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Preface

This manual provides an overview and a basic understanding of uCosminexus Stream 
Data Platform - Application Framework. It is intended to provide an overview of the 
features and system configurations of uCosminexus Stream Data Platform - 
Application Framework, and to give you the basic knowledge needed to set up and 
operate such a system.

Intended readers
This manual is intended for all users of uCosminexus Stream Data Platform - 
Application Framework.

Readers of this manual must have:

• A basic knowledge of operating systems

Conventions: Diagrams
This manual uses the following conventions in diagrams:

Conventions: Fonts and symbols
The following table explains the fonts used in this manual:

Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes 
menus, menu options, buttons, radio box options, or explanatory labels. For example:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.
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Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of 
two digits each, separated by a hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00.

• Version 2.05 is written as 02-05.

• Version 2.50 (or 2.5) is written as 02-50.

• Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same 
version number would be written in the program as 02-00.

Italics Italics are used to indicate a placeholder for some actual text to be provided by the user 
or system. For example:
• Write the command as follows:

copy source-file target-file
• The following message appears:

A file was not found. (file = file-name)
Italics are also used for emphasis. For example:
• Do not delete the configuration file.

Code font A code font indicates text that the user enters without change, or text (such as 
messages) output by the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:

The password is incorrect.

Font Convention
ii
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Chapter

1. What is Stream Data Platform - 
AF?

Stream Data Platform - Application Framework (AF) is a product that enables you to 
process stream data; that is, it allows you to analyze in real-time large sets of data as 
they are being created. This chapter provides an overview of Stream Data Platform - 
AF and explains its features. This chapter also gives an example of adding Stream Data 
Platform - AF to your current workflow, and it describes the system configuration 
needed to set up and run Stream Data Platform - AF.

1.1 A data processing system that analyzes the "right now"
1.2 Stream Data Platform - AF features
1.3 Example of Stream Data Platform - AF in use
1.4 Stream Data Platform - AF system configuration and prerequisite programs
1.5 Workflow beginning with the introduction of Stream Data Platform - AF
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1. What is Stream Data Platform - AF?
1.1 A data processing system that analyzes the "right now"

Our societal infrastructure has been transformed by the massive amounts of data being 
packed into our mobile telephones, IC cards, home appliances, and other electronic 
devices. As a result, the amount of data handled by data processing systems continues 
to grow daily. The ability to quickly summarize and analyze this data can provide us 
with valuable new insights. To be useful, any real-time data processing system must 
have the ability to create new value from the massive amounts of data that is being 
created every second.

Stream Data Platform - AF responds to this challenge by giving you the ability to 
perform stream data processing. Stream data processing gives you real-time summary 
analysis of the large quantities of time-sequenced data that is always being generated, 
as soon as the data is generated.

For example, think how obtaining real-time summary information on what was 
searched for from peoples PCs and mobile phones could increase your product sales 
opportunities. If a particular product becomes a hot topic on product discussion sites, 
you expect the demand for it to increase, so more people would tend to search for that 
product on the various search sites. You can identify such products by using stream 
data processing to analyze the number of searches in real-time and provide summary 
results. This information allows retail outlets to increase their orders for the product 
before the demand hits, and for the manufacturer to quickly ramp up production of the 
product.

On the IT systems side, demand for higher operating efficiencies and lower costs 
continues to grow. At the same time, the increasing use of virtualization and cloud 
computing results in ever larger and more complex systems, making it even more 
difficult for IT to get a good overview of their system's state of operation. This means 
that it often takes too long to detect and resolve problems when they occur. Now, by 
using stream data processing to monitor the operating state of the system in real-time, 
a problem can be quickly dealt with as soon as it occurs. Moreover, by analyzing trends 
and correlations in the information about the system's operations, warning signs can be 
detected, which can be used to prevent errors from ever occurring.

Adding Stream Data Platform - AF to your data processing system gives you a tool that 
is designed for processing these large volumes of data.

The following figure provides an overview of a configuration that uses Stream Data 
Platform - AF to implement stream data processing.
2



1. What is Stream Data Platform - AF?
Figure 1-1: Overview of a stream data processing configuration that uses 
Stream Data Platform - AF

Introducing Stream Data Platform - AF into your stream data processing system allows 
you to perform summary analysis of data as it is being created.

For example, by using a stream data processing system to monitor system operations, 
you can summarize and analyze log files output by a server and HTTP packets sent 
over a network. These results can then be displayed on the dashboard, allowing you to 
monitor your system's operations in real-time. In this way, you can quickly resolve 
system problems as they occur, improving operation and maintenance efficiencies. 
You can also store the processing results in a file, allowing you to use other 
applications to further review or process the results.

To give you a better idea of how stream data processing carries out real-time 
processing, stream data processing is compared to conventional stored data processing 
in the following example.
3



1. What is Stream Data Platform - AF?
Figure 1-2 shows conventional stored data processing.

Figure 1-2: Stored data processing

Data processed using stored data begins by storing the data sequentially in a database 
as it occurs. Processing is not actually performed until a user issues a query for the data 
stored in the database, and summary analysis results are returned. Because data that is 
already stored in a database is searched when the query is received, there is a time lag 
between the time the data is collected and the time the data summary analysis results 
are produced. In the figure, processing of data that was collected at 09:00:00 is 
performed by a query issued at 09:05:00, obviously lagging behind the time the data 
was collected.
4



1. What is Stream Data Platform - AF?
Figure 1-3 shows stream data processing.

Figure 1-3: Stream data processing

With stream data processing, you pre-load a query (summary analysis scenario) that 
will perform incremental data analysis, thus minimizing the amount of computing that 
is required. Moreover, because data analysis is triggered by the data being input, there 
is no time lag between it and the time the data is collected, providing you with 
real-time data summary analysis. This kind of stream data processing, in which 
processing is triggered by the input data itself, is a superior approach for data that is 
generated sequentially.
5
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Therefore, the ability to perform stream data processing that you gain by integrating 
Stream Data Platform - AF into your system allows you to get a real-time summary 
and analysis of the data.
6



1. What is Stream Data Platform - AF?
1.2 Stream Data Platform - AF features

Stream Data Platform - AF has the following features:

High-speed processing of large sets of time-sequenced data

Summary analysis scenario definitions that require no programming

The following subsections explain these features.

1.2.1 High-speed processing of large sets of time-sequenced data
Stream Data Platform - AF uses both in-memory processing and incremental 
computational processing, which allows it to quickly process large sets of 
time-sequenced data.

In-memory processing

With in-memory processing, data is processed while it is still in memory, thus 
eliminating unnecessary disk access.

When processing large data sets, the time required to perform disk I/O can be 
significant. By processing data while it is still in memory, Stream Data Platform 
- AF avoids excess disk I/O, enabling data to be processed faster.

Incremental computational processing

With incremental computational processing, a pre-loaded query is processed 
iteratively when triggered by the input data, and the processing results are 
available for the next iteration. This means that the next set of computations does 
not need to process all of the target data elements; only those elements that have 
changed need to be processed.

The following figure shows incremental computation on stream data as 
performed by Stream Data Platform - AF.
7



1. What is Stream Data Platform - AF?
Figure 1-4: Incremental computation performed on stream data

As shown in the figure, when the first stream data element arrives, Stream Data 
Platform - AF performs computational process 1. When the next stream data 
element arrives, computational process 2 simply removes data element 3 from the 
process range and adds data element 7 to the process range, building on the results 
of computational process 1. This minimizes the total processing required, thus 
enabling the data to be processed faster.

1.2.2 Summary analysis scenario definitions that require no 
programming

The actions performed in stream data processing are defined by queries that are called 
summary analysis scenarios. Definitions for these summary analysis scenarios are 
written in a language called CQL, which is very similar to SQL, the standard language 
used to manipulate databases. This means that you do not need to create a custom 
analysis application to create summary analysis scenarios. Summary analysis 
scenarios can also be modified simply by changing the definition files written in CQL.

Stream data processing actions written in CQL are called queries. In a single summary 
analysis scenario, multiple queries can be coded.

For example, the following figure shows a summary analysis scenario written in CQL 
for a temperature monitoring system that has multiple observation sites, each with an 
assigned ID. The purpose of the query is to summarize and analyze all of the below 
freezing point data found in the observed data set.
8



1. What is Stream Data Platform - AF?
Figure 1-5: Example of using CQL to write a summary analysis scenario

CQL is a general-purpose query language that can be used to specify a wide range of 
processing. By combining multiple queries, you can define summary analysis 
scenarios to handle a variety of operations.
9



1. What is Stream Data Platform - AF?
1.3 Example of Stream Data Platform - AF in use

Stream Data Platform - AF is able to summarize and analyze a variety of data. This 
section presents an example of monitoring the operation of Web systems by summary 
analysis of HTTP packets.

Reference note:
 

You can also use summary analysis of log files to monitor system operation.

By using Stream Data Platform - AF to perform real-time monitoring of HTTP 
packets, you can keep track of system operations on a regular basis through actions 
such as checking the log files of each Web server in the Web system. The following 
figure shows the configuration of the system explained in this section.

