
Hitachi Advanced Database
SQL Reference
3000-6-504-H0(E)



Notices

■ Relevant program products
P-9W62-C411 Hitachi Advanced Data Binder version 05-01 (for Red Hat(R) Enterprise Linux(R) Server 6 (64-bit
x86_64) and Red Hat(R) Enterprise Linux(R) Server 7 (64-bit x86_64))
P-9W62-C311 Hitachi Advanced Data Binder Client version 05-01 (for Red Hat(R) Enterprise Linux(R) Server 6 (64-
bit x86_64) and Red Hat(R) Enterprise Linux(R) Server 7 (64-bit x86_64))
P-2462-C114 Hitachi Advanced Data Binder Client version 05-01 (for Windows 7, Windows 8.1, Windows 10,
Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016)

This manual can be used for products other than the products shown above. For details, see the Release Notes.
Hitachi Advanced Data Binder is the product name of Hitachi Advanced Database in Japan.

■ Trademarks
HITACHI, HA Monitor, HiRDB, Job Management Partner 1 and JP1 are either trademarks or registered trademarks
of Hitachi, Ltd. in Japan and other countries.
Access is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.
AMD is a trademark of Advanced Micro Devices, Inc.
Excel is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.
Intel is a trademark of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.
MSDN is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.
Red Hat is a registered trademark of Red Hat, Inc. in the United States and other countries.
Red Hat Enterprise Linux is a registered trademark of Red Hat, Inc. in the United States and other countries.
UNIX is a trademark of The Open Group.
Visual Studio is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.
Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.
Windows Server is either a registered trademark or trademark of Microsoft Corporation in the United States and/or
other countries.
Other company and product names mentioned in this document may be the trademarks of their respective owners.
1. This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://
www.openssl.org/)
2. This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
3. This product includes software written by Tim Hudson (tjh@cryptsoft.com).
4. This product uses OpenSSL Toolkit software in accordance with the OpenSSL License and Original SSLeay License,
which are described as follows.

Hitachi Advanced Database SQL Reference 2



LICENSE ISSUES
==============
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.
OpenSSL License
---------------
/* =========================================================
* Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

Hitachi Advanced Database SQL Reference 3



*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==========================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
Original SSLeay License
-----------------------
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.

Hitachi Advanced Database SQL Reference 4



*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
■Double precision SIMD-oriented Fast Mersenne Twister (dSFMT)
Copyright (c) 2007, 2008, 2009 Mutsuo Saito, Makoto Matsumoto
and Hiroshima University.
Copyright (c) 2011, 2002 Mutsuo Saito, Makoto Matsumoto, Hiroshima
University and The University of Tokyo.
All rights reserved.

Hitachi Advanced Database SQL Reference 5



Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of the Hiroshima University nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

■ Microsoft product screen shots
Microsoft product screen shots reprinted with permission from Microsoft Corporation.

■ Microsoft product name abbreviations
This manual uses the following abbreviations for Microsoft product names:

Abbreviation Full name or meaning

Windows Windows 7 Windows 7 x86 Microsoft(R) Windows(R) 7 Professional (32-bit)

Microsoft(R) Windows(R) 7 Enterprise (32-bit)

Microsoft(R) Windows(R) 7 Ultimate (32-bit)

Windows 7 x64 Microsoft(R) Windows(R) 7 Professional (64-bit)

Microsoft(R) Windows(R) 7 Enterprise (64-bit)

Microsoft(R) Windows(R) 7 Ultimate (64-bit)

Windows 8.1 Windows 8.1 x86 Windows(R) 8.1 Pro (32-bit)

Windows(R) 8.1 Enterprise (32-bit)

Hitachi Advanced Database SQL Reference 6



Abbreviation Full name or meaning

Windows 8.1 x64 Windows(R) 8.1 Pro (64-bit)

Windows(R) 8.1 Enterprise (64-bit)

Windows 10 Windows 10 x86 Windows(R) 10 Pro (32-bit)

Windows(R) 10 Enterprise (32-bit)

Windows 10 x64 Windows(R) 10 Pro (64-bit)

Windows(R) 10 Enterprise (64-bit)

Windows Server 2008 R2 Microsoft(R) Windows Server(R) 2008 R2 Standard

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Windows Server 2012 Microsoft(R) Windows Server(R) 2012 Standard

Microsoft(R) Windows Server(R) 2012 Datacenter

Windows Server 2012 R2 Microsoft(R) Windows Server(R) 2012 R2 Standard

Microsoft(R) Windows Server(R) 2012 R2 Datacenter

Windows Server 2016 Microsoft(R) Windows Server(R) 2016 Standard

Microsoft(R) Windows Server(R) 2016 Datacenter

■ Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of
Hitachi. The software described in this manual is furnished according to a license agreement with Hitachi. The license
agreement contains all of the terms and conditions governing your use of the software and documentation, including
all warranty rights, limitations of liability, and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your
country.
No part of this material may be reproduced in any form or by any means without permission in writing from the
publisher.

■ Issued
Apr. 2020

■ Copyright
All Rights Reserved. Copyright (C) 2012, 2020, Hitachi, Ltd.

Hitachi Advanced Database SQL Reference 7



Preface

This manual describes the SQL syntax used for manipulating databases in Hitachi Advanced Database.

Note that, in this manual, and in the information output by the product (messages, command output results, and so on),
HADB is often used in place of Hitachi Advanced Database.

■ Intended readers
This manual is intended for:

• Application developers

• System engineers who design and set up HADB systems, and system administrators

Readers of this manual must have:

• A basic knowledge of SQL

• A basic knowledge of Java programming and a basic knowledge of JDBC (if you plan to create application programs
in Java)

• A basic knowledge of programming in C or C++ (if you plan to create application programs in C or C++)

• A basic knowledge of ODBC (if you plan to create ODBC-compliant application programs)

■ Organization of this manual
This manual is organized into the following parts, chapters, and appendixes:

1. SELECT Statement Examples
Chapter 1 explains, using examples, how to write SELECT statements with constructs such as predicates, set
functions, GROUP BY clauses, and HAVING clauses. Read this chapter to understand how to write basic SELECT
statements.

2. List of SQL Statements
Chapter 2 provides a list of SQL statements that are supported by HADB, and explains how to read the SQL syntax
specification format used in this manual.

3. Definition SQL
Chapter 3 describes the functions, specification formats, and rules of definition SQL statements.

4. Data Manipulation SQL
Chapter 4 describes the functions, specification formats, and rules of data manipulation SQL statements.

5. Control SQL
Chapter 5 describes the functions, specification formats, and rules of control SQL statements.

6. SQL Basics
Chapter 6 describes the basic elements of SQL, including rules for writing SQL statements, data types, and literals.

7. Constituent Elements
Chapter 7 describes query expressions, query specifications, predicates, value expressions, set functions, and other
elements that comprise SQL.

Hitachi Advanced Database SQL Reference 8



8. Scalar Functions
Chapter 8 describes the functions, specification formats, and rules of scalar functions.

A. SQL Reverse Lookup Reference
Appendix A explains SQL syntax organized by where it is used. This appendix provides a reverse lookup reference
by which you can determine the SQL construct to use based on what you want to achieve.

B. List of Functions
Appendix B lists the functions supported by HADB and where each is used.

■ Related publications
This manual is part of a related set of manuals. The manuals in the set are listed below (with the manual numbers):

• Hitachi Advanced Database Setup and Operation Guide (3000-6-501(E))

• Hitachi Advanced Database Application Development Guide (3000-6-502(E))

• Hitachi Advanced Database Command Reference (3000-6-503(E))

• Hitachi Advanced Database Messages (3000-6-505(E))

• HA Monitor Cluster Software Guide (for Linux(R) (x86) Systems) (3000-9-201(E))

• Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3 System
Design (Work Tasks) Guide (3021-3-320(E))

• JP1 Version 11 JP1/Base User's Guide (3021-3-A01(E))

In references to Hitachi Advanced Database manuals, this manual uses HADB in place of Hitachi Advanced Database.

Example: HADB Setup and Operation Guide

In references to the HA Monitor manual, this manual uses HA Monitor for Linux(R) (x86) in place of HA Monitor
Cluster Software Guide (for Linux(R) (x86) Systems).

Example: HA Monitor for Linux(R) (x86)

In references to the Job Management Partner 1/Automatic Job Management System 3 manual, this manual uses Job
Management Partner 1/Automatic Job Management System 3 System Design (Work Tasks) Guide in place of Job
Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3 System Design
(Work Tasks) Guide.

Example: Job Management Partner 1/Automatic Job Management System 3 System Design (Work Tasks) Guide

In references to the JP1/Base manual, this manual uses JP1/Base User's Guide in place of JP1 Version 11 JP1/Base
User's Guide.

Example: JP1/Base User's Guide

■ Conventions: Abbreviations for product names
This manual uses the following abbreviations for product names:

Hitachi Advanced Database SQL Reference 9



Abbreviation Full name or meaning

HADB HADB server Hitachi Advanced Database

HADB client Hitachi Advanced Database Client

Linux Linux Linux(R)

Red Hat Enterprise Linux
Server 6

Red Hat(R) Enterprise Linux(R) Server 6 (64-bit x86_64)

Red Hat Enterprise Linux Server
6 (64-bit x86_64)

Red Hat Enterprise Linux
Server 7

Red Hat(R) Enterprise Linux(R) Server 7 (64-bit x86_64)

Red Hat Enterprise Linux Server
7 (64-bit x86_64)

HDLM Hitachi Dynamic Link Manager Software

JP1/AJS3 Job Management Partner 1/Automatic Job Management System 3

JP1/Audit JP1/Audit Management - Manager

Red Hat Enterprise Linux Server 6 (64-bit x86_64) Red Hat(R) Enterprise Linux(R) Server 6 (64-bit x86_64)

Red Hat Enterprise Linux Server 7 (64-bit x86_64) Red Hat(R) Enterprise Linux(R) Server 7 (64-bit x86_64)

■ Conventions: Acronyms
This manual also uses the following acronyms:

Acronym Full name or meaning

APD Application Parameter Descriptor

API Application Programming Interface

ARD Application Row Descriptor

BI Business Intelligence

BLOB Binary Large Object

BNF Backus-Naur Form

BOM Byte Order Mark

CLI Call Level Interface

CLOB Character Large Object

CPU Central Processing Unit

CSV Character-Separated Values

DB Database

DBMS Database Management System

DMMP Device Mapper Multipath

DNS Domain Name System

Hitachi Advanced Database SQL Reference 10



Acronym Full name or meaning

ER Entity Relationship

HBA Host Bus Adapter

ID Identification number

IEF Integrity Enhancement Facility

IP Internet Protocol

IPD Implementation Parameter Descriptor

IRD Implementation Row Descriptor

JAR Java Archive File

JDBC Java Database Connectivity

JDK Java Developer's Kit

JNDI Java Naming and Directory Interface

JRE Java Runtime Environment

JTA Java Transaction API

LOB Large Object

LRU Least Recently Used

LV Logical Volume

LVM Logical Volume Manager

MSDN Microsoft Developer Network

NFS Network File System

NIC Network Interface Card

NTP Network Time Protocol

ODBC Open Database Connectivity

OS Operating System

PP Program Product

RAID Redundant Array of Independent Disks

RDBMS Relational Database Management System

TLB Translation Lookaside Buffer

URL Uniform Resource Locator

VG Volume Group

WWN World Wide Name

■ Conventions: Fonts and symbols
The following table explains the fonts used in this manual:

Hitachi Advanced Database SQL Reference 11



Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes menus, menu options,
buttons, radio box options, or explanatory labels. For example:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Italics Italics are used to indicate a placeholder for some actual text to be provided by the user or system. For example:
• Write the command as follows:
copy source-file target-file

• The following message appears:
A file was not found. (file = file-name)

Italics are also used for emphasis. For example:
• Do not delete the configuration file.

Code font A code font indicates text that the user enters without change, or text (such as messages) output by the system.
For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:
The password is incorrect.

The table below shows the symbols used in this manual for explaining commands and operands, such as the operands
used in server definitions.

Note that these symbols are used for explanatory purposes only; do not specify them in the actual operand or command.

Symbol Meaning Example

| In syntax explanations, a vertical bar separates
multiple items, and has the meaning of OR.

adb_sql_text_out = {Y|N}
In this example, the vertical bar means that you can specify either Y
or N.

[ ] In syntax explanations, square brackets
indicate that the enclosed item or items are
optional.

adbsql [-V]
In this example, the square brackets mean that you can specify
adbsql, or you can specify adbsql -V.

{ } In syntax explanations, curly brackets indicate
that only one of the enclosed items is to be
selected.

adbcancel {--ALL|-u connection-ID}
In this example, the curly brackets mean that you can specify either
--ALL or -u connection-ID.

... In syntax explanations, an ellipsis (...)
indicates that the immediately preceding item
can be repeated as many times as necessary.

adbbuff -n DB-area-name[, DB-area-name] ...
In this example, the ellipsis means that you can specify DB-area-
name as many times as necessary.

{{ }} In syntax explanations, double curly brackets
indicate that the enclosed items can be repeated
as a single unit.

{{adbinitdbarea -n data-DB-area-name}}
In this example, the double curly brackets mean that you can specify
adbinitdbarea -n data-DB-area-name as many times as
necessary.

X
(underline)

In syntax explanations, underlined characters
indicate a default value.

adb_import_errmsg_lv = {0|1}
In this example, the underline means that the value 0 is assumed by
HADB when the operand is omitted.

Hitachi Advanced Database SQL Reference 12



Symbol Meaning Example

~ A swung dash indicates that the text following
it explains the properties of the specified value.

adb_sys_max_users = maximum-number-of-concurrent-
connections
~ <integer> ((1 to 1024)) <<10>>
In this example, the text following the swung dash means that you
can specify an integer in the range from 1 to 1024. If the operand is
not specified, the value 10 is assumed by HADB.

< > Single angle brackets explain the data type of
the specified value.

(( )) Double parentheses indicate the scope of the
specified value.

<< >> Double angle brackets indicate a default value.

■ Conventions: Path names
• $INSTDIR is used to indicate the server directory path (for installation).

• $ADBDIR is used to indicate the server directory path (for operation).

• $DBDIR is used to indicate the DB directory path.

• %ADBCLTDIR% (for a Windows HADB client) or $ADBCLTDIR (for a Linux HADB client) is used to indicate
the client directory path.

• %ADBODBTRCPATH% is used to indicate the folder path where HADB's ODBC driver trace files are stored.

■ Conventions: Symbols used in mathematical formulas
The following table explains special symbols used by this manual in mathematical formulas:

Symbol Meaning

↑ ↑ Round up the result to the next integer.
Example: The result of ↑34 ÷ 3↑ is 12.

↓ ↓ Discard digits following the decimal point.
Example: The result of ↓34 ÷ 3↓ is 11.

MAX Select the largest value as the result.
Example: The result of MAX(3 × 6, 4 + 7) is 18.

MIN Select the smallest value as the result.
Example: The result of MIN(3 × 6, 4 + 7) is 11.

■ Conventions: Syntax elements
Syntax
element
notation

Meaning

<path name> The following characters can be used in path names:
• In Linux

Alphanumeric characters, hash mark (#), hyphen (-), forward slash (/), at mark (@), and underscore (_)
• In Windows

Alphanumeric characters, hash mark (#), hyphen (-), forward slash (/), at mark (@), underscore (_), backslash (\),
and colon (:)

Note, however, that the characters that can be used might differ depending on the operating system.

Hitachi Advanced Database SQL Reference 13



Syntax
element
notation

Meaning

<OS path name> For an OS path name, all characters that can be used in a path name in the operating system can be used. For details
about available characters, see the documentation for the operating system you are using.

<character
string>

Any character string can be specified.

<integer suffixed
by the unit>

Specify the value in a format consisting of a numeric character (in the range from 0 to 9) followed by a unit (MB
(megabyte), GB (gigabyte), or TB (terabyte)). Do not enter a space between the numeric character and the unit.
• Examples of correct specification
1024MB
512GB
32TB

• Example of specification that causes an error
512 GB

■ Conventions: KB, MB, GB, TB, PB, and EB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

• 1 PB (petabyte) is 1,0245 bytes.

• 1 EB (exabyte) is 1,0246 bytes.

■ Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of two digits each, separated by a
hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00.

• Version 2.05 is written as 02-05.

• Version 2.50 (or 2.5) is written as 02-50.

• Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same version number would be
written in the program as 02-00.

■ HADB database language acknowledgements
The interpretations and specifications developed by Hitachi, Ltd. for the HADB database language specifications
described in this manual are based on the standards listed below. Along with citing the standards relevant to HADB
database language specifications, we would like to take this opportunity to express our appreciation to the original
developers of these standards.

Hitachi Advanced Database SQL Reference 14



• JIS X 3005 Family of Standards: Information Technology - Database Languages - SQL

• ISO/IEC 9075: Information Technology - Database Languages - SQL

Note:
JIS: Japanese Industrial Standard
ISO: International Organization for Standardization
IEC: International Electrotechnical Commission

Hitachi Advanced Database SQL Reference 15



Contents

Notices 2
Preface 8

1 SELECT Statement Examples 25
1.1 Basic syntax and rules for writing SELECT statements 26
1.1.1 Basic syntax for writing a SELECT statement 26
1.1.2 Basic rules for writing a SELECT statement 27
1.1.3 Relationship between SELECT statement syntax and its constituent elements 27
1.1.4 Notes on reading sections 1.2 through the end of the chapter 28
1.2 Retrieving all the rows from a table 29
1.2.1 Example: Retrieve customer information for all customers 29
1.3 Sorting retrieval results (ORDER BY clause) 30
1.3.1 Example 1: Sort retrieval results by customer ID 30
1.3.2 Example 2: Sort retrieval results by date of purchase and customer ID 31
1.4 Specifying the maximum number of rows of retrieval results (LIMIT clause) 33
1.4.1 Example: Specify the maximum number of rows in the retrieval results 33
1.5 Retrieving data with search conditions specified 35
1.5.1 Example 1: Retrieve data conditioned on date of purchase 35
1.5.2 Example 2: Retrieve data conditioned on date of purchase and product code 37
1.5.3 Example 3: Retrieve data conditioned on date of purchase and two product codes 38
1.6 Retrieving data with a search range specified (BETWEEN predicate) 39
1.6.1 Example 1: Retrieve customers who purchased products during a period 39
1.6.2 Example 2: Retrieve customers who purchased products outside of a period 40
1.7 Retrieving data that meets one of multiple conditions (IN predicate) 42
1.7.1 Example 1: Retrieve customers who purchased product code P001 or P003 42
1.7.2 Example 2: Retrieve customers who purchased products except for a specific customer 43
1.8 Retrieving data that contains a specific character string (LIKE predicate) 45
1.8.1 Example 1: Retrieve customers whose name begins with M 45
1.8.2 Example 2: Retrieve customers whose name does not begin with M 46
1.9 Retrieving data with multiple tables specified (table join) 47
1.9.1 Example 1: Retrieve customer purchases from the customer table and sales history table (1 of 3) 47
1.9.2 Example 2: Retrieve customer purchases from the customer table and sales history table (2 of 3) 49
1.9.3 Example 3: Retrieve customer purchases from the customer table and sales history table (3 of 3) 50
1.10 Eliminating duplication in retrieval results (SELECT DISTINCT) 51
1.10.1 Example: Retrieve customers who purchased products 51
1.11 Determining the number of retrieved data items (COUNT(*)) 53
1.11.1 Example 1: Determine the total number of customers 53

Hitachi Advanced Database SQL Reference 16



1.11.2 Example 2: Determine the number of people who purchased a product 53
1.12 Determining the maximum, minimum, average, or sum of the retrieved data (set functions) 55
1.12.1 Example 1: Determine the maximum, minimum, and average quantities purchased 55
1.12.2 Example 2: Determine the sum of quantities purchased) 56
1.13 Aggregating retrieved data by group (GROUP BY clause, HAVING clause) 57
1.13.1 Example 1: Determine the number of purchases for each customer 58
1.13.2 Example 2: Determine the number of sales for each product code 59
1.13.3 Example 3: Determine the sum and average of the quantities purchased for each product code 60
1.13.4 Example 4: Determine the quantity purchased for each product code (narrow down retrieval by

specifying a HAVING clause) 61
1.13.5 Example 5: Aggregate data from the sales history table and customer table 62
1.14 Retrieving by specifying a SELECT statement in the search condition (subquery) 64
1.14.1 Example: Find the customer who purchased the greatest quantity of a product 64
1.15 Common errors in SQL statements and how to handle them 66
1.15.1 If message KFAA30104-E is displayed 66
1.15.2 If message KFAA30105-E is displayed 66
1.15.3 If message KFAA30119-E is displayed 67
1.15.4 If message KFAA30202-E is displayed 67
1.15.5 If message KFAA30203-E is displayed 68
1.15.6 If message KFAA30204-E is displayed 68
1.15.7 If message KFAA30401-E is displayed 68
1.16 List of references by purpose 70

2 List of SQL Statements 73
2.1 List of SQL statements 74
2.2 How to read the SQL syntax specification format 76

3 Definition SQL 77
3.1 ALTER TABLE (alter table definition) 78
3.1.1 Specification format and rules for the ALTER TABLE statement 78
3.2 ALTER USER (alter an HADB user's information) 89
3.2.1 Specification format and rules for the ALTER USER statement 89
3.3 ALTER VIEW (re-create a viewed table) 91
3.3.1 Specification format and rules for the ALTER VIEW statement 91
3.4 CREATE AUDIT (define audit targets) 94
3.4.1 Specification format and rules for the CREATE AUDIT statement 94
3.5 CREATE INDEX (define an index) 96
3.5.1 Specification format and rules for the CREATE INDEX statement 96
3.6 CREATE SCHEMA (define a schema) 105
3.6.1 Specification format and rules for the CREATE SCHEMA statement 105
3.7 CREATE TABLE (define a table) 106
3.7.1 Specification format and rules for the CREATE TABLE statement 106

Hitachi Advanced Database SQL Reference 17



3.8 CREATE USER (create an HADB user) 124
3.8.1 Specification format and rules for the CREATE USER statement 124
3.9 CREATE VIEW (define a viewed table) 126
3.9.1 Specification format and rules for the CREATE VIEW statement 126
3.10 DROP AUDIT (delete the audit target definition) 133
3.10.1 Specification format and rules for the DROP AUDIT statement 133
3.11 DROP INDEX (delete an index) 134
3.11.1 Specification format and rules for the DROP INDEX statement 134
3.12 DROP SCHEMA (delete a schema) 136
3.12.1 Specification format and rules for the DROP SCHEMA statement 136
3.13 DROP TABLE (delete a table) 138
3.13.1 Specification format and rules for the DROP TABLE statement 138
3.14 DROP USER (delete an HADB user) 140
3.14.1 Specification format and rules for the DROP USER statement 140
3.15 DROP VIEW (delete a viewed table) 142
3.15.1 Specification format and rules for the DROP VIEW statement 142
3.16 GRANT (grant privileges) 144
3.16.1 Granting user privileges, schema operation privileges, and audit privileges 144
3.16.2 Granting access privileges 146
3.17 REVOKE (revoke privileges) 152
3.17.1 Revoking user privileges, schema operation privileges, and audit privileges 152
3.17.2 Revoking access privileges 155
3.18 Definition SQL runtime considerations 161

4 Data Manipulation SQL 162
4.1 DELETE (delete rows) 163
4.1.1 Specification format and rules for the DELETE statement 163
4.2 INSERT (insert rows) 168
4.2.1 Specification format and rules for the INSERT statement 168
4.3 PURGE CHUNK (delete all rows in a chunk) 173
4.3.1 Specification format and rules for the PURGE CHUNK statement 173
4.4 SELECT (retrieve rows) 178
4.4.1 Specification format and rules for the SELECT statement 178
4.5 TRUNCATE TABLE (delete all rows in a base table) 182
4.5.1 Specification format and rules for the TRUNCATE TABLE statement 182
4.6 UPDATE (update rows) 184
4.6.1 Specification format and rules for the UPDATE statement 184

5 Control SQL 191
5.1 COMMIT (terminate a transaction normally) 192
5.1.1 Specification format for the COMMIT statement 192
5.2 ROLLBACK (cancel a transaction) 193

Hitachi Advanced Database SQL Reference 18



5.2.1 Specification format for the ROLLBACK statement 193

6 SQL Basics 194
6.1 SQL writing conventions 195
6.1.1 Rules for writing SQL statements 195
6.1.2 Rules for separators 196
6.1.3 Characters permitted in SQL statements 199
6.1.4 Specifying names 201
6.1.5 Qualifying a name 203
6.2 Data types 205
6.2.1 List of data types 205
6.2.2 Data types that can be converted, assigned, and compared 211
6.3 Literals 222
6.3.1 Types of literals 222
6.3.2 Description format of literals 222
6.3.3 Predefined character-string representations 226
6.4 Datetime information acquisition functions 230
6.4.1 CURRENT_DATE 230
6.4.2 CURRENT_TIME 231
6.4.3 CURRENT_TIMESTAMP 232
6.5 User information acquisition function 234
6.5.1 CURRENT_USER 234
6.6 Variables (dynamic parameters) 235
6.6.1 Rules for specifying dynamic parameters 235
6.6.2 Where dynamic parameters can be specified 235
6.6.3 Notes 236
6.7 Null value 237
6.8 Scope variables 238
6.8.1 About scope variables 238
6.8.2 Scope variable names 238
6.8.3 Effective scope of scope variables 239
6.9 Derived column names 244
6.9.1 Decision rules for derived column names in query specifications 244
6.9.2 Decision rules for derived column names in query results 244
6.9.3 Effective scope of derived column names 245
6.10 Reserved words 248
6.10.1 List of reserved words 248
6.10.2 What to do when a name conflicts with a reserved word 250

7 Constituent Elements 251
7.1 Query expression 252
7.1.1 Specification format and rules for query expressions 252

Hitachi Advanced Database SQL Reference 19



7.2 Query specification 264
7.2.1 Specification format and rules for query specifications 264
7.3 Subqueries 269
7.3.1 Specification format and rules for subqueries 269
7.4 Table expression 276
7.4.1 Specification format and rules for table expressions 276
7.5 FROM clause 278
7.5.1 Specification format and rules for FROM clauses 278
7.6 WHERE clause 280
7.6.1 Specification format for WHERE clauses 280
7.7 GROUP BY clause 281
7.7.1 Specification format and rules for GROUP BY clauses 281
7.8 HAVING clause 288
7.8.1 Specification format and rules for HAVING clauses 288
7.9 LIMIT clause 291
7.9.1 Specification format and rules for LIMIT clauses 291
7.10 DEFAULT clause 298
7.10.1 Specification format and rules for the DEFAULT clause 298
7.11 Table reference 301
7.11.1 Specification format for table references 301
7.12 Joined tables 306
7.12.1 Specification format and rules for joined tables 306
7.12.2 Inner join using INNER JOIN 314
7.12.3 Outer join using LEFT OUTER JOIN 315
7.12.4 Outer join using RIGHT OUTER JOIN 316
7.12.5 Outer join using FULL OUTER JOIN 318
7.13 Join method specification 322
7.13.1 Specification format and rules for join method specifications 322
7.14 Index specification 324
7.14.1 Specification format and rules for index specifications 324
7.15 System-defined functions 326
7.15.1 Specification format and rules for system-defined functions 326
7.15.2 ADB_AUDITREAD function 326
7.15.3 ADB_CSVREAD function 332
7.16 Multiset value expression 344
7.16.1 Specification format and rules for multiset value expressions 344
7.17 Table value constructors 347
7.17.1 Specification format and rules for table value constructors 347
7.18 Search conditions 350
7.18.1 Specification format and rules for search conditions 350
7.19 Predicates 353

Hitachi Advanced Database SQL Reference 20



7.19.1 BETWEEN predicate 353
7.19.2 EXISTS predicate 354
7.19.3 IN predicate 355
7.19.4 LIKE predicate 357
7.19.5 LIKE_REGEX predicate 364
7.19.6 NULL predicate 368
7.19.7 Comparison predicate 369
7.19.8 Quantified predicate 371
7.20 Value expression 374
7.20.1 Specification format and rules for value expressions 374
7.20.2 Data types of the results of value expressions 379
7.21 Value specification 383
7.21.1 Specification format for value specifications 383
7.22 Set functions 385
7.22.1 COUNT(*) 385
7.22.2 AVG 386
7.22.3 COUNT 387
7.22.4 MAX 389
7.22.5 MIN 391
7.22.6 SUM 393
7.22.7 STDDEV_POP 394
7.22.8 STDDEV_SAMP 395
7.22.9 VAR_POP 396
7.22.10 VAR_SAMP 397
7.22.11 MEDIAN 398
7.22.12 PERCENTILE_CONT 400
7.22.13 PERCENTILE_DISC 402
7.22.14 Common rules and considerations for set functions 403
7.23 Window functions 407
7.23.1 Specification format for window functions 407
7.23.2 Rules for specifying windows (partitions) 412
7.23.3 Rules for specifying the window frame (when RANGE is specified in the window frame clause) 413
7.23.4 Rules for specifying the window frame (when ROWS is specified in the window frame clause) 418
7.23.5 Rules and considerations pertaining to window functions 421
7.23.6 Examples of using window functions 422
7.24 Sort specification list 427
7.24.1 Specification format for the sort specification list 427
7.24.2 Rules for specifying a sort specification list in an ORDER BY clause 429
7.24.3 Rules for specifying a sort specification list in a WITHIN group specification or window order clause432
7.24.4 Examples 432
7.25 Arithmetic operations 435

Hitachi Advanced Database SQL Reference 21



7.25.1 Specification format and rules for arithmetic operations 435
7.25.2 Data types of the results of arithmetic operations 436
7.25.3 Notes applying when the data type of the division result is DECIMAL 437
7.26 Concatenation operations 440
7.26.1 Specification format and rules for concatenation operations 440
7.26.2 Data types of the results of concatenation operations 442
7.27 Datetime operations 444
7.27.1 Specification format and rules for datetime operations 444
7.28 Labeled duration 447
7.28.1 Specification format and rules for labeled durations 447
7.29 CASE expression 450
7.29.1 Specification format and rules for CASE expressions 450
7.30 Internal derived tables 453
7.30.1 Examples of using internal derived tables 453
7.30.2 Derived queries and derived query names 454
7.30.3 Rules for derived table expansion 454
7.30.4 Conditions under which derived table expansion is not performed 457
7.30.5 Summary of when derived table expansion is performed 465
7.30.6 When the scalar function CONVERT is added to an internal derived table 471

8 Scalar Functions 473
8.1 List of scalar functions 474
8.2 Mathematical functions (trigonometric functions) 479
8.2.1 ACOS 479
8.2.2 ASIN 480
8.2.3 ATAN 480
8.2.4 ATAN2 481
8.2.5 COS 482
8.2.6 COSH 483
8.2.7 DEGREES 484
8.2.8 PI 485
8.2.9 RADIANS 486
8.2.10 SIN 487
8.2.11 SINH 488
8.2.12 TAN 489
8.2.13 TANH 490
8.3 Mathematical functions (exponent and logarithm) 492
8.3.1 EXP 492
8.3.2 LN 493
8.3.3 LOG 494
8.3.4 POWER 495
8.4 Mathematical functions (numerical calculations) 498

Hitachi Advanced Database SQL Reference 22



8.4.1 ABS 498
8.4.2 CEIL 499
8.4.3 FLOOR 500
8.4.4 MOD 501
8.4.5 RANDOM 504
8.4.6 RANDOMCURSOR 507
8.4.7 RANDOMROW 511
8.4.8 RANDOM_NORMAL 515
8.4.9 ROUND 516
8.4.10 SIGN 519
8.4.11 SQRT 520
8.4.12 TRUNC 521
8.5 Character string functions (character string operations) 525
8.5.1 CONCAT 525
8.5.2 LEFT 526
8.5.3 LPAD 528
8.5.4 LTRIM 530
8.5.5 RIGHT 532
8.5.6 RPAD 534
8.5.7 RTRIM 536
8.5.8 SUBSTR 538
8.5.9 TRIM 541
8.6 Character string functions (acquisition of character string information) 545
8.6.1 CONTAINS 545
8.6.2 INSTR 549
8.6.3 LENGTH 552
8.7 Character string functions (Character substitution) 554
8.7.1 REPLACE 554
8.7.2 TRANSLATE 556
8.8 Character string functions (character string conversion) 559
8.8.1 LOWER 559
8.8.2 UPPER 560
8.9 Datetime functions 563
8.9.1 DATEDIFF 563
8.9.2 DAYOFWEEK 566
8.9.3 DAYOFYEAR 568
8.9.4 EXTRACT 569
8.9.5 GETAGE 572
8.9.6 LASTDAY 573
8.9.7 ROUND 574
8.9.8 TRUNC 579

Hitachi Advanced Database SQL Reference 23



8.10 Binary column functions (binary data operations) 584
8.10.1 CONCAT 584
8.10.2 SUBSTRB 585
8.11 Binary column functions (bit operations) 588
8.11.1 BITAND 588
8.11.2 BITLSHIFT 589
8.11.3 BITNOT 591
8.11.4 BITOR 592
8.11.5 BITRSHIFT 593
8.11.6 BITXOR 595
8.12 Data conversion functions 597
8.12.1 ASCII 597
8.12.2 BIN 598
8.12.3 CAST 599
8.12.4 CHR 607
8.12.5 CONVERT 608
8.12.6 HEX 650
8.13 NULL evaluation functions 652
8.13.1 COALESCE 652
8.13.2 ISNULL 653
8.13.3 NULLIF 655
8.13.4 NVL 656
8.14 Information acquisition functions 658
8.14.1 LENGTHB 658
8.15 Comparison functions 660
8.15.1 DECODE 660
8.15.2 GREATEST 665
8.15.3 LEAST 666
8.15.4 LTDECODE 667

Appendixes 675
A SQL Reverse Lookup Reference 676
B List of Functions 681

Index 686

Hitachi Advanced Database SQL Reference 24



This chapter explains, through the use of examples, how to write SELECT statements.

Section 1.1 explains the basics of writing a SELECT statement. The remaining sections, starting with
section 1.2, give examples illustrating how to write SELECT statements.

1 SELECT Statement Examples

Hitachi Advanced Database SQL Reference 25



1.1 Basic syntax and rules for writing SELECT statements

This section describes the basic syntax and rules for writing a SELECT statement.

1.1.1 Basic syntax for writing a SELECT statement

Column name:
Specify the column from which search results are retrieved (the column to display). Multiple column names can be
specified.

Name of table to search:
In the FROM clause, specify the table to be searched. Multiple table names can be specified.

Search conditions (retrieval criteria):
In the WHERE clause, specify the search conditions to narrow down the retrieval data. You can use AND and OR to
connect multiple search conditions in a WHERE clause.
Example: WHERE "USERID">='U00600' AND "SEX"='M'

If you execute the following SELECT statement, the retrieved results will be as shown below.

SELECT "USERID","NAME"
    FROM "USERSLIST"
        WHERE "USERID">='U00600'

• Configuration of table to be searched (customer table USERSLIST)

• Retrieval results

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 26



Note
For details about the syntax of search conditions, FROM clauses, and WHERE clauses, see the following:

• FROM clauses: 7.5.1 Specification format and rules for FROM clauses

• WHERE clauses: 7.6.1 Specification format for WHERE clauses

• Search conditions: 7.18.1 Specification format and rules for search conditions

1.1.2 Basic rules for writing a SELECT statement
The basic rules for writing a SELECT statement are as follows:

• We recommend that table names and column names specified in the SELECT statement be enclosed in double
quotation marks ("). Enclosing a table or column name in double quotation marks allows you to specify the same
name as an SQL reserved word, and eliminates the need to rewrite the SQL statement if a reserved word with that
same name is added in the future.
In addition, if a name is not enclosed in double quotation marks, any lowercase letters are treated as uppercase. For
example, if you specify name, it is treated as NAME.

• Enclose CHAR type and VARCHAR type character string data in single quotation marks (').
Example: WHERE "NAME"='Taro Tanaka'

• For type DATE data, enter dates in the following manner.
Example 1: WHERE "PUR-DATE">=DATE'2011-09-06'
Example 2: WHERE "PUR-DATE">=DATE'2011/09/06'
The date format in Example 1 is used in the examples of SELECT statements given in this chapter.

• INTEGER type numeric data is not enclosed in single quotation marks (').
Example: WHERE "PUR-NUM"=10

1.1.3 Relationship between SELECT statement syntax and its constituent
elements

This subsection describes how the syntax of the SELECT statement is broken down into its constituent elements. The
following figure shows the relationship between the SELECT statement syntax and its constituent elements.

Figure 1-1: Relationship between SELECT statement syntax and its constituent elements

The following describes each constituent element.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 27



Query specification:
The query specification is the part of the statement that specifies the search conditions, the table to be searched, and
the column from which retrieval results are to be extracted.

Selection list:
The selection list specifies items to be extracted as retrieval results. It is typically a column name, but set functions
can also be specified.

Table expression:
The FROM clause, WHERE clause, GROUP BY clause, and HAVING clause are referred to collectively as table
expressions.

ORDER BY clause
Specify this when you want the retrieval results sorted in ascending or descending order. For examples, see 1.3 
Sorting retrieval results (ORDER BY clause).

LIMIT clause
Specify this when you want to set an upper limit on the number of rows in the retrieval results. For examples, see
1.4 Specifying the maximum number of rows of retrieval results (LIMIT clause).

Note
For details about the syntax of a query specification, selection list, or table expression, see the following.

• Query specification: 7.2.1 Specification format and rules for query specifications

• Selection list: (c) Selection list in (2) Explanation of specification format in 7.2.1 Specification format
and rules for query specifications

• Table expression: 7.4.1 Specification format and rules for table expressions

1.1.4 Notes on reading sections 1.2 through the end of the chapter
• The remaining sections in this chapter give examples of how to write SELECT statements. Where multiple examples

are presented, we start with a basic example and then progress through applied examples.

• For readability considerations, the order of rows in the retrieval results in our examples might differ from the order
of rows in actual retrieval results.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 28



1.2 Retrieving all the rows from a table

1.2.1 Example: Retrieve customer information for all customers
Retrieve all rows from the customer table (USERSLIST) and display the results. The customer table consists of columns
for customer ID (USERID), name (NAME), and sex (SEX).

Table to search

Specification example

SELECT "USERID","NAME","SEX"
    FROM "USERSLIST"

Retrieval results

Note
To retrieve all columns of a table, you can specify an asterisk (*) instead of the column names. The
following is an example.

Specification example

SELECT * FROM "USERSLIST"

Retrieval results

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 29



1.3 Sorting retrieval results (ORDER BY clause)

Use the ORDER BY clause to sort retrieval results in ascending or descending order. The specification format of the
ORDER BY clause is as follows.

Specification format

SELECT "column-name" FROM "table-name"
    WHERE search-condition
    ORDER BY "column-name" ASC

ORDER BY "column-name" ASC:
Specify the column to be sorted on in column-name. Specify ASC to sort the retrieval results in ascending order, or
DESC to sort them in descending order.

Note
You can also specify a sort key that is not a column name in the ORDER BY clause. For details about the
syntax of the ORDER BY clause, see 7.24 Sort specification list.

1.3.1 Example 1: Sort retrieval results by customer ID
Sort all of the data in the customer table (USERSLIST) by customer ID (USERID). The customer table consists of
columns for customer ID (USERID), name (NAME), and sex (SEX).

Table to search

Specification example

SELECT "USERID","NAME","SEX"
    FROM "USERSLIST"
    ORDER BY "USERID" ASC

Retrieval results

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 30



Note
The name of the column to be sorted on is specified in the ORDER BY clause. In this example, we are sorting
by customer ID, so we specify USERID in the ORDER BY clause.

1.3.2 Example 2: Sort retrieval results by date of purchase and customer
ID

Sort all of the data in the sales history table (SALESLIST) by date of purchase (PUR-DATE). In cases where the date
of purchase is the same, order by customer ID (USERID). The sales history table consists of columns for customer ID
(USERID), product code (PUR-CODE), quantity purchased (PUR-NUM), and date of purchase (PUR-DATE).

Table to search

Specification example

SELECT "USERID","PUR-CODE","PUR-NUM","PUR-DATE"
    FROM "SALESLIST"
    ORDER BY "PUR-DATE" ASC,"USERID" ASC

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 31



Retrieval results

Note
You can specify multiple columns in the ORDER BY clause. The column that is specified first is given highest
priority in the ordering. In this example, results are first ordered by date of purchase (PUR-DATE), and
then ordered by customer ID (USERID) in cases where the date of purchase is the same.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 32



1.4 Specifying the maximum number of rows of retrieval results (LIMIT
clause)

Use the LIMIT clause to specify the maximum number of rows in the retrieval results. The specification format of the
LIMIT clause is as follows.

Specification format

SELECT "column-name" FROM "table-name"
    WHERE search-condition
    LIMIT row-count

LIMIT row-count:
Specify the maximum number of rows allowed in the retrieval results in row-count.

Note
In addition to the maximum number of rows to be returned (row-count), you can also specify in the LIMIT
clause the offset of the first row to be returned (offset). The offset option will be omitted in these examples.
For details about the syntax of the LIMIT clause, see 7.9.1 Specification format and rules for LIMIT
clauses.

1.4.1 Example: Specify the maximum number of rows in the retrieval
results

Search the sales history table (SALESLIST) and display the top three results ordered by quantity purchased (PUR-NUM).

Table to search

Specification example

SELECT "USERID","PUR-CODE","PUR-NUM","PUR-DATE"
    FROM "SALESLIST"
    ORDER BY "PUR-NUM" DESC
    LIMIT 3

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 33



Retrieval results

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 34



1.5 Retrieving data with search conditions specified

Specify search conditions (retrieval criteria) in the WHERE clause to narrow down the rows to be retrieved. The
specification format of the WHERE clause is as follows.

Specification format

• To specify only one search condition

SELECT "column-name" FROM "table-name"
    WHERE search-condition

• To specify two or more search conditions

SELECT "column-name" FROM "table-name"
    WHERE search-condition-1 AND search-condition-2 ...

or

SELECT "column-name" FROM "table-name"
    WHERE search-condition-1 OR search-condition-2 ...

To specify multiple search conditions in the WHERE clause, connect them using AND or OR. You can specify a mix of
ANDs and ORs.

WHERE search-condition-1 AND search-condition-2:
Rows that satisfy both search-condition-1 and search-condition-2 will be retrieved.

WHERE search-condition-1 OR search-condition-2:
Rows that satisfy either search-condition-1 or search-condition-2 will be retrieved.

Note
For details about the syntax of WHERE clauses or search conditions, see the following.

• WHERE clause: 7.6.1 Specification format for WHERE clauses

• Search conditions: 7.18.1 Specification format and rules for search conditions

1.5.1 Example 1: Retrieve data conditioned on date of purchase
Retrieve the customer ID (USERID), product code (PUR-CODE), and date of purchase (PUR-DATE) from the sales
history table (SALESLIST) for customers who purchased a product on September 6, 2011 or later.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 35



Table to search

Specification example

SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-06'

Retrieval results

Note
• When specifying search conditions in the WHERE clause, you can use the comparison operators listed

below. The following table lists the comparison operators and their meanings.

Table 1-1: Comparison operators and their meanings

No. Comparison operator Meaning

1 = equal to

2 <>, !=, or ^= not equal to

3 < less than

4 <= less than or equal to

5 > greater than

6 >= greater than or equal to

• If the value specified in the conditional expression is a CHAR type or VARCHAR type character string,
enclose the value in single quotation marks (').
Example: WHERE "NAME"='Taro Tanaka'

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 36



• If the value specified in the conditional expression is a date of type DATE, specify it in the following
manner.
Example: WHERE "PUR-DATE">=DATE'2011-09-06'

1.5.2 Example 2: Retrieve data conditioned on date of purchase and
product code

Retrieve the customer ID (USERID), product code (PUR-CODE), and date of purchase (PUR-DATE) from the sales
history table (SALESLIST) for customers who purchased a product whose product code is P002 on September 6, 2011
or later.

Table to search

Specification example

SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-06'
        AND "PUR-CODE"='P002'

Retrieval results

Note
The WHERE clause specifies the following two search conditions connected by AND.

• Purchase of a product on or after September 6, 2011

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 37



• Purchase of a product whose product code is P002

1.5.3 Example 3: Retrieve data conditioned on date of purchase and two
product codes

Retrieve the customer ID (USERID), product code (PUR-CODE), and date of purchase (PUR-DATE) from the sales
history table (SALESLIST) for customers who purchased a product whose product code is P001 or P003 on September
4, 2011 or later.

Table to search

Specification example

SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-04'
        AND ("PUR-CODE"='P001' OR "PUR-CODE"='P003')

Retrieval results

Note
If both AND and OR are specified, AND is evaluated first. To change the priority of evaluation, specify ( )
as in the specification example above.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 38



1.6 Retrieving data with a search range specified (BETWEEN predicate)

The BETWEEN predicate is used to specify a search range. The specification format of the BETWEEN predicate is as
follows.

Specification format

SELECT "column-name" FROM "table-name"
    WHERE "column-name" BETWEEN value-1 AND value-2

column-name:
Specify the column that is being narrowed down by the search range.

BETWEEN value-1 AND value-2:
Specify the lower limit of the search range in value-1. Specify the upper limit of the search range in value-2.

Example: WHERE C1 BETWEEN 10 AND 20

In this example, the search range includes rows where the value of column C1 is between 10 and 20 (including
both 10 and 20).

Note
For details about the syntax of the BETWEEN predicate, see 7.19.1 BETWEEN predicate.

1.6.1 Example 1: Retrieve customers who purchased products during a
period

Retrieve the customer ID (USERID), product code (PUR-CODE), and date of purchase (PUR-DATE) from the sales
history table (SALESLIST) for customers who purchased products between September 4, 2011 and September 5, 2011.

Table to search

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 39



Specification example

SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
       WHERE "PUR-DATE" BETWEEN DATE'2011-09-04' AND DATE'2011-09-05'

Retrieval results

Note
A BETWEEN predicate could instead be rewritten using AND conditions. For example, the SELECT
statement below, which uses an AND condition, gives the same retrieval results as the specification example
above, which uses a BETWEEN predicate.

For details about AND conditions, see 1.5 Retrieving data with search conditions specified.

SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
       WHERE "PUR-DATE">=DATE'2011-09-04'
       AND "PUR-DATE"<=DATE'2011-09-05'

1.6.2 Example 2: Retrieve customers who purchased products outside of
a period

Retrieve the customer ID (USERID), product code (PUR-CODE), and date of purchase (PUR-DATE) from the sales
history table (SALESLIST) for customers who purchased products outside of the period September 4, 2011 and
September 5, 2011.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 40



Table to search

Specification example

SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
       WHERE "PUR-DATE" NOT BETWEEN DATE'2011-09-04' AND DATE'2011-09-05'

Retrieval results

Note
If NOT is specified, the search will target values that do not satisfy the conditional expression immediately
following the NOT. If you specify NOT BETWEEN DATE'2011-09-04' AND DATE'2011-09-05',
as in the specification example above, the retrieval criteria will exclude September 4, 2011 through
September 5, 2011.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 41



1.7 Retrieving data that meets one of multiple conditions (IN predicate)

Use the IN predicate if you want to specify multiple conditions (values) and retrieve data that match any one of them.
The specification format of the IN predicate is as follows.

Specification format

SELECT "column-name" FROM "table-name"
    WHERE "column-name" IN (value-1,value-2,...)

column-name:
Specify the column to use for narrowing down the retrieval.

IN (value-1, value-2, ...):
Specify the values to be retrieved. Rows that match any of the values specified here will be retrieved.

Note
For details about the syntax of the IN predicate, see 7.19.3 IN predicate.

1.7.1 Example 1: Retrieve customers who purchased product code P001
or P003

Retrieve the customer ID (USERID), product code (PUR-CODE), and date of purchase (PUR-DATE) from the sales
history table (SALESLIST) of customers who purchased products with product code P001 or P003 on or after
September 5, 2011.

Table to search

Specification example

SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
       WHERE "PUR-CODE" IN ('P001','P003')
       AND "PUR-DATE">=DATE'2011-09-05'

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 42



Retrieval results

Note
An IN predicate could be rewritten using OR conditions. For example, the SELECT statement below, which
uses an OR condition, gives the same retrieval results as the specification example above, which uses an
IN predicate.

For details about OR conditions, see 1.5 Retrieving data with search conditions specified.

SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
       WHERE ("PUR-CODE"='P001' OR "PUR-CODE"='P003')
       AND "PUR-DATE">=DATE'2011-09-05'

1.7.2 Example 2: Retrieve customers who purchased products except for
a specific customer

Retrieve the customer ID (USERID), product code (PUR-CODE), and quantity purchased (PUR-NUM) from the sales
history table (SALESLIST). At this time, skip retrieval for customers whose customer IDs (USERID) are U00212 and
U00358.

Table to search

Specification example

SELECT "USERID","PUR-CODE","PUR-NUM"
    FROM "SALESLIST"
       WHERE "USERID" NOT IN ('U00212','U00358')

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 43



Retrieval results

Note
If NOT is specified, the search will return values that do not satisfy the conditional expression immediately
following the NOT. If you specify NOT IN ('U00212','U00358'), as in the specification example
above, the retrieval criteria will exclude customer IDs U00212 and U00358.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 44



1.8 Retrieving data that contains a specific character string (LIKE
predicate)

Use the LIKE predicate to retrieve data that contains a specific character string. The specification format of the LIKE
predicate is as follows.

Specification format

SELECT "column-name" FROM "table-name"
    WHERE "column-name" LIKE 'pattern-character-string'

column name:
Specify the column to use for narrowing down the retrieval.

Note
You can also specify expressions other than column names. For details about the syntax of the LIKE
predicate, see 7.19.4 LIKE predicate.

LIKE 'pattern-character-string':
Specify the pattern character string to search for. The main pattern character strings (wildcards) are the following:

• %
This denotes any character string of zero or more characters. If you specify 'ACT%', it will match the character
strings such as ACT, ACTOR, and ACTION.

• _ (underscore)
This denotes any single character. If you specify '_I_', it will match the character strings such as BIT, HIT,
and KIT.

Note
• For details about the syntax of pattern character strings, see 7.19.4 LIKE predicate.

• You can also specify ESCAPE in the LIKE predicate. For details, see 7.19.4 LIKE predicate.

1.8.1 Example 1: Retrieve customers whose name begins with M
Retrieve from the customer table (USERSLIST) the customer ID (USERID), name (NAME), and sex (SEX) of customers
whose name begins with M.

Table to search

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 45



Specification example

SELECT "USERID","NAME","SEX"
    FROM "USERSLIST"
        WHERE "NAME" LIKE 'M%'

Retrieval results

1.8.2 Example 2: Retrieve customers whose name does not begin with M
Retrieve from the customer table (USERSLIST) the customer ID (USERID), name (NAME), and sex (SEX) of female
customers whose name does not begin with M.

Table to search

Specification example

SELECT "USERID","NAME","SEX"
    FROM "USERSLIST"
        WHERE "NAME" NOT LIKE 'M%'
        AND "SEX"='F'

Retrieval results

Note
If NOT is specified, the search will return values that do not satisfy the conditional expression immediately
following the NOT. If you specify NOT LIKE 'M%', as in the specification example above, the retrieval
criteria will exclude character strings that begin with M.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 46



1.9 Retrieving data with multiple tables specified (table join)

If the data to be retrieved is distributed across multiple tables, perform the retrieval by associating columns that contain
the same information. This is called a table join. As an example, we describe a table join of the sales history table
(SALESLIST) and customer table (USERSLIST).

Example:
The following retrieves the name (NAME) of customers who purchased a product on September 7, 2011 from the
sales history table (SALESLIST) and customer table (USERSLIST).
SELECT statement specification

  SELECT "NAME"
      FROM "SALESLIST","USERSLIST"
          WHERE "PUR-DATE"=DATE'2011-09-07'
          AND "SALESLIST"."USERID"="USERSLIST"."USERID"

Description
The date of purchase (PUR-DATE) information specified in the search condition is located in the sales history
table (SALESLIST), while the name (NAME) information to be output as the retrieval result is located in the
customer table (USERSLIST). In this case, we join the SALESLIST and USERSLIST tables using the customer
ID column (USERID), which is common to both tables.

Retrieval results

1.9.1 Example 1: Retrieve customer purchases from the customer table
and sales history table (1 of 3)

Retrieve the customer ID (USERID), name (NAME), product code (PUR-CODE), and date of purchase (PUR-DATE) of
customers who purchased products on or after September 6, 2011 from the sales history table (SALESLIST) and
customer table (USERSLIST).

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 47



Table to search

Specification example

SELECT "SALESLIST"."USERID","NAME","PUR-CODE","PUR-DATE"
    FROM "SALESLIST","USERSLIST"
        WHERE "PUR-DATE">=DATE'2011-09-06'
        AND "SALESLIST"."USERID"="USERSLIST"."USERID"

Retrieval results

Note
• Note that if both tables include columns with the same name, these columns are identified by using a

specification in the "table-name"."column-name" format. In this example, the USERID column
applies. Therefore, the "SALESLIST"."USERID" and "USERSLIST"."USERID" specifications
are used for identification.

• In the FROM clause, specify all the tables to be searched.

• Specify the conditional expression AND "SALESLIST"."USERID"="USERSLIST"."USERID"
in order to join the tables based on the value of the customer ID column (USERID) as the key.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 48



1.9.2 Example 2: Retrieve customer purchases from the customer table
and sales history table (2 of 3)

Retrieve the customer ID (USERID), name (NAME), sex (SEX), product code (PUR-CODE), and date of purchase (PUR-
DATE) from the sales history table (SALESLIST) and customer table (USERSLIST) for customers who meet the
following condition:

• Male customers who purchased a product on or after September 6, 2011

Table to search

Specification example

SELECT "SALESLIST"."USERID","NAME","SEX","PUR-CODE","PUR-DATE"
    FROM "SALESLIST","USERSLIST"
        WHERE "PUR-DATE">=DATE'2011-09-06'
        AND "SEX"='M'
        AND "SALESLIST"."USERID"="USERSLIST"."USERID"

Retrieval results

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 49



1.9.3 Example 3: Retrieve customer purchases from the customer table
and sales history table (3 of 3)

Retrieve the customer ID (USERID), name (NAME), sex (SEX), product code (PUR-CODE), and date of purchase (PUR-
DATE) from the sales history table (SALESLIST) and customer table (USERSLIST) for customers who meet either
of the following conditions:

• Male customers who purchased products on or after September 6, 2011

• Female customers who purchased products on or after September 5, 2011

Table to search

Specification example

SELECT "SALESLIST"."USERID","NAME","SEX","PUR-CODE","PUR-DATE"
    FROM "SALESLIST","USERSLIST"
        WHERE (("PUR-DATE">=DATE'2011-09-06' AND "SEX"='M')
        OR ("PUR-DATE">=DATE'2011-09-05' AND "SEX"='F'))
        AND "SALESLIST"."USERID"="USERSLIST"."USERID"

Retrieval results

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 50



1.10 Eliminating duplication in retrieval results (SELECT DISTINCT)

Use SELECT DISTINCT to eliminate duplication in retrieval results. The specification format of SELECT DISTINCT
is as follows.

Specification format

SELECT DISTINCT "column-name" FROM "table-name"
    WHERE search-condition

DISTINCT:
Specify this if you want to eliminate duplication in retrieval results.

Note
For details about the syntax of SELECT DISTINCT, see 7.2.1 Specification format and rules for query
specifications.

1.10.1 Example: Retrieve customers who purchased products
Retrieve from the sales history table (SALESLIST) and customer table (USERSLIST) the customer ID (USERID) and
name (NAME) of customers who purchased products on September 5, 2011.

Table to search

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 51



Specification example

SELECT DISTINCT "SALESLIST"."USERID","NAME"
    FROM "SALESLIST","USERSLIST"
        WHERE "PUR-DATE"=DATE'2011-09-05'
        AND "SALESLIST"."USERID"="USERSLIST"."USERID"

Retrieval results

Note
If you do not specify SELECT DISTINCT, the retrieval results are as follows.

Specification example

SELECT "SALESLIST"."USERID","NAME"
    FROM "SALESLIST","USERSLIST"
        WHERE "PUR-DATE"=DATE'2011-09-05'
        AND "SALESLIST"."USERID"="USERSLIST"."USERID"

Retrieval results

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 52



1.11 Determining the number of retrieved data items (COUNT(*))

Use the set function COUNT(*) to determine the number of retrieved data items.

Note
For details about the syntax of COUNT(*), see 7.22.3 COUNT.

1.11.1 Example 1: Determine the total number of customers
Determine the total number of customers in the customer table (USERSLIST).

Table to search

Specification example

SELECT COUNT(*)
    FROM "USERSLIST"

Retrieval results

1.11.2 Example 2: Determine the number of people who purchased a
product

Determine the total number of people in the sales history table (SALESLIST) who purchased the product of product
code P003 on or after September 5, 2011.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 53



Table to search

Specification example

SELECT COUNT(*)
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-05'
        AND "PUR-CODE"='P003'

Retrieval results

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 54



1.12 Determining the maximum, minimum, average, or sum of the
retrieved data (set functions)

Use the set functions MAX, MIN, AVG, and SUM to determine the maximum value, minimum value, average, or sum of
the retrieved data.

Note
For details about the syntax of set functions, see 7.22 Set functions.

1.12.1 Example 1: Determine the maximum, minimum, and average
quantities purchased

Determine the maximum, minimum, and average value of the quantity purchased (PUR-NUM) for product code P002
in the sales history table (SALESLIST).

Table to search

Specification example

SELECT MAX("PUR-NUM"),MIN("PUR-NUM"),AVG("PUR-NUM")
    FROM "SALESLIST"
        WHERE "PUR-CODE"='P002'

Retrieval results

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 55



1.12.2 Example 2: Determine the sum of quantities purchased)
Determine the sum of quantities purchased (PUR-NUM) on September 6, 2011 for product code P002 in the sales history
table (SALESLIST).

Table to search

Specification example

SELECT SUM("PUR-NUM")
    FROM "SALESLIST"
        WHERE "PUR-CODE"='P002'
        AND "PUR-DATE"=DATE'2011-09-06'

Retrieval results

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 56



1.13 Aggregating retrieved data by group (GROUP BY clause, HAVING
clause)

Use the GROUP BY clause to aggregate retrieved data by group. In the examples of the GROUP BY clause shown below,
the sales history table (SALESLIST) is used.

Example:
The following determines the sum of the quantities purchased for each product code (PUR-CODE) in the sales
history table (SALESLIST).
SELECT statement specification

  SELECT "PUR-CODE",SUM("PUR-NUM")
      FROM "SALESLIST"
      GROUP BY "PUR-CODE"

Retrieval results

The specification format of the GROUP BY clause and HAVING clause is as follows.

Specification format

SELECT "column-name" FROM "table-name"
    WHERE search-condition
    GROUP BY "column-name"
    HAVING search-condition

GROUP BY "column-name":
Specify the column by which the retrieved data is aggregated. For example, the following will aggregate the retrieved
data by product code (PUR-CODE).

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 57



Example: GROUP BY "PUR-CODE"

HAVING search-condition:
You can specify search conditions to narrow down the retrieved data that was aggregated by groups in the GROUP
BY clause. For a specification example, see 1.13.4 Example 4: Determine the quantity purchased for each product
code (narrow down retrieval by specifying a HAVING clause).

Note
You can also specify a grouping specification that is not a column name in the GROUP BY clause. For details
about the syntax of the GROUP BY clause and HAVING clause, see the following.

• GROUP BY clause: 7.7.1 Specification format and rules for GROUP BY clauses

• HAVING clause: 7.8.1 Specification format and rules for HAVING clauses

1.13.1 Example 1: Determine the number of purchases for each customer
Obtain from the sales history table (SALESLIST) a list of the number of purchases for each customer.

Table to search

Specification example

SELECT "USERID",COUNT(*)
    FROM "SALESLIST"
        GROUP BY "USERID"

Retrieval results

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 58



Note
The columns specified in the GROUP BY clause must match the columns specified between the SELECT
statement and the FROM clause, or an SQL error results. In the example above, the USERID column is
specified in both locations.

An example of an SQL statement that generates an error is given below.

Example of an SQL statement that generates an error

SELECT "USERID","PUR-CODE",COUNT(*)
    FROM "SALESLIST"
        GROUP BY "USERID"

Example of a correct SQL statement

SELECT "USERID","PUR-CODE",COUNT(*)
    FROM "SALESLIST"
        GROUP BY "USERID","PUR-CODE"

The SQL statement above obtains the number of purchases by customer (USERID) and product code (PUR-
CODE). The retrieval results are as follows.

Retrieval results

1.13.2 Example 2: Determine the number of sales for each product code
Determine the number of sales on or after September 5, 2011 for each product code (PUR-CODE) in the sales history
table (SALESLIST).

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 59



Table to search

Specification example

SELECT "PUR-CODE",COUNT(*)
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-05'
        GROUP BY "PUR-CODE"

Retrieval results

1.13.3 Example 3: Determine the sum and average of the quantities
purchased for each product code

Determine the sum and average of the quantities purchased on or after September 3, 2011 for each product code (PUR-
CODE) in the sales history table (SALESLIST).

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 60



Table to search

Specification example

SELECT "PUR-CODE",SUM("PUR-NUM"),AVG("PUR-NUM")
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-03'
        GROUP BY "PUR-CODE"

Retrieval results

1.13.4 Example 4: Determine the quantity purchased for each product
code (narrow down retrieval by specifying a HAVING clause)

Determine the sum and average of the quantities purchased on or after September 3, 2011 for each product code (PUR-
CODE) in the sales history table (SALESLIST).

In this case, we retrieve only those product codes where the quantities purchased is 20 or fewer.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 61



Table to search

Specification example

SELECT "PUR-CODE",SUM("PUR-NUM"),AVG("PUR-NUM")
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-03'
        GROUP BY "PUR-CODE"
        HAVING SUM("PUR-NUM")<=20

Retrieval results

1.13.5 Example 5: Aggregate data from the sales history table and
customer table

From the sales history table (SALESLIST) and customer table (USERSLIST), obtain the sum by customer of the
quantities purchased (PUR-NUM) on or after September 4, 2011 for product code P002.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 62



Table to search

Specification example

SELECT "NAME",SUM("PUR-NUM")
    FROM "SALESLIST","USERSLIST"
        WHERE "PUR-DATE">=DATE'2011-09-04'
        AND "PUR-CODE"='P002'
        AND "SALESLIST"."USERID"="USERSLIST"."USERID"
        GROUP BY "NAME"

Retrieval results

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 63



1.14 Retrieving by specifying a SELECT statement in the search condition
(subquery)

Subqueries can be used to retrieve data from a table by specifying a SELECT statement in the search condition. This
provides a way to make retrieval using a SELECT statement more powerful and flexible, by using a search condition
based on the retrieval results obtained in another SELECT statement. The SELECT statement that is specified in the
search condition is called a subquery. The following figure shows an example of specifying a subquery:

Figure 1-2: Example of specifying a subquery

#: You can specify a set function in addition to a column name.

Description
You can retrieve data using a search condition based on the results of a SELECT statement specified in a subquery.

Note
For details about the syntax of subqueries, see 7.3.1 Specification format and rules for subqueries.

1.14.1 Example: Find the customer who purchased the greatest quantity
of a product

From the sales history table (SALESLIST), find the customer ID (USERID) and quantity purchased (PUR-NUM) for
the customer who purchased the greatest quantity of product code P001.

Table to search

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 64



Specification example

SELECT "USERID","PUR-NUM"
    FROM "SALESLIST"
        WHERE "PUR-NUM"=(SELECT MAX("PUR-NUM") FROM "SALESLIST"
                             WHERE "PUR-CODE"='P001')

Retrieval results

Tip
The subquery specified in the underlined portion searches the sales history table (SALESLIST) to find
the greatest quantity purchased (9) for product code P001.

Next, it finds the customer ID (USERID) and quantity purchased (PUR-NUM) where PUR-NUM equals
the greatest quantity purchased (9) identified in the subquery.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 65



1.15 Common errors in SQL statements and how to handle them

This section describes some common errors that occur when executing SQL statements, and how to handle them.

Only the most typical ways of dealing with the most common mistakes are described here; there might be cases where
you cannot use the solutions described here. For such cases, follow the action recommended for the message that is
output.

1.15.1 If message KFAA30104-E is displayed
Check if there is an error such as the following:

• Character string not enclosed in single quotation marks (')
If a value specified in a conditional expression is a CHAR type or VARCHAR type character string, you must enclose
the character string in single quotation marks (').
Example:

SELECT "USERID" FROM "USERSLIST" WHERE "NAME"=Taro Tanaka
 
KFAA30104-E There is an unnecessary part "Tanaka" in the SQL statement.

In this example, the underlined portion of the statement is incorrect. The correct specification is 'Taro Tanaka'.

• Column name or table name not properly enclosed in double quotation marks (")
Example:

SELECT "USERID,"PUR-CODE","PUR-DATE" FROM "SALESLIST"
    WHERE "PUR-DATE">=DATE'2011-09-06'
 
KFAA30104-E There is an unnecessary part ",(0x2c)" in the SQL statement.

In this example, the underlined portion of the statement is incorrect. There is no double quotation mark (") specified
after USERID.

• WHERE not correctly spelled
Example:

SELECT "USERID","PUR-CODE","PUR-DATE" FROM "SALESLIST"
    WHRER "PUR-DATE">=DATE'2011-09-06'
 
KFAA30104-E There is an unnecessary part ""PUR-DATE">=DATE'2011-09-06'"
in the SQL statement.

In this example, the underlined portion of the statement is incorrect. The correct specification is WHERE.

1.15.2 If message KFAA30105-E is displayed
Check if there is an error such as the following:

Example:

SELECT "USERID","PUR-CODE","PUR-DATE" FROM "SALESLIST"
    WHERE "PUR-DATE"=>DATE'2011-09-06'

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 66



 
KFAA30105-E Token ">"(non-reserved word), which is after token "=", is invalid.

The underlined portion of the statement is incorrect. The correct specification is >=.

The syntax error occurred at the location of the character string ">", which is displayed after Token in message
KFAA30105-E.

1.15.3 If message KFAA30119-E is displayed
Check whether the column specified immediately after the SELECT is different from the column specified in the GROUP
BY clause.

Example 1:

SELECT "USERID",COUNT(*) FROM "SALESLIST"
    GROUP BY "PUR-CODE"
 
KFAA30119-E In a query using a GROUP BY clause or a set function specification,
the column "USERID" specified in a select expression, a HAVING clause
or an ORDER BY clause must be specified as an argument of the GROUP BY clause
or the set function. (query number = 1, 1)

In this example, the underlined portions of the statement are incorrect. Make the column names specified in the
underlined portions the same.

Example 2:

SELECT "USERID","PUR-CODE",COUNT(*) FROM "SALESLIST"
    GROUP BY "USERID"
 
KFAA30119-E In a query using a GROUP BY clause or a set function specification,
the column "PUR-CODE" specified in a select expression, a HAVING clause
or an ORDER BY clause must be specified as an argument of the GROUP BY clause
or the set function. (query number = 1, 1)

In this example, the underlined portions of the statement are incorrect. Make the number of columns and the column
names specified in the underlined portions the same.

1.15.4 If message KFAA30202-E is displayed
Check if there is an error in a specified column name.

Example:

SELECT "USRID","PUR-CODE","PUR-DATE" FROM "SALESLIST"
    WHERE "PUR-DATE">=DATE'2011-09-06'
 
KFAA30202-E Column "USRID" is not found in any table. (query number = 1)

In this example, the underlined portion of the statement is incorrect. The correct column name is "USERID".

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 67



1.15.5 If message KFAA30203-E is displayed
In a retrieval that spans two tables, if both tables contain a column with the same name, the column name must be
specified in the format "table-name"."column-name" in order to identify which table the column is in.

Example:

SELECT "USERID","NAME","PUR-CODE","PUR-DATE"
    FROM "SALESLIST","USERSLIST" WHERE "PUR-DATE">=DATE'2011-09-06'
    AND "SALESLIST"."USERID"="USERSLIST"."USERID"
 
KFAA30203-E Column "USERID" cannot be determined in the SQL statement.(query number =
 1)

In this example, the underlined portion of the statement is incorrect. Specify it using the format "table-
name"."USERID" (for example, "SALESLIST"."USERID").

1.15.6 If message KFAA30204-E is displayed
Check if there is an error in a specified table name.

Example:

SELECT "USERID","PUR-CODE","PUR-DATE" FROM "SALELIST"
    WHERE "PUR-DATE">=DATE'2011-09-06'
 
KFAA30204-E The table or index "ADBUSER01"."SALELIST" is not found in the system.

In this example, the underlined portion of the statement is incorrect. The correct table name is "SALESLIST".

1.15.7 If message KFAA30401-E is displayed
Check if there is an error in the specification of a search condition.

Example 1:

SELECT "USERID","PUR-CODE","PUR-DATE" FROM "SALESLIST"
    WHERE "USERID">=DATE'2011-09-06'
 
KFAA30401-E The data types of both operands specified in predicate
"COMPARISON" are not compatible. (query number = 1)

In this example, the underlined portion of the statement is incorrect. It specifies an impossible condition in which you
are attempting to compare the USERID column (customer ID) to the date range September 6, 2011 or later. Examples
of correct specifications are as follows:

• "USERID">='U00500'
• "PUR-DATE">=DATE'2011-09-06'

Example 2:

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 68



SELECT "USERID","PUR-CODE","PUR-DATE" FROM "SALESLIST"
    WHERE "PUR-DATE">='2011-9-6'
 
KFAA30401-E The data types of both operands specified in predicate
"COMPARISON" are not compatible. (query number = 1)

In this example, the underlined portion of the statement is incorrect. The correct specification is DATE'2011-09-06'.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 69



1.16 List of references by purpose

The table below lists the clauses, predicates, and functions that can be used in SELECT statements, as well as references
to examples, organized according to the purpose of the retrieval.

Note that the descriptions given as examples assume that you are using the example tables used above, the sales history
table (SALESLIST) and the customer table (USERSLIST).

Table 1-2: List of clauses, predicates, and functions usable in SELECT statements, with references
to examples

No. Purpose of retrieval Clause, predicate, or function to
use

Reference to example

1 You want to see all the data in a table.
Examples:
• See customer information for all customers.
• See all sales history information for a product.

-- 1.2 Retrieving all the
rows from a table

2 You want to sort retrieved results in ascending or
descending order.
Examples:
• Sort customer information by customer ID.
• Sort a product's sales history information by date.

ORDER BY clause 1.3 Sorting retrieval
results (ORDER BY
clause)

3 You want to specify a maximum number of rows for the
retrieval results.
Examples:
• See some but not all customer data.
• See some but not all sales history information for a

product.

LIMIT clause 1.4 Specifying the
maximum number of
rows of retrieval results
(LIMIT clause)

4 You want to limit the search by specifying conditions.
Examples:
• Obtain yesterday's product sales history information.
• Obtain the product purchase history for a specific

customer.

WHERE clause 1.5 Retrieving data with
search conditions
specified

5 You want to search within a specified range.
Example:
• Obtain this week's product sales history information.

BETWEEN predicate 1.6 Retrieving data with
a search range specified
(BETWEEN predicate)

6 You want to search for data that matches any of multiple
conditions.
Example:
• Find customers who purchased a product of product

code P001 or P003.

IN predicate 1.7 Retrieving data that
meets one of multiple
conditions (IN predicate)

7 You want to search for data that contains a specific
character string.
Examples:
• Obtain customer information for customers with the

last name Johnson.
• Obtain customer information for customers with a

name whose initial letter is A.

LIKE predicate 1.8 Retrieving data that
contains a specific
character string (LIKE
predicate)

8 You want to retrieve data from multiple tables (table join).
Example:

WHERE clause 1.9 Retrieving data with
multiple tables specified
(table join),

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 70



No. Purpose of retrieval Clause, predicate, or function to
use

Reference to example

• Obtain customer information for customers who
purchased a product yesterday.

1.10.1 Example:
Retrieve customers who
purchased products, and
1.13.5 Example 5:
Aggregate data from the
sales history table and
customer table

9 You want to eliminate duplication in the retrieval results.
Examples:
• Find the names of customers who purchased products.
• Obtain the product codes of items sold.

SELECT DISTINCT 1.10 Eliminating
duplication in retrieval
results (SELECT
DISTINCT)

10 You want to determine the total number of data items in a
table.
Example:
• Determine the total number of customers.

Set function COUNT(*) 1.11.1 Example 1:
Determine the total
number of customers

11 You want to determine the number of retrieved rows.
Examples:
• Determine the number of people who purchased a

product.
• Determine the number of product sales yesterday.
• Determine the number of times a product was

purchased by a specific customer.

Set function COUNT(*) 1.11.2 Example 2:
Determine the number of
people who purchased a
product

12 You want to determine a maximum value from the
retrieved data
Example:
• Determine the maximum quantity purchased of a

product.

Set function MAX 1.12.1 Example 1:
Determine the maximum,
minimum, and average
quantities purchased

13 You want to determine a minimum value from the
retrieved data.
Example:
• Determine the minimum quantity purchased of a

product.

Set function MIN

14 You want to determine an average value from the retrieved
data.
Example:
• Determine the average quantity purchased of a product

Set function AVG

15 You want to determine the sum of the retrieved data.
Examples:
• Determine the quantity purchased yesterday of a

product.
• Determine the number of products purchased for a

particular customer.

Set function SUM 1.12.2 Example 2:
Determine the sum of
quantities purchased)

16 You want to aggregate data into groups.
Examples:
• For each customer, determine the number of times a

product was purchased or the quantities purchased.
• For each product code, determine the number of sales

or the quantities sold.

GROUP BY clause
HAVING clause

1.13 Aggregating
retrieved data by group
(GROUP BY clause,
HAVING clause)

17 You want to retrieve data based on the results of another
SELECT statement specified in a search condition.

Subquery 1.14 Retrieving by
specifying a SELECT

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 71



No. Purpose of retrieval Clause, predicate, or function to
use

Reference to example

Example:
• Find information on the customer who purchased the

greatest quantity of a product.

statement in the search
condition (subquery)

Legend: --: Not applicable.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 72



This chapter lists the SQL statements supported by HADB, and explains how to read the SQL syntax
specification format.

2 List of SQL Statements

Hitachi Advanced Database SQL Reference 73



2.1 List of SQL statements

The following table lists the SQL statements supported by HADB.

Table 2-1: List of SQL statements supported by HADB

No. Classification SQL statement supported by
HADB

Description

1 Definition SQL ALTER TABLE Change a base table's definition information.

2 ALTER USER Change an HADB user's information.

3 ALTER VIEW Re-create a viewed table.

4 CREATE AUDIT Define audit targets.

5 CREATE INDEX Define an index on a column in a base table.

6 CREATE SCHEMA Define a schema.

7 CREATE TABLE Define a base table.

8 CREATE USER Create an HADB user.

9 CREATE VIEW Define a viewed table.

10 DROP AUDIT Delete the audit target definition.

11 DROP INDEX Delete an index.

12 DROP SCHEMA Delete a schema.

13 DROP TABLE Delete a base table.

14 DROP USER Delete an HADB user.

15 DROP VIEW Delete a viewed table.

16 GRANT Grant privileges to an HADB user.

17 REVOKE Revoke privileges of an HADB user.

18 Data manipulation SQL DELETE Delete rows.

19 INSERT Insert rows into a table.

20 PURGE CHUNK Delete all the rows in a chunk.

21 SELECT Retrieve data from a table.

22 TRUNCATE TABLE Delete all the rows in a base table.

23 UPDATE Update values in a row.

24 Control SQL COMMIT Validate the database contents that were updated by a
transaction, and terminate the transaction normally.

25 ROLLBACK Invalidate the database contents that were updated by a
transaction, and cancel the transaction.

Notes:
You can execute the above SQL statements from application programs or by using the adbsql command. However,
control SQL statements (COMMIT and ROLLBACK) cannot be used in application programs.

2. List of SQL Statements

Hitachi Advanced Database SQL Reference 74



• If you are using the JDBC driver, use the commit method or rollback method in the Connection interface.
For details about these methods, see the HADB Application Development Guide.

• If you are using the ODBC driver, use the ODBC function SQLEndTran. For details about SQLEndTran,
see the HADB Application Development Guide.

• If you are using CLI functions, use a_rdb_SQLEndTran(). For details about a_rdb_SQLEndTran(),
see the HADB Application Development Guide.

Note
• The SELECT statement is also called the retrieval SQL statement.

• The INSERT, UPDATE, DELETE, PURGE CHUNK, and TRUNCATE TABLE statements are generically
called update SQL statements.

2. List of SQL Statements

Hitachi Advanced Database SQL Reference 75



2.2 How to read the SQL syntax specification format

This section describes the SQL statement syntax specification format using BNF notation. To explain how to read the
SQL statement syntax specification format, the LIKE predicate is used as an example.

Description of the specification format of the LIKE predicate

LIKE-predicate ::= match-value [NOT] LIKE pattern-character-string [ESCAPE escape-cha
racter]  ...1
 
  match-value ::= value expression  ...2
  pattern-character-string ::= value expression  ...2
  escape-character ::= value expression  ...2

This notation means that the item on the left of the ::= is described in the format shown on the right of it. Therefore,
the meanings of the specifications indicated by 1 and 2 in the preceding format are as follows:

1. The LIKE predicate takes the form match-value [NOT] LIKE pattern-character-string [ESCAPE escape-
character]

2. match-value, pattern-character-string, and escape-character take the form of value expressions.

In other words, a LIKE predicate is written in the following format:

value-expression [NOT] LIKE value-expression ESCAPE value-expression

Value expressions are described in 7.20 Value expression. Refer to that section for the specification format of a value
expression.

2. List of SQL Statements

Hitachi Advanced Database SQL Reference 76



This chapter describes the functions, rules, and specification formats of definition SQL statements.

3 Definition SQL

Hitachi Advanced Database SQL Reference 77



3.1 ALTER TABLE (alter table definition)

This section describes the specification format and rules for the ALTER TABLE statement.

3.1.1 Specification format and rules for the ALTER TABLE statement
You can use the ALTER TABLE statement to perform the following operations:

• Add a column to a base table

• Rename a column of a base table

• Change the maximum number of chunks in a multi-chunk table

• Change a regular multi-chunk table into an archivable multi-chunk table

• Change an archivable multi-chunk table into a regular multi-chunk table

Note that you cannot perform two or more operations at the same time by a single execution of the ALTER TABLE
statement.

(1) Specification format and description

(a) Adding a column to a base table
Specification format

ALTER-TABLE-statement ::= ALTER TABLE table-name
                      ADD COLUMN column-definition
 
  column-definition ::= column-name data-type [NOT NULL] [BRANCH {YES | NO | AUTO}] [
compression-type-specification]

 table-name
Specify the name of the base table to which to add a column. For rules on specifying a table name, see (2) Table
name specification format in 6.1.5 Qualifying a name.
Note that the following tables cannot be specified:

• Viewed tables

• Dictionary tables

• System tables

● ADD COLUMN column-definition

column-definition ::= column-name data-type [NOT NULL] [BRANCH {YES | NO | AUTO}] 
[compression-type-specification]

Specify the column definition of the column to be added.
The following conditions govern the specifications for adding a column:

• Only one column can be added at a time. The column is added as the last column of the base table.

• Null values are stored in the added column.

• You cannot add a column to a base table under the following circumstances:

3. Definition SQL

Hitachi Advanced Database SQL Reference 78



• The number of columns in the target base table has already reached the maximum (1,000).

• The target base table is a FIX table to which row storage segments have been allocated.

• The target base table was created by running the CREATE TABLE statement with BRANCH ALL specified,
and row storage segments have been allocated to the target base table.

For details about the status in which row storage segments have been allocated, see Notes on defining B-tree
indexes (unfinished status of B-tree indexes) in the HADB Setup and Operation Guide.

Note
You cannot specify a DEFAULT clause in an ALTER TABLE statement.

column-name:
Specify the name of the column to be added.
You cannot specify a column name that is already used in the table.
Do not specify a character string in the EXPnnnn_NO_NAME format as a column name. Such a column name
might duplicate a derived column name that is automatically set by HADB. In this format, nnnn is an unsigned
integer in the range from 0000 to 9999.

data-type:
Specify the data type of the column to be added. The data types that can be specified are shown in the following
table:

Table 3-1: Data types that can be specified (ALTER TABLE statement)

No. Data type Specification format

1 INTEGER INT or INTEGER

2 SMALLINT SMALLINT

3 DECIMAL DEC[(m[,n])] or DECIMAL[(m[,n])]
m: Precision (total number of digits)
n: Scaling (number of decimal places)
If m is omitted, 38 is assumed, and if n is omitted, 0 is assumed.

4 DOUBLE PRECISION DOUBLE or DOUBLE PRECISION

5 CHARACTER CHAR(n) or CHARACTER(n)
n: Length of the character string (number of bytes)
If CHAR or CHARACTER is specified without a length, the length of the character string
is assumed to be 1.

6 VARCHAR#1, #2 VARCHAR(n)
n: Maximum length of the character string (number of bytes)

7 DATE DATE

8 TIME TIME(p) or TIME
p: Fractional seconds precision (number of digits to the right of the decimal point)
You can specify a value of 0, 3, 6, 9, or 12 for p. If TIME is specified, p is assumed
to be 0.

9 TIMESTAMP TIMESTAMP(p) or TIMESTAMP
p: Fractional seconds precision (number of digits to the right of the decimal point)
You can specify a value of 0, 3, 6, 9, or 12 for p. If TIMESTAMP is specified, p is
assumed to be 0.

3. Definition SQL

Hitachi Advanced Database SQL Reference 79



No. Data type Specification format

10 BINARY BINARY(n)
n: Length of the binary data (number of bytes)
If BINARY is specified without a length, the length of the binary data is assumed to
be 1.

11 VARBINARY#1 VARBINARY(n)
n: Maximum length of the binary data (number of bytes)

#1: The VARCHAR and VARBINARY types cannot be specified for columns that are added to a FIX table.
#2: VARCHAR-type data whose data length exceeds 32,000 bytes cannot be specified.
For details about data types, see 6.2 Data types.

NOT NULL:
Specify this to define the NOT NULL constraint (the constraint that does not allow null values) on the column to
be added.
Note the following:

• You cannot specify NOT NULL for a base table to which row storage segments have been allocated. For
details about the status in which row storage segments have been allocated, see Notes on defining B-tree
indexes (unfinished status of B-tree indexes) in the HADB Setup and Operation Guide.

• In FIX tables, the NOT NULL constraint is set for all columns. When a column is added to a FIX table, the
NOT NULL constraint is considered to be specified even if it is omitted.

BRANCH {YES | NO | AUTO}:
Specifies how to store VARCHAR-type and VARBINARY-type column data.
For details about situations for which it is better to specify YES or NO for BRANCH, see Branch specification
for column data of variable-length data types (BRANCH) [Row store table] in the HADB Setup and Operation
Guide.
The types of storage methods that can be specified are the same as those that can be specified for a CREATE
TABLE statement. In addition, if BRANCH is omitted, this statement operates in the same way as when BRANCH
is omitted from the CREATE TABLE statement. For details about BRANCH in the CREATE TABLE statement,
see (d) column-definition [Common] of (2) Explanation of specification format in 3.7.1 Specification format
and rules for the CREATE TABLE statement.
This option cannot be specified for the following tables and columns:

• Tables for which the BRANCH ALL table option is specified

• Columns of data types other than VARCHAR and VARBINARY
• Column store tables to which a column is to be added

compression-type-specification:

compression-type-specification ::= COMPRESSION TYPE {AUTO|NONE|RUNLENGTH|DICTION
ARY|DELTA|DELTA_RUNLENGTH}

Specifies the compression type to be used to compress the data of the column to be added (column-data
compression type).
The compression types that can be specified are the same as those that can be specified for the CREATE TABLE
statement. In addition, if compression-type-specification is omitted, this statement operates in the same way as
when compression-type-specification is omitted from the CREATE TABLE statement. For details about
compression-type-specification in the CREATE TABLE statement, see (d) column-definition [Common] of (2) 
Explanation of specification format in 3.7.1 Specification format and rules for the CREATE TABLE statement.
Note that you cannot specify this option if the table to which a column is to be added is a row store table.

3. Definition SQL

Hitachi Advanced Database SQL Reference 80



(b) Renaming a column in a base table
Specification format

ALTER-TABLE-statement ::= ALTER TABLE table-name
                      RENAME COLUMN [FROM] current-column-name TO new-column-name

• table-name
Specify the name of the base table of which to rename a column. For rules on specifying a table name, see (2) Table
name specification format in 6.1.5 Qualifying a name.
Note that the following tables cannot be specified:

• Viewed tables

• Dictionary tables

• System tables

• RENAME COLUMN [FROM] current-column-name TO new-column-name
Specify the current column name and new column name. The current column name is changed to the new column
name.
The following rules apply:

• An existing column name cannot be specified as the new column name.

• The same name cannot be specified for both the current and new column names.

• Do not specify a character string in the EXPnnnn_NO_NAME format as a new column name. Such a column
name might duplicate a derived column name that is automatically set by HADB. In this format, nnnn is an
unsigned integer in the range from 0000 to 9999.

Important
If a column of a table is renamed, all viewed tables that are dependent on that table are invalidated. For
details about how to check the viewed tables that will be invalidated, see Checking dependent viewed
tables in the HADB Setup and Operation Guide.

(c) Changing the maximum number of chunks in a multi-chunk table
Specification format

ALTER-TABLE-statement ::= ALTER TABLE table-name
                      CHANGE OPTION CHUNK=maximum-number-of-chunks

• table-name
Specify the name of the multi-chunk table for which you want to change the maximum number of chunks. For rules
on specifying a table name, see (2) Table name specification format in 6.1.5 Qualifying a name.

• CHANGE OPTION CHUNK=maximum-number-of-chunks
~ <unsigned integer> ((2 to 30,000)) (unit: chunks)
Specify a new maximum number of chunks, replacing the maximum number of chunks that was specified using the
chunk specification in the CREATE TABLE statement.
Note the following points:

• This option can be specified only for multi-chunk tables.

• You cannot specify a value that is less than the number of chunks that have already been created in the table.

3. Definition SQL

Hitachi Advanced Database SQL Reference 81



(d) Changing a regular multi-chunk table to an archivable multi-chunk table
Specification format

ALTER-TABLE-statement::=LTER TABLE table-name
                      CHANGE OPTION CHUNK chunk-archive-specification
 
  chunk-archive-specification::=ARCHIVABLE
                                RANGECOLUMN=column-name
                               [RANGEINDEXNAME=index-identifier]
                               [IN DB-area-name]
                                ARCHIVEDIR=archive-directory-name

• table-name
Specify the name of the regular multi-chunk table that you want to change to an archivable multi-chunk table. For
rules on specifying a table name, see (2) Table name specification format in 6.1.5 Qualifying a name.
Note that the following tables cannot be specified:

• FIX tables

• Single-chunk tables

• Column store tables

• CHANGE OPTION CHUNK chunk-archive specification

chunk-archive-specification::=ARCHIVABLE
                              RANGECOLUMN=column-name
                             [RANGEINDEXNAME=index-identifier]
                             [IN DB-area-name]
                              ARCHIVEDIR=archive-directory-name

Specify this option if you change a regular multi-chunk table to an archivable multi-chunk table.

• RANGECOLUMN=column-name
Specify a column name. The column specified here becomes the archive range column.
The following rules apply:

• You cannot use columns of the following data types as archive range columns:
• CHARACTER type (only if the defined length is 33 bytes or more)
• VARCHAR type
• BINARY type
• VARBINARY type

• When you specify a column to be used as an archive range column, make sure that the NOT NULL constraint
is specified for that column.

• RANGEINDEXNAME=index-identifier
When the ALTER TABLE statement is run, the HADB server automatically defines a range index that uses an
archive range column as the indexed column. Specify the index identifier to be assigned to this range index.

Important
If a range index has already been defined for the archive range column, no range index is
automatically defined when the ALTER TABLE statement is run. In this case, the already defined
range index is used. Therefore, if you specify RANGEINDEXNAME when a range index has already
been defined for the archive range column, the ALTER TABLE statement will result in an error.

3. Definition SQL

Hitachi Advanced Database SQL Reference 82



If RANGEINDEXNAME is not specified, the HADB server determines the index identifier in the following format:

ARCHIVE_RANGE_INDEX_nnnnnnnn

nnnnnnnn is an eight-digit character string that represents the ID of the archivable multi-chunk table in
hexadecimal notation.
If the automatically determined index identifier already exists in the same schema, the ALTER TABLE statement
will result in an error. Therefore, if you use the CREATE INDEX statement to define an index, we recommend
that you do not use a name whose format resembles the preceding format.

Note
The range index that is automatically defined here is subject to the same rules as a range index
defined by the CREATE INDEX statement.

• IN DB-area-name
Specify the name of the DB area in which to store the range indexes that are automatically defined by the HADB
server.
In the following case, omit specifying IN DB-area-name:

• When a range index has already been defined for the archive range column

In this case, because the HADB server does not automatically define a range index, you do not need to specify
IN DB-area-name.
Also, if all of the following conditions are met, a range index automatically defined by the HADB server is
stored in the DB area specified for the adb_sql_default_dbarea_shared operand in the server
definition:

• When the IN DB-area-name specification is omitted

• No range index is defined for the archive range column.

Note that, when both of the preceding two conditions are met, if the adb_sql_default_dbarea_shared
operand is not specified in the server definition, the ALTER TABLE statement will result in an error. Also, if
the DB area specified for the adb_sql_default_dbarea_shared operand in the server definition does
not exist or if a DB area other than the data DB area is specified, the ALTER TABLE statement will result in an
error.

• ARCHIVEDIR=archive-directory-name
Specify the absolute path name of the archive directory in which to store archive files.
The following rules apply:

• Specify the archive directory name in the character string literal format. For details about character string
literals, see 6.3 Literals.

• Specify an existent directory for the archive directory. Make sure that read, write, and execution permissions
for the HADB administrator are assigned to the directory that you specify.
Also, make sure that execution permission for the HADB administrator is assigned to all directories that are
included in the path of the archive directory.
(Example) If the archive directory is /HADB/archive:
For the /HADB/archive directory, read, write, and execution permissions must be set.
For the / directory and the /HADB directory, the execution permission is necessary.

• The following directories cannot be used as the archive directory:
• Server directory
• Subdirectory of a server directory

3. Definition SQL

Hitachi Advanced Database SQL Reference 83



• Directory that contains a server directory
• DB directory
• Subdirectory of a DB directory
• Directory that contains a DB directory
• Root directory
The following shows examples of directories that can be and cannot be used as the archive directory when
the DB directory is /HADB/db:

Directory Reason

Example of directory that can
be used as the archive
directory

/HADB/archive None.

Example of directory that
cannot be used as the archive
directory

/HADB/db This directory is the same as the DB directory.

/HADB/db/archive This directory is a subdirectory of the DB
directory.

/HADB This directory contains the DB directory.

• Do not specify (as the archive directory) a directory in which installation data was stored when the HADB
server was installed.

• The name of the archive directory must be 1 to 400 bytes long except the heading and trailing spaces.

Note
If you specify a directory name that begins and/or ends with spaces, these spaces are deleted
(the resulting character string is used as the archive directory name).

• Make sure that each element of the archive directory name is no more than NAME_MAX bytes long. The
NAME_MAX value differs depending on the environment.

If a symbolic link is specified as the archive directory name, the system checks whether the absolute path name
that the symbolic link substitutes for obeys the rules that are described here.
About the multi-node function:
If the multi-node function is enabled, note the following points:

• Use the NFS or other means to share the archive directory by all nodes. Note that the archive directory must
be shared by all nodes when the ALTER TABLE statement is run.

• On the master node, when the ALTER TABLE statement is run, a check to see whether the archive directory
name obeys the specification rules that are described here is conducted. On the slave nodes, this check is not
conducted. Therefore, after the ALTER TABLE statement, check the archive directory name on each slave
node.

About the location table that is defined when a regular multi-chunk table is changed to an archivable multi-
chunk table

If a regular multi-chunk table is changed to an archivable multi-chunk table by running the ALTER TABLE
statement, the HADB server automatically defines the location table and the index of the location table. The
HADB server uses the location table and index. Therefore, no user can directly manipulate, redefine, or delete
the location table or index. For details about the location table, see Searching an archivable multi-chunk table
in the HADB Setup and Operation Guide.
The location table and its index are stored in the same DB area as the archivable multi-chunk table.
The names of the location table and its index are determined according to the rules that are described in the
following table.

3. Definition SQL

Hitachi Advanced Database SQL Reference 84



Table 3-2: Naming rules for the location table and location table index

Item Naming rule Information managed by the
index

Columns in the index

Location table "HADB"."LOCATION_TAB
LE_nnnnnnnn"

-- --

Location table index "HADB"."LOCATION_IND
EX_nnnnnnnn_CHUNK_ID"

Manages the chunk ID of the chunk
that corresponds to the archive file.

CHUNK_ID

"HADB"."LOCATION_IND
EX_nnnnnnnn_RANGE_01"

Manages the range (upper and lower
limits) of values in the archive range
column of data stored in the archive
file.

• RANGE_MAX
• RANGE_MIN

"HADB"."LOCATION_IND
EX_nnnnnnnn_RANGE_02"

Manages the lower limit of values in
the archive range column of data
stored in the archive file.

RANGE_MIN

Legend:
--: Not applicable.

Note:
nnnnnnnn is an eight-digit character string that represents the ID of the archivable multi-chunk table in
hexadecimal notation.
The schema name of the location table and location table index is HADB.

Note the following points when changing a regular multi-chunk table to an archivable multi-chunk table:

• If a regular multi-chunk table is changed to an archivable multi-chunk table, the HADB server automatically defines
the location table, the location table index, and the range index of the archive range column. However, if a range
index has been defined for the column that is specified as the archive range column, a new range index is not defined.
In this case, the already defined range index is used. For details about how to check whether a range index has
already been defined for a column, see Investigating whether range indexes are defined in the column specified as
the archive range column in Searching a dictionary table in the HADB Setup and Operation Guide.

• If a regular multi-chunk table is changed to an archivable multi-chunk table, all viewed tables that are dependent
on the table to be changed are invalidated. For details about how to check the viewed tables that will be
invalidated, see Checking dependent viewed tables in the HADB Setup and Operation Guide.

For details about how to change a regular multi-chunk table to an archivable multi-chunk table, see Changing a regular
multi-chunk table to an archivable multi-chunk table in the HADB Setup and Operation Guide.

(e) Changing an archivable multi-chunk table to a regular multi-chunk table
Specification format

ALTER-TABLE-statement ::= ALTER TABLE table-name
                      CHANGE OPTION CHUNK UNARCHIVABLE

• table-name
Specify the name of the archivable multi-chunk table that you want to change into a regular multi-chunk table. For
rules on specifying a table name, see (2) Table name specification format in 6.1.5 Qualifying a name.

• CHANGE OPTION CHUNK UNARCHIVABLE
Specify this option if you change an archivable multi-chunk table to a regular multi-chunk table.

Note the following points when changing an archivable multi-chunk table to a regular multi-chunk table:

3. Definition SQL

Hitachi Advanced Database SQL Reference 85



• You cannot change an archivable multi-chunk table to a regular multi-chunk table if there are archived chunks. In
this case, unarchive the chunks, and then change an archivable multi-chunk table to a regular multi-chunk table if
there are archived chunks.

• When an archivable multi-chunk table is changed to a regular multi-chunk table, the location table and the index
that has been defined for the location table are deleted. However, the range index that has automatically been defined
for the archive range column is not deleted. If this range index is unnecessary, delete it by using the DROP INDEX
statement after changing an archivable multi-chunk table to a regular multi-chunk table.

• If an archivable multi-chunk table is changed to a regular multi-chunk table, all viewed tables that are dependent
on the table to be changed are invalidated. For details about how to check the viewed tables that will be
invalidated, see Checking dependent viewed tables in the HADB Setup and Operation Guide.

For details about how to change an archivable multi-chunk table to a regular multi-chunk table, see Changing an
archivable multi-chunk table to a regular multi-chunk table in the HADB Setup and Operation Guide.

(2) Privileges required at execution
To execute the ALTER TABLE statement, the CONNECT privilege and schema definition privilege are required.

(3) Rules
1. You can only alter the definition of a table in the schema of the current user (the HADB user whose authorization

identifier is currently connected to the HADB server). You cannot alter the definition of a table in a schema owned
by another HADB user.

2. You cannot add a column unless the sum of the sizes of all columns in the base table (the row length) satisfies the
following formula:

● Formula (if the target base table is a row store table)

ROWSZ-(row-length) ≤ page-size - 56 (unit: bytes)

● Formula (if the target base table is a column store table)

ROWSZ-(row-length) ≤ page-size - 80 (unit: bytes)

For details about the formula for calculating ROWSZ (row length), see Determining the number of pages for storing
each type of row in the HADB Setup and Operation Guide.

3. You cannot change the definition of a table that has been rendered non-updatable due to an interrupted command.

(4) Examples
Example 1: Adding a column to a row store table

Add a column for the email address of each shop (EMAIL_ADDRESS) to the shops table (SHOPSLIST), which is
a row store table.

• Column name: EMAIL_ADDRESS
• Data type: VARCHAR(100)
• Branch the data in the column

ALTER TABLE "SHOPSLIST"
    ADD COLUMN "EMAIL_ADDRESS" VARCHAR(100) BRANCH YES

3. Definition SQL

Hitachi Advanced Database SQL Reference 86



Example 2: Adding a column to a column store table
Add a column for the times that receipts were issued (ISSUE_TIME) to the receipt table (RECEIPT), which is a
column store table.

• Column name: ISSUE_TIME
• Data type: TIME
• Compress the data in the column by using the delta run-length encoding algorithm (DELTA_RUNLENGTH).

ALTER TABLE "RECEIPT"
    ADD COLUMN  "ISSUE_TIME" TIME COMPRESSION TYPE DELTA_RUNLENGTH

Example 3: Renaming a column
In the shops table (SHOPSLIST), rename the EMAIL_ADDRESS column to EMAIL.

ALTER TABLE "SHOPSLIST"
    RENAME COLUMN FROM EMAIL_ADDRESS TO EMAIL

Example 4: Changing the maximum number of chunks
Change the maximum number of chunks in the shops table (SHOPSLIST) to 300.

ALTER TABLE "SHOPSLIST"
    CHANGE OPTION CHUNK=300

Example 5: Changing a regular multi-chunk table to an archivable multi-chunk table
Change the format of the shops table (SHOPSLIST), which is a row store table, from that of a regular multi-chunk
table to that of an archivable multi-chunk table. The specifications related to the archive range column and other
items are as follows:

• The RECORD_DAY column is used as the archive range column.

• The /mnt/nfs/archivedir directory is used as the archive directory.

• The DB area that stores the range indexes that are automatically defined by the HADB server is DBAREA02.

ALTER TABLE "SHOPSLIST"
    CHANGE OPTION CHUNK ARCHIVABLE
        RANGECOLUMN="RECORD_DAY"
        IN "DBAREA02"
        ARCHIVEDIR='/mnt/nfs/archivedir'

3. Definition SQL

Hitachi Advanced Database SQL Reference 87



Example 6: Changing an archivable multi-chunk table to a regular multi-chunk table
Change the format of the shops table (SHOPSLIST) from an archivable multi-chunk table to a regular multi-chunk
table.

ALTER TABLE "SHOPSLIST"
    CHANGE OPTION CHUNK UNARCHIVABLE

3. Definition SQL

Hitachi Advanced Database SQL Reference 88



3.2 ALTER USER (alter an HADB user's information)

This section describes the specification format and rules for the ALTER USER statement.

3.2.1 Specification format and rules for the ALTER USER statement
Change the following information for an HADB user:

• Password

(1) Specification format
ALTER-USER-statement ::= ALTER USER authorization-identifier IDENTIFIED BY new-passwo
rd

(2) Explanation of specification format
 authorization-identifier

Specify the authorization identifier of the HADB user whose user information is to be changed.
For rules about specifying authorization identifiers, see 6.1.4 Specifying names.

