresponding to different failures.

12.2.1 If one or more EADS servers are isolated
The following figure shows the general procedure for restoring one or more EADS servers that have been isolated due
to failures.

Figure 12‒1: General procedure for restoring one or more EADS servers that have been isolated
due to failures

Important note
In the following cases, the EADS servers cannot be restored using the procedures explained here:

• The cluster is unavailable (NOT_AVAILABLE) or is partially available (PARTIALLY_AVAILABLE).
If the cluster status is AVAILABLE but at least half of the EADS servers in the cluster are isolated, the same
measures are needed as when a cluster is unavailable (NOT_AVAILABLE).

• Online performance has degraded beyond what is allowed.

• An EADS server to be restored is not defined in the cluster properties.

12. Error Handling Operations

Hitachi Elastic Application Data Store 279

• The cluster properties in effect when an EADS server was shut down do not match the cluster properties in
effect during restoration.

For details about the restoration procedure when the cluster is unavailable (NOT_AVAILABLE) or is partially
available (PARTIALLY_AVAILABLE), see 12.2.2 If the cluster is unavailable (NOT_AVAILABLE) or is
partially available (PARTIALLY_AVAILABLE).

Each of the system operation administrator's tasks is explained in more detail below.

(1) Verify which EADS servers are isolated or stopped
Execute the eztool status command to verify which EADS servers are isolated or stopped.

Command execution example

In this example, the isolated EADS server is indicated as isolated in the State column. You must terminate this
EADS server.

In this example, there is no stopped EADS server. If there is any stopped EADS server, it is indicated as -----------
in the State column.

(2) Terminate the isolated EADS servers
If an EADS server is isolated, use the eztool isolate --stop command to terminate it. If no EADS servers are
isolated, skip this step.

Important note
Execute the eztool isolate --stop command on the isolated EADS server.

(3) Check error messages
Check the error message output to the message log of the EADS server that you terminated in (2) above.

(4) Acquire error information
You need information to investigate the cause of the error. Obtain the following information on all EADS servers:

12. Error Handling Operations

Hitachi Elastic Application Data Store 280

• All files under the directory specified in the eads.logger.dir parameter in the server properties

• All property files under management-directory/conf
• Thread dumps

You can use the eztool snapshot command to collect logs and property files in a single batch operation.

For details about how to acquire error information, see 12.3 Acquiring error information.

Determining the time of EADS server isolation
See the KDEA04783-I or KDEA04799-E message that has been output to the message log of an EADS server
that was isolated. The time of this message is the time the EADS server was isolated.

Example message (KDEA04783-I)

In this example, the EADS server whose EADS server ID is 1 was isolated on 2015-04-03 at 11:59:25.

Example message (KDEA04799-E)

In this example, the EADS server whose EADS server ID is 3 was isolated on 2015-04-21 at 11:55:46.

(5) Restore the stopped EADS servers
After handling the errors, restore the stopped EADS servers by using one of the following commands:

• ezstart -r command

• ezserver -r command

During restoration processing, an active EADS server sends data to the EADS servers being restored in order to recover
data consistency.

Therefore, note the following:

• To restore an EADS server, it takes at least the time required for obtaining data.

• The EADS server that sends data is affected correspondingly by the amount of CPU resources and network bandwidth
that are allocated for sending data.

• If the EADS server cannot keep up with the processing because both data operations and restoration processing must
be performed, the EADS server might place data operations on hold to prevent a memory shortage.

Tip
If you are using disk caches or two-way caches, restore the EADS server by using one of the following methods:

12. Error Handling Operations

Hitachi Elastic Application Data Store 281

Restoration method Restoration procedure Processing Criteria

Using cache files for
restoration

Use the ezstart -r or
ezserver -r command to
restore the EADS servers that
have stopped without deleting
the EADS servers' cache files.

Imports data from the cache files
and corrects the data by
comparing with the data for an
active EADS server.

If the frequency of data update
and deletion processing on the
cache is low and the cache files
contain a large amount of valid
data, the time required for
restoration processing might
be reduced by using cache
files, as compared with when
cache files are not used.

Not using cache files for
restoration

Delete the cache data files for the
corresponding cache by
executing the deleteecf -l
command with the EADS
servers that have stopped
specified.
Then execute the ezstart -r
or ezserver -r command to
restore the EADS servers.
If this restoration processing
fails, perform this procedure
again.

Acquires all data from an active
EADS server.

If the frequency of data update
and deletion processing on the
cache is high and the cache
files contain a large amount of
invalid data, the time required
for restoration processing
might be reduced by not using
cache files, as compared with
when cache files are used.

If a space shortage occurs in cache data files during data restoration processing, compaction is performed
internally. If the space shortage is resolved by this compaction processing, the restoration processing resumes.

If the space shortage cannot be resolved, increase the value of the eads.cache.disk.filenum parameter
in the cache properties according to the procedure described in 11.4.1 How to change the properties.

If restoration processing fails for any of the reasons listed below, delete the cache files from the cache that
contains the corrupted files, execute the ezstart -r or ezserver -r command, and then restore the EADS
servers that have stopped:

• Cache files have become corrupted.

• A Java heap overflow occurred.

• Internal compaction processing failed.

(6) Verify that the restarted EADS servers are participating in the cluster
Execute the eztool status command to verify that the restarted EADS servers have been restored in the cluster.

Command execution example

12. Error Handling Operations

Hitachi Elastic Application Data Store 282

If an EADS server is participating in the cluster, online is displayed in the Cluster column.

If there is any other EADS server that is isolated or stopped, repeat the procedure starting from 12.2.1(1) Verify which
EADS servers are isolated or stopped.

12.2.2 If the cluster is unavailable (NOT_AVAILABLE) or is partially
available (PARTIALLY_AVAILABLE)

This subsection explains the restoration procedure when the cluster is unavailable (NOT_AVAILABLE) or is partially
available (PARTIALLY_AVAILABLE).

(1) When using only memory caches
The following figure shows the general restoration procedure when memory caches are used and the cluster is unavailable
(NOT_AVAILABLE) or is partially available (PARTIALLY_AVAILABLE).

12. Error Handling Operations

Hitachi Elastic Application Data Store 283

Figure 12‒2: Restoration procedure when the cluster is unavailable (NOT_AVAILABLE) or is
partially available (PARTIALLY_AVAILABLE) (using only memory caches)

Each of the system operation administrator's tasks is explained in more detail below.

(a) Verify which EADS servers are isolated or stopped
Verify which EADS servers are isolated or stopped.

For details about this procedure, see 12.2.1(1) Verify which EADS servers are isolated or stopped.

(b) Export data from memory to files
Execute the eztool export -s command to export data from each individual memory. You must execute this
command for each EADS server.

eztool export -s

Important note
Note that there might not be consensus on the request received immediately before the range became
unavailable. This means that the exported data might not be consistent.

12. Error Handling Operations

Hitachi Elastic Application Data Store 284

(c) Forcibly terminate the active and isolated EADS servers
Execute the eztool forcestop command to forcibly terminate the active and isolated EADS servers.

If all EADS servers have already stopped, there is no need to execute this command.

Execute the eztool forcestop command on the active and isolated EADS servers.

eztool forcestop

(d) Check error messages
Check the error messages output to the message logs of the EADS servers that you identified in (a) above.

(e) Acquire error information
Acquire error information on all EADS servers.

For details about this procedure, see 12.2.1(4) Acquire error information.

(f) Start all EADS servers in the cluster (import data from files)
After resolving the errors, start all EADS servers in the cluster and re-import to memory the data that was exported to
files in subsection (b).

For details about this procedure, see 10.3 Starting the EADS servers (and creating caches by importing data from files).

(2) When using disk caches
The following figure shows the general restoration procedure when disk caches are used and the cluster is unavailable
(NOT_AVAILABLE) or is partially available (PARTIALLY_AVAILABLE).

12. Error Handling Operations

Hitachi Elastic Application Data Store 285

Figure 12‒3: Restoration procedure when the cluster is unavailable (NOT_AVAILABLE) or is
partially available (PARTIALLY_AVAILABLE) (using disk caches)

Each of the system operation administrator's tasks is explained in more detail below.

(a) Verify which EADS servers are isolated or stopped
Verify which EADS servers are isolated or stopped.

For details about this procedure, see 12.2.1(1) Verify which EADS servers are isolated or stopped.

(b) Perform compaction on cache data files
Execute the compaction command to perform compaction on the cache data files. You must execute this command
for each EADS server.

eztool compaction

(c) Forcibly terminate the active and isolated EADS servers
Execute the eztool forcestop command to forcibly terminate the active and isolated EADS servers.

If all EADS servers have already stopped, there is no need to execute this command.

Execute the eztool forcestop command on the active and isolated EADS servers.

12. Error Handling Operations

Hitachi Elastic Application Data Store 286

eztool forcestop

(d) Check error messages
Check the error messages output to the message logs of the EADS servers that you identified in (a) above.

(e) Acquire error information
Acquire error information for all EADS servers.

For details about this procedure, see 12.2.1(4) Acquire error information.

(f) Start all EADS servers in the cluster (resume disk caches)
After resolving the errors, start all EADS servers in the cluster and resume disk caches.

For details about this procedure, see 10.3.2 How to start the EADS servers (resuming caches on disk).

Reference note
If caches cannot be resumed because of corrupted cache files, determine the number of EADS servers whose
cache files have become corrupted.

• When the number of EADS servers whose cache files have become corrupted is fewer than the number of
redundant copies of data plus the original
Execute the deleteecf -l command on the EADS servers whose files have become corrupted to delete
all cache files from the caches that contain the corrupted files. Then re-execute the eztool resume
command.

• When the number of EADS servers whose cache files are corrupted is equal to or greater than the number
of redundant copies of data plus the original
The EADS servers cannot be restored.

12.2.3 If a poor response was reported
If a poor response was reported from an administrator of a business application program, or if application program
processing timed out due to a poor response, acquire error information to investigate the cause on the EADS servers
and EADS clients.

(1) Error information to acquire on the EADS servers
Acquire the following information on all EADS servers:

• Statistics

• Thread dumps

• All files under the directory specified in the eads.logger.dir parameter in the server properties

• All property files under management-directory/conf

For details about how to acquire error information, see 12.3 Acquiring error information.

12. Error Handling Operations

Hitachi Elastic Application Data Store 287

(2) Error information to acquire on the EADS clients
Acquire the following information on all EADS clients:

• All files under the directory specified in the eads.client.logger.dir parameter in the client properties

• Client property file

(3) Items to check with the administrator of business applications
Check the following with the administrator of the business application program:

• Is there any regularity in the time period in which the response has become poor?

• Has a poor response occurred repeatedly on the same EADS client?

• Is there any regularity in the sorts of operations that result in a poor response?

12. Error Handling Operations

Hitachi Elastic Application Data Store 288

12.3 Acquiring error information

This section explains the error information needed for root cause investigation and how to obtain it.

12.3.1 Error information needed for root cause investigation
To investigate the cause of the problem, you need the error information listed below. In the event of a failure, the system
operation administrator must obtain this error information.

You use the eztool snapshot command to collect logs and property files in a single batch operation.

• Message logs
The message log files contain message logs for checking operations and monitoring errors.

• Statistics
The statistics file contains statistics, including those used for re-evaluating tuning, measuring performance, and re-
estimating resources.

• Thread dumps
Thread dumps contain information about the threads running in Java processes.
Obtain thread dumps as needed.

• Core dumps
If an EADS server is shut down, a core dump is output immediately under the management directory. Its file name
is core.[PID].#

Make note of the available disk space because no limit is set for the size of core dumps output by EADS servers.

#
[PID]: EADS server's process ID

Also obtain the following property files in the event of a failure:

• All property files under management-directory/conf

12.3.2 Obtaining statistics
For details about how to obtain statistics, see 11.13 Obtaining statistics.

12.3.3 Obtaining thread dumps
Use the eztool threaddump command to obtain thread dumps.

Command execution example

eztool threaddump

The thread dumps are output under the directory specified in the eads.logger.dir parameter in the server
properties.

12. Error Handling Operations

Hitachi Elastic Application Data Store 289

If the eads.logger.dir parameter is not specified in the server properties, the thread dumps are output under
management-directory/logs.

12. Error Handling Operations

Hitachi Elastic Application Data Store 290

13 Investigating the Causes of Failures

This chapter explains how to investigate the causes of failures (how to determine the source of a
failure).

Hitachi Elastic Application Data Store 291

13.1 Investigating the cause of a poor response

This section explains how to investigate the cause of a poor response.

13.1.1 General investigation procedure
The following figure shows the general procedure for investigating the cause of a poor response, and an application
program timeout due to a poor response.

Figure 13‒1: General procedure for investigating the cause of a poor response and an application
program timeout due to a poor response

Examples of events

• A poor response was reported.

• Application program processing timed out due to a poor response.

Possible causes

• Accesses are concentrated on a specific EADS server.

• The size of the data is not suitable for storage.

• A non-EADS process is performing heavy processing.

• Requests are concentrated or have increased.

Angles of investigation using statistics

• Is the cause the EADS server, a user function, or the network?
Identify the cause of the poor response from the average user function internal processing time and the average
user program processing time in a user function.

Error information needed for the investigation

• All EADS servers' statistics

For details about how to obtain statistics, see 11.13 Obtaining statistics.

13. Investigating the Causes of Failures

Hitachi Elastic Application Data Store 292

13.1.2 Investigating the cause
This subsection explains how to check the performance by using statistics.

(1) Check application program performance
The figure below shows how to use statistics to check application program performance. The detailed procedure is
provided below.

Figure 13‒2: General procedure for checking application program performance

(a) Check the trend in average performance
Check the trend in average performance from the following statistics items:

Statistics type Item Column name

Statistics
(eads_stats.csv)

Average request processing time RequestProcessingAverageTime

(b) Identify the cause of poor performance
Identify the possible causes of poor performance by checking the following statistics item:

Statistics type Item Column name

Statistics
(eads_stats.csv)

Average internal processing time InternalProcessingAverageTime

13. Investigating the Causes of Failures

Hitachi Elastic Application Data Store 293

(c) Analyze the cause of poor performance
Analyze the possible causes of poor performance identified above.

■ If the EADS server is the cause
If the EADS server might be the cause, check the following:

• Determine if accesses to the EADS server are concentrated by checking the following statistics item:

Statistics type Item Column name

Statistics
(eads_stats.csv)

Number of requests accepted (put, create,
update, replace, get, remove)

RequestCount

• Check the Java logs for any garbage collection.

• Check the OS information (such as the CPU usage and memory usage)

■ If the network is the cause
If the network might be the cause, check the following:

• Determine the amount of communication by checking the following statistics items:

Statistics type Item Column name

Statistics
(eads_stats.csv)

Maximum size of receive data between EADS
client and EADS servers

CSReadMaxSize

Total size of receive data between EADS client
and EADS servers

CSReadTotalSize

Maximum size of send data between EADS
client and EADS servers

CSWriteMaxSize

Total size of send data between EADS client
and EADS servers

CSWriteTotalSize

Maximum size of receive data between EADS
servers

SSReadMaxSize

Total size of receive data between EADS
servers

SSReadTotalSize

Maximum size of send data between EADS
servers

SSWriteMaxSize

Total size of send data between EADS servers SSWriteTotalSize

• Check the network status.

(2) Checking the performance of user functions
The following figure shows the general procedure for checking the performance of user functions by using statistics.
The detailed procedure is provided below.

13. Investigating the Causes of Failures

Hitachi Elastic Application Data Store 294

Figure 13‒3: General procedure for checking the performance of user functions

(a) Check the trend in average performance
Check the trend in average performance from the following statistics item:

Statistics type Item Column name

User function statistics
(eads_function_stats.
csv)

Average user function execution time FunctionExecuteAverageTime

13. Investigating the Causes of Failures

Hitachi Elastic Application Data Store 295

(b) Identify the cause of poor performance
Identify the possible causes of poor performance by comparing the following statistics items:

Statistics type Item Column name

User function statistics
(eads_function_stats.
csv)

Average user function internal processing time FunctionInternalProcessingAverageTime

Average user program processing time in the
user function

UserProgramProcessingAverageTime

(c) Analyze the cause of poor performance
Analyze the possible causes of poor performance identified above.

■ If the EADS server is the cause
If the EADS server might be the cause, check the following:

• Determine if accesses to the EADS server are concentrated by checking the following statistics item:

Statistics type Item Column name

User function statistics
(eads_function_stats.
csv)

Number of times the user function was
executed

FunctionExecuteCount

• Check the Java logs for any garbage collection.

• Check the OS information (such as the CPU usage and memory usage)

■ If the user program in a user function is the cause
If the user program in a user function might be the cause, check each user function's statistics to determine which user
function is the cause.

■ If the network is the cause
If the network might be the cause, check the following:

• Determine the amount of communication by checking the following statistics items:

Statistics type Item Column name

Statistics
(eads_stats.csv)

Maximum size of receive data between EADS
client and EADS servers

CSReadMaxSize

Total size of receive data between EADS client
and EADS servers

CSReadTotalSize

Maximum size of send data between EADS
client and EADS servers

CSWriteMaxSize

Total size of send data between EADS client
and EADS servers

CSWriteTotalSize

Maximum size of receive data between EADS
servers

SSReadMaxSize

Total size of receive data between EADS
servers

SSReadTotalSize

Maximum size of send data between EADS
servers

SSWriteMaxSize

13. Investigating the Causes of Failures

Hitachi Elastic Application Data Store 296

Statistics type Item Column name

Total size of send data between EADS servers SSWriteTotalSize

• Check the network status.

13. Investigating the Causes of Failures

Hitachi Elastic Application Data Store 297

14 Command Reference

This chapter explains the syntax of EADS commands.

Hitachi Elastic Application Data Store 298

14.1 Command storage location

The commands used in EADS are stored in the following directory:

management-directory/bin

Reference note
If you want to simplify the execution of commands, create a symbolic link to the management directory so that
you can execute commands by using the link.

14. Command Reference

Hitachi Elastic Application Data Store 299

14.2 EADS commands

The following table lists and describes the EADS commands.

Table 14‒1: List of EADS commands

No. Usage scenario Command name Execution target

1 Startup Starting an EADS server ezstart EADS server

2 Starting an EADS server in the foreground ezserver EADS server

3 Running Running a cluster or an EADS server eztool Cluster
or

EADS server

Reference note
In this manual, a command option specified using only one character is shown with a single hyphen (-) and a
command option specified using two or more characters is shown with two consecutive hyphens (--). The
number of hyphens actually specified can be either one or two, regardless of the number of characters used.
For example, the -h or --help option can be specified as -h, --h, -help, or --help.

14.2.1 ezstart (starts an EADS server)

(1) Description
This command starts an EADS server in the background.

(2) Rules
• This command can be executed when the EADS server is stopped.

• To execute this command, log in to the host on which you plan to start the EADS server. To start all EADS servers
in the cluster, you must execute this command for each EADS server.

• The message logs output during command execution are not output to the console. They are output to
eads_start.log under management-directory/logs.

(3) Format

ezstart [-h]
 [-r|-ai EADS-server-ID|-ap EADS-server-location-(hash-value)]
 [-rd port-number suspend-method]

(4) Options and arguments

(a) -h or --help
Specify this option to display the command's usage.

14. Command Reference

Hitachi Elastic Application Data Store 300

When this option is specified, any other options that are specified are ignored.

(b) -r or --recovery
Specify this option to restore a stopped EADS server into the cluster and set its cluster participation status to online.

(c) -ai EADS-server-ID or --add_id EADS-server-ID
Specify this option if you want to add a new EADS server to a specific range in the existing cluster configuration.
Specify in this option the EADS server ID of the EADS server that currently manages the range into which the new
EADS server is to be added.

An EADS server ID is an integer in the range from 1 to 96.

The new EADS server will be placed at the midpoint between the two EADS servers (hash values) adjacent to where
the new EADS server will be located on the consistent hashing circumference. The smallest integer in the range from
1 to 96 that has not been assigned to any existing EADS server is assigned as the new EADS server's EADS server ID.

If none of the EADS servers in the cluster has the specified EADS server ID, an error results. An error also results if
the cluster contains an isolated or stopped (-----------) EADS server when the command with this option specified
is executed.

(d) -ap EADS-server-location-(hash-value) or --add_position EADS-server-location-
(hash-value)

Specify this option if you want to add a new EADS server at a specific location (hash value) in the existing cluster
configuration. Specify in this option the location (hash value) at which the new EADS server is to be added.

For the location (hash value), you can specify an integer in the range from -2147483648 to 2147483647.

The smallest integer in the range from 1 to 96 that has not been assigned to any existing EADS server is assigned as the
new EADS server's EADS server ID.

If the specified location (hash value) is already occupied by an existing EADS server, an error results. An error also
results if the cluster contains an isolated or stopped (-----------) EADS server when the command with this option
specified is executed.

(e) -rd port-number suspend-method or --remotedebug port-number suspend-
method

This option is used to remotely debug user functions by using a debugger application. Do not use this option in a
production environment.

Use this option if you want to start the EADS server with the following java options specified:

-agentlib:jdwp=transport=dt_socket,server=y,suspend=suspend-
method,address=port-number

For the port number (used by the EADS server to connect to the debugger application), you can specify an integer in
the range from 1024 to 65535.

If the EADS server is to be started after it has been connected with the debugger application, specify y for suspend-
method. If the EADS server is to be started without waiting to be connected with the debugger application, specify n
for suspend-method.

14. Command Reference

Hitachi Elastic Application Data Store 301

(5) Return code
0: Normal termination

Other than 0: Error

(6) Notes
• To execute this command, you must first specify /bin and /usr/bin in the PATH environment variable.

• If you execute multiple instances of this command concurrently, eads_start.log is overwritten by the last
process executed.

• If a number of the EADS servers are started in quick succession in a cluster that consists of many EADS servers,
the processing will require some time to complete, and startup might time out. In such a case, start the EADS servers
sequentially with enough of an interval between startups of the EADS servers. Alternatively, adjust the
eads.admin.boot.timeout parameter value in the server properties.

• When you specify the -ai or --add_id option or the -ap or --add_position option, no cluster property
file will be needed for the EADS server to be added. If the EADS server to be added already has a cluster property
file, that cluster property file will not be imported. No error results if the EADS server to be added has a cluster
property file with invalid contents.

14.2.2 ezserver (starts an EADS server in the foreground)

(1) Description
This command starts an EADS server in the foreground.

(2) Rules
• This command can be executed when the EADS server is stopped.

• To execute this command, log in to the host on which you plan to start the EADS server. To start all EADS servers
in the cluster, you must execute this command for each EADS server.

• During command execution, the message logs are output to the console and to
eads_server_message[n].log ([n] indicates the sequence number of the file) under the directory specified
in the eads.logger.dir parameter in the server properties.

(3) Format

ezserver [-h]
 [-r|-ai EADS-server-ID|-ap EADS-server-location-(hash-value)]
 [-rd port-number suspend-method]

(4) Options and arguments

(a) -h or --help
Specify this option to display the command's usage.

When this option is specified, any other options that are specified are ignored.

14. Command Reference

Hitachi Elastic Application Data Store 302

(b) -r or --recovery
Specify this option to restore a stopped EADS server into the cluster and set its cluster participation status to online.

(c) -ai EADS-server-ID or --add_id EADS-server-ID
Specify this option if you want to add a new EADS server to a specific range in the existing cluster configuration.
Specify in this option the EADS server ID of the EADS server that currently manages the range into which the new
EADS server is to be added.

An EADS server ID is an integer in the range from 1 to 96.

The new EADS server will be placed at the midpoint between the two EADS servers (hash values) adjacent to where
the new EADS server will be located on the consistent hashing circumference. The smallest integer in the range from
1 to 96 that has not been assigned to any existing EADS servers is assigned as the new EADS server's EADS server ID.

If none of the EADS servers in the cluster has the specified EADS server ID, an error results. An error also results if
the cluster contains an isolated or stopped (-----------) EADS server when the command with this option specified
is executed.

(d) -ap EADS-server-location-(hash-value) or --add_position EADS-server-location-
(hash-value)

Specify this option if you want to add a new EADS server at a specific location (hash value) in the existing cluster
configuration. Specify in this option the location (hash value) at which the new EADS server is to be added.

For the location (hash value), you can specify an integer in the range from -2147483648 to 2147483647.

The smallest integer in the range from 1 to 96 that has not been assigned to any existing EADS server is assigned as the
new EADS server's EADS server ID.

If the specified location (hash value) is already occupied by an existing EADS server, an error results. An error also
results if the cluster contains an isolated or stopped (-----------) EADS server when the command with this option
specified is executed.

(e) -rd port-number suspend-method or --remotedebug port-number suspend-
method

This option is used to remotely debug user functions by using a debugger application. Do not use this option in a
production environment.

Use this option to start the EADS server with the following java options specified:

-agentlib:jdwp=transport=dt_socket,server=y,suspend=suspend-
method,address=port-number

For the port number (used by the EADS server to connect to the debugger application), you can specify an integer in
the range from 1024 to 65535.

If the EADS server is to be started after it has been connected with the debugger application, specify y for suspend-
method. If the EADS server is to be started without waiting to be connected with the debugger application, specify n
for suspend-method.

14. Command Reference

Hitachi Elastic Application Data Store 303

(5) Return code
0: Normal termination

Other than 0: Error

(6) Notes
• To execute this command, you must first specify /bin and /usr/bin in the PATH environment variable.

• If a number of the EADS servers are started in quick succession in a cluster that consists of many EADS servers,
the processing will require some time to complete, and startup might time out. In such a case, start the EADS servers
sequentially with enough of an interval between startups of the EADS servers. Alternatively, adjust the
eads.admin.boot.timeout parameter value in the server properties.

• If you execute this command for a running EADS server, the KDEA08408-E message is output and the processing
is canceled. However, if two attempts to start the EADS server are made at almost the same time, the message might
not be output. In that case, wait a while, and then try to start the EADS server again.

• When you specify the -ai or --add_id option or the -ap or --add_position option, no cluster property
file will be needed for the EADS server to be added. If the EADS server to be added already has a cluster property
file, that cluster property file will not be imported. No error results if the EADS server to be added has a cluster
property file with invalid contents.

14.2.3 eztool (runs the cluster)

(1) Description
This command runs the cluster.

(2) Rules
• Execute this command on any EADS server in the cluster.

• Message logs are output during command execution to the console and to eads_command_message[n].log
([n]: file sequence number) under the directory specified in the eads.command.logger.dir parameter in
the command properties.

(3) Format

eztool [-h]
 [-t command-timeout-value]
 [--messageoff]
 subcommand options-and-arguments

(4) Options and arguments

(a) -h or --help
Specify this option to display the command's usage.

When this option is specified, any other options that are specified are ignored.

14. Command Reference

Hitachi Elastic Application Data Store 304

If no subcommand is specified, an overview of all subcommands is displayed. If a subcommand is specified, the details
about the specified subcommand are displayed.

(b) -t command-timeout-value or --timeout command-timeout-value
Specify this option if you want to set the command's timeout value (in seconds).

The permitted value is an integer from 0 through 2,147,483,647.

If zero is specified, no timeout occurs.

This option is not supported in the following commands:

• eztool threaddump
• eztool snapshot
• eztool forcestop

(c) --messageoff
Specify this option if messages are not to be output to the standard output.

If the command results in a syntax error, this option is ignored.

This option cannot be specified for the following commands:

• eztool threaddump
• eztool snapshot
• eztool forcestop

(d) subcommand options-and-arguments
For details about the subcommands that can be specified in this command, see 14.3 Subcommands of the eztool command.

For details about the options and arguments that can be specified in the subcommands, see the explanation of each
subcommand.

Important note
If you want to specify a character string beginning with a hyphen (-) in this subcommand's argument, specify
two consecutive hyphens (--). Two consecutive hyphens alone cannot be specified as an argument.

(5) Return code
See the description of each subcommand.

(6) Notes
To execute this command, you must first specify /bin and /usr/bin in the PATH environment variable.

14. Command Reference

Hitachi Elastic Application Data Store 305

14.3 Subcommands of the eztool command

The following table lists and describes the subcommands that can be specified in the eztool command.

Table 14‒2: List of subcommands that can be specified in the eztool command

No. Usage scenario Subcommand
name

Execution
target

1 Closing and opening Closing the cluster close Cluster

2 Opening the cluster open Cluster

3 Checking status Checking the status of the cluster status Cluster#1

4 Displaying a list of the most recent parameters listconf Cluster#1

5 Displaying a list of caches listcache Cluster

6 Displaying a list of store data files listesd Cluster

7 Displaying a list of group names listgroup Cluster#1

8 Displaying a list of keys listkey Cluster#1, #2

9 Displaying data storage locations getposition Cluster

10 Checking the usage status of ranges and caches storeusage Cluster

11 Locking Unlocking unlock Cluster

12 Memory and disk
management

Creating a cache createcache Cluster

13 Deleting a cache deletecache Cluster

14 Data migration Exporting data export Cluster#1

15 Importing data import Cluster

16 Deleting store data files deleteesd Cluster

17 Data manipulation Storing specified data put EADS server

18 Acquiring specified data get EADS server

19 Deleting specified data remove EADS server

20 Deleting all data in a specified range removeall Cluster#1, #2

21 User function Displaying which user functions are executable listfunc Cluster

22 Executing user functions execfunc Cluster#1, #2,

#3

23 Persistence Displaying a list of information about persistent data listecf Cluster#1

24 Resuming caches resume Cluster

25 Importing cache files importecf Cluster

26 Deleting cache files deleteecf Cluster

27 Performing compaction on cache data files compaction EADS
server#4

28 Troubleshooting Outputting a thread dump threaddump EADS server

14. Command Reference

Hitachi Elastic Application Data Store 306

No. Usage scenario Subcommand
name

Execution
target

29 Collecting logs, settings, hardware information, and network
information

snapshot EADS server

30 Termination Terminating all EADS servers in the cluster stop Cluster

31 Forcibly terminating an EADS server forcestop EADS server

32 Isolating an EADS server isolate EADS server

#1
If the -s or --single option is specified, only the EADS server on which the command is executed is the target.

#2
If you specify the -g or --group option, the target EADS server is determined from the hash value of the specified
group name.

#3
If the -k or --key option is specified, the EADS server storing the specified key is the target EADS server.

#4
If the --cache option is specified, the cache used to execute the command is the target.
If the --range option is specified, the range used to execute the command is the target.

14.3.1 Locking between commands
The following table shows whether commands can be executed simultaneously.

Table 14‒3: Whether commands can be executed simultaneously

Command type Whether commands can be executed simultaneously

Updating Referencing Data manipulation Restoration and
scale-out

Updating
• eztool close
• eztool open
• eztool createcache
• eztool deletecache
• eztool export
• eztool import
• eztool deleteesd
• eztool resume
• eztool importecf
• eztool deleteecf
• eztool snapshot -sd

or eztool snapshot --
safedump

• eztool stop
• eztool isolate

N Y Y N

Referencing
• eztool status

Y Y Y Y

14. Command Reference

Hitachi Elastic Application Data Store 307

Command type Whether commands can be executed simultaneously

Updating Referencing Data manipulation Restoration and
scale-out

• eztool listconf
• eztool listcache
• eztool listesd
• eztool listecf
• eztool getposition
• eztool storeusage
• eztool listfunc

Data manipulation
• eztool listgroup
• eztool listkey
• eztool put
• eztool get
• eztool remove
• eztool removeall
• eztool execfunc

Y Y Y Y

Restoration and scale-out
• ezstart -r

or ezstart --recovery
• ezserver -r

or ezserver --recovery
• ezstart -ai

or ezstart --add_id
• ezstart -ap

or ezstart --
add_position

• ezserver -ai
or ezserver --add_id

• ezserver -ap
or ezserver --
add_position

N Y Y N

Legend:
Y: Can be executed simultaneously
N: Cannot be executed simultaneously

Notes:
The eztool unlock command can be executed only when a lock can be released.
The following commands can always be executed simultaneously:

• eztool compaction
• eztool threaddump
• eztool snapshot (except when the -sd or --safedump option is specified)

• eztool forcestop

When an updating command is executed, a lock is obtained from the EADS server. This prevents another updating
command from being executed simultaneously by another host.

14. Command Reference

Hitachi Elastic Application Data Store 308

Normally, a lock is released automatically when the command's processing terminates. However, if unlocking fails for
some reason (such as when an error occurs and the command terminates before the lock is released), execute the eztool
unlock command to unlock.

14.3.2 close (closes the cluster)

(1) Description
This subcommand closes the cluster.

(2) Rules
• This subcommand can be executed only when the status of the cluster is one of the following:

• Cluster available (AVAILABLE)

• Cluster partially available (PARTIALLY_AVAILABLE)

• The target of this subcommand is the EADS servers whose cluster participation status is online. This subcommand
cannot be executed if the cluster contains any EADS server whose cluster participation status is standby. You can
determine the cluster participation status with the eztool status command.

• This subcommand can be executed when the target EADS servers are in the following status:

• Running

• Closed

(3) Format

eztool close

(4) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒4: Return codes returned by the eztool close command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be executed.

14. Command Reference

Hitachi Elastic Application Data Store 309

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

7 131 The command failed because another command was
executing.

8 150 The command failed during execution.

9 200 The command failed due to a timeout.

14.3.3 open (opens the cluster)

(1) Description
This subcommand opens the cluster.

(2) Rules
• This subcommand can be executed only when the status of the cluster is one of the following:

• Cluster available (AVAILABLE)

• Cluster partially available (PARTIALLY_AVAILABLE)

• The target of this subcommand is the EADS servers whose cluster participation status is online. This subcommand
cannot be executed if the cluster contains any EADS server whose cluster participation status is standby. You can
determine the cluster participation status with the eztool status command.

• This subcommand can be executed when the target EADS servers are in the following status:

• Initialized

• Running

• Closed

(3) Format

eztool open

(4) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒5: Return codes returned by the eztool open command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

14. Command Reference

Hitachi Elastic Application Data Store 310

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be
executed.

7 131 The command failed because another command was
executing.

8 150 The command failed during execution.

9 200 The command failed due to a timeout.

14.3.4 status (checks the status of the cluster)

(1) Description
This subcommand checks the status of the cluster.

(2) Rules
• This subcommand can be executed regardless of the cluster's status.

• This subcommand can be executed when the EADS servers are in the following status:

• Initializing

• Initialized

• Running

• Closing

• Closed

• Isolated

• Stopping

(3) Format

eztool status [-v]
 [-s]
 [-c display-item-name==status]
 [--format format-name]
 [--columns column-name[,column-name]...]
 [--filter filter-condition]
 [--match matching-condition]

14. Command Reference

Hitachi Elastic Application Data Store 311

(4) Options and arguments

(a) -v or --verbose
Specify this option if you want to display the details of the command execution results.

(b) -s or --single
Specify this option to check the status of only the EADS server on which the command is executed, not the status of
the entire cluster.

(c) -c display-item-name==status or --count display-item-name==status
We do not recommend that you specify this option. This option might be deleted without notice.

Specify this option to verify that all EADS servers participating in the cluster have the same status.

The subcommand sets as the return code the number of EADS servers whose status exactly matches the specified status.
Note that items for which a hyphen (-) is displayed because the information could not be acquired are not counted.

This option cannot be specified together with any of the following options:

• -s option

• --format option

• --columns option

• --filter option

• --match option

 Display item names
The following table lists and describes the display item names that can be specified:

Display item name Description Whether displayed

-v or --verbose option

Omitted Specified

ID EADS server ID Y Y

IP_Address IP address of EADS server Y Y

ServerName EADS server name (management directory name) N Y

Port#1 EADS server's port number used for communication
with EADS clients

Y Y

ServerPort#2 Port number used for creating redundant copies of data
among the EADS servers

N Y

ManagePort#2 Port number used for checking the communication
port that will be used by the command

N Y

Position EADS server position Y Y

Cluster Cluster participation status Y Y

State EADS server status Y Y

Operation Name of the subcommand or option of the command
that is currently executing

Y Y

14. Command Reference

Hitachi Elastic Application Data Store 312

Display item name Description Whether displayed

-v or --verbose option

Omitted Specified

Lock Lock status of the EADS server N Y

KeyCount Total number of keys in the EADS server N Y

UsedCache#2 Memory usage rate in the area for storing the value
part of the memory caches or two-way caches (explicit
heap) on the EADS server (memory usage amount
divided by total memory capacity)

N Y

UsedMemoryRatio#3 Memory usage rate in the area for storing the value
part of the memory caches or two-way caches (explicit
heap) on the EADS server

N Y

UsedMemory#3 Memory usage amount in the area for storing the value
part of the memory caches or two-way caches (explicit
heap) on the EADS server
(megabytes)

N Y

MaxMemory#3 Total memory capacity of the area for storing the value
part of the memory caches or two-way caches on the
EADS server
(megabytes)

N Y

Version Version information N Y

Legend:
Y: Displayed
N: Not displayed

#1
If 0300 is specified in the eads.command.compat parameter in the command properties, the item name is
ClientPort.

#2
This item can be specified only when 0300 is specified in the eads.command.compat parameter in the
command properties.

#3
This item cannot be specified if 0300 is specified in the eads.command.compat parameter in the command
properties.

 Status
Specify a character string that can be displayed for the specified displayed item name.
The permitted characters are ASCII codes 0x20 through 0x7E.
You can specify a single-byte space by enclosing it in double quotation marks ("). Any single byte spaces before
or after a display item name in the table or before or after the status are ignored.
Because a hyphen (-) is displayed for an item whose information cannot be obtained, specifying only a hyphen (-)
will result in an error. If 0300 is specified in the eads.command.compat parameter in the command properties,
an asterisk (*) is displayed for an item whose information cannot be obtained. In this case, specifying only an asterisk
(*) results in an error.

(d) --format format-name
For details about this option, see 14.4.2 How to specify the display format.

14. Command Reference

Hitachi Elastic Application Data Store 313

(e) --columns column-name[,column-name]...
For details about this option, see 14.4.3 How to specify column filters.

(f) --filter filter-condition
For details about this option, see 14.4.4 How to specify row filters.

(g) --match matching-condition
For details about this option, see 14.4.5 How to specify a condition match.

(5) Output example
The following shows output examples of the eztool status command's execution results.

For details about the components of the displayed information, see 14.4.1 Components of the displayed information.

 If option -v or --verbose is omitted

 If option -v or --verbose is specified

The following tables list and describe the summary and content information that are displayed.

Table 14‒6: Summary information displayed by the eztool status command

No. Summary name Description Whether displayed

-v or --verbose option

Omitted Specified

1 Cluster Health Cluster status Y Y

14. Command Reference

Hitachi Elastic Application Data Store 314

No. Summary name Description Whether displayed

-v or --verbose option

Omitted Specified

One of the following is displayed:
• AVAILABLE

The cluster is running normally.
• PARTIALLY_AVAILABLE

The cluster is partially running.
The cluster might not be accessible depending on
the key.

• NOT_AVAILABLE
The cluster is not running.

2 TotalCount Number of EADS servers
This item is not displayed if the -s or --single
option is specified.

Y Y

3 OnlineCount Number of EADS servers that are participating in the
cluster
This item is not displayed if the -s or --single
option is specified.
This item is not counted if the cluster status is
NOT_AVAILABLE.

Y Y

4 OfflineCount Number of EADS servers that are not participating in
the cluster
This item is not displayed if the -s or --single
option is specified.
This item is not counted if the cluster status is
NOT_AVAILABLE.

Y Y

5 StandbyCount Number of EADS servers that are designated to
participate in the cluster
This item is not displayed if the -s or --single
option is specified.
This item is not counted if the cluster status is
NOT_AVAILABLE.

Y Y

Legend:
Y: Displayed

Table 14‒7: Content information displayed by the eztool status command

No. Column name Description Whether displayed

-v or --verbose option

Omitted Specified

1 ID EADS server ID.
If an EADS server to be added to the cluster has not
participated in the cluster, a hyphen (-) is displayed as
its EADS server ID.

Y Y

2 IP_Address IP address of EADS server Y Y

3 ServerName EADS server name (management directory name)#1, #2 N Y

14. Command Reference

Hitachi Elastic Application Data Store 315

No. Column name Description Whether displayed

-v or --verbose option

Omitted Specified

4 Port#3 EADS server's port number used for communication
with EADS clients

Y Y

5 ServerPort#4 Port number used for creating redundant copies of data
among the EADS servers#2

N Y

6 ManagePort#4 Port number used for checking the communication port
that will be used by the command#2

N Y

7 Position EADS server position
The positions (hash values) are displayed in descending
order.
If an EADS server to be added to the cluster has not
participated in the cluster, a hyphen (-) is displayed as
its position.

Y Y

8 Cluster Cluster participation status.#5

One of the following is displayed:
• online

Participating in the cluster.
• offline

Not participating in the cluster.
• standby

Designated to participate in the cluster.

Y Y

9 State EADS server status.#1, #2 Y Y

10 Operation Name of the subcommand or option of the command
that is currently executing#1, #2

One of the following is displayed:
• close
• open
• unlock
• createcache
• deletecache
• export
• import
• deleteesd
• resume
• importecf
• deleteecf
• compaction
• stop
• isolate
• recovery
• add

For export, import, importecf, and stop, the
progress of the processing is also displayed.
Example: export(88%)
If the command is not executing, none is displayed.

Y Y

11 Lock Lock status of the EADS server.#5 N Y

14. Command Reference

Hitachi Elastic Application Data Store 316

No. Column name Description Whether displayed

-v or --verbose option

Omitted Specified

One of the following is displayed:
• lock

Locked.
• unlock

Not locked.

12 KeyCount Total number of keys in the EADS server.#1, #2

This value includes the number of keys copied for data
redundancy purposes.

N Y

13 UsedCache#4 Memory usage rate in the area for storing the value part
of the memory caches or two-way caches (explicit
heap) on the EADS server (memory usage amount
divided total memory capacity)#1, #2

• The digits after the decimal point are truncated.
• The memory usage amount includes the values that

were copied for data redundancy purposes.

N Y

14 UsedMemoryRatio#

6
Memory usage rate in the area for storing the value part
of the memory caches or two-way caches (explicit
heap) on the EADS server#1, #2

• Because the memory usage rate equals (memory
usage amount total memory capacity) 100
(%), the digits after the decimal point are truncated.

• The memory usage amount includes the values that
were copied for data redundancy purposes.

N Y

15 UsedMemory#6 Memory usage amount in the area for storing the value
part of the memory caches or two-way caches (explicit
heap) on the EADS server#1, #2 (megabytes)
• The digits after the decimal point are truncated.
• The memory usage amount includes the values that

were copied for data redundancy purposes.

N Y

16 MaxMemory#6 Total memory capacity of the area for storing the value
part of the memory caches or two-way caches on the
EADS server#1, #2 (megabytes)
• The digits after the decimal point are truncated.
• The memory usage amount includes the values that

were copied for data redundancy purposes.

N Y

17 Version Version information#1, #2

For 03-00, 03-00-00 is displayed.
N Y

Legend:
Y: Displayed
N: Not displayed

#1
In the case of a connection failure, communication error, or communication timeout, a hyphen (-) is displayed. If
0300 is specified in the eads.command.compat parameter in the command properties, an asterisk (*) is
displayed.

14. Command Reference

Hitachi Elastic Application Data Store 317

#2
If the EADS server's cluster participation status is standby, a hyphen (-) is displayed. If 0300 is specified in the
eads.command.compat parameter in the command properties, an asterisk (*) is displayed.

#3
If 0300 is specified in the eads.command.compat parameter in the command properties, ClientPort is
displayed as the column name.

#4
The column is displayed only when 0300 is specified in the eads.command.compat parameter in the command
properties.

#5
If the cluster status is NOT_AVAILABLE, a hyphen (-) is displayed. If 0300 is specified in the
eads.command.compat parameter in the command properties, an asterisk (*) is displayed.

#6
The column is not displayed if 0300 is specified in the eads.command.compat parameter in the command
properties.

(6) Return code
The return code depends on whether any of the following options was specified:

• -s or --single option

• -c or --count option

• --match option

If none of the -s, -c, and --match options was specified, the return codes listed in the following table are returned.

Table 14‒8: Return codes returned by the eztool status command (when none of the -s, -c, and --
match options was specified)

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

6 150 The command failed during execution.

7 200 The command failed due to a timeout.

When the -s or --single option is specified:
The subcommand sets the EADS server's status as the return code.

14. Command Reference

Hitachi Elastic Application Data Store 318

If the --match option was also specified and the command's execution was successful, the results of the --match
option take precedence.

Table 14‒9: Return codes returned by the eztool status command (when the -s or --single option
was specified)

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 The EADS server is running (running).

2 1 1 The EADS server is being initialized
(initializing).

3 2 2 The EADS server has been initialized
(initialized).

4 3 3 The EADS server is closing (closing).

5 4 4 The EADS server is closed (closed).

6 5 5 The EADS server is stopping (stopping).

7 10 10 The EADS server is isolated (isolated).

8 101 101 Initialization of the command failed.

9 110 110 Connection establishment failed.

10 111 111 The command failed due to a communication timeout.

11 120 101 The command failed due to a syntax error.

12 150 The command failed during execution.

13 200 The command failed due to a timeout.

When the -c or --count option is specified:
The subcommand sets as the return code the number of EADS servers for which the specified item is in the specified
status. If the command's execution failed, the return code is the same as when the -c or --count option was not
specified.

When the --match option is specified:
If the condition was satisfied, the subcommand returns 0; otherwise, the subcommand returns 1. If the command's
execution failed, the return code is the same as when the --match option was not specified.

(7) Notes
• If the EADS server with the smallest EADS server ID is not running, no other EADS servers can participate in the

cluster. If this command is executed on an EADS server that is not participating in the cluster, information about
only the EADS server on which the command was executed is displayed even when several other EADS servers are
running.

• If this command is executed on an EADS server for which restoration processing is underway, information about
other EADS servers is not displayed until the EADS server has been restored.

• If this subcommand is executed on an EADS server that is engaged in scale-out processing, information about the
other EADS servers is not displayed until this EADS server participates in the cluster.

14. Command Reference

Hitachi Elastic Application Data Store 319

• If there are only isolated EADS servers, outdated information might be displayed because the cluster information
has not been updated.

• If the command times out during output processing, the output results might not be complete. The command might
time out even if output processing is complete. If this happens, increase the command's timeout value, and then re-
execute the command.

14.3.5 listconf (displays a list of most recent parameters)

(1) Description
This subcommand displays a list of parameters that begin with eads. and are specified in the EADS server's system
properties. For any parameter that has been set for version 03-60 or earlier, the new parameter name is displayed.

(2) Rules
• This subcommand can be executed on an EADS server that is in any of the following statuses, regardless of the

cluster's status:

• Initializing

• Initialized

• Running

• Closing

• Closed

• Isolated

• Stopping

(3) Format

eztool listconf [-v]
 [-s]
 [--file property-file-type]
 [--non_default]
 [--format format-name]
 [--columns column-name[,column-name]...]
 [--filter filter-condition]
 [--match matching-condition]

(4) Options and arguments

(a) -v or --verbose
Specify this option if you want to display the details of the command's execution results.

(b) -s or --single
Specify this option to check the parameters in the property file for only the EADS server on which the command is
executed, not for the entire cluster.

14. Command Reference

Hitachi Elastic Application Data Store 320

(c) --file property-file-type
Specify this option to check only those parameters that are specified in a specific property file.

You can specify any of the following types of property files:

• server: Server property file

• cluster: Cluster property file

• shared: Shared property file

If this option is omitted, the parameters that are specified in all of the following property files are displayed:

• Server property file

• Cluster property file

• Shared property file

(d) --non_default
This option displays for the EADS servers only the parameters whose settings are not the default values. Parameters for
which there is no default value are not subject to this option.

(e) --format format-name
For details about this option, see 14.4.2 How to specify the display format.

(f) --columns column-name[,column-name]...
For details about this option, see 14.4.3 How to specify column filters.

(g) --filter filter-condition
For details about this option, see 14.4.4 How to specify row filters.

(h) --match matching-condition
For details about this option, see 14.4.5 How to specify a condition match.

(5) Output example
The following shows output examples of the eztool listconf command's execution results.

For details about the components of the displayed information, see 14.4.1 Components of the displayed information.

 If option -v or --verbose is omitted

14. Command Reference

Hitachi Elastic Application Data Store 321

 If option -v or --verbose is specified

The following tables list and describe the summary and content information that are displayed.

Table 14‒10: Summary information displayed by the eztool listconf command

No. Summary name Description Whether displayed

-v or --verbose option

Omitted Specified

1 ParameterCount Number of parameters. Y Y

2 NonDefaultCount Number of EADS server parameters whose settings are not the
default value

Y Y

Legend:
Y: Displayed

14. Command Reference

Hitachi Elastic Application Data Store 322

Table 14‒11: Content information displayed by the eztool listconf command

No. Column name Description Whether displayed

-v or --verbose option

Omitted Specified

1 Parameter Parameter name.
Displayed in natural order.

Y Y

2 DefaultValue Parameter's default value.
Nothing is displayed for a parameter that does not have a default
value.
If the default value varies from one EADS server to another,
UNMATCH is displayed.

Y Y

3 MinValue Minimum value of the parameter (numeric value).
Nothing is displayed for a parameter in which a nonnumeric
value can be specified.
If the minimum value varies from one EADS server to another,
UNMATCH is displayed.

N Y

4 MaxValue Maximum value of the parameter (numeric value).
Nothing is displayed for a parameter in which a nonnumeric
value can be specified.
If the maximum value varies from one EADS server to another,
UNMATCH is displayed.

N Y

5 MinLength Minimum length for a character string in the parameter.
Nothing is displayed for a parameter that does not have a
minimum length.
If the minimum length varies from one EADS server to another,
UNMATCH is displayed.

N Y

6 MaxLength Maximum length for a character string in the parameter.
Nothing is displayed for a parameter that does not have a
maximum length.
If the maximum length varies from one EADS server to another,
UNMATCH is displayed.

N Y

7 ServerID:EADS-server-
ID

Parameter's setting on each EADS server.
Information is displayed for all EADS servers for which
information was acquired, in ascending order of the EADS
server IDs.
If the -s or --single option is specified, information about
only the EADS server on which the command was executed is
displayed.
If an EADS server ID is undetermined because an EADS server
to be added to the cluster has not participated in the cluster, a
hyphen (-) is displayed for EADS-server-ID.

Y Y

Legend:
Y: Displayed
N: Not displayed

(6) Return code
The following table lists the return codes that this subcommand returns.

14. Command Reference

Hitachi Elastic Application Data Store 323

Table 14‒12: Return codes returned by the eztool listconf command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be
executed.

7 150 The command failed during execution.

8 200 The command failed due to a timeout.

When the --match option is specified:
If the condition was satisfied, the subcommand returns 0; otherwise, the subcommand returns 1. If the command's
execution failed, the return code is the same as when the --match option is not specified.

(7) Notes
• If the command times out during output processing, the output results might not be complete. The command might

time out even if output processing is complete. If this happens, increase the command's timeout value, and then re-
execute the command.

• The values set in system properties are the verified values, not the specified values themselves. When parameter
values are used as functions, different values might be used for some parameters.

14.3.6 listcache (displays a list of caches)

(1) Description
This subcommand displays a list of caches.

(2) Rules
• This subcommand can be executed only when the status of the cluster is one of the following:

• Cluster available (AVAILABLE)

• Cluster partially available (PARTIALLY_AVAILABLE)

• The target of this subcommand is the EADS servers whose cluster participation status is online. This subcommand
cannot be executed if the cluster contains any EADS server whose cluster participation status is standby. You can
determine the cluster participation status with the eztool status command.

• This subcommand can be executed when the target EADS servers are in the following status:

14. Command Reference

Hitachi Elastic Application Data Store 324

• Initialized

• Running

• Closing

• Closed

(3) Format

eztool listcache [-v]
 [--format format-name]
 [--columns column-name[,column-name]...]
 [--filter filter-condition]
 [--match matching-condition]

(4) Options and arguments

(a) -v or --verbose
Specify this option if you want to display the details of the command's execution results.

(b) --format format-name
For details about this option, see 14.4.2 How to specify the display format.

(c) --columns column-name[,column-name]...
For details about this option, see 14.4.3 How to specify column filters.

(d) --filter filter-condition
For details about this option, see 14.4.4 How to specify row filters.

(e) --match matching-condition
For details about this option, see 14.4.5 How to specify a condition match.

(5) Output example
The following shows an output example of the eztool listcache command's execution results.

For details about the components of the displayed information, see 14.4.1 Components of the displayed information.

 If option -v or --verbose is omitted

14. Command Reference

Hitachi Elastic Application Data Store 325

 If option -v or --verbose is specified

The following tables list and describe the summary and content information that are displayed.

Table 14‒13: Summary information displayed by the eztool listcache command

No. Summary name Description Whether displayed

-v or --verbose option

Omitted Specified

1 CacheCount Current and maximum numbers of caches Y Y

Legend:
Y: Displayed

Table 14‒14: Content information displayed by the eztool listcache command

No. Column name Description Whether displayed

-v or --verbose option

Omitted Specified

1 CacheName Cache name# Y Y

2 CacheType Cache type#

One of the following is displayed:
• Memory

Memory cache
• Disk

Disk cache
• 2Way

Two-way cache

Y Y

3 TotalMasterKe
yCount

Total number of keys in each cache.#

This value does not include the number of keys
copied for data redundancy purposes.

Y Y

14. Command Reference

Hitachi Elastic Application Data Store 326

No. Column name Description Whether displayed

-v or --verbose option

Omitted Specified

4 Server EADS server's IP address and port number used to
communicate with the EADS clients.
This information is displayed in the following
format:
IP address:port number
Nothing is displayed for an isolated EADS server
or if the EADS server has not started.

N Y

5 MasterKeyCoun
t

Number of keys in each cache on each EADS
server.
This value does not include the number of keys
copied for data redundancy purposes.
Nothing is displayed for an isolated EADS server
or if the EADS server has not started.

N Y

Legend:
Y: Displayed
N: Not displayed

Notes:
The execution results are displayed according to the following priorities:

1. Displayed in natural order of the CacheName values.

2. If the -v or --verbose option is specified, the rows for the same CacheName value are displayed in natural
order of the Server values.

#
If the execution results contain multiple cells with the same value consecutively, only the first such cell is displayed
and the other cells are omitted.

(6) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒15: Return codes returned by the eztool listcache command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

14. Command Reference

Hitachi Elastic Application Data Store 327

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

6 130 The command failed because it could not be
executed.

7 150 The command failed during execution.

8 200 The command failed due to a timeout.

When the --match option is specified:
If the condition was satisfied, the subcommand returns 0; otherwise, the subcommand returns 1. If the command's
execution failed, the return code is the same as when the --match option is not specified.

(7) Notes
• If the command times out during output processing, the output results might not be complete. The command might

time out even if output processing is complete. If this happens, increase the command's timeout value, and then re-
execute the command.

• If this subcommand is executed while scale-out processing is underway, a smaller number of keys might be displayed
temporarily.

14.3.7 listesd (displays a list of store data files)

(1) Description
This subcommand displays a list of store data files in the cluster.

(2) Rules
• This subcommand can be executed only when the status of the cluster is one of the following:

• Cluster available (AVAILABLE)

• Cluster partially available (PARTIALLY_AVAILABLE)

• The target of this subcommand is the EADS servers whose cluster participation status is online. This subcommand
cannot be executed if the cluster contains any EADS server whose cluster participation status is standby. You can
determine the cluster participation status with the eztool status command.

• This subcommand can be executed when the target EADS servers are in the following status:

• Initialized

• Running

• Closing

• Closed

14. Command Reference

Hitachi Elastic Application Data Store 328

(3) Format

eztool listesd [-v]
 [-d path-name-of-store-data-file-storage-location]
 [--format format-name]
 [--columns column-name[,column-name]...]
 [--filter filter-condition]
 [--match matching-condition]

(4) Options and arguments

(a) -v or --verbose
Specify this option if you want to display the details of the command execution results.

(b) -d path-name-of-store-data-file-storage-location or --directory path-name-of-
store-data-file-storage-location

This option specifies the path name of the store data file storage location.

Specify this option if you want to display a list of store data files that are located under a specified directory.

The path name cannot be a directory that contains an asterisk (*), double quotation mark ("), question mark (?), vertical
bar (|), less-than sign (<), or greater-than sign (>).

If a relative path is specified as the path of the store data file storage location, the specified path is treated as being
relative to the management directory.

(c) --format format-name
For details about this option, see 14.4.2 How to specify the display format.

(d) --columns column-name[,column-name]...
For details about this option, see 14.4.3 How to specify column filters.

(e) --filter filter-condition
For details about this option, see 14.4.4 How to specify row filters.

(f) --match matching-condition
For details about this option, see 14.4.5 How to specify a condition match.

(5) Output example
The following shows output examples of the eztool listesd command's execution results.

For details about the components of the displayed information, see 14.4.1 Components of the displayed information.

 If option -v or --verbose is omitted

14. Command Reference

Hitachi Elastic Application Data Store 329

 If option -v or --verbose is specified

The following tables list and describe the summary and content information that are displayed.

Table 14‒16: Summary information displayed by the eztool listesd command

No. Summary name Description Whether displayed

-v or --verbose option

Omitted Specified

1 TotalCount Total number of store data file keys Y Y

2 export Number of store data file keys and the upper limit on the
number of generations of the store data files that are
output when the eztool export command (with the
argument omitted) is executed
This information is displayed in the following format:
Number of store data file keys/upper limit on the number
of generations
This information is not displayed if 0 is specified as the
upper limit on the number of generations.

Y Y

3 stop Number of store data file keys and the upper limit on the
number of generations of the store data files that are
output when the eztool stop command is executed
This information is displayed in the following format:
Number of store data file keys/upper limit on the number
of generations
This information is not displayed if 0 is specified as the
upper limit on the number of generations.

Y Y

14. Command Reference

Hitachi Elastic Application Data Store 330

No. Summary name Description Whether displayed

-v or --verbose option

Omitted Specified

4 other Number of store data file keys of store data files that are
output when the eztool export command (with an
argument and the -s or --single option specified) is
executed

Y Y

5 latest Store data file keys of the store data files that are to be
imported when the eztool import command (with the
argument omitted) is executed
If there are no applicable store data file keys, none is
displayed.

Y Y

Legend:
Y: Displayed

Table 14‒17: Content information displayed by the eztool listesd command

No. Column name Description Whether displayed

-v or --verbose option

Omitted Specified

1 Type Types of store data files#

One of the following is displayed:
• export

Store data files that are output when the eztool
export command (with the argument omitted) is
executed

• stop
Store data files that are output when the eztool
stop command is executed

• other
Store data files that are output when the eztool
export command (with an argument and the -s or
--single option specified) is executed

Y Y

2 StoreDataFileKey Store data file keys#

The store data file keys are displayed in ascending order
of the ASCII code.

Y Y

3 FileName Store data file name N Y

4 FileSize(MB) Store data file size (megabytes)
The digits after the decimal point are truncated.

N Y

5 Server IP address of the EADS server containing the store data
files and the port number of the EADS server that is used
to communicate with the EADS client
This information is displayed in the following format:
IP address:port number

N Y

6 AbsolutePath Store data file name (absolute path) N Y

Legend:
Y: Displayed

14. Command Reference

Hitachi Elastic Application Data Store 331

N: Not displayed

Notes:
The execution results are displayed according to the following priorities:

1. The value of Type is displayed in the order of export, stop, and other.

2. The rows for the same Type value are displayed in natural order of the StoreDataFileKey values.

3. If the -v or --verbose option is specified, the rows for the same Type and StoreDataFileKey values
are displayed in natural order of the Server values.

#
If the execution results contain multiple cells with the same value consecutively, only the first such cell is displayed
and the other cells are omitted.

(6) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒18: Return codes returned by the eztool listesd command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be
executed.

7 150 The command failed during execution.

8 200 The command failed due to a timeout.

When the --match option is specified:
If the condition was satisfied, the subcommand returns 0; otherwise, the subcommand returns 1. If the command's
execution failed, the return code is the same as when the --match option is not specified.

(7) Notes
If the command times out during output processing, the output results might not be complete. The command might time
out even if output processing is complete. If this happens, increase the command's timeout value, and then re-execute
the command.

14. Command Reference

Hitachi Elastic Application Data Store 332

14.3.8 listgroup (displays a list of group names)

(1) Description
This subcommand displays a list of the group hierarchy names of the groups in the highest hierarchy that are stored in
a cache.

(2) Rules
• You can execute this subcommand when the EADS server is running.

• This subcommand executes in descending order of the EADS server positions (Position).

• This subcommand can be executed if the number of groups at the highest hierarchy in the target range does not
exceed 1,000, based on a check performed prior to execution of the subcommand.

(3) Format

eztool listgroup [-s] [-v] [-f maximum-number-of-groups-during-forced-
execution]
 cache-name
 [--format format-name]
 [--columns column-name[,column-name]...]
 [--filter filter-condition]
 [--match matching-condition]

(4) Options and arguments

(a) -s or --single
Specify this option to display the group hierarchy names at the highest hierarchy for only the EADS server that stores
the specified groups and on which this subcommand is executed.

(b) -v or --verbose
Specify this option if you want to display the details of the command's execution results.

(c) -f maximum-number-of-groups-during-forced-execution or --force maximum-
number-of-groups-during-forced-execution

Specify this option when the number of groups in the target range is greater than 1,000 and you want to increase the
maximum number of groups that can be processed by the subcommand, and then forcibly execute the subcommand.

Note that when this subcommand is executed with the maximum value increased, its processing might not be completed
successfully and a large amount of EADS server resources might be used.

You can specify an integer in the range from 1001 to 10000 for the maximum number of groups.

Important note
Consider specifying this option when the number of groups in the target range is not too much greater than
1,000.

14. Command Reference

Hitachi Elastic Application Data Store 333

If the total number of groups in the highest hierarchy stored in any one of the EADS servers does not exceed
1,000, we recommend that instead of specifying this option, you execute the eztool listgroup command
sequentially on each EADS server with the -s or --single option specified.

(d) cache-name
Specify the name of the cache for which group names are to be displayed.

The following characters are permitted for a cache name:

• If cache property files were not used to create caches
A maximum of 32 single-byte characters in ASCII codes 0x20 to 0x7E

• If cache property files were used to create caches
A maximum of 32 single-byte alphanumeric characters (0 to 9, A to Z, and a to z)

(e) --format format-name
For details about this option, see 14.4.2 How to specify the display format.

(f) --columns column-name[,column-name]...
For details about this option, see 14.4.3 How to specify column filters.

(g) --filter filter-condition
For details about this option, see 14.4.4 How to specify row filters.

(h) --match matching-condition
For details about this option, see 14.4.5 How to specify a condition match.

(5) Output example
The following shows output examples of the eztool listgroup command's execution results.

For details about the components of the displayed information, see 14.4.1 Components of the displayed information.

 If option -v or --verbose is omitted

14. Command Reference

Hitachi Elastic Application Data Store 334

 If option -v or --verbose is specified

The following tables list and describe the summary and content information that are displayed.

Table 14‒19: Summary information displayed by the eztool listgroup command

No. Summary name Description Whether displayed

-v or --verbose option

Omitted Specified

1 GroupCount Number of groups in the highest hierarchy that are stored on
EADS servers

Y Y

14. Command Reference

Hitachi Elastic Application Data Store 335

Legend:
Y: Displayed

Table 14‒20: Content information displayed by the eztool listgroup command

No. Column name Description Whether displayed

-v or --verbose option

Omitted Specified

1 Server EADS server's IP address and port number used to communicate
with the EADS clients.#

This information is displayed in the following format:
IP address:port number

Y Y

2 Position Location (hash value) of an EADS server# Y Y

3 ID EADS server ID# Y Y

4 GroupName Group hierarchy name in the highest hierarchy Y Y

5 HashValue Location (hash value) of a group in the highest hierarchy N Y

6 KeyCount Number of keys belonging to the groups in the highest hierarchy N Y

Legend:
Y: Displayed
N: Not displayed

Notes:
The execution results are displayed according to the following priorities:

1. The results are displayed in descending order of the Position values.

2. The rows with the same Position value are displayed in natural order of the GroupName values. If the -v
or --verbose option is specified, the rows with the same Position value are displayed in descending order
of the HashValue values.

#
If the execution results contain multiple cells with the same value consecutively, only the first such cell is displayed
and the other cells are omitted.

(6) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒21: Return codes returned by the eztool listgroup command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 120 The command failed due to a syntax error.

14. Command Reference

Hitachi Elastic Application Data Store 336

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

4 150 The command failed during execution.

5 200 The command failed due to a timeout.

When the --match option is specified:
If the condition was satisfied, the subcommand returns 0; otherwise, the subcommand returns 1. If the command's
execution failed, the return code is the same as when the --match option is not specified.

(7) Notes
• This subcommand enables you to check a list of group hierarchy names in the highest hierarchy without having to

create an application program. However, if the number of groups in the highest hierarchy in the target range exceeds
1,000, you need to create an application program.

• If group hierarchy names in the highest hierarchy are added while this subcommand is executing, the following
occurs, depending on the area where the group hierarchy names are stored:

• If the group hierarchy names are stored in an area for which group names have already been acquired
The added group hierarchy names are not displayed in the list.

• If the group hierarchy names are stored in an area for which group names have not been acquired
The added group hierarchy names are displayed in the list.

Note that the number of group hierarchy names in the highest hierarchy is checked before the list of group names
is actually acquired. If a large number of keys that include new group names are added after that check, the group
names that exceed the maximum value are included in the display.

• If the command times out during output processing, the output results might not be complete. The command might
time out even if output processing is complete. If this happens, increase the command's timeout value, and then re-
execute the command.

• If the target range contains a large number of group names, the amount of resources required for processing increases.

• The number of keys that do not belong to a group cannot be checked.

• If EADS servers are added to or restored in the cluster while this subcommand is executing, the added or restored
EADS servers are not included as processing targets. As a result, some group names might not be displayed. If this
occurs, re-execute the subcommand.

14.3.9 listkey (displays a list of keys)

(1) Description
This subcommand displays a list of keys that are stored in a cache.

(2) Rules
• You can execute this subcommand when the EADS server is running.

• This subcommand executes in descending order of the EADS server positions (Position).

14. Command Reference

Hitachi Elastic Application Data Store 337

• This subcommand can be executed if the number of keys in the target range does not exceed 1,000, based on a check
performed prior to execution of the subcommand.

(3) Format

eztool listkey [-g group-name|-s] [-f maximum-number-of-keys-during-forced-
execution]
 cache-name
 [--format format-name]
 [--columns column-name[,column-name]...]
 [--filter filter-condition]
 [--match matching-condition]

(4) Options and arguments

(a) -g group-name or --group group-name
Specify this option to display only those keys that belong to the specified group.

For details about the data that can be specified as group names, see 15.2.2(2) Data that can be specified as group names.

(b) -s or --single
Specify this option if you want to display only those keys stored on the EADS server on which this subcommand is
executed.

(c) -f maximum-number-of-keys-during-forced-execution or --force maximum-
number-of-keys-during-forced-execution

Specify this option when the number of keys in the target range is greater than 1,000 and you want to increase the
maximum number of keys that can be processed by the subcommand, and then forcibly execute the subcommand.

Note that when this subcommand is executed with the maximum value increased, its processing might not be completed
successfully and a large amount of EADS server resources might be used.

You can specify an integer in the range from 1001 to 10000 for the maximum number of keys.

Important note
Consider specifying this option when the number of keys in the target range is not too much greater than 1,000.

• If the total number of keys stored in any one of the EADS servers does not exceed 1,000, we recommend
that instead of executing this operation, you execute the eztool listkey command sequentially on each
EADS server with the -s or --single option specified.

• If the total number of keys that belong to any one of the groups in the highest hierarchy does not exceed
1,000, execute the eztool listkey command with the -g or --group option specified sequentially
for each group with the group hierarchy name in the highest hierarchy obtained by using the eztool
listgroup command (note that keys that do not belong to groups cannot be checked by this method).

(d) cache-name
Specify the name of the cache for which keys are to be displayed.

14. Command Reference

Hitachi Elastic Application Data Store 338

The following characters are permitted for a cache name:

• If cache property files were not used to create caches
A maximum of 32 single-byte characters in ASCII codes 0x20 to 0x7E

• If cache property files were used to create caches
A maximum of 32 single-byte alphanumeric characters (0 to 9, A to Z, and a to z)

(e) --format format-name
For details about this option, see 14.4.2 How to specify the display format.

(f) --columns column-name[,column-name]...
For details about this option, see 14.4.3 How to specify column filters.

(g) --filter filter-condition
For details about this option, see 14.4.4 How to specify row filters.

(h) --match matching-condition
For details about this option, see 14.4.5 How to specify a condition match.

(5) Output example
The following shows output examples of the eztool listkey command's execution results.

For details about the components of the displayed information, see 14.4.1 Components of the displayed information.

The following tables list and describe the summary and content information that are displayed.

14. Command Reference

Hitachi Elastic Application Data Store 339

Table 14‒22: Summary information displayed by the eztool listkey command

No. Summary name Description

1 KeyCount Number of keys in the specified range

Table 14‒23: Content information displayed by the eztool listkey command

No. Column name Description

1 Server EADS server's IP address and port number used to communicate with the EADS clients.#

This information is displayed in the following format:
IP address:port number

2 Position Location (hash value) of an EADS server#

3 ID EADS server ID#

4 Key Keys in the specified range

Notes:
The execution results are displayed according to the following priorities:

1. The results are displayed in descending order of the Position values.

2. The rows with the same Position value are displayed in natural order of the Key values.

#
If the execution results contain multiple cells with the same value consecutively, only the first such cell is displayed
and the other cells are omitted.

(6) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒24: Return codes returned by the eztool listkey command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 120 The command failed due to a syntax error.

4 150 The command failed during execution.

5 200 The command failed due to a timeout.

When the --match option is specified:
If the condition was satisfied, the subcommand returns 0; otherwise, the subcommand returns 1. If the command's
execution failed, the return code is the same as when the --match option is not specified.

14. Command Reference

Hitachi Elastic Application Data Store 340

(7) Notes
• This subcommand enables you to check a list of keys without having to create an application program. However, if

the number of keys in the target range exceeds 1,000, you need to create an application program.

• If keys are added while this subcommand is executing, the following occurs, depending on the area where the added
keys are stored:

• If the added keys are stored in an area for which a list has already been acquired
The added keys are not displayed in the list.

• If the added keys are stored in an area for which a list of keys has not been acquired
The added keys are displayed in the list.

Note that the number of keys is checked before the list of keys is actually acquired. If a large number of keys are
added after that check, the keys that exceed the maximum value are included in the display.

• If the command times out during output processing, the output results might not be complete. The command might
time out even if output processing is complete. If this happens, increase the command's timeout value, and then re-
execute the command.

• If a large amount of data is stored, the amount of resources required for processing increases.

• If EADS servers are added to or restored in the cluster while this subcommand is executing, the added or restored
EADS servers are not included as processing targets. As a result, some keys might not be displayed. If this occurs,
re-execute the subcommand.

14.3.10 getposition (displays data storage locations)

(1) Description
This subcommand displays the EADS servers that store a specified key or group.

(2) Rules
• This subcommand can be executed only when the status of the cluster is one of the following:

• Cluster available (AVAILABLE)

• Cluster partially available (PARTIALLY_AVAILABLE)

• This subcommand can be executed when the EADS servers are in the following status:

• Initializing

• Initialized

• Running

• Closing

• Closed

• Isolated

• Stopping

• If the -l or --local option is specified, this subcommand can be executed regardless of the cluster or EADS
server status.

14. Command Reference

Hitachi Elastic Application Data Store 341

• If an EADS server to be added to the cluster has not yet participated in the cluster, this subcommand cannot be
executed on that EADS server.

(3) Format

eztool getposition key-or-group-name [-l]
 [--format format-name]
 [--columns column-name[,column-name]...]
 [--filter filter-condition]
 [--match matching-condition]

(4) Options and arguments

(a) key-or-group-name
Specify the key name or group name associated with the data whose storage EADS servers are to be displayed.

For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys or 15.2.2(2) Data
that can be specified as group names.

(b) -l or --local
Specify this option if you want to know whether the EADS server stores the specified key or group in the cluster
configuration set up in the cluster properties.

When this option is specified, the command imports the contents of the cluster property file for the EADS server on
which the command was executed.

An error occurs in the following cases:

• There is no cluster property file on the EADS server on which the command is executed.

• The eads.node.EADS-server-ID.address and eads.node.EADS-server-ID.port parameters are not
defined in the cluster properties.

Important note
If you want to know from the cluster information currently in use which EADS servers store the specified key
or group, execute the subcommand without specifying this option.

If this option is omitted, the subcommand does not display information about the EADS servers that are shut
down. Check the data copy status by comparing the number of displayed EADS servers with the value of
ReplicationCount (data multiplicity).

(c) --format format-name
For details about this option, see 14.4.2 How to specify the display format.

(d) --columns column-name[,column-name]...
For details about this option, see 14.4.3 How to specify column filters.

14. Command Reference

Hitachi Elastic Application Data Store 342

(e) --filter filter-condition
For details about this option, see 14.4.4 How to specify row filters.

(f) --match matching-condition
For details about this option, see 14.4.5 How to specify a condition match.

(5) Output example
The following shows an output example of the eztool getposition command's execution results.

For details about the components of the displayed information, see 14.4.1 Components of the displayed information.

The following tables list and describe the summary and content information that are displayed.

Table 14‒25: Summary information displayed by the eztool getposition command

No. Summary name Description

1 ReplicationCount Data multiplicity

2 HashValue Hash value of the specified key or group name

Table 14‒26: Content information displayed by the eztool getposition command

No. Column name Description

1 No. Data priority#

Displayed in ascending order.

2 IP_Address IP address of EADS server

3 ClientPort EADS server's port number used for communication with the EADS clients

4 Position Location of EADS server (hash value)

#
If redundant copies of data have been created, this information is displayed in order, beginning with the EADS server
on which the original data is stored, followed by the EADS servers to which the data has been copied.
In this example, No.1 indicates the EADS server on which the original data is stored and the subsequent numbers
starting with No.2 indicate the EADS servers to which data has been copied.

(6) Return code
The following table lists the return codes that this subcommand returns.

14. Command Reference

Hitachi Elastic Application Data Store 343

Table 14‒27: Return codes returned by the eztool getposition command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be
executed.

7 150 The command failed during execution.

8 200 The command failed due to a timeout.

When the --match option is specified:
If the condition was satisfied, the subcommand returns 0; otherwise, the subcommand returns 1. If the command's
execution failed, the return code is the same as when the --match option is not specified.

(7) Notes
• If the command times out during output processing, the output results might not be complete. The command might

time out even if output processing is complete. If this happens, increase the command's timeout value, and then re-
execute the command.

• This subcommand results in an error if all EADS servers are isolated.

14.3.11 storeusage (checks the usage status of ranges and caches)

(1) Description
This subcommand displays the number of keys stored in and the amount of memory usage for each range. The
subcommand also displays the upper limits of the total data restrictions that have been set for the ranges and caches.

(2) Rules
• This subcommand can be executed only when the status of the cluster is one of the following:

• Cluster available (AVAILABLE)

• Cluster partially available (PARTIALLY_AVAILABLE)

• The target of this subcommand is the EADS servers whose cluster participation status is online. This subcommand
cannot be executed if the cluster contains any EADS server whose cluster participation status is standby. You can
determine the cluster participation status with the eztool status command.