Figure 1-6: Example of a system configuration for operations monitoring of 
Web systems
10



1. What is Stream Data Platform - AF?
As shown in the above figure, after the Web server log files are stored in the database, 
a manager using the operations monitoring system can keep track of all of the Web 
systems on a regular basis by entering SQL queries that summarize and analyze the 
stored data.

The following paragraphs explain the differences in operation monitoring with and 
without the use of Stream Data Platform - AF for a problem that occurs in Web system 
A.

Without Stream Data Platform - AF

If a failure occurs on a Web server, no corrective action is taken unless the 
manager happens to check the log file and perform a summary analysis. Because 
failures cannot be detected in real-time, fixes cannot be applied until long after 
the problem occurs. The following figure illustrates this situation.

Figure 1-7: Example of operations monitoring of a Web system (without Stream 
Data Platform - AF)

With Stream Data Platform - AF

Once Stream Data Platform - AF is installed, information about the amount of 
data traffic carried over the network and its fluctuations can be acquired directly 
from HTTP packets before the information is ever written to a log file. This 
allows the manager to monitor the operating state of the system in real-time, and  
to detect potential failures before they occur, thus improving maintenance 
efficiency. A packet analyzer (a program that collects HTTP packets carried over 
a network) is used to give Stream Data Platform - AF the information it needs to 
summarize and analyze HTTP packets. The following figure illustrates this 
situation.
11



1. What is Stream Data Platform - AF?
Figure 1-8: Example of operation monitoring of a Web system (with Stream 
Data Platform - AF)

Stream Data Platform - AF looks at the HTTP packets carried over the network, 
and analyzes system status in real-time based on the responses between the clients 
and the Web server. For example, by analyzing the time a Web server takes to 
respond to a request from a client, the manager can quickly detect the beginning 
of a slowdown in system response time. By using this information to adjust the 
Web system, the manager can prevent a failure from occurring.
12



1. What is Stream Data Platform - AF?
1.4 Stream Data Platform - AF system configuration and prerequisite 
programs

This section describes how to configure a stream data processing system that uses 
Stream Data Platform - AF and the prerequisite programs that are required depending 
on the system objectives.

1.4.1 System configuration
The following figure shows the configuration of a stream data processing system that 
uses Stream Data Platform - AF.

Figure 1-9: Configuration of a stream data processing system

The following paragraphs describe the components shown in this figure that make up 
Stream Data Platform - AF.

Input adaptor

An input adaptor converts input data into a form that the stream data processing 
engine can handle, performs other operations such as filtering the data, and then 
sends the results to the stream data processing engine.

There are two types of input adaptors: standard adaptors and custom adaptors. 
Using a standard adaptor, you can input data such as files and HTTP packets 
output by the system being analyzed. By using a custom adaptor, you can input a 
wide variety of data, depending on the applications that you create.
13
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For details about input adaptors, see 3. Exchanging Data.

Stream data processing engine

The stream data processing engine processes data received from the input adaptor 
according to pre-loaded queries. For details about the stream data processing 
engine, see 2. Stream Data Processing.

Output adaptor

The output adaptor receives data processed by the stream data processing engine, 
filters the data and converts it to a specified format, and then outputs it to an 
output destination.

There are two types of output adaptors: standard adaptors and custom adaptors. 
Using a standard adaptor, you can output the processing results to a file or to the 
dashboard. By using a custom adaptor, you can output data to a wide variety of 
output destinations, depending on the applications that you create.

For details about output adaptors, see 3. Exchanging Data.

1.4.2 Prerequisite programs
Depending on the data that you want to read and/or write, Stream Data Platform - AF 
might require prerequisite programs. You do not need the prerequisite programs listed 
below unless you plan to input or output data as explained in this subsection.

(1) Inputting HTTP packets
To use Stream Data Platform - AF to summarize and analyze HTTP packets input from 
a network, you need a packet analyzer capable of acquiring packets in the Pcap format.

Stream Data Platform - AF supports the packet analyzer listed below:

WinDump

(2) Outputting data to the dashboard
To use the dashboard to output and display the summary analysis results that Stream 
Data Platform - AF generates from stream data, you need the following programs:

Internet Explorer

Flash Player
14



1. What is Stream Data Platform - AF?
1.5 Workflow beginning with the introduction of Stream Data 
Platform - AF

The following figure shows the general workflow beginning with the introduction of 
Stream Data Platform - AF.

Figure 1-10: Workflow beginning with the introduction of Stream Data 
Platform - AF

The following paragraphs provide an overview of the work phases shown in the figure.

Introduction

In the introduction phase, you gain a general understanding of the Stream Data 
15



1. What is Stream Data Platform - AF?
Platform - AF product before you begin using it.

Design

In the design phase, you design the system into which Stream Data Platform - AF 
will be introduced. It includes such tasks as determining the system configuration 
and summary analysis scenarios, and estimating memory requirements.

Setup

In the setup phase, you configure the system in which Stream Data Platform - AF 
has been introduced. It includes such tasks as setting up the operating 
environment and creating definition files. It also includes defining CQL queries.

To create custom adaptors, you use the APIs provided with Stream Data Platform 
- AF.

Operation

In the operation phase, you perform operations on the system in which Stream 
Data Platform - AF has been introduced, and modify operations as necessary. You 
also perform troubleshooting (collect failure information, take corrective action, 
and so on) if a problem occurs.

Read this manual to gain a general product overview. Read the other manuals in this 
series for details about the various work phases.

For details about the correspondence between the tasks and the manuals in this series, 
see 4.1 Correspondence between user tasks and the manuals in this series.
16



Chapter

2. Stream Data Processing

This chapter describes the components used in stream data processing, and the CQL 
query language used to define summary analysis scenarios.

2.1 Components used in stream data processing
2.2 Using CQL to process stream data
2.3 Implementation examples of using CQL to process stream data
17



2. Stream Data Processing
2.1 Components used in stream data processing

This section describes the components used in stream data processing.

The following figure shows the components used in stream data processing.

Figure 2-1: Components used in stream data processing

This section explains the following components shown in the figure.

1. Stream data

Large quantities of time-sequenced data that is continuously generated

2. Input and output stream queues

Parts of the stream data path

3. Stream data processing engine

The part of the stream data processing system that actually processes the stream 
data

4. Tuple

A stream data element that consists of a combination of two or more data values, 
one of which is a time (timestamp)

5. Query group

A summary analysis scenario used in stream data processing. Different query 
groups are created for different operational objectives.
18



2. Stream Data Processing
6. Query

The action performed in stream data processing. Queries are written in CQL.

7. Window

The target range of the stream data processing. The amount of stream data that is 
included in the window is the process range. It is defined in the query.

For details about the input and output adaptors, see 3. Exchanging Data.

2.1.1 Stream data
Stream data refers to large quantities of time-sequenced data that is continuously 
generated.

Stream data flows based on the stream data type (STREAM) defined in CQL, enters 
through the input stream queue, and is processed by the query. The query's processing 
results are converted back to stream data, and then passed to the output stream queue 
and output.

2.1.2 Input and output stream queues
The input stream queue is the path through which the input stream data is received. The 
input stream queue is coded in the query using CQL statements for reading streams. 
For details about the CQL code used to define streams, see 2.2.1(1) Defining a stream 
(REGISTER STREAM clause).
The output stream queue is the path through which the processing results (stream data) 
of the stream data processing engine are output. The output stream queue is coded in 
the query using CQL statements for outputting stream data. For details about the CQL 
code used to output the processing results of a query as stream data, see 2.2.2(3) Stream 
operations (outputting the data processing results).
The type of stream data that passes through the input stream queue is called an input 
stream, and the type of stream data that passes through the output stream queue is 
called an output stream.

2.1.3 Stream data processing engine
The stream data processing engine is the main component of Stream Data Platform - 
AF and actually processes the stream data. The stream data processing engine 
performs real-time processing of stream data sent from the input adaptor, according to 
the definitions in a pre-loaded query. It then outputs the processing results to the output 
adaptor.

2.1.4 Tuple
A tuple is a stream data element that consists of a combination of data values and a 
time value (timestamp).
19



2. Stream Data Processing
For example, for temperatures observed at observation sites 1 (ID: 1) and 2 (ID: 2), the 
following figure compares data items, which have only values, with tuples, which 
combine both values and time.

Figure 2-2: Comparison of data items, which have only values, with tuples, 
which combine both values and time

By setting a timestamp indicating the observation time to each tuple as shown in the 
figure, data can be processed as stream data, rather than handled simply as temperature 
information from each observation site.

There are two ways to set the tuple's timestamp: the server mode method, where the 
timestamp is set based on the time the tuple arrives at the stream data processing 
engine, and the data source mode method, where the timestamp is set at the time that 
the data was generated. Use the data source mode when you want to process stream 
data sequentially based on the time information in the data source, such as when you 
perform log analysis.

The following subsections explain each mode.

Reference note:
 

The tuples input to the stream data processing engine and the tuples output from 
the stream data processing engine are both output to a log file (tuple log). You 
can use the tuple log to re-execute a query or to check processing results. For 
details about the tuple log, see the uCosminexus Stream Data Platform - 
Application Framework Setup and Operation Guide.