 IDENTIFIED BY new-password
Specify the new password.
The rules for specifying the password are as follows:

• The password can include single-byte uppercase and lowercase letters, numbers, backslashes (\), as well as the
following characters:
@ ` ! " # $ % & ' ( ) * : + ; [ ] { } , = < > | - . ^ ~ / ? _

• Specify the password in the form of a character string literal. Therefore, you must enclose the password in single
quotation marks. The following are examples:
Example 1: Set the new password to Password01
IDENTIFIED BY 'Password01'
Example 2: Set the new password to Pass'01
IDENTIFIED BY 'Pass''01'
If the password itself includes a single quotation mark ('), specify two single quotation marks ('') to represent
the single quotation mark ('), as shown in the example above.
For rules on specifying a character string literal, see Table 6-10: Description formats and assumed data types
of literals.

• The password cannot be empty. That is, the following is not permitted:
IDENTIFIED BY ''

• The password cannot exceed 255 characters (255 bytes).

Note
• If you are using the JDBC driver, we recommend that you not use the following character in the

password:

3. Definition SQL

Hitachi Advanced Database SQL Reference 89



&
• If you are using the ODBC driver, we recommend that you not use the following characters in the

password:
[ ] { } ( ) , ; ? * = ! @

(3) Privileges required at execution
To execute the ALTER USER statement, the CONNECT privilege is required.

(4) Rules
1. An HADB user with the DBA privilege can change the user information of every HADB user. However, the user

information of HADB users with the audit privilege cannot be changed. The user information of an HADB user
with the audit privilege can be changed by that HADB user only.

2. An HADB user without the DBA privilege can change the user information of only the current user (the HADB user
whose authorization identifier is currently connected to the HADB server).

(5) Examples
Example

Change the password of HADB user ADBUSER01 to #HelloHADB_02.

ALTER USER "ADBUSER01" IDENTIFIED BY '#HelloHADB_02'

3. Definition SQL

Hitachi Advanced Database SQL Reference 90



3.3 ALTER VIEW (re-create a viewed table)

This section describes the specification format and rules for the ALTER VIEW statement.

3.3.1 Specification format and rules for the ALTER VIEW statement
Re-create a viewed table.

Run the ALTER VIEW statement to re-create a viewed table in the following cases:

• When you revalidate a viewed table
After you have removed the cause that invalidated a viewed table, the viewed table is revalidated when you run the
ALTER VIEW statement to re-create the viewed table.

• When you become unsure of the reason why a viewed table has been invalidated
If you run the ALTER VIEW statement for a viewed table for which the cause of invalidation has not been
removed, the ALTER VIEW statement results in an error. In this case, an error message is output. From this error
message, you can identify the reason why the viewed table has been invalidated.

Important
The ALTER VIEW statement cannot change the definition of a viewed table. To change the definition of
a viewed table, use the DROP VIEW statement to delete the viewed table, and then use the CREATE VIEW
statement to redefine the viewed table.

(1) Specification format
ALTER-VIEW-statement ::= ALTER VIEW table-name RECREATE

(2) Explanation of specification format
● table-name

Specifies the name of the viewed table to be re-created. For rules on specifying a table name, see (2) Table name
specification format in 6.1.5 Qualifying a name.
The following tables cannot be specified:

• Base tables

• Dictionary tables

• System tables

● RECREATE
Specify this to re-create a viewed table.

(3) Privileges required at execution
To run the ALTER VIEW statement, the CONNECT privilege and the schema definition privilege are required.

3. Definition SQL

Hitachi Advanced Database SQL Reference 91



(4) Rules
1. If the authentication identifier connected to the HADB server is different from the schema name of a viewed table,

the ALTER VIEW statement results in an error.

2. Even if viewed tables that depend on the viewed table to be re-created have been defined, the viewed table is re-
created when the ALTER VIEW statement is run. In this case, the viewed tables that depend on the re-created viewed
table are invalidated.

3. Re-creating a viewed table by using the ALTER VIEW statement does not affect the access privileges for the viewed
tables that depend on the re-created viewed table.

4. The viewed table specified in the ALTER VIEW statement is always re-created regardless of whether the viewed
table is valid or invalid.

5. If the ALTER VIEW statement is used to re-create a viewed table, the number of columns or column names of the
viewed table might be changed. For example, the following cases apply.
Example of defining viewed table V1:

CREATE VIEW "V1" AS SELECT * FROM "T1" WHERE "C1">100

• Case where the number of columns of a viewed table increases
1. The CREATE VIEW statement is used to define viewed table V1.
2. The ALTER TABLE statement is used to add a column (for example, column C5) to underlying table T1.
3. The ALTER VIEW statement is used to re-create viewed table V1.
In this case, because column C5 is added to viewed table V1, the number of columns in the viewed table increases.

• Case where a column name of a viewed table changes
In step 2 of the preceding procedure, assume that, for example, you use the ALTER TABLE statement to change
the column name of column C2. In this case, if you then use the ALTER VIEW statement to re-create viewed
table V1, the column name of column C2 in viewed table V1 changes.

6. When the ALTER VIEW statement is used to re-create a viewed table, the access privilege settings for the underlying
table might have been changed# since the viewed table was defined. In such a case, the dependent privileges of the
access privilege for the re-created viewed table might be revoked.

#
Either of the following changes applies.

• An access privilege with the grant option has been changed to an access privilege without the grant option.

• An access privilege with the grant option has been removed so that no access privilege is granted.

The following shows an example in which a dependent privilege of the access privilege for a re-created viewed table
is revoked.
Example:

1.
HADB user A, who has the SELECT privilege with the grant option for table X.T1, defines viewed table A.V1
by using table X.T1 as the underlying table.

2.
HADB user A grants the SELECT privilege for viewed table A.V1 to another HADB user. The SELECT
privilege that was granted to another HADB user becomes a dependent privilege.

3.
HADB user A has the SELECT privilege with the grant option for table X.T1 revoked. At this time, viewed
table A.V1 is invalidated because table X.T1 is an underlying table of the viewed table.

3. Definition SQL

Hitachi Advanced Database SQL Reference 92



4.
To revalidate viewed table A.V1, the SELECT privilege without the grant option for table X.T1 is granted to
HADB user A. The SELECT privilege with the grant option for table X.T1 that HADB user A had when defining
viewed table A.V1 in step 1 has been changed to the SELECT privilege without the grant option.

5.
The ALTER VIEW statement is run to re-create viewed table A.V1.
Because the SELECT privilege was changed to a SELECT privilege without the grant option in step 4, the
SELECT privilege that was granted to another HADB user and became a dependent privilege in step 2 is revoked.

(5) Examples
Example

Because a viewed table (VSHOPSLIST) for the shops table was invalidated, the ALTER VIEW statement is run to
revalidate VSHOPSLIST.

ALTER VIEW "VSHOPSLIST" RECREATE

3. Definition SQL

Hitachi Advanced Database SQL Reference 93



3.4 CREATE AUDIT (define audit targets)

This section describes the specification format and rules for the CREATE AUDIT statement.

Note that information defined by using the CREATE AUDIT statement is called an audit target definition.

3.4.1 Specification format and rules for the CREATE AUDIT statement
The CREATE AUDIT statement defines audit targets.

Important
You can execute the CREATE AUDIT statement when the audit trail facility is enabled. To check whether
the audit trail facility is enabled, execute the adbaudittrail -d command.

(1) Specification format
CREATE-AUDIT-statement::=CREATE AUDIT AUDITTYPE EVENT
                                 FOR ANY OPERATION

(2) Explanation of specification format
● AUDITTYPE EVENT

Specify this if you want to output an audit trail of the final event results.

● FOR ANY OPERATION
Specify this if the audit-target event is in the following table.

Table 3-3: Audit-target events

Event type Audit-target event

Session management event Execution of CONNECT (connection to an HADB server)

Execution of DISCONNECT (disconnection from an HADB server)

Privilege management event Executions of the following SQL statements:
• GRANT statement
• REVOKE statement
• CREATE USER statement
• DROP USER statement
• ALTER USER statement

Definition SQL event Executions of the following definition SQL statements:
• ALTER TABLE statement
• ALTER VIEW statement
• CREATE AUDIT statement
• CREATE INDEX statement
• CREATE SCHEMA statement
• CREATE TABLE statement
• CREATE VIEW statement

3. Definition SQL

Hitachi Advanced Database SQL Reference 94



Event type Audit-target event

• DROP AUDIT statement
• DROP INDEX statement
• DROP SCHEMA statement
• DROP TABLE statement
• DROP VIEW statement

Data manipulation SQL event Executions of the following data manipulation SQL statements:
• SELECT statement
• INSERT statement
• UPDATE statement
• DELETE statement
• TRUNCATE TABLE statement
• PURGE CHUNK statement

Command operation event Executions of the following commands:
• adbimport command
• adbexport command
• adbidxrebuild command
• adbgetcst command
• adbdbstatus command
• adbmergechunk command
• adbchgchunkcomment command
• adbchgchunkstatus command
• adbarchivechunk command
• adbunarchivechunk command
• adbreorgsystemdata command
• adbsyndict command

(3) Privileges required at execution
To execute the CREATE AUDIT statement, the CONNECT privilege and the audit admin privilege are required.

(4) Rules
1. You cannot define multiple instances of the same audit target.

2. An HADB server checks the audit target definition during the determination processing for outputting an audit trail.
Therefore, depending on the audit trail output time, an audit trail about operations that were performed before the
audit targets are defined might be output although those operations are not to be audited.

(5) Examples
Example

The events listed in Table 3-3: Audit-target events are defined as audit targets.

CREATE AUDIT AUDITTYPE EVENT
             FOR ANY OPERATION

3. Definition SQL

Hitachi Advanced Database SQL Reference 95



3.5 CREATE INDEX (define an index)

This section describes the specification format and rules for the CREATE INDEX statement.

3.5.1 Specification format and rules for the CREATE INDEX statement
The CREATE INDEX statement defines an index (a B-tree index, text index, or range index) on a column in a base table.
For details about B-tree indexes, text indexes, and range indexes, see B-tree indexes, Text indexes, and Range indexes
in the HADB Setup and Operation Guide.

A B-tree index can be defined on multiple columns. A B-tree index defined on only one column is called a single-column
index, and a B-tree index defined on multiple columns is called a multiple-column index.

Important
If you define an index for a base table to which row storage segments have been allocated, the index is
placed in unfinished status (status in which no index data is created).

For example, no row storage segments have been allocated at the following times. If you define an index
for a base table in this status, the index is created normally.

• Immediately after a base table is defined

• Immediately after the TRUNCATE TABLE statement is run

While a B-tree index is in unfinished status, you cannot perform searches that use the unfinished B-tree
index, nor can you execute INSERT, UPDATE, or DELETE statements on the table.

While a text index is in unfinished status, you cannot perform searches that use the unfinished text index,
nor can you execute INSERT, UPDATE, or DELETE on the table.

While a range index is in unfinished status, you cannot perform searches that use the unfinished range index,
nor can you execute INSERT or UPDATE on the table.

For details about how to release indexes from unfinished status, see the following sections (whichever is
applicable) in the HADB Setup and Operation Guide: Steps to take when unfinished status is applied to a
B-tree index, Steps to take when unfinished status is applied to a text index, or Steps to take when unfinished
status is applied to a range index.

For details about the status in which row storage segments have been allocated, see Notes on defining B-
tree indexes (unfinished status of B-tree indexes) in the HADB Setup and Operation Guide.

(1) Specification format
CREATE-INDEX-statement ::=
     CREATE [UNIQUE] INDEX index-name
          ON table-name (column-name [{ASC|DESC}][,column-name [{ASC|DESC}]]...)
        [IN DB-area-name]
        [PCTFREE=percentage-of-unused-area]
          EMPTY
        [INDEXTYPE {BTREE|TEXT [WORDCONTEXT]|RANGE}]
        [CORRECTIONRULE]

3. Definition SQL

Hitachi Advanced Database SQL Reference 96



        [DELIMITER {DEFAULT|ALL}]
        [EXCLUDE NULL VALUES]

Note
• PCTFREE, EMPTY, INDEXTYPE, CORRECTIONRULE, DELIMITER, and EXCLUDE NULL VALUES

are generically called index options.

• Index options can be specified in any order.

The following table shows the different options that can be specified depending on which type of index is defined.

Table 3-4: Options for defining an index

No. CREATE INDEX option When defining a B-
tree index

When defining a
text index

When defining a
range index

1 UNIQUE Y N N

2 index-name Y Y Y

3 ON table-name Y Y Y

4 column-name Y Y Y

5 {ASC|DESC} Y N N

6 IN DB-area-name Y Y Y

7 PCTFREE Y Y N

8 EMPTY Y Y Y

9 INDEXTYPE Y Y Y

10 CORRECTIONRULE N Y N

11 DELIMITER N Y N

12 EXCLUDE NULL VALUES Y N N

Legend:
Y: An option that can be specified, or one that must be specified.
N: An option that cannot be specified.

Note
It is not possible to define a primary key using the CREATE INDEX statement. To define a primary key,
specify a uniqueness constraint definition using the CREATE TABLE statement.

(2) Explanation of specification format
In the option descriptions, options marked [B-tree index] can be specified during definition of a B-tree index. Options
marked [Text index] can be specified during definition of a text index. Options marked [Range index] can be specified
during definition of a range index. Options marked [Common] are common to B-tree indexes, text indexes, and range
indexes.

3. Definition SQL

Hitachi Advanced Database SQL Reference 97



● UNIQUE [B-tree index]
Specify this if you want the B-tree index to be a unique index. A unique index is a B-tree index that does not allow
duplicate key values (the values of the columns on which the B-tree index is being defined). However, if the key
values can include null values, duplicate null values do not result in duplicate keys.
For a multiple-column index, a key value is considered different if its value in any one of the columns is different.
If UNIQUE is specified, you cannot update or add data that would result in a duplicate key value.
Note that you cannot define a unique index for a base table created by using the CREATE TABLE statement with
chunk specification.

● index-name [Common]
Specifies the name of the index to be defined. For rules on specifying an index name, see (3) Index name
specification format in 6.1.5 Qualifying a name.
Note that you cannot specify the index name of an index that has already been defined.

● ON table-name [Common]
Specifies the name of the base table for which the index is to be defined. For rules on specifying a table name, see
(2) Table name specification format in 6.1.5 Qualifying a name.
Note that a viewed table cannot be specified in table-name.

● (column-name [{ASC|DESC}] [,column-name [{ASC|DESC}]]...) [Common]

• For a B-tree index
Specifies the names of the columns on which the B-tree index is being defined, and the ordering of the B-tree
index's key values.

column-name:
Specifies the names of the columns on which the B-tree index is being defined. A maximum of 16 column
names can be specified. If multiple column names are specified, each column name must be unique.
If multiple column names are specified, the resulting B-tree index is a multiple-column index.

ASC:
Specifies that the B-tree index is to be organized in ascending order of the key values.

DESC:
Specifies that the B-tree index is to be organized in descending order of the key values.
For a single-column index, DESC is ignored. The index's key values are always arranged in ascending order
(ASC is assumed).

If neither ASC nor DESC is specified, the system assumes that ASC is specified.

• For a text index or range index
Specifies the name of the column on which the text index or range index is being defined.
In the case of a text index or range index, only one column name can be specified. In addition, ASC and DESC
cannot be specified.
Therefore, the specification format in the case of a text index or range index is as follows:
(column-name)

● IN DB-area-name [Common]
Specifies the name of the DB area in which the index is to be defined.
If the IN DB-area-name specification is omitted, the index is stored in the DB area specified for the
adb_sql_default_dbarea_shared operand in the server definition.
Note that if the IN DB-area-name specification is omitted when either of the following conditions is met, the
CREATE INDEX statement will result in an error:

3. Definition SQL

Hitachi Advanced Database SQL Reference 98



• Specification of the adb_sql_default_dbarea_shared operand is omitted in the server definition.

• A non-existent DB area or a DB area other than a data DB area is specified for the
adb_sql_default_dbarea_shared operand in the server definition.

● PCTFREE=percentage-of-unused-area [B-tree index] [Text index]
~ <unsigned integer> ((0 to 99)) <<30>> (unit: %)
Specifies the percentage of unused area to maintain in the index page of a B-tree index or text index. Specify a
percentage from 0 to 99. If omitted, 30 (%) is assumed.
When data is imported and an index is created or when the index is rebuilt, the B-tree index data or text index data
will be stored leaving the percentage of unused area specified here.
For details about the percentage of unused area in an index page, see Allocating an unused area inside a B-tree index
page (PCTFREE) or Allocating an unused area inside a text index page (PCTFREE) in the HADB Setup and
Operation Guide.
Note that PCTFREE cannot be specified more than once.

● EMPTY [Common]
EMPTY must be specified. If EMPTY is omitted, the CREATE INDEX statement cannot be executed.
EMPTY cannot be specified more than once.

● INDEXTYPE {BTREE|TEXT [WORDCONTEXT]|RANGE} [Common]
Specifies the type of index to be defined.

BTREE:
Specify this if you want to define a B-tree index.

TEXT [WORDCONTEXT]:
Specify this if you want to define a text index. To define a text index for a word-context search, specify TEXT
WORDCONTEXT.

RANGE:
Specify this if you want to define a range index.

If specification of INDEXTYPE is omitted, the system assumes that BTREE (B-tree index) is specified.
INDEXTYPE can only be specified once.

● CORRECTIONRULE [Text index]
Specify this option when you define a text index that supports correction search. For details about the correction
search in a text index, see Correction search in the HADB Setup and Operation Guide.
Note that correction search cannot be used if the character encoding used on the HADB server is Shift-JIS (if the
value of the ADBLANG environment variable is SJIS). In such a case, you cannot specify CORRECTIONRULE.
Also note that you cannot specify the CORRECTIONRULE option more than once.

Note
This option specification is referred to as the notation-correction-search text-index specification.

● DELIMITER {DEFAULT|ALL} [Text index]
Specifies the group of characters that can be used as word delimiters during a word-context search.

DEFAULT:
Handles the following characters as delimiters during a word-context search:

• Half-width space (0x20)

3. Definition SQL

Hitachi Advanced Database SQL Reference 99



• Tab (0x09)

• Line break (0x0A)

• Return (0x0D)

• Period (0x2E)

• Question mark (0x3F)

• Exclamation mark (0x21)

ALL:
Handles the following characters as delimiters during a word-context search:

• Half-width space (0x20)

• Tab (0x09)

• Line break (0x0A)

• Return (0x0D)

• Single-byte symbols including periods, question marks, and exclamation marks (0x21 to 0x2F, 0x3A to
0x40, 0x5B to 0x60, and 0x7B to 0x7E)

To specify this option, TEXT WORDCONTEXT must be specified for INDEXTYPE.
If specification of DELIMITER is omitted when TEXT WORDCONTEXT is specified for INDEXTYPE, the system
assumes that DEFAULT is specified.

Note
The specification of this option is called text-index delimiter specification.

● EXCLUDE NULL VALUES [B-tree index]
If this option is specified and a B-tree index is created, no B-tree index key values that are composed of null values
alone will be created. Consider specifying this option if you want to index columns in which most of the values are
null.
Specifying this option can reduce the time it takes to create a B-tree index, because no B-tree index key values
composed of null values alone will be created. Among other benefits, this can reduce the time it takes to import data
and reduce the amount data required for the B-tree index.
Note that you cannot specify this option for a B-tree index that is defined on columns on which the NOT NULL
constraint is defined.
Also note that you cannot specify the EXCLUDE NULL VALUES option more than once.

Note
This option is referred to as the null-value exclusion specification.

(3) Privileges required at execution
To execute the CREATE INDEX statement, the CONNECT privilege and schema definition privilege are required.

3. Definition SQL

Hitachi Advanced Database SQL Reference 100



(4) Rules

(a) Common rules for indexes
1. An index can only be defined for a base table owned by the current user (the HADB user whose authorization

identifier is currently connected to the HADB server). You cannot define an index for a base table owned by another
HADB user.

2. Indexes cannot be defined on viewed tables.

3. A maximum combined total of 32 B-tree, text, and range indexes can be created for one table.

4. A maximum combined total of 8,192 B-tree, text, and range indexes can be defined in the system (excluding indexes
defined for the base tables of dictionary tables and system tables).

5. A maximum of 400 indexes can be stored in one DB area.

6. The same column can have B-tree indexes (single-column indexes), text indexes, and range indexes defined on it.

7. To define an index for a multi-chunk table, see Points to consider in storing a multi-chunk table in the data DB area
in the HADB Setup and Operation Guide.

8. You cannot define an index for a table that has become non-updatable due to interruption of a command.

(b) Rules for B-tree indexes
1. When a single-column index is defined, it must satisfy the formula below. You cannot define a single-column index

that does not satisfy this formula.

size-of-column-that-comprises-single-column-index ≤ MIN{(a ÷ 3) - 128, 4036 } (uni
t: bytes)

a: Page size of the DB area where the B-tree index is to be stored
The size of a column that comprises a single-column index can be calculated by using the information in the following
table.

Table 3-5: Size of a column that comprises a single-column index

No. Data type of the column Size of the column (unit: bytes)

1 INTEGER 8

2 SMALLINT 4

3 DECIMAL(m,n) If 1 ≤ m ≤ 4 2

If 5 ≤ m ≤ 8 4

If 9 ≤ m ≤ 16 8

If 17 ≤ m ≤ 38 16

4 DOUBLE PRECISION 8

5 CHAR(n) n

6 VARCHAR(n) n

7 DATE 4

8 TIME(p) 3 + ↑p ÷ 2↑

9 TIMESTAMP(p) 7 + ↑p ÷ 2↑

10 BINARY(n) n

3. Definition SQL

Hitachi Advanced Database SQL Reference 101



No. Data type of the column Size of the column (unit: bytes)

11 VARBINARY(n) n

Legend:
m, n: Positive integers
p: 0, 3, 6, 9, or 12

2. To define a multiple-column index, the following conditional expression must be satisfied. You cannot define a
multiple-column index that does not satisfy this formula.

total-size-of-columns-that-comprise-multiple-column-index ≤ MIN{(a ÷ 3) - 128, 403
6 } (unit: bytes)

a: Page size of the DB area where the B-tree index is to be stored
To obtain the total size of the columns that comprise a multiple-column index, see the following table.

Table 3-6: Size of columns that comprise a multiple-column index

No. Data type of a column Size of the columns that comprise a multiple-column index (unit:
bytes)#

If the total defined size
of all columns does
not exceed 255 bytes

If the total defined size of all columns
exceeds 255 bytes

If only fixed size
columns are
included

If variable size
columns are also
included

1 INTEGER 9 9 10

2 SMALLINT 5 5 6

3 DECIMAL(m,n) If 1 ≤ m ≤ 4 3 3 4

If 5 ≤ m ≤ 8 5 5 6

If 9 ≤ m ≤ 16 9 9 10

If 17 ≤ m ≤ 38 17 17 18

4 DOUBLE PRECISION 9 9 10

5 CHARACTER(n) n + 1 n + 1 n + 2

6 VARCHAR(n) n + 1 -- n + 2

7 DATE 5 5 6

8 TIME(p) 4 + ↑p ÷ 2↑ 4 + ↑p ÷ 2↑ 5 + ↑p ÷ 2↑

9 TIMESTAMP(p) 8 + ↑p ÷ 2↑ 8 + ↑p ÷ 2↑ 9 + ↑p ÷ 2↑

10 BINARY(n) n + 1 n + 1 n + 2

11 VARBINARY(n) n + 1 -- n + 2

Legend:
m, n: Positive integers
p: 0, 3, 6, 9, or 12
--: Not applicable

3. Definition SQL

Hitachi Advanced Database SQL Reference 102



#
If the result calculated based on the formulas under If the total defined size of all columns does not exceed 255
bytes yields a total that exceeds 255 bytes, re-calculate the sizes of the columns using the formulas under If the
total defined size of all columns exceeds 255 bytes.

3. You cannot define more than one of the following kinds of B-tree indexes:

• B-tree indexes that have the same column structure, and where the same ascending or descending order is
specified for all columns.

• B-tree indexes that have the same column structure, but where the opposite ascending or descending order is
specified for all columns.

4. A column on which a single-column index is defined can be specified when defining a multiple-column index.

5. When a multiple-column index is defined, the order in which the columns are specified determines the order of
precedence for creating key values.

(c) Rules for text indexes
1. Text indexes can be defined on columns of the following data types:

• CHARACTER types

• VARCHAR types

2. You cannot define multiple text indexes with the same indexed columns.

3. You cannot define a text index for column store tables.

(d) Rules for range indexes
1. Range indexes cannot be defined on columns of the following data types:

• CHARACTER types whose length exceeds 32 bytes

• VARCHAR types

• BINARY types

• VARBINARY types

2. You cannot define multiple range indexes with the same indexed columns.

(5) Examples
Example 1: Define a B-tree index

Define a B-tree index for the shops table (SHOPSLIST) as follows:

• Define a single-column index (SHOP_CODE_IDX) on the shop code column (SHOP_CODE).

• Make the B-tree index a unique index.

• Store the B-tree index in the DB area DBAREA01.

• Because rows are added frequently to the shops table (SHOPSLIST), let the percentage of unused area in an
index page be 50 percent.

CREATE UNIQUE INDEX "SHOP_CODE_IDX"
          ON "SHOPSLIST" ("SHOP_CODE")
        IN "DBAREA01"
        PCTFREE = 50
        EMPTY

3. Definition SQL

Hitachi Advanced Database SQL Reference 103



Example 2: Define a B-tree index
Define a B-tree index for the shops table (SHOPSLIST) as follows:

• Define a multiple-column index (SHOP_RGN_IDX) with the shop code column (SHOP_CODE) and the region
code column (RGN_CODE) as the indexed columns.

• Sort the key values of the index in ascending order (ASC) for the shop code, and in descending order (DESC)
for the region code.

• Store the B-tree index in the DB area DBAREA01.

CREATE INDEX "SHOP_RGN_IDX"
          ON "SHOPSLIST" ("SHOP_CODE" ASC,"RGN_CODE" DESC)
        IN "DBAREA01"
        EMPTY

Example 3: Define a text index
Define a text index for the employee table (EMPLOYEE) as follows:

• Define a text index (ADDRESS_IDX) on the address column (ADDRESS).

CREATE INDEX "ADDRESS_IDX"
          ON "EMPLOYEE" ("ADDRESS")
        IN "DBAREA01"
        EMPTY
        INDEXTYPE TEXT

If you want the text index to support correction search, define the text index as follows. In this example, the underlined
option is added.

CREATE INDEX "ADDRESS_IDX"
      ON "EMPLOYEE" ("ADDRESS")
    IN "DBAREA01"
    EMPTY
    INDEXTYPE TEXT
    CORRECTIONRULE

If you want to define the text index for a word-context search, define the text index as follows. In this example, the
underlined options are added.

CREATE INDEX "ADDRESS_IDX"
      ON "EMPLOYEE"("ADDRESS")
    IN "DBAREA01"
    EMPTY
    INDEXTYPE TEXT WORDCONTEXT
    DELIMITER DEFAULT

Example 4: Define a range index
Define a range index for the shops table (SHOPSLIST) as follows:

• Define a range index (SHOP_CODE_RIDX) on the shop code column (SHOP_CODE)

• Store the range index in the DB area DBAREA01.

CREATE INDEX "SHOP_CODE_RIDX"
          ON "SHOPSLIST" ("SHOP_CODE")
        IN "DBAREA01"
        EMPTY
        INDEXTYPE RANGE

3. Definition SQL

Hitachi Advanced Database SQL Reference 104



3.6 CREATE SCHEMA (define a schema)

This section describes the specification format and rules for the CREATE SCHEMA statement.

3.6.1 Specification format and rules for the CREATE SCHEMA statement
The CREATE SCHEMA statement defines a schema.

(1) Specification format
CREATE-SCHEMA-statement ::= CREATE SCHEMA [schema-name]

(2) Explanation of specification format
 schema-name

Specifies the name of the schema to be defined. In schema-name, specify the authorization identifier of the current
user (the HADB user whose authorization identifier is currently connected to the HADB server).
If the schema name is omitted, the assumed value is the authorization identifier of the HADB user who executed
the CREATE SCHEMA statement.
For rules on specifying a schema name, see (1) Schema name specification format in 6.1.5 Qualifying a name.
Note that you cannot specify ALL, HADB, MASTER, or PUBLIC for schema-name.

(3) Privileges required at execution
To execute the CREATE SCHEMA statement, the CONNECT privilege and schema definition privilege are required.

(4) Rules
1. Each HADB user can own only one schema.

2. You can only define a schema for the current user (the HADB user whose authorization identifier is currently
connected to the HADB server). You cannot define a schema for another HADB user. For example, if the adbsql
command is executed with ADBUSER01 specified as the authorization identifier, schema ADBUSER01 is the only
schema that can be defined with CREATE SCHEMA.

(5) Examples
Example

Define a schema with the schema name ADBUSER01.

CREATE SCHEMA "ADBUSER01"

3. Definition SQL

Hitachi Advanced Database SQL Reference 105



3.7 CREATE TABLE (define a table)

This section describes the specification format and rules for the CREATE TABLE statement.

3.7.1 Specification format and rules for the CREATE TABLE statement
The CREATE TABLE statement defines a base table.

(1) Specification format
CREATE-TABLE-statement ::=
     CREATE [FIX] TABLE table-name(table-element[,table-element]...)
       [IN DB-area-name]
       [PCTFREE=percentage-of-unused-area]#
       [BRANCH ALL]#
       [chunk-specification]#
       [STORAGE FORMAT {ROW|COLUMN}]#
 
 
  table-element ::= {column-definition|table-constraint}
 
    column-definition ::= column-name data-type [DEFAULT-clause] [NOT NULL] [BRANCH {
YES|NO|AUTO}]
                              [compression-type-specification]
      DEFAULT-clause ::= DEFAULT default-option
        default-option ::= {literal|CURRENT_DATE|CURRENT_TIME[(p)]
                          |CURRENT_TIMESTAMP[(p)]|CURRENT_USER|NULL}
 
      compression-type-specification ::= COMPRESSION TYPE {AUTO|NONE|RUNLENGTH|DICTIO
NARY|DELTA
                                         |DELTA_RUNLENGTH}
 
 
    table-constraint ::= {uniqueness-constraint-definition|referential-constraint-def
inition}
      uniqueness-constraint-definition ::= [CONSTRAINT constraint-name] PRIMARY KEY (
column-name [{ASC|DESC}]
                                [,column-name [{ASC|DESC}]]...)
                                [IN DB-area-name]
                                [PCTFREE=percentage-of-unused-area]
 
      referential-constraint-definition ::= [CONSTRAINT constraint-name] FOREIGN KEY 
(column-name[,column-name]...)
                                 REFERENCES table-name DISABLE
 
 
  chunk-specification ::= CHUNK[=maximum-number-of-chunks]
                         [chunk-archive-specification]
    chunk-archive-specification ::= ARCHIVABLE
                                  RANGECOLUMN=column-name
                                 [RANGEINDEXNAME=index-identifier]
                                 [IN DB-area-name]
                                  ARCHIVEDIR=archive-directory-name

#
PCTFREE, BRANCH ALL, chunk-specification, and STORAGE FORMAT can be specified in any order.

3. Definition SQL

Hitachi Advanced Database SQL Reference 106



Note
PCTFREE, BRANCH ALL, chunk-specification, and STORAGE FORMAT are referred to collectively as
table options.

The following table lists the options for defining row store tables and the options for defining column store tables.

Table 3-7: Options for defining row store tables or column store tables

No. CREATE TABLE option For defining row store
tables

For defining column store
tables

1 FIX Y N

2 table-name Y Y

3 column-
definition

column-name Y Y

4 data-type Y Y

5 DEFAULT-clause Y Y

6 NOT NULL Y Y

7 BRANCH Y N

8 compression-type-specification N Y

9 table-constraint Y Y

10 IN DB-area-name Y Y

11 PCTFREE Y N

12 BRANCH ALL Y N

13 chunk-
specification

maximum-number-of-chunks Y Y

14 chunk-archive-specification Y N

15 STORAGE FORMAT Y Y

Legend:
Y: An option that can be specified, or one that must be specified.
N: An option that cannot be specified.

(2) Explanation of specification format
In the option descriptions, options marked [Row store table] can be specified to define a row store table. Options marked
[Column store table] can be specified to define a column store table. Options marked [Common] can be specified to
define both a row store table and a column store table.

(a) FIX [Row store table]
Defines a base table in which every row has a fixed length (a FIX table).

The following rules apply:

• If FIX is specified, the following data type cannot be specified for any row in this table:

• VARCHAR

3. Definition SQL

Hitachi Advanced Database SQL Reference 107



• VARBINARY
• If FIX is specified, NOT NULL constraint is set for all columns of the base table.

• Only FIX tables allow you to perform reference, update, and insert operations by row (ROW specification).

• For archivable multi-chunk tables, FIX cannot be specified.

(b) table-name [Common]
Specifies the name of the base table to be defined. You cannot specify the table name of a table that has already been
defined. For rules on specifying a table name, see (2) Table name specification format in 6.1.5 Qualifying a name.

(c) table-element [Common]

table-element ::= {column-definition | table-constraint}

A table element specifies either a column definition or a table constraint.

(d) column-definition [Common]

column-definition ::= column-name data-type [DEFAULT-clause] [NOT NULL] [BRANCH {YES 
| NO | AUTO}]
                          [compression-type-specification]

Specifies the definitions of the columns that make up the base table. At least one column definition must be specified.

● column-name [Common]
Specifies the names of the columns that comprise the table. Each column name must be unique.
Do not specify a character string in the EXPnnnn_NO_NAME format as a column name. Such a column name might
duplicate a derived column name that is automatically set by HADB. In this format, nnnn is an unsigned integer in
the range from 0000 to 9999.

● data-type [Common]
Specifies the data types of the columns. The following table lists the data types that can be specified.

Table 3-8: Data types that can be specified (CREATE TABLE statement)

No. Data type Specification format

1 INTEGER INT or INTEGER

2 SMALLINT SMALLINT

3 DECIMAL DEC[(m[,n])] or DECIMAL[(m[,n])]
m: Precision (total number of digits)
n: Scaling (number of decimal places)
If m is omitted, 38 is assumed, and if n is omitted, 0 is assumed.

4 DOUBLE PRECISION DOUBLE or DOUBLE PRECISION

5 CHARACTER CHAR(n) or CHARACTER(n)
n: Length of character string (in bytes)
If CHAR or CHARACTER is specified without a length, the length of the character
string is assumed to be 1.

6 VARCHAR VARCHAR(n)
n: Maximum length of character string (in bytes)

3. Definition SQL

Hitachi Advanced Database SQL Reference 108



No. Data type Specification format

7 DATE DATE

8 TIME TIME(p) or TIME
p: Fractional seconds precision (number of digits to the right of the decimal point)
You can specify a value of 0, 3, 6, 9, or 12 for p. If TIME is specified, p is assumed
to be 0.

9 TIMESTAMP TIMESTAMP(p) or TIMESTAMP
p: Fractional seconds precision (number of digits to the right of the decimal point)
You can specify a value of 0, 3, 6, 9, or 12 for p. If TIMESTAMP is specified, p
is assumed to be 0.

10 BINARY BINARY(n)
n: Length of the binary data (number of bytes) (number of bytes)
If BINARY is specified without a length, the length of the binary data is assumed
to be 1.

11 VARBINARY VARBINARY(n)
n: Maximum length of the binary data (number of bytes)

For details about data types, see 6.2 Data types.

Important
A VARCHAR-type column whose defined length exceeds 32,000 bytes cannot be specified.

● DEFAULT-clause [Common]

DEFAULT-clause ::= DEFAULT default-option
  default-option ::= {literal|CURRENT_DATE|CURRENT_TIME[(p)]
                    |CURRENT_TIMESTAMP[(p)]|CURRENT_USER|NULL}

Specify a DEFAULT clause when you want to set a default value for a column.
For details about the specification format of the DEFAULT clause and the default values for columns, see 7.10 
DEFAULT clause.

● NOT NULL [Common]
Specify this to define the NOT NULL constraint (the constraint to not allow null values) for the column.
You cannot specify NULL for default-option in the DEFAULT clause for columns on which the NOT NULL constraint
is specified.

● BRANCH {YES|NO|AUTO} [Row store table]
Specifies how to store VARCHAR-type and VARBINARY-type column data.
For details about situations for which it is better to specify YES or NO for BRANCH, see Branch specification for
column data of variable-length data types (BRANCH) [Row store table] in the HADB Setup and Operation Guide.

YES:
Branch the specified VARCHAR-type or VARBINARY-type column data.

NO:
Do not branch the specified VARCHAR-type or VARBINARY-type column data.

AUTO:
Do not branch if the defined length of the specified VARCHAR-type or VARBINARY-type column data is less
than or equal to 255 bytes. If the defined length is 256 bytes or greater, branch when the base row does not fit
on one page.

3. Definition SQL

Hitachi Advanced Database SQL Reference 109



If the BRANCH specification is omitted, the system assumes that AUTO is specified.
This option cannot be specified for the following tables and columns:

• Tables for which the BRANCH ALL table option is specified

• Columns of data types other than VARCHAR and VARBINARY
● compression-type-specification [Column store table]

compression-type-specification ::= COMPRESSION TYPE {AUTO|NONE|RUNLENGTH|DICTIONAR
Y|DELTA|DELTA_RUNLENGTH}

Specifies the compression type to be used to compress the column data in a column store table (column-data
compression type). This option can be specified for each column in the column store table.
If compression-type-specification is not specified, the system assumes that AUTO is specified.

AUTO:
If this type is specified, the HADB server automatically determines the data compression type of this column in
the column store table.

NONE:
If this type is specified, the data in this column of the column store table is not compressed.

RUNLENGTH:
If this type is specified, the data in this column of the column store table is compressed by using the run-length
encoding algorithm.

DICTIONARY:
If this type is specified, the data in this column of the column store table is compressed by using the dictionary
encoding algorithm.

DELTA:
If this type is specified, the data in this column of the column store table is compressed by using the delta encoding
algorithm.

DELTA_RUNLENGTH:
If this type is specified, the data in this column of the column store table is compressed by using the delta run-
length encoding algorithm.

For details about each compression type, see Column-data compression types for column store tables in Criteria for
selecting row store tables and column store tables in the HADB Setup and Operation Guide.

(e) table-constraint [Common]

table-constraint ::= {uniqueness-constraint-definition | referential-constraint-defin
ition}

For the table constraint, specify a uniqueness constraint definition or a referential constraint definition.

(f) uniqueness-constraint-definition [Common]

uniqueness-constraint-definition ::= [CONSTRAINT constraint-name] PRIMARY KEY (column
-name [{ASC|DESC}]
                          [,column-name [{ASC|DESC}]]...)
                          [IN DB-area-name]
                          [PCTFREE=percentage-of-unused-area]

Specify this if you want to define a primary key for the base table. Only one primary key can be defined for each table.

3. Definition SQL

Hitachi Advanced Database SQL Reference 110



The uniqueness constraint and NOT NULL constraint are applied to the columns that make up the primary key. The
uniqueness constraint disallows duplicate column values (or duplicate combinations of values from multiple columns).
The NOT NULL constraint disallows the null value as a column value.

The primary key must be selected from among the columns or combinations of columns that can uniquely identify a
row in the table (candidate keys).

Note
The columns or combinations of columns that can uniquely identify a row in the table are referred to as
candidate keys.

● CONSTRAINT constraint-name [Common]
Specifies a name for the uniqueness constraint definition specified here. For rules on specifying a constraint name,
see (2) Rules for characters that can be used in names in 6.1.4 Specifying names.
Note the following rules:

• If the same constraint name (including referential constraint names) already exists in the same schema,
executing the CREATE TABLE statement will result in an error.

• If this specification is omitted, a name of the following form is generated as the constraint name:
PRIMARY_nnnnnnnn
nnnnnnnn: The table ID of the table for which the primary key is to be defined, converted to a character string
of eight hexadecimal digits
If a constraint with the same name as the generated name already exists in the same schema, executing the
CREATE TABLE statement will result in an error. It is therefore recommended that you avoid the above format
when specifying constraint names (including referential constraint names) or index identifiers.

● column-name [Common]
Specify the names of the columns that are to make up the primary key. Note the following rules:

• A maximum of 16 column names can be specified.

• If multiple column names are specified, each must be unique.

When the CREATE TABLE statement is executed, it automatically defines a B-tree index as a unique index consisting
of the specified columns. This B-tree index is subject to the following rules:

• If only one column name is specified, a single-column index is defined.

• If multiple column names are specified, a multiple-column index is defined.

• The index identifier will be the same as the constraint name.

• If the index identifier, which is the same as the constraint name, already exists in the same schema, executing
the CREATE TABLE statement will result in an error.

Note
The B-tree index that is automatically defined here is subject to the same rules as a B-tree index defined
by the CREATE INDEX statement.

● {ASC|DESC} [Common]
Specifies the sort order of the key values of the B-tree index corresponding to the primary key.

3. Definition SQL

Hitachi Advanced Database SQL Reference 111



ASC:
Specify this if you want the key values of the B-tree index corresponding to the primary key to be sorted in
ascending order.

DESC:
Specify this if you want the key values of the B-tree index corresponding to the primary key to be sorted in
descending order.
If you specify DESC for a single-column index, it will be ignored. The key values of a single-column index are
always sorted in ascending order (it is assumed that ASC is specified).

If neither ASC nor DESC is specified, the system assumes that ASC is specified.

● IN DB-area-name [Common]
Specify the name of the DB area in which to store the B-tree index corresponding to the primary key.
If the IN DB-area-name specification is omitted, the B-tree index for the primary key is stored in the DB area
specified for the adb_sql_default_dbarea_shared operand in the server definition.
Note that if the IN DB-area-name specification is omitted when either of the following conditions is met, the
CREATE TABLE statement will result in an error:

• Specification of the adb_sql_default_dbarea_shared operand is omitted in the server definition.

• A non-existent DB area or a DB area other than a data DB area is specified for the
adb_sql_default_dbarea_shared operand in the server definition.

● PCTFREE=percentage-of-unused-area [Common]
~ <unsigned integer> ((0 to 99)) <<30>> (unit: %)
Specifies the percentage of unused area to maintain in the index pages of the B-tree index corresponding to the
primary key. Specify a percentage from 0 to 99. If omitted, 30% is assumed.
When data is imported and the B-tree index for the primary key is created, the B-tree index data will be stored
leaving the percentage of unused area specified here. The B-Tree index data will also be stored in this way when
the B-tree index for the primary key is rebuilt.
For details about the percentage of unused area in an index page, see Allocating an unused area inside a B-tree index
page (PCTFREE) or Allocating an unused area inside a text index page (PCTFREE) in the HADB Setup and
Operation Guide.

(g) referential-constraint-definition [Common]

referential-constraint-definition ::= [CONSTRAINT constraint-name] FOREIGN KEY (colum
n-name[,column-name]...)
                           REFERENCES table-name DISABLE

Specify this if you want to define a referential constraint (foreign key) for the base table. The foreign key can be defined
as a column (or combination of multiple columns) that references the primary key of another table.

For more information about the benefits of defining a foreign key, see Specifying a foreign key (FOREIGN KEY) in the
HADB Setup and Operation Guide.

Note
The columns that make up the foreign key and the columns that make up the primary key must be the same
in all of the following respects:

• The number of columns

3. Definition SQL

Hitachi Advanced Database SQL Reference 112



• The data type of each column

• The data length of each column

Note the following rules:

• A maximum of 255 foreign keys can be defined for one table.

• A maximum of 255 foreign keys can be defined that reference one primary key.

• You cannot define multiple referential constraints that reference the same primary key from the same foreign key.
In this context, the same foreign key means a foreign key that satisfies the following condition:

• The columns that make up the foreign key are the same

A foreign key composed of multiple columns is considered the same foreign key even when the order of columns
differs from the order in the definition.

● CONSTRAINT constraint-name [Common]
Specifies a name for the referential constraint definition specified here. For rules on specifying a constraint name,
see (2) Rules for characters that can be used in names in 6.1.4 Specifying names.
Note the following rules:

• If the same constraint name (including uniqueness constraint names) exists in the same schema, executing the
CREATE TABLE statement will result in an error.

• If this specification is omitted, a name of the following form is generated as the constraint name:
FOREIGN_nnnnnnnn_YYYYMMDDhhmmssth
nnnnnnnn: The table ID of the table for which the foreign key is to be defined, converted to a character string
of eight hexadecimal digits
YYYYMMDDhhmmssth: The time stamp when the foreign key was defined (output to the hundredth of a second)
If a constraint with the same name as the generated name exists in the same schema, executing the CREATE
TABLE statement will result in an error. It is therefore recommended that you avoid the above format when
specifying constraint names (including uniqueness constraint names) or index identifiers.

● column-name [Common]
Specifies the names of the columns that are to make up the foreign key.
Note the following rules:

• A maximum of 16 column names can be specified.

• If multiple column names are specified, each must be unique.

● table-name [Common]
Specifies the name of the referenced table (the base table where the primary key is defined).
Note the following rules:

• The referenced table cannot be the table where the foreign key is defined.

● DISABLE [Common]
This option (referential constraint check suppression) specifies to suppress checking of the foreign key referential
constraint.
This option must be specified. If it is not specified, the CREATE TABLE statement will result in an error.

(h) IN DB-area-name [Common]
Specifies the name of the DB area where the table is to be stored.

3. Definition SQL

Hitachi Advanced Database SQL Reference 113



If the IN DB-area-name specification is omitted, the table is stored in the DB area specified for the
adb_sql_default_dbarea_shared operand in the server definition.

Note that if the IN DB-area-name specification is omitted when either of the following conditions is met, the CREATE
TABLE statement will result in an error:

• Specification of the adb_sql_default_dbarea_shared operand is omitted in the server definition.

• A non-existent DB area or a DB area other than a data DB area is specified for the
adb_sql_default_dbarea_shared operand in the server definition.

(i) PCTFREE=percentage-of-unused-area [Row store table]
~ <unsigned integer> ((0 to 99)) <<30>> (unit: %)

Specifies the percentage of unused area to maintain in a data page (the pages that store the data for the table). Specify
a percentage from 0 to 99. If omitted, 30 (%) is assumed.

When data is imported, the data will be stored leaving the percentage of unused area specified here.

Note that when you add a row with an INSERT statement, or update a row with an UPDATE statement, the percentage
of unused area specified here does not apply (the added or updated data is stored in the unused area reserved by this
keyword).

For details about the percentage of unused area in a data page, see Allocating an unused area inside the data page
(PCTFREE) [Row store table] in the HADB Setup and Operation Guide.

Note that PCTFREE cannot be specified more than once.

(j) BRANCH ALL [Row store table]
Branch all the VARCHAR-type and VARBINARY-type column data defined in the table.

For information about cases where BRANCH ALL is appropriate, see Branch specification for column data of variable-
length data types (BRANCH) [Row store table] in the HADB Setup and Operation Guide.

Note that you cannot specify BRANCH ALL when FIX is specified.

(k) chunk-specification [Common]

chunk-specification ::= CHUNK[=maximum-number-of-chunks]
                       [chunk-archive-specification]
  chunk-archive-specification ::= ARCHIVABLE
                                RANGECOLUMN=column-name
                               [RANGEINDEXNAME=index-identifier]
                               [IN DB-area-name]
                                ARCHIVEDIR=archive-directory-name

Use the preceding specification when you define a base table as a multi-chunk table.

For details about designing a multi-chunk table, see Points to consider in defining a multi-chunk table in the HADB
Setup and Operation Guide.

The following table shows the relationship between the types of multi-chunk tables and the functions that can be used.

3. Definition SQL

Hitachi Advanced Database SQL Reference 114



Table 3-9: Types of multi-chunk tables and the functions that can be used

Function name Multi-chunk table type

Regular multi-chunk table Archivable multi-chunk
table

Background-import facility Y Y

Deleting all rows in a chunk by using the PURGE CHUNK statement Y Y

Chunk archiving function N Y

Legend:
Y: Can be used.
N: Cannot be used.

For details about the background-import facility and chunk archiving function, see the following sections in the HADB
Setup and Operation Guide: Background-import facility and Chunk archiving function (compressing data in a chunk).

● CHUNK[=maximum-number-of-chunks] [Common]
~ <unsigned integer> ((2 to 30,000)) <<256>> (unit: chunks)
Specify the maximum number of chunks in a multi-chunk table. If you specify only the keyword CHUNK without
specifying a value (maximum-number-of-chunks), the system assumes that 256 is set as maximum-number-of-
chunks.
If you define a regular multi-chunk table, specify only CHUNK=maximum-number-of-chunks.
If you define an archivable multi-chunk table, specify CHUNK=maximum-number-of-chunks and the chunk-archive
specification described later.

● chunk-archive-specification [Row store table]

chunk-archive-specification ::= ARCHIVABLE
                              RANGECOLUMN=column-name
                             [RANGEINDEXNAME=index-identifier]
                             [IN DB-area-name]
                              ARCHIVEDIR=archive-directory-name

Use the preceding specification when you define a base table as an archivable multi-chunk table.

• RANGECOLUMN=column-name
Specify a column name. The column specified here becomes the archive range column.
You cannot use columns that have the following data types as archive range columns:

• CHARACTER type (only if the defined length is 33 bytes or more)

• VARCHAR type

• BINARY type

• VARBINARY type

Note that NOT NULL constraint is set for archive range columns.

• RANGEINDEXNAME=index-identifier
When the CREATE TABLE statement is run, the HADB server automatically defines a range index whose
columns include an archive range column. Specify the index identifier to be assigned to this range index.
If RANGEINDEXNAME is not specified, the HADB server determines the index identifier in the following format:

ARCHIVE_RANGE_INDEX_nnnnnnnn

3. Definition SQL

Hitachi Advanced Database SQL Reference 115



nnnnnnnn is an eight-digit character string that represents the ID of the archivable multi-chunk table in
hexadecimal notation.
If the automatically determined index identifier already exists in the same schema, the CREATE TABLE statement
will result in an error. Therefore, if you use the CREATE INDEX statement to define an index, we recommend
that you do not use a name whose format resembles the preceding format.

Note
The range index that is automatically defined here is subject to the same rules as a range index
defined by the CREATE INDEX statement.

• IN DB-area-name
Specify the name of the DB area in which to store the range indexes that are automatically defined.
If the IN DB-area-name specification is omitted, automatically defined range indexes are stored in the DB area
specified for the adb_sql_default_dbarea_shared operand in the server definition.
Note that if the IN DB-area-name specification is omitted when either of the following conditions is met, the
CREATE TABLE statement will result in an error:

• Specification of the adb_sql_default_dbarea_shared operand is omitted in the server definition.

• A non-existent DB area is specified for the adb_sql_default_dbarea_shared operand in the server
definition.

• ARCHIVEDIR=archive-directory-name
Specify the absolute path name of the archive directory in which to store archive files.
The following rules apply:

• Specify the archive directory name in the character string literal format. For details about character string
literals, see 6.3 Literals.

• Specify an existent directory for the archive directory. Make sure that read, write, and execution permissions
for the HADB administrator are set on the directory that you specify.
Also, make sure that execution permission for the HADB administrator is set on all directories that are
included in the path of the archive directory.
(Example) If the archive directory is /HADB/archive:
For the /HADB/archive directory, read, write, and execution permissions must be set.
For the / directory and the /HADB directory, the execution permission is necessary.

• The following directories cannot be used as the archive directory:
• Server directory
• Subdirectory of a server directory
• Directory that contains a server directory
• DB directory
• Subdirectory of a DB directory
• Directory that contains a DB directory
• Root directory
The following shows examples of directories that can be and cannot be used as the archive directory when
the DB directory is /HADB/db:

3. Definition SQL

Hitachi Advanced Database SQL Reference 116



Directory Reason

Example of directory that can
be used as the archive
directory

/HADB/archive None.

Example of directory that
cannot be used as the archive
directory

/HADB/db This directory is the same as the DB directory.

/HADB/db/archive This directory is a subdirectory of the DB
directory.

/HADB This directory contains the DB directory.

• Do not specify (as the archive directory) a directory in which installation data was stored when the HADB
server was installed.

• The name of the archive directory must be 1 to 400 bytes long except the heading and trailing spaces.

Note
If you specify a directory name that begins and/or ends with spaces, these spaces are deleted
(the resulting character string is used as the archive directory name).

• Make sure that each element of the archive directory name is no more than NAME_MAX bytes long. The
NAME_MAX value differs depending on the environment.

If a symbolic link is specified as the archive directory name, the system checks whether the absolute path name
that the symbolic link substitutes for obeys the rules that are described here.
About the multi-node function:
If the multi-node function is enabled, note the following points:

• Use the NFS or other means to share the archive directory by all nodes. Note that it must have been shared
by all nodes when the CREATE TABLE statement is run.

• On the master node, when the CREATE TABLE statement is run, a check to see whether the archive directory
name obeys the specification rules that are described here is conducted. This check is not conducted on the
slave nodes. Therefore, after the CREATE TABLE statement, check the archive directory name on each slave
node.

About the location table that is defined when an archivable multi-chunk table is defined
If an archivable multi-chunk table is defined by running the CREATE TABLE statement, the HADB server
automatically defines the location table and the index of the location table. The HADB server uses the location
table and index. Therefore, no user can directly manipulate, redefine, or delete the location table or index. For
details about the location table, see Searching an archivable multi-chunk table in the HADB Setup and Operation
Guide.
The location table and its index are stored in the same DB area as the archivable multi-chunk table.
The names of the location table and its index are determined according to the rules that are described in the
following table.

Table 3-10: Naming rules for the location table and location table index

Item Naming rule Information managed by
the index

Columns in
the index

Location table "HADB"."LOCATION_TABL
E_nnnnnnnn"

-- --

Location table index "HADB"."LOCATION_INDE
X_nnnnnnnn_CHUNK_ID"

Manages the chunk ID of the
chunk that corresponds to the
archive file.

CHUNK_ID

3. Definition SQL

Hitachi Advanced Database SQL Reference 117



Item Naming rule Information managed by
the index

Columns in
the index

"HADB"."LOCATION_INDE
X_nnnnnnnn_RANGE_01"

Manages the range (upper and
lower limits) of values in the
archive range column of data
stored in the archive file.

• RANGE_MA
X

• RANGE_MI
N

"HADB"."LOCATION_INDE
X_nnnnnnnn_RANGE_02"

Manages the lower limit of
values in the archive range
column of data stored in the
archive file.

RANGE_MIN

Legend:
--: Not applicable.

Note:
nnnnnnnn is an eight-digit character string that represents the ID of the archivable multi-chunk table in
hexadecimal notation.
The schema name of the location table and location table index is HADB.

(l) STORAGE FORMAT {ROW|COLUMN} [Common]
Specifies the table-data storage format of a table to be defined.

ROW:
Specify this keyword when you define a table that has row store format as the table-data storage format. If ROW is
specified, the table is defined as a row store table.

COLUMN:
Specify this keyword when you define a table that has column store format as the table-data storage format. If
COLUMN is specified, the table is defined as a column store table.

If the STORAGE FORMAT specification is omitted, the system assumes that ROW is specified.

Note
• For details about the row store table, row store format, column store table, and column store format,

see Row store tables and column store tables in the HADB Setup and Operation Guide.

• The specification of this option is called table-storage-format specification.

(3) Privileges required at execution
To execute the CREATE TABLE statement, the CONNECT privilege and schema definition privilege are required.

If you also want to specify a referential constraint (foreign key), the REFERENCES privilege on the referenced table is
required.

(4) Rules
1. A base table can only be defined in the schema owned by the current user (the HADB user whose authorization

identifier is currently connected to the HADB server). You cannot define a base table in a schema owned by another
HADB user.

3. Definition SQL

Hitachi Advanced Database SQL Reference 118



2. A maximum of 4,096 base tables can be defined in the system (excluding the base tables of dictionary tables and
system tables).

3. A maximum of 200 base tables can be stored in one DB area.

4. A maximum of 1,000 columns can be defined in one table.

5. Columns must be defined such that the sum of the sizes of all columns in the base table (the row length) satisfies
the following inequality:

• If the base table is a row store table:

ROWSZ (row-length) ≤ page-size - 56

• If the base table is a column store table:

ROWSZ (row-length) ≤ page-size - 80

For details about the formula for calculating ROWSZ (row length), see Determining the number of pages for storing
each type of row in the HADB Setup and Operation Guide.

6. If you use a chunk specification, you cannot define a primary key. Also, if you define a primary key, you cannot use
a chunk specification.

7. You cannot define a primary key on a column on which a B-tree index cannot be defined.

8. You can define a primary key only when the following conditions are met. You cannot define a primary key unless
the following conditions are met.

• For a primary key consisting of one column

Defined length of column in primary key#1 ≤ MIN{(a ÷ 3) - 128, 4,036} (unit: bytes)

• For a primary key consisting of two or more columns

Total defined length of columns in primary key#2 ≤ MIN{(a ÷ 3) - 128, 4,036} (unit:
 bytes)

a: Page size of DB area where B-tree index corresponding to primary key is to be stored

#1
For details about the defined length of columns, see Table 3-5: Size of a column that comprises a single-column
index.

#2
For details about the defined length of each column, see Table 3-6: Size of columns that comprise a multiple-
column index. Then, obtain the total defined size of columns that comprise the primary key.

9. The tables defined after a transaction is started cannot be accessed from the transaction.

(5) Examples
Examples 1 to 6 are examples of defining a row store table. Example 7 is an example of defining a column store table.

Example 1: Define a base table that is not a FIX table
Define a shops table (SHOPSLIST). Let the shops table's column structure, percentage of unused area, and so on,
be as follows:

• Shop code (SHOP_CODE): CHAR(8)
• Region code (RGN_CODE): CHAR(6)
• Shop name (SHOP_NAME): VARCHAR(20)

3. Definition SQL

Hitachi Advanced Database SQL Reference 119



• Shop telephone number (TEL_NO): CHAR(10)
• Shop address (ADDRESS): VARCHAR(300)
• Define the NOT NULL constraint for every column.

• For storing, branch the data in the shop's address column (ADDRESS).

• Store the shops table in DB area DBAREA01.

• Let the percentage of unused area in a data page be 40%.

• Let the maximum number of chunks be 100.

CREATE TABLE "SHOPSLIST"
        ("SHOP_CODE" CHAR(8) NOT NULL,
         "RGN_CODE" CHAR(6) NOT NULL,
         "SHOP_NAME" VARCHAR(20) NOT NULL,
         "TEL_NO" CHAR(10) NOT NULL,
         "ADDRESS" VARCHAR(300) NOT NULL BRANCH YES)
      IN "DBAREA01"
      PCTFREE=40
      CHUNK=100

Example 2: Define a FIX table
Define a sales history table (SALESLIST). Let the sales history table's column structure, percentage of unused area,
and so on, be as follows:

• Customer ID (USERID): CHAR(6)
• Product code (PUR-CODE): CHAR(4)
• Quantity purchased (PUR-NUM): SMALLINT
• Date of purchase (PUR-DATE): DATE
• Set a default column value for the date of purchase (PUR-DATE) column by specifying a DEFAULT clause.

• Store the sales history table in the DB area DBAREA01.

• Let the percentage of unused area in a data page be 20%.

• Specify FIX because the row length is fixed.

• Let the maximum number of chunks be 200.

CREATE FIX TABLE "SALESLIST"
        ("USERID" CHAR(6),
         "PUR-CODE" CHAR(4),
         "PUR-NUM" SMALLINT,
         "PUR-DATE" DATE DEFAULT CURRENT_DATE)
      IN "DBAREA01"
      PCTFREE=20
      CHUNK=200

Example 3: Define a base table with a primary key
Define a sales history table (SALESLIST). Let the sales history table's column structure, percentage of unused area,
and so on, be as follows:

• Customer ID (USERID): CHAR(6)
• Product code (PUR-CODE): CHAR(4)
• Quantity purchased (PUR-NUM): SMALLINT
• Date of purchase (PUR-DATE): DATE

3. Definition SQL

Hitachi Advanced Database SQL Reference 120



• Store the sales history table in the DB area DBAREA01.

• Let the percentage of unused area in a data page be 20%.

• Specify FIX because the row length is fixed.

• Define a primary key (let the customer ID column (USERID) be the column that comprises the primary key).

• Store the B-tree index corresponding to the primary key in the DB area DBAREA02.

• Set the percentage of unused area in the index page of the B-tree index corresponding to the primary key to 20%.

CREATE FIX TABLE "SALESLIST"
      ("USERID" CHAR(6),
       "PUR-CODE" CHAR(4),
       "PUR-NUM" SMALLINT,
       "PUR-DATE" DATE,
       CONSTRAINT "PK-USERID" PRIMARY KEY ("USERID" ASC)
            IN "DBAREA02" PCTFREE=20)
    IN "DBAREA01"
    PCTFREE=20

The underlined portion indicates the primary key definition (uniqueness constraint definition).

Example 4: Define a base table with a primary key
Define a shops table (SHOPSLIST). Let the shops table's column structure, percentage of unused area, and so on,
be as follows:

• Shop code (SHOP_CODE): CHAR(8)
• Region code (RGN_CODE): CHAR(6)
• Shop name (SHOP_NAME): VARCHAR(20)
• Shop telephone number (TEL_NO): CHAR(10)
• Shop address (ADDRESS): VARCHAR(300)
• For storing, branch the data in the shop's address column (ADDRESS).

• Store the shops table in DB area DBAREA01.

• Let the percentage of unused area in a data page be 40%.

• Define a primary key (let the shop code column (SHOP_CODE) and the region code column (RGN_CODE) be
the columns that comprise the primary key).

• Store the B-tree index corresponding to the primary key in the DB area DBAREA02.

• Set the percentage of unused area in the index page of the B-tree index corresponding to the primary key to 20%.

CREATE TABLE "SHOPSLIST"
      ("SHOP_CODE" CHAR(8),
       "RGN_CODE" CHAR(6),
       "SHOP_NAME" VARCHAR(20),
       "TEL_NO" CHAR(10),
       "ADDRESS" VARCHAR(300) BRANCH YES,
       CONSTRAINT "PK-CODE" PRIMARY KEY ("SHOP_CODE" ASC,"RGN_CODE" ASC)
            IN "DBAREA02" PCTFREE=20)
    IN "DBAREA01"
    PCTFREE=40

The underlined portion indicates the primary key definition (uniqueness constraint definition).

3. Definition SQL

Hitachi Advanced Database SQL Reference 121



Example 5: Define a base table with a foreign key
Define a shops table (SHOPSLIST) and an employee table (EMPLOYEE). Define the primary key and foreign key
as follows:

• Define the primary key on the shops table (SHOPSLIST). The primary key will consist of the SHOP_CODE
column and the RGN_CODE column from the shops table (SHOPSLIST).

• Define the foreign key on the employee table (EMPLOYEE). The foreign key will consist of the SHOP_CODE
column and the RGN_CODE column from the employee table (EMPLOYEE).

■ Shops table (SHOPSLIST)

CREATE TABLE "SHOPSLIST"
      ("SHOP_CODE" CHAR(8),
       "RGN_CODE" CHAR(6),
       "SHOP_NAME" VARCHAR(20),
       "TEL_NO"    CHAR(10),
       "ADDRESS"   VARCHAR(300) BRANCH YES,
       CONSTRAINT "PK-CODE" PRIMARY KEY ("SHOP_CODE" ASC,"RGN_CODE" ASC)
              IN "DBAREA02" PCTFREE=20)
    IN "DBAREA01"
    PCTFREE=40

The underlined portion indicates the primary key definition.
■ Employee table (EMPLOYEE)

CREATE TABLE "EMPLOYEE"
      ("EMPLOYEE_CODE"    CHAR(8),
       "FIRST_NAME"       VARCHAR(8),
       "FIRST_NAME_YOMI"  VARCHAR(16),
       "FAMILY_NAME"      VARCHAR(8),
       "FAMILY_NAME_YOMI" VARCHAR(16),
       "SHOP_CODE"        CHAR(8),
       "RGN_CODE"        CHAR(6),
       "EMPLOYEE_TYPE"    CHAR(1),
       "TEL_NO"           CHAR(10),
       "ADDRESS"          VARCHAR(300) BRANCH YES,
       CONSTRAINT "PK-EMPLOYEE_CODE" PRIMARY KEY ("EMPLOYEE_CODE" ASC)
             IN "DBAREA02" PCTFREE=20,
       CONSTRAINT "FK-SHOP_CODE" FOREIGN KEY ("SHOP_CODE","RGN_CODE")
             REFERENCES "SHOPSLIST" DISABLE)
    IN "DBAREA01"
    PCTFREE=40

The underlined portion indicates the foreign key (referential constraint) definition.

Example 6: Define an archivable multi-chunk table
Define a receipt table (RECEIPT) as an archivable multi-chunk table. Specify the chunk-related settings under the
following conditions:

• Let the maximum number of chunks be 120.

• The RECORD_DAY column is used as the archive range column.

• The /mnt/nfs/archivedir directory is used as the archive directory.

CREATE TABLE "RECEIPT"
      ("RID" INTEGER,
       "SHOP_CODE"      CHAR(8),
       "RGN_CODE"       CHAR(6),
       "EMPLOYEE_CODE"  CHAR(8),
       "CUSTOMER_CODE"  CHAR(8),
       "RECORD_DAY"     DATE,

3. Definition SQL

Hitachi Advanced Database SQL Reference 122



       "ITEM_CODE"      CHAR(8),
       "ITEM_PRICE"     INTEGER)
    IN "DBAREA01"
    PCTFREE=30
    CHUNK=120
      ARCHIVABLE RANGECOLUMN="RECORD_DAY" IN "DBAREA02"
                 ARCHIVEDIR='/mnt/nfs/archivedir'

In the preceding example, the underlined parts are the settings for defining an archivable multi-chunk table.

Example 7: Define a column store table
Define a receipt table (RECEIPT) as a column store table.

CREATE TABLE "RECEIPT"
      ("RID"            INTEGER,
       "SHOP_CODE"      CHAR(8),
       "RGN_CODE"       CHAR(6),
       "EMPLOYEE_CODE"  CHAR(8),
       "CUSTOMER_CODE"  CHAR(8),
       "RECORD_DAY"     DATE,
       "ITEM_CODE"      CHAR(8),
       "ITEM_PRICE"     INTEGER)
    IN "DBAREA01"
    CHUNK=120
    STORAGE FORMAT COLUMN

In the preceding example, the underlined portion indicates a specification specific to column store tables.

3. Definition SQL

Hitachi Advanced Database SQL Reference 123



3.8 CREATE USER (create an HADB user)

This section describes the specification format and rules for the CREATE USER statement.

3.8.1 Specification format and rules for the CREATE USER statement
The CREATE USER statement creates an HADB user.

Because no privileges are granted to the HADB user that is created, the GRANT statement must be used to grant the
required privileges to the HADB user.

(1) Specification format
CREATE-USER-statement ::= CREATE USER authorization-identifier IDENTIFIED BY password

(2) Explanation of specification format
 authorization-identifier

Specifies the authorization identifier of the HADB user to be created.
The rules for specifying an authorization identifier are as follows:

• The authorization identifier can include single-byte uppercase and lowercase letters, numbers, and the backslash
(\), hash mark (#), and at mark (@) characters.

• If you want to use lowercase letters in the authorization identifier, enclose the authorization identifier in double
quotation marks (").
Example: CREATE USER "ADBuser01" ...
When not enclosed in double quotation marks, lowercase letters are treated as uppercase. For example,
ADBuser01 is treated as ADBUSER01.

• Because an authorization identifier is specified as a name, we recommend that you enclose it in double quotation
marks (").

• You cannot specify ALL, HADB, MASTER, or PUBLIC as an authorization identifier.

• The authorization identifier cannot exceed 100 characters (100 bytes).

For details about the rules for specifying an authorization identifier, see 6.1.4 Specifying names.

 IDENTIFIED BY password
Specify a password for the HADB user that is to be created.
The rules for specifying a password are as follows:

• The password can include single-byte uppercase and lowercase letters, numbers, backslashes (\), as well as the
following characters:
@ ` ! " # $ % & ' ( ) * : + ; [ ] { } , = < > | - . ^ ~ / ? _

• Specify the password in the form of a character string literal. Therefore, you must enclose the password in single
quotation marks. The following are examples:
Example 1: Specify Password01 as the password
IDENTIFIED BY 'Password01'
Example 2: Specify Pass'01 as the password

3. Definition SQL

Hitachi Advanced Database SQL Reference 124



IDENTIFIED BY 'Pass''01'
If the password itself includes a single quotation mark ('), specify two single quotation marks to represent a
single quotation mark (''), as shown in the example above.
For rules on specifying a character string literal, see Table 6-10: Description formats and assumed data types
of literals.

• The password cannot be empty. That is, the following is not permitted:
IDENTIFIED BY ''

• The password cannot exceed 255 characters (255 bytes).

Note
• If you are using the JDBC driver, we recommend that you not use the following character in the

password:
&

• If you are using the ODBC driver, we recommend that you not use the following characters in the
password:
[ ] { } ( ) , ; ? * = ! @

(3) Privileges required at execution
To execute the CREATE USER statement, the DBA privilege and the CONNECT privilege are required.

(4) Rules
A maximum of 30,000 HADB users can be created.

(5) Examples
Example

Create an HADB user with the following authorization identifier and password:

• Authorization identifier: ADBUSER01
• Password: #HelloHADB_01
CREATE USER "ADBUSER01" IDENTIFIED BY '#HelloHADB_01'

3. Definition SQL

Hitachi Advanced Database SQL Reference 125



3.9 CREATE VIEW (define a viewed table)

This section describes the specification format and rules for the CREATE VIEW statement.

3.9.1 Specification format and rules for the CREATE VIEW statement
The CREATE VIEW statement defines a viewed table.

(1) Specification format
CREATE-VIEW-statement ::= CREATE VIEW table-name [(column-name-list)] AS query-expres
sion [LIMIT-clause]
 
  column-name-list ::= column-name[,column-name]...

(2) Explanation of specification format
 table-name

Specifies the name of the viewed table to be defined. You cannot specify a name that is the same as a base table, or
a viewed table that has already been defined. For rules on specifying a table name, see (2) Table name specification
format in 6.1.5 Qualifying a name.

 column-name-list

column-name-list ::= column-name[,column-name]...

Specifies the columns that will make up the viewed table.

column-name:
Specifies the name of a column that will make up the viewed table. The column names must be unique within
a single viewed table.
Do not specify a character string in the EXPnnnn_NO_NAME format as a column name. Such a column name
might duplicate a derived column name that is automatically set by HADB. In this format, nnnn is an unsigned
integer in the range from 0000 to 9999.

Note the following points concerning column names:

• The number of column names specified in column-name-list must be the same as the number of columns in the
table derived by the query expression.

• A maximum of 1,000 columns can be specified in column-name-list.

• If column-name-list is omitted, the names of the columns that make up the viewed table will be the same as the
names of the columns derived by the query expression. For details about derived column names, see 6.9 Derived
column names.

• You must specify column-name-list in the following circumstances:
• If the derived column names are not unique
• If one or more columns have no corresponding derived column name

● AS query-expression [LIMIT-clause]
Specifies a query expression that determines the contents that will make up the viewed table. For details about query
expressions, see 7.1 Query expression.

3. Definition SQL

Hitachi Advanced Database SQL Reference 126



All tables specified in the query expression become tables upon which the viewed tables will be based (underlying
tables).
The following items cannot be specified in the query expression:

• [table-specification.]ROW
• Dynamic parameters

Note
If you execute the CREATE VIEW statement with * or table-specification.* in the selection list in the
outermost query specification in the query expression, and then add a column to the underlying table,
that column is not added to the viewed table.

LIMIT-clause:
Specifies the maximum number of rows that will be retrieved from the results of the query expression.
For details about the LIMIT clause, see 7.9 LIMIT clause.

(3) Privileges required at execution
To execute the CREATE VIEW statement, all of the following privileges are required:

• CONNECT privilege

• Schema definition privilege

• SELECT privilege for all underlying tables that are to be specified in the query expression

(4) Rules
1. A maximum of 30,000 viewed tables can be defined in the system.

2. The maximum length of a CREATE VIEW statement is 64,000 bytes.

3. The total number of table names, derived tables, and table function derived tables in table references specified in
the CREATE VIEW statement cannot exceed 2,047.
Note that if the following items are specified in a table reference, the total number of derived tables is checked for
the SQL statement after those items are equivalently exchanged into internal derived tables:

• Query name

• Viewed tables
If a viewed table is specified in the CREATE VIEW statement, the total number of derived tables is checked
after the viewed table specified in the CREATE VIEW statement is equivalently exchanged into a derived table.

For rules and examples of how to count the number of tables, derived tables, and table function derived tables
specified in an SQL statement, see (4) Rules in 4.4.1 Specification format and rules for the SELECT statement.

4. The total number of query specifications and table value constructors that can be included in the CREATE VIEW
statement cannot exceed 1,023.

5. You cannot define a viewed table with a schema name that is different than the HADB user whose authorization
identifier is connected to the HADB server.

6. The columns that comprise the viewed table will have the same attributes as the columns in the table from which
the viewed table is derived as the result of executing the query expression in the CREATE VIEW statement. Note
that these attributes are the data type, data length, and whether a NOT NULL constraint exists.

3. Definition SQL

Hitachi Advanced Database SQL Reference 127



7. Viewed tables include read-only viewed tables and updatable viewed tables. You cannot insert, update, or delete
rows in a read-only viewed table.

8. Whether a viewed table will be a read-only viewed table or an updatable viewed table depends on what is specified
in AS query-expression. It will be a read-only viewed table in the following circumstances:

• If the outermost query specification includes a table join, a joined table, a derived table#, table function
derived table, SELECT DISTINCT, a GROUP BY clause, a HAVING clause, a window function, or a set function

• If the same column from the underlying table is specified multiple times in the selection expression in the
outermost query specification

• If something other than a column specification is specified in the selection expression in the outermost query
specification

• If the same table as the table specified in the FROM clause in the outermost query specification is specified in
the FROM clause in a subquery

• If a read-only viewed table is specified in the FROM clause in the outermost query specification

• If you specify a set operation with the outermost query specification as an operand

• If you specify a LIMIT clause

• If a recursive query name is specified in the FROM clause in the outermost query specification

• If a dictionary table or system table is specified for the FROM clause in the outermost query specification

#
If the viewed table no longer meets the conditions for being a read-only viewed table once the derived table is
expanded, it will become an updatable viewed table. For the rules about derived table expansion, see 7.30.3 
Rules for derived table expansion.

You can check whether the viewed table you defined is a read-only viewed table or an updatable viewed table by
searching the dictionary table. For details on how to check this, see Checking whether a viewed table is updatable
in the HADB Setup and Operation Guide.

9. The access privilege for the viewed table that you define is determined based on the following rules:

• When an HADB user defines a viewed table, the user's access privileges to the viewed table are determined by
the user's access privileges to all the underlying tables. For example, if you want to have the INSERT privilege
on the viewed table you are defining, you must have the INSERT privilege on all of the underlying tables.

• This item explains the rule to determine the access privilege for a viewed table defined by specifying either of
the following elements in the query expression of the CREATE VIEW statement:

• Table value constructors

• Table function derived table

Any HADB users who define a viewed table for a derived table derived by a table value constructor or for a
table function derived table are assumed to have an access privilege with the grant option. Therefore, if another
underlying table of the viewed table is specified in the query expression of the CREATE VIEW statement, the
access privilege for the defined viewed table is as described later.
Examples:

• If a table value constructor and an underlying table having access privileges with the grant option are specified
in the query expression of the CREATE VIEW statement
For the viewed table, the access privilege that overlaps between the access privilege for the derived table
derived by the table value constructor and the access privilege for the underlying table of the viewed table
is applied. In this case, therefore, the HADB user who defines a viewed table will have the access privilege
with the grant option for the viewed table.

3. Definition SQL

Hitachi Advanced Database SQL Reference 128



• If a table value constructor and an underlying table that has only the SELECT privilege are specified in the
query expression of the CREATE VIEW statement
For the viewed table, the access privilege that overlaps between the access privilege for the derived table
derived by the table value constructor and the access privilege for the underlying table of the viewed table
is applied. In this case, therefore, the HADB user who defines a viewed table will have only the SELECT
privilege for the viewed table.

10. An HADB user who wants to grant an access privilege for a viewed table to another HADB user must have an access
privilege with the grant option for all underlying tables of that viewed table.

11. When a new access privilege for an underlying table is granted, the access privilege for the viewed tables that depend
on the underlying table is also granted. (Consequently, propagation of access privileges will occur.) For example,
assume that HADB user A has defined viewed table A.V1 by using table X.T1 as the underlying table, and viewed
table A.V2 by using viewed table A.V1 as the underlying table. In this case, if the INSERT privilege for table
X.T1 is granted to HADB user A, INSERT privilege for viewed tables A.V1 and A.V2 is also granted to HADB
user A.

12. If the access privilege for an underlying table is revoked, the access privilege for the viewed tables that depend on
the underlying table is also revoked.

13. If you define a viewed table by specifying the scalar function CONTAINS (with synonym-search specification) in
the query expression of the CREATE VIEW statement, the following rules apply:

• If you delete the synonym dictionary that was specified in the synonym-search specification, an error occurs
when the viewed table is accessed.

• If you update the synonym dictionary that was specified in the synonym-search specification, the updates are
applied to the viewed table that you define.

14. Assume that you have defined a viewed table for which the query name in the WITH clause specified in the query
expression in the CREATE VIEW statement is not referenced in the CREATE VIEW statement. In this case, when
you search the viewed table, the following rules apply. Also, the following rules apply when you specify the viewed
table in another CREATE VIEW statement.

• The upper limit check on the number of constituent elements is not conducted for the number of constituent
elements in the query expression body for a query name that is not referenced in the CREATE VIEW statement.

• No lock is obtained for any tables specified in the query expression body for a query name that is not referenced
in the CREATE VIEW statement.

The following shows examples.
(Example) When a viewed table is defined

CREATE VIEW "V1"
    AS WITH "Q1" AS (SELECT "T1"."C1","T2"."C2" FROM "T1","T2")
       SELECT * FROM "T3"

[Explanation]
The rules shown earlier are not applied when a viewed table is defined. Therefore, the number of queries specified
in the CREATE VIEW statement is 2 (the query corresponding to query name Q1 and its main query). Also, the
number of specified tables is 3 (base tables T1, T2, and T3).

(Example) When a viewed table is searched

SELECT * FROM "V1"

3. Definition SQL

Hitachi Advanced Database SQL Reference 129



[Explanation]

• The rules shown earlier are applied when a viewed table is searched. Therefore, the number of queries
specified in the SELECT statement is 2 (the main query and derived query for the derived table equivalently
exchanged from viewed table V1).

• The number of specified tables is 2 (the derived table equivalently exchanged from viewed table V1 and
base table T3 in the derived query for the derived table). The upper limit check on the number of queries
and tables that can be specified in one SQL statement is conducted based on these rules.

• For base tables T1 and T2, no lock is obtained.

15. In the query expression of the CREATE VIEW statement, subqueries can be specified in a nested form. In this case,
the subquery nesting depth must not exceed 31. Note that if the table specified in the FROM clause is a viewed table,
the subquery nesting depth must not exceed 31 after HADB generates the internal derived table specified in the
underlying query expression. For details, see (a) Common rules for subqueries in (4) Rules in 7.3.1 Specification
format and rules for subqueries.
Example 1:

CREATE VIEW "V1"
  AS SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (
     SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (
     SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (
     SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (
     SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (
     SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (
     SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (
     SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (
     SELECT * FROM (SELECT * FROM "T1") AS DT32
     ) AS DT31 ) AS DT30 ) AS DT29 ) AS DT28 ) AS DT27 ) AS DT26 ) AS DT25 ) AS DT
24
     ) AS DT23 ) AS DT22 ) AS DT21 ) AS DT20 ) AS DT19 ) AS DT18 ) AS DT17 ) AS DT
16
     ) AS DT15 ) AS DT14 ) AS DT13 ) AS DT12 ) AS DT11 ) AS DT10 ) AS DT9 ) AS DT8
     ) AS DT7 ) AS DT6 ) AS DT5 ) AS DT4 ) AS DT3 ) AS DT2 ) AS DT1 ) AS DT0

In the preceding example, the subquery nesting depth of viewed table V1 is 32. In this case, because the maximum
nesting depth is exceeded, the CREATE VIEW statement will result in an error.
Note that in this example, T1 is the base table.
Example 2:

CREATE VIEW "V2"           <== Viewed table V2
  AS SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (
     SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (
     SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (
     SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (
     SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (
     SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (
     SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (
     SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM "T1") AS DT30
     ) AS DT29 ) AS DT28 ) AS DT27 ) AS DT26 ) AS DT25 ) AS DT24 ) AS DT23 ) AS DT
22
     ) AS DT21 ) AS DT20 ) AS DT19 ) AS DT18 ) AS DT17 ) AS DT16 ) AS DT15 ) AS DT
14
     ) AS DT13 ) AS DT12 ) AS DT11 ) AS DT10 ) AS DT9 ) AS DT8 ) AS DT7 ) AS DT6
     ) AS DT5 ) AS DT4 ) AS DT3 ) AS DT2 ) AS DT1 ) AS DT0
CREATE VIEW "V3" AS SELECT * FROM "V2"       <== Viewed table V3
CREATE VIEW "V4" AS SELECT * FROM "V3"       <== Viewed table V4

• For viewed table V2, the subquery nesting depth is 30. Therefore, the CREATE VIEW statement can run.

3. Definition SQL

Hitachi Advanced Database SQL Reference 130



• For viewed table V3, the subquery nesting depth becomes 31 when the internal derived table is generated.
Therefore, the CREATE VIEW statement can run.

• For viewed table V4, the subquery nesting depth becomes 32 when the internal derived table is generated. In
this case, because the maximum nesting depth is exceeded, the CREATE VIEW statement will result in an error.

Note that in this example, T1 is the base table.

16. A viewed table whose view level is 33 cannot be specified in the query expression for the CREATE VIEW statement.

17. When the version of the HADB server is upgraded, the viewed tables that depend on dictionary tables or system
tables might be re-created automatically. For details about the conditions in which viewed tables are re-created, see
Re-creation of viewed tables in the event of a version upgrade in Notes on version upgrading in the HADB Setup
and Operation Guide.

18. The viewed tables defined after a transaction is started cannot be accessed from the transaction.

(5) Examples
Example 1

Define a viewed table of shops (VSHOPSLIST) from which you can retrieve all the columns in the shops table
(SHOPSLIST) except the address column (ADDRESS). Let the ordering and column names of the columns that
make up the viewed table of shops be as follows:

• Shop code (SHOP_CODE)

• Region code (RGN_CODE)

• Shop name (SHOP_NAME)

• Telephone number (TEL_NO)

CREATE VIEW "VSHOPSLIST" ("SHOP_CODE","RGN_CODE","SHOP_NAME","TEL_NO")
    AS SELECT "SHOP_CODE","RGN_CODE","SHOP_NAME","TEL_NO"
           FROM "SHOPSLIST"

The viewed table of shops (VSHOPSLIST) is an updatable viewed table.

Example 2
This example defines (as a viewed table) a sales table (VSALES) that obtains the maximum sales value
(QMAXSALES) for each product name (PUR-NAME) from the sales history table (SALESLIST) and product table
(PRODUCTSLIST). Let the structure of columns in the sales table (VSALES) be as follows:

• Product name (VPUR_NAME)

• Maximum sales value (VQMAXSALES)

■ Defining a viewed table

CREATE VIEW "VSALES" ("VPUR-NAME","VQMAXSALES")
    AS WITH "QT1"("QCODE","QMAXSALES") AS (SELECT "PUR-CODE",MAX("PRICE" * "QUANTI
TY")
                                             FROM "SALESLIST"
                                               GROUP BY "PUR-CODE")
       SELECT "PUR-NAME","QMAXSALES"
         FROM "QT1" INNER JOIN "PRODUCTSLIST" ON "QCODE"="PUR-CODE"

3. Definition SQL

Hitachi Advanced Database SQL Reference 131



■ Searching a viewed table

SELECT * FROM "VSALES"

3. Definition SQL

Hitachi Advanced Database SQL Reference 132



3.10 DROP AUDIT (delete the audit target definition)

This section describes the specification format and rules for the DROP AUDIT statement.

3.10.1 Specification format and rules for the DROP AUDIT statement
The DROP AUDIT statement deletes the audit target definition created by using the CREATE AUDIT statement.

Important
You can execute the DROP AUDIT statement when the audit trail facility is enabled. To check whether the
audit trail facility is enabled, execute the adbaudittrail -d command.

(1) Specification format
DROP-AUDIT-statement::=DROP AUDIT AUDITTYPE EVENT
                             FOR ANY OPERATION

(2) Explanation of specification format
● AUDITTYPE EVENT

Specify this if you want to delete the audit target definition created by specifying EVENT for AUDITTYPE in the
CREATE AUDIT statement. Specify this when you stop outputting an audit trail about the final event results.

● FOR ANY OPERATION
Specify this if you want to exclude the events listed in Table 3-3: Audit-target events from the audit targets.
Specify this when you delete the audit target definition created by specifying FOR ANY OPERATION in the
CREATE AUDIT statement.

(3) Privileges required at execution
To execute the DROP AUDIT statement, the CONNECT privilege and the audit admin privilege are required.

(4) Rules
1. This statement can delete the audit target definition created by using the CREATE AUDIT statement.

2. An HADB server checks the audit target definition during the determination processing for outputting an audit trail.
Therefore, depending on the audit trail output time, an audit trail about operations that were performed before the
audit target definition is deleted might not be output although those operations are to be audited.

(5) Examples
Example

Delete the audit target definition created by using the CREATE AUDIT statement.

DROP AUDIT AUDITTYPE EVENT
           FOR ANY OPERATION

3. Definition SQL

Hitachi Advanced Database SQL Reference 133



3.11 DROP INDEX (delete an index)

This section describes the specification format and rules for the DROP INDEX statement.

3.11.1 Specification format and rules for the DROP INDEX statement
The DROP INDEX statement deletes an index (a B-tree index, text index or range index).

(1) Specification format
DROP-INDEX-statement ::= DROP INDEX index-name

(2) Explanation of specification format
 index-name

Specifies the index name of the index to be deleted. For rules on specifying an index name, see (3) Index name
specification format in 6.1.5 Qualifying a name.

(3) Privileges required at execution
To execute the DROP INDEX statement, the CONNECT privilege and schema definition privilege are required.

(4) Rules
1. You can only delete an index owned by the current user (the HADB user whose authorization identifier is currently

connected to the HADB server). You cannot delete an index owned by another HADB user.

2. You can delete an index that is defined for a table even if that table has data stored in it. When you delete the index,
the data stored in the table will not be deleted.

3. You cannot delete an index defined on the base tables of a dictionary table or system table.

4. When you delete an index, it also deletes the cost information for the index.

5. You cannot use the DROP INDEX statement to delete a B-tree index corresponding to a primary key. To delete the
index, use the DROP TABLE statement to delete both the index and table.

6. You cannot use the DROP INDEX statement to delete the range index that is defined for the archive range column.
To delete the index, use the DROP TABLE statement to delete both the index and table.

(5) Examples
Example 1

Delete the B-tree index (SHOP_CODE_IDX) defined for the shops table (SHOPSLIST).

DROP INDEX "SHOP_CODE_IDX"

Example 2
Delete the text index (ADDRESS_IDX) defined for the employee table (EMPLOYEE).

DROP INDEX "ADDRESS_IDX"

3. Definition SQL

Hitachi Advanced Database SQL Reference 134



Example 3
Delete the range index (SHOP_CODE_RIDX) defined for the shops table (SHOPSLIST).

DROP INDEX "SHOP_CODE_RIDX"

3. Definition SQL

Hitachi Advanced Database SQL Reference 135



3.12 DROP SCHEMA (delete a schema)

This section describes the specification format and rules for the DROP SCHEMA statement.

3.12.1 Specification format and rules for the DROP SCHEMA statement
The DROP SCHEMA statement deletes a schema.

Deleting a schema affects tables, indexes, and foreign keys as follows:

• The tables (base and viewed tables) and indexes that are defined in the schema are also deleted.

• If viewed tables defined in other schemata depend on the tables that will be deleted by the DROP SCHEMA statement,
those dependent viewed tables are also deleted (or invalidated).

• If the tables that will be deleted by the DROP SCHEMA statement are referenced by foreign keys defined in other
schemata, those foreign keys are also deleted.

(1) Specification format
DROP-SCHEMA-statement ::= DROP SCHEMA [schema-name] [drop-behavior]
 
  drop-behavior ::= {CASCADE | RESTRICT}

(2) Explanation of specification format
 schema-name

Specifies the name of the schema to be deleted. If the schema name is omitted, the authorization identifier of the
HADB user who executed the DROP SCHEMA statement is assumed.
For rules on specifying a schema name, see (1) Schema name specification format in 6.1.5 Qualifying a name.
Note that you cannot specify ALL, HADB, MASTER, or PUBLIC for schema-name.

• drop-behavior

drop-behavior ::= {CASCADE | RESTRICT}

Specifies whether to drop the schema if tables or indexes are defined in the schema to be deleted. The following
table describes the specifications for drop-behavior.

Specification of
drop-behavior

Description Handling of viewed tables in
other schemata

Handling of foreign keys in
other schemata

If drop-behavior is
omitted

Even if tables or indexes are defined
in the schema to be deleted, the
schema is deleted. In this case, any
tables or indexes defined in the
schema are also deleted.

If viewed tables defined in other
schemata depend on the tables that
will be deleted by the DROP SCHEMA
statement, those dependent viewed
tables are invalidated.

If the tables that will be deleted by the
DROP SCHEMA statement are
referenced by foreign keys defined in
other schemata, those foreign keys are
also deleted.

If CASCADE is
specified

If viewed tables defined in other
schemata depend on the tables that
will be deleted by the DROP SCHEMA
statement, those dependent viewed
tables are also deleted.

3. Definition SQL

Hitachi Advanced Database SQL Reference 136



Specification of
drop-behavior

Description Handling of viewed tables in
other schemata

Handling of foreign keys in
other schemata

If RESTRICT is
specified

If tables or indexes are defined in the
schema to be deleted, the DROP
SCHEMA statement results in an error.

The viewed tables in other schemata
are not affected because the DROP
SCHEMA statement results in an error.

The foreign keys in other schemata
are not affected because the DROP
SCHEMA statement results in an error.

(3) Privileges required at execution
To execute the DROP SCHEMA statement, the CONNECT privilege and schema definition privilege are required.

(4) Rules
1. You can only delete a schema owned by the current user (the HADB user whose authorization identifier is currently

connected to the HADB server). You cannot delete a schema owned by another HADB user. For example, if the
adbsql command is executed with ADBUSER01 specified as the authorization identifier, schema ADBUSER01 is
the only schema that can be deleted with DROP SCHEMA statement.

2. When you delete a schema, the following cost information is also deleted:

• The cost information for the tables defined in the schema

• The cost information for any indexes defined in the schema

3. If you delete a schema in which tables are defined, all HADB users who have the access privileges for those tables
will have the access privileges revoked. Revoking the access privileges might affect viewed tables and referential
constraints. For details, see (4) Rules in 3.17.2 Revoking access privileges.

(5) Examples
Example 1

Delete the schema with schema name ADBUSER01.

DROP SCHEMA "ADBUSER01" CASCADE

Example 2
Delete the schema with schema name ADBUSER01. However, if a table or index has been defined for the schema,
make the DROP SCHEMA statement result in an error.

DROP SCHEMA "ADBUSER01" RESTRICT

3. Definition SQL

Hitachi Advanced Database SQL Reference 137



3.13 DROP TABLE (delete a table)

This section describes the specification format and rules for the DROP TABLE statement.

3.13.1 Specification format and rules for the DROP TABLE statement
The DROP TABLE statement deletes a base table.

Deleting a base table affects indexes, table constraints, and viewed tables as follows:

• The indexes defined in the base table are also deleted.

• The viewed tables that depend on the deleted base table are also deleted (or invalidated).

• The table constraints# defined in the base table are also deleted.

#
Primary keys, and any foreign keys defined in the table to be deleted, are deleted. The foreign keys that reference
the deletion-target table are also deleted (even if the foreign keys are defined in other schemata).

(1) Specification format
DROP-TABLE-statement ::= DROP TABLE table-name [drop-behavior]
 
 
 drop-behavior ::= {CASCADE | RESTRICT}

(2) Explanation of specification format
 table-name

Specifies the name of the base table to be deleted. For rules on specifying a table name, see (2) Table name
specification format in 6.1.5 Qualifying a name.
Note that you cannot specify the name of a viewed table.

• drop-behavior

drop-behavior ::= {CASCADE | RESTRICT}

Specifies whether to delete the base table if any of the following conditions are met:

• There is an index defined for the base table to be deleted.

• Viewed tables that depend on the base table to be deleted are defined.

• A table constraint has been defined for the base table to be deleted.

The following table describes the specifications for drop-behavior.

Specification of drop-
behavior

Description Handling of viewed tables that
depend on the base table to be
deleted

If drop-behavior is
omitted

The base table is also deleted if any of the following conditions are
met:
• There is an index defined for the base table to be deleted.

The viewed tables that depend on the
deleted base table are invalidated. Not
only the viewed table in the relevant
schema, but also the dependent viewed
tables in other schemata, are invalidated.

3. Definition SQL

Hitachi Advanced Database SQL Reference 138



Specification of drop-
behavior

Description Handling of viewed tables that
depend on the base table to be
deleted

If CASCADE is specified • Viewed tables that depend on the base table to be deleted are
defined.

• A table constraint has been defined for the base table to be deleted.

In this case, the following items are also deleted:
• Indexes and table constraints defined in the base table
• Foreign keys that reference the deletion-target table (including

those in other schemata)

The viewed tables that depend on the
deleted base table are deleted. Not only
the viewed table in the relevant schema,
but also the dependent viewed tables in
other schemata, are deleted.

If RESTRICT is specified If any of the following conditions are met, the DROP TABLE
statement results in an error.
• There is an index defined for the base table to be deleted.
• Viewed tables that depend on the base table to be deleted are

defined.
• A table constraint has been defined for the base table to be deleted.

The dependent viewed tables are not
affected because the DROP TABLE
statement results in an error.

(3) Privileges required at execution
To execute the DROP TABLE statement, the CONNECT privilege and schema definition privilege are required.

(4) Rules
1. The DROP TABLE statement can be used to drop only base tables owned by the current user (the HADB user whose

authorization identifier is currently connected to the HADB server). You cannot delete a base table owned by another
HADB user.

2. Base tables with data stored in them can be deleted.

3. You cannot delete the base tables of a dictionary table or system table.

4. When you delete a table, the following cost information is also deleted:

• The cost information for the table

• The cost information for any indexes defined for the table

5. If you delete a table, all HADB users who have the access privileges for that table will have the access privileges
revoked. Revoking the access privileges might affect viewed tables and referential constraints. For details, see (4) 
Rules in 3.17.2 Revoking access privileges.

6. When an archivable multi-chunk table is deleted, the following table and indexes are also deleted:

• Range index automatically defined for the archive range column

• Location table

• Location table index

7. If an archivable multi-chunk table is deleted, data stored in chunks (either archived or not) is deleted.

(5) Examples
Example

Delete the shops table (SHOPSLIST).

DROP TABLE "SHOPSLIST" CASCADE

3. Definition SQL

Hitachi Advanced Database SQL Reference 139



3.14 DROP USER (delete an HADB user)

This section describes the specification format and rules for the DROP USER statement.

3.14.1 Specification format and rules for the DROP USER statement
The DROP USER statement deletes an HADB user.

(1) Specification format
DROP-USER-statement ::= DROP USER authorization-identifier [drop-behavior]
 
  drop-behavior ::= {CASCADE | RESTRICT}

(2) Explanation of specification format
 authorization-identifier

Specify the authorization identifier of the HADB user to be deleted.
Note the following rules for specifying an authorization identifier:

• If you want to use lowercase letters, enclose the authorization identifier in double quotation marks ("). When
not enclosed in double quotation marks, lowercase letters will be treated as uppercase.
Example: DROP USER adbuser01 ...
In this case, the authorization identifier is treated as ADBUSER01.

• Because an authorization identifier is specified as a name, we recommend that you enclose it in double quotation
marks (").

For details about the rules for specifying an authorization identifier, see 6.1.4 Specifying names.

• drop-behavior

drop-behavior ::= {CASCADE | RESTRICT}

Specifies whether to delete the HADB user if either of the following conditions is met:

• The HADB user to be deleted owns a schema.

• The HADB user to be deleted has granted access privileges to other HADB users.

The following table describes the possible specifications for drop-behavior.

Specification of
drop-behavior

Description Handling of viewed tables in
other schemata

Handling of foreign keys in
other schemata

If drop-behavior is
omitted

The HADB user is deleted even if
either of the following conditions is
met:
• The HADB user to be deleted

owns a schema.
• The HADB user to be deleted has

granted access privileges to other
HADB users.

When the DROP USER statement is
run, the schemata owned by the

If viewed tables defined in other
schemata depend on the tables that
will be deleted by the DROP USER
statement, those dependent viewed
tables are invalidated.

If the tables that will be deleted by the
DROP USER statement are referenced
by foreign keys defined in other
schemata, those foreign keys are also
deleted.

If CASCADE is
specified

If viewed tables defined in other
schemata depend on the tables that
will be deleted by the DROP USER
statement, those dependent viewed
tables are also deleted.

3. Definition SQL

Hitachi Advanced Database SQL Reference 140



Specification of
drop-behavior

Description Handling of viewed tables in
other schemata

Handling of foreign keys in
other schemata

HADB user to be deleted are also
deleted.
Also, all access privileges that have
been granted to other HADB users are
revoked. In addition, all dependent
privileges for the revoked access
privileges are revoked.

If RESTRICT is
specified

The DROP USER statement results in
an error if either of the following
conditions is met:
• The HADB user to be deleted

owns a schema.
• The HADB user to be deleted has

granted access privileges to other
HADB users.

The viewed tables in other schemata
are not affected because the DROP
USER statement results in an error.

The foreign keys in other schemata
are not affected because the DROP
USER statement results in an error.

(3) Privileges required at execution
To execute the DROP USER statement, the DBA privilege and the CONNECT privilege are required.

(4) Rules
1. It is possible to delete HADB users other than yourself.

2. The HADB user whose authorization identifier is currently connected to the HADB server cannot be deleted.

3. If the deleted HADB user had granted another HADB user the DBA privilege, the CONNECT privilege, or the schema
definition privilege, those privileges are not revoked.

4. If the HADB user to be deleted has granted access privileges to other HADB users, all the granted access privileges
are revoked. The dependent privileges for the revoked access privileges are also revoked. Therefore, revoking access
privileges might affect viewed tables and referential constraints. For details, see (4) Rules in 3.17.2 Revoking
access privileges.

5. The HADB users having the audit privilege cannot be deleted. To delete HADB users who have the audit privilege,
ask an HADB user who has the audit admin privilege to revoke the audit privilege of the HADB users, and then
delete them.

(5) Examples
Example 1

Delete HADB user ADBUSER01.

DROP USER "ADBUSER01" CASCADE

Example 2
Delete HADB user ADBUSER01. However, if ADBUSER01 owns a schema, make the DROP USER statement result
in an error.

DROP USER "ADBUSER01" RESTRICT

3. Definition SQL

Hitachi Advanced Database SQL Reference 141



3.15 DROP VIEW (delete a viewed table)

This section describes the specification format and rules for the DROP VIEW statement.

3.15.1 Specification format and rules for the DROP VIEW statement
The DROP VIEW statement deletes a viewed table.

(1) Specification format
DROP-VIEW-statement ::= DROP VIEW table-name [drop-behavior]
 
  drop-behavior ::= {CASCADE | RESTRICT}

(2) Explanation of specification format
 table-name

Specifies the name of the viewed table to be deleted. For rules on specifying a table name, see (2) Table name
specification format in 6.1.5 Qualifying a name.
You cannot specify the table names of the following tables:

• Base tables

• Dictionary tables

• System tables

• drop-behavior

drop-behavior ::= {CASCADE | RESTRICT}

Specifies whether to delete the viewed tables if the following condition is met:

• Viewed tables that depend on the viewed table to be deleted exist.

The following table describes the possible specifications for drop-behavior.

Specification of
drop-behavior

Description Handling of viewed tables that depend on the
viewed table to be deleted

If drop-behavior is
omitted

The viewed tables are also deleted if the following
condition is met:
• Viewed tables that depend on the viewed table to be

deleted exist.

The viewed tables that depend on the viewed table to be
deleted are invalidated. The viewed table in the relevant
schema and the viewed tables in other schemata are
invalidated.