• This subcommand can be executed when the target EADS servers are in the following status:

14. Command Reference

Hitachi Elastic Application Data Store 344

• Initializing

• Initialized

• Running

• Closing

• Closed

(3) Format

eztool storeusage [--replica|--cache cache-name]
 [--format format-name]
 [--columns column-name[,column-name]...]
 [--filter filter-condition]
 [--match matching-condition]

(4) Options and arguments

(a) --replica
Specify this option to also include the number of keys copied for data redundancy purposes.

If this option is omitted, the number of keys copied for data redundancy purposes is not included.

(b) --cache cache-name
Specify this option if you want to display the number of keys and memory usage amount for each range in a specific
cache. For a disk cache or two-way cache, the disk usage amount and its upper limit value are displayed.

The following characters are permitted for a cache name:

• If cache property files were not used to create caches
A maximum of 32 single-byte characters in ASCII codes 0x20 to 0x7E

• If cache property files were used to create caches
A maximum of 32 single-byte alphanumeric characters (0 to 9, A to Z, and a to z)

If this option is omitted, the sum of the numbers of keys in all caches that are obtained for each range is displayed as
the total number of keys.

(c) --format format-name
For details about this option, see 14.4.2 How to specify the display format.

(d) --columns column-name[,column-name]...
For details about this option, see 14.4.3 How to specify column filters.

(e) --filter filter-condition
For details about this option, see 14.4.4 How to specify row filters.

(f) --match matching-condition
For details about this option, see 14.4.5 How to specify a condition match.

14. Command Reference

Hitachi Elastic Application Data Store 345

(5) Output example
The following shows output examples of the eztool storeusage command's execution results.

For details about the components of the displayed information, see 14.4.1 Components of the displayed information.

 When the --replica option and the --cache option are both omitted

 When the --replica option is specified

 When the --cache option is specified

The following table lists and describes the content information that is displayed.

Table 14‒28: Content information displayed by the eztool storeusage command

No. Column name Description Whether displayed

Specification of --replica and --cache options

Both
omitted

--replica
option
specified

---cache
option
specified

1 RangeID Range ID Y Y Y

2 StartPosition Start position (hash value) of each range#1

The positions (hash values) are displayed in
descending order.

Y Y Y

3 EndPosition End position (hash value) of each range#1 Y Y Y

14. Command Reference

Hitachi Elastic Application Data Store 346

No. Column name Description Whether displayed

Specification of --replica and --cache options

Both
omitted

--replica
option
specified

---cache
option
specified

4 Server IP address of the data storage EADS server in each
range and the EADS server's port number used to
communicate with the EADS clients.#2

This information is displayed in the following
format:
IP address:port number

Y Y Y

5 StoredExternalH
eapSize

Amount of total memory usage in memory caches
and two-way caches#3 (megabytes)
• The digits after the decimal point are truncated.
• The memory usage amount for a disk cache is

treated as 0.

Y Y Y

6 ExternalHeapSiz
eLimit

Maximum memory usage amount#3,#4 (megabytes)
For a disk cache, 0 is displayed.

Y N N

7 StoredDiskSize Disk usage amount of disk caches or two-way
caches#3,#5 (megabytes)
The digits after the decimal point are truncated.

N N Y

8 DiskSizeLimit Maximum disk usage amount of disk caches or two-
way caches#3,#4,#5 (megabytes)

N N Y

9 RangeKeyCount Total number of keys in each range#3

This value does not include the number of keys
copied for data redundancy purposes.

Y N Y

10 KeyCountLimit Upper limit of the total number of keys in each
range#3,#4

This does not include the number of keys copied for
data redundancy purposes.

Y N N

11 KeyCount(Server
ID:x
Position:y)#6

Total number of keys in each range for each EADS
server#3

• This includes the number of keys copied for data
redundancy purposes.

• This does not include the number of keys on
isolated or inactive EADS servers.

• If redundant copies of data are created, this
information is displayed in descending order of
the locations (hash values) of the EADS servers.

• Because this value is acquired when the
command is executed, the value might not match
between the EADS server on which the original
data is stored and the EADS servers to which the
data has been copied.

• Nothing is displayed for an EADS server that is
neither the EADS server on which the original
data is stored nor an EADS server to which the
data has been copied.

N Y N

Legend:
Y: Displayed

14. Command Reference

Hitachi Elastic Application Data Store 347

N: Not displayed

#1
Each range is as follows:

• If the StartPosition value is less than the EndPosition value
Range from the StartPosition value to the EndPosition value

• If the StartPosition value is greater than the EndPosition value
Range that combines the following ranges:

 From the StartPosition value to 2,147,483,647
 from -2,147,483,648 to the EndPosition value

#2
A hyphen (-) is displayed if the EADS server on which the original data in the corresponding range is stored and
the EADS servers to which the data in the corresponding range is to be copied are all isolated or in process down
status.

#3
A hyphen (-) is displayed if information for the corresponding range cannot be acquired.

#4
A hyphen (-) is displayed if the total data restriction function is disabled.

#5
A hyphen (-) is displayed for a memory cache.

#6
For x, the EADS server's server ID is displayed. For y, the EADS server's location (hash value) is displayed.

(6) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒29: Return codes returned by the eztool storeusage command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be
executed.

7 150 The command failed during execution.

8 200 The command failed due to a timeout.

14. Command Reference

Hitachi Elastic Application Data Store 348

When the --match option is specified:
If the condition was satisfied, the subcommand returns 0; otherwise, the subcommand returns 1. If the command's
execution failed, the return code is the same as when the --match option is not specified.

(7) Notes
• If the command times out during output processing, the output results might not be complete. The command might

time out even if output processing is complete. If this happens, increase the command's timeout value, and then re-
execute the command.

• This subcommand might fail during scale-out processing because the cluster configuration is changed.

14.3.12 unlock (unlock)

(1) Description
This subcommand unlocks a command.

For details, see 14.3.1 Locking between commands.

(2) Rules
• This subcommand can be executed only when the status of the cluster is one of the following:

• Cluster available (AVAILABLE)

• Cluster partially available (PARTIALLY_AVAILABLE)

• The target of this subcommand is the EADS servers whose cluster participation status is online. However, the
subcommand cannot be executed in the following cases:

• An operation is underway.

• The cluster contains any EADS server whose cluster participation status is standby.

You can determine the cluster participation status with the eztool status command.

• This subcommand can be executed when the target EADS servers are in the following status:

• Initialized

• Running

• Closed

(3) Format

eztool unlock

(4) Return code
The following table lists the return codes that this subcommand returns.

14. Command Reference

Hitachi Elastic Application Data Store 349

Table 14‒30: Return codes returned by the eztool unlock command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be
executed.

7 131 The command failed because another command was
executing.

8 150 The command failed during execution.

9 200 The command failed due to a timeout.

(5) Notes
This subcommand results in an error if all EADS servers are isolated.

14.3.13 createcache (creates a cache)

(1) Description
This subcommand creates a cache.

You can create a maximum of 16 caches, including memory caches, disk caches, and two-way caches.

(2) Rules
• You can execute this subcommand when the cluster's status is AVAILABLE.

• The target of this subcommand is the EADS servers whose cluster participation status is online. This subcommand
cannot be executed if the cluster contains any EADS server whose cluster participation status is standby. You can
determine the cluster participation status with the eztool status command.

• This subcommand can be executed when the target EADS servers are in the following status:

• Initialized

• Closed

• To prevent a full garbage collection (FullGC) from occurring while operations are underway, each EADS server
performs FullGC when this subcommand terminates.

14. Command Reference

Hitachi Elastic Application Data Store 350

• While this subcommand has obtained a lock from an EADS server, the EADS server is not isolated. However, if
processing is shut down or the EADS server terminates while the subcommand has the lock, the lock is released,
and then the EADS server is isolated.

(3) Format

eztool createcache cache-name

(4) Options and arguments

(a) cache-name
Specify a name for the cache you are creating.

The following characters are permitted for a cache name:

• If cache property files are not used
A maximum of 32 single-byte characters in ASCII codes 0x20 to 0x7E

• If cache property files are used
A maximum of 32 single-byte alphanumeric characters (0 to 9, A to Z, and a to z)

(5) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒31: Return codes returned by the eztool createcache command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be
executed.

7 131 The command failed because another command was
executing.

8 150 The command failed during execution.

9 200 The command failed due to a timeout.

(6) Notes
• If no cache property file has been created, a memory cache is created.

14. Command Reference

Hitachi Elastic Application Data Store 351

• If the cache type is memory cache or two-way cache, an error results if either of the following conditions, as
applicable, is satisfied:

• Condition when the total data restriction function is enabled
The value obtained by dividing the size of the area that stores the value part of the
eads.java.external.heapsize parameter in the shared properties by the number of redundant copies
of data plus the original is less than 1 megabyte.

• Condition when the total data restriction function is disabled
The size of the area that stores the value part of the eads.java.external.heapsize parameter in the
shared properties is zero.

• When a cache is created, the number of threads created for the cache is 2 (data multiplicity 2 - 1). Note that,
as the number of threads increases, the amount of memory used also increases.

• If cache creation processing fails, use one of the following methods to create the cache again:

• Execute the eztool listcache command to determine if the cache exists. If it does exist, use the eztool
deletecache command to delete the cache, and then re-create the cache.

• If the cache type is disk cache or two-way cache, execute the eztool listecf command to determine if the
cache files exist. If they do exist, use the eztool deleteecf command to delete the cache files, and then re-
create the cache.

• Check the parameter values specified in the cache property file. If the parameter values are invalid, correct them,
and then re-create the cache.

• Check the eads.java.external.heapsize parameter value in the shared properties. If the parameter
value is invalid, correct it, and then re-create the cache.

14.3.14 deletecache (deletes a cache)

(1) Description
This subcommand deletes a cache.

When executed, this subcommand deletes a specified cache and the data contained in it.

(2) Rules
• You can execute this subcommand when the cluster's status is AVAILABLE.

• The target of this subcommand is the EADS servers whose cluster participation status is online. This subcommand
cannot be executed if the cluster contains any EADS server whose cluster participation status is standby. You can
determine the cluster participation status with the eztool status command.

• This subcommand can be executed when the target EADS servers are in the following status:

• Initialized

• Closed

• To prevent a full garbage collection (FullGC) from occurring while operations are underway, each EADS server
performs FullGC when this subcommand terminates.

• While this subcommand has obtained a lock from the EADS server, the EADS server is not isolated. However, if a
process is shut down or the EADS server terminates while the subcommand has the lock, the lock is released, and
then the EADS server is isolated.

14. Command Reference

Hitachi Elastic Application Data Store 352

(3) Format

eztool deletecache cache-name
 [--with_deleteecf]

(4) Options and arguments

(a) cache-name
Specify the name of cache you want to delete.

The following characters are permitted for a cache name:

• If cache property files were not used to create caches
A maximum of 32 single-byte characters in ASCII codes 0x20 to 0x7E

• If cache property files were used to create caches
A maximum of 32 single-byte alphanumeric characters (0 to 9, A to Z, and a to z)

(b) --with_deleteecf
If you are deleting a disk cache or two-way cache, specify this option to also delete the cache files.

(5) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒32: Return codes returned by the eztool deletecache command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be
executed.

7 131 The command failed because another command was
executing.

8 150 The command failed during execution.

9 200 The command failed due to a timeout.

14. Command Reference

Hitachi Elastic Application Data Store 353

14.3.15 export (exports data)

(1) Description
This subcommand exports data from memory caches to store data files.

If there is no memory cache, this subcommand does not execute.

(2) Rules
• You can execute this subcommand when the cluster's status is AVAILABLE.

• The target of this subcommand is the EADS servers whose cluster participation status is online. This subcommand
cannot be executed if the cluster contains any EADS server whose cluster participation status is standby. You can
determine the cluster participation status with the eztool status command.

• You can execute this subcommand when the target EADS servers are closed.

• When the -s or --single option is specified, the subcommand can be executed on an EADS server that is in any
of the following statuses, regardless of the cluster's status:

• Initialized

• Running

• Closing

• Closed

• Isolated

• To prevent a full garbage collection (FullGC) from occurring while operations are underway, each EADS server
performs FullGC when this subcommand terminates. If the -s or --single option is specified, FullGC is not
performed.

• While this subcommand has obtained a lock from the EADS server, the EADS server is not isolated. However, if a
process is shut down or the EADS server terminates while the subcommand has the lock, the lock is released, and
then the EADS server is isolated.

(3) Format

eztool export [-s]
 [-d path-name-of-store-data-file-output-destination]
 [store-data-file-key]

(4) Options and arguments

(a) -s or --single
Specify this option to export only the data retained by the EADS server that executes the command, not the data that is
retained in the entire cluster.

For example, specify this option to back up data from an isolated EADS server.

A lock is not obtained from the EADS server when this option is specified. Operation is not guaranteed if caches are
deleted, if data is deleted from caches, or if store data files are deleted during data export processing. Note also that the
operation is not displayed by the eztool status command as being underway.

14. Command Reference

Hitachi Elastic Application Data Store 354

(b) -d path-name-of-store-data-file-output-destination or --directory path-name-of-
store-data-file-output-destination

This option specifies the path name of the store data file output destination.

Specify this option if you want to export a store data file to a specified directory.

The path name cannot be a directory that contains an asterisk (*), double quotation mark ("), question mark (?), vertical
bar (|), less-than sign (<), or greater-than sign (>).

If you specify a relative path for the path name of the store data file output destination, the path is relative to the
management directory of each EADS server.

(c) store-data-file-key
This option specifies the store data file key of a store data file.

A store data file key is expressed as a maximum of 32 single-byte characters. The permitted characters are alphanumeric
characters (0 to 9, A to Z, and a to z), underscores (_), and hyphens (-).

The prefix eads_ or eads_single_ and the suffix _EADS-server-ID.extension (where the extension is .esd) are
added automatically to the store data file key.

If the store data file key is omitted, the command execution date and time become the store data file key, as shown in
the following table:

-s or --single
option

Store data file name Generation
management

Omitted eads_YYYYMMDDhhmmss_EADS-server-ID.esd Enabled

Specified eads_single_YYYYMMDDhhmmss_EADS-server-ID.esd Disabled

Legend:
YYYYMMDDhhmmss: Command execution date and time
YYYY: year, MM: month, DD: day, hh: hour (00 through 23), mm: minute, ss: second

(5) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒33: Return codes returned by the eztool export command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

14. Command Reference

Hitachi Elastic Application Data Store 355

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be
executed.

7 131 The command failed because another command was
executing.

8 150 The command failed during execution.

9 200 The command failed due to a timeout.

(6) Notes
If a store data file key is specified in either of the formats shown below, the store data file might become subject to
generation management. If you do not want to manage store data file generations, specify the store data file key in a
different format.

• Format assumed when the store data file key is omitted
eads_YYYYMMDDhhmmss_EADS-server-ID.esd

• Format of the store data file name that is output when the eztool stop command is executed
eads_stop_YYYYMMDDhhmmss_EADS-server-ID.esd

Legend:
YYYYMMDDhhmmss: Command execution date and time
YYYY: year, MM: month, DD: day, hh: hour (00 through 23), mm: minute, ss: second

Note that if the store data file key is specified in the format of the store data file name that is output when the eztool
stop command is executed, the store data file might be deleted. For details, see 7.6.2 Specifying the number of store
data file generations.

14.3.16 import (imports data)

(1) Description
This subcommand imports data from the store data files to which data has been exported from memory caches.

The subcommand relocates data by importing (put) the data from store data files.

(2) Rules
• You can execute this subcommand when the cluster's status is AVAILABLE.

• The target of this subcommand is the EADS servers whose cluster participation status is online. This subcommand
cannot be executed if the cluster contains any EADS server whose cluster participation status is standby. You can
determine the cluster participation status with the eztool status command.

14. Command Reference

Hitachi Elastic Application Data Store 356

• You can execute this subcommand when the target EADS servers are in initialized status.

• To prevent a full garbage collection (FullGC) from occurring while operations are underway, each EADS server
performs FullGC when this subcommand terminates.

• While this subcommand has obtained a lock from the EADS server, the EADS server is not isolated. However, if a
process is shut down or the EADS server terminates while the subcommand has the lock, the lock is released, and
then the EADS server is isolated.

(3) Format

eztool import [-d path-name-of-store-data-file-storage-location]
 [--convertid EADS-server-ID-conversion-rule]
 [store-data-file-key]

(4) Options and arguments

(a) -d path-name-of-store-data-file-storage-location or --directory path-name-of-
store-data-file-storage-location

This option specifies the path name of the store data file storage location.

Specify this option to import only the store data files located in the specified directory.

The path name cannot be a directory that contains an asterisk (*), double quotation mark ("), question mark (?), vertical
bar (|), less-than sign (<), or greater-than sign (>).

If you specify a relative path for the path name of the store data file storage location, the path is relative to the management
directory of each EADS server.

(b) --convertid EADS-server-ID-conversion-rule
Specify this option if you have grouped keys by specifying the EADS server ID of the storage location (EADS server
ID specified groups are used) and if you want to convert the specified EADS server ID to another EADS server ID and
import data.

Specify the EADS server ID conversion rule in the following format:

source-EADS-server-ID>target-EADS-server-ID

You can specify for the source EADS server ID and the target EADS server ID an integer in the range from 1 to 96 (a
two digit integer beginning with zero, such as 01 and 02, cannot be specified).

The target EADS server ID must differ from the source EADS server ID.

If you specify multiple EADS server ID conversion rules, delimit them with the comma. When multiple EADS server
ID conversion rules are specified, the order in which the rules are specified has no effect on the priority. Note that the
same source EADS server ID cannot be specified more than once.

The following characters and character strings are ignored:

• Comma at the beginning or at the end
Example: --convertid ,1>2,

14. Command Reference

Hitachi Elastic Application Data Store 357

• Null character string delimited by commas or a character string consisting of only spaces that is delimited by commas
Example: --convertid 1>2,, ,

(c) store-data-file-key
This option specifies the store data file key of a store data file.

Specify the store data file key of a store data file that was output by the eztool export or eztool stop command.

If the store data file key is omitted, the store data file with the most recent store data file key displayed in latest by
the eztool listesd command is imported automatically.

A store data file with the following name will be imported:

Command used to output the store data
file

Store data file name

eztool export eads_YYYYMMDDhhmmss_EADS-server-ID.esd

eztool stop eads_stop_YYYYMMDDhhmmss_EADS-server-ID.esd

Legend:
YYYYMMDDhhmmss: Command execution date and time
YYYY: year, MM: month, DD: day, hh: hour (00 through 23), mm: minute, ss: second

If an EADS server or the store data file storage directory contains multiple store data files, this subcommand
automatically imports the store data file with the most recent command execution date and time.

If there are multiple store data file with the same command execution date and time (with only the EADS server ID
being different), the subcommand imports all the applicable store data files.

If a store data file output by the eztool export command has the same command execution date and time as a store
data file output by the eztool stop command, the subcommand imports the store data file output by the eztool
export command.

(5) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒34: Return codes returned by the eztool import command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

14. Command Reference

Hitachi Elastic Application Data Store 358

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

6 130 The command failed because it could not be
executed.

7 131 The command failed because another command was
executing.

8 150 The command failed during execution.

9 200 The command failed due to a timeout.

(6) Notes
• The subcommand does not import a corrupted or invalid store data file.

• If data is imported from a store data file that was created by an EADS server whose version is earlier than 03-00,
valid operation is not guaranteed.

• Processing of the subcommand might require a considerable amount of time depending on the number of data items
and the amount of data because data items are added again individually.

• When data imported (put) from a store data file and data already in the cache have the same key name, the
subcommand checks the key update dates and times and overwrites the data already in the cache only when the
data's update date and time in the store data file are the more recent.

• When data with keys including EADS server ID specified groups is added and there is no range for a specified
EADS server ID, the subcommand does not add that data. If this happens, a one-time warning message is issued.

• The total data restriction function is disabled while this subcommand is executing.

14.3.17 deleteesd (deletes store data files)

(1) Description
This subcommand deletes specified store data files from the cluster.

(2) Rules
• This subcommand can be executed only when the status of the cluster is one of the following:

• Cluster available (AVAILABLE)

• Cluster partially available (PARTIALLY_AVAILABLE)

• The target of this subcommand is the EADS servers whose cluster participation status is online. This subcommand
cannot be executed if the cluster contains any EADS server whose cluster participation status is standby. You can
determine the cluster participation status with the eztool status command.

• This subcommand can be executed when the target EADS servers are in the following status:

• Initialized

• Running

• Closed

14. Command Reference

Hitachi Elastic Application Data Store 359

(3) Format

eztool deleteesd [-d path-name-of-store-data-file-storage-location]
 store-data-file-key

(4) Options and arguments

(a) -d path-name-of-store-data-file-storage-location or --directory path-name-of-
store-data-file-storage-location

This option specifies the path name of the store data file storage location.

Specify this option to delete only the store data files located in the specified directory.

The path name cannot be a directory that contains an asterisk (*), double quotation mark ("), question mark (?), vertical
bar (|), less-than sign (<), or greater-than sign (>).

If you specify a relative path for the path name of the store data file storage location, the path is relative to the management
directory of each EADS server.

(b) store-data-file-key
This option specifies the store data file key of the store data file (or files) to be deleted from the cluster.

Specify the store data file key of a store data file that was output by the eztool export or eztool stop command.

A store data file key is expressed as a maximum of 32 single-byte characters. The permitted characters are alphanumeric
characters (0 to 9, A to Z, and a to z), underscores (_), and hyphens (-).

(5) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒35: Return codes returned by the eztool deleteesd command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be
executed.

7 131 The command failed because another command was
executing.

14. Command Reference

Hitachi Elastic Application Data Store 360

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

8 150 The command failed during execution.

9 200 The command failed due to a timeout.

(6) Notes
All store data files with the specified store data file key are deleted.

For example, if this subcommand is executed with 20111101130203 specified as the store data file key, the
subcommand deletes all files named eads_20111101130203_[EADS-server-ID].esd from each EADS server.

14.3.18 put (stores specified data)

(1) Description
This subcommand associates a specified value with a key, and then stores it.

This subcommand is used to test whether the configured execution environment is operational.

(2) Rules
You can execute this subcommand when the EADS server is running.

(3) Format

eztool put cache-name key value

(4) Options and arguments

(a) cache-name
Specify the name of the cache that stores the value.

The following characters are permitted for a cache name:

• If cache property files were not used to create caches
A maximum of 32 single-byte characters in ASCII codes 0x20 to 0x7E

• If cache property files were used to create caches
A maximum of 32 single-byte alphanumeric characters (0 to 9, A to Z, and a to z)

(b) key
Specify the key associated with the value that you are storing.

For details about the data that can be specified as keys, see 15.2.2(1) Data types that can be specified as keys.

14. Command Reference

Hitachi Elastic Application Data Store 361

(c) value
Specify the value you want to store.

For value, you can specify a character string (java.lang.String) consisting of a maximum of 1,024 single-byte
characters.

(5) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒36: Return codes returned by the eztool put command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 120 The command failed due to a syntax error.

4 150 The command failed during execution.

5 200 The command failed due to a timeout.

(6) Notes
You can use this subcommand to manipulate data processed by an API function; conversely, you can use an API function
to manipulate data processed by this subcommand.

Note that the data types and sizes permitted for key and value are not completely compatible with those permitted by
the API functions. For example, this subcommand cannot store an object that is not a character string
(java.lang.String) or a value that consists of more than 1,024 single-byte characters.

14.3.19 get (acquires specified data)

(1) Description
This subcommand acquires specified value.

This subcommand is used to test whether the configured execution environment is operational.

(2) Rules
You can execute this subcommand when the EADS server is running.

(3) Format

eztool get cache-name key
 [--format format-name]

14. Command Reference

Hitachi Elastic Application Data Store 362

 [--columns column-name[,column-name]...]
 [--filter filter-condition]
 [--match matching-condition]

(4) Options and arguments

(a) cache-name
Specify the name of the cache containing the value you want to acquire.

The following characters are permitted for a cache name:

• If cache property files were not used to create caches
A maximum of 32 single-byte characters in ASCII codes 0x20 to 0x7E

• If cache property files were used to create caches
A maximum of 32 single-byte alphanumeric characters (0 to 9, A to Z, and a to z)

(b) key
Specify the key associated with the value you want to acquire.

For details about the data that can be specified as keys, see 15.2.2(1) Data types that can be specified as keys.

(c) --format format-name
For details about this option, see 14.4.2 How to specify the display format.

(d) --columns column-name[,column-name]...
For details about this option, see 14.4.3 How to specify column filters.

(e) --filter filter-condition
For details about this option, see 14.4.4 How to specify row filters.

(f) --match matching-condition
For details about this option, see 14.4.5 How to specify a condition match.

(5) Output example
The following shows an output example of the eztool get command's execution results.

For details about the components of the displayed information, see 14.4.1 Components of the displayed information.

The following table lists and describes the summary display information.

14. Command Reference

Hitachi Elastic Application Data Store 363

Table 14‒37: Summary information displayed by the eztool get command

No. Summary name Description

1 Value Acquired value

2 ValueSize Size of acquired value (in bytes)

(6) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒38: Return codes returned by the eztool get command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 120 The command failed due to a syntax error.

4 150 The command failed during execution.

5 200 The command failed due to a timeout.

When the --match option is specified:
If the condition was satisfied, the subcommand returns 0; otherwise, the subcommand returns 1. If the command's
execution failed, the return code is the same as when the --match option is not specified.

(7) Notes
• You can use this subcommand to manipulate data processed by an API function; conversely, you can use an API

function to manipulate data processed by this subcommand.
Note that the data types and sizes permitted for key and value are not completely compatible with those permitted
by the API functions.

• The --format, --columns, and --filter options are ignored, if specified. These options are provided for
future extension of functions.

• If the command times out during output processing, the output results might not be complete. The command might
time out even if output processing is complete. If this happens, increase the command's timeout value, and then re-
execute the command.

14.3.20 remove (deletes specified data)

(1) Description
This subcommand deletes a specified key and the value associated with the key.

This subcommand is used to test whether the configured execution environment is operational.

14. Command Reference

Hitachi Elastic Application Data Store 364

(2) Rules
You can execute this subcommand when the EADS server is running.

(3) Format

eztool remove cache-name key

(4) Options and arguments

(a) cache-name
Specify the name of the cache containing the value you want to delete.

The following characters are permitted for a cache names:

• If cache property files were not used to create caches
A maximum of 32 single-byte characters in ASCII codes 0x20 to 0x7E

• If cache property files were used to create caches
A maximum of 32 single-byte alphanumeric characters (0 to 9, A to Z, and a to z)

(b) key
Specify the key associated with the value you want to delete.

For details about the data that can be specified as keys, see 15.2.2(1) Data types that can be specified as keys.

(5) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒39: Return codes returned by the eztool remove command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 120 The command failed due to a syntax error.

4 150 The command failed during execution.

5 200 The command failed due to a timeout.

(6) Notes
You can use this subcommand to manipulate data processed by an API function; conversely, you can use an API function
to manipulate data processed by this subcommand.

14. Command Reference

Hitachi Elastic Application Data Store 365

Note that the data types and sizes permitted for key and value are not completely compatible with those permitted by
the API functions.

14.3.21 removeall (deletes all data)

(1) Description
This subcommand deletes a specified range of keys and all the values associated with those keys.

(2) Rules
• You can execute this subcommand when the EADS server is running.

• This subcommand executes in descending order of the EADS server positions (Position).

(3) Format

eztool removeall [-g group-name|-s] cache-name

(4) Options and arguments

(a) -g group-name or --group group-name
Specify this option to delete the values that belong to a specific group.

For details about the data that can be specified as group names, see 15.2.2(2) Data that can be specified as group names.

(b) -s or --single
Specify this option to delete the values whose master copy (original) is located on the EADS server on which this
subcommand is executed.

(c) cache-name
This option specifies the name of the cache that contain the values to be deleted.

The following characters are permitted for a cache name:

• If cache property files were not used to create caches
A maximum of 32 single-byte characters in ASCII codes 0x20 to 0x7E

• If cache property files were used to create caches
A maximum of 32 single-byte alphanumeric characters (0 to 9, A to Z, and a to z)

14. Command Reference

Hitachi Elastic Application Data Store 366

(5) Return code
Table 14‒40: Return codes returned by the eztool removeall command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 120 The command failed due to a syntax error.

4 150 The command failed during execution.

5 200 The command failed due to a timeout.

(6) Notes
• Executing this subcommand enables you to delete all values in a specified range without having to create an

application program. However, if you cannot obtain the intended results by using this subcommand's options and
arguments, you will have to create an application program, such as in the following cases:

• Specifying multiple keys to delete the values associated with each key

• Implementing processing to be performed if the subcommand fails to delete some of the data

• If data is added while this subcommand is executing, the following occurs, depending on the area where the added
data is stored:

• If the added data is stored in the area from which data has already been deleted
The added data is not deleted.

• If the added data is stored in the area from which data has not been deleted
The added data is deleted.

• If EADS servers are added to or restored in the cluster while this subcommand is executing, the added or restored
EADS servers are excluded as processing targets. As a result, some of the data might not be deleted. If this occurs,
re-execute the subcommand.

14.3.22 listfunc (displays which user functions are executable)

(1) Description
This subcommand displays which user functions are executable.

(2) Rules
• This subcommand can be executed only when the status of the cluster is one of the following:

• Cluster available (AVAILABLE)

• Cluster partially available (PARTIALLY_AVAILABLE)

14. Command Reference

Hitachi Elastic Application Data Store 367

• The target of this subcommand is the EADS servers whose cluster participation status is online. This subcommand
cannot be executed if the cluster contains any EADS server whose cluster participation status is standby. You can
determine the cluster participation status with the eztool status command.

• This subcommand can be executed when the target EADS servers are in the following status:

• Initialized

• Running

• Closing

• Closed

(3) Format

eztool listfunc [-v] [user-function-name]
 [--format format-name]
 [--columns column-name[,column-name]...]
 [--filter filter-condition]
 [--match matching-condition]

(4) Options and arguments

(a) -v or --verbose
Specify this option if you want to display the details of the command execution results.

(b) user-function-name
Specify the name of a user function whose executability you want to display.

Specify this option if you want to display information about only the specified user function.

A user function name can consist of alphanumeric characters (0 to 9, A to Z, and a to z), underscores (_), periods (.),
and dollar signs ($).

There is no limit to the number of characters.

(c) --format format-name
For details about this option, see 14.4.2 How to specify the display format.

(d) --columns column-name[,column-name]...
For details about this option, see 14.4.3 How to specify column filters.

(e) --filter filter-condition
For details about this option, see 14.4.4 How to specify row filters.

(f) --match matching-condition
For details about this option, see 14.4.5 How to specify a condition match.

14. Command Reference

Hitachi Elastic Application Data Store 368

(5) Output example
The following shows output examples of the eztool listfunc command's execution results.

For details about the components of the displayed information, see 14.4.1 Components of the displayed information.

(a) If option -v or --verbose is omitted

The following tables list and describe the summary and content information that are displayed when the -v or --
verbose option is omitted.

Table 14‒41: Summary information displayed by the eztool listfunc command (-v or --verbose option
omitted)

No. Summary name Description

1 FunctionCount Total number of user functions
This information is not displayed when a user function name is specified.

Table 14‒42: Content information displayed by the eztool listfunc command (-v or --verbose option
omitted)

No. Column name Description

1 FunctionName User function name
When a user function name is specified, only the specified user function name is displayed.
Displayed in natural order.

2 Enable Number of EADS servers that can execute the user function

3 Disable Number of EADS servers that cannot execute the user function

14. Command Reference

Hitachi Elastic Application Data Store 369

(b) If option -v or --verbose is specified

The following tables list and describe the summary and content information that are displayed when the -v or --
verbose option is specified.

Table 14‒43: Summary information displayed by the eztool listfunc command (-v or --verbose option
specified)

No. Summary name Description

1 FunctionCount Total number of user functions
This information is not displayed when a user function name is specified.

Table 14‒44: Content information displayed by the eztool listfunc command (-v or --verbose option
specified)

No. Column name Description

1 Server EADS server's IP address and the port number used to communicate with the EADS client.
This information is displayed in the following format:
IP-address:port-number

2 FunctionName User function name
When a user function name is specified, only the specified user function name is displayed.

3 Status Whether the user function can be executed
One of the following is displayed:
• enable

Can be executed.
• disable

Cannot be executed.

If the specified user function does not exist, none is displayed.

Notes:
The execution results are displayed according to the following priorities:

1. Displayed in natural order of the Server values.

2. Rows with the same Server value are displayed in natural order of the FunctionName values.

14. Command Reference

Hitachi Elastic Application Data Store 370

(6) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒45: Return codes returned by the eztool listfunc command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be
executed.

7 150 The command failed during execution.

8 200 The command failed due to a timeout.

When the --match option is specified:
If the condition was satisfied, the subcommand returns 0; otherwise, the subcommand returns 1. If the command's
execution failed, the return code is the same as when the --match option is not specified.

(7) Notes
If the command times out during output processing, the output results might not be complete. The command might time
out even if output processing is complete. If this happens, increase the command's timeout value, and then re-execute
the command.

14.3.23 execfunc (executes user functions)

(1) Description
This subcommand executes a specified user function.

You can use this subcommand to execute user functions without having to configure an EADS client for executing user
functions.

(2) Rules
• You can execute this subcommand when the EADS server is running.

• The subcommand executes a specified user function on the EADS servers in descending order of the EADS server
locations (Position). The subcommand continues processing even if execution of the user function fails on one
of the EADS servers.

14. Command Reference

Hitachi Elastic Application Data Store 371

(3) Format

eztool execfunc [-k key|-g group-name|-s]
 cache-name user-function-name [user-function-arguments]
 [--format format-name]
 [--columns column-name[,column-name]...]
 [--filter filter-condition]
 [--match matching-condition]

(4) Options and arguments

(a) -k key or --key
Specify this option if you want to execute the user function on the EADS servers where a specified key is stored.

For details about the data that can be specified as keys, see 15.2.2(1) Data types that can be specified as keys.

(b) -g group-name or --group group-name
Specify this option if you want to execute the user function on the EADS servers where a specified group is stored.

For details about the data that can be specified as group names, see 15.2.2(2) Data that can be specified as group names.

(c) -s or --single
Specify this option if you want to execute the user function only on the EADS server where the command is executed.

(d) cache-name
Specify the name of the cache for the user function to be executed.

The following characters are permitted for a cache name:

• If cache property files were not used to create caches
A maximum of 32 single-byte characters in ASCII codes 0x20 to 0x7E

• If cache property files were used to create caches
A maximum of 32 single-byte alphanumeric characters (0 to 9, A to Z, and a to z)

(e) user-function-name
Specify the name of the user function to be executed.

A user function name can consist of alphanumeric characters (0 to 9, A to Z, a to z), underscores (_), periods (.), and
dollar signs ($).

There is no limit to the number of characters.

(f) user-function-arguments
Specify this option if you want to pass specific arguments to the user function.

If this option is omitted, null is passed as the arguments.

14. Command Reference

Hitachi Elastic Application Data Store 372

You can specify for user function arguments a maximum of 1,024 of the single-byte characters 0x20 through 0x7E in
ASCII codes.

(g) --format format-name
For details about this option, see 14.4.2 How to specify the display format.

(h) --columns column-name[,column-name]...
For details about this option, see 14.4.3 How to specify column filters.

(i) --filter filter-condition
For details about this option, see 14.4.4 How to specify row filters.

(j) --match matching-condition
For details about this option, see 14.4.5 How to specify a condition match.

(5) Output example
The following shows output examples of the eztool execfunc command's execution results.

For details about the components of the displayed information, see 14.4.1 Components of the displayed information.

The following table lists and describes the content information that is displayed.

Table 14‒46: Content information displayed by the eztool execfunc command

No. Column name Description

1 Server IP address of the EADS server that executed the user function and the EADS server's port
number used to communicate with the EADS clients.
This information is displayed in the following format:
IP address:port number
Displayed in natural order.

2 Result If successful:
toString() value in the execution result object of the user function
If the value is null, character string null is output.

If failed:
Information about the exception that occurred

(6) Return code
The following table lists the return codes that this subcommand returns.

14. Command Reference

Hitachi Elastic Application Data Store 373

Table 14‒47: Return codes returned by the eztool execfunc command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 120 The command failed due to a syntax error.

4 150 The command failed during execution.
If command's execution fails, the corresponding
return code is set. If an exception occurs while the
user function is running, the command is treated as
being successful. For details about an exception, see
the displayed Result.

5 200 The command failed due to a timeout.

When the --match option is specified:
If the condition was satisfied, the subcommand returns 0; otherwise, the subcommand returns 1. If the command's
execution failed, the return code is the same as when the --match option is not specified.

(7) Notes
• Unlike for user functions that are executed normally on an EADS client, the user function arguments and acquired

data of this subcommand are always of the character string data type (java.lang.String). If you will be using
this command, take this into account when you create user functions.
If large-sized character strings are used, garbage collection might occur on the EADS server, adversely affecting
performance.

• If the command times out during output processing, the output results might not be complete. The command might
time out even if output processing is complete. If this happens, increase the command's timeout value, and then re-
execute the command.

14.3.24 listecf (displays a list of information about persistent data)
This subsection is applicable when you are using disk caches or two-way caches.

(1) Description
This subcommand displays a list of information about the persistent data in the cluster.

(2) Rules
• This subcommand can be executed only when the status of the cluster is one of the following:

• Cluster available (AVAILABLE)

• Cluster partially available (PARTIALLY_AVAILABLE)

14. Command Reference

Hitachi Elastic Application Data Store 374

• The target of this subcommand is the EADS servers whose cluster participation status is online or offline.
This subcommand cannot be executed if the cluster contains any EADS server whose cluster participation status is
standby. You can determine the cluster participation status with the eztool status command.

• This subcommand can be executed when the target EADS servers are in the following status:

• Initialized

• Running

• Closing

• Closed

• Isolated

• When the -s or --single option is specified, the subcommand can be executed on an EADS server that is in any
of the following statuses, regardless of the cluster's status:

• Initialized

• Running

• Closing

• Closed

• Isolated

(3) Format

eztool listecf [-v [--divide number-of-segments]] [-s] [--threshold
threshold-value]
 [cache-name]
 [--format format-name]
 [--columns column-name[,column-name]...]
 [--filter filter-condition]
 [--match matching-condition]

(4) Options and arguments

(a) -v or --verbose
Specify this option if you want to display the details of the command's execution results.

(b) --divide number-of-segments
When the -v or --verbose option is specified, the distribution of the numbers of files in each compaction effect
range is displayed in the command execution results. Use this option to specify a desired number of ranges in which to
distribute the file counts.

You can specify an integer from 1 to 10 for the number of ranges.

If this option is omitted, the value of the eads.command.compaction.effect.division parameter in the
command properties is assumed as the number of segments (default is 5).

(c) -s or --single
Specify this option if you want to display the execution results for only the EADS server on which the command is
executed.

14. Command Reference

Hitachi Elastic Application Data Store 375

(d) --threshold threshold-value
Specify this option if you want to display the number of cache data files whose compaction effects are at least a specified
threshold (%).

You can specify for the threshold value an integer from 1 to 100.

If this option is omitted, the value of the eads.command.compaction.effect.threshold parameter in the
command properties is used as the threshold (default is 50).

(e) cache-name
Specify this option if you want to display information about only the specified cache.

You can specify for the cache name a maximum of 32 single-byte alphanumeric characters (0 to 9, A to Z, a to z).

(f) --format format-name
For details about this option, see 14.4.2 How to specify the display format.

(g) --columns column-name[,column-name]...
For details about this option, see 14.4.3 How to specify column filters.

(h) --filter filter-condition
For details about this option, see 14.4.4 How to specify row filters.

(i) --match matching-condition
For details about this option, see 14.4.5 How to specify a condition match.

(5) Output example
The following shows output examples of the eztool listecf command's execution results.

For details about the components of the displayed information, see 14.4.1 Components of the displayed information.

 If option -v or --verbose is omitted

14. Command Reference

Hitachi Elastic Application Data Store 376

 If option -v or --verbose is specified

14. Command Reference

Hitachi Elastic Application Data Store 377

The following tables list and describe the summary and content information that are displayed.

Table 14‒48: Summary information displayed by the eztool listecf command

No. Summary name Description Whether displayed

-v or --verbose option Specification of -s
or --single option

Omitted Specified

1 CP:
CacheProperti
es

CP is the abbreviation for a cache property file
(CacheProperties).

N Y N

2 CI:
CacheInfoFile

CI is the abbreviation for a cache information file
(CacheInfoFile).

N Y N

3 CD:
CacheDataFile
s

CD is the abbreviation for cache data files
(CacheDataFiles).

N Y N

4 FC: FileCount FC is the abbreviation for the number of files
(FileCount).

Y Y Y

5 CE:
CompactionEff
ect

CE is the abbreviation for compaction effect
(CompactionEffect).

Y Y Y

6 Ac: Accord Ac is the abbreviation for match (Accord). N Y N

7 Ex: Exist Ex is the abbreviation for exist (Exist). Y Y N

Legend:
Y: Displayed
N: Not displayed

14. Command Reference

Hitachi Elastic Application Data Store 378

Table 14‒49: Content information displayed by the eztool listecf command

No. Column name Description Whether displayed

-v or --verbose option Specification of -s
or --single option

Omitted Specified

1 Cache Cache name.#1

Names of disk caches and two-way caches are
extracted from the following cache information and
then displayed:
• Caches existing on the EADS servers
• Caches specified in the cache property files

Y Y Y

2 ExCache Whether the cache exists on the EADS server.#1

One of the following is displayed:
• true

The cache exists on the EADS server.
• false

The cache does not exist on the EADS server.

Y Y N

3 AcCP Whether the cache property files match among the
EADS servers.#1

This item displays whether the cache property files
exist and whether they match among all EADS
servers.
One of the following is displayed:
• true

Match.
• false

Do not match.

N Y N

4 AcCI Whether the cache information files match among the
EADS servers.#1

This item displays whether the cache information files
match, ignoring EADS servers that do not have cache
information files.
One of the following is displayed:
• true

Match.
• false

Do not match.

N Y N

5 Range Range ID.#1

Number (integer 1 to 96) used to identify a range in
the cache. The range ID matches the server ID of the
EADS server on which the data is stored.

Y Y Y

6 Server IP address of the EADS server that is included in
Range and the EADS server's port number used to
communicate with the EADS clients.
This information is displayed in the following format:
IP address:port number

Y Y N

7 ExCP Whether the cache property file exists.
One of the following is displayed:
• true

Exists.

N Y N

14. Command Reference

Hitachi Elastic Application Data Store 379

No. Column name Description Whether displayed

-v or --verbose option Specification of -s
or --single option

Omitted Specified

• false
Does not exist.

Nothing is displayed if the EADS server is not running
or a communication error has occurred.

8 ExCI Whether the cache information file exists.
One of the following is displayed:
• true

Exists.
• false

Does not exist.

Nothing is displayed in the following cases:
• The EADS server is not running.
• A communication error has occurred.
• The cache has not been imported to the EADS

server and ExCP is false.
• The cache has not been imported to the EADS

server and the parameter required for acquiring
ExCI information is not specified in the cache
property file.

N Y N

9 ExCD Whether the cache data file exists.
One of the following is displayed:
• true

Exists.
• false

Does not exist.

Nothing is displayed in the following cases:
• The EADS server is not running.
• A communication error has occurred.
• The cache has not been imported to the EADS

server and ExCP is false.
• The cache has not been imported to the EADS

server and the parameter required for acquiring
ExCD information is not specified in the cache
property file.

N Y N

10 UnusedFC Number of unused files.
Nothing is displayed in the following cases:
• The EADS server is not running.
• A communication error has occurred.
• The cache does not exist on the EADS server.

Y Y Y

11 MaxCE Maximum compaction effects on the cache data files
in the range.#2

Nothing is displayed in the following cases:
• The EADS server is not running.
• A communication error has occurred.
• The cache does not exist on the EADS server.

Y Y Y

12 FilterCE(x%)#3 Number of files whose compaction effects are equal
to or greater than the threshold value.#4

Y Y Y

14. Command Reference

Hitachi Elastic Application Data Store 380

No. Column name Description Whether displayed

-v or --verbose option Specification of -s
or --single option

Omitted Specified

Nothing is displayed in the following cases:
• The EADS server is not running.
• A communication error has occurred.
• The cache does not exist on the EADS server.

13 CE(x-y%)#5 Distribution of the numbers of files in each
compaction effects range.#4

Nothing is displayed in the following cases:
• The EADS server is not running.
• A communication error has occurred.
• The cache does not exist on the EADS server.

N Y Y
(displayed only

when the -v or --
verbose option is

specified)

Legend:
Y: Displayed
N: Not displayed

Notes:
The execution results are displayed according to the following priorities:

1. Displayed in natural order of the Cache values.

2. Rows with the same Cache value are displayed in ascending order of the Range values.

3. Rows with the same Cache and Range values are displayed in the order of the Server values (in the order
of EADS server that stores data and EADS server from which data was copied). This does not apply if the -s
or --single option is specified.

#1
If the execution results contain multiple consecutive cells with the same value, only the first such cell is displayed
and the other cells are omitted.

#2
All digits following the decimal point are discarded from the value indicating the compaction effects.

#3
The value set as the threshold is displayed for x.

#4
The number of files is totaled, with digits following the decimal point discarded from the value indicating compaction
effects.

#5
The range obtained from the number of segments is displayed. For columns starting in 2, only (x-y%) is displayed
as the range.

(6) Return code
The following table lists the return codes that this subcommand returns.

14. Command Reference

Hitachi Elastic Application Data Store 381

Table 14‒50: Return codes returned by the eztool listecf command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be
executed.

7 150 The command failed during execution.

8 200 The command failed due to a timeout.

When the --match option is specified:
If the condition was satisfied, the subcommand returns 0; otherwise, the subcommand returns 1. If the command's
execution failed, the return code is the same as when the --match option is not specified.

(7) Notes
If the command times out during output processing, the output results might not be complete. The command might time
out even if output processing is complete. If this happens, increase the command's timeout value, and then re-execute
the command.

14.3.25 resume (resumes caches)
This subsection is applicable when you are using disk caches or two-way caches.

(1) Description
This subcommand resumes disk caches and two-way caches.

When this subcommand is executed, the caches that have both cache property files and cache information files are
resumed.

Use this subcommand to resume caches in the following cases:

• For restarting the EADS servers after the cluster was stopped normally

• For restoring the cluster after it has been in unavailable (NOT_AVAILABLE) or partially available
(PARTIALLY_AVAILABLE) status

(2) Rules
• This subcommand can be executed only when the status of the cluster is the following:

14. Command Reference

Hitachi Elastic Application Data Store 382

• Cluster available (AVAILABLE)

• The target of this subcommand is the EADS servers whose cluster participation status is online. This subcommand
cannot be executed if the cluster contains any EADS server whose cluster participation status is offline or
standby. You can determine the cluster participation status with the eztool status command.

• This subcommand can be executed when the target EADS servers are in the following status:

• Initialized

• To prevent a full garbage collection (FullGC) from occurring while operations are underway, each EADS server
performs FullGC when this subcommand terminates.

• The EADS servers are not isolated while this subcommand has obtained a lock from the EADS servers. However,
if the process is shut down or an EADS server terminates while the subcommand has the lock, the lock is released,
and then the EADS server becomes isolated.

(3) Format

eztool resume

(4) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒51: Return codes returned by the eztool resume command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be
executed.

7 131 The command failed because another command was
executing.

8 150 The command failed during execution.

9 200 The command failed due to a timeout.

(5) Notes
• Make sure that the properties of the caches that will not be resumed are also identical on all EADS servers that make

up the cluster (except for the eads.cache.disk.info.dir and eads.cache.disk.n.dir parameters).

• If the cluster was not stopped normally, deleted data might be restored.

14. Command Reference

Hitachi Elastic Application Data Store 383

• If the cache resume processing terminates prematurely for a reason such as abnormal termination or a command
timeout, locks are not released. If locks have not been released after an attempt has been made to resume caches,
data might no longer be consistent. If you continue operation in such a status, data might become corrupted or lost.
To avoid this, take the following steps:

1. Execute the eztool status -v command to check the cluster status.

2. Execute the eztool unlock command to release the lock.

3. Execute the eztool listcache command to check the list of caches.

4. If the cache resume processing has failed, execute the eztool deletecache command to delete the caches.

5. If EADS servers are isolated, restore the EADS servers.

6. Perform cache resume processing again.

• If the cache resume processing has failed, check the following items and then perform the cache restart processing
again:

• Check for errors in the parameters specified in the cluster property files or shared property files.

• Check for errors in the parameters specified in the cache property files.

• Check the cache files for any invalid status.

• The total data restriction function is disabled while this subcommand is executing.

14.3.26 importecf (relocates persistent data)
This subsection is applicable when you are using disk caches or two-way caches.

(1) Description
This subcommand relocates persistent data by importing (put) data from cache data files and cache index files located
in a specified directory.

When you add EADS servers to the cluster, delete EADS servers from the cluster, or change the multiplicity and size
of data, you can use this subcommand to relocate data from cache data files.

(2) Rules
• This subcommand can be executed only when the status of the cluster is the following:

• Cluster available (AVAILABLE)

• The target of this subcommand is the EADS servers whose cluster participation status is online. This subcommand
cannot be executed if the cluster contains any EADS server whose cluster participation status is standby. You can
determine the cluster participation status with the eztool status command.

• This subcommand can be executed when the target EADS servers are in the following status:

• Initialized

• To prevent a full garbage collection (FullGC) from occurring while operations are underway, each EADS server
performs FullGC when this subcommand terminates.

• An EADS server is not isolated while this subcommand has obtained a lock from the EADS server. However, if the
process is shut down or the EADS server terminates while the subcommand has the lock, the lock is released, and
then the EADS server becomes isolated.

14. Command Reference

Hitachi Elastic Application Data Store 384

(3) Format

eztool importecf [--convertid EADS-server-ID-conversion-rule]
 path-name-of-storage-for-cache-data-files-and-cache-index-
files

(4) Options and arguments

(a) --convertid EADS-server-ID-conversion-rule
Specify this option if you have grouped keys by specifying the EADS server IDs of the storage locations (EADS server
ID specified groups are used) and you want to convert the specified EADS server IDs to other EADS server IDs and
import the data.

Specify each EADS server ID conversion rule in the following format:

source-EADS-server-ID>target-EADS-server-ID

For the source EADS server ID and the target EADS server ID, you can specify an integer in the range from 1 to 96 (a
two-digit integer beginning with zero, such as 01 and 02, cannot be specified).

The target EADS server ID must differ from the source EADS server ID.

If you specify multiple EADS server ID conversion rules, delimit them with the comma. When multiple EADS server
ID conversion rules are specified, the order in which the rules are specified has no effect on the priority. Note that the
same source EADS server ID cannot be specified more than once.

The following characters and character strings are ignored:

• Comma specified at the beginning or at the end
Example: --convertid ,1>2,

• Null character string delimited by commas or a character string consisting only of spaces that is delimited by commas
Example: --convertid 1>2,, ,

(b) path-name-of-storage-for-cache-data-files-and-cache-index-files
This option specifies the path name of the storage location for the cache data files and cache index files that you want
to import.

The path name cannot be a directory that contains an asterisk (*), double quotation mark ("), question mark (?), vertical
bar (|), less-than sign (<), or greater-than sign (>).

If a relative path is specified as the path of the cache data file and cache index file storage location, it is treated as being
relative to the management directory.

(5) Return code
The following table lists the return codes that this subcommand returns.

14. Command Reference

Hitachi Elastic Application Data Store 385

Table 14‒52: Return codes returned by the eztool importecf command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be
executed.

7 131 The command failed because another command was
executing.

8 150 The command failed during execution.

9 200 The command failed due to a timeout.

(6) Notes
• Output directories for cache information files, cache index files, and cache data files cannot be specified.

• When this subcommand is executed, all cache persistent data files and cache index files in the directory subject to
import processing are imported.

• If the cache data files and cache index files that are to be imported are corrupted or were open when a failure occurred,
deleted data might be restored.

• If an error occurs while the subcommand is processing a set of a cache data file and a cache index file subject to
import processing, the subcommand processes the next set of a cache data file and a cache index file. In such a case,
the subcommand results in an error. If this happens, execute the following commands to determine the problem:

• Execute the eztool status command to check the cluster status.

• Execute the eztool listcache command to check the list of caches.

• This subcommand's processing might require a considerable amount of time depending on the number of data items
and the amount of data, because data items are added again individually.

• If data with the key to be imported (put) already exists, the subcommand checks the key update dates and times
and overwrites the data only when the update date and time of the key to be imported is the more recent.

• When data with keys including EADS server ID specified groups is added and there is no range for a specified
EADS server ID, the subcommand does not add that data. If this happens, a one-time warning message is issued.

• The total data restriction function is disabled while this subcommand is executing.

14.3.27 deleteecf (deletes cache files)
This subsection is applicable when you are using disk caches or two-way caches.

14. Command Reference

Hitachi Elastic Application Data Store 386

(1) Description
This subcommand deletes the cache files for a specified cache.

When this subcommand is executed, the following cache files are deleted in accordance with parameters specified in
the cache property file on each EADS server:

• directory-specified-in-the-eads.cache.disk.info.dir-parameter-in-the-cache-properties/cache-name/
eads_info_[EADS-server-ID#]_[cache-name].ecf
#: Integer from 01 to 96

• directory-specified-in-the-eads.cache.disk.info.dir-parameter-in-the-cache-properties/cache-name/
eads_index_[EADS-server-ID#1]_[cache-name]_[range-ID#1]_[nnnnn#2].ecf
#1: Integer from 01 to 96
#2: Sequential file number (5-digit integer)

• directory-specified-in-the-eads.cache.disk.n.dir-parameter-in-the-cache-properties/cache-name/
eads_data_[EADS-server-ID#1]_[cache-name]_[range-ID#1]_[nnnnn#2].ecf
#1: Integer from 01 to 96
#2: Sequential file number (5-digit integer)

The following directories are also deleted if they are empty after the cache files have been deleted:

• directory-specified-in-the-eads.cache.disk.info.dir-parameter-in-the-cache-properties/cache-name

• directory-specified-in-the-eads.cache.disk.n.dir-parameter-in-the-cache-properties/cache-name

(2) Rules
• This subcommand can be executed only when the status of the cluster is one of the following:

• Cluster available (AVAILABLE)

• Cluster partially available (PARTIALLY_AVAILABLE)

• The target of this subcommand is the EADS servers whose cluster participation status is online. This subcommand
cannot be executed if the cluster contains any EADS server whose cluster participation status is standby. You can
determine the cluster participation status with the eztool status command.

• This subcommand can be executed when the target EADS servers are in the following status:

• Initialized

• Running

• Closed

If the -l or --local option is specified, the subcommand can be executed only when the local EADS server is
stopped.

(3) Format

eztool deleteecf cache-name [-l]

14. Command Reference

Hitachi Elastic Application Data Store 387

(4) Options and arguments

(a) cache-name
This option specifies the cache name for the cache files to be deleted.

Specify the cache name as a maximum of 32 single-byte alphanumeric characters (0 to 9, A to Z, a to z).

(b) -l or --local
Specify this option if you want to delete the cache files only on the EADS server on which the command is executed.

For example, specify this option when a system in which data was updated and deleted frequently has become isolated
and you want to delete cache files that are not needed for restoration before performing restoration in order to reduce
the time required for importing data.

When this option is specified, the cache files are deleted only if the target EADS server is stopped. The cache files are
not deleted while the target EADS server is running.

(5) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒53: Return codes returned by the eztool deleteecf command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be
executed.

7 131 The command failed because another command was
executing.

8 150 The command failed during execution.

9 200 The command failed due to a timeout.

(6) Notes
• Cache files cannot be deleted while they are being used by EADS servers. If there is no cache property file for the

specified cache, the cache files cannot be deleted.

14. Command Reference

Hitachi Elastic Application Data Store 388

14.3.28 compaction (performs compaction on cache data files)
This subsection is applicable when you are using disk caches or two-way caches.

(1) Description
This subcommand performs compaction on the cache data files on the EADS server on which the subcommand is
executed.

(2) Rules
• This subcommand can be executed on an EADS server that is in any of the following statuses, regardless of the

cluster's status:

• Initialized

• Running

• Closed

• Isolated

• The subcommand selects the cache data files that will yield the greatest compaction effects on the EADS server on
which the subcommand is executed. If there are multiple candidate files, the subcommand processes them in
descending order of the compaction effects.

(3) Format

eztool compaction [--cache cache-name [--range range-ID]]
 [--limit execution-count|--unused_fc number-of-unused-
files]
 [--threshold threshold-value]

eztool compaction [--break]

(4) Options and arguments

(a) --cache cache-name
This option specifies the name of the cache on which compaction is to be performed.

Specify for the cache name a maximum of 32 single-byte alphanumeric characters (0 to 9, A to Z, a to z).

If this option is omitted, compaction is performed on all caches.

(b) --range range-ID
A range ID is a number (integer 1 to 96) used to identify a range in a cache. The range ID matches the server ID of the
EADS server on which the data is stored.

This option specifies the range of compaction processing. If no data belongs to the range with the specified range ID
on the EADS server on which the subcommand is executed, compaction processing will not be performed.

If this option is omitted, all ranges of the specified cache are subject to compaction processing.

14. Command Reference

Hitachi Elastic Application Data Store 389

(c) --limit execution-count
This option specifies the maximum compaction count (maximum number of cache data files on which compaction is
to be performed by one execution of the command). If there are no more target files, the subcommand terminates even
before the actual count reaches the specified value.

Specify for the execution count an integer from 1 to 20971520.

If this option is omitted, the default is 20971520.

(d) --unused_fc number-of-unused-files
Specify this option if you want to perform compaction processing until the number of unused cache data files reaches
the specified value. If the number of unused files is already equal to or greater than the specified value in all ranges,
compaction is not performed. If there are no more target files or the compaction count has reached 20,971,520, the
subcommand terminates with a warning even though the number of unused files has not reached the specified value.

For the number of unused files, you can specify an integer from 1 to 32766.

(e) --threshold threshold-value
Specify this option if you want to perform compaction on the cache data files that will yield at least the effects specified
as the threshold value (%). If there are no cache data files that will yield the specified level of effects, compaction will
not be performed.

Specify for the threshold value an integer from 1 to 100.

If this option is omitted, the value of the eads.command.compaction.effect.threshold parameter in the
command properties is assumed as the threshold value (default is 50).

(f) --break
Specify this option to stop compaction processing.

You can stop compaction processing in units of files. Compaction processing cannot be stopped in the middle of a file.

(5) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒54: Return codes returned by the eztool compaction command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 1 1 Compaction was not performed because there were
no target files.

3 2 2 Compaction was not performed because the number
of unused files was equal to or greater than the value
specified in the --unused_fc option.

14. Command Reference

Hitachi Elastic Application Data Store 390

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

4 3 3 There were no more target files before the number
of unused files reached the value specified in the --
unused_fc option. Compaction processing has
been completed.

5 10 10 The --break option was specified, but
compaction was not being performed.

6 11 11 The --break option was specified, but
cancellation of compaction processing had already
been queued.

7 101 101 Initialization of the command failed.

8 110 Connection establishment failed.

9 111 The command failed due to a communication
timeout.

10 120 The command failed due to a syntax error.

11 130 The command failed because it could not be
executed.

12 131 The command failed because another command was
executing.

13 150 The command failed during execution.

14 200 The command failed due to a timeout.

(6) Notes
• This subcommand can be executed while the EADS servers are running, but performance might be affected

adversely.

• If cancellation of compaction processing is queued and this subcommand times out or its processing stops, the
process waiting for cancellation is not completed. If this happens, either wait until the process times out or terminate
the process.

• No compaction is underway between the time compaction on one file is completed and compaction on the next file
begins. If an attempt is made during this interval to stop compaction processing by specifying the --break option,
a message indicating that compaction processing is not in progress might be displayed, prohibiting the compaction
processing from being stopped. If this happens, repeat execution of the eztool compaction --break
command until compaction processing stops.

14.3.29 threaddump (outputs a thread dump)

(1) Description
This subcommand outputs an EADS server thread dump.

A thread dump is output to the directory specified in the eads.logger.dir parameter in the server properties.

14. Command Reference

Hitachi Elastic Application Data Store 391

If the eads.logger.dir parameter is not specified in the server properties, thread dumps are output to management-
directory/logs.

(2) Rules
• This subcommand can be executed regardless of the cluster's status.

• This subcommand can be executed when the EADS server is in the following status:

• Initializing

• Initialized

• Running

• Closing

• Closed

• Isolated

• Stopping

(3) Format

eztool threaddump

(4) Return code
1: No EADS server was found.

Other than 1: Termination code of the jheapprof command in JavaSE

14.3.30 snapshot (collects logs, settings, hardware information, and
network information)

(1) Description
This subcommand collects the files listed below and saves them as archive files.

Note that files with the extensions .tar, .tar.gz, and .tgz are excluded.

• EADS log information

• Active EADS servers' thread dumps

• Files in the directory specified in the eads.logger.dir parameter in the server properties
Note that eads_command_* files (*: any string of zero or more characters) are excluded.

• eads_command_* files (*: any string of zero or more characters) directly under the directory specified in the
eads.command.logger.dir parameter in the command properties

• eads_command_* files (*: any string of zero or more characters) directly under the maintenance directory
in the directory specified in the eads.command.logger.dir parameter in the command properties

• management-directory/hs_err_pid*.log (*: any string of zero or more characters)

14. Command Reference

Hitachi Elastic Application Data Store 392

Note: This is an output file name for a JavaVM error report file.

• EADS settings

• Function property files (property files under management-directory/app)

• Property files (files under management-directory/conf)

• Management directory configuration information (management-directory/logs/snapshot_info/
eads_info/eads_info_ls.txt)

• List of cache data files (management-directory/logs/snapshot_info/cache_file_info/
eads_data_cache-name_cache-property-file-sequence-number.txt)

• List of cache information files (management-directory/logs/snapshot_info/cache_file_info/
eads_info cache-name.txt)

• List of cache index files (management-directory/logs/snapshot_info/cache_file_info/
eads_index_cache-name.txt)

• Hardware and network information

• OS version information (management-directory/logs/snapshot_info/eads_info/
eads_info_version.txt)

• CPU information (management-directory/logs/snapshot_info/eads_info/
eads_info_cpu.txt)

• Memory information (management-directory/logs/snapshot_info/eads_info/
eads_info_memory.txt)

• Disk information (management-directory/logs/snapshot_info/eads_info/
eads_info_df.txt)

• Network connection information (management-directory/logs/snapshot_info/eads_info/
eads_info_netstat.txt)

• Kernel parameter net.core information (management-directory/logs/snapshot_info/
eads_info/eads_info_netcore.txt)

• Correspondence between host IPs and IP addresses (/etc/hosts file)

• Network interface information (management-directory/logs/snapshot_info/eads_info/
eads_info_ifconfig.txt)

• System resources limitation information (management-directory/logs/snapshot_info/eads_info/
eads_info_ulimit.txt)

Note that a gz file is output under the directory specified in the eads.logger.dir parameter in the server properties.

If the eads.logger.dir parameter is not specified in the server properties, the file is output under management-
directory/logs.

A file name is in the following format:

snapshot_[EADS-server-name]_[YYYYMMDDhhmmss].tar.gz

Legend:
YYYYMMDDhhmmss: Command execution date and time
YYYY: year, MM: month, DD: day, hh: hour (00 through 23), mm: minute, ss: second

14. Command Reference

Hitachi Elastic Application Data Store 393

(2) Rules
• This subcommand can be executed regardless of the status of the cluster or the EADS servers.

• If the -sd or --safedump option is specified and the cluster status is available (AVAILABLE) or partically
available (PARTIALLY_AVAILABLE), this subcommand can be executed only if the status of each target EADS
server is one of the following:

• Initialized

• Running

• Closed

• Isolated

• If the -sd or --safedump option is specified and the cluster status is unavailble (NOT_AVAILABLE), this
subcommand can be executed if a target EADS server is in the following status:

• Isolated

• When the -fd or --forcedump option is specified, the subcommand can be executed on EADS servers that are
in any of the following statuses, regardless of the cluster's status:

• Initializing

• Initialized

• Running

• Closing

• Closed

• Isolated

• Stopping

(3) Format

eztool snapshot [-sd|-fd]

(4) Options and arguments

(a) -sd or --safedump
Specify this option to collect logs and settings files after executing the eztool threaddump command.

An error results in the following cases:

• Acquisition of a lock failed.

• An EADS server is not running.

(b) -fd or --forcedump
Specify this option to collect logs and settings files after forcibly executing the eztool threaddump command.

If an EADS server is not running, an error results.

If the eztool threaddump command is forcibly executed, EADS servers might become isolated.

14. Command Reference

Hitachi Elastic Application Data Store 394

(5) Return code
0: Normal termination

Other than 0: Error

(6) Notes
• A gz file created by this subcommand is not deleted automatically. There is no limit to the number of files that can

be created. If you execute this subcommand periodically, pay attention to the amount of disk space used.

• If this subcommand's processing does not terminate, the file system might be corrupted. In such a case, forcibly
terminate the subcommand, and then check the file system for any corruption.

• If the subcommand does not have read permission for the files to be collected, the files cannot be archived.

• While this subcommand is executing, the logs shown below are output to the message log file that is output during
command execution. These logs are used internally by EADS to collect information. They are not available for use
by the user.

• When no options are specified
snapshot, -v, -t, 60
snapshot --listconf, -s, -t, 60

• When the -fd option is specified
snapshot, -v, -t, 60
snapshot, -s, -v, -t, 60
snapshot --listconf, -s, -t, 60

• When the -sd option is specified
snapshot, -v, -t, 60
snapshot, -s, -v, -t, 60
snapshot, --lock, -t, 60#

snapshot, --unlock, -t, 60#

snapshot --listconf, -s, -t, 60
#: The log is not output for an isolated EADS server.

• When this subcommand is executed, the directories and files listed below are created temporarily. These directories
and files are deleted after archive files have been output. If this deletion processing fails, delete them manually as
necessary.

• EADS server thread dumps immediately under management-directory/logs/
Once the subcommand has output archive files, it deletes thread dumps that were in existence before the
subcommand executed. These thread dumps are deleted even if the -sd or --safedump option or the -fd or
--forcedump option is not specified. The archive files also contain past thread dumps. If you need a thread
dump after you have executed the subcommand, expand the archive files to obtain the thread dump.

• snapshot_info directory, that is created directly under management-directory/logs/ and the files directly
under the snapshot_info directory

14. Command Reference

Hitachi Elastic Application Data Store 395

14.3.31 stop (terminates the cluster)

(1) Description
This subcommand terminates all EADS servers in the cluster.

When the option is not specified, this subcommand exports data from memory caches to store data files and then
terminates the EADS servers.

(2) Rules
• You can execute this subcommand when the cluster status is AVAILABLE.

• The target of this subcommand is the EADS servers whose cluster participation status is online. This subcommand
cannot be executed if the cluster contains any EADS server whose cluster participation status is standby. You can
determine the cluster participation status with the eztool status command.

• This subcommand can be executed when the target EADS servers are in the following status:

• Initialized

• Closed

• While this subcommand has obtained a lock from the EADS server, the EADS server is not isolated. However, if a
process is shut down or the EADS server terminates while the subcommand has the lock, the lock is released, and
then the EADS server is isolated.

(3) Format

eztool stop [--no_export]

(4) Options and arguments

(a) --no_export
Specify this option if you want to not output data from memory caches to store data files when the EADS servers are
terminated.

(5) Return code
The following table lists the return codes that this subcommand returns.

Table 14‒55: Return codes returned by the eztool stop command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

14. Command Reference

Hitachi Elastic Application Data Store 396

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

4 111 The command failed due to a communication
timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be
executed.

7 131 The command failed because another command was
executing.

8 150 The command failed during execution.

9 200 The command failed due to a timeout.

(6) Notes
For details about the store data files that are output when this command is executed, see 7.6.2(3) Store data file output
when the eztool stop command is executed.

For details about the output destinations of the store data files, see 7.4.2 Specifying the file output destinations.

14.3.32 forcestop (forcibly terminates an EADS server)

(1) Description
This subcommand forcibly terminates an EADS server.

(2) Rules
• This subcommand can be executed regardless of the cluster's status.

• This subcommand can be executed when the EADS server is in the following status:

• Initializing

• Initialized

• Running

• Closing

• Closed

• Isolated

• Stopping

(3) Format

eztool forcestop

14. Command Reference

Hitachi Elastic Application Data Store 397

(4) Return code
1: No EADS server was found.

Other than 1: Termination code of the kill command

(5) Notes
This subcommand terminates the EADS server without exporting data from memory caches to store data files. Therefore,
if no other EADS server contains the data in the same range, the data in memory caches will be lost.

14.3.33 isolate (isolates an EADS server)

(1) Description
This subcommand isolates an EADS server.

(2) Rules
• You can execute this subcommand when the cluster's status is AVAILABLE.

• This subcommand can be executed when the EADS server is in the following status:

• Initialized

• Running

• Closed

• Isolated

• If this subcommand is executed while the EADS server is running, the subcommand waits until any running user
function has terminated, and then isolates the EADS server.

(3) Format

eztool isolate [--stop]

(4) Options and arguments

(a) --stop
Specify this option to both isolate the EADS server and then terminate it.

If this subcommand is executed on an EADS server that is already isolated, it terminates the EADS server.

(5) Return code
The following table lists the return codes that this subcommand returns.

14. Command Reference

Hitachi Elastic Application Data Store 398

Table 14‒56: Return codes returned by the eztool isolate command

No. Return code Description

eads.command.compat
parameter omitted in the
command properties

0300 specified in the
eads.command.compat
parameter in the command
properties

1 0 0 Command execution was successful.

2 101 101 Initialization of the command failed.

3 110 Connection establishment failed.

4 111 The command failed due to a communication timeout.

5 120 The command failed due to a syntax error.

6 130 The command failed because it could not be executed.

7 131 The command failed because another command was
executing.

8 150 The command failed during execution.

9 200 The command failed due to a timeout.

(6) Notes
• After the EADS server has been isolated by this subcommand, an EADS server connection error might occur if an

API function is executed from an EADS client whose cluster information has not been updated.

• If the range becomes disabled and data operations can no longer be continued due to execution of this subcommand,
an error results.

14. Command Reference

Hitachi Elastic Application Data Store 399

14.4 Information displayed as execution results by the eztool command's
subcommands

You can use the following options to change the information to be displayed by the eztool subcommands that display
execution results:

• --format
• --columns
• --filter
• --match

14.4.1 Components of the displayed information
The information displayed as execution results by eztool subcommands consists of the following elements:

• Summary
This element displays the information that is common to the entirety of the information that is displayed. Its format
is a summary name and a summary value.

• Content
This element displays execution results. Its format is a header and a body.
A set of data arranged vertically is called a column, and a set of data arranged horizontally is called a row.

• Header
This is a row displaying the types of data (column names) included in the execution results.

• Body
This is the section that displays execution results.

• Null line
This is a blank line used to separate data items.

• Ruled line
This is a line used to separate items for readability.

Each data item in the displayed information is called a cell. If multiple consecutive cells in the same column have the
same value, the cell value might be omitted from the second and subsequent rows for readability purposes. In the case
of a cell for which there is no data, a hyphen (-) or a null character string is output.

The following figure shows the configuration of the elements using the eztool status -v command as an example.

14. Command Reference

Hitachi Elastic Application Data Store 400

14.4.2 How to specify the display format
You can change the display formats by specifying the --format option in the subcommands of the eztool command
that display execution results.

Whenever the --format option is not specified, the default display format (ALIGN format) is used. For details about
the ALIGN format, see 14.4.2(2)(a) format-name.

(1) Option specification format

--format format-name

(2) Arguments

(a) format-name
The supported format names are shown below. They are not case-sensitive.

• ALIGN
This is the default display format. This format displays the summary, content, null lines, and ruled lines. If multiple
consecutive cells in the same column have the same value, the cell value might be omitted from the second and
subsequent rows. In the case of a cell for which there is no data, a hyphen (-) or a null character string is output.

• CSV
Only the cells in the body are displayed, separated by commas. The summary, null lines, and ruled lines are not
displayed. Unlike the ALIGN format, cell values are not omitted when multiple consecutive cells in the same column
have the same value. In the case of a cell for which there is no data, a null character string is output.
Consider using this format if you will be automating the use of the eztool command's subcommands. We
recommend that you specify this argument together with the --messageoff option.

(3) Execution example
The following example specifies CSV in the --format option in the eztool status -v command:

14. Command Reference

Hitachi Elastic Application Data Store 401

14.4.3 How to specify column filters
You can display only selected columns by specifying the --columns option in the subcommands of the eztool
command that display execution results. You can also rearrange the order in which columns are displayed.

If the --columns option is not specified, the items (columns) predefined for each subcommand are displayed in the
predefined order.

The command will fail to execute in the following cases:

• The same column name is specified more than once.

• A nonexistent column name is specified.

(1) Option specification format

--columns column-name[,column-name]...

(2) Arguments

(a) column-name[,column-name]...
This argument specifies the names of the columns to be displayed in the execution results in the order in which they are
to be displayed. Column names are case-sensitive.

The --columns option is used to filter the columns to be displayed. The names of columns that are not displayed
cannot be specified in this option. For example, the names of the columns that are displayed only when the -v option
is specified cannot be specified if the -v option is not specified.

(3) Execution example
The following example specifies the --columns option in the eztool status -v command:

14.4.4 How to specify row filters
You can display only the rows that satisfy conditions by specifying the conditions in the --filter option.

14. Command Reference

Hitachi Elastic Application Data Store 402

When conditions are evaluated, values that are not displayed are treated as if they were displayed. Cells with no data
are treated as null character strings.

If a specified condition is invalid, command execution fails.

(1) Option specification format (BNF notation)

--filter filter-condition
filter-condition ::= row-condition

row-condition ::= column-condition|column-condition logical-operator column-
condition
column-condition ::= column-name comparison-operator-(character-string)
character-string
 |column-name comparison-operator-(numeric-value) numeric-
value

logical-operator ::= "&&"|"||"
comparison-operator-(character-string) ::= "=="|"!="
comparison-operator-(numeric-value) ::= ">"|"<"|">="|"<="

character-string ::= String-character-string
numeric-value ::= numeric-value-that-can-be-converted-by-Long.parseLong()

Important note
Enclose the entire condition in double quotation marks (") in the following cases

• column-name or character-string contains a space.

• comparison-operator-(numeric-value) is specified.

If such a condition is not enclosed in double quotation marks ("), it might be treated as separate arguments or
redirected incorrectly.

Reference note
How to interpret the BNF notation

The item on the left of ::= is to be specified in the format shown by the items on the right. The following
example explains the specification format of filter-condition:

1. filter-condition::=row-condition means that filter-condition is to be specified in the format row-condition.

2. row-condition::=column-condition|column-condition logical-operator column-condition means that
row-condition is to be specified in the format column-condition or the format column-condition logical-
operator column-condition.

3. From 1 and 2, filter-condition must be specified in the format column-condition or the format column-
condition logical-operator column-condition.