(1) Setting the server system time to the tuples (server mode)
The mode in which the tuple's timestamp is set to the system time of the server on 
which Stream Data Platform - AF runs when the tuple is read by the stream data 
processing engine is called the server mode. The following figure shows a timestamp 
20



2. Stream Data Processing
being set in the server mode.

Figure 2-3: A timestamp being set in the server mode

In the server mode, Stream Data Platform - AF assigns the server time to each tuple, 
regardless of whether the input data already has a timestamp.

(2) Using the data source time in the tuples (data source mode)
If time information is being written in the data by the data source from which data is 
being collected, the mode in which that time information in the tuples is used is called 
the data source mode. The following figure shows a timestamp being set in the data 
source mode.

Figure 2-4: A timestamp being set in the data source mode

In the data source mode, the timestamp already in the input data is used for each tuple.

Note that, if you perform stream data processing in the data source mode, the data has 
to be queued in the order specified by the timestamps. If the potential exists for the 
21



2. Stream Data Processing
stream data to contain a timestamp error, see the information about how to queue 
timestamps in order in the uCosminexus Stream Data Platform - Application 
Framework Setup and Operation Guide.

2.1.5 Query group
A query group is a summary analysis scenario for stream data that has already been 
created by the user. A query group consists of an input stream queue (input stream), an 
output stream queue (output stream), and a query.

You create and load query groups to accomplish specific operations. You can load any 
number of query groups.

2.1.6 Query
A query defines the processing that is performed on stream data. Queries are written 
in a query definition file using CQL. For details about the query definition file, see the 
uCosminexus Stream Data Platform - Application Framework Setup and Operation 
Guide.

Queries define the following three types of operations:

Window operations, which retrieve the data to be analyzed from the stream data

Relation operations, which process the retrieved data

Stream operations, which convert and output the processing results

The following figure shows the relationship between these operations.

Figure 2-5: Relationship between the operations defined by a query

A window operation retrieves stream data elements within a specific time window. The 
data gathered in this process (tuple group) is called an input relation.

A relation operation processes the data retrieved by the window operation. The tuple 
group generated in this process is called an output relation.

A stream operation takes the data that was processed by the relation operation, 
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2. Stream Data Processing
converts it to stream data and outputs it.

For details about each of these operations, see 2.2.2 Using data manipulation CQL to 
specify operations on stream data.

Stream data is processed according to the definitions in the query definition file used 
by the stream data processing engine. For details about the contents of a query 
definition file, see 2.2 Using CQL to process stream data. For query code examples, 
see 2.3 Implementation examples of using CQL to process stream data.

2.1.7 Window
A window is a time range set for the purpose of summarizing and analyzing stream 
data. It is defined in a query.

In order to summarize and analyze any data, you must clearly define a target scope. 
With stream data as well, you must first decide on a fixed range, and then process data 
in that range.

The following figure shows the relationship between stream data and the window.

Figure 2-6: Relationship between stream data and the window

The stream data (tuples) in the range defined by the window shown in this figure are 
temporarily stored in memory for processing.

A window defines the range of the stream data elements being processed, which can 
be defined in terms such as time, number of tuples, and so on. For details about 
specifying windows, see 2.2.2 Using data manipulation CQL to specify operations on 
stream data.
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2.2 Using CQL to process stream data

Stream data is processed according to the instructions in the query definition file used 
by the system. The query definition file uses CQL to describe the stream data type 
(STREAM) and the queries. These CQL instructions are called CQL statements.

There are two types of CQL statements used for writing query definition files:

Definition CQL

These CQL statements are used to define streams and queries.

Data manipulation CQL

These CQL statements are used to process the stream data.

This section describes how to use definition CQL to define streams and queries, and 
how to use data manipulation CQL to perform processing on stream data.

For additional details about CQL, see the uCosminexus Stream Data Platform - 
Application Framework Application Development Guide.

CQL statements consist of keywords, which have preassigned meanings, and items 
that you specify following a keyword. An item you specify, combined with one or 
more keywords, is called a clause. The code fragments discussed on the following 
pages are all clauses. For example, REGISTER STREAM stream-name, consisting of the 
keywords REGISTER STREAM and the user-specified item stream-name, is known as 
a REGISTER STREAM clause.

2.2.1 Using definition CQL to define streams and queries
CQL statements that are used to define streams and queries are called definition CQL. 
There are two types of definition CQL.

REGISTER STREAM clauses

REGISTER QUERY clauses

The following subsections explain how to specify each of these clauses.

(1) Defining a stream (REGISTER STREAM clause)
To define a stream, you use the definition CQL REGISTER STREAM clause.

In the REGISTER STREAM clause, you specify the stream name (the name of the input 
stream) and the schema specification character string (the content of the stream data 
that identifies it as the input stream). The following shows the format for specifying a 
REGISTER STREAM clause:

REGISTER STREAM stream-name
(schema-specification-character-string);
24



2. Stream Data Processing
For example, the following shows a CQL statement that defines a stream for a 
temperature analysis system:

For the stream name, temperature_stream is specified. The parameters 
observation_time (observation time), id (observation site ID), and temperature 
(measured temperature) are specified using the TIME, INTEGER, and INTEGER data 
types, respectively.

(2) Defining a query (REGISTER QUERY clause)
To define a query, you use the definition CQL REGISTER QUERY clause. In the 
REGISTER QUERY clause, you specify the name of the query, a stream clause, a 
SELECT clause, a FROM clause, and a WHERE clause, in that order. For the query name, 
you specify the name of the stream that is to be output after the stream data has been 
processed by the query (output stream).

The following table shows what the stream clause, SELECT clause, FROM clause, and 
WHERE clause, which make up the CQL REGISTER QUERY clause, do.

Table 2-1: Correspondence between query actions and clauses in a CQL 
statement

The format for specifying a REGISTER QUERY clause is shown below:

The following paragraphs explain the clauses in the REGISTER QUERY clause.

Stream clause

In the stream clause, you specify how to output the stream data. Depending on 
exactly what you want to do, you can specify an ISTREAM clause, a DSTREAM 
clause, or an RSTREAM clause. For details about these clauses, see 2.2.2(3) Stream 
operations (outputting the data processing results).

REGISTER STREAM temperature_stream
(observation_time TIME, id INTEGER, temperature INTEGER);

Clause in a CQL statement Query action

Stream clause Specifies a stream operation action.

SELECT and WHERE clauses Specifies a relation operation action.

FROM clause Specifies a window operation action.

REGISTER QUERY query-name
stream-clause (
SELECT-clause
FROM-clause
WHERE-clause);
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SELECT clause

In the SELECT clause, you specify the specific data to be extracted from the tuples 
that are to be processed. To identify the data you want, specify the data item 
names used in the schema specification character string of the REGISTER STREAM 
clause. The actual tuples to be processed are determined by the WHERE clause.

FROM clause

In the FROM clause, you specify the name of the stream that the query is to process, 
and the processing window. Depending on exactly what you want to do, you 
specify one of these four window types: a ROWS window, a RANGE window, a NOW 
window, or a PARTITION BY window.

You specify the stream data using the stream name specified in the REGISTER 
STREAM clause. Following the stream name, you specify the window type and size 
enclosed in square brackets ([ ]). For details about windows, see 2.2.2(1) Window 
operations (retrieving data for analysis).
For a query to process a relation, you must specify the name of the relation.

WHERE clause

In the WHERE clause, you specify the criteria for selecting which tuples retrieved 
from the window are to be processed.

For example, a query following the code for the temperature analysis system described 
above in (1) Defining a stream (REGISTER STREAM clause) is shown below.

The following paragraphs explain the items specified in the above REGISTER QUERY 
clause.

Query name

The query name is specified as sensor_filter. This is the name of the input 
stream used to acquire the stream data to be processed.

Stream clause

The operator ISTREAM is specified as the stream operation.

SELECT clause

The data items id and temperature are specified as the information to be 
retrieved from the tuples selected by the WHERE clause. These are data item names 

REGISTER STREAM temperature_stream
(observation_time TIME, id INTEGER, temperature INTEGER);
REGISTER QUERY sensor_filter
ISTREAM (
SELECT id, temperature
FROM temperature_stream[ROWS 3]
WHERE id = 1);
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2. Stream Data Processing
specified in the schema specification character string of the REGISTER STREAM 
clause.

FROM clause

The line temperature_stream[ROWS 3] specifies the name of the stream and 
of the window to be processed by the query. The stream name is the one specified 
in the REGISTER STREAM clause. For the window, [ROWS 3] is specified. This 
means that three most recent tuples are to be retrieved from the stream data in 
descending time order.

WHERE clause

Here, the condition id = 1 specifies which tuples are to be operated on from those 
that are retrieved in the window. This means that tuples with an ID equal to 1 are 
to be selected from the tuples retrieved in the window.

You can also specify other clauses in the REGISTER QUERY clause that are not 
described here. For details on these other clauses, see the uCosminexus Stream Data 
Platform - Application Framework Application Development Guide.