If CASCADE is
specified

The viewed tables that depend on the viewed table to be
deleted are deleted. The viewed table in the relevant schema
and the viewed tables in other schemata are deleted.

If RESTRICT is
specified

The DROP VIEW statement results in an error if the
following condition is met:
• Viewed tables that depend on the viewed table to be

deleted exist.

The dependent viewed tables are not affected because the
DROP VIEW statement results in an error.

(3) Privileges required at execution
To execute the DROP VIEW statement, the CONNECT privilege and schema definition privilege are required.

3. Definition SQL

Hitachi Advanced Database SQL Reference 142



(4) Rules
1. You cannot delete a viewed table that has a schema name different from the authorization identifier connected to

the HADB server.

2. If you delete a viewed table, all HADB users who have the access privileges for that viewed table will have the
access privileges revoked.

(5) Example
Example

Delete the viewed table of shops (VSHOPSLIST).

DROP VIEW "VSHOPSLIST" CASCADE

3. Definition SQL

Hitachi Advanced Database SQL Reference 143



3.16 GRANT (grant privileges)

This section describes the specification format and rules for the GRANT statement.

3.16.1 Granting user privileges, schema operation privileges, and audit
privileges

Grant the following privileges to an HADB user.

• User privileges

• DBA privilege

• CONNECT privilege

• Schema operation privileges

• Schema definition privilege

• Audit privileges

• Audit admin privilege

• Audit viewer privilege

(1) Specification format
GRANT-statement::=GRANT privilege[,privilege]... TO authorization-identifier[,authori
zation-identifier]...
 
  privilege::={user-privilege|schema-operation-privilege|audit-privilege}
    user-privilege::={DBA|CONNECT}
    schema-operation-privilege::=SCHEMA
    audit-privilege::={AUDIT ADMIN|AUDIT VIEWER}

(2) Explanation of specification format
 privilege[,privilege]...

privilege::={user-privilege|schema-operation-privilege|audit-privilege}

Specify the privilege to be granted to an HADB user. You cannot specify the same privilege more than once.

user-privilege ::= {DBA | CONNECT}

Specify this to grant user privileges to an HADB user.

• DBA
Specify this to grant the DBA privilege to the HADB user.

• CONNECT
Specify this to grant the CONNECT privilege to the HADB user.

schema-operation-privilege ::= SCHEMA

Specify this to grant schema operation privileges to an HADB user.

• SCHEMA

3. Definition SQL

Hitachi Advanced Database SQL Reference 144



Specify this to grant the schema definition privilege to the HADB user.

audit-privilege::={AUDIT ADMIN|AUDIT VIEWER}

Specify this to grant an audit privilege (audit admin privilege or audit viewer privilege) to an HADB user.

• AUDIT ADMIN
Specify this to grant the audit admin privilege to an HADB user.

• AUDIT VIEWER
Specify this to grant the audit viewer privilege to an HADB user.

 TO authorization-identifier[,authorization-identifier]...
Specifies the authorization identifiers of the HADB users who are to be granted privileges. A maximum of 128
authorization identifiers can be specified.
Note the following rules for specifying an authorization identifier:

• If you want to use lowercase letters, enclose the authorization identifier in double quotation marks ("). When
not enclosed in double quotation marks, lowercase letters will be treated as uppercase.
Example: GRANT DBA TO adbuser01
In this case, the authorization identifier is treated as ADBUSER01.

• Because an authorization identifier is specified as a name, we recommend that you enclose it in double quotation
marks (").

For details about the rules for specifying an authorization identifier, see 6.1.4 Specifying names.

(3) Privileges required at execution
To execute a GRANT statement that grants user privileges, schema operation privileges, or audit privileges, the DBA
privilege and the CONNECT privilege are required.

(4) Rules
1. An HADB user with the DBA privilege can grant the following privileges to other HADB users:

• User privileges

• Schema operation privileges

• Audit privileges

However, the audit admin privilege cannot be granted to HADB users who have the DBA privilege.
Note that an HADB user can also grant a user privilege, a schema operation privilege, and the audit viewer privilege
to himself or herself (the HADB user whose authorization identifier is connected to the HADB server).

Important
An HADB user cannot have both the DBA privilege and the audit admin privilege. Therefore, it is
impossible to grant the audit admin privilege to HADB users who have the DBA privilege. Similarly, it
is also impossible to grant the DBA privilege to HADB users who have the audit admin privilege.

2. If an error occurs in the execution of the GRANT statement when multiple authorization identifiers are specified, the
operation is cancelled for all of the targeted HADB users.

3. Definition SQL

Hitachi Advanced Database SQL Reference 145



(5) Examples
Example 1

Grant the DBA privilege, CONNECT privilege, and schema definition privilege to HADB user ADBUSER01.

GRANT DBA,CONNECT,SCHEMA TO "ADBUSER01"

Example 2
Grant the CONNECT privilege and schema definition privilege to HADB users ADBUSER02 and ADBUSER03.

GRANT CONNECT,SCHEMA TO "ADBUSER02","ADBUSER03"

Example 3
Grant the CONNECT privilege and the audit admin privilege to HADB user ADBAUDITADMIN.

GRANT CONNECT,AUDIT ADMIN TO "ADBAUDITADMIN"

Example 4
Grant the CONNECT privilege and the audit viewer privilege to HADB user ADBAUDITOR.

GRANT CONNECT,AUDIT VIEWER TO "ADBAUDITOR"

3.16.2 Granting access privileges
Grant access privileges to an HADB user.

(1) Specification format
GRANT-statement ::= GRANT access-privilege ON object-name TO privilege-grantee [WITH 
GRANT OPTION]
 
  access-privilege ::= {ALL [PRIVILEGES]|operation[,operation]...}
    operation ::= {SELECT|INSERT|UPDATE|DELETE|TRUNCATE|REFERENCES
              |IMPORT TABLE|REBUILD INDEX|GET COSTINFO|EXPORT TABLE
              |MERGE CHUNK|CHANGE CHUNK COMMENT|CHANGE CHUNK STATUS
              |ARCHIVE CHUNK|UNARCHIVE CHUNK}
 
  object-name ::= {[TABLE]table-name|ALL TABLES}
  privilege-grantee ::= {authorization-identifier[,authorization-identifier]...|PUBLI
C}

(2) Explanation of specification format
 access-privilege

access-privilege ::= {ALL [PRIVILEGES] | operation[,operation]...}

Specify the type of access privilege to be granted.

ALL [PRIVILEGES]:
Specify this to grant all access privileges.
Note that the access privileges that are granted if this clause is specified are all the access privileges that are
supported at the time when the GRANT statement is run. If other access privileges are additionally supported as

3. Definition SQL

Hitachi Advanced Database SQL Reference 146



a result of version upgrade after the GRANT statement is run, those access privileges will not be granted
automatically.

Important
If you run the GRANT statement with ALL PRIVILEGES specified when you have only some
access privileges with the grant option, you cannot grant all types of access privileges. In this case,
only the access privileges with the grant option are granted to the privilege grantee. For example,
when you have the grant option for the INSERT privilege only, if you run the GRANT statement
with ALL PRIVILEGES specified, only the INSERT privilege is granted to the privilege grantee.

Note
If you specify ALL PRIVILEGES when you have no access privilege with the grant option for the
target object, the GRANT statement results in an error.

operation[,operation]...:

operation ::= {SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES
           | IMPORT TABLE | REBUILD INDEX | GET COSTINFO | EXPORT TABLE
           | MERGE CHUNK | CHANGE CHUNK COMMENT | CHANGE CHUNK STATUS
           | ARCHIVE CHUNK | UNARCHIVE CHUNK}

Specify the type of access privilege to be granted. You cannot specify the same operation more than once.

• SELECT
Specify this to grant the SELECT privilege to an HADB user.

• INSERT
Specify this to grant the INSERT privilege to an HADB user.

• UPDATE
Specify this to grant the UPDATE privilege to an HADB user.

• DELETE
Specify this to grant the DELETE privilege to an HADB user.

• TRUNCATE
Specify this to grant the TRUNCATE privilege to an HADB user.

• REFERENCES
Specify this to grant the REFERENCES privilege to an HADB user.

• IMPORT TABLE
Specify this to grant the IMPORT TABLE privilege to an HADB user.

• REBUILD INDEX
Specify this to grant the REBUILD INDEX privilege to an HADB user.

• GET COSTINFO
Specify this to grant the GET COSTINFO privilege to an HADB user.

• EXPORT TABLE
Specify this to grant the EXPORT TABLE privilege to an HADB user.

• MERGE CHUNK

3. Definition SQL

Hitachi Advanced Database SQL Reference 147



Specify this to grant the MERGE CHUNK privilege to an HADB user.

• CHANGE CHUNKCOMMENT
Specify this to grant the CHANGE CHUNK COMMENT privilege to an HADB user.

• CHANGE CHUNKSTATUS
Specify this to grant the CHANGE CHUNK STATUS privilege to an HADB user.

• ARCHIVE CHUNK
Specify this to grant the ARCHIVE CHUNK privilege to an HADB user.

• UNARCHIVE CHUNK
Specify this to grant the UNARCHIVE CHUNK privilege to an HADB user.

 ON object-name

object-name ::= {[TABLE] table-name | ALL TABLES}

Specifies the object to which access privileges are to be granted.
Here, object refers to a schema object.

[TABLE] table-name:
Grant access privileges to the table specified here. For rules on specifying a table name, see (2) Table name
specification format in 6.1.5 Qualifying a name.
Note that you cannot specify the table name of a viewed table that has been invalidated.

ALL TABLES:
Grant access privileges to all the base tables in the schema of the executing user. In this context, executing user
means the HADB user executing the GRANT statement.
If the HADB user executing the GRANT statement has not defined a schema, or no base tables are defined in the
schema, the GRANT statement terminates normally without granting access privileges.

Note
Specifying ALL TABLES grants access privileges to all the base tables owned by the executing user
at the time of the GRANT statement. This does not include new base tables defined after the GRANT
statement is executed (access privileges will not be granted for these newly-defined base tables).

 TO privilege-grantee

privilege-grantee ::= {authorization-identifier[,authorization-identifier]...|PUBL
IC}

Specifies the HADB users to grant access privileges to.

authorization-identifier[,authorization-identifier]:
Specifies the authorization identifiers of the HADB users who are to be granted access privileges. A maximum
of 128 authorization identifiers can be specified.
Note the following rules for specifying an authorization identifier:

• If you want to use lowercase letters, enclose the authorization identifier in double quotation marks ("). When
not enclosed in double quotation marks, lowercase letters will be treated as uppercase.

• Because an authorization identifier is specified as a name, we recommend that you enclose it in double
quotation marks (").

For details about the rules for specifying an authorization identifier, see 6.1.4 Specifying names.

3. Definition SQL

Hitachi Advanced Database SQL Reference 148



PUBLIC:
Specify this if you want to authorize access privileges to the specified object for all HADB users. In this context,
all HADB users includes HADB users created after execution of the GRANT statement in which PUBLIC is
specified.
Example:

GRANT SELECT,IMPORT TABLE ON "T1" TO PUBLIC

Executing the GRANT statement above authorizes the following access privileges for all HADB users:

• The SELECT privilege on table T1
• The IMPORT TABLE privilege on table T1

For a user who runs the GRANT statement to specify PUBLIC, he or she must own the object for which the
access privileges are to be authorized.

Note
• The PUBLIC keyword can be thought of as an implicit, system-generated user who represents

all HADB users.

• In this context, authorizing access privileges means authorizing access or operations that use
access privileges.

● WITH GRANT OPTION
Specify this option when you grant an access privilege with the grant option to the privilege grantee.
Note that a user who runs the GRANT statement must have the relevant access privilege with the grant option.
Example:

GRANT SELECT ON "X"."T1" TO "ADBUSER01" WITH GRANT OPTION

When you run the preceding GRANT statement, the SELECT privilege for table X.T1 is granted to ADBUSER01
with the grant option. An HADB user who runs the GRANT statement must have the SELECT privilege with the
grant option for table X.T1.

(3) Privileges required at execution
A user who runs the GRANT statement that grants an access privilege must have the following privileges:

• The CONNECT privilege

• The schema definition privilege or the access privilege with the grant option

(4) Rules
1. For you to grant an access privilege to other HADB users, you must have the grant option for that access privilege.

2. You cannot grant yourself access privileges to objects that you own.

3. Even if you have the grant option for an access privilege, you cannot grant the access privilege to the following
HADB users:

• HADB user who granted you an access privilege with the grant option

• Any HADB users in the chain of granting the access privilege with the grant option up to the preceding
HADB user

• Yourself (you cannot grant yourself an access privilege that has been granted to you)

3. Definition SQL

Hitachi Advanced Database SQL Reference 149



Example:

4. For you to grant another HADB user an access privilege for a viewed table, you must have an access privilege for
all underlying tables of the viewed table with the grant option.

5. If a new access privilege for an underlying table is granted, the access privilege for the viewed tables that depend
on the underlying table is also granted. (Consequently, propagation of access privileges occurs.) For example, assume
that HADB user A has defined viewed table A.V1 by using table X.T1 as the underlying table, and viewed table
A.V2 by using viewed table A.V1 as the underlying table. In this case, if the INSERT privilege for table X.T1 is
granted to HADB user A, the INSERT privileges for viewed tables A.V1 and A.V2 are also granted to HADB
user A.

Note
• Propagation of access privileges can occur for only viewed tables that are defined by an HADB user

who is granted the access privilege.

• If viewed tables are invalidated, no propagation of an access privilege occurs for the viewed tables.

Important
Be careful when a viewed table has multiple underlying tables. In this case, if a new access privilege
for an underlying table is granted, the access privilege for the viewed table can be changed only when
the access privilege meets the conditions applied to the viewed table.

Example:
Assume that HADB user A has the SELECT privileges for tables X.T1 and X.T2, and has defined
viewed table A.V1 by using tables X.T1 and X.T2 as the underlying tables. In this case, even if
the UPDATE privilege for table X.T1 is granted, the UPDATE privilege for viewed table A.V1 is
not granted. Unless the UPDATE privileges for both tables X.T1 and X.T2 are granted, the UPDATE

3. Definition SQL

Hitachi Advanced Database SQL Reference 150



privilege for viewed table A.V1 is not granted. As shown earlier, even if the access privilege for
only one underlying table is granted, the access privilege for the viewed table is not changed unless
the conditions for access privileges applied to the viewed table are met.

6. To revoke only the grant option from an access privilege granted to another HADB user with the grant option, run
the REVOKE statement with GRANT OPTION FOR specified. From an HADB user who is granted an access
privilege with the grant option, you cannot revoke the grant option by running the GRANT statement without
specifying WITH GRANT OPTION to regrant the same access privilege.

7. If you specify more than one authorization identifier for a privilege grantee and an error occurs in the execution of
the GRANT statement, the granting of privileges to all of the specified HADB users is invalidated.

8. If you change the access privileges of an HADB user who is currently connected to the HADB server, the changed
access privileges take effect at the following time:

• The next time the HADB user executes a transaction

(5) Examples
Example 1

Grant the SELECT and INSERT privileges on table T1 to HADB user ADBUSER01.

GRANT SELECT,INSERT ON "T1" TO "ADBUSER01"

Example 2
Grant all access privileges on table T1 to HADB users ADBUSER02 and ADBUSER03.

GRANT ALL PRIVILEGES ON "T1" TO "ADBUSER02","ADBUSER03"

Example 3
In this example, the SELECT privilege for table X.T1 is granted with the grant option to HADB user ADBUSER04.

GRANT SELECT ON "X"."T1" TO "ADBUSER04" WITH GRANT OPTION

3. Definition SQL

Hitachi Advanced Database SQL Reference 151



3.17 REVOKE (revoke privileges)

This section describes the specification format and rules for the REVOKE statement.

3.17.1 Revoking user privileges, schema operation privileges, and audit
privileges

Revoke the following privileges that were granted to an HADB user.

• User privileges

• DBA privilege

• CONNECT privilege

• Schema operation privileges

• Schema definition privilege

• Audit privileges

• Audit admin privilege

• Audit viewer privilege

(1) Specification format
REVOKE-statement::=REVOKE privilege[,privilege]...
                 FROM authorization-identifier[,authorization-identifier]... [drop-be
havior]
 
  privilege::={user-privilege|schema-operation-privilege|audit-privilege}
    user-privilege::={DBA|CONNECT}
    schema-operation-privilege::=SCHEMA
    audit-privilege::={AUDIT ADMIN|AUDIT VIEWER}
 
  drop-behavior::={CASCADE|RESTRICT}

(2) Explanation of specification format
 privilege[,privilege]...

privilege::={user-privilege|schema-operation-privilege|audit-privilege}

Specifies the privilege to be revoked. You cannot specify the same privilege more than once.

user-privilege ::= {DBA | CONNECT}
Specify this to revoke user privileges.

• DBA
Specify this to revoke the DBA privilege.

• CONNECT
Specify this to revoke the CONNECT privilege.

schema-operation-privilege ::= SCHEMA
Specify this to revoke schema operation privileges.

3. Definition SQL

Hitachi Advanced Database SQL Reference 152



• SCHEMA
Specify this to revoke the schema definition privilege.

audit-privilege ::= {AUDIT ADMIN|AUDIT VIEWER}
Specify this to revoke an audit privilege (audit admin privilege or audit viewer privilege).

• AUDIT ADMIN
Specify this to revoke the audit admin privilege.

• AUDIT VIEWER
Specify this to revoke the audit viewer privilege.

 FROM authorization-identifier[,authorization-identifier]...
Specifies the authorization identifiers of the HADB user(s) whose privileges are to be revoked. A maximum of 128
authorization identifiers can be specified.
Note the following rules for specifying an authorization identifier:

• If you want to use lowercase letters, enclose the authorization identifier in double quotation marks ("). When
not enclosed in double quotation marks, lowercase letters will be treated as uppercase.
Example: REVOKE DBA FROM adbuser01
In this case, the authorization identifier is treated as ADBUSER01.

• Because an authorization identifier is specified as a name, we recommend that you enclose it in double quotation
marks (").

For details about the rules for specifying an authorization identifier, see 6.1.4 Specifying names.

• drop-behavior

drop-behavior ::= {CASCADE | RESTRICT}

This specification only applies when revoking the schema definition privilege.
Specify whether to revoke the schema definition privilege if the HADB user who wants to revoke the schema
definition privilege owns the schema. The following table describes the possible specifications for drop-behavior.

Specification of
drop-behavior

Description Handling of viewed tables in
other schemata

Handling of foreign keys in
other schemata

If drop-behavior is
omitted

The schema definition privilege is
revoked even if the targeted HADB
user owns a schema. At this time, the
schema owned by the targeted HADB
user is also deleted.

If viewed tables defined in other
schemata depend on the tables that
will be deleted by the REVOKE
statement, those dependent viewed
tables are invalidated.

If the tables that will be deleted by the
REVOKE statement are referenced by
foreign keys defined in other
schemata, those foreign keys are also
deleted.

If CASCADE is
specified

If viewed tables defined in other
schemata depend on the tables that
will be deleted by the REVOKE
statement, those dependent viewed
tables are also deleted.

If RESTRICT is
specified

If the targeted HADB user owns the
schema, the REVOKE statement
results in an error.

The viewed tables in other schemata
are not affected because the REVOKE
statement results in an error.

The foreign keys in other schemata
are not affected because the REVOKE
statement results in an error.

(3) Privileges required at execution
• To execute a REVOKE statement that revokes a user privilege or schema operation privilege:

The DBA privilege and the CONNECT privilege are required.

• To execute a REVOKE statement that revokes an audit privilege:

3. Definition SQL

Hitachi Advanced Database SQL Reference 153



The audit admin privilege and the CONNECT privilege are required.

(4) Rules
1. You cannot revoke the CONNECT privilege of the HADB user whose authorization identifier is currently connected

to the HADB server.

2. You cannot revoke the DBA and CONNECT privileges that have been granted to yourself. You can revoke the schema
definition privilege that has been granted to yourself.

3. If an error occurs in the execution of the REVOKE statement when multiple authorization identifiers are specified,
the operation is cancelled for all of the targeted HADB users.

4. You cannot revoke the CONNECT privilege and the schema definition privilege of an HADB user who has an audit
privilege.

5. An HADB user having the audit admin privilege can revoke the following privileges:

• Other HADB users' audit admin privilege or audit viewer privilege

• The HADB user's own audit admin privilege or audit viewer privilege

6. Audit privileges can be revoked if the audit trail facility is enabled.
However, as an HADB user, you can revoke the audit admin privilege even when the audit trail facility is disabled
if all of the following conditions are met:

• There are no HADB users who have the audit viewer privilege.

• You are the only HADB user who has the audit admin privilege.

7. If the audit trail facility is enabled and there is only one HADB user having both the audit admin privilege and the
CONNECT privilege, the HADB user's audit admin privilege cannot be revoked.

(5) Examples
Example 1

Revoke the DBA privilege, CONNECT privilege, and schema definition privilege of HADB user ADBUSER01.

REVOKE DBA,CONNECT,SCHEMA FROM "ADBUSER01" CASCADE

Example 2
Revoke the CONNECT privilege and the schema definition privilege of HADB users ADBUSER02 and
ADBUSER03. However, if HADB user ADBUSER02 or ADBUSER03 owns a schema, make the REVOKE statement
result in an error.

REVOKE CONNECT,SCHEMA FROM "ADBUSER02","ADBUSER03" RESTRICT

For example, assume that ADBUSER02 owns a schema and ADBUSER03 does not. In this case, if the preceding
REVOKE statement is executed, the processing of the REVOKE statement for both ADBUSER02 and ADBUSER03
results in an error.

Example 3
Revoke the audit admin privilege of HADB user ADBAUDITADMIN.

REVOKE AUDIT ADMIN FROM "ADBAUDITADMIN"

Example 4
Revoke the audit viewer privilege of HADB user ADBAUDITOR.

REVOKE AUDIT VIEWER FROM "ADBAUDITOR"

3. Definition SQL

Hitachi Advanced Database SQL Reference 154



3.17.2 Revoking access privileges
Revoke access privileges that were granted to an HADB user.

(1) Specification format
REVOKE-statement ::= REVOKE [GRANT OPTION FOR] access-privilege ON object-name
                 FROM privilege-grantee [drop-behavior]
 
  access-privilege ::= {ALL [PRIVILEGES]|operation[,operation]...}
    operation ::= {SELECT|INSERT|UPDATE|DELETE|TRUNCATE|REFERENCES
              |IMPORT TABLE|REBUILD INDEX|GET COSTINFO|EXPORT TABLE
              |MERGE CHUNK|CHANGE CHUNK COMMENT|CHANGE CHUNK STATUS
              |ARCHIVE CHUNK|UNARCHIVE CHUNK}
 
  object-name ::= {[TABLE] table-name|ALL TABLES}
 
  privilege-grantee ::= {authorization-identifier[,authorization-identifier]...|PUBLI
C}
 
  drop-behavior ::= {CASCADE|RESTRICT}

(2) Explanation of specification format
● GRANT OPTION FOR

Specify this keyword to revoke only the grant option of an access privilege. If the REVOKE statement is run with
this keyword specified, the access privilege itself is not revoked. Only the grant option of the access privilege is
revoked.
Example:

REVOKE GRANT OPTION FOR SELECT ON "X"."T1" FROM "ADBUSER01"

If the preceding REVOKE statement is run, HADB user ADBUSER01 has only the grant option of the SELECT
privilege for table X.T1 revoked. HADB user ADBUSER01 does not have the SELECT privilege for table X.T1
revoked.

 access-privilege

access-privilege ::= {ALL [PRIVILEGES] | operation[,operation]...}

Specifies the type of access privilege to be revoked.

ALL [PRIVILEGES]:
Specify this to revoke all access privileges.

Important
The privileges that you can revoke by running the REVOKE statement with ALL PRIVILEGES
specified are only the privileges that you granted. The access privileges granted by other HADB
users are not revoked.

Example:

Assume that HADB user ADBUSER01 has the following access privileges for table X.T1:

• SELECT and UPDATE privileges granted by HADB user ADBUSER02

3. Definition SQL

Hitachi Advanced Database SQL Reference 155



• INSERT and DELETE privileges granted by HADB user ADBUSER03

If HADB user ADBUSER02 runs the following REVOKE statement, only the SELECT and UPDATE
privileges are revoked:

REVOKE ALL PRIVILEGES ON "X"."T1" FROM "ADBUSER01"

Note
If you run the REVOKE statement with ALL PRIVILEGES specified when you have no access
privilege with the grant option for the target object, the statement will result in an error.

operation[,operation]...:

operation ::= {SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES
           | IMPORT TABLE | REBUILD INDEX | GET COSTINFO | EXPORT TABLE
           | MERGE CHUNK | CHANGE CHUNK COMMENT | CHANGE CHUNK STATUS
           | ARCHIVE CHUNK | UNARCHIVE CHUNK}

Specifies the type of access privilege to be revoked. You cannot specify the same operation more than once.

• SELECT
Specify this to revoke the SELECT privilege.

• INSERT
Specify this to revoke the INSERT privilege.

• UPDATE
Specify this to revoke the UPDATE privilege.

• DELETE
Specify this to revoke the DELETE privilege.

• TRUNCATE
Specify this to revoke the TRUNCATE privilege.

• REFERENCES
Specify this to revoke the REFERENCES privilege.

• IMPORT TABLE
Specify this to revoke the IMPORT TABLE privilege.

• REBUILD INDEX
Specify this to revoke the REBUILD INDEX privilege.

• GET COSTINFO
Specify this to revoke the GET COSTINFO privilege.

• EXPORT TABLE
Specify this to revoke the EXPORT TABLE privilege.

• MERGE CHUNK
Specify this to revoke the MERGE CHUNK privilege.

• CHANGE CHUNK COMMENT
Specify this to revoke the CHANGE CHUNK COMMENT privilege.

3. Definition SQL

Hitachi Advanced Database SQL Reference 156



• CHANGE CHUNK STATUS
Specify this to revoke the CHANGE CHUNK STATUS privilege.

• ARCHIVE CHUNK
Specify this to revoke the ARCHIVE CHUNK privilege.

• UNARCHIVE CHUNK
Specify this to revoke the UNARCHIVE CHUNK privilege.

 ON object-name

object-name ::= {[TABLE] table-name | ALL TABLES}

Specifies the object to which access privileges are to be revoked.
Here, object refers to a schema object.

[TABLE] table-name:
Revoke access privileges to the table specified here. For rules on specifying a table name, see (2) Table name
specification format in 6.1.5 Qualifying a name.
Note that you cannot specify the table name of a viewed table that has been invalidated.

ALL TABLES:
Revoke access privileges to all the base tables in the schema of the executing user. In this context, executing
user means the HADB user executing the REVOKE statement.
If the HADB user executing the REVOKE statement has not defined a schema, or no base tables are defined in
the schema, the REVOKE statement terminates normally without revoking any access privileges.

 FROM privilege-grantee

privilege-grantee ::= {authorization-identifier[,authorization-identifier]...| PUB
LIC}

Specifies the HADB users whose access privileges are to be revoked.

authorization-identifier[,authorization-identifier]...:
Specifies the authorization identifiers of the HADB user(s) whose access privileges are to be revoked. A
maximum of 128 authorization identifiers can be specified.
Note the following rules for specifying an authorization identifier:

• If you want to use lowercase letters, enclose the authorization identifier in double quotation marks ("). When
not enclosed in double quotation marks, lowercase letters will be treated as uppercase.

• Because an authorization identifier is specified as a name, we recommend that you enclose it in double
quotation marks (").

For details about the rules for specifying an authorization identifier, see 6.1.4 Specifying names.

PUBLIC:
Specify this to revoke access privileges that were authorized by the GRANT statement with PUBLIC specified.
Example:

REVOKE SELECT,IMPORT TABLE ON "T1" FROM PUBLIC

Executing the above REVOKE statement revokes the following access privileges that were authorized by a
GRANT statement with PUBLIC specified:

• The SELECT privilege on table T1
• The IMPORT TABLE privilege on table T1

3. Definition SQL

Hitachi Advanced Database SQL Reference 157



Note
The PUBLIC keyword can be thought of as an implicit, system-generated user who represents all
HADB users.

• drop-behavior

drop-behavior ::= {CASCADE | RESTRICT}

This specification takes effect only in either of the following cases:

• When the SELECT or REFERENCES privilege is to be revoked

• When an access privilege for which dependent privileges exist is to be revoked

If specification of the drop behavior is omitted, the system assumes that CASCADE is specified.

CASCADE:
Specify this keyword if you want to revoke an access privilege even when any of the following conditions are
met:

• There is a viewed table that was defined using the SELECT privilege to be revoked.
In this case, the viewed table is invalidated. The viewed tables that depend on the viewed table to be
invalidated are also invalidated.

• There is a referential constraint that was defined using the REFERENCES privilege to be revoked.
In this case, the referential constraint is deleted.

• There are dependent privileges for the access privilege to be revoked (including when only the grant option
is to be revoked).
In this case, the dependent privileges are revoked. If there are viewed tables or referential constraints that
use the dependent privileges, the viewed tables are invalidated and the referential constraints are deleted.

RESTRICT:
Specify this keyword if you want the REVOKE statement to result in an error in any of the following cases:

• There is a viewed table that was defined using the SELECT privilege to be revoked.

• There is a referential constraint that was defined using the REFERENCES privilege to be revoked.

• There are dependent privileges for the access privilege to be revoked (including when only the grant option
is to be revoked).

(3) Privileges required at execution
A user who runs the REVOKE statement that revokes an access privilege must have the following privileges:

• CONNECT privilege

• The schema definition privilege or the access privilege with the grant option

(4) Rules
1. You can revoke only access privileges that you granted.

2. If you attempt to revoke an access privilege by running the REVOKE statement when you do not have the access
privilege with the grant option, the statement will result in an error.

3. You cannot revoke your own access privileges to objects that you own.

3. Definition SQL

Hitachi Advanced Database SQL Reference 158



4. If an error occurs during execution of the REVOKE statement that you ran by specifying multiple authorization
identifiers as the privilege grantee, the revoking of privileges for all HADB users will become invalid.

5. If an access privilege for an underlying table is revoked, the access privilege for the viewed tables that depend on
the underlying table is also revoked. (Consequently, propagation of access privileges occurs.)
For example, assume that HADB user A has defined viewed table A.V1 by using table X.T1 as the underlying
table, and viewed table A.V2 by using viewed table A.V1 as the underlying table. In this case, if the INSERT
privilege for table X.T1 is revoked, the INSERT privileges for viewed tables A.V1 and A.V2 are also revoked.
For invalidated viewed tables, however, the revoking of access privileges for those viewed tables is not propagated.

6. If the SELECT privilege for an underlying table is revoked, all viewed tables that depend on the underlying table
are invalidated.

Example:
Assume that HADB user A has the SELECT privilege for table X.T1, and has defined viewed table A.V1 by
using table X.T1 as the underlying table. Also assume that the user has defined viewed table A.V2 by using
viewed table A.V1 as the underlying table, and viewed table A.V3 by using viewed table A.V2 as the underlying
table.
If the SELECT privilege for table X.T1 is revoked, viewed tables A.V1, A.V2, and A.V3, which depend on
table X.T1, are invalidated.

7. If the REFERENCES privilege for a table is revoked, the referential constraints defined by using the REFERENCES
privilege are deleted. For example, if the REFERENCES privilege for table X.T1 owned by HADB user A is revoked,
the referential constraint that HADB user A defined by using table X.T1 as the referenced table is deleted.

8. The following describes the rules for revoking access privileges when an access privilege for the same table is
granted by multiple HADB users or permitted with the PUBLIC specification. Note that the following description
is an example for the SELECT privilege.

Example:
Assume that the following SQL statements are run:

GRANT SELECT ON "ADBUSER01"."T1" TO "ADBUSER03"     ...1  <= Run by HADB user AD
BUSER01
GRANT SELECT ON "ADBUSER01"."T1" TO "ADBUSER03"     ...2  <= Run by HADB user AD
BUSER02
GRANT SELECT ON "ADBUSER01"."T1" TO PUBLIC          ...3  <= Run by HADB user AD
BUSER01
REVOKE SELECT ON "ADBUSER01"."T1" FROM "ADBUSER03"  ...4  <= Run by HADB user AD
BUSER01
REVOKE SELECT ON "ADBUSER01"."T1" FROM "ADBUSER03"  ...5  <= Run by HADB user AD
BUSER02
REVOKE SELECT ON "ADBUSER01"."T1" FROM PUBLIC       ...6  <= Run by HADB user AD
BUSER01

[Explanation]

• In steps 1 to 3, the GRANT statements are run to grant (or permit) HADB user ADBUSER03 the SELECT
privilege for table ADBUSER01.T1 (table T1, hereafter).

• When the REVOKE statement in step 4 is run, only the SELECT privilege granted in step 1 is revoked. The
SELECT privilege granted in step 2 and the SELECT privilege permitted in step 3 are not revoked.

• Then, when the REVOKE statement is run in step 5, only the SELECT privilege granted in step 2 is
revoked. The SELECT privilege permitted in step 3 is not revoked.

• Then, when the REVOKE statement is run in step 6, the SELECT privilege permitted in step 3 is revoked.
At this time, all SELECT privileges for table T1 are revoked. Therefore, if HADB user ADBUSER03 has
defined a viewed table by using table T1 as the underlying table, the viewed table is invalidated at this time.

3. Definition SQL

Hitachi Advanced Database SQL Reference 159



Note that the rules for revoking the SELECT privilege described in the preceding example also apply to the
revoking of the REFERENCES privilege. Therefore, the referential constraints are deleted when all REFERENCES
privileges for table T1 are revoked.

9. If you change the access privileges of an HADB user who is currently connected to the HADB server, the changed
access privileges take effect at the following time:

• The next time the HADB user executes a transaction

(5) Examples
Example 1

Revoke the SELECT and INSERT privileges on table T1 of HADB user ADBUSER01.

REVOKE SELECT,INSERT ON "T1" FROM "ADBUSER01"

If ADBUSER01 has defined a viewed table by using table T1 as the underlying table, the viewed table is invalidated
when the preceding REVOKE statement is run. The viewed tables that depend on the viewed table to be invalidated
are also invalidated.

Example 2
Revoke all the access privileges of HADB users ADBUSER02 and ADBUSER03 to table T1.

REVOKE ALL PRIVILEGES ON "T1" FROM "ADBUSER02","ADBUSER03" RESTRICT

Because RESTRICT is specified, while ADBUSER02 or ADBUSER03 is performing any of the following operations,
the REVOKE statement results in an error:

• Defined a viewed table by using table T1 as the underlying table

• Defined a referential constraint whose referenced table is T1
Example 3

In the following example, HADB user ADBUSER01 has only the grant option of the SELECT privilege for table
X.T1 revoked.

REVOKE GRANT OPTION FOR SELECT ON "X"."T1" FROM "ADBUSER01"

When the preceding REVOKE statement is run, HADB user ADBUSER01 does not have the SELECT privilege for
table X.T1 revoked. Therefore, even if ADBUSER01 has defined a viewed table by using table X.T1 as the
underlying table, the viewed table is not invalidated. However, in cases such as the following, the viewed tables
defined by HADB users other than ADBUSER01 are invalidated.

• If ADBUSER01 has granted the SELECT privilege for table X.T1 to another HADB user (ADBUSER02, for
example), ADBUSER02 has the SELECT privilege for table X.T1 revoked. Therefore, if ADBUSER02 has
defined viewed table ADBUSER02.V1 by using table X.T1 as the underlying table, viewed table
ADBUSER02.V1 is invalidated.

• Assume that ADBUSER01 has defined viewed table ADBUSER01.V1 by using table X.T1 as the underlying
table. If the SELECT privilege for viewed table ADBUSER01.V1 has been granted to another HADB user
(ADBUSER02, for example), ADBUSER02 has the SELECT privilege for viewed table ADBUSER01.V1
revoked. Therefore, if ADBUSER02 has defined viewed table ADBUSER02.V2 by using viewed table
ADBUSER01.V1 as the underlying table, viewed table ADBUSER02.V2 is invalidated.

3. Definition SQL

Hitachi Advanced Database SQL Reference 160



3.18 Definition SQL runtime considerations

1. When a definition SQL statement is executed, if it finishes normally, a COMMIT is automatically executed before
the transaction terminates.

2. Definition SQL is not subject to rollback.

3. A definition SQL statement produces an error if both of the following conditions are met:

• Within the connection in which the definition SQL statement is executed, there is a cursor performing retrieval
from one of the following tables:
• A dictionary table that is referenced or updated in the definition SQL statement
• A table that is changed or deleted in the definition SQL statement

• The above-mentioned cursor is open

4. A definition SQL statement produces an error if both of the following conditions are met:

• The definition SQL statement is executed using the JDBC driver.

• Within the same connection, there is a Statement object or a PreparedStatement object performing
retrieval from one of the following tables:
• A dictionary table that is referenced or updated in the definition SQL statement
• A table that is changed or deleted in the definition SQL statement

5. If a definition SQL statement is executed using the JDBC driver, it produces an error if there is a ResultSet object
within the same connection.

3. Definition SQL

Hitachi Advanced Database SQL Reference 161



This chapter describes the functions, rules, and specification formats of data manipulation SQL
statements.

4 Data Manipulation SQL

Hitachi Advanced Database SQL Reference 162



4.1 DELETE (delete rows)

This section describes the specification format and rules for the DELETE statement.

4.1.1 Specification format and rules for the DELETE statement
The DELETE statement deletes rows that satisfy the specified search conditions.

(1) Specification format
DELETE-statement ::= DELETE FROM table-name [[AS] correlation-name] [WHERE search-con
ditions]

(2) Explanation of specification format
 table-name

Specifies the name of the table whose rows you want to delete (the deletion target table). For rules on specifying a
table name, see (2) Table name specification format in 6.1.5 Qualifying a name.
Note that you cannot specify a read-only viewed table.

 [AS] correlation-name
Specifies the correlation name of the deletion target table. For details about correlation names, see (4) Table
specification format in 6.1.5 Qualifying a name. For details about the effective scope of correlation names, see 6.8 
Scope variables.

 WHERE search-conditions
Specifies the conditions that identify the rows to be deleted in search-conditions. For details about search
conditions, see 7.18 Search conditions.
If the WHERE clause is omitted, all the rows in the specified table are deleted.
The following rules apply:

• You can specify dynamic parameters in the search conditions.

If you specify an updatable viewed table in table-name, note the following points:

• When you delete rows from the updatable viewed table, the rows of the underlying table are deleted.

• The rows that are deleted from the underlying table are the rows that satisfy both the search conditions specified
when the viewed table was defined and the search conditions specified here.

• If the WHERE clause is omitted, the rows that are deleted from the underlying table are rows that satisfy the
search conditions specified when the viewed table was defined.

(3) Privileges required at execution
To execute the DELETE statement, all of the following privileges are required:

• The CONNECT privilege

• DELETE privilege for a table whose rows are to be deleted

• SELECT privilege for a table specified in a query expression body

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 163



Example

DELETE FROM "T1"
    WHERE "T1"."C1" IN (SELECT "C1" FROM "T2" WHERE "C3"<=100)

The DELETE privilege for Table T1 and the SELECT privilege for Table T2 are required to execute the above
DELETE statement.

(4) Rules
1. If there are no rows that meet the deletion conditions, SQLCODE is set to 100.

2. The total number of tables, derived tables, and table function derived tables specified in the DELETE statement
cannot exceed 2,048. For rules on how to count the number of tables, derived tables, and table function derived
tables specified in an SQL statement, see (4) Rules in 4.4.1 Specification format and rules for the SELECT
statement.

3. If the set operations specified in the DELETE statement are all UNION, a maximum of 1,023 set operations can be
specified. However, if the specified set operations include EXCEPT or INTERSECT, no more than 63 set operations
can be specified.

4. A maximum of 63 outer joins (FULL OUTER JOIN) can be specified in the DELETE statement.

5. This statement cannot be used to delete rows from a dictionary table or system table.

6. The table containing the rows to be deleted cannot be specified in the FROM clause of a subquery within the search
conditions.

7. The same operation or design that can be used when the DELETE statement is run for row store tables cannot be
used when the statement is run for column store tables. For details, see Criteria for selecting row store tables and
column store tables, Checking whether a single-chunk table needs to be reorganized, and Checking whether a multi-
chunk table needs to be reorganized in the HADB Setup and Operation Guide.

8. This statement cannot delete archived rows. The DELETE statement that is run to delete archived rows will result
in an error. To delete archived rows, first, unarchive the chunk that stores the rows to be deleted. Then, run the
DELETE statement to delete the rows.

9. The DELETE statement can delete unarchived rows. Note, however, that the DELETE statement you run must meet
all of the following conditions:

• The archive range column is specified in a search condition.

• In the search condition in which the archive range column is specified, only a comparison predicate, the IN
predicate, or the BETWEEN predicate is specified.

• OR, NOT, and other logical operators are not used in the search condition in which the archive range column is
specified.

• Archived rows are not specified as the deletion-target rows.

Unless all of the preceding conditions are met, the DELETE statement will result in an error.

Important
In the search condition in which the archive range column is specified, the predicates that can be
specified are limited. Even if logical operators such as OR and NOT are not specified in the search
condition, the DELETE statement might result in an error. For details, see Using the datetime information
of the archive range column to narrow the search range in the HADB Application Development Guide.

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 164



The following shows typical examples in which the DELETE statement can be run and cannot be run. Note that in
the following examples, table ARCHIVE-T1 is an archivable multi-chunk table, and column RECORD-DAY is the
archive range column.
Example in which the DELETE statement can be run
Example:

DELETE FROM "ARCHIVE-T1"
    WHERE "RECORD-DAY" BETWEEN DATE'2016/02/01' AND DATE'2016/02/29'
      AND "CODE"='P001'

In the preceding example, the DELETE statement can be run because all of the following conditions are met:

• The archive range column (RECORD-DAY) is specified in a search condition.

• Only the BETWEEN predicate is specified in the search condition in which the archive range column is specified.

• OR, NOT, and other logical operators are not used in the search condition in which the archive range column is
specified.

• Archived rows are not specified as the deletion-target rows.

Important
For comparison with the archive range column specified in a search condition, we recommend that
you specify a literal.

Example of recommended specification:
"RECORD-DAY" BETWEEN DATE'2016/01/01' AND DATE'2016/01/10'
"RECORD-DAY" >= DATE'2016/02/10'

We recommend that you specify only a literal.

Example of specification that is not recommended:
"RECORD-DAY" BETWEEN ? AND ?
"RECORD-DAY" >= CURRENT_DATE

Note
The HADB server determines whether the deletion-target data has been archived from the search
condition in which the archive range column is specified. If you specify a literal as the comparison
with the archive range column, you can reduce the time required for determination. If you do not
specify a literal, determination might require a very long time.

Examples in which the DELETE statement cannot be run
• No archive range column is specified in search conditions

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 165



Example 1:

DELETE FROM "ARCHIVE-T1"      

In this example, because the archive range column (RECORD-DAY) is not specified in the search condition, the
DELETE statement results in an error.

Example 2:

DELETE FROM "ARCHIVE-T1"
    WHERE "CODE"='P001'

In this example, because the archive range column (RECORD-DAY) is not specified in the search condition, the
DELETE statement results in an error. An error occurs even when an attempt is made to delete unarchived rows.
• Logical operations such as OR and NOT are specified in the search condition in which the archive range column
is specified
Example:

DELETE FROM "ARCHIVE-T1"
    WHERE "RECORD-DAY" BETWEEN DATE'2016-01-01' AND DATE'2016-01-31'
       OR "RECORD-DAY" BETWEEN DATE'2016-03-01' AND DATE'2016-03-31'

In this example, because the OR operator is specified in the search condition in which the archive range column is
specified, the DELETE statement results in an error. The preceding statement will also result in an error when an
attempt is made to delete unarchived rows.
In this case, you can delete the rows by running the DELETE statement twice as follows:

DELETE FROM "ARCHIVE-T1"
    WHERE "RECORD-DAY" BETWEEN DATE'2016-01-01' AND DATE'2016-01-31'
DELETE FROM "ARCHIVE-T1"
    WHERE "RECORD-DAY" BETWEEN DATE'2016-03-01' AND DATE'2016-03-31'

• Archived rows are specified as the deletion-target rows
Example:

DELETE FROM "ARCHIVE-T1"
    WHERE "RECORD-DAY" BETWEEN DATE'2015/11/01' AND DATE'2016/01/31'

In this example, the DELETE statement results in an error because an attempt is made to delete archived rows.

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 166



• The archive range column is specified together with other items
Example:

DELETE FROM "ARCHIVE-T1"
    WHERE "RECORD-DAY" - 10 DAY > DATE'2016/02/01'

In this example, the DELETE statement results in an error because a datetime operation using the archive range
column is specified.
• A datetime operation is used in the comparison with the archive range column
Example:

DELETE FROM "ARCHIVE-T1"
    WHERE "RECORD-DAY" >= CURRENT_DATE - 1 MONTH

In this example, the DELETE statement results in an error because a datetime operation is used in the comparison
with the archive range column.

10. If an archivable multi-chunk table is specified in the DELETE statement, accesses to the location table and system
table (STATUS_CHUNKS) occur. At this time, locked resources are secured for the system table
(STATUS_CHUNKS). For details about locks, see Locking in the HADB Setup and Operation Guide.

(5) Examples
Example 1

Delete rows where the customer ID (USERID) is U00212 from the customer table (USERSLIST).

DELETE FROM "USERSLIST"
    WHERE "USERID"='U00212'

Example 2
Delete rows where the date of purchase (PUR-DATE) is between September 4, 2011 and September 5, 2011 from
the sales history table (SALESLIST).

DELETE FROM "SALESLIST"
    WHERE "PUR-DATE" BETWEEN DATE'2011-09-04' AND DATE'2011-09-05'

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 167



4.2 INSERT (insert rows)

This section describes the specification format and rules for the INSERT statement.

4.2.1 Specification format and rules for the INSERT statement
The INSERT statement inserts rows into a table. You can insert a single row by specifying a value, or insert one or more
rows by using a query expression body.

(1) Specification format
■ To set insertion values on a column-by-column basis

INSERT-statement ::=
     INSERT INTO table-name [[AS] correlation-name]
                {[(column-name[, column-name]...)]
        {query-expression-body | VALUES(insertion-value[, insertion-value]...)}
                  | DEFAULT VALUES
                 }
 
insertion-value ::=  {value-expression | NULL | DEFAULT}

■ To insert by row

INSERT-statement ::=
     INSERT INTO table-name [[AS] correlation-name] (ROW)
         VALUES(row-insertion-value)
 
row-insertion-value ::=  dynamic-parameter

(2) Explanation of specification format
 table-name

Specifies the name of the table into which rows are to be inserted (the insertion target table). For rules on specifying
a table name, see (2) Table name specification format in 6.1.5 Qualifying a name.
You cannot specify the same table that is specified in the query expression body.
In addition, you cannot specify a read-only viewed table.
If you specify an updatable viewed table in table-name, note the following points:

• When you insert rows into an updatable viewed table, the rows are inserted into the underlying table. At this
time, rows can be inserted regardless of the search conditions specified when the viewed table was defined.

• When rows are inserted into an updatable viewed table, default values are stored in the columns of the underlying
table that do not correspond to the columns of the updatable viewed table. For details about the default values
for columns, see 7.10 DEFAULT clause.
Note that if no default value for a column is specified in a DEFAULT clause, the null value is stored as the default
value for the column.

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 168



Important
If the NOT NULL constraint (null values are not allowed) is defined on columns of the underlying table
that do not correspond to the columns of the updatable viewed table, rows in which null values are stored
in those columns cannot be inserted.

 [AS] correlation-name
Specifies the correlation name of the insertion target table. For details about correlation names, see (4) Table
specification format in 6.1.5 Qualifying a name.

 (column-name[, column-name]...)
Specifies the names of the columns into which data is to be inserted.
Columns whose names are not specified will be filled with the default values specified in the DEFAULT clauses in
the CREATE TABLE statement. However, in the following cases, the null value is stored as the default value for the
column:

• When no default value for the column has been specified in a DEFAULT clause in the CREATE TABLE statement

Note that if no column names are specified, it assumes that all the columns were specified, in the same order in
which the columns were specified when the table was defined with the CREATE TABLE statement.

 query-expression-body
Specifies a query expression body to be used to retrieve the data to be inserted. For details about the query expression
body, see (b) query-expression-body in (2) Explanation of specification format in 7.1.1 Specification format and
rules for query expressions.
The following rules apply:

• The table specified in the query expression body cannot be the same as the table that is the target of the insertion.

 VALUES (insertion-value[, insertion-value]...)
insertion-value ::= {value-expression | NULL | DEFAULT}

Specifies insertion values corresponding to the columns specified in the column-name specifications. Specify one
of the following for insertion-value:

value-expression:
Specify the insertion value in the form of a value expression. For details about value expressions, see 7.20 Value
expression.
Note the following rules:

• value-expression cannot include a column specification.

• insertion-value cannot include a table that is the same as the insertion target table.

NULL:
Specify this to set the insertion value to the NULL value.

DEFAULT:
Specify this to set the insertion value to the default value for the column specified in the DEFAULT clause of
the CREATE TABLE statement. If no default value for the column was specified in a DEFAULT clause, the null
value is assumed as the default value for the column.

 DEFAULT VALUES
Specify this if you want to insert the default column values in all of the columns in the insertion target table.
Specifying DEFAULT VALUES is equivalent to specifying the following:

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 169



VALUES(DEFAULT,DEFAULT,...)

where the number of DEFAULT specifications is equal to the number of columns in the insertion target table.
If you specify DEFAULT VALUES for a table without a DEFAULT clause specification, the null value will be assumed
as the default values for the columns, which means all of the columns will be assigned null values.

 ROW
Specified to insert data by row. When you specify ROW, the entire row is inserted as a single item of data.
The rules for specifying ROW are as follows:

• It can be specified only for a FIX table.

• You cannot specify a query expression body.

 VALUES(row-insertion-value)
row-insertion-value ::= dynamic-parameter

Specifies the data to be inserted into an entire row.
The assumed data type of the dynamic parameter is CHAR type. The data length is the row length of the table into
which data is being inserted. Align the boundaries so that there are no gaps in the structure. For details about how
to calculate the row length, see the ROWSZ calculation formula in Determining the number of pages for storing
each type of row in the HADB Setup and Operation Guide.
Note that only one dynamic parameter can be specified.

(3) Privileges required at execution
To execute the INSERT statement, all of the following privileges are required:

• The CONNECT privilege

• INSERT privilege for a table to which rows are to be inserted

• SELECT privilege for a table specified in a query expression body

Example

INSERT INTO "T1"
    ("C1","C2","C3")
    SELECT "C1","C2","C3" FROM "T2" WHERE "C3"<=100

The INSERT privilege for Table T1 and the SELECT privilege for Table T2 are required to execute the above
INSERT statement.

(4) Rules
1. The total number of tables, derived tables, and table function derived tables specified in the INSERT statement

cannot exceed 2,048. For rules on how to count the number of tables, derived tables, and table function derived
tables specified in an SQL statement, see (4) Rules in 4.4.1 Specification format and rules for the SELECT
statement.

2. If the set operations specified in the INSERT statement are all UNION, a maximum of 1,023 set operations can be
specified. However, if the specified set operations include EXCEPT or INTERSECT, no more than 63 set operations
can be specified.

3. A maximum of 63 outer joins (FULL OUTER JOIN) can be specified in the INSERT statement.

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 170



4. When insertion values are set on a column-by-column basis, the number of insertion values must be the same as the
number of column names. Note also that the data types of the insertion values must be the same as the data types of
the columns into which the data is being inserted, or else they must be converted into assignable data types. For
details about converting data into assignable data types, see 6.2.2 Data types that can be converted, assigned, and
compared.
Example:

INSERT INTO "T1" ("C1","C2","C3")
    VALUES('U00358',5,DATE'2011-09-08')

In this case, the following rules must be observed:

• Because three columns (C1, C2, and C3) are specified, three insertion values must also be specified.

• The data types of the insertion values must be the same as the data types of columns C1, C2, and C3, or they
must be converted into assignable data types. For example, if column C3 is type DATE, its insertion value data
must also be made type DATE.

5. If you specify a dynamic parameter as an insertion value, its assumed data type and data size will be the data type
and data size of the column into which it is being inserted.

6. If you insert DECIMAL or DOUBLE PRECISION type data into a column with any of the data types listed below,
the fractional (decimal) part will be truncated:

• INTEGER
• SMALLINT

Furthermore, if you insert DECIMAL type data into a DECIMAL type column, any digits beyond the scaling specified
for the column will be truncated. If you insert DOUBLE PRECISION type data into a DECIMAL type column, any
digits beyond the scaling specified for the column will be rounded off (to the nearest even number).

7. You cannot insert character string data or binary data that is longer than the row length specified when the table was
defined.

8. You cannot insert numeric data outside the numeric range of the data type defined for a column.

9. If the data being inserted into a CHAR type column is shorter than the column size, the data is left-aligned in the
column and trailing spaces are added.

10. If the data being inserted into a BINARY type column is shorter than the column size, the data is left-aligned in the
column and the rest of the field is set to X'00'.

11. This statement cannot be used to insert rows into a dictionary table or system table.

12. The same operation or design that can be used when the INSERT statement is run for row store tables cannot be
used when the statement is run for column store tables. For details, see Criteria for selecting row store tables and
column store tables, Checking whether a single-chunk table needs to be reorganized, and Checking whether a multi-
chunk table needs to be reorganized in the HADB Setup and Operation Guide.

(5) Examples
Example 1: Insert rows by specifying VALUES

Insert the following data (row) into the sales history table (SALESLIST):

• Customer ID (USERID): U00358
• Product code (PUR-CODE): P003
• Quantity purchased (PUR-NUM): 5
• Date of purchase (PUR-DATE): 2011-09-08

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 171



INSERT INTO "SALESLIST"
      ("USERID","PUR-CODE","PUR-NUM","PUR-DATE")
      VALUES('U00358','P003',5,DATE'2011-09-08')

Example 2: Insert rows by specifying VALUES (specifying subqueries in the insertion value)
Insert the following data (row) into the sales history table (SALESLIST):

• Product code (PUR-CODE): P003
• Product name (PUR-NAME): the product name corresponding to product code P003 in the product table

(PRODUCTLIST)

• Product color (PUR-COL): the product color corresponding to product code P003 in the product table
(PRODUCTLIST)

INSERT INTO "SALESLIST"("PUR-CODE","PUR-NAME","PUR-COL")
    VALUES('P003',
          (SELECT "PUR-NAME" FROM "PRODUCTLIST" WHERE "PUR-CODE"='P003'),
          (SELECT "PUR-COL" FROM "PRODUCTLIST" WHERE "PUR-CODE"='P003'))

Example 3: Insert rows by specifying a query expression body
Insert data from the north district sales history table (SALESLIST_N) into the sales history table (SALESLIST).

• Assume that the sales history table (SALESLIST) and the north district sales history table (SALESLIST_N)
have the same column structure.

• Insert data where the date of purchase (PUR-DATE_N) in the north district sales history table (SALESLIST_N)
is on or after September 6, 2011.

INSERT INTO "SALESLIST"
      ("USERID","PUR-CODE","PUR-NUM","PUR-DATE")
      SELECT "USERID_N","PUR-CODE_N",
             "PUR-NUM_N","PUR-DATE_N"
          FROM "SALESLIST_N"
          WHERE "PUR-DATE_N">=DATE'2011-09-06'

Example 4: Insert rows using the ROW specification
Add new sales information to the sales history table (SALESLIST) (insert using the ROW specification). The columns
that comprise the sales history table are customer ID (USERID), product code (PUR-CODE), quantity purchased
(PUR-NUM), date of purchase (PUR-DATE).

INSERT INTO "SALESLIST"(ROW)
    VALUES(?)

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 172



4.3 PURGE CHUNK (delete all rows in a chunk)

This section describes the specification format and rules for the PURGE CHUNK statement.

4.3.1 Specification format and rules for the PURGE CHUNK statement
The PURGE CHUNK statement deletes all of the rows in a chunk.

The PURGE CHUNK statement can be run for only multi-chunk tables.

(1) Specification format
PURGE CHUNK-statement ::= PURGE CHUNK table-name [[AS] correlation-name]
                       WHERE search-condition

(2) Explanation of specification format
 table-name

Specifies the name of the multi-chunk table to be processed (the chunk deletion target table). For rules on specifying
a table name, see (2) Table name specification format in 6.1.5 Qualifying a name.
Note that you cannot specify a viewed table.

 [AS] correlation-name
Specifies the correlation name of the chunk deletion target table. For details about correlation names, see (4) Table
specification format in 6.1.5 Qualifying a name.

 WHERE search-condition
Specifies the ID of the chunk to be processed.
Specify search conditions in which CHUNKID is specified. For details about search conditions, see 7.18 Search
conditions.
You must specify either a comparison predicate, IN predicate, or quantified predicate in search-condition.

comparison predicate:
For details about comparison predicates, see 7.19.7 Comparison predicate.
The following rules apply to the PURGE CHUNK statement specifically:

• The only comparison operator that can be specified is =.

• CHUNKID must be specified for either comparison operand 1 or comparison operand 2.

• The comparison operand to be compared to CHUNKID must be either an integer literal, dynamic parameter,
or scalar subquery. For details about scalar subqueries, see 7.3.1 Specification format and rules for
subqueries.

• If you specify a dynamic parameter for a comparison operand, the assumed data type of the dynamic
parameter is INTEGER type.

The following are examples of the specification format:

WHERE CHUNKID=integer-literal
WHERE CHUNKID=?
WHERE CHUNKID=(scalar-subquery)

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 173



Important
When using a comparison predicate to specify the chunk ID, only one chunk ID can be specified.
Therefore, to delete rows from multiple chunks using a comparison predicate, you must execute
multiple PURGE CHUNK statements.

However, when using an IN predicate or quantified predicate, you can delete rows from multiple
chunks that match the conditions in a single PURGE CHUNK statement.

IN predicate:
For details about IN predicates, see 7.19.3 IN predicate.
The following rules apply to the PURGE CHUNK statement specifically:

• The IN predicate must use a table subquery.

• CHUNKID must be the first value expression in the IN predicate.

• The IN predicate must not use NOT.

The following is an example of the specification format:

WHERE CHUNKID IN (table-subquery)

quantified predicate:
For details about quantified predicates, see 7.19.8 Quantified predicate.
The following rules apply to the PURGE CHUNK statement specifically:

• The only comparison operator that can be specified is =.

• Only ANY or SOME can be specified. ALL cannot be specified.

• You must specify CHUNKID as the value expression inside the quantified predicate.

The following are examples of the specification format:

WHERE CHUNKID=ANY(table-subquery)
WHERE CHUNKID=SOME(table-subquery)

(3) Privileges required at execution
To execute the PURGE CHUNK statement, both of the following privileges are required:

• The CONNECT privilege

• The TRUNCATE privilege on the chunk deletion target table

If a subquery is specified, the SELECT privilege is required on all of the tables specified in the FROM clause.

(4) Rules
1. Make sure the result of the search condition will have a data type of INTEGER or SMALLINT.

2. Logical operations (AND, OR, NOT) cannot be specified on the predicate.
Examples that produce an error:

WHERE CHUNKID=1 OR CHUNKID=5
WHERE NOT(CHUNKID=1)

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 174



3. CHUNKID cannot be specified in a subquery.

4. If you specify a subquery, the selection expression to be compared to CHUNKID must have a data type of INTEGER
or SMALLINT.
Example:

PURGE CHUNK "SALESLIST"
        WHERE CHUNKID=(
                       SELECT "CHUNK_ID"
                         FROM "MASTER"."STATUS_CHUNKS"
                           WHERE "TABLE_SCHEMA" = 'ADBUSER01'
                             AND "TABLE_NAME" = 'SALESLIST'
                             AND "CHUNK_COMMENT" = '2015/01/24 additional data')

The underlined portion is the selection expression to be compared to CHUNKID.

5. You cannot specify a column from the chunk deletion target table in the search condition.

6. You cannot specify the chunk deletion target table in the FROM clause of a subquery specified in the search condition.

7. If the chunk ID of the current chunk is specified, the PURGE CHUNK statement will result in an error.

8. If a non-existent chunk ID is specified, the specified chunk ID will be ignored and processing will continue.

9. The total number of tables, derived tables, and table function derived tables specified in the PURGE CHUNK statement
cannot exceed 2,048. For rules and examples about how to count the number of tables, derived tables, and table
function derived tables specified in an SQL statement, see (4) Rules in 4.4.1 Specification format and rules for the
SELECT statement.

10. If all of the set operations specified in the PURGE CHUNK statement are UNION, a maximum of 1,023 set operations
can be specified. However, if the specified set operations include EXCEPT or INTERSECT, no more than 63 set
operations can be specified.

11. A maximum of 63 outer joins (FULL OUTER JOIN) can be specified in the PURGE CHUNK statement.

12. During the execution of the PURGE CHUNK statement, the DB area is locked in exclusive mode. Therefore, you
cannot execute the PURGE CHUNK statement while performing operations on another table or index stored in the
DB area that holds the chunk deletion target table, or the index of the chunk deletion target table.

13. If the PURGE CHUNK statement terminates successfully, a COMMIT statement is automatically executed before the
transaction terminates. Therefore, there is no need to execute a COMMIT statement after the execution of the PURGE
CHUNK statement.

14. If the PURGE CHUNK statement terminates successfully, the chunk to be processed (the chunk specified in the chunk
ID) is deleted.

15. If both of the following conditions are met, the PURGE CHUNK statement will result in an error.

• There is a cursor performing retrieval of the chunk deletion target table in the connection where the PURGE
CHUNK statement is executing

• The cursor is open

16. If the PURGE CHUNK statement is executed using the JDBC driver, and there is a Statement object or a
PreparedStatement object performing retrieval from the chunk deletion target table within the same
connection, the PURGE CHUNK statement will result in an error.

(5) Examples
Example 1

In the sales history table (SALESLIST), delete all the rows in the chunk whose ID is 1.

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 175



PURGE CHUNK "SALESLIST" WHERE CHUNKID=1

The above example uses an integer literal to specify the ID of the chunk to be deleted.

Example 2
In the sales history table (SALESLIST), delete all the rows in the chunk whose ID is specified in the dynamic
parameter.

PURGE CHUNK "SALESLIST" WHERE CHUNKID=?

The above example uses a dynamic parameter to specify the ID of the chunk to be deleted.

Example 3
In the sales history table (SALESLIST), delete all the rows in the chunk meeting the following condition:

• The chunk's comment is set to 2015/01/24 additional data
PURGE CHUNK "SALESLIST"
        WHERE CHUNKID=(
                       SELECT "CHUNK_ID"
                         FROM "MASTER"."STATUS_CHUNKS"
                           WHERE "TABLE_SCHEMA" = 'ADBUSER01'
                             AND "TABLE_NAME" = 'SALESLIST'
                             AND "CHUNK_COMMENT" = '2015/01/24 additional data')

The above example uses a scalar subquery to specify the ID of the chunk to be deleted.

Important
The above PURGE CHUNK statement is executed under the assumption that there is only one chunk
whose comment is set to 2015/01/24 additional data. If there are multiple such chunks, use
an IN predicate or a quantified predicate.

Example 4
In the sales history table (SALESLIST), delete all the rows in the chunks meeting the following condition:

• The chunk's comment is set to 2015XXXX additional data
where XXXX denotes a month and day.

PURGE CHUNK "SALESLIST"
        WHERE CHUNKID IN (
                          SELECT "CHUNK_ID"
                            FROM "MASTER"."STATUS_CHUNKS"
                              WHERE "TABLE_SCHEMA" = 'ADBUSER01'
                                AND "TABLE_NAME" = 'SALESLIST'
                                AND "CHUNK_COMMENT" LIKE '2015% additional data')

The above example uses an IN predicate to specify the IDs of the chunks to be deleted.

Example 5
In the sales history table (SALESLIST), delete all the rows in chunks that are in wait status.

PURGE CHUNK "SALESLIST"
        WHERE CHUNKID=ANY(
                          SELECT "CHUNK_ID"
                            FROM "MASTER"."STATUS_CHUNKS"
                              WHERE "TABLE_SCHEMA" = 'ADBUSER01'
                                AND "TABLE_NAME" = 'SALESLIST'
                                AND "CHUNK_STATUS" = 'Wait')

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 176



The above example uses a quantified predicate to specify the IDs of the chunks to be deleted.

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 177



4.4 SELECT (retrieve rows)

This section describes the specification format and rules for the SELECT statement.

4.4.1 Specification format and rules for the SELECT statement
The SELECT statement retrieves data from a table.

(1) Specification format
SELECT-statement ::= query-expression [ORDER-BY-clause] [LIMIT-clause]
 
  ORDER-BY-clause ::=  ORDER BY sort-specification-list

A SELECT statement consists of a query expression followed by clauses (an ORDER BY clause or a LIMIT clause).
The configuration of an example SELECT statement is illustrated in the following figure.

Figure 4-1: Configuration of an example SELECT statement

For details about how to retrieve rows using a SELECT statement, see the following sections in the HADB Application
Development Guide:

• Using the JDBC driver: How to retrieve data in Retrieving data (executing the SELECT statement)

• Using CLI functions: Referencing data in How to use the CLI functions

(2) Explanation of specification format
 query-expression

Specifies a query expression. For details about query expressions, see 7.1 Query expression.
Specify a query specification, or specify a query expression to find the union of tables derived by query specifications.

 ORDER-BY-clause

ORDER-BY-clause ::= ORDER BY sort-specification-list

Specify if you want to sort the results of the query expression in ascending or descending order. If the ORDER BY
clause is omitted, the results of the query expression are not sorted in ascending or descending order.
The sort specification list specifies the sort keys and the sorting order of the results. For details about the sort
specification list, see 7.24 Sort specification list.
Note the following points:

• When the sort key is character string data, results are sorted in sort code order or bytecode order according to
the sort order for character string data specified in the server definition, client definition, or connection attributes.

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 178



• When character string data is sorted in sort code order, it is sorted using the ISO/IEC 14651:2011 standard
sort codes <S0000> to <S2FFFF> and subcodes <T0000> to <TFFFF> assigned to each character. Characters
not assigned a sort code are sorted relative to each other in bytecode order.

• When character string data is sorted in sort code order, it is sorted as Unicode (UTF-8) bit patterns, with illegal
characters treated as one-byte characters and returned at the end of the result.

• If an ORDER BY clause is specified, a work table might be created. If the size of the work table DB area where
the work table will be created has not been estimated correctly, it might result in performance degradation. For
details about estimating the size of the work table DB area, see the HADB Setup and Operation Guide. For details
about work tables, see Considerations when executing an SQL statement that creates work tables in the HADB
Application Development Guide.

 LIMIT-clause
Specifies the maximum number of rows to be retrieved from the results of the query expression.
For details about the LIMIT clause, see 7.9 LIMIT clause.

(3) Privileges required at execution
To execute the SELECT statement, both of the following privileges are required:

• The CONNECT privilege

• The SELECT privilege on all of the tables specified in the query specification of the SELECT statement

(4) Rules
1. The total number of tables, derived tables, and table function derived tables specified in all table references in a
SELECT statement cannot exceed 2,048. However, if the SQL statement includes the following items, the total
number check is performed for the SQL statement after those items are equivalently exchanged into internal derived
tables:

• Viewed tables
If a viewed table is specified in a CREATE VIEW statement, the total number check is performed after the
viewed table specified in the CREATE VIEW statement is equivalently exchanged into a derived table.

• Query name

• Archivable multi-chunk table

Note
For details about equivalent exchange of archivable multi-chunk tables, see Equivalent exchange of
SQL statements that search archivable multi-chunk tables in the HADB Application Development Guide.

The following shows an example of counting the number of tables, derived tables, and table function derived tables
specified in an SQL statement.
Example

WITH "Q1" AS (SELECT * FROM "T6","T7")
SELECT * FROM
  "T1",                                                ...[a]
  "T2" LEFT OUTER JOIN "T3" ON "T2"."C1"="T3"."C1",    ...[b]
  (SELECT * FROM "T4","T5") W1,                        ...[c]
  "Q1",                                                ...[d]
  TABLE(ADB_CSVREAD(MULTISET['/tmp/data.gz'],'COMPRESSION_FORMAT=GZIP;'))
  AS W2 ("C1" INTEGER)                                 ...[e]
  "V1",                                                ...[f]

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 179



  "V2",                                                ...[g]
  "T001"                                               ...[h]

[Explanation]

a. A table (T1) is specified. Here, therefore, the number of specified tables is 1.

b. A joined table consisting of tables T2 and T3 is specified. Here, therefore, the number of specified tables is 2
(the total number of tables specified for the joined table).

c. A derived table is specified, and the derived query for this derived table includes two tables (T4 and T5). Here,
therefore, the number of specified tables is 3 in total.

d. A query name is specified. The query name is equivalently exchanged into a derived table, and the derived query
for this derived table includes two tables (T6 and T7). Here, therefore, the number of specified tables is 3 in
total.

e. A table function derived table is specified. Here, therefore, the number of specified tables is 1.

f. A viewed table (V1) is specified. The viewed table is equivalently exchanged into a derived table, and the derived
query for this derived table includes two tables (T8 and T9). Here, therefore, the number of specified tables is
3 in total.

g. A viewed table (V2) is specified. The viewed table is equivalently exchanged into a derived table. The derived
query for this derived table includes a viewed table (V1), which is equivalently exchanged into a derived table.
The derived query for this derived table includes two tables (T8 and T9). Here, therefore, the number of specified
tables is 4 in total.

h. An archivable multi-chunk table is specified. The archivable multi-chunk table is equivalently exchanged into
a derived table. The derived query for this derived table includes four tables. Here, therefore, the number of
specified tables is 5 in total. T001 is the archivable multi-chunk table that is equivalently exchanged into a
derived table.

In the case of the preceding example, the total number of tables, derived tables, and table function derived tables
specified in the SQL statement is 22.
Note that V1 and V2 are viewed tables that are defined in the following CREATE VIEW statements:

CREATE VIEW "V1" AS SELECT * FROM "T8","T9"
CREATE VIEW "V2" AS SELECT * FROM "V1"

2. If the set operations specified in the SELECT statement are all UNION, a maximum of 1,023 set operations can be
specified. However, if the specified set operations include EXCEPT or INTERSECT, no more than 63 set operations
can be specified.

3. A maximum of 63 outer joins (FULL OUTER JOIN) can be specified in the SELECT statement.

4. The names of the query expression result columns and derived columns are called retrieval item column names .
When a query expression result column or derived column has no name (the length of the column name is 0), its
retrieval item column name is set as follows:
EXPnnnn_NO_NAME
Legend: nnnn: Unsigned integer in the range from 0001 to 1000
Example:

SELECT "C1",MAX("C2"),MIN("C2")
    FROM "T1" GROUP BY "C1"

When the preceding SELECT statement is executed, the retrieval item column names will be C1,
EXP0001_NO_NAME, and EXP0002_NO_NAME.

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 180



5. Note that when you search an archivable multi-chunk table, you must consider the specification of search conditions
in the SELECT statement. For details, see Considerations when searching an archivable multi-chunk table in the
HADB Application Development Guide. Make sure that you read the preceding section when you specify a SELECT
statement that searches an archivable multi-chunk table.

(5) Examples
Example 1

From the sales history table (SALESLIST), retrieve the customer ID (USERID), product code (PUR-CODE), and
date of purchase (PUR-DATE) for customers who purchased product code P002 on or after September 6, 2013.

SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2013-09-06'
        AND "PUR-CODE"='P002'

Example 2
From the employee table (EMPLIST), determine the average age (AGE) of the employees in each section (SCODE).

SELECT "SCODE",AVG("AGE")
    FROM "EMPLIST"
        GROUP BY "SCODE"

Several basic examples of the SELECT statement are shown in 1. SELECT Statement Examples. See also this chapter.

For an example of the SELECT statement in which the ORDER BY clause is specified, see (1) Examples of specifying
a sort specification list in an ORDER BY clause in 7.24.4 Examples.

For an example of the SELECT statement in which the LIMIT clause is specified, see (4) Examples in 7.9.1 
Specification format and rules for LIMIT clauses.

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 181



4.5 TRUNCATE TABLE (delete all rows in a base table)

This section describes the specification format and rules for the TRUNCATE TABLE statement.

4.5.1 Specification format and rules for the TRUNCATE TABLE statement
The TRUNCATE TABLE statement deletes all the rows in a base table.

(1) Specification format
TRUNCATE TABLE-statement ::= TRUNCATE TABLE table-name

(2) Explanation of specification format
 table-name

Specifies the name of the base table whose rows are to be deleted (the row deletion target table ). For the rules on
specifying a table name, see (2) Table name specification format in 6.1.5 Qualifying a name.
Note that the following tables cannot be specified:

• Viewed tables

• Dictionary tables

• System tables

Note
If an archivable multi-chunk table is specified, the data stored in chunks that are archived and not archived
is deleted.

(3) Privileges required at execution
To execute the TRUNCATE TABLE statement, both of the following privileges are required:

• The CONNECT privilege

• The TRUNCATE privilege on the table

(4) Rules
1. During the execution of the TRUNCATE TABLE statement, the DB area is locked in exclusive mode. Therefore, you

cannot execute the TRUNCATE TABLE statement while performing operations on another table or index stored in
the DB area that contains the table to be processed, or the index of the table to be processed.

2. If the TRUNCATE TABLE statement terminates successfully, a COMMIT statement is automatically executed before
the transaction terminates. Therefore, there is no need to execute a COMMIT statement after the execution of the
TRUNCATE TABLE statement.

3. If both of the following conditions are met, the TRUNCATE TABLE statement will result in an error.

• There is a cursor performing retrieval from the table targeted by the TRUNCATE TABLE statement in the
connection where the TRUNCATE TABLE statement is executing

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 182



• The cursor is open

4. If both of the following conditions are met, the TRUNCATE TABLE statement will result in an error.

• The TRUNCATE TABLE statement is executed using the JDBC driver

• There is a Statement object or a PreparedStatement object performing retrieval from the table targeted
by the TRUNCATE TABLE statement within the same connection

(5) Examples
Example

Delete all rows in the sales history table (SALESLIST).

TRUNCATE TABLE "SALESLIST"

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 183



4.6 UPDATE (update rows)

This section describes the specification format and rules for the UPDATE statement.

4.6.1 Specification format and rules for the UPDATE statement
The UPDATE statement updates values in a row.

(1) Specification format
■ To update rows by specifying the names of the columns to update:

UPDATE-statement ::=
     UPDATE table-name [[AS] correlation-name]
       SET update-target-column-name=update-value[, update-target-column-name=upda
te-value]...
          [WHERE search-condition]
 
 update-value ::=  {value-expression | NULL | DEFAULT}

■ To update an entire row by specifying ROW:

UPDATE-statement ::=
     UPDATE table-name [[AS] correlation-name]
       SET ROW=row-update-value
          [WHERE search-condition]
 
row-update-value ::=  dynamic-parameter

(2) Explanation of specification format
 table-name

Specifies the name of the table to be updated (the update target table). For rules on specifying a table name, see (2) 
Table name specification format in 6.1.5 Qualifying a name.
Note that you cannot specify a read-only viewed table.

 [AS] correlation-name
Specifies the correlation name of the update target table. For details about correlation names, see (4) Table
specification format in 6.1.5 Qualifying a name. For details about the effective scope of correlation names, see 6.8 
Scope variables.

 update-target-column-name=update-value[, update-target-column-name=update-value]...
update-value ::= {value-expression | NULL | DEFAULT}

Specifies the columns to be updated and their update values (the values after the update).
update-target-column-name can be specified in the form of a column specification. For details about column
specifications, see (5) Column specification format in 6.1.5 Qualifying a name.
Specify one of the following for update-value.

value-expression:
Specify the post-update value in the form of a value expression. For details about value expressions, see 7.20 
Value expression.

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 184



NULL:
Specify this to set the post-update value to the null value.

DEFAULT:
Specify this to set the post-update value to the default value for the column specified in the DEFAULT clause of
the CREATE TABLE statement. For details about the default values of columns, see 7.10 DEFAULT clause.
If no default value is specified in a DEFAULT clause for a column, the null value is assumed as the default value
for the column.

 WHERE search-condition
Specifies the conditions for selecting the rows to update. If the WHERE clause is omitted, all the rows in the specified
table are updated.
For details about search conditions, see 7.18 Search conditions.
The following rules apply:

• You can specify dynamic parameters in the search conditions.

If you specify an updatable viewed table in table-name, note the following points:

• When you update rows in an updatable viewed table, it updates the rows in the underlying table.

• The rows of the underlying table that will be updated are those that satisfy both the search conditions specified
here and the search conditions specified when the viewed table was defined.

• If the WHERE clause is omitted, the rows of the underlying table that will be updated are those that satisfy the
search conditions specified when the viewed table was defined.

 ROW=row-update-value

row-update-value ::= dynamic-parameter

Specified to insert data by row. ROW can be specified only for FIX tables. When you specify ROW, the entire row is
updated as one item of data.
The assumed data type of the dynamic parameter is the CHAR type. The data length is the row length of the table
being updated. Align the boundaries so that there are no gaps in the structure. For details about how to calculate the
row length, see the ROWSZ calculation formula in Determining the number of pages for storing each type of row
in the HADB Setup and Operation Guide.
Note that only one dynamic parameter can be specified.

(3) Privileges required at execution
To execute the UPDATE statement, all of the following privileges are required:

• The CONNECT privilege

• UPDATE privilege for a table whose rows are to be updated

• SELECT privilege for a table specified in a query expression body

Example

UPDATE "T1"
    SET "C1"='P001'
       WHERE "T1"."C2" IN (SELECT "C2" FROM "T2" WHERE "C3"<=100)

The UPDATE privilege for Table T1 and the SELECT privilege for Table T2 are required to execute the above
UPDATE statement.

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 185



(4) Rules
1. The total number of tables, derived tables, and table function derived tables specified in the UPDATE statement

cannot exceed 2,048. For rules and examples of how to count the number of tables, derived tables, and table function
derived tables specified in an SQL statement, see (4) Rules in 4.4.1 Specification format and rules for the SELECT
statement.

2. If the set operations specified in the UPDATE statement are all UNION, a maximum of 1,023 set operations can be
specified. However, if the specified set operations include EXCEPT or INTERSECT, no more than 63 set operations
can be specified.

3. A maximum of 63 outer joins (FULL OUTER JOIN) can be specified in the UPDATE statement.

4. You cannot specify the update target table in the FROM clause of a subquery in the search conditions or update values.

5. For the data types of the update values, use the data types of the columns to be updated or data types that can be
converted and assigned to the columns' data types. For details about data types that can be converted or assigned,
see 6.2.2 Data types that can be converted, assigned, and compared.

6. If you specify a dynamic parameter as a row update value, the assumed data type and data length will be the data
type and data length of the column to be updated.

7. If you update DECIMAL or DOUBLE PRECISION type data in a column defined as any of the data types listed
below, the fractional (decimal) part will be truncated:

• INTEGER
• SMALLINT

Furthermore, if you use DECIMAL type data to update a DECIMAL type column, any digits beyond the scaling
specified for the column will be truncated.
If you use DOUBLE PRECISION type data to update a DECIMAL type column, any digits beyond the scaling
specified for the column will be rounded off (to the nearest even number).

8. When updating a CHAR type, VARCHAR type, BINARY type or VARBINARY type column, if the data length of the
update value is greater than the defined size of the column, the table cannot be updated.

9. When updating a CHAR type column, if the data length of the update value is shorter than the defined size of the
column, the data is stored left-aligned and trailing spaces are added.

10. When updating a BINARY type column, if the data length of the update value is shorter than the defined size of the
column, the data is stored left-aligned in the column and the rest of the field is set to X'00'.

11. When updating an INTEGER, SMALLINT, or DECIMAL type column, if the update value is outside the numeric
range of the data type, the table cannot be updated.

12. A maximum of 1,000 update target column names can be specified in the SET clause.

13. If there are no rows to be updated, SQLCODE is set to 100.

14. Each column name must be unique among the columns to be updated.

15. When the ROW specification is used, you cannot specify more than one SET clause.

16. This statement cannot be used to update rows of a dictionary table or system table.

17. The same operation or design that can be used when the UPDATE statement is run for row store tables cannot be
used when the statement is run for column store tables. For details, see Criteria for selecting row store tables and
column store tables, Checking whether a single-chunk table needs to be reorganized, and Checking whether a multi-
chunk table needs to be reorganized in the HADB Setup and Operation Guide.

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 186



18. Archived rows cannot be updated. The UPDATE statement that is run to update archived rows will result in an error.
To update archived rows, first, unarchive the chunk that stores the rows to be updated. Then, run the UPDATE
statement to update the rows.

19. The UPDATE statement can update unarchived rows. Note, however, that the UPDATE statement you run must meet
all of the following conditions:

• The archive range column is specified in a search condition.

• In the search condition in which the archive range column is specified, only a comparison predicate, the IN
predicate, or the BETWEEN predicate is specified.

• OR, NOT, and other logical operators are not used in the search condition in which the archive range column is
specified.

• Archived rows are not specified as the update-target rows.

Unless all of the preceding conditions are met, the UPDATE statement will result in an error.

Important
In the search condition in which the archive range column is specified, the predicates that can be
specified are limited. Even if logical operators such as OR and NOT are not specified in the search
condition, the UPDATE statement might result in an error. For details, see Using the datetime information
of the archive range column to narrow the search range in the HADB Application Development Guide.

The following shows typical examples in which the UPDATE statement can be run and cannot be run. Note that in
the following examples, table ARCHIVE-T1 is an archivable multi-chunk table, and column RECORD-DAY is the
archive range column.
Example in which the UPDATE statement can be run
Example:

UPDATE "ARCHIVE-T1" SET "NUMBER"=100
    WHERE "RECORD-DAY" BETWEEN DATE'2016/02/01' AND DATE'2016/02/29'
      AND "CODE"='P001'

In the preceding example, the UPDATE statement can be run because all of the following conditions are met:

• The archive range column (RECORD-DAY) is specified in a search condition.

• Only the BETWEEN predicate is specified in the search condition in which the archive range column is specified.

• OR, NOT, and other logical operators are not used in the search condition in which the archive range column is
specified.

• Archived rows are not specified as the update-target rows.

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 187



Important
For the comparison with the archive range column specified in a search condition, we recommend
that you specify a literal.

Example of recommended specification:
"RECORD-DAY" BETWEEN DATE'2016/01/01' AND DATE'2016/01/10'
"RECORD-DAY" >= DATE'2016/02/10'

We recommend that you specify only a literal.

Example of specification that is not recommended:
"RECORD-DAY" BETWEEN ? AND ?
"RECORD-DAY" >= CURRENT_DATE

Note
The HADB server determines whether the update-target data has been archived from the search
condition in which the archive range column is specified. If you specify a literal as the comparison
with the archive range column, you can reduce the time required for determination. If you do not
specify a literal, determination might require a very long time.

Examples in which the UPDATE statement cannot be run
• No archive range column is specified in search conditions
Example 1:

UPDATE "ARCHIVE-T1" SET "NUMBER"=100      

In this example, because the archive range column (RECORD-DAY) is not specified in the search condition, the
UPDATE statement results in an error.

Example 2:

UPDATE "ARCHIVE-T1" SET "NUMBER"=100
    WHERE "CODE"='P001'

In this example, because the archive range column (RECORD-DAY) is not specified in the search condition, the
UPDATE statement results in an error. An error occurs even when an attempt is made to update unarchived rows.
• Logical operations such as OR and NOT are specified in the search condition in which the archive range
column is specified
Example:

UPDATE "ARCHIVE-T1" SET "NUMBER"=100
    WHERE "RECORD-DAY" BETWEEN DATE'2016-01-01' AND DATE'2016-01-31'
       OR "RECORD-DAY" BETWEEN DATE'2016-03-01' AND DATE'2016-03-31'

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 188



In this example, because the OR operator is specified in the search condition in which the archive range column is
specified, the UPDATE statement results in an error. The preceding statement will also result in an error when an
attempt is made to update unarchived rows.
In this case, you can update the rows by running the UPDATE statement twice as follows:

UPDATE "ARCHIVE-T1" SET "NUMBER"=100
    WHERE "RECORD-DAY" BETWEEN DATE'2016-01-01' AND DATE'2016-01-31'
UPDATE "ARCHIVE-T1" SET "NUMBER"=100
    WHERE "RECORD-DAY" BETWEEN DATE'2016-03-01' AND DATE'2016-03-31'

• Archived rows are specified as the update-target rows
Example:

UPDATE "ARCHIVE-T1" SET "NUMBER"=100
    WHERE "RECORD-DAY" BETWEEN DATE'2015/11/01' AND DATE'2016/01/31'

In this example, the UPDATE statement results in an error because an attempt is made to update archived rows.

• The archive range column is specified together with other items
Example:

UPDATE "ARCHIVE-T1" SET "NUMBER"=100
    WHERE "RECORD-DAY" - 10 DAY > DATE'2016/02/01'

In this example, the UPDATE statement results in an error because a datetime operation using the archive range
column is specified.
• A datetime operation is used in the comparison with the archive range column
Example:

UPDATE "ARCHIVE-T1" SET "NUMBER"=100
    WHERE "RECORD-DAY" >= CURRENT_DATE - 1 MONTH

In this example, the UPDATE statement results in an error because a datetime operation is used in the comparison
with the archive range column.

20. If an archivable multi-chunk table is specified in the UPDATE statement, accesses to the location table and system
table (STATUS_CHUNKS) occur. At this time, locked resources are secured for the system table
(STATUS_CHUNKS). For details about locks, see Locking in the HADB Setup and Operation Guide.

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 189



(5) Examples
Example 1: Update rows by specifying the name of the column to be updated

In the sales history table (SALESLIST), update the quantity purchased (PUR-NUM) to 6 in rows that satisfy the
following conditions:

• Customer ID (USERID): U00358
• Product code (PUR-CODE): P003
• Date of purchase (PUR-DATE): 2011-09-08
UPDATE "SALESLIST"
      SET "PUR-NUM"=6
      WHERE "USERID"='U00358'
        AND "PUR-CODE"='P003'
        AND "PUR-DATE"=DATE'2011-09-08'

Example 2: Update rows by specifying the name of the column to be updated (specifying a subquery for the
update values)

Update the product color (PUR-COL) of the product whose product code (PUR-CODE) column's value is P003 in
the sales history table (SALESLIST) so that it is the same color as the product whose product code (PUR-CODE)
column's value is P003 in the product table (PRODUCTLIST).

UPDATE "SALESLIST"
    SET "PUR-COL" = (SELECT "PUR-COL" FROM "PRODUCTLIST" WHERE "PUR-CODE"='P003')
    WHERE "PUR-CODE"='P003'

Example 3: Update rows by ROW specification
Update the sales information in the sales history table (SALESLIST) (update the entire row using the ROW
specification). The sales history table comprises the columns customer ID (USERID), product code (PUR-CODE),
quantity purchased (PUR-NUM), and date of purchase (PUR-DATE).

UPDATE "SALESLIST"
    SET ROW=?
    WHERE "USERID"=?

4. Data Manipulation SQL

Hitachi Advanced Database SQL Reference 190



This chapter describes the functions, rules, and specification formats of control SQL statements.

5 Control SQL

Hitachi Advanced Database SQL Reference 191



5.1 COMMIT (terminate a transaction normally)

This section describes the specification format for the COMMIT statement.

5.1.1 Specification format for the COMMIT statement
The COMMIT statement validates the database contents that were updated by a transaction, and terminates the
transaction normally.

(1) Specification format
You can specify a COMMIT statement when you use the adbsql command to execute an SQL statement. You cannot
specify a COMMIT statement in an application program.

The specification format of a COMMIT statement in the adbsql command is as follows:

COMMIT-statement ::= COMMIT

(2) Privileges required at execution
To execute the COMMIT statement, the CONNECT privilege is required.

5. Control SQL

Hitachi Advanced Database SQL Reference 192



5.2 ROLLBACK (cancel a transaction)

This section describes the specification format for the ROLLBACK statement.

5.2.1 Specification format for the ROLLBACK statement
The ROLLBACK statement invalidates the database contents that were updated by a transaction, and cancels the
transaction.

(1) Specification format
You can specify a ROLLBACK statement when you use the adbsql command to execute an SQL statement. You cannot
specify a ROLLBACK statement in an application program.

The specification format of a ROLLBACK statement in the adbsql command is as follows:

ROLLBACK-statement ::= ROLLBACK

(2) Privileges required at execution
To execute the ROLLBACK statement, the CONNECT privilege is required.

5. Control SQL

Hitachi Advanced Database SQL Reference 193



This chapter describes the basic elements of SQL.

6 SQL Basics

Hitachi Advanced Database SQL Reference 194



6.1 SQL writing conventions

This section presents SQL writing conventions.

6.1.1 Rules for writing SQL statements

(1) Specifying the order of options
Specify options in the order in which they are described in the specification format of each SQL statement.

(2) Specifying keywords
Terms that have to be specified in order to use a built-in SQL capability, such as the names of SQL statements (SELECT,
UPDATE, and so on), are called keywords. Because most keywords are registered as system-reserved words, they can
be specified only at prescribed positions within SQL statements.

However, keywords that are not registered as reserved words can be used as names. Examples of keywords and names
are given in the following figure.

Figure 6-1: Examples of keywords and names

The following are specified as names:

• Index identifiers

• Correlation names

• Query names

• Authorization identifiers

• Schema identifiers

• Table identifiers

• Column names

• Constraint names

• DB area names

For details about reserved words, see 6.10 Reserved words.

6. SQL Basics

Hitachi Advanced Database SQL Reference 195



(3) Specifying numeric values
In SQL statements, specify numeric values that are not numeric literals using the conventions and restrictions of unsigned
integers. The following are numeric values that are not numeric literals:

• Percentage of unused area (percentage of unused area in table and index definitions)

• Length, maximum length (length and maximum length of character string data and binary data)

• Precision (number of digits for decimal data)

• Scaling (number of digits to the right of the decimal point for decimal data)

• Fractional seconds precision (number of digits in the fractional seconds of time data and time stamp data)

(4) Maximum size of an SQL statement
The maximum size of an SQL statement is 16,000,000 bytes.

For a view definition (CREATE VIEW statement), the maximum size is 64,000 bytes.

6.1.2 Rules for separators

(1) About separators
When writing SQL statements, you need to put separators between two keywords, or between keywords and names,
and so on. Separators include the following:

• Spaces
The following white space characters are treated as spaces:

• Space

• CR (carriage return): Return

• NL (new line): Line break

• Tab

• Comments

(2) Where separators must be inserted
Separators must be inserted in the following places:

• Between two keywords

• Between a keyword and a name

• Between two names

• Between a keyword and a numeric value

• Between a name and a numeric value

Examples of where separators must be inserted are shown in the following figure.

6. SQL Basics

Hitachi Advanced Database SQL Reference 196



Figure 6-2: Examples of where separators must be inserted

(3) Where separators cannot be inserted
Separators cannot be inserted in the following places:

• Inside a keyword

• Inside a name that is not enclosed in double quotation marks (")

• After the opening double quotation mark (") that encloses a name

• Before the closing double quotation mark (") that encloses a name

• Inside a numeric literal (except after the sign specified at the beginning)

• Between the X and the following ' in the hexadecimal-format binary literal representation X'...'
• Between the B and the following ' in the binary-format binary literal representation B'...'
• Inside an operator (inside a comparison operator consisting of two characters)

Examples of where separators cannot be inserted are shown in the following figure.

Figure 6-3: Examples of where separators cannot be inserted

(4) Where separators can be inserted
Separators can be inserted in the following places:

• In places not prohibited under (3) Where separators cannot be inserted above, as well as before and after the
following special characters:
, . -+ * '" ( )< > = ^ ! ? tab NL CR space

Examples of where separators can be inserted are shown in the following figure.

6. SQL Basics

Hitachi Advanced Database SQL Reference 197



Figure 6-4: Examples of where separators can be inserted

(5) Comments
You can add a comment at any location in an SQL statement where a separator can be inserted. Comments are illustrated
in the example below.

Example

SELECT "C1","C2" FROM "T1"    /* comment1 */
    ORDER BY "C1" ASC         /* comment2 */

The underlined portions are comments. Everything between the /* and the */ is considered part of the comment.

When writing comments, the following guidelines must be observed:

• A comment cannot be placed inside an identifier or character string literal.

• Comments cannot be nested.
Example

SELECT * FROM  "T1" /* /* comment1 */ comment2 */

Specifying nested comments as shown above results in a syntax error.

• If the /* and */ are enclosed in double quotation marks (") or single quotation marks ('), they are not treated as
defining a comment.
Example

SELECT * FROM "T1" WHERE "C1"='/* comment */'

The underlined portion above is treated as a character string literal rather than a comment.

• Note that a character string that begins with /*>> and ends with <<*/ is not treated as a comment.
Example

SELECT * FROM "T1" /*>> WITHOUT INDEX <<*/

In the preceding example, the underlined portion is treated as an index specification rather than a comment. For
details about index specifications, see 7.14 Index specification.
However, a comment can appear within the index specification enclosed in /*>> and <<*/.
Example

SELECT * FROM "T1" /*>> WITHOUT INDEX /* WITH INDEX(INDEXNAME)*/ <<*/

The underlined portion above is treated as a comment. When processed, it is equivalent to the following SQL
statement:

SELECT * FROM "T1" /*>> WITHOUT INDEX <<*/

• Note that a character string that begins with /*>> and ends with <<*/ cannot be specified within a comment. For
example, it is impossible to include an index specification in a comment.
Example

6. SQL Basics

Hitachi Advanced Database SQL Reference 198



SELECT * FROM "T1" /* /*>> WITHOUT INDEX <<*/ */

In the preceding example, an index specification (the underlined portion) appears within a comment. Therefore, this
SQL statement results in a syntax error.

6.1.3 Characters permitted in SQL statements
The following table lists the characters that are permitted in SQL statements.

Table 6-1: Characters that are permitted in SQL statements

No. Type Characters permitted in SQL statements

1 Character string literals All characters except for the character encoding X'00'

2 Other than above • The following characters:
Uppercase alphabetic characters (A to Z, #, @, \)
Lowercase alphabetic characters (a to z)
Numeric characters (0 to 9)
space
underscore character (_)

• The following special characters:
Comma (,)
Period (.)
Hyphen or minus sign (-)
Plus sign (+)
Asterisk (*)
Single quotation mark (')
Double quotation mark (")
Left parenthesis (()
Right parenthesis ())
Less than sign (<)
Greater than sign (>)
Equals sign (=)
Circumflex (^)
Exclamation mark (!)
Forward slash (/)
Question mark (?)
Percent sign (%)
Vertical bar (|)
Left square bracket ([)
Right square bracket (])
Tab
NL
CR

(1) Character encodings permitted in SQL statements
The character encodings that are permitted in SQL statements depend on the character encoding being used by HADB.
The following table shows the relationship between the character encoding used by HADB and the character encodings
permitted in SQL statements.

6. SQL Basics

Hitachi Advanced Database SQL Reference 199



Table 6-2: Relationship between the character encoding used by HADB and the character
encodings permitted in SQL statements

Character encoding used by HADB Character encodings permitted in SQL statements

Unicode (UTF-8) JIS X 0221

Shift-JIS JIS X 0201 and JIS X 0208

(2) Character handling
In character string data, each character takes up a certain number of bytes. This number is determined according to the
relationship between the character encoding range and the required number of bytes, shown in the table below. If the
number of bytes to the end of the character string data is less than the required number of bytes, the data is assumed to
begin with a one-byte character consisting of the first byte, and the next byte is assumed to be the starting point for the
next character.

Table 6-3: Relationship between the character encoding range and the number of bytes

Character encoding used by
HADB

Range of first byte Range of second and
subsequent bytes

Required number of bytes

Unicode (UTF-8) 0x00 to 0x7F -- 1

0xC0 to 0xDF N 2

0xE0 to 0xEF N 3

0xF0 to 0xF7 N 4

0xF8 to 0xFB N 5

0xFC to 0xFD N 6

Other than above -- 1

Shift-JIS 0x00 to 0x7F -- 1

0x81 to 0x9F 0x40 to 0x7E or 0x80 to
0xFC

2

Other than above 1

0xA1 to 0xDF -- 1

0xE0 to 0xFC 0x40 to 0x7E or 0x80 to
0xFC

2

Other than above 1

Other than above -- 1

Legend:
N: No range specified.
--: Not applicable.

6. SQL Basics

Hitachi Advanced Database SQL Reference 200



6.1.4 Specifying names

(1) About names
The following are specified as names:

• Index identifiers

• Correlation names

• Query names

• Authorization identifiers

• Schema identifiers

• Table identifiers

• Column names

• Constraint names

• DB area names

A name can be specified either enclosed in double quotation marks (") or not. When specifying a name, we recommend
enclosing it in double quotation marks ("). If a name containing alphabetic characters is enclosed in double quotation
marks ("), it becomes case sensitive.

Note
You cannot specify a name that is the same as a reserved word, unless you enclose the name in double
quotation marks ("). As the functional scope of SQL is extended, reserved words might be added, so we
recommend that you enclose all names in double quotation marks to avoid potential conflict with reserved
words that might be added in the future.

Note that a name is specified as an identifier. Identifiers include normal identifiers, which are not enclosed in double
quotation marks ("), and delimited identifiers, which are enclosed in double quotation marks ("). The following are
examples of specifying a normal identifier and a delimited identifier.

• Specifying a table identifier using the normal identifier format
Example: table01

• Specifying a table identifier using the delimited identifier format
Example: "table01"

(2) Rules for characters that can be used in names
• The first character of a name must be an uppercase alphabetic character, lowercase alphabetic character, half-width

katakana character, or full-width character. Note, however, that a name can begin with a (half-width) left or right
parenthesis in the following sections of the first query specification (except the query specification in the WITH
clause of the SELECT statement):

• Name of the selection-expression AS column-name column

• Name of a column in the ORDER BY clause (except the ORDER BY clause specified in a subquery)

Note that if you specify a column name that includes a half-width parenthesis, you must enclose it in double quotation
marks ("). That is, you must specify it as a delimited identifier.

6. SQL Basics

Hitachi Advanced Database SQL Reference 201



• The following table lists restrictions on characters and lengths that are permitted for names.

Table 6-4: Restrictions on characters and lengths that are permitted for names

No
.

Type of name Maximu
m length
(bytes)

Characters#1 Full-
width
characte
rs#1, #4

Upperca
se and
numeric
characte
rs

Lowerca
se
characte
rs#2

Katakana
characte
rs

Undersc
ore (_)

Space#3 Hyphen
(-)

1 Index identifier 100 Y Y Y Y D D Y

2 Correlation name 100 Y Y Y Y D D Y

3 Query name 100 Y Y Y Y D D Y

4 Authorization
identifier#5

100 Y Y N N N N N

5 Schema identifier 100 Y Y N N N N N

6 Table identifier 100 Y Y Y Y D D Y

7 Column name 100 Y Y Y Y D D Y

8 Constraint name 100 Y Y Y Y D D Y

9 DB area name 30 Y#6 Y N Y N D N

Legend:
Y: Can be used.
D: Can be used when specifying a name using the delimited identifier format. This character cannot be used
when specifying a name using the normal identifier format.
N: Cannot be used.

#1
Names can use a mixture of half-width characters and full-width characters.

#2
If the name is specified using the normal identifier format, single-byte lowercase letters are treated as single-
byte uppercase letters.
If the name is specified using the delimited identifier format, single-byte lowercase and uppercase letters are
distinguished.

#3
If the name is specified using the delimited identifier format, the final character of the name cannot be a single-
byte space.

#4
Double-byte spaces are not permitted.

#5
ALL, HADB, MASTER, and PUBLIC cannot be specified as authorization identifiers.

#6
Not including #, @, and \.

6. SQL Basics

Hitachi Advanced Database SQL Reference 202



(3) What to do if a name conflicts with an SQL reserved word
Change the SQL statement by enclosing the name that is in conflict with a reserved word in double quotation marks ("),
thus specifying it in the delimited identifier format.

Note that if a name containing alphabetic characters is enclosed in double quotation marks ("), it becomes case sensitive.

6.1.5 Qualifying a name
You can qualify a name so that you can explicitly specify a schema name or make a name unique, among other uses.
You qualify a name by connecting one name (such as a schema name) to another name (such as a table identifier) using
a dot (.).