14. Command Reference

Hitachi Elastic Application Data Store 403

(2) Arguments

(a) filter-condition
This argument specifies row-condition.

(b) row-condition
This argument specifies column-condition or column-condition logical-operator column-condition.

(c) column-condition
This argument specifies column-name comparison-operator-(character-string) character-string or column-name
comparison-operator-(numeric-value) numeric-value.

(d) column-name
This argument specifies column names for the content to be displayed.

Column names can be specified regardless of whether they are specified in the --columns option. However, the names
of columns that are not displayed cannot be specified regardless of the --columns option. For example, the names
of columns that are displayed only when the -v option is specified cannot be specified if the -v option is not specified.

(e) logical-operator
You can specify the logical operators shown in the table below.

If multiple logical operators are specified, they are evaluated sequentially from left to right.

Table 14‒57: Logical operators that can be specified in the --filter option

No. Logical operator Example Description

1 && A && B A and B (If A and B are both true, the condition is true; otherwise, the condition is
false)

2 || A || B A or B (If A and B are both false, the condition is false; otherwise, the condition is
true)

(f) comparison-operator-(character-string)
You can specify the comparison operators shown in the following table.

Table 14‒58: Comparison operators that can be specified in the --filter option (character string)

No. Comparison
operator

Example Description

1 == A == B Whether the pattern of character string A matches the pattern of character string B
(case-sensitive)

2 != A != B Whether the pattern of character string A does not match the pattern of character string
B (case-sensitive)

(g) comparison-operator-(numeric-value)
You can specify the comparison operators shown in the following table.

14. Command Reference

Hitachi Elastic Application Data Store 404

Table 14‒59: Comparison operators that can be specified in the --filter option (numeric value)

No. Comparison
operator

Example Description

1 > A > B Whether A as converted to a long value is greater than B as converted to a long
value (if there is no data for A, the condition is false)

2 < A < B Whether A as converted to a long value is less than B as converted to a long value
(if there is no data for A, the condition is false)

3 >= A >= B Whether A as converted to a long value is equal to or greater than B as converted to
a long value (if there is no data for A, the condition is false)

4 <= A <= B Whether A as converted to a long value is equal to or less than B as converted to a
long value (if there is no data for A, the condition is false)

(h) character-string
This argument specifies a String character string. You can use the two wildcards * and ?.

(i) numeric-value
This argument specifies a numeric value that can be converted by Long.parseLong().

(3) Execution example
This example specifies the --filter option in the eztool status -v command.

 Displaying the EADS server IDs of the EADS servers that have 3,000 or more keys and the total number of keys

 Displaying only parameters related to logs (output example is omitted)

14.4.5 How to specify a condition match
If you specify conditions in the --match option, you can return as the return code a value that indicates whether the
execution results satisfy the condition. If the specified condition is satisfied, 0 is returned; if not, 1 is returned. For
details, see the description of each subcommand's return codes. The information displayed as the results of subcommand
processing is the same as when this option is omitted.

If the --match option is specified together with the --filter option, a value is returned as the return code that
indicates whether the results obtained after filtering satisfy the condition. If the results are not displayed due to a warning,
for example, 1 is returned.

When conditions are evaluated, values that are not displayed in cells are treated as if they were displayed. Cells with
no data are treated as null character strings.

14. Command Reference

Hitachi Elastic Application Data Store 405

If the specified conditions are invalid, the command's execution fails.

(1) Option specification format (BNF notation)

--match matching-condition
matching-condition ::= Boolean-function-condition|Value-function-condition|
summary-condition

Boolean-function-condition ::= Boolean-function-name"("row-condition")"
 Boolean-function-name ::= ALL|EXIST
Value-function-condition ::= Value-function-name"("row-
condition")"comparison-operator-(character-string) character-string
 |Value-function-name"("row-condition")"comparison-
operator-(numeric-value) numeric-value
 Value-function-name ::= COUNT
summary-condition ::= summary-name comparison-operator-(character-string)
character-string
 |summary-name comparison-operator-(numeric-value)
numeric-value

row-condition ::= column-condition|column-condition logical-operator column-
condition
column-condition ::= column-name comparison-operator-(character-string)
character-string
 |column-name comparison-operator-(numeric-value) numeric-
value

comparison-operator-(character-string) ::= "=="|"!="
comparison-operator-(numeric-value) ::= ">"|"<"|">="|"<="
logical-operator ::= "&&"|"||"

character-string ::= String-character-string
numeric-value ::= numeric-value-that-can-be-converted-by-Long.parseLong()

Important note
Enclose the entire condition in double quotation marks (") in the following cases:

• summary-name, column-name, or character-string contains a space.

• comparison-operator-(numeric-value) is specified.

If such a condition is not enclosed in double quotation marks ("), it might be treated as separate arguments or
redirected incorrectly.

Reference note
For details about how to interpret the BNF notation, see 14.4.4(1) Option specification format (BNF notation).

14. Command Reference

Hitachi Elastic Application Data Store 406

(2) Arguments

(a) matching-condition
This argument specifies Boolean-function-condition, Value-function-condition, or summary-condition.

(b) Boolean-function-condition
This argument specifies Boolean-function-name"("row-condition")".

(c) Boolean-function-name
You can specify the functions shown in the following table.

Table 14‒60: Boolean functions that can be specified in the --match option

No. Function Description

1 ALL(row-condition) Whether all rows satisfy the row condition

2 EXIST(row-condition) Whether at least one row satisfies the row condition

(d) Value-function-condition
This argument specifies Value-function-name"("row-condition")"comparison-operator-(character-string)
character-string or Value-function-name"("row-condition")"comparison-operator-(numeric-value) numeric-value.

(e) Value-function-name
You can specify the Value function shown in the following table.

Table 14‒61: Value function that can be specified in the --match option

No. Function Description

1 COUNT(row-condition) Returns the number of rows that satisfy the row condition

(f) summary-condition
This argument specifies summary-name comparison-operator-(character-string) character-string or summary-name
comparison-operator-(numeric-value) numeric-value.

(g) summary-name
This argument specifies a summary name for the information that is displayed.

A summary name can be specified regardless of whether the --format and --column options are specified.

Summary names cannot be specified if their display depends on whether an option other than --format or --column
is specified. For example, the summary names that are displayed only when the -v option is specified cannot be specified
if the -v option is not specified.

(h) row-condition
This argument specifies column-condition or column-condition logical-operator column-condition.

14. Command Reference

Hitachi Elastic Application Data Store 407

(i) column-condition
This argument specifies column-name comparison-operator-(character-string) character-string or column-name
comparison-operator-(numeric-value) numeric-value.

(j) column-name
This argument specifies column names for the content to be displayed.

A column name can be specified regardless of whether the --format and --column options are specified. However,
column names cannot be specified if their display depends on whether an option other than --format or --column
is specified. For example, the column names that are displayed only when the -v option is specified cannot be specified
if the -v option is not specified.

(k) comparison-operator-(character-string)
You can specify the comparison operators shown in the following table.

Table 14‒62: Comparison operators that can be specified in the --match option (character string)

No. Comparison
operator

Example Description

1 == A == B Whether the pattern of character string A matches the pattern of character string B
(case-sensitive)

2 != A != B Whether the pattern of character string A does not match the pattern of character string
B (case-sensitive)

(l) comparison-operator-(numeric-value)
You can specify the comparison operators shown in the following table.

Table 14‒63: Comparison operators that can be specified in the --match option (numeric value)

No. Comparison
operator

Example Description

1 > A > B Whether A as converted to a long value is greater than B as converted to a long
value (if there is no data for A, the condition is false)

2 < A < B Whether A as converted to a long value is less than B that as converted to a long
value (if there is no data for A, the condition is false)

3 >= A >= B Whether A as converted to a long value is equal to or greater than B as converted to
a long value (if there is no data for A, the condition is false)

4 <= A <= B Whether A as converted to a long value is equal to or less than B as converted to a
long value (if there is no data for A, the condition is false)

(m) logical-operator
You can specify the logical operators shown in the table below.

If multiple logical operators are specified, they are evaluated sequentially from left to right.

14. Command Reference

Hitachi Elastic Application Data Store 408

Table 14‒64: Logical operators that can be specified in the --match option

No. Logical operator Example Description

1 && A && B A and B (if A and B are both true, the condition is true; otherwise, the condition is
false)

2 || A || B A or B (if A and B are both false, the condition is false; otherwise, the condition is
true)

(n) character-string
This argument specifies a String character string. You can specify the two wildcards * and ?.

(o) numeric-value
This argument specifies a numeric value that can be converted by Long.parseLong().

(3) Execution example
This example specifies the --match option in the eztool status -v command (output example is omitted).

 Checking whether the cluster has started

 Checking for an EADS server whose explicit heap usage rate is 70% or higher

 Checking for a cache with a specified cache name

 Checking whether an EADS server has been restored

 Monitoring the number of cache files

14. Command Reference

Hitachi Elastic Application Data Store 409

Part 4: Application Program Development

15 General Procedure for Developing Application
Programs

This chapter explains the general procedure and prerequisites for developing application programs.

Hitachi Elastic Application Data Store 410

15.1 General procedure for developing application programs

The following figure shows the general procedure for developing application programs.

15.1.1 Configure a development environment
Prepare a development environment in which to create application programs.

The program products required for the application program development environment depend on the language being
used to create application programs (Java or C). Install the required program products, and then set up the application
program development environment.

• Java

• Hitachi Elastic Application Data Store

• C

• Hitachi Elastic Application Data Store

• Hitachi Elastic Application Data Store Client for C

Referring to the following chapters, configure the EADS servers and EADS clients in the same manner as you would
for the execution environment, and then use them for the development environment:

• 5. Installing and Setting Up (EADS Servers)

• 6. Installing and Setting Up (EADS Clients)

15.1.2 Create application programs
After you have configured the development environment, create application programs.

If you are using Java to create client application programs, see 16. Creating Client Application Programs (in Java).

If you are creating user functions, see 17. Creating User Functions.

If you are using C to create client application programs, see 19. Creating a Client Application Program (in C).

15. General Procedure for Developing Application Programs

Hitachi Elastic Application Data Store 411

15.1.3 Test the application programs
After you have finished creating each application program, test and debug it.

15.1.4 Migrate the created application programs to the execution
environment

After you have finished testing each application program, migrate it to the execution environment.

15. General Procedure for Developing Application Programs

Hitachi Elastic Application Data Store 412

15.2 Prerequisites for the development of application programs

This section explains prerequisites for developing application programs in EADS, including the programming languages
that can be used to create application programs, the EADS client program products to use, and the supported keys, group
names, values, and cache names.

15.2.1 Programming languages for application programs and EADS
clients

This subsection explains the programming languages that EADS supports for application programs, and the types of
EADS clients.

(1) Programming languages used to create application programs
You can use the following languages to create application programs for EADS:

• Java

• C

(2) Types of EADS clients
There are two types of EADS client program products (client libraries) available, depending on which programming
language you are using to create application programs:

• Java
Hitachi Elastic Application Data Store Client for Java

• C
Hitachi Elastic Application Data Store Client for C

To use one of the above program products in an execution environment, install the product in each execution
environment.

Important note
• If you use an application program created with a client library whose version is more recent than the version

of the EADS client, valid operation is not guaranteed. In such a case, you need to edit and recompile the
source programs.
An application program created with a client library whose version is 03-00 or later can be used with more
recent versions of EADS clients.

• EADS clients and EADS servers whose version is earlier than 03-00 are not compatible with EADS clients
and EADS servers whose version is 03-00 or later. For example, EADS clients and EADS servers whose
version is 03-50 are not compatible with EADS clients and EADS servers whose version is 02-00 or earlier.
If an attempt is made to establish a connection between incompatible programs, valid operation is not
guaranteed.

• If you use an EADS client within a user function, the EADS client's version needs to be the same as the
EADS server's version. If you use an EADS client whose version differs from the EADS server's version,
valid operation is not guaranteed.

15. General Procedure for Developing Application Programs

Hitachi Elastic Application Data Store 413

15.2.2 Data that is supported as keys, group names, values, cache names,
and EADS client names

This subsection explains the data that can be specified for keys, group names, values, cache names, and EADS client
names.

(1) Data types that can be specified as keys
This subsection explains the format of keys and the data that can be specified.

(a) Format of keys

key=
 [group-name:]element-name

When a key is not grouped, element-name is the key. When a key is grouped, a set of group-names, delimiters (:), and
an element-name constitutes the key. Therefore, keys with the same element-name but a difference in the group-names
are different keys.

For the format of group-name, see 15.2.2(2) Data that can be specified as group names.

The following shows examples of key specifications:

• Key that is not grouped

key1

• Key that is grouped

group1:key1

• Key whose groups are arranged hierarchically

group1:group2:key1

(b) Data types and number of characters that can be specified as keys
The table below lists and describes the data types and the number of characters that can be specified as keys in each
programming language used to create application programs. When a key is grouped, the maximum length is 1,024
characters including the group names, delimiters (:), and element name.

Table 15‒1: Data types that can be specified as keys

Programming
language for
application
programs

Data type supported as keys Number of
characters

Remarks

Java Character string
(java.lang.String)

1 to 1,024 Specifying null or the null character string is
invalid.

C Character string ending with the terminal
symbol \0 (char *)

1 to 1,024 • The maximum size of a character string is in
bytes with \0 excluded.

• A character string with a length of zero (\0
only) is not permitted.

15. General Procedure for Developing Application Programs

Hitachi Elastic Application Data Store 414

Important note
The eztool put, eztool get, and eztool remove commands can be used to test the configured
execution environment to determine whether it is running normally. Therefore, the data types and sizes permitted
in the commands are not completely compatible with those permitted in API functions (put, get, remove).

(c) Key specification rules
This subsection explains the rules for specifying keys.

• The ASCII codes 0x20 through 0x7E are supported for specifying keys.
Note that the characters listed in the following table cannot be used in keys, except as noted, because they are EADS
reserved characters.

Table 15‒2: Characters that cannot be used in keys

ASCII code Character Exception

0x22 Double quotation mark (") None

0x28 Left parenthesis (() None

0x29 Right parenthesis ()) None

0x3a Colon (:) This character can be specified only as a delimiter between group
hierarchy names and an element name. This character cannot be used
within a group hierarchy name or an element name.

0x3c Less-than sign (<) None

0x3e Greater-than sign (>) None

0x5b Left square bracket ([) These characters can be used only when EADS server IDs of storage
EADS servers are specified in EADS server ID specified groups.

0x5d Right square bracket (])

0x7c Vertical bar (|) None

(2) Data that can be specified as group names
This subsection explains the format of group names and the data that can be specified.

(a) Format of group name

group-name=
 group-hierarchy-name[:group-hierarchy-name]...

You can specify as a group name a set consisting of a group hierarchy name in a desired hierarchy through the group
hierarchy name in the highest hierarchy. A name beginning with an intermediate group hierarchy name cannot be
specified.

When group names are specified in an API function, a name beginning with an intermediate group hierarchy name
cannot be specified. For example, if a key is groupA:groupB:groupC:key, a group name beginning with
groupB:groupC cannot be specified.

The following examples show the relationship between group names.

15. General Procedure for Developing Application Programs

Hitachi Elastic Application Data Store 415

• Group names that can be specified when the key is groupA:groupB:groupC:key
groupA

groupA:groupB

groupA:groupB:groupC

• Group names that can be specified when the key is [10]group1:group2:key
[10]group1

[10]group1:group2

(b) EADS server ID specified groups
If you group keys by specifying a key storage EADS server, specify the EADS server ID of the EADS server where the
keys are stored. This type of group is called an EADS server ID specified group.

The following shows the format of keys that contain an EADS server ID specified group:

[EADS-server-ID]group-hierarchy-name:[group-hierarchy-name:]...element-name

When you use an EADS server ID specified group to group a key, specify the EADS server ID enclosed in square
brackets ([]) as the key's first group hierarchy name (the left square bracket ([) and the right square bracket (]) in
[EADS-server-ID] must be specified, as shown in the format; these square brackets do not mean that the enclosed item
can be omitted). Specify for the EADS server ID an integer that does not begin with zero.

A set of a left square bracket ([), an EADS server ID, and a right square bracket (]) is treated as a group name.

The following example shows a key that contains an EADS server ID specified group:

[1]group1:key1

(c) Data types and the number of characters that can be specified as group names
For details about the data types supported for group names, see 15.2.2(1)(b) Data types and number of characters that
can be specified as keys. When keys are grouped, the maximum length is 1,024 characters including the group names,
delimiters (:), and element name. Therefore, a maximum of 1,022 characters are permitted for the group names.

(d) Group name specification rules
This subsection explains the rules for specifying group names. For other rules and notes, see 15.2.2(1)(c) Key
specification rules.

• When keys are grouped, there is no upper limit to the number of groups and group hierarchies that can be created.
Note that when groups are arranged in a hierarchy, the processing time increases as the hierarchy goes to lower
levels. It is advisable to configure hierarchies appropriately.

• When an EADS server ID specified group is used, the EADS server ID of an EADS server that does not exist in the
cluster cannot be specified.

15. General Procedure for Developing Application Programs

Hitachi Elastic Application Data Store 416

(3) Data types that can be specified as values
The following table lists and describes the data types and sizes that can be specified as values in each programming
language used to create application programs.

Table 15‒3: Data types that can be specified as values

Programming
language for
application
programs

Data type supported as values Size
(bytes)

Remarks

Java Any object that can be serialized
(java.lang.Object)

1 to 262,144 • This is the length of a
serialized byte array.

• Specifying null is invalid.

C Any byte array (void *) 1 to 262,144 This is the length of any byte
array.

Important note
• The permitted data types and sizes are not completely compatible between the API functions (put, get,
remove) and the commands (eztool put, eztool get, eztool remove).

• If your Java client application program or user function and C client application program handle the same
keys, use byte arrays for values. The values stored as byte arrays by the Java client application program or
user function can be acquired by the C client application program. If a C client application program acquires
values that are not byte arrays, an error results.
The values stored by the C client application program can be acquired as byte arrays by the Java client
application program or a user function.

(4) Data types that can be specified as cache names
The following table lists and describes the data types and the number of characters that can be specified as cache names
in each programming language used to create application programs.

Table 15‒4: Data types that can be specified as cache names

Programming
language for
application
programs

Data type supported as cache names Number of
characters

Remarks

Java Character string (java.lang.String) 1 to 32 • The permitted characters are 0x20 through
0x7E in ASCII codes.

• Specifying null or the null character string
is invalid.

C Character string ending with the terminal
symbol \0 (char *)

1 to 32 • The permitted characters are 0x20 through
0x7E in ASCII codes.

• The maximum size of a character string is in
bytes with \0 excluded.

• A character string with a length of zero (\0
only) is not permitted.

15. General Procedure for Developing Application Programs

Hitachi Elastic Application Data Store 417

(5) Data that can be specified as EADS client names
The following table lists and describes the data types and the number of characters that can be specified as EADS client
names in each programming language that can be used to create application programs.

Table 15‒5: Data that can be specified as EADS client names

Programming
language for
application
programs

Data types supported as EADS client
names

Number of
characters

Remarks

Java Character string (java.lang.String) 0 to 16 • Alphanumeric characters (0 to 9, A to Z, a
to z) and underscores (_) are permitted.

• A null character string is permitted.
• Specifying null is invalid.

C Character string ending with the terminal
symbol \0 (char *)

0 to 16 • Alphanumeric characters (0 to 9, A to Z, a
to z) and underscores (_) are permitted.

• The maximum size of a character string is in
bytes with \0 excluded.

• A character string with a length of zero (\0
only) is permitted.

15.2.3 Reserved package and system property names (applicable to Java)
In application programs, do not use the following reserved package and system property names:

• Reserved package names
Package names beginning with com.hitachi.software.xeads.

• Reserved system property names
Property names beginning with eads.

15. General Procedure for Developing Application Programs

Hitachi Elastic Application Data Store 418

16 Creating Client Application Programs (in Java)

This chapter explains how to create client application programs using Java.

Hitachi Elastic Application Data Store 419

16.1 Creating source programs (in Java)

This section explains the general procedure for accessing caches and manipulating data, and shows an example of
creating a source program.

16.1.1 General procedure for accessing caches and manipulating data
The following figure shows the general procedure for accessing caches and manipulating data:

(1) Example of a source program in Java
The following shows an example of a source program in Java (one that stores keys and values):

// Import the package provided by EADS
import com.hitachi.software.xeads.client.api.*;

public class PutSample {

public static void main(String[] args) {
 // Initialize the EADS client

 final String CONFPATH = "./conf/eads_sample_client.properties";
 final String CACHENAME = "cache1";
 CacheManager cacheManager = null;
 Cache cache = null;

 try {
 cacheManager = CacheManager.create(CONFPATH);
 // Start accessing caches
 cache = cacheManager.getCache(CACHENAME);

16. Creating Client Application Programs (in Java)

Hitachi Elastic Application Data Store 420

 System.out.println("cache start succeeded. (cache name = " +
CACHENAME + ")");
 // Store keys and values
 final String KEY = "key1";
 final String VALUE = "value1";

 cache.put(KEY, VALUE);
 System.out.println("PUT succeeded. (key = " + KEY + ", value = " +
VALUE + ")");

 String value = (String)cache.get(KEY);
 System.out.println("GET succeeded. (key = " + KEY + ", value = " +
value + ")");

 } catch (CacheException e) {
 System.out.println("cache operation failed.(cache name = " +
CACHENAME + ", error code = " + e.getErrorCode() + ")");
 }finally{
 if(cacheManager != null){
 // Terminate accesses to caches
 if(cache != null){
 try{
 cacheManager.removeCache(CACHENAME);
 System.out.println("cache stop succeeded. (cache name =
" + CACHENAME + ")");
 }catch(CacheException e){
 System.out.println("CacheManager.removeCache() failed.
(error code = " + e.getErrorCode() + ")");
 }
 }
 // Terminate the use of EADS client
 try{
 cacheManager.destroy();
 }catch(CacheException e){
 System.out.println("CacheManager.destroy() failed. (error
code = " + e.getErrorCode() + ")");
 }
 }
 }
 }
}

(2) Importing the package provided by EADS
Import the following package provided by EADS:

import com.hitachi.software.xeads.client.api.*;

(3) Initializing the EADS client
To initialize the EADS client, use create() of the CacheManager class to create an instance of the
CacheManager class.

The settings, including the EADS servers to be connected, are specified according to the client properties.

16. Creating Client Application Programs (in Java)

Hitachi Elastic Application Data Store 421

If you want to use multiple instances of a CacheManager class whose settings are different, such as when a connection
is established with multiple clusters, edit the client properties and then execute create() of the CacheManager
class multiple times. To terminate use of the EADS client when you have executed create() of the CacheManager
class multiple times, execute destroy() of the CacheManager class on each of the acquired instances of the
CacheManager class.

(4) Starting to access caches
After you have finished initializing the EADS client, start accessing caches.

To start accessing caches, use getCache() of the CacheManager class to create an instance for manipulating data
(an instance of the Cache class).

(5) Storing keys and values
To store keys and values in a cache, use put() of the Cache class.

In put(), specify the keys and values to be stored in the cache.

(6) Acquiring values
To acquire values from a cache, use get() of the Cache class.

In get(), specify the key associated with the value you want to acquire.

If the value is acquired successfully by get(), the value associated with the key is returned as a return value.

The following shows an example of a source program for acquiring values.

Example of a source program (for acquiring values)

 // Acquire value
 final String KEY = "key1";
 try {
 String value = (String) cache.get(KEY);
 System.out.println("GET succeeded. (key = " + KEY + ", value = " +
value + ")");
 } catch (CacheException e) {
 int errcode = e.getErrorCode();
 System.out.println("GET failed. (key = " + KEY + ", error code = "
+ errcode + ")");
 }

(7) Deleting keys and values
To delete a specified key and the value associated with that key from a cache, use remove() of the Cache class.

In remove(), specify the key associated with the value you want to delete.

(8) Executing user functions
To execute user functions, use executeFunction() of the Cache class.

16. Creating Client Application Programs (in Java)

Hitachi Elastic Application Data Store 422

Specify in executeFunction() the name of the key or the group for executing the user function or an instance of
the Node class, the name of the user function to be executed, and arguments to be passed to the user function.

If the user function is executed by executeFunction(), the user function execution results are returned.

(9) Terminating accesses to caches
To terminate accesses to caches, use removeCache() of the CacheManager class.

In removeCache(), specify the name of the cache to which you want to terminate access.

(10) Terminating use of the EADS client
To terminate use of the EADS client, use destroy() of the CacheManager class.

16. Creating Client Application Programs (in Java)

Hitachi Elastic Application Data Store 423

16.2 Notes about creating client application programs (in Java)

This section provides notes about creating client application programs.

16.2.1 Notes about initializing an EADS client
The following notes apply to initializing an EADS client:

• If you execute multiple EADS clients concurrently on the same machine, specify a different log output destination
for each EADS client. If you specify the same log output destination, valid operation is not guaranteed. For details
about specifying the log output destination, see 8.4.2 Specifying the file output destinations.

• If an EADS client is initialized with the EADS client name omitted, the result is the same as when initialization is
performed with a null character string specified as the EADS client name. For details about the relationship between
the EADS client name and the log output destination, see 8.4.2 Specifying the file output destinations.

• If you run client application programs on a Java EE server (uCosminexus Application Server), initialize the EADS
client when you start the application programs by using one of the following methods:

• ServletContextListener
• Servlet's init method

• If you run client application programs on a Java EE server (uCosminexus Application Server), make sure that you
execute create() of the CacheManager class, and then execute destroy() of the CacheManager class.
If you fail to do this, a memory leak will occur.

• Use the following procedure to change client properties:

1. Use destroy() of the CacheManager class to terminate use of the EADS client.

2. Update the client property file.

3. Use create()of the CacheManager class to initialize the EADS client again.

16.2.2 Notes about starting access to caches
For cache names, specify the name that was created beforehand by using the eztool createcache command. If
the specified cache name does not exist, CacheException.EAD_ERROR_NET_CLUSTERINFO is returned.

16.2.3 Notes about manipulating data

(1) Notes about manipulating data
The following notes apply to manipulating data:

• If a specified key is already in cache, put() unconditionally updates the value. If you do not want to update values
unconditionally, use the following methods:

• create()
Only when a new key is stored, this method associates a value with the key and stores the value.

• update()

16. Creating Client Application Programs (in Java)

Hitachi Elastic Application Data Store 424

Only when a specified key is already stored, this method associates a value with the key and stores the value.

• replace()
Compares the value associated with a specified key with the value (comparativeValue) specified as the
condition. Then, only if their values match, this method associates the value with the key and stores the value.

• If a key specified during the execution of get() does not exist in the cache, null is returned.

• If a key specified during the execution of replace() does not exist,
CacheException.EAD_ERROR_SERVER_REPLACE_METHOD_KEY_NOT_EXIST is returned.

• If comparison results do not match during the execution of replace(),
CacheException.EAD_ERROR_SERVER_REPLACE_METHOD_NOT_MATCHED is returned.

• If a key specified during the execution of create() already exists,
CacheException.EAD_ERROR_SERVER_CREATE_METHOD_KEY_EXIST is returned.

• If a key specified during the execution of update() does not exist,
CacheException.EAD_ERROR_SERVER_UPDATE_METHOD_KEY_NOT_EXIST is returned.

(2) Notes about batch data operations
The following notes apply to batch data operations.

• If a specified key has already been stored in the cache, putAll()updates the value unconditionally.

• Because caches are not locked while operations are ongoing, a target value might be changed by another cache
operation during a batch operation.

• When batch operations are performed on a large amount of data, a large amount of memory might be required by
EADS clients and EADS servers.

• When batch operations are performed on a large amount of data, it might take a long time to complete the processing.
To ensure proper operation, make sure that you design a timeout value that is appropriate for the processing time.

• If manipulation of a key fails or the cluster configuration is changed while batch operation with multiple keys
specified is underway, the batch operation will be terminated and any operations that have not yet been performed
will be cancelled. Similarly, when the cluster configuration is changed by a user operation, such as scale-out
processing (adding EADS servers) or restoration processing, during batch operation, any operations that have not
yet been performed will be cancelled.
Identify the key resulting in an error and determine the cause of the error from each API method's return value. You
can identify a key whose manipulation was cancelled based on the error code of
CacheException.EAD_ERROR_CLIENT_BATCH_CANCEL.

• When all key manipulations fail when batch operation with multiple keys specified is attempted,
CacheException.EAD_ERROR_BATCH_FAILED_ALL is returned.

• When only some key manipulations fail when batch operation with multiple keys specified is performed,
CacheException.EAD_ERROR_BATCH_FAILED_PART is returned.

16.2.4 Notes about terminating access to caches
The following notes apply to terminating access to caches:

• To access a cache whose access has been terminated by removeCache() of the CacheManager class, issue
getCache() of the CacheManager class.

16. Creating Client Application Programs (in Java)

Hitachi Elastic Application Data Store 425

• removeCache() of the CacheManager class terminates access to all caches obtained with the same cache name
specified (instances of the Cache class). Therefore, use removeCache() of the CacheManager class carefully
when it is executed in multiple threads.

16.2.5 Notes about terminating use of the EADS client
The following notes apply to terminating use of the EADS client:

• Execute destroy() of the CacheManager class paired with create() of the CacheManager class. Execute
destroy() only once for each instance acquired by create() of the CacheManager class.

• If you run client application programs on a Java EE server (uCosminexus Application Server), make sure that you
execute destroy() of the CacheManager class. If you fail to do this, a memory leak will occur.

• If the EADS client had already been terminated when destroy() of the CacheManager class was executed,
CacheException is returned.

16. Creating Client Application Programs (in Java)

Hitachi Elastic Application Data Store 426

16.3 Compiling source programs (in Java)

To compile a created source program, use JDK's javac command.

For details about the javac command, see the Java compiler-related documentation.

The following class libraries are required for compiling source programs:

• /opt/hitachi/xeads/javaclient/lib/eads-client.jar
• /opt/hitachi/xeads/javaclient/lib/eads-common.jar
• /opt/hitachi/xeads/javaclient/lib/hntrlib2-eads-j.jar

If you plan to run your application programs on a Java EE server (uCosminexus Application Server), you must include
the following libraries in the application programs (WAR file (WEB-INF/lib directory)):#

• /opt/hitachi/xeads/javaclient/lib/eads-client.jar
• /opt/hitachi/xeads/javaclient/lib/eads-common.jar
• /opt/hitachi/xeads/javaclient/lib/hntrlib2-eads-j.jar

#
Can be executed from a Servlet or JSP (includes Filter and Listener).

16. Creating Client Application Programs (in Java)

Hitachi Elastic Application Data Store 427

17 Creating User Functions

This chapter explains how to create and then run user functions.

Hitachi Elastic Application Data Store 428

17.1 Prerequisites for creating user functions

This section explains prerequisites for creating user functions.

For an overview of user functions, see 2.7 Efficient data processing using user functions.

17.1.1 Programming language for user functions
You can use Java to create user functions.

User functions must be implemented with the EADS-provided Function interface and archived as jar files.

Important note
If you attempt to use a user function that has been implemented with a Function interface whose version is
more recent than the EADS server's version, valid operation is not guaranteed. In such a case, you need to edit
and recompile the source programs.

A user function created with a Function interface whose version is 03-00 or later can be used with more
recent versions of EADS servers.

You can place multiple jar files on a single EADS server. Therefore, if you want to execute multiple user functions
on the same EADS server, you can use different jar files according to purpose.

17.1.2 User function execution methods
There are two ways to execute user functions:

• By specifying a key or a group

• By specifying an EADS server

For details about the mechanism of user functions, see 2.7.1 Mechanism of user functions.

17.1.3 Java class loaders used by EADS servers
This subsection explains the Java class loaders used by EADS servers.

The role of a Java class loader is to dynamically load Java classes to a Java Virtual Machine. The following figure shows
the configuration of the Java class loaders that are used by EADS servers.

17. Creating User Functions

Hitachi Elastic Application Data Store 429

• System class loader
Loads the classes that are used by jdk libraries and EADS servers.

• User library class loader
Loads the library classes that are used by the user functions placed under management-directory/app/lib.
One user library class loader is created for each EADS server.

• Function class loader
Loads the classes contained in user functions' jar files and the classes contained in the libraries specified in the
jar files' manifest files (classes used only by user functions).
One function class loader is created for each jar file. Therefore, if multiple jar files are placed for user functions,
multiple function class loaders are created.

Class loader search processing begins with the system class loaders that are parent class loaders.

User functions are loaded in ASCII code order of the jar file names.

You can load classes with the same fully qualified class name to different function class loaders, but only the first user
function loaded can be executed. For a user function loaded later, no instance is created and the Function interface's
init() is not executed.

17.1.4 General procedure for creating user functions
The following figure shows the general procedure for creating user functions.

17. Creating User Functions

Hitachi Elastic Application Data Store 430

17. Creating User Functions

Hitachi Elastic Application Data Store 431

17.2 Creating a source program (user function)

This section explains how to create user functions and provides related notes.

17.2.1 Flow of a user function
The following figure shows a flow of a user function.

(1) Importing the EADS-provided packages
Import the following EADS-provided packages:

import com.hitachi.software.xeads.func.Function;
import com.hitachi.software.xeads.func.FunctionContext;

(2) Implement user function initialization processing
Use init() of the Function interface to implement the user function initialization processing that is called when
the EADS server starts up.

You can acquire the EADS server information with the FunctionContext argument of init(). Note that data in
cache cannot be obtained because init() is called when the EADS server starts up.

If an exception occurs during the execution of init(), this user function cannot be used.

(3) Implement user function processing
Use execute() of the Function interface to implement the user function processing that is executed on the EADS
server when it is requested by the EADS client.

You can acquire the EADS server information and manipulate data in cache with the FunctionContext argument
of execute().

For details about the operations that can be performed by user functions, see 18.2 API interfaces supported in user
functions.

17. Creating User Functions

Hitachi Elastic Application Data Store 432

(4) Implement user function termination processing
Use destroy() of the Function interface to implement the user function termination processing that is called when
the EADS server is terminated.

You can acquire the EADS server information with the FunctionContext argument of destroy().

Note that if user function initialization processing fails, destroy() is not called.

17. Creating User Functions

Hitachi Elastic Application Data Store 433

17.3 Notes about creating user functions

This section provides notes about creating user functions.

17.3.1 Notes about jar file names
The following notes apply to jar file names.

• Do not use a file name that begins with eads.

• Specify the file names in the following format:
any-character-string_function.jar
any-character-string can consist of alphanumeric characters (0 to 9, A to Z, a to z) and underscores (_).

17.3.2 Notes about package names
The following notes apply to package names.

• Do not use a package name beginning with com.hitachi.software.xeads.

• The package names and class names of user functions can consist of alphanumeric characters (0 to 9, A to Z, and
a to z) and underscores (_).

17.3.3 Notes about implementing user functions
The following notes apply to implementing user functions.

• Set the access qualifier of the default constructor of user functions to public so that it can be used by the EADS
servers.

• Use serializable objects for the arguments and the return value from the EADS client.

• If you acquire data by using the Group interface, use one of the following methods to add to the class path the
information needed to deserialize objects:

• Specify the path of the jar file in the Class-Path attribute of the jar manifest.

• Place the jar file under the management-directory/app/lib directory.

• Only one instance of a user function is supported. If multiple instances of a user function are executed concurrently
on multiple EADS clients, the EADS servers attempt to use the same instance in multiple threads. Therefore, do not
implement the following processes in the user functions:

• Updating instance variables and the static variable without locking

• Using an API function that is not thread-safe without locking

• The scope of FunctionContext and the objects that can be acquired from it is only within the Function
interface's methods. Operation is not guaranteed if these objects are referenced outside the range of those methods.

• Do not create threads within a user function. Operation is not guaranteed if threads are created and executed within
a user function.

• Because user functions are run in an EADS server processes, the current directory is the management directory.

17. Creating User Functions

Hitachi Elastic Application Data Store 434

• When user functions are executed from C client application programs, the only objects that can be handled as user
function return values are byte arrays and null. An error will result if an object that is not a byte array or null is
set as a return value.

• When user function arguments are passed to C client application programs, the only objects supported by the user
functions are byte arrays.

17.3.4 How to acquire a list of keys efficiently
If a group of keys is stored in ascending order of the ASCII codes and a user function is used to acquire a list of keys
asynchronously, a set of keys acquired once can be excluded from the keys capable of being acquired thereafter (so that
afterwards, a list is acquired of only those keys that have not already been acquired). This is done by combining
keyIterator() and keyIterator() (key interface specification) of the Group interface.

This method allows you to acquire a list of keys efficiently because you do not have to acquire a list of all keys each
time data is added.

17. Creating User Functions

Hitachi Elastic Application Data Store 435

For details about the Group interface, see 18.2.9 Group interface.

To acquire a list of keys in descending order of the ASCII codes, combine descendingKeyIterator() and
descendingKeyIterator() (key interface specification) of the Group interface.

Tip
You can acquire a list efficiently by specifying as keys a sequence (such as date and time) that corresponds to
the key storage sequence.

17. Creating User Functions

Hitachi Elastic Application Data Store 436

17.4 Creating a function property file (optional)

Create a function property file, if necessary.

There are two ways to create function property files:

Creating a function property file that is applied to all user functions
The file name is eads_function.properties.
If no function property file is provided, default values are assumed for all parameters required for execution.
For details about the parameters of function properties, see 9.2.3 Parameters related to thread pools and connection
pools.

Creating a function property file for each user function's jar file
The file name is in the following format:
any-character-string_function.properties
For any-character-string, specify the name of the jar file that you want to apply but without the _function.jar
part.
Example: The jar file name is sample_function.jar
The function property file name is sample_function.properties.
You can specify eads_function.properties together with any-character-
string_function.properties. When they are specified together and the same parameters are defined in both
property files, the parameters in any-character-string_function.properties are applied.
If no function property file is provided, the contents of eads_function.properties are applied.

Important note
In the case of the jar file name (user-function.jar) of a user function whose version is 03-00 or
earlier, the function property file name is user_function.properties.

In the function properties, you can specify the maximum number of simultaneous threads for each user function by
using the eads.function.user-function-name.maxExecuteThreads parameter.

You can also define user-specific parameters.

For details about designing the maximum number of simultaneous threads for each user function, see 9.2.2 Setting the
maximum number of simultaneous threads.

You can acquire the parameters specified in the function properties within the user function by using the InitConfig
interface.

To create a function property file:

1. Edit the function property file.

2. Store the function property file in the following directory:

management-directory/app

The following shows an example of a function property file.

17. Creating User Functions

Hitachi Elastic Application Data Store 437

eads.function.com.abc.def.outputGroupKeys.max_execute_threads=10
eads.function.com.abc.def.getSpectialKey.max_execute_threads=5
eads.function.com.abc.def.updateInstance.max_execute_threads=2

User-specific parameters
com.FunctionSample.def.version=0100
com.FunctionSample.def.isUpdateEnabled=true

Important note
The name of a user-specific parameter cannot begin with eads.. If a user-specific parameter whose name
begins with eads. is used, operation is not guaranteed.

17. Creating User Functions

Hitachi Elastic Application Data Store 438

17.5 Compiling source programs (user functions)

This section explains how to compile user functions.

17.5.1 How to compile user functions
This subsection explains how to compile user functions.

(1) Placement of the source program
Place a created user function at a desired location.

(2) Compiling
To compile the source program of a created user function, use the JDK javac command, which is stored in the directory
shown below.

For details about the javac command, see the Java compiler-related documentation.

/opt/hitachi/xeads/PSB/jdk

Specify the following libraries in the class path:

/opt/hitachi/xeads/server/lib/eads-function.jar

17. Creating User Functions

Hitachi Elastic Application Data Store 439

17.6 Packaging the user functions

This section explains how to create a jar file to store the class files compiled in 17.5 Compiling source programs
(user functions).

17.6.1 How to package user functions
This subsection explains how to create a jar file to store the class files compiled as explained in 17.5 Compiling
source programs (user functions).

(1) Specify a manifest (optional)
Specify a class that is used only by the user function in the Class-Path attribute in the manifest file (MANIFEST.MF)
of the jar file.

(2) Create the jar file
Create the jar file by using the JDK jar command, which is stored in the directory below.

For details about the jar command, see the related Java documentation.

/opt/hitachi/xeads/PSB/jdk

17. Creating User Functions

Hitachi Elastic Application Data Store 440

17.7 Deploying user functions

This section explains how to deploy user functions. Deploy user functions while the EADS server is stopped.

17.7.1 How to deploy user functions
This subsection explains how to deploy user functions.

(1) Terminate the EADS server
Use the eztool stop command to terminate the EADS server.

(2) Copy the created jar file
Copy the jar file created in 17.6.1(2) Create the jar file to the following directory:

management-directory/app

(3) Copy the function property file (optional)
If you have created a function property file, copy it to the following directory:

management-directory/app

(4) Place the libraries in the appropriate directory (optional)
If necessary, place the libraries that will be used by user functions in the directory shown below. Only those libraries
whose extension is jar are valid.

management-directory/app/lib

If the path of the jar file is specified in the Class-Path attribute in the manifest file (MANIFEST.MF) of the jar
file, copy the jar file to that path.

(5) Start the EADS server
Execute the ezserver command to start the EADS server.

(6) Check whether the user function has been deployed (optional)
Use the eztool listfunc command to check whether the user function has been deployed successfully.

For details about this procedure, see 11.11 Checking whether user functions have been placed correctly on individual
EADS servers and whether they can be executed.

17. Creating User Functions

Hitachi Elastic Application Data Store 441

17.8 Executing user functions

This section explains how to execute the user functions to make sure that they operate correctly.

17.8.1 Call a user function
To call a user function, use the following method of the EADS client:

(1) User functions that are executed with a key or a group specified
Java

executeFunction() (key specification or group specification) of the Cache class

C
ead_execute_function()

(2) User functions that are executed with an EADS server specified
Java

executeFunction() (EADS server specification) of the Cache class

C
ead_execute_node_function()

17.8.2 Output information to the user logs
You can output information about user function execution (user logs) by using the UserLogger interface. The user
logs are output under the file name eads_user_message[n].log ([n] indicates the sequence number of the file)
in the directory specified in the eads.logger.dir parameter in the server properties.

17.8.3 Notes about running user functions
• User functions can be executed only on active EADS servers. If an EADS server's status is changed while a user

function is running, any data operations performed thereafter by that user function will result in an error.

• If the EADS server process is forcibly terminated by the eztool forcestop command or an OS function, the
destroy method of the Function interface is not called.

• The user is responsible for maintaining the consistency of user functions among the EADS servers. If an attempt is
made to execute a user function when it is not located on a specific EADS server, an error is returned to the EADS
client.

• The EADS servers execute the user functions even if their implementation differs among the EADS servers.

17. Creating User Functions

Hitachi Elastic Application Data Store 442

17.9 Distributing the directory to the execution environment

Copy the management-directory/app directory to the management-directory/app directory on the EADS server in
the execution environment.

17. Creating User Functions

Hitachi Elastic Application Data Store 443

18 Application Programming Interface Reference
(Java)

This chapter explains the application programming interface (API) for Java supported by EADS.

Hitachi Elastic Application Data Store 444

18.1 Classes provided by the Java client libraries

The Java client libraries provide the classes listed in the table below as an EADS application program interface (API).
You can use these classes by specifying the EADS-provided package names in the source programs coded in Java.

Note that the classes supported by the Java client libraries are all thread-safe.

Table 18‒1: Class and package names supported by the Java client libraries

No. Class name Description Package name

1 Cache This class is used for manipulating
data.

com.hitachi.software.xea
ds.client.api

2 CacheManager This class is used for managing caches.

3 Node This class is used for obtaining
information about an EADS server.

4 FailureOperationInfo This class is used for storing
information about failed operations
when part or all of a batch operation
fails.

5 CacheException This is an exception class that is
returned when an operation on the
Cache and CacheManager classes
fails.

6 InitializeException This is a subclass of
CacheException that is returned
when initialization of the
CacheManager class results in an
error.

7 InternalClientException This is a subclass of
CacheException that is returned
when an internal error occurs on an
EADS client.

8 InternalServerException This is a subclass of
CacheException that is returned
when an internal error occurs on an
EADS server.

9 ServerCommunicationException This is a subclass of
CacheException that is returned in
the event of a communication error.

10 UserOperationException This is a subclass of
CacheException that is returned
when an error occurs due to an illegal
user operation.

11 BatchOperationException This is a subclass of
CacheException that is returned
when part or all of a batch operation
fails.

12 AllFailureException This is a subclass of
BatchOperationException
that is returned when all of a batch
operation fails.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 445

No. Class name Description Package name

13 PartFailureException This is a subclass of
BatchOperationException
that is returned when part of a batch
operation fails.

18.1.1 Cache class

(1) Description
This is a class used for manipulating data.

(2) Inheritance relationship

java.lang.Object
 com.hitachi.software.xeads.client.api.Cache

(3) Format

public class Cache
extends java.lang.Object

(4) List of methods
The following table lists and describes the methods provided by the Cache class:

Method name Description

getName() Acquires a cache name associated with an instance of the Cache class.

put() Associates a value with a key, and then stores it.

putAll() Using a batch operation, this method stores the keys and values that are associated in a specified
map.

create() Associates a value with a key, and then stores it only when a new key is stored.

update() Associates a value with a key, and then stores it only if the specified key has already been stored.

replace() Compares the value associated with a specified key with a value (comparativeValue)
specified as a condition. Only if the values match, this method associates the value with the key,
and then stores it.

get() Acquires a value associated with a specified key.

getAll() (set specification) Using a batch operation, this method acquires the values associated with a specified list of keys.
The acquired values are associated with keys and stored in a map specified in the argument.

getAll() (group specification) Using a batch operation, this method acquires the values associated with the keys that belong to a
specified group and its lower hierarchy groups. The acquired values are associated with keys and
stored in a map specified in the argument.

remove() Deletes a specified key and the value associated with that key.

removeAll() (set specification) Using a batch operation, this method deletes the values associated with a specified list of keys.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 446

Method name Description

removeAll() (group specification) Using a batch operation, this method deletes the keys and values that belong to a specified group,
including the keys and values that belong to lower hierarchy groups.

removeAll() (EADS server
specification)

Using a batch operation, this method deletes the keys and values that were copied from a specified
EADS server.

getGroupNameSet() Acquires a list of the group names of the groups in the highest hierarchy that are stored on a specified
EADS server.
The group names are listed in ascending order based on their ASCII code values.

getKeySet() (group specification) Acquires a list of keys that belong to a specified group. The list of keys includes the keys that
belong to the groups under the specified group's hierarchy.
The keys are listed in ascending order based on their ASCII code values.

getKeySet() (EADS server
specification)

Acquires a list of keys stored on a specified EADS server.
The keys are listed in ascending order based on their ASCII code values.

getGroupCount() Acquires the number of groups in the highest hierarchy that are stored on a specified EADS server.

getKeyCount() (group
specification)

Acquires the number of keys that belong to a specified group. The number of keys that will be
acquired includes the keys that belong to the groups under the specified group's hierarchy.

getKeyCount() (EADS server
specification)

Acquires the number of keys stored on a specified EADS server.

getFirstKey() (group
specification)

Acquires the first key in ascending order based on its ASCII code value from among all the keys
that belong to a specified group. The keys that belong to the groups under the specified group's
hierarchy are also subject to this acquisition processing.

getFirstKey() (EADS server
specification)

Acquires the first key in ascending order based on its ASCII code value from among all the keys
that are stored on a specified EADS server.

getNextKey() (group specification
and key specification)

Acquires the key that immediately follows a specified key in ascending order based on its ASCII
code value from among all the keys that belong to a specified group. The keys that belong to the
groups under the specified group's hierarchy are also subject to this acquisition processing.

getNextKey() (EADS server
specification and key specification)

Acquires the key that immediately follows a specified key in ascending order based on its ASCII
code value from among all the keys that are stored on a specified EADS server.

executeFunction() (key
specification or group specification)

Determines from a specified key or group the EADS server on which a user function is to be
executed and then executes that user function.

executeFunction() (key
specification or group specification, and
reception timeout specification)

Determines from a specified key or group the EADS server on which a user function is to be
executed and then executes that user function. This method also sets a reception timeout value.

executeFunction() (EADS server
specification)

Executes a user function with an EADS server specified.

executeFunction() (EADS server
specification and reception timeout
specification)

Executes a user function with an EADS server specified and sets a reception timeout value.

(5) getName()

(a) Description
This method acquires a cache name associated with an instance of the Cache class.

You can also use this method after an access to a cache is terminated by removeCache() of the CacheManager
class.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 447

(b) Format

public String getName()

(c) Return value
This method returns the name of the cache associated with the instance of the Cache class.

(6) put()

(a) Description
This method associates a value with a key, and then stores it.

If a problem occurs when the value is stored, the method returns an exception.

(b) Format

public void put(String key,
 Object value)
 throws CacheException

(c) Parameters

key
Specifies a key to be associated with the value.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

value
Specifies the value to be stored
For details about the data types that can be specified, see 15.2.2(3) Data types that can be specified as values.

(d) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(7) putAll()

(a) Description
Using a batch operation, this method stores the keys and values that are associated in a specified map.

If a problem occurs when a value is stored, the method returns an exception.

(b) Format

public void putAll(java.util.Map<String,? extends Object> map)
 throws CacheException

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 448

(c) Parameters

map
Using a batch operation, this parameter specifies a map that associates keys and values that are stored.
If null or a map containing no element is specified, an error results.
For details about the keys that can be stored in caches, see 15.2.2(1) Data types that can be specified as keys.
For details about the values that can be stored in caches, see 15.2.2(3) Data types that can be specified as values.

(d) Exceptions
• UserOperationException (illegal user operation)

• AllFailureException (failure of entire batch operation)

• PartFailureException (failure of part of the batch operation)

• InternalClientException (EADS client internal error)

(e) Notes
• If all value storage operations failed, exception AllFailureException and error code
CacheException.EAD_ERROR_BATCH_FAILED_ALL are returned.
If some but not all of the value storage operations failed, exception PartFailureException and error code
CacheException.EAD_ERROR_BATCH_FAILED_PART are returned.
By obtaining information from each exception, you can determine the key operation that failed and the cause of the
failure.

• If some of the cache operations failed, determine the operations that failed from the exception and re-execute this
method, if necessary.

• Because caches are not locked while operations are ongoing, a target value might be changed by another cache
operation during batch operation.

• When batch operations are performed on a large amount of data, a large amount of memory might be required by
EADS clients and EADS servers.

• When batch operations are performed on a large amount of data, it might take a long time to complete the processing.
To ensure proper operation, make sure that you design a timeout value that is appropriate for the processing time.

(8) create()

(a) Description
This method associates a value with a key, and then stores it only when a new key is stored.

If a problem occurs when the value is stored, the method returns an exception.

(b) Format

public void create(String key,
 Object value)
 throws CacheException

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 449

(c) Parameters

key
Specifies a key to be associated with the value.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

value
Specifies the value to be stored.
For details about the data types that can be specified, see 15.2.2(3) Data types that can be specified as values.

(d) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(9) update()

(a) Description
This method associates a value with a key, and then stores it only when the specified key has already been stored.

If a problem occurs when the value is stored, the method returns an exception.

(b) Format

public void update(String key,
 Object value)
 throws CacheException

(c) Parameters

key
Specifies a key to be associated with the value.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

value
Specifies the value to be stored.
For details about the data types that can be specified, see 15.2.2(3) Data types that can be specified as values.

(d) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 450

(10) replace()

(a) Description
This method compares the value associated with a specified key with a value (comparativeValue) specified as a
condition. Only if the values match, this method associates the value with the key, and then stores it.

If a problem occurs when the value is replaced, the method returns an exception.

(b) Format

public void replace(String key,
 Object value,
 Object comparativeValue)
 throws CacheException

(c) Parameters

key
Specifies a key that is associated with the value to be replaced.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

value
Specifies the value to be stored.
For details about the data types that can be specified, see 15.2.2(3) Data types that can be specified as values.

comparativeValue
Specifies the value to be compared.
For details about the data types that can be specified, see 15.2.2(3) Data types that can be specified as values.

(d) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(11) get()

(a) Description
This method acquires a value associated with a specified key.

If a problem occurs when the value is acquired, the method returns an exception.

(b) Format

public java.lang.Object get(String key)
 throws CacheException

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 451

(c) Parameters

key
Specifies a key that is associated with the value to be acquired.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

(d) Return value
This method returns the value associated with the key.

If nothing is associated with the specified key, it returns null.

(e) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(f) Notes
Do not change the context class loader for the thread that executes get(). If the context class loader settings are invalid,
deserialization of the return value object fails.

(12) getAll() (set specification)

(a) Description
Using a batch operation, this method acquires the values associated with a specified list of keys. The acquired values
are associated with keys and stored in a map specified in the argument.

If a problem occurs when a value is acquired, the method returns an exception.

(b) Format

public void getAll(java.util.Set<String> keys,
 java.util.Map<String, Object> returnMap)
 throws CacheException

(c) Parameters

keys
Specifies a list of keys that are associated with the values to be acquired.
If null or a list of keys that contains no elements is specified, an error results.
For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys.

returnMap
Specifies a map for storing the acquired values.
If null is specified, this parameter is invalid.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 452

(d) Exceptions
• UserOperationException (illegal user operation)

• AllFailureException (failure of entire batch operation)

• PartFailureException (failure of part of the batch operation)

• InternalClientException (EADS client internal error)

(e) Notes
• If all value acquisition operations failed, exception AllFailureException and error code
CacheException.EAD_ERROR_BATCH_FAILED_ALL are returned.
If some but not all of the value acquisition operations failed, exception PartFailureException and error code
CacheException.EAD_ERROR_BATCH_FAILED_PART are returned.
By obtaining information from each exception, you can determine the key operation that failed and the cause of the
failure.

• If the map specified in the argument already contains keys and values to be acquired, those keys and values are
overwritten by the acquired values.

• If no value is stored in cache for a specified key, nothing is stored in the map specified in the argument.

• If some of the cache operations failed, determine the operation that failed from the exception and re-execute this
method, if necessary.

• Because caches are not locked while operations are ongoing, a target value might be changed by another cache
operation during batch operation.

• When batch operations are performed on a large amount of data, a large amount of memory might be required by
EADS clients and EADS servers.

• When batch operations are performed on a large amount of data, it might take a long time to complete the processing.
To ensure proper operation, make sure that you design a timeout value that is appropriate for the processing time.

(13) getAll() (group specification)

(a) Description
Using a batch operation, this method acquires the values associated with the keys that belong to a specified group and
its lower hierarchy groups. The acquired values are associated with the keys and stored in a map specified in the argument.

If acquisition of a value fails for some reason during batch acquisition of values, only the values that were acquired
successfully are stored in the map. The method returns an exception indicating the cause of the failure.

(b) Format

public void getAll(String groupName,
 java.util.Map<String, Object> returnMap)
 throws CacheException

(c) Parameters

groupName
Specifies the name of the group for which values are to be acquired.
For details about the data that can be specified, see 15.2.2(2) Data that can be specified as group names.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 453

returnMap
Specifies a map for storing the acquired values.
If null is specified, an error results.

(d) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(e) Notes
• If the map specified in the argument already contains keys and values to be acquired, those keys and values are

overwritten by the acquired values.

• If no value is stored in cache for a specified key, nothing is stored in the map specified in the argument.

• If some but not all of the cache operations have failed, check the cache operation results, and then re-execute this
method, if necessary.

• Because caches are not locked while operations are ongoing, a target value might be changed by another cache
operation during batch operation.

• When batch operations are performed on a large amount of data, a large amount of memory might be required by
EADS clients and EADS servers.

• When batch operations are performed on a large amount of data, it might take a long time to complete the processing.
To ensure proper operation, make sure that you design a timeout value that is appropriate for the processing time.

(14) remove()

(a) Description
This method deletes a specified key and the value associated with that key.

If a problem occurs when a value is deleted, the method returns an exception.

(b) Format

public void remove(String key)
 throws CacheException

(c) Parameters

key
Specifies the key that is associated with the value to be deleted.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

(d) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 454

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(15) removeAll() (set specification)

(a) Description
Using a batch operation, this method deletes the values associated with a specified list of keys.

If a problem occurs when a value is deleted, the method returns an exception.

(b) Format

public void removeAll(java.util.Set<String> keys)
 throws CacheException

(c) Parameters

keys
Specifies a list of keys that are associated with the values that are to be deleted.
If null or a list of keys that contains no elements is specified, an error results.
For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys.

(d) Exceptions
• UserOperationException (illegal user operation)

• AllFailureException (failure of entire batch operation)

• PartFailureException (failure of part of the batch operation)

• InternalClientException (EADS client internal error)

(e) Notes
• If all value deletion operations failed, exception AllFailureException and error code
CacheException.EAD_ERROR_BATCH_FAILED_ALL are returned.
If some but not all of the value deletion operations failed, exception PartFailureException and error code
CacheException.EAD_ERROR_BATCH_FAILED_PART are returned.
By obtaining information from each exception, you can determine the key operation that failed and the cause of the
failure.

• If an exception is returned, data that was to be deleted might still remain. For this reason, it is important to determine
from the exception which operation failed and then take appropriate action. If necessary, re-execute removeAll()
(set specification).

• Because caches are not locked while operations are ongoing, a target value might be changed by another cache
operation during batch operation.

• When batch operations are performed on a large amount of data, a large amount of memory might be required by
EADS clients and EADS servers.

• When batch operations are performed on a large amount of data, it might take a long time to complete the processing.
To ensure proper operation, make sure that you design a timeout value that is appropriate for the processing time.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 455

(16) removeAll() (group specification)

(a) Description
Using a batch operation, this method deletes the keys and values that belong to a specified group, including the keys
and values that belong to lower hierarchy groups.

If a problem occurs when a value is deleted, the method returns an exception.

(b) Format

public void removeAll(String groupName)
 throws CacheException

(c) Parameters

groupName
Specifies the name of the group to be deleted.
For details about the data that can be specified, see 15.2.2(2) Data that can be specified as group names.

(d) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(e) Notes
• If an exception is returned, data that was to be deleted might still remain. For this reason, it is important to check

the execution results and then take appropriate action. If necessary, re-execute removeAll() (group specification).

• Because caches are not locked while operations are ongoing, a target value might be changed by another cache
operation during batch operation.

• When batch operations are performed on a large amount of data, a large amount of memory might be required by
EADS clients and EADS servers.

• When batch operations are performed on a large amount of data, it might take a long time to complete the processing.
To ensure proper operation, make sure that you design a timeout value that is appropriate for the processing time.

(17) removeAll() (EADS server specification)

(a) Description
Using a batch operation, this method deletes the keys and values that were copied from a specified EADS server.

If a problem occurs when a value is deleted, the method returns an exception.

(b) Format

public void removeAll(Node targetNode)
 throws CacheException

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 456

(c) Parameters

targetNode
Specifies the EADS server that will be performing the batch deletion processing.
You can specify only an instance of the Node class that has been acquired from the CacheManager class. If any
other instance is specified, valid operation is not guaranteed.

(d) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(e) Notes
• If an exception is returned, data that was to be deleted might still remain. For this reason, it is important to check

the execution results and then take appropriate action. If necessary, re-execute removeAll() (EADS server
specification).

• Because caches are not locked while operations are ongoing, a target value might be changed by another cache
operation during batch operation.

• When batch operations are performed on a large amount of data, a large amount of memory might be required by
EADS clients and EADS servers.

• When batch operations are performed on a large amount of data, it might take a long time to complete the processing.
To ensure proper operation, make sure that you design a timeout value that is appropriate for the processing time.

(18) getGroupNameSet()

(a) Description
This method acquires a list of the group names of the groups in the highest hierarchy that are stored on a specified EADS
server.

The group names are listed in ascending order based on their ASCII code values.

(b) Format

public java.util.Set<String> getGroupNameSet(Node targetNode)
 throws CacheException

(c) Parameters

targetNode
Specifies the EADS server whose group names are to be acquired.
You can specify only an instance of the Node class that has been acquired from the CacheManager class. If any
other instance is specified, valid operation is not guaranteed.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 457

(d) Return value
This method returns a list of the group names of the groups in the highest hierarchy that are stored on the specified
EADS server.

If the specified EADS server does not contain any keys that belong to the group, the method returns null.

(e) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(f) Notes
As the number of groups on the specified EADS server increases, the time required for acquisition processing increases.
The amount of resources required for the acquisition processing also increases.

(19) getKeySet() (group specification)

(a) Description
This method acquires a list of the keys that belong to a specified group. The list of keys includes the keys that belong
to the groups under the specified group's hierarchy.

The keys are listed in ascending order based on their ASCII code values.

(b) Format

public java.util.Set<String> getKeySet(String groupName)
 throws CacheException

(c) Parameters

groupName
Specifies a group name.
For details about the data that can be specified, see 15.2.2(2) Data that can be specified as group names.

(d) Return value
The method returns a list of keys that belong to the specified group.

If no keys belong to the specified group, the method returns null.

(e) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 458

(f) Notes
As the number of keys in the specified group increases, the time required for acquisition processing increases. The
amount of resources required for the acquisition processing also increases.

(20) getKeySet() (EADS server specification)

(a) Description
This method acquires a list of the keys that are stored on a specified EADS server.

The keys are listed in ascending order based on their ASCII code values.

(b) Format

public java.util.Set<String> getKeySet(Node targetNode)
 throws CacheException

(c) Parameters

targetNode
Specifies the EADS server from which a list of keys is to be acquired.
You can specify only an instance of the Node class that has been acquired from the CacheManager class. If any
other instance is specified, valid operation is not guaranteed.

(d) Return value
This method returns a list of keys stored on the specified EADS server.

(e) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(f) Notes
As the number of keys on the specified EADS server increases, the time required for acquisition processing increases.
The amount of resources required for the acquisition processing also increases.

(21) getGroupCount()

(a) Description
This method acquires the number of groups in the highest hierarchy that are stored on a specified EADS server.

(b) Format

public int getGroupCount(Node targetNode)
 throws CacheException

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 459

(c) Parameters

targetNode
Specifies the EADS server from which the number of groups is to be acquired.
You can specify only an instance of the Node class that has been acquired from the CacheManager class. If any
other instance is specified, valid operation is not guaranteed.

(d) Return value
This method returns the number of groups in the highest hierarchy that are stored on the specified EADS server.

(e) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(22) getKeyCount() (group specification)

(a) Description
This method acquires the number of keys that belong to a specified group. The number of keys that will be acquired
includes the keys that belong to the groups under the specified group's hierarchy.

(b) Format

public int getKeyCount(String groupName)
 throws CacheException

(c) Parameters

groupName
Specifies a group name.
For details about the data that can be specified, see 15.2.2(2) Data that can be specified as group names.

(d) Return value
This method returns the number of keys that belong to the specified group.

(e) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 460

(23) getKeyCount() (EADS server specification)

(a) Description
This method acquires the number of keys stored on a specified EADS server.

(b) Format

public int getKeyCount(Node targetNode)
 throws CacheException

(c) Parameters

targetNode
Specifies the EADS server from which the number of keys is to be acquired.
You can specify only an instance of the Node class that has been acquired from the CacheManager class. If any
other instance is specified, valid operation is not guaranteed.

(d) Return value
This method returns the number of keys that belong to the specified EADS server.

(e) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(24) getFirstKey() (group specification)

(a) Description
This method acquires the first key in ascending order based on its ASCII code value from among all the keys that belong
to a specified group. The keys that belong to the groups under the specified group's hierarchy are also subject to this
acquisition processing.

(b) Format

public String getFirstKey(String groupName)
 throws CacheException

(c) Parameters

groupName
Specifies a group name.
For details about the data that can be specified, see 15.2.2(2) Data that can be specified as group names.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 461

(d) Return value
This method returns the first key in ascending order based on its ASCII code value from among all the keys that belong
to the specified group.

If no keys belong to the specified group, the method returns null.

(e) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(25) getFirstKey() (EADS server specification)

(a) Description
This method acquires the first key in ascending order based on its ASCII code value from among all the keys that are
stored on a specified EADS server.

(b) Format

public String getFirstKey(Node targetNode)
 throws CacheException

(c) Parameters

targetNode
Specifies the EADS server from which a key is to be acquired.
You can specify only an instance of the Node class that has been acquired from the CacheManager class. If any
other instance is specified, valid operation is not guaranteed.

(d) Return value
This method acquires the first key in ascending order based on its ASCII code value from among all the keys that are
stored on the specified EADS server.

If the specified EADS server contains no keys, the method returns null.

(e) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 462

(26) getNextKey() (group specification and key specification)

(a) Description
This method acquires the key that immediately follows a specified key in ascending order based on its ASCII code value
from among all the keys that belong to a specified group. The keys that belong to the groups under the specified group's
hierarchy are also subject to this acquisition processing.

If the specified key does not exist on the connection-target EADS server, the method similarly acquires the key that
immediately follows the specified key.

(b) Format

public String getNextKey(String groupName, String key)
 throws CacheException

(c) Parameters

groupName
Specifies a group name.
For details about the data that can be specified, see 15.2.2(2) Data that can be specified as group names.

key
Specifies the reference key.
For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys.

(d) Return value
This method returns the key that immediately follows the specified key in ascending order based on its ASCII code
value from among all the keys that belong to the specified group.

If no key follows the specified key, the method returns null.

(e) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(f) Notes
• This method determines the connection-target EADS server based on the specified group.

• The EADS server that stores the keys belonging to the specified group might have changed due to isolation,
restoration, or addition (scale-out) processing on EADS servers other than the connection-target EADS server.
Therefore, if you have obtained the reference key by executing getFirstKey() (group specification), a
connection might be established with a different EADS server.

• Because groups are not locked on EADS servers, keys that belong to groups might be inserted or deleted by another
process after getFirstKey() (group specification) or getNextKey() (group specification and key
specification) was executed.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 463

(27) getNextKey() (EADS server specification and key specification)

(a) Description
This method acquires the key that immediately follows a specified key in ascending order based on its ASCII code value
from among all the keys that are stored on a specified EADS server.

If the specified key does not exist on the connection-target EADS server, the method similarly acquires the key that
immediately follows the specified key.

(b) Format

public String getNextKey(Node targetNode, String key)
 throws CacheException

(c) Parameters

targetNode
Specifies the EADS server from which a key is to be acquired.
You can specify only an instance of the Node class that has been acquired from the CacheManager class. If any
other instance is specified, operation is not guaranteed.

key
Specifies the reference key.
For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys.

(d) Return value
This method returns the key that immediately follows the specified key in ascending order based on its ASCII code
value from among all the keys that are stored on the specified EADS server.

If no key follows the specified key, the method returns null.

(e) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(f) Notes
• The EADS server that stores the specified key might have changed due to isolation, restoration, or addition (scale-

out) processing on EADS servers other than the connection-target EADS server.

• Because groups are not locked on EADS servers, keys that belong to groups might be inserted or deleted by another
process after getFirstKey() (EADS server specification) or getNextKey() (EADS server specification and
key specification) was executed.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 464

(28) executeFunction() (key specification or group specification)

(a) Description
This method determines from a specified key or group the EADS server on which a user function is to be executed and
then executes that user function.

If a problem occurs when the user function executes, the method returns an exception.

(b) Format

public Object executeFunction(String keyOrGroupName,
 String funcName,
 Object arg)
 throws CacheException

(c) Parameters

keyOrGroupName
Specifies a key or a group name.
For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys or 15.2.2(2)
Data that can be specified as group names.

funcName
Specifies a user function name.
A user function name can consist of single-byte alphanumeric characters (0 to 9, A to Z, and a to z), underscores
(_), periods (.), and dollar signs ($).
There is no limit to the number of characters.
Specifying null or the null character string is invalid.

arg
Specifies the arguments to be passed to the user function.
If the object cannot be serialized, an error results.
There is no limit to the size of the object.
If no argument is passed, specify null.

(d) Return value
This method returns the execution results set by the user function.

(e) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(f) Notes
Do not change the context class loader for the thread that executes executeFunction(). If the context class loader
settings are invalid, deserialization of the return value object fails.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 465

(29) executeFunction() (key specification or group specification, and
reception timeout specification)

(a) Description
This method determines from a specified key or group the EADS server on which a user function is to be executed and
then executes that user function. This method also sets a reception timeout value.

The value specified in the recvTimeout argument is used as the reception timeout value, not the value of the
eads.client.connection.receive.timeout parameter in the client properties.

If a problem occurs when the user function executes, the method returns an exception.

If a timeout occurs, the method returns CacheException.EAD_ERROR_NET_TIMEOUT.

(b) Format

public Object executeFunction(String keyOrGroupName,
 String funcName,
 Object arg,
 int recvTimeout)
 throws CacheException

(c) Parameters

keyOrGroupName
Specifies a key or a group name.
For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys or 15.2.2(2)
Data that can be specified as group names.

funcName
Specifies a user function name.
A user function name can consist of single-byte alphanumeric characters (0 to 9, A to Z, and a to z), underscores
(_), periods (.), and dollar signs ($).
There is no limit to the number of characters.
Specifying null or the null character string is invalid.

arg
Specifies the arguments to be passed to the user function.
If the object cannot be serialized, an error results.
There is no limit to the size of the object.
If no argument is passed, specify null.

recvTimeout
Specifies a data reception timeout value (in milliseconds).
For details about the data that can be specified, see 9.3.3(3)(b) eads.client.connection.receive.timeout.

(d) Return value
This method returns the execution results set by the user function.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 466

(e) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(f) Notes
Do not change the context class loader for the thread that executes executeFunction(). If any context class loader
settings are invalid, deserialization of the return value object will fail.

(30) executeFunction() (EADS server specification)

(a) Description
This method executes a user function with an EADS server specified.

If a problem occurs when the user function executes, the method returns an exception.

(b) Format

public Object executeFunction(Node targetNode,
 String funcName,
 Object arg)
 throws CacheException

(c) Parameters

targetNode
Specifies an EADS server (an instance of the Node class obtained from the CacheManager class). If any other
instance is specified, correct operation is not guaranteed.
This parameter is invalid in the following cases:

• null is specified.

• The address information managed by the specified Node class (IP address and port number) does not match any
EADS server address information maintained by the EADS client.

funcName
Specifies a user function name.
A user function name can consist of single-byte alphanumeric characters (0 to 9, A to Z, and a to z), underscores
(_), periods (.), and dollar signs ($).
There is no limit to the number of characters.
Specifying null or the null character string is invalid.

arg
Specifies the arguments to be passed to the user function.
If the object cannot be serialized, an error results.
There is no limit to the size of the object.
If no argument is passed, specify null.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 467

(d) Return value
This method returns the execution results set by the user function.

(e) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(f) Notes
Do not change the context class loader for the thread that executes executeFunction(). If the context class loader
settings are invalid, deserialization of the return value object fails.

(31) executeFunction() (EADS server specification and reception timeout
specification)

(a) Description
This method executes a user function with an EADS server specified and sets a reception timeout value.

The value specified in the recvTimeout argument is used as the reception timeout value, not the value of the
eads.client.connection.receive.timeout parameter in the client properties.

If a problem occurs when the user function executes, the method returns an exception.

If a timeout occurs, the method returns CacheException.EAD_ERROR_NET_TIMEOUT.

(b) Format

public Object executeFunction(Node targetNode,
 String funcName,
 Object arg,
 int recvTimeout)
 throws CacheException

(c) Parameters

targetNode
Specifies an EADS server (an instance of the Node class obtained from the CacheManager class). If any other
instance is specified, valid operation is not guaranteed.
This parameter is invalid in the following cases:

• null is specified.

• The address information managed by the specified Node class (IP address and port number) does not match any
EADS server address information maintained by the EADS client.

funcName
Specifies a user function name.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 468

A user function name can consist of single-byte alphanumeric characters (0 to 9, A to Z, and a to z), underscores
(_), periods (.), and dollar signs ($).
There is no limit to the number of characters.
Specifying null or the null character string is invalid.

arg
Specifies the arguments to be passed to the user function.
If the object cannot be serialized, an error results.
There is no limit to the size of the object.
If no argument is passed, specify null.

recvTimeout
Specifies a data reception timeout value (in milliseconds).
For details about the data that can be specified, see 9.3.3(3)(b) eads.client.connection.receive.timeout.

(d) Return value
This method returns the execution results set by the user function.

(e) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(f) Notes
Do not change the context class loader for the thread that executes executeFunction(). If any context class loader
settings are invalid, deserialization of the return value object will fail.

18.1.2 CacheManager class

(1) Function
This is a class used for managing EADS's caches.

The class executes create() and initializes the EADS client.

Always make sure that you execute destroy() when you stop using the EADS client.

(2) Inheritance relationship

java.lang.Object
 com.hitachi.software.xeads.client.api.CacheManager

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 469

(3) Format

public class CacheManager
extends java.lang.Object

(4) List of methods
The following table lists and describes the methods provided by the CacheManager class:

Method name Description

create() (path specification) Initializes an EADS client according to the client properties.

create() (EADS client name and path
specification)

Initializes an EADS client according to the client properties.

create() (input stream
specification)

Initializes an EADS client according to the client properties.

create() (EADS client name and input stream
specification)

Initializes an EADS client according to the client properties.

create() (client properties specification) Initializes an EADS client according to the client properties.

create() (EADS client name and client
properties specification)

Initializes an EADS client according to the client properties.

getCache() Acquires an instance of the Cache class.

removeCache() Terminates accesses to the cache.

destroy() Terminates usage of the EADS client.

getNodeList() Acquires information about the connection-target EADS servers maintained by the
EADS client.

[Deprecated] getNode() [Deprecated] Acquires information about the original source EADS server that stores
a specified key (or group) (and from which data has been copied).

getSlaveNodeList() Acquires information about the original target EADS servers to which data stored on a
specified EADS server is copied.

getCurrentMasterNode() Acquires information about the source EADS server that currently stores a specified
key (or group).

getOriginalMasterNode() Acquires information about the original source EADS server that stores a specified key
(or group).

(5) create() (path specification)

(a) Description
This method initializes an EADS client according to the client properties.

Each time this method is executed, a thread for monitoring communication timeouts and a thread for monitoring the
cluster are generated. These threads are terminated when destroy() is executed.

If a problem occurs when the EADS client is initialized, the method returns an exception.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 470

(b) Format

public static CacheManager create(String fileName)
 throws CacheException

(c) Parameters

fileName
Specifies the path name of the storage location of the EADS client's client property file.
Specifying null or the null character string is invalid.

(d) Return value
This method returns an instance of the CacheManager class.

(e) Exceptions
• UserOperationException (illegal user operation)

• InitializeException (CacheManager class initialization failure)

• InternalClientException (EADS client internal error)

(f) Notes
• If you will be executing multiple EADS clients concurrently on the same machine, specify a different log output

destination for each EADS client. Valid operation cannot be guaranteed if you specify the same log output destination
for multiple EADS clients that execute concurrently. For details about specifying the log output destination, see
8.4.2 Specifying the file output destinations.

• If you execute this method on a Java EE server (uCosminexus Application Server), you must execute destroy()
after executing this method. If you fail to do this, a memory leak will occur.

(6) create() (EADS client name and path specification)

(a) Description
This method initializes an EADS client according to the client properties.

Each time this method is executed, a thread for monitoring communication timeouts and a thread for monitoring the
cluster are generated. These threads are terminated when destroy() is executed.

If a problem occurs when the EADS client is initialized, the method returns an exception.