2.2.2 Using data manipulation CQL to specify operations on stream 
data

There are three types of data manipulation CQL operations:

Window operations

Relation operations

Stream operations

The descriptions in the following subsections are based on the example of the 
temperature analysis system described in 2.2.1(1) Defining a stream (REGISTER 
STREAM clause).

(1) Window operations (retrieving data for analysis)
A window operation is used to retrieve data for analysis from stream data. In the query, 
a window is specified in the FROM clause following the stream name. There are four 
types of window operations:

ROWS window

RANGE window

NOW window

PARTITION BY window

The following subsections explain these window operations.
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ROWS window

A ROWS window uses a count to specify the number of tuples to retrieve from the 
stream data. The input relation generated by a ROWS window is a tuple group 
beginning with the most recent tuple and going back a specified number of tuples. 
In a ROWS window, new tuples are added to the beginning of the input relation 
with each new tuple that is received. Similarly, tuples that exceed the tuple count 
are removed from the end of the input relation.

In a ROWS window, you specify the number of tuples to retrieve. For example, if 
you specify [ROWS 3], the input relation consists of the three most recent tuples 
that have been retrieved in order starting with the most recent one. The following 
figure shows a ROWS window being used to retrieve data for analysis.

Figure 2-7: Using a ROWS window to retrieve data for analysis

In the window operation shown in this figure, three tuples are to be retrieved, 
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which means that the input relation always maintains exactly three tuples. To 
ensure this, when a new tuple is added to the input relation, the oldest tuple in the 
input relation is removed.

RANGE window

A RANGE window uses a unit of time to specify the tuples to retrieve from the 
stream data. The input relation generated by the RANGE window is a tuple group 
beginning with the most recent tuple and going back a specified period of time.

In a RANGE window, you specify the time period in which to retrieve tuples. For 
example, if you specify [RANGE 3 SECOND], the input relation consists of all 
tuples that have been retrieved that have a timestamp within three seconds of the 
most recent tuple.

The following table lists the units that can be used for specifying a time period.

Table 2-2: Time units that can be specified in a CQL statement

The following figure shows a RANGE window being used to retrieve data for 
analysis.

Specification in CQL statement Unit

MILLISECOND Millisecond

SECOND Second

MINUTE Minute

HOUR Hour

DAY Day
29



2. Stream Data Processing
Figure 2-8: Using a RANGE window to retrieve data for analysis

In the window operation shown in this figure, all tuples whose timestamp is 
within three seconds of the most recent tuple (10:00:01 to 09:59:58) will be 
retrieved. This means that any tuples that no longer satisfy this condition when a 
new tuple is added to the input relation will be removed from the input relation.

When you use a RANGE window, depending on the input data, the number of 
tuples handled by Stream Data Platform - AF could become quite large and the 
amount of memory required may increase proportionately. In this case, you can 
use the time division function to prevent the amount of memory required from 
increasing too much. For details about the time division function, see the 
uCosminexus Stream Data Platform - Application Framework Application 
Development Guide.
30



2. Stream Data Processing
NOW window

A NOW window specifies that tuples are only to be processed at the time they 
arrive. If multiple tuples with the same timestamp arrive simultaneously, all of 
them are processed together. Because any tuple is removed from the NOW window 
as soon as it is processed, only the tuple (or tuples) with the most recent timestamp 
are present in the input relation generated by a NOW window.

You use the [NOW] specification to specify a NOW window. The following figure 
shows a NOW window being used to retrieve data for analysis.

Figure 2-9: Using a NOW window to retrieve data for analysis

In the window operation shown in this figure, only the tuple that arrives at that 
particular point in time is selected for processing. Because any tuple in the input 
relation is removed after being processed, no tuples are present in the input 
relation when a new tuple is added.

PARTITION BY window

A PARTITION BY window uses data values to specify the tuples to retrieve from 
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the stream data. This window is used together with a ROWS window. The input 
relation generated by a PARTITION BY window is a tuple group beginning with 
the most recent tuple containing the specified data item and going back a specified 
number of tuples.

In a PARTITION BY window, you enter the data item names to use for selecting. 
You follow these with ROWS, in which you specify the number of tuples to retrieve 
for each group. For example, if you specify [PARTITION BY id ROWS 2], for 
each ID the input relation consists of the two most recent tuples that have been 
retrieved in the order in which they were received. The following figure shows a 
PARTITION BY window being used to retrieve data for analysis.
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2. Stream Data Processing
Figure 2-10: Using a PARTITION BY window to retrieve data for analysis

In the window operation shown in this figure, two tuples are to be retrieved for 
each ID that can be specified in the tuples. This means that, when a new tuple is 
added to the input relation, the oldest tuple with the same ID as the new tuple is 
removed from the input relation.

(2) Relation operations (processing the retrieved data)
A relation operation is used to process the data retrieved by the window operation. The 
following operations are available:
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Retrieve data that satisfies a condition

Perform data calculations

Summarize data

Categorize and then summarize data

Join data streams

Link queries

These operations can be specified in the SELECT and WHERE clauses using arithmetic 
operators, comparison operators, logical operators, and aggregate functions.

The following tables list the comparison operators and aggregate functions that can be 
specified.

Table 2-3: Comparison operators that can be used in CQL statements

Table 2-4: Aggregate functions that can be used in CQL statements

The logical operators that can be specified in CQL statements vary depending on the 
clause. For details about the logical operators that can be specified in CQL statements, 
see the uCosminexus Stream Data Platform - Application Framework Application 
Development Guide.

Comparison operator Usage example Meaning of usage example

<= A <= B A is less than or equal to B

>= A >= B A is greater than or equal to B

< A < B A is less than B

> A > B A is greater than B

= A = B A is equal to B

!= A != B A is not equal to B

Function Description

AVG Computes the average of all values.

COUNT Counts the number of items.

MAX Determines the maximum value.

MIN Determines the minimum value.

SUM Computes the sum of all values.
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For examples of how to implement relation operations, see 2.3 Implementation 
examples of using CQL to process stream data.

(3) Stream operations (outputting the data processing results)
A stream operation is used to take the results of a relation operation, convert it to 
stream data and output it. Stream operations are specified in the stream clause directly 
following the REGISTER QUERY clause. The following three types of stream 
operations are available:

ISTREAM

DSTREAM

RSTREAM

Assuming that the window operation [ROWS 3] is specified, the following sections 
explain each of these stream operations.

ISTREAM

An ISTREAM stream operation outputs the tuples that were added to the output 
relation. Each time the output relation changes, ISTREAM compares the output 
relation before and after the change, and only outputs the tuples that were most 
recently added. The following figure shows the processing results that are output 
by ISTREAM.
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Figure 2-11: Processing results that are output by ISTREAM

When a tuple processed by a relation operation is added to the output relation, the 
oldest tuple in the output relation is removed. Because ISTREAM is specified as 
the stream operation, when this occurs, only the tuple that was added to the output 
relation is output.

DSTREAM

A DSTREAM stream operation outputs the tuples that were removed from the 
output relation. Each time the output relation changes, DSTREAM compares the 
output relation before and after the change, and outputs the tuples that were 
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2. Stream Data Processing
removed. The following figure shows the processing results that are output by 
DSTREAM.

Figure 2-12: Processing results that are output by DSTREAM

When a tuple processed by a relation operation is added to the output relation, the 
oldest tuple in the output relation is removed. Because DSTREAM is specified as 
the stream operation, when this occurs, only the tuple that was removed from the 
output relation is output.
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RSTREAM

An RSTREAM stream operation outputs all tuples in the output relation at specific 
time intervals. When you specify an RSTREAM clause, you enclose the time 
interval for outputting the stream in square brackets ([ ]). For example, you could 
specify [RSTREAM 1 MINUTE] or [RSTREAM 3 SECOND]. You can use the units 
listed in Table 2-2 Time units that can be specified in a CQL statement to specify 
the time interval. The following figure shows the processing results that are 
output by RSTREAM.

Figure 2-13: Processing results that are output by RSTREAM

RSTREAM 3 SECOND is specified as the stream operation, so every three seconds 
(as determined by the system time) all tuples in the output relation are output.
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2.3 Implementation examples of using CQL to process stream data

The implementation examples explained in this section are based on the information 
covered in 2.2 Using CQL to process stream data.

Using the temperature analysis system as an example, this section explains how query 
statements are used to process stream data. The following operations are demonstrated 
in these examples:

Retrieve data that satisfies a condition

Perform data calculations

Summarize data

Categorize and then summarize data

Join data streams

Link queries

2.3.1 Assumed system
The following figure shows the system assumed for these implementation examples.

Figure 2-14: Temperature analysis system assumed for the stream data 
processing implementation examples

In this temperature analysis system, observation sites 1 (ID: 1) and 2 (ID: 2) each 
monitor temperatures, and each send their observation results (in a file) to a sequential 
stream data processing system. The stream data processing system summarizes and 
analyzes the data that is sent by the observation sites as instructed by the queries, and 
then outputs the results to a file.
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2.3.2 Retrieving data that satisfies a condition
This section uses the following two queries as examples of retrieving data that satisfies 
a condition.