(1) Schema name specification format
Format

schema-name ::= schema-identifier

Specify a schema name as a schema identifier.

If the owner of the table or index specified in the SQL statement is the HADB user who is connected to the HADB
server, this user specifies his or her own authorization identifier.

If the schema name is omitted in the SQL statement, the authorization identifier specified when connecting to the HADB
server is assumed as the schema name.

To search a dictionary table or system table, specify MASTER as the schema name.

(2) Table name specification format
Format

table-name ::= [schema-name.]table-identifier

Specify a table name as a table identifier, optionally qualified by a schema name. Specify either a base table name or a
viewed table name as the table identifier.

If the schema name is omitted in the SQL statement, the authorization identifier specified when connecting to the HADB
server is assumed as the schema name.

(3) Index name specification format
Format

index-name ::= [schema-name.]index-identifier

Specify an index name as an index identifier, optionally qualified by a schema name.

If the schema name is omitted in the SQL statement, the authorization identifier specified when connecting to the HADB
server is assumed as the schema name.

6. SQL Basics

Hitachi Advanced Database SQL Reference 203



(4) Table specification format
If you specify two or more tables in a single SQL statement, in order to identify which table the specified column or
asterisk (*) corresponds to, you must qualify it using a table name, query name, or correlation name to uniquely identify
the table.

For details about query names, see (a) WITH-clause in (2) Explanation of specification format in 7.1.1 Specification
format and rules for query expressions.

A correlation name is an alias for a table. It is used in the following circumstances:

• When you want to join a table to itself

• When you want to reference the columns of a table from an outer query after specifying the same table in a subquery

By specifying a correlation name, a single table can be treated as if it were two different tables.

Format

table-specification ::= {table-name | query-name | correlation-name}

The following is an example of qualification using a table specification.

Example:
In order to reference columns with the same name (DNO) in multiple tables (EMP, DEPT), qualify them with their
table names.

SELECT "ENO","ENAME","EMP"."DNO","DNAME"
    FROM "EMP","DEPT"
    WHERE "EMP"."DNO"="DEPT"."DNO"

The underlined portions are examples of qualification using a table specification.

(5) Column specification format
A column name that is qualified with a table specification is called a column specification.

Format

column-specification ::= [table-specification.]column-name

A column name cannot be qualified with a table specification if it is not within the scope of the specified table name or
query name. For details about the scope of table names and query names, see 6.8 Scope variables.

The column name must exist in the position where it is specified in the table, or derived table, whose scope it falls under.
For rules about the column names of derived tables, see 6.9 Derived column names.

Some column names can be qualified while others cannot, due to syntactic considerations. The description column-
specification in a format specification indicates a column name that can be qualified. The description column-name
indicates that the column name cannot be qualified.

In the following case, a column name must be qualified with a table specification.

• In a retrieval in which multiple tables are specified in one FROM clause (by joining two or more tables) and the
multiple tables contain identically named columns (without a qualification, it would not be clear which table was
intended).

6. SQL Basics

Hitachi Advanced Database SQL Reference 204



6.2 Data types

This section describes the data types supported by HADB.

6.2.1 List of data types
The following table lists the data types supported by HADB.

Table 6-5: List of data types supported by HADB

No
.

Class Data type Data type code#1 Length of data
storage
(units: bytes)

Data format

Decim
al

Hex

1 Numeric
data

INTEGER 241 F1 8 Integer (8-byte)

2 SMALLINT 245 F5 4 Integer (4-byte)

3 DECIMAL(m,n) 229 E5 • If 1 ≤ m ≤ 4: 2
• If 5 ≤ m ≤ 8: 4
• If 9 ≤ m ≤ 16: 8
• If 17 ≤ m ≤ 38: 16

Fixed-point number

4 DOUBLE PRECISION 225 E1 8 Double-precision floating-point
number

5 Character
string data

CHARACTER(n) 197 C5 n Fixed-length character string

6 VARCHAR(n) 193 C1 n + 2 Variable-length character string

7 Datetime
data

DATE 113 71 4 Data type for dates, with fields for the
year, month, and day

8 TIME(p) 121 79 3 + ↑p ÷ 2↑ Data type for time, with fields for the
hour, minute, and seconds

9 TIMESTAMP(p) 125 7D 7 + ↑p ÷ 2↑ Data type for time stamps, with fields
for the year, month, day, hour, minute,
and seconds

10 Binary
data

BINARY(n) 149 95 n Fixed-length binary data

11 VARBINARY(n) 145 91 n + 2 Variable-length binary data

12 Row data ROW 69 45 Row length#2 Data type used for row interface

Legend:
Class: Classification
Hex: Hexadecimal

#1
The code that represents the data type of the retrieval results column.
When using a CLI function, the data type code is stored in the structure a_rdb_SQLDataType_t.

#2
The row length is the sum of the data storage size of each column.

6. SQL Basics

Hitachi Advanced Database SQL Reference 205



(1) Numeric data
■ INTEGER

• This data type handles integer values in the range -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

• The following shows the format to use when specifying this data type:
INT or INTEGER

• The data is in 8-byte binary format.

• Literals are written in the form 100, 200, and so on. For details about literals, see 6.3 Literals.

■ SMALLINT
• This data type handles integer values in the range -2,147,483,648 to 2,147,483,647.

• The following shows the format to use when specifying this data type:
SMALLINT

• The data is in 4-byte binary format.

• Using the SMALLINT can reduce the size of the database compared with using the INTEGER.

■ DECIMAL
• This data type handles fixed-point numbers.

• The following shows the format to use when specifying this data type:
{DEC | DECIMAL}[(m[,n])]

• The precision (overall number of digits) is specified in m, and the scaling (number of digits in the fractional part)
is specified in n.

• m and n are positive integers such that 1 ≤ m ≤ 38, 0 ≤ n ≤ 38, n ≤ m.

• If m is omitted, 38 is assumed, and if n is omitted, 0 is assumed.

• The data is stored internally in binary format. The binary value that is stored depends on the scaling.

• Negative values are represented in two's complement format.

• The data is stored as integer data of 2 to 16 bytes, depending on the precision, as illustrated in the following
figure:

6. SQL Basics

Hitachi Advanced Database SQL Reference 206



Figure 6-5: Data format of DECIMAL

• Literals are written in the form 123.4, 12.345, and so on. For details about literals, see 6.3 Literals.

■ DOUBLE PRECISION
• This data type handles double-precision floating-point numbers. The ranges of values covered include

approximately -1.7 × 10308 to -2.3 × 10-308, 0, and approximately 2.3 × 10-308 to 1.7 × 10308.
The exact range of values depends on the hardware representation.

• The following shows the format to use when specifying this data type:
DOUBLE or DOUBLE PRECISION

• The data is an 8-byte floating-point number.

• In the case of literals such as 1.0e2 or -3.4E-1, the mantissa is represented by an integer or decimal literal,
and the exponent is stored as an integer of no more than 3 digits. For details about literals, see 6.3 Literals.

• This data type cannot handle NaN (not a number) and infinite values.

• -0 is converted to +0.

• Subnormal numbers are converted to +0.

• When floating-point data is rounded, it is rounded to the nearest even number.

(2) Character string data
■ CHARACTER

• This data type handles fixed-length character strings.

• The following shows the format to use when specifying this data type:

6. SQL Basics

Hitachi Advanced Database SQL Reference 207



CHAR, CHAR(n), CHARACTER, or CHARACTER(n)
• The length of the character string (number of bytes) is specified in n, where n is an integer in the range 1 to

32,000. If n is omitted, 1 is assumed.

• Literals are written in the form 'char'. For details about literals, see 6.3 Literals.

• Both half-width and full-width characters can be handled.

• When you perform comparisons on character string data, the ordering of the character encoding determines the
ordering of the data being compared.

■ VARCHAR
• This data type handles variable-length character strings.

• The following shows the format to use when specifying this data type:
VARCHAR(n)

• In the preceding format, n specifies (in bytes) the maximum length of each character string. The value of n must
be an integer in the range from 1 to 64,000. n cannot be omitted.

• The data format of the VARCHAR type is shown in the following figure.

Figure 6-6: Data format of VARCHAR type

The character string data length (L) is represented by four bytes.

• Both half-width and full-width characters can be handled. The length of the character string can be 0 bytes.

• When you perform comparisons on character string data, the ordering of the character encoding determines the
ordering of the data being compared.

• You cannot specify VARCHAR-type data whose length exceeds 32,000 bytes in the following locations:

• Data type specified in the column definition in an ALTER TABLE statement

• Data type specified in the column definition in a CREATE TABLE statement

• Data type specified in a table function column list

• Post-conversion data type specified in the scalar function CAST
• Post-conversion data type specified in the scalar function CONVERT

(3) Datetime data
■ DATE

• This is the data type for dates, with fields for the year, month, and day.

• The following shows the format to use when specifying this data type:
DATE

• It can handle dates with a range of values from January 1, 0001 to December 31, 9999.

6. SQL Basics

Hitachi Advanced Database SQL Reference 208



• The data length is 4 bytes. The data that is entered must be this length.

• The data format of the DATE type is shown in the following figure.

Figure 6-7: Data format of DATE type

• Literals are written in the form DATE'2012-03-30' or DATE'2012/03/30'. For details about literals,
see 6.3 Literals.

■ TIME
• This is the data type for time, with fields for the hour, minute, and seconds.

• The following shows the format to use when specifying this data type:
TIME(p) or TIME
p specifies the fractional seconds precision (the number of digits to the right of the decimal point). You can
specify a value of 0, 3, 6, 9, or 12 for p.
If TIME is specified, p is assumed to be 0.

• This format can handle times with a range of values from 0 hours, 0 minutes, and 0.000000000000 seconds to
23 hours, 59 minutes, and 59.999999999999 seconds.

• The data length is 3 + ↑p ÷ 2↑ bytes. The data that is entered must be this length.

• The data format of the TIME type is shown in the following figure.

Figure 6-8: Data format of TIME type

One digit is represented in 4 bits. If the fractional seconds precision is an odd number, zeros are stored in the
final 4 bits.

• Literals are written in the form TIME'11:03:58.123456'. For details about literals, see 6.3 Literals.

6. SQL Basics

Hitachi Advanced Database SQL Reference 209



■ TIMESTAMP
• This is the data type for time stamps, with fields for the year, month, day, hour, minute, and seconds.

• The following shows the format to use when specifying this data type:
TIMESTAMP(p) or TIMESTAMP
p specifies the fractional seconds precision (the number of digits to the right of the decimal point). You can
specify a value of 0, 3, 6, 9, or 12 for p.
If TIMESTAMP is specified, p is assumed to be 0.

• It can handle time stamps with a range of values from January 1, 0001 0:0:0.000000000000 to December 31,
9999 23:59:59.999999999999.

• The data length is 7 + ↑p ÷ 2↑ bytes. The data that is entered must be this length.

• The data format of the TIMESTAMP type is shown in the following figure.

Figure 6-9: Data format of TIMESTAMP type

One digit is represented in 4 bits. If the fractional seconds precision is an odd number, zeros are stored in the
final 4 bits.

• Literals are written in the form TIMESTAMP'2012-03-30 11:03:58.123456' or
TIMESTAMP'2012/03/30 11:03:58.123456'. For details about literals, see 6.3 Literals.

(4) Binary data
■ BINARY

• This is the data type for handling fixed-length binary data.

• The following shows the format to use when specifying this data type:
BINARY(n) or BINARY

• The length of the binary data (number of bytes) is specified in n, where n is an integer in the range 1 to 32,000.
If n is omitted, 1 is assumed.

• Literals are written in the form X'0A38ef92'. For details about literals, see 6.3 Literals.

• The data format of the BINARY type is shown in the following figure.

6. SQL Basics

Hitachi Advanced Database SQL Reference 210



Figure 6-10: Data format of BINARY type

■ VARBINARY
• This is the data type for handling variable-length binary data.

• The following shows the format to use when specifying this data type:
VARBINARY(n)

• The maximum length of the binary data (number of bytes) is specified in n, which must be an integer in the range
1 to 32,000, and cannot be omitted.

• Literals are written in the form X'0A38ef92'. For details about literals, see 6.3 Literals.

• The length of the binary data can be 0 bytes.

• The data format of the VARBINARY type is shown in the following figure.

Figure 6-11: Data format of VARBINARY type

The length of the binary data (L) is represented in two bytes.

6.2.2 Data types that can be converted, assigned, and compared

(1) Data types that can be compared
The following table shows the combinations of data types that can be compared.

Table 6-6: Combinations of data types that can be compared

Data type Data type of comparison target

Numeric
data

Character
string data

Datetime data Binary data

DATE TIME TIMESTAM
P

Numeric data Y N N N N N

Character string data N Y Y Y Y N

Datetime data DATE N Y Y N Y N

TIME N Y N N

6. SQL Basics

Hitachi Advanced Database SQL Reference 211



Data type Data type of comparison target

Numeric
data

Character
string data

Datetime data Binary data

DATE TIME TIMESTAM
P

TIMESTAMP Y N Y N

Binary data N N N N N Y

Legend:
Y: Can be compared.
N: Cannot be compared.

■ Comparing character string data

• If the lengths of the character string data being compared are different, spaces are added to the end of the shorter
data string to make the lengths the same, and then the comparison is performed.

• Even when comparing VARCHAR types, the comparison is performed after the spaces are added.

■ Comparing numeric data
If the data types of the data being compared are different, the comparison is performed using the data type that has
the larger range. The range sizes are ordered as follows:
DOUBLE PRECISION > DECIMAL > INTEGER > SMALLINT

■ Comparing datetime data to character string data
Datetime data can be compared to character string data only when the character string data is a literal written in the
corresponding predefined input representation. For information about predefined input representations, see 6.3.3 
Predefined character-string representations.

• Date data can be compared to character strings written in the predefined input representation for date data. The
character string data in the predefined input representation for date data is converted to date data, and then the
comparison is performed on the date data items.

• Date data can be compared to character strings written in the predefined input representation for time stamp
data. A time of 0 hours, 0 minutes, and 0 seconds is set to the date data, and the date data is converted to time
stamp data. The character string data in the predefined input representation for time stamp data is then converted
to time stamp data. The comparison is then performed on the time stamp data items.

• Time data can be compared to character strings written in the predefined input representation for time data. The
character string data in the predefined input representation for time data is converted to time data, and then the
comparison is performed on the time data items.

• Time stamp data can be compared to character strings written in the predefined input representation for time
stamp data. The character string data in the predefined input representation for time stamp data is converted to
time stamp data, and then the comparison is performed on the time stamp data items.

• Time stamp data can be compared to character strings written in the predefined input representation for date
data. A time of 0 hours, 0 minutes, and 0 seconds is set to the predefined input representation for date data, and
the character string data is converted to time stamp data. The comparison is then performed on the time stamp
data items.

However, if the datetime data is located in the selection expression of a subquery, it cannot be compared to the
corresponding value expression.

■ Comparing datetime data
• When date data and time stamp data are compared, the date data is converted into time stamp data by setting the

time to 0 hours, 0 minutes, and 0 seconds.

6. SQL Basics

Hitachi Advanced Database SQL Reference 212



• When the number of digits in the fractional seconds are different, the lower-precision fractional seconds are
padded with zeros until they align with the higher-precision data.

■ Comparing binary data
• When the data to be compared have the same length, they are considered equal when all the byte values match.

Example:

In the above case, binary data X = binary data Y.

• When the data to be compared have different lengths, they are considered equal when the following two
conditions are met:
• All the byte values match when compared from the first byte through the end of the shorter data
• The byte values in the longer portion are all X'00'
Example:

In the above case, binary data X = binary data Y.

• The data are compared in order starting from the first byte. When the byte values differ, the magnitudes of the
first bytes that are different are compared, and this is used to determine which is greater.
Example:

In the above case, binary data X < binary data Y.

• When the data to be compared have different lengths, and the byte values match from the first byte through the
end of the shorter data, which value is greater is determined as follows.
Let X be the shorter data and Y be the longer data. If there are one or more byte values other than X'00' in the
longer portion of Y, then X < Y.
Example:

In the above case, binary data X < binary data Y.

(2) Storage assignments between data types
The table below lists the combinations of data types that can be specified as an insertion value in an INSERT statement
or an update value in an UPDATE statement. However, if you use a dynamic parameter to perform the storage assignment,

6. SQL Basics

Hitachi Advanced Database SQL Reference 213



align data types of the assignment source and assignment target. For details about dynamic parameters, see 6.6 Variables
(dynamic parameters).

Table 6-7:  Storage assignment relationships between combinations of data types

Data type of assignment
source

Data type of assignment target

Numeric
data

Character
string data

Datetime data Binary
data

Row data

DATE TIME TIMESTA
MP

Numeric data Y N N N N N N

Character string data N Y Y Y Y N Y#

Datetime data DATE N N Y N Y N N

TIME N Y N N

TIMESTAM
P

Y N Y N

Binary data N N N N N Y N

Legend:
Y: Storage assignment can be performed.
N: Storage assignment cannot be performed.

#
A CHAR type can be assigned to row data (ROW).

■ Storage assignment of character string data

• If the data length of the assignment source is longer than the data length of the assignment target, the assignment
cannot be performed.

• If the assignment target is CHAR type, and the data length of the assignment source is shorter than the data length
of the assignment target, it is stored with spaces added at the end.

■ Storage assignment of numeric data

• If the assignment source exceeds the range of values that can be handled by the assignment target, the assignment
cannot be performed.

• If the assignment target is INTEGER or SMALLINT, and the assignment source is DECIMAL or DOUBLE
PRECISION, the fractional (decimal) part is truncated.

• If the assignment source and assignment target are both DECIMAL, any digits of the assignment source that are
beyond the scaling of the assignment target are truncated. If the assignment source scaling is smaller than the
assignment target scaling, it is stored with zeros added to the fractional part.

• If the assignment source is DOUBLE PRECISION and assignment target is DECIMAL, any digits of the
assignment source that are beyond the scaling of the assignment target are rounded off (to the nearest even
number). If the assignment source scaling is smaller than the assignment target scaling, it is stored with zeros
added to the end of the fractional part.

■ Changing the storage assignment from character string data to datetime data
Changing the storage assignment from character string data to datetime data is possible only when the character
string data is a literal written in the corresponding predefined input representation. For information about predefined
input representations, see 6.3.3 Predefined character-string representations.

6. SQL Basics

Hitachi Advanced Database SQL Reference 214



However, changing the storage assignment is not possible when the datetime data is a column that is to be inserted
by an INSERT statement and the character string is specified as the selection expression of a query specification,
even when the character string is a literal written in the corresponding predefined input representation.

• The storage assignment of character strings written in the predefined input representation for date data can be
changed to date data. The character string data in the predefined input representation for date data is converted
to date data, and then its storage assignment is changed to date data.

• The storage assignment of character strings written in the predefined input representation for time stamp data
can be changed to date data. In this case, the character string data in the predefined input representation for time
stamp data is converted to time stamp data, and then the storage assignment is changed for only the date portion
of the time stamp data.

• The storage assignment of character strings written in the predefined input representation for time data can be
changed to time data. The character string data in the predefined character-string representation for time data is
converted to time data, and then its storage assignment is changed to time data.

• The storage assignment of character strings written in the predefined input representation for time stamp data
can be changed to time stamp data. The character string data in the predefined input representation for time
stamp data is converted to time stamp data, and then its storage assignment is changed to time stamp data.

• The storage assignment of character strings written in the predefined input representation for date data can be
changed to time stamp data. In this case, a time of 0 hours, 0 minutes, and 0 seconds is set to the predefined
character-string representation for date data, and the character string data is converted to time stamp data. Its
storage assignment is then changed to time stamp data.

■ Storage assignment of datetime data

• When the storage assignment of date data is changed to time stamp data, a time of 0 hours, 0 minutes, and 0
seconds is set to the date data. Its storage assignment is then changed to time stamp data.

• When the source is time stamp data and the target is date data, storage assignment of only the date portion of
the time stamp data is performed.

• If the number of digits in the fractional seconds of the assignment source is greater than the number of digits in
the fractional seconds of the assignment target, the portion that cannot be assigned is truncated.

• If the number of digits in the fractional seconds of the assignment source is less than the number of digits in the
fractional seconds of the assignment target, storage assignment is performed by padding the excess portion with
0.

■ Storage assignment of binary data

• If the data length of the source is greater than the data length of the target, the assignment cannot be performed.

• If the target type is BINARY and the data length of the source is less than the data length of the target, the data
is padded with X'00' at the end before it is stored.

■ Storage assignment of row data
Match the data length of the assignment source to the assumed row data length of the assignment target (the row
length of the table being updated or inserted into).

(3) Search assignments of data types
If you receive retrieval results, be sure to align the data types of the assignment source and assignment target.

If ROW (row data) is specified in the selection expression, the data type of the assignment target for receiving the search
result can be a CHAR type variable.

6. SQL Basics

Hitachi Advanced Database SQL Reference 215



(4) Storage assignment to a table function derived table (in the case of the
ADB_CSVREAD function)

This subsection describes the rules for how field data in a CSV file is assigned to columns in a table function derived
table. It also gives the rules for the description format of the field data.

Note that the table function derived table here means a table function derived table derived by means of the
ADB_CSVREAD function.

Note
A table function derived table is a collection of data in table format derived by means of the
ADB_AUDITREAD function or the ADB_CSVREAD function. For details about the ADB_AUDITREAD
function, see 7.15.2 ADB_AUDITREAD function. For details about the ADB_CSVREAD function, see
7.15.3 ADB_CSVREAD function.

The description format of the field data must be compatible with the data type of the column in the table function derived
table. The following table shows the relationship between the data type of the column in the table function derived table
and the description format of the field data.

Table 6-8: Relationship between the data type of the column in the table function derived table and
the description format of the field data

No
.

Data type of the
column in the table
function derived table

Description format of the field data

Format Examples Notes Examples of
storage
assignment of
the null value

1 Numeri
c data

INTEGER [{+|-}]a...a
+, -: Sign
a...a: Numeric value (a is 0 to
9)

• 100
• -123
• 000
• 0657

• The sign and
numeric value
together cannot
exceed 20
characters.

• Regardless of the
format and length
restrictions,
leading and
trailing single-byte
spaces and tabs are
permitted around
all characters.#1

• ...,*,...
• ...,"*",...
• ...,,...
• ...,"",...
• ...,"""",...

However, the
examples using
enclosing
characters are
invalid if the
enclosing
character
specification
option is set to
NONE.

2 SMALLINT [{+|-}]a...a
+, -: Sign
a...a: Numeric value (a is 0 to
9)

• 100
• -0123
• 0
• +0657

• The sign and
numeric value
together cannot
exceed 11
characters.

• Regardless of the
format and length
restrictions,
leading and
trailing single-byte
spaces and tabs are

Same as No. 1.

6. SQL Basics

Hitachi Advanced Database SQL Reference 216



No
.

Data type of the
column in the table
function derived table

Description format of the field data

Format Examples Notes Examples of
storage
assignment of
the null value

permitted around
all characters.#1

3 DECIMAL [{+|-}]
{a...a[.[b...b]]|.b...b}

+, -: Sign
a...a: Integer part (a is 0 to 9)
b...b: Fractional part (b is 0 to
9)#2

• 100
• -123.00
• Δ.00
• 012.
• -1.56
• +.560

• The integer and
fractional parts
together cannot
exceed 38
characters (or 39
characters if the
integer part (0) is
omitted and the
precision and
scaling match the
column where the
value is to be
stored).

• Regardless of the
format and length
restrictions,
leading and
trailing single-byte
spaces and tabs are
permitted around
all characters.#1

Same as No. 1.

4 DOUBLE
PRECISION

[{+|-}]
{a...a[.[b...b]]|.b...b}[{E|
e}[[{+|-}]c...c]]

+, -: Sign
a...a: Integer part of the
mantissa (a is 0 to 9)
b...b: Fractional part of the
mantissa (b is 0 to 9)
c...c: Exponent (c is 0 to 9)#3

E, e: Floating point numeric
literal (literal identifying the
exponent in a floating-point
number)

• 100
• -Δ 123
• 0.Δ
• -1.5600
• .56
• -02.4e+9
• 000e
• 2.4E+009

• The data cannot
exceed 509
characters.#4

• Regardless of the
format and length
restrictions,
leading and
trailing single-byte
spaces and tabs are
permitted around
all characters.#1

Same as No. 1.

5 Charact
er
string
data

CHARACTER a...a
a...a: Data consisting of one or
more characters

• abcdef 
• ABCDEF
• Δ

• The number of
characters cannot
exceed the defined
length of the
column where the
value is to be
stored.

• The trailing single-
byte spaces in the
examples can be
omitted.#5

• ...,,...
• ...,"",...

The character
string data cannot
include single-
byte spaces and
tabs.
The examples
using enclosing
characters are
invalid if the
enclosing
character
specification
option is set to
NONE.

6. SQL Basics

Hitachi Advanced Database SQL Reference 217



No
.

Data type of the
column in the table
function derived table

Description format of the field data

Format Examples Notes Examples of
storage
assignment of
the null value

6 VARCHAR a...a
a...a: Data consisting of one or
more characters

• abcdef 
• ABCDEF
•

• The number of
characters cannot
exceed the defined
length of the
column where the
value is to be
stored.

• ...,,...

Enclosing
characters cannot
be specified. The
character string
data cannot
include single-
byte spaces and
tabs.
■ To specify data
of length 0
• ...,"",...

However, data of
length 0 cannot be
specified if the
enclosing
character
specification
option is set to
NONE.

7 Datetim
e data

DATE {YYYY-MM-DD

|YYYY/MM/DD}
YYYY: Year (0001 to 9999)
MM: Month (01 to 12)
DD: Day (01 to last day of
month)

• 2013-06-10
• 2013/06/10

• Regardless of the
format, leading
and trailing single-
byte spaces and
tabs are permitted
around all
characters.#1

Same as No. 1.

8 TIME hh:mm:ss[.[nn...n]]
hh: Hour (00 to 23)
mm: Minutes (00 to 59)
ss: Seconds (00 to 59)
nn...n: Fractional seconds (n is
0 to 9)

• 11:03:58
• 11:03:58.
• 11:03:58

Δ.1234

• The fractional
seconds (nn...n)
cannot exceed 12
characters.#6

• Regardless of the
format and length
restrictions,
leading and
trailing single-byte
spaces and tabs are
permitted around
all characters.#1

Same as No. 1.

9 TIMESTAMP {YYYY-MM-DD
|YYYY/MM/DD}
Δhh:mm:ss[.[nn...n]]

YYYY: Year (0001 to 9999)
MM: Month (01 to 12)
DD: Day (01 to last day of
month)
hh: Hour (00 to 23)
mm: Minutes (00 to 59)
ss: Seconds (00 to 59)
nn...n: Fractional seconds (n is
0 to 9)

• 2013-06-10
Δ 11:03:58

• 2013-06-10
Δ 11:03:58
Δ .1234

• The fractional
seconds (nn...n)
cannot exceed 12
characters.#6

• Regardless of the
format and length
restrictions,
leading and
trailing single-byte
spaces and tabs are
permitted around
all characters.#1

Same as No. 1.

6. SQL Basics

Hitachi Advanced Database SQL Reference 218



No
.

Data type of the
column in the table
function derived table

Description format of the field data

Format Examples Notes Examples of
storage
assignment of
the null value

10 Binary
data

BINARY Hexadecimal string

a...a
a: 0 to 9, A to F, or a to f

• 12340000
• 90Δ AB
• 90ab Δ CDEF

• The number of
characters must be
a multiple of 2, up
to 2 times the
defined length of
the column where
the value is to be
stored.#7

• Trailing 00s are
assumed and can
be omitted.#8

• Regardless of the
format and length
restrictions,
leading and
trailing single-byte
spaces and tabs are
permitted around
all characters.#1

Same as No. 1.

11 Binary string

a...a
a: 0 or 1

• 01010101
• 0101 Δ 0101

• The number of
characters must be
a multiple of 8, up
to 8 times the
defined length of
the column where
the value is to be
stored.#7

• Trailing
00000000s are
assumed and can
be omitted.#8

• Regardless of the
format and length
restrictions,
leading and
trailing single-byte
spaces and tabs are
permitted around
all characters.#1

Same as No. 1.

12 VARBINARY Hexadecimal string

a...a
a: 0 to 9, A to F, or a to f

• 12340000
• 90Δ AB
• 90ab Δ CDEF

• The number of
characters must be
a multiple of 2, up
to 2 times the
defined length of
the column where
the value is to be
stored.#7

• Regardless of the
format and length
restrictions,
leading and
trailing single-byte
spaces and tabs are
permitted around
all characters.#1

• ...,*,...
• ...,"*",...
• ...,,...

However, the
examples using
enclosing
characters are
invalid if the
enclosing
character
specification
option is set to
NONE.
■ To specify data
of length 0

6. SQL Basics

Hitachi Advanced Database SQL Reference 219



No
.

Data type of the
column in the table
function derived table

Description format of the field data

Format Examples Notes Examples of
storage
assignment of
the null value

• ...,"",...
• ...,"""",...

However, data of
length 0 cannot be
specified if the
enclosing
character
specification
option is set to
NONE.

13 Binary string

a...a
a: 0 or 1

• 01010101
• 0101 Δ 0101

• The number of
characters must be
a multiple of 8, up
to 8 times the
defined length of
the column where
the value is to be
stored.#7

• Regardless of the
format and length
restrictions,
leading and
trailing single-byte
spaces and tabs are
permitted around
all characters.#1

Same as No. 12.

Legend:
Δ: One or more single-byte spaces or tabs
,: Delimiting character
": Enclosing character

#1
Any leading or trailing single-byte space (0x20) or tab (0x09) characters are removed.
Example: Δ1Δ23 4  → 1234
If the removal of white space leaves no data, the result is treated as a null value.

#2
Fractional digits beyond the scaling defined for the column where the value is to be stored are truncated.

#3
If the exponent is omitted, an exponent of +0 is assumed.

#4
Depending on the specified value, loss of precision might occur.

#5
If the input data is less than the defined length, the remaining portion is filled with single-byte spaces.

6. SQL Basics

Hitachi Advanced Database SQL Reference 220



#6
If the number of digits in the fractional seconds (nn...n) is less than the fractional seconds precision of the data type
in the table, the stored value is filled with zeros on the right.
If the number of digits in the fractional seconds (nn...n) exceeds the fractional seconds precision of the data type in
the table, the input data is truncated.

#7
An error results if the number of characters in the hexadecimal string is not a multiple of 2.
An error results if the number of characters in the binary string is not a multiple of 8.

#8
When the input data is less than the defined length, the remaining portion is filled with 0x00.

6. SQL Basics

Hitachi Advanced Database SQL Reference 221



6.3 Literals

A literal is data whose value cannot be modified within the program.

6.3.1 Types of literals
A literal can be a numeric literal or a general literal. The following table lists types of literals.

Table 6-9: Types of literals

No. Type of literal Description Type of literal Description

1 Numeric literals Literals that represent
numeric values. The literals
listed at the right are numeric
literals.

Integer literal A literal that represents an
integer.

2 Decimal literal A literal that represents a number
with a decimal point.

3 Floating-point numeric literal A literal that represents a number
with a decimal point.

4 General literals Literals that represent
characters, dates, times, and
binary data. The literals
listed at the right are general
literals.

Character string literal A literal that represents
characters.

5 Date literal A literal that represents a date.

6 Time literal A literal that represents time.

7 Time stamp literal A literal that represents a date and
time.

8 Binary literal Hexadecimal-
format binary
literal

A binary literal represented in
hexadecimal format.

9 Binary-format
binary literal

A binary literal represented in
binary format.

6.3.2 Description format of literals
The following table lists the description formats and assumed data types of literals.

Table 6-10: Description formats and assumed data types of literals

No. Type of literal Description format Assumed data type

1 Numeric
literal

Integer literal • Description format
[sign]unsigned-integer

• Examples
45, 6789, -123

• Explanation
The sign portion is expressed as + or -. + can be
omitted.

INTEGER

2 Decimal literal • Description format
[sign]integer-part.fractional-part

• Examples

DECIMAL(m[,n])
m,n: Number of specified digits

6. SQL Basics

Hitachi Advanced Database SQL Reference 222



No. Type of literal Description format Assumed data type

12.3, -456., .789
• Explanation

The sign portion is expressed as + or -. + can be
omitted.
The integer part and fractional part are represented as
unsigned integers. Either the integer part or fractional
part must be specified. A decimal point must be
specified.

3 Floating-point
numeric literal

• Description format
mantissaEexponent, or mantissaeexponent

• Examples
+1.0E+1, 1.0E2, -3.4e-01, .5E+67

• Explanation
The mantissa is expressed in the form of an integer
or decimal literal.
The exponent is written in the form of an integer
literal of 1 to 3 digits. The exponent represents
powers of 10.
The letter E or e is required.

DOUBLE PRECISION

4 General literal Character string
literal

• Description format
'character-string'

• Examples
'HITACHI', '88', '''95.7.30'

• Explanation
A character string is enclosed in single quotation
marks (' ). Half-width and/or full-width characters
can be used.
To use a single quotation mark within a character
string, as in the example '95.7.30, specify two
consecutive single quotation marks, as in the example
above.

• When n>0
CHAR(n)

• When n=0
VARCHAR(1)
with an actual length of 0

(where n indicates the length of
the character string)

5 Date literal • Description format
DATE'YYYY-MM-DD' or DATE'YYYY/MM/DD'

• Examples
DATE'2012-03-30'
DATE'2012/03/30'

• Explanation
The year is expressed in four digits (YYYY), and the
month (MM) and day (DD) in two digits. Pad the
fields with zeros on the left as necessary.
Specify values for YYYY, MM, and DD that are valid
for the DATE type (for example, MM must be 01 to
12).
No separators are permitted inside 'YYYY-MM-
DD' and 'YYYY/MM/DD'.

DATE

6 Time literal • Description format
TIME'hh:mm:ss.nn...n'

• Examples
TIME'11:03:58'
TIME'11:03:58.123'
TIME'11:03:58.123456'
TIME'11:03:58.123456789'

TIME[(p)]
p: fractional seconds precision

6. SQL Basics

Hitachi Advanced Database SQL Reference 223



No. Type of literal Description format Assumed data type

TIME'11:03:58.123456789012'
TIME'11:03:58.'

• Explanation
The hour (hh), minutes (mm), and seconds (ss) are
expressed in two digits. Pad the fields with zeros on
the left as necessary.
nn...n expresses the fractional seconds. nn...n
represents 3, 6, 9, or 12 digits.
To use fractional seconds, put a period between the
seconds and the fractional seconds precision
specification.
If you omit the fractional seconds and specify only a
period, the data is treated as having a fractional
seconds precision of 0.
An error results if the fractional seconds precision is
more than 12.
Specify values for hh, mm, ss, and nn...n that are valid
for the TIME type (for example, hh must be 00 to
23).
No separators are permitted inside
'hh:mm:ss.nn...n'.

7 Time stamp literal • Description format
TIMESTAMP'YYYY-MM-DD hh:mm:ss.nn...n'
or TIMESTAMP'YYYY/MM/DD
hh:mm:ss.nn...n'

• Examples
TIMESTAMP'2012-03-30 11:03:58'
TIMESTAMP'2012/03/30 11:03:58'
TIMESTAMP'2014-07-30 11:03:58.123'
TIMESTAMP'2014/07/30
11:03:58.123456789012'
TIMESTAMP'2014-07-30 11:03:58.'

• Explanation
The format is YYYY-MM-DD (or YYYY/MM/DD)
and hh:mm:ss, with a space between them.
The year is expressed in four digits (YYYY), and the
month (MM) and day (DD) in two digits. Pad the
fields with zeros on the left as necessary.
Similarly, pad the two-digit fields for hours (hh),
minutes (mm), and seconds (ss) with zeros on the left
as necessary.
nn...n expresses the fractional seconds precision.
nn...n represents 3, 6, 9, or 12 digits.
To use fractional seconds, put a period between the
seconds and the fractional seconds precision
specification.
If you omit the fractional seconds and specify only a
period, the data is treated as having a fractional
seconds precision of 0.
An error results if the fractional seconds precision is
more than 12.
Specify values for YYYY, MM, DD, hh, mm, and ss
that are valid for the TIMESTAMP type (for example,
hh must be 00 to 23).

TIMESTAMP[(p)]
p: fractional seconds precision

6. SQL Basics

Hitachi Advanced Database SQL Reference 224



No. Type of literal Description format Assumed data type

No separators are permitted inside 'YYYY-MM-DD
hh:mm:ss.nn...n' and 'YYYY/MM/DD
hh:mm:ss.nn...n'.

8 Hexadecimal-
format binary
literal

• Description format
X'hexadecimal-character-string' or
x'hexadecimal-character-string'

• Examples
X'82A0'
X'82a0'
x'82A0'

• Explanation
hexadecimal-character-string is expressed using the
hexadecimal digits 0 to 9 and A to F (or a to f).
The number of characters in hexadecimal-character-
string must be a multiple of 2. Two hexadecimal
characters make one byte.
The number of characters in hexadecimal-character-
string cannot exceed 64,000.
No separators are permitted inside hexadecimal-
character-string.

• When n > 0
BINARY(n ÷ 2)

• When n = 0
VARBINARY(1)
with an actual length of 0

(where n indicates the length of
the hexadecimal character string)

9 Binary-format
binary literal

• Description format
B'binary-character-string' or b'binary-character-
string'

• Examples
B'01010101'
b'01010101'

• Explanation
binary-character-string is expressed using the binary
digits 0 and 1.
The number of characters in binary-character-string
must be a multiple of 8. Eight binary characters make
one byte.
The number of characters in binary-character-string
cannot exceed 256,000.
No separators are permitted inside binary-character-
string.

• When n > 0
BINARY(n ÷ 8)

• When n = 0
VARBINARY(1)
with an actual length of 0

(where n indicates the length of
the binary character string)

The following table shows restrictions on the use of numeric literals.

Table 6-11: Restrictions on the use of numeric literals

No. Numeric literal Range Maximum number of digits
(including leading zeros)

1 Integer literal#1 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 19 digits

2 Decimal literal -(1038 - 1) to -10-38, 0,
and 10-38 to (1038 - 1)

38 digits

3 Floating-point
numeric literal#2

Approximately -1.7 × 10308 to -2.3 × 10-308, 0, and
approximately 2.3 × 10-308 to 1.7 × 10308

Mantissa part: 17 digits
Exponent part: 3 digits

#1
If a literal that exceeds the range of values for an integer literal is written in the notation used to represent integer
literals, it will be interpreted as a decimal literal, with an assumed decimal point to the right of the literal.

6. SQL Basics

Hitachi Advanced Database SQL Reference 225



#2
The exact range of values depends on the hardware representation.

6.3.3 Predefined character-string representations
A character string literal in the format of the corresponding predefined character-string representation can be used to
represent a date literal, time literal, or time stamp literal. This section describes the predefined character-string
representations of dates, times, and time stamps.

(1) Predefined character-string representation of dates
The predefined character-string representations of dates include a predefined input representation and a predefined
output representation.

(a) Predefined input representation
A character string literal that follows the format of the predefined input representation for dates can be used as a literal
representing a date. The format of the predefined input representation of a date is as follows.

Format of the predefined input representation:

'YYYY-MM-DD' or 'YYYY/MM/DD'

• The year is expressed in four digits (YYYY), and the month (MM) and day (DD) in two digits. Pad the fields with
zeros on the left, as necessary.

• Specify values for YYYY, MM, and DD that are valid for the DATE type (for example, MM must be 01 to 12).

Example:
July 30, 2013 is expressed as follows.

• Character string literal (predefined input representation): '2013-07-30' or '2013/07/30'
• Date literal: DATE'2013-07-30' or DATE'2013/07/30'

(b) Predefined output representation
When date data is retrieved using the adbsql command (or similar commands), the results are output in a format that
follows the predefined output representation.

Format of the predefined output representation:

'YYYY-MM-DD'

The year is expressed in four digits (YYYY), and the month (MM) and day (DD) in two digits. The fields are padded
on the left with zeros, as necessary.

Example:
For the date data X'20130730', the predefined output representation is as follows.

'2013-07-30'

(2) Predefined character-string representation of times
Predefined character-string representations of times include a predefined input representation and a predefined output
representation.

6. SQL Basics

Hitachi Advanced Database SQL Reference 226



(a) Predefined input representation
A character string literal that follows the format of the predefined input representation for times can be used as a literal
representing a time. The format of the predefined input representation of a time is as follows.

Format of the predefined input representation:

'hh:mm:ss.nn...n'

• The hour (hh), minutes (mm), and seconds (ss) are expressed in two digits. Pad the fields with zeros on the left,
as necessary.

• To use fractional seconds, add them in the .nn...n format. nn...n is represented by 3, 6, 9, or 12 digits. If the
nn...n portion is not specified with 3, 6, 9, or 12 digits, the fractional seconds precision is assumed as described
later. In that case, zero padding is applied to the missing digits on the right.

Number of digits in nn...n Assumed fractional seconds precision

1, 2 3

4, 5 6

7, 8 9

10, 11 12

• An error results if nn...n contains 13 or more digits.

• A period is required between the seconds and the fractional seconds.

• There is no need to specify .nn...n unless you want to use fractional seconds.

• If you omit nn...n and specify only a period, the data is treated as having a fractional seconds precision of 0.

• Specify values for hh, mm, ss, and nn...n that are valid for the TIME type (for example, hh must be 00 to 23).

Example:
The following representations express the time that is 3 minutes and 58.123456 seconds after the hour of 11 o'clock.

• Character string literal (predefined input representation): '11:03:58.123456'
• Time literal: TIME'11:03:58.123456'

(b) Predefined output representation
When time data is retrieved using the adbsql command (or a similar command), the results are output in a format that
follows the predefined output representation.

Format of the predefined output representation:

'hh:mm:ss.nn...n'

• The hour (hh), minutes (mm), and seconds (ss) are expressed in two digits. The fields are padded on the left with
zeros, as necessary.

• The fractional seconds are displayed in .nn...n. The number of digits in the fractional seconds depends on the
specification of the fractional seconds precision in the time data.

• If the fractional seconds precision is 0, the .nn...n part is not displayed.

Example:
If the time data is X'110358123', the predefined output representation is as follows.

'11:03:58.123'

6. SQL Basics

Hitachi Advanced Database SQL Reference 227



(3) Predefined character-string representation of time stamps
The predefined character-string representation of time stamps include a predefined input representation and a predefined
output representation.

(a) Predefined input representation
A character string literal that follows the format of the predefined input representation for time stamps can be used as
a literal representing a time stamp. The format of the predefined input representation of a time stamp is as follows.

Format of the predefined input representation:

'YYYY-MM-DD hh:mm:ss.nn...n' or 'YYYY/MM/DD hh:mm:ss.nn...n'

• The year is expressed using four digits (YYYY), and the month (MM), day (DD), hour (hh), minutes (mm), and
seconds (ss) using two digits. Pad the fields with zeros on the left, as necessary.

• A space is required between YYYY-MM-DD and hh:mm:ss.

• Specify .nn...n if you want to use fractional seconds. nn...n represents 3, 6, 9, or 12 digits. The table below
shows the fractional seconds precision that is assumed in cases where the number of digits in nn...n is not 3, 6,
9, or 12. In that case, zero padding is applied to the missing digits on the right.

Number of digits in nn...n Assumed fractional seconds precision

1, 2 3

4, 5 6

7, 8 9

10, 11 12

• An error results if nn...n contains 13 or more digits.

• A period is required between the seconds and the fractional seconds.

• There is no need to specify .nn...n unless you want to use fractional seconds.

• If you omit nn...n and specify only a period, the data is treated as having a fractional seconds precision of 0.

• Specify values for YYYY, MM, DD, hh, mm, ss, and nn...n that are valid for the TIMESTAMP type (for example,
hh must be 00 to 23).

Example
July 30, 2013 at 11:03:58.123456 is expressed as follows.

• Character string literal (predefined input representation): '2013-07-30 11:03:58.123456' or
'2013/07/30 11:03:58.123456'

• Time stamp literal: TIMESTAMP'2013-07-30 11:03:58.123456' or TIMESTAMP'2013/07/30
11:03:58.123456'

(b) Predefined output representation
When time stamp data is retrieved using the adbsql command (or similar commands), the results are output in a format
that follows the predefined output representation.

Format of the predefined output representation:

'YYYY-MM-DD hh:mm:ss.nn...n'

6. SQL Basics

Hitachi Advanced Database SQL Reference 228



• The year is expressed using four digits (YYYY), and the month (MM), day (DD), hour (hh), minutes (mm), and
seconds (ss) using two digits. The fields are padded with zeros on the left, as necessary.

• The fractional seconds are displayed in .nn...n. The number of digits in the fractional seconds depends on the
specification of the fractional seconds precision in the time stamp data.

• If the fractional seconds precision is 0, the .nn...n part is not displayed.

Example:
For the time stamp data X'20130730110358123', the predefined output representation is as follows.

'2013-07-30 11:03:58.123'

6. SQL Basics

Hitachi Advanced Database SQL Reference 229



6.4 Datetime information acquisition functions

There are functions for acquiring datetime information:

• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP

This section describes each function in turn.

6.4.1 CURRENT_DATE
Returns the current date.

(1) Specification format
datetime-information-acquisition-function-CURRENT_DATE ::= CURRENT_DATE

(2) Rules
1. The data type of the execution result is the DATE type.

2. Specifying CURRENT_DATE multiple times in an SQL statement produces the same date value.

3. The value of CURRENT_DATE is acquired when the SQL statement is executed on the HADB server. For details
about interfaces and execution methods for executing SQL statements, see the descriptions of the JDBC API, ODBC
functions, and CLI functions in the HADB Application Development Guide.

4. CURRENT_DATE can be specified in places where a value specification can be specified.

(3) Examples
Example 1

Retrieve the customer ID (USERID) and product code (PUR-CODE) from the sales history table (SALESLIST) for
customers who made purchases today.

SELECT "USERID","PUR-CODE"
    FROM "SALESLIST"
        WHERE "PUR-DATE"=CURRENT_DATE

Example 2
Insert the following data (row) into the sales history table (SALESLIST).

• Customer ID (USERID): U00358
• Product code (PUR-CODE): P003
• Quantity purchased (PUR-NUM): 5
• Date of purchase (PUR-DATE): Today's date

6. SQL Basics

Hitachi Advanced Database SQL Reference 230



  INSERT INTO "SALESLIST"
        ("USERID","PUR-CODE","PUR-NUM","PUR-DATE")
      VALUES('U00358','P003',5,CURRENT_DATE)

6.4.2 CURRENT_TIME
Returns the current time.

(1) Specification format
datetime-information-acquisition-function-CURRENT_TIME ::= CURRENT_TIME[(p)]

(2) Rules
1. The fractional seconds precision (the number of digits to the right of the decimal point) is specified in p. You can

specify the value 0, 3, 6, 9, or 12 for p. For example, when p is 3, there will be 3 digits in the fractional seconds
of the execution result of CURRENT_TIME.

2. If (p) is omitted, p = 0 is assumed.

3. The data type of the execution result is the TIME type.

4. Specifying CURRENT_TIME multiple times in an SQL statement produces the same time value.

5. The value of CURRENT_TIME is acquired when the SQL statement is executed on the HADB server. For details
about interfaces and execution methods for executing SQL statements, see the descriptions of the JDBC API, ODBC
functions, and CLI functions in the HADB Application Development Guide.

6. The precision of the fractional seconds acquired by CURRENT_TIME depends on the capabilities of the hardware.
For example, if you specify CURRENT_TIME(12), depending on the hardware you are using you might not be
able to acquire 12 digits of fractional seconds precision.
Example:
10:35:55.123456000000
As shown above, if only 6 digits of fractional seconds precision can be acquired, the 7th and subsequent digits will
be 0.

7. CURRENT_TIME can be specified in places where a value specification can be specified.

(3) Examples
Example

Add product sales information to the daily sales history table (SALESLIST_DAY). The columns in the sales history
table are shown below. The current time is stored as the time goods are sold (SALE_TIME).

• Store code (SCODE)

• Goods code (GCODE)

• Sex of customer (SEX)

• Time of sale of goods (SALE_TIME)

6. SQL Basics

Hitachi Advanced Database SQL Reference 231



INSERT INTO "SALESLIST_DAY"
      ("SCODE","GCODE","SEX","SALE_TIME")
    VALUES('S001','G03542','M',CURRENT_TIME)

6.4.3 CURRENT_TIMESTAMP
Returns the current time stamp (date and time).

(1) Specification format
datetime-information-acquisition-function-CURRENT_TIMESTAMP ::= CURRENT_TIMESTAMP[(p)
]

(2) Rules
1. The fractional seconds precision (the number of digits to the right of the decimal point) is specified in p. You can

specify the value 0, 3, 6, 9, or 12 for p. For example, when p is 3, there will be 3 digits in the fractional seconds
of the execution result of CURRENT_TIMESTAMP.

2. When (p) is omitted, p = 0 is assumed.

3. The data type of the execution result is the TIMESTAMP type.

4. Specifying CURRENT_TIMESTAMP multiple times in an SQL statement produces the same date and time values.

5. The value of CURRENT_TIMESTAMP is acquired when the SQL statement is executed on the HADB server. For
details about interfaces and execution methods for executing SQL statements, see the descriptions of the JDBC API,
ODBC functions, and CLI functions in the HADB Application Development Guide.

6. The precision of the fractional seconds acquired by CURRENT_TIMESTAMP depends on the capabilities of the
hardware. For example, if you specify CURRENT_TIMESTAMP(12), depending on the hardware you are using
you might not be able to acquire 12 digits of fractional seconds precision.
Example:
2014-09-25 10:35:55.123456000000
As shown above, if only 6 digits of fractional seconds precision can be acquired, the 7th and subsequent digits will
be 0.

7. CURRENT_TIMESTAMP can be specified in places where a value specification can be specified.

(3) Example
Example

Add new customer information to the customer table (USERSLIST). The column structure of the customer table is
as follows.

• Customer ID (USERID)

• Name (NAME)

• Sex (SEX)

• Datetime (LAST_UPDATE_TIME) when the customer information was last updated

  INSERT INTO "USERSLIST"
        ("USERID","NAME","SEX","LAST_UPDATE_TIME")

6. SQL Basics

Hitachi Advanced Database SQL Reference 232



      VALUES
        ('U00887','Edward Connelly','M',CURRENT_TIMESTAMP)

6. SQL Basics

Hitachi Advanced Database SQL Reference 233



6.5 User information acquisition function

This section describes the following user information acquisition function:

• CURRENT_USER

6.5.1 CURRENT_USER
Returns the authorization identifier of the currently executing HADB user.

(1) Specification format
user-information-acquisition-function-CURRENT_USER ::= CURRENT_USER

(2) Rules
1. The data type of the execution result is the VARCHAR type.

2. Specifying CURRENT_USER multiple times in an SQL statement produces the same value.

3. The value of CURRENT_USER is acquired when the SQL statement is executed on the HADB server. For details
about interfaces and execution methods for executing SQL statements, see the descriptions of the JDBC API, ODBC
functions, and CLI functions in the HADB Application Development Guide.

4. CURRENT_USER can be specified in places where a value specification can be specified.

(3) Example
Example

Retrieve a list of information (the contents of SQL_TABLES) about the tables owned by the current user (the HADB
user whose authorization identifier is currently connected to the HADB server).

SELECT * FROM "MASTER"."SQL_TABLES"
    WHERE TABLE_SCHEMA=CURRENT_USER

6. SQL Basics

Hitachi Advanced Database SQL Reference 234



6.6 Variables (dynamic parameters)

A dynamic parameter is a variable that passes a value to SQL. When passing a value to SQL, a ? is specified in the
place where the value is to be placed. This ? is the dynamic parameter.

6.6.1 Rules for specifying dynamic parameters
1. The data type and data length that are assumed by a specified dynamic parameter differ depending on the location

in which the parameter is specified. The following table describes the data type and data length that are assumed by
dynamic parameters.

Table 6-12: Assumed data type and data length of dynamic parameters

No. Where the dynamic parameter is specified Assumed data type and data length

1 Specified alone in a predicate (other than LIKE,
NULL, and LIKE_REGEX predicates)

Data type and data length of the result of the value expression it is
compared against

2 • Specified alone as the insertion value specified
in a VALUES clause in an INSERT statement

• Specified alone as the update value specified in a
SET clause in an UPDATE statement

Data type and data length of the column being assigned

3 Specified elsewhere Refer to the description of each item.

2. A maximum of 1,000 dynamic parameters can be specified in an SQL statement.

3. When you pass a value to a dynamic parameter, pass a value of the assumed data type and data length.

4. Make sure that the total data length of dynamic parameters specified in an SQL statement does not exceed 32,000,000
bytes.

6.6.2 Where dynamic parameters can be specified
The following table lists the places where a dynamic parameter can be specified.

Table 6-13: Where dynamic parameters can be specified

No. SQL statement Where dynamic parameters can be specified

1 SELECT Selection expression#1

2 Places where literals can be specified in the search conditions#2

3 ORDER BY clause#1

4 LIMIT clause

5 INSERT Insertion value or row insertion value

6 UPDATE Update value or row update value

7 Places where literals can be specified in the search conditions#2

8 DELETE Places where literals can be specified in the search conditions#2

9 PURGE CHUNK

6. SQL Basics

Hitachi Advanced Database SQL Reference 235



#1
The dynamic parameter cannot be specified by itself.

#2
It cannot be specified in the following places:

• On both sides of a comparison predicate

• On the left side of a BETWEEN predicate

• In a view definition (CREATE VIEW)

• In a WITH clause

6.6.3 Notes
Note that operations involving data supplied to dynamic parameters specified in scalar operations are performed on
every relevant row. In the portions of the scalar operations that do not include columns where dynamic parameters are
specified (when the values are fixed), consider specifying literals in the SQL statement.

6. SQL Basics

Hitachi Advanced Database SQL Reference 236



6.7 Null value

The null value is a special value indicating that either no value exists or no value has been set. The null value is set in
any area that does not contain values or in which values have not been set. The following explains how the null value
is handled.

Receiving a column value as a result of a retrieval

• If you are using the JDBC driver
Determine whether the column value that was obtained is the null value using the wasNull method in the
ResultSet interface.

• If you are using the ODBC driver
When the value of a column of retrieval results is the null value, the StrLen_or_IndPtr argument of
SQLBindCol or SQLGetData is set to SQL_NULL_DATA.

• If you are using CLI functions
Use indicators to identify null values. For details, see a_rdb_SQLInd_t (indicator) in the HADB Application
Development Guide.

Comparison
The predicate is undefined for rows in which the result of a value expression other than the following is a null value,
or for rows in which the column value is a null value:

• A value expression on the left side of the NULL predicate

• A value expression specified in ESCAPE escape-character in the LIKE predicate

For details about how the scalar function DECODE handles comparisons to the null value, see 8.15.1 DECODE.

Sorting
The null value is sorted according to the specification of the null-value sort order in the sort specification list. For
details about the specification of the null-value sort order, see 7.24.1 Specification format for the sort specification
list.

Grouping
In the grouping condition columns, if a row contains null values, any SQL statement that performs grouping will
treat the null values as being the same value.

Exclusion of duplicates
Multiple null values are treated as duplicates.

Set functions
In general, set functions ignore the null value. The COUNT(*) function, however, calculates all eligible rows,
regardless of null values that might be present in the rows.

Window functions
In window functions, when there are rows where the results of a value expression specified for the window
specification are null values, the null values are treated as being the same value.

Indexing
An index can be defined for a column that contains null values.

6. SQL Basics

Hitachi Advanced Database SQL Reference 237



6.8 Scope variables

This section describes the types of identifiers that can act as scope variables and the effective scope of scope variables.

6.8.1 About scope variables
An identifier that can serve as a qualifier for a column specification is called a scope variable. A scope variable has a
name and an effective scope.

If a correlation name is specified, the table name or query name that it specifies loses its effective scope.

Among the scope variables that have an effective scope at the position of a table specification, the scope variable of the
innermost (closest) query specification (table to be updated or deleted) that has the same name as the table specification
will act as that table specification's scope variable.

The following table shows what types of identifiers can act as scope variables.

Table 6-14: Types of identifiers that can act as scope variables

No. Scope variable Scope?

1 Correlation name Y

2 Table name or query name Correlation name is not specified. Y

3 Correlation name is specified. N

4 Table whose contents are to be updated by an
UPDATE statement or deleted by a DELETE
statement

Correlation name is not specified. Y

5 Correlation name is specified. N

Legend:
Y: Can be a scope variable.
N: Cannot be a scope variable.

6.8.2 Scope variable names
The following table lists examples of scope variable names.

Table 6-15: Examples of names of scope variables

No. SQL example Name of scope variable

1 WITH Q1 AS --

2 (SELECT * FROM

3 T0), A.T0

4 Q2 AS --

5 (SELECT * FROM

6 Q1) Q1

7 SELECT "T1"."C1","X"."C1","Y"."C1" FROM --

6. SQL Basics

Hitachi Advanced Database SQL Reference 238



No. SQL example Name of scope variable

8 "T1" A.T1

9 ,"A"."T1" "X" X

10 ,"A"."T2" "Y" Y

Legend:
--: Not applicable.
A: Schema name
TO, T1, T2: Table identifier
X, Y: Correlation name
C1: Column name
Q1, Q2: Query name

6.8.3 Effective scope of scope variables
The following table shows examples of the effective scope of scope variables.

Table 6-16: Examples of the effective scope of scope variables

No. SQL example Scope variable

A.T1 X A.T2 A.T3 Y A.T4 A.T5 Z

1 SELECT "X"."C1","T2"."C2" N Y Y N Y N N N

2 FROM "A"."T1" "X", N Y Y N Y N N N

3 "A"."T2", N Y Y N Y N N N

4 (SELECT * FROM "T3" N N N Y N N N N

5 WHERE "T3"."C1"=100) "Y" N N N Y N N N N

6 WHERE "X"."C1"=100 AND N Y Y N Y N N N

7 "X"."C1"=ANY( N Y Y N Y N N N

8 SELECT "T4"."C1" FROM "T4", N N N N N Y N Y

9 (SELECT * N N N N N N Y N

10 FROM "T5" N N N N N N Y N

11 WHERE "T5"."C1"="X"."C1")"Z" N Y Y N Y N Y N

12 WHERE "T4"."C2"="A"."T2"."C2") N Y Y N Y Y N Y

Legend:
Y: Has scope.
N: Does not have scope.
A: Schema name
T1~T5: Table identifier
X,Y,Z: Correlation name
C1, C2: Column name

6. SQL Basics

Hitachi Advanced Database SQL Reference 239



This section describes the effective scope of scope variables in SELECT, UPDATE, and DELETE statements.

(1) The effective scope of scope variables specified in the FROM clause
of a SELECT statement

The effective scope of the scope variable encompasses the query specification that actually contains the scope variable
identifier in its FROM clause, as well as any search conditions in its subqueries. However, the effective scope does not
extend to derived tables specified in the FROM clause that actually contains the scope variable identifier. The following
figure shows an example.

Figure 6-12: Example of the effective scope of scope variable T1 specified in a FROM clause (1
of 2)

Explanation

1. The scope variable T1 can be referenced in the query specification that actually contains the scope variable in
its FROM clause.

2. The scope variable T1 cannot be referenced in the derived table specified in the same FROM clause as the FROM
clause that actually contains the scope variable identifier.

3. The scope variable T1 can be referenced in the query specification that actually contains the scope variable in
its FROM clause.

4. The scope variable T1 cannot be referenced outside of the search conditions of the subquery.

5. The scope variable T1 can be referenced in the search conditions of the subquery contained in the query that
immediately contains the scope variable in its FROM clause.

6. The scope variable T1 cannot be referenced outside of the query.

6. SQL Basics

Hitachi Advanced Database SQL Reference 240



Figure 6-13: Example of the effective scope of scope variable T1 specified in a FROM clause (2
of 2)

Explanation
These are examples of specifying joined tables.

1. The scope variable T1 can be referenced in the query that immediately contains the scope variable in its FROM
clause.

2. The scope variable T1 can be referenced because T1 is specified as a table reference in the specification of the
joined table.

3. The scope variable T1 cannot be referenced because T1 is not specified as a table reference in the specification
of the joined table.

4. The scope variable T1 can be referenced because T1 is specified as a table reference in the specification of the
joined table.

Figure 6-14: Example of the effective scope of a scope variable (if a query name is specified)

[Explanation]
A query name cannot be qualified with a schema name. If qualified with a schema name, the query name is treated
as a table identifier rather than a query name. If there is a table identifier that has the same name as a query name,
the table identifier is treated as a query name in the effective scope of the query name. However, outside the effective
scope of the query name, the table identifier is treated as a table identifier. Therefore, when you specify a scope
variable in the FROM clause as a table identifier, qualify the scope variable with a schema name.

6. SQL Basics

Hitachi Advanced Database SQL Reference 241



(2) The effective scope of the table to be updated (scope variable) in an
UPDATE statement

The effective scope of the scope variable encompasses the SET clause of the UPDATE statement, its search conditions,
and the search conditions in any subqueries within those search conditions. The following figure shows an example.

Figure 6-15: Example of the effective scope of scope variable T1 specified in an UPDATE statement

Explanation

1. The scope variable T1 can be referenced in the UPDATE statement's SET clause and search conditions.

2. The scope variable T1 cannot be referenced outside the search condition portion of the subquery.

3. The scope variable T1 can be referenced in the search conditions of subqueries in the SET clause of the UPDATE
statement.

4. The scope variable T1 can be referenced in the UPDATE statement's SET clause and search conditions.

5. The scope variable T1 cannot be referenced outside the search condition portion of the subquery.

6. The scope variable T1 can be referenced in the search conditions of subqueries in the search conditions of the
UPDATE statement.

(3) The effective scope of the table from which data is to be deleted (scope
variable) in a DELETE statement

The effective scope of the scope variable encompasses the search conditions of the DELETE statement as well as the
search conditions in any subqueries in those search conditions. The following figure shows an example.

Figure 6-16: Example of the effective scope of scope variable T1 specified in a DELETE statement

Explanation

1. The scope variable T1 can be referenced in the search conditions of the DELETE statement.

2. The scope variable T1 cannot be referenced outside of the search condition portion of the subquery.

6. SQL Basics

Hitachi Advanced Database SQL Reference 242



3. The scope variable T1 can be referenced in the search conditions of subqueries in the search conditions of the
DELETE statement.

(4) The effective scope of the table into which data is to be inserted into
(non-scope variable) in an INSERT statement

The table that is the target of the INSERT statement does not have effective scope anywhere inside the insertion value
(including subqueries) or the query expression body. This is illustrated in the following example.

Example

INSERT INTO "T1"     ...1
    VALUES(
            (SELECT "C1" FROM "T3"
                 WHERE "C2">="C3"     ...2
            )
           )

Explanation
The underlined insertion target table does not have effective scope anywhere inside the INSERT statement.
The insertion target table T1 cannot be referenced even in the search condition portion of the subquery.

6. SQL Basics

Hitachi Advanced Database SQL Reference 243



6.9 Derived column names

The term derived column refers to a column in a table that was derived by the clauses in a query specification. Derived
column names are determined according to the following rules.

6.9.1 Decision rules for derived column names in query specifications
In query specifications, derived column names are determined according to the following rules.

• In the case of a FROM clause
The derived column names will be the column names of the table specified in the table reference.
Example

SELECT "C1","C2" FROM "T1"

In the example above, the derived column names are the names of the columns of table T1.

• In the case of a GROUP BY clause
The derived column names will be the names of the grouping columns.
Example

SELECT "C1","GC2",SUM("C3") FROM "T1"
    GROUP BY "C1",SUBSTR("C2",5,2) AS "GC2"

In the example above, the derived column names are "C1" and "GC2".

6.9.2 Decision rules for derived column names in query results
In query results, derived column names are determined according to the following rules.

(1) In the case of a query expression
The derived column names will be the column names derived from the results of the query-primary that is specified
first.

(2) In the case of a query specification or subquery
■ If the AS clause is not specified in the i-th selection expression

• If the value expression specified in the i-th selection expression is a column specification
The i-th derived column name will be that column name.

• If the value expression specified in the i-th selection expression is a subquery
The i-th derived column name will be the column name derived from the result of the subquery.

• Other than above:
No column name is set for the derived column.

■ If the AS clause is specified in the i-th selection expression
The i-th derived column name will be the column name in the AS clause specified in the i-th selection expression.

The following examples illustrate the decision rules for derived column names.

6. SQL Basics

Hitachi Advanced Database SQL Reference 244



Example 1:

SELECT "C1","C2","C3" FROM "T1"

If you execute the SELECT statement above, the derived column names will be "C1", "C2", and "C3". The column
order of the derived columns is this same order.

Example 2:

SELECT "C1","C2" AS "X2","C3" FROM "T1"

If you execute the SELECT statement above, the derived column names will be "C1", "X2", and "C3". The column
order of the derived columns is this same order.

Example 3:

SELECT "C1",SUM("C2") AS "SUM-C2",AVG("C2") FROM "T1"
    WHERE "C3">=DATE'2011-09-03'
    GROUP BY "C1"

If you execute the SELECT statement above, the derived column names will be "C1", "SUM-C2", and "no
column name". The column order of the derived columns is this same order.

(3) In the case of a derived table
■ If a derived column list is specified

The i-th derived column name will be the i-th column name in the derived column list.

■ If no derived column list is specified
• If a table subquery is specified as a derived table

The derived column names will be the column names of the table derived by the subquery.
If names to be given to derived columns are not set, character strings in the EXPnnnn_NO_NAME format are
used as the names of the derived columns. In this format, nnnn is an unsigned integer in the range from 0001
to 1000. The integer nnnn is a sequence number that will be given in ascending order (0001, 0002, ...) to each
column for which a derived column name to be given is not set.

• If a table value constructor is specified as a derived table
A character string in the EXPnnnn_NO_NAME format will become a derived column name. In this format, nnnn
is an unsigned integer in the range from 0001 to 1000. The integer nnnn is a sequence number that will be
given in ascending order (0001, 0002, ...) to each derived column.

(4) In the case of a table function derived table
■ If a table function column list is specified

The i-th derived column name will be the i-th column name specified in the table function column list.

■ If a table function column list is not specified
The derived column name will be the column name derived by means of the system-defined function specified in
the table function derived table.

6.9.3 Effective scope of derived column names
The examples in the following tables illustrate the effective scope of derived column names.

6. SQL Basics

Hitachi Advanced Database SQL Reference 245



Table 6-17: Example of the effective scope of derived column names (without GROUP BY clause)

Example SQL statement Effective scope

C1 C2 C3 DC3 C4

SELECT "C1","C2" Y Y N Y N

FROM "T1", Y Y N Y N

(SELECT * N N Y N N

FROM "T2" N N Y N N

WHERE "C3"=100) N N Y N N

"Y"("DC3") N N N Y N

WHERE "C1"=100 AND Y Y N Y N

"C2"=ANY Y Y N Y N

(SELECT "C4" N N N N Y

FROM "T3" Y Y N N Y

WHERE "DC3"="C4") Y Y N Y Y

Legend:
Y: Has scope.
N: Does not have scope.
T1,T2,T3: Table identifier
C1, C2: T1 column name
C3: T2 column name
C4: T3 column name
Y: Correlation name
DC3: Derived column name of derived table Y

Table 6-18: Example of the effective scope of derived column names (with GROUP BY clause)

Example SQL statement Effective scope

C1 C2 GC2 C3 DC3 C4 C5

SELECT "C1","GC2" Y A Y N A N N

FROM "T1", Y Y N N Y N N

(SELECT * N N N Y N N N

FROM "T2" N N N Y N N N

WHERE "C3"=100) N N N Y N N N

"Y"("DC3") N N N N Y N N

WHERE "C1"=100 AND Y Y N N Y N N

"C2"=ANY Y Y N N Y N N

(SELECT "C4" N N N N N Y N

FROM "T3" Y Y N N Y Y N

6. SQL Basics

Hitachi Advanced Database SQL Reference 246



Example SQL statement Effective scope

C1 C2 GC2 C3 DC3 C4 C5

WHERE "DC3"="C4") Y Y N N Y Y N

GROUP BY "C1","C2"+100 AS "GC2" Y Y N N Y N N

HAVING "C1"=100 AND Y A Y N A N N

"GC2"=ANY Y A Y N A N N

(SELECT "C5" N N N N N N Y

FROM "T4" Y N N N N N Y

WHERE SUM("DC3")="C5") Y A N N A N Y

Legend:
Y: Has scope.
A: Has scope, but is not a grouping column, so can only be specified as the argument of a set function.
N: Does not have scope.
T1,T2,T3,T4: Table identifier
C1, C2: T1 column name
C3: T2 column name
C4: T3 column name
C5: T4 column name
GC2: the names of the grouping columns
Y: Correlation name
DC3: Derived column name of derived table Y

6. SQL Basics

Hitachi Advanced Database SQL Reference 247



6.10 Reserved words

This section lists the reserved words used in HADB, and explains what to do when a name conflicts with a reserved
word.

6.10.1 List of reserved words
Reserved words are keywords that are registered for use in SQL statements. Therefore, reserved words cannot be used
as table or column names. If you want to specify a name with a character string that is the same as a reserved word, see
6.10.2 What to do when a name conflicts with a reserved word.

Note
HADB reserved words include the reserved words defined in SQL92 (ISO 9075-1992 Database Language
SQL).

The following table lists the HADB reserved words.

Table 6-19: HADB reserved words

First letter Reserved word

A ABS, ABSOLUTE, ACCESS, ACTION, ADD, ADMIN, AFTER, AGGREGATE, AGGREGATES, ALIAS, ALL, ALLOCATE,
ALTER, AND, ANDNOT, ANY, ARE, ARRAY, ARRAY_AGG, ARRAY_MAX_CARDINALITY, AS, ASC, ASENSITIVE,
ASSERTION, ASSIGN, ASYMMETRIC, AT, ATOMIC, AUTHORIZATION, AVG

B BEFORE, BEGIN, BEGIN_FRAME, BEGIN_PARTITION, BETWEEN, BIGINT, BINARY, BIT, BIT_AND_TEST,
BIT_LENGTH, BLOB, BOOLEAN, BOTH, BREADTH, BY

C CALL, CALLED, CARDINALITY, CASCADE, CASCADED, CASE, CAST, CATALOG, CEIL, CEILING, CHANGE, CHAR,
CHAR_LENGTH, CHARACTER, CHARACTER_LENGTH, CHECK, CHUNK, CHUNKID, CLASS, CLASSIFIER, CLOB,
CLOSE, CLUSTER, COALESCE, COLLATE, COLLATION, COLLECT, COLUMN, COLUMNS, COMMENT, COMMIT,
COMPLETION, CONDITION, CONNECT, CONNECTION, CONSTRAINT, CONSTRAINTS, CONSTRUCTOR, CONTINUE,
CONVERT, CORR, CORRESPONDING, COUNT, COUNT_FLOAT, COVAR_POP, COVAR_SAMP, CREATE, CROSS, CUBE,
CUME_DIST, CURRENT, CURRENT_CATALOG, CURRENT_DATE, CURRENT_PATH, CURRENT_ROLE, CURRENT_ROW,
CURRENT_SCHEMA, CURRENT_TIME, CURRENT_TIMESTAMP, CURRENT_USER, CURRENT_USER_IS_DBA,
CURSOR, CYCLE

D DATA, DATALINK, DATE, DAY, DAYS, DBA, DEALLOCATE, DEC, DECIMAL, DECLARE, DEFAULT, DEFERRABLE,
DEFERRED, DEFINE, DELETE, DENSE_RANK, DEPTH, DEREF, DESC, DESCRIBE, DESCRIPTOR, DESTROY,
DESTRUCTOR, DETERMINISTIC, DIAGNOSTICS, DICTIONARY, DIGITS, DISCONNECT, DISTINCT, DLNEWCOPY,
DLPREVIOUSCOPY, DLURLCOMPLETE, DLURLCOMPLETEONLY, DLURLCOMPLETEWRITE, DLURLPATH,
DLURLPATHONLY, DLURLPATHWRITE, DLURLSCHEME, DLURLSERVER, DLVALUE, DO, DOMAIN, DOUBLE, DROP,
DYNAMIC

E EACH, ELEMENT, ELSE, ELSEIF, END, END_FRAME, END_PARTITION, END-EXEC, EQUALS, ESCAPE, EVERY,
EXCEPT, EXCEPTION, EXCLUSIVE, EXEC, EXECUTE, EXISTS, EXIT, EXP, EXTERNAL, EXTRACT

F FALSE, FETCH, FILTER, FIRST, FIRST_VALUE, FIX, FLAT, FLOAT, FLOOR, FOR, FOREIGN, FOUND, FRAME_ROW,
FREE, FROM, FULL, FUNCTION, FUSION

G GENERAL, GET, GLOBAL, GO, GOTO, GRANT, GROUP, GROUPING, GROUPS

H HANDLER, HASH, HAVING, HEX, HOLD, HOST, HOUR, HOURS

6. SQL Basics

Hitachi Advanced Database SQL Reference 248



First letter Reserved word

I IDENTIFIED, IDENTITY, IF, IGNORE, IMMEDIATE, IMPORT, IN, INCREMENTAL, INDEX, INDICATOR, INITIAL,
INITIALIZE, INITIALLY, INNER, INOUT, INPUT, INSENSITIVE, INSERT, INT, INTEGER, INTERSECT,
INTERSECTION, INTERVAL, INTO, IS, ISOLATION, ITERATE

J JAR, JOIN

K KEY

L LAG, LANGUAGE, LARGE, LAST, LAST_VALUE, LATERAL, LEAD, LEADING, LEAVE, LEFT, LENGTH, LESS, LEVEL,
LIKE, LIKE_REGEX, LIMIT, LIST, LN, LOCAL, LOCALTIME, LOCALTIMESTAMP, LOCATOR, LOCK, LONG, LOOP,
LOWER

M MAP, MATCH, MATCH_NUMBER, MATCH_RECOGNIZE, MAX, MAXIMAL, MCHAR, MEASURES, MEMBER, MERGE, METHOD,
MICROSECOND, MICROSECONDS, MILLISECOND, MILLISECONDS, MIN, MINUTE, MINUTES, MOD, MODE,
MODIFIES, MODIFY, MODULE, MONTH, MONTHS, MULTISET, MVARCHAR

N NAMES, NANOSECOND, NANOSECONDS, NATIONAL, NATURAL, NCHAR, NCLOB, NESTING, NEW, NEXT, NO, NONE,
NORMALIZE, NOT, NOWAIT, NTH_VALUE, NTILE, NULL, NULLIF, NUMERIC, NVARCHAR

O OBJECT, OCCURRENCES_REGEX, OCTET_LENGTH, OF, OFF, OFFSET, OLD, ON, ONE, ONLY, OPEN, OPERATION,
OPTIMIZE, OPTION, OR, ORDER, ORDINALITY, OUT, OUTER, OUTPUT, OVER, OVERLAPS, OVERLAY

P PAD, PAGE, PARAMETER, PARAMETERS, PARTIAL, PARTITION, PARTITIONED, PATH, PATTERN, PCTFREE, PER,
PERCENT, PERCENT_RANK, PERCENTILE_CONT, PERCENTILE_DISC, PERIOD, PICOSECOND, PICOSECONDS,
PORTION, POSITION, POSITION_REGEX, POSTFIX, POWER, PRECISION, PREFIX, PREORDER, PREPARE,
PRESERVE, PRIMARY, PRIOR, PRIVATE, PRIVILEGES, PROCEDURE, PROGRAM, PROTECTED, PUBLIC, PURGE

R RANGE, RANK, READ, READS, REAL, RECOVERY, RECURSIVE, REDO, REF, REFERENCES, REFERENCING,
REGR_AVGX, REGR_AVGY, REGR_COUNT, REGR_INTERCEPT, REGR_R2, REGR_SLOPE, REGR_SXX, REGR_SXY,
REGR_SYY, RELATIVE, RELEASE, REPEAT, RESIGNAL, RESTRICT, RESULT, RETURN, RETURNS, REVOKE, RIGHT,
ROLE, ROLLBACK, ROLLUP, ROUTINE, ROW, ROW_NUMBER, ROWID, ROWS

S SAVEPOINT, SCHEMA, SCOPE, SCROLL, SEARCH, SECOND, SECONDS, SECTION, SEEK, SELECT, SENSITIVE,
SEQUENCE, SESSION, SESSION_USER, SET, SETS, SHARE, SIGNAL, SIMILAR, SIZE, SKIP, SMALLFLT,
SMALLINT, SOME, SPACE, SPECIFIC, SPECIFICTYPE, SQL, SQLCODE, SQLCODE_OF_LAST_CONDITION,
SQLCOUNT, SQLERRM_OF_LAST_CONDITION, SQLERROR, SQLEXCEPTION, SQLSTATE, SQLWARNING, SQRT,
START, STATE, STATEMENT, STATIC, STDDEV_POP, STDDEV_SAMP, STRUCTURE, SUBMULTISET, SUBSE,
SUBSTR, SUBSTRING, SUBSTRING_REGEX, SUM, SUPPRESS, SYMMETRIC, SYSTEM, SYSTEM_TIME,
SYSTEM_USER

T TABLE, TABLESAMPLE, TEMPORARY, TERMINATE, TEST, THAN, THEN, TIME, TIMESTAMP, TIMESTAMP_FORMAT,
TIMEZONE_HOUR, TIMEZONE_MINUTE, TO, TRAILING, TRANSACTION, TRANSLATE, TRANSLATE_REGEX,
TRANSLATION, TREAT, TRIGGER, TRIM, TRIM_ARRAY, TRUE, TRUNCATE, TYPE

U UESCAPE, UNDER, UNDO, UNION, UNIQUE, UNKNOWN, UNNEST, UNTIL, UPDATE, UPPER, USAGE, USER, USING

V VALUE, VALUE_OF, VALUES, VAR_POP, VAR_SAMP, VARBINARY, VARCHAR, VARCHAR_FORMAT, VARIABLE,
VARYING, VERSIONING, VIEW

W WAIT, WHEN, WHENEVER, WHERE, WHILE, WIDTH_BUCKET, WINDOW, WITH, WITHIN, WITHOUT, WORK, WRITE

X XLIKE, XML, XMLAGG, XMLATTRIBUTES, XMLBINARY, XMLCAST, XMLCOMMENT, XMLCONCAT, XMLDOCUMENT,
XMLELEMENT, XMLEXISTS, XMLFOREST, XMLITERATE, XMLNAMESPACES, XMLPARSE, XMLPI, XMLQUERY,
XMLSERIALIZE, XMLTABLE, XMLTEXT, XMLVALIDATE

Y YEAR, YEARS

Z ZONE

Note

• Underlined reserved words are reserved words defined in SQL92.

6. SQL Basics

Hitachi Advanced Database SQL Reference 249



• The shaded reserved words (highlighted reserved words) cannot be deleted by using the method described in
(2) Unregistering a duplicated reserved word in 6.10.2 What to do when a name conflicts with a reserved word.

6.10.2 What to do when a name conflicts with a reserved word
Shown below are two ways to respond when a naming conflict with a reserved word arises.

• Enclose the name in double quotation marks.

• Unregister the reserved word.

Basically, changing the SQL statement to enclose the name in double quotation marks (") is the recommended method.
Unregistering the reserved word is only for cases in which changing the SQL statement would be too difficult; for
example, when the amount of work would be too great.

(1) Enclosing the name in double quotation marks
Enclose the character string that is the same as a reserved word in double quotation marks ("). If you enclose the reserved
word in double quotation marks ("), you can use it in SQL statements in the same way as any other string.

(2) Unregistering a duplicated reserved word
By unregistering a reserved word, you will be able to use it as a name without having to enclose it in double quotation
marks ("). Note, however, that there are reserved words that cannot be unregistered. For the reserved words that cannot
be unregistered, see 6.10.1 List of reserved words.

Important
If you delete a reserved word, you can no longer execute any SQL statements that include the deleted
reserved word.

If you delete reserved words after defining a table, the reserved words remain valid in the definition.
Therefore, doing so might cause an error to occur when the table is redefined.

To unregister a reserved word, specify it in the adb_sql_prep_delrsvd_words operand in the server definition.
For details about the adb_sql_prep_delrsvd_words operand, see Operands related to SQL statements (set
format) in Detailed descriptions of the server definition operands under Designing the Server Definition in the HADB
Setup and Operation Guide.

If you want to prevent an application from actually unregistering any reserved words specified in the
adb_sql_prep_delrsvd_words operand in the server definition, specify N for the client definition's
adb_sql_prep_delrsvd_use_srvdef operand. For details about the
adb_sql_prep_delrsvd_use_srvdef operand, see Operands related to SQL in Contents of operands in the
client definition in Designing Client Definitions in the HADB Application Development Guide.

When you unregister a reserved word using the adb_sql_prep_delrsvd_words operand in the server definition,
the effects extend even to the authorization identifiers used to connect to the HADB server. For example, if you specify
ABS in the operand adb_sql_prep_delrsvd_words, you can then specify ABS to the -u option of the adbsql
command to connect to the HADB server using the authorization identifier ABS.

6. SQL Basics

Hitachi Advanced Database SQL Reference 250



This chapter describes the elements that make up SQL.

7 Constituent Elements

Hitachi Advanced Database SQL Reference 251



7.1 Query expression

This section describes the query expression.

7.1.1 Specification format and rules for query expressions
A query expression is a combination of a WITH clause and a query expression body.

The query expression body specifies either a query specification or a set operation that determines the union set,
difference set, or intersection set of the tables derived from two query expression bodies. You can specify the set operator
UNION to determine the union set, the set operator EXCEPT to determine the difference set, and the set operator
INTERSECT to determine the intersection set of the tables.

When the WITH clause is used, the derived table produced by the derived query expression body can be given a query
name, which can be specified in the query expression body itself.

Also, the query name specified in a WITH list element can be referenced from the query expression body in the WITH
list element (recursive search can be performed). In this case, the query name specified in a WITH list element is called
a recursive query name, and the query expression body specified in the WITH list element is called a recursive query.

(1) Specification format
query-expression::=[WITH-clause] query-expression-body
 
 
  WITH-clause::=WITH WITH-list-element[,WITH-list-element]...
    WITH-list-element::=query-name [(WITH-column-list)] AS (query-expression-body [LI
MIT-clause]) [maximum-number-of-recursions-specification]
      WITH-column-list::=column-name[,column-name]...
      maximum-number-of-recursions-specification::=/*>> MAX RECURSION maximum-number-
of-recursions <<*/
 
  query-expression-body::={query-term
                    |query-expression-body {UNION|EXCEPT} [{ALL|DISTINCT}][set-operat
ion-method-specification] query-term}
    query-term::={query-primary
                  |query-term INTERSECT [{ALL|DISTINCT}] query-primary}
      query-primary::={query-specification|(query-expression-body)}
    set-operation-method-specification::=/*>> SET OPERATION NOT BY HASH <<*/

(2) Explanation of specification format

(a) WITH-clause

WITH-clause ::= WITH  WITH-list-element[,WITH-list-element]...
  WITH-list-element ::= query-name [(WITH-column-list)] AS (query-expression-body [LI
MIT-clause]) [maximum-number-of-recursions-specification]
    WITH-column-list ::= column-name[,column-name]...
    maximum-number-of-recursions-specification ::= /*>> MAX RECURSION maximum-number-
of-recursions <<*/

Specify the WITH clause if you want to define the result of the query specified by AS (query-expression-body) to be
held in a temporary derived table. The following figure shows an example of specifying a WITH clause.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 252



Figure 7-1: Example of specifying a WITH clause

query-name:
Specifies the name of the derived table. The name specified here is defined as the name of the query. You cannot
specify the same query name as the one in the WITH clause.

WITH-column-list:
Specify a column name for each column in query-name (the derived table).
The number of column names specified in WITH-column-list must be the same as the number of columns derived
by the outermost query in the query expression body in the corresponding AS (query-expression-body).
If WITH-column-list is omitted, the names of the columns in query-name will be the names of the columns derived
by the outermost query in the query expression body in the corresponding AS (query-expression-body). For rules
on derived column names, see 6.9 Derived column names.
Note the following points:

• The column names in WITH-column-list must be unique.

• If WITH-column-list is omitted, the column names that are derived by the query expression body must be unique.

• Do not specify a character string in the EXPnnnn_NO_NAME format as a column name in WITH-column-list.
Such a column name might duplicate a derived column name that is automatically set by HADB. In this format,
nnnn is an unsigned integer in the range from 0000 to 9999.

• The number of columns derived by the outermost query in the query expression body specified in the
corresponding AS (query-expression-body) cannot exceed 1,000.

AS (query-expression-body [LIMIT-clause]):
Specifies a query expression body.
The derived table is created from the query expression body specified here. The name of the derived table will be
the name specified in query-name.
Note that you cannot specify a dynamic parameter inside the query expression body.

LIMIT-clause:
Specifies the maximum number of rows that will be retrieved from the results of the query expression body.
For details about the LIMIT clause, see 7.9 LIMIT clause.
Note that you cannot specify the LIMIT clause for a recursive query.

maximum-number-of-recursions-specification:

maximum-number-of-recursions-specification ::= /*>> MAX RECURSION maximum-number-o
f-recursions <<*/

Specifies the maximum number of recursions that can be performed when a recursive query is made. Use an unsigned
integer literal to specify the maximum number of times recursion can be performed. The following rules apply:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 253



• If the maximum-number-of-recursions specification is omitted, 100 is assumed as the maximum number of
recursions.

• Specify an unsigned integer literal in the range from 0 to 32,767 as the maximum number of recursions.

• If the number of times recursion is performed exceeds the maximum number of recursions, the SQL statement
will result in an error.

• If you specify 0 as the maximum number of recursions, recursion can be performed indefinitely. Therefore, if
you specify 0, execution of the SQL statement might be repeated indefinitely.

• If no recursive query is specified, the maximum-number-of-recursions specification is invalid.

(b) query-expression-body

query-expression-body::={query-term
                  |query-expression-body {UNION|EXCEPT} [{ALL|DISTINCT}][set-operatio
n-method-specification] query-term}
  query-term::={query-primary|query-term INTERSECT [{ALL|DISTINCT}] query-primary}
    query-primary::={query-specification|(query-expression-body)}
  set-operation-method-specification::=/*>> SET OPERATION NOT BY HASH <<*/

Specify one of the following in query-expression-body:

• query-term

• A set operation that determines the union or difference of the tables derived from a query-expression-body and a
query-term.

Note that UNION ALL, UNION DISTINCT, EXCEPT ALL, EXCEPT DISTINCT, INTERSECT ALL, and INTERSECT
DISTINCT are referred to as set operators.

query-term:
Specify one of the following in query-term:

• query-primary

• A set operation that determines the intersection of a query-term and a query-primary

{UNION | EXCEPT}:
Specify UNION to determine the union, or EXCEPT to determine the difference.

{ALL|DISTINCT}:
Specify whether to eliminate duplicate rows in the results of the set operation.
ALL: Do not eliminate duplicate rows in the results of the set operation.
DISTINCT: If there are duplicate rows in the results of the set operation, or in the operands of the set operation,
consolidate the duplicate rows into a single row.
If neither ALL nor DISTINCT is specified, the system assumes that DISTINCT is specified.

query-primary:
In query-primary, specify a query-specification or (query-expression-body).

INTERSECT:
Specify this to determine the intersection.

query-specification:
Specifies a query specification. For details about query specifications, see 7.2 Query specification.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 254



(query-expression-body):
Specifies a query expression body.

set-operation-method-specification:
If a set operation method specification is used, a processing method other than hash execution is used as the method
for processing the set operation. For details about the method for processing the set operation, see Methods for
processing set operations in the HADB Application Development Guide.
Note that, normally, there is no need to specify this. If the set operation method specification is omitted, HADB
determines the method for processing the set operation.
The following shows the rules that apply when a set operation method specification is used:

• A set operation method specification that is specified for the EXCEPT set operation is ignored.

• A set operation method specification is applied to all set operations in a query expression body (all occurrences
of UNION DISTINCT or UNION ALL). Whether a set operation method specification is applied can be
checked in the access path information. For details about access path information, see Set operation method
specification in the HADB Application Development Guide.

Example

SELECT "C1" FROM "T1"
UNION                                        ...[1]
SELECT "C1" FROM "T2"
UNION /*>> SET OPERATION NOT BY HASH <<*/    ...[2]
SELECT "C1" FROM "T3"

As shown in the preceding example, if a set operation method specification is written for the set operation on row
[2], the set operation method specification is also applied to the set operation on row [1] (underlined portion).

(3) Rules

(a) Rules for the WITH clause
1. When there is one query name, the effective scope of the query name does not extend beyond the query expression

body that follows the WITH clause. When there are two or more query names, the effective scope is different for
each query name. For examples of the effective scope of a query name, see (1) The effective scope of scope variables
specified in the FROM clause of a SELECT statement in 6.8.3 Effective scope of scope variables.

2. In the query expression body of a WITH list element, subqueries can be specified in a nested form. In this case, the
subquery nesting depth must not exceed 31. Note that if the table specified in the FROM clause is a viewed table or
query name, the subquery nesting depth after HADB generates the internal derived table to the viewed table or query
name must not exceed 31. For details, see (a) Common rules for subqueries in (4) Rules in 7.3.1 Specification
format and rules for subqueries.
Example 1:

WITH "Q1" AS 
  (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
  (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
  (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
  (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
  (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
  (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
  (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM "T1") AS DT32
  ) AS DT31 ) AS DT30 ) AS DT29 ) AS DT28 ) AS DT27 ) AS DT26 ) AS DT25 ) AS DT24
  ) AS DT23 ) AS DT22 ) AS DT21 ) AS DT20 ) AS DT19 ) AS DT18 ) AS DT17 ) AS DT16
  ) AS DT15 ) AS DT14 ) AS DT13 ) AS DT12 ) AS DT11 ) AS DT10 ) AS DT9 ) AS DT8
  ) AS DT7 ) AS DT6 ) AS DT5 ) AS DT4 ) AS DT3 ) AS DT2 ) AS DT1 ) AS DT0 )
SELECT * FROM "Q1"

7. Constituent Elements

Hitachi Advanced Database SQL Reference 255



In the preceding example, the subquery nesting depth of query name Q1 is 32. In this case, because the maximum
nesting depth is exceeded, the SELECT statement will result in an error.
Note that in this example, T1 is the base table.
Example 2:

WITH "Q2" AS 
  (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
  (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
  (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
  (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
  (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
  (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
  (SELECT * FROM (SELECT * FROM "T1") AS DT30
  ) AS DT29 ) AS DT28 ) AS DT27 ) AS DT26 ) AS DT25 ) AS DT24 ) AS DT23 ) AS DT22
  ) AS DT21 ) AS DT20 ) AS DT19 ) AS DT18 ) AS DT17 ) AS DT16 ) AS DT15 ) AS DT14
  ) AS DT13 ) AS DT12 ) AS DT11 ) AS DT10 ) AS DT9 ) AS DT8 ) AS DT7 ) AS DT6
  ) AS DT5 ) AS DT4 ) AS DT3 ) AS DT2 ) AS DT1 ) AS DT0 ),
  "Q3" AS (SELECT * FROM "Q2"),
  "Q4" AS (SELECT * FROM "Q3")
SELECT * FROM "Q4"

• For query name Q2, the subquery nesting depth is 30. In this case, the maximum nesting depth is not exceeded.

• For query name Q3, the subquery nesting depth becomes 31 when the internal derived table is generated. In this
case, the maximum nesting depth is not exceeded.

• For query name Q4, the subquery nesting depth becomes 32 when the internal derived table is generated. In this
case, because the maximum nesting depth is exceeded, the SELECT statement will result in an error.

Note that in this example, T1 is the base table.
Example 3:

WITH "Q5" AS (SELECT "C1" FROM (SELECT "C1" FROM "T1") AS DT
              UNION ALL
              SELECT "C1"+1 FROM "Q5" WHERE "C1"+1 < 5),
     "Q6" AS (SELECT * FROM
              (SELECT * FROM
               (SELECT * FROM
                (SELECT * FROM
                 (SELECT * FROM
                  (SELECT * FROM "Q5") AS DT4
                 ) AS DT3
                ) AS DT2
               ) AS DT1
              ) AS DT0),
      "Q7" AS
      (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
      (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
      (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
      (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
      (SELECT * FROM (SELECT * FROM (SELECT * FROM (SELECT * FROM
      (SELECT * FROM "Q6") AS DT23
      ) AS DT22 ) AS DT21 ) AS DT20 ) AS DT19 ) AS DT18
      ) AS DT17 ) AS DT16 ) AS DT15 ) AS DT14 ) AS DT13
      ) AS DT12 ) AS DT11 ) AS DT10 ) AS DT9 ) AS DT8
      ) AS DT7 ) AS DT6 ) AS DT5 ) AS DT4 ) AS DT3
      ) AS DT2 ) AS DT1 ) AS DT0 )
SELECT * FROM "Q7"

• For query name Q5, the subquery nesting depth is 1. In this case, the maximum nesting depth is not exceeded.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 256



• For query name Q6, the subquery nesting depth becomes seven when the internal derived table is generated. In
this case, the maximum nesting depth is not exceeded.

• For query name Q7, the subquery nesting depth becomes 32 when the internal derived table is generated. In this
case, because the maximum nesting depth is exceeded, the SELECT statement will result in an error.

Note that in this example, T1 is the base table.

(b) Rules for recursive queries
1. A recursive query must include the following items: one or more query specifications# that do not include a recursive

query name that references the recursive query, and one or more query specifications# that include a recursive query
name that references the recursive query. Query specifications# that do not include a recursive query name that
references the recursive query are called anchor members, and query specifications# that include a recursive query
name that references the recursive query are called recursive members.
#: Subqueries do not apply.

2. To specify multiple recursive members, make sure that each of them is an operand of a set operation (UNION ALL).

3. Also, make sure that the last anchor member and first recursive member that are specified in a recursive query are
operands of a set operation (UNION ALL). The following shows an example of specifying anchor and recursive
members.
Example:

WITH "Q1"("C1","C2")
    AS (SELECT "C1","C2" FROM "T1" WHERE "C1" > 0                          ...1
        UNION ALL
        SELECT "Q1"."C1"+1,"T1"."C2" FROM "Q1","T1" WHERE "Q1"."C1" < 5)   ...2
SELECT * FROM "Q1"

[Explanation]
1. The underlined entry is an anchor member.
2. The underlined entry is a recursive member.

4. All anchor members must be specified before the first recursive member specified in the recursive query.

5. In the FROM clause of a recursive member in a recursive query, two or more recursive query names that reference
the recursive query cannot be specified.

6. In a subquery of a recursive query, a recursive query name that references the recursive query cannot be specified.

7. The following items cannot be specified in recursive members. The following items also cannot be specified in
subqueries in recursive members.

• SELECT DISTINCT
• GROUP BY clause

• HAVING clause

• LIMIT clause

• Set functions

• LEFT OUTER JOIN
• RIGHT OUTER JOIN
• FULL OUTER JOIN

However, the preceding items can be specified in the following locations:

• A viewed table specified in a recursive member

7. Constituent Elements

Hitachi Advanced Database SQL Reference 257



• A viewed table specified in a subquery in a recursive member

• A derived query derived from a query name

8. The following two items must have the same data type and data length:

• Data type and data length of the columns#1 that make up the table that is derived from the result of a set operation
for all recursive members that are specified in the recursive query

• Data type and data length of the columns#2 that make up the table that is derived from the result of a set operation
for all anchor members

#1: If there is only one recursive member, the selection expression of the recursive member applies.
#2: If there is only one anchor member, the selection expression of the anchor member applies.

9. An overview of a recursive query search performed under the following conditions is described later:

• The query expression body that performs a set operation for all anchor members that are specified in the recursive
query is Q0.

• The search result of Q0 is X0.

• The query expression body that performs a set operation for all recursive members that are specified in the
recursive query is Qi.

• The search result of Qi is Xi.

• The number of recursions is i.

Overview of a recursive query search
1. A search is performed with Q0 (the search result is X0).
2. The search result X0 becomes the result of the recursive query.
3. Based on the previous search result Xi-1, a search is performed with Qi (the search result is Xi).
4. Either of the following operations is performed according to the search result Xi:

• If the search result Xi is not a null row, the search result Xi becomes the result of the recursive query, and
the processing returns to step 3.

• If the search result Xi is a null row, the recursive query terminates.

Example:

WITH "REC"("VAL") AS (
    SELECT * FROM (VALUES(1))                          <= Anchor member
    UNION ALL
    SELECT "VAL" + 1 FROM "REC" WHERE "VAL" + 1 <= 5   <= Recursive member
    )
SELECT "VAL" FROM "REC"

Example of running the preceding SQL statement

When the preceding SQL statement is run, recursion occurs four times.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 258



(c) Rules for set operations
1. In the evaluation order of set operations, parentheses take precedence over INTERSECT, which takes precedence

over UNION and EXCEPT.

2. Derived tables returned by a query-term and query-term, a query-term and query-primary, or a query-primary and
query-primary combination that are targeted by the set operation are treated as a set of rows, on which the set
operation is performed.

3. The number and order of the columns must be identical in the tables targeted by the set operation (the derived tables
returned by the query terms).
Example:

Furthermore, the data types of the corresponding columns must be data types that can be compared. In the above
example, column C1 in table T1 and column C1 in table T2 must have data types that can be compared. Similarly,
column C2 in table T1 and column C2 in table T2 must have data types that can be compared.
For details about data types that can be compared, see (1) Data types that can be compared in 6.2.2 Data types that
can be converted, assigned, and compared.
However, the following data cannot be compared with the set operation:

• DATE type data cannot be compared to character string data (even to the predefined input representation of a
date).

• TIME type data cannot be compared to character string data (even to the predefined input representation of a
time).

• TIMESTAMP type data cannot be compared to character string data (even to the predefined input representation
of a time stamp).

For information about predefined input representations, see 6.3.3 Predefined character-string representations.

4. The column names of a table derived by a set operation are determined by the column names of the tables derived
by the query terms specified in the set operation. For rules about the column names of tables derived from set
operations, see (1) In the case of a query expression in 6.9.2 Decision rules for derived column names in query
results.

5. The number and order of columns in the derived table produced by the set operation will be the same as the columns
that make up the corresponding tables that were targeted by the set operation (the derived tables returned by query
terms). Note that if even one of the corresponding columns does not have the NOT NULL constraint (null values are
allowed), the set operation is executed without the NOT NULL constraint on all the columns of the derived table
(null values are allowed).

6. The data types and data lengths of the columns in the derived table produced by the set operation are determined by
the data types and data lengths of the columns that make up the corresponding tables that were targeted by the set
operation (the derived tables returned by the query terms). For details, see 7.20.2 Data types of the results of value
expressions.

7. Q1 and Q2 are set operation operands of the set operation. In this case, the number of occurrences of a given row
in the results of Q1 set-operation Q2 is as shown in the following table.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 259



Table 7-1: Number of occurrences of a given row in the results of the set operation

Set operator Number of occurrences of a given row R in the results of the set operation

When ALL is not specified When ALL is specified

UNION • 0 (when m = 0 and n = 0)
• 1 (when m > 0 or n > 0)

m + n

EXCEPT • 0 (when m = 0 or n > 0)
• 1 (when m > 0 and n = 0)

MAX(m - n, 0)

INTERSECT • 0 (when m = 0 or n = 0)
• 1 (when m > 0 and n > 0)

MIN(m, n)

Notes:
In the table, m represents the number of occurrences of R in Q1, and n represents the number of occurrences of
row R in Q2.

8. If the set operations specified in the SQL statement specified in the query expression body are all UNION, a maximum
of 1,023 set operations can be specified. However, if the specified set operations include EXCEPT or
INTERSECT, no more than 63 set operations can be specified.
Note that when a viewed table is specified in an SQL statement, HADB uses an internal derived table based on the
query expression specified in the CREATE VIEW statement. The rules for the maximum number of set operations
apply to this internal derived table.

9. A maximum of 63 outer joins with FULL OUTER JOIN specified as the joined table mode can be specified in the
SQL statement specified in the query expression body.

10. A set operation specified in a set operation that has DISTINCT specification might be treated as one having
DISTINCT specification.

(4) Examples
Example 1 (WITH clause example)

This example obtains the maximum sales value (QMAXSALES) for each product name (PUR-NAME) from the sales
history table (SALESLIST) and product table (PRODUCTSLIST).