(b) Format

public static CacheManager create(String clientName, String fileName)
 throws CacheException

(c) Parameters

clientName
Specifies an EADS client name.
For details about the data that can be specified, see 15.2.2(5) Data that can be specified as EADS client names.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 471

For the relationships between EADS client names and log file output destinations, see 8.4.2 Specifying the file output
destinations.

fileName
Specifies the path name of the client property file storage location on the EADS client.
Specifying null or the null character string is invalid.

(d) Return value
This method returns an instance of the CacheManager class.

(e) Exceptions
• UserOperationException (illegal user operation)

• InitializeException (CacheManager class initialization failure)

• InternalClientException (EADS client internal error)

(f) Notes
• If you will be executing multiple EADS clients concurrently on the same machine, specify a different log output

destination for each EADS client. Valid operation cannot be guaranteed if you specify the same log output destination
for multiple EADS clients that execute concurrently. For details about specifying the log output destination, see
8.4.2 Specifying the file output destinations.

• If you execute this method on a Java EE server (uCosminexus Application Server), you must execute destroy()
after executing this method. If you fail to do this, a memory leak will occur.

(7) create() (input stream specification)

(a) Description
This method initializes an EADS client according to the client properties.

Each time this method is executed, a thread for monitoring communication timeouts and a thread for monitoring the
cluster are generated. These threads are terminated when destroy() is executed.

If a problem occurs when the EADS client is initialized, the method returns an exception.

(b) Format

public static CacheManager create(InputStream in)
 throws CacheException

(c) Parameters

in
Specifies an input stream for importing the EADS client's client property file.
Specifying null is invalid.

(d) Return value
An instance of the CacheManager class is returned.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 472

(e) Exceptions
• UserOperationException (illegal user operation)

• InitializeException (CacheManager class initialization failure)

• InternalClientException (EADS client internal error)

(f) Notes
• If you will be executing multiple EADS clients concurrently on the same machine, specify a different log output

destination for each EADS client. Valid operation cannot be guaranteed if you specify the same log output destination
for multiple EADS clients that execute concurrently. For details about specifying the log output destination, see
8.4.2 Specifying the file output destinations.

• If you execute this method on a Java EE server (uCosminexus Application Server), you must execute destroy()
after executing this method. If you fail to do this, a memory leak will occur.

(8) create() (EADS client name and input stream specification)

(a) Description
This method initializes an EADS client according to the client properties.

Each time this method is executed, a thread for monitoring communication timeouts and a thread for monitoring the
cluster are generated. These threads are terminated when destroy() is executed.

If a problem occurs when the EADS client is initialized, the method returns an exception.

(b) Format

public static CacheManager create(String clientName, InputStream in)
 throws CacheException

(c) Parameters

clientName
Specifies an EADS client name.
For details about the data that can be specified, see 15.2.2(5) Data that can be specified as EADS client names.
For the relationships between EADS client names and log file output destinations, see 8.4.2 Specifying the file output
destinations.

in
Specifies an input stream for importing the EADS client's client property file.
Specifying null is invalid.

(d) Return value
This method returns an instance of the CacheManager class.

(e) Exceptions
• UserOperationException (illegal user operation)

• InitializeException (CacheManager class initialization failure)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 473

• InternalClientException (EADS client internal error)

(f) Notes
• If you will be executing multiple EADS clients concurrently on the same machine, specify a different log output

destination for each EADS client. Valid operation cannot be guaranteed if you specify the same log output destination
for multiple EADS clients that execute concurrently. For details about specifying the log output destination, see
8.4.2 Specifying the file output destinations.

• If you execute this method on a Java EE server (uCosminexus Application Server), you must execute destroy()
after executing this method. If you fail to do this, a memory leak will occur.

(9) create() (client properties specification)

(a) Description
This method initializes an EADS client according to the client properties.

Each time this method is executed, a thread for monitoring communication timeouts and a thread for monitoring the
cluster are generated. These threads are terminated when destroy() is executed.

If a problem occurs when the EADS client is initialized, the method returns an exception.

(b) Format

public static CacheManager create(Properties properties)
 throws CacheException

(c) Parameters

properties
Specifies client properties of the EADS client.
Specifying null is invalid.

(d) Return value
This method returns an instance of the CacheManager class.

(e) Exceptions
• UserOperationException (illegal user operation)

• InitializeException (CacheManager class initialization failure)

• InternalClientException (EADS client internal error)

(f) Notes
• If you will be executing multiple EADS clients concurrently on the same machine, specify a different log output

destination for each EADS client. Valid operation cannot be guaranteed if you specify the same log output destination
for multiple EADS clients that execute concurrently. For details about specifying the log output destination, see
8.4.2 Specifying the file output destinations.

• If you execute this method on a Java EE server (uCosminexus Application Server), you must execute destroy()
after executing this method. If you fail to do this, a memory leak will occur.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 474

(10) create() (EADS client name and client properties specification)

(a) Description
This method initializes an EADS client according to the client properties.

Each time this method is executed, a thread for monitoring communication timeouts and a thread for monitoring the
cluster are generated. These threads are terminated when destroy() is executed.

If a problem occurs when the EADS client is initialized, the method returns an exception.

(b) Format

public static CacheManager create(String clientName, Properties properties)
 throws CacheException

(c) Parameters

clientName
Specifies an EADS client name.
For details about the data that can be specified, see 15.2.2(5) Data that can be specified as EADS client names.
For the relationships between EADS client names and log file output destinations, see 8.4.2 Specifying the file output
destinations.

properties
Specifies client properties of the EADS client.
Specifying null is invalid.

(d) Return value
This method returns an instance of the CacheManager class.

(e) Exceptions
• UserOperationException (illegal user operation)

• InitializeException (CacheManager class initialization failure)

• InternalClientException (EADS client internal error)

(f) Notes
• If you will be executing multiple EADS clients concurrently on the same machine, specify a different log output

destination for each EADS client. Valid operation cannot be guaranteed if you specify the same log output destination
for multiple EADS clients that execute concurrently. For details about specifying the log output destination, see
8.4.2 Specifying the file output destinations.

• If you execute this method on a Java EE server (uCosminexus Application Server), you must execute destroy()
after executing this method. If you fail to do this, a memory leak will occur.

(11) getCache()

(a) Description
This method starts access to a cache and acquires an instance of the Cache class.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 475

The method also places the instance of the cache whose access was terminated by removeCache() in active status
again.

If a problem occurs when access to the cache begins, the method returns an exception.

(b) Format

public Cache getCache(String name)
 throws CacheException

(c) Parameters

name
Specifies the cache name of the Cache class that is to be acquired.
For details about the data types that can be specified, see 15.2.2(4) Data types that can be specified as cache names.

(d) Return value
This method returns an instance of the Cache class that is associated with the specified cache name.

If getCache() has already been executed with the same cache name specified, it returns the same instance as for the
initial execution.

(e) Exceptions
• UserOperationException (illegal user operation)

• ServerCommunicationException (communication error)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(12) removeCache()

(a) Description
This method terminates cache access.

If a problem occurs when access to the cache terminates, the method returns an exception.

(b) Format

public void removeCache(String name)
 throws CacheException

(c) Parameters

name
Specifies the Cache class cache name that is to be terminated.
For details about the data types that can be specified, see 15.2.2(4) Data types that can be specified as cache names.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 476

(d) Exceptions
• UserOperationException (illegal user operation)

• InternalClientException (EADS client internal error)

(e) Notes
Use this method carefully, especially when multiple threads are running, because this method terminates accesses to all
caches (instances of the Cache class) that were acquired by specifying the same cache name.

(13) destroy()

(a) Description
This method performs termination processing on all caches and terminates usage of the EADS client.

If the EADS client has already been terminated by executing destroy(), this method returns
CacheException.EAD_ERROR_CLIENT_FINALIZED.

(b) Format

public void destroy()
 throws CacheException

(c) Exceptions
• UserOperationException (illegal user operation)

• InternalClientException (EADS client internal error)

(d) Notes
• Execute destroy() paired with create(). Execute destroy() only once for an instance acquired by
create().

• In the case of a Java EE server (uCosminexus Application Server), you must execute this method. If you fail to do
so, a memory leak will occur.

(14) getNodeList()

(a) Description
This method acquires information about the connection-target EADS servers maintained by the EADS client.

If a problem occurs when information about the connection-target EADS server is acquired, the method returns an
exception.

(b) Format

public Node[] getNodeList()
 throws CacheException

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 477

(c) Return value
This method returns information about the connection-target EADS servers maintained by the EADS client.

The method returns information about all the EADS servers regardless of their EADS server status.

(d) Exceptions
• UserOperationException (illegal user operation)

• InternalClientException (EADS client internal error)

(e) Notes
• Execution of this method does not establish communication with the EADS servers. Therefore, the acquired

information might not be the most recent information.

• When this method is executed, whether the EADS servers are connected is not checked. Therefore, the acquired
information might contain EADS servers that cannot be connected (because, for example, EADS servers are
isolated). If you plan to use an acquired EADS server as a connection target, use isEnable() of the Node class
to check whether a connection can be established with that EADS server.
For details about isEnable() of the Node class, see 18.1.3(6) isEnable().

(15) [Deprecated] getNode()

Reference note
This method is deprecated. Instead, use the getOriginalMasterNode() method of the CacheManager
class.

(a) Description
This method acquires information about the original source EADS server that stores a specified key (or group).

By original source EADS server is meant the EADS server that stores the original data of a specified key (or group)
when all EADS servers making up the cluster can be connected successfully.

(b) Format

public Node getNode(String key)
 throws CacheException

(c) Parameters

key
Specifies a key (or a group).
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

(d) Return value
This method returns an instance of the Node class that indicates the EADS server from which the specified key (or
group) was copied.

Whether the connection-target EADS server can be connected has no effect on the return value.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 478

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalClientException (EADS client internal error)

(f) Notes
• Execution of this method does not establish communication with the EADS server. Therefore, the acquired

information might not be the most recent information.

• If there have been no changes to the cluster configuration, information about the same EADS server will always be
acquired, regardless of whether that EADS server can be connected.

• If you plan to use the acquired EADS server as a connection target, use isEnable() of the Node class to check
whether a connection can be established with that EADS server.
For details about isEnable() of the Node class, see 18.1.3(6) isEnable().

(16) getSlaveNodeList()

(a) Description
This method acquires information about the original target EADS servers to which data stored on a specified EADS
server is copied.

By original target EADS server is meant an EADS server to which data stored on a specified EADS server (source
EADS server) is copied when all EADS servers making up the cluster can be connected successfully.

(b) Format

public Node[] getSlaveNodeList(Node masterNode)
 throws CacheException

(c) Parameters

masterNode
Specifies the EADS server (an instance of the Node class obtained from the CacheManager class) that stores the
copy source data. If any other instance is specified, correct operation is not guaranteed.
This parameter is invalid in the following cases:

• null is specified.

• The address information managed by the specified Node class (IP address and port number) does not match any
EADS server address information maintained by the EADS client.

(d) Return value
This method returns information about the original target EADS servers as an array of the Node class.

Whether a connection-target EADS server can be connected has no effect on the return value.

If the data multiplicity is 1, the method returns an array containing no elements.

(e) Exceptions
• UserOperationException (illegal user operation)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 479

• InternalClientException (EADS client internal error)

(f) Notes
• Execution of this method does not establish communication with the EADS servers. Therefore, the acquired

information might not be the most recent information.

• When this method is executed, whether the specified EADS server and the target EADS servers for information
acquisition are connected is not checked. Therefore, the acquired information might contain EADS servers that
cannot be connected (because, for example, the EADS servers are isolated).

(17) getCurrentMasterNode()

(a) Description
This method acquires information about the source EADS server that currently stores a specified key (or group).

(b) Format

public Node getCurrentMasterNode(String key)
 throws CacheException

(c) Parameters

key
Specifies a key (or a group).
For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys.

(d) Return value
This method returns an instance of the Node class that indicates the source EADS server that currently stores the
specified key (or group).

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• InternalClientException (EADS client internal error)

(f) Notes
Execution of this method does not establish communication with the EADS server. Therefore, the acquired information
might not be the most recent information.

(18) getOriginalMasterNode()

(a) Description
This method acquires information about the original source EADS server that stores a specified key (or group).

By original source EADS server is meant the EADS server that stores the master copy (source data) of a specified key
(or group) when all EADS servers making up the cluster can be connected successfully. This EADS server might be
different from the current source EADS server.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 480

If there have been no changes to the cluster configuration, information about the same EADS server will always be
acquired, regardless of whether the EADS server can be connected.

(b) Format

public Node getOriginalMasterNode(String key)
 throws CacheException

(c) Parameters

key
Specifies a key (or a group).
For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys.

(d) Return value
This method returns an instance of the Node class that indicates the original source EADS server that stores the specified
key (or group).

Whether the connection-target EADS server can be connected has no effect on the return value.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalClientException (EADS client internal error)

(f) Notes
• Execution of this method does not establish communication with the EADS server. Therefore, the acquired

information might not be the most recent information.

• If you plan to use the acquired EADS server as a connection target, use isEnable() of the Node class to check
whether a connection can be established with that EADS server.
For details about isEnable() of the Node class, see 18.1.3(6) isEnable().

18.1.3 Node class

(1) Function
This is a class used for obtaining information about an EADS server.

(2) Inheritance relationship

java.lang.Object
 com.hitachi.software.xeads.client.api.Node

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 481

(3) Format

public class Node
extends java.lang.Object

(4) List of methods
The following table lists and describes the methods provided by the Node class:

Method name Description

getNodeId() Acquires the EADS server ID.

isEnable() Acquires a value indicating whether a connection can be established with an EADS server.

getAddress() Acquires the IP address and port number of an EADS server.

getPosition() Acquires the location (hash value) of an EADS server.

toString() Acquires information about an EADS server (string representation).

(5) getNodeId()

(a) Description
This method acquires the EADS server ID.

(b) Format

public int getNodeId()

(c) Return value
This method returns the EADS server ID.

(6) isEnable()

(a) Description
This method acquires a value indicating whether a connection can be established with an EADS server.

(b) Format

public boolean isEnable()

(c) Return value
This method returns a value indicating whether a connection can be established with an EADS server.

true
Connection can be established.

false
Connection cannot be established.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 482

(7) getAddress()

(a) Description
This method acquires the IP address and port number of an EADS server.

(b) Format

public java.net.InetSocketAddress getAddress()

(c) Return value
This method returns a java.net.InetSocketAddress instance indicating the IP address and port number of an
EADS server.

(8) getPosition()

(a) Description
This method acquires the location (hash value) of an EADS server.

(b) Format

public int getPosition()

(c) Return value
This method returns the location (hash value) of an EADS server.

(9) toString()

(a) Description
This method acquires information about an EADS server (string representation).

(b) Format

public String toString()

(c) Return value
This method returns information about an EADS server (string representation) in the following format:

"node id = EADS-server-ID, status = ENABLE | DISABLE, position = EADS-
server-position, address = IP-address-and-port-number-of-EADS-server"

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 483

18.1.4 FailureOperationInfo class

(1) Description
This is a class used for storing information about failed operations when part or all of a batch operation fails.

(2) Inheritance relationship

java.lang.Object
 com.hitachi.software.xeads.client.api.FailureOperationInfo

(3) Format

public class FailureOperationInfo
extends java.lang.Object

(4) List of methods
The following table lists and describes the methods provided by the FailureOperationInfo class:

Method name Description

getKey() Acquires the key that was used in a failed operation.

getErrorCode() Acquires the error code that indicates the cause of an operation error.

getException() Acquires the exception that occurred in a failed operation.

(5) getKey()

(a) Description
This method acquires the key that was used in a failed operation.

(b) Format

public String getKey()

(c) Return value
This method returns the key that was used by the failed operation.

(6) getErrorCode()

(a) Description
This method acquires the error code that indicates the cause of an operation error.

(b) Format

public int getErrorCode()

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 484

(c) Return value
This method returns the error code that indicates the cause of the operation error.

(7) getException()

(a) Description
This method acquires the exception that occurred in a failed operation.

(b) Format

public CacheException getException()

(c) Return value
This method returns the exception that occurred in the failed operation.

18.1.5 CacheException class

(1) Description
This is an exception class that is returned when an operation on the Cache and CacheManager classes fails.

Use getErrorCode() to obtain an error code to determine the nature of the error.

(2) Inheritance relationship

java.lang.Object
java.lang.Throwable

 java.lang.Exception
 com.hitachi.software.xeads.client.api.CacheException

(3) Format

public class CacheException
extends Exception

(4) List of methods
The following table lists and describes the methods provided by the CacheException class:

Method name Description

getErrorCode() Acquires an error code for an exception that has occurred.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 485

(5) getErrorCode()

(a) Description
This method acquires an error code for an exception that has occurred.

(b) Format

public int getErrorCode()

(c) Return value
This method returns an error code as a return value. The following table lists the error codes and describes the nature
and cause of the error:

Error
code

Error code
literal

Exception
class

Nature of error Cause of error Processing
status of
data
updating
API
method#

Error code when
0300 is specified in
the
eads.client.compat
parameter in the
client properties

1000 EAD_ERROR_
UNEXPECTED

CacheExc
eption

An unexpected error
occurred.

An unexpected error
occurred within the program.

U 1000

1010 EAD_ERROR_
INVALID_PA
RAMETER

UserOper
ationExc
eption

A specified parameter
is invalid.

An invalid parameter was
specified in the API method
argument.

N 1010

1030 EAD_ERROR_
CLIENT_FIN
ALIZED

UserOper
ationExc
eption

The processing cannot
be performed because
usage of the EADS
client has been
terminated.

A method of
CacheManager class was
executed after destroy()
of the CacheManager
class was executed.

N 1030

1040 EAD_ERROR_
CACHE_NOT_
STARTED

UserOper
ationExc
eption

The processing cannot
be performed because
the cache has not been
started.

Possible causes are as
follows:
• An attempt was made to

manipulate data after the
cache was terminated
(after
removeCache() of
the CacheManager
class was executed).

• An attempt was made to
manipulate data after
usage of the EADS client
was terminated (after
destroy() of the
CacheManager class
was executed).

N 1040

1050 EAD_ERROR_
NOT_SERIAL
IZABLE

UserOper
ationExc
eption

Serialization
processing failed on the
EADS client.

The object specified in the
API method argument
cannot be serialized.

N 1050

1060 EAD_ERROR_
NOT_DESERI
ALIZABLE

UserOper
ationExc
eption

Deserialization
processing failed on the
EADS client.

The object acquired from the
EADS server could not be
deserialized on the EADS
client.

-- 1060

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 486

Error
code

Error code
literal

Exception
class

Nature of error Cause of error Processing
status of
data
updating
API
method#

Error code when
0300 is specified in
the
eads.client.compat
parameter in the
client properties

The object might not be
included in the class path of
the EADS client.

1100 EAD_ERROR_
CACHE_NOT_
NEED_STOP

UserOper
ationExc
eption

An attempt was made to
stop a cache that has
already stopped.

The following are possible
causes of the error:
• An attempt was made to

terminate a cache after
the cache had already
been terminated (after
removeCache() of
the CacheManager
class was executed).

• removeCache() of
the CacheManager
class was executed
without executing
getCache() of the
CacheManager class.

-- 1100

1110 EAD_ERROR_
INVALID_NO
DE_ADDRESS

UserOper
ationExc
eption

The specified EADS
server's address
information does not
match any EADS server
address information
maintained by the
EADS client.

The address information (IP
address and port number) of
the EADS server specified in
the argument of the API
method does not match any
EADS server address
information maintained by
the EADS client.

-- 1110

1120 EAD_ERROR_
EXCEED_MAX
_CONNECTIO
N_POOL_SIZ
E

UserOper
ationExc
eption

The number of
connections to be
pooled for the same
connection target has
already reached the
maximum value and all
of them are in use.

The number of concurrent
threads issuing requests to
the same EADS server has
exceeded the maximum
number of connections.

N 1120

2000 EAD_ERROR_
INIT

Initiali
zeExcept
ion

EADS client
initialization
processing resulted in
an error.

An unexpected error
occurred during execution of
create() of the
CacheManager class.

-- 2000

2010 EAD_ERROR_
INIT_PROPE
RTIES

Initiali
zeExcept
ion

The client property file
could not be imported.

Possible causes are as
follows:
• There was no client

property file.
• The client property file

does not have read
permissions.

• The specified storage
destination path name is
a directory, not a file.

• There is a problem in the
input stream specified in
create() of the
CacheManager class.

-- 2010

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 487

Error
code

Error code
literal

Exception
class

Nature of error Cause of error Processing
status of
data
updating
API
method#

Error code when
0300 is specified in
the
eads.client.compat
parameter in the
client properties

2020 EAD_ERROR_
INIT_INVAL
ID_PROPERT
Y

Initiali
zeExcept
ion

A definition in the client
property file was
invalid.

A definition in the client
property file is invalid.

-- 2020

2030 EAD_ERROR_
INIT_LOGGE
R

Initiali
zeExcept
ion

Initialization of logs
failed.

Possible causes are as
follows:
• The specified directory

or log file at the output
destination does not have
write permissions.

• The specified directory
contains a file with the
same name.

• The specified path name
or file name is invalid.

• There is a directory that
has the same name as the
log file name.

• There is not enough
memory to start
outputting logs.

-- 2030

2040 EAD_ERROR_
INIT_CLUST
ERINFO

Initiali
zeExcept
ion

Establishment of a
connection with the
EADS server specified
in the client property
file failed.

Possible causes are as
follows:
• There is an error in the

specification of the
connection-target EADS
server in the client
properties.

• Communication with the
connection-target EADS
server failed, or a failure
occurred on the
connection-target EADS
server.

• The maximum number
of simultaneous
connections to the EADS
server has been
exceeded.

• The connection-target
EADS server is not ready
to accept requests.

-- 2040

3000 EAD_ERROR_
NET

ServerCo
mmunicat
ionExcep
tion

An error occurred
during communication
with the EADS server.

Possible causes are as
follows:
• A network error

occurred during
communication.

• A problem occurred on
the EADS server with
which the client was
communicating.

U 3000

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 488

Error
code

Error code
literal

Exception
class

Nature of error Cause of error Processing
status of
data
updating
API
method#

Error code when
0300 is specified in
the
eads.client.compat
parameter in the
client properties

• A problem occurred on
the host with which the
client was
communicating.

3001 EAD_ERROR_
NET_SEND_R
EQUEST

ServerCo
mmunicat
ionExcep
tion

A communication error
occurred while a
request was being sent
to an EADS server.

Possible causes are as
follows:
• A network error

occurred during
communication.

• A problem occurred on
the EADS server with
which the client was
communicating.

• A problem occurred on
the host with which the
client was
communicating.

U 3000

3002 EAD_ERROR_
NET_RECEIV
E_RESPONSE

ServerCo
mmunicat
ionExcep
tion

A communication error
occurred while a
response was being
received from an EADS
server.

Possible causes are as
follows:
• A network error

occurred during
communication.

• A problem occurred on
the EADS server with
which the client was
communicating.

• A problem occurred on
the host with which the
client was
communicating.

U 3000

3010 EAD_ERROR_
NET_TIMEOU
T

ServerCo
mmunicat
ionExcep
tion

A timeout occurred
during communication
with the EADS server.

Possible causes are as
follows:
• A problem occurred on

the connection-target
EADS server.

• A problem occurred on
the connection-target
host.

• A problem occurred on
the network.

• The specified timeout
value is invalid.

U 3010

3011 EAD_ERROR_
NET_SEND_T
IMEOUT

ServerCo
mmunicat
ionExcep
tion

A timeout occurred
while a request was
being sent to an EADS
server.

Possible causes are as
follows:
• A problem occurred on

the connection-target
EADS server.

• A problem occurred on
the connection-target
host.

U 3010

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 489

Error
code

Error code
literal

Exception
class

Nature of error Cause of error Processing
status of
data
updating
API
method#

Error code when
0300 is specified in
the
eads.client.compat
parameter in the
client properties

• A problem occurred on
the network.

• The specified timeout
value is invalid.

3012 EAD_ERROR_
NET_RECEIV
E_TIMEOUT

ServerCo
mmunicat
ionExcep
tion

A timeout occurred
while a response was
being received from an
EADS server.

Possible causes are as
follows:
• A problem occurred on

the connection-target
EADS server.

• A problem occurred on
the connection-target
host.

• A problem occurred on
the network.

• The specified timeout
value is invalid.

U 3010

3020 EAD_ERROR_
NET_CONNEC
TION

ServerCo
mmunicat
ionExcep
tion

Connection
establishment with the
EADS server failed.

Possible causes are as
follows:
• A problem occurred on

the connection-target
EADS server.

• The settings related to
the connection-target
EADS server are invalid.

• A problem occurred on
the network.

• The specified timeout
value is invalid.

N 3020

3030 EAD_ERROR_
NET_PROTOC
OL

ServerCo
mmunicat
ionExcep
tion

A protocol error
occurred during
communication with
the EADS server.

The connection-target
EADS server might be
invalid.

U 3030

3040 EAD_ERROR_
NET_CLUSTE
RINFO

ServerCo
mmunicat
ionExcep
tion

Establishment of a
connection with all
connectable EADS
servers failed.

Possible causes are as
follows:
• A problem occurred on

the connection-target
EADS server.

• The settings related to
the connection-target
EADS server are invalid.

• A problem occurred on
the network.

• The specified cache does
not exist on the
connection-target EADS
server.

• The connection-target
EADS server has been
closed.

• The cluster information
maintained by the EADS

-- 3040

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 490

Error
code

Error code
literal

Exception
class

Nature of error Cause of error Processing
status of
data
updating
API
method#

Error code when
0300 is specified in
the
eads.client.compat
parameter in the
client properties

client does not match the
cluster information
maintained by the
restarted connection-
target EADS server.

• The maximum number
of simultaneous
connections to the EADS
server has been
exceeded.

4000 EAD_ERROR_
SERVER

Internal
ServerEx
ception

An unexpected internal
error occurred on the
EADS server.

An unexpected problem
occurred on the connection-
target EADS server.

U 4000

4010 EAD_ERROR_
SERVER_UNS
UPPORTED_R
EQUEST

Internal
ServerEx
ception

The connection-target
EADS server could not
process the request sent
by the EADS client.

Possible causes are as
follows:
• The connection-target

EADS server cannot
process the request for a
reason such as corrupted
data.

• The API method used is
not supported by the
connection-target EADS
server.

N 4010

4030 EAD_ERROR_
SERVER_UNA
VAILABLE

Internal
ServerEx
ception

The connection-target
EADS server process is
temporarily
unavailable.

The maximum number of
simultaneous connections to
the EADS server has been
exceeded.

N 4030

4040 EAD_ERROR_
SERVER_INC
OMPATIBLE_
CLUSTERINF
O

Internal
ServerEx
ception

The cluster information
maintained by the
connection-target
EADS server is not
compatible with the
cluster information
maintained by the
EADS client.

The cluster information
maintained by the restarted
connection-target EADS
server does not match the
cluster information
maintained by the EADS
client.

N 4040

4060 EAD_ERROR_
SERVER_REP
LACE_METHO
D_NOT_MATC
HED

Internal
ServerEx
ception

The value could not be
stored because the
stored value did not
match
comparativeValu
e during execution of
replace().

The value specified for the
condition in replace() of
the Cache class did not
match the value in cache.

N 4060

4070 EAD_ERROR_
SERVER_REP
LACE_METHO
D_KEY_NOT_
EXIST

Internal
ServerEx
ception

The value could not be
stored because the
specified key did not
exist during execution
of replace() (the
value associated with
the key did not exist).

Values could not be
compared because the value
associated with the key
specified in replace() of
the Cache class did not
exist.

N 4070

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 491

Error
code

Error code
literal

Exception
class

Nature of error Cause of error Processing
status of
data
updating
API
method#

Error code when
0300 is specified in
the
eads.client.compat
parameter in the
client properties

4080 EAD_ERROR_
SERVER_CRE
ATE_METHOD
_KEY_EXIST

Internal
ServerEx
ception

The value could not be
stored because the key
had already been stored
during execution of
create().

The value associated with
the key specified in
create() of the Cache
class has already been
stored.

N 4080

4090 EAD_ERROR_
SERVER_UPD
ATE_METHOD
_KEY_NOT_E
XIST

Internal
ServerEx
ception

The value could not be
stored because the key
was not stored during
execution of
update().

The value associated with
the key specified in
update() of the Cache
class has not been stored.

N 4090

4100 EAD_ERROR_
SERVER_NOT
_RUNNING

Internal
ServerEx
ception

No EADS server is
available for processing
requests.

Possible causes are as
follows:
• The EADS server that

processes requests from
the EADS client and the
EADS servers to which
data is to be copied are all
isolated or stopped.

• The cluster is not
available.

N 4100

4110 EAD_ERROR_
SERVER_STA
TUS

Internal
ServerEx
ception

The EADS server is in a
status in which requests
cannot be processed.

The request could not be
processed due to the status of
the connection-target EADS
server.

N 4000

4200 EAD_ERROR_
SERVER_CAC
HE

Internal
ServerEx
ception

A cache operation
failed.

An operation could not be
performed on a cache
because a problem occurred
on the connection-target
EADS server. Stop the
operation and check the
EADS server's status.

N 4000

4210 EAD_ERROR_
SERVER_CAC
HE_NOT_FOU
ND

Internal
ServerEx
ception

A cache operation
failed because the
specified cache did not
exist.

An operation could not be
performed on a cache
because the specified cache
did not exist. Stop operation
on the specified cache and
check the EADS server's
status.

N 4000

4230 EAD_ERROR_
SERVER_CAC
HE_CLUSTER
_UPDATE

Internal
ServerEx
ception

A cache operation
failed because the
cluster configuration
was changed during
request processing.

An operation could not be
performed on a cache
because the cluster
configuration was changed
during request processing.
Perform the cache operation
again after the cluster
configuration change
processing has been
completed.

N 4000

4300 EAD_ERROR_
SERVER_CAC
HE_BEFORE_

Internal
ServerEx
ception

An internal error
occurred during a cache
operation, but

An internal error occurred
during a cache operation on
the connection-target EADS

N 4000

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 492

Error
code

Error code
literal

Exception
class

Nature of error Cause of error Processing
status of
data
updating
API
method#

Error code when
0300 is specified in
the
eads.client.compat
parameter in the
client properties

REPLICATIO
N

redundant copies of
data had not been
created.

server. No other normal
EADS servers are affected
because redundant copies of
data had not been created.
You can restart the same
operation after the EADS
server is isolated and then the
connection target is changed
to a normal EADS server.

4310 EAD_ERROR_
SERVER_CAC
HE_AFTER_R
EPLICATION

Internal
ServerEx
ception

An internal error
occurred on the EADS
server during cache
operation and the data
update operation failed.

An internal error occurred on
the connection-target EADS
server during cache
operation. Because
redundant copies of data had
already been created, once
the erroneous connection-
target EADS server is
isolated and the connection
target is changed to a normal
server, you can resume the
operation from the status in
which data had been
updated.

U 4000

4700 EAD_ERROR_
SERVER_FUN
CTION_EXEC
UTE

Internal
ServerEx
ception

An error occurred in the
user function on the
EADS server.

An error occurred in the user
function on the connection-
target EADS server. Check
the user function's
processing.

-- 4000

4710 EAD_ERROR_
SERVER_FUN
CTION_RETU
RN_SERIALI
ZE

Internal
ServerEx
ception

Serialization
processing on the return
value of the user
function failed on the
EADS server.

An object that is not
serializable is specified for
the return value of the user
function executed on the
connection-target EADS
server.

-- 4000

4720 EAD_ERROR_
SERVER_FUN
CTION_ARG_
DESERIALIZ
E

Internal
ServerEx
ception

An object that cannot be
deserialized by the
EADS server is
specified in the
argument of the user
function.

An object that cannot be
deserialized by the
connection-target EADS
server is specified in the
argument of the user
function.

-- 4100

4730 EAD_ERROR_
SERVER_FUN
CTION_NOT_
FOUND

Internal
ServerEx
ception

No user function with
the specified user
function name exists on
the EADS server.

No user function with the
specified user function name
exists on the connection-
target EADS server.

-- 4000

4800 EAD_ERROR_
SERVER_LIM
IT_EXTERNA
L_MEMORY

Internal
ServerEx
ception

There is a shortage of
memory for storing
data.

The request could not be
processed because the
memory for storing data
(explicit heap) was
insufficient on the
connection-target EADS
server.

N 4000

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 493

Error
code

Error code
literal

Exception
class

Nature of error Cause of error Processing
status of
data
updating
API
method#

Error code when
0300 is specified in
the
eads.client.compat
parameter in the
client properties

4810 EAD_ERROR_
SERVER_LIM
IT_CACHE_F
ILE

Internal
ServerEx
ception

There is a shortage of
capacity in the cache
files for storing data.

The request could not be
processed because the
capacity of cache files for
storing data was insufficient
on the connection-target
EADS server.

N 4000

4820 EAD_ERROR_
SERVER_LIM
IT_KV_COUN
T

Internal
ServerEx
ception

The number of keys that
can be stored on the
EADS server has
reached the upper limit.

The request could not be
processed because the
number of keys that can be
specified on the connection-
target EADS server had
reached the upper limit.

N 4000

4830 EAD_ERROR_
SERVER_LIM
IT_KEY_VAL
UE_LENGTH

Internal
ServerEx
ception

The size of the specified
key, group name, or
value is greater than the
maximum size
permitted in the cluster.

The request could not be
processed because the size of
the specified key, group
name, or value was greater
than the maximum size
permitted in the cluster.

N 4000

4999 EAD_ERROR_
SERVER_UNK
NOWN

Internal
ServerEx
ception

A nonanalyzable
internal error occurred
on the EADS server.

An internal error occurred on
the connection-target EADS
server, but the error could not
be analyzed because the
version of the connection-
target EADS server was later
than the version of the EADS
client libraries.

U 4000

5000 EAD_ERROR_
CLIENT

Internal
ClientEx
ception

An internal error
occurred on the EADS
client.

An unexpected error
occurred in client libraries.

U 5000

5010 EAD_ERROR_
CLIENT_OUT
_OF_MEMORY

Internal
ClientEx
ception

Memory allocation in
the EADS client failed.

Memory allocation failed in
client libraries.

U 5010

5020 EAD_ERROR_
CLIENT_BAT
CH_CANCEL

Internal
ClientEx
ception

Batch operation was
cancelled.

Unperformed operations
were cancelled because
batch operation could not be
continued.

N 5020

6000 EAD_ERROR_
BATCH_FAIL
ED_ALL

BatchOpe
rationEx
ception

All of the batch
operations failed.

An attempt was made to
perform a batch operation on
data by using an API
method, but all operations
failed.

-- 6000

6010 EAD_ERROR_
BATCH_FAIL
ED_PART

BatchOpe
rationEx
ception

Part of the batch
operations failed.

An attempt was made to
perform a batch operation on
data by using an API
method, but some of the
operations failed.

-- 6010

#
Indicates whether data updating had occurred when the error code was issued during execution of an API method
for updating data, such as put() or remove().

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 494

The meanings of the letters in this column are as follows:
U: Whether the data had been updated is unknown. Check whether the processing was completed.
N: The data has not been updated.
--: This error code is not issued when an API method for updating data, such as put() or remove(), is executed.

18.1.6 InitializeException class

(1) Description
This is a subclass of CacheException that is returned when initialization of the CacheManager class results in
an error.

(2) Inheritance relationship

java.lang.Object
java.lang.Throwable

 java.lang.Exception
 com.hitachi.software.xeads.client.api.CacheException
 com.hitachi.software.xeads.client.api.InitializeException

(3) Format

public class InitializeException
extends CacheException

18.1.7 InternalClientException class

(1) Description
This is a subclass of CacheException that is returned when an internal error occurs on an EADS client.

(2) Inheritance relationship

java.lang.Object
java.lang.Throwable

 java.lang.Exception
 com.hitachi.software.xeads.client.api.CacheException
 com.hitachi.software.xeads.client.api.InternalClientException

(3) Format

public class InternalClientException
extends CacheException

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 495

18.1.8 InternalServerException class

(1) Description
This is a subclass of CacheException that is returned when an internal error occurs on an EADS server.

(2) Inheritance relationship

java.lang.Object
java.lang.Throwable

 java.lang.Exception
 com.hitachi.software.xeads.client.api.CacheException
 com.hitachi.software.xeads.client.api.InternalServerException

(3) Format

public class InternalServerException
extends CacheException

18.1.9 ServerCommunicationException class

(1) Description
This is a subclass of CacheException that is returned in the event of a communication error.

(2) Inheritance relationship

java.lang.Object
java.lang.Throwable

 java.lang.Exception
 com.hitachi.software.xeads.client.api.CacheException
 com.hitachi.software.xeads.client.api.ServerCommunicationException

(3) Format

public class ServerCommunicationException
extends CacheException

18.1.10 UserOperationException class

(1) Description
This is a subclass of CacheException that is returned when an error occurs due to an illegal user operation.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 496

(2) Inheritance relationship

java.lang.Object
java.lang.Throwable

 java.lang.Exception
 com.hitachi.software.xeads.client.api.CacheException
 com.hitachi.software.xeads.client.api.UserOperationException

(3) Format

public class UserOperationException
extends CacheException

18.1.11 BatchOperationException class

(1) Description
This is a subclass of CacheException that is returned when part or all of a batch operation fails.

(2) Inheritance relationship

java.lang.Object
java.lang.Throwable

 java.lang.Exception
 com.hitachi.software.xeads.client.api.CacheException
 com.hitachi.software.xeads.client.api.BatchOperationException

(3) Format

public class BatchOperationException
extends CacheException

(4) List of methods
The following table lists and describes the methods provided by the BatchOperationException class:

Method name Description

getSuccessOperationNu
mber()

Acquires the number of keys whose manipulation was successful during batch operation.

getFailureOperationIn
fo()

Acquires a listing of information about processing that failed during batch operation.

(5) getSuccessOperationNumber()

(a) Description
This method acquires the number of keys whose manipulation was successful during batch operation.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 497

(b) Format

public int getSuccessOperationNumber()

(c) Return value
This method returns the number of keys whose manipulation was successful.

(6) getFailureOperationInfo()

(a) Description
This method acquires a listing of information about processing that failed during batch operation.

(b) Format

public java.util.Set<FailureOperationInfo> getFailureOperationInfo()

(c) Return value
This method returns a list the of FailureOperationInfo classes that store information about processing that failed.

18.1.12 AllFailureException class

(1) Description
This is a subclass of BatchOperationException that is returned when all of a batch operation fails.

(2) Inheritance relationship

java.lang.Object
java.lang.Throwable

 java.lang.Exception
 com.hitachi.software.xeads.client.api.CacheException
 com.hitachi.software.xeads.client.api.BatchOperationException
 com.hitachi.software.xeads.client.api.AllFailureException

(3) Format

public class AllFailureException
extends BatchOperationException

18.1.13 PartFailureException class

(1) Description
This is a subclass of BatchOperationException that is returned when part of a batch operation fails.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 498

(2) Inheritance relationship

java.lang.Object
java.lang.Throwable

 java.lang.Exception
 com.hitachi.software.xeads.client.api.CacheException
 com.hitachi.software.xeads.client.api.BatchOperationException
 com.hitachi.software.xeads.client.api.PartFailureException

(3) Format

public class PartFailureException
extends BatchOperationException

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 499

18.2 API interfaces supported in user functions

The following table lists and describes the API interfaces supported in user functions.

Table 18‒2: API interfaces supported in user functions

No. Interface name, class name, or
enumeration

Description Package name

1 Function This interface must be implemented in
the user functions used on the EADS
servers.

com.hitachi.software.xe
ads.func.Function

2 FunctionContext This interface passes to the Function
interface information needed to execute
a user function.

com.hitachi.software.xe
ads.func.FunctionContex
t

3 InitConfig This interface acquires information
about the function properties used to
initialize a user function.

com.hitachi.software.xe
ads.func.InitConfig

4 ClientInfo This interface acquires information
about the EADS client that executed the
API method.

com.hitachi.software.xe
ads.common.ClientInfo

5 ServerInfo This interface acquires information
about an EADS server.

com.hitachi.software.xe
ads.common.ServerInfo

6 ClusterInfo This interface acquires information
about the cluster.

com.hitachi.software.xe
ads.common.ClusterInfo

7 CacheInfo This interface acquires information
about caches.

com.hitachi.software.xe
ads.common.CacheInfo

8 Store This interface manipulates data during
execution of a user function.

com.hitachi.software.xe
ads.func.store.Store

9 Group This interface manipulates the group
belonging to the EADS server that is
executing a user function.

com.hitachi.software.xe
ads.func.store.Group

10 Key This interface represents keys in the
API methods that can be used in user
functions.

com.hitachi.software.xe
ads.func.store.Key

11 Value This interface represents values that are
associated with keys and stored in the
API methods that can be used in user
functions.

com.hitachi.software.xe
ads.func.store.Value

12 UserLogger This interface is for user logs. com.hitachi.software.xe
ads.common.UserLogger

13 EADsStoreException This exception class is returned when
processing related to a data operation
fails.

com.hitachi.software.xe
ads.func.store.EADsStor
eException

14 InternalServerException This is a subclass of
EADsStoreException that is
returned when an internal error occurs
on the EADS server.

com.hitachi.software.xe
ads.func.store.Internal
ServerException

15 UserOperationException This is a subclass of
EADsStoreException that is
returned when an error occurs due to an
illegal user operation.

com.hitachi.software.xe
ads.func.store.UserOper
ationException

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 500

No. Interface name, class name, or
enumeration

Description Package name

16 Enumeration CacheType This enumeration represents the cache
types.

com.hitachi.software.xe
ads.common.CacheType

18.2.1 Function interface

(1) Description
This interface must be implemented in the user functions used on the EADS servers.

When a user function is initialized, an instance is created. This is a single instance and remains until EADS server
termination processing is performed.

(2) Interface name

com.hitachi.software.xeads.func.Function

(3) List of methods
The following table lists and describes the methods provided by the Function interface:

Method name Description

init() Implements user function initialization processing.

execute() Implements user function processing.

destroy() Implements user function termination processing.

(4) init()

(a) Description
This method implements user function initialization processing.

This method is called when a user function is initialized during startup of an EADS server.

(b) Format

public void init(FunctionContext context)

(c) Parameters

context
Acquires information needed for execution of user functions.
For details about the information needed for execution of user functions, see 18.2.2 FunctionContext interface.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 501

(5) execute()

(a) Description
This method implements user function processing.

This method is called when a user function execution request is issued from the EADS client.

(b) Format

public Object execute(FunctionContext context)

(c) Parameters

context
Acquires information needed for execution of user functions.
For details about the information needed for execution of user functions, see 18.2.2 FunctionContext interface.

(d) Return value
This method returns the results of the user function processing.

The contents of getObject() of the Value interface are returned to the caller when a Value instance is specified
for the return value.

(e) Notes
For a user function that is executed in multiple threads, implement this method to be thread-safe.

(6) destroy()

(a) Description
This method implements user function termination processing.

The method is called when a user function is terminated during termination of an EADS server.

(b) Format

public void destroy(FunctionContext context)

(c) Parameters

context
Acquires information needed for execution of user functions.
For details about the information needed for execution of user functions, see 18.2.2 FunctionContext interface.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 502

18.2.2 FunctionContext interface

(1) Description
This interface passes to the Function interface information needed to execute a user function.

One instance of the FunctionContext interface is created per request.

(2) Interface name

com.hitachi.software.xeads.func.FunctionContext

(3) List of methods
The following table lists and describes the methods provided by the FunctionContext interface:

Method name Description

[Deprecated] getServerName() [Deprecated] Acquires the name of the EADS server (management directory name) that is to execute
the user function.

[Deprecated] getCacheName() [Deprecated] Acquires the name of cache used to execute the user function.

[Deprecated] getGroupName() [Deprecated] Acquires the name of the group specified on the EADS client when the user function
is executed.

[Deprecated] getArgument() [Deprecated] Acquires the argument specified on the EADS client when the user function is executed.

getStore() Acquires an instance for manipulating data in the cache that was used for calling the user function.

getStore() (cache name
specification)

Acquires an instance for manipulating data in the cache with a specified cache name.

getLogger() Acquires a logger for outputting user logs.

getClientInfo() Acquires information about the EADS client that executed the user function.

getInitConfig() Acquires information about the function properties (information that was used to initialize the user
function).

getServerInfo() Acquires information about the EADS server that executed the user function.

getClusterInfo() Acquires information about the cluster.

(4) [Deprecated] getServerName()

Reference note
This method is deprecated. Instead, use the getName() of the ServerInfo interface.

(a) Description
This method acquires the name of the EADS server (management directory name) that is to execute the user function.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 503

(b) Format

public String getServerName()

(c) Return value
This method returns the name of the EADS server that executes the user function (the management directory name).

(5) [Deprecated] getCacheName()

Reference note
This method is deprecated. Instead, use the getCacheName() of the ClientInfo interface.

(a) Description
This method acquires the name of the cache used to execute the user function.

(b) Format

public String getCacheName()

(c) Return value
This method returns the name of the cache used to execute the user function.

If this method is called within init() or destroy() of the Function interface, null is returned.

(6) [Deprecated] getGroupName()

Reference note
This method is deprecated. Instead, use the getKeyOrGroupName() of the ClientInfo interface.

(a) Description
This method acquires the name of the group specified on the EADS client when the user function is executed.

(b) Format

public String getGroupName()

(c) Return value
This method returns the group name specified on the EADS client when the user function is executed.

It returns null in the following cases:

• No group was specified on the EADS client.

• This method was called within init() or destroy() of the Function interface.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 504

(7) [Deprecated] getArgument()

Reference note
This method is deprecated. Instead, use the getFunctionArgument() of the ClientInfo interface.

(a) Description
This method acquires the argument specified on the EADS client when the user function is executed.

(b) Format

public Object getArgument()

(c) Return value
This method returns the argument specified on the EADS client when the user function is executed.

It returns null in the following cases:

• null was specified in the argument on the EADS client.

• This method was called within init() or destroy() of the Function interface.

(8) getStore()

(a) Description
This method acquires an instance for manipulating data in the cache that was used for calling the user function.

(b) Format

public Store getStore()

(c) Return value
This method returns an instance for manipulating data in the cache that was used for calling the user function.

For details about the instances for manipulating data, see 18.2.8 Store interface.

If this method is called within init() or destroy() of the Function interface, null is returned.

(9) getStore() (cache name specification)

(a) Description
This method acquires an instance for manipulating data in the cache with a specified cache name.

(b) Format

public Store getStore(String cacheName)
 throws EADsStoreException

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 505

(c) Parameters

cacheName
Specifies the name of the cache subject to processing.
For details about the data that can be specified, see 15.2.2(4) Data types that can be specified as cache names.
If the name of a cache that has not been created is specified, an error results.

(d) Return value
This method returns an instance for manipulating data in the cache with the specified cache name.

For details about the instances for manipulating data, see 18.2.8 Store interface.

If this method is called within init() or destroy() of the Function interface, null is returned.

(e) Exceptions
• UserOperationException (illegal user operation)

• EADsStoreException (unexpected error)

(10) getLogger()

(a) Description
This method acquires a logger for outputting user logs.

(b) Format

public UserLogger getLogger()

(c) Return value
This method returns a logger that outputs user logs.

For details about the interface used for outputting user logs, see 18.2.12 UserLogger interface.

(11) getClientInfo()

(a) Description
This method acquires information about the EADS client that executed the user function.

(b) Format

public ClientInfo getClientInfo()

(c) Return value
This method returns information about the EADS client that executed the user function. For details about the EADS
client information, see 18.2.4 ClientInfo interface.

If this method is called within init() or destroy() of the Function interface, null is returned.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 506

(12) getInitConfig()

(a) Description
This method acquires information about the function properties that were used to initialize the user function.

(b) Format

public InitConfig getInitConfig()

(c) Return value
This method returns information about the function properties that were used to initialize the user function.

For details about the function properties that were used to initialize the user function, see 18.2.3 InitConfig interface.

(13) getServerInfo()

(a) Description
This method acquires information about the EADS server that executed the user function.

(b) Format

public ServerInfo getServerInfo()

(c) Return value
This method returns information about the EADS server that executed the user function.

For information about EADS servers, see 18.2.5 ServerInfo interface.

(14) getClusterInfo()

(a) Description
This method acquires information about the cluster.

(b) Format

public ClusterInfo getClusterInfo()

(c) Return value
This method returns information about the cluster.

For information about the cluster, see 18.2.6 ClusterInfo interface.

If this method is called within init() or destroy() of the Function interface, null is returned.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 507

18.2.3 InitConfig interface

(1) Description
This interface acquires information about the function properties used to initialize a user function.

One instance of the InitConfig interface is created for each user function when a user function is initialized.

(2) Interface name

com.hitachi.software.xeads.func.InitConfig

(3) List of methods
The following table lists and describes the methods provided by the InitConfig interface:

Method name Description

getFunctionProperty() Acquires the value specified for the function properties used to initialize the user
function.

getFunctionPropertyNames() Acquires a list of parameters in the function properties used to initialize the user
function.

getFunctionName() Acquires the name of the user function that is currently executing.

(4) getFunctionProperty()

(a) Description
This method acquires the value specified for the function properties used to initialize the user function.

The method acquires the verified value for the function properties, not the specified value itself.

(b) Format

public String getFunctionProperty(java.lang.String propName)

(c) Parameters

propName
Specifies the parameter name for the function properties.

(d) Return value
This method returns the value corresponding to the parameter name.

If no specified value corresponds to the parameter name, it returns null.

(e) Exceptions
• NullPointerException (parameter name is null)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 508

(5) getFunctionPropertyNames()

(a) Description
This method acquires a list of parameters in the function properties used to initialize the user function.

(b) Format

public java.util.Set<String> getFunctionPropertyNames()

(c) Return value
This method returns a list of parameter names in the function properties used to initialize the user function.

(6) getFunctionName()

(a) Description
This method acquires the name of the user function that is currently executing.

(b) Format

public String getFunctionName()

(c) Return value
This method returns the name of the user function that is currently executing.

18.2.4 ClientInfo interface

(1) Description
This interface acquires information about the EADS client that executed the API method.

(2) Interface name

com.hitachi.software.xeads.common.ClientInfo

(3) List of methods
The following table lists and describes the methods provided by the ClientInfo interface:

Method name Description

getIp() Acquires the IP address of the EADS client that executed the API method.

getPid() Acquires the PID assigned by the EADS client that executed the API method.

getCacheName() Acquires the cache name specified on the EADS client.

getKeyOrGroupName() Acquires the key or group name specified on the EADS client.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 509

Method name Description

getFunctionArgument() Acquires the arguments of the user function specified on the EADS server.

(4) getIp()

(a) Description
This method acquires the IP address of the EADS client that executed the API method.

(b) Format

public byte[] getIp()

(c) Return value
This method returns the IP address of the EADS client that executed the API method.

(5) getPid()

(a) Description
This method acquires the PID assigned by the EADS client that executed the API method.

The acquired PID is the same as the value in the pid column in the log output by the EADS client that executed the
API method.

(b) Format

public int getPid()

(c) Return value
This method returns the PID assigned by the EADS client that executed the API method.

(6) getCacheName()

(a) Description
This method acquires the cache name specified on the EADS client.

(b) Format

public String getCacheName()

(c) Return value
This method returns the cache name specified on the EADS client.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 510

(7) getKeyOrGroupName()

(a) Description
This method acquires the key or group name specified on the EADS client.

(b) Format

public String getKeyOrGroupName()

(c) Return value
This method returns the key or group name specified on the EADS client.

If no key or group was specified on the EADS client, null is returned.

(8) getFunctionArgument()

(a) Description
This method acquires the arguments of the user function specified on the EADS server.

(b) Format

public Object getFunctionArgument()

(c) Return value
This method returns the arguments of the user function specified on the EADS server.

If no user function arguments were specified or null was specified on the EADS client, null is returned.

18.2.5 ServerInfo interface

(1) Description
This interface acquires information about an EADS server.

(2) Interface name

com.hitachi.software.xeads.common.ServerInfo

(3) List of methods
The following table lists and describes the methods provided by the ServerInfo interface:

Method name Description

getName() Acquires the name of the EADS server (management directory
name) that is executing the user function.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 511

Method name Description

getAddress() Acquires the IP address and port number of the EADS server that
is executing the user function.

getId() Acquires the EADS server ID of the EADS server that is
executing the user function.

[Deprecated] getCacheNames() [Deprecated] Acquires a list of cache names of the caches that
have been created on the EADS server that is executing the user
function.
The acquired cache names are listed in ascending order based on
their ASCII code values.

[Deprecated] getCacheType() [Deprecated] Acquires information about the cache type from the
cache with a specified cache name.

getEHeapSize() Acquires the explicit heap size allocated for caches by the EADS
server that is executing the user function.

getEHeapUsageSize() Acquires the usage amount of the explicit heap allocated for
caches by the EADS server that is executing the user function.

[Deprecated] getCacheDataFileSpecifiedSize() [Deprecated] Acquires the size of one cache data file (value
defined in the cache property file).

[Deprecated] getCacheDataFileRemainingSize() [Deprecated] Acquires the size of the space available for storing
persistent data in the cache data file currently under import
processing.

[Deprecated] getCacheDataFileSpecifiedNumber() [Deprecated] Acquires the number of cache data files (value
defined in the cache property file).

[Deprecated] getCacheDataFileUnusedNumber() [Deprecated] Acquires the number of unused cache data files that
are currently available.

(4) getName()

(a) Description
This method acquires the name of the EADS server (management directory name) that is executing the user function.

(b) Format

public String getName()

(c) Return value
This method returns the name of the EADS server (management directory name) that is executing the user function.

(5) getAddress()

(a) Description
This method acquires the IP address and port number of the EADS server that is executing the user function.

(b) Format

public InetSocketAddress getAddress()

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 512

(c) Return value
This method returns a java.net.InetSocketAddress instance indicating the IP address and port number of a
server.

(6) getId()

(a) Description
This method acquires the EADS server ID of the EADS server that is executing the user function.

(b) Format

public int getId()

(c) Return value
This method returns the EADS server ID of the EADS server that is executing the user function.

(7) [Deprecated] getCacheNames()

Reference note
This method is deprecated. Instead, use the getCacheNames() of the ClusterInfo interface.

(a) Description
This method acquires a list of cache names of the caches that have been created on the EADS server that is executing
the user function.

The acquired cache names are listed in ascending order based on their ASCII code values.

(b) Format

public java.util.Set<String> getCacheNames()

(c) Return value
This method returns a list of cache names of the caches that have been created on the EADS server that is executing the
user function.

If this method is called within init() or destroy() of the Function interface, null is returned.

(8) [Deprecated] getCacheType()

Reference note
This method is deprecated. Instead, use the getType() of the ClusterInfo interface.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 513

(a) Description
This method acquires information about the cache type from the cache with a specified cache name.

(b) Format

public CacheType getCacheType(String cacheName)
 throws EADsStoreException

(c) Parameters

cacheName
Specifies a cache name.
For details about the data that can be specified, see 15.2.2(4) Data types that can be specified as cache names.
If the name of a cache that has not been created is specified, an error results.

(d) Return value
This method returns information about the cache type.

If this method is called within init() or destroy() of the Function interface, null is returned.

(e) Exceptions
• UserOperationException (illegal user operation)

• EADsStoreException (unexpected error)

(9) getEHeapSize()

(a) Description
This method acquires the explicit heap size allocated for caches by the EADS server that is executing the user function.

(b) Format

public long getEHeapSize()
 throws EADsStoreException

(c) Return value
This method returns the explicit heap size (in bytes) allocated for caches by the EADS server.

If this method is called within init() or destroy() of the Function interface, 0 is returned.

(d) Exceptions
• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 514

(10) getEHeapUsageSize()

(a) Description
This method acquires the usage amount of the explicit heap allocated for caches by the EADS server that is executing
the user function.

(b) Format

public long getEHeapSize()
 throws EADsStoreException

(c) Return value
This method returns the usage amount (in bytes) of the explicit heap allocated for caches by the EADS server.

If this method is called within init() or destroy() of the Function interface, 0 is returned.

(d) Exceptions
• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(11) [Deprecated] getCacheDataFileSpecifiedSize()

Reference note
This method is deprecated. Instead, use the getCacheDataFileSize() of the CacheInfo interface.

(a) Description
This method acquires the size (in bytes) of one cache data file (value defined in the cache property file).

(b) Format

public long getCacheDataFileSpecifiedSize(String cacheName)
 throws EADsStoreException

(c) Parameters

cacheName
Specifies a cache name.
For details about the data that can be specified, see 15.2.2(4) Data types that can be specified as cache names.
If the name of a cache that has not been created is specified, an error results.

(d) Return value
This method returns the size (in bytes) of one cache data file (value defined in the cache property file).

If this method is called within init() or destroy() of the Function interface, null is returned.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 515

(e) Exceptions
• UserOperationException (illegal user operation)

• EADsStoreException (unexpected error)

(12) [Deprecated] getCacheDataFileRemainingSize()

Reference note
This method is deprecated. Instead, use the getRemainingAreaSizeOfWritingCacheDataFile()
of the CacheInfo interface.

(a) Description
This method acquires the size (in bytes) of the space available for storing persistent data in the cache data file currently
under import processing.

(b) Format

public long getCacheDataFileRemainingSize(String cacheName, String key)
 throws EADsStoreException

(c) Parameters

cacheName
Specifies a cache name.
For details about the data that can be specified, see 15.2.2(4) Data types that can be specified as cache names.
If the name of a cache that has not been created is specified, an error results.

key
Specifies a key to be associated with the value. The specification must be a group name.
For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys.
Note that if the specified key does not belong to the EADS server that is executing the user function, an error results.

(d) Return value
This method returns the size (in bytes) of the space available for storing persistent data in the cache data file currently
under import processing.

If this method is called within init() or destroy() of the Function interface, 0 is returned.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(f) Notes
• The available file size returned by this method is the information at the time the method executes. This value might

change due to cache operations or compaction.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 516

• This method acquires information about the EADS server that is executing this method. The method cannot acquire
information about other EADS servers.

• If this method's return value indicates sufficient space in the cache data files but a space shortage has occurred on
the EADS server to which data is to be copied, that target EADS server will be isolated when data is actually stored.
Determine whether data can actually be stored taking into account the available space on the target EADS server in
addition to this method's return value.

(13) [Deprecated] getCacheDataFileSpecifiedNumber()

Reference note
This method is deprecated. Instead, use the getCacheDataFilesNumber() of the CacheInfo interface.

(a) Description
This method acquires the number of cache data files (value defined in the cache property file).

(b) Format

public int getCacheDataFileSpecifiedNumber(String cacheName)
 throws EADsStoreException

(c) Parameters

cacheName
Specifies a cache name.
For details about the data that can be specified, see 15.2.2(4) Data types that can be specified as cache names.
If the name of a cache that has not been created is specified, an error results.

(d) Return value
This method returns the number of cache data files (value defined in the cache property file).

If this method is called within init() or destroy() of the Function interface, 0 is returned.

(e) Exceptions
• UserOperationException (illegal user operation)

• EADsStoreException (unexpected error)

(14) [Deprecated] getCacheDataFileUnusedNumber()

Reference note
This method is deprecated. Instead, use the getRemainingCacheDataFilesNumber() of the
CacheInfo interface.

(a) Description
This method acquires the number of unused cache data files that are currently available.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 517

(b) Format

public int getCacheDataFileUnusedNumber(String cacheName, String key)
 throws EADsStoreException

(c) Parameters

cacheName
Specifies a cache name.
For details about the data that can be specified, see 15.2.2(4) Data types that can be specified as cache names.
If the name of a cache that has not been created is specified, an error results.

key
Specifies a key to be associated with the value. The specification must be a group name.
For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys.
Note that if the specified key does not belong to the EADS server that is executing the user function, an error results.

(d) Return value
This method returns the number of unused cache data files that are currently available. This value does not include the
number of files reserved by the EADS server.

If the cache data file currently under import processing is the last available cache data file, the method returns 0.

If this method is called within init() or destroy() of the Function interface, 0 is returned.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(f) Notes
• The number of unused files returned by this method is the information at the time the method executes. This value

might change due to cache operations or compaction.

• This method acquires information about the EADS server that is executing this method. The method cannot acquire
information about other EADS servers.

• If this method's return value indicates sufficient space in the cache data files but a space shortage has occurred on
the EADS server to which data is to be copied, that target EADS server will be isolated when data is actually stored.
Determine whether data can actually be stored taking into account the available space on the target EADS server in
addition to this method's return value.

18.2.6 ClusterInfo interface

(1) Description
This interface acquires information about the cluster.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 518

(2) Interface name

com.hitachi.software.xeads.common.ClusterInfo

(3) List of methods
The following table lists and describes the methods provided by the ClusterInfo interface:

Method name Description

getReplicationFactor() Acquires the data multiplicity.

getCacheNames() Acquires a list of cache names of the caches that have been created on
the EADS server that is executing the user function.
The acquired cache names are listed in ascending order based on their
ASCII code values.

getCacheInfo() Acquires information about a specified cache.

getPosition() Acquires the position (hash value) that corresponds to a specified key
or group name.

getRangeId() (position specification) Acquires the range ID of the range that corresponds to a specified
position.

getRangeId() (key or group name specification) Acquires the range ID of the range that corresponds to a specified key
or group name.

getLocalRangeId() Acquires a list of range IDs of all ranges that are to be processed at
the source or target of copy processing by the EADS server that is
executing the user function.

isLocalRange() Acquires a value indicating whether a specified range is the source or
target of copy processing by the EADS server that is executing the
user function.

isLocalMasterRange() Acquires a value indicating whether a specified range is the source of
copy processing by the EADS server that is executing the user
function.

(4) getReplicationFactor()

(a) Description
This method acquires the data multiplicity.

(b) Format

public int getReplicationFactor()

(c) Return value
This method returns the data multiplicity

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 519

(5) getCacheNames()

(a) Description
This method acquires a list of cache names of the caches that have been created on the EADS server that is executing
the user function.

The cache names are listed in ascending order based on their ASCII code values.

(b) Format

public String[] getCacheNames()

(c) Return value
This method returns a list of cache names of the caches that have been created on the EADS server that is executing the
user function.

(6) getCacheInfo()

(a) Description
This method acquires information about a specified cache.

(b) Format

public CacheInfo getCacheInfo(String cacheName)
 throws EADsStoreException

(c) Parameters

cacheName
Specifies a cache name.
For details about the data that can be specified, see 15.2.2(4) Data types that can be specified as cache names.

(d) Return value
This method returns an instance that contains information about the cache with the specified cache name.

(e) Exceptions
• UserOperationException (illegal user operation)

(7) getPosition()

(a) Description
This method acquires the position (hash value) that corresponds to a specified key or group name.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 520

(b) Format

public int getPosition(String keyOrGroupName)
 throws EADsStoreException

(c) Parameters

keyOrGroupName
Specifies a key or a group name.
For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys or 15.2.2(2)
Data that can be specified as group names.

(d) Return value
This method returns the position (hash value) that corresponds to the specified key or group name.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(8) getRangeId() (position specification)

(a) Description
This method acquires the range ID of the range that corresponds to a specified position.

(b) Format

public int getRangeId(int position)
 throws EADsStoreException

(c) Parameters

position
Specifies a position.

(d) Return value
This method returns the range ID of the range that corresponds to the specified position.

(e) Exceptions
• EADsStoreException (unexpected error)

(9) getRangeId() (key or group name specification)

(a) Description
This method acquires the range ID of the range that corresponds to a specified key or group name.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 521

(b) Format

public int getRangeId(String keyOrGroupName)
 throws EADsStoreException

(c) Parameters

keyOrGroupName
Specifies a key or a group name.
For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys or 15.2.2(2)
Data that can be specified as group names.

(d) Return value
This method returns the range ID of the range that corresponds to the specified key or group name.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(10) getLocalRangeId()

(a) Description
This method acquires a list of range IDs of all ranges that are to be processed as the source or target of copy processing
by the EADS server that is executing the user function.

(b) Format

public int[] getLocalRangeId()
 throws EADsStoreException

(c) Return value
This method returns a list of range IDs of all ranges that are to be processed as the source or target of copy processing
by the EADS server that is executing the user function.

(d) Exceptions
• EADsStoreException (unexpected error)

(11) isLocalRange()

(a) Description
This method acquires a value indicating whether a specified range is the source or target of copy processing by the
EADS server that is executing the user function.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 522

(b) Format

public boolean isLocalRange(int rangeId)
 throws EADsStoreException

(c) Parameters

rangeId
Specifies the range ID of a range.

(d) Return value

true
The specified range is the source or target of copy processing by the EADS server that is executing the user function.

false
The specified range is neither the source nor the target of copy processing by the EADS server that is executing the
user function.

(e) Exceptions
• EADsStoreException (unexpected error)

(12) isLocalMasterRange()

(a) Description
This method acquires a value indicating whether a specified range is the source of copy processing by the EADS server
that is executing the user function.

(b) Format

public boolean isLocalMasterRange(int rangeId)
 throws EADsStoreException

(c) Parameters

rangeId
Specifies the range ID of a range.

(d) Return value

true
The specified range is the source of copy processing by the EADS server that is executing the user function.

false
The specified range is not the source of copy processing by the EADS server that is executing the user function.

(e) Exceptions
• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 523

18.2.7 CacheInfo interface

(1) Description
This interface acquires information about caches.

(2) Interface name

com.hitachi.software.xeads.common.CacheInfo

(3) List of methods
The following table lists and describes the methods provided by the CacheInfo interface:

Method name Description

getType() Acquires the cache types.

getCacheDataFileSize() Acquires the size (in bytes) of a cache
data file defined for each cache.

getCacheDataFilesNumber() Acquires the number of cache data files
defined for each cache.

getRemainingAreaSizeOfWritingCacheDataFile() Acquires the remaining space (in bytes)
available in the cache data file currently
being imported by the EADS server that
is executing the user function.

getRemainingCacheDataFilesNumber() Acquires the number of unused cache
data files currently available to the
EADS server that is executing the user
function.

(4) getType()

(a) Description
This method acquires the cache types.

(b) Format

public CacheType getType()

(c) Return value
This method returns the cache types.

For details about the enumeration CacheType, see 18.2.16 Enumeration CacheType.

(5) getCacheDataFileSize()

(a) Description
This method acquires the size (in bytes) of a cache data file defined for each cache.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 524

(b) Format

public long getCacheDataFileSize()
 throws EADsStoreException

(c) Return value
This method returns the size of a cache data file defined for each cache.

(6) getCacheDataFilesNumber()

(a) Description
This method acquires the number of cache data files defined for each cache.

(b) Format

public int getCacheDataFilesNumber()
 throws EADsStoreException

(c) Return value
This returns the number of cache data files defined for each cache.

(d) Exceptions
• UserOperationException (illegal user operation)

• EADsStoreException (unexpected error)

(7) getRemainingAreaSizeOfWritingCacheDataFile()

(a) Description
This method acquires the remaining space (in bytes) available in the cache data file currently being imported by the
EADS server that is executing the user function.

(b) Format

public long getRemainingAreaSizeOfWritingCacheDataFile(int rangeId)
 throws EADsStoreException

(c) Parameters

rangeId
Specifies the range ID of a range that belongs to the EADS server that is executing the user function.

(d) Return value
This method returns the remaining space (in bytes) available for storing persistent data in the cache data file currently
being imported.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 525

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(f) Notes
Even when this method's return value indicates sufficient space in the cache data file, the available space on other EADS
servers that handle the same range might be different because the data arrangement differs from one EADS server to
another.

You can expect to reduce such a difference in the available space in the cache data files by sufficiently compacting the
cache data files. However, achieving exactly same amount of free space on all the EADS servers cannot be assured.

(8) getRemainingCacheDataFilesNumber()

(a) Description
This method acquires the number of unused cache data files currently available to the EADS server that is executing
the user function.

(b) Format

public int getRemainingCacheDataFilesNumber(int rangeId)
 throws EADsStoreException

(c) Parameters

rangeId
Specifies the range ID of a range that belongs to the EADS server that is executing the user function.

(d) Return value
This method returns the number of unused cache data files that are currently available. This value does not include the
number of files reserved by the EADS server.

If the cache data file currently under import processing is the last available cache data file, the method returns 0.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(f) Notes
Even when this method's return value indicates that there are a sufficient number of cache data files, the number of
unused files on other EADS servers that handle the same range might be different because the data arrangement differs
from one EADS server to another.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 526

You can expect to achieve roughly the same number of unused files as that of the other EADS servers by sufficiently
compacting the cache data files.

18.2.8 Store interface

(1) Description
This interface manipulates data during execution of a user function.

(2) Interface name

com.hitachi.software.xeads.func.store.Store

(3) List of methods
The following table lists and describes the methods provided by the Store interface:

Method name Description

createKey() Creates an instance indicating a key that can be manipulated in the cache.

createValue() Serializes a specified value and creates a value instance that can be manipulated in the cache.

createGroup() Creates an instance indicating a group that can be manipulated in the cache.

[Deprecated] getGroup() [Deprecated] Acquires an instance needed to manipulate a group specified on the EADS client
when the user function is executed.

[Deprecated] getGroup() (group name
specification)

[Deprecated] Acquires an instance needed to manipulate a specified group.

containsKey() (Key interface
specification)

Acquires a value indicating whether the value associated with a specified key is stored in the
cache.

[Deprecated] containsKey() (character
string specification)

[Deprecated] Acquires a value indicating whether the value associated with a specified key is
stored in the cache.

put() Stores a value by associating it with a key.

create() Stores a value by associating it with a key only when a new key is stored.

update() Updates a stored value to a specified value.

replace() Compares the value associated with a specified key to the value (comparativeValue)
specified as a condition, and updates the value if the values match.

get() Acquires the value associated with a specified key.

remove() Deletes a specified key and the value associated with that key.

getLastUpdateTime() Acquires the last time the value associated with a specified key was updated.

getKeyCount() Acquires the total number of keys stored in the cache.

getGroupCount() Acquires the number of groups in the highest hierarchy of all groups to which the keys stored
in the cache belong.

getGroupNames() Acquires a list of group names in the highest hierarchy of all groups to which the keys stored
in the cache belong.
The group names are listed in ascending order based on their ASCII code values.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 527

Method name Description

[Deprecated] getGroupNameSet() [Deprecated] Acquires a list of group names in the highest hierarchy in the cache in ascending
order based on their ASCII code values.

getEHeapUsageSize() (Key interface
specification)

Acquires the size (in bytes) of the explicit heap being used to store values.

getEHeapUsageSize() (Group
interface specification)

Acquires the size (in bytes) of the explicit heap being used to store values for the keys that
belong to a specified group.

getDiskUsageSize() (Key interface
specification)

Acquires the amount (in bytes) of disk space being used to store values.

getDiskUsageSize() (Group interface
specification)

Acquires the amount (in bytes) of disk space being used to store values for keys that belong
to a specified group.

calcEHeapUsageSize() Calculates the size (in bytes) of the explicit heap used if a specified value is stored.

calcDiskUsageSize() Calculates the amount (in bytes) of disk space used if a value is stored.

(4) createKey()

(a) Description
This method creates an instance indicating a key that can be manipulated in the cache.

(b) Format

public Key createKey(String key)
 throws EADsStoreException

(c) Parameters

key
Specifies the key that is indicated in the created instance.
For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys.
If the specified key is not subject to processing by the Store interface, an error results.

(d) Return value
The method returns a Key instance.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(5) createValue()

(a) Description
This method serializes a specified value and creates a value instance that can be manipulated in the cache.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 528

(b) Format

public Value createValue(Object value)
 throws EADsStoreException

(c) Parameters

value
Specifies the value that is indicated in the created instance.
For details about the data that can be specified, see 15.2.2(3) Data types that can be specified as values.
This parameter is invalid in the following cases:

• null is specified.

• The specified object cannot be serialized.

(d) Return value
The method returns an instance in which the Value interface is implemented.

(e) Exceptions
• UserOperationException (illegal user operation)

• EADsStoreException (unexpected error)

(6) createGroup()

(a) Description
This method creates an instance indicating a group that can be manipulated in the cache.

(b) Format

public Group createGroup(String groupName)
 throws EADsStoreException

(c) Parameters

groupName
Specifies the group name of the group that is indicated in the created instance.
For details about the data that can be specified, see 15.2.2(2) Data that can be specified as group names.
Note that if the specified group name is not subject to processing by the Store interface, an error results.

(d) Return value
This method returns the instance needed for accessing the specified group.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 529

(7) [Deprecated] getGroup()

Reference note
This method is deprecated. Instead, use the getKeyOrGroupName() of the ClientInfo interface and
createGroup() of the Store interface.

(a) Description
This method acquires an instance needed to manipulate a group specified on the EADS client when the user function
is executed.

(b) Format

public Group getGroup()

(c) Return value
This method returns the instance needed to manipulate the group specified on the EADS client when the user function
is executed.

If no group was specified on the EADS client, the method returns null.

(8) [Deprecated] getGroup() (group name specification)

Reference note
This method is deprecated. Instead, use the createGroup() of the Store interface.

(a) Description
This method acquires an instance needed to manipulate a specified group.

(b) Format

public Group getGroup(String groupName)
 throws EADsStoreException

(c) Parameters

groupName
Specifies a group name.
For details about the data that can be specified, see 15.2.2(2) Data that can be specified as group names.
This parameter is invalid in the following case:

• The specified group name is not subject to processing by the Store interface.

(d) Return value
This method returns an instance needed to manipulate the specified group.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 530

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException(unexpected error)

(9) containsKey() (Key interface specification)

(a) Description
This method acquires a value indicating whether the value associated with a specified key is stored in the cache.

(b) Format

public boolean containsKey(Key key)
 throws EADsStoreException

(c) Parameters

key
Specifies the key of the Key interface that is associated with the value.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Key interface is invalid.

• The specified key is not subject to processing by the Store interface.

(d) Return value
This method returns a value indicating whether the value associated with the specified key is stored in the cache.

true
The value is stored in the cache.

false
The value is not stored in the cache.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(10) [Deprecated] containsKey() (character string specification)

Reference note
This method is deprecated. Instead, use the containsKey() (Key interface specification) of the Store
interface.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 531

(a) Description
This method acquires a value indicating whether the value associated with a specified key is stored in the cache.

(b) Format

public boolean containsKey(String key)
 throws EADsStoreException

(c) Parameters

key
Specifies a key to be checked.
For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys.
If the specified key is not subject to processing by the Store interface, an error results.

(d) Return value
This method returns a value indicating whether the value associated with the specified key is stored in the cache.

true
The value is stored in the cache.

false
The value is not stored in the cache.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(11) put()

(a) Description
This method stores a value by associating it with a key.

If a value is already stored, the existing value will be updated to the specified value.

(b) Format

public void put(Key key, Value value)
 throws EADsStoreException

(c) Parameters

key
Specifies a key of the Key interface that is to be associated with a value.
This parameter is invalid in the following cases:

• null is specified.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 532

• The specified object of the Key interface is invalid.

• The specified key is not subject to processing by the Store interface.

value
Specifies a Value interface value to be stored.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Value interface is invalid.

(d) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(12) create()

(a) Description
This method stores a value by associating it with a key only when a new key is stored.

If a value has already been stored, the method returns EADsStoreException.