Query that outputs data of temperature 0 C or lower

Query that outputs data of temperature between -10 C and 0 C (inclusive).

(1) Query that outputs data of temperature 0 oC or lower
This subsection explains a query designed to output data that satisfies a single 
condition: output data of temperature 0 C or lower. The following figure shows the 
input and output data present when this query is executed.

Figure 2-15: Input and output data present when a query that satisfies a single 
condition is executed

Code

To output data that satisfies the condition of temperature 0 C or lower, you use 
a comparison operator in the WHERE clause to specify a data selection condition.

Explanation

REGISTER STREAM temperature_stream
(observation_time TIME, id INTEGER, temperature INTEGER);
REGISTER QUERY below_zero_filter
ISTREAM (
SELECT observation_time, id, temperature
FROM temperature_stream[ROWS 1]
WHERE temperature <= 0);
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The processing target of this query is the single most recent tuple to meet the 
condition. The FROM clause specifies a ROWS window, which retrieves tuples from 
the stream data in terms of the number of tuples.

The output data is data of temperature 0 C or lower. In the WHERE clause, 
temperature <= 0 is specified. This specification causes the clause to compare 
the value of temperature to 0, and selects tuples in which the value of 
temperature is less than or equal to 0.

(2) Query that outputs data of temperature between -10 oC and 0 oC (inclusive)
This subsection explains a query designed to output data that satisfies two conditions: 
output data of temperature between -10 C or higher and 0 C or lower (inclusive). 
The following figure shows the input and output data present when this query is 
executed.

Figure 2-16: Input and output data present when a query designed to output data 
that satisfies two conditions is executed

Code

To output data that satisfies the conditions of temperatures -10 C or higher and 
0 C or lower (inclusive), you use comparison operators and the logical operator 
AND in the WHERE clause to specify a data selection condition.

REGISTER STREAM temperature_stream
(observation_time TIME, id INTEGER, temperature INTEGER);
REGISTER QUERY temperature_range_filter
ISTREAM (
SELECT observation_time, id, temperature
FROM temperature_stream[ROWS 1]
WHERE -10 <= temperature AND temperature <= 0);
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Explanation

The processing target of this query is the single most recent tuple to meet the 
condition. The FROM clause specifies a ROWS window, which retrieves tuples from 
the stream data in terms of the number of tuples.

The output data is data of temperature -10 C or higher and 0 C or lower. In the 
WHERE clause, -10 <= temperature and temperature <= 0 are specified as 
linked conditions. This specification causes the clause to compare the value of 
temperature to -10, selecting tuples in which the value of temperature is 
greater than or equal to -10, AND it compares the value of temperature to 0, 
selecting tuples in which the value of temperature is less than or equal to 0.

2.3.3 Performing data calculations
This subsection explains a query that performs data calculations, using an example that 
converts temperature data that was collected in degrees Celsius to degrees Fahrenheit. 
To convert Celsius to Fahrenheit, the query needs to include a mathematical formula. 
The following figure shows the input and output data present when this query is 
executed.

Figure 2-17: Input and output data present when a query designed to perform 
data calculations is executed

Code

To convert temperature from Celsius to Fahrenheit, you use arithmetic operations 
in the SELECT clause to express a mathematical formula.
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Explanation

The processing target of this query is the single most recent query. The FROM 
clause specifies a ROWS window, which retrieves tuples from the stream data in 
terms of the number of tuples.

The output data is temperature data expressed in Fahrenheit. In the SELECT 
clause, the code fragment temperature*9/5+32 is the arithmetic expression 
that converts from Celsius to Fahrenheit.

To output calculated data, a name must be assigned to the calculation results. The 
keyword AS is used to specify the name of the resulting data. In the CQL code, 
fahrenheit_temperature is specified as the name for the data that results 
from the conversion to Fahrenheit.

2.3.4 Summarizing data
This subsection explains a query that summarizes data, using an example that outputs 
average temperatures in one-minute intervals from observation site 1 (ID: 1). First, the 
query summarizes one minute of temperature data from ID1, and then it derives an 
average from the summary results. The following figure shows the input and output 
data present when this query is executed.

REGISTER STREAM temperature_stream
(observation_time TIME, id INTEGER, temperature INTEGER);
REGISTER QUERY unit_conversion
ISTREAM (
SELECT observation_time, id,
temperature*9/5+32 AS fahrenheit_temperature
FROM temperature_stream[ROWS 1]);
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Figure 2-18: Input and output data present when a query designed to summarize 
data is executed

Code

To summarize data, you use an aggregate function in the SELECT clause to specify 
how you want the data to be summarized. To target specific data for 
summarization, you use a comparison operator in the WHERE clause to specify a 
data selection condition.

Explanation

The processing target of this query is all of the tuples from the last minute. The 
FROM clause specifies a RANGE window, which retrieves tuples from the stream 
data in terms of time.

The output data is one-minute averages of the temperatures observed at site 1 
(ID1). In the SELECT clause, the aggregate function AVG is specified to compute 
the average value of temperature, and average_temperature is specified as 
the name of the data item into which the results are output. In the WHERE clause, 
id = 1 is specified as the target of the computational processing.

When data processing is specified in both the SELECT and the WHERE clauses, the 

REGISTER STREAM temperature_stream
(observation_time TIME, id INTEGER, temperature INTEGER);
REGISTER QUERY average_calculation_id_1
ISTREAM (
SELECT AVG(temperature) AS average_temperature
FROM temperature_stream[RANGE 1 MINUTE]
WHERE id = 1);
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WHERE clause is executed first, and then the SELECT clause is executed on the 
results from the WHERE clause.

The tuple group selected by the WHERE clause, which is executed first, is called an 
intermediate relation. In this query, this is the tuple group from the last minute 
that is selected only from observation site ID1.

2.3.5 Categorizing and then summarizing data
This subsection explains a query that categorizes multiple data items and then 
summarizes the data, using an example that outputs one-minute average temperatures 
for each observation site. The following figure shows the input and output data present 
when this query is executed.

Figure 2-19: Input and output data present when a query designed to categorize 
and summarize data is executed

Code

To categorize data, you use the GROUP BY clause to specify how the data is to be 
categorized. You specify the GROUP BY clause immediately after the WHERE 
clause (or immediately following the FROM clause if the WHERE clause is not 
specified).

REGISTER STREAM temperature_stream
(observation_time TIME, id INTEGER, temperature INTEGER);
REGISTER QUERY average_calculation
ISTREAM (
SELECT id, AVG(temperature) AS average_temperature
FROM temperature_stream[RANGE 1 MINUTE]
GROUP BY id);
45



2. Stream Data Processing
Explanation

The processing target of this query is all of the tuples from the last minute. The 
FROM clause specifies a RANGE window, which retrieves tuples from the stream 
data in terms of time.

The output data is one-minute averages of the temperatures from each observation 
site. In the SELECT clause, the aggregate function AVG is specified to compute the 
average value of temperature, and average_temperature is specified as the 
name of the data item into which the results are output. In the GROUP BY clause, 
id is specified to group data by observation site.

When data processing is specified in both the SELECT clause and the GROUP BY 
clause, the SELECT clause is executed according to the category defined in the 
GROUP BY clause.

2.3.6 Joining data streams
Selecting tuples from multiple data streams and performing computational processing 
to consolidate these tuples into a single tuple is called joining data streams.

This subsection explains a query that joins data streams, using an example that first 
joins two data streams (temperature and humidity), and then joins tuples from the same 
observation site. The following figure shows the input and output data present when 
this query is executed.
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Figure 2-20: Input and output data present when a query that joins data streams 
is executed

Code

To accept input from multiple data streams, you specify a comma (,) in the FROM 
clause to delimit the data streams. In this case, a window operation must be 
specified for each data stream. To subsequently join the data, you specify a join 
condition in the WHERE clause.

In the following code, the name of the humidity stream is humidity_stream, 
and the name of the humidity data item is humidity.
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Explanation

The processing target of this query is the single most recent tuple from each 
observation site. In the CQL ISTREAM statement above, PARTITION BY windows 
are specified to retrieve the most recent single tuple from each observation site.

The output data joins two data streams, which contain temperature and humidity 
data, and then joins tuples by observation site. In the WHERE clause, 
temperature_stream.id = humidity_stream.id is specified as the 
condition that joins tuples of the same ID.

In the SELECT clause, output data names are specified for the data items in the 
tuples that are joined. When multiple data streams are input, different data streams 
might have data items with the same name. To distinguish which data stream such 
items belong to, a period (.) is added as a delimiter between the stream data name 
and the data item name. Then, to avoid having identically named data items, AS 
is used to assign unique data item names to the input data.

2.3.7 Linking queries
In some cases, you cannot achieve the desired results by executing a single query. If 
this is the case, you can send the processing results of the first query (first-stage) to the 
second query (second-stage). This is called query linking. The following two types of 
query linking are possible:

Stream data-based query linking

Relation-based query linking

When you link queries, the data processed by the first-stage query might be different 
from the data processed by the second-stage query. For example, if the first-stage 
query analyzes data in one-minute intervals, and the second-stage query analyzes data 
in one-hour intervals, it is best to use stream data-based query linking. Conversely, if 
the data being analyzed by both the first-stage query and the second-stage query is the 
same, it is best to use relation-based query linking.