WITH "QT1"("QCODE","QMAXSALES") AS
    (SELECT "PUR-CODE",MAX("PRICE"*"QUANTITY") FROM "SALESLIST"
         GROUP BY "PUR-CODE")
SELECT "PUR-NAME","QMAXSALES" FROM "QT1" 
    INNER JOIN "PRODUCTSLIST" ON "QCODE"="PUR-CODE"

The underlined portion indicates the WITH clause.

Example 2 (union set operation example)
From branch A's sales history table (SALESLIST_A) and branch B's sales history table (SALESLIST_B), this
example obtains the combined sales history of branch A and branch B.

SELECT "A"."USERID","A"."PUR-CODE","A"."PUR-NUM"
    FROM "SALESLIST_A" "A"
UNION ALL
SELECT "B"."USERID","B"."PUR-CODE","B"."PUR-NUM"
    FROM "SALESLIST_B" "B"

7. Constituent Elements

Hitachi Advanced Database SQL Reference 260



Example 3 (union set operation example)
From branch A's sales history table (SALESLIST_A) and branch B's sales history table (SALESLIST_B), this
example obtains the customer ID (USERID) of every customer who has made a purchase at either branch A or
branch B.

SELECT "A"."USERID"
    FROM "SALESLIST_A" "A"
UNION DISTINCT
SELECT "B"."USERID"
    FROM "SALESLIST_B" "B"

Example 4 (difference set operation example)
From branch A's sales history table (SALESLIST_A) and branch B's sales history table (SALESLIST_B), this
example obtains the customer ID (USERID) of every customer who has made a purchase at branch A but not at
branch B.

SELECT "A"."USERID"
    FROM "SALESLIST_A" "A"
EXCEPT
SELECT "B"."USERID"
    FROM "SALESLIST_B" "B"

7. Constituent Elements

Hitachi Advanced Database SQL Reference 261



Example 5 (intersection set operation example)
From branch A's sales history table (SALESLIST_A) and branch B's sales history table (SALESLIST_B), this
example obtains the customer ID (USERID) of every customer who has made a purchase at both branch A and
branch B.

SELECT "A"."USERID"
    FROM "SALESLIST_A" "A"
INTERSECT
SELECT "B"."USERID"
    FROM "SALESLIST_B" "B"

Example 6 (recursive query example)
Part Parts_B consists of some other parts. This example obtains the parts that are out of stock.

WITH "V1"("ID","PARENT","NAME","QUANTITY") AS (
  SELECT "A"."ID","A"."PARENT","A"."NAME","A"."QUANTITY"
      FROM "BOMS" "A" WHERE "A"."ID"=2
  UNION ALL
  SELECT "A"."ID","A"."PARENT","A"."NAME","A"."QUANTITY"
      FROM "V1", "BOMS" "A" WHERE "A"."PARENT" = "V1"."ID"
  )
SELECT "NAME","QUANTITY" FROM "V1" WHERE "QUANTITY"=0

7. Constituent Elements

Hitachi Advanced Database SQL Reference 262



The following shows the configuration of the bill of materials (BOMS) that contains the quantity in stock and other
information, and the hierarchical structure of parts.

(5) Notes
1. When a set operation is specified, a work table might be created. If the size of the work table DB area where the

work table is to be created has not been estimated correctly, performance might be degraded. For details about
estimating the size of the work table DB area, see the HADB Setup and Operation Guide. For details about work
tables, see Considerations when executing an SQL statement that creates work tables in the HADB Application
Development Guide.

2. If hash execution is used as the method for processing the set operation, a hash table area of an appropriate size is
required. The size of the hash table area is specified in the adb_sql_exe_hashtbl_area_size operand in
the server definition or client definition. For details about the method for processing the set operation, see Methods
for processing set operations in the HADB Application Development Guide.

3. If hash execution is used as the method for processing the set operation, a derived table is created. HADB
automatically assigns a correlation name in the following format to the derived table:

##DRVTBL_xxxxxxxxxx

In the preceding format, xxxxxxxxxx is a 10-digit integer.

4. When the following predicates are evaluated by using a B-tree index, the set operation specified in a table subquery
might be treated as one having DISTINCT specification:

• IN predicate in which a table subquery is specified

• Quantified predicate (=ANY or =SOME specification)

7. Constituent Elements

Hitachi Advanced Database SQL Reference 263



7.2 Query specification

This section describes the query specification.

7.2.1 Specification format and rules for query specifications
The query specification specifies the retrieval results to be output (the selection list) and the table retrieval criteria (the
table expression).

(1) Specification format
query-specification::=SELECT [{ALL|DISTINCT}][SELECT-deduplication-method-specificati
on] selection-list table-expression
 
  SELECT-deduplication-method-specification::=/*>> SELECT DISTINCT NOT BY HASH <<*/
  selection-list::={*|selection-expression[,selection-expression]...}
    selection-expression::={value-expression [AS-clause]|NULL [AS-clause]|table-speci
fication.*|[table-specification.]ROW}
      AS-clause::=[AS] column-name

(2) Explanation of specification format

(a) {ALL|DISTINCT}
Specifies whether to exclude duplicate rows from the retrieval results.

ALL:
The retrieval results are output as-is, including duplicate rows.

DISTINCT:
If there are duplicate rows in the retrieval results, the retrieval results are output with all duplicates eliminated.
For details about differences in retrieval results when DISTINCT is specified, see 1.10.1 Example: Retrieve
customers who purchased products.
Note the following points:

• If DISTINCT is specified, a work table might be created. If the size of the work table DB area where the work
table is to be created has not been estimated correctly, it might result in performance degradation. For details
about estimating the size of the work table DB area, see the HADB Setup and Operation Guide. For details about
work tables, see Considerations when executing an SQL statement that creates work tables in the HADB
Application Development Guide.

• If hash execution is used as the method for processing SELECT DISTINCT, a hash table area of an appropriate
size is required. The size of the hash table area is specified in the adb_sql_exe_hashtbl_area_size
operand in the server definition or client definition. For details about the method for processing SELECT
DISTINCT, see Method for processing SELECT DISTINCT in the HADB Application Development Guide.

If neither ALL nor DISTINCT is specified, the system assumes that ALL is specified.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 264



(b) SELECT deduplication method specification
If a SELECT deduplication method specification is used, a processing method other than hash execution is used as the
method for processing SELECT DISTINCT. For details about the method for processing SELECT DISTINCT, see
Method for processing SELECT DISTINCT in the HADB Application Development Guide.

Note that, normally, there is no need to specify this. If the SELECT deduplication method specification is omitted,
HADB determines the method for processing SELECT DISTINCT.

(c) Selection list

selection-list ::= {* | selection-expression[,selection-expression]...}

The selection list specifies the retrieval results to be output.

*:
Specify this to output all columns of the table to be output in the retrieval results.
If * is specified, all columns from all tables specified in the FROM clause will be output in the order in which the
tables were specified in the FROM clause. The order of the columns in each table will be the order specified when
the table was defined.

selection-expression[, selection-expression]...:
Specifies the retrieval results to be output.

(d) Table expression
The table expression specifies the tables from which output is to be retrieved. You can also specify the conditions for
retrieving from the tables (search conditions), and the conditions for selecting groups when performing grouping. For
details about table expressions, see 7.4 Table expression.

(e) Selection expression

selection-expression ::= {value-expression [AS-clause]|NULL [AS-clause]|table-specifi
cation.*|[table-specification.]ROW}
  AS-clause ::= [AS] column-name

The selection expression specifies the retrieval results to be output.

You cannot specify an external reference column in a selection expression. For details about external reference
columns, see (a) Common rules for subqueries in (4) Rules in 7.3.1 Specification format and rules for subqueries.

value-expression [AS-clause]:
Specify the retrieval results to be output in the form of a value expression.
Specify the AS clause if you want to change the column names in the retrieval results.
For details about column names and column ordering in the retrieval results, see 6.9 Derived column names.
Note that for the first query specification (except the query specification in the WITH clause of the SELECT
statement), the column name in the AS clause can include a half-width (left or right) parenthesis. For the second and
subsequent query specifications, the column name in the AS clause cannot include a half-width parenthesis.
Do not specify a character string in the EXPnnnn_NO_NAME format as a column name in the AS clause. Such a
column name might duplicate a derived column name that is automatically set by HADB. In this format, nnnn is an
unsigned integer in the range from 0000 to 9999.
■ Notes on specifying the GROUP BY clause, the HAVING clause, or a set function

7. Constituent Elements

Hitachi Advanced Database SQL Reference 265



When you specify the GROUP BY clause, the HAVING clause, or a set function, the column specification included
in the value expression in a selection expression must meet any of the following conditions:

• It specifies a grouping column name.
Example of a correct SQL statement:

SELECT "C1" FROM "T1" GROUP BY "C1" HAVING "C1">100

In the preceding example, the grouping column name specified in the GROUP BY clause is specified in the value
expression in a selection expression.

• It specifies the argument to a set function.
Example of a correct SQL statement:

SELECT COUNT("C2") FROM "T1" HAVING MAX("C1")>100

In the preceding example, the argument to a set function is a column specification.
Example of an SQL statement that generates an error:

SELECT COUNT("C1")+"C1" FROM "T1"

In the preceding example, a column specification is used in a location other than the argument to a set function.

• It specifies the same value expression as the value expression included in a grouping specification (value
expression that includes a column specification).
Example of a correct SQL statement:

SELECT "C1"+"C2" FROM "T1" GROUP BY "C1"+"C2"

In the preceding example, the same value expression that is included in the grouping specification in the GROUP
BY clause is specified as the value expression in a selection expression.
Note that if a column specification having a table specification is specified in a selection expression and the
name of the column is the same as an existing grouping column, the grouping column cannot be referenced.
Example of an SQL statement that generates an error:

SELECT "T1"."C2" FROM "T1" GROUP BY "C1"+1 AS "C2"

In the preceding example, because a column specification having a table specification ("T1."C2") is specified
in a selection expression, grouping column "C1"+1 AS "C2" cannot be referenced even though the column
name is the same. Therefore, the preceding SQL statement will result in an error.

NULL [AS-clause]:
Specify this if you want null values to be output to the retrieval results.
To add column names to the retrieval results, specify the AS clause.
The following rules apply:

• NULL can be specified in the selection expression in the outermost query specification of the SELECT statement.

• NULL cannot be specified in the selection expression of a query specification subject to a set operation.
Example of an SQL statement that generates an error:

SELECT NULL FROM "T1" UNION SELECT "C1" FROM "T1"

• NULL cannot be specified in the selection expression of the query specification in the WITH clause.

For the retrieval results, the following rules apply:

• The data type of the result of NULL will be INTEGER.

• The NOT NULL constraint does not apply to the result of NULL (the null value is allowed).

7. Constituent Elements

Hitachi Advanced Database SQL Reference 266



table-specification.*:
If this is specified, the retrieval results will consist of all of the columns in the specified table. The order of columns
in the retrieval results will be the same as the order of columns in the specified table.
If this is specified and you want to specify a GROUP BY clause, HAVING clause, or set function in the query
specification, specify the column specification in the selection expression as follows:

• Grouping column

[table-specification.]ROW:
If the preceding specification is included, the entire row is retrieved to one area as a single entity. ROW means the
entire row.
Regardless of the data types of the columns that make up the row, the ROW that is retrieved is stored in a CHAR type
variable. Be sure to remove any leading or trailing spaces. The data length of the retrieved row is its row length
(sum of the data lengths of the columns that make up the row). For details about how to calculate the row length,
see the ROWSZ calculation formula in Determining the number of pages for storing each type of row in the HADB
Setup and Operation Guide.
The rules for specifying ROW are as follows:

• It can be specified only for a FIX table.

• If ROW is specified, none of the following can be specified in the query specification:
• Set function
• Window function
• GROUP BY clause
• SELECT DISTINCT
• Set operation

• If you specify LEFT OUTER JOIN as the joined table mode in a FROM clause, you cannot specify ROW for the
table on the right.

• If you specify RIGHT OUTER JOIN as the joined table mode in a FROM clause, you cannot specify ROW for the
table on the left.

• If you specify FULL OUTER JOIN as the joined table mode in a FROM clause, you cannot specify ROW for the
table on either side.

• You cannot specify ROW in a query specification in a WITH clause.

(3) Privileges required at execution
To execute a query specification, the SELECT privilege is required on all tables specified in the query specification.

(4) Rules
1. A maximum of 1,000 columns are allowed in the retrieval results for a query specification.

2. If table-specification.* or table-specification.ROW is specified in the selection expression, the table specification
must be equivalent to the scope variable that includes that selection expression in the scope variable's effective scope.

3. When you include an archivable multi-chunk table in a query specification, be careful about the specification of
search conditions. For details, see Considerations when searching an archivable multi-chunk table in the HADB
Application Development Guide. Make sure that you read the preceding section when you include an archivable
multi-chunk table in a query specification.

4. When the following predicates are evaluated by using a B-tree index, the query specification included in a table
subquery might be treated as one having SELECT DISTINCT specification:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 267



• IN predicate in which a table subquery is specified

• Quantified predicate (=ANY or =SOME specification)

5. If DISTINCT is specified for a set operation, the query specification in the set operation might be treated as one
having SELECT DISTINCT specification.

(5) Example
The following example illustrates a query specification.

Example
Using the data in the sales history table (SALESLIST), this example determines the sum and average of the quantities
purchased on or after September 3, 2011 by product code (PUR-CODE). Furthermore, it retrieves only the product
codes for which the sum of the quantities purchased is 20 or fewer.

SELECT "PUR-CODE",SUM("PUR-NUM"),AVG("PUR-NUM")        ...1
    FROM "SALESLIST"                                   ...2
        WHERE "PUR-DATE">=DATE'2011-09-03'             ...2
        GROUP BY "PUR-CODE"                            ...2
        HAVING SUM("PUR-NUM")<=20                      ...2

Explanation
In this example, the entire SELECT statement is a query specification.

1. The underlined portion indicates the selection list.

2. The underlined portion indicates the table expression.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 268



7.3 Subqueries

This section describes subqueries.

7.3.1 Specification format and rules for subqueries
A subquery is an inner query specification. There are the following two types of subqueries:

• Scalar subquery
This is a subquery for which the result of the query is at most a single row containing a single column (a single
value).

• Table subquery
This is a subquery for which the result of the query is zero or more rows containing one or more columns.

(1) Specification format
subquery::=([subquery-processing-method-specification] query-expression-body [LIMIT-c
lause])
 
  subquery-processing-method-specification::=/*>> SUBQUERY NOT BY HASH[subquery-proce
ssing-delegation-specification]<<*/
    subquery-processing-delegation-specification::=(DELEGATION)

(2) Explanation of specification format
subquery-processing-method-specification:

If a subquery processing method specification is used, a processing method other than hash execution is used as the
method for processing the subquery. For details about the method for processing the subquery, see Subquery
processing methods in the HADB Application Development Guide.
Note that, normally, there is no need to specify this. If the subquery processing method specification is omitted,
HADB determines the method for processing the subquery.
Also note that a subquery processing method specification cannot be used for the following items:

• Table subquery for a derived table

• Table subquery for a multiset value constructor by query

subquery-processing-delegation-specification:
If a subquery processing delegation specification is used, SQL processing real threads that are used for other
processing can be assigned to the search processing of a subquery that includes external reference columns.
Note that, normally, there is no need to specify this. If much search processing is required to obtain the results of a
subquery that includes external reference columns, consider using a subquery processing delegation specification.
Example

SELECT COUNT(*) FROM "T1" WHERE "T1"."C1" = ANY(
  SELECT "T2"."C1" FROM "T2" WHERE "T1"."C2" = "T2"."C2")

In the preceding SQL statement, table T2 is searched each time a result of table T1 is obtained. If table T2 that
satisfies the search condition "T1"."C2" = "T2"."C2" has many rows, the search performance might be
improved by using a subquery processing delegation specification. However, if a subquery processing delegation
specification is used, the processing that assigns other SQL processing real threads to the search processing of a

7. Constituent Elements

Hitachi Advanced Database SQL Reference 269



subquery that includes external reference columns becomes an overhead. Therefore, the search performance might
be lowered depending on the search conditions.
The following shows the rules that apply when a subquery processing delegation specification is used:

• A subquery processing delegation specification is ignored if it is used for a subquery that satisfies either of the
following conditions:

• Subquery that does not include external reference columns

• Subquery that is specified in an SQL statement for which out-of-order execution is not used

Example of when a subquery processing delegation specification is ignored:

In the preceding example, a subquery processing delegation specification is included in a subquery that does not
include an external reference column. However, no subquery processing delegation specification is included in
a subquery that includes an external reference column. In this case, because no subquery processing delegation
specification is included in a subquery that includes an external reference column, the subquery processing
delegation specification is ignored.

• If there are nested subqueries that include external reference columns and at least one of the nested subqueries
has a subquery processing delegation specification, all the nested subqueries are treated as those having a
subquery processing delegation specification. The following shows an example of an SQL statement that
contains nested subqueries that include an external reference column. In this example, two subqueries that include
an external reference column are specified, and only one of them has a subquery processing delegation
specification. In this case, both subqueries are assumed to have a subquery processing delegation specification.

• If there are subqueries that reference the same table as external reference columns and at least one of them has
a subquery processing delegation specification, the other subqueries are also assumed to have a subquery
processing delegation specification. The following shows an example. In this example, the SQL statement
contains two subqueries that reference the same table as an external reference column, and only one of them has
a subquery processing delegation specification. In this case, both subqueries are assumed to have a subquery
processing delegation specification.

query-expression-body:
For details about query-expression-body, see (2) Explanation of specification format in 7.1.1 Specification format
and rules for query expressions.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 270



LIMIT-clause:
Specifies the maximum number of rows that will be retrieved from the results of the query expression body.
For details about the LIMIT clause, see 7.9 LIMIT clause.
The LIMIT clause can only be specified for a derived table returned by a table subquery, or in a scalar subquery.
However, the following is a case of a derived table where a LIMIT clause is not permitted:

• A derived table that references a table that is outside the derived table in which the LIMIT clause is specified
Example of an SQL statement that generates an error:

In this example, "T1"."C1" references a table that is outside the derived table in which the LIMIT clause is
specified (correlation name: DRV). The LIMIT clause is therefore not permitted here.
For details about derived tables, see 7.11.1 Specification format for table references.

(3) Privileges required at execution
To execute a subquery, the SELECT privilege is required on all tables referenced in the subquery.

(4) Rules

(a) Common rules for subqueries
1. The data type of the result of the subquery will the same as the data type of the result of the query expression body.

2. For details about the column names of tables derived in the results of subqueries, see 6.9 Derived column names.

3. The following cannot be specified in a selection expression in a subquery:

• An external reference column

• [table-specification.]ROW
■ External reference column

A reference in the search conditions of a subquery to a table specified in the FROM clause of the outer query is
known as an external reference. A corresponding referenced column is called an external reference column. An
example of an external reference column is shown in the following figure.

Figure 7-2: External reference column

4. Subqueries can be nested to a maximum of 32 levels deep (31 in the case of a view definition or a WITH clause). In
addition, the following rules apply:

• If the table specified in the FROM clause is a viewed table or query name

7. Constituent Elements

Hitachi Advanced Database SQL Reference 271



After HADB generates the internal derived table to the viewed table or query name, the subquery nesting depth
must not exceed 32 (31 in the case of a view definition or a WITH clause).

• If the table specified in the FROM clause is a recursive query name that references a recursive query that includes
the table specified in the FROM clause
After HADB generates the internal derived table that corresponds to the recursive query name once, the subquery
nesting depth must not exceed 32 (31 in the case of a view definition or a WITH clause).

• If an archivable multi-chunk table is specified in the FROM clause
The archivable multi-chunk table is equivalently exchanged into an internal derived table. If the subquery nesting
depth becomes 33 or more after equivalent exchange into an internal derived table, the SQL statement results
in an error. For details about equivalent exchange of archivable multi-chunk tables, see Equivalent exchange of
SQL statements that search archivable multi-chunk tables in the HADB Application Development Guide.

• If the derived table derived by a table value constructor is specified in the FROM clause
The subquery nesting depth increases by 1.

The following shows examples of counting the subquery nesting depth.

Example 1:
In the following example, the SELECT statement includes subqueries that are nested to a depth of eight.

SELECT * FROM "TT" WHERE EXISTS(
    SELECT * FROM "T0" WHERE EXISTS(
    SELECT * FROM "T1" WHERE EXISTS(     <= 1st nest
    SELECT * FROM "T2" WHERE EXISTS(     <= 2nd nest
    SELECT * FROM "T3" WHERE EXISTS(     <= 3rd nest
    SELECT * FROM "T4" WHERE EXISTS(     <= 4th nest
    SELECT * FROM "T5" WHERE EXISTS(     <= 5th nest
    SELECT * FROM "T6" WHERE EXISTS(     <= 6th nest
    SELECT * FROM "T7" WHERE EXISTS(     <= 7th nest
    SELECT * FROM "T8"                   <= 8th nest
    )))))))))

Example 2:
In the following example, the CREATE VIEW statement includes subqueries that are nested to a depth of seven.

CREATE VIEW "V1" AS SELECT * FROM "TT" WHERE EXISTS(
    SELECT * FROM "T0" WHERE EXISTS(
    SELECT * FROM "T1" WHERE EXISTS(     <= 1st nest
    SELECT * FROM "T2" WHERE EXISTS(     <= 2nd nest
    SELECT * FROM "T3" WHERE EXISTS(     <= 3rd nest
    SELECT * FROM "T4" WHERE EXISTS(     <= 4th nest
    SELECT * FROM "T5" WHERE EXISTS(     <= 5th nest
    SELECT * FROM "T6" WHERE EXISTS(     <= 6th nest
    SELECT * FROM "T7"                   <= 7th nest
    ))))))))

When the following SELECT statement is run, an internal derived table is generated. As a result, the subquery
nesting depth becomes eight.

SELECT * FROM "V1"

Example 3:
When the following SELECT statement is run, an internal derived table is generated. As a result, the subquery
nesting depth becomes eight.

WITH "Q1" AS (SELECT * FROM "TT" WHERE EXISTS(
    SELECT * FROM "T0" WHERE EXISTS(
    SELECT * FROM "T1" WHERE EXISTS(     <= 1st nest
    SELECT * FROM "T2" WHERE EXISTS(     <= 2nd nest

7. Constituent Elements

Hitachi Advanced Database SQL Reference 272



    SELECT * FROM "T3" WHERE EXISTS(     <= 3rd nest
    SELECT * FROM "T4" WHERE EXISTS(     <= 4th nest
    SELECT * FROM "T5" WHERE EXISTS(     <= 5th nest
    SELECT * FROM "T6" WHERE EXISTS(     <= 6th nest
    SELECT * FROM "T7"                   <= 7th nest
    )))))))))
SELECT * FROM "Q1"                  <= 8th nest produced because an internal der
ived table was generated

Example 4:
In the following SELECT statement, recursive query name Q1 is specified in the FROM clause. When the
following SELECT statement is run, an internal derived table is generated. As a result, the subquery nesting
depth becomes eight.
SQL statement to be run

WITH "Q1" AS (SELECT "C1" FROM "TT"
              UNION ALL
              SELECT "C1"+1 FROM "Q1" WHERE "C1"+1 < 5)
    SELECT * FROM "TT" WHERE EXISTS(
    SELECT * FROM "T0" WHERE EXISTS(
    SELECT * FROM "T1" WHERE EXISTS(
    SELECT * FROM "T2" WHERE EXISTS(
    SELECT * FROM "T3" WHERE EXISTS(
    SELECT * FROM "T4" WHERE EXISTS(
    SELECT * FROM "T5" WHERE EXISTS(
    SELECT * FROM "Q1")))))))

SQL statement after an internal derived table is generated

SELECT * FROM "TT" WHERE EXISTS(
SELECT * FROM "T0" WHERE EXISTS(
SELECT * FROM "T1" WHERE EXISTS(     <= 1st nest
SELECT * FROM "T2" WHERE EXISTS(     <= 2nd nest
SELECT * FROM "T3" WHERE EXISTS(     <= 3rd nest
SELECT * FROM "T4" WHERE EXISTS(     <= 4th nest
SELECT * FROM "T5" WHERE EXISTS(     <= 5th nest
SELECT * FROM                        <= 6th nest
              (SELECT "C1" FROM "TT"                       <= 7th nest
               UNION ALL
               SELECT "C1"+1 FROM 
                                  (SELECT "C1" FROM "TT"   <= 8th nest
                                   UNION ALL
                                   SELECT "C1"+1 FROM "Q1" WHERE "C1"+1 < 5)"Q1"
               WHERE "C1"+1 < 5)"Q1")))))))

Example 5:
In the following example, the SELECT statement includes subqueries that are nested to a depth of seven. Also,
because a table derived by a table value constructor is specified in the FROM clause, the subquery nesting depth
is incremented by one. Therefore, in total, the nesting depth is assumed to be eight.

SELECT * FROM "TT" WHERE EXISTS(
    SELECT * FROM "T0" WHERE EXISTS(
    SELECT * FROM "T1" WHERE EXISTS(      <= 1st nest
    SELECT * FROM "T2" WHERE EXISTS(      <= 2nd nest
    SELECT * FROM "T3" WHERE EXISTS(      <= 3rd nest
    SELECT * FROM "T4" WHERE EXISTS(      <= 4th nest
    SELECT * FROM "T5" WHERE EXISTS(      <= 5th nest
    SELECT * FROM "T6" WHERE EXISTS(      <= 6th nest
    SELECT * FROM (VALUES (1,2,3)) "T7"   <= 7th and 8th nests
    ))))))))

5. Subqueries are not permitted in set functions.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 273



6. Subqueries are not permitted in window functions.

7. Subqueries are not permitted in the grouping specification of a GROUP BY clause.

8. Subqueries are not permitted in the ON search condition of a joined table with FULL OUTER JOIN specified as the
joined table mode.

9. You cannot specify a column that makes an external reference to a table reference in a joined table with FULL OUTER
JOIN specified as the joined table mode.
Example: The underlined portion indicates an incorrect external reference column.

  SELECT * FROM ("T1" LEFT OUTER JOIN "T2" ON "T1"."C1"="T2"."C1")
                      FULL OUTER JOIN "T3" ON "T1"."C2"="T3"."C2"
      WHERE "T1"."C3">(SELECT MAX(C3) FROM "T4"
                          WHERE "C1"="T1"."C1"
                            AND "C2"="T3"."C2")

(b) Rules for scalar subqueries
1. A scalar subquery cannot return more than one column.

2. A scalar subquery cannot return more than one row. An SQL error results if there is more than one row in the results.

3. If the number of rows in the result of a scalar subquery is zero, the result is the null value.

4. The NOT NULL constraint does not apply to the result of a scalar subquery (the null value is allowed).

(c) Rules for table subqueries
1. The maximum number of columns permitted in the results of a table subquery are as follows.

• If the table subquery specifies a derived table: 1,000

• If the table subquery is specified in an IN predicate or on the right side of a quantified predicate: 1

• If the table subquery is specified in an EXISTS predicate: 1,000

(5) Examples
Example 1

This example retrieves the names (NAME) and salary (SAL) of the employees who earn the highest salary.

SELECT "NAME","SAL"
    FROM "SALARYLIST"
       WHERE "SAL"=(SELECT MAX("SAL") FROM "SALARYLIST")

The underlined portion indicates the subquery.

Example 2
This example finds the sections (SCODE) in which the average salary is greater than the average salary for all
employees.

SELECT "SCODE",AVG("SAL")
    FROM "SALARYLIST"
      GROUP BY "SCODE"
      HAVING AVG("SAL")>(SELECT AVG("SAL") FROM "SALARYLIST")

The underlined portion indicates the subquery.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 274



Example 3
This example retrieves 100 rows from the sales history table (SALESLIST), and then calculate the total quantity
purchased (PUR-NUM) for each product code (PUR-CODE) in those results.

SELECT "PUR-CODE",SUM("PUR-NUM")
    FROM (SELECT * FROM "SALESLIST" LIMIT 100) "SALESLIST"
        GROUP BY "PUR-CODE"

The underlined portion indicates the subquery.

(6) Notes
1. When a subquery is specified, a work table might be created. If the size of the work table DB area where the work

table is to be created has not been estimated correctly, performance might be degraded. For details about estimating
the size of the work table DB area, see the HADB Setup and Operation Guide. For details about work tables, see
Considerations when executing an SQL statement that creates work tables in the HADB Application Development
Guide.

2. If hash execution is used during subquery processing, a hash table area of an appropriate size is required. The size
of the hash table area is specified in the adb_sql_exe_hashtbl_area_size operand in the server definition
or client definition. If hash execution is used as the method for processing the subquery, a hash filter area to store
hash filters is also required. The size of the hash filter area is specified by using the
adb_sql_exe_hashflt_area_size operand in the server definition or client definition. For details about
the method for processing the subquery, see Subquery processing methods in the HADB Application Development
Guide.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 275



7.4 Table expression

This section describes table expressions.

7.4.1 Specification format and rules for table expressions
The FROM clause, WHERE clause, GROUP BY clause, and HAVING clause are referred to collectively as table
expressions. A table expression is specified within a query specification.

(1) Specification format
table-expression ::= FROM-clause
                    [WHERE-clause]
                    [GROUP-BY-clause]
                    [HAVING-clause]

(2) Explanation of specification format
FROM-clause:

The FROM clause specifies the tables from which results are to be retrieved. For details about the FROM clause, see
7.5 FROM clause.

WHERE-clause:
The WHERE clause specifies the search conditions. For details about the WHERE clause, see 7.6 WHERE clause.

GROUP-BY-clause:
Specify the GROUP BY clause when you want to aggregate the retrieval data into groups. For details about the GROUP
BY clause, see 7.7 GROUP BY clause.

HAVING-clause:
The HAVING clause specifies criteria for the data aggregated of the groups created by the GROUP BY clause. For
details about the HAVING clause, see 7.8 HAVING clause.

(3) Rules
1. Any column in the results of a table expression can be referenced as a column specification.

2. If there is no WHERE clause, GROUP BY clause, or HAVING clause, the result of the table expression will be
determined using only the FROM clause. Otherwise, the results of each clause you specify are applied to the clause
specified immediately after it. The result of the table expression will be the result of the last specified clause.
For example, consider what happens when the SELECT statement shown below is executed.
Example:
Using the data in the sales history table (SALESLIST), this example determines the sum of the quantities purchased
on or after September 3, 2011 by product code (PUR-CODE). Furthermore, it retrieves only the product codes for
which the sum of the quantities purchased is 20 or fewer.

SELECT "PUR-CODE",SUM("PUR-NUM")
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-03'
        GROUP BY "PUR-CODE"
        HAVING SUM("PUR-NUM")<=20

7. Constituent Elements

Hitachi Advanced Database SQL Reference 276



Explanation
The underlined portion indicates the table expression. When the SELECT statement above is executed, the result
of the table expression is determined by the following steps.
1. The result of the FROM clause is applied to the WHERE clause. In this step, data from the SALESLIST table
where the PUR-DATE column is September 3, 2011 or later is extracted (data from both the PUR-CODE and
PUR-NUM columns).
2. The results extracted in step 1 are grouped using the GROUP BY clause. In this case, the results are aggregated
by PUR-CODE.
3. The results aggregated in step 2 are filtered using the HAVING clause. In this case, only data where the sum
of the PUR-NUM column values does not exceed 20 are selected. This final set of data becomes the result of the
table expression.

(4) Example
An example of a table expression is given below.

Example
From the sales history table (SALESLIST), this example retrieves the customer ID (USERID), product code (PUR-
CODE), and date of purchase (PUR-DATE) for customers who purchased product code P002 on or after September
6, 2011.

SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-06'
        AND "PUR-CODE"='P002'

The underlined portion indicates the table expression.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 277



7.5 FROM clause

This section describes the FROM clause.

7.5.1 Specification format and rules for FROM clauses
The FROM clause specifies the tables from which be retrieved data.

(1) Specification format
FROM-clause ::= FROM table-reference[, table-reference]...

(2) Explanation of specification format
table-reference:

Specifies the tables from which to retrieved data in the form of a table reference. For details about table references,
see 7.11 Table reference.
When you perform a query across multiple table references (a query containing multiple table names, query names,
derived tables, or table function derived tables in the FROM clause), it is called a table join.
Also, when you perform a join by using a comma-separated list of multiple table references, it is called a comma join.

(3) Rules
1. A total of 64 table names, query names, derived tables, and table function derived tables can be specified in all table

references in a FROM clause. The table specification counts are computed as follows.

• When a table name is specified in a table reference: 1

• When a derived table is specified in a table reference: 1

• When a joined table is specified in a table reference: the total number of table names and derived tables specified
in the joined table

• When a query is specified in a WITH clause: 1

• When a table function derived table is specified in a table reference: 1

The following shows an example of computing the table specification counts.
Example:

WITH "Q1" AS (SELECT * FROM "T6","T7")
SELECT * FROM "T1",                                       ...[a]
    "T2" LEFT OUTER JOIN "T3" ON "T2"."C1"="T3"."C1",     ...[b]
    (SELECT * FROM "T4","T5") "W1",                       ...[c]
    "Q1",                                                 ...[d]
    TABLE(ADB_CSVREAD(MULTISET['/dir/file.csv.gz'],
                     'COMPRESSION_FORMAT=GZIP;'))
    AS W2 (C1 INT)                                        ...[e]

[Explanation]

a. Table name T1 is specified. Here, therefore, the number of table names is 1.

b. A joined table is specified, and two table names (T2 and T3) are specified in the joined table. Here, therefore,
the number of table names is 2.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 278



c. A derived table (W1) is specified. Here, therefore, the number of derived tables is 1.

d. Query name Q1 that is specified in the WITH clause is specified. Here, therefore, the number of query names is
1.

e. A table function derived table is specified. Here, therefore, the number of derived tables is 1.

As described earlier, in the preceding example, the number of table names specified in all table references is six in
total.

2. The column descriptors used for the results of the FROM clause will be the same as the column descriptors from the
tables specified in the FROM clause. In addition, the order of the columns in the result of the FROM clause will be
the order of the columns in the tables specified in the FROM clause. For example, consider what happens when the
SELECT statement shown below is executed.
Example:

SELECT * FROM "T1","T2"

Assume that columns C1 and C2 are defined in table T1, and columns C3 and C4 are defined in table T2. In this
case, the order of columns in the results of the FROM clause is as follows: C1 → C2 → C3 → C4

Note
A column descriptor contains attribute information for a column. It consists of the column's name, data
type, data length, column ID (numbered from the first column), and whether it contains null values.

(4) Example
The following example illustrates a FROM clause.

Example
From the sales history table (SALESLIST), this example retrieves the customer ID (USERID), product code (PUR-
CODE), and date of purchase (PUR-DATE) for customers who purchased product code P002 on or after September
6, 2011.

SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-06'
        AND "PUR-CODE"='P002'

The underlined portion indicates the FROM clause.

(5) Notes
If you specify multiple table references in the FROM clause in the situations listed below, a work table might be created.
If the size of the work table DB area where the work table is created has not been estimated correctly, it might result in
performance degradation. For details about estimating the size of the work table DB area, see the HADB Setup and
Operation Guide.

• When multiple table references are specified in a single FROM clause

• When the same viewed table name is specified in more than one place in a single SQL statement

• When the query name specified in a WITH clause is specified in more than one place in a single SQL statement

For details about work tables, see Considerations when executing an SQL statement that creates work tables in the
HADB Application Development Guide.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 279



7.6 WHERE clause

This section describes the WHERE clause.

7.6.1 Specification format for WHERE clauses
The WHERE clause specifies search conditions.

(1) Specification format
WHERE-clause ::= WHERE search-condition

(2) Explanation of specification format
search-condition:

For details about search conditions, see 7.18 Search conditions.

(3) Example
The following example illustrates the WHERE clause.

Example
From the sales history table (SALESLIST), this example retrieves the customer ID (USERID), product code (PUR-
CODE), and date of purchase (PUR-DATE) for customers who purchased product code P002 on or after September
6, 2011.

SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-06'
        AND "PUR-CODE"='P002'

The underlined portion indicates the WHERE clause.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 280



7.7 GROUP BY clause

This section describes the GROUP BY clause.

7.7.1 Specification format and rules for GROUP BY clauses
Specify the GROUP BY clause when you want to aggregate the retrieval data into groups.

(1) Specification format
GROUP-BY-clause ::= GROUP BY [grouping-method-specification] grouping-specification[,
 grouping-specification]...
 
  grouping-method-specification ::= /*>> WITHOUT GLOBAL HASH GROUPING <<*/
  grouping-specification ::= value-expression [[AS] column-name]

(2) Explanation of specification format
• grouping-method-specification

grouping-method-specification ::= /*>> WITHOUT GLOBAL HASH GROUPING <<*/

When grouping-method-specification is specified, global hash grouping is not used as the processing method for
the grouping.
Normally there is no need to specify this.
For details about grouping methods, see Grouping Methods in the HADB Application Development Guide.
Note that the character string enclosed in /*>> and <<*/ is not a comment. An error results if you specify something
other than a grouping method specification.

• grouping-specification

grouping-specification ::= value-expression [[AS] column-name]

Specifies a group by which the retrieval data is to be aggregated, in the form of a value expression. For details about
value expressions, see 7.20 Value expression.
GROUP BY clauses are illustrated in the following examples. Example 1:

This example aggregates the retrieval data by product code (PUR-CODE)

GROUP BY "PUR-CODE"

Example 2: This example aggregates the retrieval data by month

GROUP BY EXTRACT(MONTH FROM "SALE-DAY") AS "GMONTH"

The SALE-DAY column stores the sale date of the product in DATE type format. The scalar function EXTRACT
is used to extract the month part of the SALE-DAY column.

[AS] column-name:
The column name specified here becomes the grouping column name.
Example:

GROUP BY SUBSTR("C1",5,2) AS "GC1"

7. Constituent Elements

Hitachi Advanced Database SQL Reference 281



In the preceding example, GC1 becomes the grouping column name.

Note
A column derived from the result of a GROUP BY clause is called a grouping column. The column
name assigned to the grouping column is called a grouping column name.

Example 1:

GROUP BY "C1"

In the preceding example, the underlined item becomes a grouping column with a grouping column name of C1.
Example 2:

GROUP BY "T1"."C1"

In the preceding example, the underlined item becomes a grouping column with a grouping column name of C1.
Example 3:

GROUP BY "C1" AS "GC1"

In the preceding example, the underlined item becomes a grouping column with a grouping column name of GC1.
Example 4:

GROUP BY SUBSTR("C1",5,2) AS "GC1"

In the preceding example, the underlined item becomes a grouping column with a grouping column name of GC1.
Example 5:

GROUP BY SUBSTR("C1",5,2)

In the preceding example, the underlined item becomes a grouping column. No name is assigned to the grouping
column.
Example 6:

GROUP BY "C1","C2"

In the preceding example, the underlined items become grouping columns. Two grouping columns are created.
These grouping columns are named C1 and C2.
Example 7:

GROUP BY 1 AS "GC1"

In the preceding example, the underlined item becomes a grouping column with a grouping column name of GC1.
Example 8:

GROUP BY 1

In the preceding example, the underlined item becomes a grouping column. No name is assigned to the grouping
column.

(3) Rules
1. The maximum number of grouping columns is 64.

2. Set functions are not permitted in value-expression.

3. Subqueries are not permitted in value-expression.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 282



4. Dynamic parameters are not permitted in value-expression.

5. The column name of a column specification included alone in another grouping column cannot be specified in AS
column-name.
Example that generates an error:

GROUP BY "C1","C3" AS "C1"

GROUP BY "C1" AS "C2","C3" AS "C1"

6. Do not specify a character string in the EXPnnnn_NO_NAME format as the column name in AS column-name in a
grouping specification. Such a column name might duplicate a derived column name that is automatically set by
HADB. In this format, nnnn is an unsigned integer in the range from 0000 to 9999.

7. Each column name specified in AS column-name must be unique.
Example that generates an error:

GROUP BY "C1"+1 AS "GC1","C2"+1 AS "GC1"

8. The column name specified in AS column-name cannot be referenced from a subquery in the selection expression
or from a subquery in a HAVING clause.
Example that generates an error:

SELECT "GC1",MAX("C2") FROM "T1"
    GROUP BY SUBSTR("C1",5,2) AS "GC1"
    HAVING EXISTS(SELECT * FROM "T2" WHERE "T2"."C1"="GC1")

9. When a GROUP BY clause is specified, only the following items can be specified in the selection expression:
1. Grouping column name
2. Set function
3. Value specification
4. Scalar subquery
5. Value expression specifying at least one of the preceding items
6. Same value expression that is included in a grouping specification (value expression including a column
specification)
Example of a correct specification:

SELECT "C1","C2",COUNT(*)  ← Selection expression contains grouping column names a
nd set functions
    FROM "T1"
        GROUP BY "C1","C2"

Example that generates an error:

SELECT "C1","C2",COUNT(*)  ← Selection expression includes column C2, which is not
 a grouping column name
    FROM "T1"
        GROUP BY "C1"

10. The column specifications in the GROUP BY clause must meet the following conditions:

• They must specify columns from tables specified in the FROM clause of the table expression in which the GROUP
BY clause is specified

• The column names must be uniquely identified

For example, consider what happens when the SELECT statement shown below is executed.
Example:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 283



SELECT "SALESLIST"."USERID",SUM("PUR-NUM")
    FROM "SALESLIST","USERSLIST"
        WHERE "PUR-CODE"='P002'
        AND "SALESLIST"."USERID"="USERSLIST"."USERID"
        GROUP BY "SALESLIST"."USERID"

The sales history table (SALESLIST) and the customer table (USERSLIST) both have USERID columns with the
same column name. In this case, if you want to specify the USERID column in the GROUP BY clause, you must do
so in a way that uniquely specifies which USERID column is intended. Therefore, you cannot specify GROUP BY
"USERID". Instead, specify the column qualified with a table name, as in GROUP BY "SALESLIST"."USERID".

11. The grouping column referenced by the column specified in the value expression in a selection expression or in the
value expression in the HAVING clause is determined by the following priority. A smaller number indicates a higher
priority level. (1 is the highest.)
1. If the column name is the same as a grouping column name
Example of a correct specification:

SELECT "C1"+"C2" FROM "T1" GROUP BY "C1"+"C2" AS "C1","C2"

In the preceding example, C1 in the selection expression is the same as the name of grouping column C1. Therefore,
grouping column "C1"+"C2" AS "C1" is referenced.
C2 in the selection expression is the same as the name of grouping column C2. Therefore, grouping column C2 is
referenced.
2. If there is a grouping column that has a single column specification, or if there is a grouping column whose
value expressions are specified in the same format
Example of a correct specification (1):

SELECT "C1"+"C2" FROM "T1" GROUP BY "C1"+"C2" AS "C3"

In the preceding example, C1 and C2 in the selection expression reference grouping column "C1"+"C2" AS
"C3" because the value expressions of grouping column "C1"+"C2" AS "C3" have the same format.
Example of a correct specification (2):

SELECT "GC1","C1" FROM "T1" GROUP BY "C1" AS "GC1"

In the preceding example, C1 in the selection expression references grouping column "C1" AS "GC1", which
has the same value expression format as C1.
Also, because GC1 in the selection expression is the same as a grouping column name, the SQL statement in the
preceding example meets condition 1 (the column name is the same as a grouping column name) shown earlier.
Therefore, GC1 also references the grouping column "C1" AS "GC1".
3. Specification order of grouping columns (former item has higher priority)
Example of a correct specification:

SELECT "C1"+"C2" FROM "T1" GROUP BY "C1"+"C2" AS "C3","C1"+"C2"

In the preceding example, the value expressions of grouping columns "C1"+"C2" AS "C3" and "C1"+"C2"
have the same format. In this case, because the former item has the higher priority, C1 and C2 in the selection
expression reference grouping column "C1"+"C2" AS "C3".
■ Specification example that generates an error

SELECT "C1"+"C2" FROM "T1" GROUP BY "C1"+"C2" AS "C1"

In the preceding example, C1 in the selection expression references the grouping column that corresponds to the
underlined grouping column name (C1). However, C2 in the selection expression does not have a grouping column
name with the same name. Therefore, the preceding SQL statement will result in an error.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 284



12. We recommend that you do not specify the same name that was specified in the value expression of a grouping
specification as the grouping column name in the same grouping specification. If the column name specified in the
value expression of a grouping specification is the same as a grouping column name, an unintended grouping column
might be referenced.
Example:

SELECT "C1"+1 FROM "T1" GROUP BY "C1"+1 AS "C1"

In the preceding example, C1 is specified in the value expression of a grouping specification, and C1 is also specified
as the grouping column name. In this case, C1 in the selection expression references grouping column "C1"+1 AS
"C1".

13. A value expression that includes a column specification provided as a grouping column cannot be referenced from
a subquery in a selection expression or a subquery in the HAVING clause.
Example that generates an error:

SELECT "T1"."C1"+"T1"."C2" FROM "T1"
    GROUP BY "T1"."C1"+"T1"."C2"
    HAVING (SELECT "T2"."C1" FROM "T2"
               WHERE "T2"."C1" > "T1"."C1"+"T1"."C2") > 0

"T1"."C1"+"T1"."C2" specified in a subquery in the HAVING clause cannot reference grouping column
"T1"."C1"+"T1"."C2". Therefore, the preceding SQL statement will result in an error.

14. Grouping columns are restricted to the following data types:

• Character string data

• Numeric data

• Datetime data

• Binary data

15. The results of the WHERE clause are grouped using the GROUP BY clause. For details about the order in which the
results of the table expression are derived, see (3) Rules in 7.4.1 Specification format and rules for table expressions.

16. Let set T denote the results of the preceding WHERE clause (or the preceding FROM clause if no WHERE clause is
specified).

• When the GROUP BY clause is specified, set T will be divided into multiple groups (where each group is a set
with identical values in the grouping column). Because duplicate rows are then eliminated from each group, the
number of groups created will be the same as the number of rows in the results of the GROUP BY clause.
Note that when there are NULL values in the grouping column, all the null values are treated alike and placed
in a single group.

• If the GROUP BY clause is omitted, but a HAVING clause or set function is specified in the query specification,
it creates a single group consisting of set T in its entirety.

(4) Examples
Example 1

Using the data in the sales history table (SALESLIST), this example determines the number of purchases for each
customer.

SELECT "USERID",COUNT(*) AS "COUNT"
    FROM "SALESLIST"
        GROUP BY "USERID"

The underlined portion indicates the GROUP BY clause.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 285



Example of execution results

Example 2
Using the data in the sales history table (SALESLIST), this example determines the sum and average of the quantities
purchased on or after September 3, 2011 by product code (PUR-CODE).

SELECT "PUR-CODE",SUM("PUR-NUM") AS "SUM",AVG("PUR-NUM") AS "AVG"
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-03'
        GROUP BY "PUR-CODE"

The underlined portion indicates the GROUP BY clause.
Example of execution results

Example 3
Using the data in the sales history table (SALESLIST) and the customer table (USERSLIST), this example
determines, for each customer, the sum of quantities purchased (PUR-NUM) on or after September 4, 2011 for
product code P002.

SELECT "NAME",SUM("PUR-NUM") AS "SUM"
    FROM "SALESLIST","USERSLIST"
        WHERE "PUR-DATE">=DATE'2011-09-04'
        AND "PUR-CODE"='P002'
        AND "SALESLIST"."USERID"="USERSLIST"."USERID"
        GROUP BY "NAME"

The underlined portion indicates the GROUP BY clause.
Example of execution results

Example 4
Using the data in the employee table (EMPLIST), this example organizes the employees' ages into 10-year groups
and determines the number of employees in each group. Employees age 60 and over are grouped with the 60-year-
old group.

SELECT "GAGE",COUNT(*) AS "COUNT"
    FROM "EMPLIST"
        GROUP BY CASE WHEN "AGE">=60 THEN 60
                      ELSE TRUNC("AGE",-1)
                 END AS "GAGE"

The underlined portion indicates the GROUP BY clause.
Example of execution results

7. Constituent Elements

Hitachi Advanced Database SQL Reference 286



Example 5
Using the data in the sales history table (SALESLIST), this example determines the sales amounts from 2013 on a
monthly basis.

• The SALE-DAY column stores the sale date of the product in DATE type format.

• The AMOUNT column stores the price at which the customer purchased the product.

SELECT "GMONTH",SUM("AMOUNT") AS "SUM"
    FROM "SALESLIST"
        WHERE EXTRACT(YEAR FROM "SALE-DAY")=2013
        GROUP BY EXTRACT(MONTH FROM "SALE-DAY") AS "GMONTH"

The underlined portion indicates the GROUP BY clause.
Example of execution results

(5) Notes
1. If the GROUP BY clause is specified, a work table might be created. If the size of the work table DB area where the

work table is to be created has not been estimated correctly, performance might be degraded. For details about
estimating the size of the work table DB area, see the HADB Setup and Operation Guide. For details about work
tables, see Considerations when executing an SQL statement that creates work tables in the HADB Application
Development Guide.

2. If global hash grouping is used as the grouping method, a hash table area of an appropriate size is required. The size
of the hash table area is specified in the operand adb_sql_exe_hashtbl_area_size in the server definition
or client definition.
In addition, if local hash grouping is used as the grouping method, a hash group area of an appropriate size is required.
The size of the hash group area is specified in the operand adb_sql_exe_hashgrp_area_size in the server
definition or client definition.
For details about grouping methods, see the HADB Application Development Guide.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 287



7.8 HAVING clause

This section describes the HAVING clause.

7.8.1 Specification format and rules for HAVING clauses
The HAVING clause specifies the selection criteria for the data aggregation to be performed by the preceding GROUP
BY clause.

If no GROUP BY clause was specified, the selection criteria is applied to the results of the preceding WHERE or FROM
clause, which is treated as the group.

(1) Specification format
HAVING-clause ::= HAVING search-condition

(2) Explanation of specification format
search-condition:

For details about search conditions, see 7.18 Search conditions.

(3) Rules
1. Each column specification in search-condition must meet one of the following conditions:

• It specifies a grouping column name.
Example 1:

SELECT COUNT("C2") FROM "T1" GROUP BY "C1" HAVING "C1">100

For the underlined portions, the same column name (grouping column name) must be specified.
Example 2:

SELECT "GC1",COUNT(*) FROM "MEMBERS" 
    GROUP BY CASE WHEN "AGE">=90 THEN 90 ELSE TRUNC("AGE",-1) END AS "GC1"
    HAVING "GC1">=20

For the underlined portions, the same column name (grouping column name) must be specified.

• It specifies the same value expression as the value expression included in a grouping specification (value
expression that includes a column specification).
Example:

SELECT "C1"+"C2" FROM "T1" GROUP BY "C1"+"C2" HAVING "C1"+"C2" > 100

The same value expression (value expression including a column specification) must be specified for the
underlined items.

• It specifies the argument to a set function.
Example:

SELECT COUNT("C2") FROM "T1" HAVING MAX("C1")>100

The underlined portion indicates the argument to the set function.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 288



• It specifies an external reference column.
Example:

SELECT * FROM "T1"
    WHERE EXISTS(SELECT * FROM "T2" HAVING MAX("C1")<"T1"."C1")

The underlined portion indicates the external reference column.

2. Each column specification that is contained in any subqueries of search-condition and that references a table
reference column specified in the preceding FROM clause must meet the following conditions:

• It specifies the column specification included alone in the preceding GROUP BY clause (regardless of whether
AS column-name is specified in grouping-specification).
Example:

SELECT "C1" FROM "T1"
    GROUP BY "C1"
    HAVING EXISTS(SELECT * FROM "T2" WHERE "C1"<"T1"."C1")

For the underlined portion, the same column specification that is included alone in the grouping column in the
preceding GROUP BY clause must be specified.

• It specifies the argument to a set function.
Example:

SELECT COUNT("C1") FROM "T1"
    HAVING EXISTS(SELECT * FROM "T2" WHERE "C1"<MAX("T1"."C1"))

The underlined portion indicates the set function in which the external reference column is specified as an
argument.

3. The search conditions specified in the HAVING clause are applied to the results of the GROUP BY clause. For details
about the order in which the results of the table expression are derived, see (3) Rules in 7.4.1 Specification format
and rules for table expressions.

(4) Examples
Example 1

Using the data in the sales history table (SALESLIST), this example determines the sum and average of the quantities
purchased on or after September 3, 2011 by product code (PUR-CODE).
Furthermore, retrieve only the product code groups for which the sum of the quantities purchased is 20 or fewer.

SELECT "PUR-CODE",SUM("PUR-NUM") AS "SUM",AVG("PUR-NUM") AS "AVG"
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-03'
        GROUP BY "PUR-CODE"
        HAVING SUM("PUR-NUM")<=20

The underlined portion indicates the HAVING clause.
Example of execution results

Example 2
This example selects the departments (SCODE) that have an average member age that is less than the average age
of all employees, and obtains the average member age for each of those departments.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 289



SELECT "SCODE",AVG("AGE") AS "AVG"
    FROM "EMPLIST"
       GROUP BY "SCODE"
       HAVING AVG("AGE")<(SELECT AVG("AGE") FROM "EMPLIST")

The underlined portion indicates the HAVING clause.
Example of execution results

7. Constituent Elements

Hitachi Advanced Database SQL Reference 290



7.9 LIMIT clause

This section describes the LIMIT clause.

7.9.1 Specification format and rules for LIMIT clauses
The LIMIT clause specifies the maximum number of rows that will be retrieved from the results of a query expression
or query expression body.

A LIMIT clause can be specified in the following locations:

• The outermost query specification or query expression body in a SELECT statement

• Derived table#

Note that the LIMIT clause cannot be specified for a derived table in a recursive query.

• A scalar subquery
Note that the LIMIT clause cannot be specified for a scalar subquery in a recursive query.

• WITH list element in a WITH clause
Note that the LIMIT clause cannot be specified for the WITH list element that corresponds to a recursive query.

• A CREATE VIEW statement

#
Only a table derived by a table subquery applies. The derived tables in 7.9.1 Specification format and rules for
LIMIT clauses refer to tables derived by table subqueries.

(1) Specification format
■ Specifying a LIMIT clause in the outermost query specification or query expression body in a SELECT
statement

LIMIT-clause ::= LIMIT [offset,]row-count
 
  offset ::= value-specification
  row-count ::= value-specification

■ Specifying a LIMIT clause in a derived table, scalar subquery, WITH clause, or CREATE VIEW statement

LIMIT-clause ::= LIMIT row-count
 
  row-count ::= value-specification

(2) Explanation of specification format
offset:

Specifies the offset of the first row to return from the retrieval results of the query expression. For example, if you
specify LIMIT 10,5 (offset is 10, row-count is 5), processing skips the first 10 rows of the retrieval results of the
query expression and retrieves rows 11 to 15.
The following rules apply:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 291



• The offset can only be specified in a LIMIT clause in the outermost query specification or query expression
body in a SELECT statement. An offset is not allowed in a LIMIT clause in a derived table, scalar subquery,
WITH clause, or CREATE VIEW statement.

• The offset is expressed in the form of a value specification. For details about value specifications, see 7.21 
Value specification.

• An integer from 0 to 2147483647 (INTEGER type data) must be specified for offset.

• Specifying 0 for offset is equivalent to not having an offset. In this case, the number of rows specified in row-
count is retrieved starting from the first row of the results of the query expression.

• If offset is a dynamic parameter, the assumed data type of the dynamic parameter will be INTEGER type.

• You cannot specify the null value for offset.

row-count:
Specifies the maximum number of rows that will be retrieved from the results of a query expression or query
expression body.
The following rules apply:

• The maximum number of rows is specified in row-count, which is expressed in the form of a value specification.
For details about value specifications, see 7.21 Value specification.

• An integer from 0 to 2,147,483,647 (INTEGER type data) must be specified for row-count.

• If row-count is 0, the number of retrieval results will be 0.

• If row-count is a dynamic parameter, the assumed data type of the dynamic parameter will be INTEGER type.

• You cannot specify the null value for row-count.

(3) Rules

(a) Rules for specifying a LIMIT clause in the outermost query specification or query
expression body in a SELECT statement

1. When a LIMIT clause is specified, the number of rows in the results of the query expression will be the following:
MAX{MIN(number of rows in results of query expression when no LIMIT clause is specified - offset, row-count),
0 }

2. If the number of rows in the results of the query expression is greater than the sum of offset and row-count, the
retrieval results will not be uniquely determined in the following cases:

• When no ORDER BY clause is specified

• When an ORDER BY clause is specified, but there is another row with the same sort key value as the last row of
the results retrieved by the LIMIT clause (see Example 1)

• When an ORDER BY clause is specified, but there is another row with the same sort key value as the last row
that was skipped by specifying the offset (see Example 2)

Example 1
This example searches the sales history table (SALESLIST) by executing the following SELECT statement, setting
row-count to 2.

SELECT "USERID","PUR-CODE","PUR-NUM"
    FROM "SALESLIST"
       ORDER BY "PUR-NUM" ASC
       LIMIT 2

7. Constituent Elements

Hitachi Advanced Database SQL Reference 292



Explanation
The ORDER BY clause arranges the results of the query expression in ascending order, using the value of the
PUR-NUM column as the sort key.
Because of row-count, the first two rows are retrieved as the retrieval results.
Because there are two rows with the same sort key (3) as the last row (row 2), the retrieval results are
indeterminate.

Example 2
This example searches the sales history table (SALESLIST) by executing the following SELECT statement, setting
offset to 2, and row-count to 1.

SELECT "USERID","PUR-CODE","PUR-NUM"
    FROM "SALESLIST"
       ORDER BY "PUR-NUM" ASC
       LIMIT 2,1

7. Constituent Elements

Hitachi Advanced Database SQL Reference 293



Explanation
The ORDER BY clause arranges the results of the query expression in ascending order, using the value of the
PUR-NUM column as the sort key.
Because of offset, the first two rows are skipped.
Because there are two rows with the same sort key (3) as the last skipped row (row 2), the retrieval results vary
depending on which row is skipped.

(b) Rules for specifying a LIMIT clause in a derived table, scalar subquery, WITH
clause, or CREATE VIEW statement

1. A LIMIT clause is not permitted in a derived table of the following type:

• A derived table that references a table that is outside the derived table in which the LIMIT clause is specified
Example of an SQL statement that generates an error:

In this example, "T1"."C1" references a table that is outside the derived table in which the LIMIT clause is
specified (correlation name: DRV). The LIMIT clause is therefore not permitted here.
For details about derived tables, see 7.11.1 Specification format for table references.

2. When a LIMIT clause is specified, the number of rows in the results of the query expression body will be the
following:
MIN(number of rows in results of query expression body when no LIMIT clause is specified, row-count)

3. If the number of rows in the results of the query expression body is greater than row-count, the retrieval results will
not be uniquely determined in the following cases:

• When the LIMIT clause is specified in a derived table, scalar subquery, or WITH clause (because the ORDER
BY clause is not permitted in these cases)

7. Constituent Elements

Hitachi Advanced Database SQL Reference 294



• When retrieving from a viewed table defined by a CREATE VIEW statement in which the LIMIT clause is
specified (because the ORDER BY clause is not permitted in a CREATE VIEW statement)

Example:

CREATE VIEW "SALESLIST_VIEW" AS SELECT * FROM "SALESLIST" LIMIT 2
SELECT * FROM "SALESLIST_VIEW" ORDER BY "USERID"

When you execute the above SELECT statement, the retrieval results are not uniquely determined, as illustrated in
the following figure:

Only two retrieval results are shown above, but other results might also appear.

4. When a LIMIT clause is specified in a query expression body that references a column in an outer query, the LIMIT
clause does not apply to the total number of rows of results from that query expression body. Rather, the LIMIT
clause applies to the number of rows of query expression body results for a single value of the outer query column.
Example:

SELECT (SELECT "PRODUCTLIST"."PUR-NAME" FROM "PRODUCTLIST"
          WHERE "SALESLIST"."PUR-CODE"="PRODUCTLIST"."PUR-CODE" LIMIT 1)
       ,"SALESLIST"."PUR-NUM"
    FROM "SALESLIST"

In the above example, the underlined portion "SALESLIST"."PUR-CODE" references a column in an outer query.
When you execute the above SELECT statement, the retrieval results will be as follows:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 295



(4) Examples
Example 1 (LIMIT clause in a query specification)

This example searches the table of branch stores (BRANCHESLIST) for the ten branches with the highest sales
revenues (SALES).

SELECT "BRANCH-CODE","RGN-CODE","BRANCH-NAME","SALES"
    FROM "BRANCHESLIST"
    ORDER BY "SALES" DESC
    LIMIT 10

The underlined portion indicates the LIMIT clause.

Example 2 (offset)
This example searches the table of branch stores (BRANCHESLIST) for the branches in positions 21 through 30 in
terms of sales (SALES).

SELECT "BRANCH-CODE","RGN-CODE","BRANCH-NAME","SALES"
    FROM "BRANCHESLIST"
    ORDER BY "SALES" DESC
    LIMIT 20,10

The underlined portion indicates the LIMIT clause.

Example 3 (LIMIT clause in a derived table)
This example retrieves 100 rows from the sales history table (SALESLIST), and then calculates the total quantity
purchased (PUR-NUM) for each product code (PUR-CODE) in those results.

SELECT "PUR-CODE",SUM("PUR-NUM")
    FROM (SELECT * FROM "SALESLIST" LIMIT 100) "SALESLIST"
        GROUP BY "PUR-CODE"

The underlined portion indicates the LIMIT clause.
The SELECT statement above retrieves an arbitrary set of 100 rows from the sales history table (SALESLIST), and
then determines the results based on them. Because a different set of 100 rows can be retrieved each time it is
executed, the SELECT statement above can produce different results every time it is executed.

Example 4 (LIMIT clause in a derived table)
This example specifies a condition on the date of purchase (PUR-DATE) in the sales history table (SALESLIST),
and then counts the number of rows in the retrieval results. Because the LIMIT clause is specified, retrieval stops
once the number of rows in the derived table reaches 1,000, and the retrieval results are returned.

SELECT COUNT(*)
  FROM (SELECT 1 FROM "SALESLIST"
        WHERE "PUR-DATE" BETWEEN ? AND ? LIMIT 1000) "SALESLIST"("PUR-DATE")

The underlined portion indicates the LIMIT clause.
By specifying a LIMIT clause in a derived table (by fixing the maximum number of rows in a derived table), you
are limiting the execution time of the SELECT statement. This is useful when you are executing the above SELECT
statement in order to progressively narrow the search results until you obtain fewer than 1,000 retrieval results.
When the execution result is 1,000, it means there are at least 1,000 rows that satisfy the search condition. You can
repeatedly execute the SELECT statement with different values for the dynamic parameters until you get fewer than
1,000 retrieval results.

Example 5 (LIMIT clause in a scalar subquery)
This example searches the sales history table (SALESLIST) for the date on which the greatest quantity purchased
(PUR-NUM) occurred, and returns the corresponding date of purchase (PUR-DATE) and product code (PUR-CODE).

7. Constituent Elements

Hitachi Advanced Database SQL Reference 296



SELECT DISTINCT "PUR-DATE","PUR-CODE"
  FROM "SALESLIST"
    WHERE "PUR-DATE"=(SELECT "PUR-DATE" FROM "SALESLIST"
                        WHERE "PUR-NUM"=(SELECT MAX("PUR-NUM")
                                           FROM "SALESLIST") LIMIT 1)

The underlined portion indicates the LIMIT clause.
If there is more than one date with the maximum quantity purchased (PUR-NUM), the returned date of purchase
(PUR-DATE) is selected randomly for the retrieval result, which means the SELECT statement above can produce
different results every time it is executed.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 297



7.10 DEFAULT clause

This section describes the DEFAULT clause.

7.10.1 Specification format and rules for the DEFAULT clause
The DEFAULT clause specifies the default value for a column. The default value for a column is the default value that
is stored in the column in any of the circumstances described below.

• When inserting rows with the INSERT statement
The default value for the column is stored in the following circumstances:

• DEFAULT is specified in the insertion value

• DEFAULT VALUES is specified

• A column name is not specified for the column into which data is to be inserted (unless all column names are
omitted)

• A row is inserted into a viewed table (default values are stored in the columns of the viewed table that do not
correspond to the columns of the underlying table)

• When updating column values with the UPDATE statement
The default value for the column is stored if DEFAULT is specified in the update value.

• When importing data with the adbimport command
When importing data with the adbimport command, the default value for the column is stored if the field data in
the input data file is an empty character string.
If you want to store the null value rather than the default value for the column, specify NULL for the import option
adb_import_null_string.

(1) Specification format
DEFAULT-clause ::= DEFAULT default-option
  default-option ::= {literal | CURRENT_DATE | CURRENT_TIME[(p)]
                    | CURRENT_TIMESTAMP[(p)] | CURRENT_USER | NULL}

(2) Explanation of specification format
literal:

Specifies the default value for a column in the form of a literal. For details about literals, see 6.3 Literals.
The following table shows the types of literals that can be specified in default-option depending on the data type of
the column whose default value is to be specified.

Table 7-2: Types of literals that can be specified in default-option depending on the data type of
the column whose default value is to be specified

Data type of the column whose
default value is to be specified

Literals that can be specified in default-option

Numeric
literal

Character
string
literal

Date literal Time literal Time
stamp
literal

Binary
literal

Numeric data Y N N N N N

7. Constituent Elements

Hitachi Advanced Database SQL Reference 298



Data type of the column whose
default value is to be specified

Literals that can be specified in default-option

Numeric
literal

Character
string
literal

Date literal Time literal Time
stamp
literal

Binary
literal

Character string data N Y#1 N N N N

Datetime
data

DATE type N Y#2 Y N Y N

TIME type N Y#2 N Y N N

TIMESTAMP type N Y#2 Y N Y N

Binary data N N N N N Y#1

Legend:
Y: Can be specified. However, storage assignment rules apply.#3

N: Cannot be specified.

#1
Character string literals or binary literals of 1,024 bytes or more cannot be specified.

#2
The character string literal must be represented in a relevant predefined input representation. For information
about predefined input representations, see 6.3.3 Predefined character-string representations.

#3
For details about the storage assignment rules, see (2) Storage assignments between data types in 6.2.2 Data
types that can be converted, assigned, and compared.
For example, because the storage assignment rules are applied, the CREATE TABLE statement will result in an
error if the data length of the character string literal specified as the default value for a column exceeds the data
length of the column whose DEFAULT clause was specified.

CURRENT_DATE:
The default value for the column will be the date when the INSERT or UPDATE statement is executed, or when the
adbimport command is launched.
CURRENT_DATE can be specified for a column of type DATE or TIMESTAMP.
For details about the rules for specifying CURRENT_DATE, see 6.4.1 CURRENT_DATE.

CURRENT_TIME[(p)]:
The default value for the column will be the time when the INSERT or UPDATE statement is executed, or when the
adbimport command is launched.
Specify the fractional seconds precision (the number of digits to the right of the decimal point) in p. If (p) is omitted,
it is assumed that p = 0.
CURRENT_TIME can be specified for a column of type TIME.
For details about the rules for specifying CURRENT_TIME, see 6.4.2 CURRENT_TIME.

CURRENT_TIMESTAMP[(p)]:
The default value for the column will be the date and time when the INSERT or UPDATE statement is executed, or
when the adbimport command is launched.
Specify the fractional seconds precision (the number of digits to the right of the decimal point) in p. If (p) is omitted,
it is assumed that p = 0.
CURRENT_TIMESTAMP can be specified for a column of type DATE or TIMESTAMP.
For details about the rules for specifying CURRENT_TIMESTAMP, see 6.4.3 CURRENT_TIMESTAMP.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 299



CURRENT_USER:
The default value for the column will be the authorization identifier of the user executing the INSERT statement,
UPDATE statement, or adbimport command.
CURRENT_USER can be specified for a column of type CHARACTER or VARCHAR.
For details about the rules for specifying CURRENT_USER, see 6.5.1 CURRENT_USER.

NULL:
The default value for the column will be the null value.
NULL cannot be specified for columns having the NOT NULL constraint (the constraint to not allow null values).

Note
• When CURRENT_DATE, CURRENT_TIME[(p)], or CURRENT_TIMESTAMP[(p)] is specified,

the corresponding date and time information is acquired by the HADB server.

• When you store the default value for a column on multiple rows by using a single SQL statement, if
you specify CURRENT_DATE, the same date is stored on all rows. If you specify
CURRENT_TIME[(p)], the same time is stored on all rows. If you specify
CURRENT_TIMESTAMP[(p)], the same date and time is stored on all rows.

(3) Rules
1. If the DEFAULT clause is omitted, the default value for the column will be the null value.

2. When storing data in a column where a default value is specified, storage assignment rules apply. For example, if
CURRENT_DATE is specified for a TIMESTAMP type column, 00:00:00 is assigned to the time portion in
accordance with the assignment rules. For details about the assignment rules, see (2) Storage assignments between
data types in 6.2.2 Data types that can be converted, assigned, and compared.

3. The precision of the fractional seconds acquired by CURRENT_TIME(p) or CURRENT_TIMESTAMP(p) depends
on the capabilities of the hardware. For example, if you specify CURRENT_TIME(12), depending on the hardware
you are using, you might not be able to acquire 12 digits of fractional seconds precision.
Example:
10:35:55.123456000000
As shown above, if only six digits of fractional seconds precision can be acquired, the 7th and subsequent digits
will be 0.

(4) Example
Example

Define a sales history table (SALESLIST) using the DEFAULT clause to set the default value of the date of purchase
(PUR-DATE) column.

CREATE FIX TABLE "SALESLIST"
      ("USERID" CHAR(6),
       "PUR-CODE" CHAR(4),
       "PUR-NUM" SMALLINT,
       "PUR-DATE" DATE DEFAULT CURRENT_DATE)
    IN "DBAREA01"
    PCTFREE=20
    CHUNK=200

The underlined portion indicates the DEFAULT clause.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 300



7.11 Table reference

This section describes table references.

7.11.1 Specification format for table references
A table reference, specified in the FROM clause, specifies the table from which to retrieve data.

If you want to retrieve data from a table that is joined to itself, a correlation name can also be specified.

(1) Specification format
table-reference::={table-primary|joined-table}
 
  table-primary::={table-name [[AS] correlation-name][index-specification]
                |query-name [[AS] correlation-name]
                |derived-table [[AS] correlation-name [(derived-column-list)]]
                |table-function-derived-table [AS] correlation-name [(table-function-
column-list)]
                |(joined-table)}
 
    derived-table::={table-subquery|(table-value-constructor)}
    derived-column-list::=column-name[,column-name]...
 
    table-function-derived-table::=TABLE(system-defined-function)
    table-function-column-list::=column-name data-type[,column-name data-type]...

(2) Explanation of specification format
table-name:

Specifies the table from which to retrieve data. For rules on specifying a table name, see (2) Table name specification
format in 6.1.5 Qualifying a name.
To retrieve data from a dictionary table or system table, specify the schema name MASTER.
If an archivable multi-chunk table is specified, accesses to the location table and system table (STATUS_CHUNKS)
occur. At this time, locked resources are secured for the system table (STATUS_CHUNKS). For details about
locks, see Locking in the HADB Setup and Operation Guide.

[AS] correlation-name:
Specifies a name assigned to separately identify a table for one of the following purposes:

• To join a table to itself

• To reference a column of the same table inside a subquery

Note the following points:

• When specifying a table function derived table, a correlation name is required.

• To specify the same scope variable multiple times in one FROM clause, specify correlation names so that each
scope variable is able to uniquely identify the column specification it qualifies.

• The correlation name specified in one FROM clause must be different from all scope variables specified in that
clause. The name must also be different from the table identifiers of the scope variables. For details about the
effective scope of scope variables, see 6.8 Scope variables.

• The retrieval results will be the same regardless of whether AS is specified.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 301



• If the correlation name of a derived table is not specified, the correlation name is automatically assigned in the
following format:
##ADD_DRVTBL_xxxxxxxxxx
In the preceding format, xxxxxxxxxx is a 10-digit integer. This correlation name is displayed in the access path
execution results.
For table references with the same effective scope, do not specify a table name or correlation name that begins
with ##ADD_DRVTBL_.

Note
If you do so, the HADB server might automatically assign a correlation name that is the same as a
name that you specified.

index-specification:
Specifies a B-tree index or text index to be used when retrieving from a base table. Alternatively, it specifies that
the use of a B-tree index or text index is to be suppressed. For details about index specifications, see 7.14 Index
specification.

query-name:
Specifies a query name. For details about query names, see (a) WITH-clause in (2) Explanation of specification
format in 7.1.1 Specification format and rules for query expressions.

derived-table:
Specifies a derived table in the format of a table subquery or table value constructor. For details about subqueries,
see 7.3 Subqueries. For details about table value constructors, see 7.17 Table value constructors.
A derived table is a table that is derived as a result of a table subquery or table value constructor. The n-th column
of a table subquery or table value constructor becomes the n-th column of a derived table.
A query specification that contains a derived table will be converted to an equivalent query specification that does
not contain the derived table.
Assume that the (user-specified or automatically assigned) correlation name of the derived table is the derived query
name, and the query expression of the derived table is the derived query expression. In this case, the derived query
expression is treated as an internal derived table, following the rules for derived table expansion. For the rules for
derived table expansion, see 7.30 Internal derived tables.
In addition, note the following concerning derived-table:

• If the correlation name of a derived table is not specified, the scope variable of that derived table has the effective
scope but has no name (the HADB server internally generates a name, which users cannot check). Therefore, if
there are two or more table references that have the same column name in the same effective scope, explicitly
specify correlation names.
Example of an SQL statement that generates an error:

SELECT "C1" FROM "T1",(SELECT "C1" FROM "T1")

For the underlined column (C1), there are multiple table references that have the same column name in the same
effective scope (table T1 and the derived table). In this case, it is impossible to identify whether the underlined
column (C1) is column C1 of table T1 or column C1 of the derived table. Therefore, the SQL statement will
result in an error. In such a case, to reference a column of a derived table, specify a correlation name for the
derived table, and qualify the column name with that correlation name. The following shows examples.
Example of a correct SQL statement:

SELECT "DT1"."C1" FROM "T1",(SELECT "C1" FROM "T1") AS "DT1"

• You cannot specify the row interface (ROW) for a derived table.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 302



derived-column-list:
Specify the column name of each column of the derived table. Specify derived-column-list in the following format:
column-name[, column-name]...
The column names of the table derived by a query specification vary depending on whether derived-column-list is
specified. For the rules concerning derived column names, see 6.9 Derived column names.
In addition, note the following concerning derived-column-list:

• If derived-column-list is omitted, the column names derived from the results of the table subquery must be
unique.

• The column names in derived-column-list must be unique.

• Do not specify a character string in the EXPnnnn_NO_NAME format as a column name in derived-column-list.
Such a column name might duplicate a derived column name that is automatically set by HADB. In this format,
nnnn is an unsigned integer in the range from 0000 to 9999.

• If derived-column-list is specified, the number of column names in derived-column-list must be the same as the
number of columns in the derived table.

• Make sure that the number of columns specified in derived-column-list does not exceed 1,000.

• Make sure that the number of columns derived by table subqueries or table value constructors does not exceed
1,000.

table-function-derived-table:

table-function-derived-table::=TABLE(system-defined-function)

A table function derived table is a collection of data in table format derived by means of a system-defined function.
For details about system-defined functions, see 7.15 System-defined functions.
The rules for specifying a table function derived table are as follows:

• To specify a table function derived table as a table reference, specify the table function derived table's correlation
name.

• You cannot specify the row interface (ROW) for a table function derived table.

table-function-column-list:

table-function-column-list::=column-name data-type[,column-name data-type]...

Specifies the name and data type of each column in the table function derived table.
The rules for specifying a table function column list are as follows:

• If you specify the ADB_AUDITREAD function for a table function derived table, you cannot specify a table
function column list.

• If you specify the ADB_CSVREAD function for a table function derived table, you must specify a table function
column list.

• For the specification format of each data type, see Table 3-8: Data types that can be specified (CREATE TABLE
statement).

• The column names in a table function column list must be unique.

• Do not specify a character string in the EXPnnnn_NO_NAME format as a column name in a table function column
list. Such a column name might duplicate a derived column name that is automatically set by HADB. In this
format, nnnn is an unsigned integer in the range from 0000 to 9999.

• The number of columns in a table function column list must not exceed 1,000.

• You cannot specify VARCHAR-type data whose length exceeds 32,000 bytes for a table function column list.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 303



For rules on derived column names, see (4) In the case of a table function derived table in 6.9.2 Decision rules for
derived column names in query results.

joined-table:
Specifies a joined table. For details on joined tables, see 7.12 Joined tables.

(3) Examples
The following examples illustrate table references.

Example 1
From the sales history table (SALESLIST), this example retrieves the customer ID (USERID), product code (PUR-
CODE), and date of purchase (PUR-DATE) for customers who purchased products on or after September 6, 2011.

SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-06'

The underlined portion indicates the table reference.

Example 2
Search the dictionary table (SQL_INDEXES) to find the names of indexes (INDEX_NAME) that are defined for the
sales history table (SALESLIST).

SELECT "INDEX_NAME"
    FROM "MASTER"."SQL_INDEXES"
        WHERE "TABLE_NAME"='SALESLIST'

The underlined portion indicates the table reference. To search the dictionary table, you must qualify the table name
with the schema name MASTER.

Example 3
Search the dictionary table (SQL_INDEXES) to find the names of indexes (INDEX_NAME) that are defined for the
sales history table (SALESLIST) using IDX as a correlation name.

SELECT "IDX"."INDEX_NAME"
    FROM "MASTER"."SQL_INDEXES" AS "IDX"
        WHERE "IDX"."TABLE_NAME"='SALESLIST'

The underlined portion indicates the table reference.

Example 4
Retrieve the customer ID (USERID), product code (PUR-CODE), customer name (NAME), and sex (SEX) from the
sales history table (SALESLIST) and customer table (USERSLIST), joined together with the customer ID column
(USERID) as the search condition.

SELECT "SALESLIST"."USERID","PUR-CODE","NAME","SEX"
    FROM ("SALESLIST" JOIN "USERSLIST"
           ON "USERSLIST"."USERID"="SALESLIST"."USERID")

The underlined portion indicates the table reference.

Example 5
Extract the following data from a CSV file (/dir/file.csv.gz) compressed in GZIP format:

• Customer ID (USERID)

• Customer name (NAME)

• Age (AGE)

7. Constituent Elements

Hitachi Advanced Database SQL Reference 304



SELECT "USERID","NAME","AGE"
    FROM TABLE(ADB_CSVREAD(MULTISET ['/dir/file.csv.gz'],
                          'COMPRESSION_FORMAT=GZIP;'))
         AS "USERLIST" ("USERID" CHAR(5),
                        "NAME" VARCHAR(100),
                        "AGE" INTEGER,
                        "COUNTRY" VARCHAR(100),
                        "INFORMATION" VARBINARY(10))

The underlined portion indicates the table reference.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 305



7.12 Joined tables

This section describes joined tables.

7.12.1 Specification format and rules for joined tables
This subsection explains the methods (Cartesian product, inner join, and outer join) for specifying joined tables. Joined
tables are specified in table references.

(1) Specification format
joined-table ::= {cross-join|qualified-join|(joined-table)}
 
 
  cross-join ::= table-reference CROSS JOIN table-primary
 
  qualified-join ::= table-reference [{INNER|{LEFT|RIGHT|FULL} [OUTER]}] JOIN [join-m
ethod-specification] table-reference join-specification
    join-specification ::= ON search-condition

(2) Explanation of specification format
• cross-join

cross-join ::= table-reference CROSS JOIN table-primary

Specify this to obtain the Cartesian product of the table-reference specified on the left side and the table-primary
specified on the right side. For details about table references, see 7.11 Table reference. For details about table-
primary, see 7.11.1 Specification format for table references.
Note that when * is specified in the selection expression of a query specification, the columns in the retrieval results
will be arranged according to the order of the columns from table-reference on the left first and then the columns
from table-primary on the right.
The cross join is illustrated in the following example.
Example:

SELECT statement to be executed

SELECT * FROM "USERSLIST" CROSS JOIN "SALESLIST"

Retrieval results

7. Constituent Elements

Hitachi Advanced Database SQL Reference 306



Each row in USERLIST is combined with every row in SALESLIST.

• qualified-join

qualified-join ::= table-reference [{INNER | {LEFT | RIGHT | FULL} [OUTER]}] JOIN 
[join-method-specification] table-reference join-specification
  join-specification ::= ON search-condition

Specify this to perform an inner join or outer join.
When INNER JOIN is specified, the operation is called an inner join, and when LEFT OUTER JOIN, RIGHT
OUTER JOIN or FULL OUTER JOIN is specified, the operation is called an outer join.

table-reference:
Specifies a table or a joined table to be joined. For details about table references, see 7.11 Table reference.
When * is specified in the selection expression of a query specification, the columns in the retrieval results will
be arranged according to the order of the columns from the table references on the left first and then from the
table references on the right. This is illustrated in the following example.
Example:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 307



[INNER] JOIN:
The joined table will consist of the rows in the Cartesian product of the tables referenced by the left and right
table references for which the search-condition specified in join-specification is true.
For an example of INNER JOIN, see 7.12.2 Inner join using INNER JOIN.

LEFT [OUTER] JOIN:
The joined table will be the union of the following rows:

• The rows in the Cartesian product of the tables referenced by the left and right table references for which
the search-condition specified in join-specification is true (the same results as when INNER JOIN is
specified).

• The rows in the Cartesian product of the tables referenced by the left and right table references such that
search-condition is false for the rows of the left table and the rows of the right table are assigned null values.

For an example of LEFT OUTER JOIN, see 7.12.3 Outer join using LEFT OUTER JOIN.

RIGHT [OUTER] JOIN:
The joined table will be the union of the following rows:

• The rows in the Cartesian product of the tables referenced by the left and right table references for which
the search-condition specified in join-specification is true (the same results as when INNER JOIN is
specified).

• The rows in the Cartesian product of the tables referenced by the left and right table references such that
search-condition is false for the rows of the right table and the rows of the left table are assigned null values.

For an example of RIGHT OUTER JOIN, see 7.12.4 Outer join using RIGHT OUTER JOIN.

FULL [OUTER] JOIN:
The joined table will be the union of the following rows:

• The rows in the Cartesian product of the tables referenced by the left and right table references for which
the search-condition specified in join-specification is true (the same results as when INNER JOIN is
specified).

7. Constituent Elements

Hitachi Advanced Database SQL Reference 308



• The rows in the Cartesian product of the tables referenced by the left and right table references such that
search-condition is false for the rows of the left table and the rows of the right table are assigned null values.

• The rows in the Cartesian product of the tables referenced by the left and right table references such that
search-condition is false for the rows of the right table and the rows of the left table are assigned null values.

For an example of FULL OUTER JOIN, see 7.12.5 Outer join using FULL OUTER JOIN.

join-method-specification:
Specifies the method for joining the left and right table references. For details, see 7.13 Join method
specification.
Note that join-method-specification does not normally need to be specified. If join-method-specification is
omitted, HADB determines the join method automatically.

join-specification:

join-specification ::= ON search-condition

Specifies the conditions for joining the two table references.
ON search-condition:
Specifies a search condition. For details on search conditions, see 7.18 Search conditions.
Each column specification in the search condition must be one of the following:

• A column included in the two table references being joined

• An external reference column

For details about external reference columns, see (a) Common rules for subqueries in (4) Rules in 7.3.1 
Specification format and rules for subqueries.
If you qualify a column name from search-condition in a table specification, any column from a table with a
correlation name must be qualified with the correlation name.
Subqueries are not permitted in the ON search condition of a joined table with FULL OUTER JOIN specified as
the joined table mode.

• (joined-table)
To specify the join order of the tables, enclose the joined tables in parentheses.

(3) Rules
1. When LEFT OUTER JOIN is specified, the NOT NULL constraint does not apply to the results of the right table

reference (null values are allowed).

2. When RIGHT OUTER JOIN is specified, the NOT NULL constraint does not apply to the result of the left table
reference (null values are allowed).

3. When FULL OUTER JOIN is specified, the NOT NULL constraint does not apply to the results of both the left and
right table references (null values are allowed).

4. Up to 63 outer joins with FULL OUTER JOIN specified as the joined table mode can be specified in an SQL
statement. If the table reference to be joined is a viewed table, an internal derived table is generated according to
the query expression specified in the CREATE VIEW statement. The limit on the maximum number of FULL OUTER
JOIN clauses is applied to this internal derived table.

5. If FULL OUTER JOIN is specified, a derived table is generated. For the derived table, the HADB server automatically
assigns a correlation name in the following format:

##DRVTBL_xxxxxxxxxx

In the preceding format, xxxxxxxxxx is a 10-digit integer.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 309



6. If hash join is selected as the table joining method and a hash filter is applied to hash join processing, a hash filter
area of an appropriate size is required. The size of the hash filter area is specified by using the
adb_sql_exe_hashflt_area_size operand in the server definition or client definition.

7. The HADB server sometimes converts INNER JOIN or CROSS JOIN to an equivalent comma join when
executing an SQL statement. For details about a comma join, see (2) Explanation of specification format in 7.5.1 
Specification format and rules for FROM clauses.

(4) Examples
Example 1 (example of INNER JOIN)

From the customer table (USERSLIST) and sales history table (SALESLIST), retrieve a list of customers (customer
ID and name) who purchased product code (PUR-CODE) P001, eliminating duplicates.

SELECT DISTINCT "USERSLIST"."USERID","NAME"
    FROM "USERSLIST" INNER JOIN "SALESLIST"
            ON "USERSLIST"."USERID"="SALESLIST"."USERID"
        WHERE "SALESLIST"."PUR-CODE"='P001'

The underlined portion indicates the joined table (inner join).

Example 2 (example of LEFT OUTER JOIN)
From the product table (PRODUCTLIST) and sales history table (SALESLIST), determine the total number of sales
in December 2012 for each product.

SELECT "PRODUCTLIST"."PUR-NAME",SUM("SALESLIST"."PUR-NUM") AS "SUM"
    FROM "PRODUCTLIST" LEFT OUTER JOIN "SALESLIST"
       ON "PRODUCTLIST"."PUR-CODE"="SALESLIST"."PUR-CODE"
       AND "SALESLIST"."PUR-DATE" BETWEEN DATE'2012-12-01'
                                      AND DATE'2012-12-31'
    GROUP BY "PRODUCTLIST"."PUR-NAME"

The underlined portion indicates the joined table (outer join).

7. Constituent Elements

Hitachi Advanced Database SQL Reference 310



Example 3 (example of RIGHT OUTER JOIN)
From the product table (PRODUCTLIST) and sales history table (SALESLIST), determine the total number of sales
in December 2012 for each product.

SELECT "PRODUCTLIST"."PUR-NAME",SUM("SALESLIST"."PUR-NUM") AS "SUM"
    FROM "SALESLIST" RIGHT OUTER JOIN "PRODUCTLIST"
       ON "SALESLIST"."PUR-CODE"="PRODUCTLIST"."PUR-CODE"
       AND "SALESLIST"."PUR-DATE" BETWEEN DATE'2012-12-01'
                                      AND DATE'2012-12-31'
    GROUP BY "PRODUCTLIST"."PUR-NAME"

The underlined portion indicates the joined table (outer join).

7. Constituent Elements

Hitachi Advanced Database SQL Reference 311



Example 4 (example of FULL OUTER JOIN)
From the customer table (USERSLIST), product table (PRODUCTLIST), and sales history table (SALESLIST),
retrieve a list of combinations of customer name and product name for the customers who bought products in
December 2012, eliminating duplicates.

• For customers without a purchase record, use the null value for the product name (PUR-NAME).

• For products with 0 sales, use the null value for the customer name (NAME).

SELECT DISTINCT "USERSLIST"."NAME","PRODUCTLIST"."PUR-NAME"
    FROM ("USERSLIST" LEFT OUTER JOIN "SALESLIST"
                        ON "USERSLIST"."USERID"="SALESLIST"."USERID"
                        AND "SALESLIST"."PUR-DATE" BETWEEN DATE'2012-12-01'
                                                       AND DATE'2012-12-31')
                      FULL OUTER JOIN "PRODUCTLIST"
                        ON "SALESLIST"."PUR-CODE"="PRODUCTLIST"."PUR-CODE"

The underlined portion indicates the joined table (outer join).

7. Constituent Elements

Hitachi Advanced Database SQL Reference 312



Example 5: (Specifying a subquery in the search condition of a join specification)
From the product table (PRODUCTLIST) and sales history table (SALESLIST), produce a list of customers who
purchased the greatest quantity of each product. In the case of products with no sales, the customer ID (USERID)
and quantity purchased (PUR-NUM) are assigned null values.

SELECT "G"."PUR-NAME","S"."USERID","S"."PUR-NUM"
    FROM "PRODUCTLIST" "G" LEFT JOIN "SALESLIST" "S"
       ON "G"."PUR-CODE"="S"."PUR-CODE"
           AND "S"."PUR-NUM"=(
                              SELECT MAX("SMAX"."PUR-NUM")
                                FROM "SALESLIST" "SMAX"
                                  WHERE "S"."PUR-CODE"="SMAX"."PUR-CODE"
                             )

The underlined portion indicates the joined table.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 313



7.12.2 Inner join using INNER JOIN
The following is an example of an inner join using INNER JOIN.

• Tables to be retrieved from

• SELECT statement to be run

SELECT * FROM "USERSLIST" INNER JOIN "SALESLIST"
                          ON "USERSLIST"."USERID"="SALESLIST"."USERID"

From the Cartesian product of the left and right table references (the Cartesian product of USERSLIST and
SALESLIST), produce a joined table consisting of the rows for which the search condition specified in the join
specification (the underlined portion above) is true.

1. Cartesian product of USERSLIST and SALESLIST (all row combinations)

7. Constituent Elements

Hitachi Advanced Database SQL Reference 314



Each row of SALESLIST is paired with each row of USERSLIST.

2. Retrieval results

The joined table consists of the rows within the Cartesian product of USERSLIST and SALESLIST for which
the search condition ("USERSLIST"."USERID"="SALESLIST"."USERID") is true.
The result in this example is a list of customers who have purchased products.

7.12.3 Outer join using LEFT OUTER JOIN
The following is an example of an outer join using LEFT OUTER JOIN.

• Tables to be retrieved from

• SELECT statement to be run

SELECT * FROM "USERSLIST" LEFT OUTER JOIN "SALESLIST"
                          ON "USERSLIST"."USERID"="SALESLIST"."USERID"

The resulting joined table will be the union of the following rows:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 315



• The rows from the Cartesian product of the left and right table references (the Cartesian product of USERSLIST
and SALESLIST) for which the search condition specified in the join specification (the underlined portion
above) is true

• The rows from the Cartesian product of the left and right table references (the Cartesian product of USERSLIST
and SALESLIST) such that the search condition is false for the rows of the left table and the rows of the right
table are assigned null values

1. Cartesian product of USERSLIST and SALESLIST (all row combinations)

Each row of SALESLIST is paired with each row of USERSLIST.

2. Retrieval results

The result in this example is a list of the following:
1. Customers who have purchased products (the same results from the INNER JOIN)
2. Customers who have not purchased products (in this case, customer ID U00212)

7.12.4 Outer join using RIGHT OUTER JOIN
The following is an example of an outer join using RIGHT OUTER JOIN.

• Tables to be retrieved from

7. Constituent Elements

Hitachi Advanced Database SQL Reference 316



• SELECT statement to be run

SELECT * FROM "SALESLIST" RIGHT OUTER JOIN "USERSLIST"
                          ON "USERSLIST"."USERID"="SALESLIST"."USERID"

The resulting joined table will be the union of the following rows:

• The rows from the Cartesian product of the left and right table references (the Cartesian product of USERSLIST
and SALESLIST) for which the search condition specified in the join specification (the underlined portion
above) is true

• The rows from the Cartesian product of the left and right table references (the Cartesian product of USERSLIST
and SALESLIST) such that the search condition is false for the rows of the right table and the rows of the left
table are assigned null values

1. Cartesian product of USERSLIST and SALESLIST (all row combinations)

Each row of SALESLIST is paired with each row of USERSLIST.

2. Retrieval results

The result in this example is a list that includes the following:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 317



1. Customers who have purchased products (the same results from the INNER JOIN)
2. Customers who have not purchased products (in this case, customer ID U00212)

7.12.5 Outer join using FULL OUTER JOIN
The following is an example of an outer join using FULL OUTER JOIN.

• Tables to be retrieved from

• SELECT statement to be run

SELECT * FROM "SALESLIST" FULL OUTER JOIN "USERSLIST"
                          ON "USERSLIST"."USERID"="SALESLIST"."USERID"

The resulting joined table will be the union of the following rows:

• The rows from the Cartesian product of the left and right table references (the Cartesian product of USERSLIST
and SALESLIST) for which the search condition specified in the join specification (the underlined portion
above) is true

• The rows from the Cartesian product of the left and right table references (the Cartesian product of USERSLIST
and SALESLIST) such that the search condition is false for the rows of the left table and the rows of the right
table are assigned null values

• The rows from the Cartesian product of the left and right table references (the Cartesian product of USERSLIST
and SALESLIST) such that the search condition is false for the rows of the right table and the rows of the left
table are assigned null values

1. Cartesian product of USERSLIST and SALESLIST (all row combinations)

7. Constituent Elements

Hitachi Advanced Database SQL Reference 318



Each row of SALESLIST is paired with each row of USERSLIST.

2. Retrieve the rows for which the search condition is true.

From the Cartesian product of USERSLIST and SALESLIST, this example retrieves the rows for which the
search condition specified in the join specification is true (the same rows as the results of specifying INNER
JOIN).

3. Retrieve the rows such that for each row of the left table reference where the search condition is false, the result
of the right table reference is the null value.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 319



From the Cartesian product of USERSLIST and SALESLIST, this example retrieves the rows such that for
each row of the left table reference (SALESLIST) where the search condition specified in the join specification
is false, the result of the right table reference (USERSLIST) is the null value. In this example, this yields the
row where the value in the USERID column of SALESLIST is U00026.

4. Retrieve the rows such that for each row of the right table reference where the search condition is false, the result
of the left table reference is the null value.

From the Cartesian product of USERSLIST and SALESLIST, this example retrieves the rows such that for
each row of the right table reference (USERSLIST) where the search condition specified in the join specification

7. Constituent Elements

Hitachi Advanced Database SQL Reference 320



is false, the result of the left table reference (SALESLIST) is the null value. In this example, this yields the row
where the value in the USERID column of USERSLIST is U00212.

5. Retrieval results

The result in this example is a list that includes the following:
1. Customers who have purchased products (the same results from the INNER JOIN)
2. Customers in the sales history who are not in the customer list (in this case, customer ID U00026)
3. Customers who have not purchased products (in this case, customer ID U00212)

7. Constituent Elements

Hitachi Advanced Database SQL Reference 321



7.13 Join method specification

This section describes join method specifications.

7.13.1 Specification format and rules for join method specifications
A join method specification specifies the method of joining the specified table references in a joined table. For details
about the join methods, see Table joining methods in the HADB Application Development Guide.

Normally a join method specification is not required. If the join method specification is omitted, HADB determines the
join method automatically.

(1) Specification format
join-method-specification ::= /*>> BY {NEST|HASH} [({LEFT|RIGHT} FIRST)] <<*/

(2) Explanation of specification format
BY {NEST|HASH}:

NEST:
Specifies a nested loop join as the join method.

HASH:
Specifies a hash join as the join method.

({LEFT|RIGHT} FIRST):

LEFT FIRST:
Specifies that the outer table is to be the table reference on the left side of the joined table.

RIGHT FIRST:
Specifies that the outer table is to be the table reference on the right side of the joined table.

When neither LEFT FIRST nor RIGHT FIRST is specified, HADB automatically determines which of the joined
tables in which the two table references are specified is to be the outer table.

You can check whether the join method specification was applied using the access path information. For details about
how to check this, see Table joining methods in Information displayed in the tree view in the HADB Application
Development Guide.

(3) Rules
1. If a join method that HADB cannot execute is specified, the join method specification is invalid. When the join

method specification is invalid, HADB determines the join method automatically.

2. The character string enclosed in /*>> and <<*/ is not a comment. An error results if you specify something other
than a join method specification.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 322



(4) Examples
Example 1

SELECT * FROM "T1" INNER JOIN /*>>BY NEST<<*/ "T2"
                   ON "T1"."C1"="T2"."C1"

The underlined portion indicates the join method specification.
When the above SELECT statement is executed, a nested loop join is used to joined tables T1 and T2. The outer
and inner tables are automatically determined by HADB.

Example 2

SELECT * FROM "T1" INNER JOIN /*>>BY NEST (LEFT FIRST)<<*/ "T2"
                   ON "T1"."C1"="T2"."C1"

The underlined portion indicates the join method specification.
When the above SELECT statement is executed, a nested loop join is used to join tables T1 and T2. T1 is the outer
table and T2 is the inner table.

Example 3

SELECT * FROM "T1" INNER JOIN /*>>BY NEST (RIGHT FIRST)<<*/ "T2"
                   ON "T1"."C1"="T2"."C1"

The underlined portion indicates the join method specification.
When the above SELECT statement is executed, a nested loop join is used to join tables T1 and T2. T2 is the outer
table and T1 is the inner table.

Example 4

SELECT * FROM "T1" INNER JOIN /*>>BY HASH<<*/ "T2"
                   ON "T1"."C1"="T2"."C1"

The underlined portion indicates the join method specification.
When the above SELECT statement is executed, a hash join is used to join tables T1 and T2. The outer and inner
tables are automatically determined by HADB.

Example 5

SELECT * FROM "T1" INNER JOIN /*>>BY HASH (LEFT FIRST)<<*/ "T2"
                   ON "T1"."C1"="T2"."C1"

The underlined portion indicates the join method specification.
When the above SELECT statement is executed, a hash join is used to join tables T1 and T2. T1 is the outer table
and T2 is the inner table.

Example 6

SELECT * FROM "T1" INNER JOIN /*>>BY HASH (RIGHT FIRST)<<*/ "T2"
                   ON "T1"."C1"="T2"."C1"

The underlined portion indicates the join method specification.
When the above SELECT statement is executed, a hash join is used to join tables T1 and T2. T2 is the outer table
and T1 is the inner table.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 323



7.14 Index specification

This section describes index specifications.

7.14.1 Specification format and rules for index specifications
An index specification specifies an index to be used when retrieving data from a base table. It can also be specified to
suppress use of an index.

Index specifications can only be used with B-tree indexes and text indexes. Range indexes are excluded.

Note that index specifications are usually not necessary, because HADB automatically determines the index to be used
when retrieving from a base table. For the rules for determining the indexes to be used for retrieval, see B-tree indexes
and text indexes used during execution of SQL statements in the HADB Application Development Guide.

(1) Specification format
index-specification ::= /*>> {WITH INDEX (index-name)|WITHOUT INDEX} <<*/

(2) Explanation of specification format
WITH INDEX (index-name):

Specifies the index to be used when retrieving from the base table specified immediately before the index
specification. For rules on specifying an index name, see (3) Index name specification format in 6.1.5 Qualifying
a name.

WITHOUT INDEX:
Specifies that no index is to be used when retrieving from the base table specified immediately before the index
specification. Instead, the table scan method is used for retrieving from the base table. For details about table
scans, see About table scans in the HADB Application Development Guide.

You can check whether the index specification was applied using the access path information. For details about how to
check this, see Index specification in Information displayed in the tree view in the HADB Application Development
Guide.

(3) Rules
1. You cannot specify an index specification for a viewed table.

2. If you specify the name of a nonexistent index, the index specification is invalid.

3. If both of the following conditions are met, the index specification is invalid.

• A B-tree index with the null-value exclusion is specified for index-name

• A condition that contains the null value is specified in the search range of the B-tree index

4. Even when a text index is specified for index-name, the index specification is invalid if the index is determined to
be unusable by HADB. For example, this is the case when you specify a LIKE predicate that cannot be evaluated
for use by a text index.

5. If the index specification is invalid, HADB will automatically determine the index to be used for retrieval. For
details, see B-tree indexes and text indexes used during execution of SQL statements in Designs Related to
Improvement of Application Program Performance in the HADB Application Development Guide.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 324



6. The character string enclosed in /*>> and <<*/ is not a comment. An error results if you specify something other
than an index specification.
Example

SELECT * FROM "T1"  /*>> comment <<*/

In the preceding example, the underlined portion is not treated as a comment. Therefore, the preceding SQL statement
results in a syntax error.

7. Conversely, in the following example, the text between /* and */ is treated as a comment rather than an index
specification.