(b) Format

public void create(Key key, Value value)
 throws EADsStoreException

(c) Parameters

key
Specifies a key of the Key interface that is to be associated with a value.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Key interface is invalid.

• The specified key is not subject to processing by the Store interface.

value
Specifies a value to be stored.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Value interface is invalid.

(d) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 533

• EADsStoreException (unexpected error)

(13) update()

(a) Description
This method stores a value by associating it with a key only when the specified key is already stored (the value is
updated).

If no value is stored, the method returns EADsStoreException.

(b) Format

public void update(Key key, Value value)
 throws EADsStoreException

(c) Parameters

key
Specifies a key of the Key interface that is to be associated with the value to be stored.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Key interface is invalid.

• The specified key is not subject to processing by the Store interface.

value
Specifies a Value interface value to be stored.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Value interface is invalid.

(d) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(14) replace()

(a) Description
This method compares the value associated with a specified key to the value (comparativeValue) specified as a
condition, and updates the value if the values match.

The method returns EADsStoreException in the following cases:

• A value is stored, but it does not match the value (comparativeValue) specified as the condition.

• No value is stored.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 534

(b) Format

public void replace(Key key, Value value, Value comparativeValue)
 throws EADsStoreException

(c) Parameters

key
Specifies the key of the Key interface that is associated with the value to be stored.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Key interface is invalid.

• The specified key is not subject to processing by the Store interface.

value
Specifies a Value interface value to be stored.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Value interface is invalid.

comparativeValue
Specifies a Value interface value to be compared.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Value interface is invalid.

(d) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(15) get()

(a) Description
This method acquires the value associated with a specified key.

(b) Format

public Value get(Key key)
 throws EADsStoreException

(c) Parameters

key
Specifies the key of the Key interface that is associated with the value to be acquired.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 535

This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Key interface is invalid.

• The specified key is not subject to processing by the Store interface.

(d) Return value
This method returns the value associated with the specified key.

If no value is associated with the specified key, the method returns null.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(16) remove()

(a) Description
This method deletes a specified key and the value associated with that key.

(b) Format

public void remove(Key key)
 throws EADsStoreException

(c) Parameters

key
Specifies the key of the Key interface that is associated with the value to be deleted.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Key interface is invalid.

• The specified key is not subject to processing by the Store interface.

(d) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(17) getLastUpdateTime()

(a) Description
This method acquires the last time the value associated with a specified key was updated.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 536

(b) Format

public long getLastUpdateTime(Key key)
 throws EADsStoreException

(c) Parameters

key
Specifies the key of the Key interface that is associated with the value.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Key interface is invalid.

• The specified key is not subject to processing by the Store interface.

(d) Return value
This method returns the last data update time (absolute time in milliseconds from 1970-01-01 at 00:00:00 (UTC)).

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(18) getKeyCount()

(a) Description
This method acquires the total number of keys stored in the cache.

Because keys and values have a one-to-one correspondence, the acquired number of keys corresponds to the number
of values stored in the cache.

(b) Format

public int getKeyCount()
 throws EADsStoreException

(c) Return value
This method returns the total number of keys stored in the cache.

(d) Exceptions
• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 537

(19) getGroupCount()

(a) Description
This method acquires the number of groups in the highest hierarchy of all groups to which the keys stored in the cache
belong.

(b) Format

public int getGroupCount()
 throws EADsStoreException

(c) Return value
This method returns the number of groups in the highest hierarchy of all groups to which the keys stored in the cache
belong.

(d) Exceptions
• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(20) getGroupNames()

(a) Description
This method acquires a list of group names in the highest hierarchy of all groups to which the keys stored in the cache
belong.

The group names are listed in ascending order based on their ASCII code values.

(b) Format

public String[] getGroupNames()
 throws EADsStoreException

(c) Return value
This method returns a list of group names in the highest hierarchy of all the groups to which the keys stored in the cache
belong.

(d) Exceptions
• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(21) [Deprecated] getGroupNameSet()

Reference note
This method is deprecated. Instead, use getGroupNames() of the Store interface.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 538

(a) Description
This method acquires a list of group names in the highest hierarchy in the cache in ascending order based on their ASCII
code values.

(b) Format

public java.util.Set<String> getGroupNameSet()
 throws EADsStoreException

(c) Return value
This method returns a list of group names in the highest hierarchy in the cache (in ascending order based on their ASCII
code values).

(d) Exceptions
• EADsStoreException(unexpected error)

(22) getEHeapUsageSize() (Key interface specification)

(a) Description
This method acquires the size (in bytes) of the explicit heap being used to store values.

(b) Format

public long getEHeapUsageSize(Key key)
 throws EADsStoreException

(c) Parameters

key
Specifies a key of the Key interface that is associated with the values.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Key interface is invalid.

• The specified key is not subject to processing by the Store interface.

(d) Return value
This method returns the size (in bytes) of the explicit heap being used to store values.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 539

(23) getEHeapUsageSize() (Group interface specification)

(a) Description
This method acquires the size (in bytes) of the explicit heap being used to store values for the keys that belong to a
specified group.

(b) Format

public long getEHeapUsageSize(Group group)
 throws EADsStoreException

(c) Parameters

group
Specifies the group name of the Group interface to which the key belongs.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Group interface is invalid.

• The specified key is not subject to processing by the Store interface.

(d) Return value
This method returns the size (in bytes) of the explicit heap being used to store values for the keys that belong to the
specified group.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(24) getDiskUsageSize() (Key interface specification)

(a) Description
This method acquires the amount (in bytes) of disk space being used to store values.

(b) Format

public long getDiskUsageSize(Key key)
 throws EADsStoreException

(c) Parameters

key
Specifies a key of the Key interface that is associated with the values.
This parameter is invalid in the following cases:

• null is specified.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 540

• The specified object of the Key interface is invalid.

• The specified key is not subject to processing by the Store interface.

(d) Return value
This method returns the amount (in bytes) of disk space being used to store values.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(25) getDiskUsageSize() (Group interface specification)

(a) Description
This method acquires the amount (in bytes) of disk space being used to store values for keys that belong to a specified
group.

(b) Format

public long getEHeapUsageSize(Group group)
 throws EADsStoreException

(c) Parameters

group
Specifies a group name of the Group interface to which keys belong.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Group interface is invalid.

• The specified group is not subject to processing by the Store interface.

(d) Return value
This method returns the amount (in bytes) of disk space being used to store values for keys that belong to the specified
group.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 541

(26) calcEHeapUsageSize()

(a) Description
This method calculates the size (in bytes) of the explicit heap used if a specified value is stored.

(b) Format

public long calcEHeapUsageSize(Value value)
 throws EADsStoreException

(c) Parameters

value
Specifies a Value interface value that was stored.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Value interface is invalid.

(d) Return value
This method returns the size (in bytes) of the explicit heap used if the specified value is stored.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(27) calcDiskUsageSize()

(a) Description
This method calculates the amount (in bytes) of disk space used if a specified value is stored.

(b) Format

public long calcDiskUsageSize(Key key, Value value)
 throws EADsStoreException

(c) Parameters

key
Specifies the key of the Key interface that is associated with a value.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Value interface is invalid.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 542

value
Specifies a Value interface value that was stored.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Value interface is invalid.

(d) Return value
This method returns the amount of disk space used if the specified value is stored.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

18.2.9 Group interface

(1) Description
This interface manipulates the group belonging to the EADS server that is executing a user function.

The method cannot manipulate a key that does not belong to the group specified.

(2) Interface name

com.hitachi.software.xeads.func.store.Group

(3) List of methods
The following table lists and describes the methods provided by the Group interface:

Method name Description

toString() Acquires the group name.

equals() Evaluates whether a specified object is the Group instance indicating this
group.

getPosition() Acquires the position (hash group) that corresponds to the group.

createKey() Creates a key that is to belong to this group.

createGroup() Creates a hierarchy group immediately below the specified group.

firstKey() Acquires the first key in order of ASCII codes of all the keys that are stored
and belong to the specified group.

lastKey() Acquires the last key in order of ASCII codes of all the keys that are stored
and belong to the specified group.

keyIterator() Acquires an iterator that accesses the keys belonging to the specified group
in ascending order based on their ASCII code values.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 543

Method name Description

The start position of the iterator is the first key in the group.

keyIterator() (Key interface specification) Acquires an iterator that accesses the keys belonging to the specified group
in ascending order based on their ASCII code values.
The start position of the iterator is the key immediately following a specified
key in ascending order based on its ASCII code value of all the keys that
belong to the group.

descendingKeyIterator() Acquires an iterator that accesses the keys belonging to the specified group
in descending order based on their ASCII code values.
The start position of the iterator is the last key in the group.

descendingKeyIterator() (Key interface
specification)

Acquires an iterator that accesses the keys belonging to the specified group
in descending order based on their ASCII code values.
The start position of the iterator is the key immediately following a specified
key in descending order based on its ASCII code value of all the keys that
belong to the group.

[Deprecated] higherKeyIterator() [Deprecated] Acquires an iterator that accesses the keys belonging to the
specified group in ascending order based on their ASCII code values.
The start position of the iterator is the key that immediately follows a
specified key in ascending order based on its ASCII code value.

[Deprecated] lowerDescendingKeyIterator() [Deprecated] Acquires an iterator that accesses the keys belonging to the
specified group in descending order based on their ASCII code values.
The start position of the iterator is the key that immediately follows a
specified key in descending order based on its ASCII code value.

[Deprecated] put() (character string specification) [Deprecated] Associates a value with a key, and then stores it.

[Deprecated] put() (Key interface specification) [Deprecated] Associates a value with a key, and then stores it.

[Deprecated] create() [Deprecated] Associates a value with a key, and then stores it only if a new
key is stored.

[Deprecated] update() (character string specification) [Deprecated] Associates a value with a key, and then stores it only if a
specified key has already been stored (updates the value).

[Deprecated] update() (Key interface specification) [Deprecated] Associates a value with a key, and then stores it only if a
specified key has already been stored (updates the value).

[Deprecated] replace() (character string specification) [Deprecated] Compares the value associated with a specified key with a
value (comparativeValue) specified as a condition. Only if the values
match, this method associates the value with the key, and then stores it
(replaces the value).

[Deprecated] replace() (Key interface specification) [Deprecated] Compares the value associated with a specified key with a
value (comparativeValue) specified as a condition. Only if the values
match, this method associates the value with the key, and then stores it
(replaces the value).

[Deprecated] get() (character string specification) [Deprecated] Acquires the value associated with a specified key.

[Deprecated] get() (Key interface specification) [Deprecated] Acquires the value associated with a specified key.

[Deprecated] remove() (character string specification) [Deprecated] Deletes a specified key and the value associated with that key.

[Deprecated] remove() (Key interface specification) [Deprecated] Deletes a specified key and the value associated with that key.

[Deprecated] getLastUpdateTime() (character string
specification)

[Deprecated] Acquires the last update time of the value associated with a
specified key.

[Deprecated] getLastUpdateTime() (Key interface
specification)

[Deprecated] Acquires the last update time of the value associated with a
specified key.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 544

Method name Description

getKeyCount() Acquires the number of keys that belong to this group.

getGroupCount() Acquires the number of groups in the hierarchy immediately below this
group.

getGroupNames() Acquires a list of group names in the hierarchy immediately below this
group.
The group names are listed in ascending order based on their ASCII code
values.

getGroupLayerNames() Acquires a list of group hierarchy names in the hierarchy immediately below
this group.
The group hierarchy names are listed in ascending order based on their ASCII
code values.

[Deprecated] getGroupNameSet() [Deprecated] Acquires a list of group names in ascending order based on
their ASCII code values.

[Deprecated] getValueUsageSize() (character string
specification)

[Deprecated] Acquires the size of the memory usage for the value associated
with a specified key.

[Deprecated] getValueUsageSize() (Key interface
specification)

[Deprecated] Acquires the size of the memory usage for the value associated
with a specified key.

[Deprecated] getValueUsageSize() [Deprecated] Acquires the total size of the memory usage for all values
belonging to the group including the groups in the lower hierarchies.

(4) toString()

(a) Description
This method acquires the group name.

(b) Format

public String toString()

(c) Return value
This method returns the group name.

(5) equals()

(a) Description
This method evaluates whether a specified object is the Group instance indicating this group.

(b) Format

public boolean equals(Object obj)

(c) Parameters

obj
Specifies the object to be compared.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 545

(d) Return value

true
The specified object is the Group instance indicating this group.

false
The specified object is not the Group instance indicating this group.

(6) getPosition()

(a) Description
This method acquires the position (hash group) that corresponds to the group.

(b) Format

public int getPosition()
 throws EADsStoreException

(c) Return value
This method returns the position (hash group) that corresponds to the group.

(d) Exceptions
• UserOperationException (illegal user operation)

• EADsStoreException (unexpected error)

(7) createKey()

(a) Description
This method creates a key that is to belong to this group.

(b) Format

public Key createKey(String element)
 throws EADsStoreException

(c) Parameters

element
Specifies an element name to be concatenated with the group name.
This parameter is invalid in the following cases:

• A key with the element name concatenated does not satisfy the conditions explained in 15.2.2(1) Data types that
can be specified as keys.

• The name contains a colon (:).

(d) Return value
This method returns a Key instance.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 546

(e) Exceptions
• UserOperationException (illegal user operation)

• EADsStoreException (unexpected error)

(8) createGroup()

(a) Description
This method creates a hierarchy group immediately below the specified group.

(b) Format

public Group createGroup(String groupLayerName)
 throws EADsStoreException

(c) Parameters

groupLayerName
Specifies a group hierarchy name.
This parameter is invalid in the following cases:

• A group name with this group hierarchy name concatenated does not satisfy the conditions explained in 15.2.2(1)
Data types that can be specified as keys.

• The name contains a colon (:).

(d) Return value
This method returns the instance needed for accessing the specified group.

(e) Exceptions
• UserOperationException (illegal user operation)

• EADsStoreException (unexpected error)

(9) firstKey()

(a) Description
This method acquires the first key in order of ASCII codes of all the keys that are stored and belong to the specified
group.

(b) Format

public Key firstKey()
 throws EADsStoreException

(c) Return value
This method returns the first key in order of ASCII codes of all the keys that are stored and belong to the specified
group.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 547

If no keys belong to the specified group, the method returns null.

(d) Exceptions
• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(10) lastKey()

(a) Description
This method acquires the last key in order of ASCII codes of all the keys that are stored and belong to the specified
group.

(b) Format

public Key lastKey()
 throws EADsStoreException

(c) Return value
This method returns the last key in order of ASCII codes of all the keys that are stored and belong to the specified group.

If no keys belong to the specified group, the method returns null.

(d) Exceptions
• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(11) keyIterator()

(a) Description
This method acquires an iterator that accesses the keys belonging to the specified group in ascending order based on
their ASCII code values.

The start position of the iterator is the first key in the group.

(b) Format

public java.util.Iterator<Key> keyIterator()
 throws EADsStoreException

(c) Return value
This method returns an iterator that accesses the keys belonging to the group in ascending order based on their ASCII
code values.

(d) Exceptions
• EADsStoreException (unexpected error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 548

(e) Notes
Depending on the timing, the value associated with a key obtained by the iterator might have been deleted.

(12) keyIterator()

(a) Description
This method acquires an iterator that accesses the keys belonging to the specified group in ascending order based on
their ASCII code values.

The start position of the iterator is the key immediately following a specified key in ascending order based on its ASCII
code value of all the keys that belong to the group.

(b) Format

public java.util.Iterator<Key> keyIterator(Key previousKey)
 throws EADsStoreException

(c) Parameters

previousKey
Specifies the immediately preceding key that indicates the start position of the iterator.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Key interface is invalid.

(d) Return value
This method returns an iterator that accesses the keys belonging to the specified group in ascending order based on their
ASCII code values.

(e) Exceptions
• UserOperationException (illegal user operation)

• EADsStoreException (unexpected error)

(f) Notes
Depending on the timing, the value associated with a key obtained by the iterator might have been deleted.

(13) descendingKeyIterator()

(a) Description
This method acquires an iterator that accesses the keys belonging to the specified group in descending order based on
their ASCII code values.

The start position of the iterator is the last key in the group.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 549

(b) Format

public java.util.Iterator<Key> descendingKeyIterator()
 throws EADsStoreException

(c) Return value
This method returns an iterator that accesses the keys belonging to the group in descending order based on their ASCII
code values.

(d) Exceptions
• EADsStoreException (unexpected error)

(e) Notes
Depending on the timing, the value associated with a key obtained by the iterator might have been deleted.

(14) descendingKeyIterator()

(a) Description
This method acquires an iterator that accesses the keys belonging to the specified group in descending order based on
their ASCII code values.

The start position of the iterator is the key immediately following a specified key in descending order based on its ASCII
code value of all the keys that belong to the group.

(b) Format

public java.util.Iterator<Key> descendingKeyIterator(Key previousKey)
 throws EADsStoreException

(c) Parameters

previousKey
Specifies the immediately preceding key that indicates the start position of the iterator.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Key interface is invalid.

(d) Return value
This method returns an iterator that accesses the keys belonging to the specified group in descending order based on
their ASCII code values.

(e) Exceptions
• UserOperationException (illegal user operation)

• EADsStoreException (unexpected error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 550

(f) Notes
Depending on the timing, the value associated with a key obtained by the iterator might have been deleted.

(15) [Deprecated] higherKeyIterator()

Reference note
This method is deprecated. Instead, use keyIterator() (Key interface specification).

(a) Description
This method acquires an iterator that accesses the keys belonging to the specified group in ascending order based on
their ASCII code values.

The start position of the iterator is the key that immediately follows a specified key in ascending order based on its
ASCII code value.

(b) Format

public java.util.Iterator<Key> higherKeyIterator(java.lang.String key)
 throws EADsStoreException

(c) Parameters

key
Specifies a key.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

(d) Return value
This method returns an iterator that accesses the keys belonging to the group in ascending order based on their ASCII
code values.

(e) Exceptions
• UserOperationException (illegal user operation)

• EADsStoreException (unexpected error)

(f) Notes
Depending on the timing, the value associated with a key obtained by the iterator might have been deleted.

(16) [Deprecated] lowerDescendingKeyIterator()

Reference note
This method is deprecated. Instead, use descendingKeyIterator() (Key interface specification).

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 551

(a) Description
This method acquires an iterator that accesses the keys belonging to the specified group in descending order based on
their ASCII code values.

The start position of the iterator is the key that immediately follows a specified key in descending order based on its
ASCII code value.

(b) Format

public java.util.Iterator<Key> lowerDescendingKeyIterator(java.lang.String
key)
 throws EADsStoreException

(c) Parameters

key
Specifies a key.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

(d) Return value
This method returns an iterator that accesses the keys belonging to the group in descending order based on their ASCII
code values.

(e) Exceptions
• UserOperationException (illegal user operation)

• EADsStoreException (unexpected error)

(f) Notes
Depending on the timing, the value associated with a key obtained by the iterator might have been deleted.

(17) [Deprecated] put() (character string specification)

Reference note
This method is deprecated. Instead, use put() of the Store interface.

(a) Description
This method associates a value with a key, and then stores it.

If a problem occurs when the value is stored, the method returns EADsStoreException.

(b) Format

public void put(java.lang.String key,
 java.lang.Object value)
 throws EADsStoreException

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 552

(c) Parameters

key
Specifies a key to be associated with the value.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

value
Specifies the value to be stored.
For details about the data types that can be specified, see 15.2.2(3) Data types that can be specified as values.

(d) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(18) [Deprecated] put() (Key interface specification)

Reference note
This method is deprecated. Instead, use put() of the Store interface.

(a) Description
This method associates a value with a key, and then stores it.

If a problem occurs when the value is stored, the method returns EADsStoreException.

(b) Format

public void put(Key key,
 java.lang.Object value)
 throws EADsStoreException

(c) Parameters

key
Specifies a key of the Key interface that is to be associated with the value.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Key interface is invalid.

value
Specifies the value to be stored.
For details about the data types that can be specified, see 15.2.2(3) Data types that can be specified as values.

(d) Exceptions
• UserOperationException (illegal user operation)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 553

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(19) [Deprecated] create()

Reference note
This method is deprecated. Instead, use create() of the Store interface.

(a) Description
This method associates a value with a key, and then stores it only if a new key is stored.

If a problem occurs when the value is stored, the method returns EADsStoreException.

(b) Format

public void create(java.lang.String key,
 java.lang.Object value)
 throws EADsStoreException

(c) Parameters

key
Specifies a key to be associated with the value.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

value
Specifies the value to be stored.
For details about the data types that can be specified, see 15.2.2(3) Data types that can be specified as values.

(d) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(20) [Deprecated] update() (character string specification)

Reference note
This method is deprecated. Instead, use update() of the Store interface.

(a) Description
This method associates a value with a key, and then stores it only if a specified key has already been stored (updates the
value).

If a problem occurs when the value is stored, the method returns EADsStoreException.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 554

(b) Format

public void update(java.lang.String key,
 java.lang.Object value)
 throws EADsStoreException

(c) Parameters

key
Specifies a key to be associated with the value.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

value
Specifies the value to be stored.
For details about the data types that can be specified, see 15.2.2(3) Data types that can be specified as values.

(d) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(21) [Deprecated] update() (Key interface specification)

Reference note
This method is deprecated. Instead, use update() of the Store interface.

(a) Description
This method associates a value with a key, and then stores it only if a specified key has already been stored (updates the
value).

If a problem occurs when the value is stored, the method returns EADsStoreException.

(b) Format

public void update(Key key,
 java.lang.Object value)
 throws EADsStoreException

(c) Parameters

key
Specifies a key of the Key interface that is to be associated with the value.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Key interface is invalid.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 555

value
Specifies the value to be stored.
For details about the data types that can be specified, see 15.2.2(3) Data types that can be specified as values.

(d) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(22) [Deprecated] replace() (character string specification)

Reference note
This method is deprecated. Instead, use replace() of the Store interface.

(a) Description
This method compares the value associated with a specified key with a value (comparativeValue) specified as a
condition. Only if the values match, this method associates the value with the key, and then stores it (replaces the value).

If a problem occurs when the value is replaced, the method returns EADsStoreException.

(b) Format

public void replace(java.lang.String key,
 java.lang.Object value,
 java.lang.Object comparativeValue)
 throws EADsStoreException

(c) Parameters

key
Specifies a key that is associated with the value to be replaced.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

value
Specifies the value to be stored.
For details about the data types that can be specified, see 15.2.2(3) Data types that can be specified as values.

comparativeValue
Specifies the value to be compared.
For details about the data types that can be specified, see 15.2.2(3) Data types that can be specified as values.

(d) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 556

(23) [Deprecated] replace() (Key interface specification)

Reference note
This method is deprecated. Instead, use replace() of the Store interface.

(a) Description
This method compares the value associated with a specified key with a value (comparativeValue) specified as a
condition. Only if the values match, this method associates the value with the key, and then stores it (replaces the value).

If a problem occurs when the value is replaced, the method returns EADsStoreException.

(b) Format

public void replace(Key key,
 java.lang.Object value,
 java.lang.Object comparativeValue)
 throws EADsStoreException

(c) Parameters

key
Specifies a key of the Key interface that is associated with the value to be replaced.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Key interface is invalid.

value
Specifies the value to be stored.
For details about the data types that can be specified, see 15.2.2(3) Data types that can be specified as values.

comparativeValue
Specifies the value to be compared.
For details about the data types that can be specified, see 15.2.2(3) Data types that can be specified as values.

(d) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(24) [Deprecated] get() (character string specification)

Reference note
This method is deprecated. Instead, use get() of the Store interface.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 557

(a) Description
This method acquires the value associated with a specified key.

If a problem occurs when the value is acquired, the method returns EADsStoreException.

(b) Format

public java.lang.Object get(java.lang.String key)
 throws EADsStoreException

(c) Parameters

key
Specifies a key that is associated with the value to be acquired.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

(d) Return value
This method returns the value associated with the key.

If nothing is associated with the specified key, it returns null.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(25) [Deprecated] get() (Key interface specification)

Reference note
This method is deprecated. Instead, use get() of the Store interface.

(a) Description
This method acquires the value associated with a specified key.

If a problem occurs when the value is acquired, the method returns EADsStoreException.

(b) Format

public java.lang.Object get(Key key)
 throws EADsStoreException

(c) Parameters

key
Specifies a key of the Key interface that is associated with the value to be acquired.
This parameter is invalid in the following cases:

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 558

• null is specified.

• The specified object of the Key interface is invalid.

(d) Return value
This method returns the value associated with the key.

If nothing is associated with the specified key, it returns null.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(26) [Deprecated] remove() (character string specification)

Reference note
This method is deprecated. Instead, use remove() of the Store interface.

(a) Description
This method deletes a specified key and the value associated with that key.

If a problem occurs when the value is deleted, the method returns EADsStoreException.

(b) Format

public void remove(java.lang.String key)
 throws EADsStoreException

(c) Parameters

key
Specifies a key that is associated with the value to be deleted.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

(d) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 559

(27) [Deprecated] remove() (Key interface specification)

Reference note
This method is deprecated. Instead, use remove() of the Store interface.

(a) Description
This method deletes a specified key and the value associated with that key.

If a problem occurs when the value is deleted, the method returns EADsStoreException.

(b) Format

public void remove(Key key)
 throws EADsStoreException

(c) Parameters

key
Specifies a key of the Key interface that is associated with the value to be deleted.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Key interface is invalid.

(d) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(28) [Deprecated] getLastUpdateTime() (character string specification)

Reference note
This method is deprecated. Instead, use getLastUpdateTime() of the Store interface.

(a) Description
This method acquires the last update time of the value associated with a specified key.

(b) Format

public long getLastUpdateTime(String key)
 throws EADsStoreException

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 560

(c) Parameters

key
Specifies a key.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

(d) Return value
This method returns the last data update time (absolute time in milliseconds from 1970-01-01 at 00:00:00).

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(29) [Deprecated] getLastUpdateTime() (Key interface specification)

Reference note
This method is deprecated. Instead, use getLastUpdateTime() of the Store interface.

(a) Description
This method acquires the last update time of the value associated with a specified key.

(b) Format

public long getLastUpdateTime(Key key)
 throws EADsStoreException

(c) Parameters

key
Specifies a key of the Key interface that is associated with the value.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Key interface is invalid.

(d) Return value
This method returns the last data update time (absolute time in milliseconds from 1970-01-01 at 00:00:00).

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 561

(30) getKeyCount()

(a) Description
This method acquires the number of keys that belong to this group.

(b) Format

public int getKeyCount()
 throws EADsStoreException

(c) Return value
This method returns the number of keys that belong to this group.

(d) Exceptions
• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(31) getGroupCount()

(a) Description
This method acquires the number of groups in the hierarchy immediately below this group.

(b) Format

public int getGroupCount()
 throws EADsStoreException

(c) Return value
This method returns the number of groups in the hierarchy immediately below this group.

(d) Exceptions
• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(32) getGroupNames()

(a) Description
This method acquires a list of group names in the hierarchy immediately below this group.

The group names are listed in ascending order based on their ASCII code values.

(b) Format

public String[] getGroupNames()
 throws EADsStoreException

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 562

(c) Return value
This method returns a list of group names in the hierarchy immediately below this group.

(d) Exceptions
• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(33) getGroupLayerNames()

(a) Description
This method acquires a list of group hierarchy names in the hierarchy immediately below this group.

The group hierarchy names are listed in ascending order based on their ASCII code values.

(b) Format

public String[] getGroupLayerNames()
 throws EADsStoreException

(c) Return value
This method returns a list of group hierarchy names in the hierarchy immediately below this group.

(d) Exceptions
• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(34) [Deprecated] getGroupNameSet()

Reference note
This method is deprecated. Instead, use getGroupNames() of the Group interface.

(a) Description
This method acquires a list of group names in ascending order based on their ASCII code values.

(b) Format

public java.util.Set<String> getGroupNameSet()
 throws EADsStoreException

(c) Return value
This method returns a list of group names in the hierarchy immediately below (in ascending order based on their ASCII
code values).

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 563

(d) Exceptions
• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(35) [Deprecated] getValueUsageSize() (character string specification)

Reference note
This method is deprecated. Instead, use getEHeapUsageSize() (Key interface specification) of the
Store interface.

(a) Description
This method acquires the size of the memory usage for the value associated with a specified key.

(b) Format

public long getValueUsageSize(String key)
 throws EADsStoreException

(c) Parameters

key
Specifies a key.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

(d) Return value
This method returns the size of the memory usage (bytes) for the value associated with the specified key.

If the cache does not store values, the method returns 0.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(36) [Deprecated] getValueUsageSize() (Key interface specification)

Reference note
This method is deprecated. Instead, use getEHeapUsageSize() (Key interface specification) of the
Store interface.

(a) Description
This method acquires the size of the memory usage for the value associated with a specified key.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 564

(b) Format

public long getValueUsageSize(Key key)
 throws EADsStoreException

(c) Parameters

key
Specifies a key of the Key interface that is associated with the value.
This parameter is invalid in the following cases:

• null is specified.

• The specified object of the Key interface is invalid.

(d) Return value
This method returns the size of the memory usage (bytes) for the value associated with the specified key.

If the cache does not store values, the method returns 0.

(e) Exceptions
• UserOperationException (illegal user operation)

• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

(37) [Deprecated] getValueUsageSize()

Reference note
This method is deprecated. Instead, use getEHeapUsageSize() (Group interface specification) of the
Store interface.

(a) Description
This method acquires the total size of the memory usage for all values belonging to the group including the groups in
the lower hierarchies.

(b) Format

public long getValueUsageSize()
 throws EADsStoreException

(c) Return value
This method returns the total size (bytes) of the memory usage for all values belonging to the group.

If the cache does not store values, the method returns 0.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 565

(d) Exceptions
• InternalServerException (EADS server internal error)

• EADsStoreException (unexpected error)

18.2.10 Key interface

(1) Description
This interface represents keys in the API methods that can be used in user functions.

(2) Interface name

com.hitachi.software.xeads.func.store.Key

(3) List of methods
The following table lists and describes the methods provided by the Key interface:

Method name Description

toString() Acquires a key.

equals() Evaluates whether a specified object is a Key instance indicating this key.

getPosition() Acquires the position (hash value) corresponding to this key.

(4) toString()

(a) Description
This method acquires a key.

(b) Format

public String toString()

(c) Return value
This method returns a key.

(5) equals()

(a) Description
This method evaluates whether a specified object is a Key instance indicating this key.

(b) Format

public boolean equals(Object obj)

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 566

(c) Parameters

obj
Specifies the object to be compared.

(d) Return value

true
The specified object is a Key instance indicating this key.

false
The specified object is not a Key instance indicating this key.

(6) getPosition()

(a) Description
This method acquires the position (hash value) corresponding this key.

(b) Format

public int getPosition()
 throws EADsStoreException

(c) Return value
This method returns the position (hash value) corresponding to this key.

(d) Exceptions
• UserOperationException (illegal user operation)

• EADsStoreException (unexpected error)

18.2.11 Value interface

(1) Description
This interface represents values that are associated with keys and stored in the API methods that can be used in user
functions.

(2) Interface name

com.hitachi.software.xeads.func.store.Value

(3) List of methods
The following table lists and describes the methods provided by the Value interface:

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 567

Method name Description

toString() Acquires a value of the String type.

equals() Evaluates whether a specified object is a Value instance for this value.

getObject() Acquires a value of the Object type.

size() Acquires the size of the serialized value, which is in the internal format when a value is stored in a
cache.

(4) toString()

(a) Description
This method acquires a value of the String type.

This is the same character string as toString() of the Object class for the value of the Object type that is acquired
by getObject()of the Value interface.

(b) Format

public String toString()

(c) Return value
This method returns a value of the String type.

(d) Notes
If getObject()of the Value interface fails due to a deserialization error, the method returns the same value as
toString() of the Object class of the Value instance.

(5) equals()

(a) Description
This method evaluates whether a specified object is a Value instance for this value.

(b) Format

public boolean equals(Object obj)

(c) Parameters

obj
Specifies the object to be compared.

(d) Return value

true
The specified object is a Value instance for this value.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 568

false
The specified object is not a Value instance for the same value.

(e) Notes
The method determines that the objects are the same if their byte arrays obtained after serialization are the same.

(6) getObject()

(a) Description
This method acquires a value of the Object type.

(b) Format

public Object getObject()
 throws EADsStoreException

(c) Return value
This method returns a value of the Object type.

(d) Exceptions
• UserOperationException (illegal user operation)

• EADsStoreException (unexpected error)

(7) size()

(a) Description
This method acquires the size of the serialized value, which is in the internal format when a value is stored in a cache.

(b) Format

public int size()

(c) Return value
This method returns the size (in bytes) of the serialized value, which is in the internal format when a value is stored in
a cache.

(d) Notes
This method returns the size of only the area that is used by the value when the value is stored.

Because other data might also be using this area when the value is stored, you can use the following API methods if
you want to determine the size of the overall area in which the value is stored:

• calcEHeapUsageSize() of the Store interface

• calcDiskUsageSize() of the Store interface

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 569

18.2.12 UserLogger interface

(1) Description
This interface is for user logs.

(2) Interface name

com.hitachi.software.xeads.common.UserLogger

(3) List of methods
The following table lists and describes the methods provided by the UserLogger interface:

Method name Description

log() (format 1) Outputs a message ID and a message text.

log() (format 2) Outputs only a message text.

putStackTrace() (format 1) Outputs a message ID and a stack trace.

putStackTrace() (format 2) Outputs only a stack trace.

(4) log() (format 1)

(a) Description
This method outputs a message ID and a message text.

(b) Format

public void log(java.lang.String messageID,
 java.lang.String message)

(c) Parameters

messageID
Specifies a message ID.
A maximum of 21 single-byte characters can be specified.
Do not specify double-byte characters or control characters, because these characters might corrupt the format.
If null is specified, the null character string is output.

message
Specifies a message text.
Do not specify control characters, because they might corrupt the format.
If null is specified, the null character string is output.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 570

(5) log() (format 2)

(a) Description
This method outputs only a message text. The method outputs the null character string for the message ID.

(b) Format

public void log(java.lang.String message)

(c) Parameters

message
Specifies a message text.
Do not specify control characters, because they might corrupt the format.
If null is specified, the null character string is output.

(6) putStackTrace() (format 1)

(a) Description
This method outputs a message ID and a stack trace.

The method outputs a detailed message and cause of a specified exception.

(b) Format

public void putStackTrace(java.lang.String messageID,
 Throwable cause)

(c) Parameters

messageID
Specifies a message ID.
A maximum of 21 single-byte characters can be specified.
Do not specify double-byte characters or control characters, because these characters might corrupt the format.
If null is specified, the null character string is output.

cause
Specifies an exception object.
If null is specified, the null character string is output.

(7) putStackTrace() (format 2)

(a) Description
This method outputs only a stack trace. The method outputs the null character string for a message ID.

The method outputs a detailed message and cause of a specified exception.

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 571

(b) Format

public void putStackTrace(Throwable cause)

(c) Parameters

cause
Specifies an exception object.
If null is specified, the null character string is output.

18.2.13 EADsStoreException class

(1) Description
This exception class is returned when processing related to a data operation fails.

Use getErrorCode() to obtain an error code to determine the nature of the error.

(2) Inheritance relationship

java.lang.Object
java.lang.Throwable

 java.lang.Exception
 com.hitachi.software.xeads.func.store.EADsStoreException

(3) Format

public class EADsStoreException
extends Exception

(4) List of methods
The following table lists and describes the methods provided by the EADsStoreException class:

Method name Description

getErrorCode() Acquires an error code for an exception that has occurred.

(5) getErrorCode()

(a) Description
This method acquires an error code for an exception that has occurred.

(b) Format

public int getErrorCode()

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 572

(c) Return value
This method returns an error code as a return value. The following table lists the error codes and describes the nature
and cause of the errors:

Error
code

Error code literal Exception class Nature of error Cause of error Processing
status of data
updating API
method#

1000 EAD_ERROR_UNEX
PECTED

EADsStoreExc
eption

An unexpected error
occurred.

An unexpected error occurred
within the program.

U

1010 EAD_ERROR_INVA
LID_PARAMETER

UserOperatio
nException

A specified parameter is
invalid.

An invalid parameter was
specified in the API method
argument.

N

1050 EAD_ERROR_NOT_
SERIALIZABLE

UserOperatio
nException

The serialization
processing failed.

An object that cannot be serialized
is specified in the API method
argument.

N

1060 EAD_ERROR_NOT_
DESERIALIZABLE

UserOperatio
nException

The deserialization
processing failed.

The object acquired from the
EADS server could not be
deserialized.
Possible causes are as follows:
• The Class-Path attribute of

the jar file manifest does not
contain the path of the jar file
containing the object needed
for deserialization.

• The jar file containing the
object needed for
deserialization is not located
under the management-
directory/app/lib
directory.

--

1130 EAD_ERROR_CACH
E_NOT_CREATED

UserOperatio
nException

No cache with the
specified cache name has
been created.

No cache with the specified cache
name has been created.

--

1140 EAD_ERROR_CACH
E_SETTING

UserOperatio
nException

An API method that is not
supported with the current
cache settings was
executed.

The executed API method
attempted to acquire unavailable
information from the cache.

--

4000 EAD_ERROR_SERV
ER

InternalServ
erException

An internal error that
cannot be classified by the
EADS server occurred.

An internal error occurred on the
EADS server.
Normally, this error code is not
returned. It is returned when the
details about the cause of the error
cannot be obtained for one of the
following reasons:
• A deprecated earlier version of

the API method was used.
• The EADS server's internal

error could not be classified
due to an unexpected problem.

U

4060 EAD_ERROR_SERV
ER_REPLACE_MET
HOD_NOT_MATCHE
D

InternalServ
erException

The value could not be
stored because the value
stored during execution of
replace()did not

The value specified in the
condition in replace() did not
match a value in the cache.

N

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 573

Error
code

Error code literal Exception class Nature of error Cause of error Processing
status of data
updating API
method#

match
comparativeValue.

4070 EAD_ERROR_SERV
ER_REPLACE_MET
HOD_KEY_NOT_EX
IST

InternalServ
erException

replace() was
executed, but the value
could not be stored
because the specified key
did not exist (the value
associated with the key did
not exist).

Values could not be compared
because the value associated with
the key specified in replace()
did not exist.

N

4080 EAD_ERROR_SERV
ER_CREATE_METH
OD_KEY_EXIST

InternalServ
erException

create() was executed,
but the value could not be
stored because the key had
already been stored.

The value associated with the key
specified in create() has
already been stored.

N

4090 EAD_ERROR_SERV
ER_UPDATE_METH
OD_KEY_NOT_EXI
ST

InternalServ
erException

update() was executed,
but the value could not be
stored because the stored
key did not exist.

The value associated with the key
specified in update() has not
been stored.

N

4200 EAD_ERROR_SERV
ER_CACHE

InternalServ
erException

A cache operation failed. A cache operation was disabled
because a problem occurred on the
EADS server that is executing the
user function. Stop the operation
and check the EADS server's
status.

N

4220 EAD_ERROR_SERV
ER_CACHE_CLUST
ER_NOT_AVAILAB
LE

InternalServ
erException

A cache operation failed
because the cluster is not
available.

A cache operation was disabled
because the cluster was not
available due to a problem on
another EADS server or a network
failure. Stop the operation and
check the status of all EADS
servers that make up the cluster.

N

4300 EAD_ERROR_SERV
ER_CACHE_BEFOR
E_REPLICATION

InternalServ
erException

An internal error occurred
during a cache operation,
but redundant copies of
data had not been created.

During a cache operation, an
internal error occurred on the
EADS server that was executing
the user function. No other normal
EADS servers are affected because
redundant copies of data had not
been created. After the EADS
server is isolated, you can restart
the same operation on a normal
EADS server.

N

4310 EAD_ERROR_SERV
ER_CACHE_AFTER
_REPLICATION

InternalServ
erException

An internal error occurred
on the EADS server during
a cache operation and the
data update operation
failed.

During a cache operation, an
internal error occurred on the
EADS server that was executing
the user function. Because
redundant copies of data have
already been created, after the
erroneous EADS server is isolated,
you can resume the operation on a
normal server from the status in
which data had been updated.

U

4800 EAD_ERROR_SERV
ER_LIMIT_EXTER
NAL_MEMORY

InternalServ
erException

There is a shortage of
memory for storing data.

The processing could not be
performed because the memory for

N

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 574

Error
code

Error code literal Exception class Nature of error Cause of error Processing
status of data
updating API
method#

storing data (explicit heap) was
insufficient.

4810 EAD_ERROR_SERV
ER_LIMIT_CACHE
_FILE

InternalServ
erException

There is a shortage of
capacity in the cache files
for storing data.

The request could not be processed
because the capacity of cache files
for storing data was insufficient.

N

4820 EAD_ERROR_SERV
ER_LIMIT_KV_CO
UNT

InternalServ
erException

The number of keys that
can be stored has reached
the upper limit.

The processing could not be
performed because the number of
keys that can be stored had reached
the upper limit.

N

4830 EAD_ERROR_SERV
ER_LIMIT_KEY_V
ALUE_LENGTH

InternalServ
erException

The size of the specified
key, group name, or value
is greater than the
maximum size permitted
in the cluster.

The processing could not be
performed because the size of the
specified key, group name, or
value was greater than the
maximum size permitted in the
cluster.

N

#
Indicates whether data updating had occurred when an error code was issued during execution of an API method
for updating data, such as put() or remove().
The meanings of the letters in this column are as follows:
U: Whether the data was updated is unknown. Check whether the processing was completed.
N: The data has not been updated.
--: This error code is not issued when an API method for updating data, such as put() or remove(), is executed.

(d) Notes
If a deprecated API method is used, the error code might not be classified in detail.

18.2.14 InternalServerException class

(1) Description
This is a subclass of EADsStoreException that is returned when an internal error occurs on the EADS server.

(2) Inheritance relationship

java.lang.Object
java.lang.Throwable

 java.lang.Exception
 com.hitachi.software.xeads.func.store.EADsStoreException
 com.hitachi.software.xeads.func.store.InternalServerException

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 575

(3) Format

public class InternalServerException
extends EADsStoreException

18.2.15 UserOperationException class

(1) Description
This is a subclass of EADsStoreException that is returned when an error occurs due to an illegal user operation.

(2) Inheritance relationship

java.lang.Object
java.lang.Throwable

 java.lang.Exception
 com.hitachi.software.xeads.func.store.EADsStoreException
 com.hitachi.software.xeads.func.store.UserOperationException

(3) Format

public class UserOperationException
extends EADsStoreException

18.2.16 Enumeration CacheType

(1) Description
This enumeration represents the cache types. For details about the cache types, see 2.3.1 Cache types.

(2) Enumeration name

com.hitachi.software.xeads.common.CacheType

(3) Format

public enum CacheType {
MEMORY,
DISK,
TWOWAY
}

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 576

(4) Enumeration literals
Literal Description

MEMORY Memory cache

DISK Disk cache

TWOWAY Two-way cache

18. Application Programming Interface Reference (Java)

Hitachi Elastic Application Data Store 577

19 Creating a Client Application Program (in C)

This chapter explains how to create a client application program using C.

Hitachi Elastic Application Data Store 578

19.1 Creating a source program (in C)

This section describes and illustrates, with reference to a sample source program, the flow of cache access and data
operations.

19.1.1 Flow of cache access and data operations
The following diagram shows the flow of cache access and data operations.

(1) Example of a source program in C
The following shows an example of a source program in C (to store a key and value):

#include <stdio.h>
#include <string.h>

#include <eads.h>

int main(int argc, char **argv) {
 int ret = 0;
 int error_code = 0;
 char CONFPATH[] = "./conf/eads_sample_client.properties";
 char CACHENAME[] = "cache1";
 char KEY[] = "key1";
 char VALUE[] = "value1";
 EAD_CACHE_MANAGER* cmp = NULL;
 EAD_CACHE *cp = NULL;
 ead_value_element value_element;

 value_element.value = (void *)VALUE;
 value_element.value_size = strlen(VALUE) + 1;

19. Creating a Client Application Program (in C)

Hitachi Elastic Application Data Store 579

 /* Initialize EADS client */
 cmp = ead_init_client(CONFPATH, &error_code);
 printf("ead_init_client() done. (error_code = %d)\n", error_code);
 if (error_code != EAD_OK) {
 return 1;
 }

 /* Start access to the cache */
 cp = ead_start_cache(cmp, CACHENAME, &error_code);
 printf("ead_start_cache() done. (error_code = %d)\n", error_code);
 if (error_code != EAD_OK) {
 /* Need to terminate EADS client */
 goto ERR;
 }

 /* Store key and value */
 ead_put(cp, KEY, &value_element, &error_code);
 printf("ead_put() done. (error_code = %d)\n", error_code);
 if (error_code != EAD_OK) {
 /* Need to terminate EADS client */
 goto ERR;
 }

 /* Stop access to the cache */
 ead_stop_cache(cp, &error_code);
 cp = NULL;
 printf("ead_stop_cache() done. (error_code = %d)\n", error_code);
 if (error_code != EAD_OK) {
 /* Need to terminate EADS client */
 goto ERR;
 }

 /* Terminate EADS client */
 ead_terminate_client(cmp, &error_code);
 cmp = NULL;
 printf("ead_terminate_client() done. (error_code = %d)\n", error_code);
 if (error_code != EAD_OK) {
 /* Need to terminate EADS client */
 goto ERR;
 }

 return 0;

ERR:
 if(cp != NULL) {
 /* Stop access to the cache */
 ead_stop_cache(cp, &error_code);
 cp = NULL;
 printf("ead_stop_cache() done. (error_code = %d)\n", error_code);
 }

 if(cmp != NULL) {
 /* Terminate EADS client */
 ead_terminate_client(cmp, &error_code);
 cmp = NULL;
 printf("ead_terminate_client() done. (error_code = %d)\n",
error_code);

19. Creating a Client Application Program (in C)

Hitachi Elastic Application Data Store 580

 }

 return 1;
}

(2) Initializing the EADS client
To initialize an EADS client, use ead_init_client() or ead_init_client_n() and obtain a handle (pointer)
to the cache manager for managing the cache.

Some settings are specified in the client properties, such as the connection-target EADS server.

If you want to use multiple cache managers with different settings, such as when connection is established with multiple
clusters, edit the client properties and then execute ead_init_client() or ead_init_client_n() multiple
times. To terminate the EADS client when you have executed ead_init_client() or ead_init_client_n()
multiple times, execute ead_terminate_client() on each of the acquired handles to the cache manager.

(3) Starting access to the cache
After initialization of the EADS client is complete, start access to the cache.

To start access to the cache, use ead_start_cache() to obtain the handle (pointer) for controlling access to the
cache. Using this handle will allow you to gain access to the cache.

(4) Storing keys and values
Use ead_put() to store a key and value in the cache.

In ead_put(), specify the handle to the cache obtained from ead_start_cache(). In addition, specify the key
and value information (the value and its size) to be stored in the cache. The value information is provided as an
ead_value_element structure.

(5) Retrieving values
Use ead_get() to retrieve values from the cache.

In ead_get(), specify the handle to the cache obtained from ead_start_cache(). In addition, specify the key
associated with the value you want to retrieve.

If the value is successfully retrieved by ead_get(), the value information associated with the key is returned as an
ead_value_element structure.

Note that the memory area that is returned as the return value is not automatically freed. For details about freeing this
memory, see (10) Freeing a memory area returned as a return value.

The following is an example of source code for retrieving a value.

Example of source code (for retrieving a value)

{
 /* Retrieve a value */
 ead_value_element ret_value;
 char KEY[] = "key1";
 ret_value = ead_get(cp, KEY, &error_code);

19. Creating a Client Application Program (in C)

Hitachi Elastic Application Data Store 581

 printf("ead_get() done. (error_code = %d)\n", error_code);
 if (error_code != EAD_OK) {
 /* Need to terminate EADS client */
 goto ERR;
 }
 /* Free the retrieved value when done using it */
 freeValue(&ret_value);
}

(6) Removing keys and values
Use ead_remove() to remove a specified key from the cache, as well as the value associated with that key.

In ead_remove(), specify the handle to the cache obtained from ead_start_cache(). In addition, specify the
key associated with the value you want to remove.

(7) Executing user functions

(a) Execution method specifying a key or a group
Use ead_execute_function() to execute a user function by specifying a key or a group.

In ead_execute_function(), specify the handle to the cache acquired by ead_start_cache().

In addition, specify the name of the key or group to execute a user function and the name of the user function to be
executed.

In addition, specify the user function arguments as an ead_object structure.

When the user function is executed by ead_execute_function(), the execution result of the user function is
returned as an ead_object structure.

(b) Execution method specifying an EADS server
To execute a user function with an EADS server specified, use ead_execute_node_function().

In ead_execute_node_function(), specify the handle to the cache obtained from ead_start_cache().

Specify the EADS server that will be executing the user function as an ead_node structure and the arguments to be
specified in the user function as an ead_object structure.

Also, specify the name of the user function to be executed.

When the user function is executed by ead_execute_node_function(), the user function execution results are
returned as an ead_object structure.

(8) Stopping access to the cache
Use ead_stop_cache() to stop access to the cache.

In ead_stop_cache(), specify the handle to the cache obtained from ead_start_cache().

19. Creating a Client Application Program (in C)

Hitachi Elastic Application Data Store 582

(9) Terminating the EADS client
Use ead_terminate_client() to terminate the EADS client.

Specify in ead_terminate_client() the handle to the cache manager that was acquired by
ead_init_client() or ead_init_client_n().

(10) Freeing a memory area returned as a return value
The memory area that is returned as the return value of ead_get() is not freed automatically. Instead, you must define
in the application program a function such as the one below to free the memory.

/* Freeing a memory area returned as a return value */
void freeValue(ead_value_element *value) {
 if (value->value != NULL) {
 free(value->value);
 value->value = NULL;
 }
 value->value_size = 0;
}

The table below lists the functions for which memory area returned as a return value must be freed by the application
program. If a return value to be released is not NULL, free the memory area for the functions listed in this table when
the return value is no longer needed.

Table 19‒1: Functions whose memory area is to be freed when the return value is released

No. Function name Return value to be released

1 ead_get_cache_name() char-type pointer returned as a cache name

2 ead_put_all() failure_info member of the ead_put_all_results structure

3 ead_get() value member of the ead_value_element structure

4 ead_get_group() The following members of the ead_get_group_results structure:
• key_value_array member
• key member of the ead_key_value_pair structure in the
key_value_array member

• value member of the ead_value_element structure within the
ead_key_value_pair structure in the key_value_array member

5 ead_get_all() The following members of the ead_get_all_results structure:
• values member
• value member of the ead_value_element structure in the values

member
• failure_info member

6 ead_remove_all() failure_info member of the ead_remove_all_results structure

7 ead_get_group_names() group_names member of the ead_group_names structure

8 ead_get_group_keys() keys member of the ead_keys structure

9 ead_get_node_keys()

10 ead_get_group_first_key() char-type pointer returned as a key

11 ead_get_node_first_key()

19. Creating a Client Application Program (in C)

Hitachi Elastic Application Data Store 583

No. Function name Return value to be released

12 ead_get_group_next_key()

13 ead_get_node_next_key()

14 ead_execute_function() object member of the ead_object structure that is returned as user
function execution results

15 ead_execute_function_rt()

16 ead_execute_node_function()

17 ead_execute_node_function_rt()

18 ead_get_nodelist() nodes member of the ead_nodelist structure

19 ead_get_slave_nodelist()

19. Creating a Client Application Program (in C)

Hitachi Elastic Application Data Store 584

19.2 Notes on creating client application programs (in C)

This section provides some points to keep in mind when creating client application programs.

19.2.1 Notes on initializing EADS clients
The following notes apply to initializing an EADS client:

• If you execute multiple EADS clients concurrently on the same machine, specify a different log output destination
for each EADS client. If you specify the same log output destination, operation is not guaranteed. For details about
specifying the log output destination, see 8.4.2 Specifying the file output destinations.

• If a null character string is specified as the EADS client name in ead_init_client_n(), the processing is the
same as for ead_init_client(). For details about the relationship between the EADS client name and the log
output destination, see 8.4.2 Specifying the file output destinations.

• To change a client property, perform the following steps:

1. Terminate the EADS client with ead_terminate_client().

2. Update the client property file.

3. Reinitialize the EADS client with ead_init_client() or ead_init_client_n().

19.2.2 Notes on starting access to the cache
The following notes apply to starting access to the cache:

• Execute ead_start_cache() to start access to the cache. Execute ead_start_cache() as the counterpart
to ead_stop_cache().

• For the cache name, specify the name you created previously using the command eztool createcache.

• If there is no cache with that name, EAD_ERROR_NET_CLUSTERINFO is returned.

19.2.3 Notes on manipulating data

(1) Notes about manipulating data
The following notes apply to manipulating data:

• If the specified key is already stored in the cache, ead_put() simply overwrites its value. If you do not want the
value updated blindly in this way, use one of the following functions instead.

• ead_create()
Stores the value with the key only when a new key is stored.

• ead_update()
Stores the value with the specified key only if the key is already stored.

• ead_replace()

19. Creating a Client Application Program (in C)

Hitachi Elastic Application Data Store 585

Compares the value associated with the specified key to the value information specified in a comparison
condition, and stores the value with the key only if the values match.

• When you execute ead_get(), NULL is returned in the value member of the ead_value_element structure
in any of the following circumstances:

• The key does not exist in the cache.

• The value information could not be retrieved.

• The data size of the value is 0 bytes (it retrieves a byte array of length 0 that was stored using the Java language
API).

• When you execute a function such as ead_get(), the memory area that is returned as the return value is not freed
automatically. Instead, you must free it in the application program. For details, see 19.1.1(10) Freeing a memory
area returned as a return value.

• When you execute ead_replace(), if the specified key does not exist, it returns
EAD_ERROR_SERVER_REPLACE_METHOD_KEY_NOT_EXIST.

• When you execute ead_replace(), if the value associated with the specified key does not match the value
specified in the comparison condition, it returns EAD_ERROR_SERVER_REPLACE_METHOD_NOT_MATCHED.

• When you execute ead_create(), if the specified key already exists, it returns
EAD_ERROR_SERVER_CREATE_METHOD_KEY_EXIST.

• When you execute ead_update(), if the specified key does not exist, it returns
EAD_ERROR_SERVER_UPDATE_METHOD_KEY_NOT_EXIST.

(2) Notes about batch data operations
The following notes apply to batch data operations:

• If a specified key has already been stored in cache, ead_put_all() updates the value unconditionally.

• Because caches are not locked while operations are ongoing, a target value might be changed by another cache
operation during a batch operation.

• When batch operations are performed on a large amount of data, a large amount of memory might be required by
EADS clients and EADS servers.

• When batch operations are performed on a large amount of data, it might take a long time to complete the processing.
To ensure proper operation, make sure that you design a timeout value that is appropriate for the processing time.

• A memory area returned as a return value during processing, such as by execution of ead_put_all(), is not
freed automatically. The application program must free such a memory area. For details, see 19.1.1(10) Freeing a
memory area returned as a return value.

• If manipulation of a key fails or the cluster configuration is changed while batch operation with multiple keys
specified is underway, the batch operation will terminate and any operation that has not been performed at that point
will be cancelled. Similarly, when the cluster configuration is changed during batch operation by a user operation,
such as scale-out processing (adding EADS servers) or restoration processing, any operations that have not been
performed are cancelled.
Identify the key resulting in an error and determine the cause of the error from each function's return value. You can
identify a key whose manipulation was cancelled based on the error code of
EAD_ERROR_CLIENT_BATCH_CANCEL.

• When batch operation with multiple keys specified is performed and all key manipulations fail,
EAD_ERROR_BATCH_FAILED_ALL is returned.

19. Creating a Client Application Program (in C)

Hitachi Elastic Application Data Store 586

• When batch operation with multiple keys specified is performed but only some key manipulations fail,
EAD_ERROR_BATCH_FAILED_PART is returned.

19.2.4 Notes on stopping access to the cache
The following notes apply to stopping access to the cache:

• Execute ead_stop_cache() to stop access to the cache. Execute ead_stop_cache() as the counterpart to
ead_start_cache().

• Once you have stopped access to the cache using ead_stop_cache(), you must execute
ead_start_cache() if you want to regain access to the cache.

19.2.5 Notes on terminating the EADS client
The following notes apply to terminating the EADS client. Be sure to observe these notes. Failure to observe the notes
will cause a segmentation violation.

• Execute ead_terminate_client() after all of the API processing that uses the specified cache manager is
finished.

• Always make sure that you execute ead_terminate_client() to terminate the initialized EADS client.

19. Creating a Client Application Program (in C)

Hitachi Elastic Application Data Store 587

19.3 Compiling the source program (in C)

After you create a source program, you must compile it using the C compiler. Use the gcc command for the C compiler.
For details on the gcc command, see the documentation for the C compiler.

The following headers and libraries are required for compilation:

Include path (-I)
/opt/hitachi/xeads/cclient/include

Library path (-L)

• 32-bit version
/opt/hitachi/xeads/cclient/lib32

• 64-bit version
/opt/hitachi/xeads/cclient/lib64

Libraries (-l)

• 32-bit version
hcc-4.1.1
hntr2-eads-t

• 64-bit version
hccx64-4.1.1
hntr2-eads-te64

• 32-bit and 64-bit versions shared
eads

19. Creating a Client Application Program (in C)

Hitachi Elastic Application Data Store 588

20 API Reference (C)

This chapter explains the application programming interface (API) for C supported by EADS.

Hitachi Elastic Application Data Store 589

20.1 Functions provided by the C client library

The C client library provides an EADS API that consists of the functions shown in the table below. Source programs
written in the C can use these functions by including the header file provided by EADS.

Note that the functions available in the C client library (except ead_terminate_client()) are thread-safe.

Table 20‒1: Functions available in the C client library and their header file

No. Function name Description Header file

1 ead_init_client() Performs initial setup of the
EADS client according to the
client properties.

eads.h

2 ead_init_client_n() Initializes the EADS client
according to the EADS client
name and client properties.

3 ead_start_cache() Starts access to the cache and
obtains a handle (pointer) for
accessing the specified cache.

4 ead_stop_cache() Stops access to a specified
cache.

5 ead_get_cache_name() Acquires the cache name
associated with the handle to a
specified cache.

6 ead_terminate_client() Terminates the EADS client.

7 ead_put() Stores a value by associating it
with a key.

8 ead_put_array_value() Concatenates multiple values
and then stores the values by
associating them with keys.

9 ead_put_all() Using a batch operation, this
function stores multiple keys
and values in cache.

10 ead_create() Stores a value with a key only
when a new key is stored.

11 ead_update() Stores a value with the specified
key only if the key is already
stored (updates the value).

12 ead_replace() Compares the value associated
with a specified key to the value
information specified in a
comparison condition, and
stores the value with the key
only if the values match
(replaces the value).

13 ead_get() Retrieves the value associated
with a specified key.

14 ead_get_all() Using a batch operation, this
function acquires the values
associated with a specified list
of keys.

20. API Reference (C)

Hitachi Elastic Application Data Store 590

No. Function name Description Header file

15 ead_get_group() Using a batch operation, this
function acquires the values
associated with keys that belong
to a specified group and its
lower hierarchy groups.

16 ead_remove() Deletes a specified key and the
value associated with that key.

17 ead_remove_all() Using a batch operation, this
function deletes the values
associated with a specified list
of keys.

18 ead_remove_group() Using a batch operation, this
function deletes the keys and
values that belong to a specified
group, including the keys and
values that belong to lower
hierarchy groups.

19 ead_remove_node() Using a batch operation, this
function deletes keys and values
that were copied from a
specified EADS server.

20 ead_get_group_names() Acquires a list of the group
names of the groups in the
highest hierarchy that are stored
on a specified EADS server.
The group names are listed in
ascending order based on their
ASCII code values.

21 ead_get_group_keys() Acquires a list of keys that
belong to a specified group,
including keys that belong to
groups under the specified
group's hierarchy.
The keys are listed in ascending
order based on their ASCII code
values.

22 ead_get_node_keys() Acquires a list of keys stored on
a specified EADS server.
The keys are listed in ascending
order based on their ASCII code
values.

23 ead_get_group_count() Acquires the number of groups
in the highest hierarchy that are
stored on a specified EADS
server.

24 ead_get_group_key_count() Acquires the number of keys
that belong to a specified group.
The number of keys acquired
includes the keys that belong to
groups under the specified
group's hierarchy.

25 ead_get_node_key_count() Acquires the number of keys
that are stored on a specified
EADS server.

20. API Reference (C)

Hitachi Elastic Application Data Store 591

No. Function name Description Header file

26 ead_get_group_first_key() Acquires the first key in
ascending order based on its
ASCII code value from among
all the keys that belong to a
specified group. The keys that
belong to groups under the
specified group's hierarchy are
also subject to this acquisition
processing.

27 ead_get_node_first_key() Acquires the first key in
ascending order based on its
ASCII code value from among
all the keys stored on a specified
EADS server.

28 ead_get_group_next_key() Acquires the key that
immediately follows a specified
key in ascending order based on
its ASCII code value from
among all the keys that belong
to a specified group. The keys
that belong to the groups under
the specified group's hierarchy
are also subject to this
acquisition processing.

29 ead_get_node_next_key() Acquires the key that
immediately follows a specified
key in ascending order based on
its ASCII code value from
among all the keys that are
stored on a specified EADS
server.

30 ead_execute_function() Uses a specified key or group to
determine the EADS server on
which a user function is to be
executed and then executes that
user function.

31 ead_execute_function_rt() Uses a specified key or group to
determine the EADS server on
which a user function is to be
executed and then executes that
user function. This function also
sets a reception timeout value.

32 ead_execute_node_function() Executes a user function with an
EADS server specified.

33 ead_execute_node_function_rt() Executes a user function with an
EADS server specified and sets
a reception timeout value.

34 ead_get_nodelist() Acquires information about the
connection-target EADS
servers maintained by the
EADS client.

35 [Deprecated] ead_get_node() [Deprecated] Acquires
information about the original
source EADS server that stores
a specified key or group.

20. API Reference (C)

Hitachi Elastic Application Data Store 592

No. Function name Description Header file

36 ead_get_slave_nodelist() Acquires information about the
original target EADS servers to
which data stored on a specified
EADS server is copied.

37 ead_get_current_master_node() Acquires information about the
source EADS server that
currently stores a specified key
(or group).

38 ead_get_original_master_node() Acquires information about the
original source EADS server
that stores a specified key (or
group).

20.1.1 ead_init_client() (initializes the EADS client)

(1) Description
This function performs initial setup of the EADS client according to the client properties.

The EADS client name is treated as a null character string.

In addition, it obtains a handle (pointer) to the cache manager that manages the cache.

Each time ead_init_client() is executed, a thread for monitoring the cluster is generated. This thread is
terminated when ead_terminate_client() is executed.

(2) Format

#include <eads.h>
EAD_CACHE_MANAGER *ead_init_client
(
 const char *filename, /* In */
 int *error_code /* Out */
);

(3) Arguments
filename

Specifies the path of the client property file for the EADS client.
error_code

Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
If ead_init_client() terminates normally, it returns a handle (pointer) to the cache manager for managing the
cache.

20. API Reference (C)

Hitachi Elastic Application Data Store 593

If ead_init_client() terminates abnormally, it returns NULL.

(5) Notes
• If you execute multiple EADS clients concurrently on the same machine, specify a different log output destination

for each EADS client. If you specify the same log output destination, operation is not guaranteed. For details about
specifying the log output destination, see 8.4.2 Specifying the file output destinations.

• Always make sure that you execute ead_terminate_client() to terminate an initialized EADS client.

20.1.2 ead_init_client_n() (initializes the EADS client)

(1) Description
This function initializes the EADS client according to the EADS client name and client properties.

In addition, it obtains a handle (pointer) to the cache manager that manages the cache.

Each time ead_init_client_n() is executed, a thread for monitoring the cluster is generated. This thread is
terminated when ead_terminate_client() is executed.

(2) Format

#include <eads.h>
EAD_CACHE_MANAGER *ead_init_client_n
(
 const char *client_name, /* In */
 const char *file_name, /* In */
 int *error_code /* Out */
);

(3) Arguments
client_name

Specifies an EADS client name.
For details about the data that can be specified, see 15.2.2(5) Data that can be specified as EADS client names.
For the relationships between EADS client names and log file output destinations, see 8.4.2 Specifying the file output
destinations.

file_name
Specifies the path of the client property file for the EADS client.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
If ead_init_client_n() terminates normally, it returns a handle (pointer) to the cache manager that manages the
cache.

20. API Reference (C)

Hitachi Elastic Application Data Store 594

If ead_init_client_n() terminates abnormally, it returns NULL.

(5) Notes
• If you execute multiple EADS clients concurrently on the same machine, specify a different log output destination

for each EADS client. If you specify the same log output destination, valid operation is not guaranteed. For details
about specifying the log output destination, see 8.4.2 Specifying the file output destinations.

• Always make sure that you execute ead_terminate_client() to terminate an initialized EADS client.

20.1.3 ead_start_cache() (starts access to the cache)

(1) Description
This function starts access to the cache and obtains a handle (pointer) for accessing the specified cache.

(2) Format

#include <eads.h>
EAD_CACHE *ead_start_cache
(
 const EAD_CACHE_MANAGER *cmp, /* In */
 const char *cache_name, /* In */
 int *error_code /* Out */
);

(3) Arguments
cmp

Specifies the handle (pointer) to the cache manager that is managing the cache.
Specify a handle obtained from ead_init_client() or ead_init_client_n().

cache_name
Specifies the name of the cache to be accessed.
For details about the data types that can be specified, see 15.2.2(4) Data types that can be specified as cache names.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
If ead_start_cache() terminates normally, it returns a handle (pointer) to the specified cache.

If ead_start_cache() terminates abnormally, it returns NULL.

(5) Notes
To terminate access to the cache, execute ead_stop_cache().

20. API Reference (C)

Hitachi Elastic Application Data Store 595

20.1.4 ead_stop_cache() (stops access to the cache)

(1) Description
This function stops access to a specified cache.

(2) Format

#include <eads.h>
void ead_stop_cache
(
 const EAD_CACHE *cp, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the pointer to the cache to which you want to stop access.
Specify a handle obtained from ead_start_cache().
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

20.1.5 ead_get_cache_name() (acquires cache names)

(1) Description
This function acquires the cache name associated with the handle to a specified cache.

It can also acquire the cache name of a cache to which access was terminated by ead_stop_cache().

(2) Format

#include <eads.h>
char* ead_get_cache_name
(
 const EAD_CACHE *cp, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache whose cache name is to be acquired.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

20. API Reference (C)

Hitachi Elastic Application Data Store 596

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
This function acquires the cache name associated with the handle to a specified cache.

If a problem occurs when the cache name is acquired, NULL is returned.

(5) Notes
The memory area for storing the cache name that is returned as the return value is not freed automatically. You must
free it in the application program. For details, see 19.1.1(10) Freeing a memory area returned as a return value.

20.1.6 ead_terminate_client() (terminates the EADS client)

(1) Description
This function deletes the cache manager that is managing the cache, and terminates the EADS client.

ead_terminate_client() frees the specified cache manager as well as the cache that was started by it. Therefore,
after you have executed ead_terminate_client(), you can no longer execute an operation that references them.
If you try, the operation is not guaranteed.

(2) Format

#include <eads.h>
void ead_terminate_client
(
 const EAD_CACHE_MANAGER *cmp, /* In */
 int *error_code /* Out */
);

(3) Arguments
cmp

Specifies the handle (pointer) to the cache manager that is managing the cache.
Specify a handle obtained from ead_init_client() or ead_init_client_n().

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

20. API Reference (C)

Hitachi Elastic Application Data Store 597

20.1.7 ead_put() (store a key and value)

(1) Description
Store a value by associating it with a key.

(2) Format

#include <eads.h>
void ead_put
(
 const EAD_CACHE *cp, /* In */
 const char *key, /* In */
 const ead_value_element *value, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache where the key and value are to be stored.
Specify the handle obtained from ead_start_cache().

key
Specifies the key to associate with the value.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

value
Specifies the value information (ead_value_element structure) to store.
For details about the ead_value_element structure, see 20.1.39 ead_value_element structure (value
information).

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

20.1.8 ead_put_array_value() (concatenates and stores multiple values)

(1) Description
This function concatenates multiple values and then stores the values by associating them with keys.

You can acquire concatenated values by retrieving the stored values.

(2) Format

#include <eads.h>
void ead_put_array_value
(
 const EAD_CACHE *cp, /* In */

20. API Reference (C)

Hitachi Elastic Application Data Store 598

 const char * key, /* In */
 size_t array_length, /* In */
 const ead_value_element * value_array, /* In */
 int * error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache where the key and value are to be stored.
Specify the handle obtained from ead_start_cache().

key
Specifies the key to associate with the value.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

array_length
Specifies the number of elements in the value array to be stored.

value_array
Specifies a pointer to the top of the value array to be stored.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Notes
• A value of zero cannot be specified in array_length. If an invalid value is specified, operation is not guaranteed.

• For the array of ead_value_element structures, make sure that you allocate a contiguous memory area large
enough for the elements.

• There is no limit to the number of elements in the value array to be stored or their sizes. For the size of concatenated
data, specify a value that does not exceed the maximum size of data that can be accepted by the EADS servers.

20.1.9 ead_put_all() (stores keys and values by using a batch operation)

(1) Description
Using a batch operation, this function stores multiple keys and values in cache.

An array of the ead_key_value_pair structure is specified in the argument and each key is associated with a value
and then is stored in cache.

If the same key is specified multiple times, it is processed multiple times in the order specified.

(2) Format

#include <eads.h>
ead_put_all_results ead_put_all
(

20. API Reference (C)

Hitachi Elastic Application Data Store 599

 const EAD_CACHE *cp, /* In */
 size_t array_length, /* In */
 const ead_key_value_pair *key_value_array, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache where the keys and values are to be stored.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

array_length
Specifies the number of array elements of the ead_key_value_pair structure to be stored.
For details about the ead_key_value_pair structure and its format, see 20.1.40 ead_key_value_pair structure
(key-value pairs).

key_value_array
Specifies the pointer to the top of the array of the ead_key_value_pair structure to be stored.
For details about the ead_key_value_pair structure and its format, see 20.1.40 ead_key_value_pair structure
(key-value pairs).

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
Using a batch operation, this function returns the results (ead_put_all_results structure) of storing keys and
values.

• If the batch storage processing was successful
The success_operation_number member contains the same number of keys as in the list of keys specified
in the argument, and the failure_info member contains NULL.

• If the batch storage processing failed partially or entirely
The failure_info member contains as many sets of information about the failed processing as indicated in the
failure_operation_number member.

• If an error occurred during non-key processing (such as an invalid argument or a shortage of memory area)
A numeric-type member of the ead_put_all_results structure contains 0, and a pointer-type member
contains NULL.

For details about the ead_put_all_results structure and its format, see 20.1.43 ead_put_all_results structure
(execution results of ead_put_all()).

(5) Notes
• If the batch storage processing fails, this function returns the following error codes:

• If the batch storage processing failed entirely
EAD_ERROR_BATCH_FAILED_ALL

• If the batch storage processing failed partially

20. API Reference (C)

Hitachi Elastic Application Data Store 600

EAD_ERROR_BATCH_FAILED_PART
• The memory area for storing the results of batch storage of keys and values that is returned as the return value is

not freed automatically. You must free it in the application program. For details, see 19.1.1(10) Freeing a memory
area returned as a return value.

• A value of zero cannot be specified in array_length. If an invalid value is specified, valid operation is not
guaranteed.

• Make sure that you allocate a contiguous memory area for the array of the ead_key_value_pair structure that
is large enough for the elements.

• If the cache operation fails partially, identify which operations have failed from the return value, and then re-execute
this function, if necessary.

• Because caches are not locked while operations are ongoing, a target value might be changed by another cache
operation during batch operation.

• When batch operations are performed on a large amount of data, a large amount of memory might be required by
EADS clients and EADS servers.

• When batch operations are performed on a large amount of data, it might take a long time to complete the processing.
To ensure proper operation, make sure that you design a timeout value that is appropriate for the processing time.

20.1.10 ead_create() (stores a new key and value)

(1) Description
This function stores a value with a key only when a new key is stored.

(2) Format

#include <eads.h>
void ead_create
(
 const EAD_CACHE *cp, /* In */
 const char *key, /* In */
 const ead_value_element *value, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache where the key and value are to be stored.
Specify the handle obtained from ead_start_cache().

key
Specifies the key to associate with the value.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

value
Specifies the value information (ead_value_element structure) to store.

20. API Reference (C)

Hitachi Elastic Application Data Store 601

For details about the ead_value_element structure, see 20.1.39 ead_value_element structure (value
information).

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

20.1.11 ead_update() (updates a value)

(1) Description
This function stores a value with a specified key only if the key is already stored (updates the value).

(2) Format

#include <eads.h>
void ead_update
(
 const EAD_CACHE *cp, /* In */
 const char *key, /* In */
 const ead_value_element *value, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache where the key and value are to be stored.
Specify the handle obtained from ead_start_cache().

key
Specifies the key to associate with the value.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

value
Specifies the value information (ead_value_element structure) to store.
For details about the ead_value_element structure, see 20.1.39 ead_value_element structure (value
information).

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

20. API Reference (C)

Hitachi Elastic Application Data Store 602

20.1.12 ead_replace() (replaces a value)

(1) Description
This function compares the value associated with a specified key to the value information specified in a comparison
condition, and stores the value with the key only if the values match (replaces the value).

(2) Format

#include <eads.h>
void ead_replace
(
 const EAD_CACHE *cp, /* In */
 const char *key, /* In */
 const ead_value_element *value, /* In */
 const ead_value_element *comparative_value, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache where the key and value are to be stored.
Specify the handle obtained from ead_start_cache().

key
Specifies the key associated with the value to be replaced.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

value
Specifies the value information (ead_value_element structure) to be stored.
For details about the ead_value_element structure, see 20.1.39 ead_value_element structure (value
information).

comparative_value
Specifies the value information (ead_value_element structure) to compare.
For details about the ead_value_element structure, see 20.1.39 ead_value_element structure (value
information).

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

20.1.13 ead_get() (retrieves a value)

(1) Description
This function retrieves the value associated with a specified key.

20. API Reference (C)

Hitachi Elastic Application Data Store 603

(2) Format

#include <eads.h>
ead_value_element ead_get
(
 const EAD_CACHE *cp, /* In */
 const char *key, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache holding the value to be retrieved.
Specify the handle obtained from ead_start_cache().

key
Specifies the key associated with the value to be retrieved.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
The function returns the value information (ead_value_element structure) associated with the key.

For details about the ead_value_element structure, see 20.1.39 ead_value_element structure (value information).

NULL is set in the value member of the ead_value_element structure in the following cases:

• The key does not exist in the cache.

• A problem occurred when the value information was acquired.

• The data size of the value is 0 bytes (it retrieves a byte array of length 0 that was stored using the Java language
API).

(5) Notes
The memory area of the value information that is returned as the return value is not freed automatically. Instead, you
must free it in the application program. For details, see 19.1.1(10) Freeing a memory area returned as a return value.

20.1.14 ead_get_all() (acquires values by using a batch operation)

(1) Description
Using a batch operation, this function acquires the values associated with a specified list of keys.