REGISTER STREAM temperature_stream
(observation_time TIME, id INTEGER, temperature INTEGER);
REGISTER STREAM humidity_stream
(observation_time TIME, id INTEGER, humidity INTEGER);
REGISTER QUERY join_operation
ISTREAM (
SELECT temperature_stream.observation_time AS temperature_stream_time,
temperature_stream.id AS temperature_stream_id,
temperature_stream.temperature,
humidity_stream.observation_time AS humidity_stream_time,
humidity_stream.id AS humidity_stream_id,
humidity_stream.humidity
FROM temperature_stream[PARTITION BY id ROWS 1],
humidity_stream[PARTITION BY id ROWS 1]
WHERE temperature_stream.id = humidity_stream.id);
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The following subsections explain each type of query linking.

(1) Stream data-based query linking
This subsection explains stream data-based query linking, using an example that 
computes one-minute average temperatures for each observation site, and then outputs 
the highest average temperature in the last day. The following figure shows the input 
and output data present when these queries are executed.

Figure 2-21: Input and output data present when stream data-linked queries are 
executed

The first-stage query (query 1) computes one-minute average temperatures for each 
observation site, and the second-stage query (query 2) computes the highest average 
temperature in the last day.

Code

To link queries, you specify the name of the first-stage query in the FROM clause 
of the second-stage query.
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Explanation

The first-stage query (average_calculation) is the same as the query 
described in 2.3.5 Categorizing and then summarizing data. The second-stage 
query (MAX_temperature) takes the stream data from the first-stage query and 
uses a window operation to retrieve tuples for analysis. The data analyzed by the 
second-stage query are all tuples from the last day. To achieve this, [RANGE 1 
DAY] is specified in the FROM clause of the second-stage query.

(2) Relation-based query linking
This subsection explains relation-based query linking, using an example that computes 
the average temperature for each observation site, and then outputs the highest average 
temperature (maximum average temperature) at the current time. The following figure 
shows the input and the output data present when these queries are executed.

REGISTER STREAM temperature_stream
(observation_time TIME, id INTEGER, temperature INTEGER);
REGISTER QUERY average_calculation
ISTREAM (
SELECT id, AVG(temperature) AS average_temperature
FROM temperature_stream[RANGE 1 MINUTE]
GROUP BY id);
REGISTER QUERY MAX_temperature
ISTREAM (
SELECT MAX(average_temperature)
FROM average_calculation[RANGE 1 DAY]);
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Figure 2-22: Input and output data present when relation-linked queries are 
executed

The first-stage query (query 1) computes one-minute average temperatures for each 
observation site, and the second-stage query (query 2) computes the highest average 
temperature.

Code

With relation-based query linking, you do not use a stream operation in the 
first-stage query, nor do you use a window operation in the second-stage query. 
You specify the name of the first-stage query in the FROM clause of the 
second-stage query.

Note that, if you do not use a stream clause, you do not need to enclose the 
SELECT clause in parentheses.

REGISTER STREAM temperature_stream
(observation_time TIME, id INTEGER, temperature INTEGER);
REGISTER QUERY average_calculation
SELECT id, AVG(temperature) AS average_temperature
FROM temperature_stream[RANGE 1 MINUTE]
GROUP BY id;
REGISTER QUERY MAX_temperature
ISTREAM (
SELECT MAX(average_temperature) AS MAX_temperature
FROM average_calculation);
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Explanation

In relation-based query linking, the content of the output relation (average 
temperature for each observation site) of the first-stage query 
(average_calculation) is the same as that of the input relation (average 
temperature for each observation site) for the second-stage query 
(MAX_temperature).
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Chapter

3. Exchanging Data

This chapter describes how data is passed from the input source to the stream data 
processing engine and then from the stream data processing engine to the output 
destination. Adaptors, which are the components used to exchange I/O data with the 
stream data processing engine, are explained based on the standard adaptors provided 
by Stream Data Platform - AF.

3.1 Types of adaptors used for exchanging data
3.2 Inputting files
3.3 Inputting HTTP packets
3.4 Filtering records
3.5 Extracting records
3.6 Outputting to files
3.7 Outputting to the dashboard
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3.1 Types of adaptors used for exchanging data

With Stream Data Platform - AF, you use adaptors to pass data between the input 
source, the output destination, and the stream data processing engine. With adaptors, 
you can perform such actions as converting data formats and filtering data.

To use an adaptor, you connect it to the stream data processing engine. The following 
two methods can be used to connect an adaptor to the stream data processing engine:

In-process connection

A connection method used when the adaptor and the stream data processing 
engine run in the same process.

RMI connection

A connection method used when the adaptor and the stream data processing 
engine run in different processes. This connection method uses the Java RMI 
interface to connect the adaptor and the stream data processing engine.

For details about these connection methods, see the uCosminexus Stream Data 
Platform - Application Framework Setup and Operation Guide.

There are also two types of adaptors: standard adaptors, provided with Stream Data 
Platform - AF, and custom adaptors, that you create by programming them in Java.

For both types, an adaptor that is used to pass data from the input data to the stream 
data processing engine is called an input adaptor. An adaptor that is used to pass data 
from the stream data processing engine to the output data is called an output adaptor.

3.1.1 Standard adaptors
The adaptors provided by Stream Data Platform - AF are called the standard adaptors. 
The actions that a standard adaptor performs in order to correctly pass data are defined 
in an adaptor definition file. For details about the adaptor definition file, see the 
uCosminexus Stream Data Platform - Application Framework Setup and Operation 
Guide.

Using a standard adaptor, you can input the following types of data into the stream data 
processing engine:

Files

HTTP packets

A standard adaptor can also output the results of the stream data processing engine to 
the following destinations:

Files
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The dashboard

To input data from a data source other than the above, or to output results to an output 
destination other than the above, you need to use a custom adaptor. For details about 
custom adaptors, see 3.1.2 Custom adaptors.

The standard adaptors function using units of processing called callbacks. Functions 
in the adaptor definition file are defined in terms of these callback units.

The standard adaptor callbacks are executed on input data one line (or row) at a time 
(for HTTP packets, they are executed by request message or by response message). 
This single line or message unit is called a record.

The following figure shows the organization of the callbacks in an input adaptor.
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Figure 3-1: Organization of the callbacks in an input adaptor
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The following figure shows the organization of the callbacks in an output adaptor.

Figure 3-2: Organization of the callbacks in an output adaptor
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The following table lists and describes the functions of the standard adaptors.

Table 3-1: Functions of the standard adaptors

No. Callback Type Function Description

1 File input 
connector

Input callback Inputs a file Used for inputting a file.

2 HTTP packet 
input connector

Inputs HTTP 
packets

Used for inputting HTTP packets over a 
network.

3 Format 
conversion

Data editing 
callback

Converts the 
format of 
records during 
file input or 
output

Used only when the file input connector or 
file output connector is specified. There are 
two types of format conversion callbacks: one 
for the input adaptor and one for the output 
adaptor.
For the input adaptor:

This callback converts the records 
acquired from the input data (input 
records) to a format that can be processed 
by the stream data processing engine 
(common records).

For the output adaptor:
This callback converts the common 
records processed by the stream data 
processing engine to output records.

4 Filter Filters records Used to selectively extract records.
When you use a filter callback, the adaptor 
can perform processing like that executed in 
the CQL code described in 2.3.2 Retrieving 
data that satisfies a condition. To improve 
performance, we recommend that you use the 
adaptor to perform this kind of processing.

5 Record 
extraction

Extracts records Used only with the input adaptor.
This callback allows you to extract only the 
selected records that will then be joined to 
generate new records.
When you use a record extraction callback, 
the adaptor can perform processing like that 
executed in the CQL code described in 2.3.6 
Joining data streams. To improve 
performance, we recommend that you use the 
adaptor to perform this kind of processing.
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For more details about callbacks, see the uCosminexus Stream Data Platform - 
Application Framework Setup and Operation Guide.

Beginning in section 3.2 Inputting files, this manual provides an overview of the 
following callbacks:

File input connector

HTTP packet input connector

Filter

6 Mapping Maps records There are two types of record mapping 
callbacks: one for the input adaptor and one 
for the output adaptor.
For the input adaptor:

This callback converts common records 
to common records that are consistent 
with the format of the input stream. Also, 
if necessary, this callback will first 
convert the common records to common 
records that are suitable for processing by 
the next callback.

For the output adaptor:
This callback converts common records 
that are consistent with the format of the 
output stream to common records that are 
suitable for processing by the next 
callback. This callback can also further 
convert these common records to 
common records that are suitable for 
processing by the next callback.

7 Tuple 
transmission

Tuple 
exchange 
callback

Sends tuples to 
the stream data 
processing 
engine

Used by the input adaptor to send tuples to the 
stream data processing engine.