SELECT * FROM "T1" /* WITH INDEX ("IDX01") */

(4) Examples
The following are examples of index specifications.

The examples assume that the following indexes are defined on the employee table (EMPLOYEE):

• B-tree index BTREE_IDX defined on the column SCODE
• Text index TEXT_IDX defined on the column ADDRESS

Example 1
Retrieve data from the employee table (EMPLOYEE) using the B-tree index BTREE_IDX.

SELECT "NAME" FROM "EMPLOYEE" /*>> WITH INDEX ("BTREE_IDX") <<*/
    WHERE "SCODE" = 'S003' AND "ADDRESS" LIKE '%TOKYO%'

The underlined portion shows the index specification.

Example 2
Retrieve data from the employee table (EMPLOYEE) using the text index TEXT_IDX.

SELECT "NAME" FROM "EMPLOYEE" /*>> WITH INDEX ("TEXT_IDX") <<*/
    WHERE "SCODE" = 'S003' AND "ADDRESS" LIKE '%TOKYO%'

The underlined portion shows the index specification.

Example 3
Retrieve data from the employee table (EMPLOYEE) without using an index.

SELECT "NAME" FROM "EMPLOYEE" /*>> WITHOUT INDEX <<*/
    WHERE "SCODE" = 'S003' AND "ADDRESS" LIKE '%TOKYO%'

The underlined portion shows the index specification.
Note that if a range index is defined on the SCODE column, only the range index will still be used when the above
SELECT statement is executed. For the conditions on range indexes used during retrieval, see Range indexes used
during execution of SQL statements in the HADB Application Development Guide.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 325



7.15 System-defined functions

This section describes the system-defined functions.

7.15.1 Specification format and rules for system-defined functions
The functions provided by HADB are called system-defined functions.

(1) Specification format
system-defined-function::={ADB_AUDITREAD-function|ADB_CSVREAD-function}

(2) Explanation of specification format
ADB_AUDITREAD-function:

The ADB_AUDITREAD function converts the audit trails in an audit trail file into a dataset in a table format such
that the data can be retrieved by the HADB server. For details about the ADB_AUDITREAD function, see 7.15.2 
ADB_AUDITREAD function.

ADB_CSVREAD-function:
The ADB_CSVREAD function converts the data in a CSV file into a dataset in a table format such that the data can
be retrieved by the HADB server. For details about the ADB_CSVREAD function, see 7.15.3 ADB_CSVREAD
function.

(3) Rules
1. A maximum of 1,000 arguments can be specified for a system-defined function.

7.15.2 ADB_AUDITREAD function
Converts the audit trails in an audit trail file into a dataset in a table format such that the data can be retrieved by the
HADB server.

Note
• For an overview of the audit trail facility, see Audit trail facility in the HADB Setup and Operation Guide.

• For details about the operations for searching audit trails, see Scheduled operations for audit trail facility
in the HADB Setup and Operation Guide.

(1) Specification format
ADB_AUDITREAD-function::=
    [MASTER.]ADB_AUDITREAD([audit-trail-file-path-name-specification])
 
        audit-trail-file-path-name-specification::=multiset-value-expression

7. Constituent Elements

Hitachi Advanced Database SQL Reference 326



(2) Explanation of specification format
audit-trail-file-path-name-specification:

Specifies the path names of the audit trail files containing the input data for the ADB_AUDITREAD function. The
path names are specified in the form of a multiset value expression. For details about multiset value expressions,
see 7.16 Multiset value expression.
The following rules apply:

• The data type of the result of the multiset value expression must be character string data.

• Absolute paths must be specified for the path names of the audit trail files specified in audit-trail-file-path-name-
specification.

• Existing files must be specified in the path names of the audit trail files specified in audit-trail-file-path-name-
specification.

About the multi-node function:

• If the multi-node function is enabled, audit-trail-file-path-name-specification cannot be omitted.

■ Examples of audit-trail-file-path-name-specification
In the following examples, the underlined portions are audit-trail-file-path-name-specification.
Note that the specification examples shown here are only typical ones. For rules on specifying an audit trail file
path name specification, see (b) Rules for audit trail file path name specification in (4) Rules.

Example 1:

ADB_AUDITREAD(MULTISET['/audit/adbaud-20170401-123000-159.aud','/audit/adbaud
-20170415-123000-952.aud'])

In the preceding example, the path names of two audit trail files are specified. These two audit trail files are
used as the input information for the ADB_AUDITREAD function.

Example 2:

ADB_AUDITREAD(MULTISET['/audit/*.aud'])

In the preceding example, the audit trail file path name includes the special character *. In this case, all audit
trail files stored in the /audit directory (files with the extension aud) are used as the input information
for the ADB_AUDITREAD function. However, the current audit trail file is not used as the input information
for the ADB_AUDITREAD function.

Example 3:

ADB_AUDITREAD(MULTISET['/audit1/*.aud','/audit2/*.aud'])

In the preceding example, the audit trail files stored in the /audit1 and audit2 directories are used as
the input information for the ADB_AUDITREAD function.

Example 4:

ADB_AUDITREAD(MULTISET['/audit/adbaud-201707*.aud','/audit/adbaud-201708*.aud
'])

In the preceding example, of the audit trail files stored in the /audit directory, the audit trail files that were
created in July and August, 2017, are used as the input information for the ADB_AUDITREAD function.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 327



Important
For audit-trail-file-path-name-specification, you can also specify archive files in which audit trail
files have been compressed by using the OS command gzip.

Example:

ADB_AUDITREAD(MULTISET['/audit/*.gz'])

In the preceding example, the audit trail files that have been compressed in the archive files (with
the extension gz) in the /audit directory are used as the input information for the
ADB_AUDITREAD function.

■ If audit-trail-file-path-name-specification is omitted
If audit-trail-file-path-name-specification is omitted, the audit trail files in the audit trail directory (the directory
specified by the adb_audit_log_path operand in the server definition) are used as the input information
for the ADB_AUDITREAD function. However, the following files are not used as the input information for the
ADB_AUDITREAD function:

• Current audit trail file

• Files in the subdirectories of the audit trail directory

Example:
Specification in the server definition

adb_audit_log_path = /audit

Specification of the ADB_AUDITREAD function

ADB_AUDITREAD()

If the server definition and the ADB_AUDITREAD function are specified as shown in the preceding example,
the audit trail files to be used as the input information for the ADB_AUDITREAD function are as shown in the
following figure:

Note
If audit-trail-file-path-name-specification is omitted, the system assumes that the
adb_audit_log_path operand specification in the server definition + /*.aud is specified as
a multiset value expression in the multiset-value-constructor-by-enumeration format. Note that *
is specified as a special character.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 328



(3) Privileges required at execution
To execute the ADB_AUDITREAD function, the audit viewer privilege is required.

(4) Rules

(a) Rules for the ADB_AUDITREAD function
1. The ADB_AUDITREAD function can be used if the audit trail facility is enabled.

2. When the ADB_AUDITREAD function is executed, the audit trails in the audit trail files specified in audit-trail-file-
path-name-specification are returned as a dataset in a table format. For details about the names of, data types of,
and information in the columns of the table-formatted dataset returned by the ADB_AUDITREAD function, see
Column structure of table function derived table when retrieving audit trails in the HADB Setup and Operation
Guide.

3. If a specified audit trail file contains no audit trail records (other than the header information), the result of the table
function derived table for that audit trail file will be an empty set. If a specified audit trail file is a 0-byte file, which
contains neither audit trail records nor header information, the SQL statement will result in an error.
This rule is checked during execution of the SQL statement, not during preprocessing of the SQL statement.

(b) Rules for audit trail file path name specification
1. For audit-trail-file-path-name-specification, specify the path names of the audit trail files that are to be used as the

input information for the ADB_AUDITREAD function. Absolute paths must be specified for the path names of the
audit trail files.

2. The file names in the path names of audit trail files can include the following special characters:

• * (asterisk)
This denotes any character string consisting of 0 or more characters.

• ? (question mark)
This denotes any single character.

Specification example 1:

ADB_AUDITREAD(MULTISET['/audit/*.aud'])

In the preceding example, all audit trail files in the /audit directory (files with the extension aud) are used
as the input information for the ADB_AUDITREAD function.

Specification example 2:

ADB_AUDITREAD(MULTISET['/audit/adbaud-201704*.aud','/audit/adbaud-201705*.aud'])

In the preceding example, any audit trail files having such names as the following are used as the input
information for the ADB_AUDITREAD function:

• /audit/adbaud-20170401-123000-159.aud
• /audit/adbaud-20170415-123000-952.aud
• /audit/adbaud-20170501-123000-599.aud

7. Constituent Elements

Hitachi Advanced Database SQL Reference 329



Important
The asterisks (*) and question marks (?) included in the names of audit trail files are handled as special
characters. The asterisks (*) and question marks (?) included in directory names in the path names of
audit trail files are handled as ordinary characters.

Example:

ADB_AUDITREAD(MULTISET['/audit*/adbaud-201706*.aud'])

In the preceding example, the asterisk in the directory name is handled as an ordinary character.
Therefore, /audit* is handled as a directory name. However, the asterisk in the file name is handled
as a special character. Therefore, the preceding audit trail file path name specification can denote such
files as follows:

• /audit*/adbaud-20170601-123000-159.aud
• /audit*/adbaud-20170602-165522-656.aud

3. If the audit trail file path name specification including special characters denotes no existing audit trail file that can
be used as the input information (audit-trail-file-path-name-specification results in an empty set), the SQL statement
results in an error.

4. If the audit trail file path name specification includes special characters, the following audit trail files are not used
as the input information for the ADB_AUDITREAD function:

• Current audit trail file

• Audit trail files in the subdirectories of directories included in the audit trail file path name specification

5. If the audit trail file path name specification including special characters denotes 65,536 or more files, the SQL
statement results in an error. Note that the current audit trail file, which is not used as input information, is excluded
from the files that can be denoted by an audit trail file path name specification that includes special characters.

6. The SQL statement results in an error if the specified files include files other than the following files:

• Audit trail files

• Archive files in which audit trail files are compressed by the OS command gzip
This rule is checked during execution of the SQL statement, not during preprocessing of the SQL statement.

7. The current audit trail file cannot be specified as an audit trail file path name.

8. The spaces at the beginning and end of an audit trail file path name are not handled as the part of the path name.
Examples:
'∆∆∆/audit/adbaud-20170420-123030-159.aud' → '/audit/
adbaud-20170420-123030-159.aud'
'/audit/adbaud-20170420-123030-159.aud∆∆∆' → '/audit/
adbaud-20170420-123030-159.aud'
'∆∆∆/audit/adbaud-20170420-123030-159.aud∆∆∆' → '/audit/
adbaud-20170420-123030-159.aud'
'∆∆∆/audit/adbaud-20170420∆-123030-159.aud∆∆∆' → '/audit/
adbaud-20170420∆-123030-159.aud'
∆: Space

7. Constituent Elements

Hitachi Advanced Database SQL Reference 330



Important
Do not specify spaces at the beginning and end of an audit trail file path name. If you specify a path
name that begins or ends with spaces, the spaces are removed. Therefore, the specified path name might
be changed to an unintended path name.

9. The maximum length of each audit trail file path name is 1,024 bytes. If an audit trail file path name that is 1,025
or more bytes long is specified, the SQL statement results in an error. Note that the path name length check takes
place after the HADB server performs the following processing:

• Deleting any spaces at the beginning and end of audit trail file path names

• Replacing any audit trail file path names (denoted by the specification including special characters) with their
actual path names of audit trail files that are used as input information

10. If the ADB_AUDITREAD function is specified in the CREATE VIEW statement, the audit trail file path names are
not checked when the CREATE VIEW statement is executed. The audit trail file path names are checked when an
SQL statement in which a defined viewed table is specified is executed. If there are path names that violate the rules,
the SQL statement results in an error.

(5) Notes
1. Before HADB administrators can access all directories included in the absolute paths of all audit trail files, set read

and execution privileges for those directories. For example, if audit trail files are stored in the /adbmanager/
audit directory, set read and execution privileges for the /, /adbmanager, and /adbmanager/audit
directories so that HADB administrators can access these directories. Also, set read privilege for the audit trail files
so that HADB administrators can access them.

2. If an SQL statement in which the ADB_AUDITREAD function is specified is executed, the HADB server opens the
audit trail files specified by audit-trail-file-path-name-specification to read the audit trails. Therefore, during
execution of an SQL statement in which the ADB_AUDITREAD function is specified, do not move or delete any
files specified by audit-trail-file-path-name-specification.

3. If the path name of an audit trail file includes special characters, the path names of search-target audit trail files are
extracted during the preprocessing of the SQL statement. If audit trail files that are extracted during the preprocessing
of the SQL statement do not exist during execution of the SQL statement, the files are not to be searched (the SQL
statement does not result in an error).

4. Some of the rules for specifying the ADB_AUDITREAD function are checked during execution (rather than the
preprocessing) of the SQL statement. The descriptions of the rules to be checked during execution of the SQL
statement include the sentence This rule is checked during execution of the SQL statement, not during preprocessing
of the SQL statement.

(6) Examples
Example 1

Output a list of HADB users who accessed the HADB server in the term from April 1, 2017 to April 30, 2017.
Assume that the audit trail files containing the audit trails that were output in the term from April 1, 2017 to April
30, 2017 are stored in the /audit directory.

SELECT DISTINCT "USER_NAME"
    FROM TABLE(ADB_AUDITREAD(MULTISET['/audit/*.aud'])) "DT"
       WHERE "EXEC_TIME" BETWEEN TIMESTAMP'2017/04/01 00:00:00.000000'
                             AND TIMESTAMP'2017/04/30 23:59:59.999999'

In the preceding example, the underlined portion indicates the specification of the ADB_AUDITREAD function.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 331



USER_NAME stores the authorization identifier of an HADB user. EXEC_TIME stores the time at which the HADB
user performed an operation.

Example 2
Output a list of HADB users who accessed the HADB server in the term from April 1, 2017 to April 30, 2017.
Assume that the audit trails that were output in the term from April 1, 2017 to April 30, 2017 are stored in the
directory specified for the adb_audit_log_path operand in the server definition.

SELECT DISTINCT "USER_NAME"
    FROM TABLE(ADB_AUDITREAD()) "DT"
       WHERE "EXEC_TIME" BETWEEN TIMESTAMP'2017/04/01 00:00:00.000000'
                             AND TIMESTAMP'2017/04/30 23:59:59.999999'

In the preceding example, the underlined portion indicates the specification of the ADB_AUDITREAD function.

7.15.3 ADB_CSVREAD function
Converts the data in a CSV file into a table format such that the data can be retrieved by the HADB server.

Note
• For an overview of retrieving data from CSV files, see Retrieving data from CSV files in the HADB

Setup and Operation Guide.

• For details about the operations for retrieving data from CSV files, see Handling of data retrieval from
CSV files in the HADB Setup and Operation Guide.

(1) Specification format
ADB_CSVREAD-function ::=
    [MASTER.]ADB_CSVREAD(CSV-file-path-name-specification,function-option-specificati
on)
 
        CSV-file-path-name-specification ::= multiset-value-expression
 
        function-option-specification ::= 'function-option[;function-option]...[;]'
          function-option ::= {compression-format-option|specification-column-option
                              |binary-string-format-option|enclosing-character-specif
ication-option
                              |delimiting-character-specification-option}

(2) Explanation of specification format
CSV-file-path-name-specification:

Specifies the path names of the CSV files containing the input data for the ADB_CSVREAD function. The path names
are specified in the form of a multiset value expression. For details about multiset value expressions, see 7.16 
Multiset value expression.
The following rules apply:

• The data type of the result of the multiset value expression must be character string data.

• Absolute paths must be specified for the path names of the CSV files specified in CSV-file-path-name-
specification.
This rule is checked during execution of the SQL statement, not during preprocessing of the SQL statement.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 332



• Existing files must be specified in the path names of the CSV files specified in CSV-file-path-name-specification.
This rule is checked during execution of the SQL statement, not during preprocessing of the SQL statement.

function-option-specification:
Specifies one or more of the following options to the ADB_CSVREAD function:

• The compression format option

• The specification column option

• The binary string format option

• The enclosing character specification option

• The delimiting character specification option

The details of each option are described in (3) Compression format option and the following subsections.
The following rules apply:

• function-option-specification is specified in the form of a character string literal. For details about the description
format of character string literals, see 6.3.2 Description format of literals.

• The entire function-option-specification must be enclosed in single quotation marks (').

• If multiple function options are specified, they must be separated by semicolons (;).

• Function options can be specified in any order.

• Function options must be unique.

• The half-width lowercase letters specified in function options are treated as half-width uppercase letters.
However, for enclosing characters and delimiting characters, half-width lowercase letters and half-width
uppercase letters are distinguished.

• A separator can be specified before and after each option and special character (,, -, :, ;, =, NL, CR, half-
width space, and full-width space).

(3) Compression format option
The compression format option specifies the compression format of the CSV files. The compression format option
cannot be omitted.

(a) Specification format

COMPRESSION_FORMAT= {GZIP | NONE}

(b) Explanation of specification format

GZIP:
Specify this keyword if the CSV file is compressed in GZIP format.

NONE:
Specify this keyword if the CSV file is not compressed.

(4) Specification column option
The specification column option specifies the field data numbers of field data in CSV files. Field data numbers are
numbers representing the order of the field data in the CSV file. Field data number 1 (field 1 data) corresponds to data
in the first field in the records, field data number 2 (field 2 data) corresponds to data in the second field, and so on.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 333



Example:

The ADB_CSVREAD function extracts the field data corresponding to the field data number specified here.

(a) Specification format

FIELD_NUM=filed-data-number-specification[,filed-data-number-specification]...

(b) Explanation of specification format

filed-data-number-specification:
Specifies the field data numbers of the field data to be extracted.
To specify multiple field data numbers, separate them with commas (,). You can also specify a range of field data
numbers such as 1-5.
Example:

FIELD_NUM=3            ...1
FIELD_NUM=1,3,4,6      ...2
FIELD_NUM=1,3-5,8-10   ...3

1. The field data in field 3 will be extracted.

2. The field data in fields 1, 3, 4, and 6 will be extracted.

3. The field data in fields 1, 3 to 5, and 8 to 10 will be extracted.

(c) Rules
1. The number of columns of field data to be extracted must be the same as the number of columns in the table function

column list.
Example:

For details about table function column lists, see (2) Explanation of specification format in 7.11.1 Specification
format for table references.

2. Specify field data numbers as unsigned integer literals from 1 to 30,000.

3. Field data numbers must be unique and cannot overlap.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 334



Examples that generate errors:

FIELD_NUM=1,2,2 ← Duplication of 2 causes an error.
FIELD_NUM=1,1-3 ← Duplication of 1 causes an error.

4. No more than 1,000 columns of field data can be targeted.
Example that generates an error:

FIELD_NUM=1-1001 ← Having too many (1,001) field data columns targeted causes an e
rror.

5. An error results if there is no field data corresponding to a field data number. For example, the code fragments below
generate an error when there are five columns of field data.
Examples that generate errors:

FIELD_NUM=6
FIELD_NUM=1-7

Because there are only five columns of field data, you cannot specify field data number 6 or higher.
Note that this rule is checked during execution of the SQL statement, not during preprocessing of the SQL statement.

6. If specification-column-option is omitted, the field data numbers from 1 to the number of columns in the table
function column list are assumed. In cases where there is no field data corresponding to a field data number, the null
value is stored in the table function derived table.
Example:

SELECT * FROM TABLE(ADB_CSVREAD(MULTISET['/dir/file.csv.gz'],
                               'COMPRESSION_FORMAT = GZIP;'))
                AS "T1" ("C1" INTEGER,"C2" INTEGER,"C3" INTEGER,
                         "C4" INTEGER,"C5" INTEGER)

The underlined portion is the table function column list specification.

There are three columns of field data in the CSV file, but five columns in the table function column list. As a result,
null values are stored in columns C4 and C5 of the table function derived table.

(5) Binary string format option
The binary string format option specifies the format of binary data (BINARY or VARBINARY) in the CSV file.

(a) Specification format

BINARY_STRING_FORMAT=filed-data-number-specification:binary-format-specification
                  [,filed-data-number-specification:binary-format-specification]...
 
  binary-format-specification ::= {HEX | BIN}

7. Constituent Elements

Hitachi Advanced Database SQL Reference 335



(b) Explanation of specification format

filed-data-number-specification:
Specifies the field data numbers of the binary data in the CSV file. For the field data number specification rules, see
(4) Specification column option.
The field data numbers specified here must be among the field data numbers specified in the specification column
option (FIELD_NUM).
Example:

FIELD_NUM=1-5;BINARY_STRING_FORMAT=1:BIN,4-5:HEX;

If the specification column option is omitted, specify integers that are less than or equal to the number of columns
in the table function derived table.

binary-format-specification:
Specifies the format of the binary data.

HEX:
Specify this when the binary data is in hexadecimal format.

BIN:
Specify this when the binary data is in binary format.

The following is an example of specifying the binary string format option.

Example:

SELECT * FROM TABLE(ADB_CSVREAD(MULTISET['/dir/file.csv.gz'],
                               'COMPRESSION_FORMAT = GZIP;
                                BINARY_STRING_FORMAT=3:BIN,4:HEX;'))
                AS "T1" ("C1" INTEGER,"C2" INTEGER,
                         "C3" BINARY(1),"C4" BINARY(1),"C5" BINARY(1))

The underlined portion is the binary string format option specification.

Explanation

• The field data in columns C3 to C5 is binary data.

• Because the binary data in column C3 is in binary format, BIN is specified in the binary format specification.

• Because the binary data in column C4 is in hexadecimal format, HEX is specified in the binary format
specification.

• Because the binary data in column C5 is in hexadecimal format, the binary format specification can be omitted
(HEX is the default value).

7. Constituent Elements

Hitachi Advanced Database SQL Reference 336



(c) Rules
1. When binary data columns are specified in the table function derived table and the binary string format option is

omitted, the following specifications are assumed:

• The field data numbers corresponding to the binary data in the table function derived table are assumed for the
field data number specification

• HEX is assumed for the binary format specification

2. The data types of the columns of the table function derived table corresponding to the field data numbers must be
binary (BINARY or VARBINARY).

(6) Enclosing character specification option
The enclosing character specification option specifies the enclosing character that is used to enclose field data items in
the CSV file.

(a) Specification format

ENCLOSING_CHAR={enclosing-character | NONE}

(b) Explanation of specification format

enclosing-character:
Specifies the enclosing character that is to be used to enclose field data items in the CSV file. You can specify a
single-byte character for enclosing-character.
Note the following points concerning the enclosing character:

• Characters such as the following are not suitable as the enclosing character because they are likely to overlap
with characters in the field data in the CSV file:
Sign (+, -), forward slash (/), colon (:), period (.), |, \, [, ], (, ), {, }, ~

• Do not specify the same character for enclosing-character as the character used for the separator. The separator
character will not be recognized as an enclosing character (it is treated as the separator). As a result, if you specify
the separator character as the enclosing character, there is a risk of unintended consequences as in the following
example.
Example where a single-byte space, which is the separator, is specified as the enclosing character (Δ represents
a single-byte space)

'...;ENCLOSING_CHAR=∆;'

In this example, HADB assumes that the semicolon (;) is specified as the enclosing character.

NONE:
Specify NONE if no enclosing character is used in the field data in the CSV file.

Important
Do not specify NONE if there are newline characters or the same character as that specified for the
delimiting character in the field data. Specifying NONE might produce unintended consequences.

• If the field data contains a newline character, the characters to the newline character will be treated
as a single line of data.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 337



• If the field data contains the same character as that specified for the delimiting character, it will be
treated as a delimiting character, not field data.

(c) Rules
1. If enclosing-character-specification-option is omitted, the double quotation mark (") is assumed as the enclosing

character.

2. The following characters are not permitted as the enclosing character:

• Space, tab, asterisk (*), newline (0x0A), carriage return (0x0D)

• The delimiting character specified in delimiting-character-specification-option

3. To define a single quotation mark (') as an enclosing character, specify two single quotation marks. The specification
is as follows:

ENCLOSING_CHAR=''

(7) Delimiting character specification option
The delimiting character specification option specifies the delimiting character that is used to delimit field data items
in the CSV file.

(a) Specification format

DELIMITER_CHAR={delimiting-character | TAB | SP}

(b) Explanation of specification format

delimiting-character:
Specifies the delimiting character that is to be used to delimit field data items in the CSV file. You can specify a
single-byte character for delimiting-character.
Note the following points concerning the delimiting character:

• Characters such as the following are not suitable as the delimiting character because they are likely to overlap
with characters in the field data in the CSV file:
Sign (+, -), forward slash (/), colon (:), period (.), |, \, [, ], (, ), {, }, ~

• Do not specify the same character for delimiting-character as the character used for the separator. The separator
character will not be recognized as a delimiting character (it is treated as the separator). As a result, if you specify
the separator character as the delimiting character, there is a risk of unintended consequences as in the following
example.
Example where a single-byte space, which is the separator, is specified as the delimiting character (Δ represents
a single-byte space)

'...;DELIMITER_CHAR=∆;'

In this example, HADB assumes that the semicolon (;) is specified as the delimiting character.

TAB:
Specify TAB when the field data in the CSV file is delimited by tabs.

SP:
Specify SP when the field data in the CSV file is delimited by spaces.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 338



(c) Rules
1. If delimiting-character-specification-option is omitted, the comma (,) is assumed as the delimiting character.

2. The following characters are not permitted as the delimiting character:

• Alphabetic characters (A to Z, a to z), digits (0 to 9), underscore (_), double quotation marks ("), space, tab,
asterisk (*), newline (0x0A), carriage return (0x0D)

• The enclosing character specified in enclosing-character-specification-option

3. To define a single quotation mark (') as a delimiting character, specify two single quotation marks. The specification
is as follows:

DELIMITER_CHAR=''

(8) Rules

(a) Rules for the ADB_CSVREAD function
If the result of the multiset value expression specified in the CSV file path name specification is the empty set, the result
of the table function derived table will be the empty set.

(b) Rules for CSV files
1. Each CSV file must be one of the following types:

• Files compressed in GZIP format by using the gzip command of the OS

• Output data files exported in GZIP format by using the adbexport command

• CSV files that are not compressed

This rule is checked during execution of the SQL statement, not during preprocessing of the SQL statement.

2. The HADB administrator must have read privileges for the CSV files. Grant the HADB administrator read and
execute privileges to the directories where the CSV files are stored.
This rule is checked during execution of the SQL statement, not during preprocessing of the SQL statement.

3. Leading or trailing spaces around CSV file path names are removed before the files are processed.
Examples:
' /dir/file.csv.gz' → '/dir/file.csv.gz'
'/dir/file.csv.gz ' → '/dir/file.csv.gz'
' /dir/file.csv.gz ' → '/dir/file.csv.gz'
' /dir/fiΔ le.csv.gz ' → '/dir/fiΔle.csv.gz'
Δ: Space

Important
Do not specify a CSV file path name that begins or ends with spaces. If you specify a path name that
begins or ends with spaces, the spaces are removed. Therefore, the specified path name might be changed
to an unintended path name.

4. The length of the path name of the CSV file must not exceed 510 bytes, excluding leading and trailing spaces around
the path name.
This rule is checked during execution of the SQL statement, not during preprocessing of the SQL statement.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 339



(c) Rules for CSV file formats
1. Each line of the CSV file corresponds to one row of the table function derived table. Lines are terminated with the

newline character X'0A' (LF), X'0D0A' (CRLF), or X'00'.

2. Specify the delimiting character to delimit field data items.

3. A character string surrounded by the enclosing character is treated as field data.

4. The data in the CSV file must use the character encoding specified in the environment variable ADBLANG.

5. Do not specify the EOF control character in the CSV file.

6. When specifying an enclosing character, specify the delimiting character and enclosing character contiguously, with
no spaces between them. Spaces between the delimiting character and enclosing character will be treated as field
data. As a result, the enclosing character might be treated as part of the field data, or an error might be generated
due to invalid specification of the enclosing character.
Note that this rule is checked during execution of the SQL statement, not during preprocessing of the SQL statement.

7. To specify the enclosing character inside field data, write it twice in a row.
Example when the enclosing character is a single quotation mark ('):
'AB''CD' (field data) → AB'CD (data stored in the table function derived table)

8. When specifying the enclosing character as the first character of field data (excluding leading single-byte spaces or
tabs), do not omit the first enclosing character.
Example when the enclosing character is a single quotation mark ('):
'''AB' (field data) → 'AB (data stored in the table function derived table)

9. To specify the delimiting character inside field data, you must surround the field data with the enclosing character.
Otherwise, the character will be treated as a delimiting character rather than part of the field data, which might cause
an error due to the fact that the specified field no longer exists.
Examples with double quotation marks (") as the enclosing character and the comma (,) as the delimiting character:

1,"foo,bar",3

In the above example, three columns of field data are recognized: 1, foo,bar, and 3.

1,foo,bar,3

In the above example, four columns of field data are recognized: 1, foo, bar, and 3.
Note that this rule is checked during execution of the SQL statement, not during preprocessing of the SQL statement.

10. The table below shows examples of field data character strings and the corresponding data stored in the table function
derived table. In these examples, the comma (,) is used as the delimiting character.

Field data character string Data stored in the table function derived table

With double quotation marks (")
specified in the enclosing character
specification option

With NONE specified in the enclosing
character specification option

ABC,DEF • ABC
• DEF

• ABC
• DEF

"ABC""","DEF" • ABC"
• DEF

• "ABC"""
• "DEF"

"ABC,DEF" • ABC,DEF • "ABC
• DEF"

"ABC,DEF Error • "ABC

7. Constituent Elements

Hitachi Advanced Database SQL Reference 340



Field data character string Data stored in the table function derived table

With double quotation marks (")
specified in the enclosing character
specification option

With NONE specified in the enclosing
character specification option

• DEF

11. The field data in the CSV file is converted to the data corresponding to the data type of the respective column of the
table function derived table. The data types of the columns of the table function derived table must therefore be
compatible with the description format of the field data. For details about the field data description rules, see (4) 
Storage assignment to a table function derived table (in the case of the ADB_CSVREAD function) in 6.2.2 Data
types that can be converted, assigned, and compared.
Note that this rule is checked during execution of the SQL statement, not during preprocessing of the SQL statement.

(9) Notes
1. When an SQL statement in which the ADB_CSVREAD function is specified is executed, the HADB server opens

the CSV file to read data. The CSV file must therefore not be edited during execution of the SQL statement.

2. No field data is extracted into any columns specified in the table function column list that do not affect the retrieval
results (the columns not used in the query). The specifications pertaining to such columns are automatically removed
from the SQL statement.
Example:

In the above example, columns C2 and C5 do not affect the retrieval results. Before execution, the SELECT statement
is therefore converted to a statement in which the specifications pertaining to columns C2 and C5 are removed.
Specifically, the portions that are shaded in blue are deleted when the SELECT statement is run.

Note
• The following specifications are targeted for removal:

• Columns specified in the table function column list
• Specifications of field data numbers in the specification column option
• Binary string format option specifications

• Once the specifications pertaining to the extraneous columns are removed, only the field data for
the remaining columns is targeted for extraction. Furthermore, only the field data for the remaining
columns is subject to the rules pertaining to CSV files described above.

• If the specifications of all the columns in the table function derived table are targeted for removal,
the specifications of all the columns corresponding to the field data numbers specified in the
specification column option will be removed, except for the lowest-numbered one.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 341



3. Some of the rules for specifying the ADB_CSVREAD function are checked during execution of the SQL statement
(not during preprocessing of the SQL statement). The descriptions of these rules above include the sentence This
rule is checked during execution of the SQL statement, not during preprocessing of the SQL statement.

(10) Examples
Example 1

Extract the following data from a CSV file (/dir/file.csv.gz) compressed in GZIP format:

• Customer ID (USERID)

• Customer name (NAME)

• Age (AGE)

SELECT "USERID","NAME","AGE"
    FROM TABLE(ADB_CSVREAD(MULTISET ['/dir/file.csv.gz'],
                          'COMPRESSION_FORMAT=GZIP;'))
         AS "USERSLIST" ("USERID" CHAR(5),
                         "NAME" VARCHAR(100),
                         "AGE" INTEGER,
                         "COUNTRY" VARCHAR(100),
                         "INFORMATION" VARBINARY(10))

The underlined portion indicates the specification of the ADB_CSVREAD function.

Example 2
Extract the following data from a CSV file (/dir/file.csv.gz) compressed in GZIP format:

• Customer name (NAME)

• Country of origin (COUNTRY)

• Various bit flags (INFORMATION)

SELECT "NAME","COUNTRY",BIN("INFORMATION")
    FROM TABLE(ADB_CSVREAD(MULTISET ['/dir/file.csv.gz'],
                          'COMPRESSION_FORMAT=GZIP;
                           FIELD_NUM=2,4,5;
                           BINARY_STRING_FORMAT=5:BIN;
                           ENCLOSING_CHAR=";
                           DELIMITER_CHAR=,;'))
         AS "USERSLIST" ("NAME" VARCHAR(100),
            "COUNTRY" VARCHAR(100),
            "INFORMATION" VARBINARY(10))

The underlined portion indicates the specification of the ADB_CSVREAD function.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 342



Example 3
Extract the following data from a CSV file (/dir/file.csv):

• Customer ID (USERID)

• Customer name (NAME)

• Age (AGE)

SELECT "USERID","NAME","AGE"
    FROM TABLE(ADB_CSVREAD(MULTISET ['/dir/file.csv'],
                          'COMPRESSION_FORMAT=NONE;'))
         AS "USERSLIST" ("USERID" CHAR(5),
                         "NAME" VARCHAR(100),
                         "AGE" INTEGER,
                         "COUNTRY" VARCHAR(100),
                         "INFORMATION" VARBINARY(10))

The underlined portion indicates the specification of the ADB_CSVREAD function.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 343



7.16 Multiset value expression

This section describes multiset value expressions.

7.16.1 Specification format and rules for multiset value expressions
A multiset value expression is used to collect multiple element values into a single data set. A multiset value expression
can be specified in the following locations:

• audit-trail-file-path-name-specification in the ADB_AUDITREAD function
For details about the ADB_AUDITREAD function, see 7.15.2 ADB_AUDITREAD function.

• CSV-file-path-name-specification in the ADB_CSVREAD function
For details about the ADB_CSVREAD function, see 7.15.3 ADB_CSVREAD function.

(1) Specification format
multiset-value-expression ::= {multiset-value-constructor-by-enumeration | multiset-v
alue-constructor-by-query}
 
  multiset-value-constructor-by-enumeration ::= MULTISET[multiset-element[,multiset-e
lement]...]
  multiset-value-constructor-by-query ::= MULTISET table-subquery

(2) Explanation of specification format

Important
To specify a multiset value expression in the ADB_AUDITREAD function, specify multiset-value-
constructor-by-enumeration. You cannot specify multiset-value-constructor-by-query.

To specify a multiset value expression in the ADB_CSVREAD function, note the following:

• To specify individual CSV file names in the ADB_CSVREAD function, specify multiset-value-
constructor-by-enumeration.

• To use a table subquery to determine the CSV file names to be specified in the ADB_CSVREAD function,
specify multiset-value-constructor-by-query.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 344



• multiset-value-constructor-by-enumeration

MULTISET[multiset-element[,multiset-element]...]:

Important

■ To specify multiset-value-constructor-by-enumeration in the ADB_AUDITREAD function
For multiset-element, specify in the character string literal format the path names of the audit trail files to be
specified in the ADB_AUDITREAD function. For details about character string literals, see 6.3 Literals.
The following is an example:

MULTISET['/audit/adbaud-201707*.aud','/audit/adbaud-201708*.aud']

The following rules apply:

• A maximum of 1,000 multiset elements (path names of audit trail files) can be specified.

■ To specify multiset-value-constructor-by-enumeration in the ADB_CSVREAD function
multiset-element specifies the path name of a CSV file to be specified in the ADB_CSVREAD function in the
form of a character string literal. For details about character string literals, see 6.3 Literals.
The following is an example:

MULTISET['/dir/file1.csv.gz','/dir/file2.csv.gz','/dir/file3.csv.gz']

The example above specifies three CSV files.
The following rules apply:

• No more than 1,000 multiset elements (CSV file path names) can be specified.

• multiset-value-constructor-by-query

MULTISET table-subquery:
Specifies the path names of the CSV files to be specified in the ADB_CSVREAD function in the form of a table
subquery. For details about table subqueries, see 7.3 Subqueries.
The following is an example:

MULTISET (SELECT "FILE_NAME" FROM "FILELIST"
              WHERE "FILE_DATE" BETWEEN '2012/01/01' AND '2012/12/31')

The above example specifies CSV file names (FILE_NAME) for which the FILE_DATE column in the file
management table (FILELIST) is between 2012/01/01 and 2012/12/31.
The following rules apply:

• The result of the table subquery must be one column.

• The table subquery cannot contain an external reference column.
Example that generates an error:
The underlined portion indicates the external reference column specification.

SELECT * FROM "T0"
  WHERE EXISTS (SELECT * FROM "T1",
                  TABLE(ADB_CSVREAD(MULTISET (SELECT "T2"."C1"
                                                FROM "T2"

7. Constituent Elements

Hitachi Advanced Database SQL Reference 345



                                                  WHERE "T2"."C2" = "T0"."C2"
),
                                   'COMPRESSION_FORMAT=GZIP;'))
                  AS "TF1" ("TFC1" INTEGER,"TFC2" VARCHAR(32)))

(3) Examples
Example 1: To specify the path names of audit trail files in the ADB_AUDITREAD function

Output a list of HADB users who accessed the HADB server in the term from April 1, 2017 to April 30, 2017.
Assume that the audit trails that were output in the term from April 1, 2017 to April 30, 2017 are stored in the /
audit directory.

SELECT DISTINCT "USER_NAME"
    FROM TABLE(ADB_AUDITREAD(MULTISET['/audit/*.aud'])) "DT"
       WHERE "EXEC_TIME" BETWEEN TIMESTAMP'2017/04/01 00:00:00.000000'
                             AND TIMESTAMP'2017/04/30 23:59:59.999999'

In the preceding example, the underlined portion indicates a multiset value expression (multiset-value-constructor-
by-enumeration).

Example 2: To specify the path names of CSV files in the ADB_CSVREAD function
Extract the following data from the GZIP-compressed CSV files /dir/file1.csv.gz, /dir/
file2.csv.gz, and /dir/file3.csv.gz:

• Customer ID (USERID)

• Customer name (NAME)

• Age (AGE)

SELECT "USERID","NAME","AGE"
    FROM TABLE(ADB_CSVREAD(MULTISET ['/dir/file1.csv.gz','/dir/file2.csv.gz','/dir
/file3.csv.gz'],
                          'COMPRESSION_FORMAT=GZIP;'))
         AS "USERSLIST" ("USERID" CHAR(10),"NAME" VARCHAR(100),"AGE" INTEGER)

In the preceding example, the underlined portion indicates a multiset value expression (multiset-value-constructor-
by-enumeration).

Example 3: To use a table subquery to specify the path names of CSV files in the ADB_CSVREAD function
Extract customer information data that was registered in 2010. When the data is extracted, the following conditions
hold:

• The customer information data is stored in CSV-format files.

• The CSV files are compressed in GZIP format.

• The CSV files are managed in the CSV file management table (FILELIST)

• The absolute path name (FILE_NAME) of each CSV file and the date each file was registered (FILE_DATE)
are stored in the CSV file management table.

SELECT "USERID","NAME","AGE"
    FROM TABLE(ADB_CSVREAD(MULTISET (SELECT "FILE_NAME" FROM "FILELIST"
                                       WHERE "FILE_DATE" BETWEEN '2010/01/01'
                                                             AND '2010/12/31'),
                          'COMPRESSION_FORMAT=GZIP;'))
         AS "USERSLIST" ("USERID" CHAR(10),"NAME" VARCHAR(100),"AGE" INTEGER)

In the preceding example, the underlined portion indicates a multiset value expression (multiset-value-constructor-
by-query).

7. Constituent Elements

Hitachi Advanced Database SQL Reference 346



7.17 Table value constructors

This section describes table value constructors.

7.17.1 Specification format and rules for table value constructors
For a table value constructor, specify the rows that make up a derived table (a set of row value constructors).

(1) Specification format
table-value-constructor ::= VALUES row-value-constructor[,row-value-constructor]...
 
  row-value-constructor ::= (row-value-constructor-element[,row-value-constructor-ele
ment]...)
    row-value-constructor-element ::= {value-specification | scalar-function-CAST | s
calar-function-CONVERT}

(2) Explanation of specification format
row-value-constructor:

row-value-constructor ::= (row-value-constructor-element[,row-value-constructor-el
ement]...)
  row-value-constructor-element ::= {value-specification | scalar-function-CAST | 
scalar-function-CONVERT}

For a row value constructor, specify one or more row value constructor elements. The value of each row value
constructor element becomes the value of each column on a row of a derived table.
Examples:

value-specification:
Specify row value constructor elements in the form of a value specification. For details about value
specifications, see 7.21 Value specification.

scalar-function-CAST:
Specify row value constructor elements by using the scalar function CAST. For details about the scalar function
CAST, see 8.12.3 CAST.
The following rules apply:

• For the data to be converted, only NULL or a dynamic parameter can be specified.

scalar-function-CONVERT:
Specify row value constructor elements by using the scalar function CONVERT. For details about the scalar
function CONVERT, see 8.12.5 CONVERT.
The following rules apply:

• For the data to be converted, only NULL or a dynamic parameter can be specified.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 347



• A format specification cannot be specified.

(3) Rules
1. Make sure that each row value constructor has the same number of row value constructor elements.

Example of correct specification: VALUES (11,12,13),(21,22,23),(31,32,33)
Example of incorrect specification: VALUES (11,12,13),(21,22),(31,32,33,34)

2. The i-th row value constructor elements of all row value constructors must have data types that can be compared
mutually. For details about data types that can be compared, see (1) Data types that can be compared in 6.2.2 Data
types that can be converted, assigned, and compared.
Example of correct specification: VALUES (11,12,13),(21.1,22.2,23.3),(1.0E+1,1.0E+2,1.0E
+3)
Example of incorrect specification: VALUES (11,12,13),('AB','CD',23)
Note, however, that the following items of data cannot be compared:

• Date data and the predefined input representation of a date

• Time data and the predefined input representation of a time

• Time stamp data and the predefined input representation of a time stamp

3. The data type and length of the result for the i-th column derived by a table value constructor is determined by the
data type of the i-th row value constructor element of each row value constructor. For details, see 7.20.2 Data types
of the results of value expressions.

4. A maximum of 30,000 row value constructors can be specified.

5. The maximum total number of table value constructors and query specifications in one SQL statement is 1,024.

6. A maximum of 1,000 row value constructor elements can be specified in each row value constructor.

7. The dynamic parameter cannot be specified by itself as a row value constructor element.

(4) Examples
Example 1

In this example, you run the SELECT statement with table value constructors specified.

SELECT "C1","C2","C3" FROM (VALUES (11,12,13),
                                   (21,22,23)
                           ) AS "V1"("C1","C2","C3")

The underlined portion is the specification of table value constructors.
Example of execution results

Example 2
In this example, you retrieve a list of customers (customer IDs and names) who have purchased a product whose
product code (PUR-CODE) is P001 (excluding duplicates) from the sales history table (SALESLIST) and
customer table (USERSLIST) derived by table value constructors.

SELECT DISTINCT "USERSLIST"."USERID","NAME"
  FROM "SALESLIST"
         INNER JOIN
         (VALUES('U001','Maria'),('U002','Nancy')) AS "USERSLIST"("USERID","NAME")

7. Constituent Elements

Hitachi Advanced Database SQL Reference 348



            ON "USERSLIST"."USERID"="SALESLIST"."USERID"
        WHERE "SALESLIST"."PUR-CODE"='P001'

The underlined portion is the specification of table value constructors.

Example 3
In this example, you insert multiple data items into the customer table (USERSLIST).

INSERT INTO "USERSLIST"("USERID","AGE")
    SELECT * FROM (VALUES('USER001',10),('USER002',20))

The underlined portion is the specification of table value constructors.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 349



7.18 Search conditions

This section describes search conditions.

7.18.1 Specification format and rules for search conditions
Search conditions specify criteria for retrieving data. A logical operation is performed based on the specified search
conditions, and the system retrieves only those rows for which the result of the evaluation of the search conditions is
TRUE. Search conditions can be specified in the following locations:

• WHERE clause

• HAVING clause

• CASE expression

• ON search condition of a joined table

(1) Specification format
search-condition ::= {[NOT] {(search-condition)|predicate|logical-value-specification
}
              |search-condition OR {(search-condition)|predicate|logical-value-specif
ication}
              |search-condition AND {(search-condition)|predicate|logical-value-speci
fication}}
 
  logical-value-specification ::= {TRUE|FALSE}

(2) Explanation of specification format
NOT:

If NOT is specified, values that do not satisfy the search conditions become the target of retrieval. For example, if
you specify NOT "USERID"='U00358', USERIDs other than U00358 are retrieved.

search-condition:
To specify multiple search conditions, connect the search conditions with AND or OR. A mixture of ANDs and ORs
can be specified. The meanings of AND and OR are as follows:

• search-condition-1 AND search-condition-2
Rows that satisfy both search-condition-1 and search-condition-2 will be subject to retrieval.

• search-condition-1 OR search-condition-2
Rows that satisfy either search-condition-1 or search-condition-2 will be subject to retrieval.

predicate:
For details about predicates, see 7.19 Predicates.

logical-value-specification:
TRUE: If TRUE is specified for logical-value-specification, the result of logical value specification is true.
FALSE: If FALSE is specified for logical-value-specification, the result of logical value specification is false.

The following are examples of specifying search conditions.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 350



Examples:
C1, C2, and C3 are column names.

• Specification examples using comparison predicates

"C1">=100
"C1"=?
"C2"=CURRENT_DATE
SUBSTR("C3",2,3)='150'

• Specification examples using the IN predicate, BETWEEN predicate, LIKE predicate, and NULL predicate

"C1" IN (10,20)
"C1" BETWEEN 100 AND 200
"C3" LIKE 'M%'
"C3" IS NULL

• Examples specifying multiple search conditions

"C1"=100 AND "C2">=DATE'2011-09-06'
"C1" IN (10,20) AND "C2">=DATE'2011-09-06'
"C1"=10 OR "C1"=20
"C2">=DATE'2011-09-04' AND ("C1"=10 OR "C2"=20)

The order of evaluation of search conditions is: items inside parentheses, NOT, AND, OR.

(3) Rules
1. A maximum of 255 logical operations can be specified in an SQL search condition.

2. The following figure shows the results of performing each logical operation.

Figure 7-3: Results of performing logical operations

(4) Examples
Search conditions are illustrated in the following examples.

Example 1
From the sales history table (SALESLIST), this example retrieves the customer ID (USERID), product code (PUR-
CODE), and date of purchase (PUR-DATE) for customers who purchased product code P001 or P003 on or after
September 4, 2011.

SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-04'
        AND ("PUR-CODE"='P001' OR "PUR-CODE"='P003')

The underlined portion indicates the search conditions specified in the WHERE clause.

Example 2
Using the data in the sales history table (SALESLIST), this example determines the sum and average of the quantities
purchased on or after September 3, 2011 by product code (PUR-CODE).

7. Constituent Elements

Hitachi Advanced Database SQL Reference 351



Furthermore, retrieve only the product codes for which the sum of the quantities purchased is 20 or fewer.

SELECT "PUR-CODE",SUM("PUR-NUM"),AVG("PUR-NUM")
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-03'
        GROUP BY "PUR-CODE"
        HAVING SUM("PUR-NUM")<=20

The underlined portion indicates the search condition specified in the HAVING clause.

Example 3
Insert a row from the products table (PRODUCTLIST) into the new products table (PRODUCTLIST_NEW). When
inserting the row, change the product prices (PRICE) as follows:

• If the product code (PCODE) is P001: reduce the price by 10%

• If the product code is P002: reduce the price by 20%

• Otherwise: reduce the price by 30%

INSERT INTO "PRODUCTLIST_NEW"("PCODE","PRICE")
    SELECT "PCODE",CASE WHEN "PCODE"='P001' THEN "PRICE"*0.9
                        WHEN "PCODE"='P002' THEN "PRICE"*0.8
                        ELSE "PRICE"*0.7
                   END
        FROM "PRODUCTLIST"

The underlined portions indicate the search conditions specified in the CASE expression.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 352



7.19 Predicates

The following lists the predicates that can be used. This section describes the functions and specification formats of
these predicates.

• BETWEEN predicate

• EXISTS predicate

• IN predicate

• LIKE predicate

• LIKE_REGEX predicate

• NULL predicate

• Comparison predicate

• Quantified predicate

These predicates can be specified in search conditions.

7.19.1 BETWEEN predicate
The BETWEEN predicate is used to search for data within a specific range.

(1) Specification format
BETWEEN-predicate ::= value-expression-1 [NOT] BETWEEN value-expression-2 AND value-e
xpression-3

(2) Explanation of specification format
value-expression-1:

Specifies the column to be evaluated by the BETWEEN predicate. It is specified in the form of a value expression.
For details about value expressions, see 7.20 Value expression.

NOT:
If NOT is specified, values that do not satisfy the conditions specified following BETWEEN will become the target
of retrieval.

BETWEEN value-expression-2 AND value-expression-3:
Specify a search range by specifying the lower and upper limits. These are specified in the form of value expressions.
Specify the lower limit of the search range in value-expression-2, and the upper limit of the search range in value-
expression-3.

(3) Evaluation of the predicate
The BETWEEN predicate is TRUE for those rows that satisfy the following condition:

value-expression-2 <= value-expression-1 AND value-expression-1 <= value-expression-3

The following BETWEEN predicates are equivalent:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 353



• value-expression-1 NOT BETWEEN value-expression-2 AND value-expression-3

• NOT (value-expression-1 BETWEEN value-expression-2 AND value-expression-3)

(4) Rules
1. For value-expression-1, you cannot specify a value expression that is composed solely of a dynamic parameter.

2. The data types that can be specified for value-expression-1, value-expression-2, and value-expression-3 are numeric
data, character string data, and datetime data.

3. Specify value-expression-1, value-expression-2 and value-expression-3 such that the data types of the results of the
three value expressions are all data types that can be compared. For details about data types that can be compared,
see (1) Data types that can be compared in 6.2.2 Data types that can be converted, assigned, and compared.
However, if you specify the predefined input representation of a date, time, or time stamp for value-expression-1,
you cannot specify datetime data for value-expression-2 and value-expression-3. For information about predefined
input representations, see 6.3.3 Predefined character-string representations.

(5) Examples
Example 1

From the sales history table (SALESLIST), this example retrieves the customer ID (USERID), product code (PUR-
CODE), and date of purchase (PUR-DATE) for customers who purchased products from September 4, 2011 to
September 5, 2011.

SELECT "USERID","PUR-CODE","PUR-DATE"
  FROM "SALESLIST"
    WHERE "PUR-DATE" BETWEEN DATE'2011-09-04' AND DATE'2011-09-05'

The underlined portion indicates the BETWEEN predicate.

Example 2
From the sales history table (SALESLIST), this example retrieves the customer ID (USERID), product code (PUR-
CODE), and date of purchase (PUR-DATE) for customers who purchased products on dates excluding September
4, 2011 to September 5, 2011.

SELECT "USERID","PUR-CODE","PUR-DATE"
  FROM "SALESLIST"
    WHERE "PUR-DATE" NOT BETWEEN DATE'2011-09-04' AND DATE'2011-09-05'

The underlined portion indicates the BETWEEN predicate.

7.19.2 EXISTS predicate
The EXISTS predicate is used to determine whether a table subquery result is zero rows (the empty set).

(1) Specification format
EXISTS-predicate ::= EXISTS table-subquery

7. Constituent Elements

Hitachi Advanced Database SQL Reference 354



(2) Explanation of specification format
table-subquery:

For details about table subqueries, see 7.3 Subqueries.

(3) Evaluation of the predicate
If the table subquery returns one or more rows, the result of the EXISTS predicate is TRUE. If the table subquery returns
zero rows (the empty set), result of the EXISTS predicate is FALSE. The following table shows the results of the
EXISTS predicate.

Table 7-3: Results of the EXISTS predicate

No. Number of rows in the table subquery results Result of the EXISTS predicate

1 One or more rows TRUE

2 Zero rows (the empty set) FALSE

(4) Rules
If * or table-specification.* is specified in the selection list in a table subquery, it makes sense to specify a column in
the table specified by the table reference in the table subquery. On the other hand, it is not appropriate to specify a set
function here.

(5) Example
Example

From the sales history table (SALESLIST) and product list table (PRODUCTSLIST), this example retrieves
information on products for which there have been sales.

SELECT * FROM "PRODUCTSLIST"
    WHERE EXISTS(SELECT * FROM "SALESLIST"
             WHERE "SALESLIST"."PUR-CODE"="PRODUCTSLIST"."PUR-CODE")

The underlined portion indicates the EXISTS predicate.

7.19.3 IN predicate
The IN predicate is used for retrieving data that satisfies any one condition value out of multiple condition values.

(1) Specification format
IN-predicate ::= value-expression-1 [IS] [NOT] IN {(value-expression-2[,value-express
ion-3]...)|table-subquery}

(2) Explanation of specification format
value-expression-1:

Specifies the column to be evaluated by the IN predicate. It is specified in the form of a value expression. For details
about value expressions, see 7.20 Value expression.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 355



IS:
IS can be omitted. The results will be the same regardless of whether it is specified.

NOT:
If NOT is specified, values that do not match the value expressions specified following IN will become the target
of retrieval.

IN (value-expression-2[, value-expression-3]...):
The condition values are specified in the form of value expressions. If any of the specified condition values match
the result of value-expression-1, the IN predicate is TRUE.

IN table-subquery:
Specifies a table subquery. For details about table subqueries, see 7.3 Subqueries.
Note that if you specify a table subquery in an IN predicate, a work table might be created. If the size of the work
table DB area where the work table is created has not been estimated correctly, it might result in performance
degradation. For details about estimating the size of the work table DB area, see the HADB Setup and Operation
Guide. For details about work tables, see Considerations when executing an SQL statement that creates work tables
in the HADB Application Development Guide.

(3) Evaluation of the predicate
The IN predicate is TRUE for those rows that satisfy the following condition:

• If the result of value-expression-1 matches the result of any of the value expressions following IN
• If the result of value-expression-1 matches any row from the result of the table subquery

If NOT is specified, the IN predicate is TRUE for those rows that satisfy the following condition:

• If the result of value-expression-1 does not match the results of any of the value expressions following IN
• If the result of value-expression-1 does not match any row from the result of the table subquery

(4) Rules

(a) Rules for specifying IN (value-expression-2 [, value-expression-3]...)
1. You cannot specify a dynamic parameter alone for value-expression-1.

2. There can be a maximum of 30,000 value expressions following IN.

3. Specify each value expression such that the data type of the result of value-expression-1 can be compared to the
data types of the results of the value expressions following IN. For details about data types that can be compared,
see (1) Data types that can be compared in 6.2.2 Data types that can be converted, assigned, and compared.
However, if you specify the predefined input representation of a date, time, or time stamp for value-expression-1,
you cannot specify datetime data for value-expression-2 and subsequent value expressions. For information about
predefined input representations, see 6.3.3 Predefined character-string representations.

4. If the result of value-expression-1 is a null value, the result of the IN predicate is undefined. Also, if the results of
value expression 2 and all subsequent value expressions are null values, the result of the IN predicate is undefined.

(b) Rules for specifying IN table-subquery
1. If a table subquery returns zero rows (empty set), the result of the IN predicate is false. However, if NOT is specified,

the result evaluates to true.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 356



2. When you specify a table subquery, specify only one selection expression in the table subquery.

3. The IN predicate with a table subquery specified is rewritten by HADB into a quantified predicate (=ANY
specification) and then processed.

(5) Examples
Example 1

From the sales history table (SALESLIST), this example retrieves the customer ID (USERID), product code (PUR-
CODE), and date of purchase (PUR-DATE) for customers who purchased product code P001 or P003 on or after
September 5, 2011.

SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
       WHERE "PUR-CODE" IN ('P001','P003')
       AND "PUR-DATE">=DATE'2011-09-05'

The underlined portion indicates the IN predicate.

Example 2
From the sales history table (SALESLIST), this example retrieves the customer ID (USERID), product code (PUR-
CODE), and quantity purchased (PUR-NUM), but excludes customers whose customer ID (USERID) is U00212 or
U00358.

SELECT "USERID","PUR-CODE","PUR-NUM"
    FROM "SALESLIST"
       WHERE "USERID" NOT IN ('U00212','U00358')

The underlined portion indicates the IN predicate.

Example 3
From the customer table (USERSLIST) and sales history table (SALESLIST), retrieve information on customers
who purchased product code (PUR-CODE) P001.

SELECT * FROM "USERSLIST"
    WHERE "USERID" IN(SELECT "USERID" FROM "SALESLIST"
                            WHERE "PUR-CODE"='P001')

The underlined portion indicates the IN predicate.

7.19.4 LIKE predicate
The LIKE predicate is used to retrieve data that contains a specific character string.

(1) Specification format
LIKE-predicate ::= match-value [NOT] LIKE pattern-character-string [ESCAPE escape-cha
racter]
 
   match-value ::= value-expression
   pattern-character-string ::= value-expression
   escape-character ::= value-expression

7. Constituent Elements

Hitachi Advanced Database SQL Reference 357



(2) Explanation of specification format
match-value:

Specifies the data to be retrieved in the form of a value expression. For details about value expressions, see 7.20 
Value expression.
You must specify CHAR or VARCHAR type data for match-value.

NOT:
If NOT is specified, values that do not match the specified pattern character string will become the target of retrieval.

pattern-character-string:
Specifies the pattern character string in the form of a value expression. For details about value expressions, see 7.20 
Value expression.
You must specify CHAR or VARCHAR type data for pattern-character-string.
The special characters _ (underscore) and % (percent) can be specified in the pattern character string. The special
character _ denotes any single character, and % denotes a character string of zero or more characters. These special
characters can be used in searches such as the following.

• Five-character character strings that begin with UN: 'UN_ _ _'
• Character strings that include OR: '%OR%'

When _ or % appear in a pattern character string, they are considered special characters and are not treated as normal
characters. If you want _ or % to be treated as a normal character, you must specify an escape character.

ESCAPE escape-character:
Specifies an escape character in the form of a value expression. For details about value expressions, see 7.20 Value
expression.
Specify one byte of CHAR or VARCHAR type data for escape-character.
When you specify an escape character, special characters in the pattern character string (specifically, special
characters immediately following the escape character) can be treated as normal characters.
Examples specifying the special character %:

LIKE 'ABC@%'               ...1
LIKE 'ABC@%' ESCAPE '@'    ...2

In 1, because % is treated as a special character, character strings beginning with 'ABC@' will be retrieved. In 2,
because % is treated as a normal character, character strings beginning with 'ABC%' will be retrieved.
For details about how pattern character strings are handled when an escape character is specified, see (4) How
pattern character strings are handled when an escape character is specified.

(3) Examples of pattern character strings
Typical examples of pattern character strings are given in the following table.

Table 7-4: Typical examples of pattern character strings

No. Item Pattern character
string

Meaning Pattern character
string specification
example

Pattern-matched
character strings

1 Starts-with
match

xxx% The leading portion of the
character string is xxx.

'ACT%' Character strings
beginning with ACT, such as
ACT, ACTOR, and ACTION.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 358



No. Item Pattern character
string

Meaning Pattern character
string specification
example

Pattern-matched
character strings

2 Ends-with
match

%xxx The trailing portion of the
character string is xxx.

'%ING' Character strings ending
with ING, such as ING,
BEING, and HAVING.

3 Contains
match

%xxx% The character string
contains xxx at some
position.

'%OR%' Character strings containing
OR, such as OR, MORE, and
COLOR.

4 Full match xxx The character string is
equal to xxx.

'EQUAL' EQUAL

5 Partial match _..._xxx_..._ • A particular portion of
the character string is
equal to xxx; the other
portions of the
character string
contain any
characters.

• _ denotes any single
character.

'_I_' Three-letter character
strings, in which the second
character is I, such as BIT,
HIT, and KIT.

6 '_ _T_ _ _ _' Seven-letter character
strings, in which the third
character is T, such as
HITACHI.

7 Other xxx%yyy The leading portion of the
character string is xxx and
the trailing portion is yyy.

'O%N' Character strings that begin
with O and end with N such
as ON, OWN, and ORIGIN.

8 %xxx%yyy% The character string
contains xxx at some
position and yyy at a
subsequent position.

'%O%N%' Character strings that
contain O, and have an N in
any subsequent position,
such as ON, ONE, DOWN, and
COUNT.

9 xxx_..._yyy% • The leading portion of
the character string is
xxx and the trailing
portion is yyy.

• _ denotes any single
character.

'CO_ _ECT%' Character strings that begin
with CO and contain the
string ECT in the 5th

through 7th character
positions, such as
CORRECT, CONNECTER,
and CONNECTION.

Notes:

• xxx and yyy denote any characters strings that do not include the characters % or _.

• Because a space is regarded as a character for comparison purposes, a comparison with data that has trailing
spaces generates a FALSE result.

(4) How pattern character strings are handled when an escape character
is specified

This subsection describes how pattern character strings are handled when an escape character is specified. In the
examples below, the escape character is the at mark (@).

1. When the escape character is immediately followed by a special character, the special character is treated as a normal
character.
Example 1:

LIKE 'AB@%C%' ESCAPE '@'

7. Constituent Elements

Hitachi Advanced Database SQL Reference 359



In this case, because the special character after the @ mark is treated as a normal character, character strings
starting with AB%C will be retrieved, such as AB%C and AB%CDE.
Example 2:

LIKE 'AB@_C%' ESCAPE '@'

In this case, because the special character after the @ mark is treated as a normal character, character strings
starting with AB_C will be retrieved, such as AB_C and AB_CDE.

2. When the escape character is immediately followed by a normal character, the escape character is skipped.
Example:

LIKE 'ABC@D' ESCAPE '@' → equivalent to LIKE 'ABCD'

In this case, the @ mark is skipped.

3. Two consecutive escape characters are treated as a single normal character.
Example 1:

LIKE 'AB@@C' ESCAPE '@' → equivalent to LIKE 'AB@C'

In this case, the two at marks (@@) are treated as the single normal @ mark.
Example 2:

LIKE 'AB@@@C' ESCAPE '@' → equivalent to LIKE 'AB@C'

In this case, the first two at marks (@@) are treated as the single normal @ mark. The third @ mark is skipped because
the character after it is a normal character.
Example 3:

LIKE 'AB@@@@C' ESCAPE '@' → equivalent to LIKE 'AB@@C'

In this case, the first two at marks (@@) are treated as the single normal @ mark. The next two at marks (the third
and fourth @ marks) are also treated as the single normal @ mark.
Example 4:

LIKE 'AB@@C@%D%' ESCAPE '@'

In this case, character strings starting with AB@C%D will be retrieved, such as AB@C%D and AB@C%DE.

4. When no character follows the escape character, the escape character is skipped.
Example:

LIKE 'ABC@' ESCAPE '@' → equivalent to LIKE 'ABC'

(5) Evaluation of the predicate
If match-value matches the pattern in pattern-character-string the result is TRUE; otherwise, it is FALSE.

If NOT is specified, and match-value does not match the pattern in pattern-character-string, the result is TRUE;
otherwise, it is FALSE.

If the result of match-value or pattern-character-string has a null value, the result of the predicate is unknown.

If the length of match-value is 0 bytes or 0 characters, the result of the LIKE predicate will be TRUE only in the following
cases:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 360



• If the pattern character string has a length of 0 bytes or 0 characters

• If the pattern character string is specified as a dynamic parameter, and its input value is '%'
• If the pattern character string is specified as the literal '%'

In addition, if the length of pattern-character-string is 0 bytes or 0 characters, the result of the LIKE predicate will be
TRUE only if the length of match-value is 0 bytes or 0 characters.

(6) Rules

(a) Rules for match-value
1. The special characters underscore (_) and percent sign (%) in match-value must be specified as single-byte (minimum

byte) characters.

2. If a dynamic parameter is specified by itself for match-value, the assumed data type of the dynamic parameter will
be VARCHAR(32000).

(b) Rules for pattern-character-string
1. The length of the pattern character string includes the special characters _ and %.

2. If a percent sign (%) is not specified in pattern-character-string, and the length of the data in match-value is different
from the length of the pattern character string, the predicate is not TRUE.

3. If you specify a dynamic parameter by itself for pattern-character-string, the assumed data type and data length of
the dynamic parameter will be as shown in the following table.

Table 7-5: Assumed data type and data length of the dynamic parameter (when you specify a
dynamic parameter by itself for pattern-character-string)

Condition Assumed data type of dynamic
parameter

Assumed data length of dynamic
parameter

Escape character not specified VARCHAR type Data length of the result of match-value

Escape character specified VARCHAR type • If the data length of the result of match
value is no more than 32,000 bytes
MIN(data-length-of-the-result-of-match-
value × 2, 32,000)

• If the data length of the result of match
value is 32,001 bytes or more
MIN(data-length-of-the-result-of-match-
value × 2, 64,000)

(c) Rules for escape characters
1. If escape-character has a length of 0 bytes or 0 characters, it is treated as if no escape character was specified.

Examples:
LIKE 'ABC' ESCAPE '' → equivalent to LIKE 'ABC'
LIKE 'ABC' ESCAPE ? → equivalent to LIKE 'ABC' when NULL is specified for the dynamic parameter

2. If a dynamic parameter is specified by itself for escape-character, the assumed data type of the dynamic parameter
is VARCHAR(1). In this case the actual length of the data must be 1 byte.

3. Identification of escape characters in the pattern character string is performed character-by-character rather than
byte-by-byte.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 361



4. The following table shows the range of character code points that can be specified for the escape character.

Table 7-6: Range of character code points that can be specified for the escape character

Value specified in the environment variable
ADBLANG

Range of character code points that can be specified for the escape
character

UTF8 (Unicode (UTF-8)) 0x00 to 0x7F#

SJIS (Shift-JIS) 0x00 to 0xFF

#
Does not include the Shift-JIS backslash (\: 0x5C) and swung dash (~: 0x7E) characters when they are
represented as multi-byte characters in UTF-8.

(7) Examples
Example 1

This example retrieves the customer ID (USERID) and name (NAME) of customers whose name begins with M.

SELECT "USERID","NAME"
    FROM "USERSLIST"
        WHERE "NAME" LIKE 'M%'

The underlined portion indicates the LIKE predicate.

Example 2
This example retrieves the customer ID (USERID) and name (NAME) of female customers whose name does not
begin with M.

SELECT "USERID","NAME"
    FROM "USERSLIST"
        WHERE "NAME" NOT LIKE 'M%'
        AND SEX='F'

The underlined portion indicates the LIKE predicate.

Example 3
This example searches the product column (GOODS) in the sales table (T_SALES) for products that begin with the
character strings in the pattern column (PATTERN) in the pattern table (T_PATTERN).

SELECT "A"."GOODS" FROM "T_SALES" AS "A","T_PATTERN" AS "B"
    WHERE "A"."GOODS" LIKE "B"."PATTERN" + '%'

The underlined portion indicates the LIKE predicate.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 362



Example 4
This example searches the sales table (T_SALES) and retrieves the product name (GOODS) and sales amount
(SALES) for products meeting the following conditions:

• The name of the product includes an underscore (_)

• The product is associated with branch code (BRANCH_CODE) A001
Because underscore (_) is a special character, @ is specified as the escape character so that _ will be treated as a
normal character.

SELECT "GOODS","SALES" FROM "T_SALES"
    WHERE "GOODS" LIKE '%@_%' ESCAPE '@'
    AND "BRANCH_CODE"='A001'

7. Constituent Elements

Hitachi Advanced Database SQL Reference 363



7.19.5 LIKE_REGEX predicate
Use the LIKE_REGEX predicate to search data by using a regular expression.

(1) Specification format
LIKE_REGEX-predicate ::= match-value [NOT] LIKE_REGEX
                         regular-expression-string [FLAG {I | IGNORECASE}]
  match-value ::= value-expression
  regular-expression-string ::= character-string-literal

(2) Explanation of specification format
match-value:

Specifies the data to be retrieved in the form of a value expression. For details about value expressions, see 7.20 
Value expression.
You must specify CHAR or VARCHAR type data for match-value.

NOT:
If you specify NOT, character strings that do not include any character string elements represented by the specified
regular expression string are retrieved.

regular-expression-string:
Specify a regular expression in the form of a character string literal. For details about character string literals, see
6.3 Literals.
The regular expression string must be no more than 1,024 bytes long.
Specify the regular expression string in the following format:

regular-expression::={[regular-item]|regular-expression vertical-bar regular-expre
ssion}

regular-item::={regular-factor|regular-item regular-factor}

regular-factor::={regular-primary|regular-primary *|regular-primary +|regular-prim
ary ?
             |regular-primary repetition-factor}

repetition-factor::=left-curly-bracket lower-limit [,[upper-limit]]right-curly-bra
cket

regular-primary::={character-specifier|character-class|.|^|$|regular-character-set
|(regular-expression)}

character-specifier::={non-escaped-character|escaped-character}

regular-character-set::={[character-list...]|[^character-list...]}

character-list::={character-specifier|character-specifier - character-specifier|re
gular-character-set-identifier-specification}

regular-character-set-identifier-specification::=[:regular-character-set-identifie
r:]

The following table describes the regular expression rules.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 364



Table 7-7: Regular expression rules

No. Regular expression Meaning

1 Character specifier Means a character string of length 1 (unit: characters).

2 . (period) Means any character of length 1 (unit: characters).

3 ^ (caret) Means the beginning of a match value. For a match value that includes a line break,
this symbol does not mean the beginning of the line after the line break.
If a caret (^) is specified in a pair of square brackets that enclose a regular character
set, this pattern means any characters other than the listed characters.

4 $ (dollar sign) Means the end of a match value. For a match value that includes a line break, this
symbol does not mean the end of the line before the line break.

5 regular-primary* Means zero or more repetitions of the preceding regular primary.

6 regular-primary+ Means one or more repetitions of the preceding regular primary.

7 regular-primary? Means zero or one repetition of the preceding regular primary.

8 regular-expression | regular-expression Means the regular expression that is specified to the left or right of the vertical bar
(|).

9 regular-primary{n}
regular-primary{n,m}
regular-primary{n,}

Means a repetition of the preceding regular primary. The following describes the
specification patterns:
{n}: The preceding regular primary is repeated n times.
{n,m}: The preceding regular primary is repeated by the number of times in the
range from n to m.
{n,}: The preceding regular primary is repeated at least n times.

10 upper-limit An integer in the range from 0 to 256.

11 lower-limit An integer in the range from 0 to 256.

12 [character-list...] Means any of the listed characters.

13 [^character-list...] Means any characters other than the listed characters.

14 character-specifier-1 - character-specifier-2 Means any character in the range (of character codes) from character-specifier-1
to character-specifier-2.
If an option that ignores case (FLAG I or FLAG IGNORECASE is specified),
this pattern means the following, in addition to the half-width letters in the
specified range of character codes: the corresponding half-width uppercase letter
for any half-width lowercase letter in the specified range, and the corresponding
half-width lowercase letter for any half-width uppercase letter in the specified
range.

15 regular-character-set-identifier alpha Means any half-width uppercase letter (other than \, @, and #) or half-width
lowercase letter. The meaning is the same as [a-zA-Z].

16 upper Means any half-width uppercase letter (other than \, @, and #). The meaning is
the same as [A-Z].

17 lower Means any half-width lowercase letters. The meaning is the same as [a-z].

18 digit Means any number. The meaning is the same as [0-9].

19 alnum Means any half-width uppercase letter (other than \, @, and #), half-width
lowercase letter, or number. The meaning is the same as [a-zA-Z0-9].

20 space Means a half-width space, tab, carriage return, linefeed, vertical tab, or page break
character.

21 blank Means a half-width space or tab.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 365



No. Regular expression Meaning

22 cntrl Means a control character. Specifically, this means 0x7f or any of the character
codes in the range from 0x00 to 0x1f.

23 graph Means any of the character codes in the range from 0x21 to 0x7e.

24 print Means any of the character codes in the range from 0x20 to 0x7e.

25 punct Means a single-byte symbolic character whose code is 0x7e or lower. The meaning
is the same as [!-/\:-@\[-`\{-~].

26 xdigit Means a hexadecimal character. The meaning is the same as [a-fA-F0-9].

27 character-class \d Means any number. The meaning is the same as [0-9].

28 \D Means any character that is not a number. The meaning is the same as [^0-9].

29 \w Means any half-width uppercase letter (other than \, @, and #), any half-width
lowercase letter, any number, or an underscore (_). The meaning is the same as
[a-zA-Z0-9_].

30 \W Means any character that is not a half-width uppercase letter (other than \, @, and
#), half-width lowercase letter, number, or underscore (_). The meaning is the
same as [^a-zA-Z0-9_].

31 \s Means a half-width space, tab, carriage return, linefeed, vertical tab, or page break
character.

32 \S Means any character that is not a half-width space, tab, carriage return, linefeed,
vertical tab, or page break character.

33 \A Means the beginning of a match value.

34 \Z Means the end of a match value.

FLAG {I|IGNORECASE}:
Specify this option to perform a search that ignores the difference between half-width uppercase letters (other than
\, @, and #) and half-width lowercase letters.
Specifications of I and IGNORECASE are equivalent.
Note that if the character encoding that is used on the HADB server is Shift-JIS, this option cannot be specified.

(3) Regular expression specification examples
The following shows typical regular expression specification examples.

Table 7-8: Typical regular expression specification examples

No. Method Pattern Meaning Example Matched string

1 Forward
match

^nnn Begins with nnn ^ACT ACT, ACTOR, ACTION, and
other character strings that
begin with ACT

2 Backward
match

nnn$ Ends with nnn ING$ ING, BEING, HAVING, and
other character string that end
with ING

3 Partial match nnn Includes nnn in any place Sun Sun, Sunday, Sundays, and
other character strings that
include Sun

4 Exact match ^nnn$ Equals to nnn ^EQUAL$ EQUAL

7. Constituent Elements

Hitachi Advanced Database SQL Reference 366



No. Method Pattern Meaning Example Matched string

5 Middle match .nnn. Includes nnn that follows
any character and is
followed by any character

.I. BIT, HIT, KIT, and other
three-character strings whose
second character is I

6 One or more
repetitions

mmm[0-9]+
or
mmm[[:digit:]]
+

Includes mmm in any
place, and mmm is
followed by any number

KFAA[0-9]+
or
KFAA[[:digit:]]+

KFAA123, KFAA11104-E,
KFAA11901-E, and other
character strings that begin with
KFAA that is followed by any
number

7 Selection of
some
characters

^mmm.*(n|o)
or
^mmm.*[no]

Begins with mmm and
contains n or o at the i-th
character (i is a numeric
value)

^KFAA.*(W|E)
or
^KFAA.*[WE]

KFAA20008-W,
KFAA11901-E, and other
character strings that begin with
KFAA, followed by W or E

8 n repetitions mmm{n} Begins with mmm, the last
character of which is
repeated n times

123{3} 12333

(4) Evaluation of predicates
If the specified match value includes an element of the character string set that is represented by the regular expression
string, the predicate evaluates to true. In other cases, the predicate evaluates to false. Note that if the length of the regular
expression string is 0, the predicate evaluates to true when the match value is not a null value.

If NOT is specified, the predicate evaluates to true when the specified match value does not include any string elements
that are represented by the regular expression string. In other cases, the predicate evaluates to false. Note that if the
length of the regular expression string is 0, the predicate evaluates to false when the match value is not a null value.

If the match value is a null value, the predicate will have no value.

(5) Rules

(a) Rules pertaining to the match value
1. If a dynamic parameter is specified by itself as the match value, the assumed data type of the dynamic parameter

will be VARCHAR(32000).

(b) Rules pertaining to the escape character
1. If a backslash (\) is included in a regular expression string, the backslash (\) is treated as an escape character.

2. A special character that follows the escape character is treated as an ordinary character. The special characters that
can be escaped are as follows:

• . (period)

• * (asterisk)

• + (plus sign)

• ? (question mark)

• | (vertical bar)

• ( (left parenthesis)

• ) (right parenthesis)

7. Constituent Elements

Hitachi Advanced Database SQL Reference 367



• { (left curly bracket)

• } (right curly bracket)

• [ (left square bracket)

• ] (right square bracket)

• \ (backslash)

• - (minus sign)#

• : (colon)#

• ^ (caret)

• $ (dollar sign)

#: Handled as a special character only if specified in a character list.

3. If the escape character is followed by an ordinary character, the escape character is skipped.

4. If the escape character is followed by no character, the escape character is skipped.

5. Two consecutive escape characters are treated as a single ordinary character.

(6) Considerations for performance
If a text index has been defined, the literal character in the regular expression is used to filter the pages by the text index.
Therefore, in the same way as the LIKE predicate or scalar function CONTAINS, if the literal character in the regular
expression is short simple text, such as a or 0, the effect of page filtering is lowered. Also, if the number of patterns
that are represented by meta characters (parentheses, brackets, and quantifiers) increases, the text index is not used
during a search because text-index-based page filtering takes time.

Therefore, you can improve the effect of text-index-based page filtering if you do not use meta characters to represent
patterns. For example, when you search for the strings HADB and HiRDB, you can specify H(A|iR)DB or HADB |
HiRDB as a search condition. In this case, the latter expression provides more effective text-index-based page filtering.

This also applies to repetition factors. For example, (abc){1,3} and abc | abcabc | abcabcabc have the
same meaning. In this case, the latter expression provides more effective text-index-based page filtering.

(7) Example
Example

In this example, you search the data in column MSG of table T_MSG for the rows that contain a character string that
begins with KFAA30 followed by a three-digit number, and ends with -E.

SELECT * FROM "T_MSG" 
    WHERE "MSG" LIKE_REGEX 'KFAA30[0-9]{3}-E'

The underlined portion is the specification of the LIKE_REGEX predicate.
The preceding LIKE_REGEX predicate specification matches, for example, the string KFAA30101-E.

7.19.6 NULL predicate
The NULL predicate is used to search for null values. For details about null values, see 6.7 Null value.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 368



(1) Specification format
NULL-predicate ::= value-expression IS [NOT] NULL

(2) Explanation of specification format
value-expression:

Specifies the column to be evaluated by the NULL predicate. It is specified in the form of a value expression. For
details about value expressions, see 7.20 Value expression.
If a dynamic parameter is specified by itself, the assumed data type of the dynamic parameter will be
VARCHAR(32000).

NOT:
If NOT is specified, rows that are not the null value will become the target of retrieval.

(3) Evaluation of the predicate
The NULL predicate is TRUE for rows in which the value of the specified value expression is a null value. If NOT is
specified, it is TRUE for rows in which the value of the specified value expression is not a null value.

(4) Examples
Example 1

This example retrieves the customer IDs (USERID) from the customer table (USERSLIST) where the name (NAME)
is the null value.

SELECT "USERID"
    FROM "USERSLIST"
        WHERE "NAME" IS NULL

The underlined portion indicates the NULL predicate.

Example 2
This example retrieves the customer IDs (USERID) from the customer table (USERSLIST) where the name (NAME)
is not the null value.

SELECT "USERID"
    FROM "USERSLIST"
        WHERE "NAME" IS NOT NULL

The underlined portion indicates the NULL predicate.

7.19.7 Comparison predicate
Comparison predicates can be specified in search conditions. The following example illustrates a comparison predicate.

Example:
From the sales history table (SALESLIST), this example retrieves the customer ID (USERID), product code (PUR-
CODE), and date of purchase (PUR-DATE) for customers who purchased products on or after September 6, 2011.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 369



SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-06'

Explanation
• The underlined portion indicates the comparison predicate.

• >= is called a comparison operator.

• The terms on the left and right of a comparison operator are called comparison operands. In this example, the
comparison operands are PUR-DATE (a column name) and DATE'2011-09-06' (a literal).

(1) Specification format
comparison-predicate ::= comparison-operand-1 comparison-operator comparison-operand-
2
 
  comparison-operand ::= value-expression
  comparison-operator ::= {=|<>|!=|^=|<|<=|>|>=}

(2) Explanation of specification format
comparison-operand-1, comparison-operand-2:

A comparison operand specifies a value such as a column name or literal. Comparison operands must be specified
as value expressions. For details about value expressions, see 7.20 Value expression.

comparison-operator:
The comparison operator is one of =, <>, !=, ^=, <, <=, >, or >=. The following table lists the meaning of each
operator.

Table 7-9: Meaning of comparison operators

No. Comparison operator Meaning

1 X = Y X and Y are equal

2 X <> Y
X != Y
X ^= Y

X and Y are not equal

3 X < Y X is less than Y

4 X <= Y X is less than or equal to Y

5 X > Y X is greater than Y

6 X >= Y X is greater than or equal to Y

Legend:
X and Y: Comparison operands

(3) Evaluation of the predicate
A comparison is TRUE if the comparison operands on the left and right of the comparison operator satisfy the comparison
condition.

It is unknown if either of the comparison operands is the null value.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 370



(4) Rules
1. The data types of the results of comparison-operand-1 and comparison-operand-2 must be data types that can be

compared. For details about data that can be compared, see (1) Data types that can be compared in 6.2.2 Data types
that can be converted, assigned, and compared.

2. When comparing numeric data, if the data being compared are of different data types, the comparison is performed
using the data type with the wider range, as determined by the following hierarchy:

DOUBLE PRECISION > DECIMAL > INTEGER > SMALLINT

3. If the result of a comparison operand is the null value, the comparison result is unknown.

4. If you specify binary type data as the value expression of the comparison operands, you must specify =, <>, !=, or
^= as the comparison operator.

5. A comparison operand composed of only a dynamic parameter cannot appear on both sides of the comparison
operator.

• Example of a specification that is not permitted:?=?
• Examples of a permissible specifications: C1=?, ?=10

6. For comparison-operand-2 you cannot specify the scalar function CONTAINS.

7. If you specify the scalar function CONTAINS for comparison-operand-1, specify > as the comparison operator. In
this case, specify 0 for comparison-operand-2.

(5) Example
Example

From the sales history table (SALESLIST), this example retrieves the customer ID (USERID), product code (PUR-
CODE), and date of purchase (PUR-DATE) for customers who purchased product code P001 or P003 on or after
September 4, 2011.

SELECT "USERID","PUR-CODE","PUR-DATE"
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2011-09-04'
        AND ("PUR-CODE"='P001' OR "PUR-CODE"='P003')

The underlined portions show the comparison predicates.

7.19.8 Quantified predicate
Quantified predicates are used to compare the result of a value expression to the result of a table subquery.

(1) Specification format
quantified-predicate ::= value-expression{=|<>|!=|^=|<|<=|>|>=}{{ANY|SOME}|ALL}table-
subquery

7. Constituent Elements

Hitachi Advanced Database SQL Reference 371



(2) Explanation of specification format
value-expression:

Specifies, in the form of a value expression, the column to be evaluated by the quantified predicate. For details about
value expressions, see 7.20 Value expression.

ANY or SOME:
If there is at least one row in the results from the table subquery that satisfies the comparison with value-
expression, the result of the quantified predicate is TRUE.
The results are the same regardless of whether you use ANY or SOME.

ALL:
If either of the following conditions is met, the result of the quantified predicate is TRUE:

• If all the rows in the results of the table subquery satisfy the comparison with value-expression

• If the result of the table subquery is zero rows (the empty set)

table-subquery:
For details about table subqueries, see 7.3 Subqueries.

(3) Evaluation of the predicate

(a) When ANY or SOME is specified
• If there is at least one row in the results from the table subquery that satisfies the comparison with value-

expression, the result of the quantified predicate is TRUE.

• If either of the following conditions is met, the result of the quantified predicate is FALSE:

• If all of the rows in the results of the table subquery fail to satisfy the comparison with value-expression

• If the result of the table subquery is zero rows (the empty set)

• Otherwise, the result is unknown.

The following table shows the result of a quantified predicate in which ANY or SOME is specified.

Table 7-10: Result of a quantified predicate in which ANY or SOME is specified

No. Results of comparison to every row in the table subquery Result of the quantified predicate

1 Some TRUE rows TRUE

2 No TRUE rows Some undefined Undefined

3 No undefined FALSE

4 0 rows (the empty set) FALSE

(b) When ALL is specified
• If either of the following conditions is met, the result of the quantified predicate is TRUE:

• If all the rows in the results of the table subquery satisfy the comparison with value-expression

• If the result of the table subquery is zero rows (the empty set)

• If any of the rows in the results of the table subquery fail to satisfy the comparison with value-expression, the result
of the quantified predicate is FALSE.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 372



• Otherwise, the result is undefined.

The following table shows the result of a quantified predicate in which ALL is specified.

Table 7-11: Result of a quantified predicate in which ALL is specified

No. Results of comparison to every row in the table subquery Result of the quantified predicate

1 Some FALSE rows FALSE

2 No FALSE rows Some undefined Undefined

3 No undefined TRUE

4 0 rows (the empty set) TRUE

(4) Rules
1. There must be exactly one column in the results of the table subquery.

2. When binary data is specified in value-expression, the only comparison operators allowed are =, <>, !=, and ^=.

(5) Notes
1. When you specify a quantified predicate, a work table might be created. If the size of the work table DB area where

the work table is created has not been estimated correctly, it might result in performance degradation. For details
about estimating the size of the work table DB area, see the HADB Setup and Operation Guide. For details about
work tables, see Considerations when executing an SQL statement that creates work tables in the HADB Application
Development Guide.

2. If a quantified predicate (=ANY or =SOME specification) is specified, HADB performs deduplication of the table
subquery results.

(6) Example
Example

From the customer table (USERSLIST) and sales history table (SALESLIST), this example retrieves information
on customers who purchased product code (PUR-CODE) P001.

SELECT * FROM "USERSLIST"
    WHERE "USERID"=ANY(SELECT "USERID" FROM "SALESLIST"
                            WHERE "PUR-CODE"='P001')

The underlined portion indicates the quantified predicate.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 373



7.20 Value expression

This section describes value expressions.

7.20.1 Specification format and rules for value expressions
In SQL statements, values can be specified in the form of an expression using items such as column names, literals, set
functions, scalar functions, window functions, CASE expressions, arithmetic operations (+, -, *, and /), and
concatenation operations (+, ||). Such specifications are called value expressions. Examples of value expressions are
given below.

Examples:

• "C1", which specifies a single column name

• 'HADB', 100, and DATE'2011-09-06', which specify single literals

• "C1"+10, which uses a column name and an arithmetic operation

• "C1"||"C2", which uses column names and a concatenation operation

• MAX("C1")/2, which uses a set function and an arithmetic operation

(1) Specification format
value-expression ::= {numeric-value-expression | character-value-expression | datetim
e-value-expression | binary-value-expression}
 
 
  numeric-value-expression ::= {value-expression-primary | arithmetic-operation}
  character-value-expression ::= {value-expression-primary | concatenation-operation}
  datetime-value-expression ::= {value-expression-primary | datetime-operation}
  binary-value-expression ::= {value-expression-primary | concatenation-operation}
 
    value-expression-primary ::= {(value-expression) | column-specification | value-s
pecification | set-function
                     | scalar-function | window-function | CASE-expression
                     | labeled-duration | scalar-subquery}

(2) Explanation of specification format
arithmetic-operation:

For details about arithmetic operations, see 7.25 Arithmetic operations.

concatenation-operation:
For details about concatenation operations, see 7.26 Concatenation operations.

datetime-operation:
For details about datetime operations, see 7.27 Datetime operations.

column-specification:
For details about column specifications, see (5) Column specification format in 6.1.5 Qualifying a name.

value-specification:
For details about value specifications, see 7.21 Value specification.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 374



set-function:
For details about set functions, see 7.22 Set functions.

scalar-function:
For details about scalar functions, see 8. Scalar Functions.

window-function:
For details about window functions, see 7.23 Window functions.

CASE-expression:
For details about CASE expressions, see 7.29 CASE expression.

labeled-duration:
For details about labeled durations, see 7.28 Labeled duration.

scalar-subquery:
For details about scalar subqueries, see 7.3 Subqueries.

(3) Rules
1. A maximum of 500 total scalar operations and set functions can be specified in a value expression. If a column

specified in a value expression is a column from a viewed table, derived table, or query name, the total number of
value expressions after expanding the value expression it is based on cannot exceed 10,000.
Note that in certain circumstances, depending on how a viewed table, derived table, or query name is specified, a
value expression might be added to it. For the circumstances under which the value expression is added, see 7.30.6 
When the scalar function CONVERT is added to an internal derived table.
Scalar operation is a general term for the following operations that can be specified in a value expression:

• Arithmetic operation

• Concatenation operation

• Datetime operation

• Scalar function

• Window function

• CASE expression

2. When the scalar operations listed below are nested, the upper limit on nesting is 15 levels. If a column specified in
a value expression is a column from a viewed table or derived table, after expanding the value expression they are
based on, make sure that the nesting depth of the scalar operations does not exceeded 15 levels.
Note that in certain circumstances, depending on how a viewed table or derived table is specified, a value expression
might be added to it. For the circumstances under which the value expression is added, see 7.30.6 When the scalar
function CONVERT is added to an internal derived table.
Even if different scalar operations are combined, the upper limit on nesting remains a total of 15 levels.

• Scalar function

• Window function

• CASE expression

The examples below illustrate how nesting levels are counted.
Example 1: The scalar function SUBSTR nested 15 times

SUBSTR(SUBSTR(SUBSTR(SUBSTR(SUBSTR(
SUBSTR(SUBSTR(SUBSTR(SUBSTR(SUBSTR(

7. Constituent Elements

Hitachi Advanced Database SQL Reference 375



SUBSTR(SUBSTR(SUBSTR(SUBSTR(SUBSTR(
SUBSTR("C1",1),1),1),1),1),1),1),1),1),1),1),1),1),1),1),1)

Example 2: CASE expressions within CASE expressions, nested two levels deep

CASE WHEN
    CASE WHEN
                CASE WHEN "C1">100
                    THEN  "C1"-100
                    ELSE "C1"
                END >100
            THEN "C1"-100
            ELSE "C1"
        END >100
    THEN "C1"-100
    ELSE "C1"
END

Example 3: A mixture of a CASE expression and the scalar function SUBSTR, with a maximum nesting level of 2

SUBSTR(CASE WHEN "C1">100 THEN SUBSTR("C2",1,10)
                          ELSE SUBSTR("C2",1,5)
       END,1,5)

3. If an overflow occurs during any of these operations, an SQL error is generated.

4. The order in which scalar operations are evaluated obeys the following priority hierarchy:

• Items in parentheses

• * or /
• +, -, or ||

5. The table below shows the conditions under which value expressions are equivalent to literals. However, note that
the data type and data length of the result of the value expression will be the data type and data length derived from
each component value expression rather than the data type and data length of the literal.

Table 7-12: Conditions under which value expressions are equivalent to literals

No. Type of value expression Conditions under which the value expression is equivalent to a literal

1 Arithmetic operation When you specify literals for the first and second operands

2 Concatenation operation

3 Datetime operation When all of the following conditions are satisfied:
• A literal is specified for the first operand.
• The second operand is a labeled duration, and a literal is specified for the

value-expression-primary specified in the labeled duration.
• Literals are specified for the value-expression-primary instances that are

multiplied or divided (only when multiplying or dividing labeled durations)

4 Scalar functions ABS When you specify a literal for the target data

5 ACOS

6 ASCII When you specify a literal for the target data, except in the following case:
• When you specify data whose actual length is 0 bytes or 0 characters for the

target data

7 ASIN When you specify a literal for the target data

8 ATAN

9 ATAN2 When you specify literals for both target data items

7. Constituent Elements

Hitachi Advanced Database SQL Reference 376



No. Type of value expression Conditions under which the value expression is equivalent to a literal

10 BIN When you specify a literal for the target data

11 BITAND When you specify literals for both target data items

12 BITLSHIFT When you specify literals for the target data and the number of bits to shift

13 BITNOT When you specify a literal for the target data

14 BITOR When you specify literals for both target data items

15 BITRSHIFT When you specify literals for the target data and the number of bits to shift

16 BITXOR When you specify literals for both target data items

17 CAST When you specify a literal for the conversion target data, except in the following
case:
• When you specify conversion of a character string literal whose actual length

is 0 bytes into something other than character string data

18 CEIL When you specify a literal for the target data

19 CHR When you specify a literal for the target data, except in the following case:
• When you specify a negative integer value for the target data

20 COALESCE When there is target data specified for at least one argument, and you specify
literals for all the target data

21 CONCAT When you specify literals for both target data items

22 CONVERT When you specify a literal for the conversion target data, except in the following
cases:
• When you specify conversion of a character string literal whose actual length

is 0 bytes into something other than character string data
• When you specify the format specification

23 COS When you specify a literal for the target data

24 COSH

25 DATEDIFF When you specify literals for the start date and end date

26 DAYOFWEEK When you specify a literal for the target data

27 DAYOFYEAR

28 DEGREES When you specify a literal for the angle

29 EXP When you specify a literal for the exponent

30 EXTRACT When you specify a literal for the source data

31 FLOOR When you specify a literal for the target data

32 GETAGE When you specify literals for the date of birth and reference date

33 HEX When you specify a literal for the target data

34 LASTDAY When you specify a literal for the date data

35 LEFT When you specify literals for the source character string data and extraction length,
except in the following case:
• When you specify a negative value for the extraction length

36 LENGTH When you specify a literal for the target data

37 LENGTHB

7. Constituent Elements

Hitachi Advanced Database SQL Reference 377



No. Type of value expression Conditions under which the value expression is equivalent to a literal

38 LN

39 LOG When you specify literals for the base and target data

40 LOWER When you specify a literal for the character string data to be converted

41 LPAD When you specify literals for the target data, number of characters, and padding
character string, except in the following case:
• When you specify a negative value for the number of characters

42 LTRIM When you specify literals for the target data and the characters to be removed

43 MOD When you specify literals for the dividend and divisor

44 PI Always treated as a literal.

45 POWER When you specify literals for the target data and exponent

46 RADIANS When you specify a literal for the angle

47 REPLACE When either of the following conditions is met:
• When you specify literals for the target data, character string to be replaced,

and replacement character string
• When you specify literals for the target data and character string to be replaced,

and omit the replacement character string

48 RIGHT When you specify literals for the source character string data and extraction length,
except in the following case:
• When you specify a negative value for the extraction length

49 ROUND • Mathematical function ROUND:
When you specify literals for the target data and number of digits

• Datetime function ROUND:
When you specify a literal for the datetime data

50 RPAD When you specify literals for the target data, number of characters, and padding
character string, except in the following case:
• When you specify a negative value for the number of characters

51 RTRIM When you specify literals for the target data and the characters to be removed

52 SIGN When you specify a literal for the target data

53 SIN

54 SINH

55 SQRT

56 SUBSTR When you specify literals for the source character string data, start position, and
extraction length, except in the following case:
• When you specify a negative value for the extraction length

57 SUBSTRB When you specify literals for the source binary data, start position, and number
of bytes to extract (except in the following case)
• When you specify a negative value for the number of bytes to extract

58 TAN When you specify a literal for the target data

59 TANH

60 TRANSLATE When you specify literals for the target data, characters to replace, and
replacement characters

61 TRIM When you specify literals for the target data and the characters to be removed

7. Constituent Elements

Hitachi Advanced Database SQL Reference 378



No. Type of value expression Conditions under which the value expression is equivalent to a literal

62 TRUNC • Mathematical function TRUNC:
When you specify literals for the target data and number of digits

• Datetime function TRUNC:
When you specify a literal for the datetime data

63 UPPER When you specify a literal for the character string data to be converted

7.20.2 Data types of the results of value expressions
The data type of the result is determined by the data types of the specified value expressions for CASE expressions,
columns derived from the results of set operations, columns derived by table value constructors, and the following scalar
functions:

• COALESCE
• DECODE
• GREATEST
• LEAST
• LTDECODE
• NULLIF
• BITAND
• BITOR
• BITXOR

Example 1: CASE expression

The data type of the result of the CASE expression is determined by the data types of value expressions 1 through
3.

Example 2: Scalar function GREATEST

The data type of the result of the scalar function GREATEST is determined by the data types of value expressions
1 through 3.

This section describes the rules for determining data type of the result of a value expression.

(1) If the data type of the value expression is character string data
• CASE expressions and the scalar functions COALESCE, DECODE, GREATEST, LEAST, LTDECODE, and NULLIF

• If there is at least one value expression whose data type is VARCHAR, the data type of the result will be VARCHAR.

• The data length of the result will be the data length of the value expression whose data length is longest.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 379



• Columns derived as a result of a set operation, and columns derived by table value constructors

• If all of the value expressions are CHAR type, and all the data lengths are the same, the data type of the result
will be CHAR. Otherwise, the data type of the result will be VARCHAR.

• The data length of the result will be the data length of the value expression whose data length is longest.

(2) If the data type of the value expression is numeric data
When the value expressions have numeric data types, the data type of the result is determined as shown in the following
table.

Table 7-13: Relationship between the data type of the value expressions and the data type of the
result (when the value expressions have numeric data types)

No. Data type of value expression N Data type of value expression N + 1 Data type of the result

1 SMALLINT SMALLINT SMALLINT

2 INTEGER INTEGER

3 DECIMAL DECIMAL

4 DOUBLE PRECISION DOUBLE PRECISION

5 INTEGER SMALLINT INTEGER

6 INTEGER

7 DECIMAL DECIMAL

8 DOUBLE PRECISION DOUBLE PRECISION

9 DECIMAL SMALLINT DECIMAL

10 INTEGER

11 DECIMAL

12 DOUBLE PRECISION DOUBLE PRECISION

13 DOUBLE PRECISION SMALLINT DOUBLE PRECISION

14 INTEGER

15 DECIMAL

16 DOUBLE PRECISION

Legend: N: An integer greater than or equal to 1

■ If the data type of the result is DECIMAL
The precision and scaling are determined as follows. Let value-expression-1 be DECIMAL(p1,s1), value-
expression-2 be DECIMAL(p2,s2), and value-expression-N be DECIMAL(pN,sN).

• precision = MIN(38, Pmax + Smax)

• scaling = MIN(Smax, 38 - Pmax)

Pmax = MAX(p1-s1, p2 - s2, ..., pN - sN)
Smax = MAX(s1, s2, ..., sN)
If the data type of the value expression is INTEGER, use DECIMAL(20,0) for the calculation. If the data type of
the value expression is SMALLINT, use DECIMAL(10,0) for the calculation.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 380



Note that, if the numeric data of the result falls beyond the precision and scaling that are obtained here, the fractional
part will be truncated. The following shows examples.

Example 1:
The SELECT statement below is executed with column C1 having type DECIMAL(37,0) and a value of
NULL, and with column C2 having type DECIMAL(10,2) and a value of 12345678.12.

SELECT COALESCE("C1","C2") FROM "T1"

Retrieval results

12345678.1

In this case, the data type of the execution result of the scalar function COALESCE becomes
DECIMAL(38,1), and the decimal digits beyond the scaling will be truncated.

Example 2:
Assume that you execute the following SELECT statement, which contains table DT that is derived by a table
value constructor for which 1.1234567890123456789 and 10 are specified as row value constructor
elements. In this case, literal 1.1234567890123456789 is treated as DECIMAL(20,19) type, and literal
10 is treated as INTEGER type. Because INTEGER type is treated as DECIMAL(20,0) type, the data type of
the result of column C1 derived by the table value constructor will be DECIMAL(38,18). As a result, the
decimal digits beyond the scaling will be truncated.

SELECT "C1" FROM (VALUES(1.1234567890123456789),(10)) "DT"("C1")

Retrieval results

1.123456789012345678
10.000000000000000000

To prevent truncation of the decimal digits beyond the scaling, you can explicitly specify literal 10 as a decimal
literal (as DECIMAL type) as shown later. In this case, literal 1.1234567890123456789 is treated as
DECIMAL(20,19) type, and literal 10.0 is treated as DECIMAL(3,1) type. Therefore, the data type of the
result of column C1 derived by the table value constructor will be DECIMAL(21,19).

SELECT "C1" FROM (VALUES(1.1234567890123456789),(10.0)) "DT"("C1")

Retrieval results

1.1234567890123456789
10.0000000000000000000

(3) If the data type of the value expression is datetime data
When the value expressions have datetime data types, the data type of the result is determined as shown in the following
table.