If the same key is specified multiple times, it is processed multiple times in the order specified in the list of keys.

20. API Reference (C)

Hitachi Elastic Application Data Store 604

(2) Format

#include <eads.h>
ead_get_all_results ead_get_all
(
 const EAD_CACHE *cp, /* In */
 const ead_keys *keys, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache where the values to be acquired are stored.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

keys
Specifies a list of keys (ead_keys structure) that are associated with the values to be acquired.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.
For details about the ead_keys structure and its format, see 20.1.41 ead_keys structure (multiple keys).

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
Using a batch operation, this function returns the results (ead_get_all_results structure) of acquiring the values
associated with the specified list of keys.

• If the batch acquisition processing was successful
The values member contains the values that correspond to the list of keys specified in the argument.

• If the batch acquisition processing failed partially
The failure_info member contains as many sets of information about failed processing as indicated in the
failure_operation_number member.
At the position of a values member that corresponds to a key whose acquisition failed, an ead_value_element
structure whose value is NULL is returned.

• If the batch acquisition processing failed entirely
The values_length member contains 0, and the values member contains NULL.

• If an error occurred during non-key processing (such as an invalid argument or a shortage of memory area)
A numeric-type member of the ead_get_all_results structure contains 0, and a pointer-type member
contains NULL.

For details about the ead_get_all_results structure and its format, see 20.1.44 ead_get_all_results structure
(execution results of ead_get_all()).

(5) Notes
• If the batch value acquisition processing fails, this function returns the following error codes:

20. API Reference (C)

Hitachi Elastic Application Data Store 605

• If the batch acquisition processing failed entirely
EAD_ERROR_BATCH_FAILED_ALL

• If the batch acquisition processing failed partially
EAD_ERROR_BATCH_FAILED_PART

• The memory area for storing the results of batch acquisition of values that is returned as the return value is not freed
automatically. You must free it in the application program. For details, see 19.1.1(10) Freeing a memory area
returned as a return value.

• If the cache operation fails partially, identify which operations have failed from the return value, and then re-execute
this function, if necessary.

• Because caches are not locked while operations are ongoing, a target value might be changed by another cache
operation during batch operation.

• When batch operations are performed on a large amount of data, a large amount of memory might be required by
EADS clients and EADS servers.

• When batch operations are performed on a large amount of data, it might take a long time to complete the processing.
To ensure proper operation, make sure that you design a timeout value that is appropriate for the processing time.

20.1.15 ead_get_group() (acquires values by using a batch operation with
group specification)

(1) Description
Using a batch operation, this function acquires the values associated with keys that belong to a specified group and its
lower hierarchy groups.

(2) Format

#include <eads.h>
ead_get_group_results ead_get_group
(
 const EAD_CACHE *cp, /* In */
 const char *group_name, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache where the values to be acquired are stored.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

group_name
Specifies the group name of the group for which values are to be acquired.
For details about the data that can be specified, see 15.2.2(2) Data that can be specified as group names.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

20. API Reference (C)

Hitachi Elastic Application Data Store 606

(4) Return value
Using a batch operation, this function returns the results (ead_get_group_results structure) of acquiring the
values associated with keys that belong to the specified group and its lower hierarchy groups.

• If the batch acquisition processing was partially or entirely successful
The key_value_array contains as many keys as there are values successfully acquired and the values that
correspond to the list of keys specified in the argument.

• If the batch acquisition processing failed entirely
A numeric-type member of the ead_get_group_results structure contains 0, and a pointer-type member
contains NULL.

For details about the ead_get_group_results structure and its format, see 20.1.45 ead_get_group_results
structure (execution results of ead_get_group()).

(5) Notes
• The memory area for storing the results of batch acquisition of values that is returned as the return value is not freed

automatically. You must free it in the application program. For details, see 19.1.1(10) Freeing a memory area
returned as a return value.

• If the cache operation fails partially, check the cache operation results, and then re-execute the function, if necessary.

• Because caches are not locked while operations are ongoing, a target value might be changed by another cache
operation during batch operation.

• When batch operations are performed on a large amount of data, a large amount of memory might be required by
EADS clients and EADS servers.

• When batch operations are performed on a large amount of data, it might take a long time to complete the processing.
To ensure proper operation, make sure that you design a timeout value that is appropriate for the processing time.

20.1.16 ead_remove() (deletes a value)

(1) Description
This function deletes a specified key and the value associated with that key.

(2) Format

#include <eads.h>
void ead_remove
(
 const EAD_CACHE *cp, /* In */
 const char *key, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache holding the key and value to be deleted.

20. API Reference (C)

Hitachi Elastic Application Data Store 607

Specify the handle obtained from ead_start_cache().

key
Specifies the key associated with the value to be deleted.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

20.1.17 ead_remove_all() (deletes values by using a batch operation)

(1) Description
Using a batch operation, this function deletes the values associated with a specified list of keys.

If the same key is specified multiple times, it is processed multiple times in the order specified in the list of keys.

(2) Format

#include <eads.h>
ead_remove_all_results ead_remove_all
(
 const EAD_CACHE *cp, /* In */
 const ead_keys *keys, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache where the values to be deleted are stored.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

keys
Specifies the list of keys (ead_keys structure) to be deleted.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.
For details about the ead_keys structure and its format, see 20.1.41 ead_keys structure (multiple keys).

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
Using a batch operation, this function returns the results (ead_remove_all_results structure) of deleting the
values associated with the specified list of keys.

• If the batch deletion processing was entirely successful

20. API Reference (C)

Hitachi Elastic Application Data Store 608

The value of the success_operation_number member is the same as the number of keys specified in the
argument, and the value of the failure_info member is NULL.

• If the batch deletion processing failed partially or entirely
The failure_info member contains as many sets of information about failed processing as indicated in the
failure_operation_number member.

• If an error occurred during non-key processing (such as an invalid argument or a shortage of memory area)
A numeric-type member of the ead_remove_all_results structure contains 0, and a pointer-type member
contains NULL.

For details about the ead_remove_all_results structure and its format, see 20.1.46 ead_remove_all_results
structure (execution results of ead_remove_all()).

(5) Notes
• If the batch value deletion processing fails, this function returns the following error codes:

• If the batch deletion processing failed entirely
EAD_ERROR_BATCH_FAILED_ALL

• If the batch deletion processing failed partially
EAD_ERROR_BATCH_FAILED_PART

• The memory area for storing the results of batch deletion of values that is returned as the return value is not freed
automatically. You must free it in the application program. For details, see 19.1.1(10) Freeing a memory area
returned as a return value.

• If the deletion processing fails, data to be deleted might still remain. Therefore, determine the cause of the error
based on the error code and identify which operations have failed. If necessary, re-execute ead_remove_all()
(deletes values by using a batch operation).

• Because caches are not locked while operations are ongoing, a target value might be changed by another cache
operation during batch operation.

• When batch operations are performed on a large amount of data, a large amount of memory might be required by
EADS clients and EADS servers.

• When batch operations are performed on a large amount of data, it might take a long time to complete the processing.
To ensure proper operation, make sure that you design a timeout value that is appropriate for the processing time.

20.1.18 ead_remove_group() (deletes values by using a batch operation
with group specification)

(1) Description
Using a batch operation, this function deletes the keys and values belonging to a specified group, including the keys
and values that belong to the specified group's lower hierarchy groups.

If the deletion processing fails for some reason during batch deletion of keys and values, the function returns an error
code that indicates the cause of the failure.

20. API Reference (C)

Hitachi Elastic Application Data Store 609

(2) Format

#include <eads.h>
void ead_remove_group
(
 const EAD_CACHE *cp, /* In */
 const char *group_name, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache where the values to be deleted are stored.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

group_name
Specifies the group name of the group to which the keys and values that are to be deleted belong.
For details about the data that can be specified, see 15.2.2(2) Data that can be specified as group names.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Notes
• If the deletion processing fails, data to be deleted might still remain. Therefore, check the execution results and take

appropriate action. If necessary, re-execute ead_remove_group() (deletes values by using a batch operation
with group specification).

• If the cache operation fails partially, identify which operations failed from the return value, and then re-execute this
function, if necessary.

• Because caches are not locked while operations are ongoing, a target value might be changed by another cache
operation during batch operation.

• When batch operations are performed on a large amount of data, a large amount of memory might be required by
EADS clients and EADS servers.

• When batch operations are performed on a large amount of data, it might take a long time to complete the processing.
To ensure proper operation, make sure that you design a timeout value that is appropriate for the processing time.

20.1.19 ead_remove_node() (deletes values by using a batch operation
with EADS server specification)

(1) Description
Using a batch operation, this function deletes keys and values that were copied from a specified EADS server.

If the deletion processing fails for some reason during batch deletion of keys and values, the function returns an error
code that indicates the cause of the failure.

20. API Reference (C)

Hitachi Elastic Application Data Store 610

(2) Format

#include <eads.h>
void ead_remove_node
(
 const EAD_CACHE *cp, /* In */
 const ead_node *target_node, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache where the values to be deleted are stored.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

target_node
Specifies a pointer to the EADS server (ead_node structure) on which the batch deletion processing is to be
executed.
You can only specify the pointer of the ead_node structure obtained by using the EADS client library. If you
specify any other pointer, correct operation is not guaranteed.
For the format and details of the ead_node structure, see 20.1.50 ead_node structure (object used in a user function
with an EADS server specified).
An error results if the address information (IP address and port number) managed by the specified ead_node
structure does not match the address information of any EADS servers maintained by the EADS client.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Notes
• If deletion processing fails, data to be deleted might still remain. Check the execution results and take the appropriate

action. If necessary, re-execute ead_remove_node() (deletes values by using a batch operation with EADS
server specification).

• Because caches are not locked while operations are ongoing, a target value might be changed by another cache
operation during batch operation.

• When batch operations are performed on a large amount of data, a large amount of memory might be required by
EADS clients and EADS servers.

• When batch operations are performed on a large amount of data, it might take a long time to complete the processing.
To ensure proper operation, make sure that you design a timeout value that is appropriate for the processing time.

20. API Reference (C)

Hitachi Elastic Application Data Store 611

20.1.20 ead_get_group_names() (acquires a list of group names in the
highest hierarchy)

(1) Description
This function acquires a list of the group names of the groups in the highest hierarchy that are stored on a specified
EADS server.

The group names are listed in ascending order based on their ASCII code values.

(2) Format

#include <eads.h>
ead_group_names ead_get_group_names
(
 const EAD_CACHE *cp, /* In */
 const ead_node *target_node, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache in which the list of group names is to be acquired.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

target_node
Specifies a pointer to the EADS server (ead_node structure) from which the list of group names is to be acquired.
You can only specify the pointer of the ead_node structure obtained by using the EADS client library. If you
specify any other pointer, correct operation is not guaranteed.
For the format and details of the ead_node structure, see 20.1.50 ead_node structure (object used in a user function
with an EADS server specified).
An error results if the address information (IP address and port number) managed by the specified ead_node
structure does not match the address information of any EADS servers maintained by the EADS client.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
This function returns a list of the group names of the groups in the highest hierarchy (ead_group_names structure)
that are stored on the specified EADS server.

NULL is set in the group_names member of the ead_group_names structure in the following cases:

• The specified EADS server does not contain any keys that belong to the group.

• Acquisition of a list of group names failed due to an error.

For details about the ead_group_names structure and its format, see 20.1.42 ead_group_names structure (multiple
group names).

20. API Reference (C)

Hitachi Elastic Application Data Store 612

(5) Notes
• If the group_names member of the ead_group_names structure that is returned as the return value is not
NULL, the memory area is not freed automatically. You must free it in the application program. For details, see
19.1.1(10) Freeing a memory area returned as a return value.

• As the number of groups on the specified EADS server increases, the time and the amount of resources required for
acquisition processing might increase.

20.1.21 ead_get_group_keys() (acquires a list of keys with group
specification)

(1) Description
This function acquires a list of keys that belong to a specified group, including keys that belong to groups under the
specified group's hierarchy.

The keys are listed in ascending order based on their ASCII code values.

(2) Format

#include <eads.h>
ead_keys ead_get_group_keys
(
 const EAD_CACHE *cp, /* In */
 const char *group_name, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache in which the list of keys is to be acquired.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

group_name
Specifies a group name.
For details about the data that can be specified, see 15.2.2(2) Data that can be specified as group names.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
This function returns a list of the keys (ead_keys structure) that belong to the specified group in ascending order
based on their ASCII code values.

NULL is set in the keys member of the ead_keys structure in the following cases:

• No keys belong to the specified group.

20. API Reference (C)

Hitachi Elastic Application Data Store 613

• Acquisition of a list of keys failed due to an error.

For details about the ead_keys structure and its format, see 20.1.41 ead_keys structure (multiple keys).

(5) Notes
• If the keys member of the ead_keys structure that is returned as the return value is not NULL, the memory area

is not freed automatically. You must free it in the application program. For details, see 19.1.1(10) Freeing a memory
area returned as a return value.

• As the number of keys on the specified EADS server increases, the time and the amount of resources required for
the acquisition processing might increase.

20.1.22 ead_get_node_keys() (acquires a list of keys with EADS server
specification)

(1) Description
This function acquires a list of the keys stored on a specified EADS server.

The keys are listed in ascending order based on their ASCII code values.

(2) Format

#include <eads.h>
ead_keys ead_get_node_keys
(
 const EAD_CACHE *cp, /* In */
 const ead_node *target_node, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache in which the list of keys is to be acquired.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

target_node
Specifies the pointer to the EADS server (ead_node structure) from which the list of keys is to be acquired.
You can only specify the pointer of the ead_node structure obtained by using the EADS client library. If you
specify any other pointer, correct operation is not guaranteed.
For the format and details of the ead_node structure, see 20.1.50 ead_node structure (object used in a user function
with an EADS server specified).
An error results if the address information (IP address and port number) managed by the specified ead_node
structure does not match the address information of any EADS servers maintained by the EADS client.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

20. API Reference (C)

Hitachi Elastic Application Data Store 614

(4) Return value
This function returns a list of the keys (ead_keys structure) that are stored on the specified EADS server in ascending
order based on their ASCII code values.

NULL is returned in the keys member of the ead_keys structure in the following cases:

• The specified EADS server does not contain the source keys for copy processing.

• Acquisition of a list of keys failed due to an error.

For details about the ead_keys structure and its format, see 20.1.41 ead_keys structure (multiple keys).

(5) Notes
• If the keys member of the ead_keys structure that is returned as the return value is not NULL, the memory area

is not freed automatically. You must free it in the application program. For details, see 19.1.1(10) Freeing a memory
area returned as a return value.

• As the number of keys on the specified EADS server increases, the time and the amount of resources required for
the acquisition processing might increase.

20.1.23 ead_get_group_count() (acquires the number of groups in the
highest hierarchy)

(1) Description
This function acquires the number of groups in the highest hierarchy that are stored on a specified EADS server.

(2) Format

#include <eads.h>
size_t ead_get_group_count
(
 const EAD_CACHE *cp, /* In */
 const ead_node *target_node, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache in which the number of groups is to be acquired.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

target_node
Specifies a pointer to the EADS server (ead_node structure) from which the number of groups in the highest
hierarchy is to be acquired.
You can only specify the pointer of the ead_node structure obtained by using the EADS client library. If you
specify any other pointer, correct operation is not guaranteed.

20. API Reference (C)

Hitachi Elastic Application Data Store 615

For the format and details of the ead_node structure, see 20.1.50 ead_node structure (object used in a user function
with an EADS server specified).
An error results if the address information (IP address and port number) managed by the specified ead_node
structure does not match the address information of any EADS servers maintained by the EADS client.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
This function returns the number of groups in the highest hierarchy that are stored on the specified EADS server.

If acquisition of the number of groups fails due to an error, the function returns 0.

20.1.24 ead_get_group_key_count() (acquires the number of keys with
group specification)

(1) Description
This function acquires the number of keys that belong to a specified group. The number of keys acquired includes the
keys that belong to groups under the specified group's hierarchy.

(2) Format

#include <eads.h>
size_t ead_get_group_key_count
(
 const EAD_CACHE *cp, /* In */
 const char *group_name, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache in which the number of keys is to be acquired.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

group_name
Specifies a group name.
For details about the data that can be specified, see 15.2.2(2) Data that can be specified as group names.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

20. API Reference (C)

Hitachi Elastic Application Data Store 616

(4) Return value
This function returns the number of keys that belong to the specified group.

If acquisition of the number of keys fails due to an error, the function returns 0.

20.1.25 ead_get_node_key_count() (acquires the number of keys with
EADS server specification)

(1) Description
This function acquires the number of keys stored on a specified EADS server.

(2) Format

#include <eads.h>
size_t ead_get_node_key_count
(
 const EAD_CACHE *cp, /* In */
 const ead_node *target_node, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache in which the number of keys is to be acquired.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

target_node
Specifies the pointer to the EADS server (ead_node structure) from which the number of keys is to be acquired.
You can only specify the pointer of the ead_node structure obtained by using the EADS client library. If you
specify any other pointer, correct operation is not guaranteed.
For the format and details of the ead_node structure, see 20.1.50 ead_node structure (object used in a user function
with an EADS server specified).
An error results if the address information (IP address and port number) managed by the specified ead_node
structure does not match the address information of any EADS servers maintained by the EADS client.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
This function returns the number of keys stored on the specified EADS server.

If acquisition of the number of keys fails due to an error, the function returns 0.

20. API Reference (C)

Hitachi Elastic Application Data Store 617

20.1.26 ead_get_group_first_key() (acquires the first key with group
specification)

(1) Description
This function acquires the first key in ascending order based on its ASCII code value from among all the keys that
belong to a specified group. The keys that belong to groups under the specified group's hierarchy are also subject to this
acquisition processing.

(2) Format

#include <eads.h>
char* ead_get_group_first_key
(
 const EAD_CACHE *cp, /* In */
 const char *group_name, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache in which the key is to be acquired.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

group_name
Specifies a group name.
For details about the data that can be specified, see 15.2.2(2) Data that can be specified as group names.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
This function returns the first key in ascending order based on its ASCII code value from among all the keys that belong
to the specified group.

The function returns NULL in the following cases:

• No keys belong to the specified group.

• Acquisition of the key failed due to an error.

(5) Notes
If acquisition of the key is successful (the return value is not NULL), the memory area is not freed automatically. You
must free it in the application program. For details, see 19.1.1(10) Freeing a memory area returned as a return value.

20. API Reference (C)

Hitachi Elastic Application Data Store 618

20.1.27 ead_get_node_first_key() (acquires the first key with EADS server
specification)

(1) Description
This function acquires the first key in ascending order based on its ASCII code value from among all the keys that are
stored on a specified EADS server.

(2) Format

#include <eads.h>
char* ead_get_node_first_key
(
 const EAD_CACHE *cp, /* In */
 const ead_node *target_node, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache in which the key is to be acquired.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

target_node
Specifies the pointer to the EADS server (ead_node structure) from which the first key is to be acquired.
You can only specify the pointer of the ead_node structure obtained by using the EADS client library. If you
specify any other pointer, correct operation is not guaranteed.
For the format and details of the ead_node structure, see 20.1.50 ead_node structure (object used in a user function
with an EADS server specified).
An error results if the address information (IP address and port number) managed by the specified ead_node
structure does not match the address information of any EADS servers maintained by the EADS client.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
This function returns the first key in ascending order based on its ASCII code value from among all the keys that are
stored on the specified EADS server.

The function returns NULL in the following cases:

• The specified EADS server does not contain the source key for copy processing.

• Acquisition of the key failed due to an error.

20. API Reference (C)

Hitachi Elastic Application Data Store 619

(5) Notes
If acquisition of the key is successful (the return value is not NULL), the memory area is not freed automatically. You
must free it in the application program. For details, see 19.1.1(10) Freeing a memory area returned as a return value.

20.1.28 ead_get_group_next_key() (acquires the next key with group
specification)

(1) Description
This function acquires the key that immediately follows a specified key in ascending order based on its ASCII code
value from among all the keys that belong to a specified group. The keys that belong to the groups under the specified
group's hierarchy are also subject to this acquisition processing.

If the specified key does not exist on the connection-target EADS server, the function similarly acquires the key that
immediately follows the specified key.

(2) Format

#include <eads.h>
char* ead_get_group_next_key
(
 const EAD_CACHE *cp, /* In */
 const char *group_name, /* In */
 const char *key, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache in which the key is to be acquired.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

group_name
Specifies a group name.
For details about the data that can be specified, see 15.2.2(2) Data that can be specified as group names.

key
Specifies the reference key.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
This function returns the key that immediately follows the specified key in ascending order based on its ASCII code
value from among all the keys that belong to the specified group.

20. API Reference (C)

Hitachi Elastic Application Data Store 620

The function returns NULL in the following cases:

• No key follows the specified key.

• Acquisition of the key failed due to an error.

(5) Notes
• If acquisition of the key is successful (the return value is not NULL), the memory area is not freed automatically.

You must free it in the application program. For details, see 19.1.1(10) Freeing a memory area returned as a return
value.

• This function determines the connection-target EADS server based on the specified group.

• The EADS server that stores the keys belonging to the specified group might change due to isolation, restoration,
or addition (scale-out) processing on EADS servers other than the connection-target EADS server. Therefore, if you
have obtained the first key by executing ead_get_group_first_key(), connection might be established with
a different EADS server.

• Because groups are not locked on EADS servers, keys that belong to groups might be inserted or deleted by another
process after ead_get_group_first_key() or ead_get_group_next_key() has executed.

20.1.29 ead_get_node_next_key() (acquires the next key with EADS
server specification)

(1) Description
This function acquires the key that immediately follows a specified key in ascending order based on its ASCII code
value from among all the keys that are stored on a specified EADS server.

If the specified key does not exist on the connection-target EADS server, the function similarly acquires the key that
immediately follows the specified key.

(2) Format

#include <eads.h>
char* ead_get_node_next_key
(
 const EAD_CACHE *cp, /* In */
 const ead_node *target_node, /* In */
 const char *key, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache in which the key is to be acquired.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

target_node
Specifies the pointer to the EADS server (ead_node structure) from which the key is to be acquired.

20. API Reference (C)

Hitachi Elastic Application Data Store 621

You can only specify the pointer of the ead_node structure obtained by using the EADS client library. If you
specify any other pointer, correct operation is not guaranteed.
For the format and details of the ead_node structure, see 20.1.50 ead_node structure (object used in a user function
with an EADS server specified).
An error results if the address information (IP address and port number) managed by the specified ead_node
structure does not match the address information of any EADS servers maintained by the EADS client.

key
Specifies the reference key.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
This function returns the key that immediately follows the specified key in ascending order based on its ASCII code
value from among all the keys that are stored on the specified server.

The function returns NULL in the following cases:

• No key follows the specified key.

• Acquisition of the key failed due to an error.

(5) Notes
• If acquisition of the key is successful (the return value is not NULL), the memory area is not freed automatically.

You must free it in the application program. For details, see 19.1.1(10) Freeing a memory area returned as a return
value.

• The EADS server that stores the keys belonging to the specified group might change due to isolation, restoration,
or addition (scale-out) processing on EADS servers other than the connection-target EADS server.

• Because groups are not locked on EADS servers, keys that belong to groups might be inserted or deleted by another
process after ead_get_node_first_key() or ead_get_node_next_key() has executed.

20.1.30 ead_execute_function() (executes a user function with key
specification or group specification)

(1) Description
This function uses a specified key or group to determine the EADS server on which a user function is to be executed
and then executes that user function.

(2) Format

#include <eads.h>
ead_object ead_execute_function
(
 const EAD_CACHE *cp, /* In */

20. API Reference (C)

Hitachi Elastic Application Data Store 622

 const char *key_or_group_name, /* In */
 const char *func_name, /* In */
 const ead_object *arg, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache for the user function to be executed.
Specify the handle obtained from ead_start_cache().

key_or_group_name
Specifies a key or a group name.
For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys or 15.2.2(2)
Data that can be specified as group names.

func_name
Specifies the name of the user function.
A user function name can consist of single-byte alphanumeric characters (0 to 9, A to Z, and a to z), underscores
(_), periods (.), and dollar signs ($).
There is no limit to the number of characters.

arg
Specifies the arguments (ead_object structure) to pass to the user function.
For details about the ead_object structure, see 20.1.48 ead_object structure (object used in a user function).
If there are no arguments to be passed, specify NULL.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
If ead_execute_function() terminates normally, it returns the user function execution results (ead_object
structure).

For details about the ead_object structure, see 20.1.48 ead_object structure (object used in a user function).

The object_size member of the ead_object structure will contain the size of the byte array specified for the
user function's return value.

NULL is set in the object member of the ead_object structure in the following cases:

• A problem occurred during execution of the user function.

• The user function execution results could not be acquired due to a problem such as a network failure.

• null is returned as the result of executing the user function.

• A byte array of data size 0 is returned as the result of executing the user function.

20. API Reference (C)

Hitachi Elastic Application Data Store 623

(5) Notes
The memory area for storing the user function execution results that are returned as the return value is not freed
automatically. Instead, you must free it in the application program. For details, see 19.1.1(10) Freeing a memory area
returned as a return value.

20.1.31 ead_execute_function_rt() (executes a user function with key
specification or group specification and reception timeout
specification)

(1) Description
This function uses a specified key or group to determine the EADS server on which a user function is to be executed
and then executes that user function. This function also sets a reception timeout value.

The value of the eads.client.connection.receive.timeout parameter in the client properties is not
applicable while ead_execute_function_rt() is executing.

(2) Format

#include <eads.h>
ead_object ead_execute_function_rt
(
 const EAD_CACHE *cp, /* In */
 const char *key_or_group_name, /* In */
 const char *func_name, /* In */
 const ead_object *arg, /* In */
 int recv_timeout, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache in which the user function is to be executed.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

key_or_group_name
Specifies a key or a group name.
For details about the data that can be specified, see 15.2.2(1) Data types that can be specified as keys or 15.2.2(2)
Data that can be specified as group names.

func_name
Specifies the name of the user function.
A user function name can consist of single-byte alphanumeric characters (0 to 9, A to Z, and a to z), underscores
(_), periods (.), and dollar signs ($).
There is no limit to the number of characters.

arg
Specifies the arguments (ead_object structure) to pass to the user function.

20. API Reference (C)

Hitachi Elastic Application Data Store 624

For details about the ead_object structure, see 20.1.48 ead_object structure (object used in a user function).
If there are no arguments to be passed, specify NULL.

recv_timeout
Specifies a data reception timeout value (in milliseconds).
For details about the data that can be specified, see 9.3.3(3)(b) eads.client.connection.receive.timeout.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
If ead_execute_function_rt() terminates normally, it returns the user function execution results
(ead_object structure).

For details about the ead_object structure and its format, see 20.1.48 ead_object structure (object used in a user
function).

The object_size member of the ead_object structure will contain the size of the byte array specified for the
user function's return value.

NULL is set in the object member of the ead_object structure in the following cases:

• A problem occurred during execution of the user function.

• The user function execution results could not be acquired due to a problem such as a network failure.

• null is returned as the result of executing the user function.

• A byte array of data size 0 is returned as the result of executing the user function.

(5) Notes
The memory area for storing the user function execution results that is returned as the return value is not freed
automatically. You must free it in the application program. For details, see 19.1.1(10) Freeing a memory area returned
as a return value.

20.1.32 ead_execute_node_function() (executes a user function with an
EADS server specified)

(1) Description
This function executes a user function with an EADS server specified.

(2) Format

#include <eads.h>
ead_object ead_execute_node_function
(
 const EAD_CACHE *cp, /* In */
 const ead_node *target_node, /* In */

20. API Reference (C)

Hitachi Elastic Application Data Store 625

 const char *func_name, /* In */
 const ead_object *arg, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache for the user function to be executed.
Specify the handle obtained from ead_start_cache().

target_node
Specifies a pointer to the EADS server (ead_node structure) that will execute the user function.
You can only specify the pointer of the ead_node structure obtained by using the EADS client library. If you
specify any other pointer, correct operation is not guaranteed.
For the format and details of the ead_node structure, see 20.1.50 ead_node structure (object used in a user function
with an EADS server specified).
An error results if the address information (IP address and port number) managed by the specified ead_node
structure does not match the address information of any EADS servers maintained by the EADS client.

func_name
Specifies the name of the user function.
A user function name can consist of single-byte alphanumeric characters (0 to 9, A to Z, and a to z), underscores
(_), periods (.), and dollar signs ($).
There is no limit to the number of characters.

arg
Specifies the arguments (ead_object structure) to pass to the user function.
For details about the ead_object structure, see 20.1.48 ead_object structure (object used in a user function).
If there are no arguments to be passed, specify NULL.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
If ead_execute_node_function() terminates normally, it returns the user function execution results
(ead_object structure).

For details about the ead_object structure, see 20.1.48 ead_object structure (object used in a user function).

The object_size member of the ead_object structure will contain the size of the byte array specified for the
user function's return value.

NULL is set in the object member of the ead_object structure in the following cases:

• A problem occurred during execution of the user function.

• The user function execution results could not be acquired due to a problem such as a network failure.

• null is returned as the result of executing the user function.

20. API Reference (C)

Hitachi Elastic Application Data Store 626

• A byte array of data size 0 is returned as the result of executing the user function.

(5) Notes
The memory area for storing the user function execution results that are returned as the return value is not freed
automatically. Instead, you must free it in the application program. For details, see 19.1.1(10) Freeing a memory area
returned as a return value.

20.1.33 ead_execute_node_function_rt() (executes a user function with
EADS server and reception timeout specification)

(1) Description
This function executes a user function with an EADS server specified and sets a reception timeout value.

The value of the eads.client.connection.receive.timeout parameter in the client properties is not
applicable while ead_execute_node_function_rt() is executing.

(2) Format

#include <eads.h>
ead_object ead_execute_node_function_rt
(
 const EAD_CACHE *cp, /* In */
 const ead_node *target_node, /* In */
 const char *func_name, /* In */
 const ead_object *arg, /* In */
 int recv_timeout, /* In */
 int *error_code /* Out */
);

(3) Arguments
cp

Specifies the handle (pointer) to the cache on which the user function is to be executed.
Specify the handle (pointer) obtained from ead_start_cache() when access to the cache was started.

target_node
Specifies the pointer to the EADS server (ead_node structure) on which the user function is to be executed.
You can only specify the pointer of the ead_node structure obtained by using the EADS client library. If you
specify any other pointer, correct operation is not guaranteed.
For the format and details of the ead_node structure, see 20.1.50 ead_node structure (object used in a user function
with an EADS server specified).
An error results if the address information (IP address and port number) managed by the specified ead_node
structure does not match the address information of any EADS servers maintained by the EADS client.

func_name
Specifies the name of the user function.

20. API Reference (C)

Hitachi Elastic Application Data Store 627

A user function name can consist of single-byte alphanumeric characters (0 to 9, A to Z, and a to z), underscores
(_), periods (.), and dollar signs ($).
There is no limit to the number of characters.

arg
Specifies the arguments (ead_object structure) to pass to the user function.
For details about the ead_object structure, see 20.1.48 ead_object structure (object used in a user function).
If there are no arguments to be passed, specify NULL.

recv_timeout
Specifies a data reception timeout value (in milliseconds).
For details about the data that can be specified, see 9.3.3(3)(b) eads.client.connection.receive.timeout.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
If ead_execute_node_function_rt() terminates normally, it returns the user function execution results
(ead_object structure).

For details about the ead_object structure and its format, see 20.1.48 ead_object structure (object used in a user
function).

The object_size member of the ead_object structure will contain the size of the byte array specified for the
user function's return value.

NULL is set in the object member of the ead_object structure in the following cases:

• A problem occurred during execution of the user function.

• The user function execution results could not be acquired due to a problem such as a network failure.

• null is returned as the result of executing the user function.

• A byte array of data size 0 is returned as the result of executing the user function.

(5) Notes
The memory area for storing the user function execution results that is returned as the return value is not freed
automatically. You must free it in the application program. For details, see 19.1.1(10) Freeing a memory area returned
as a return value.

20.1.34 ead_get_nodelist() (acquires information about the connection-
target EADS servers)

(1) Description
This function acquires information about the connection-target EADS servers maintained by the EADS client.

20. API Reference (C)

Hitachi Elastic Application Data Store 628

(2) Format

#include <eads.h>
ead_nodelist ead_get_nodelist
(
 const EAD_CACHE_MANAGER *cmp, /* In */
 int *error_code /* Out */
);

(3) Arguments
cmp

Specifies the handle (pointer) to the cache manager that is managing the cache.
Specify a handle obtained from ead_init_client() or ead_init_client_n().

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
This function returns information about the connection-target EADS servers (ead_nodelist structure) maintained
by the EADS client.

For the format and details of the ead_nodelist structure, see 20.1.49 ead_nodelist structure (EADS server
information).

If the function terminates abnormally, NULL is returned in the nodes member of the ead_nodelist structure.

(5) Notes
• If the nodes member of the ead_nodelist structure returned as the return value is not NULL, the memory area

is not freed automatically. Instead, you must free it in the application program. For details, see 19.1.1(10) Freeing
a memory area returned as a return value.

• Execution of the application program does not establish communication with the EADS servers. Therefore, the
returned information about the connection-target EADS servers might not be the most recent information.

• Whether the EADS servers are connected is not checked when this function executes. For this reason, the acquired
information might contain EADS servers that cannot be connected, for example, because the EADS servers are
isolated. If you plan to use an acquired EADS server as a connection target, use the is_enable member of the
ead_node structure to check whether a connection can be established with that EADS server.
For the format and details of the ead_node structure, see 20.1.50 ead_node structure (object used in a user function
with an EADS server specified).

20. API Reference (C)

Hitachi Elastic Application Data Store 629

20.1.35 [Deprecated] ead_get_node() (acquires information about the
original source EADS server from which a specified key was
copied)

Important note
This function is deprecated. Instead, use ead_get_original_master_node().

(1) Description
This function acquires information about the original source EADS server that stores a specified key or group.

By original source EADS server is meant the EADS server that stores the original data of a specified key or group when
all EADS servers making up the cluster can be connected successfully.

(2) Format

#include <eads.h>
ead_node ead_get_node
(
 const EAD_CACHE_MANAGER *cmp, /* In */
 const char *key, /* In */
 int *error_code /* Out */
);

(3) Arguments
cmp

Specifies the handle (pointer) to the cache manager that is managing the cache. Specify a handle obtained from
ead_init_client() or ead_init_client_n().

key
Specifies a key that is stored by the target EADS server.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
This function returns information (ead_node structure) about the original source EADS server that stores the specified
key or group.

If the function terminates abnormally, it sets 0 in each member of the ead_node structure.

(5) Notes
• Execution of the application program does not establish communication with the EADS server. Therefore, the

returned information about the connection-target EADS server might not be the most recent information.

20. API Reference (C)

Hitachi Elastic Application Data Store 630

• If there have been no changes to the cluster configuration, information about the same EADS server will always be
acquired, regardless of whether that EADS server can be connected.

• If you plan to use the acquired EADS server as a connection target, use the is_enable member of the ead_node
structure to check whether a connection can be established with that EADS server.
For the format and details of the ead_node structure, see 20.1.50 ead_node structure (object used in a user function
with an EADS server specified).

20.1.36 ead_get_slave_nodelist() (acquires information about the original
target EADS server for data)

(1) Description
This function acquires information about the original target EADS servers to which data stored on a specified EADS
server is copied.

By original target EADS server is meant an EADS server to which data stored on a specified EADS server (source
EADS server) is copied when all EADS servers making up the cluster can be connected successfully.

(2) Format

#include <eads.h>
ead_nodelist ead_get_slave_nodelist
(
 const EAD_CACHE_MANAGER *cmp, /* In */
 const ead_node *master_node, /* In */
 int *error_code /* Out */
);

(3) Arguments
cmp

Specifies the handle (pointer) to the cache manager that is managing the cache. Specify a handle obtained from
ead_init_client() or ead_init_client_n().

master_node
Specifies a pointer to the EADS server (ead_node structure) from which data is copied.
You can only specify the pointer of the ead_node structure obtained by using the EADS client library. If you
specify any other pointer, correct operation is not guaranteed.
For the format and details of the ead_node structure, see 20.1.50 ead_node structure (object used in a user function
with an EADS server specified).
An error results if the address information (IP address and port number) managed by the specified ead_node
structure does not match the address information of any EADS servers maintained by the EADS client.

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

20. API Reference (C)

Hitachi Elastic Application Data Store 631

(4) Return value
This function returns information about the original target EADS servers (ead_nodelist structure).

For the format and details of the ead_nodelist structure, see 20.1.49 ead_nodelist structure (EADS server
information).

If redundant copies of data are not created (multiplicity is 1), zero is returned to the list_size member of the
ead_nodelist structure and NULL to the nodes member.

If the function terminates abnormally, NULL is returned in the nodes member of the ead_nodelist structure.

(5) Notes
• If the nodes member of the ead_nodelist structure returned as the return value is not NULL, the memory area

is not freed automatically. You must free it in the application program. For details, see 19.1.1(10) Freeing a memory
area returned as a return value.

• Execution of the application program does not establish communication with the EADS servers. Therefore, the
returned information about the connection-target EADS servers might not be the most recent information.

• Whether the specified EADS server and the target EADS server for information acquisition are connected is not
checked when this function is executed. Therefore, the acquired information might contain EADS servers that cannot
be connected, for example, because the EADS servers are isolated.

20.1.37 ead_get_current_master_node() (acquires information about the
current source EADS server)

(1) Description
This function acquires information about the source EADS server that currently stores a specified key (or group).

(2) Format

#include <eads.h>
ead_node ead_get_current_master_node
(
 const EAD_CACHE_MANAGER *cmp, /* In */
 const char *key, /* In */
 int *error_code /* Out */
);

(3) Arguments
cmp

Specifies a handle (pointer) to the cache manager that manages the cache.
Specify a handle obtained from ead_init_client() or ead_init_client_n().

key
Specifies a key (or a group).
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

20. API Reference (C)

Hitachi Elastic Application Data Store 632

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
This function returns information about the source EADS server that currently stores the specified key (or group).

If the function terminates abnormally or the source EADS server is isolated or stopped, it sets 0 in each member of the
ead_node structure.

(5) Notes
Execution of this function does not establish communication with the EADS server. Therefore, the returned information
about the connection-target EADS server might not be the most recent information.

20.1.38 ead_get_original_master_node() (acquires information about the
original source EADS server)

(1) Description
This function acquires information about the original source EADS server that stores a specified key (or group).

By original source EADS server is meant the EADS server that stores the master copy (source data) of a specified key
(or group) when all EADS servers making up the cluster can be connected successfully. This EADS server might be
different from the current source EADS server.

If there have been no changes to the cluster configuration, information about the same EADS server will always be
acquired, regardless of whether the EADS server can be connected.

(2) Format

#include <eads.h>
ead_node ead_get_original_master_node
(
 const EAD_CACHE_MANAGER *cmp, /* In */
 const char *key, /* In */
 int *error_code /* Out */
);

(3) Arguments
cmp

Specifies a handle (pointer) to the cache manager that manages the cache.
Specify a handle obtained from ead_init_client() or ead_init_client_n().

key
Specifies a key (or a group).
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

20. API Reference (C)

Hitachi Elastic Application Data Store 633

error_code
Specifies the pointer from which to retrieve the error code.
For details about error codes, see 20.2 Error codes in the client library (C).

(4) Return value
This function returns information about the original source EADS server that stores the specified key (or group).

If the function terminates abnormally, it sets 0 in each member of the ead_node structure.

(5) Notes
• Execution of this function does not establish communication with the EADS server. Therefore, the returned

information about the connection-target EADS server might not be the most recent information.

• If you plan to use the acquired EADS server as a connection target, use the is_enable member of the ead_node
structure to check whether a connection can be established with that EADS server. For details about the is_enable
member of the ead_node structure, see 20.1.50(2) Descriptions of members.

20.1.39 ead_value_element structure (value information)
The ead_value_element structure holds the value information (the value and its size).

(1) Format

struct ead_value_element {
 size_t value_size;
 void *value;
};

(2) Descriptions of members
value_size

Stores the data size of the value (unit: bytes).
value

Stores the value.
Specify the starting address of the data to be stored.

(3) Notes
• If the range specified by the starting address + the data size references an invalid region, the operation is not

guaranteed.

• You cannot specify NULL for value.

• You cannot specify 0 for value_size.

• There is no limit to value_size. Specify a value that does not exceed the maximum size of data that can be
accepted by the EADS servers.

20. API Reference (C)

Hitachi Elastic Application Data Store 634

20.1.40 ead_key_value_pair structure (key-value pairs)
The ead_key_value_pair structure holds information about key-value pairs.

(1) Format

struct ead_key_value_pair {
 char *key;
 ead_value_element value;
};

(2) Descriptions of members
key

Stores the key to be associated with a value.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

value
Stores the value information (ead_value_element structure).
For details about the ead_value_element structure, see 20.1.39 ead_value_element structure (value
information).

20.1.41 ead_keys structure (multiple keys)
The ead_keys structure holds multiple keys.

(1) Format

struct ead_keys {
 size_t size;
 char **keys;
};

(2) Descriptions of members
size

Stores the number of keys to be stored.
keys

Stores the start address of the array that stores the list of keys.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

20.1.42 ead_group_names structure (multiple group names)
The ead_group_names structure holds multiple group names.

20. API Reference (C)

Hitachi Elastic Application Data Store 635

(1) Format

struct ead_group_names {
 size_t size;
 char **group_names;
};

(2) Descriptions of members
size

Stores the number of group names that are stored.
group_names

Stores the start address of the array that stores the list of group names.
For details about the data types that can be specified, see 15.2.2(1) Data types that can be specified as keys.

20.1.43 ead_put_all_results structure (execution results of ead_put_all())
The ead_put_all_results structure holds the execution results of ead_put_all().

(1) Format

struct ead_put_all_results {
 size_t success_operation_number;
 size_t failure_operation_number;
 ead_failure_operation_info *failure_info;
};

(2) Descriptions of members
success_operation_number

Stores the number of keys that were processed successfully when an attempt to perform batch operation failed
partially or entirely.

failure_operation_number
Stores the number of elements of the failure_info member when an attempt to perform batch operation failed
partially or entirely.

failure_info
Stores a pointer indicating the beginning of the list (ead_failure_operation_info structure) of information
about the failed batch operation.
For details about the ead_failure_operation_info structure and its format, see 20.1.47
ead_failure_operation_info structure (information about the failed operation during batch operation).

20.1.44 ead_get_all_results structure (execution results of ead_get_all())
The ead_get_all_results structure holds the execution results of ead_get_all().

20. API Reference (C)

Hitachi Elastic Application Data Store 636

(1) Format

struct ead_get_all_results {
 size_t values_length;
 ead_value_element *values;
 size_t success_operation_number;
 size_t failure_operation_number;
 ead_failure_operation_info *failure_info;
};

(2) Descriptions of members
values_length

Stores the number of acquired values.
values

Specifies the start address of the array of the ead_value_element structure that stores the acquired value
information.
For details about the ead_value_element structure, see 20.1.39 ead_value_element structure (value
information).

success_operation_number
Stores the number of keys that were processed successfully when an attempt to perform batch operation failed
partially or entirely.

failure_operation_number
Stores the number of elements of the failure_info member when an attempt to perform batch operation failed
partially or entirely.

failure_info
Stores a pointer indicating the beginning of the list (ead_failure_operation_info structure) of information
about the failed batch operation.
For details about the ead_failure_operation_info structure and its format, see 20.1.47
ead_failure_operation_info structure (information about the failed operation during batch operation).

20.1.45 ead_get_group_results structure (execution results of
ead_get_group())

The ead_get_group_results structure holds the execution results of ead_get_group().

(1) Format

struct ead_get_group_results {
 size_t key_value_length;
 ead_key_value_pair *key_value_array;
};

20. API Reference (C)

Hitachi Elastic Application Data Store 637

(2) Descriptions of members
key_value_length

Stores the number of elements in the array of the ead_key_value_pair structure that stores acquired keys and
values.

key_value_array
Specifies the start address of the array of the ead_key_value_pair structure that stores acquired keys and
values.
For details about the ead_key_value_pair structure and its format, see 20.1.40 ead_key_value_pair structure
(key-value pairs).

20.1.46 ead_remove_all_results structure (execution results of
ead_remove_all())

The ead_remove_all_results structure holds the execution results of ead_remove_all().

(1) Format

struct ead_remove_all_results {
 size_t success_operation_number;
 size_t failure_operation_number;
 ead_failure_operation_info *failure_info;
};

(2) Descriptions of members
success_operation_number

Stores the number of keys that were processed successfully when an attempt to perform batch operation failed
partially or entirely.

failure_operation_number
Stores the number of elements of the failure_info member when an attempt to perform batch operation failed
partially or entirely.

failure_info
Stores a pointer indicating the beginning of the list (ead_failure_operation_info structure) of information
about the failed batch operation.
For details about the ead_failure_operation_info structure and its format, see 20.1.47
ead_failure_operation_info structure (information about the failed operation during batch operation).

20.1.47 ead_failure_operation_info structure (information about the failed
operation during batch operation)

The ead_failure_operation_info structure holds information about a failed operation when an attempt to
perform batch operation failed partially or entirely.

20. API Reference (C)

Hitachi Elastic Application Data Store 638

(1) Format

struct ead_failure_operation_info {
 int index;
 int error_code;
};

(2) Descriptions of members
index

Stores a position (subscript) in the list of keys specified during execution of the batch operation.
error_code

Stores the error code indicating the cause of the error.

20.1.48 ead_object structure (object used in a user function)
The ead_object structure holds an object (such as an argument or return value) used in a user function.

(1) Format

struct ead_object {
 size_t object_size;
 void *object;
};

(2) Descriptions of members
object_size

Specifies the data size of the object (unit: bytes).
object

Stores an object (such as an argument or return value) used in a user function.
Specify the starting address of the data to be stored.

(3) Notes
• If the range specified by the starting address + the data size references an invalid region, the operation is not

guaranteed.

• You cannot specify NULL for object.

• You cannot specify 0 for object_size.

• There is no limit to object_size. Specify a value that does not exceed the maximum size of data that can be
accepted by the EADS servers.

20. API Reference (C)

Hitachi Elastic Application Data Store 639

20.1.49 ead_nodelist structure (EADS server information)
The ead_nodelist structure contains information about the EADS servers that are maintained by the EADS client.

(1) Format

struct ead_nodelist {
 size_t list_size;
 struct ead_node *nodes;
};

(2) Descriptions of members
list_size

Stores the number of EADS servers.
nodes

Stores information about the EADS servers (ead_node structure).
Specify the start address of the data to be stored.

20.1.50 ead_node structure (object used in a user function with an EADS
server specified)

The ead_node structure contains information needed for specifying EADS servers.

(1) Format

struct ead_node {
 int node_id;
 EAD_BOOL is_enable;
 int position;
 struct ead_address address;
 char reserved[8];
};

(2) Descriptions of members
node_id

Stores the EADS server ID.
is_enable

Stores the EADS server's status:
EAD_TRUE: Connection can be established.
EAD_FALSE: Connection cannot be established.

position
Stores the position of the EADS server.

address
Stores the address information (ead_address structure) of the EADS server.

20. API Reference (C)

Hitachi Elastic Application Data Store 640

For the format and details of the ead_address structure, see 20.1.51 ead_address structure (EADS server address
information).

reserved[8]
Reserved area.

20.1.51 ead_address structure (EADS server address information)
The ead_address structure contains EADS server address information.

(1) Format

struct ead_address {
 unsigned char ip[4];
 unsigned short port;
};

(2) Descriptions of members
ip

Stores the EADS server's IP address.
port

Stores the EADS server's port number.

20. API Reference (C)

Hitachi Elastic Application Data Store 641

20.2 Error codes in the client library (C)

The error codes described below are returned by the functions in the C client library, in the location specified in the
argument error_code.

The following table lists each error code along with its meaning and cause.

Table 20‒2: Error codes returned by functions in the C client library

Error
code

Symbolic constant Nature of error Cause Processing
status of data
updating API
function#

Value of
error_code when
0300 is specified
in the
eads.client.comp
at parameter in
the client
properties

0 EAD_OK Processing terminated
normally.

Not applicable. Y 0

1000 EAD_ERROR_UNEXPECTED An unexpected error
occurred.

An unexpected error
occurred in the
program.

U 1000

1010 EAD_ERROR_ILLEGAL_ARGUMEN
T

The specified
parameter is invalid.

An invalid
parameter was
specified in an API
function argument.

N 1010

1040 EAD_ERROR_CACHE_NOT_START
ED

The operation could
not be executed
because the cache has
not been started.

An attempt was
made to manipulate
data after the cache
had stopped (after
execution of
ead_stop_cach
e()).

N 1040

1100 EAD_ERROR_CACHE_NOT_NEED_
STOP

An attempt was made
to stop a cache that has
already stopped.

Because the cache
has already stopped,
there is no need to
execute
ead_stop_cach
e().

-- 1100

1110 EAD_ERROR_INVALID_NODE_AD
DRESS

The specified EADS
server's address
information does not
match any EADS
server address
information managed
by the EADS client.

The address
information (IP
address and port
number) of the
EADS server
specified in the
argument of the API
function does not
match any EADS
server address
information
maintained by the
EADS client.

-- 1110

1120 EAD_ERROR_EXCEED_MAX_CONN
ECTION_POOL_SIZE

The number of
connections to be
pooled for the same
connection target has
already reached the

The number of
concurrent threads
issuing requests to
the same EADS
server has exceeded

N 1120

20. API Reference (C)

Hitachi Elastic Application Data Store 642

Error
code

Symbolic constant Nature of error Cause Processing
status of data
updating API
function#

Value of
error_code when
0300 is specified
in the
eads.client.comp
at parameter in
the client
properties

maximum value and
all of them are in use.

the maximum
number of
connections.

2000 EAD_ERROR_INIT An error occurred
during initialization of
the EADS client.

An unexpected error
occurred while
executing
ead_init_clie
nt() or
ead_init_clie
nt_n().

-- 2000

2010 EAD_ERROR_INIT_PROPERTIES The client property
file could not be read.

The following are
possible causes of
the error:
• The client

property file
does not exist.

• The client
property file
does not have
read
permissions.

• The specified
storage
destination path
name is a
directory, not a
file.

-- 2010

2020 EAD_ERROR_INIT_INVALID_PR
OPERTY

There is an invalid
property in the client
property file.

A property in the
client property file
is invalid.

-- 2020

2030 EAD_ERROR_INIT_LOGGER An attempt to
initialize the logger
failed.

The following are
possible causes of
the error:
• The specified

directory or log
file at the output
destination does
not have write
permissions.

• A file with the
same name
already exists in
the specified
directory.

• The specified
path name or file
name is invalid.

• There is a
directory that
has the same

-- 2030

20. API Reference (C)

Hitachi Elastic Application Data Store 643

Error
code

Symbolic constant Nature of error Cause Processing
status of data
updating API
function#

Value of
error_code when
0300 is specified
in the
eads.client.comp
at parameter in
the client
properties

name as the log
file.

• There is not
enough memory
to start log
output.

2040 EAD_ERROR_INIT_CLUSTERINF
O

An attempt to connect
to the EADS server
specified in the client
property file failed.

The following are
possible causes of
the error:
• There is an error

in the client
property
specification of
the connection-
target EADS
server.

• Communication
could not be
established with
the connection-
target EADS
server. Or, a
failure occurred
on the
connection-
target EADS
server.

• The maximum
number of
simultaneous
connections to
the EADS
server has been
exceeded.

• The connection-
target EADS
server is not
ready to accept
requests.

-- 2040

3000 EAD_ERROR_NET A communication
error has occurred
with the EADS server.

The following are
possible causes of
the error:
• A network

failure occurred
during
communication.

• A problem
occurred on the
EADS server
with which the
client was
communicating.

U 3000

20. API Reference (C)

Hitachi Elastic Application Data Store 644

Error
code

Symbolic constant Nature of error Cause Processing
status of data
updating API
function#

Value of
error_code when
0300 is specified
in the
eads.client.comp
at parameter in
the client
properties

• A problem
occurred on the
host with which
the client was
communicating.

3001 EAD_ERROR_NET_SEND_REQUES
T

A communication
error occurred while a
request was being sent
to an EADS server.

The following are
possible causes of
the error:
• A network

failure occurred
during
communication.

• A problem
occurred on the
EADS server
with which the
client was
communicating.

• A problem
occurred on the
host with which
the client was
communicating.

U 3000

3002 EAD_ERROR_NET_RECEIVE_RES
PONSE

A communication
error occurred while a
response was being
received from an
EADS server.

The following are
possible causes of
the error:
• A network

failure occurred
during
communication.

• A problem
occurred on the
EADS server
with which the
client was
communicating.

• A problem
occurred on the
host with which
the client was
communicating.

U 3000

3010 EAD_ERROR_NET_TIMEOUT A timeout occurred
during
communication with
the EADS server.

The following are
possible causes of
the error:
• A problem

occurred on the
connection-
target EADS
server.

• A problem
occurred on the

U 3010

20. API Reference (C)

Hitachi Elastic Application Data Store 645

Error
code

Symbolic constant Nature of error Cause Processing
status of data
updating API
function#

Value of
error_code when
0300 is specified
in the
eads.client.comp
at parameter in
the client
properties

connection-
target host.

• A network
problem
occurred.

• The timeout
interval setting
is incorrect.

3011 EAD_ERROR_NET_SEND_TIMEOU
T

A timeout occurred
while a request was
being sent to an EADS
server.

The following are
possible causes of
the error:
• A problem

occurred on the
connection-
target EADS
server.

• A problem
occurred on the
connection-
target host.

• A network
problem
occurred.

• The timeout
interval setting
is incorrect.

U 3010

3012 EAD_ERROR_NET_RECEIVE_TIM
EOUT

A timeout occurred
while a response was
being received from
an EADS server.

The following are
possible causes of
the error:
• A problem

occurred on the
connection-
target EADS
server.

• A problem
occurred on the
connection-
target host.

• A network
problem
occurred.

• The timeout
interval setting
is incorrect.

U 3010

3020 EAD_ERROR_NET_CONNECTION The connection to the
EADS server failed.

The following are
possible causes of
the error:
• A problem

occurred on the
connection-

N 3020

20. API Reference (C)

Hitachi Elastic Application Data Store 646

Error
code

Symbolic constant Nature of error Cause Processing
status of data
updating API
function#

Value of
error_code when
0300 is specified
in the
eads.client.comp
at parameter in
the client
properties

target EADS
server.

• The settings for
the connection-
target EADS
server are
incorrect.

• A network
problem
occurred.

• The timeout
interval setting
is incorrect.

3030 EAD_ERROR_NET_PROTOCOL A protocol failure
occurred during
communication with
the EADS server.

The following are
possible causes of
the error:
• There might be a

problem with
the connection-
target EADS
server.

• The executed
user function
returned a value
that is neither a
byte array nor
NULL.

• The cache for
the connected
cluster is in use
by Java client
libraries.

U 3030

3040 EAD_ERROR_NET_CLUSTERINFO It was not possible to
connect to all of the
available EADS
servers.

The following are
possible causes of
the error:
• Problems

occurred on the
connection-
target EADS
servers.

• The settings for
the connection-
target EADS
servers are
incorrect.

• A network
problem
occurred.

• The specified
cache does not
exist on the
connection-

-- 3040

20. API Reference (C)

Hitachi Elastic Application Data Store 647

Error
code

Symbolic constant Nature of error Cause Processing
status of data
updating API
function#

Value of
error_code when
0300 is specified
in the
eads.client.comp
at parameter in
the client
properties

target EADS
server.

• The connection-
target EADS
server has been
closed.

• The cluster
information
maintained by
the EADS client
does not match
the cluster
information
maintained by
the restarted
connection-
target EADS
server.

• The maximum
number of
simultaneous
connections to
the EADS
server has been
exceeded.

4000 EAD_ERROR_SERVER An unexpected
internal error occurred
on the EADS server.

An unexpected
internal error
occurred on the
connection-target
EADS server.

U 4000

4010 EAD_ERROR_SERVER_UNSUPPOR
TED_REQUEST

The request sent by the
EADS client could not
be processed by the
connection-target
EADS server.

Possible causes are
as follows:
• The connection-

target EADS
server cannot
process the
request for a
reason such as
corrupted data.

• The API
function used is
not supported by
the connection-
target EADS
server.

N 4010

4030 EAD_ERROR_SERVER_UNAVAILA
BLE

The connection-target
EADS server process
is temporarily
unavailable.

The maximum
number of
simultaneous
connections to the
EADS server has
been exceeded.

N 4030

20. API Reference (C)

Hitachi Elastic Application Data Store 648

Error
code

Symbolic constant Nature of error Cause Processing
status of data
updating API
function#

Value of
error_code when
0300 is specified
in the
eads.client.comp
at parameter in
the client
properties

4040 EAD_ERROR_SERVER_INCOMPAT
IBLE_CLUSTERINFO

The cluster
information
maintained by the
connection-target
EADS server is not
compatible with the
cluster information
maintained by the
EADS client.

The cluster
information
maintained by the
restarted
connection-target
EADS server does
not match the
cluster information
maintained by the
EADS client.

N 4040

4060 EAD_ERROR_SERVER_REPLACE_
METHOD_NOT_MATCHED

The value could not be
stored because the
value existing during
execution of
ead_replace()
did not match the
value specified in the
condition.

The value specified
in the condition in
ead_replace()
did not match the
value in the cache.

N 4060

4070 EAD_ERROR_SERVER_REPLACE_
METHOD_KEY_NOT_EXIST

During execution of
ead_replace(),
processing could not
continue because the
specified key could
not be found (no value
for the key could be
found).

The values could
not be compared
because no value
could be found for
the key specified in
ead_replace()
.

N 4070

4080 EAD_ERROR_SERVER_CREATE_M
ETHOD_KEY_EXIST

During execution of
ead_create(), the
value could not be
stored because the
specified key already
exists.

A value was already
stored for the key
specified in
ead_create().

N 4080

4090 EAD_ERROR_SERVER_UPDATE_M
ETHOD_KEY_NOT_EXIST

During execution of
ead_update(), the
value could not be
stored because the
specified key was not
found.

No value was stored
for the key specified
in
ead_update().

N 4090

4100 EAD_ERROR_SERVER_NOT_RUNN
ING

No EADS server is
available for
processing requests.

Possible causes are
as follows:
• The EADS

server that
processes
requests from
the EADS client
and the EADS
servers to which
data is to be
copied are all
isolated or
stopped.

N 4100

20. API Reference (C)

Hitachi Elastic Application Data Store 649

Error
code

Symbolic constant Nature of error Cause Processing
status of data
updating API
function#

Value of
error_code when
0300 is specified
in the
eads.client.comp
at parameter in
the client
properties

• The cluster is
not available.

4110 EAD_ERROR_SERVER_STATUS The EADS server is in
a status in which
requests cannot be
processed.

The request could
not be processed
due to the status of
the connection-
target EADS server.

N 4000

4200 EAD_ERROR_SERVER_CACHE A cache operation
failed.

An operation could
not be performed on
a cache because a
problem occurred
on the connection-
target EADS server.
Stop the operation
and check the
EADS server's
status.

N 4000

4210 EAD_ERROR_SERVER_CACHE_NO
T_FOUND

A cache operation
failed because the
specified cache did
not exist.

An operation could
not be performed on
a cache because the
specified cache did
not exist. Stop
operation on the
specified cache and
check the EADS
server's status.

N 4000

4230 EAD_ERROR_SERVER_CACHE_CL
USTER_UPDATE

A cache operation
failed because the
cluster configuration
was changed during
request processing.

An operation could
not be performed on
a cache because the
cluster
configuration was
changed during
request processing.
Perform the cache
operation again
after the cluster
configuration
change processing
has been completed.

N 4000

4300 EAD_ERROR_SERVER_CACHE_BE
FORE_REPLICATION

An internal error
occurred during a
cache operation, but
redundant copies of
data had not been
created.

An internal error
occurred during a
cache operation on
the connection-
target EADS server.
No other normal
EADS servers are
affected because
redundant copies of
data had not been
created. You can
restart the same

N 4000

20. API Reference (C)

Hitachi Elastic Application Data Store 650

Error
code

Symbolic constant Nature of error Cause Processing
status of data
updating API
function#

Value of
error_code when
0300 is specified
in the
eads.client.comp
at parameter in
the client
properties

operation after the
EADS server is
isolated and then the
connection target is
changed to a normal
EADS server.

4310 EAD_ERROR_SERVER_CACHE_AF
TER_REPLICATION

An internal error
occurred on the EADS
server during cache
operation and the data
update operation
failed.

An internal error
occurred on the
connection-target
EADS server during
cache operation.
Because redundant
copies of data had
already been
created, once the
erroneous
connection-target
EADS server is
isolated and the
connection target is
changed to a normal
server, you can
restart the operation
from the status in
which data had been
updated.

U 4000

4700 EAD_ERROR_SERVER_FUNCTION
_EXECUTE

An error occurred in
the user function on
the EADS server.

An error occurred in
the user function on
the connection-
target EADS server.
Check the user
function's
processing.

-- 4000

4710 EAD_ERROR_SERVER_FUNCTION
_RETURN_SERIALIZE

Serialization
processing on the
return value of the user
function failed on the
EADS server.

An object that is not
serializable is
specified for the
return value of the
user function
executed on the
connection-target
EADS server.

-- 4000

4730 EAD_ERROR_SERVER_FUNCTION
_NOT_FOUND

No user function with
the specified user
function name exists
on the EADS server.

No user function
with the specified
user function name
exists on the
connection-target
EADS server.

-- 4000

4800 EAD_ERROR_SERVER_LIMIT_EX
TERNAL_MEMORY

There is a shortage of
memory for storing
data.

The request could
not be processed
because the memory
for storing data

N 4000

20. API Reference (C)

Hitachi Elastic Application Data Store 651

Error
code

Symbolic constant Nature of error Cause Processing
status of data
updating API
function#

Value of
error_code when
0300 is specified
in the
eads.client.comp
at parameter in
the client
properties

(explicit heap) was
insufficient on the
connection-target
EADS server.

4810 EAD_ERROR_SERVER_LIMIT_CA
CHE_FILE

There is a shortage of
capacity in the cache
files for storing data.

The request could
not be processed
because the capacity
of cache files for
storing data was
insufficient on the
connection-target
EADS server.

N 4000

4820 EAD_ERROR_SERVER_LIMIT_KV
_COUNT

The number of keys
that can be stored on
the EADS server has
reached the upper
limit.

The request could
not be processed
because the number
of keys that can be
specified on the
connection-target
EADS server had
reached the upper
limit.

N 4000

4830 EAD_ERROR_SERVER_LIMIT_KE
Y_VALUE_LENGTH

The size of the
specified key, group
name, or value is
greater than the
maximum size
permitted in the
cluster.

The request could
not be processed
because the size of
the specified key,
group name, or
value was greater
than the maximum
size permitted in the
cluster.

N 4000

4999 EAD_ERROR_SERVER_UNKNOWN A nonanalyzable
internal error occurred
on the EADS server.

An internal error
occurred on the
connection-target
EADS server, but
the error could not
be analyzed because
the version of the
connection-target
EADS server was
later than the
version of the
EADS client
libraries.

U 4000

5000 EAD_ERROR_CLIENT An internal error
occurred on an EADS
client.

An unexpected error
occurred in client
libraries.

U 5000

5010 EAD_ERROR_CLIENT_OUT_OF_M
EMORY

Memory allocation in
the EADS client
failed.

Memory allocation
failed in client
libraries.

U 5010

20. API Reference (C)

Hitachi Elastic Application Data Store 652

Error
code

Symbolic constant Nature of error Cause Processing
status of data
updating API
function#

Value of
error_code when
0300 is specified
in the
eads.client.comp
at parameter in
the client
properties

5020 EAD_ERROR_CLIENT_BATCH_CA
NCEL

Batch operation was
cancelled.

Unperformed
operations were
cancelled because
batch operation
could not be
continued.

N 5020

6000 EAD_ERROR_BATCH_FAILED_AL
L

All of the batch
operations failed.

An attempt was
made to perform a
batch operation on
data by using an API
function, but all
operations failed.

-- 6000

6010 EAD_ERROR_BATCH_FAILED_PA
RT

Part of the batch
operations failed.

An attempt was
made to perform a
batch operation on
data by using an API
function, but some
of the operations
failed.

-- 6010

#
Indicates whether data updating had occurred when the error code was issued during execution of an API function
for updating data, such as ead_put() or ead_remove().
The meanings of the letters in this column are as follows:
Y: The data had been updated.
U: Whether the data had been updated is unknown. Check whether the processing was completed.
N: The data had not been updated.
--: This error code is not issued when an API function for updating data, such as ead_put() or
ead_remove(), is executed.

20. API Reference (C)

Hitachi Elastic Application Data Store 653

Part 5: Useful Lists and Messages

21 Useful Lists

This chapter lists and explains the maximum and minimum values.

Hitachi Elastic Application Data Store 654

21.1 List of minimum and maximum values

The following table lists minimum and maximum values in EADS.

Table 21‒1: Minimum and maximum values

No. Item Minimum
value

Maximum value

1 Number of EADS client connections per EADS server 1 1,024

2 Number of EADS servers that make up one cluster 1#1 96

3 Number of caches that can be created per cluster 0 16

4 Number of data items that can be stored on one EADS server#2 0 2,147,483,647

5 Data multiplicity 1 5

6 Length of a key (in characters) 1 1,024

7 Size of a value#3 (in bytes) 1 262,144

8 Length of a group name (in characters) 1 1,022

9 Length of a cache name (in characters) 1 32

10 Number of groups 1 No limit

11 Number of group hierarchies 1 511

12 Size of all cache data files in a range (in megabytes) 16 128

13 Number of cache data files in a range 8 32,768

14 Number of data items that can be specified in one cache data file -- 131,070

Legend:
--: Not applicable.

#1
The number of EADS servers that make up a cluster must be at least the data multiplicity 2 - 1.

#2
Includes the number of data items copied by data redundancy processing.

#3
For details about the size of a value, see 15.2.2(3) Data types that can be specified as values.

21. Useful Lists

Hitachi Elastic Application Data Store 655

22 Messages

This chapter lists the messages that are output, and explains their meanings and the corrective
actions to take.

Hitachi Elastic Application Data Store 656

22.1 Message output format

XXXXnnnnn-Y
message-text

Description of variable values

Description
Message description that supplements message-text

Action
Description of the action that the user is recommended to take

The table below lists and describes each of these elements in more detail. Note that for some messages there might not
be a description of variable values or an action to take in response to the message.

Item Description

XXXXnnnnn This represents the message ID. It is composed of the following elements:

XXXX
This is KDEA, the message prefix for EADS messages.

nnnnn
This represents the message number maintained by EADS. Each message has a unique five-digit number.

Y This represents the level of the message.
The level of the message is indicated by a single letter.
The meanings of the letters that indicate the message levels are as follows:

E (Error)
This is a message notifying you that an error has occurred.
When this message is output, processing is suspended.

W (Warning)
This is a message notifying you that a warning-level problem has occurred.
After this message is output, processing continues.

I (Information)
This is a message notifying you about system operations.
After this message is output, processing continues.

Message text This represents the message text output by EADS.

Description of variable
values

The format xx....xx: displayed-information is used to indicate information displayed in the variable values in the
message text (where xx are lowercase letters).
The following is an example of a description of variable values:

Example:
aa....aa: IP address
bb....bb: Port number

Description This provides information that supplements the message text, such as the cause of the problem reported in the
message, or the type of EADS operation that produced the message.

Action This indicates the action that the user is recommended to take.

22. Messages

Hitachi Elastic Application Data Store 657

22.2 KDEA00001 to KDEA01999

This section describes messages KDEA00001 to KDEA01999 and explains the corrective actions to take in response
to each message.

KDEA00001-I
The server will now start. (server name = aa....aa)

aa....aa: EADS server name (management directory name)

Description
The EADS server is starting.

KDEA00002-I
The server will now shut down. (server name = aa....aa)

aa....aa: EADS server name (management directory name)

Description
The EADS server is stopping.

KDEA00003-W
The server status was set to "ISOLATED".

Description
The EADS server has become isolated.

Action
The possible causes are as follows:

• The eztool isolate command was executed.

• A problem that prevents operation occurred on the EADS server.

See 12.2.1 If one or more EADS servers are isolated, and take action according to the instructions given in this
subsection.

KDEA00004-E
Log initialization failed. (directory path = aa....aa)

aa....aa: Path name of the log output destination

Description
An attempt to initialize the log failed.

Action
The possible causes are as follows:

• The specified log output directory is invalid.

• There is a problem in the log output directory or with the log file permissions.

Determine the cause of the error, eliminate it, and then restart the EADS server.

22. Messages

Hitachi Elastic Application Data Store 658

KDEA00005-E
A property file cannot be read. (file path = aa....aa)

aa....aa: Path name to the property file

Description
The property file cannot be read.
The possible causes are as follows:

• The property file does not exist.

• The property file cannot be opened.

• The path name points to a directory rather than to a file.

Action
Determine the cause of the error from the standard output, message logs, or exception logs, eliminate it, and then
restart the EADS server.

KDEA00006-E
The server failed to start. Startup of the server will now end.

Description
Startup processing failed.
Startup of the EADS server is stopping because a problem occurred during startup processing of the EADS server.

Action
Determine the cause of the error by checking the message that was output immediately before this message, eliminate
the cause, and then restart the EADS server.

KDEA00016-E
An attempt to open a port failed. (address = aa....aa:bb....bb)

aa....aa: IP address

bb....bb: Port number

Description
The communication port cannot be opened.
The possible causes are as follows:

• The specified IP address is invalid.

• The specified port number is already in use.

• The same port number was specified for different parameters.

• The specified port number is a well-known port for which the user does not have permissions.

Action
Check and, if necessary, revise the values specified in the following server property parameters:

• eads.server.address
• eads.server.port
• eads.admin.operation.port

22. Messages

Hitachi Elastic Application Data Store 659

Determine the cause of the error from the exception logs, eliminate it, and then restart the EADS server.

KDEA00020-I
Initialization of the server will now start. (version = aa....aa)

aa....aa: EADS server version

Description
Initialization of the EADS server is starting.

KDEA00021-I
Initialization of the server was completed.

Description
Initialization of the EADS server has been completed.

KDEA00028-E
An exception occurred on the server. (exception = aa....aa)

aa....aa: Exception (or error) that occurred

Description
An exception (or error) occurred on the EADS server.
The EADS server has stopped.

Action
Determine the cause of the error from the exception logs and the message that was output immediately before this
message, eliminate the cause, and then restart the EADS server.

KDEA00029-E
The specified cache was not found. (cache name = aa....aa)

aa....aa: Cache name

Description
The specified cache was not found. An operation was performed on a nonexistent cache.

Action
Create the cache, or else check the processing and revise it if necessary.

KDEA00031-E
The thread stopped. (thread name = aa....aa)

aa....aa: Thread name

Description
A problem occurred on the EADS server, and the thread stopped.

22. Messages

Hitachi Elastic Application Data Store 660

Action
Contact the customer support center.

KDEA00032-E
An exception occurred while waiting for a connection request. (local = aa....aa:bb....bb)

aa....aa: IP address of the EADS server (string representation of java.net.InetAddress)

bb....bb: Port number of the EADS server

Description
An exception occurred while waiting for a connection request.

Action
The possible causes are as follows:

• A problem occurred on the EADS client with which communication was underway.

• A problem occurred on the EADS server with which communication was underway.

• A problem occurred on the host with which communication was underway.

• A network problem occurred.

Determine the cause of the error from the exception logs and then eliminate it.

KDEA00033-W
The number of received connection requests exceeds the maximum number of simultaneous connections. (local =
aa....aa:bb....bb, remote = cc....cc:dd....dd, max connections = ee....ee)

aa....aa: IP address of the EADS server (string representation of java.net.InetAddress)

bb....bb: Port number of the EADS server

cc....cc: IP address of the connection source (string representation of java.net.InetAddress)

dd....dd: Port number of the connection source

ee....ee: Maximum number of simultaneous connections

Description
The server received a connection request that exceeded the maximum number of simultaneous connections.
The EADS server returns an error and cuts off communication for connections exceeding the maximum number of
simultaneous connections.
Note that this message might also be output in the following cases:

• All EADS servers in the cluster are restarted while the EADS client is running.

• A connection timeout occurs between the EADS client and the EADS server due to a temporary increase in load
on the EADS server.

Action
Check and, if necessary, revise the maximum number of simultaneous connections (the server property parameter
eads.server.maxConnections).

22. Messages

Hitachi Elastic Application Data Store 661

KDEA00036-E
An exception occurred during request handling. (local = aa....aa:bb....bb, remote = cc....cc:dd....dd)

aa....aa: IP address of the EADS server (string representation of java.net.InetAddress)

bb....bb: Port number of the EADS server

cc....cc: IP address of the connection source (string representation of java.net.InetAddress)

dd....dd: Port number of the connection source

Description
An exception occurred while the request was being processed.

Action
The possible causes are as follows:

• A problem occurred on the EADS client with which communication was underway.

• A problem occurred on the host with which communication was underway.

• A network problem occurred.

Determine the cause of the problem, and then eliminate it.

KDEA00039-E
An exception or error occurred on the server. (details = aa....aa)

aa....aa: Details

Description
An exception (or error) occurred on the EADS server while a request was being processed. As a result,
communication was cut off.

Action
Determine the cause of the error from the exception logs and then eliminate it.
If it remains unresolved, contact the customer support center.

KDEA00041-I
The port will now close. (address = aa....aa:bb....bb)

aa....aa: IP address (string representation of java.net.InetAddress)

bb....bb: Port number

Description
The port is closing.

KDEA00042-I
The library was added to the class path. (file path = aa....aa)

aa....aa: Path name of the library file

22. Messages

Hitachi Elastic Application Data Store 662

Description
The library was added to the classpath.

KDEA00045-E
A received request is not supported by the server. (local = aa....aa:bb....bb, remote = cc....cc:dd....dd)

aa....aa: IP address of the EADS server

bb....bb: Port number of the EADS server

cc....cc: IP address of the connection source

dd....dd: Port number of the connection source

Description
A received request is not supported by the EADS server.
The request will not be processed.

Action
The possible causes are as follows:

• An invalid EADS client is connected.

• A different version of the EADS client is connected.

Make sure that the correct EADS client is being used.

KDEA00047-E
An error occurred during reception of a request. (local = aa....aa:bb....bb, remote = cc....cc:dd....dd)

aa....aa: IP address of the EADS server (string representation of java.net.InetAddress)

bb....bb: Port number of the EADS server

cc....cc: IP address of the connection source (string representation of java.net.InetAddress)

dd....dd: Port number of the connection source

Description
An error occurred during reception processing of the request.

Action
The possible causes are as follows:

• A problem occurred on the EADS client with which communication was underway.

• A problem occurred on the host with which communication was underway.

• A network problem occurred.

Determine the cause of the error from the exception logs and then eliminate it.

KDEA00048-E
An error occurred during the sending of a response. (local = aa....aa:bb....bb, remote = cc....cc:dd....dd)

aa....aa: IP address of the EADS server (string representation of java.net.InetAddress)

22. Messages

Hitachi Elastic Application Data Store 663

bb....bb: Port number of the EADS server

cc....cc: IP address of the connection source (string representation of java.net.InetAddress)

dd....dd: Port number of the connection source

Description
An error occurred during send processing of the response.