8 Tuple reception Receives tuples 
processed by the 
stream data 
processing 
engine

Used by the output adaptor to receive tuples 
processed by the stream data processing 
engine.

9 File output 
connector

Output 
callback

Outputs a file Used to output the results of the stream data 
processing engine to a file.

10 Dashboard 
output connector

Outputs to the 
dashboard

Used to output and display the results of the 
stream data processing engine to the 
dashboard.

No. Callback Type Function Description
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Record extraction

File output connector

Dashboard output connector

The callbacks listed in the table are used in combination with one another. The 
following example describes a callback configuration.

Example of a callback configuration

Assume that you are monitoring the temperature at a number of observation sites, 
and that you want to summarize and analyze the observation results from one 
particular observation site, and then output those processing results to a file. To 
do this, you need to code callbacks that perform the following actions:

• Summarize and analyze only the data sent from observation site 1 (ID: 1).

• Output the processing results to a file.

The following two figures show the positioning of the adaptor callbacks used to 
implement this processing for the input adaptor and the output adaptor, 
respectively.
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Figure 3-3: Example of positioning and processing of the input adaptor 
callbacks
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Figure 3-4: Example of positioning and processing of the output adaptor 
callbacks

The input adaptor uses a filter so only data from observation site 1 (ID: 1) is 
passed through for summary analysis, and the output adaptor uses a file output 
connector to send the processing results to a file.
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3.1.2 Custom adaptors
Using the Java APIs provided with Stream Data Platform - AF, you can write Java 
applications to use as custom adaptors. In this way, you can build adaptors that 
perform a wide range of functions.

To create a custom adaptor, you need to implement at least the following functions:

Read and write external data

Convert formats between I/O data and stream data

Transmit tuples to the input stream

Receive tuples from the output stream

For details about custom adaptors, see the uCosminexus Stream Data Platform - 
Application Framework Application Development Guide.
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3.2 Inputting files

To perform stream data processing on data files, such as log files, you use the file input 
connector as the input callback.

The file input connector extracts records to be processed from an input source file. 
Because these records are retrieved as input records, the format conversion callback 
must be used to convert them to common records so that the stream data processing 
engine can process them. The following figure shows the positioning and processing 
of the callbacks involved in file input.

Figure 3-5: Positioning and processing of the callbacks involved in file input

1. The file input connector extracts the first line (record) from the input file. The 
record that it extracts is called an input record.

2. The format conversion callback converts the input record to a common record.
64



3. Exchanging Data
Reference note:
 

You can also extract and process multiple records at a time from the input 
source file.
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3.3 Inputting HTTP packets

To perform stream data processing on HTTP packets carried over a network, you use 
the HTTP packet input connector as the input callback.

This packet input connector extracts HTTP packets from the output of a packet 
analyzer. The following figure shows the positioning and processing of the callback 
involved in HTTP packet input.

Figure 3-6: Positioning and processing of the callback involved in HTTP packet 
input

As shown in the figure, the packet input connector extracts the HTTP packet, and then 
converts it to a common record data format that the stream data processing engine can 
handle.
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3.4 Filtering records

To perform stream data processing only on specific records, you use a filter as the data 
editing callback.

Reference note:
 

As explained in 2.3.2 Retrieving data that satisfies a condition, you can 
perform filter processing using CQL, but we recommend that you use the 
adaptor to improve performance.

For example, if you are monitoring temperatures from a number of observation sites 
and you want to summarize and analyze temperatures from only one particular 
observation site, you can filter on that observation site's ID.

Only common records can be filtered. If the input source is a file, after an input record 
is extracted by the file input connector, you must use the format conversion callback 
to convert it to a common record before filtering it.

When specifying the evaluation conditions you want to filter on, you can use any of 
the record formats and values that are defined in the records. The following figure 
shows the positioning and processing of the callback involved in record filtering.
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Figure 3-7: Positioning and processing of the callback involved in record 
filtering

1. The records passed to the filter are first filtered by record format. Only records of 
record format R1 meet the first condition, so only these records are selected for 
processing by the next condition. Records that do not satisfy this condition are 
passed to the next callback.

2. After the records are filtered by record format, they are then filtered by record 
value. This condition specifies that only those records whose ID has a value of 1 
are to be passed to the next callback. In this way, only those records that satisfy 
both conditions will be processed by the next callback. Records that do not satisfy 
these conditions are discarded.
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3.5 Extracting records

After you have filtered for the desired records, you use a record extraction callback to 
collect all of the necessary information from the filtered records into a single record.

Reference note:
 

As explained in 2.3.6 Joining data streams, you can perform record extraction 
processing using CQL, but we recommend that you use the adaptor to improve 
performance.

For example, to summarize and analyze the responsiveness between a client and a 
server, after the HTTP packet input connector is used as the input callback, you could 
use a record extraction callback as the data editing callback. You could then use the 
record extraction callback to join an HTTP request and response packet pair into one 
record, based on the transmission source IP addresses and the transmission destination 
IP addresses. This would allow you to gain a clear understanding of response times, 
and to easily summarize and analyze the resulting data.

In the following figure, after records are filtered by record format and record value so 
that only the desired records are selected, the record extraction callback joins the 
resulting records, and generates a new record. The following figure shows the 
positioning and processing of the callback involved in record extraction.
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Figure 3-8: Positioning and processing of the callback involved in record 
extraction
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1. Records passed to the record extraction callback are first filtered by record 
format. Only records whose record format is R1 or R2 meet the first condition, so 
only these records are selected for processing by the next condition. Records that 
do not satisfy this condition are passed to the next callback.

2. After the records are filtered by record format, they are then filtered by record 
value. This condition specifies that records are to be passed to the next process 
only if the source IP of the request matches the destination IP of the response, and 
the destination IP of the request matches the source IP of the response. This means 
that only those records that match this condition are passed to the next process.

3. Records filtered by record format and record value are joined to produce a single 
record. Records joined in this step are selected for processing by the next 
callback.
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3.6 Outputting to files

To output the results of stream data processing to a file, you use the file output 
connector as the output callback.

The file output connector sends output records to a file. This means that you must first 
use a format conversion callback to convert the common records to valid output 
records before running the file output connector. The following figure shows the 
positioning and processing of the callbacks that are involved in file output.

Figure 3-9: Positioning and processing of the callbacks involved in file output

1. To output the results of stream data processing to a file, the format conversion 
callback first converts the record format to a valid output record format.

2. The file output connector then sends the output records to a file.
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3.7 Outputting to the dashboard

To display the results of stream data processing to the dashboard, you use the 
dashboard output connector as the output callback. Data output to the dashboard can 
be displayed as a line chart, a bar chart, or in other chart formats.

The dashboard output connector gets common records from the previous callback. The 
dashboard output connector then converts these records to data that can be displayed 
on the dashboard, and transfers the data to Flex Dashboard. The following figure 
shows the positioning and processing of the callback involved in dashboard output.

Figure 3-10: Positioning and processing of the callback involved in dashboard 
output

3.7.1 Flex Dashboard
As its dashboard, Stream Data Platform - AF uses Flex Dashboard, which consists of 
the following two applications.

Dashboard Server

Dashboard Server is an application that is executed by the dashboard output 
connector, and receives the results of stream data processing. You establish 
communications between the two products by entering a command on the server 
on which Stream Data Platform - AF runs.
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Dashboard Viewer

Dashboard Viewer is an application that provides a GUI interface for displaying 
stream data processing results on a Web page. To use it, you download it to a client 
Web browser. The content and layout displayed by Dashboard Viewer are 
controlled by the definitions in the Dashboard Viewer window layout file.

The following figure shows the configuration of Flex Dashboard

Figure 3-11: Configuration of Flex Dashboard

The dashboard output connector formats the data that it receives and then passes the 
formatted data to Dashboard Server. Dashboard Server passes the data to Dashboard 
Viewer so that the browser can display the results output by the stream data processing 
system on the dashboard.

3.7.2 Display examples
This subsection provides an overview of displaying data on the dashboard, assuming 
that you want to display the following summary analysis results obtained from 
information in HTTP packets:

Average response time from request to response (in milliseconds)

A breakdown of response status codes

(1) Line chart display
Using a summary analysis of HTTP packets, the following figure shows an example 
in which the average response time (in milliseconds) from request to response is 
displayed as a line chart.
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Figure 3-12: Example of a display in which the average response time from 
request to response (in milliseconds) is presented as a line chart

The vertical axis indicates the average response time (in milliseconds), and the 
horizontal axis indicates the clock time.

With the response times displayed like this, you can quickly see that, for example, the 
average response time from request to response at 11:57:17 was 3000 milliseconds (3 
seconds).

(2) Pie chart display
Using a summary analysis of HTTP packets, the following figure shows an example 
in which a breakdown of response status codes is displayed as a pie chart.
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Figure 3-13: Example of a display in which a breakdown of response status 
codes is presented as a pie chart

In the pie chart, different status codes are displayed as different colors.