Table 7-14: Relationship between the data type of the value expressions and the data type of the
result (when the value expressions have datetime data types)

No. Data type of value expression N Data type of value expression N + 1 Data type of the result

1 DATE DATE DATE

2 TIMESTAMP TIMESTAMP#

3 TIME TIME TIME

7. Constituent Elements

Hitachi Advanced Database SQL Reference 381



No. Data type of value expression N Data type of value expression N + 1 Data type of the result

4 TIMESTAMP DATE TIMESTAMP#

5 TIMESTAMP TIMESTAMP

Legend:
N: An integer greater than or equal to 1

#
DATE type data is converted to TIMESTAMP type data by setting the time portion to 00:00:00.

■ When the fractional seconds precision is specified
When the fractional seconds precision is included in the results of value-expression-1 to value-expression-N, the
fractional seconds precision of the result is determined as follows:
Letting the fractional seconds precision of value-expression-1 be p1, the fractional seconds precision of value-
expression-2 be p2, and the fractional seconds precision of value-expression-N be pN, the fractional seconds
precision of the result will be MAX(p1, p2, ..., pN).
The data length of the result depends on its fractional seconds precision.

(4) If the data type of the value expression is binary data
When the value expressions have binary data types, the data type of the result is determined as follows.

• CASE expressions, or the scalar functions COALESCE or NULLIF
• The data type of the result will be VARBINARY.

• The data length of the result will be the data length of the value expression whose data length is longest.

• Columns derived as a result of a set operation, columns derived by table value constructors, and scalar functions
BITAND, BITOR, and BITXOR
• If all the value expressions are BINARY type, and all the data lengths are the same, the data type of the result

will be BINARY. Otherwise, the data type of the result will be VARBINARY.

• The data length of the result will be the data length of the value expression whose data length is longest.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 382



7.21 Value specification

This section describes value specifications.

7.21.1 Specification format for value specifications
In an SQL statement, the following items can be specified in places where a value specification is allowed:

• A literal

• A dynamic parameter

• The datetime information acquisition function CURRENT_DATE
• The datetime information acquisition function CURRENT_TIME
• The datetime information acquisition function CURRENT_TIMESTAMP
• The user information acquisition function CURRENT_USER

(1) Specification format
value-specification ::= {literal|dynamic-parameter|CURRENT_DATE|CURRENT_TIME
                 |CURRENT_TIMESTAMP|CURRENT_USER}

(2) Explanation of specification format
literal:

For details about literals, see 6.3 Literals.
The data type of the result of the value specification will be the data type of the specified literal.

dynamic-parameter:
For details about dynamic parameters, see 6.6 Variables (dynamic parameters).
The data type of the result of the value specification will vary depending on the location where the dynamic parameter
is specified.

CURRENT_DATE:
For details about CURRENT_DATE, see 6.4.1 CURRENT_DATE.
The data type of the result of the value specification will be the DATE type.

CURRENT_TIME:
For details about CURRENT_TIME, see 6.4.2 CURRENT_TIME.
The data type of the result of the value specification will be the TIME type.

CURRENT_TIMESTAMP:
For details about CURRENT_TIMESTAMP, see 6.4.3 CURRENT_TIMESTAMP.
The data type of the result of the value specification will be the TIMESTAMP type.

CURRENT_USER:
For details about CURRENT_USER, see 6.5.1 CURRENT_USER.
The data type of the result of the value specification will be VARCHAR type.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 383



(3) Examples
The following examples illustrate value specifications.

Example 1
This example inserts the following data (row) into the sales history table (SALESLIST).

• Customer ID (USERID): U00358
• Product code (PUR-CODE): P003
• Quantity purchased (PUR-NUM): 5
• Date of purchase (PUR-DATE): 2011-09-08
INSERT INTO "SALESLIST"
    ("USERID","PUR-CODE","PUR-NUM","PUR-DATE")
    VALUES('U00358','P003',5,DATE'2011-09-08')

The underlined portions show the locations of the value specifications.

Example 2
From the sales history table (SALESLIST), this example retrieves the customer ID (USERID) and product code
(PUR-CODE) for customers who purchased products today.

SELECT "USERID","PUR-CODE"
    FROM "SALESLIST"
        WHERE "PUR-DATE"=CURRENT_DATE

The underlined portion indicates the location of the value specification.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 384



7.22 Set functions

Set functions can be used to calculate aggregate values across multiple rows. The set functions are listed in the following
table.

Table 7-15: List of set functions

No. List of set functions Description

1 COUNT(*) Determine the row count (number of results).

2 General set
functions

AVG Determine the average value.

3 COUNT Determine the row count (number of results).

4 MAX Determine the maximum value.

5 MIN Determine the minimum value.

6 SUM Determine the total value.

7 STDDEV_POP Determine the standard deviation of a population.

8 STDDEV_SAMP Determine the standard deviation of a sample.

9 VAR_POP Determine the variance of a population.

10 VAR_SAMP Determine the variance of a sample.

11 Inverse
distribution
functions

MEDIAN Determine the median value of an ordered set of values. The value
might be linearly interpolated.

12 PERCENTILE_CONT Determine the percentile of an ordered set of values. The value might
be linearly interpolated.

13 PERCENTILE_DISC Determine the percentile of an ordered set of values. A result from the
set of values is returned.

7.22.1 COUNT(*)
COUNT(*) determines the number of input rows to the set function.

(1) Specification format
set-function-COUNT(*) ::= COUNT(*)

(2) Rules
1. The data type of the execution result is INTEGER.

2. If the number of input rows is 0, the result will be 0.

(3) Example
Example

Using the data in the employee table (EMPLIST), this example determines the number of male employees in section
S001.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 385



SELECT COUNT(*) AS "COUNT"
    FROM "EMPLIST"
        WHERE "SCODE"='S001' AND "SEX"='M'

Example of execution results

7.22.2 AVG
AVG determines the average.

(1) Specification format
general-set-function-AVG ::= {AVG([ALL] value-expression)|AVG(DISTINCT value-expressi
on)}

(2) Explanation of specification format
AVG([ALL] value-expression):

Determines the average of the results of the value expression. For details about value expressions, see 7.20 Value
expression.
ALL can be omitted. The results will be the same regardless of whether it is specified.

AVG(DISTINCT value-expression):
Determines the average of the results of the value expression. For details about value expressions, see 7.20 Value
expression.
Duplicate values are only counted once. For example, if the values in the result of the value expression are 2, 3, 2,
and 4, the execution result will be (2 + 3 + 4) ÷ 3 = 3.

(3) Rules
1. Null values are not included in the calculation.

2. When calculating the average, any digits following the significant digits are truncated.

3. In the following cases, the execution result will be a null value.

• If the number of input rows is 0

• If the values to be calculated are all null values

4. The following table shows the data type that can be specified in the value expression and the data type of the execution
result of the general set function AVG.

Table 7-16: Data type that can be specified in the value expression and data type of the execution
result of the general set function AVG

No. Data type that can be specified in the value
expression

Data type of the execution result of general set
function AVG

1 INTEGER INTEGER

2 SMALLINT

7. Constituent Elements

Hitachi Advanced Database SQL Reference 386



No. Data type that can be specified in the value
expression

Data type of the execution result of general set
function AVG

3 DECIMAL(m,n) DECIMAL(38,38-m+n)

4 DOUBLE PRECISION DOUBLE PRECISION

5. If an overflow occurs during the computation of any set function, an overflow error is generated.

(4) Example
Example

Using the data in the employee table (EMPLIST), this example determines the average employee age (AGE) in each
section (SCODE).

SELECT "SCODE",AVG("AGE") AS "AVG-AGE"
    FROM "EMPLIST"
        GROUP BY "SCODE"

Example of execution results

7.22.3 COUNT
COUNT determines the row count (number of results).

(1) Specification format
general-set-function-COUNT ::= {COUNT([ALL] value-expression)|COUNT(DISTINCT value-ex
pression)}

(2) Explanation of specification format
COUNT([ALL] value-expression):

Specify a value expression. For details about value expressions, see 7.20 Value expression.
ALL can be omitted. The results will be the same regardless of whether it is specified.

COUNT(DISTINCT value-expression):
Specify a value expression. For details about value expressions, see 7.20 Value expression. For rows containing the
same value, the count will exclude duplicates.

The examples below illustrate the difference in execution results for the two specification formats above. In the second
example, a GROUP BY clause is specified in the SELECT statement.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 387



(a) Example 1: Without GROUP BY clause

Using the employee table (EMPLIST) above, this example executes the following SELECT statement:

SELECT COUNT("NAME") AS "COUNT-ALL",
       COUNT(DISTINCT "NAME") AS "COUNT-DISTINCT"
    FROM "EMPLIST"

The results are as follows:

Explanation
• In the case of COUNT(NAME), duplicates of the same name (Taro Tanaka) are counted, but rows with null

values are not counted, so the execution result is 5.

• In the case of COUNT(DISTINCT NAME), duplicates of the same name (Taro Tanaka) are not counted, and
neither are rows with null values, so the execution result is 3.

(b) Example 2: With GROUP BY clause
Using the employee table (EMPLIST) shown in Example 1, this example executes the following SELECT statement:

SELECT "SCODE",COUNT("NAME") AS "COUNT-ALL",
       COUNT(DISTINCT "NAME") AS "COUNT-DISTINCT"
    FROM "EMPLIST"
    GROUP BY "SCODE"

The results are as follows:

Explanation
1. In the case of COUNT(NAME), because duplicates of the same name (Taro Tanaka) are counted, the execution

result is 3. In the case of COUNT(DISTINCT NAME), duplicates of the same name (Taro Tanaka) are not
counted, so the execution result is 2.

2. Because there are no duplicate rows, the execution result is 1 is both cases.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 388



3. Because there are no duplicate rows, and rows with null values are not counted, the execution result is 1 is both
cases.

(3) Rules
1. You cannot specify binary data for the value expression.

2. Null values are not included in the calculation.

3. The data type of the execution result is INTEGER.

4. In the following cases, the execution result will be 0.

• If the number of input rows is 0

• If the values to be calculated are all null values

5. If an overflow occurs during the computation of any set function, an overflow error is generated.

(4) Example
Example

Using the data in the sales history table (SALESLIST), this example determines the number of people who purchased
products on or after January 1, 2014, counting those who made more than one purchase as a single person.

SELECT COUNT(DISTINCT "USERID") AS "COUNT"
    FROM "SALESLIST"
        WHERE "PUR-DATE">=DATE'2014-01-01'

Example of execution results

7.22.4 MAX
MAX determines the maximum value.

(1) Specification format
general-set-function-MAX ::= {MAX([ALL] value-expression)|MAX(DISTINCT value-expressi
on)}

Note: Whichever form is specified, the results will be the same.

(2) Explanation of specification format
MAX([ALL] value-expression):

Determines the maximum value of the results of the value expression. For details about value expressions, see 7.20 
Value expression.
ALL can be omitted. The results will be the same regardless of whether it is specified.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 389



MAX(DISTINCT value-expression):
Determines the maximum value of the results of the value expression. For details about value expressions, see 7.20 
Value expression.

(3) Rules
1. Null values are not included in the calculation.

2. In the following cases, the execution result will be a null value.

• If the number of input rows is 0

• If the values to be calculated are all null values

3. The following table shows the data type that can be specified in the value expression and the data type of the execution
result of the general set function MAX.

Table 7-17: Relationship between data type that can be specified in the value expression and
data type of the execution result of the general set function MAX

No. Data type that can be specified in the value
expression

Data type of the execution result of general set
function MAX

1 INTEGER INTEGER

2 SMALLINT SMALLINT

3 DECIMAL(m,n) DECIMAL(m,n)

4 DOUBLE PRECISION DOUBLE PRECISION

5 CHARACTER(n) CHARACTER(n)

6 VARCHAR(n) VARCHAR(n)

7 DATE DATE

8 TIME(p) TIME(p)

9 TIMESTAMP(p) TIMESTAMP(p)

(4) Examples
Example 1

Using the data in the employee table (EMPLIST), this example determines the age (AGE) of the oldest male
employee.

SELECT MAX("AGE") AS "MAX-AGE"
    FROM "EMPLIST"
       WHERE "SEX"='M'

Example of execution results

Example 2
Using the data in the employee table (EMPLIST), this example determines the age (AGE) of the oldest employee in
each section (SCODE).

7. Constituent Elements

Hitachi Advanced Database SQL Reference 390



SELECT "SCODE",MAX("AGE") AS "MAX-AGE"
    FROM "EMPLIST"
        GROUP BY "SCODE"

Example of execution results

7.22.5 MIN
MIN determines the minimum value.

(1) Specification format
general-set-function-MIN ::= {MIN([ALL] value-expression)|MIN(DISTINCT value-expressi
on)}

Note: Whichever form is specified, the results will be the same.

(2) Explanation of specification format
MIN([ALL] value-expression):

Determines the minimum value of the result of the value expression. For details about value expressions, see 7.20 
Value expression.
ALL can be omitted. The results will be the same regardless of whether it is specified.

MIN(DISTINCT value-expression):
Determines the minimum value of the results of the value expression. For details about value expressions, see 7.20 
Value expression.

(3) Rules
1. Null values are not included in the calculation.

2. In the following cases, the execution result will be a null value:

• If the number of input rows is 0

• If the values to be calculated are all null values

3. The following table shows the data type that can be specified in the value expression and the data type of the execution
result of the general set function MIN.

Table 7-18: Relationship between data type that can be specified in the value expression and
data type of the execution result of the general set function MIN

No. Data type that can be specified in the value
expression

Data type of the execution result of general set
function MIN

1 INTEGER INTEGER

2 SMALLINT SMALLINT

7. Constituent Elements

Hitachi Advanced Database SQL Reference 391



No. Data type that can be specified in the value
expression

Data type of the execution result of general set
function MIN

3 DECIMAL(m,n) DECIMAL(m,n)

4 DOUBLE PRECISION DOUBLE PRECISION

5 CHARACTER(n) CHARACTER(n)

6 VARCHAR(n) VARCHAR(n)

7 DATE DATE

8 TIME(p) TIME(p)

9 TIMESTAMP(p) TIMESTAMP(p)

(4) Examples
Example 1

Using the data in the employee table (EMPLIST), this example determines the age (AGE) of the youngest female
employee.

SELECT MIN("AGE") AS "MIN-AGE"
    FROM "EMPLIST"
       WHERE "SEX"='F'

Example of execution results

Example 2
Using the data in the employee table (EMPLIST), this example determines the age (AGE) of the youngest employee
in each section (SCODE).

SELECT "SCODE",MIN("AGE") AS "MIN-AGE"
    FROM "EMPLIST"
        GROUP BY "SCODE"

Example of execution results

Example 3
Using the data in the employee table (EMPLIST), this example determines the ages (AGE) of the oldest employee
and the youngest employee in each section where the age difference does not exceed 20 years.

SELECT "SCODE",MAX("AGE") AS "MAX-AGE",MIN("AGE") AS "MIN-AGE"
    FROM "EMPLIST"
        GROUP BY "SCODE"
        HAVING MAX("AGE")-MIN("AGE")<=20

Example of execution results

7. Constituent Elements

Hitachi Advanced Database SQL Reference 392



7.22.6 SUM
SUM determines the sum.

(1) Specification format
general-set-function-SUM ::= {SUM([ALL] value-expression)|SUM(DISTINCT value-expressi
on)}

(2) Explanation of specification format
SUM([ALL] value-expression):

Determines the sum of the result of the value expression. For details about value expressions, see 7.20 Value
expression.
ALL can be omitted. The results will be the same regardless of whether it is specified.

SUM(DISTINCT value-expression):
Determines the sum of the result of the value expression. For details about value expressions, see 7.20 Value
expression.
Duplicate values are only counted once. For example, if the values in the result of the value expression are 2, 3, 2,
and 5, the execution result will be 2 + 3 + 5 = 10.

(3) Rules
1. Null values are not included in the calculation.

2. In the following cases, the execution result will be a null value.

• If the number of input rows is 0

• If the values to be calculated are all null values

3. The following table shows the data type that can be specified in the value expression and the data type of the execution
result of the general set function SUM.

Table 7-19: Data type that can be specified in the value expression and data type of the execution
result of the general set function SUM

No. Data type that can be specified in the value expression Data type of the execution result of
general set function SUM

1 INTEGER INTEGER

2 SMALLINT

3 DECIMAL(m,n) DECIMAL(38,n)

4 DOUBLE PRECISION DOUBLE PRECISION

4. If an overflow occurs during the computation of any set function, an overflow error is generated.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 393



(4) Example
Example

Using the data in the salary table (SALARYLIST), this example determines the sum of the employee salaries (SAL)
in each section (SCODE).

SELECT "SCODE",SUM("SAL") AS "SUM-SAL"
    FROM "SALARYLIST"
        GROUP BY "SCODE"

Example of execution results

7.22.7 STDDEV_POP
STDDEV_POP determines the standard deviation of a population.

(1) Specification format
general-set-function-STDDEV_POP ::= STDDEV_POP(value-expression)

(2) Explanation of specification format
value-expression:

Specifies the input values, in the form of a value expression, that make up the population whose standard deviation
is to be determined. For details about value expressions, see 7.20 Value expression.

(3) Rules
1. Null values are not included in the calculation.

2. In the following cases, the execution result will be a null value.

• If the number of input rows is 0

• If the values to be calculated are all null values

3. The execution result of the general set function STDDEV_POP will be equal to the square root of the general set
function VAR_POP.

4. The following table shows the data type that can be specified in the value expression and the data type of the execution
result of the general set function STDDEV_POP.

Table 7-20: Data type that can be specified in the value expression and data type of the execution
result of the general set function STDDEV_POP

No. Data type that can be specified in the value
expression

Data type of the execution result of general set
function STDDEV_POP

1 INTEGER DOUBLE PRECISION

7. Constituent Elements

Hitachi Advanced Database SQL Reference 394



No. Data type that can be specified in the value
expression

Data type of the execution result of general set
function STDDEV_POP

2 SMALLINT

3 DECIMAL(m,n)

4 DOUBLE PRECISION

(4) Example
Example

Using the data in the salary table (SALARYLIST), this example determines the standard deviation of a population
of employee salaries (SALARY).

SELECT STDDEV_POP("SALARY") AS "STDDEV_POP"
    FROM "SALARYLIST"

Example of execution results

7.22.8 STDDEV_SAMP
STDDEV_SAMP determines the standard deviation of a sample.

(1) Specification format
general-set-function-STDDEV_SAMP ::= STDDEV_SAMP(value-expression)

(2) Explanation of specification format
value-expression:

Specifies the input values, in the form of a value expression, that make up the sample whose standard deviation is
to be determined. For details about value expressions, see 7.20 Value expression.

(3) Rules
1. Null values are not included in the calculation.

2. In the following cases, the execution result will be a null value.

• If the number of input rows is 0 or 1

• If the values to be calculated are all null values

3. The execution result of the general set function STDDEV_SAMP will be equal to the square root of the general set
function VAR_SAMP.

4. The following table shows the data type that can be specified in the value expression and the data type of the execution
result of the general set function STDDEV_SAMP.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 395



Table 7-21: Data type that can be specified in the value expression and data type of the execution
result of the general set function STDDEV_SAMP

No. Data type that can be specified in the value
expression

Data type of the execution result of general set
function STDDEV_SAMP

1 INTEGER DOUBLE PRECISION

2 SMALLINT

3 DECIMAL(m,n)

4 DOUBLE PRECISION

(4) Example
Example

Using the data in the salary table (SALARYLIST), this example determines the standard deviation of a sample of
employee salaries (SALARY).

SELECT STDDEV_SAMP("SALARY") AS "STDDEV_SAMP"
    FROM "SALARYLIST"

Example of execution results

7.22.9 VAR_POP
VAR_POP determines the variance of a population.

(1) Specification format
general-set-function-VAR_POP ::= VAR_POP(value-expression)

(2) Explanation of specification format
value-expression:

Specifies the input values, in the form of a value expression, that make up the population whose variance is to be
determined. For details about value expressions, see 7.20 Value expression.

(3) Rules
1. Null values are not included in the calculation.

2. In the following cases, the execution result will be a null value.

• If the number of input rows is 0

• If the values to be calculated are all null values

3. Letting N be the number of input lines, S1 the sum of the input values, and S2 the sum of the values obtained by
squaring the input values, the result of the general set function VAR_POP is calculated as follows:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 396



(S2 - S1 × S1 ÷ N) ÷ N

4. The following table shows the data type that can be specified in the value expression and the data type of the execution
result of the general set function VAR_POP.

Table 7-22: Data type that can be specified in the value expression and data type of the execution
result of the general set function VAR_POP

No. Data type that can be specified in the value
expression

Data type of the execution result of general set
function VAR_POP

1 INTEGER DOUBLE PRECISION

2 SMALLINT

3 DECIMAL(m,n)

4 DOUBLE PRECISION

(4) Example
Example

Using the data in the salary table (SALARYLIST), this example determines the variance of a population of employee
salaries (SALARY) by job class (POSITION).

SELECT "POSITION",VAR_POP("SALARY") AS "VAR_POP"
    FROM "SALARYLIST"
    GROUP BY "POSITION"
    ORDER BY "POSITION"

Example of execution results

7.22.10 VAR_SAMP
VAR_SAMP determines the variance of a sample.

(1) Specification format
general-set-function-VAR_SAMP ::= VAR_SAMP(value-expression)

(2) Explanation of specification format
value-expression:

Specifies the input values, in the form of a value expression, that make up the sample whose variance is to be
determined. For details about value expressions, see 7.20 Value expression.

(3) Rules
1. Null values are not included in the calculation.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 397



2. In the following cases, the execution result will be a null value.

• If the number of input rows is 0 or 1

• If the values to be calculated are all null values

3. Letting N be the number of input lines, S1 the sum of the input values, and S2 the sum of the values obtained by
squaring the input values, the result of the general set function VAR_SAMP is calculated as follows:
(S2 - S1 × S1 ÷ N) ÷ (N - 1)

4. The following table shows the data type that can be specified in the value expression and the data type of the execution
result of the general set function VAR_SAMP.

Table 7-23: Data type that can be specified in the value expression and data type of the execution
result of the general set function VAR_SAMP

No. Data type that can be specified in the value
expression

Data type of the execution result of general set
function VAR_SAMP

1 INTEGER DOUBLE PRECISION

2 SMALLINT

3 DECIMAL(m,n)

4 DOUBLE PRECISION

(4) Example
Example

Using the data in the salary table (SALARYLIST), this example determines the variance of a sample of employee
salaries (SALARY) by job class (POSITION).

SELECT "POSITION",VAR_SAMP("SALARY") AS "VAR_SAMP"
    FROM "SALARYLIST"
    GROUP BY "POSITION"
    ORDER BY "POSITION"

Example of execution results

7.22.11 MEDIAN
MEDIAN determines the median of an ordered set of values. The value might be linearly interpolated.

Note
MEDIAN is an inverse distribution function that gives the same result as specifying the median value (0.5)
as the argument (percentile specification) to PERCENTILE_CONT.

Letting ARG1 be the aggregated argument to MEDIAN, MEDIAN is equivalent to the following
PERCENTILE_CONT function.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 398



PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY ARG1 ASC)

(1) Specification format
inverse-distribution-function-MEDIAN ::= MEDIAN(value-expression)

(2) Explanation of specification format
value-expression:

Specify the input values for obtaining the median in the form of a value expression. For details about value
expressions, see 7.20 Value expression.

(3) Rules
1. Null values are not included in the calculation.

2. If the number of input rows is 0, the execution result will be a null value.

3. The following table shows the data type that can be specified in the value expression and the data type of the execution
result of the inverse distribution function MEDIAN.

Table 7-24: Data type that can be specified in the value expression and data type of the execution
result of the inverse distribution function MEDIAN

No. Data type that can be specified in the value
expression

Data type of the execution result of the inverse
distribution function MEDIAN

1 INTEGER DOUBLE PRECISION

2 SMALLINT

3 DECIMAL(m,n)

4 DOUBLE PRECISION

4. MEDIAN is calculated by linear interpolation with respect to an ordered set of values. Letting N be the number of
input rows, it first calculates the row number RN = {1 + 0.5 × (N - 1)}. Then, by linear interpolation between the
values of the rows of row numbers CRN = CEIL(RN) and FRN = FLOOR(RN), the execution result of MEDIAN is
calculated. The result of the calculation is as follows:

• When CRN=FRN=RN: value of row RN

• Otherwise: (CRN - RN) × (value of row FRN) + (RN - FRN) × (value of row CRN)

(4) Example
Example 1

Using the data in the salary table (SALARYLIST), this example determines the median value (50th percentile) of
the employee salaries (SALARY) by job class (POSITION).

SELECT "POSITION",MEDIAN("SALARY") AS "MEDIAN"
    FROM "SALARYLIST"
    GROUP BY "POSITION"
    ORDER BY "POSITION"

Example of execution results

7. Constituent Elements

Hitachi Advanced Database SQL Reference 399



Example 2
Using the data in the salary table (SALARYLIST), this example determines the median value (50th percentile) of
the employee salaries (SALARY).

SELECT MEDIAN("SALARY") AS "MEDIAN"
    FROM "SALARYLIST"

7.22.12 PERCENTILE_CONT
PERCENTILE_CONT determines the percentile of an ordered set of values. The value might be linearly interpolated.

(1) Specification format
inverse-distribution-function-PERCENTILE_CONT ::= PERCENTILE_CONT(value-specification
) WITHIN-group-specification
 
  WITHIN-group-specification ::= WITHIN GROUP(ORDER BY sort-specification-list)

(2) Explanation of specification format
value-specification:

The value for which the percentile is to be determined, expressed in the form of a value specification. For details
about value specifications, see 7.21 Value specification.
The following rules apply:

• The specified value must be between 0 and 1 (data type INTEGER, SMALLINT, or DECIMAL).

• If the null value is specified, the execution result will be a null value.

• If a dynamic parameter is specified by itself, the assumed data type of the dynamic parameter is
DECIMAL(3,2).

WITHIN-group-specification:

WITHIN-group-specification ::= WITHIN GROUP(ORDER BY sort-specification-list)

The WITHIN group specification specifies the data for which the percentile is to be determined and the order of the
data. In sort-specification-list, specify the data for which the percentile is to be determined as the sort key, and the
ordering of the data (ascending or descending) as the order specification. For details about sort specification lists,
see 7.24 Sort specification list.
The following rules apply:

• Specification of the null-value sort order is not permitted in the sort specification list in the WITHIN group
specification.

• No more than one sort specification is permitted in the sort specification list in the WITHIN group specification.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 400



(3) Rules
1. Null values are not included in the calculation.

2. If the number of input rows is 0, the execution result will be a null value.

3. The following table shows the data types that can be specified in the sort key of the sort specification list and the
data type of the execution result of the inverse distribution function PERCENTILE_CONT.

Table 7-25: Data types that can be specified in the sort key of the sort specification list and data
type of the execution result of the inverse distribution function PERCENTILE_CONT

No. Data types that can be specified in the sort key of the
sort specification list

Data type of the execution result of the inverse
distribution function PERCENTILE_CONT

1 INTEGER DOUBLE PRECISION

2 SMALLINT

3 DECIMAL(m,n)

4 DOUBLE PRECISION

4. PERCENTILE_CONT is calculated by linear interpolation with respect to an ordered set of values. Letting N be the
number of input rows and P be the value of the specified argument, it first calculates the row number RN = {1 + P
× (N - 1)}. Then, by linear interpolation between the values of the rows of row numbers CRN = CEIL(RN) and FRN
= FLOOR(RN), the execution result of PERCENTILE_CONT is calculated. The result of the calculation is as follows:

• When CRN=FRN=RN: the value of row RN

• Otherwise: (CRN - RN) × (value of row FRN) + (RN - FRN) × (value of row CRN)

(4) Example
Example 1

Using the data in the salary table (SALARYLIST), this example determines the median value (50th percentile) of
the employee salaries (SALARY) by job class (POSITION).

SELECT "POSITION",
        PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY "SALARY") AS "PERCENTILE_CONT"
    FROM "SALARYLIST"
    GROUP BY "POSITION"
    ORDER BY "POSITION"

Example 2
Using the data in the salary table (SALARYLIST), this example determines the median value (50th percentile) of
the employee salaries (SALARY).

SELECT PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY "SALARY") AS "PERCENTILE_CONT"
    FROM "SALARYLIST"

7. Constituent Elements

Hitachi Advanced Database SQL Reference 401



7.22.13 PERCENTILE_DISC
PERCENTILE_DISC determines the percentile of an ordered set of values. It returns a result from the set of values.

(1) Specification format
inverse-distribution-function-PERCENTILE_DISC ::= PERCENTILE_DISC(value-specification
) WITHIN-group-specification
 
  WITHIN-group-specification ::= WITHIN GROUP(ORDER BY sort-specification-list)

(2) Explanation of specification format
value-specification:

The value for which the percentile is to be determined, expressed in the form of a value specification. For details
about value specifications, see 7.21 Value specification.
The following rules apply:

• The specified value must be between 0 and 1 (data type INTEGER, SMALLINT, or DECIMAL).

• If the null value is specified, the execution result will be a null value.

• If a dynamic parameter is specified by itself, the assumed data type of the dynamic parameter is
DECIMAL(3,2).

WITHIN-group-specification:

WITHIN-group-specification ::= WITHIN GROUP(ORDER BY sort-specification-list)

The WITHIN group specification specifies the data for which the percentile is to be determined and the order of the
data. In sort-specification-list, specify the data for which the percentile is to be determined as the sort key, and the
ordering of the data (ascending or descending) as the order specification. For details about sort specification lists,
see 7.24 Sort specification list.
The following rules apply:

• Specification of the null-value sort order is not permitted in the sort specification list in the WITHIN group
specification.

• No more than one sort specification is permitted in the sort specification list in the WITHIN group specification.

(3) Rules
1. Null values are not included in the calculation.

2. If the number of input rows is 0, the execution result will be a null value.

3. The following table shows the data types that can be specified in the sort key of the sort specification list and the
data type of the execution result of the inverse distribution function PERCENTILE_DISC.

Table 7-26: Data types that can be specified in the sort key of the sort specification list and data
type of the execution result of the inverse distribution function PERCENTILE_DISC

No. Data types that can be specified in the sort key of the
sort specification list

Data type of the execution result of the inverse
distribution function PERCENTILE_DISC

1 INTEGER INTEGER

2 SMALLINT SMALLINT

7. Constituent Elements

Hitachi Advanced Database SQL Reference 402



No. Data types that can be specified in the sort key of the
sort specification list

Data type of the execution result of the inverse
distribution function PERCENTILE_DISC

3 DECIMAL(m,n) DECIMAL(m,n)

4 DOUBLE PRECISION DOUBLE PRECISION

5 CHAR(n) CHAR(n)

6 VARCHAR(n) VARCHAR(n)

7 DATE DATE

8 TIME(p) TIME(p)

9 TIMESTAMP(p) TIMESTAMP(p)

4. PERCENTILE_DISC returns a result from an ordered set of values. If P is the value of the specified argument, it
sorts the values in the value expression specified in the sort specification list, and then, from among those values,
returns the value that is greater than or equal to P with the smallest CUME_DIST value with respect to the same sort
specification list.

(4) Example
Example

Using the data in the salary table (SALARYLIST), this example determines the median value (50th percentile) of
the employee salaries (SALARY) by job class (POSITION).
Both PERCENTILE_CONT and PERCENTILE_DISC can be used to determine the median value.

SELECT "POSITION",
        PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY "SALARY" ASC) AS "PERCENTILE_CO
NT",
        PERCENTILE_DISC(0.5) WITHIN GROUP(ORDER BY "SALARY" ASC) AS "PERCENTILE_DI
SC"
    FROM "SALARYLIST"
    GROUP BY "POSITION"
    ORDER BY "POSITION"

As shown above, the results of PERCENTILE_CONT and PERCENTILE_DISC can differ. This is because
PERCENTILE_CONT returns results that are linearly interpolated, while PERCENTILE_DISC returns results only
from the set of values upon which calculations are being performed.

7.22.14 Common rules and considerations for set functions

(1) Explanation of terms
1. A general set function in which DISTINCT is specified is called a DISTINCT set function. A general set function

in which ALL is specified is called an ALL set function.

2. The following value expressions are called the aggregated arguments of a set function.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 403



• In the case of the inverse distribution functions PERCENTILE_CONT and PERCENTILE_DISC, the value
expression specified as the sort key in the WITHIN group specification
Example:

SELECT PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY "C1") FROM "T1"

The underlined portion indicates the aggregated argument.

• In the case of set functions other than the inverse distribution functions PERCENTILE_CONT and
PERCENTILE_DISC, the value expression specified as the argument to the set function
Example:

SELECT "C1",SUM("C2") FROM "T1" GROUP BY "C1"

The underlined portion indicates the aggregated argument.

3. A column specification within an aggregated argument is called an aggregated column specification.
Example:

SELECT "C1",SUM("C2"+1) FROM "T1" GROUP BY "C1"

The underlined portion indicates the aggregated column specification.

4. A query specification that directly contains a FROM clause that contains a table reference that is referenced by an
aggregated column specification is called a qualified query of that aggregated column specification.
Example:

SELECT "C1",SUM("T1"."C2") FROM "T1" GROUP BY "C1"

The underlined portion (the entire query) indicates the qualified query.

The following example illustrates a qualified query with an external reference.

Example:

SELECT "C1" FROM "T1" GROUP BY "C1" HAVING EXISTS   ...[1]
    (SELECT * FROM "T2" WHERE MAX("T1"."C2")>"T2"."C1")

Explanation
• The aggregated column specification in the set function MAX("T1"."C2") is "T1"."C2".

• The table referenced by "T1"."C2" is "T1".

• The query specification whose FROM clause directly contains "T1" is the part indicated by [1].

• The qualified query is therefore the query specification in [1].

(2) Common rules
1. A set function can be specified in a selection expression, HAVING clause, or ORDER BY clause that is directly

contained in a qualified query of that set function. However, restrictions apply when specifying a set function in an
ORDER BY clause. For details about the restrictions, see (2) Rules for specifying value expressions as sort keys in
7.24.2 Rules for specifying a sort specification list in an ORDER BY clause.

2. If the value expression specified as an aggregated argument is not an independent column specification, you cannot
specify multiple inverse distribution functions in the same query specification.
Example of an SQL statement that generates an error:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 404



SELECT PERCENTILE_CONT(0.25) WITHIN GROUP (ORDER BY "C1"+"C2"),
       PERCENTILE_DISC(0.25) WITHIN GROUP (ORDER BY "C1"+"C2")
    FROM "T1"

Because the value expression specified as an aggregated argument is not an independent column specification,
multiple inverse distribution functions cannot be specified.

3. If you specify multiple inverse distribution functions in the same query specification, the column specifications
provided as aggregated arguments must reference the same column.
Example of an SQL statement that generates an error:

SELECT PERCENTILE_CONT(0.25) WITHIN GROUP (ORDER BY "C1"),
       PERCENTILE_CONT(0.25) WITHIN GROUP (ORDER BY "C2")
    FROM "T1"

The column specifications in inverse distribution functions must reference the same column.

Note
The following is an example of where multiple inverse distribution functions can be specified.

Example:

SELECT PERCENTILE_CONT(0.25) WITHIN GROUP (ORDER BY "C1"),
       PERCENTILE_DISC(0.25) WITHIN GROUP (ORDER BY "GC1")
    FROM "T1"
    GROUP BY "C1" AS "GC1"

Because the column specifications in inverse distribution functions reference the same grouping column,
this statement does not result in an error.

4. If you specify multiple inverse distribution functions in the same query specification, make sure that the same order
specification is provided for the sort specification in the WITHIN group specification in all of the functions.
Example of an SQL statement that generates an error:

SELECT PERCENTILE_CONT(0.25) WITHIN GROUP (ORDER BY "C1" ASC),
       PERCENTILE_CONT(0.25) WITHIN GROUP (ORDER BY "C1" DESC)
    FROM "T1" 

5. You cannot specify a dynamic parameter as the value expression specified for the aggregated argument in a set
function.
Example of an SQL statement that generates an error:

SELECT MAX(CASE WHEN "C1">? THEN "C1" ELSE "C1"*100 END) FROM "T1"

You cannot specify a dynamic parameter in the underlined portion.

6. You cannot specify a set function, a subquery, a window function, or the RANDOMROW scalar function inside of
a set function.
Example of an SQL statement that generates an error:

SELECT SUM(CASE WHEN MAX("C1")>10000 THEN "C1" END) FROM "T1"

You cannot specify a set function in the underlined portion.

7. A single query specification can include a maximum of 64 DISTINCT set functions with different aggregated
arguments (excluding the DISTINCT set functions specified in window functions).

7. Constituent Elements

Hitachi Advanced Database SQL Reference 405



8. If you specify something other than a single column specification as the value expression specified for the aggregated
argument in a set function, you cannot specify an external reference column in that value expression.
Example of an SQL statement that generates an error:

SELECT SUM("C1") FROM "T1"
   HAVING EXISTS(SELECT * FROM "T2" WHERE AVG("T1"."C2"*1.05)>"C2")

You cannot specify an external reference column in the underlined portion.

9. The input to the set function will be the results from the last-specified clause among the FROM, WHERE, and GROUP
BY clauses. If a GROUP BY clause is specified, the results for each group will be input to the set function.

10. When a set function is used in a window function, the input to the set function will be the set of rows included in
the window frame of the current row.

11. You cannot specify an external reference column as the aggregated argument to an inverse distribution function.

12. No more than one sort specification is permitted in the sort specification list specified in an inverse distribution
function.

(3) Common considerations
1. If a DISTINCT set function or inverse distribution function is specified, a work table might be created. If the size

of the work table DB area where the work table is created has not been estimated correctly, it might result in
performance degradation. For details about estimating the size of the work table DB area, see the HADB Setup and
Operation Guide. For details about work tables, see Considerations when executing an SQL statement that creates
work tables in the HADB Application Development Guide.

2. If global hash grouping is applied as the method of grouping performed during deduplication of DISTINCT set
functions, a derived table might be created. HADB automatically assigns a correlation name in the following format
to the derived table:

##DRVTBL_xxxxxxxxxx

In the preceding format, xxxxxxxxxx is a 10-digit integer.
For details about global hash grouping, see Global hash grouping in Hash grouping in the HADB Application
Development Guide.

3. If a GROUP BY clause or HAVING clause is specified, no execution results are output for groups where the number
of input rows is 0.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 406



7.23 Window functions

Using a window function, you can specify a range of rows derived from the results of a table expression, and then
determine aggregated values for the rows in that range.

The window functions are shown in the following table:

Table 7-27: List of window functions

No. Window function Description

1 RANK Determines the ranking of the rows in an ordered set of rows. The ranking values might not
be contiguous integer values.

2 DENSE_RANK Determines the ranking of the rows in an ordered set of rows. The ranking values will be
contiguous integer values.

3 CUME_DIST Determines the relative position of a row in an ordered set of rows. The CUME_DIST of row
R is the number of rows that are in front of R in the window (partition) or that have the same
sort key value as R, divided by the number of rows in the window (partition) of R.

4 ROW_NUMBER Assigns a unique number to each row in an ordered set of rows.

5 Set function Determines the value of a set function with respect to a window frame.

7.23.1 Specification format for window functions

(1) Specification format
window-function ::= {RANK()
                   | DENSE_RANK()
                   | CUME_DIST()
                   | ROW_NUMBER()
                   | set-function} OVER(window-specification)
 
 
  window-specification ::= [window-partition-clause] [window-order-clause]
                           [window-frame-clause]
    window-partition-clause ::= PARTITION BY value-expression[,value-expression]...
    window-order-clause ::= ORDER BY sort-specification-list
    window-frame-clause ::= {ROWS | RANGE} {window-frame-start | window-frame-range}
 
  window-frame-start ::= {UNBOUNDED PRECEDING
                         |window-frame-value-specification PRECEDING
                         |CURRENT ROW}
  window-frame-range ::= BETWEEN window-frame-start-boundary
                                        AND window-frame-end-boundary
    window-frame-start-boundary ::= window-frame-boundary
    window-frame-end-boundary ::= window-frame-boundary
    window-frame-boundary ::= {UNBOUNDED PRECEDING
                              | window-frame-value-specification PRECEDING
                              | CURRENT ROW
                              | window-frame-value-specification FOLLOWING
                              | UNBOUNDED FOLLOWING}
      window-frame-value-specification ::= {unsigned-value-specification | labeled-du
ration}

7. Constituent Elements

Hitachi Advanced Database SQL Reference 407



(2) Explanation of specification format

(a) window-partition-clause

window-partition-clause ::= PARTITION BY value-expression[,value-expression]...

Partitions the results of the table expression using the results of value-expression. If window-partition-clause is omitted,
the result will be a single window (partition) for the entire table expression.

The following figure gives a functional overview of the window partition clause:

Figure 7-4: Functional overview of the window partition clause

The following rules apply:

• You must specify a value expression that contains a column specification in the window partition clause.

• No more than 16 value expressions can be specified in the window partition clause.

• A column specified in a single column specification in the window partition clause cannot be specified again.

• You cannot specify binary data for the value expressions in the window partition clause.

(b) window-order-clause

window-order-clause ::= ORDER BY sort -specification-list

Specify this to order (sort) the data in a window (partition). For details about the specification format and rules of the
sort specification list, see 7.24 Sort specification list.

The following figure gives a functional overview of the window order clause.

Figure 7-5: Functional overview of the window order clause

The following rules apply:

• The data types that can be specified in the sort key of the sort specification list are shown in the following table.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 408



Table 7-28: Data types that can be specified in the sort key of the sort specification list of the
window order clause

Window frame clause
specification

Window frame
value
specification

Data type of sort key

Numeric data Character
string data

Datetime data Binary data

Specified ROWS -- Y Y Y N

RANGE Specified Y N Y N

Not specified Y Y Y N

Not specified -- Y Y Y N

Legend:
Y: Can be specified.
N: Cannot be specified.
--: Not applicable.

• If a dynamic parameter is specified by itself for the sort key of the sort specification list, the assumed data type of
the dynamic parameter is INTEGER.

• You cannot specify a window order clause when using a DISTINCT set function or inverse distribution function
as the window function.

• In order to specify RANK, DENSE_RANK, or CUME_DIST, you must specify a window order clause in the window
specification.

• If you specify RANGE in the window frame clause and a window frame value specification in the window frame
boundary, no more than one sort specification is permitted in the sort specification list in the window order clause.

(c) window-frame-clause

window-frame-clause ::= {ROWS | RANGE} {window-frame-start | window-frame-range}

Specifies a window frame to serve as the aggregation range for the window function.

The following figure gives a functional overview of the window frame clause.

Figure 7-6: Functional overview of the window frame clause

If ROWS is specified in the window frame clause, a physical row-by-row window frame is used. If RANGE is specified,
the window frame is implemented as a logical offset (a logical interval such as a datetime).

When window-frame-clause is omitted, the range of the window frame will be as follows.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 409



• When a window order clause is specified
The range of the window frame is equivalent to specifying the following window frame range:

RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

The range of the window function will extend from the first row of the window (partition) to the current row.
However, because RANGE is assumed, later rows with the same sort key value as the current row will also be included
in the aggregation range.

• When a window order clause is not specified
The range of the window function will be the window (partition) containing the current row.

The following rules apply:

• If a window frame clause is specified, either COUNT(*) or a general set function (excluding DISTINCT set
functions) must be used as the window function.

• If you specify a window frame clause other than one of the following that represents all windows (partitions), you
must specify a window order clause:

• ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
• RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

• If RANK, DENSE_RANK, CUME_DIST, or ROW_NUMBER is specified, you cannot specify a window frame clause
in the window specification.

• If window-frame-start is specified in the window frame clause, the range of the window frame is equivalent to the
following:

BETWEEN window-frame-start AND CURRENT ROW

• If a window frame range is specified in the window frame clause, the upper boundary of the window frame is set to
window-frame-start-boundary, and the lower boundary of the window frame is set to window-frame-end-boundary.

• The window frame boundary can be set to one of the following.

• UNBOUNDED PRECEDING:
The window frame will start from the first row in the window (partition). UNBOUNDED PRECEDING can be
set for window-frame-start-boundary.

• UNBOUNDED FOLLOWING:
The window frame will end at the last row in the window (partition). UNBOUNDED FOLLOWING can be set for
window-frame-end-boundary.

• CURRENT ROW:
• If ROWS is specified:
If it is specified in window-frame-start-boundary, the window frame will start from the current row. If it is
specified in window-frame-end-boundary, the window frame will end at the current row.
• If RANGE is specified:
If it is specified in window-frame-start-boundary, the window frame will start from the first row with the same
sort key value as the current row. If it is specified in window-frame-end-boundary, the window frame will end
at the last row with the same sort key value as the current row.

• window-frame-value-specification PRECEDING or window-frame-value-specification FOLLOWING
• If ROWS is specified:
The value of window-frame-value-specification is a physical row offset from the current row. The data type of
unsigned-value-specification must be INTEGER. You cannot specify a labeled duration.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 410



• If RANGE is specified:
The value of window-frame-value-specification is a logical offset from the sort key value of the current row.
The following table shows the data type of the sort key specified in the window order clause, and the unsigned
value specification or labeled duration that can be specified.

Table 7-29: Data type of the sort key specified in the window order clause, and the unsigned
value specification or labeled duration that can be specified (when RANGE is
specified)

Data type of the sort key
specified in window-order-
clause

Unsigned value specification or labeled duration that can be specified

Numeric data An unsigned value specification consisting of numeric data

DATE Labeled duration (YEARS, MONTHS, DAYS)

TIME Labeled duration (HOURS, MINUTES, SECONDS, MILLISECONDS, MICROSECONDS,
NANOSECONDS, PICOSECONDS)

TIMESTAMP Labeled duration (YEARS, MONTHS, DAYS, HOURS, MINUTES, SECONDS,
MILLISECONDS, MICROSECONDS, NANOSECONDS, PICOSECONDS)

• Certain combinations of window frame boundaries cannot be specified in the window frame range. For example:

• UNBOUNDED FOLLOWING is never permitted for window-frame-start-boundary.

• UNBOUNDED PRECEDING is never permitted for window-frame-end-boundary.

The following table shows the combinations that can be specified:

Table 7-30: Combinations that can be specified

Window frame start
boundary
specification

Window frame end boundary specification

UNBOUNDED
FOLLOWING

CURRENT ROW window-frame-
value-specification
PRECEDING

window-frame-
value-specification
FOLLOWING

UNBOUNDED
PRECEDING

Y Y Y Y

CURRENT ROW Y Y N Y

window-frame-value-
specification
PRECEDING

Y Y Y Y

window-frame-value-
specification
FOLLOWING

Y N N Y

Legend:
Y: Can be specified.
N: Cannot be specified.

• When you specify a labeled duration for window-frame-value-specification in the window frame range, the same
labeled duration qualifier must be used for both window-frame-start-boundary and window-frame-end-boundary.
For details about labeled duration qualifiers, see 7.28.1 Specification format and rules for labeled durations.
Example:

BETWEEN 2 DAYS PRECEDING AND 1 DAYS PRECEDING

7. Constituent Elements

Hitachi Advanced Database SQL Reference 411



• When you specify a labeled duration for window-frame-value-specification, only a value specification can be
specified for value-expression-primary in the labeled duration.

• When you specify a labeled duration for window-frame-value-specification, the following value ranges are
permitted:
YEARS: 0 to 9,998
MONTHS: 0 to 119,987
DAYS: 0 to 3,652,058
HOURS: 0 to 87,649,415
MINUTES: 0 to 5,258,964,959
SECONDS: 0 to 315,537,897,599
MILLISECONDS: 0 to 315,537,897,599,999
MICROSECONDS: 0 to 315,537,897,599,999,999
NANOSECONDS: 0 to 9,223,372,036,854,775,807
PICOSECONDS: 0 to 9,223,372,036,854,775,807

• An error results if you specify a negative value or null value for window-frame-value-specification.

• The following table shows which data type is assumed when a dynamic parameter is specified for window-frame-
value-specification.

Table 7-31: Assumed data type when the window frame value specification is a dynamic
parameter

Window frame specification Data type of the sort key in the
window order clause

Assumed data type of the window frame
value specification

RANGE SMALLINT SMALLINT

INTEGER INTEGER

DECIMAL DECIMAL

DOUBLE PRECISION DOUBLE PRECISION

DATE -- (Only a labeled duration is permitted)

TIME

TIMESTAMP

ROWS -- INTEGER

Legend:
--: Not applicable.

7.23.2 Rules for specifying windows (partitions)
This subsection describes how rows are split into windows (partitions) and the order of rows inside the windows
(partitions).

(1) How rows are split into windows (partitions)
The set of rows from the table to which the window specification applies is split into windows (partitions) based on the
result of the value expression specified in the window partition clause. The rows that make up the windows (partitions)
are determined according to the following rules:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 412



• When the result of the value expression in the window partition clause is not the null value
The windows (partitions) are composed of the rows for which the result of the value expression is the same value.
For the comparison rules used to determine if two values are the same, see (1) Data types that can be compared in
6.2.2 Data types that can be converted, assigned, and compared.

• When the result of the value expression in the window partition clause is the null value
The window (partition) is composed of the rows for which the result of the value expression is the null value.

(2) Order of rows inside the windows (partitions)
The order of rows inside the windows (partitions) is as follows:

• If a window order clause is specified
The rows are ordered as specified in the sort specification list of the window order clause. For details about sort
specification lists, see 7.24 Sort specification list.

• If no window order clause is specified
No particular ordering can be assumed. The order of rows inside the windows (partitions) is determined by the order
in which the rows are actually retrieved.

7.23.3 Rules for specifying the window frame (when RANGE is specified
in the window frame clause)

When RANGE is specified in the window frame clause, the upper and lower boundaries of the window frame are
determined as follows.

(1) Upper boundary of the window frame

(a) When the window frame start boundary is UNBOUNDED PRECEDING
The first row of the window frame (the upper boundary) will be the first row of the window (partition).

(b) When the window frame start boundary is CURRENT ROW
The first row of the window frame (the upper boundary) will be the first row with the same sort key value as the current
row.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 413



(c) When the window frame start boundary is window-frame-value-specification
PRECEDING or window-frame-value-specification FOLLOWING

The upper boundary of the window frame is determined based on the value of the sort key specified in the window order
clause.

■ When the sort key value of the current row is the null value
The first row of the window frame (the upper boundary) will be same, regardless of whether window-frame-value-
specification PRECEDING or window-frame-value-specification FOLLOWING is specified for the window frame
start boundary.
The first row of the window frame (the upper boundary) will be the topmost row among the upper rows whose sort
key is the null value.

■ When the sort key value of the current row is not the null value
The upper boundary of the window frame is determined as follows:

• When the window frame boundary is window-frame-value-specification PRECEDING
If the sort order specification is ASC (ascending), the first row of the window frame (the upper boundary) will
be the first row whose sort key is greater than or equal to the value from Formula A.
When the sort order specification is DESC (descending), the first row of the window frame (the upper boundary)
will be the first row whose sort key is less than or equal to the value from Formula A.
Formula A:
• When the sort order specification is ASC (ascending): the sort key value of the current row - window-frame-
value-specification

7. Constituent Elements

Hitachi Advanced Database SQL Reference 414



• When the sort order specification is DESC (descending): the sort key value of the current row + window-frame-
value-specification

If the value from Formula A is a value that cannot be represented in the data type of the result, the window frame
is determined using the maximum or minimum value that can be represented by the data type of the result.

• When the window frame boundary is window-frame-value-specification FOLLOWING
If the sort order specification is ASC (ascending), the first row of the window frame (the upper boundary) will
be the first row whose sort key is greater than or equal to the value from Formula B.
When the sort order specification is DESC (descending), the first row of the window frame (the upper boundary)
will be the first row whose sort key is less than or equal to the value from Formula B.
Formula B:
• When the sort order specification is ASC (ascending): the sort key value of the current row + window-frame-
value-specification
• When the sort order specification is DESC (descending): the sort key value of the current row - window-frame-
value-specification

If the value from Formula B is a value that cannot be represented in the data type of the result, the window frame
is determined using the maximum or minimum value that can be represented by the data type of the result.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 415



(2) The lower boundary of the window frame

(a) When the window frame end boundary is UNBOUNDED FOLLOWING
The last row of the window frame (the lower boundary) will be the last row of the window (partition).

(b) When the window frame end boundary is CURRENT ROW
The last row of the window frame (the lower boundary) will be the last row with the same sort key value as the current
row.

(c) When the window frame end boundary is window-frame-value-specification
PRECEDING or window-frame-value-specification FOLLOWING

The lower boundary of the window frame is determined based on the value of the sort key specified in the window order
clause.

■ When the sort key value of the current row is the null value
The last row of the window frame (the lower boundary) will be the same, regardless of whether window-frame-
value-specification PRECEDING or window-frame-value-specification FOLLOWING is specified for the window
frame end boundary.
The last row of the window frame (the lower boundary) will be the last row whose sort key is the null value.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 416



■ When the sort key value of the current row is not the null value
The lower boundary of the window frame is determined as follows:

• When the window frame boundary is window-frame-value-specification PRECEDING
If the sort order specification is ASC (ascending), the last row of the window frame (the lower boundary) will
be the last row whose sort key is less than or equal to the value from Formula A.
When the sort order specification is DESC (descending), the last row of the window frame (the lower boundary)
will be the last row whose sort key is greater than or equal to the value from Formula A.
Formula A:
• When the sort order specification is ASC (ascending): the sort key value of the current row - window-frame-
value-specification
• When the sort order specification is DESC (descending): the sort key value of the current row + window-frame-
value-specification

If the value from Formula A is a value that cannot be represented in the data type of the result, the window frame
is determined using the maximum or minimum value that can be represented by the data type of the result.

• When the window frame boundary is window-frame-value-specification FOLLOWING
If the sort order specification is ASC (ascending), the last row of the window frame (the lower boundary) will
be the last row whose sort key is less than or equal to the value from Formula B.
If the sort order specification is DESC (descending), the last row of the window frame (the lower boundary) will
be the last row whose sort key is greater than or equal to the value from Formula B.
Formula B:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 417



• When the sort order specification is ASC (ascending): the sort key value of the current row + window-frame-
value-specification
• When the sort order specification is DESC (descending): the sort key value of the current row - window-frame-
value-specification

If the value from Formula B is a value that cannot be represented in the data type of the result, the window frame
is determined using the maximum or minimum value that can be represented by the data type of the result.

7.23.4 Rules for specifying the window frame (when ROWS is specified in
the window frame clause)

When ROWS is specified in the window frame clause, the upper and lower boundaries of the window frame are determined
as follows.

(1) The upper boundary of the window frame

(a) When the window frame start boundary is UNBOUNDED PRECEDING
The first row of the window frame (the upper boundary) will be the first row of the window (partition).

(b) When the window frame start boundary is CURRENT ROW
The first row of the window frame (the upper boundary) will be the current row.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 418



(c) When the window-frame-start-boundary is window-frame-value-specification
PRECEDING

The first row of the window frame (the upper boundary) will be the row that is found by counting up from the current
row the number of rows in window-frame-value-specification.

(d) When the window frame start boundary is window-frame-value-specification
FOLLOWING

The first row of the window frame (the upper boundary) will be the row that is found by counting down from the current
row the number of rows in window-frame-value-specification.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 419



(2) The lower boundary of the window frame

(a) When the window frame end boundary is UNBOUNDED FOLLOWING
The last row of the window frame (the lower boundary) will be the last row of the window (partition).

(b) When the window frame end boundary is CURRENT ROW
The last row of the window frame (the lower boundary) will be the current row.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 420



(c) When the window frame end boundary is window-frame-value-specification
PRECEDING

The last row of the window frame (the lower boundary) will be the row that is found by counting up from the current
row the number of rows in window-frame-value-specification.

(d) When the window frame end boundary is window-frame-value-specification
FOLLOWING

The last row of the window frame (the lower boundary) will be the row that is found by counting down from the current
row the number of rows in window-frame-value-specification.

7.23.5 Rules and considerations pertaining to window functions
1. Window functions can be specified in selection expressions and ORDER BY clauses. However, when specifying a

window function in an ORDER BY clause, the sort key of the ORDER BY clause must be identical to the sort key of
the value expressions in the selection expression.

2. You can specify a maximum of eight window functions in a single query specification.

3. You cannot specify a window function, a subquery, or the RANDOMROW scalar function inside of a window
function.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 421



4. The execution result of the window function RANK, DENSE_RANK, or ROW_NUMBER will have the data type
INTEGER. The execution result of CUME_DIST will have the data type DOUBLE PRECISION. For details about
the data type of the execution result of a set function used as a window function, see the description of the set
function in 7.22 Set functions.

5. The window function applies to the set of rows derived from the results of the table expression (the results of the
FROM clause and WHERE clause). If there are no rows in the results of the table expression, the window function is
not executed.

6. You cannot specify ROW and a window function at the same time.

7. If you specify a GROUP BY clause, HAVING clause, or set function, the grouping column must be a column
specification that is not positioned as the aggregated argument of a window function or as a set function that is
included in a window specification.
Example:

SELECT COUNT("C1") OVER(PARTITION BY SUM("C2")
                          ORDER BY "C1" RANGE UNBOUNDED PRECEDING)
    FROM "T1"
    GROUP BY "C1"

In the SQL statement above, column C1, which is specified in the GROUP BY clause, is the grouping column.
Because C1, which is specified in COUNT("C1") and ORDER BY "C1", is not the aggregated argument of a set
function, it must be specified as the grouping column. On the other hand, C2, which is specified in SUM("C2"),
is the aggregated argument of a set function, so it need not be specified as the grouping column.

8. When a window function is specified, a work table might be created. If the size of the work table DB area where
the work table is to be created has not been estimated correctly, it might result in a performance degradation. For
details about estimating the size of the work table DB area, see the HADB Setup and Operation Guide. For details
about work tables, see Considerations when executing an SQL statement that creates work tables in the HADB
Application Development Guide.

7.23.6 Examples of using window functions

(1) Examples where ROWS or RANGE is specified in the window frame
clause

The following examples show SQL statements that determine a moving total, They illustrate the difference between
specifying ROWS and RANGE in the window frame clause.

(a) Example using ROWS

SELECT "C1_SORTKEY", "C2_NUM",
        SUM("C2_NUM") OVER(ORDER BY "C1_SORTKEY"
                      ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS "ROWS_SUM"
    FROM "T1"
    ORDER BY "C1_SORTKEY", "C2_NUM"

Example of execution results

7. Constituent Elements

Hitachi Advanced Database SQL Reference 422



Explanation

• In the above example, the values in C1_SORTKEY are arranged in ascending order when the window frame is
set. The window frame is set such that the range of the window function extends from one row above the current
row to the current row.

• The ROWS_SUM column stores the sum of the values in column C2_NUM in the rows within the aggregation
range.

(b) Example using RANGE

SELECT "C1_SORTKEY","C2_NUM",
        SUM("C2_NUM") OVER(ORDER BY "C1_SORTKEY"
                        RANGE BETWEEN 1 PRECEDING AND CURRENT ROW) AS "RANGE_SUM"
    FROM "T1"
    ORDER BY "C1_SORTKEY","C2_NUM"

Example of execution results

7. Constituent Elements

Hitachi Advanced Database SQL Reference 423



Explanation

• In the above example, the values in C1_SORTKEY are arranged in ascending order when the window frame is
set. The window frame is set such that the range of the window function extends from the row for which the
value of C1_SORTKEY is 1 less than the value at the current row, up to the row where it has the same value as
the current row.

• The RANGE_SUM column stores the sum of the values in column C2_NUM in the rows within the aggregation
range.

(2) Example using RANK
Using the data in the salary table (SALARYLIST), this example ranks employees by salary (SALARY) within each job
class (POSITION).

SELECT "EMPID","POSITION","SALARY",
        RANK() OVER(PARTITION BY "POSITION" ORDER BY "SALARY" DESC) AS "RANK"
    FROM "SALARYLIST"
    ORDER BY "POSITION","SALARY" DESC,"EMPID"

Example of execution results

(3) Example using DENSE_RANK
Using the data in the salary table (SALARYLIST), this example ranks employees by salary (SALARY) within each job
class (POSITION).

SELECT "EMPID","POSITION","SALARY",
        DENSE_RANK() OVER(PARTITION BY "POSITION" ORDER BY "SALARY" DESC) AS "DENSE_R
ANK"
    FROM "SALARYLIST"
    ORDER BY "POSITION","SALARY" DESC,"EMPID"

Example of execution results

7. Constituent Elements

Hitachi Advanced Database SQL Reference 424



(4) Example using CUME_DIST
Using the data in the salary table (SALARYLIST), this example determines the relative positions of the employees'
salaries (SALARY) within each job class (POSITION).

SELECT "EMPID","POSITION","SALARY",
        CUME_DIST() OVER(PARTITION BY "POSITION" ORDER BY "SALARY" DESC) AS "CUME_DIS
T"
    FROM "SALARYLIST"
    ORDER BY "POSITION","SALARY" DESC,"EMPID"

Example of execution results

(5) Example using ROW_NUMBER
Using the data in the salary table (SALARYLIST), this example determines the row numbers in descending order with
respect to employee salary (SALARY) within each job class (POSITION).

SELECT "EMPID","POSITION","SALARY",
        ROW_NUMBER() OVER(PARTITION BY "POSITION" ORDER BY "SALARY" DESC) AS "ROW_NUM
BER"
    FROM "SALARYLIST"
    ORDER BY "POSITION","SALARY" DESC,"EMPID"

Example of execution results

7. Constituent Elements

Hitachi Advanced Database SQL Reference 425



(6) Example using PERCENTILE_CONT
Using the data in the salary table (SALARYLIST), this example determines the median value (50th percentile) of the
employee salaries (SALARY) within each job class (POSITION).

SELECT "EMPID","POSITION","SALARY",
        PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY "SALARY")
            OVER(PARTITION BY "POSITION") AS "PERCENTILE_CONT"
    FROM "SALARYLIST"
    ORDER BY "POSITION","SALARY","EMPID"

Example of execution results

7. Constituent Elements

Hitachi Advanced Database SQL Reference 426



7.24 Sort specification list

This section describes the sort specification list. Sort specification lists are specified in the following locations:

• ORDER BY clause
See 4.4.1 Specification format and rules for the SELECT statement.

• WITHIN group specification
See 7.22.12 PERCENTILE_CONT and 7.22.13 PERCENTILE_DISC.

• Window order clause
See 7.23.1 Specification format for window functions.

7.24.1 Specification format for the sort specification list
The sort specification list is used to specify the sort order of data.

(1) Specification format
sort-specification-list ::= sort-specification[,sort-specification]...
 
  sort-specification ::= sort-key [order-specification] [null-value-sort-order-specif
ication]
    sort-key ::= {value-expression | sort-item-specification-number}
    order-specification ::= {ASC | DESC}
    null-value-sort-order-specification ::= NULLS {FIRST | LAST}

(2) Explanation of specification format
• sort-specification

sort-specification ::= sort-key [order-specification] [null-value-sort-order-speci
fication]

A sort specification specifies a sort key, and optionally an order specification and a specification of the null-value
sort order.
The following rules apply:

• No more than 64 sort specifications are permitted in a sort specification list specified in an ORDER BY clause
or window order clause.

• No more than one sort specification is permitted in a sort specification list specified in a WITHIN group
specification (you cannot specify two or more).

• sort-key

sort-key ::= {value-expression | sort-item-specification-number}

The sort key specifies either a value expression or a sort item specification number.
When an integer literal is specified for sort-key, it is considered a sort item specification number. When a non-integer
literal is specified, it is considered a value expression.

value-expression:
Specifies a sort key in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 427



Note that when multiple sort keys are specified, the sort keys that are specified first take the highest priority
when sorting. For example, if ORDER BY "C1","C2","C3" is specified, the priority order of the sort keys
will be C1, C2, and then C3.

sort-item-specification-number:
Specifies the number of the column that is to be the sort key. For example, if 2 is specified, the sort key will be
the second column of the table derived by the query expression body.
Example:

SELECT "C1","C2" FROM "T1"
    ORDER BY 2 ASC

When the SELECT statement above is executed, the sort key will be column C2.
The following rules apply:

• The sort item specification number must be an integer literal.

• The sort item specification number must be a value in the range from 1 to the number of columns in the table
derived by the query expression body.
Example:

SELECT "C1",SUM("C2"),AVG("C2") FROM "T1"
    GROUP BY "C1" ORDER BY 3 ASC

When the above SELECT statement is executed, a sort item specification number between 1 and 3 can be
specified in the ORDER BY clause.

• When there are two or more sort item specification numbers, the ones specified first take the highest priority
when sorting. For example, if ORDER BY 2,3,1 is specified, the priority order for sorting will be column
2, then column 3, and finally column 1.

• You cannot specify a sort item specification number corresponding to [table-specification.]ROW.
Example of an SQL statement that generates an error:

SELECT "C1",ROW FROM "T1" ORDER BY 2

Important
A sort item specification number is not permitted in a sort specification list in the following locations:

• A WITHIN group specification

• A window order clause

• order-specification

order-specification ::= {ASC | DESC}

Specifies whether to sort the results in ascending or descending order. Specify either of the following.
ASC: Specify to sort the results in ascending order.
DESC: Specify to sort the results in descending order.
If the order specification is omitted, ASC is assumed.

• null-value-sort-order-specification

null-value-sort-order-specification ::= NULLS {FIRST | LAST}

Specifies the ordering of the null value when sorting. Specify either of the following.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 428



NULLS FIRST: The null value comes first.
NULLS LAST: The null value comes last.
If the specification of the null-value sort order is omitted, the null value is ordered as follows:

• If you specify ASC for order-specification or if you do not specify order-specification, the null value comes last.
This is the same action that is taken when NULLS LAST is specified.

• If you specify DESC for order-specification, the null value comes first. This is the same action that is taken when
NULLS FIRST is specified.

Important
You cannot specify the null-value sort order in a sort specification list in a WITHIN group specification.

7.24.2 Rules for specifying a sort specification list in an ORDER BY clause

(1) Common rules
1. The sort keys can include a mixture of value expressions and sort item specification numbers.

Example:

SELECT "C1", AVG("C2") FROM "T1"
    GROUP BY "C1"
    ORDER BY "C1" ASC, 2 ASC

2. If you specify duplicate sort keys, the first order specification and null-value sort order specification takes
precedence.
Example:

SELECT "C1","C2" FROM "T1"
    ORDER BY "C1" ASC NULLS FIRST,"C1" DESC NULLS LAST

In the above case, the underlined portion, which was specified first, takes precedence.

3. If the same column is specified two or more times in the selection list, it cannot be specified as a sort key. For
example, the SQL statement below generates an error.
Example of an SQL statement that generates an error:

SELECT "C1","C2","C1" FROM "T1" ORDER BY "C1"

4. If a derived column name specified in an ORDER BY clause was derived from just a single column specification, it
is replaced by that column specification. For example, the following three SQL statements produce the same retrieval
results:

SELECT "T1"."C1" DR1,"T1"."C2" DR2 FROM "T1" ORDER BY DR1
SELECT "T1"."C1" DR1,"T1"."C2" DR2 FROM "T1" ORDER BY "T1"."C1"
SELECT "T1"."C1" DR1,"T1"."C2" DR2 FROM "T1" ORDER BY 1

(2) Rules for specifying value expressions as sort keys
1. You cannot specify a dynamic parameter by itself as a sort key.

2. If you specify a value expression as a sort key (unless the value expression is a column specification only), the sort
key cannot include a derived column name (unless it is a derived column consisting of a simple column specification).

7. Constituent Elements

Hitachi Advanced Database SQL Reference 429



■ Example of an SQL statement that generates an error

SELECT "C1",SUM("C2") AS "SUMC2" FROM "T1"
    GROUP BY "C1"
    ORDER BY "SUMC2"+1

In addition, if a set operation is specified, the sort key cannot include the name of a derived column that was derived
by means of the set operation (not even a derived column consisting of a simple column specification).
■ Example of an SQL statement that generates an error

SELECT "C1","C2" FROM "T1" UNION ALL SELECT "C1"+"C2","C3" FROM "T1"
    ORDER BY "C1"+"C2"

3. If you specify a value expression as the sort key of a SELECT statement that includes a set operation, the sort key
must be identical to the sort key of the selection expressions in the first query specification.
■ Examples of correct SQL statements
Example 1:

SELECT "C1"+"C2","C3" FROM "T1" UNION SELECT "C1","C2" FROM "T2"
    ORDER BY "C1"+"C2"
SELECT "C1"+"C2","C2" FROM "T1" UNION SELECT "C1","C2" FROM "T2"
    ORDER BY "C2"

The SELECT statements in the above examples can be executed because the sort key value expression is identical
to the sort key of the selection expressions in the first query specification.
Example 2:

SELECT "C1"+"C2" AS "C1","C2" FROM "T1" UNION SELECT "C1","C2" FROM "T2"
    ORDER BY "C1"

When the sort key value expression is a column specification, as in the above example, you can execute the SELECT
statement by specifying an AS clause.
■ Example of an SQL statement that generates an error

SELECT "C1","C2" FROM "T1" UNION SELECT "C1"+"C2","C2" FROM "T2"
    ORDER BY "C1"+"C2"

The above example generates an error because the sort key value expression is not identical to a selection expression
in the first query specification.

4. In a SELECT statement with DISTINCT specified, the sort key value expression must be identical to one of the
selection expressions.
■ Examples of correct SQL statements
Example 1:

SELECT DISTINCT "C1"+"C2","C2" FROM "T1" ORDER BY "C1"+"C2"
SELECT DISTINCT "C1"+"C2","C2" FROM "T1" ORDER BY "C2"

The SELECT statements in the above examples can be executed because the sort key value expression is identical
to one of the selection expressions.
Example 2:

SELECT DISTINCT "C1"+"C2" AS "C1","C2" FROM "T1" ORDER BY "C1"

When the sort key value expression is a column specification, as in the above example, you can execute the SELECT
statement by specifying an AS clause.
■ Example of an SQL statement that generates an error

7. Constituent Elements

Hitachi Advanced Database SQL Reference 430



SELECT DISTINCT "C1","C2" FROM "T1" ORDER BY "C1"+"C2"

The above example generates an error because the sort key value expression is not identical to a selection expression.

5. If you specify a window function in the sort key, the sort key value expression must be identical to a selection
expression.
■ Example of a correct SQL statement

SELECT SUM("C1") OVER()/100 FROM "T1" ORDER BY SUM("C1") OVER()/100

The SELECT statement in the above example can be executed because the sort key value expression is also specified
as a selection expression.
■ Example of an SQL statement that generates an error

SELECT SUM("C1") OVER() FROM "T1" ORDER BY SUM("C1") OVER()/100

The above example generates an error because the sort key value expression is not identical to a selection expression.

6. You cannot specify a subquery or dynamic parameter in the sort key value expression in the following circumstances:

• When a set operation is specified

• In a SELECT statement with DISTINCT specified

■ Example of an SQL statement that generates an error

SELECT "C1"+?,"C2" FROM "T1" UNION SELECT "C1","C2" FROM "T2"
    ORDER BY "C1"+?

7. The name of a table reference specified in the outermost query specification cannot be referenced from a subquery
in the ORDER BY clause.
■ Example of an SQL statement that generates an error

SELECT * FROM "T1"
    ORDER BY "C1",(SELECT "C1" FROM "T2" WHERE "C2"="T1"."C2")+"C2"

8. To specify a set function in the sort key, one of the following conditions must be met:
(1) A grouping column must be specified in the selection expression of the qualified query of the set function.
(2) The column specifications included in the sort key value expression must be specified in a grouping column or
aggregated argument.
■ Examples of correct SQL statements

SELECT "C1" FROM "T1" GROUP BY "C1" ORDER BY AVG("C2")

The above example meets condition (1).

SELECT "C2" FROM "T1" GROUP BY "C1","C2" ORDER BY SUM("C1"),"C2"

The above example meets condition (2).
■ Example of an SQL statement that generates an error

SELECT "C1" FROM "T1" ORDER BY AVG("C2")

9. If the same value expression is specified for both the sort key and selection expression, sorting is performed by using
the value expression specified for the selection expression. The value expression specified for the sort key is not
used for sorting.
Example:

SELECT "C1","C2" FROM "T1" ORDER BY "C1"
SELECT "C1"+"C2","C2" FROM "T1" ORDER BY "C1"+"C2"

7. Constituent Elements

Hitachi Advanced Database SQL Reference 431



In the above examples, sorting is done using the value expressions in the selection expressions.

10. When the sort key value expression differs from the selection expressions, sort processing is performed using the
sort key value expression. However, HADB handles this internally by adding the sort key value expression as a
selection expression before performing the sort processing.
Example:

SELECT "C1" FROM "T1" ORDER BY "C2"

In the above example, the values in column C1 are returned in a sorted order that is determined by sorting the values
in column C2. HADB handles this internally by adding the sort key value expression (C2) as a selection expression
before performing the sort processing. As a result, rules that restrict value expressions inside the query specification
are also applied to the internally-added sort key value expression.
■ Example of an SQL statement that generates an error

SELECT MEDIAN("C1"*0.5) FROM "T1"
    ORDER BY PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY "C1"*0.5)

In the preceding example, although the underscored sort key is internally added to the selection expression, the
statement results in an error due to a restriction on inverse distribution functions (a single query specification cannot
include multiple inverse distribution functions for which a value expression that is not an independent column
specification is specified as an aggregated argument).

7.24.3 Rules for specifying a sort specification list in a WITHIN group
specification or window order clause

• Rules for specifying a sort specification list in a WITHIN group specification

1. Set functions are not permitted in a value expression specified as a sort key.

• Rules for specifying a sort specification list in a window order clause

1. Set functions are not permitted in a value expression specified as a sort key.

2. If you specify duplicate sort keys, the first order specification and null-value sort order specification takes
precedence.

7.24.4 Examples

(1) Examples of specifying a sort specification list in an ORDER BY clause
Example 1 (Specifying one column as the sort key)

This example sorts all the data in the customer table (USERSLIST) by customer ID (USERID).

SELECT "USERID","NAME","SEX"
    FROM "USERSLIST"
    ORDER BY "USERID" ASC

The underlined portion indicates the sort specification list.

Example 2 (Specifying multiple columns as sort keys)
This example sorts all the data in the sales history table (SALESLIST) by date of purchase (PUR-DATE). When
the date of purchase is the same, this example sorts by customer ID (USERID).

7. Constituent Elements

Hitachi Advanced Database SQL Reference 432



SELECT "USERID","PUR-CODE","PUR-NUM","PUR-DATE"
    FROM "SALESLIST"
    ORDER BY "PUR-DATE" ASC,"USERID" ASC

The underlined portion indicates the sort specification list.

Example 3 (Specifying a value expression as the sort key)
This example extracts eight characters of data starting at the third character from the beginning of the sales history
code (HIS-CODE), and then uses the extracted data as the key to sort all the data in the sales history table
(SALESLIST).

SELECT * FROM "SALESLIST"
    ORDER BY SUBSTR("HIS-CODE",3,8) ASC

The underlined portion indicates the sort specification list.

Example 4 (Specifying a sort item specification number as the sort key)
Using the data in the sales history table (SALESLIST), this example determines the total quantity purchased (PUR-
NUM) for each product code (PUR-CODE), and sorts the retrieval results by total quantity purchased.

SELECT "PUR-CODE",SUM("PUR-NUM")
    FROM "SALESLIST"
    GROUP BY "PUR-CODE"
    ORDER BY 2 ASC

The underlined portion indicates the sort specification list.

Example 5 (Specifying a null-value sort order)
This example sorts all the data in the sales history table (SALESLIST) by date of purchase (PUR-DATE). The rows
for which PUR-DATE is the null value come at the top of the sort results.

SELECT "USERID","PUR-CODE","PUR-NUM","PUR-DATE"
    FROM "SALESLIST"
    ORDER BY "PUR-DATE" ASC NULLS FIRST

The underlined portion indicates the sort specification list.

(2) Example of specifying a sort specification list in a WITHIN group
specification

Example
Using the data in the salary table (SALARYLIST), this example determines the median value (50th percentile) of
the employee salaries (SALARY).

SELECT PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY "SALARY") "PERCENTILE_CONT"
    FROM "SALARYLIST"

The underlined portion indicates the sort specification list.

(3) Example of specifying a sort specification list in a window order clause
Example

Using the data in the salary table (SALARYLIST), this example ranks employees by salary (SALARY) within each
job class (POSITION).

SELECT "EMPID","POSITION","SALARY",
        RANK() OVER(PARTITION BY "POSITION" ORDER BY "SALARY" DESC) "RANK"

7. Constituent Elements

Hitachi Advanced Database SQL Reference 433



    FROM "SALARYLIST"
    ORDER BY "POSITION","SALARY" DESC,"EMPID"

The underlined portion indicates the sort specification list in the window order clause.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 434



7.25 Arithmetic operations

This section describes the types of arithmetic operations and the rules for using them.

7.25.1 Specification format and rules for arithmetic operations
Arithmetic operations can be specified in value expressions.

(1) Specification format
arithmetic-operation ::= {term|numeric-value-expression + term|numeric-value-expressi
on - term}
 
  term ::= {value-expression-primary|numeric-value-expression * value-expression-prim
ary|numeric-value-expression / value-expression-primary}

(2) Explanation of specification format
numeric-value-expression:

For details about numeric-value-expression, see 7.20.1 Specification format and rules for value expressions.

value-expression-primary:
For details about value-expression-primary, see 7.20.1 Specification format and rules for value expressions.

(3) Types of arithmetic operations
The following table lists the types of arithmetic operations.

Table 7-32: Types of arithmetic operations

No. Arithmetic
operation

Meaning Function

1 + Addition Adds the second operand to the first operand.

2 - Subtraction Subtracts the second operand from the first operand.

3 * Multiplication Multiplies the first operand by the second operand.

4 / Division Divides the first operand by the second operand.

For example, if the calculation is 3 + 1, 3 is the first operand, and 1 is the second operand.

(4) Rules
1. Arithmetic operations can only be specified for numeric data (INTEGER, SMALLINT, DECIMAL, or DOUBLE
PRECISION type data).

2. INTEGER, SMALLINT, DECIMAL, or DOUBLE PRECISION type data

3. Arithmetic operations can use a maximum of 500 arithmetic operators (+, -, *, and /). If an operand is a value
expression with a column from a viewed table, derived table, or query name, the total number of value expressions
after expanding the value expression it is based on cannot exceed 10,000.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 435



4. You cannot specify a value expression that is composed solely of a dynamic parameter on both sides of an arithmetic
operation (+, -, *, /).

5. If a dynamic parameter is specified in an arithmetic operation, the data type of the dynamic parameter is assumed
to be the data type of the other side of the calculation.

6. The NOT NULL constraint does not apply to the execution result (the null value is allowed).

7. If any operand has the null value, the result will also be a null value.

7.25.2 Data types of the results of arithmetic operations
The data type of the result of an arithmetic operation is determined by the data types of the first and second operands.
The following table shows the relationship between the data types of the operands and the data type of the result of the
operation.

Table 7-33: Relationship between the data types of the operands and the data type of the result of
the operation

No. Data type of the first operand Data type of the second operand Data type of the result of the
operation

1 SMALLINT SMALLINT INTEGER

2 INTEGER

3 DECIMAL DECIMAL

4 DOUBLE PRECISION DOUBLE PRECISION

5 INTEGER SMALLINT INTEGER

6 INTEGER

7 DECIMAL DECIMAL

8 DOUBLE PRECISION DOUBLE PRECISION

9 DECIMAL SMALLINT DECIMAL

10 INTEGER

11 DECIMAL

12 DOUBLE PRECISION DOUBLE PRECISION

13 DOUBLE PRECISION SMALLINT DOUBLE PRECISION

14 INTEGER

15 DECIMAL

16 DOUBLE PRECISION

If the data type of the result of the operation is DECIMAL, the precision and scaling will be as follows:

Let the first operand be DECIMAL(p1,s1), the second operand be DECIMAL(p2,s2), and the result of the operation
be DECIMAL(p,s).

• For addition and subtraction
p = 1 + MAX(p1 - s1, p2 - s2) + s
s = MAX(s1, s2)

7. Constituent Elements

Hitachi Advanced Database SQL Reference 436



If the result of calculating p is 39 or greater, p = 38.

• For multiplication
p = p1 + p2
s = s1 + s2
If the result of calculating p is 39 or greater, p = 38 and s = MAX(s1, s2).

• For division
p = 38
s = MAX{0#, 38 - (p1-s1 + s2)}

#
If the value specified for the adb_sql_prep_dec_div_rs_prior operand in the server definition or client
definition is FRACTIONAL_PART, this value is replaced with s1.

If the data type is INTEGER, change the data type to DECIMAL(20,0) during calculation. If the data type is
SMALLINT, change the data type to DECIMAL(10,0) during calculation.

7.25.3 Notes applying when the data type of the division result is
DECIMAL

If the data type of the division result is DECIMAL, the scaling is determined by the value specified for the
adb_sql_prep_dec_div_rs_prior operand in the server definition or client definition.

(1) When searching a base table
When base table T1 that contains the data shown later is searched, the execution result is changed according to the value
specified for the adb_sql_prep_dec_div_rs_prior operand.

SELECT statement to be run

SELECT "C1"/"C2" AS "Division Results" FROM "T1"

• If INTEGRAL_PART (default) is specified for the adb_sql_prep_dec_div_rs_prior operand
The data type of the division result of "C1"/"C2" will be DECIMAL(38,0) because the integral part takes
precedence.
Division result

584.

• If FRACTIONAL_PART is specified for the adb_sql_prep_dec_div_rs_prior operand
The data type of the division result of "C1"/"C2" will be DECIMAL(38,4) because the scaling of the first
operand takes precedence.
Division result

584.4457

7. Constituent Elements

Hitachi Advanced Database SQL Reference 437



(2) When searching a viewed table
If the data type of the result of division (arithmetic operation) specified in the query expression body of the CREATE
VIEW statement is DECIMAL, the precision and scaling are determined by the following value: the value of the
adb_sql_prep_dec_div_rs_prior operand (specified when the viewed table is searched) in the server
definition or client definition.

Example:
Note that this example assumes that the contents of table T1 are as follows.

Definition of the viewed table

CREATE VIEW "VT1"("VC1") AS SELECT "C1"/"C2" FROM "T1"

• If the following SELECT statement is run by specifying INTEGRAL_PART for the
adb_sql_prep_dec_div_rs_prior operand

SELECT "VC1" FROM "VT1"

Retrieval results

20

In this case, data type of column VC1 in viewed table VT1 will be DECIMAL(38,0).

• If the following SELECT statement is run by specifying FRACTIONAL_PART for the
adb_sql_prep_dec_div_rs_prior operand

SELECT "VC1" FROM "VT1"

Retrieval results

20.2

In this case, data type of column VC1 in viewed table VT1 will be DECIMAL(38,1).

Note
The data type determined by the value of the adb_sql_prep_dec_div_rs_prior operand (specified
when the viewed table is defined) is stored in the column information of the viewed table stored in table
SQL_COLUMNS. Therefore, if different values are specified for the
adb_sql_prep_dec_div_rs_prior operand during definition and search of the viewed table, the
following two data types might not match:

• Data type of the derived columns of the internal derived table that is generated as a result of equivalent
exchange of the viewed table

• Data type of the columns of the viewed table stored in table SQL_COLUMNS

7. Constituent Elements

Hitachi Advanced Database SQL Reference 438



Note that if both the first and second operands of division are literals, the precision and scaling of the division
result are determined by the value of the adb_sql_prep_dec_div_rs_prior operand specified
when the viewed table is defined.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 439



7.26 Concatenation operations

Concatenation operations are used to concatenate two character strings or two binary data items. This section describes
the types of concatenation operations and the rules for using them.

7.26.1 Specification format and rules for concatenation operations
Concatenation operations can be specified in a value expression.

(1) Specification format
concatenation-operation ::= {value-expression-primary
           |character-string-value-expression + value-expression-primary
           |character-string-value-expression || value-expression-primary
           |binary-value-expression + value-expression-primary
           |binary-value-expression || value-expression-primary}

(2) Explanation of specification format
value-expression-primary:

For details about value-expression-primary, see 7.20.1 Specification format and rules for value expressions.

character-string-value-expression:
For details about character-string-value-expression, see 7.20.1 Specification format and rules for value expressions.

binary-value-expression:
For details about binary-value-expression, see 7.20.1 Specification format and rules for value expressions.

(3) Types of concatenation operations
The types of concatenation operations are shown in the following table.

Table 7-34: Types of concatenation operations

No. Concatenation operation Function

1 + Concatenate the first operand and the second operand.

2 ||

For example, if the operation is 'ABC'+'DEF', the first operand is 'ABC', and the second operand is 'DEF'.

(4) Rules
1. The first and second operands must both be either character string data or binary data.

2. The following table shows the combinations of data types that can be specified in the first and second operands.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 440



Table 7-35: Combinations of data types that can be specified in the first and second operands
in a concatenation operation

Data type of the first operand Data type of the second operand

CHAR VARCHAR BINARY VARBINARY

CHAR Y Y N N

VARCHAR Y Y N N

BINARY N N Y Y

VARBINARY N N Y Y

Legend:
Y: Can be specified.
N: Cannot be specified.

3. Concatenation operations with up to 500 operators (+, ||) can be performed. If an operand is a value expression
with a column from a viewed table, derived table, or query name, the total number of value expressions after
expanding the value expression it is based on cannot exceed 10,000.

4. You cannot specify a dynamic parameter by itself for the first operand or second operand.

5. The NOT NULL constraint does not apply to the value of the result of the concatenation operation (the null value is
allowed).

6. If either the first operand or second operand has the null value, the result of the concatenation operation will be a
null value.

7. You cannot concatenate character string data or binary data if the result of the concatenation operation would exceed
the maximum length of 32,000 bytes.

8. Spaces at the end of the character string data are also subject to concatenation.
Example
If column C1 is type CHAR(5) with a value of 'ABC ', and column C2 is type VARCHAR(10) with a value
of 'XYZ', the following concatenations are performed.
"C1"+"C2"  'ABC XYZ'
"C2"+"C1"  'XYZABC '
Legend:
Δ: Single-byte space

(5) Example
Example 1: Concatenate character string data

This example finds the rows in table T1 for which the result of concatenating the character string data in columns
C2 and C3 is 'efg03v03'.

SELECT * FROM "T1"
    WHERE "C2"||"C3"='efg03v03'

7. Constituent Elements

Hitachi Advanced Database SQL Reference 441



Example 2: Concatenate binary data
This example finds the rows in table T1 for which the result of concatenating the binary data in columns C2 and
C3 is X'ABC1230000DEF456'.

SELECT * FROM "T1"
    WHERE "C2"||"C3"=X'ABC1230000DEF456'

7.26.2 Data types of the results of concatenation operations
The data type of the result of a concatenation operation is determined by the data types of the first and second operands.

(1) When the operands are character string data
The following table shows the relationship between the data types of the operands and the data type of the result of the
operation when the operands are character string data.

Table 7-36: Relationship between the data types of the operands and the data type of the result of
the operation (when the operands are character string data)

No. Data type and data length of the
first operand

Data type and data length of the
second operand

Data type and data length of the
result of the operation

1 CHAR(m) CHAR(n) CHAR(m+n)

2 VARCHAR(n)
Actual data length: L2

VARCHAR(m+n)
Actual data length: m+L2

3 VARCHAR(m)
Actual data length: L1

CHAR(n) VARCHAR(m+n)
Actual data length: L1+n

4 VARCHAR(n)
Actual data length: L2

VARCHAR(m+n)
Actual data length: L1+L2

7. Constituent Elements

Hitachi Advanced Database SQL Reference 442



Legend:
m: Maximum length of the data in the first operand
n: Maximum length of the data in the second operand
L1: Actual data length of the data in the first operand
L2: Actual data length of the data in the second operand

(2) When the operands are binary data
The following table shows the relationship between the data types of the operands and the data type of the result of the
operation when the operands are binary data.

Table 7-37: Relationship between the data types of the operands and the data type of the result of
the operation (when the operands are binary data)

No. Data type and data length of the
first operand

Data type and data length of the
second operand

Data type and data length of the
result of the operation

1 BINARY(m) BINARY(n) BINARY(m+n)

2 VARBINARY(n)
Actual data length: L2

VARBINARY(m+n)
Actual data length: m+L2

3 VARBINARY(m)
Actual data length: L1

BINARY(n) VARBINARY(m+n)
Actual data length: L1+n

4 VARBINARY(n)
Actual data length: L2

VARBINARY(m+n)
Actual data length: L1+L2

Legend:
m: Maximum length of the data in the first operand
n: Maximum length of the data in the second operand
L1: Actual data length of the data in the first operand
L2: Actual data length of the data in the second operand

7. Constituent Elements

Hitachi Advanced Database SQL Reference 443



7.27 Datetime operations

This section describes the types of datetime operations and the rules for using them.

7.27.1 Specification format and rules for datetime operations
You can specify datetime operations in value expressions in order to retrieve data based on datetime calculations.

(1) Specification format
datetime-operation ::= {value-expression-primary
     |datetime-value-expression + labeled-duration [{*|/}value-expression-primary]
     |datetime-value-expression - labeled-duration [{*|/}value-expression-primary]}

(2) Explanation of specification format
value-expression-primary:

For details about value-expression-primary, see 7.20.1 Specification format and rules for value expressions.

datetime-value-expression:
For details about datetime-value-expression, see 7.20.1 Specification format and rules for value expressions.

labeled-duration:
For details about labeled durations, see 7.28 Labeled duration.

(3) Data types on which datetime operations can be performed
Datetime operations can be performed on DATE, TIME, and TIMESTAMP type data.

Datetime operations can also be performed on character string literals (CHAR or VARCHAR) that follow the format of
the predefined input representations of dates, times, or time stamps. If a character string literal is specified, the datetime
operation is performed after converting the character string literal to datetime data.

For details about the predefined input representations of dates, times, and time stamps, see 6.3.3 Predefined character-
string representations.

(4) Rules

(a) Common rules
1. When a DATE type operation is performed, the data type of the result of the operation will also be DATE type.

2. When a TIME type operation is performed, the data type of the result of the operation will also be TIME type.

3. When a TIMESTAMP type operation is performed, the data type of the result of the operation will also be
TIMESTAMP type.

4. Datetime operations can use a maximum of 500 operators (+ or -). If an operand is a value expression with a column
from a viewed table, derived table, or query name, the total number of value expressions after expanding the value
expression it is based on cannot exceed 10,000.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 444



5. On the left side of the operator (+ or -), you cannot specify a value expression that consists of only a dynamic
parameter.

6. The results of the operation are not subject to the NOT NULL constraint (null values are allowed).

7. If an operand has the null value, the result of the operation will also have the null value.

8. Datetime operations are subject to the rules in 7.20 Value expression in addition to the rules listed above.

(b) Rules for performing datetime operations on DATE type data
1. The result of the operation must fall in the range from January 01, 0001 to December 31, 9999.

2. Dates are calculated with the year or month carried over as necessary. The following is an example.
Example 1

DATE'2012-12-31'+2 DAY --> DATE'2013-01-02'

Example 2

DATE'2013-01-01'-1 DAY --> DATE'2012-12-31'

3. If an operation results in a nonexistent date in a particular year or month (such as 31 in a 30-day month, February
30, or February 29 in a non-leap year), it will be changed to the last day of that month. The following is an example.
Example:

DATE'2013-03-31'+1 MONTH --> DATE'2013-04-30'

When an operation produces a nonexistent date, it is automatically corrected to the last day of that month. As a
consequence, if you add some number of months to a certain date, then subtract the same number of months from
the resulting date, it does not necessarily return to the original date. The following is an example:
Example:

DATE'2013-03-31'+1 MONTH --> DATE'2013-04-30'
DATE'2013-04-30'-1 MONTH --> DATE'2013-03-30'

(c) Rules for performing datetime operations on TIME type data
1. The result of the operation must fall in the range from 00:00:00.000000000000 to 23:59:59.999999999999.

2. When operations are performed on data with different fractional seconds precisions, the higher precision is used,
and the lower-precision data is padded with zeros. For example, if the data in a TIME type operand has a fractional
seconds precision of 0 and the labeled duration is MILLISECONDS, the calculation is performed with the fractional
seconds precision of the TIME type data extended to 3.

(d) Rules for performing datetime operations on TIMESTAMP type data
1. The result of the operation must fall in the range from January 01, 0001 00:00:00.000000000000 to December 31,

9999 23:59:59.999999999999.

2. The methods for calculating the year, month, and date follow the rules in (b) Rules for performing datetime
operations on DATE type data.

3. When operations are performed on data with different fractional seconds precisions, the higher precision is used,
and the lower-precision data is padded with zeros. For example, if the data in a TIMESTAMP type operand has a
fractional seconds precision of 0 and the labeled duration is MILLISECONDS, the calculation is performed with
the fractional seconds precision of the TIMESTAMP type data extended to 3.

4. Time stamps are calculated with the day carried over as necessary. This is illustrated in the examples below.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 445



Example 1:

TIMESTAMP'2014-02-01 23:59:59'+1 SECOND --> TIMESTAMP'2014-02-02 00:00:00'

Example 2:

TIMESTAMP'2014-02-02 00:00:00'-1 SECOND --> TIMESTAMP'2014-02-01 23:59:59'

Example 3:

TIMESTAMP'2013-12-31 23:05:06'+2 HOUR --> TIMESTAMP'2014-01-01 01:05:06'

(e) Rules for multiplication and division of labeled durations
1. When multiplying or dividing a labeled duration, the following labeled durations are equivalent:

• value-expression-1 labeled-duration-qualifier * value-expression-2 → (value-expression-1*value-
expression-2) labeled-duration-qualifier

• value-expression-1 labeled-duration-qualifier / value-expression-2 → (value-expression-1/value-
expression-2) labeled-duration-qualifier

Examples:

C1 DAYS * C2 → (C1*C2) DAYS
(C1+C2) MINUTES / (C3+C4) → ((C1+C2)/(C3+C4)) MINUTES

2. The value-expression-primary that multiplies or divides the labeled duration must be an integer (SMALLINT or
INTEGER type).

3. If a dynamic parameter is specified by itself for the value-expression-primary that multiplies or divides the labeled
duration, the assumed data type of the dynamic parameter is INTEGER.

4. If the result of the value-expression-primary that multiplies or divides the labeled duration is the null value, the
result of the labeled duration will be the null value.

(5) Example
Example

Searching the employee table (EMPLIST), retrieve the ID (USERID) and name (NAME) of all employees whose
date of hire (ENT-DAY) was at least two years ago.

SELECT "USERID","NAME" FROM "EMPLIST"
    WHERE "ENT-DAY" <= CURRENT_DATE -2 YEARS

The underlined portion indicates the datetime operation, in which the labeled duration is 2 YEARS.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 446



7.28 Labeled duration

This section describes labeled durations.

7.28.1 Specification format and rules for labeled durations
A labeled duration is used in datetime operations to represent a specific time duration. The format is a numeric value
followed by a duration keyword (YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MILLISECOND, MICROSECOND,
NANOSECOND, PICOSECOND). A labeled duration can be specified only in a window frame clause, or as the second
operand of an addition or subtraction on datetime data.

(1) Specification format
labeled-duration ::= value-expression-primary labeled-duration-qualifier
 
  labeled-duration-qualifier ::={YEAR[S]|MONTH[S]|DAY[S]
                                |HOUR[S]|MINUTE[S]|SECOND[S]
                                |MILLISECOND[S]|MICROSECOND[S]
                                |NANOSECOND[S]|PICOSECOND[S]}

(2) Explanation of specification format
value-expression-primary:

Specify SMALLINT or INTEGER type data for value-expression-primary. For details about the value-expression-
primary, see (1) Specification format in 7.20.1 Specification format and rules for value expressions.

labeled-duration-qualifier:

labeled-duration-qualifier ::= {YEAR[S] | MONTH[S] | DAY[S]
                           | HOUR[S] | MINUTE[S] | SECOND[S]
                           | MILLISECOND[S] | MICROSECOND[S]
                           | NANOSECOND[S] | PICOSECOND[S]}

Specifies one of the following.

YEAR[S]:
Expresses a duration in years.
The range of numeric data that can be specified in value-expression-primary is -9,998 to 9,998.#

MONTH[S]:
Expresses a duration in months.
The range of numeric data that can be specified in value-expression-primary is -119,987 to 119,987.#

DAY[S]:
Expresses a duration in days.
The range of numeric data that can be specified in value-expression-primary is -3,652,058 to 3,652,058.#

HOUR[S]:
Expresses a duration in hours.
The range of numeric data that can be specified in value-expression-primary is -87,649,415 to 87,649,415.#

MINUTE[S]:
Expresses a duration in minutes.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 447



The range of numeric data that can be specified in value-expression-primary is -5,258,964,959 to 5,258,964,959.#

SECOND[S]:
Expresses a duration in seconds.
The range of numeric data that can be specified in value-expression-primary is -315,537,897,599 to
315,537,897,599.#

MILLISECOND[S]:
Expresses a duration in milliseconds.
The range of numeric data that can be specified in value-expression-primary is -315,537,897,599,999 to
315,537,897,599,999.#

MICROSECOND[S]:
Expresses a duration in microseconds.
The range of numeric data that can be specified in value-expression-primary is -315,537,897,599,999,999 to
315,537,897,599,999,999.#

NANOSECOND[S]:
Expresses a duration in nanoseconds.
The range of numeric data that can be specified in value-expression-primary is -9,223,372,036,854,775,807 to
9,223,372,036,854,775,807.#

PICOSECOND[S]:
Expresses a duration in picoseconds.
The range of numeric data that can be specified in value-expression-primary is -9,223,372,036,854,775,807 to
9,223,372,036,854,775,807.#

#
When a labeled duration in a datetime operation is multiplied, the range given for value-expression-primary
applies to the value of the product. For example, if you specify "C1" DAYS *"C2", the range that can be
specified for (C1*C2) is -3,652,058 to 3,652,058.

For the rules concerning multiplication and division in datetime operations that include labeled durations, see (e) Rules
for multiplication and division of labeled durations in (4) Rules in 7.27.1 Specification format and rules for datetime
operations.

(3) Rules
1. The labeled duration qualifiers that can be specified vary depending on the data type on which the datetime operation

is performed, as shown in the following table.

Table 7-38: Labeled duration qualifiers that can be specified

Labeled duration qualifier Data type of datetime operation

DATE TIME TIMESTAMP

YEAR Y N Y

MONTH Y N Y

DAY Y N Y

HOUR N Y Y

MINUTE N Y Y

SECOND N Y Y

7. Constituent Elements

Hitachi Advanced Database SQL Reference 448



Labeled duration qualifier Data type of datetime operation

DATE TIME TIMESTAMP

MILLISECOND N Y Y

MICROSECOND N Y Y

NANOSECOND N Y Y

PICOSECOND N Y Y

Legend:
Y: Can be specified.
N: Cannot be specified.

2. If you specify a dynamic parameter for value-expression-primary, the assumed data type of the dynamic parameter
will be INTEGER.

3. The NOT NULL constraint does not apply to the result value of the labeled duration (the null value is allowed).

4. If the result of value-expression-primary is a null value, the result of the labeled duration will be a null value.

5. Specification of the final S in YEARS, MONTHS, DAYS, HOURS, MINUTES, SECONDS, MILLISECONDS,
MICROSECONDS, NANOSECONDS, and PICOSECONDS is optional, as illustrated in the following example:

Example: To specify one year:
1 YEAR or 1 YEARS

6. When you specify a labeled duration for window-frame-value-specification, only a value specification can be
specified for value-expression-primary in the labeled duration.

7. The following table shows the fractional seconds precision that is assumed when you specify a labeled duration
qualifier.

Table 7-39: Assumed fractional seconds precision

Specified labeled duration qualifier Assumed fractional seconds precision

MILLISECOND 3

MICROSECOND 6

NANOSECOND 9

PICOSECOND 12

7. Constituent Elements

Hitachi Advanced Database SQL Reference 449



7.29 CASE expression

This section describes CASE expressions.

7.29.1 Specification format and rules for CASE expressions
A CASE expression returns the result of a specified value expression when a specified search condition is TRUE.