Action
The possible causes are as follows:

• A problem occurred on the EADS client with which communication was underway.

• A problem occurred on the host with which communication was underway.

• A network problem occurred.

Determine the cause of the error from the exception logs and then eliminate it.

KDEA00049-I
A redirect notification was sent to the client. (local = aa....aa:bb....bb, remote = cc....cc:dd....dd, redirect =
ee....ee:ff....ff)

aa....aa: IP address of the EADS server (string representation of java.net.InetAddress)

bb....bb: Port number of the EADS server

cc....cc: IP address of the connection source (string representation of java.net.InetAddress)

dd....dd: Port number of the connection source

ee....ee: IP address of the redirect destination (string representation of java.net.InetAddress)

ff....ff: Port number of the redirect destination

Description
The EADS client is notified of the redirection.

KDEA00050-E
An unexpected initialization error occurred.

Description
An unexpected initialization error occurred.

Action
Contact the customer support center.

KDEA00051-E
The content of the request is invalid.

Description
The content of the request is invalid.

22. Messages

Hitachi Elastic Application Data Store 664

Action
The possible causes are as follows:

• A problem occurred on the EADS client with which communication was underway.

• A problem occurred on the host with which communication was underway.

• A network problem occurred.

Determine the cause of the error, and then eliminate it.

KDEA00052-E
An unexpected exception occurred.

Description
An unexpected exception occurred.

Action
Contact the customer support center.

KDEA00053-E
Loading of the library file failed.

Description
An attempt to load the library file failed.

Action
The possible causes are as follows:

• The library file is invalid.

• There is a problem in the library file or directory permissions.

Determine the cause of the error, and then eliminate it.

KDEA00054-I
A server port was opened. (local = aa....aa:bb....bb)

aa....aa: IP address of the EADS server (string representation of java.net.InetAddress)

bb....bb: Port number of the EADS server

Description
A port was opened.

KDEA00055-I
The server will now start accepting requests. (local = aa....aa:bb....bb)

aa....aa: IP address of the EADS server (string representation of java.net.InetAddress)

bb....bb: Port number of the EADS server

Description
The server will now start accepting requests.

22. Messages

Hitachi Elastic Application Data Store 665

KDEA00056-E
An unexpected exception occurred. (detail = aa....aa)

aa....aa: Maintenance information

Description
An unexpected exception occurred.

Action
Contact the customer support center.

KDEA00057-E
An attempt to allocate the data area has failed. (type = aa....aa, data size = bb....bb)

aa....aa: Type

bb....bb: Size of the memory area whose allocation was attempted

Description
An attempt to allocate memory failed because there is not enough available memory area.
The following table provides the cause by type:

Type Cause

store There is not enough available memory area for storing values.

Action
Take the following action according to the type:

Type Action

store Increase the value of the eads.java.external.heapsize parameter in the shared properties.

KDEA00058-E
The input data are too long. (type = aa....aa, request = bb....bb, limit = cc....cc)

aa....aa: Type

bb....bb: Required size

cc....cc: Size limit

Description
The size required for the input data exceeds the size limit.
The following table provides the cause by type:

Type Cause

store The value specified in the eads.java.external.heapsize shared property parameter is too small for the size of
the value.
Alternatively, the value size exceeds the maximum value that can be specified.

dist The value of the eads.replication.external.heapsize parameter in the shared properties is too small for the
size of the history of update operations.

22. Messages

Hitachi Elastic Application Data Store 666

Action
Make sure that the value size does not exceed the maximum value that can be specified.
If the value size does not exceed the maximum value that can be specified, take the action appropriate for the type
as shown in the following table:

Type Action

store Increase the value of the eads.java.external.heapsize parameter in the shared properties.

dist Increase the value of the eads.replication.external.heapsize parameter in the shared properties.
If you increase this parameter value, also increase the value of the eads.java.external.heapsize parameter in
the shared properties.

KDEA00060-W
The fragmentation of data occurred. (type = aa....aa, count = bb....bb)

aa....aa: Type

bb....bb: Number of times data fragmentation occurred

Description
The data stored in the explicit heap was fragmented.
The following table provides the cause by type:

Type Cause

store Values were fragmented.

dist The history of update operations was fragmented.

The displayed count indicates the number of times fragmentation has occurred since the last time this message was
output.

Action
If this message is output frequently, fragmentation might have occurred due to an inadequate explicit heap and as a
result performance might have become degraded. Take the following action according to the type:

Type Action

store Increase the value of the eads.java.external.heapsize parameter in the shared properties.

dist Increase the value of the eads.replication.external.heapsize parameter in the shared properties.
If you increase this parameter value, also increase the value of the eads.java.external.heapsize parameter in
the shared properties.

KDEA00061-E
The size of key exceeds the maximum. (maximum size (bytes) = aa....aa, key size (bytes) = bb....bb)

aa....aa: Maximum size (unit: bytes)

bb....bb: key size (unit: bytes)

Description
The specified key size exceeds the maximum size of a key that can be stored in the cluster.

22. Messages

Hitachi Elastic Application Data Store 667

Action
Check and, if necessary, revise the specified key size.
Check and, if necessary, revise the value of the eads.cache.key.maxsize parameter in the shared properties.

KDEA00062-E
The size of group name exceeds the maximum. (maximum size (bytes) = aa....aa, group name size (bytes) = bb....bb)

aa....aa: Maximum size (unit: bytes)

bb....bb: Group name size (unit: bytes)

Description
The specified group name is longer than the maximum size of a group name that can be stored in the cluster (the
value of the eads.cache.key.maxsize parameter in the shared properties minus 2).

Action
Check and, if necessary, revise the length of the specified group name.
Check and, if necessary, revise the value of the eads.cache.key.maxsize parameter in the shared properties.

KDEA01004-I
Initialization of the user function is complete. (function name = aa....aa)

aa....aa: Name of the user function

Description
Initialization of the user function is complete.

KDEA01005-W
An exception or error occurred in the init method of the user function. (function name = aa....aa)

aa....aa: Name of the user function

Description
An exception (or error) occurred in init() in the user function.

Action
Check the user exception logs, eliminate the cause of the error, and then restart the EADS server.

KDEA01009-I
Processing to terminate the user function is complete. (function name = aa....aa)

aa....aa: Name of user function

Description
Termination processing of the user function is complete.

KDEA01010-W
Processing to terminate the user function failed. (function name = aa....aa)

22. Messages

Hitachi Elastic Application Data Store 668

aa....aa: Name of user function

Description
An attempt to terminate processing of the user function failed (an exception (or error) occurred in destroy() in
the user function).

Action
Check the user exception logs and eliminate the cause of the error.

KDEA01011-E
An exception or error occurred in the user function. (function name = aa....aa)

aa....aa: Name of user function

Description
An exception (or error) occurred in the user function (an exception (or error) occurred during the execution of
execute() in the user function).

Action
Check the user exception logs and eliminate the cause of the error.

KDEA01012-W
Generation of a user function instance failed. (function name = aa....aa)

aa....aa: Name of user function

Description
An attempt to generate a user function instance failed.

Action
The possible causes are as follows:

• An exception (or error) occurred while the user function instance was being generated.

• You do not have access permissions for the default constructor of the user function.

• The user function is in a format in which its instance cannot be generated.

Check the user exception logs, eliminate the cause of the error, and then restart the EADS server.

KDEA01016-E
An exception or error occurred in the user function call processing. (function name = aa....aa, details = bb....bb)

aa....aa: User function name to be called

bb....bb: Details

Description
An exception (or error) occurred in the processing of the user function call.

Action
Determine the cause of the error from the details, and then eliminate the problem.

22. Messages

Hitachi Elastic Application Data Store 669

KDEA01017-E
The specified user function was not found. (function name = aa....aa)

aa....aa: Name of the user function

Description
The specified user function was not found.

Action
The possible causes are as follows:

• No user function with the specified name exists on the EADS server.

• An attempt was made to execute an invalid user function.

Make sure the user function name is specified correctly.
If the user function name is specified correctly, make sure the specified user function is registered as a valid user
function on the EADS server.

KDEA01018-E
An attempt to serialize the user function execution results failed. (function name = aa....aa, details = bb....bb)

aa....aa: User function name to be called

bb....bb: Details

Description
The object specified in the return value as the user function execution results could not be serialized.

Action
Check whether the specified value is a serializable object.
If it is an object that is not serializable, change it to a serializable object.

KDEA01019-E
An attempt to deserialize the argument failed. (function name = aa....aa, details = bb....bb)

aa....aa: Name of user function to be called

bb....bb: Details

Description
An argument sent from the EADS client could not be deserialized.

Action
Check the classes in the user function library, and check whether the argument object specified in the EADS client
can be deserialized.
If the class is missing, add the class to the user function library or shared library, and then restart the EADS server.

KDEA01021-E
The specified cache was not found. (function name = aa....aa, cache name = bb....bb)

aa....aa: User function name to be called

22. Messages

Hitachi Elastic Application Data Store 670

bb....bb: Cache name

Description
An operation was performed on a nonexistent cache.

Action
Either create a cache or check and, if necessary, revise the specified cache name.

KDEA01022-I
Initialization of the user function library will now start. (file path = aa....aa)

aa....aa: File path

Description
Initialization of the user function library is starting.

KDEA01023-I
Initialization of the user function library is complete. (file path = aa....aa, success = bb....bb, failure = cc....cc)

aa....aa: File path

bb....bb: Number of user functions that have been initialized successfully

cc....cc: Number of user functions whose initialization failed

Description
Initialization of the user function library has been completed.

KDEA01024-I
No user function library was found.

Description
The user functions will not be initialized because there is no user function library.

KDEA01025-I
"user_function.jar" will not be initialized because a file called "user-function.jar" also exists.

Description
A user function whose file name is user_function.jar cannot be initialized because the same user function
already exists.

KDEA01026-I
A user function cannot be loaded because a user function with the same fully-qualified class name already exists.
(function name = aa....aa)

aa....aa: Name of the user function

22. Messages

Hitachi Elastic Application Data Store 671

Description
The target user function cannot be imported because a user function with the same fully qualified class name already
exists.

KDEA01027-E
An exception or error occurred in the initialization processing of the user function. (details = aa....aa)

aa....aa: Details

Description
An exception (or an error) occurred during user function initialization processing.

Action
Identify the cause of the error from the detailed information and exception logs, eliminate the problem, and then re-
start the EADS server.

KDEA01901-I
WRITING (cache = aa....aa, range = bb....bb, ecf = cc....cc, remain = dd....dd)

aa....aa: Cache name

bb....bb: Range ID

cc....cc: Path of the cache data files

dd....dd: Number of unused cache data files

Description
Import processing has started on the cache data files.

KDEA01902-I
COMPACTION (cache = aa....aa, range = bb....bb, ecf = cc....cc, size (total = dd....dd, relocated = ee....ee, valid
= ff....ff -> gg....gg), count (total = hh....hh, relocated = ii....ii, valid = kk....kk -> mm....mm), time = nn....nn, remain
= pp....pp)

aa....aa: Cache name

bb....bb: Range ID

cc....cc: Path of the cache data files subject to compaction (absolute path)

dd....dd: Size of space already in use in the files (bytes)

ee....ee: Amount of data moved (bytes)

ff....ff: Amount of effective data before compaction (bytes)

gg....gg: Amount of effective data after compaction (bytes)

hh....hh: Total number of data items including invalid data

ii....ii: Number of data items moved

22. Messages

Hitachi Elastic Application Data Store 672

kk....kk: Number of effective data items before compaction

mm....mm: Number of effective data items after compaction

nn....nn: Processing time (milliseconds)

pp....pp: Number of unused cache data files

Description
Compaction processing was performed on cache data files.

KDEA01903-I
FILE INFO (cache = aa....aa, range = bb....bb, ecf = cc....cc, size = dd....dd, allocated size = ee....ee)

aa....aa: Cache name

bb....bb: Range ID

cc....cc: Path of the cache data files

dd....dd: File size

ee....ee: Actual size allocated

Description
The actual size of the area allocated to the cache data files differs from the file sizes.

KDEA01904-I
CORRECTION (cache = aa....aa, range = bb....bb, ecf = cc....cc)

aa....aa: Cache name

bb....bb: Range ID

cc....cc: Path of the cache files

Description
Cache files were modified.

22. Messages

Hitachi Elastic Application Data Store 673

22.3 KDEA02000 to KDEA02999

This section describes messages KDEA02000 to KDEA02999 and explains what actions to take in response to each
message.

KDEA02001-I
Initialization of the client library will now start. (version = aa....aa)

aa....aa: EADS client version

Description
Initialization of the client library is starting.

KDEA02002-I
Initialization of the client library completed.

Description
Initialization of the client library is complete.

KDEA02003-E
Initialization of the client library failed.

Description
An attempt to initialize the client library failed.

Action
See 20.2 Error codes in the client library (C), and then eliminate the problem.

KDEA02008-I
Cache preparations finished. (cache name = aa....aa)

aa....aa: Cache name

Description
The cache is ready to use.

KDEA02009-I
The cache will no longer be used. (cache name = aa....aa)

aa....aa: Cache name

Description
Use of the cache is finished.

KDEA02011-I
The client library will now terminate.

22. Messages

Hitachi Elastic Application Data Store 674

Description
The client library is stopping.

KDEA02022-E
The connections to all servers making up the cluster failed.

Description
Connection establishment with all EADS servers constituting the cluster failed.

Action
The possible causes are as follows:

• The cluster was terminated.

• A problem occurred on the EADS server with which communication was underway.

• A problem occurred on the host with which communication was underway.

• A network problem occurred.

• The timeout settings are not appropriate.

Determine the cause of the error, and then eliminate it.

KDEA02023-I
The connection to the cluster was restored.

Description
The connection with the cluster has been restored.

KDEA02024-E
Initialization of the logger failed. (details = aa....aa)

aa....aa: Error details

Description
An attempt to initialize the logger failed.

Action
Check the error detail information and eliminate the problem.

KDEA02911-I
start RootAP(address = aa....aa, pid = bb....bb, no = cc....cc)

aa....aa: IP address

bb....bb: PID (number assigned to each application program by the EADS client)

cc....cc: Sequence number (hexadecimal)

Description
Communication with the EADS server is starting.

22. Messages

Hitachi Elastic Application Data Store 675

KDEA02912-I
end RootAP(address = aa....aa, pid = bb....bb, no = cc....cc)

aa....aa: IP address

bb....bb: PID (number assigned to each application program by the EADS client)

cc....cc: Sequence number (hexadecimal)

Description
Communication with the EADS server is stopping.

22. Messages

Hitachi Elastic Application Data Store 676

22.4 KDEA03000 to KDEA03999

This section describes messages KDEA03000 to KDEA03999 and explains what actions to take in response to each
message.

KDEA03001-I
Initialization of the client library will now start. (version = aa....aa)

aa....aa: EADS client version

Description
Initialization of the client library is starting.

KDEA03002-I
The client library process will now end.

Description
The client library is stopping.

KDEA03003-I
Cache preparations finished. (cache name = aa....aa)

aa....aa: Cache name

Description
The cache is ready to use.

KDEA03004-I
Use of the cache will now end. (cache name = aa....aa)

aa....aa: Cache name

Description
Use of the cache is finished.

KDEA03006-E
Initialization of the client library failed. (error code = aa....aa)

aa....aa: Error code

Description
An attempt to initialize the client library failed.

Action
See 18.1.5 CacheException class under (5)(c) Return value, and then eliminate the problem.

22. Messages

Hitachi Elastic Application Data Store 677

KDEA03019-I
Initialization of the client library completed.

Description
Initialization of the client library is complete.

KDEA03021-E
The connections to all servers making up the cluster failed.

Description
Connection establishment with all EADS servers constituting the cluster failed.

Action
The possible causes are as follows:

• The cluster was terminated.

• A problem occurred on the EADS server with which communication was underway.

• A problem occurred on the host with which communication was underway.

• A network problem occurred.

• The timeout settings are not appropriate.

Determine the cause of the error, and then eliminate it.

KDEA03022-I
The connection to the cluster was restored.

Description
The connection with the cluster has been restored.

KDEA03023-E
Initialization of the logger failed. (details = aa....aa)

aa....aa: Error details

Description
An attempt to initialize the logger failed.

Action
Check the error detail information and eliminate the problem.

KDEA03911-I
start RootAP(address = aa....aa, pid = bb....bb, no = cc....cc)

aa....aa: IP address

bb....bb: PID (number assigned to each application program by the EADS client)

cc....cc: Sequence number (hexadecimal)

22. Messages

Hitachi Elastic Application Data Store 678

Description
Communication with the EADS server is starting.

KDEA03912-I
end RootAP(address = aa....aa, pid = bb....bb, no = cc....cc)

aa....aa: IP address

bb....bb: PID (number assigned to each application program by the EADS client)

cc....cc: Sequence number (hexadecimal)

Description
Communication with the EADS server is stopping.

22. Messages

Hitachi Elastic Application Data Store 679

22.5 KDEA04000 to KDEA05999

This section describes messages KDEA04000 to KDEA05999 and explains what actions to take in response to each
message.

KDEA04504-E
An invalid property was detected. (definition file name = aa....aa, property name = bb....bb, property value =
cc....cc)

aa....aa: Invalid property file name

bb....bb: Invalid parameter name

cc....cc: Invalid parameter specification value (or blank if there is no value)

Description
An invalid parameter was detected.

Action
Check and, if necessary, revise the parameter indicated in the message.

KDEA04506-E
A data discrepancy in the definition file was detected. (node ID = aa....aa, definition file name = bb....bb)

aa....aa: EADS server ID of the EADS server whose property file does not match the other EADS servers' property files

bb....bb: Name of the property file whose contents do not match those of the other EADS servers' property files

Description
The contents of the property file do not match the contents of the other EADS servers' property files.

Action
Check if the contents of the property file match the contents of the other EADS servers' property files.
If this error occurs again, the EADS server might be accepting heartbeats from another cluster. If this is the case,
make sure that the specified destination IP address or port number
(eads.failureDetector.heartbeat.address and
eads.failureDetector.heartbeat.port parameters in the shared properties) is not duplicated in
another cluster.

KDEA04508-E
A boot timeout occurred. (node-list = aa....aa)

aa....aa: List of IP addresses and port numbers of EADS servers that did not finish starting within the specified time
period

Description
Not all the EADS servers that make up the cluster finished startup processing within the specified period of time.

Action
Make sure the EADS servers indicated in the message have been started.

22. Messages

Hitachi Elastic Application Data Store 680

This error might occur when the cluster consists of many EADS servers. If this is the case, change the maximum
wait time for all EADS servers making up the cluster to start (eads.admin.boot.timeout parameter in the
cluster properties). An appropriate value is number of EADS servers making up the cluster 5 seconds.
Also consider starting the EADS servers beginning with the EADS server with the smallest EADS server ID.

KDEA04528-E
A data discrepancy between the cluster-definition file and the server-definition file was detected.

Description
There is a discrepancy between the server property file and the cluster property file.

Action
Check whether the EADS server specified in the server property parameters eads.server.address and
eads.server.port is specified in the cluster property parameters eads.node.EADS-server-ID.address
and eads.node.EADS-server-ID.port.

KDEA04531-E
A server position was duplicated. (duplicated node ID1 = aa....aa, duplicated node ID2 = bb....bb)

aa....aa: EADS server ID of the first EADS server whose position is duplicated

bb....bb: EADS server ID of the second EADS server whose position is duplicated

Description
Two EADS servers making up the cluster have the same position.

Action
Make sure there are no duplicates for the cluster property parameter eads.node.EADS-server-ID.position.

KDEA04540-E
A client connection address was duplicated. (duplicated node ID1 = aa....aa, duplicated node ID2 = bb....bb)

aa....aa: EADS server ID of the first EADS server whose combination of IP address and port number is duplicated

bb....bb: EADS server ID of the second EADS server whose combination of IP address and port number is duplicated

Description
Two EADS servers have the same definition in the cluster property file.

Action
Check the eads.node.EADS-server-ID.address and eads.node.EADS-server-ID.port parameters in
the cluster properties for duplications.

KDEA04541-E
The cluster-definition file contains only part of the server position specification.

Description
The cluster property file contains position specifications for only some of the EADS servers.

22. Messages

Hitachi Elastic Application Data Store 681

Action
If you specify the eads.node.EADS-server-ID.position parameter in the cluster properties, you must specify
a position for all the EADS servers. If you want to omit some EADS server positions, do not specify any EADS
positions.

KDEA04661-E
Participation in the cluster failed. (error code = aa....aa)

aa....aa: Error code

Description
Cluster participation processing failed.

Action
Take the following actions:

1. If necessary, check the message that was output immediately before this message, determined the cause of the
error, and then eliminate it.

2. Execute the eztool status command to check the cluster status.
If an EADS server's status is shown as lock, it is still locked. In this case, execute the eztool unlock
command.

3. Execute the ezstart or ezserver command to perform startup, restoration, or scale-out processing again.
Note that if a cache failed to resume, but the cache has not been deleted by the eztool deletecache
command, the EADS servers cannot be restored. In such a case, execute the eztool deletecache command
to delete the cache that failed to resume.

KDEA04664-E
The relation between the number of servers and the number of replications was invalid. (number of servers =
aa....aa, number of replications = bb....bb)

aa....aa: Number of EADS servers

bb....bb: Data multiplicity

Description
The number of EADS servers making up the cluster is not at least the number of redundant copies of data 2 - 1.

Action
Check the cluster properties and either increase the number of EADS servers so that the number of EADS servers
making up the cluster is at least the number of redundant copies of data 2 - 1 or reduce the number of redundant
copies of data plus the original (value of the eads.replication.factor parameter in the shared properties).

KDEA04665-E
A server cannot be added when the number of replications is 1.

Description
If the data multiplicity (the number of redundant copies of data plus the original) is 1, EADS servers cannot be
added.

22. Messages

Hitachi Elastic Application Data Store 682

Action
Check and, if necessary, revise the number of redundant copies of data plus the original (value of the
eads.replication.factor parameter in the shared properties).
If you have started the cluster with the data multiplicity set to 1, export all needed data, stop all EADS servers, then
edit the cluster properties according to the most recent parameter settings. Restart all EADS servers.

KDEA04666-E
The number of servers in the cluster has already reached the maximum.

Description
The number of EADS servers in the cluster has already reached the upper limit.

Action
No more EADS server can be added because 96 EADS servers, which is the maximum number of EADS servers
that can make up a cluster, are already participating in the cluster.
Evaluate using another cluster.

KDEA04667-E
In the current state of the cluster, the server cannot participate in the cluster in the specified start type. (start type
= aa....aa, cluster state = bb....bb)

aa....aa: Start method

bb....bb: Cluster status

Description
The EADS server cannot use the specified start method to participate in a cluster that is in the current cluster status.

Action
The possible causes are as follows:

• The option specified in the ezstart or ezserver command is invalid.

• The EADS server was restarted or restored while it was being isolated.

• The cluster status is not available (not AVAILABLE).

• An attempt was made to add an EADS server when at least one EADS server was isolated.

Check the EADS server start options for any error or missing options. Also check if the cluster status satisfies the
conditions for the specified start method, and then restart the EADS server.

KDEA04668-E
The server could not participate in the cluster with the conditions specified in the options. (specified options =
aa....aa, details = bb....bb)

aa....aa: Options specified when the EADS server was started

bb....bb: Details

Description
The EADS server could not participate in the cluster with the conditions specified in the options.

22. Messages

Hitachi Elastic Application Data Store 683

Action
The possible causes are as follows:

• There is no EADS server with the specified EADS server ID.

• An EADS server already exists at the specified EADS server location (hash value).

• The range managed by the EADS server with the specified EADS server ID is 1.

Check and, if necessary, revise the option value, and then add the EADS server again.

KDEA04669-E
An attempt to lock the server failed.

Description
An attempt to acquire a lock failed.

Action
Execute the eztool status -v command to check the current processing, wait until the processing is finished,
and then restart the EADS server. If the processing has already finished but the lock has not been released, execute
the eztool unlock command to release the lock, and then restart the EADS server.

KDEA04691-I
The transmission of cache data will now start. (cache name = aa....aa)

aa....aa: Cache name

Description
Transmission of cache data is beginning.

KDEA04692-I
The cache data was successfully transferred. (cache name = aa....aa)

aa....aa: Cache name

Description
Transmission of cache data was successful.

KDEA04693-E
The transmission of cache data failed. (cache name = aa....aa, error code = bb....bb)

aa....aa: Cache name

bb....bb: Error code

Description
Transmission of cache data failed.

Action
The possible causes are as follows:

• An error occurred on an EADS server from which data was sent.

22. Messages

Hitachi Elastic Application Data Store 684

• A communication error occurred.

• An unexpected error occurred.

Determine the cause of the problem, and then eliminate it.

KDEA04697-E
Transmission of the data failed because a required server was not found.

Description
Transmission of data failed because an active EADS server required for the data transmission was not available.
There is no EADS server that stores required data, or the number of active EADS servers is equal to or less than the
number of data copies plus the original.

Action
Take the following actions:

1. Execute the eztool export command to export required data to a file.

2. Terminate all active EADS servers.

3. Start all EADS servers.

KDEA04698-E
An error occurred on the server that sent data.(error code = aa....aa)

aa....aa: Error code

Description
An error occurred on the EADS server that sent data.

Action
The possible causes are as follows:

• The transmission timed out.

• A communication error occurred.

• An unexpected error occurred.

• Restoration processing or scale-out processing could not be performed.

• An option specified in the ezstart or ezserver command was invalid.

Determine the cause of the error, eliminate it, and then restart the EADS server.

KDEA04703-E
The master switchover failed because a cache operation failed.

Description
Switchover to the source EADS server from which data is to be copied failed because a data operation failed.

Action
Check the messages that were output immediately before this one.

22. Messages

Hitachi Elastic Application Data Store 685

KDEA04722-E
A specified port is already being used. (self address = aa....aa, property name = bb....bb, port number = cc....cc)

aa....aa: IP address of the local EADS server

bb....bb: Name of the parameter that represents the port number

cc....cc: Specified port number

Description
The specified port number is already being used.

Action
Specify a port number that is not in use by another process.

KDEA04723-E
An unknown message was received. (source address = aa....aa, source port = bb....bb, header = cc....cc)

aa....aa: IP address of the message delivery source

bb....bb: Port number of the message delivery source

cc....cc: Header of the received message (hexadecimal)

Description
An invalid message was received. Another system is sending a message to a communication port that is in use.

Action
Check and, if necessary, revise the destination IP address or port number so that there is no interference in the delivery
of messages from another system.

KDEA04725-E
A message of an unsupported protocol version was received. (source address = aa....aa, source port = bb....bb,
protocol version = cc....cc)

aa....aa: IP address of the message delivery source

bb....bb: Port number of the message delivery source

cc....cc: Protocol version of the received message

Description
A message with an unsupported protocol version was received.
Systems using different protocol versions have been mixed.

Action
Check if the protocol version matches the installed EADS version.

KDEA04726-W
A connection timeout occurred during failure detection processing. (destination address = aa....aa, destination port
= bb....bb)

22. Messages

Hitachi Elastic Application Data Store 686

aa....aa: IP address of the connection-target EADS server

bb....bb: Port number of the connection-target EADS server

Description
During the check for live servers, a connection could not be established before the timeout period.

Action
If timeouts occur frequently, check the network devices for a failure.
Alternatively, check and, if necessary, revise the value of the
eads.failureDetector.connection.timeout parameter in the server properties.

KDEA04727-W
A read timeout occurred during failure detection processing. (destination address = aa....aa, destination port =
bb....bb)

aa....aa: IP address of the connection-target EADS server

bb....bb: Port number of the connection-target EADS server

Description
After establishing a connection during the check for live servers, nothing could be received before the timeout period.

Action
If timeouts occur frequently, check the network devices for a failure.
Alternatively, check and, if necessary, revise the eads.failureDetector.read.timeout parameter in the
server properties.

KDEA04728-E
An error occurred during establishment of a connection for failure detection processing. (error message = aa....aa)

aa....aa: Error message from the exception that was thrown from the JavaVM

Description
While a connection was being established for the check for live servers, a socket could not be created because an
exception was thrown from the JavaVM.

Action
Check whether the file descriptor was set according to estimates.
If the error continues to occur, contact the customer support center.

KDEA04752-I
Processing to isolate a server was successful. (server ID = aa....aa)

aa....aa: EADS server ID of the EADS server that was isolated

Description
Isolation processing has been completed.

22. Messages

Hitachi Elastic Application Data Store 687

KDEA04755-E
Processing to isolate a server failed because a cache operation failed.

Description
Isolation processing failed due to a data operation error.

Action
Check the messages that were output immediately before this one.

KDEA04781-I
A server will now be added to the cluster. (server ID = aa....aa)

aa....aa: EADS server ID of the EADS server that will be added to the cluster

Description
An EADS server is being added to the cluster.

KDEA04783-I
Processing to isolate a server will now start. (server ID = aa....aa)

aa....aa: EADS server ID of the EADS server that will be isolated

Description
The eztool isolate command was executed. The EADS server will now be isolated.

KDEA04785-I
A command lock will now be acquired.

Description
A command lock will now be acquired.

KDEA04786-I
A command lock could not be acquired.

Description
An attempt to acquire a command lock failed because another command already has a lock.

Action
Re-execute the command after the currently executing command has terminated.

KDEA04787-I
Acquisition of a command lock failed. (error code = aa....aa)

aa....aa: Error code

Description
An attempt to acquire a command lock failed.

22. Messages

Hitachi Elastic Application Data Store 688

Action
The possible causes are as follows:

• Another cluster was running.

• The EADS server was terminated.

Determine the cause of the error, eliminate it, and then re-execute the command.

KDEA04789-I
A command lock will now be released.

Description
A command lock will now be released.

KDEA04790-I
An attempt to release a lock failed. (error code = aa....aa)

aa....aa: Error code

Description
An attempt to release a command lock failed.

Action
The possible causes are as follows:

• Another cluster was running.

• The EADS server was terminated.

Determine the cause of the error, eliminate it, and then re-execute the eztool unlock command to release the
lock.

KDEA04792-I
Now waiting for executing requests to complete...

Description
The system is waiting for the current request processing to be completed.

KDEA04793-I
All requests are complete.

Description
The processing of all requests has been completed.
The system will now start processing the requests that arrived while the system was on standby.

KDEA04794-I
The wait for the lock to end will now start.

Description
A wait for completion of locking has started.

22. Messages

Hitachi Elastic Application Data Store 689

KDEA04795-I
The wait for the lock to end ended successfully.

Description
The wait for completion of locking has ended.

KDEA04799-E
Processing to isolate a server will now start. (server ID = aa....aa)

aa....aa: EADS server ID of the EADS server that will be isolated

Description
A nonoperational EADS server was detected during cluster monitoring. The EADS server will be isolated.

Action
Verify that the KDEA04752-I message has been output indicating that the isolation processing has been completed.
After that, execute one of the following commands to restore the isolated EADS server:

• ezstart -r command

• ezserver -r command

KDEA04800-E
This server will be stopped because a gap in the data could not be filled.

Description
This EADS server will be terminated because consensus processing can no longer be continued in the cluster.

Action
Check if the size of the area for storing the history of update operations has been set as estimated.
If a sufficient size is not specified, change the value of the eads.replication.external.heapsize
parameter in the shared properties.
Restore the EADS server by executing one of the following commands:

• ezstart -r command

• ezserver -r command

Alternatively, restart all EADS servers in the cluster.

KDEA04801-E
This server will be stopped because a gap in the data could not be filled. (cache name = aa....aa, range ID = bb....bb)

aa....aa: Cache name

bb....bb: Range ID

Description
This EADS server will be stopped because consensus processing can no longer continue in the cluster.

Action
Check if the size of the area for storing the history of update operations has been set as estimated.

22. Messages

Hitachi Elastic Application Data Store 690

If a sufficient size is not specified, change the value of the eads.replication.external.heapsize
parameter in the shared properties.
Execute one of the following commands to restore the stopped EADS server:

• ezstart -r command

• ezserver -r command

Alternatively, restart all EADS servers in the cluster.

KDEA04805-E
Only some of the data are available because a server is isolated. (server ID = aa....aa, aborted positions = bb....bb)

aa....aa: EADS server ID of the EADS server that was isolated

bb....bb: List of the start positions on the consistent hashing in the range of data that cannot be accessed

Description
Some data cannot be accessed because an EADS server has been isolated.

Action
Data cannot be accessed, but the data is still in the cache. Take the following actions:

1. Execute the eztool export command to export the required data to a file.

2. Terminate all active EADS servers.

3. Start all EADS servers.

The cluster cannot be restored to normal status by restoring the EADS server.

KDEA04807-E
The system could not continue building a consensus on distribution among servers in the range.

Description
Consensus processing can no longer continue.

Action
Restart all EADS servers in the cluster.

KDEA04808-E
Only some of the data are available because a server is isolated. Some data were lost. (isolated server ID =
aa....aa, lost data start positions = bb....bb, aborted data start positions = cc....cc)

aa....aa: EADS server ID of the EADS server that was isolated

bb....bb: List of the start positions on the consistent hashing in the range of missing data

cc....cc: List of the start positions on the consistent hashing in the range of data that cannot be accessed

Description
Some data cannot be accessed because an EADS server has been isolated.
Alternatively, some data has been lost.

22. Messages

Hitachi Elastic Application Data Store 691

Action
Some existing data cannot be accessed, but it is still in cache. Take the following actions:

1. Execute the eztool export command to export the required data to a file.

2. Terminate all active EADS servers.

3. Start all EADS servers.

The cluster cannot be restored to normal status by restoring the EADS server.

KDEA04809-W
The number of running servers is the minimum required for the cluster to be available. (isolated server ID =
aa....aa, start positions of data to be lost = bb....bb, start positions of data to be aborted = cc....cc)

aa....aa: EADS server ID of the EADS server that was isolated

bb....bb: If an EADS server has been isolated, a list of the start positions on the consistent hashing in the range of data
that might have been lost

cc....cc: If an EADS server has been isolated, a list of the start positions on the consistent hashing in the range of data
that might not be accessible

Description
The number of running EADS servers has reached the minimum required for cluster operation.
If an EADS server has been isolated, some data might be inaccessible or lost.

Action
Restore the isolated EADS server by executing one of the following commands:

• ezstart -r command

• ezserver -r command

KDEA04810-W
The number of running servers is the minimum required for the cluster to be available. (isolated server ID =
aa....aa, start positions = bb....bb)

aa....aa: EADS server ID of the EADS server that was isolated

bb....bb: If an EADS server has been isolated, a list of the start positions on the consistent hashing in the range of data
that might not be accessible

Description
The number of running EADS servers has reached the minimum required for cluster operation.
If an EADS server has been isolated, some data might not be accessible.

Action
Restore the isolated EADS server by executing one of the following commands:

• ezstart -r command

• ezserver -r command

22. Messages

Hitachi Elastic Application Data Store 692

KDEA04812-E
An unexpected exception occurred. (error code = aa....aa)

aa....aa: Error code

Description
An unexpected exception occurred.

Action
Contact the customer support center.

KDEA04813-E
A sequence number is too large and exceeded the upper limit.

Description
An overflow occurred in the internal sequence numbers due to an extended period of operation.

Action
Contact the customer support center.

KDEA04814-W
Server-to-server communication timed out. (timeout value = aa....aa, destination addresses = bb....bb)

aa....aa: Timeout period

bb....bb: List of IP addresses of the destination EADS servers

Description
Communication between EADS servers timed out.
The possible causes are as follows:

• A failure occurred at a target EADS server, host, or network.

• The timeout period is not appropriate.

Action
Eliminate the cause of the timeout.
Alternatively, increase the value of the eads.replication.consensus.timeout parameter in the server
properties. However, there is no need to change the parameter value in the following cases:

• A communication error occurred.

• The EADS server was isolated for a reason such as a process error.

• The EADS server was isolated by the eztool isolate command.

KDEA04815-E
The cluster status has become NOT_AVAILABLE.

Description
The cluster has been placed in NOT_AVAILABLE status.
Either split-brain has occurred or at least half of the EADS servers in the cluster have failed.

22. Messages

Hitachi Elastic Application Data Store 693

Action
If split-brain has occurred, recover the network.
If at least half of the EADS servers in the cluster have failed, restart all EADS servers in the cluster.

KDEA04816-I
The cluster has recovered from the NOT_AVAILABLE state.

Description
The cluster has recovered from NOT_AVAILABLE status.
The cluster has recovered from split-brain.

KDEA04817-E
A gap was found that the server could not resolve.

Description
An attempt to synchronize delayed EADS server processing failed because the logs required for synchronization
were not available.

Action
The possible causes are as follows:

• An overflow occurred in the consensus message send queue.

• An EADS server was isolated.

• A communication error occurred.

• An unexpected error occurred.

Determine the cause of the error, eliminate it, and then restore the EADS server by executing one of the following
commands:

• ezstart -r command

• ezserver -r command

KDEA04821-W
Processing to delete part of the history in order to resolve a memory shortage in the history storage area has started.

Description
Deletion processing on the existing history of update operations has started because a space shortage occurred on
the area for storing the history of update operations.

Action
Check if the size of the area for storing the history of update operations has been set as estimated.
If a sufficient size is not specified, change the value of the eads.replication.external.heapsize
parameter in the shared properties.

KDEA04822-W
During the building of a consensus on distribution among the servers in the cluster, processing to delete part of the
history in order to resolve a memory shortage in the history storage area failed. (requested size = aa....aa)

22. Messages

Hitachi Elastic Application Data Store 694

aa....aa: Size of the area requested for storing the history of update operations

Description
Consensus processing was stopped because an attempt was made to delete the existing history of update operations
due to a shortage of space for storing the history of update operations, but the required size of area could not be
allocated.

Action
Check the network devices for a failure, wait a while, and then re-execute the command.
If the error occurs again, check if the size of the area for storing the history of update operations has been set as
estimated.
If a sufficient size is not specified, change the value of the eads.replication.external.heapsize
parameter in the shared properties.

KDEA04823-E
During the building of a consensus on distribution among the servers in the cluster, processing to delete part of the
history in order to resolve a memory shortage in the history storage area failed. (requested size = aa....aa)

aa....aa: Size of the area requested for storing the history of update operations

Description
All processing terminated abnormally because an attempt was made to delete the existing history of update operations
due to a shortage of space for storing the history of update operations, but the required size of area could not be
allocated.

Action
Check if the size of the area for storing the history of update operations has been set as estimated.
If a sufficient size is not specified, change the value of the eads.replication.external.heapsize
parameter in the shared properties.

KDEA04824-W
During processing to delete part of the history in order to resolve a memory shortage in the history storage area,
processing to build a consensus stopped because the memory shortage could not be resolved. (requested size =
aa....aa, cache name = bb....bb, range ID = cc....cc)

aa....aa: Size of the area requested for storing the history of update operations

bb....bb: Cache name

cc....cc: Range ID

Description
Consensus processing was stopped because an attempt was made to delete the existing history of update operations
due to a shortage of space for storing the history of update operations, but the required size of area could not be
allocated.

Action
Check the network devices for a failure, wait a while, and then re-execute the command.
If the error occurs again, check if the size of the area for storing the history of update operations has been set as
estimated.

22. Messages

Hitachi Elastic Application Data Store 695

If a sufficient size is not specified, change the value of the eads.replication.external.heapsize
parameter in the shared properties.

KDEA04825-E
During processing to delete part of the history in order to resolve a memory shortage in the history storage area,
all processing ended abnormally because the memory shortage could not be resolved. (requested size = aa....aa,
cache name = bb....bb, range ID = cc....cc)

aa....aa: Size of the area requested for storing the history of update operations

bb....bb: Cache name

cc....cc: Range ID

Description
All processing terminated abnormally because an attempt was made to delete the existing history of update operations
due to a shortage of space for storing the history of update operations, but the required size of area could not be
allocated.

Action
Check if the size of the area for storing the history of update operations has been set as estimated.
If a sufficient size is not specified, change the value of the eads.replication.external.heapsize
parameter in the shared properties.

KDEA04841-E
A TCP connection was closed because the queue for sending distribution-consensus messages overflowed.
(destination address = aa....aa, destination port = bb....bb, queuesize = cc....cc, queuedatasize = dd....dd)

aa....aa: IP address of the connection-target EADS server

bb....bb: Port number of the connection-target EADS server

cc....cc: Number of messages in the send queue

dd....dd: Data size of the messages in the send queue

Description
Connection was closed due to an overflow in the consensus message send queue.

Action
Increase the value of the eads.replication.sendQueue.length or
eads.replication.sendQueue.datasize parameter in the server properties.

KDEA04871-E
Initialization of UDP reception failed because an error occurred during initialization of the receiving socket. (error
message = aa....aa, multicast address = bb....bb, multicast port = cc....cc)

aa....aa: Error message from the exception that was thrown from the JavaVM

bb....bb: IP address (multicast address)

cc....cc: Port number

22. Messages

Hitachi Elastic Application Data Store 696

Description
Initialization of UDP reception failed because an error occurred during initialization of the receiving socket.

Action
Determine the cause of the error from the displayed exception error message and eliminate it. Also check if the file
descriptor has been set as estimated.

KDEA04872-E
Initialization of UDP transmission failed because an error occurred during initialization of the sending socket.
(error message = aa....aa, multicast address = bb....bb, multicast port = cc....cc)

aa....aa: Error message from the exception that was thrown from the JavaVM

bb....bb: IP address (multicast address)

cc....cc: Port number

Description
Initialization of UDP transmission failed because an error occurred during initialization of the sending socket.

Action
Determine the cause of the error from the displayed exception error message and eliminate it. Also check if the file
descriptor has been set as estimated.

KDEA04881-E
Initialization of TCP/IP reception failed because an error occurred during initialization of the receiving socket.
(error message = aa....aa, local address = bb....bb, local port = cc....cc)

aa....aa: Error message from the exception that was thrown from the JavaVM

bb....bb: Local IP address

cc....cc: Local port number

Description
Initialization of TCP/IP reception failed because an error occurred during initialization of the receiving socket.

Action
Check for any of the following messages:

• Cannot assign requested address
Check if the local IP address is valid in the OS.

• Address already in use
Check if the local port number is in use by another process.

• Other
Determine the cause of the error from the displayed exception error message and eliminate it. Also check if the
file descriptor has been set as estimated.

KDEA04882-E
Initialization of TCP/IP transmission failed because an error occurred during initialization of the sending socket.
(error message = aa....aa, destination address = bb....bb, destination port = cc....cc)

22. Messages

Hitachi Elastic Application Data Store 697

aa....aa: Error message from the exception that was thrown from the JavaVM

bb....bb: Connection-target IP address

cc....cc: Connection-target port number

Description
Initialization of TCP/IP transmission failed because an error occurred during initialization of the sending socket.

Action
Check for any of the following messages:

• Connection refused
Check if the connection-target port number is correct.
If the connection-target port number is correct, check if the connection-target EADS server has already started.

• Connection Timedout
Check if the connection-target IP address is correct.
If the connection-target IP address is correct, check if the connection-target OS has already started.

• java.net.SocketTimeoutException
Check if the connection-target IP address is correct.
If the connection-target IP address is correct, check if the connection-target OS has already started.

• Other
Determine the cause of the error from the displayed exception error message and eliminate it. Also check if the
file descriptor has been set as estimated.

KDEA04883-I
A different ReceiveBufferSize from the property value will be used. (property name = aa....aa, property value =
bb....bb, ReceiveBufferSize = cc....cc)

aa....aa: Parameter name

bb....bb: Specified value of the parameter

cc....cc: Size of consensus message receive buffer that is actually used

Description
A receive buffer size that differs from the specified value was used because the value of the
eads.replication.connection.buffersize parameter specified in the server properties exceeds the
window size supported by the OS.

KDEA04884-I
A different SendBufferSize from the property value will be used. (property name = aa....aa, property value =
bb....bb, SendBufferSize = cc....cc)

aa....aa: Parameter name

bb....bb: Specified value of the parameter

cc....cc: Size of consensus message send buffer that is actually used

22. Messages

Hitachi Elastic Application Data Store 698

Description
A send buffer size that differs from the specified value was used because the value of the
eads.replication.connection.buffersize parameter specified in the server properties exceeds the
window size supported by the OS.

KDEA04887-W
A read timeout occurred in a TCP/IP reception. (local address = aa....aa, local port = bb....bb, destination address
= cc....cc, destination port = dd....dd)

aa....aa: Local IP address

bb....bb: Local port number

cc....cc: Connection-target IP address

dd....dd: Connection-target port number

Description
A connection was established, but data could not be received within the timeout period.

Action
If timeouts occur frequently, check and, if necessary, revise the value specified in the server property parameter
eads.transfer.timeout.

KDEA04888-W
A send timeout occurred in a TCP/IP transmission. (local address = aa....aa, local port = bb....bb, destination address
= cc....cc, destination port = dd....dd)

aa....aa: Local IP address

bb....bb: Local port number

cc....cc: Connection-target IP address

dd....dd: Connection-target port number

Description
A connection was established, but data could not be sent within the timeout period.

Action
If timeouts occur frequently, check and, if necessary, revise the value specified in the server property parameter
eads.transfer.timeout.

KDEA04891-E
An unknown message was received. (source address = aa....aa, source port = bb....bb, error message = cc....cc)

aa....aa: IP address of the message delivery source

bb....bb: Port number of the message delivery source

cc....cc: Error message

22. Messages

Hitachi Elastic Application Data Store 699

Description
An invalid message was received. Another system is sending a message to a communication port that is in use.

Action
Check and, if necessary, revise the destination IP address or port number so that there is no interference in the delivery
of messages from another system

KDEA04892-W
TCP/IP transmission failed because the server is not running.

Description
TCP/IP transmission processing failed because the EADS server terminated.

KDEA04932-E
An error occurred during cache processing. (exception = aa....aa, cache name = bb....bb)

aa....aa: Exception class name

bb....bb: Cache name (or null if there is no cache name)

Description
An error occurred during cache processing.

Action
Check the messages that were output immediately before this one.

KDEA04962-W
Cache creation was aborted because a consensus on distribution for part of the range is not executable. (cache name
= aa....aa, management client = bb....bb)

aa....aa: Cache name

bb....bb: IP address from which the command was executed

Description
Cache creation was cancelled because consensus processing could not be performed in some part of the range.

Action
Restart all EADS servers in the cluster, and then re-execute the command.

KDEA04965-E
Addition of a server to the cluster failed because the system could not continue building a consensus on distribution
among the servers in the cluster. (node id = aa....aa)

aa....aa: EADS server ID of the EADS server that was to be added

Description
The processing to add an EADS server to the cluster failed because consensus processing could no longer be
continued in the cluster.

22. Messages

Hitachi Elastic Application Data Store 700

Action
Execute the eztool status command to check the cluster status. If the cluster status is AVAILABLE, the EADS
server can be restored.
If the cluster status is NOT_AVAILABLE or PARTIALLY_AVAILABLE, the EADS server cannot be restored, in
which case you must restart all EADS servers in the cluster.

KDEA04966-E
Processing to isolate a server failed because the system could not continue building a consensus on distribution
among the servers in the cluster. (node id = aa....aa)

aa....aa: EADS server ID of the EADS server that was to be isolated

Description
The processing to isolate an EADS server failed because consensus processing could no longer be continued in the
cluster.

Action
Execute the eztool status command to check the cluster status. If the cluster status is AVAILABLE, the EADS
server can be restored.
If the cluster status is NOT_AVAILABLE or PARTIALLY_AVAILABLE, the EADS server cannot be restored, in
which case you must restart all EADS servers in the cluster.

KDEA04967-E
Acquisition of a command lock failed because the system could not continue building a consensus on distribution
among the servers in the cluster.

Description
An attempt to acquire a command lock failed because consensus processing could no longer be continued in the
cluster.

Action
Execute the eztool status command to check the cluster status, and then re-execute the command on another
EADS server.

KDEA04968-E
The release of a lock failed because the system could not continue building a consensus on distribution among the
servers in the cluster.

Description
An attempt to release a command lock failed because consensus processing could no longer be continued in the
cluster.

Action
Re-execute the eztool unlock command on another EADS server.

22. Messages

Hitachi Elastic Application Data Store 701

22.6 KDEA06000 to KDEA07999

This section describes messages KDEA06000 to KDEA07999 and explains what actions to take in response to each
message.

KDEA06001-E
The specified cache already exists. (cache name = aa....aa)

aa....aa: Cache name

Description
The specified cache name already exists.

Action
Delete the cache that already exists, or change the cache name.
Ignore the message if no corrective action is required.

KDEA06002-E
The specified cache was not found. (cache name = aa....aa)

aa....aa: Cache name

Description
The specified cache was not found.

Action
Create a new cache, or else check the processing and revise it if necessary.

KDEA06004-E
An unexpected exception occurred. (detail = aa....aa)

aa....aa: Maintenance information

Description
An unexpected exception occurred.

Action
Contact the customer support center.

KDEA07001-E
An attempt to open a file failed. (file name = aa....aa, detail = bb....bb)

aa....aa: Store data file name (absolute path) that an attempt was made to open

bb....bb: Details

Description
An attempt to open the store data file failed.
The possible causes are as follows:

22. Messages

Hitachi Elastic Application Data Store 702

• The store data file to be read does not exist.

• A path to non-store data files was specified.

• There are no access permissions to the store data file.

Action
Examine the details, and then check whether there is a problem with the OS environment.

KDEA07002-E
An I/O error occurred. (file name = aa....aa, detail = bb....bb)

aa....aa: Store data file name (absolute path)

bb....bb: Details

Description
An I/O error occurred.

Action
Examine the details, and then check whether there is a problem with the OS environment.

KDEA07003-E
The data format is invalid. (file name = aa....aa, detail = bb....bb)

aa....aa: Store data file name (absolute path)

bb....bb: Maintenance information

Description
The data format is invalid.
The possible causes are as follows:

• It is not a store data file.

• The store data file is damaged.

Action
Make sure the correct store data file was specified.
Alternatively, use another store data file.

KDEA07004-E
A checksum error occurred. (file name = aa....aa)

aa....aa: Store data file name (absolute path)

Description
A checksum error occurred.
The store data file might be damaged.

Action
Make sure the correct store data file was specified.
Alternatively, use another store data file.

22. Messages

Hitachi Elastic Application Data Store 703

KDEA07005-E
The input data version is too new. (file name = aa....aa, input version = bb....bb)

aa....aa: Store data file name (absolute path)

bb....bb: Store data file format version

Description
An attempt was made to read the retrieved store data file in a new format version.

Action
Make sure the correct store data file was specified.
Alternatively, use another store data file.

KDEA07006-E
An unexpected exception occurred. (details = aa....aa)

aa....aa: Maintenance information

Description
An unexpected exception occurred.

Action
Contact the customer support center.

KDEA07101-E
The specified cache type cannot be used. (cache name = aa....aa, cache type = bb....bb)

aa....aa: Cache name

bb....bb: Cache type

Description
The specified cache type cannot be used.
The possible causes are as follows:

• The value of the eads.cache.type parameter in the cache properties is invalid.

• The value of the eads.java.external.heapsize parameter in the shared properties is too small.

Action
Check and, if necessary, revise the value of the eads.cache.type parameter in the cache properties.
If the value of the eads.cache.type parameter in the cache properties is correct, increase the value of the
eads.java.external.heapsize parameter in the shared properties.

KDEA07104-E
The specified cache or cache file was not found. (cache name = aa....aa)

aa....aa: Cache name

22. Messages

Hitachi Elastic Application Data Store 704

Description
A specified cache or cache file was not found.

Action
Create the cache.
Alternatively, check if the correct cache file is specified and, if necessary, revise the specification.

KDEA07106-E
An attempt to open a file failed. (file name = aa....aa, details = bb....bb)

aa....aa: Name (absolute path) of the cache file that was to be opened

bb....bb: Details

Description
An attempt to open a cache file failed.
The possible causes are as follows:

• The cache file to be imported does not exist.

• The specified path is not for a cache file.

• There is no access permission for the cache file.

Action
Examine the details, and then check whether there is a problem with the OS environment.

KDEA07107-E
An I/O error occurred. (file name = aa....aa, details = bb....bb)

aa....aa: Cache file name (absolute path) (if the cache file name cannot be identified, null)

bb....bb: Details

Description
An I/O error occurred.

Action
Examine the details, and then check whether there is a problem with the OS environment.

KDEA07108-E
The data format is invalid. (file name = aa....aa, details = bb....bb)

aa....aa: Cache file name (absolute path)

bb....bb: Maintenance information

Description
The data format is invalid.
The possible causes are as follows:

• The specified file is not a cache file.

• The cache file is damaged.

22. Messages

Hitachi Elastic Application Data Store 705

Action
Check if the correct cache file is specified and, if necessary, revise the specification.
Alternatively, use another cache file.

KDEA07109-E
A checksum error occurred. (file name = aa....aa)

aa....aa: Cache file name (absolute path)

Description
A checksum error occurred.
The cache file might be damaged.

Action
Check if the correct cache file is specified and, if necessary, revise the specification.
Alternatively, use another cache file.

KDEA07110-E
The input data version is too new. (file name = aa....aa, input version = bb....bb)

aa....aa: Cache file name (absolute path)

bb....bb: Cache file format version

Description
An attempt was made to import a cache file that was obtained using a later version.

Action
Check if the correct cache file is specified and, if necessary, revise the specification.
Alternatively, use another cache file.

KDEA07111-E
A data discrepancy between the cache property file and the cache file was detected. (cache property file name =
aa....aa, parameter = bb....bb, cache property value = cc....cc, cache file value = dd....dd)

aa....aa: Cache property file name

bb....bb: Parameter name

cc....cc: Value in the cache property file

dd....dd: Value in the cache file

Description
There is a discrepancy in values between the cache property file and the cache file.
Once a cache file has been created, none of the following parameters can be changed in the cache properties:

• eads.cache.type
• eads.cache.disk.filesize
• eads.cache.disk.blocksize

22. Messages

Hitachi Elastic Application Data Store 706

Also, once a cache file has been created, the value of the following parameter in the cache properties cannot be
reduced:

• eads.cache.disk.filenum
Action

Check if the correct cache file is specified and, if necessary, revise the specification.
Alternatively, use another cache file.
If the value in the cache property file is invalid, check the following parameter values in the cache properties, correct
values as necessary, and then restart the EADS server:

• eads.cache.type
• eads.cache.disk.filesize
• eads.cache.disk.blocksize
• eads.cache.disk.filenum

KDEA07112-E
A data discrepancy between the cluster property file and the cache file was detected. (cache name = aa....aa, type
= bb....bb, cluster property value = cc....cc, cache file value = dd....dd)

aa....aa: Cache name

bb....bb: Type

cc....cc: Value in the cluster property file (if the parameter is not specified, null)

dd....dd: Value in the cache file

Description
There is a discrepancy in values between the cluster property file and the cache file.
Once a cache file has been created, the parameters cannot be changed in the cluster properties.
The following table provides the cause by type:

Type Cause

server number The number of EADS servers does not match.

no server ID The EADS server with the specified ID does not exist.

position The position of the EADS server does not match.

Action
Check if the correct cache file is specified and, if necessary, revise the specification.
Alternatively, use another cache file.
If the value in the cluster property file is invalid, check the following parameter values in the cluster properties,
correct values as necessary, and then restart the EADS server:

• eads.node.EADS-server-ID.address
• eads.node.EADS-server-ID.port
• eads.node.EADS-server-ID.position

22. Messages

Hitachi Elastic Application Data Store 707

KDEA07113-E
A data discrepancy between the cache and the cache file was detected. (cache name = aa....aa, error details =
bb....bb)

aa....aa: Cache name

bb....bb: Error details

Description
The EADS server could not be restored because there was a discrepancy in values between the cache and the cache
file.

Action
Check if the correct cache file is specified and, if necessary, revise the specification.
Alternatively, use another cache file.

KDEA07115-E
A cache file cannot be written to. (cache name = aa....aa, details = bb....bb)

aa....aa: Cache name

bb....bb: Details

Description
An attempt to import data to a cache file failed because a problem occurred during the import processing.

Action
Determine the cause of the error from the details or from the message output immediately before this message, and
then eliminate the problem.

KDEA07116-E
A cache file cannot be read. (cache name = aa....aa, details = bb....bb)

aa....aa: Cache name

bb....bb: Details

Description
An attempt to import a cache file failed.
The possible causes are as follows:

• A problem occurred while the cache property file was being imported.

• A problem occurred while the cache file was being imported

• There are too many or too few cache files.

Action
Determine the cause of the error from the details or from the message that was output immediately before this
message, and then eliminate the problem.
If the number of cache files was too large or too small when the ezstart -r or ezserver -r command was
executed, you might be able to restore the cache file by executing the deleteecf -l command and then re-
executing the ezstart -r or ezserver -r command.

22. Messages

Hitachi Elastic Application Data Store 708

KDEA07117-E
A data discrepancy between the shared property file and the cache file was detected. (cache name = aa....aa,
parameter = bb....bb, shared property value = cc....cc, cache file value = dd....dd)

aa....aa: Cache name

bb....bb: Parameter name

cc....cc: Value in the shared property file

dd....dd: Value in the cache file

Description
There is a discrepancy between a value in the shared property file and the value in the cache file.
Once a cache file has been created, the following parameters cannot be changed in the shared properties:

• eads.cache.key.maxsize
• eads.replication.factor

Action
Check if the correct cache file is specified and, if necessary, revise the specification.
Alternatively, use another cache file.
If the value in the shared property file is invalid, check the following parameter values in the shared properties,
correct the value, and then restart the EADS server:

• eads.cache.key.maxsize
• eads.replication.factor

KDEA07120-E
An I/O error occurred. (directory = aa....aa, details = bb....bb)

aa....aa: Directory name (absolute path)

bb....bb: Details

Description
An I/O error occurred.

Action
Examine the details, and then check whether there is a problem with the OS environment.
Check especially for the following problems:

• Required directories have not been created.

• Directories cannot be created.

KDEA07121-E
A data discrepancy between the cache property file and the cache was detected. (cache property file name =
aa....aa, parameter = bb....bb, cache property value = cc....cc, cache value = dd....dd)

aa....aa: Cache property file name

bb....bb: Parameter name

22. Messages

Hitachi Elastic Application Data Store 709

cc....cc: Value in the cache property file

dd....dd: Cache value

Description
There is a discrepancy between a value in the cache property file and a cache value.
Once a cache file has been created, none of the following parameters can be changed in the cache properties:

• eads.cache.type
• eads.cache.disk.filesize
• eads.cache.disk.filenum
• eads.cache.disk.blocksize

Action
Check the following parameter values in the cache properties, correct the values, and then restart the EADS server:

• eads.cache.type
• eads.cache.disk.filesize
• eads.cache.disk.filenum
• eads.cache.disk.blocksize

KDEA07122-E
The area for writing the cache data files is insufficient. (cache name = aa....aa)

aa....aa: Cache name

Description
A space shortage occurred in the area for importing cache data files.

Action
Increase the value of the eads.cache.disk.filenum parameter in the cache properties according to the
procedure described in 11.4.1 How to change the properties.

KDEA07123-E
An I/O error occurred. (cache name = aa....aa, details = bb....bb)

aa....aa: Cache name

bb....bb: Details

Description
An I/O error occurred.

Action
Determine the cause of the error from the exception logs and then eliminate the problem.

KDEA07124-E
An unexpected exception occurred. (cache name = aa....aa, details = bb....bb)

aa....aa: Cache name

22. Messages

Hitachi Elastic Application Data Store 710

bb....bb: Maintenance information

Description
An unexpected exception occurred.

Action
Contact the customer support center.

KDEA07125-I
A parameter different from the cache file value will be used. (cache property file name = aa....aa, parameter =
bb....bb, cache property value = cc....cc, cache file value = dd....dd)

aa....aa: Cache property file name

bb....bb: Parameter name

cc....cc: Value in the cache property file

dd....dd: Value in the cache file

Description
A parameter value that differs from the value in the cache file was used.

KDEA07126-W
The loading of the cache property file failed. (cache property file name = aa....aa)

aa....aa: Cache property file name

Description
An attempt to load a cache property file failed because an error occurred while the cache property file was being
loaded.

Action
Check the messages that were output immediately before this message.

KDEA07127-E
The loading of the cache property file failed. (cache property file name = aa....aa)

aa....aa: Cache property file name

Description
An attempt to load a cache property file failed because an error occurred while the cache property file was being
loaded.

Action
Check the messages that were output immediately before this message.

KDEA07128-E
The compaction of cache data files failed. (cache name = aa....aa, range ID = bb....bb, error details = cc....cc)

aa....aa: Cache name

22. Messages

Hitachi Elastic Application Data Store 711

bb....bb: Range ID

cc....cc: Error details

Description
An attempt to perform compaction on the cache data files failed.

Action
Cache files might have been damaged.
Delete the cache files with the eztool deleteecf command, and then execute one of the following commands
to restore the EADS server again:

• ezstart -r command

• ezserver -r command

KDEA07201-E
Some data of cache might be inconsistent. (details = aa....aa)

aa....aa: Details

Description
Some data in cache might be inconsistent.
Because an attempt to resume the cache failed, EADS server restoration processing might have failed.

Action
Check the cache.
If necessary, delete the cache with the eztool deletecache command, and then restore the EADS server.

KDEA07202-E
The operation and cache type combination is invalid. (operation = aa....aa, cache name = bb....bb, cache type =
cc....cc)

aa....aa: Operation

bb....bb: Cache name

cc....cc: Cache type

Description
The combination of the operation and the cache type is invalid.
An attempt to add an EADS server might have failed because there are caches other than memory caches.

Action
Check the cache.
If necessary, delete the cache with the eztool deletecache command, and then add the EADS server.

22. Messages

Hitachi Elastic Application Data Store 712

22.7 KDEA08000 to KDEA09999

This section describes messages KDEA08000 to KDEA09999 and explains what actions to take in response to each
message.

KDEA08001-I
The command will now start. (subcommand = aa....aa, parameter = bb....bb)

aa....aa: Subcommand

bb....bb: Options and arguments

Description
The command is starting.

KDEA08002-I
The command will now end.

Description
The command has finished executing.

KDEA08006-E
Log initialization failed. (log directory = aa....aa)

aa....aa: Path name of the log output destination

Description
An attempt to initialize the log failed.

Action
Check if the path name of the log file output location specified in the eads.command.logger.dir parameter
in the command properties is correct.
If an attempt to initialize the log library failed, re-execute the command when the EADS server's workload is low.

KDEA08007-E
The specified option is invalid. (error details = aa....aa) For more information, use ''eztool -h''.

aa....aa: Error details

Description
The specified command option is invalid.
For details about the format of the command, execute the command eztool -h.

Action
Check the command options.

KDEA08008-E
The specified option is duplicated. (option = aa....aa)

22. Messages

Hitachi Elastic Application Data Store 713

aa....aa: Command option

Description
The specified command option is duplicated.

Action
Check the command options.

KDEA08009-E
The specified subcommand is invalid. (subcommand = aa....aa) For more information, use ''eztool -h''.

aa....aa: Invalid subcommand

Description
The specified subcommand is invalid.
For details about the format of the command, execute the command eztool -h.

Action
Check the subcommand.

KDEA08010-E
The specified parameter is invalid. (parameter = aa....aa) For more information, use ''eztool -h''.

aa....aa: Invalid command argument

Description
The specified command argument is invalid.
For details about the format of the command, execute the command eztool -h.

Action
Check the command arguments.

KDEA08011-E
An attempt to connect to a server failed. (server = aa....aa)

aa....aa: The host name (or IP address) and port number of the connection-target EADS server

Description
An attempt to connect to the EADS server failed.

Action
Check the server properties of the connection-target EADS server.
Check whether the EADS server to be connected has been started.
If the failure occurred on an EADS server in a cluster, wait until the down EADS server is detected, and then retry
the operation. For details about how long it takes to detect a down EADS server, see 9.3.2(1) Sending heartbeats
and checking for live servers.

KDEA08013-E
The server is not in a state in which commands can be executed. (subcommand = aa....aa, error details = bb....bb)

22. Messages

Hitachi Elastic Application Data Store 714

aa....aa: Subcommand

bb....bb: Error details (list of EADS servers on which commands cannot be executed, and their statuses)

Description
The EADS server is not in a status in which commands can be executed.

Action
Check the status of the EADS servers by executing the command eztool status.
Retry the operation from a status in which commands can be executed.

KDEA08014-E
An attempt to lock the server failed. (server = aa....aa, error details = bb....bb)

aa....aa: The host name (or IP address) and port number of the EADS server where the lock attempt failed

bb....bb: Error details

Description
A lock attempt failed.

Action
Check whether other commands are running by executing the command eztool status -v.
If the lock status of the EADS server is lock (locked) even though commands have finished executing, unlock it
by executing the command eztool unlock.
If the cause of the error is unknown, contact the customer support center.

KDEA08015-E
A server error occurred during the execution of a command. (server = aa....aa, error details = bb....bb)

aa....aa: The host name (or IP address) and port number of the EADS server where the error occurred

bb....bb: Error details

Description
An error occurred on the EADS server during execution of the command.

Action
Check the error detail information.
Check the messages for the EADS server to find the error that occurred on the EADS server.
If the cause of the error is unknown, contact the customer support center.

KDEA08016-E
An attempt to unlock the server failed. (server = aa....aa, error details = bb....bb)

aa....aa: The host name (or IP address) and port number of the EADS server on which the unlock attempt failed

bb....bb: Error details

Description
An unlock attempt failed.

22. Messages

Hitachi Elastic Application Data Store 715

Action
Check whether other commands are running by executing the command eztool status -v.
If the lock status of the EADS server is lock (locked) even though commands have finished executing, unlock it
by executing the command eztool unlock.
If the cause of the error is unknown, contact the customer support center.

KDEA08018-E
The server connection timed out. (server = aa....aa, timeout value = bb....bb)

aa....aa: The host name (or IP address) and port number of the EADS server that timed out

bb....bb: Timeout period

Description
The connection to the EADS server timed out.

Action
Check the status of the EADS servers by executing the command eztool status.
If the failure occurred on an EADS server in a cluster, wait until the down EADS server is detected, and then retry
the operation. For details about how long it takes to detect a down EADS server, see 9.3.2(1) Sending heartbeats
and checking for live servers.

KDEA08019-E
The command timed out. (timeout value = aa....aa)

aa....aa: Timeout period

Description
The command timed out.

Action
Check the status of the EADS servers by executing the command eztool status.
Check the values listed below, change values as necessary, and then re-execute the command:

• Timeout value specified in a command argument

• eads.command.common.execution.timeout parameter in the command properties

• eads.command.subcommand-name.execution.timeout parameter

In the case of the eztool resume command, data might no longer be consistent.
If you continue operation in such a status, data might become corrupted or lost. To prevent this, take the following
steps:

1. Execute the eztool status -v command to check the cluster status.

2. Execute the eztool unlock command to release any lock.

3. Execute the eztool listcache command to check the list of caches.

4. If cache resume processing has failed, execute the eztool deletecache command to delete the caches.

5. If EADS servers are isolated, restore them.

6. Perform the cache resume processing again.

22. Messages

Hitachi Elastic Application Data Store 716

KDEA08020-E
An unexpected error occurred during command execution. (error details = aa....aa)

aa....aa: Error details

Description
An unexpected error occurred during execution of the command.

Action
Check the error detail information.
If the cause of the error is unknown, contact the customer support center.

KDEA08023-I
The status has already changed. (server = aa....aa)

aa....aa: The host name (or IP address) and port number of the EADS server

Description
The status of the EADS server has already changed.

KDEA08024-W
No matching store data files were found. (server = aa....aa, warning details = bb....bb)

aa....aa: The host name (or IP address) and port number of the EADS server

bb....bb: Warning details

Description
No matching store data files were found.

Action
Check the specified store data file key.
Make sure the store data file exists at the store data file output destination.
This warning is displayed when you perform tasks such as adding an EADS server to a cluster or moving store data
files due to a change in the directory structure. Check the warning details, and if there is no problem, this warning
can be ignored.

KDEA08025-E
The specified subcommand requires a value. (subcommand = aa....aa) For more information, use ''eztool -h''.

aa....aa: Subcommand for which no argument was specified

Description
The specified subcommand requires an argument.
For details about the format of the command, execute the command eztool -h.

Action
Check the arguments to the subcommand.

22. Messages

Hitachi Elastic Application Data Store 717

KDEA08026-W
The specified cache already exists. (cache name = aa....aa)

aa....aa: Cache name

Description
The specified cache name already exists.

Action
Check whether the correct cache name was specified.

KDEA08027-W
A connection cannot be established because the cluster is offline. (server = aa....aa)

aa....aa: The host name (or IP address) and port number of the EADS server

Description
A connection cannot be established because the EADS server is not joined to a cluster.

Action
Check the status of the cluster by executing the command eztool status.

KDEA08029-E
The number of store data file generations has exceeded the limit. (generation count = aa....aa, limit = bb....bb)

aa....aa: Number of generations

bb....bb: Upper limit on the number of generations

Description
The number of store data file generations has exceeded the limit.

Action
Take one of the following corrective actions:

• Execute the eztool deleteesd command to delete unneeded store data files from the cluster.

• Export data to another directory by executing the command eztool export -d.

• Save the store data file to a directory of your choice.

KDEA08030-E
No generation-managed store data files were found.

Description
No generation-managed store data files were found.

Action
Check the store data files by executing the command eztool listesd.

22. Messages

Hitachi Elastic Application Data Store 718

KDEA08031-W
The specified cache name does not exist. (cache name = aa....aa)

aa....aa: Cache name

Description
The specified cache was not found.

Action
Check whether the correct cache name was specified.

KDEA08032-E
Cache creation failed. (cache name = aa....aa, error details = bb....bb)

aa....aa: Cache name

bb....bb: Error details

Description
An attempt to create a cache failed.

Action
Make sure the limit on the number of caches (16) has not been reached.
Check whether the correct cache name was specified.
Check the error detail information.

KDEA08033-E
Importing failed. (store date file key = aa....aa, error details = bb....bb)

aa....aa: Store data file key

bb....bb: Error details

Description
An attempt to read data failed.

Action
Check the specified store data file key.
Check the error detail information.
Check the immediately preceding messages for the EADS server.
Check the status of the EADS servers by executing the command eztool status.

KDEA08034-E
Data addition failed. (cache name = aa....aa, key = bb....bb, error details = cc....cc)

aa....aa: Cache name

bb....bb: Key

cc....cc: Error details

22. Messages

Hitachi Elastic Application Data Store 719

Description
Data addition failed.

Action
Check the cache name.
Check the error detail information.
Check the status of the EADS servers by executing the command eztool status.

KDEA08035-E
Data acquisition failed. (cache name = aa....aa, key = bb....bb, error details = cc....cc)

aa....aa: Cache name

bb....bb: Key

cc....cc: Error details

Description
An attempt to acquire data failed.

Action
Check the cache name.
Check the error detail information.
Check the status of the EADS servers by executing the command eztool status.

KDEA08036-E
Data deletion failed. (cache name = aa....aa, key = bb....bb, error details = cc....cc)

aa....aa: Cache name

bb....bb: Key

cc....cc: Error details

Description
An attempt to delete data failed.

Action
Check the cache name.
Check the error detail information.
Check the status of the EADS servers by executing the command eztool status.

KDEA08037-E
The cluster property file is incorrect. (error details = aa....aa)

aa....aa: Error details

Description
The properties related to the cluster configuration are incorrect.

22. Messages

Hitachi Elastic Application Data Store 720

Action
Make sure the cluster property file exists.
Check the error detail information.
Make sure the following cluster property parameters are correct:

• eads.node.EADS-server-ID.address
• eads.node.EADS-server-ID.port
• eads.node.EADS-server-ID.position

KDEA08046-W
The specified function name does not exist. (function name = aa....aa)

aa....aa: Name of the user function

Description
The specified user function name was not found.

Action
Make sure that the user function name is correct.

KDEA08049-E
No matching store data file was found. (store data file key = aa....aa)

aa....aa: Store data file key

Description
No matching store data files were found.

Action
Check the specified store data file key.
Make sure the store data file exists at the store data file output destination.
This message is displayed when you perform tasks such as moving store data files due to a change in the directory
structure. Check the error details, and if there is no problem, this warning can be ignored.

KDEA08050-E
The specified store data file already exists. (store data file key = aa....aa)

aa....aa: Store data file key

Description
The specified store data file name already exists.

Action
Check if the specified store data file key is correct.

KDEA08051-E
Processing to open the cluster failed. (error details = aa....aa)

aa....aa: Error details

22. Messages

Hitachi Elastic Application Data Store 721

Description
An attempt to release the cluster from closed status failed.

Action
Check the error detail information.

KDEA08052-E
Processing to isolate the server failed. (error details = aa....aa)

aa....aa: Error details

Description
An attempt to isolate an EADS server failed.

Action
Check the error detail information.
Execute the eztool status command to check the status of the EADS server on which the command was
executed.

• If the EADS server on which the command was executed is not isolated
Verify that the cluster's status is not partially available (not PARTIALLY_AVAILABLE), and then re-execute
the command.

• If the EADS server on which the command was executed is isolated and the eztool isolate --stop
command was executed
Re-execute the command to shut down the EADS server process.

KDEA08053-E
The wait for completion of execution failed. (error details = aa....aa)

aa....aa: Error details

Description
The wait for a command to finish executing failed.

Action

• For the eztool createcache or eztool deletecache command
Execute the eztool listcache command to check the number of caches.
Re-execute the command.

• For the eztool stop or eztool isolate --stop command
Execute the eztool status command to check the status of the EADS server.
Also check the process status.
Re-execute the command.

KDEA08054-I
The store data file was imported. (store data file key = aa....aa)

aa....aa: Store data file key

22. Messages

Hitachi Elastic Application Data Store 722

Description
A store data file was imported.

KDEA08055-I
The store data file was exported. (store data file key = aa....aa)

aa....aa: Store data file key

Description
A store data file was exported.

KDEA08056-E
A property file cannot be read. (file path = aa....aa)

aa....aa: Path name to the property file

Description
The property file cannot be read.
The possible causes are as follows:

• The property file cannot be opened.

• The path name points to a directory rather than to a file.

Action
Check and, if necessary, revise the path name to the property file.
Determine the cause of the error, and then eliminate it.

KDEA08057-W
The obtained cluster information might be old.

Description
The obtained cluster information might be outdated.
Only isolated EADS servers might be running.

Action
Execute the eztool status command to check the status of the cluster and the EADS servers.

KDEA08058-E
Execution of a function failed. (cache name = aa....aa, function name = bb....bb, error details = cc....cc)

aa....aa: Cache name

bb....bb: Name of the user function

cc....cc: Error details

Description
An attempt to execute a user function failed.

22. Messages

Hitachi Elastic Application Data Store 723

Action
Check the cache name, user function name, and error detail information.
Execute the eztool status command to check the EADS server status.

KDEA08059-I
Stopping the compaction of cache data files is already reserved.

Description
A request to stop compaction of cache data files has already been queued.

KDEA08060-E
The resumption of cache files failed. (error details = aa....aa)

aa....aa: Error details

Description
An attempt resume a cache failed.

Action
Check the error detail information.

KDEA08061-E
The compaction of cache data files failed. (error details = aa....aa)

aa....aa: Error details

Description
An attempt to perform compaction on cache data files failed.