With the status code breakdown displayed like this, you can quickly see that, for 
example, status code 403 accounts for roughly one-third of all responses.
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Chapter

4. Introducing the Manuals in This 
Series

This chapter explains which manual in this series covers each task in the four Stream 
Data Platform - AF workflow phases: introduction, design, setup, and operation. This 
chapter also provides an overview of the manuals in the series.

4.1 Correspondence between user tasks and the manuals in this series
4.2 Overview of manuals in this series
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4.1 Correspondence between user tasks and the manuals in this 
series

The following four manuals are included in the Stream Data Platform - AF series of 
manuals:

uCosminexus Stream Data Platform - Application Framework Description
uCosminexus Stream Data Platform - Application Framework Setup and 
Operation Guide
uCosminexus Stream Data Platform - Application Framework Application 
Development Guide
uCosminexus Stream Data Platform - Application Framework Messages

The following figure shows which manual to reference to for each task in the four 
Stream Data Platform - AF workflow phases: introduction, design, setup, and 
operation.
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Figure 4-1: Correspondence between the manuals in this series and each task in 
the four workflow phases: introduction, design, setup, and operation

For an overview of each of these manuals, see 4.2 Overview of manuals in this series.
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4.2 Overview of manuals in this series

The following paragraphs provide an overview of each manual in the Stream Data 
Platform - AF series.

uCosminexus Stream Data Platform - Application Framework Description
This manual.

We recommend that you read this manual before you implement Stream Data 
Platform - AF. This manual provides an overview of the functions in Stream Data 
Platform - AF, and a basic understanding of how to use the system.

uCosminexus Stream Data Platform - Application Framework Setup and 
Operation Guide
After you have read uCosminexus Stream Data Platform - Application 
Framework Description, we recommend that you read this manual next. It 
explains how to design, set up, and operate Stream Data Platform - AF, and it 
provides details about the functions that can be specified when you set up a 
system.

We also recommend that you use this as a reference manual for Stream Data 
Platform - AF, and as an aid to troubleshooting.

uCosminexus Stream Data Platform - Application Framework Application 
Development Guide
After you have read uCosminexus Stream Data Platform - Application 
Framework Description, we recommend that you read this manual in the 
following cases:

• If you decide during the system design phase to use custom adaptors

• If you want to define queries using CQL

uCosminexus Stream Data Platform - Application Framework Messages
We recommend that you refer to this manual whenever Stream Data Platform - 
AF outputs a message, either during setup or use.
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A. Reference Material for This Manual
B. Glossary
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A. Reference Material for This Manual

This appendix provides reference information, including various conventions, for this 
manual.

A.1 Related publications
This manual is part of a related set of manuals. The manuals in the set are listed below 
(with the manual numbers):

• uCosminexus Stream Data Platform - Application Framework Setup and 
Operation Guide (3020-3-V02(E))

This manual explains how to design, set up, and operate Stream Data Platform - 
AF systems, and it provides details about the functions that can be specified when 
you set up a system.

We recommend that you read this manual to learn about how to analyze stream 
data through the design, setup, and operation of Stream Data Platform - AF 
systems.

• uCosminexus Stream Data Platform - Application Framework Application 
Development Guide (3020-3-V03(E))

This manual explains how to code CQL for use in analyzing data with Stream 
Data Platform - AF, and how to create custom adaptors.

We recommend that you read this manual to learn about writing CQL code for 
achieving analysis objectives, and to learn about using the provided APIs to create 
custom adaptors.

• uCosminexus Stream Data Platform - Application Framework Messages 
(3020-3-V04(E))

This manual explains the messages output by Stream Data Platform - AF.

We recommend that you refer to this manual if necessary when a message is 
output.

A.2 Conventions: Abbreviations for product names
This manual uses the following abbreviations for product names and Java-related 
terms:

Abbreviation Full name or meaning

Java JavaTM

JavaVM Java Virtual Machine
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A.3 Conventions: Acronyms
This manual also uses the following acronyms:

A.4 Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

Stream Data Platform - AF uCosminexus Stream Data Platform - Application 
Framework

Acronym Full name or meaning

AP application program

API application programming interface

CQL Continuous Query Language

GUI graphical user interface

HTTP Hyper Text Transfer Protocol

IC integrated circuit

IP Internet Protocol

RMI Remote Method Invocation

Abbreviation Full name or meaning
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B. Glossary

adaptor
A program required to exchange data between input sources, output destinations and 
the stream data processing engine.

Adaptor types include the standard adaptors provided with the product, and custom 
adaptors that you can program in Java.

Each of these adaptor types are further classified into input adaptors, which are used 
between input data and the stream data processing engine; and output adaptors, which 
are used between the stream data processing engine and output data.

adaptor definition file
A file used to configure the operation of standard adaptors. It specifies details about 
the port number used by RMI connection adaptors, the organization of the adaptor 
groups, and the I/O connectors used by the adaptors.

adaptor group
A group of I/O adaptors. Standard adaptors operate in adaptor groups.

Adaptor groups that implement in-process connections are called in-process adaptor 
groups. Adaptor groups that implement RMI connections are called RMI groups.

adaptor trace
A listing of troubleshooting-related information for tracing the process states of an 
adaptor.

callback
A processing unit that controls the functionality provided in the standard adaptors.

common record
An internal record format that enables records to be processed by a stream data 
processing system.

connector
An interface defined in the standard adaptors for connecting Stream Data Platform - 
AF to the outside world.

For input to Stream Data Platform - AF, the file input connector and the HTTP packet 
input connector are provided. For output from Stream Data Platform - AF, the file 
output connector and the dashboard output connector are provided.
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CQL (Continuous Query Language)
A query language designed for writing continuous queries.

custom adaptor
An adaptor created by the user with the Java APIs provided by Stream Data Platform 
- AF.

data reception application
A client application that performs event processing on stream data output by an SDP 
server.

data source mode
A mode for assigning timestamps to tuples. In this mode, when the log file or other data 
source being input contains time information, that time information is assigned to the 
tuple.

data transmission application
A client application that sends stream data to an SDP server.

field
The basic unit of value in a record.

in-process connection
An architecture for connecting adaptors and SDP servers. Adaptors and SDP servers 
that run in the same process use an in-process connection to exchange data.

input record
A record that is read when the input source is a file.

input relation
A tuple group retrieved by means of a window operation. A relation operation is then 
performed on the tuple group.

intermediate relation
A tuple group retrieved by the WHERE clause during relation operation processing.

operator
The smallest unit of stream data processing. A query consists of one or more operators.

output record
A record format for outputting stream data processing results to a file.

output relation
A tuple group output from a relation operation. A stream operation is then performed 
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on the tuple group.

query
Code that defines the processing to perform on stream data. Queries are written using 
CQL.

query group
A stream data summary analysis scenario created in advance by the user. A query 
group consists of an input stream queue (input stream), an output stream queue (output 
stream), and relational queries.

record
A single row of data handled by stream data processing.

record organization
An organization expressed as a particular combination of two or more fields (field 
names and their associated values).

relation
A set of records with a given life span. Using a CQL window specification, records are 
converted from stream data to a relation that will persist for the amount of time 
specified in the window operation.

relation operation
An operation that specifies what processing is to be performed on the data retrieved by 
a window operation. Available actions include calculation, summarization, joining, 
and others.

RMI connection (Remote Method Invocation)
An architecture for connecting adaptors and SDP servers. Adaptors and SDP servers 
that run in different processes use Java RMI to exchange data.

SDP server
A server process running a stream data processing engine to process stream data.

SDP server definition file
A file used to configure SDP server operations. It specifies settings such as the 
JavaVM startup options for running an SDP server and adaptors, SDP server port 
numbers, and details about the API trace logs and tuple logs to acquire.

server mode
A mode for assigning timestamps to tuples. In this mode, when a tuple arrives at the 
stream data processing engine, the system time of the server on which Stream Data 
Platform - AF is running is assigned to the tuple.
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standard adaptor
An adaptor provided by Stream Data Platform - AF. Standard adaptors can handle files 
or HTTP packets as input data, and they can output the processing results to a file, or 
display them on the dashboard.

stream
Data that is in a streaming (time sequence) format. Stream data that passes through an 
input stream queue is called an input stream, and stream data that passes through an 
output stream queue is called an output stream.

stream data
Large quantities of time-sequenced data that is continuously generated.

stream data processing engine
The part of a stream data processing system that actually processes stream data, as 
instructed by queries.

stream operation
An operation that specifies how to output data in an output relation.

stream queue
A path used for input and output of stream data. A stream queue that is used as input 
to the stream data processing engine is called an input stream queue, and a stream 
queue that is used as output from the stream data processing engine is called an output 
stream queue.

time division function
A function by which a RANGE window is partitioned into desired units of time 
(meshing), and the data in each of these partitioned time units is processed separately.

timestamp
The data time in a tuple.

tuple
A stream data element that consists of a combination of values and time (timestamp).

tuple log
A log file containing information on the tuples that are input to the stream data 
processing engine, and from tuples that are output from the stream data processing 
engine.

window
A range that specifies the extent of stream data that is to be summarized and analyzed. 
Windows are defined in queries.
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window operation
An operation used to specify a window. Window operations are coded in CQL queries.
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