Action
Check the error detail information.

KDEA08062-I
The compaction of cache data files was stopped.

Description
Compaction of cache data files was stopped.

KDEA08063-I
The compaction of cache data files is not executing.

Description
Compaction has not been performed on cache data files.

KDEA08064-I
The cache files were deleted.

22. Messages

Hitachi Elastic Application Data Store 724

Description
Cache files were deleted.

KDEA08065-E
Deletion of cache files failed. (error details = aa....aa)

aa....aa: Error details

Description
An attempt to delete cache files failed.

Action
Check the error detail information.

KDEA08066-W
No matching cache file was found. (server = aa....aa, warning details = bb....bb)

aa....aa: EADS server's host name (or IP address) and port number

bb....bb: Warning details

Description
The corresponding cache file was not found.

Action
Check the cache file storage location specified in the cache property file.
This warning is displayed when the corresponding cache file has been moved or deleted, for example, due to a
change to the directory configuration or because the contents of the cache property file have been changed. Check
the warning details.

KDEA08067-E
No matching cache file was found.

Description
The corresponding cache file was not found.

Action
Use the eztool listecf command to check whether the cache file exists.
Check the contents of the cache property file.
Check the cache file storage location specified in the cache property file.

KDEA08068-E
The importing of cache files failed. (error details = aa....aa)

aa....aa: Error details

Description
An attempt to import cache files failed.

22. Messages

Hitachi Elastic Application Data Store 725

Action
Check the error detail information.

KDEA08070-E
Creation of cache files failed. (cache name = aa....aa, error details = bb....bb)

aa....aa: Cache name

bb....bb: Error details

Description
An attempt to create cache files failed.

Action
Check the error detail information.

KDEA08071-W
Cache files do not exist because the type of the specified cache is MemoryCache.

Description
Cache files do not exist because the specified cache type is memory cache.

KDEA08072-W
The cache already exists. (cache name = aa....aa)

aa....aa: Cache name

Description
The cache already exists.

Action
Check the cache.
If necessary, delete the cache with the eztool deletecache command, and then re-execute the command.

KDEA08073-I
The resumption of cache started. (cache name = aa....aa)

aa....aa: Cache name

Description
Cache resume has started.

KDEA08074-I
The resumption of cache finished. (cache name = aa....aa)

aa....aa: Cache name

Description
Cache resume has finished.

22. Messages

Hitachi Elastic Application Data Store 726

KDEA08075-W
The resumption of cache files did not run, because the cache to resume target does not exist.

Description
An attempt to resume cache files was not made because the target cache did not exist.

Action
Check the cache.
If necessary, delete the cache with the eztool deletecache command, and then re-execute the command.

KDEA08076-E
Some data might be inconsistent, because resumption of cache failed. Therefore a lock was not released.

Description
Some data might be inconsistent because a cache resume attempt failed. The lock was not released.

Action
Data might no longer be consistent. If you continue operation in such a status, data might become corrupted or lost.
Take the following actions:

1. Execute the eztool status -v command to check the cluster status.

2. Execute the eztool unlock command to release any lock.

3. Execute the eztool listcache command to check the list of caches.

4. Execute the eztool deletecache command to delete the caches whose resume processing failed.

5. If EADS servers are isolated, restore them.

6. Perform the cache resume processing again.

KDEA08077-W
The compaction of cache data files was not executed. (warning details = aa....aa)

aa....aa: Warning details

Description
Compaction of cache data files was not performed.

Action
Check the warning details.
If necessary, reduce the threshold and increase the number of unused files, and then re-execute the command.

KDEA08078-W
The compaction of cache data files could not reach to the specified unused file count. (minimum unused file count
= aa....aa)

aa....aa: Minimum number of unused files

Description
Compaction of cache data files could not yield the specified number of unused files.

22. Messages

Hitachi Elastic Application Data Store 727

Action
If necessary, reduce the threshold and then re-execute the command.

KDEA08079-I
Exporting was not executed because no memory cache exist on the server.

Description
Data was not exported because there was no memory cache on the EADS server.

KDEA08081-E
Data addition failed. (cache name = aa....aa, error details = bb....bb)

aa....aa: Cache name

bb....bb: Error details

Description
An attempt to add data failed.

Action
Check the cache name.
Check the error detail information.
Check the EADS server's status.

KDEA08082-E
Data acquisition failed. (cache name = aa....aa, error details = bb....bb)

aa....aa: Cache name

bb....bb: Error details

Description
An attempt to acquire data failed.

Action
Check the cache name.
Check the error detail information.
Check the EADS server's status.

KDEA08083-E
Data deletion failed. (cache name = aa....aa, error details = bb....bb)

aa....aa: Cache name

bb....bb: Error details

Description
An attempt to delete data failed.

22. Messages

Hitachi Elastic Application Data Store 728

Action
Check the cache name.
Check the error detail information.
Check the EADS server's status.

KDEA08084-E
The command cannot be executed because the command version and server version are different. (command version
= aa....aa, server version = bb....bb)

aa....aa: Command version

bb....bb: EADS server version

Description
The command cannot be executed because the command's version does not match the EADS server's version.

Action
Execute the command whose version matches the EADS server's version.

KDEA08085-W
No range for the server ID specified in the server ID specification group was found. (server = aa....aa, server ID
= bb....bb)

aa....aa: EADS server name

bb....bb: EADS server ID

Description
The range for the EADS server ID specified in the EADS server ID specified group was not found.

Action
Check whether the EADS server ID conversion rule specified in the eztool import or eztool importecf
command is correct.
Check the cluster configuration and the EADS server ID of each EADS server.

KDEA08086-E
The execution of the command failed because the cluster configuration was changed while the command was being
executed.

Description
An attempt to execute the command failed because the cluster configuration was changed during command
execution.

Action
Re-execute the command after the processing that changes the cluster configuration (such as scale-out processing)
has finished.

KDEA08401-E
Log initialization failed. (log directory = aa....aa)

22. Messages

Hitachi Elastic Application Data Store 729

aa....aa: Path name of the log output destination

Description
An attempt to initialize the log failed.

Action
Check if the path name of the log file output location specified in the eads.logger.dir parameter in the server
properties is correct.
Note that this message is not output to the log file because it is issued from a script.

KDEA08402-E
The server directory is invalid. (directory = aa....aa)

aa....aa: Management directory

Description
The management directory is invalid.

Action
Make sure that the management directory is correct.
Note that this message is not output to the log file because it is issued from a script.

KDEA08403-E
Startup of the server failed.

Description
Startup of the EADS server failed.

Action
Make sure that the ezserver file is an executable file.
In addition, make sure that the log output destination and log file can be accessed.
Note that this message is not output to the log file because it is issued from a script.

KDEA08404-E
The directory name contains invalid characters. (directory = aa....aa)

aa....aa: Directory name

Description
The directory name is invalid. The directory name contains invalid characters.

Action
Use alphanumeric characters (0 to 9, A to Z, a to z), underscores (_), and forward slashes (/) in the directory name.
In addition, do not specify a relative path name that contains a period for the directory name.
Note that this message is not output to the log file because it is issued from a script.

KDEA08405-E
The server process was not found. (server = aa....aa)

22. Messages

Hitachi Elastic Application Data Store 730

aa....aa: EADS server name (management directory name)

Description
The EADS server process was not found.

Action
Make sure that the EADS server has been started.
Note that this message is not output to the log file because it is issued from a script.

KDEA08406-E
A required program was not found. (directory = aa....aa)

aa....aa: EADS server name (management directory name)

Description
A required program was not found.

Action
Make sure that the product has been properly installed.
Make sure that the location of the management directory is correct.
Note that this message is not output to the log file because it is issued from a script.

KDEA08407-E
The specified option is invalid. (error details = aa....aa)

aa....aa: Error details

Description
The specified option is invalid.

Action
Check the options.
Note that this message is not output to the log file because it is issued from a script.

KDEA08408-E
The server process already exists. (server = aa....aa)

aa....aa: EADS server name (management directory name)

Description
The EADS server is already running.

Action
Check whether the EADS server is running.
Note that this message is not output to the log file because it is issued from a script.

KDEA08409-E
An attempt to lock the server failed.

22. Messages

Hitachi Elastic Application Data Store 731

Description
An attempt to place a lock failed.

Action
Execute the eztool status -v command to check whether another command is executing.
If the command has terminated, but the EADS server is still locked (lock status), execute the eztool unlock
command to unlock the EADS server.
If the cause of the error is unknown, contact the customer support center.
Note that this message is not output to the log file because it is issued from a script.

KDEA08410-E
The specified options cannot be specified at the same time. (option names = aa....aa, bb....bb)

aa....aa: option

bb....bb: option

Description
Specified options cannot be specified together.

Action
Check the options.
Note that this message is not output to the log file because it is issued from a script.

KDEA08411-E
File creation failed. (file name = aa....aa, error details = bb....bb)

aa....aa: File name

bb....bb: Error details

Description
An attempt to create a file failed.

Action
Check the error detail information.
Note that this message is not output to the log file because it is issued from a script.

KDEA08412-W
An attempt to unlock the server failed.

Description
An attempt to release a lock failed.

Action
Execute the eztool status -v command to check whether another command is executing.
If the command has terminated, but the EADS server is still locked (lock status), execute the eztool unlock
command to unlock the EADS server.
Note that this message is not output to the log file because it is issued from a script.

22. Messages

Hitachi Elastic Application Data Store 732

KDEA08413-W
The directory of cache files is invalid. (cache properties name = aa....aa, warning details = bb....bb)

aa....aa: Cache property file name

bb....bb: Warning details

Description
The directory specified in the cache property file is invalid.

Action
Check the warning details.
If necessary, check whether the directory specified in the cache property file is correct.
Note that this message is not output to the log file because it is issued from a script.

KDEA08414-W
The directory of cache files is invalid. (cache properties name = aa....aa, warning details = bb....bb)
The parameter is invalid. The default value will be used. (parameter = aa....aa, value = bb....bb, default value =
cc....cc)

aa....aa: Parameter name

bb....bb: Specified value

cc....cc: Default value

Description
An invalid value was specified in a parameter. The system will use the default value.

Action
An invalid value is specified in the parameter.
If necessary, check whether the value specified in the parameter is correct.
Note that this message is not output to the log file because it is issued from a script.

KDEA08415-E
The specified option is duplicated. (option = aa....aa)

aa....aa: Option name

Description
A specified option is duplicated.

Action
Check whether the option is duplicated.
Note that this message is not output to the log file because it is issued from a script.

KDEA08416-E
The specified parameter is invalid. (parameter = aa....aa)

aa....aa: Argument

22. Messages

Hitachi Elastic Application Data Store 733

Description
A specified argument is invalid.

Action
Check whether an invalid argument is specified.
Note that this message is not output to the log file because it is issued from a script.

KDEA08417-W
Deletion of a file failed. (warning details = aa....aa)

aa....aa: Warning details

Description
An attempt to delete a file failed.

Action
Check the warning details.
If necessary, manually delete the file whose deletion processing failed.
Note that this message is not output to the log file because it is issued from a script.

KDEA08418-E
An attempt to read the file failed. (file name = aa....aa, error details = bb....bb)

aa....aa: File name

bb....bb: Error details

Description
An attempt to read a file failed.

Action
Check whether the file exists or check the file permissions.
Note that this message is not output to the log file because it is issued from a script.

KDEA08419-W
The file might not be created. (file name = aa....aa, warning details = bb....bb)

aa....aa: File name

bb....bb: Warning details

Description
An attempt to create a file might have failed.

Action
Check the warning details.
Check whether the file has been created successfully. Alternatively, re-execute the command.
Note that this message is not output to the log file because it is issued from a script.

22. Messages

Hitachi Elastic Application Data Store 734

KDEA08501-I
The collection of statistics started.

Description
The collection of statistics has started.

KDEA08502-I
The collection of statistics stopped.

Description
Statistics collection has stopped.

KDEA08505-I
Export processing started. (store data file path = aa....aa, management client = bb....bb)

aa....aa: Store data file output destination path name

bb....bb: IP address from which the command was executed

Description
Exporting of data has started.

KDEA08506-I
Import processing started. (store data directory = aa....aa, store data file key = bb....bb, management client = cc....cc)

aa....aa: Store data file storage destination path name

bb....bb: Store data file key

cc....cc: IP address from which the command was executed

Description
Importing of data has started.

KDEA08507-I
A cache was created. (cache name = aa....aa, management client = bb....bb)

aa....aa: Created cache name

bb....bb: IP address from which the command was executed

Description
A cache was created.

KDEA08508-I
A cache was deleted. (cache name = aa....aa, management client = bb....bb)

aa....aa: Deleted cache name

22. Messages

Hitachi Elastic Application Data Store 735

bb....bb: IP address from which the command was executed

Description
A cache was deleted.

KDEA08510-I
Open processing finished. (management client = aa....aa)

aa....aa: IP address from which the command was executed

Description
The closed EADS server was opened.

KDEA08512-E
Initialization of the management service failed. (error details = aa....aa)

aa....aa: Error details

Description
Initialization of the management service failed.

Action
Check the error details, and then restart the EADS server.
In addition, check the server property parameter eads.admin.operation.port.
Check the directories and files to which statistics are output.

KDEA08513-E
Output of statistics failed. (statistics file path = aa....aa, error details = bb....bb)

aa....aa: Statistics file path name

bb....bb: Error details

Description
An attempt to output the statistics file failed.

Action
Check the output destination for the statistics file.

KDEA08516-E
Exporting failed. (store data file path = aa....aa, management client = bb....bb, error details = cc....cc)

aa....aa: Store data file output destination path name

bb....bb: IP address from which the command was executed

cc....cc: Error details

Description
An attempt to export data failed.

22. Messages

Hitachi Elastic Application Data Store 736

Action
Check the store data file key.
Check the error detail information.
Check the messages that were output immediately before this one.
Check the status of the EADS servers by executing the command eztool status.

KDEA08517-E
Importing failed. (store data directory = aa....aa, store date file key = bb....bb, management client = cc....cc, error
details = dd....dd)

aa....aa: Store data file storage destination path name

bb....bb: Store data file key

cc....cc: IP address from which the command was executed

dd....dd: Error details

Description
An attempt to read data failed.

Action
Check the store data file key.
Check the error detail information.
Check the messages that were output immediately before this one.
Check the status of the EADS servers by executing the command eztool status.

KDEA08518-E
Creation of a cache failed. (cache name = aa....aa, management client = bb....bb, error details = cc....cc)

aa....aa: Name of cache whose creation was attempted

bb....bb: IP address from which the command was executed

cc....cc: Error details

Description
An attempt to create a cache failed.

Action
Check the cache name.
Check the error detail information.
Check the messages that were output immediately before this one.
Check the status of the EADS servers by executing the command eztool status.

KDEA08519-E
Deletion of a cache failed. (cache name = aa....aa, management client = bb....bb, error details = cc....cc)

aa....aa: Name of the cache whose deletion was attempted

22. Messages

Hitachi Elastic Application Data Store 737

bb....bb: IP address from which the command was executed

cc....cc: Error details

Description
An attempt to delete a cache failed.

Action
Check the cache name.
Check the error detail information.
Check the messages that were output immediately before this one.
Check the status of the EADS servers by executing the command eztool status.

KDEA08530-E
The server is not in a state in which commands can be executed. (subcommand = aa....aa, management client =
bb....bb, error details = cc....cc)

aa....aa: Subcommand

bb....bb: IP address from which the command was executed

cc....cc: Error details

Description
The EADS server is not in a state in which commands can be executed.

Action
Check the status of the EADS server, command, and cluster.

KDEA08531-I
The status has already been changed. (subcommand = aa....aa, management client = bb....bb, details = cc....cc)

aa....aa: Subcommand

bb....bb: IP address from which the command was executed

cc....cc: Details

Description
The status of the EADS server has already been changed.

KDEA08532-I
Close processing finished. (management client = aa....aa)

aa....aa: IP address from which the command was executed

Description
The EADS server was closed.

22. Messages

Hitachi Elastic Application Data Store 738

KDEA08533-I
Export processing finished. (store data file path = aa....aa, management client = bb....bb)

aa....aa: Store data file output destination path name

bb....bb: IP address from which the command was executed

Description
Data export has been completed.

KDEA08534-I
Import processing finished. (store data directory = aa....aa, store data file key = bb....bb, management client =
cc....cc)

aa....aa: Store data file storage destination path name

bb....bb: Store data file key

cc....cc: IP address from which the command was executed

Description
Data import has been completed.

KDEA08535-E
An unexpected error occurred. (error details = aa....aa)

aa....aa: Error details

Description
An unexpected error occurred.

Action
Check the error detail information.
If the cause of the error is unknown, contact the customer support center.

KDEA08537-I
The importing of the store data file started. (store data file path = aa....aa)

aa....aa: Store data file storage destination path name

Description
The importing of data has started.

KDEA08538-I
The importing of the store data file finished. (store data file path = aa....aa)

aa....aa: Store data file storage destination path name

Description
Data import has been completed.

22. Messages

Hitachi Elastic Application Data Store 739

KDEA08539-E
The importing of the store data file failed. (store data file path = aa....aa, error details = bb....bb)

aa....aa: Store data file storage destination path name

bb....bb: Error details

Description
An attempt to read data failed.

Action
Check the error detail information.
Make sure the store data file is correct.

KDEA08545-W
The specified cache name already exists. (cache name = aa....aa, management client = bb....bb)

aa....aa: Cache name

bb....bb: IP address from which the command was executed

Description
The specified cache name already exists.

Action
Make sure the cache name is correct.

KDEA08547-W
The specified cache name does not exist. (cache name = aa....aa, management client = bb....bb)

aa....aa: Cache name

bb....bb: IP address from which the command was executed

Description
The specified cache does not exist.

Action
Make sure the cache name is correct.

KDEA08548-I
The store data file was deleted. (store data file path = aa....aa)

aa....aa: Store data file output destination path name

Description
The store data file was deleted.

KDEA08549-E
Deletion of the store data file failed. (store data file name = aa....aa, error details = bb....bb)

22. Messages

Hitachi Elastic Application Data Store 740

aa....aa: Store data file name

bb....bb: Error details

Description
An attempt to delete store data file failed.

Action
Check the messages that were output immediately before this one.
Check the status of the EADS servers by executing the command eztool status.

KDEA08569-E
The specified cache name is invalid. (cache name = aa....aa, management client = bb....bb)

aa....aa: Cache name

bb....bb: IP address from which the command was executed

Description
The specified cache name is invalid.

Action
Check whether the correct cache name was specified.

KDEA08570-E
The number of caches exceeds the limit. (cache count = aa....aa, limit = bb....bb, management client = cc....cc)

aa....aa: Number of caches

bb....bb: Upper limit on the number of caches

cc....cc: IP address from which the command was executed

Description
The number of caches exceeds the upper limit.

Action
Execute the eztool deletecache command to delete unneeded caches.

KDEA08571-E
The specified directory name is invalid. (store data directory name = aa....aa, management client = bb....bb)

aa....aa: Store data file storage destination path name

bb....bb: IP address from which the command was executed

Description
The specified directory name is invalid.

Action
Check if the specified directory name is correct.

22. Messages

Hitachi Elastic Application Data Store 741

KDEA08572-E
The specified store data file name is invalid. (store data file key = aa....aa, management client = bb....bb)

aa....aa: Store data file key

bb....bb: IP address from which the command was executed

Description
The specified store data file name is invalid.

Action
Check if the specified store data file key is correct.

KDEA08575-E
Acquisition of the store data failed. (management client = aa....aa, error details = bb....bb)

aa....aa: IP address from which the command was executed

bb....bb: Error details

Description
An attempt to acquire store data failed.

Action
Make sure the store data file exists at the store data file output destination.
Check the output destination and access permissions for the store data file.

KDEA08576-I
Processing to isolate the server finished. (management client = aa....aa)

aa....aa: IP address from which the command was executed

Description
The EADS server has been isolated.

KDEA08577-E
Processing to isolate the server failed. (management client = aa....aa, error details = bb....bb)

aa....aa: IP address from which the command was executed

bb....bb: Error details

Description
An attempt to isolate the EADS server failed.

Action
Check the error detail information.
Check the status of other EADS servers.
Restore other isolated EADS servers, and then re-execute the command.

22. Messages

Hitachi Elastic Application Data Store 742

KDEA08580-I
Processing to close the server started. (management client = aa....aa)

aa....aa: IP address from which the command was executed

Description
The processing to close the EADS server has started.

KDEA08582-E
The wait for completion of execution failed. (management client = aa....aa, error details = bb....bb)

aa....aa: IP address from which the command was executed

bb....bb: Error details

Description
The wait for the command to finish executing failed.

Action
Re-execute the command.

KDEA08585-E
The compaction of cache data files failed. (management client = aa....aa, cache name = bb....bb, range ID =
cc....cc, error details = dd....dd)

aa....aa: IP address from which the command was executed

bb....bb: Cache name

cc....cc: Range ID

dd....dd: Error details

Description
Compaction of cache data files failed.

Action
Check the error detail information.

KDEA08586-I
Stopping the compaction of cache data files was reserved. (management client = aa....aa)

aa....aa: IP address from which the command was executed

Description
A request to stop compaction of cache data files was queued.

KDEA08587-I
The compaction of cache data files was stopped. (management client = aa....aa)

22. Messages

Hitachi Elastic Application Data Store 743

aa....aa: IP address from which the command was executed

Description
Compaction of cache data files was stopped.

KDEA08588-I
The cache files were deleted. (management client = aa....aa, cache name = bb....bb)

aa....aa: IP address from which the command was executed

bb....bb: Cache name

Description
The cache files were deleted.

KDEA08589-E
Deletion of cache files failed. (management client = aa....aa, cache name = bb....bb, error details = cc....cc)

aa....aa: IP address from which the command was executed

bb....bb: Cache name

cc....cc: Error details

Description
An attempt to delete cache files failed.

Action
Check the error detail information.

KDEA08591-I
The resumption of cache files started. (management client = aa....aa)

aa....aa: IP address from which the command was executed

Description
Cache resume processing has started.

KDEA08592-I
The resumption of cache files finished. (management client = aa....aa)

aa....aa: IP address from which the command was executed

Description
Cache resume processing has finished.

KDEA08593-E
The resumption of cache files failed. (management client = aa....aa, error details = bb....bb)

22. Messages

Hitachi Elastic Application Data Store 744

aa....aa: IP address from which the command was executed

bb....bb: Error details

Description
Cache resume processing failed.

Action
Check the error detail information.

KDEA08594-I
The importing of cache files started. (management client = aa....aa)

aa....aa: IP address from which the command was executed

Description
Cache file import processing has started.

KDEA08595-I
The importing of cache files finished. (management client = aa....aa)

aa....aa: IP address from which the command was executed

Description
Cache file import processing has finished.

KDEA08596-E
The importing of cache files failed. (management client = aa....aa, error details = bb....bb)

aa....aa: IP address from which the command was executed

bb....bb: Error details

Description
Cache file import processing failed.

Action
Check the error detail information.

KDEA08597-E
Creation of cache files failed. (cache name = aa....aa, management client = bb....bb, error details = cc....cc)

aa....aa: Cache name

bb....bb: IP address from which the command was executed

cc....cc: Error details

Description
An attempt to create cache files failed.

22. Messages

Hitachi Elastic Application Data Store 745

Action
Check the error detail information.

KDEA08598-I
Exporting was not executed because no memory cache exist on the server. (management client = aa....aa)

aa....aa: IP address from which the command was executed

Description
Data export processing was not performed because there was no memory cache on the EADS server.

Action
Check the error detail information.

KDEA08599-E
The command cannot be executed because the command version and server version are different. (command version
= aa....aa, server version = bb....bb)

aa....aa: Command version

bb....bb: EADS server version

Description
The command cannot be executed because the command's version does not match the EADS server's version.

Action
Execute the command whose version matches the EADS server's version.

KDEA08600-W
No range for the server ID specified in the server ID specification group was found. (server ID = aa....aa)

aa....aa: EADS server ID

Description
The range for an EADS server ID specified in the EADS server ID specified group was not found.

Action
Check whether the EADS server ID conversion rule specified in the eztool import or eztool importecf
command is correct.
Check the cluster configuration and each EADS server's EADS server ID.

KDEA08601-E
The user does not have the write permission for the file. (file path = aa....aa)

aa....aa: File path

Description
The user does not have write permissions for the file.

Action
Add write permissions to the file.

22. Messages

Hitachi Elastic Application Data Store 746

KDEA08602-E
The user does not have the execute permission for the file. (file path = aa....aa)

aa....aa: File path

Description
The user does not have execute permissions for the file.

Action
Add execution permissions to the file.

KDEA08603-E
An attempt to output the configuration after scaling failed. (error details = aa....aa)

aa....aa: Error details

Description
An attempt to output the cluster configuration after scale-out processing failed.

Action
Check the error detail information.
When this error has occurred, the current cluster configuration might differ from the cluster configuration defined
in the property files. If this is the case, either copy another EADS server's property files that have been output
successfully, or manually specify in the property files the cluster configuration after scale-out processing.

22. Messages

Hitachi Elastic Application Data Store 747

22.8 KDEA10000 to KDEA11999

This section describes messages KDEA10000 to KDEA11999 and explains what actions to take in response to each
message.

KDEA10001-W
The parameter is outside the valid range. The default value will be used. (parameter = aa....aa, value = bb....bb,
default value = cc....cc)

aa....aa: Parameter name

bb....bb: Specified value of the parameter

cc....cc: Default value of the parameter

Description
the specified value of the parameter is invalid. The default value will be used.

Action
Check the specified value of the parameter and change it to the correct value.

KDEA10002-E
The parameter is outside the valid range or was not specified. (parameter = aa....aa, value = bb....bb)

aa....aa: Parameter name

bb....bb: Invalid specified value of the parameter (or null or NULL if no value was specified)

Description
The parameter was not specified, or the specified value is invalid.

Action
Check the specified value of the parameter, change it to the correct value, and then restart the EADS server.

KDEA10005-E
A received packet was invalid for the protocol. (local = aa....aa:bb....bb, remote = cc....cc:dd....dd)

aa....aa: Local IP address

bb....bb: Local port number

cc....cc: Remote IP address

dd....dd: Remote port number

Description
A received packet was invalid for the protocol.

Action
The possible causes are as follows:

• A problem has occurred at the remote system with which communication was underway.

22. Messages

Hitachi Elastic Application Data Store 748

• A network problem occurred.

Determine the cause of the error, and then eliminate it.

KDEA10006-W
A packet incompatible with the communications protocol was received. (local = aa....aa:bb....bb, remote =
cc....cc:dd....dd)

aa....aa: Local IP address

bb....bb: Local port number

cc....cc: IP address of the connection source

dd....dd: Port number of the connection source

Description
An incompatible packet was received.

Action
The possible causes are as follows:

• A problem has occurred at the remote system with which communication was underway.

• The remote system is not compatible with the local system.

• A network problem occurred.

Determine the cause of the error, and then eliminate it.

KDEA10007-E
Some parameter values conflict. (parameter1 = aa....aa, parameter2 = bb....bb)

aa....aa: Parameter 1 containing a conflicting value

bb....bb: Parameter 2 containing a conflicting value

Description
The value of parameter 1 conflicts with the value of parameter 2.
There is a problem in the relationship between the parameters, such as in an inequality relationship.

Action
Check the parameter values, correct them, and then restart the EADS server.

22. Messages

Hitachi Elastic Application Data Store 749

Appendix

Hitachi Elastic Application Data Store 750

A. Glossary

cache
An area for storing the data (pairs of keys and values) handled by EADS.

Up to 16 caches can be created in a cluster.

An EADS client manipulates data associated with a particular cache within a cluster.

check for live servers
This functionality detects a down EADS server in a cluster when it does not send heartbeats.

The check for live servers uses TCP.

cluster
A collection of multiple EADS servers. EADS clients recognize a cluster as a single storage destination.

A cluster consists of a set of EADS servers that share the same port numbers and the same multicast address
within the same segment.

disk cache
A cache that uses a disk area to store data.

EADS client
A user program that connects to an EADS server by using client libraries provided by EADS.

EADS server
A server process that manages data consisting of keys and values.

heartbeat
A packet, delivered via multicast within a cluster, that indicates normal operation.

A heartbeat is sent using UDP.

memory cache
A cache that uses a memory area to store data.

scale-out processing
Processing that adds new EADS servers to a cluster without stopping the cluster.

two-way cache
A cache that uses a memory area and a disk area to store data.

user function
A program that defines a series of data operations (user processing) to be performed on a cache, such as
data totaling and analysis.

User functions are created by the user and placed on an EADS server in advance. They are called and
executed by the EADS client. The two methods for executing user functions are as follows:

A. Glossary

Hitachi Elastic Application Data Store 751

• By specifying a key or a group

• By specifying an EADS server

A. Glossary

Hitachi Elastic Application Data Store 752

Index

A
abbreviations for products 4
acronyms 4
adding 67
AllFailureException class 498

B
BatchOperationException class 497
BNF notation, interpreting 403
body (eztool command's subcommands that display
execution results) 400

C
cache 32, 751

checking usage status of 344
creating 350
deleting 352
resuming 382

Cache class 446
cache data file 140

performing compaction on 389
CacheException class 485
cache file 139

deleting 386
cache-file operation log file 119
cache index file 140
CacheInfo interface 524
cache information file 140
CacheManager class 469
cache property file 113
caches, displaying list of 219, 324
calcDiskUsageSize() (Store interface) 542
calcEHeapUsageSize() (Store interface) 542
check for live servers 58, 751
ClientInfo interface 509
client property file 149
close 309
closed 67
closing 67
cluster 28, 751

checking status of 218, 311
closing 309
opening 310
running 304

terminating 396
ClusterInfo interface 518
cluster information 57
cluster is available 61
cluster is partially available 61
cluster is unavailable 62
cluster participation status 62
cluster property file 113
cluster recovery processing 180
cluster scale-out processing 181
command property file 113
compaction 220, 389
complementary processing of the history of update
operations 181
connection pool 68
consensus message 43
containsKey()

character string (Store interface) 531
Key interface specification (Store interface) 531

content (eztool command's subcommands that display
execution results) 400
conventions

abbreviations for products 4
acronyms 4
fonts and symbols 4
KB, MB, GB, and TB 5
version numbers 6

create 35
create()

Cache class 449
client properties specification (CacheManager class)

474
EADS client name and client properties specification
(CacheManager class) 475
EADS client name and input stream specification
(CacheManager class) 473
EADS client name and path specification
(CacheManager class) 471
Group interface 554
input stream specification (CacheManager class)

472
path specification (CacheManager class) 470
Store interface 533

createcache 350
createGroup()

Group interface 547

Hitachi Elastic Application Data Store 753

Store interface 529
createKey()

Group interface 546
Store interface 528

createValue() (Store interface) 528

D
data

acquiring specified 362
creating redundant copies of 55
deleting all 366
deleting specified 364
exporting 354
importing 356
storing specified 361

data storage location, displaying 341
deletecache 352
deleteecf 386
deleteesd 359
descendingKeyIterator()

Group interface 549
Key interface specification (Group interface) 550

destroy()
CacheManager class 477
Function interface 502

directory configuration
EADS client 108
EADS server 97

disk cache 32, 751
distribution maintenance log file 119

E
ead_address structure 641
ead_create() 601
EAD_ERROR_BATCH_FAILED_ALL

C 653
Java 494

EAD_ERROR_BATCH_FAILED_PART
C 653
Java 494

EAD_ERROR_CACHE_NOT_CREATED (user
function) 573
EAD_ERROR_CACHE_NOT_NEED_STOP

C 642
Java 487

EAD_ERROR_CACHE_NOT_STARTED

C 642
Java 486

EAD_ERROR_CACHE_SETTING (user function) 573
EAD_ERROR_CLIENT

C 652
Java 494

EAD_ERROR_CLIENT_BATCH_CANCEL
C 653
Java 494

EAD_ERROR_CLIENT_FINALIZED (Java) 486
EAD_ERROR_CLIENT_OUT_OF_MEMORY

C 652
Java 494

EAD_ERROR_EXCEED_MAX_CONNECTION_POO
L_SIZE

C 642
Java 487

EAD_ERROR_ILLEGAL_ARGUMENT (C) 642
EAD_ERROR_INIT

C 643
Java 487

EAD_ERROR_INIT_CLUSTERINFO
C 644
Java 488

EAD_ERROR_INIT_INVALID_PROPERTY
C 643
Java 488

EAD_ERROR_INIT_LOGGER
C 643
Java 488

EAD_ERROR_INIT_PROPERTIES
C 643
Java 487

EAD_ERROR_INVALID_NODE_ADDRESS
C 642
Java 487

EAD_ERROR_INVALID_PARAMETER
Java 486
user function 573

EAD_ERROR_NET
C 644
Java 488

EAD_ERROR_NET_CLUSTERINFO
C 647
Java 490

EAD_ERROR_NET_CONNECTION
C 646

Hitachi Elastic Application Data Store 754

Java 490
EAD_ERROR_NET_PROTOCOL

C 647
Java 490

EAD_ERROR_NET_RECEIVE_RESPONSE
C 645
Java 489

EAD_ERROR_NET_RECEIVE_TIMEOUT
C 646
Java 490

EAD_ERROR_NET_SEND_REQUEST
C 645
Java 489

EAD_ERROR_NET_SEND_TIMEOUT
C 646
Java 489

EAD_ERROR_NET_TIMEOUT
C 645
Java 489

EAD_ERROR_NOT_DESERIALIZABLE
Java 486
user function 573

EAD_ERROR_NOT_SERIALIZABLE
Java 486
user function 573

EAD_ERROR_SERVER
C 648
Java 491
user function 573

EAD_ERROR_SERVER_CACHE
C 650
Java 492

EAD_ERROR_SERVER_CACHE_AFTER_REPLICA
TION

C 651
Java 493
user function 574

EAD_ERROR_SERVER_CACHE_BEFORE_REPLIC
ATION

C 650
Java 492
user function 574

EAD_ERROR_SERVER_CACHE_CLUSTER_NOT_
AVAILABLE (user function) 574
EAD_ERROR_SERVER_CACHE_CLUSTER_UPDA
TE

C 650
Java 492

EAD_ERROR_SERVER_CACHE_NOT_FOUND
C 650
Java 492

EAD_ERROR_SERVER_CACHE (user function) 574
EAD_ERROR_SERVER_CREATE_METHOD_KEY_
EXIST

C 649
Java 492
user function 574

EAD_ERROR_SERVER_FUNCTION_ARG_DESERI
ALIZE (Java) 493
EAD_ERROR_SERVER_FUNCTION_EXECUTE

C 651
Java 493

EAD_ERROR_SERVER_FUNCTION_NOT_FOUND
C 651
Java 493

EAD_ERROR_SERVER_FUNCTION_RETURN_SE
RIALIZE

C 651
Java 493

EAD_ERROR_SERVER_INCOMPATIBLE_CLUSTE
RINFO

C 649
Java 491

EAD_ERROR_SERVER_LIMIT_CACHE_FILE
C 652
Java 494
user function 575

EAD_ERROR_SERVER_LIMIT_EXTERNAL_MEMO
RY

C 651
Java 493
user function 574

EAD_ERROR_SERVER_LIMIT_KEY_VALUE_LENG
TH

C 652
Java 494
user function 575

EAD_ERROR_SERVER_LIMIT_KV_COUNT
C 652
Java 494
user function 575

EAD_ERROR_SERVER_NOT_RUNNING
C 649
Java 492

EAD_ERROR_SERVER_REPLACE_METHOD_KEY
_NOT_EXIST

Hitachi Elastic Application Data Store 755

C 649
Java 491
user function 574

EAD_ERROR_SERVER_REPLACE_METHOD_NOT
_MATCHED

C 649
Java 491
user function 573

EAD_ERROR_SERVER_STATUS
C 650
Java 492

EAD_ERROR_SERVER_UNAVAILABLE
C 648
Java 491

EAD_ERROR_SERVER_UNKNOWN
C 652
Java 494

EAD_ERROR_SERVER_UNSUPPORTED_REQUE
ST

C 648
Java 491

EAD_ERROR_SERVER_UPDATE_METHOD_KEY_
NOT_EXIST

C 649
Java 492
user function 574

EAD_ERROR_UNEXPECTED
C 642
Java 486
user function 573

ead_execute_function_rt() 624
ead_execute_function() 622
ead_execute_node_function_rt() 627
ead_execute_node_function() 625
ead_failure_operation_info structure 638
ead_get_all_results structure 636
ead_get_all() 604
ead_get_cache_name() 596
ead_get_current_master_node() 632
ead_get_group_count() 615
ead_get_group_first_key() 618
ead_get_group_key_count() 616
ead_get_group_keys() 613
ead_get_group_names() 612
ead_get_group_next_key() 620
ead_get_group_results structure 637
ead_get_group() 606

ead_get_node_first_key() 619
ead_get_node_key_count() 617
ead_get_node_keys() 614
ead_get_node() 630
ead_get_nodelist() 628
ead_get_original_master_node() 633
ead_get_slave_nodelist() 631
ead_get() 603
ead_group_names structure 635
ead_init_client_n() 594
ead_init_client() 593
ead_key_value_pair structure 635
ead_keys structure 635
ead_nodelist structure 640
ead_node structure 640
ead_object structure 639
EAD_OK (C) 642
ead_put_all_results structure 636
ead_put_all() 599
ead_put_array_value() 598
ead_put() 598
ead_remove_all_results structure 638
ead_remove_all() 608
ead_remove_group() 609
ead_remove_node() 610
ead_remove() 607
ead_replace() 603
ead_start_cache() 595
ead_stop_cache() 596
ead_terminate_client() 597
ead_update() 602
ead_value_element structure 634
eads_[xxx]_[EADS-server-ID].esd (file name) 134
eads_cache_stats_[n].csv (file name) 120
eads_cache_stats.csv (file name) 120
eads_cache.cache-name.properties (file name) 113
eads_client_maintenance[n].log (file name) 154
eads_client_message[n].log (file name) 154
eads_cluster.properties (file name) 113
eads_command_exception.log (file name) 120
eads_command_exception[n].log (file name) 120
eads_command_maintenance[n].log (file name) 120
eads_command_message.log (file name) 120
eads_command_message[n].log (file name) 120
eads_command.properties (file name) 113
eads_data_[EADS-server-ID]_[cache-name]_[range-
ID]_[nnnnn].ecf (file name) 140

Hitachi Elastic Application Data Store 756

eads_dist_maintenance[n].log (file name) 120
eads_function_stats_[n].csv (file name) 120
eads_function_stats.csv (file name) 120
eads_index_[EADS-server-ID]_[cache-name]_[range-
ID]_[nnnnn].ecf (file name) 140
eads_info_[EADS-server-ID]_[cache-name].ecf (file
name) 140
eads_maintenance_stats_[n].csv (file name) 121
eads_maintenance_stats.csv (file name) 121
eads_server_cache.log (file name) 120
eads_server_cache[n].log (file name) 120
eads_server_exception.log (file name) 120
eads_server_exception[n].log (file name) 120
eads_server_maintenance[n].log (file name) 120
eads_server_message.log (file name) 119
eads_server_message[n].log (file name) 119
eads_server.properties (file name) 113
eads_shared.properties (file name) 113
eads_single_[xxx]_[EADS-server-ID].esd (file name)

134
eads_stats_[n].csv (file name) 120
eads_stats.csv (file name) 120
eads_stop_[YYYYMMDDhhmmss]_[EADS-server-
ID].esd (file name) 134
eads_store_stats_[n].csv (file name) 120
eads_store_stats.csv (file name) 120
eads_user_exception.log (file name) 120
eads_user_exception[n].log (file name) 120
eads_user_message.log (file name) 120
eads_user_message[n].log (file name) 120
eads.admin.backup.dir 137
eads.admin.backup.exportCommand.generation.max
Num 137
eads.admin.backup.stopCommand.generation.maxN
um 138
eads.admin.boot.timeout 187
eads.admin.operation.connection.timeout 185
eads.admin.operation.isolate.gracefulstop.waitTime

187
eads.admin.operation.port 117
eads.admin.operation.resume.send.datasize 164
eads.admin.operation.resume.send.interval 189
eads.cache.disk.blocksize 145
eads.cache.disk.filenum 145
eads.cache.disk.filesize 145
eads.cache.disk.getError.isolate.enable 143
eads.cache.disk.info.dir 144
eads.cache.disk.n.dir 144

eads.cache.disk.transfer.datasize 146
eads.cache.disk.transfer.interval 145
eads.cache.key.maxsize 164
eads.cache.keyCount 166
eads.cache.limiter.enable 165
eads.cache.logger.diskCache.filenum 127
eads.cache.logger.diskCache.filesize 127
eads.cache.logger.diskCache.rotationStyle 126
eads.cache.type 144
eads.client.batchOperation.unit 194
eads.client.clusterInfo.update.interval 191
eads.client.compat 195
eads.client.connect.servers 152
eads.client.connection.buffersize 166
eads.client.connection.receive.timeout 191
eads.client.connection.send.timeout 191
eads.client.connectionPool.exceedMaxSizeError.ena
ble 170
eads.client.connectionPool.poolsize 170
eads.client.connection-target-EADS-server.address

152
eads.client.connection-target-EADS-server.port 152
eads.client.logger.dir 155
eads.client.logger.initErrorOut 156
eads.client.logger.message.console.enable 155
eads.client.logger.message.filenum 155
eads.client.logger.message.filesize 155
eads.command.common.execution.timeout 190
eads.command.common.read.timeout 189
eads.command.compaction.effect.division 197
eads.command.compaction.effect.threshold 197
eads.command.compat 193
eads.command.connect.sub.servers 117
eads.command.connection.timeout 189
eads.command.connection-target-EADS-
server.address 118
eads.command.connection-target-EADS-
server.admin.operation.port 118
eads.command.logger.dir 127
eads.command.logger.exception.filenum 129
eads.command.logger.exception.filesize 128
eads.command.logger.exception.rotationStyle 128
eads.command.logger.message.filenum 128
eads.command.logger.message.filesize 128
eads.command.logger.message.rotationStyle 128
eads.command.subcommand-
name.execution.timeout 191
eads.command.subcommand-name.read.timeout 190

Hitachi Elastic Application Data Store 757

eads.failureDetector.assertive.threshold 186
eads.failureDetector.connection.timeout 186
eads.failureDetector.heartbeat.address 133
eads.failureDetector.heartbeat.interval 185
eads.failureDetector.heartbeat.port 133
eads.failureDetector.heartbeat.timeout 186
eads.failureDetector.port 117
eads.failureDetector.read.timeout 186
eads.failureDetector.retry 186
eads.function.user-function-
name.maxExecuteThreads 170
eads.java.external.heapsize 165
eads.java.heapsize 165
eads.java.log.filenum 127
eads.java.log.filesize 127
eads.java.permanent.maxsize 165
eads.logger.dir 124
eads.logger.exception.filenum 125
eads.logger.exception.filesize 125
eads.logger.exception.rotationStyle 125
eads.logger.message.console.enable 125
eads.logger.message.filenum 125
eads.logger.message.filesize 124
eads.logger.message.rotationStyle 124
eads.node.EADS-server-ID.address 132
eads.node.EADS-server-ID.port 132
eads.node.EADS-server-ID.position 132
eads.replication.connection.buffersize 161
eads.replication.consensus.timeout 187
eads.replication.external.heapsize 165
eads.replication.factor 133
eads.replication.fillgap.copy.datasize 163
eads.replication.fillgap.copy.timeout 188
eads.replication.port 117
eads.replication.preparations 165
eads.replication.sendQueue.datasize 162
eads.replication.sendQueue.length 162
eads.server.address 117
eads.server.cache.maxExecuteThreads 169
eads.server.connection.buffersize 161
eads.server.connection.keepAlive.timeout 187
eads.server.connection.timeout 185
eads.server.function.maxExecuteThreads 169
eads.server.maxConnections 169
eads.server.port 117
eads.statistics.compaction.effect.division 127
eads.statistics.filenum 127

eads.statistics.interval 127
eads.transfer.connection.buffersize 163
eads.transfer.datasize 163
eads.transfer.interval 187
eads.transfer.port 117
eads.transfer.timeout 187
eads.user.logger.exception.filenum 126
eads.user.logger.exception.filesize 126
eads.user.logger.exception.rotationStyle 126
eads.user.logger.filenum 126
eads.user.logger.filesize 126
eads.user.logger.rotationStyle 125
EADS client 29, 751
EADS isolation processing 179
EADS server 28, 751

checking status of 218
isolating 398

EADS server, starting 300
creating cache 200
creating cache by importing data from file 206
in foreground 302

EADS server, terminating
after exporting data from memory to file 214
discarding data from memory 212
forcibly 397

EADS server ID specified group 52
EADsStoreException class 572
ehjavalog[nn].log (file name) 121
element name 50
enumeration CacheType 576
environment-dependent parameter 71
equals()

Group interface 545
Value interface 568

error code (C)
EAD_ERROR_CACHE_NOT_STARTED 642
EAD_ERROR_CLIENT 652
EAD_ERROR_ILLEGAL_ARGUMENT 642
EAD_ERROR_INIT 643
EAD_ERROR_INIT_CLUSTERINFO 644
EAD_ERROR_INIT_INVALID_PROPERTY 643
EAD_ERROR_INIT_LOGGER 643
EAD_ERROR_INIT_PROPERTIES 643
EAD_ERROR_NET 644
EAD_ERROR_NET_CLUSTERINFO 647
EAD_ERROR_NET_CONNECTION 646
EAD_ERROR_NET_PROTOCOL 647

Hitachi Elastic Application Data Store 758

EAD_ERROR_NET_TIMEOUT 645
EAD_ERROR_SERVER 648
EAD_ERROR_SERVER_UNSUPPORTED_REQU
EST 648
EAD_ERROR_UNEXPECTED 642
EAD_OK 642

error information, acquiring 289
exception log file 119
execfunc 371
execute() (Function interface) 502
executeFunction()

EADS server specification (Cache class) 467
EADS server specification and reception timeout
specification (Cache class) 468
key specification or group specification, and
reception timeout specification (Cache class) 466
key specification or group specification (Cache
class) 465

explicit heap 74
export 354
ezserver 302
ezstart 300
eztool 304
eztool command, subcommand of 306

F
FailureOperationInfo class 484
firstKey() (Group interface) 547
font conventions 4
FunctionContext interface 503
Function interface 501
function property file 113

G
GB meaning 5
get 39

subcommand 362
get()

Cache class 451
character string specification (Group interface) 557
Key interface specification (Group interface) 558
Store interface 535

getAddress()
Node class 483
ServerInfo interface 512

getAll()
group specification (Cache class) 453

set specification (Cache class) 452
getArgument() (FunctionContext interface) 505
getCache() (CacheManager class) 475
getCacheDataFileRemainingSize() (ServerInfo
interface) 516
getCacheDataFileSize() (CacheInfo interface) 524
getCacheDataFilesNumber() (CacheInfo interface)525
getCacheDataFileSpecifiedNumber() (ServerInfo
interface) 517
getCacheDataFileSpecifiedSize() (ServerInfo
interface) 515
getCacheDataFileUnusedNumber() (ServerInfo
interface) 517
getCacheInfo() (ClusterInfo interface) 520
getCacheName()

ClientInfo interface 510
FunctionContext interface 504

getCacheNames()
ClusterInfo interface 520
ServerInfo interface 513

getCacheType() (ServerInfo interface) 513
getClientInfo() (FunctionContext interface) 506
getClusterInfo() (FunctionContext interface) 507
getCurrentMasterNode() (CacheManager class) 480
getDiskUsageSize()

Group interface specification (Store interface) 541
Key interface specification (Store interface) 540

getEHeapSize() (ServerInfo interface) 514
getEHeapUsageSize()

Group interface specification (Store interface) 540
Key interface specification (Store interface) 539
ServerInfo interface 515

getErrorCode()
CacheException class 486
EADsStoreException class 572
FailureOperationInfo class 484

getException() (FailureOperationInfo class) 485
getFailureOperationInfo() (BatchOperationException
class) 498
getFirstKey()

EADS server specification (Cache class) 462
group specification (Cache class) 461

getFunctionArgument() (ClientInfo interface) 511
getFunctionName() (InitConfig interface) 509
getFunctionProperty() (InitConfig interface) 508
getFunctionPropertyNames() (InitConfig interface) 509
getGroup()

group name specification (Store interface) 530

Hitachi Elastic Application Data Store 759

Store interface 530
getGroupCount()

Cache class 459
Group interface 562
Store interface 538

getGroupLayerNames() (Group interface) 563
getGroupName() (FunctionContext interface) 504
getGroupNames()

Group interface 562
Key interface 566
Store interface 538

getGroupNameSet()
Cache class 457
Group interface 563
Store interface 538

getId() (ServerInfo interface) 513
getInitConfig() (FunctionContext interface) 507
getIp() (ClientInfo interface) 510
getKey() (FailureOperationInfo class) 484
getKeyCount()

EADS server specification (Cache class) 461
Group interface 562
group specification (Cache class) 460
Store interface 537

getKeyOrGroupName() (ClientInfo interface) 511
getKeySet()

EADS server specification (Cache class) 459
group specification (Cache class) 458

getLastUpdateTime()
character string specification (Group interface) 560
Key interface specification (Group interface) 561
Store interface 536

getLocalRangeId() (ClusterInfo interface) 522
getLogger() (FunctionContext interface) 506
getName()

Cache class 447
ServerInfo interface 512

getNextKey()
EADS server specification and key specification
(Cache class) 464
group specification and key specification (Cache
class) 463

getNode() (CacheManager class) 478
getNodeId() (Node class) 482
getNodeList() (CacheManager class) 477
getObject() (Value interface) 569
getOriginalMasterNode() (CacheManager class) 480

getPid() (ClientInfo interface) 510
getposition 341
getPosition()

ClusterInfo interface 520
Group interface 546
Key interface 567
Node class 483

getRangeId()
key or group name specification (ClusterInfo
interface) 521
position specification (ClusterInfo interface) 521

getRemainingAreaSizeOfWritingCacheDataFile()
(CacheInfo interface) 525
getRemainingCacheDataFilesNumber() (CacheInfo
interface) 526
getReplicationFactor() (ClusterInfo interface) 519
getServerInfo() (FunctionContext interface) 507
getServerName() (FunctionContext interface) 503
getSlaveNodeList() (CacheManager class) 479
getStore()

cache name specification (FunctionContext
interface) 505
FunctionContext interface 505

getSuccessOperationNumber()
(BatchOperationException class) 497
getType() (CacheInfo interface) 524
getValueUsageSize()

character string specification (Group interface) 564
Group interface 565
Key interface specification (Group interface) 564

group hierarchy name 51
Group interface 543
group name 50
group names, displaying list of 333

H
hardware information, collecting 392
header (eztool command's subcommands that display
execution results) 400
heartbeat 57, 751
higherKeyIterator() (Group interface) 551

I
import 356
importecf 384
init() (Function interface) 501
InitConfig interface 508

Hitachi Elastic Application Data Store 760

initialized 67
InitializeException class 495
initializing 67
InternalClientException class 495
InternalServerException class 496, 575
isEnable() (Node class) 482
isLocalMasterRange() (ClusterInfo interface) 523
isLocalRange() (ClusterInfo interface) 522
isolate 398
isolated 67
isolation, error handling 279

J
javacore[PID].[YYMMDDhhmmss].txt (file name) 121
Java heap 74
javalog[nn].log (file name) 121
Java log file 119

K
KB meaning 5
Key interface 566
keyIterator()

Group interface 548
Key interface specification (Group interface) 549

keys, displaying list of 337

L
lastKey() (Group interface) 548
listcache 324
listconf 320
listecf 374
listesd 328
listfunc 367
listgroup 333
listkey 337
lock 45
log()

format 1 (UserLogger interface) 570
format 2 (UserLogger interface) 571

log information, collecting 392
lowerDescendingKeyIterator() (Group interface) 551

M
maintenance log file 119
management directory 100
MB meaning 5

memory cache 32, 751
memory configuration 74
message log file 119

N
network information, collecting 392
Node class 481
not participating in the cluster 63

O
on standby to participate in the cluster 63
open 310

P
parameters, displaying list of most recent 320
PartFailureException class 498
participating in the cluster 63
persistent data

displaying list of information about 374
relocating 384

poor response
acquiring error information 287
investigating cause of 292

property file
EADS client 149
EADS server 113

put 35
difference from replace 38
subcommand 361

put()
Cache class 448
character string specification (Group interface) 552
Key interface specification (Group interface) 553
Store interface 532

putAll() (Cache class) 448
putStackTrace()

format 1 (UserLogger interface) 571
format 2 (UserLogger interface) 571

R
range 47

checking usage status of 344
remove 40

subcommand 364
remove()

Cache class 454

Hitachi Elastic Application Data Store 761

character string specification (Group interface) 559
Key interface specification (Group interface) 560
Store interface 536

removeall 366
removeAll()

EADS server specification (Cache class) 456
group specification (Cache class) 456
set specification (Cache class) 455

removeCache() (CacheManager class) 476
replace 37

difference from put 38
replace()

Cache class 451
character string specification (Group interface) 556
Key interface specification (Group interface) 557
Store interface 534

restoring 67
resume 382
running 67

S
scale-out processing 48, 751
ServerCommunicationException class 496
ServerInfo interface 511
server property file 113
setting, collecting 392
shared property file 113
shift method 121
size() (Value interface) 569
snapshot 392
startup log file 119
startup shell 29
statistics file 119
status 311
stop 396
stopped 67
stopping 67
store data file 134

deleting 359
store data file key 134
store data files, displaying list of 328
Store interface 527
storeusage 344
summary (eztool command's subcommands that
display execution results) 400
symbol conventions 4

T
TB meaning 5
threaddump 391
thread dump 119

obtaining 289
outputting 391

thread pool 68
toString()

Group interface 545
Key interface 566
Node class 483
Value interface 568

total data restriction function 270
tuning parameter 71
two-way cache 32, 751

U
unlock 349
unlocking 349
update 36
update()

Cache class 450
character string specification (Group interface) 554
Key interface specification (Group interface) 555
Store interface 534

update operations, history of 74
user exception log file 119
user function 53, 751

displaying which are executable 367
executing 371

UserLogger interface 570
user message log file 119
UserOperationException class 496, 576

V
Value interface 567
version number conventions 6

W
wrap-around method 121

Hitachi Elastic Application Data Store 762

	Hitachi Elastic Application Data Store
	Notices
	Preface
	Contents
	Part 1: Description
	1. About Hitachi Elastic Application Data Store
	1.1 In-memory data grid for efficient processing of large volumes of data in a manner appropriate to the characteristics of your IT system
	1.2 Overview of EADS
	1.2.1 Easy data management and simple interface
	1.2.2 Managing data in memory
	1.2.3 Mass memory areas consisting of multiple servers

	1.3 Features of EADS
	1.3.1 Ability to achieve high scalability from a small starting point
	1.3.2 Data redundancy to achieve a fault-tolerant system with high availability
	1.3.3 High-speed data processing for faster response times
	1.3.4 Flexible data operations to better match user needs
	1.3.5 Management of persistent data using disk areas

	1.4 Examples of EADS applications
	1.4.1 Using EADS as a write buffer
	1.4.2 Using EADS as a read cache

	1.5 User tasks and corresponding parts of the manual

	2. Architecture
	2.1 Configuration of EADS
	2.1.1 System configuration
	2.1.2 Configuration of processes

	2.2 Mechanisms of EADS communication processing
	2.2.1 Protocols used for communication
	2.2.2 Buffer used for communication

	2.3 Areas storing keys and values
	2.3.1 Cache types

	2.4 Data access
	2.4.1 Storing data (using put)
	2.4.2 Storing new data (using create)
	2.4.3 Updating data (using update)
	2.4.4 Replacing data (using replace)
	2.4.5 Acquiring data (using get)
	2.4.6 Deleting data (remove)
	2.4.7 Performing batch operations on a cache
	2.4.8 Data access without having to be aware of the locations of individual EADS servers
	2.4.9 General procedure for data access
	2.4.10 Locking during data access

	2.5 Data distribution by consistent hashing
	2.5.1 Overview of data distribution
	2.5.2 Details about data distribution
	2.5.3 Adding EADS servers (scaling out) and distributing data

	2.6 Placing data on a specific EADS server (grouping keys)
	2.6.1 Grouping keys
	2.6.2 Data distribution with grouped keys

	2.7 Efficient data processing using user functions
	2.7.1 Mechanism of user functions

	2.8 Creating redundant copies of data
	2.8.1 Overview of creating redundant copies of data
	2.8.2 Continuing processing in the event of a failure when redundant copies of data have been created

	2.9 Monitoring a cluster
	2.9.1 Overview of monitoring a cluster by sending heartbeats
	2.9.2 EADS server shutdown decided by the agreement of a specific number of EADS servers

	2.10 Cluster information update check by the EADS client
	2.11 Cluster and EADS server status transitions
	2.11.1 Cluster status transitions
	2.11.2 EADS servers' cluster participation status
	2.11.3 EADS server status transitions

	2.12 Improving throughput by using thread and connection pools
	2.12.1 Thread pools
	2.12.2 Connection pools

	Part 2: Design and Configuration
	3. General Procedure for Designing and Configuring a System
	3.1 General procedure for designing and configuring a system
	3.1.1 Checking the required resources
	3.1.2 Installing and setting up
	3.1.3 Designing the environment-dependent parameters
	3.1.4 Designing the tuning parameters

	4. Checking the Required Resources
	4.1 Estimating the required memory
	4.1.1 Memory configuration
	4.1.2 Estimating the Java heap size
	4.1.3 Estimating the explicit heap size
	4.1.4 Estimating the size of memory used by an EADS server

	4.2 Estimating the required disk capacity
	4.2.1 Estimating the disk capacity required for EADS servers
	4.2.2 Estimating the disk capacity required for EADS clients

	4.3 Estimating the numbers of threads and file descriptors
	4.3.1 Estimating the number of threads
	4.3.2 Estimating the number of file descriptors

	4.4 Estimating the sizes of cache files
	4.4.1 Estimating the size and number of cache data files
	4.4.2 Estimating the size of a cache index file

	5. Installing and Setting Up (EADS Servers)
	5.1 Installing an EADS server
	5.1.1 Preparations before starting the installation
	5.1.2 Installation procedure
	5.1.3 Post-installation procedure

	5.2 Setting up the EADS server
	5.2.1 Creating the management directory
	5.2.2 Editing the property files
	5.2.3 Distributing application programs

	5.3 Testing
	5.3.1 Starting the EADS server (creating a cache)
	5.3.2 Using commands to manipulate the test data
	5.3.3 Terminating the EADS server

	5.4 Canceling EADS server setup
	5.5 Uninstalling an EADS server

	6. Installing and Setting Up (EADS Clients)
	6.1 Installing an EADS client
	6.1.1 Post-installation procedures

	6.2 Setting up an EADS client
	6.2.1 Placement of the application programs
	6.2.2 Editing the client property file

	6.3 Uninstalling an EADS client

	7. Designing the Environment-Dependent Parameters (EADS Servers)
	7.1 Types of property files (used by EADS servers)
	7.2 Format of property files
	7.3 Designing the communication-dependent parameters
	7.3.1 Specifying the IP address or host name and the port number
	7.3.2 Communication-dependent parameters

	7.4 Designing the log file-dependent parameters
	7.4.1 Types of log files
	7.4.2 Specifying the file output destinations
	7.4.3 Specifying the file sizes and the numbers of files
	7.4.4 Specifying the rotation of statistics files
	7.4.5 Log file-dependent parameters

	7.5 Designing the cluster configuration-dependent parameters
	7.5.1 Specifying the locations of EADS servers
	7.5.2 Specifying the data multiplicity
	7.5.3 Cluster configuration-dependent parameters

	7.6 Designing the backup file-dependent parameters
	7.6.1 Specifying the file output destinations
	7.6.2 Specifying the number of store data file generations
	7.6.3 Backup file-dependent parameters

	7.7 Designing the cache operation-dependent parameters
	7.7.1 Specifying parameters for each type of cache type
	7.7.2 Specifying the types of cache files and their storage locations
	7.7.3 Specifying the sizes of cache files
	7.7.4 Cache operation-dependent parameters

	8. Designing the Environment-Dependent Parameters (EADS Clients)
	8.1 Type of property file (used by EADS clients)
	8.2 Format of property files
	8.3 Designing the communication-dependent parameters
	8.3.1 Specifying the connection-target EADS server, the IP address or host name, and the port number
	8.3.2 Communication-dependent parameters

	8.4 Designing the log file-dependent parameters
	8.4.1 Types of log files
	8.4.2 Specifying the file output destinations
	8.4.3 Specifying the file sizes and the numbers of files
	8.4.4 Log file-dependent parameters

	9. Designing the Tuning Parameters
	9.1 Designing the parameters related to memory and buffers
	9.1.1 Specifying the memory sizes
	9.1.2 Specifying the buffer size
	9.1.3 Parameters related to memory and buffers

	9.2 Designing the parameters related to thread pools and connection pools
	9.2.1 Setting the maximum number of simultaneous connections
	9.2.2 Setting the maximum number of simultaneous threads
	9.2.3 Parameters related to thread pools and connection pools

	9.3 Designing the timeout-related parameters
	9.3.1 Setting the timers for monitoring communication
	9.3.2 Setting the timers for monitoring the cluster
	9.3.3 Timeout-related parameters

	9.4 Designing the command operation-related parameters
	9.4.1 Command operation-related parameters

	9.5 Designing application program operation-related parameters
	9.5.1 Application program operation-related parameters

	9.6 Designing the compaction-related parameters
	9.6.1 Specifying thresholds for compaction effects
	9.6.2 Compaction-related parameters

	Part 3: Operations
	10. Normal Operations
	10.1 The system operation administrator's tasks
	10.2 Starting the EADS servers (and creating caches)
	10.2.1 How to start the EADS servers (creating caches in memory)
	10.2.2 Starting the EADS servers (creating caches on disk)
	10.2.3 Notes about using multiple caches

	10.3 Starting the EADS servers (and creating caches by importing data from files)
	10.3.1 How to start the EADS servers (creating caches in memory)
	10.3.2 How to start the EADS servers (resuming caches on disk)

	10.4 Terminating the EADS servers (and discarding data from memory)
	10.4.1 How to terminate the EADS servers

	10.5 Terminating the EADS servers (after exporting data from memory to files)
	10.5.1 How to terminate the EADS servers

	10.6 Terminating the EADS servers (terminating caches on disk)
	10.6.1 How to terminate the EADS servers

	10.7 Checking the cluster and EADS server statuses
	10.8 Displaying a list of caches
	10.9 Reducing the data usage of cache data files (performing compaction on cache data files)
	10.9.1 Performing compaction on cache data files
	10.9.2 Stopping compaction processing

	11. Maintenance Operations
	11.1 Adding EADS servers to a cluster
	11.1.1 How to add EADS servers to a cluster without stopping the cluster (scale-out processing)
	11.1.2 How to add EADS servers to a cluster after stopping the cluster (using only memory caches)
	11.1.3 How to add EADS servers to a cluster after stopping the cluster (using only disk caches)

	11.2 Deleting EADS servers from a cluster
	11.2.1 How to delete EADS servers from a cluster (using only memory caches)
	11.2.2 How to delete EADS servers from a cluster (using disk caches)

	11.3 Making the number of keys uniform in all ranges
	11.3.1 How to make the number of keys uniform in all ranges

	11.4 Changing the properties
	11.4.1 How to change the properties
	11.4.2 Notes about changing properties

	11.5 Adding and deleting caches
	11.5.1 How to add and delete memory caches
	11.5.2 How to add and delete disk caches and two-way caches

	11.6 Making a backup
	11.6.1 How to back up data

	11.7 Managing store data files
	11.7.1 How to check and delete store data files

	11.8 Checking the data storage location
	11.9 Checking a list of group names
	11.10 Checking a list of keys
	11.11 Checking whether user functions have been placed correctly on individual EADS servers and whether they can be executed
	11.12 Applying EADS server patches while the cluster is running
	11.12.1 How to apply EADS server patches

	11.13 Obtaining statistics
	11.13.1 Statistics storage locations
	11.13.2 Statistics (eads_stats.csv)
	11.13.3 Cache statistics (eads_cache_stats.csv)
	11.13.4 User function statistics (eads_function_stats.csv)
	11.13.5 Statistics by range (eads_store_stats.csv)

	11.14 Managing available space in the data storage
	11.14.1 How to manage available space in the data storage (using only memory caches)
	11.14.2 How to manage available space in the data storage (using disk caches)

	11.15 Managing cache files
	11.15.1 How to check and delete cache files

	12. Error Handling Operations
	12.1 Preventing failures (error monitoring and detection)
	12.1.1 Monitoring messages
	12.1.2 Monitoring the EADS server processes

	12.2 The system operation administrator's tasks in the event of a failure
	12.2.1 If one or more EADS servers are isolated
	12.2.2 If the cluster is unavailable (NOT_AVAILABLE) or is partially available (PARTIALLY_AVAILABLE)
	12.2.3 If a poor response was reported

	12.3 Acquiring error information
	12.3.1 Error information needed for root cause investigation
	12.3.2 Obtaining statistics
	12.3.3 Obtaining thread dumps

	13. Investigating the Causes of Failures
	13.1 Investigating the cause of a poor response
	13.1.1 General investigation procedure
	13.1.2 Investigating the cause

	14. Command Reference
	14.1 Command storage location
	14.2 EADS commands
	14.2.1 ezstart (starts an EADS server)
	14.2.2 ezserver (starts an EADS server in the foreground)
	14.2.3 eztool (runs the cluster)

	14.3 Subcommands of the eztool command
	14.3.1 Locking between commands
	14.3.2 close (closes the cluster)
	14.3.3 open (opens the cluster)
	14.3.4 status (checks the status of the cluster)
	14.3.5 listconf (displays a list of most recent parameters)
	14.3.6 listcache (displays a list of caches)
	14.3.7 listesd (displays a list of store data files)
	14.3.8 listgroup (displays a list of group names)
	14.3.9 listkey (displays a list of keys)
	14.3.10 getposition (displays data storage locations)
	14.3.11 storeusage (checks the usage status of ranges and caches)
	14.3.12 unlock (unlock)
	14.3.13 createcache (creates a cache)
	14.3.14 deletecache (deletes a cache)
	14.3.15 export (exports data)
	14.3.16 import (imports data)
	14.3.17 deleteesd (deletes store data files)
	14.3.18 put (stores specified data)
	14.3.19 get (acquires specified data)
	14.3.20 remove (deletes specified data)
	14.3.21 removeall (deletes all data)
	14.3.22 listfunc (displays which user functions are executable)
	14.3.23 execfunc (executes user functions)
	14.3.24 listecf (displays a list of information about persistent data)
	14.3.25 resume (resumes caches)
	14.3.26 importecf (relocates persistent data)
	14.3.27 deleteecf (deletes cache files)
	14.3.28 compaction (performs compaction on cache data files)
	14.3.29 threaddump (outputs a thread dump)
	14.3.30 snapshot (collects logs, settings, hardware information, and network information)
	14.3.31 stop (terminates the cluster)
	14.3.32 forcestop (forcibly terminates an EADS server)
	14.3.33 isolate (isolates an EADS server)

	14.4 Information displayed as execution results by the eztool command's subcommands
	14.4.1 Components of the displayed information
	14.4.2 How to specify the display format
	14.4.3 How to specify column filters
	14.4.4 How to specify row filters
	14.4.5 How to specify a condition match

	Part 4: Application Program Development
	15. General Procedure for Developing Application Programs
	15.1 General procedure for developing application programs
	15.1.1 Configure a development environment
	15.1.2 Create application programs
	15.1.3 Test the application programs
	15.1.4 Migrate the created application programs to the execution environment

	15.2 Prerequisites for the development of application programs
	15.2.1 Programming languages for application programs and EADS clients
	15.2.2 Data that is supported as keys, group names, values, cache names, and EADS client names
	15.2.3 Reserved package and system property names (applicable to Java)

	16. Creating Client Application Programs (in Java)
	16.1 Creating source programs (in Java)
	16.1.1 General procedure for accessing caches and manipulating data

	16.2 Notes about creating client application programs (in Java)
	16.2.1 Notes about initializing an EADS client
	16.2.2 Notes about starting access to caches
	16.2.3 Notes about manipulating data
	16.2.4 Notes about terminating access to caches
	16.2.5 Notes about terminating use of the EADS client

	16.3 Compiling source programs (in Java)

	17. Creating User Functions
	17.1 Prerequisites for creating user functions
	17.1.1 Programming language for user functions
	17.1.2 User function execution methods
	17.1.3 Java class loaders used by EADS servers
	17.1.4 General procedure for creating user functions

	17.2 Creating a source program (user function)
	17.2.1 Flow of a user function

	17.3 Notes about creating user functions
	17.3.1 Notes about jar file names
	17.3.2 Notes about package names
	17.3.3 Notes about implementing user functions
	17.3.4 How to acquire a list of keys efficiently

	17.4 Creating a function property file (optional)
	17.5 Compiling source programs (user functions)
	17.5.1 How to compile user functions

	17.6 Packaging the user functions
	17.6.1 How to package user functions

	17.7 Deploying user functions
	17.7.1 How to deploy user functions

	17.8 Executing user functions
	17.8.1 Call a user function
	17.8.2 Output information to the user logs
	17.8.3 Notes about running user functions

	17.9 Distributing the directory to the execution environment

	18. Application Programming Interface Reference (Java)
	18.1 Classes provided by the Java client libraries
	18.1.1 Cache class
	18.1.2 CacheManager class
	18.1.3 Node class
	18.1.4 FailureOperationInfo class
	18.1.5 CacheException class
	18.1.6 InitializeException class
	18.1.7 InternalClientException class
	18.1.8 InternalServerException class
	18.1.9 ServerCommunicationException class
	18.1.10 UserOperationException class
	18.1.11 BatchOperationException class
	18.1.12 AllFailureException class
	18.1.13 PartFailureException class

	18.2 API interfaces supported in user functions
	18.2.1 Function interface
	18.2.2 FunctionContext interface
	18.2.3 InitConfig interface
	18.2.4 ClientInfo interface
	18.2.5 ServerInfo interface
	18.2.6 ClusterInfo interface
	18.2.7 CacheInfo interface
	18.2.8 Store interface
	18.2.9 Group interface
	18.2.10 Key interface
	18.2.11 Value interface
	18.2.12 UserLogger interface
	18.2.13 EADsStoreException class
	18.2.14 InternalServerException class
	18.2.15 UserOperationException class
	18.2.16 Enumeration CacheType

	19. Creating a Client Application Program (in C)
	19.1 Creating a source program (in C)
	19.1.1 Flow of cache access and data operations

	19.2 Notes on creating client application programs (in C)
	19.2.1 Notes on initializing EADS clients
	19.2.2 Notes on starting access to the cache
	19.2.3 Notes on manipulating data
	19.2.4 Notes on stopping access to the cache
	19.2.5 Notes on terminating the EADS client

	19.3 Compiling the source program (in C)

	20. API Reference (C)
	20.1 Functions provided by the C client library
	20.1.1 ead_init_client() (initializes the EADS client)
	20.1.2 ead_init_client_n() (initializes the EADS client)
	20.1.3 ead_start_cache() (starts access to the cache)
	20.1.4 ead_stop_cache() (stops access to the cache)
	20.1.5 ead_get_cache_name() (acquires cache names)
	20.1.6 ead_terminate_client() (terminates the EADS client)
	20.1.7 ead_put() (store a key and value)
	20.1.8 ead_put_array_value() (concatenates and stores multiple values)
	20.1.9 ead_put_all() (stores keys and values by using a batch operation)
	20.1.10 ead_create() (stores a new key and value)
	20.1.11 ead_update() (updates a value)
	20.1.12 ead_replace() (replaces a value)
	20.1.13 ead_get() (retrieves a value)
	20.1.14 ead_get_all() (acquires values by using a batch operation)
	20.1.15 ead_get_group() (acquires values by using a batch operation with group specification)
	20.1.16 ead_remove() (deletes a value)
	20.1.17 ead_remove_all() (deletes values by using a batch operation)
	20.1.18 ead_remove_group() (deletes values by using a batch operation with group specification)
	20.1.19 ead_remove_node() (deletes values by using a batch operation with EADS server specification)
	20.1.20 ead_get_group_names() (acquires a list of group names in the highest hierarchy)
	20.1.21 ead_get_group_keys() (acquires a list of keys with group specification)
	20.1.22 ead_get_node_keys() (acquires a list of keys with EADS server specification)
	20.1.23 ead_get_group_count() (acquires the number of groups in the highest hierarchy)
	20.1.24 ead_get_group_key_count() (acquires the number of keys with group specification)
	20.1.25 ead_get_node_key_count() (acquires the number of keys with EADS server specification)
	20.1.26 ead_get_group_first_key() (acquires the first key with group specification)
	20.1.27 ead_get_node_first_key() (acquires the first key with EADS server specification)
	20.1.28 ead_get_group_next_key() (acquires the next key with group specification)
	20.1.29 ead_get_node_next_key() (acquires the next key with EADS server specification)
	20.1.30 ead_execute_function() (executes a user function with key specification or group specification)
	20.1.31 ead_execute_function_rt() (executes a user function with key specification or group specification and reception timeout specification)
	20.1.32 ead_execute_node_function() (executes a user function with an EADS server specified)
	20.1.33 ead_execute_node_function_rt() (executes a user function with EADS server and reception timeout specification)
	20.1.34 ead_get_nodelist() (acquires information about the connection-target EADS servers)
	20.1.35 [Deprecated] ead_get_node() (acquires information about the original source EADS server from which a specified key was copied)
	20.1.36 ead_get_slave_nodelist() (acquires information about the original target EADS server for data)
	20.1.37 ead_get_current_master_node() (acquires information about the current source EADS server)
	20.1.38 ead_get_original_master_node() (acquires information about the original source EADS server)
	20.1.39 ead_value_element structure (value information)
	20.1.40 ead_key_value_pair structure (key-value pairs)
	20.1.41 ead_keys structure (multiple keys)
	20.1.42 ead_group_names structure (multiple group names)
	20.1.43 ead_put_all_results structure (execution results of ead_put_all())
	20.1.44 ead_get_all_results structure (execution results of ead_get_all())
	20.1.45 ead_get_group_results structure (execution results of ead_get_group())
	20.1.46 ead_remove_all_results structure (execution results of ead_remove_all())
	20.1.47 ead_failure_operation_info structure (information about the failed operation during batch operation)
	20.1.48 ead_object structure (object used in a user function)
	20.1.49 ead_nodelist structure (EADS server information)
	20.1.50 ead_node structure (object used in a user function with an EADS server specified)
	20.1.51 ead_address structure (EADS server address information)

	20.2 Error codes in the client library (C)

	Part 5: Useful Lists and Messages
	21. Useful Lists
	21.1 List of minimum and maximum values

	22. Messages
	22.1 Message output format
	22.2 KDEA00001 to KDEA01999
	22.3 KDEA02000 to KDEA02999
	22.4 KDEA03000 to KDEA03999
	22.5 KDEA04000 to KDEA05999
	22.6 KDEA06000 to KDEA07999
	22.7 KDEA08000 to KDEA09999
	22.8 KDEA10000 to KDEA11999

	Appendix
	A. Glossary

	Index