(1) Specification format
CASE-expression ::=
    CASE
     {WHEN search-condition THEN {value-expression|NULL}}...
     [ELSE {value-expression|NULL}]
    END

(2) Explanation of specification format
WHEN search-condition:

Specifies search conditions. For details about search conditions, see 7.18 Search conditions. If the specified search
condition is TRUE, the value specified after the THEN is returned as the result.
Note that a maximum of 255 WHEN statements can be specified in a single CASE expression.

THEN {value-expression|NULL}:
Specifies, in the form of a value expression, the value to return as the result if the specified search condition is
TRUE. Specify NULL if you want to return the null value.

ELSE {value-expression|NULL}:
Specifies, in the form of a value expression, the value to return as the result if none of the search conditions specified
in the WHEN statement is TRUE. Specify NULL if you want to return the null value.
If the ELSE specification is omitted, it is the same as specifying NULL in the ELSE statement.

(3) Rules
1. If multiple WHEN statements are specified in a CASE expression and more than one search conditions is TRUE, the

result of the CASE expression will be the result of the first WHEN statement whose search condition is TRUE.

2. The results of the value expressions specified in THEN and ELSE must be data types that can be compared. For
details about data types that can be compared, see (1) Data types that can be compared in 6.2.2 Data types that can
be converted, assigned, and compared.
However, note the following exceptions:

• Date data cannot be compared to character string data (even to the predefined input representation of a date).

• Time data cannot be compared to character string data (even to the predefined input representation of a time).

• Time stamp data cannot be compared to character string data (even to the predefined input representation of a
time stamp).

For information about predefined input representations, see 6.3.3 Predefined character-string representations.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 450



3. The data type and data length of the result of the CASE expression are determined by the data type and data length
of the result of the value expression specified in the THEN or ELSE that corresponds to the search condition that
was satisfied. For details, see 7.20.2 Data types of the results of value expressions.

4. A value expression must be specified for at least one THEN or the ELSE. You cannot specify NULL for every value
expression, as illustrated below.
Example:

  CASE
      WHEN "C1"=100 THEN NULL
      ELSE NULL
  END

5. A dynamic parameter cannot be specified by itself in the value expression in CASE, THEN, or ELSE.

6. The data type of the result of a CASE expression is without the NOT NULL constraint (the null value is allowed).

(4) Examples
Example 1

This example shows how to perform the following retrieval from table T1:

• If column C1 is 200: The retrieval result is value of column C2 + 20.

• If column C1 is 100: The retrieval result is value of column C2 + 10.

• If column C1 is a value other than 100 or 200: The retrieval result is value of column C2 + 5

SELECT "C1","C2",CASE WHEN "C1"=200 THEN "C2"+20
                      WHEN "C1"=100 THEN "C2"+10
                      ELSE "C2"+5
                 END AS "CASE"
    FROM "T1"

Example 2
This example shows how to search the employee table (EMPLIST), as follows:

• Determine the number of men and number of women in each section (SCODE).

SELECT "SCODE",SUM(CASE WHEN "SEX"='M' THEN 1 ELSE 0 END) AS "Men",
        SUM(CASE WHEN "SEX"='F' THEN 1 ELSE 0 END) AS "Women"
    FROM "EMPLIST"
    GROUP BY "SCODE"

7. Constituent Elements

Hitachi Advanced Database SQL Reference 451



Example 3
This example shows how to insert a row from the products table (PRODUCTLIST) into the new products table
(PRODUCTLIST_NEW). When inserting the row, change the product prices (PRICE) as follows:

• If the product code (PCODE) is P001: reduce the price by 10%

• If the product code is P002: reduce the price by 20%

• Otherwise: reduce the price by 30%

INSERT INTO "PRODUCTLIST_NEW"("PCODE","PRICE")
    SELECT "PCODE",CASE WHEN "PCODE"='P001' THEN "PRICE"*0.9
                        WHEN "PCODE"='P002' THEN "PRICE"*0.8
                        ELSE "PRICE"*0.7
                   END
    FROM "PRODUCTLIST"

7. Constituent Elements

Hitachi Advanced Database SQL Reference 452



7.30 Internal derived tables

This section gives examples of the use of internal derived tables and explains the rules for derived table expansion.

7.30.1 Examples of using internal derived tables
When you execute a query on a viewed table, HADB derives an internal table based on the CREATE VIEW statement
specification that it codes in the FROM clause that specifies the viewed table. This derived table is called an internal
derived table.

Similarly, an internal derived table is also used when you execute a query using a query name specified in a WITH list
element.

The following examples illustrate how internal derived tables are used.

(1) Example 1: Executing a query on a viewed table
When you execute a query on a viewed table, an internal derived table is used in the FROM clause that specifies the
viewed table. This is illustrated in the following examples.

Viewed table definition:

CREATE VIEW "V1" ("VC1","VC2")
    AS SELECT * FROM "T1" WHERE "C1">100

SELECT statement to be executed:

SELECT * FROM "V1"

When the SELECT statement shown above is executed, the following internal derived table is used.

Internal derived table that is used:

SELECT * FROM (SELECT * FROM "T1" WHERE "C1">100) AS "V1" ("VC1","VC2")

The underlined portion indicates the internal derived table.

(2) Example 2: Executing a query using a query name in a WITH clause
When you execute a query using a query name in a WITH clause, an internal derived table is used in the FROM clause
that specifies the query name. This is illustrated in the following example.

SELECT statement to be executed:

WITH "Q1"("QC1","QC2") AS (SELECT * FROM "T1" WHERE "C1">100)
SELECT * FROM "Q1"

Here, Q1 is the query name, and the underlined portion indicates the query expression body specified in the WITH
clause. When the SELECT statement shown above is executed, the following internal derived table is used.

Internal derived table that is used:

SELECT * FROM (SELECT * FROM "T1" WHERE "C1">100) AS "Q1" ("QC1","QC2")

The underlined portion indicates the internal derived table.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 453



7.30.2 Derived queries and derived query names
A query expression body that generates a derived table is called a derived query. In addition, the name of the table
derived from the derived query is called the derived query name. The derived table's derived query name is handled as
a correlation name.

The derived query and derived query name are identified in each of the following examples.

View definition

CREATE VIEW "V1" AS SELECT * FROM "T1" WHERE "C1">100

Derived query: underlined portion
Derived query name: "V1"

Derived table

SELECT "C1","C2"*1.05
   FROM (SELECT "C1","C2" FROM "T1" GROUP BY "C1","C2") "X"

Derived query: underlined portion
Derived query name: "X"

WITH clause query

WITH "Q1" AS (SELECT "C1","C2" FROM "T1" GROUP BY "C1","C2")
SELECT "C1","C2"*1.05 FROM "Q1"

Derived query: underlined portion
Derived query name: "Q1"

7.30.3 Rules for derived table expansion
When you execute a derived query to generate a derived table, it expands the outer query expression body into an
equivalent form that does not contain the derived table. This is called a derived table expansion. The following examples
illustrate derived table expansions.

Example of a query that uses a derived table

SELECT "PN1","PR2"*1.05 AS "TXPRICE"
   FROM (SELECT "PNAME","PRICE","PLACE" FROM "STOCK"
         WHERE "PRICE">10000)
      AS "X"("PN1","PR2","PL3")
         WHERE "PL3" IN('Alaska','Arizona') 

Example of derived table expansion

SELECT "PNAME" AS "PN1","PRICE"*1.05 AS "TXPRICE" 
   FROM "STOCK" 
      WHERE "PRICE">10000 AND "PLACE" IN('Alaska','Arizona') 

The following shows the expansion rules for derived tables:

1. No internal derived table is expanded when all of the following conditions are met:

• The same viewed table is specified more than once in a single SQL statement.

• Any of the following items were specified in the query expression body when the viewed table was defined:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 454



• SELECT DISTINCT
• Set operations

• Subquery

• Comma join

• Joined table

• Viewed table

• Query name

• Set function

• Window function

• GROUP BY clause

• HAVING clause

• Table function derived table

• Archivable multi-chunk table

• WHERE clause

Similarly, no internal derived table is expanded in the following case: the same query name is specified more than
once in a single SQL statement, and any of the preceding items are specified within the query expression body
specified for a WITH list element of that query name.

2. If a recursive query is specified in a WITH list element, the following rule applies: If a viewed table or query name
is specified as a recursive member of the recursive query, no internal derived table is expanded for the viewed table
or query name.

3. If a recursive query is included in a WITH list element, no internal derived table is expanded for the query name of
the WITH list element.

4. No internal derived table for the query name of a WITH list element is expanded if the list element satisfies either
Condition 1 or Condition 2 shown later. Also, in a certain case, a derived table that is derived from a viewed table
defined by the CREATE VIEW statement is not expanded. The case is when the WITH clause is specified in the
query expression in the CREATE VIEW statement and the query name of a WITH list element that satisfies either
of the following conditions is referenced from that query expression:
Condition 1:
All of the following conditions are satisfied:

• Multiple WITH list elements are specified.

• Any of the following items are specified in the query expression bodies specified in WITH list elements:

• SELECT DISTINCT
• Set operations

• Subquery

• Comma join

• Joined table

• Viewed table

• Query name

• Set function

• Window function

7. Constituent Elements

Hitachi Advanced Database SQL Reference 455



• GROUP BY clause

• HAVING clause

• Table function derived table

• Archivable multi-chunk table

• Any of the following conditions are satisfied:

• The query name that corresponds to a WITH list element is specified at two or more locations in the SQL
statement.

• The query name that corresponds to a WITH list element is specified at one location in the SQL statement,
and the query name is specified in a subquery that satisfies either of the following conditions:
[1] Of the subqueries that are specified in a query specification that includes a table reference to which an
external reference column belongs, a subquery that includes a subquery in which that external reference
column is specified
[2] A subquery that is included in the subquery in [1]
Example of where the query name Q1 satisfies condition [2]:

In the preceding example, query B is a subquery that satisfies condition [1]. Queries C to E are a subquery
that satisfies condition [2]. Query F is a subquery that satisfies neither condition [1] nor condition [2]. The
query name Q1 satisfies condition [2] because it is specified in query C.

7. Constituent Elements

Hitachi Advanced Database SQL Reference 456



Condition 2:
All of the following conditions are satisfied:

• A WITH list element is specified.

• The same viewed table is specified multiple times in a query expression body that is specified in the WITH list
element.
Alternatively, the query name (other than a WITH clause) that corresponds to the WITH list element is specified
multiple times.

• The query name that corresponds to the WITH list element is specified in either of the following subqueries:
[1] Of the subqueries that are specified in a query specification that includes a table reference to which an external
reference column belongs, a subquery that includes a subquery in which that external reference column is
specified
[2] A subquery that is included in the subquery in [1]

5. The following derived tables are not expanded:

• Internal derived table equivalently exchanged from a dictionary table or system table that is specified in the
query expression in a CREATE VIEW statement

• Derived table that is derived by a table value constructor

• Derived table that is equivalently exchanged by the FULL OUTER JOIN specification

• Derived table that is equivalently exchanged from an archivable multi-chunk table
For details about a derived table that is equivalently exchanged from an archivable multi-chunk table, see
Equivalent exchange of SQL statements that search archivable multi-chunk tables in the HADB Application
Development Guide.

• Derived table that is equivalently exchanged by the specification of the OR condition
For details about a derived table that is equivalently exchanged by the specification of the OR condition, see
Equivalent exchange for OR conditions (equivalent exchange to derived tables for which the UNION ALL set
operation is specified) in the HADB Application Development Guide.

7.30.4 Conditions under which derived table expansion is not performed
If any of the following conditions are satisfied, derived table expansion is not performed.

1. If, in the outermost query specification for a derived query, you specify a derived query name with SELECT
DISTINCT in the FROM clause, and one of the following specifications is in the query specification that directly
includes that FROM clause:

• GROUP BY clause, HAVING clause, or set function
The following is an example:

SELECT SUM("C1") FROM (SELECT DISTINCT * FROM "T1") AS "V1"
    GROUP BY "C2"

• Table join (including joined table)
The following is an example:

SELECT * FROM (SELECT DISTINCT * FROM "T1") AS "V1","T1"
    WHERE "V1"."C1"="T1"."C1"

• Selection expression in which a derived column derived from a value expression that includes a column
specification is not specified as a single column specification

7. Constituent Elements

Hitachi Advanced Database SQL Reference 457



The following is an example:

SELECT "VC1" FROM (SELECT DISTINCT "C1","C2" FROM "T1") AS "V1"("VC1","VC2")

Because derived column VC2 is not specified in the selection expression, derived table V1 is not expanded.

SELECT "VC1"*1.05,"VC2" FROM (SELECT DISTINCT * FROM "T1") AS "V1"("VC1","VC2")

Because derived column VC1 is not specified as a single column specification in the selection expression,
derived table V1 is not expanded.

• Selection expression containing a value expression that includes scalar function RANDOM, scalar function
RANDOM_NORMAL, scalar function RANDOMROW, a scalar subquery, or a window function
The following is an example:

SELECT "VC1","VC2",RANDOM()
    FROM (SELECT DISTINCT "C1","C2" FROM "T1") AS "V1"("VC1","VC2")

• Selection expression in which a derived column derived from the following value expression is not specified as
a single column specification: a value expression that includes scalar function RANDOM, scalar function
RANDOM_NORMAL, scalar function RANDOMROW, or a set function, and does not include a column specification
The following is an example:

SELECT "VC1" FROM (SELECT DISTINCT "C1",RANDOM() FROM "T1") AS "V1"("VC1","VC2")

• Sort key value expression that is not specified as a selection expression
The following is an example:

SELECT * FROM (SELECT DISTINCT * FROM "T1") AS "V1"
    ORDER BY ("C2"+1)

2. If, in the outermost query specification for a derived query, you specify a derived query name with a GROUP BY
clause in the FROM clause, and one of the following specifications is in the query specification that directly includes
that FROM clause:

• A DISTINCT set function or inverse distribution function is specified.
The following is an example:

SELECT "C1",SUM(DISTINCT "C2")
    FROM (SELECT "C1","C2" FROM "T1" GROUP BY "C1","C2") AS "V1"
    GROUP BY "C1","C2"

• Table join (including joined table)
The following is an example:

SELECT * FROM (SELECT "C1","C2" FROM "T1" GROUP BY "C1","C2")
    AS "V1","T1"

3. If, all of the following conditions are met: 1) In the outermost query specification for a derived query, the name of
a derived query that contains the GROUP BY clause is specified for a FROM clause. 2) The query specification that
directly contains that FROM clause also contains the GROUP BY clause, the HAVING clause, or a set function. 3)
Either of the following conditions is met:

• The number of grouping columns in the query specification for operating a derived query is different from the
number of grouping columns in the derived query.
The following is an example:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 458



SELECT "C1","C2" FROM (SELECT "C1","C2" FROM "T1" GROUP BY "C1","C2","C3") AS "V
1"
    GROUP BY "C1","C2"

• The derived column derived from the column referenced by a grouping column for a derived query is not specified
alone in a grouping column that has a query specification for operating the derived query.
The following is an example:

SELECT "C1","C2"+1 FROM (SELECT "C1","C2" FROM "T1" GROUP BY "C1","C2") AS "V1"
    GROUP BY "C1","C2"+1

4. If, in the outermost query specification for a derived query, you specify a derived query name with a GROUP BY
clause in the FROM clause including a value expression, and one of the following specifications is in the query
specification that directly includes that FROM clause:

• A grouping column of the derived query that was derived from a value expression that includes the column
specification is specified as a column that makes an external reference.
The following is an example:

SELECT * FROM (SELECT "G1" FROM "T1" GROUP BY C1+1 "G1") AS "V1"
    WHERE EXISTS (SELECT * FROM "T2" WHERE "T2"."C1" = "V1"."G1")

5. If, in the selection expression of the outermost query specification for a derived query, you specify a derived query
name with a value expression that includes a column specification in the FROM clause of that selection expression,
and one of the following occurs in the query specification that directly includes that FROM clause:

• A column of the derived query name that was derived from a value expression that includes a column
specification is specified in a selection expression or in the HAVING clause as a grouping column that makes an
external reference.
The following is an example:

SELECT "DC1" FROM (SELECT "C1"+1 AS "DC1" FROM "T1") AS "V1"
    GROUP BY "DC1"
    HAVING EXISTS (SELECT * FROM "T2" WHERE "T2"."C1" = "V1"."DC1")

• Multiple inverse distribution functions are specified.
The following is an example:

SELECT MEDIAN("C1")
    FROM (SELECT ABS("C1") AS "C1","C2" FROM "T1") AS "V1"
    HAVING MEDIAN("C1")>100

• A set function argument that makes an external reference to a column of the derived query name that was derived
from a value expression that includes the column specification
The following is an example:

SELECT "C1" FROM (SELECT SUBSTR("C1",5) AS "C1","C2" FROM "T1") AS "V1"
    GROUP BY "C1"
    HAVING EXISTS(SELECT * FROM "T1" WHERE MAX("V1"."C1")="C1")

6. If, in the selection expression of the outermost query specification for a derived query, a derived query name (for
which a value expression that does not include a column specification) is specified in the table reference of a joined
table that is on the side filled with null values
The following is an example:

SELECT * FROM "T1" LEFT OUTER JOIN
                   (SELECT SUBSTR('ABC',2) AS "C1","C2" FROM "T2") AS "V1"
                   ON "T1"."C1"="V1"."C1"

7. Constituent Elements

Hitachi Advanced Database SQL Reference 459



7. If, in the selection expression of the outermost query specification for a derived query, you specify a derived query
name with a value expression that does not include a column specification in the FROM clause of that selection
expression, and one of the following occurs in the query specification that directly includes that FROM clause:

• Multiple inverse distribution functions are specified.
The following is an example:

SELECT MEDIAN("C1")
    FROM (SELECT ABS(100) AS "C1","C2" FROM "T1") AS "V1"
    HAVING MEDIAN("C1")>100

• A window function containing a derived query column name derived from a value expression that does not
include a column specification
The following is an example:

SELECT "C2",SUM("C2") OVER(ORDER BY "C1")
     FROM (SELECT SUBSTR('ABC',2) AS "C1","C2" FROM "T1") AS "V1"

8. If, in the selection expression of the outermost query specification of a derived query, you specify, in a FROM clause,
the name of a derived query in which a value expression that includes the scalar function RANDOM or
RANDOM_NORMAL is specified, and you specify, in the SQL statement, a column derived from the scalar function
RANDOM or RANDOM_NORMAL
The following is an example:

SELECT "C1", "C2" FROM (SELECT "C1"+RANDOM() AS "C1", "C2" FROM "T2") AS "V1"

9. If, all of the following conditions are met: 1) In the selection expression of the outermost query specification for a
derived query, the name of a derived query that uses a value expression that includes the scalar function
RANDOMCURSOR is specified for a FROM clause. 2) In the query specification that directly contains that FROM
clause, the column derived from the value expression that includes scalar function RANDOMCURSOR for a derived
query is specified in an item other than a selection expression and ORDER BY clause.
The following is an example:

SELECT "C1","C2"
    FROM (SELECT "C1"+RANDOMCURSOR(1,10,20) AS "C1","C2" FROM "T2") AS "V1"
      WHERE "C1">1000

10. If, all of the following conditions are met: 1) In the selection expression of the outermost query specification for a
derived query, the name of a derived query that uses a value expression that includes the scalar function RANDOMROW
is specified for a FROM clause. 2) The query specification that directly contains that FROM clause also contains the
following specification:

• An item (other than a selection expression and ORDER BY clause) in which the column derived from a value
expression that includes scalar function RANDOMROW for a derived query is specified
The following is an example:

SELECT "C1","C2"
    FROM (SELECT "C1"+RANDOMROW(1,10,20) AS "C1","C2" FROM "T2") AS "V1"
      WHERE "C1">1000

• A set function argument for which the column derived from a value expression that includes scalar function
RANDOMROW for a derived query is specified
The following is an example:

SELECT SUM("C1")
    FROM (SELECT "C1"+RANDOMROW(1,10,20) AS "C1","C2" FROM "T2") AS "V1"

7. Constituent Elements

Hitachi Advanced Database SQL Reference 460



• A window function in which the column derived from a value expression that includes scalar function
RANDOMROW for a derived query is specified
The following is an example:

SELECT "C1",SUM("C2") OVER(ORDER BY "C1")
    FROM (SELECT "C1", "C2"+RANDOMROW(1,10,20) AS "C2" FROM "T2") AS "V1"

• The scalar function RANDOMROW in which the column derived from a value expression that includes the scalar
function RANDOMROW for a derived query is specified
The following is an example:

SELECT RANDOMROW(1,"C1","C2")
    FROM (SELECT "C1"+RANDOMROW(1,10,20) AS "C1","C2" FROM "T2") AS "V1"

• Table join (including joined table)
The following is an example:

SELECT * FROM (SELECT "C1"+RANDOMROW(1,10,20) AS "C1","C2" FROM "T2")
    AS "V1","T1"

11. If, in the selection expression of the outermost query specification of a derived query, you specify a derived query
name with a value expression that includes a dynamic parameter in the FROM clause of that selection expression,
and you specify a column derived from the dynamic parameter in the query specification.
The following is an example:

SELECT "C1" FROM (SELECT SUBSTR("C1",?) AS "C1","C2" FROM "T1") AS "V1"

12. If, in the selection expression of the outermost query specification of a derived query, you specify a derived query
name that specifies a value expression that includes a scalar subquery in the FROM clause of that selection expression.
The following is an example:

SELECT "C1" FROM (SELECT (SELECT "C1" FROM "T2") + 10 AS "C1"
                      FROM "T1") AS "V1"

13. If, in the selection expression of the outermost query specification of a derived query, you specify a derived query
name with a value expression that includes an inverse distribution function in the FROM clause of that selection
expression, and you specify a column derived from the inverse distribution function in the query specification.
The following is an example:

SELECT "C1" FROM (SELECT MEDIAN("C1") AS "C1",MAX("C2")
                      FROM "T1") AS "V1"

14. If, all of the following conditions are met: 1) In the selection expression of the outermost query specification for a
derived query, the name of a derived query that uses a set function is specified for a FROM clause. 2) The query
specification that directly contains that FROM clause also contains the following specification:

• The GROUP BY clause that includes a value expression, DISTINCT set function, or inverse distribution function
is specified
The following is an example:

SELECT SUM(DISTINCT "C1")
    FROM (SELECT COUNT("C1") AS "C1" FROM "T1") AS "V1"
    GROUP BY "C1"

• Table join (including joined table)
The following is an example:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 461



SELECT * FROM (SELECT COUNT("C1") AS "C1" FROM "T1") AS "V1","T1"
    WHERE "V1"."C1"="T1"."C1"

• A set function argument for which a column of the derived query name that was derived from a set function is
specified as a column that makes an external reference
The following is an example:

SELECT "C1" FROM (SELECT COUNT("C1") AS "C1" FROM "T1") AS "V1"
    GROUP BY "C1"
    HAVING EXISTS(SELECT * FROM "T2" WHERE MAX("V1"."C1")="C1")

15. If a derived query name specifying a window function is specified in a FROM clause in the outermost query
specification of a derived query
The following is an example:

SELECT "C2" FROM (SELECT "C1",AVG("C1") OVER(ORDER BY "C2") AS "C2"
                      FROM "T1") AS "V1"

16. The LIMIT clause is included in the outermost query specification of a derived query.
The following is an example:

SELECT "C1","C2" FROM (SELECT "C1","C2" FROM "T1" LIMIT 10) AS "V1"

17. A derived query name for which a comma join is specified is specified for a table reference to a joined table in the
outermost query specification of a derived query.
The following is an example:

SELECT "VC1","VC2" FROM (SELECT "T1"."C1","T2"."C1" FROM "T1","T2","T3"
                           WHERE "T1"."C1"="T2"."C1"
                             AND "T2"."C1"="T3"."C1") AS "V1"("VC1","VC2")
                         LEFT JOIN "T3" ON "VC1" = "T3"."C1"

18. A derived query is specified for a table reference in FULL OUTER JOIN.
The following is an example:

SELECT * FROM (SELECT "C1" FROM "T1") AS "V1"
                 FULL OUTER JOIN "T2" ON "V1"."C1"="T2"."C1"

19. VARCHAR-type data larger than 32,000 bytes is contained in the column derived as a result of a set operation that
uses an operand that is the outermost query specification of a derived query.
The following is an example:

SELECT "C1" FROM (SELECT "C1" FROM "T1"
                  UNION
                  SELECT "DEFINE_SOURCE" FROM "MASTER"."SQL_DEFINE_SOURCE"
                 ) AS "V1"

20. At least one of the conditions under which an internal derived table in preceding items 1 to 18 is not expanded is
satisfied in the following case: the query specification in an operand of a set operation specified in a derived query
is assumed to be a derived query.
The following is an example:

SELECT "C1" FROM (SELECT DISTINCT "C1","C2" FROM "T1"
                  UNION ALL
                  SELECT "C1","C2" FROM "T2"
                 ) AS "V1"

7. Constituent Elements

Hitachi Advanced Database SQL Reference 462



Assume that SELECT DISTINCT "C1","C2" FROM "T1", which is a query specification in an operand of
a set operation, is a derived query. In this case, a condition# under which the internal derived table in item 1 is not
expanded is satisfied. Therefore, derived table V1 is not expanded.

#
The FROM clause includes the name of a derived query in which SELECT DISTINCT is specified in the
outermost query specification, and the FROM clause is directly included in a query specification that satisfies
the following condition:

• A derived column derived from a value expression that includes a column specification is not specified as
a single column specification in a selection expression.

21. If, in the FROM clause of the outermost query specification for a derived query, you specify a derived query name
that specifies only the UNION ALL set operator, and one of the following is specified in the query specification that
directly contains that FROM clause:

• GROUP BY clause, HAVING clause, or set function
The following is an example:

SELECT "C1","C2"
    FROM (
          SELECT "C1","C2" FROM "T1"
          UNION ALL SELECT "C1","C2" FROM "T2"
         ) AS "V1"
    GROUP BY "C1","C2"

• Window function specified in the selection expression
The following is an example:

SELECT "C1",SUM("C1") OVER(ORDER BY "C2")
    FROM (
          SELECT "C1","C2" FROM "T1"
          UNION ALL SELECT "C1","C2" FROM "T2"
          ) AS "V1"

• Table join (including joined table)
The following is an example:

SELECT * FROM (
               SELECT "C1", "C2" FROM "T1"
               UNION ALL SELECT "C1","C2" FROM "T2"
               ) AS "V1","T3"

• Sort key that is a derived query name column that is not specified in the selection expression
The following is an example:

SELECT "C1" FROM (
                  SELECT "C1","C2" FROM "T1"
                  UNION ALL SELECT "C1","C2" FROM "T2"
                  ) AS "V1"
    ORDER BY "C2"

• Sort key value expression that is not specified as a selection expression
The following is an example:

SELECT "C1" FROM (
                  SELECT "C1","C2" FROM "T1"
                  UNION ALL SELECT "C1","C2" FROM "T2"
                  ) AS "V1"
    ORDER BY ("C1"+1)

7. Constituent Elements

Hitachi Advanced Database SQL Reference 463



22. If, in the FROM clause of the outermost query specification for a derived query, you specify a derived query name
that specifies a set operator other than UNION ALL, and one of the following is specified in the query specification
that directly contains that FROM clause:

• SELECT DISTINCT
The following is an example:

SELECT DISTINCT "C1" FROM (
                           SELECT "C1" FROM "T1"
                           EXCEPT ALL SELECT "C1" FROM "T2"
                           ) AS "V1"

• GROUP BY clause, HAVING clause, or set function
The following is an example:

SELECT "C1","C2" FROM (
                       SELECT "C1","C2" FROM "T1"
                       UNION SELECT "C1","C2" FROM "T2"
                       ) AS "V1"
    GROUP BY "C1","C2"

• Window function specified in the selection expression
The following is an example:

SELECT "C1",SUM("C1") OVER(ORDER BY "C2") FROM (
                      SELECT "C1","C2" FROM "T1"
                      INTERSECT ALL SELECT "C1","C2" FROM "T2"
                      ) AS "V1"

• Table join (including joined table)
The following is an example:

SELECT * FROM (
               SELECT "C1","C2" FROM "T1"
               EXCEPT SELECT "C1","C2" FROM "T2"
               ) AS "V1","T3"

• Selection expression containing a value expression that includes scalar function RANDOM, scalar function
RANDOM_NORMAL, scalar function RANDOMROW, a scalar subquery, or a window function
The following is an example:

SELECT "VC1","VC2",RANDOM() FROM (
                                  SELECT "C1","C2" FROM "T1"
                                  UNION SELECT "C1","C2" FROM "T2"
                                  ) AS "V1"("VC1","VC2")

• Selection expression containing one or more derived query name columns that are not specified as single
column specifications
The following is an example:

SELECT "VC1" FROM (
                   SELECT "C1","C2" FROM "T1"
                   INTERSECT SELECT "C1","C2" FROM "T2"
                   ) AS "V1"("VC1","VC2")

Because derived column VC2 is not specified in the selection expression, derived table V1 is not expanded.
The following is an example:

SELECT "VC1"*1.05,"VC2" FROM (
                              SELECT "C1","C2" FROM "T1"

7. Constituent Elements

Hitachi Advanced Database SQL Reference 464



                              UNION SELECT "C1","C2" FROM "T2"
                              ) AS "V1"("VC1","VC2")

Because derived column VC1 is not specified as a single column specification in the selection expression,
derived table V1 is not expanded.

• Sort key that is a derived query name column that is not specified in the selection expression
The following is an example:

SELECT "C1" FROM (
                  SELECT "C1","C2" FROM "T1"
                  UNION SELECT "C1","C2" FROM "T2"
                  ) AS "V1"
    ORDER BY "C2"

• Sort key value expression that is not specified as a selection expression
The following is an example:

SELECT "C1" FROM (
                  SELECT "C1","C2" FROM "T1"
                  UNION SELECT "C1","C2" FROM "T2"
                  ) AS "V1"
    ORDER BY ("C1"+1)

7.30.5 Summary of when derived table expansion is performed
The following table summarizes the conditions under which derived table expansion is and is not performed.

Table 7-40: Summary of when derived table expansion is performed (1/2)

Specification
of the SQL
statement that
manipulates a
derived query

Specification of the derived query

SEL_
DIST

GRP GRP_EX
P

SEL_EX
P

SEL_
NCOL

SEL_RAND SEL_
RANDCRS

SEL_
RANDRO
W

SEL_PR
M

SEL_DIST Y Y Y Y Y Y#5 Y Y N

GRP N Y#6 Y#6 Y#2 Y#2 Y#5 D D N

GRP_EXP N N N Y Y Y#5 D D N

A-FUNC N Y
#6, #7

Y
#6, #7

Y Y Y#5 Y#8 D N

D-FUNC N N N Y Y Y#5 Y#8 D N

I-FUNC2 N N N D D Y#5 Y#8 D N

WIN_AGG N Y Y Y Y Y#5 Y#8 D N

WIN_PAR N Y Y Y D Y#5 Y#8 D N

WIN_ORD N Y Y Y Y Y#5 Y#8 D N

SEL_EXP Y Y Y Y Y Y#5 Y Y#9 N

SEL_RAND N Y Y Y Y Y#5 Y Y N

SEL_RANDROW N Y Y Y Y Y#5 Y Y#9 N

SEL_SUBQ N Y Y Y Y Y#5 Y Y N

7. Constituent Elements

Hitachi Advanced Database SQL Reference 465



Specification
of the SQL
statement that
manipulates a
derived query

Specification of the derived query

SEL_
DIST

GRP GRP_EX
P

SEL_EX
P

SEL_
NCOL

SEL_RAND SEL_
RANDCRS

SEL_
RANDRO
W

SEL_PR
M

SEL_WINDOW N Y Y Y Y Y#5 Y Y N

SEL_CNDRV N Y Y Y Y Y#5 Y Y N

SEL_NCNDRV Y#11 Y Y Y Y Y#5 Y Y N

JOIN N N N Y Y Y#5 Y Y#5 N

IN_J_TBL N N N Y#4 N Y#5 Y Y#5 N

J_TBL#12 N N N Y Y Y#5 Y Y#5 N

FJ_TBL N N N N N N N N N

S_KEY Y Y Y Y Y Y#5 Y Y N

SEXP_KEY N Y Y Y Y Y#5 Y Y#9 N

O_REF Y Y D Y Y Y#5 D D N

O_REF_FUNC N N N D D Y#5 D D N

Other items Y Y Y Y Y Y#5 Y#8 Y
#8, #9

N

Table 7-41: Summary of when derived table expansion is performed (2/2)

Specification
of the SQL
statement
that
manipulates a
derived query

Specification of the derived query

SUBQ SEL_
IFN

FUNC_
COL

FUNC_
EXP

WINDO
W

CJOIN
#12

LIMIT U_ALL
#3,
#10

SET_O
P#3,
#10

SETOP
_
VCH
32000

Other
items

SEL_DIST N N Y Y N Y N Y Y#1 N Y

GRP N N D D N Y N N N N Y

GRP_EXP N N D D N Y N N N N Y

A-FUNC N N Y#7 Y#7 N Y N N N N Y

D-FUNC N N D D N Y N N N N Y

I-FUNC2 N N D D N Y N N N N Y

WIN_AGG N N Y Y N Y N N N N Y

WIN_PAR N N Y Y N Y N N N N Y

WIN_ORD N N Y Y N Y N N N N Y

SEL_EXP N N Y Y N Y N Y Y N Y

SEL_RAND N N Y Y N Y N Y N N Y

SEL_RANDROW N N Y Y N Y N Y N N Y

SEL_SUBQ N N Y Y N Y N Y N N Y

SEL_WINDOW N N Y Y N Y N Y N N Y

SEL_CNDRV N N Y Y N Y N Y N N Y

7. Constituent Elements

Hitachi Advanced Database SQL Reference 466



Specification
of the SQL
statement
that
manipulates a
derived query

Specification of the derived query

SUBQ SEL_
IFN

FUNC_
COL

FUNC_
EXP

WINDO
W

CJOIN
#12

LIMIT U_ALL
#3,
#10

SET_O
P#3,
#10

SETOP
_
VCH
32000

Other
items

SEL_NCNDRV N N Y Y N Y N Y N N Y

JOIN N N N N N Y N N N N Y

IN_J_TBL N N N N N N N N N N Y

J_TBL#12 N N N N N N N N N N Y

FJ_TBL N N N N N N N N N N N

S_KEY N N Y Y N Y N Y Y N Y

SEXP_KEY N N Y Y N Y N N N N Y

O_REF N N Y D N Y N Y Y N Y

O_REF_FUNC N N N N N Y N N N N Y

Other items N N Y Y N Y N Y Y N Y

Legend:
Y: Derived table expansion is performed.
D: In general, derived table expansion is performed. However, if you specify a derived column that is derived from
the specification of the derived query in a location in which an SQL statement that manipulates a derived query is
specified, derived table expansion is not performed.
N: Derived table expansion is not performed.

• A-FUNC: The ALL set function, but only if a column of the derived query name is specified as an aggregated
argument

• CJOIN: A comma join

• D-FUNC: A DISTINCT set function, but only if a column of the derived query name is specified as an aggregated
argument. Alternatively, only one inverse distribution function in which a column of the derived query name is
specified as an aggregated argument.

• I-FUNC2: Two or more inverse distribution functions in which a column of the derived query name is specified
as an aggregated argument

• FJ_TBL: A derived query name is specified in a table reference of FULL OUTER JOIN
• FUNC_COL: A set function, but only if column specifications appear as aggregated arguments

• FUNC_EXP: A set function, but only if no column specifications appear as aggregated arguments

• GRP: GROUP BY clause, a HAVING clause, or a set function

• GRP_EXP: GROUP BY clause without column specifications (such as scalar operations)

• IN_J_TBL: The corresponding derived query name for the table reference of a joined table that is on the side
filled with null values

• JOIN: Multiple tables

• J_TBL: A derived query name specified in a table reference to a joined table

• LIMIT: A LIMIT clause

• O_REF: A column of the derived query name used as an external reference column

7. Constituent Elements

Hitachi Advanced Database SQL Reference 467



• O_REF_FUNC: A column of the derived query name used as an external reference column in the argument of
a set function

• S_KEY: A column of the derived query name specified in the selection expression used as a sort key

• SEL_CNDRV: A derived column derived from a value expression that includes a column specification is not
specified as a single column specification in a selection expression.

• SEL_IFN: An inverse distribution function specified in a selection expression

• SEL_DIST: A SELECT DISTINCT clause

• SEL_EXP: Non-column specifications (such as scalar operations) used in a selection expression (even if column
specifications are used in value expressions)

• SEL_NCNDRV: A derived column derived from a value expression that does not include a column specification
is not specified as a single column specification in a selection expression.

• SEL_NCOL: A value expression consisting of non-column specifications in the selection expression

• SEL_PRM: A dynamic parameter appears in the selection expression.

• SEL_RAND: The selection expression includes the scalar function RANDOM or RANDOM_NORMAL.

• SEL_RANDCRS: The selection expression includes the scalar function RANDOMCURSOR.

• SEL_RANDROW: The selection expression includes the scalar function RANDOMROW.

• SEL_SUBQ: A selection expression includes a scalar subquery.

• SEL_WINDOW: A selection expression includes a window function.

• SET_OP: Set operations specified in cases other than U_ALL
• SETOP_VCH32000: Column of the VARCHAR type larger than 32,000 bytes among the columns derived by

the result of a set operation

• SEXP_KEY: A sort key value expression that is not specified as a selection expression
Example:

SELECT "C1"+"C2","C2" AS "DC1" FROM "T1" ORDER BY "C1"/"C2"

• SUBQ: Subquery included in a selection expression

• U_ALL: Set operations that specify only UNION ALL
• WINDOW: Window function

• WIN_AGG: Derived query name column specified in a set function specified as a window function

• WIN_PAR: Derived query name column specified in a window partition clause in a window function

• WIN_ORD: Derived query name column specified in a window order clause in a window function

#1
Expansion of the derived table is not performed if the set operator that is evaluated last in the set operations specified
in the derived query is EXCEPT ALL.
Example where expansion is not performed:

SELECT DISTINCT "C1","C2" FROM (
                  (SELECT "C1","C2" FROM "T1"
                   UNION ALL
                   SELECT "C1","C2" FROM "T2")
                   EXCEPT ALL
                   SELECT "C1","C2" FROM "T2") AS "V1"

7. Constituent Elements

Hitachi Advanced Database SQL Reference 468



In the SQL statement above, expansion of the derived table is not performed because the set operator that is evaluated
last is EXCEPT ALL.
Example where expansion is performed:

SELECT DISTINCT "C1","C2" FROM (
                    SELECT "C1","C2" FROM "T1"
                    UNION ALL
                   (SELECT "C1","C2" FROM "T2"
                    EXCEPT ALL
                    SELECT "C1","C2" FROM "T2")) AS "V1"

In the SQL statement above, expansion of the derived table is performed because the set operator that is evaluated
last is UNION ALL.

#2
If all of the following conditions are met, derived table expansion is not performed:

1. The derived query name column that was derived from a value expression is specified as a grouping column.

2. The derived query name column in condition 1 is specified in either of the following items and is an external
reference column:

• Selection expression
Example where expansion is not performed:

SELECT (SELECT "C1" FROM "T2" WHERE "T2"."C1" = "V1"."DC1") "DC2"
    FROM (SELECT "C1"+1 AS "DC1" FROM "T1") AS "V1"
    GROUP BY "DC1"

• HAVING clause
Example where expansion is not performed:

SELECT "DC1" FROM (SELECT "C1"+1 AS "DC1" FROM "T1") AS "V1"
    GROUP BY "DC1"
    HAVING EXISTS (SELECT * FROM "T2" WHERE "T2"."C1" = "V1"."DC1")

#3
If FULL OUTER JOIN is specified in a subquery that is included in a query specification for manipulating a derived
table with a set operation specified, expansion of a set operation derived table is not performed.
Example where expansion is not performed:

SELECT * FROM (SELECT "C1","C2" FROM "T1"
               UNION ALL
               SELECT "C1","C2" FROM "T2") "DT2"
    WHERE "C1"=ANY(SELECT "X"."C1" FROM "T3" FULL OUTER JOIN "T4"
                                             ON "T3"."C2"> "T4"."C2")

#4
If one of the following value expressions is specified in the selection expression of the outermost query specification
for a derived query, derived table expansion is not performed:

• Scalar function COALESCE
• Scalar function ISNULL
• Scalar function NULLIF
• Scalar function NVL
• Scalar function DECODE
• Scalar function LTDECODE

7. Constituent Elements

Hitachi Advanced Database SQL Reference 469



• CASE expression

#5
If you specify, in the SQL statement, a derived column to which the details specified in the derived query apply, the
derived table is not expanded. If you do not specify such a derived column, the derived table is expanded.
Example where expansion is not performed:

SELECT "DC1" FROM (SELECT RANDOM("C1","C2") AS "DC1" FROM "T1") AS "V1"

In the SQL statement above, the derived column "DC1" is specified in the SQL statement that manipulates the
derived query. Because this derived column corresponds to a column in the selection expression that includes the
scalar function RANDOM, which is specified in the derived query, the derived table is not expanded.

#6
If all of the following conditions are met, the derived table is expanded:

• The number of grouping columns in the query specification for operating a derived query is the same as the
number of grouping columns in the derived query.

• All derived columns derived from the grouping column specified in a selection expression for a derived query
are specified in a grouping column that has a query specification for operating the derived query.

Example where expansion is performed (1):

SELECT "C1","C2" 
    FROM (SELECT "C1","C2" FROM "T1" GROUP BY "C1","C2") AS "V1"
    GROUP BY "C1","C2"

Example where expansion is performed (2):

SELECT "C1","DC2"
    FROM (SELECT "C1","C2"+1 AS "DC2" FROM "T1" GROUP BY "C1","C2"+1) AS "V1"
    GROUP BY "C1","DC2"

#7
The derived table is expanded when all set functions included in the query specification that operates the derived
query satisfy Condition 1 or Condition 2, as follows:
Condition 1:

• The set function included in the query specification that operates the derived query is COUNT(*)#.

#
The set function COUNT (with ALL specified) for which a literal (or a value expression equivalent to a literal)
is specified as an argument is replaced by the set function COUNT(*) and is treated as the set function
COUNT(*).

Condition 2:

• One of the following set functions is included in the query specification that operates the derived query:

• Set function MAX with ALL specified

• Set function MIN with ALL specified

• Set function SUM with ALL specified

• Set function AVG with ALL specified

• A derived column consisting of the set functions specified in a derived query is specified as an aggregated
argument of the preceding set function.

Example where expansion is performed:

7. Constituent Elements

Hitachi Advanced Database SQL Reference 470



SELECT "C1", "C2",SUM("C3")
    FROM (SELECT "C1","C2",COUNT("C3") AS "C3"
             FROM "T1"
             GROUP BY "C1","C2") "V1"
    GROUP BY "C1","C2"

#8
If a value expression that includes the derived column subject to the specification of the derived query is specified
in an item other than a selection expression and ORDER BY clause, the derived table is not expanded.

#9
If the derived column subject to the specification of the derived query is specified in the scalar function
RANDOMROW, the derived table is not expanded.

#10
The derived table is not expanded if at least one of the conditions under which an internal derived table is not
expanded is satisfied in the following case: the query specification in an operand of a set operation specified in a
derived query is assumed to be a derived query.

#11
The derived table is not expanded if the following derived column is not specified as a single column specification
in a selection expression: a derived column derived from a value expression that does not include column
specifications and includes any of the following specifications:

• Scalar function RANDOM
• Scalar function RANDOM_NORMAL
• Scalar function RANDOMROW
• Set function

#12
The HADB server might convert INNER JOIN or CROSS JOIN to a comma join. Therefore, if INNER JOIN
or CROSS JOIN specified in a derived query is converted to a comma join, it is assumed that a comma join is
included in a derived query (CJOIN in the preceding table applies). Also, if a joined table disappears from a query
specification in a case where INNER JOIN or CROSS JOIN specified in a query specification that manipulates
a derived query is converted to a comma join, it is assumed that no joined table is specified (J_TBL in the preceding
table no longer applies).

7.30.6 When the scalar function CONVERT is added to an internal
derived table

This section shows the cases in which the scalar function CONVERT is added to an internal derived table. This has the
effect of increasing the number of scalar operations by one, and increasing the nesting of scalar operations by one.

• When a set operation is specified in an internal derived table
The scalar function CONVERT is added to the selection expression so that the result will have the data type of the
result of the set operation.

Example

• Query using derived tables

SELECT "SN","KI"*1.08 AS "TAX" FROM 
(SELECT "NAME","PRICE","ORIGIN" FROM "PRODUCTS_A" 
  WHERE "PRICE">10000

7. Constituent Elements

Hitachi Advanced Database SQL Reference 471



 UNION ALL
 SELECT "NAME","PRICE"*0.8,"ORIGIN" FROM "PRODUCTS_B" 
  WHERE "PRICE">20000) AS "X"("SN","KI","GE")
WHERE "GE" IN('Tokyo','Osaka') 

• Expansion of derived tables

SELECT CONVERT("NAME",VARCHAR(100)) AS "SN",
       CONVERT("PRICE"*1.08,DEC(23,2)) AS "TAX" 
  FROM "PRODUCTS_A" 
 WHERE "PRICE">10000 AND
       "ORIGIN" IN('Tokyo','Osaka) 
 UNION ALL
SELECT CONVERT("NAME",VARCHAR(100)),
       CONVERT("PRICE"*0.8*1.08,DEC(23,2))
 FROM "PRODUCTS_B" 
 WHERE "PRICE">20000 AND
       "ORIGIN" IN('Tokyo','Osaka')

• When all of the following conditions are met:

• An internal derived table that meets Condition 2 in Note #7 in 7.30.5 Summary of when derived table expansion
is performed is expanded.

• The data type of the set function included in the query specification that operates the derived query is different
from the data type of the result of the set function specified in the derived query.

The scalar function CONVERT whose result will have the same data type as the result of the set function included
in the query specification that operates the derived query is added to the set function specified in the derived query.

Example:

• Query using a derived table (in the case where the data type of the "TEMPERATURE" column is
DECIMAL(10,2))

SELECT "POINT","DATE",AVG("TEMPERATURE") AS "TEMPERATURE"
  FROM (SELECT "POINT","DATE",MAX("TEMPERATURE") AS "TEMPERATURE" 
          FROM "SENSOR_DATA" 
            GROUP BY "POINT","DATE") "V1"
    WHERE "DATE" BETWEEN DATE'2018-01-01' AND DATE'2018-12-31'
      GROUP BY "POINT","DATE"

• Expansion of derived tables

SELECT "POINT","DATE",CONVERT(MAX("TEMPERATURE"),DECIMAL(38, 30)) AS "TEMPERA
TURE"
  FROM "SENSOR_DATA"
    WHERE "DATE" BETWEEN DATE'2018-01-01' AND DATE'2018-12-31'
      GROUP BY "POINT","DATE"

7. Constituent Elements

Hitachi Advanced Database SQL Reference 472



This chapter describes the functioning, specification formats, and rules of scalar functions.

8 Scalar Functions

Hitachi Advanced Database SQL Reference 473



8.1 List of scalar functions

The following table lists all of the scalar functions.

Table 8-1: List of scalar functions

No. Category Name of scalar
function

Description

1 Mathematical
functions

Trigonometric
functions

ACOS Returns the angle (in radians) that is the inverse cosine of the
target data, in the range 0 to .

2 ASIN Returns the angle (in radians) that is the inverse sine of the
target data, in the range - /2 to /2.

3 ATAN Returns the angle (in radians) that is the inverse tangent of
the target data, in the range - /2 to /2.

4 ATAN2 Returns the angle (in radians) that is the inverse tangent of y/
x, in the range -  to .

5 COS Returns the cosine (COS trigonometric function) of the target
data, which must be specified in radians.

6 COSH Returns the hyperbolic cosine of the target data.

7 DEGREES Returns the result of converting the specified angle from
radians to degrees.

8 PI Returns the value of .

9 RADIANS Returns the result of converting the specified angle from
degrees to radians.

10 SIN Returns the sine (SIN trigonometric function) of the target
data, which must be specified in radians.

11 SINH Returns the hyperbolic sine of the target data.

12 TAN Returns the tangent (TAN trigonometric function) of the
target data, which must be specified in radians.

13 TANH Returns the hyperbolic tangent of the target data.

14 Exponent and
logarithm
calculations

EXP Returns the result of raising the base of the natural logarithm
to a power.

15 LN Returns the natural logarithm of the target data.

16 LOG Returns the logarithm of the target data (antilogarithm) to the
specified base.

17 POWER Returns the result of raising the target data to a specified
power.

18 Numerical
calculations

ABS Returns the absolute value of the target data.

19 CEIL Returns the smallest integer that is equal to or greater than
the target data.

20 FLOOR Returns the greatest integer that is equal to or less than the
value of the target data.

21 MOD Returns the remainder after dividing the dividend by the
divisor.

22 RANDOM Returns pseudorandom numbers that follow a uniform
distribution and are greater than or equal to the value specified

8. Scalar Functions

Hitachi Advanced Database SQL Reference 474



No. Category Name of scalar
function

Description

for the minimum value and less than the value specified for
the maximum value.

23 RANDOMCURSOR Returns pseudorandom numbers that follow a uniform
distribution and are greater than or equal to the value specified
for the minimum value and less than the value specified for
the maximum value.
If an SQL statement contains multiple RANDOMCURSOR
functions for which the same identification number is
specified, those functions always return the same values.

24 RANDOMROW Returns pseudorandom numbers that follow a uniform
distribution and are greater than or equal to the value specified
for the minimum value and less than the value specified for
the maximum value.
If a query specification contains multiple RANDOMROW
functions for which the same identification number is
specified, those functions return the same values for each
result row of the query specification.

25 RANDOM_NORMAL Returns pseudorandom numbers that follow a normal
distribution with an average μ and a standard deviation σ.

26 ROUND Returns the value of the target data rounded to the nth digit
after the decimal point.

27 SIGN Returns the sign of the target data (+1 for positive, -1 for
negative, 0 for 0).

28 SQRT Returns the square root of the target data.

29 TRUNC Returns a value that has been truncated to the specified
number of decimal places.

30 Character string
functions

Character string
operations

CONCAT Concatenates two character string data items.

31 LEFT Extracts a substring from a character string starting from the
beginning (leftmost position) of the character string data.

32 LPAD Pads the beginning (left side) of the target data with the
padding character string up to the specified number of
characters.

33 LTRIM Removes instances of the specified characters, starting from
the beginning of the target character string.

34 RIGHT Extracts a substring from a character string starting from the
end (rightmost position) of the character string data.

35 RPAD Pads the end (right side) of the target data with the padding
character string up to the specified number of characters.

36 RTRIM Removes instances of the specified characters, starting from
the end of the target character string.

37 SUBSTR Extracts a substring from a character string starting from any
position in the character string data.

38 TRIM Removes instances of the specified characters from the target
character string. The characters can be removed in any of the
following ways:
• Remove the specified characters starting from the

beginning of the character string.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 475



No. Category Name of scalar
function

Description

• Remove the specified characters starting from the end of
the character string.

• Remove characters starting from both the beginning and
the end of the character string.

39 Acquisition of
character string
information

CONTAINS Returns whether character strings that meet the search
condition expression are included in the target data.

40 INSTR Searches the target data for a character string and returns the
starting position of the string.

41 LENGTH Returns the number of characters in the target character
string.

42 Character
substitution

REPLACE Replaces any character string in the target data. All instances
of the character string to be replaced in the target data are
replaced with a replacement character string.

43 TRANSLATE Replaces any character in the target data.

44 Character string
conversion

LOWER Converts uppercase letters (A to Z) to lowercase letters (a to
z) in character string data.

45 UPPER Converts lowercase letters (a to z) to uppercase letters (A to
Z) in character string data.

46 Datetime functions DATEDIFF Returns the difference between the start date and time and the
end date and time.

47 DAYOFWEEK Returns the day of the week that the specified date falls on.

48 DAYOFYEAR Returns the specified date as the number of days elapsed since
January 1 of that year.

49 EXTRACT Extracts a part (year, month, day, hour, minute, or second)
from data representing the date and time.

50 GETAGE Determines a person's age on a reference date given their birth
date.

51 LASTDAY Returns the date or datetime of the last day of the month
specified in the datetime data.

52 ROUND Returns the datetime data rounded to the unit specified in the
datetime format.

53 TRUNC Returns the datetime data truncated to the unit specified in
the datetime format.

54 Binary column
functions

Binary data
operation

CONCAT Concatenates two binary data items.

55 SUBSTRB Extracts a substring from binary data starting from any
position in the binary data.

56 Bit operations BITAND Returns the bitwise logical AND of two binary data items.

57 BITLSHIFT Returns the value resulting from shifting the bits of a binary
data value to the left.

58 BITNOT Returns the bitwise logical NOT of a binary data item.

59 BITOR Returns the bitwise inclusive OR of two binary data items.

60 BITRSHIFT Returns the value resulting from shifting the bits of a binary
data value to the right.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 476



No. Category Name of scalar
function

Description

61 BITXOR Returns the bitwise exclusive OR of two binary data items.

62 Data conversion functions ASCII Returns the character code of the first character of the target
data as an integer value.

63 BIN Converts binary data to a binary string representation
(character string data consisting of 0 and 1).

64 CAST Converts the data type of the data.

65 CHR Returns the character corresponding to the character code
represented by the integer target data.

66 CONVERT Converts the data type of the data.
You can also specify a datetime format or number format to
control the conversion.

If you specify a datetime format:
• When converting datetime data to character string

data, you can specify the output format of the
character string data after conversion.

• When converting character string data to datetime
data, you can specify the pre-conversion input format
of the character string data.

If you specify a number format:
• When converting numeric data to character string

data, you can specify the output format of the
character string data after conversion.

• When converting character string data to numeric
data, you can specify the input format of the character
string data before conversion.

67 HEX Converts binary data to a hexadecimal string representation
(character string data consisting of 0 to 9, and A to F).

68 NULL evaluation functions COALESCE Evaluates the specified target data items in the order in which
they are specified, and then returns the first non-null value.

69 ISNULL

70 NULLIF Compares target data 1 to target data 2 and returns NULL if
they are equal, or target data 1 if they are not equal.

71 NVL Evaluates the specified target data items in the order in which
they are specified, and then returns the first non-null value.

72 Information acquisition functions LENGTHB Returns the length of the target data in bytes.

73 Comparison functions DECODE Compares the values in the target data and the comparison
data one at a time, and if there is a match, returns the
corresponding return value. If no match is found between the
target data and comparison data, this function returns the
predefined return value.

74 GREATEST Returns the greatest value among the specified target data
items.

75 LEAST Returns the smallest value among the specified target data
items.

76 LTDECODE Compares the values in the target data and in the comparison
data one at a time, and, if any value in the target data is less
than the value in the comparison data, returns the
corresponding return value. If no value in the target data is

8. Scalar Functions

Hitachi Advanced Database SQL Reference 477



No. Category Name of scalar
function

Description

less than any of the values in the comparison data, this
function returns the predefined return value.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 478



8.2 Mathematical functions (trigonometric functions)

This section describes the functions and specification formats of the mathematical functions pertaining to trigonometric
functions.

8.2.1 ACOS
Returns the angle (in radians) that is the inverse cosine of the target data, in the range 0 to .

(1) Specification format
scalar-function-ACOS ::= ACOS(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the numeric data whose inverse cosine is to be determined.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• Specify a value from -1 to 1 for the target data. Out-of-range values result in an error.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has the null value, the execution result will be a null value.

(4) Example
Example:

Determine the inverse cosine of the values in columns C1 to C3 in table T1.

SELECT ACOS("C1"),ACOS("C2"),ACOS("C3")  FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 479



8.2.2 ASIN
Returns the angle (in radians) that is the inverse sine of the target data, in the range - /2 to /2.

(1) Specification format
scalar-function-ASIN ::= ASIN(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the numeric data whose inverse sine is to be determined.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• Specify a value from -1 to 1 for the target data. Out-of-range values result in an error.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has the null value, the execution result will be a null value.

(4) Example
Example:

Determine the inverse sine of the values in columns C1 to C3 in table T1.

SELECT ASIN("C1"),ASIN("C2"),ASIN("C3") FROM "T1"

8.2.3 ATAN
Returns the angle (in radians) that is the inverse tangent of the target data, in the range - /2 to /2.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 480



(1) Specification format
scalar-function-ATAN ::= ATAN(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the numeric data whose inverse tangent is to be determined.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has the null value, the execution result will be a null value.

(4) Example
Example:

Determine the inverse tangent of the values in columns C1 to C3 in table T1.

SELECT ATAN("C1"),ATAN("C2"),ATAN("C3") FROM "T1"

8.2.4 ATAN2
Returns the angle (in radians) that is the inverse tangent of y/x, in the range -  to .

In the specification format, y is set to target-data-1, x is set to target-data-2, and the quadrant in which the value of the
execution result falls is determined by the signs of y and x.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 481



(1) Specification format
scalar-function-ATAN2 ::= ATAN2(target-data-1,target-data-2)
 
  target-data-1 ::= value-expression
  target-data-2 ::= value-expression

(2) Explanation of specification format
target-data-1 and target-data-2:

Specifies the numeric data whose inverse tangent of y/x is to be determined.
The following rules apply:

• Specify target-data-1 and target-data-2 in the form of value expressions. For details about value expressions,
see 7.20 Value expression.

• Specify numeric data for target-data-1 and target-data-2. For details about numeric data, see (1) Numeric data
in 6.2.1 List of data types.

• You cannot specify a dynamic parameter by itself for target-data-1 or target-data-2.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If either target-data-1 or target-data-2 has a null value, the execution result will be a null value.

(4) Example
Example:

Specify the values of columns C1 and C2 from table T1 for target-data-1 and target-data-2, and then determine the
inverse tangent of y/x.

SELECT ATAN2("C1","C2") FROM "T1"

8.2.5 COS
Returns the cosine (COS trigonometric function) of the target data, which must be specified in radians.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 482



(1) Specification format
scalar-function-COS ::= COS(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the numeric data whose cosine is to be determined.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has the null value, the execution result will be a null value.

(4) Example
Example:

Express the value of column C1 in table T1 in radians and then determine its cosine.

SELECT COS("C1"*PI()/180) FROM "T1"

8.2.6 COSH
Returns the hyperbolic cosine of the target data.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 483



(1) Specification format
scalar-function-COSH ::= COSH(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the numeric data whose hyperbolic cosine is to be determined.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. If the execution result cannot be represented in the DOUBLE PRECISION type, an overflow error is generated.

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If the target data has the null value, the execution result will be a null value.

(4) Example
Example:

Determine the hyperbolic cosine of the values in columns C1 to C3 in table T1.

SELECT COSH("C1"),COSH("C2"),COSH("C3") FROM "T1"

8.2.7 DEGREES
Returns the result of converting the specified angle from radians to degrees.

(1) Specification format
scalar-function-DEGREES ::= DEGREES(angle)
 
  angle ::= value-expression

8. Scalar Functions

Hitachi Advanced Database SQL Reference 484



(2) Explanation of specification format
angle:

Specifies the angle in radians.
The following rules apply:

• Specify the angle in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the angle. For details about numeric data, see (1) Numeric data in 6.2.1 List of data
types.

• You cannot specify a dynamic parameter by itself for the angle.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. If the execution result cannot be represented in the DOUBLE PRECISION type, an overflow error is generated.

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If the angle has a null value, the execution result will be a null value.

(4) Examples
Example 1:

Convert  to degrees.

SELECT DEGREES(PI()) FROM "T1"

Example 2:
With the values of columns C1 and C2 from table T1 as input, use the scalar function ATAN2 to determine the
inverse tangent of the angle (in radians), and then use the scalar function DEGREES to convert it to degrees.

SELECT DEGREES(ATAN2("C1","C2")) FROM "T1"

8.2.8 PI
Returns the value of .

8. Scalar Functions

Hitachi Advanced Database SQL Reference 485



(1) Specification format
scalar-function-PI ::= PI()

(2) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed). In practice,
however, this function always returns the value of , never the null value.

(3) Example
Example:

Determine the circumference of the circle whose radius is the value of column C1 in table T1.

SELECT "C1"*2*PI() FROM "T1"

8.2.9 RADIANS
Returns the result of converting the specified angle from degrees to radians.

(1) Specification format
scalar-function-RADIANS ::= RADIANS(angle)
 
  angle ::= value-expression

(2) Explanation of specification format
angle:

Specifies the angle in degrees.
The following rules apply:

• Specify the angle in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the angle. For details about numeric data, see (1) Numeric data in 6.2.1 List of data
types.

• You cannot specify a dynamic parameter by itself for the angle.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 486



(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the angle has a null value, the execution result will be a null value.

(4) Examples
Example 1:

Convert the values (angles) in columns C1 through C3 from table T1 to radians.

SELECT RADIANS("C1"),RADIANS("C2"),RADIANS("C3") FROM "T1"

Example 2:
Determine the cosine of the value (angle) in column C1 from table T1.
Because the value in C1 is in degrees, the scalar function RADIANS is used to convert the angle from degrees to
radians, and then the scalar function COS is used to determine the cosine.

SELECT COS(RADIANS("C1")) FROM "T1"

In this example, the calculation is COS(60 ), but the target data specified in the scalar function COS must be
specified in radians.

8.2.10 SIN
Returns the sine (SIN trigonometric function) of the target data, which must be specified in radians.

(1) Specification format
scalar-function-SIN ::= SIN(target-data)
 
  target-data ::= value-expression

8. Scalar Functions

Hitachi Advanced Database SQL Reference 487



(2) Explanation of specification format
target-data:

Specifies the numeric data whose sine is to be determined.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has the null value, the execution result will be a null value.

(4) Example
Example:

Express the value of column C1 in table T1 in radians and then determine its sine.

SELECT SIN("C1"*PI()/180) FROM "T1"

8.2.11 SINH
Returns the hyperbolic sine of the target data.

(1) Specification format
scalar-function-SINH ::= SINH(target-data)
 
  target-data ::= value-expression

8. Scalar Functions

Hitachi Advanced Database SQL Reference 488



(2) Explanation of specification format
target-data:

Specifies the numeric data whose hyperbolic sine is to be determined.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. If the execution result cannot be represented in the DOUBLE PRECISION type, an overflow error is generated.

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If the target data has the null value, the execution result will be a null value.

(4) Example
Example:

Determine the hyperbolic sine of the values in columns C1 to C3 in table T1.

SELECT SINH("C1"),SINH("C2"),SINH("C3") FROM "T1"

8.2.12 TAN
Returns the tangent (TAN trigonometric function) of the target data, which must be specified in radians.

(1) Specification format
scalar-function-TAN ::= TAN(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the numeric data whose tangent is to be determined.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 489



The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. If the execution result cannot be represented in the DOUBLE PRECISION type, an overflow error is generated.

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If the target data has the null value, the execution result will be a null value.

(4) Example
Example:

Express the value of column C1 in table T1 in radians and then determine its tangent.

SELECT TAN("C1"*PI()/180) FROM "T1"

8.2.13 TANH
Returns the hyperbolic tangent of the target data.

(1) Specification format
scalar-function-TANH ::= TANH(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the numeric data whose hyperbolic tangent is to be determined.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 490



The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has the null value, the execution result will be a null value.

(4) Example
Example:

Determine the hyperbolic tangent of the values in columns C1 to C3 in table T1.

SELECT TANH("C1"),TANH("C2"),TANH("C3") FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 491



8.3 Mathematical functions (exponent and logarithm)

This section describes the functions and specification formats of the mathematical functions pertaining to exponents
and logarithms.

8.3.1 EXP
Returns the result of raising the base of the natural logarithm to a power.

(1) Specification format
scalar-function-EXP ::= EXP(exponent)
 
  exponent ::= value-expression

(2) Explanation of specification format
exponent:

Specifies the exponent.
The following rules apply:

• Specify the exponent in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the exponent. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the exponent.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. If the execution result cannot be represented in the DOUBLE PRECISION type, an overflow error is generated.

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If the exponent has a null value, the execution result will be a null value.

(4) Example
Example:

Using the values of columns C1 to C3 in table T1 as the exponents, determine the respective powers of the base of
the natural logarithm.

SELECT EXP("C1"),EXP("C2"),EXP("C3") FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 492



8.3.2 LN
Returns the natural logarithm of the target data.

(1) Specification format
scalar-function-LN ::= LN(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the numeric data whose natural logarithm is to be determined.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• Specify a positive value for the target data. Values less than or equal to 0 result in an error.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has the null value, the execution result will be a null value.

(4) Example
Example:

Determine the natural logarithm of the values in columns C1 to C3 in table T1.

SELECT LN("C1"),LN("C2"),LN("C3") FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 493



8.3.3 LOG
Given a base and antilogarithm, returns its logarithm.

(1) Specification format
scalar-function-LOG ::= LOG(base,target-data)
 
  base ::= value-expression
  target-data ::= value-expression

(2) Explanation of specification format
base:

Specifies the base of the logarithm.
The following rules apply:

• Specify the base in the form of a value expression. For details about value expressions, see 7.20 Value expression.

• Specify numeric data for the base. For details about numeric data, see (1) Numeric data in 6.2.1 List of data
types.

• You cannot specify a value less than or equal to 0 for the base.

• If you specify 1 for the base, a divide-by-zero error is generated.

• You cannot specify a dynamic parameter by itself for the base.

target-data:
Specify the target data (antilogarithm).
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a value less than or equal to 0 for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If either the base or target data has a null value, the execution result will be a null value.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 494



4. The execution result of LOG(base,target-data) is equivalent to LN(target-data)/LN(base).

(4) Examples
Example 1:

Determine the common logarithm of the value of column C1 in table T1.

SELECT LOG(10,"C1") FROM "T1"

Example 2:
Determine the logarithm of the value of column C2 in table T1, using the value of column C1 as the base.

SELECT LOG("C1","C2") FROM "T1"

8.3.4 POWER
Returns the result of raising the target data to a specified power.

(1) Specification format
scalar-function-POWER ::= POWER(target-data,exponent)
 
  target-data ::= value-expression
  exponent ::= value-expression

8. Scalar Functions

Hitachi Advanced Database SQL Reference 495



(2) Explanation of specification format
target-data:

Specify the target data whose exponentiation is to be determined.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the target data.

exponent:
Specifies the exponent.
The following rules apply:

• Specify the exponent in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the exponent. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the exponent.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. If the execution result cannot be represented in the DOUBLE PRECISION type, an overflow error is generated.

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If either the target data or exponent has a null value, the execution result will be a null value.

5. If you specify a negative value for the target data, you must specify an integer for the exponent.

6. If you specify 0 for the target data, you must specify a positive value for the exponent, or a divide-by-zero error will
be generated.

(4) Examples
Example 1:

Determine the square of the value of column C1 in table T1.

SELECT POWER("C1",2) FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 496



Example 2:
Determine the power of the target data, where the target data is the value of column C1 and the exponent is the value
of column C2 in table T1.

SELECT POWER("C1","C2") FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 497



8.4 Mathematical functions (numerical calculations)

This section describes the functions and specification formats of the mathematical functions pertaining to numerical
calculations.

8.4.1 ABS
Returns the absolute value of the target data.

(1) Specification format
scalar-function-ABS ::= ABS(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the numeric data whose absolute value is to be determined.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type and data length of the execution result will be the data type and data length of the target data.

2. If the execution results cannot be represented in the data type of the target data, an overflow error is generated.

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If the target data has the null value, the execution result will be a null value.

(4) Example
Example:

Determine the absolute values of the values in columns C1 to C3 in table T1.

SELECT ABS("C1"),ABS("C2"),ABS("C3") FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 498



8.4.2 CEIL
Returns the smallest integer that is equal to or greater than the target data.

(1) Specification format
scalar-function-CEIL ::= CEIL(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the numeric data to be processed.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type of the execution result is shown in the following table.

Table 8-2: Data type of the execution result of the scalar function CEIL

Data type of the target data Data type of the execution result

INTEGER INTEGER

SMALLINT SMALLINT

DECIMAL(p,s) DECIMAL(p,0)

DOUBLE PRECISION DOUBLE PRECISION

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has the null value, the execution result will be a null value.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 499



(4) Example
Example:

Determine the smallest integer that is equal to or greater than the value of column C1 in table T1, and similarly for
columns C2 and C3.

SELECT CEIL("C1"),CEIL("C2"),CEIL("C3") FROM "T1"

8.4.3 FLOOR
Returns the greatest integer that is equal to or less than the value of the target data.

(1) Specification format
scalar-function-FLOOR ::= FLOOR(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the numeric data to be processed.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type of the execution result is shown in the following table.

Table 8-3: Data type of the execution result of the scalar function FLOOR

Data type of the target data Data type of the execution result

INTEGER INTEGER

SMALLINT SMALLINT

8. Scalar Functions

Hitachi Advanced Database SQL Reference 500



Data type of the target data Data type of the execution result

DECIMAL(p,s) DECIMAL(p,0)

DOUBLE PRECISION DOUBLE PRECISION

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has the null value, the execution result will be a null value.

(4) Example
Example:

Determine the greatest integer that is equal to or less than the value of column C1 in table T1, and similarly for
columns C2 and C3.

SELECT FLOOR("C1"),FLOOR("C2"),FLOOR("C3") FROM "T1"

8.4.4 MOD
Returns the remainder after dividing the dividend by the divisor.

(1) Specification format
scalar-function-MOD ::= MOD(dividend,divisor)
 
  dividend ::= value-expression
  divisor ::= value-expression

(2) Explanation of specification format
dividend:

Specifies the dividend.
The following rules apply:

• Specify the dividend in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the dividend. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the dividend.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 501



divisor:
Specifies the divisor.
The following rules apply:

• Specify the divisor in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the divisor. For details about numeric data, see (1) Numeric data in 6.2.1 List of data
types.

• You cannot specify 0 for the divisor. If you specify 0, a divide-by-zero error is generated.

• You cannot specify a dynamic parameter by itself for the divisor.

(3) Rules
1. The data type of the execution result is determined by the data types of the dividend and the divisor, as shown in

the following table.

Table 8-4: Data type of the execution result of the scalar function MOD

Data type of the dividend Data type of the divisor Data type of the execution result

INTEGER INTEGER INTEGER

SMALLINT SMALLINT

DECIMAL DECIMAL

DOUBLE PRECISION DOUBLE PRECISION

SMALLINT INTEGER INTEGER

SMALLINT SMALLINT

DECIMAL DECIMAL

DOUBLE PRECISION DOUBLE PRECISION

DECIMAL(p,0) INTEGER INTEGER

SMALLINT SMALLINT

DECIMAL DECIMAL

DOUBLE PRECISION DOUBLE PRECISION

DECIMAL(p,s)
when s ≥ 1

INTEGER DECIMAL

SMALLINT

DECIMAL

DOUBLE PRECISION DOUBLE PRECISION

DOUBLE PRECISION INTEGER DOUBLE PRECISION
SMALLINT

DECIMAL

DOUBLE PRECISION

Note
If the data type of the execution result is DECIMAL, the precision and scaling are determined as follows:
Precision (p) = MIN(py-sy+s, 38)

8. Scalar Functions

Hitachi Advanced Database SQL Reference 502



Scaling (s) = MAX(sx, sy)
When calculating the precision and scaling of the execution result when MOD(x,y) is specified, let
DECIMAL(px,sx) be the data type of x and DECIMAL(py,sy) be the data type of y.
If the data type of x or y is SMALLINT, use DECIMAL(10,0) for the calculation, and if it is INTEGER, use
DECIMAL(20,0).

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the dividend or the divisor has a null value, the execution result will be a null value.

4. The execution result will have the same sign as the dividend.

5. If you specify DOUBLE PRECISION type data for the scalar function MOD, beware of calculation errors associated
with the DOUBLE PRECISION data type. For example, the execution result of the following is not zero:

MOD(5.0E-1,1.0E-1) → 9.9999999999999978E-2

This is due to the fact that 0.1 does not have a finite binary representation (0.1 and 1.0E-1 are not exactly equal).
If you require an exact value for the execution result of the remainder, use the DECIMAL type.

(4) Examples
Example 1:

Determine the remainder after dividing the values of column C1 in table T1 by 3.

SELECT MOD("C1",3) FROM "T1"

Example 2:
Determine the remainder after dividing the values of column C1 in table T1 by the values of column C2.

SELECT MOD("C1","C2") FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 503



8.4.5 RANDOM
Returns pseudorandom numbers that follow a uniform distribution and are greater than or equal to the value specified
for the minimum value and less than the value specified for the maximum value.

There are some scalar functions, including RANDOM, that return pseudorandom numbers. Check the differences in the
specifications among those scalar functions that return pseudorandom numbers, and then use the scalar function that is
most suitable for your purpose. For details about the differences in the specifications among the scalar functions that
return pseudorandom numbers, see (6) List of scalar functions that return pseudorandom numbers.

(1) Specification format
scalar-function-RANDOM ::= RANDOM([minimum-value,maximum-value])
 
  minimum-value ::= value-expression
  maximum-value ::= value-expression

(2) Explanation of specification format
minimum-value:

Specifies a minimum value in the range for generating a random number. (The minimum value is included in the
range.) If this argument is omitted, minimum-value is assumed to be 0.
The following rules apply:

• Specify minimum-value in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for minimum-value. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• If you specify only a single dynamic parameter for minimum-value, the DOUBLE PRECISION type is assumed.

maximum-value:
Specifies a maximum value in the range for generating a random number. (The maximum value is not included in
the range.) If this argument is omitted, maximum-value is assumed to be 1:
The following rules apply:

8. Scalar Functions

Hitachi Advanced Database SQL Reference 504



• Specify maximum-value in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for maximum-value. For details about numeric data, see (1) Numeric data in 6.2.1 List
of data types.

• If you specify only a single dynamic parameter for maximum-value, the DOUBLE PRECISION type is assumed.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If minimum-value or maximum-value is a null value, the execution result will also be a null value.

4. After converting both minimum-value and maximum-value to the DOUBLE PRECISION type, calculate the
execution result.

5. If the relationship between value A specified for minimum-value and value B specified for maximum-value satisfies
"A > B", minimum-value and maximum-value are automatically switched. Then, pseudorandom numbers that follow
a uniform distribution in a range of values "greater than or equal to B and less than A" are returned.

6. If you specify the same value for minimum-value and maximum-value, the execution result is the value specified
for minimum-value.

7. If the execution result cannot be expressed as the data type specified for the execution result, an overflow error
occurs.

8. If you specify 0 for maximum-value, +0 might be returned as the execution result.

(4) Notes
This scalar function is not suitable for use in encryption.

(5) Example
Example

For table T1, determine DOUBLE PRECISION-type values that follow a uniform distribution, in the range of 1 or
more and less than 10.
Note that every time you execute the SELECT statement, the values of the execution results change.

SELECT RANDOM(1,10) FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 505



(6) List of scalar functions that return pseudorandom numbers
In addition to RANDOM, the following three scalar functions return pseudorandom numbers:

• RANDOMCURSOR
• RANDOMROW
• RANDOM_NORMAL

The following table describes the differences in the specifications among the preceding scalar functions. Use the scalar
function that is most suitable for your purpose.

Table 8-5: List of scalar functions that return pseudorandom numbers

No. Item Scalar function
RANDOM

Scalar function
RANDOMCURSOR

Scalar function
RANDOMROW

Scalar function
RANDOM_NORMAL

1 Format RANDOM([minimum-
value,maximum-
value])
minimum-
value::=value-
expression
maximum-
value::=value-
expression

RANDOMCURSOR(ide
ntification-
number[,minimum-
value,maximum-
value])
identification-
number::=unsigned-
integer-literal
minimum-
value::=value-
specification
maximum-
value::=value-
specification

RANDOMROW(identific
ation-
number[,minimum-
value,maximum-
value])
identification-
number::=unsigned-
integer-literal
minimum-
value::=value-
expression
maximum-
value::=value-
expression

RANDOM_NORMAL([aver
age-μ,standard-deviation-
σ])
average-μ::=value-
expression
standard-deviation-
σ::=value-expression

2 Distribution of
pseudorandom
numbers

Uniform distribution Uniform distribution Uniform distribution Normal distribution

3 Range of
pseudorandom
numbers

Value greater than or
equal to the specified
minimum value and
less than the specified
maximum value

Value greater than or
equal to the specified
minimum value and
less than the specified
maximum value

Value greater than or
equal to the specified
minimum value and
less than the specified
maximum value

Value that follows average
μ and standard deviation σ

8. Scalar Functions

Hitachi Advanced Database SQL Reference 506



No. Item Scalar function
RANDOM

Scalar function
RANDOMCURSOR

Scalar function
RANDOMROW

Scalar function
RANDOM_NORMAL

4 Do scalar functions
having the same
identification number
in an SQL statement
always return the same
value?

-- Y N --

5 Do scalar functions
having the same
identification number
in a query specification
return the same value
for each row?

-- Y Y --

6 Possible specification
location

value-expression • value-expression in
a selection
expression

• ORDER BY
clause#

• value-expression in
a selection
expression

• ORDER BY
clause#

value-expression

Legend:
Y: True
N: False
--: Not applicable. No identification number can be specified.

#
The function cannot be specified for the ORDER BY clause in a WITHIN group specification or a window order
clause.

8.4.6 RANDOMCURSOR
RANDOMCURSOR returns values in accordance with the following rules:

• This function returns pseudorandom numbers that follow a uniform distribution and are greater than or equal to the
value specified for the minimum value and less than the value specified for the maximum value.

• In a retrieval SQL statement, this function always returns the same value while the cursor is open. In an update SQL
statement, this function always returns the same value while the SQL statement is being run.

• If an SQL statement contains multiple RANDOMCURSOR functions for which the same identification number is
specified, those functions always return the same values.

There are some scalar functions, including RANDOMCURSOR, that return pseudorandom numbers. Check the differences
in the specifications among those scalar functions that return pseudorandom numbers, and then use the scalar function
that is most suitable for your purpose. For details about the differences in the specifications among the scalar functions
that return pseudorandom numbers, see (6) List of scalar functions that return pseudorandom numbers in 8.4.5
RANDOM.

(1) Specification format
scalar-function-RANDOMCURSOR::=RANDOMCURSOR(identification-number[,minimum-value,maxi
mum-value])
 

8. Scalar Functions

Hitachi Advanced Database SQL Reference 507



  identification-number::=unsigned-integer-literal
  minimum-value::=value-specification
  maximum-value::=value-specification

(2) Explanation of specification format
identification-number:

Specifies an integer in the range from 1 to 1000. If an SQL statement contains multiple RANDOMCURSOR functions
for which the same identification number is specified, those functions always return the same values.

minimum-value:
Specifies a minimum value in the range for generating a random number. (The minimum value is included in the
range.) If both minimum-value and maximum-value are omitted, minimum-value is assumed to be 0.
The following rules apply:

• Specify minimum-value in the form of a value specification. For details about value specifications, see 7.21 
Value specification.

• Specify numeric data for minimum-value. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• If you specify a dynamic parameter for minimum-value, the DOUBLE PRECISION type is assumed.

maximum-value:
Specifies a maximum value in the range for generating a random number. (The maximum value is not included in
the range.) If both minimum-value and maximum-value are omitted, maximum-value is assumed to be 1.
The following rules apply:

• Specify maximum-value in the form of a value specification. For details about value specifications, see 7.21 
Value specification.

• Specify numeric data for maximum-value. For details about numeric data, see (1) Numeric data in 6.2.1 List
of data types.

• If you specify a dynamic parameter for maximum-value, the DOUBLE PRECISION type is assumed.

(3) Rules
1. This scalar function can be specified in the following locations:

• Selection expression in a query specification

• ORDER BY clause (except the ORDER BY clause in a WITHIN group specification or a window order clause)

2. If you specify multiple instances of RANDOMCURSOR with the same identification number in one SQL statement,
comply with either of the following rules:

• Specify the minimum value and maximum value in only one instance of RANDOMCURSOR, and omit them in
all other instances of RANDOMCURSOR.
Example of a correct SQL statement:

SELECT "C1"+RANDOMCURSOR(1,10,20),"C2"+RANDOMCURSOR(1) FROM "T1"
UNION ALL
SELECT "C3"+RANDOMCURSOR(1),"C4"+RANDOMCURSOR(1) FROM "T2"

Example of an SQL statement that generates an error:

SELECT "C1"+RANDOMCURSOR(1,10,20),"C2"+RANDOMCURSOR(1) FROM "T1"
UNION ALL
SELECT "C3"+RANDOMCURSOR(1,10,20),"C4"+RANDOMCURSOR(1) FROM "T2"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 508



• Omit the minimum value and maximum value in all instances of RANDOMCURSOR.
Example of a correct SQL statement:

SELECT "C1"+RANDOMCURSOR(1),"C2"+RANDOMCURSOR(1) FROM "T1"
UNION ALL
SELECT "C3"+RANDOMCURSOR(1),"C4"+RANDOMCURSOR(1) FROM "T2"

3. If an SQL statement contains multiple RANDOMCURSOR functions for which the same identification number is
specified, those functions always return the same values.
Example:

SELECT
  "C1"+ RANDOMCURSOR(1,10,20),    ...[a]
  "C2"+ RANDOMCURSOR(1),          ...[a]
  "C3"+ RANDOMCURSOR(2),          ...[b]
  "C4"+ RANDOMCURSOR(2)           ...[b]
FROM "T1"
UNION ALL
SELECT
  "C1"+ RANDOMCURSOR(1),          ...[a]
  "C2"+ RANDOMCURSOR(1),          ...[a]
  "C3"+ RANDOMCURSOR(2,20,30),    ...[b]
  "C4"+ RANDOMCURSOR(2)           ...[b]
FROM "T2"

Explanation:

a. These are instances of RANDOMCURSOR for which 1 is specified as the identification number. Each instance
always returns the same value (a value greater than or equal to 10 and less than 20).

b. These are instances of RANDOMCURSOR for which 2 is specified as the identification number. Each instance
always returns the same value (a value greater than or equal to 20 and less than 30).

4. If the following identification numbers are the same, HADB automatically re-assigns them. Therefore, the SQL
statement does not result in an error.

• Identification number specified when a viewed table is defined (by using the CREATE VIEW statement)

• Identification number specified in an SQL statement in which the viewed table is specified

Example:
Definition of viewed table V1:

CREATE VIEW "V1"("VC1","VC2") AS 
  SELECT "C1"+RANDOMCURSOR(1,10,20),"C2"+RANDOMCURSOR(1) FROM "T1"

SQL statement for searching viewed table V1:

SELECT "VC1"+RANDOMCURSOR(1,10,20),"VC2"+RANDOMCURSOR(1) FROM "V1"

For the preceding SELECT statements, HADB performs equivalent exchange as follows:

SELECT "VC1"+RANDOMCURSOR(1,10,20),"VC2"+RANDOMCURSOR(1)
  FROM (SELECT "C1"+RANDOMCURSOR(2,10,20),"C2"+RANDOMCURSOR(2)
            FROM "T1") "V1"("VC1","VC2")

The underlined identification number, 2, is the one that HADB automatically changed from 1. Therefore, this
SELECT statement does not result in an error. As shown in the preceding example, HADB automatically changes
the identification number that was specified when the viewed table was defined.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 509



5. In one SQL statement, a maximum of 1,000 entities of RANDOMCURSOR identification numbers can be specified.
If a viewed table is specified in an SQL statement, the total number of entities of RANDOMCURSOR identification
numbers appearing in the SQL statement and the relevant CREATE VIEW statement must not exceed 1,000.

6. The same identification number can be specified for RANDOMCURSOR and RANDOMROW. In this case, each scalar
function separately generates and returns a pseudorandom number.
Example:

SELECT RANDOMCURSOR(1,10,20) AS "C1",
       RANDOMROW(1,10,20) AS "C2"
    FROM "T1"

Example of execution results

7. RANDOMCURSOR generates a pseudorandom number when the cursor opens. Therefore, the result changes each
time the cursor opens.

8. The data type of the execution result is the DOUBLE PRECISION type.

9. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

10. If minimum-value or maximum-value is a null value, the execution result will also be a null value.

11. Both minimum-value and maximum-value are converted to the DOUBLE PRECISION type, and then the execution
result is calculated.

12. If the relationship between value A specified for minimum-value and value B specified for maximum-value satisfies
"A > B", minimum-value and maximum-value are automatically switched. Then, pseudorandom numbers that follow
a uniform distribution in a range of values "greater than or equal to B and less than A" are returned.

13. If you specify the same value for minimum-value and maximum-value, the execution result is the value specified
for minimum-value.

14. If the execution result cannot be expressed as the data type specified for the execution result, an overflow error
occurs.

15. If you specify 0 for maximum-value, +0 might be returned as the execution result.

(4) Notes
This scalar function is not suitable for use in encryption.

(5) Example
Example:

Modify the admission date and discharge date so that the following conditions are met:

• The admission and discharge dates are modified so that the hospitalization period does not change. The same
number of days is added to both the current admission and discharge dates to produce the new admission and
discharge dates.

• A maximum of 6 days is added equally to both the current admission and discharge dates to produce new
admission and discharge dates.

• The retrieval results are sorted by the new admission date.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 510



Example:

SELECT "PATIENT-ID","ADMISSION-DATE","DISCHARGE-DATE",
       "ADMISSION-DATE"+CAST(RANDOMCURSOR(1,0,7) AS INTEGER) DAY AS "NEW-ADMISSION
-DATE",
       "DISCHARGE-DATE"+CAST(RANDOMCURSOR(1) AS INTEGER) DAY AS "NEW-DISCHARGE-DAT
E"
    FROM "HOSPITALITY-HISTORY"
      ORDER BY "ADMISSION-DATE"+CAST(RANDOMCURSOR(1) AS INTEGER) DAY

Example of execution results

8.4.7 RANDOMROW
RANDOMROW returns values in accordance with the following rules:

• This function returns pseudorandom numbers that follow a uniform distribution and are greater than or equal to the
value specified for the minimum value and less than the value specified for the maximum value.

• If a query specification contains multiple RANDOMROW functions for which the same identification number is
specified, those functions return the same values for each result row of the query specification.

There are some scalar functions, including RANDOMROW, that return pseudorandom numbers. Check the differences in
the specifications among those scalar functions that return pseudorandom numbers, and then use the scalar function that
is most suitable for your purpose. For details about the differences in the specifications among the scalar functions that
return pseudorandom numbers, see (6) List of scalar functions that return pseudorandom numbers in 8.4.5 RANDOM.

(1) Specification format
scalar-function-RANDOMROW::=RANDOMROW(identification-number[,minimum-value,maximum-va
lue])
 
  identification-number::=unsigned-integer-literal
  minimum-value::=value-expression
  maximum-value::=value-expression

(2) Explanation of specification format
identification-number:

Specifies an integer in the range from 1 to 1000. If a query specification contains multiple RANDOMROW functions
for which the same identification number is specified, those functions return the same values for each result row of
the query specification.

minimum-value:
Specifies a minimum value in the range for generating a random number. (The minimum value is included in the
range.) If both minimum-value and maximum-value are omitted, minimum-value is assumed to be 0.
The following rules apply:

8. Scalar Functions

Hitachi Advanced Database SQL Reference 511



• Specify minimum-value in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for minimum-value. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• If you specify only a single dynamic parameter for minimum-value, the DOUBLE PRECISION type is assumed.

maximum-value:
Specifies a maximum value in the range for generating a random number. (The maximum value is not included in
the range.) If both minimum-value and maximum-value are omitted, maximum-value is assumed to be 1.
The following rules apply:

• Specify maximum-value in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for maximum-value. For details about numeric data, see (1) Numeric data in 6.2.1 List
of data types.

• If you specify only a single dynamic parameter for maximum-value, the DOUBLE PRECISION type is assumed.

(3) Rules
1. This scalar function can be specified in the following locations:

• Selection expression in a query specification

• ORDER BY clause (except the ORDER BY clause in a WITHIN group specification or a window order clause)

2. RANDOMROW cannot be specified in a value expression in RANDOMROW.
However, RANDOMROW can be specified in a subquery specified in RANDOMROW.
Example of an SQL statement that generates an error:

RANDOMROW(1,0,RANDOMROW(1))

Example of a correct SQL statement:

RANDOMROW(1,0,(SELECT RANDOMROW(1) FROM "T1"))

3. If you specify multiple RANDOMROW functions with the same identification number in one query specification,
comply with either of the following rules:

• Specify the minimum value and maximum value in only one RANDOMROW function, and omit them in all other
RANDOMROW functions.
Example of a correct SQL statement:

SELECT "C1"+RANDOMROW(1,10,20),"C2"+RANDOMROW(1),"C3"+RANDOMROW(1) FROM "T1"

Example of an SQL statement that generates an error:

SELECT "C1"+RANDOMROW(1,10,20),"C2"+RANDOMROW(1,10,20),"C3"+RANDOMROW(1) FROM "T
1"

• Omit the minimum value and maximum value in all RANDOMROW functions.
Example of a correct SQL statement:

SELECT "C1"+RANDOMROW(1),"C2"+RANDOMROW(1),"C3"+RANDOMROW(1) FROM "T1"

4. RANDOMROW generates a pseudorandom number for each result row of the query specification. Therefore, the result
changes for each result row of the query specification.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 512



5. All RANDOMROW functions for which the same identification number is specified return the same values for each
result row of the query specification.
Example:

SELECT
  "C1"+ RANDOMROW(1,10,20),    ...[a]
  "C2"+ RANDOMROW(1),          ...[a]
  "C3"+ RANDOMROW(2,20,30),    ...[b]
  "C4"+ RANDOMROW(2)           ...[b]
FROM "T1"
UNION ALL
SELECT
  "C1"+ RANDOMROW(1,10,20),    ...[c]
  "C2"+ RANDOMROW(1),          ...[c]
  "C3"+ RANDOMROW(2),          ...[d]
  "C4"+ RANDOMROW(2)           ...[d]
FROM "T2"

Explanation:

a. These are RANDOMROW functions for which 1 is specified as the identification number. Each function returns
the same value (a value greater than or equal to 10 and less than 20) for each result row of the query specification.

b. These are RANDOMROW functions for which 2 is specified as the identification number. Each function returns
the same value (a value greater than or equal to 20 and less than 30) for each result row of the query specification.

c. These are RANDOMROW functions for which 1 is specified as the identification number. Each function returns
the same value (a value greater than or equal to 10 and less than 20) for each result row of the query specification.

d. These are RANDOMROW functions for which 2 is specified as the identification number. Each function returns
the same value (a value greater than or equal to 0 and less than 1) for each result row of the query specification.

6. When the internal derived table shown later is expanded, HADB automatically re-assigns the identification number
of the RANDOMROW in the derived query for the internal derived table. This prevents that identification number from
coinciding with the identification number of the RANDOMROW in the query specification in which the internal derived
table is specified.

• Internal derived table for which RANDOMROW is specified in the derived query

Example:
SQL statement in which a derived table is specified:

SELECT "DC1"+RANDOMROW(1,10,20),"DC2"+RANDOMROW(1)
    FROM (SELECT "C1"+RANDOMROW(1,20,30),"C2"+RANDOMROW(1)
              FROM "T1") "DT"("DC1","DC2")

SQL statement in which a derived table is expanded:

SELECT "C1"+RANDOMROW(2,20,30)+RANDOMROW(1,10,20),
       "C2"+RANDOMROW(2)+RANDOMROW(1)
    FROM "T1"

The identification numbers of the RANDOMROW functions in the derived table DT are re-assigned as follows:

• RANDOMROW(1,20,30) → RANDOMROW(2,20,30)
• RANDOMROW(1) → RANDOMROW(2)

7. Multiple RANDOMROW functions with the same identification number can be specified in different query
specifications. Note, however, that the identification number of each RANDOMROW function is treated as a different
entity.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 513



8. The maximum number of entities of identification numbers that can be specified in one SQL statement is 1,000.
However, if a viewed table is specified in an SQL statement, equivalent exchange is performed to convert the viewed
table into a derived table, and then the number of entities of identification numbers is checked.

9. The same identification number can be specified for RANDOMCURSOR and RANDOMROW. In this case, each scalar
function separately generates and returns a pseudorandom number.
Example:

SELECT RANDOMCURSOR(1,10,20) AS "C1",
       RANDOMROW(1,10,20) AS "C2"
    FROM "T1"

Example of execution results

10. The data type of the execution result is the DOUBLE PRECISION type.

11. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

12. If minimum-value or maximum-value is a null value, the execution result will also be a null value.

13. Both minimum-value and maximum-value are converted to the DOUBLE PRECISION type, and then the execution
result is calculated.

14. If the relationship between value A specified for minimum-value and value B specified for maximum-value satisfies
"A > B", minimum-value and maximum-value are automatically switched. Then, pseudorandom numbers that follow
a uniform distribution in a range of values "greater than or equal to B and less than A" are returned.

15. If you specify the same value for minimum-value and maximum-value, the execution result is the value specified
for minimum-value.

16. If the execution result cannot be expressed as the data type specified for the execution result, an overflow error
occurs.

17. If you specify 0 for maximum-value, +0 might be returned as the execution result.

(4) Notes
This scalar function is not suitable for use in encryption.

(5) Example
Example

Modify the admission date and discharge date so that the following conditions are met:

• The admission and discharge dates are modified so that the hospitalization period does not change. The same
number of days is added to both the current admission and discharge dates to produce the new admission and
discharge dates.

• A maximum of 6 days is added equally to both the current admission and discharge dates to produce new
admission and discharge dates. The number of days to be added differs for each patient.

• The retrieval results are sorted by the new admission date.

Example:

8. Scalar Functions

Hitachi Advanced Database SQL Reference 514



SELECT "PATIENT-ID","ADMISSION-DATE","DISCHARGE-DATE",
       "ADMISSION-DATE"+CAST(RANDOMROW(1,0,7) AS INTEGER) DAY AS "NEW-ADMISSION-DA
TE",
       "DISCHARGE-DATE"+CAST(RANDOMROW(1) AS INTEGER) DAY AS "NEW-DISCHARGE-DATE"
    FROM "HOSPITALITY-HISTORY"
      ORDER BY "ADMISSION-DATE"+CAST(RANDOMROW(1) AS INTEGER) DAY

8.4.8 RANDOM_NORMAL
Returns pseudorandom numbers that follow a normal distribution with an average μ, and a standard deviation σ.

There are some scalar functions, including RANDOM_NORMAL, that return pseudorandom numbers. Check the
differences in the specifications among those scalar functions that return pseudorandom numbers, and then use the scalar
function that is most suitable for your purpose. For details about the differences in the specifications among the scalar
functions that return pseudorandom numbers, see (6) List of scalar functions that return pseudorandom numbers in
8.4.5 RANDOM.

(1) Specification format
scalar-function-RANDOM_NORMAL ::= RANDOM_NORMAL([average-μ,standard-deviation-σ])
 
  average-μ ::= value-expression
  standard-deviation-σ ::= value-expression

(2) Explanation of specification format
average-μ:

Specifies an average, μ. If this argument is omitted, average-μ is assumed to be 0.
The following rules apply:

• Specify average-μ in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for average-μ. For details about numeric data, see (1) Numeric data in 6.2.1 List of data
types.

• If you specify only a single dynamic parameter for average-μ, the DOUBLE PRECISION type is assumed.

standard-deviation-σ:
Specifies a standard deviation, σ. If the argument is omitted, standard-deviation-σ is assumed to be 1 (standard
normal distribution).
The following rules apply:

• Specify standard-deviation-σ in the form of a value expression. For details about value expressions, see 7.20 
Value expression.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 515



• Specify numeric data for standard-deviation-σ. For details about numeric data, see (1) Numeric data in 6.2.1 
List of data types.

• Specify a value greater than or equal to 0 for standard-deviation-σ.

• If you specify only a single dynamic parameter for standard-deviation-σ, the DOUBLE PRECISION type is
assumed.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If average-μ or standard-deviation-σ is a null value, the execution result will also be a null value.

4. After converting both average-μ and standard-deviation-σ to the DOUBLE PRECISION type, calculate the
execution result.

5. If the execution result can no longer be expressed as the data type of the execution result, an overflow error occurs.

(4) Notes
This scalar function is not suitable for use in encryption.

(5) Example
Example

For table T1, determine the DOUBLE PRECISION-type values that follow a normal distribution whose average-
μ is 30 and whose standard-deviation-σ is 20.
Note that every time you execute the SELECT statement, the values of the execution results change.

SELECT RANDOM_NORMAL(30,20) FROM "T1"

8.4.9 ROUND
Returns the value of the target data rounded to the nth digit after the decimal point.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 516



For the scalar function ROUND that is used to round datetime data, see 8.9.7 ROUND.

(1) Specification format
scalar-function-ROUND ::= ROUND(target-data[,num-digits])
 
  target-data ::= value-expression
  num-digits ::= value-expression

(2) Explanation of specification format
target-data:

Specifies numeric data (the value to be rounded to the nth digit after the decimal point).
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the target data.

num-digits:
Specifies the number of digits.
The following rules apply:

• Specify num-digits in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify data of type INTEGER or SMALLINT for num-digits.

• If you omit num-digits, zero is assumed.

• If you specify a dynamic parameter for num-digits, the dynamic parameter will be assumed to be INTEGER
type.

(3) Rules
1. The data type of the execution result is shown in the following table.

Table 8-6: Data type of the execution result of the scalar function ROUND

Data type of the target data Data type of the execution result

INTEGER INTEGER

SMALLINT SMALLINT

DECIMAL(p,s) when p ≤ 37 DECIMAL(p + 1,s)

when p = 38 DECIMAL(38,s)

DOUBLE PRECISION DOUBLE PRECISION

2. If the execution results cannot be represented in the data type of the target data, an overflow error is generated.

3. If the data type of the target data is SMALLINT, INTEGER, or DECIMAL, the function returns a value whose
fractional part is rounded to n + 1 digits.
Example: ROUND(325.72,1) → 325.70

8. Scalar Functions

Hitachi Advanced Database SQL Reference 517



In the case of negative values, the target data is rounded as follows:
Example 1: ROUND(-2.3,0) → -2.0
Example 2: ROUND(-2.7,0) → -3.0

4. If the data type of the target data is DOUBLE PRECISION, midpoint values at position n + 1 are rounded to the
nearest even number.

5. If you specify a negative value for num-digits, it rounds the integer part at the specified decimal place.
Example: ROUND(325.72,-1) → 330.00

6. If you omit num-digits, or specify 0, all decimal places are rounded, and the execution result will be rounded to the
integer part (to the ones position).
Example: ROUND(325.72,0) → 326.00

7. If you specify a number of digits that is outside the range of the target data, it is handled as follows:

• If you specified a positive value for num-digits, no rounding is performed. The value of the original target data
is returned unchanged.
Example 1: ROUND(0.12,5) → 0.12
Example 2: ROUND(58,1) → 58

• If you specified a negative value for num-digits, it returns 0.
Example: ROUND(58,-5) → 0

8. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

9. If target-data or num-digits has a null value, the execution result will be a null value.

(4) Example
Example:

Round the values of columns C1 to C3 in table T1 as follows.

• Column C1: Round to the first decimal place (by rounding off the second decimal place).

• Column C2: Round to the hundreds column of the integer part (by rounding off the tens column).

• Column C3: Round to the first decimal place, rounding midpoint values to the nearest even number.

This assumes that HADB is running in an environment in which the rounding mode is round-to-even.

SELECT ROUND("C1",1),ROUND("C2",-2),ROUND("C3",0) FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 518



8.4.10 SIGN
Returns the sign of the target data (+1 for positive, -1 for negative, 0 for zero).

(1) Specification format
scalar-function-SIGN ::= SIGN(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the numeric data to be processed.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type of the execution result is determined based on the data type of the target data, as shown in the following

table:

Table 8-7: Data type of the execution result of the scalar function SIGN

No. Data type of the target data Data type of the execution result

1 INTEGER INTEGER

8. Scalar Functions

Hitachi Advanced Database SQL Reference 519



No. Data type of the target data Data type of the execution result

2 SMALLINT SMALLINT

3 DECIMAL(p,s) DECIMAL(1,0)

4 DOUBLE PRECISION DOUBLE PRECISION

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has the null value, the execution result will be a null value.

(4) Example
Example:

Determine whether the values of columns C1 to C3 in table T1 are positive, negative, or zero.

SELECT SIGN("C1"),SIGN("C2"),SIGN("C3") FROM "T1"

8.4.11 SQRT
Returns the square root of the target data.

(1) Specification format
scalar-function-SQRT ::= SQRT(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the numeric data whose square root is to be determined.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• Specify a value greater than or equal to 0 for the target data. Negative values cannot be specified.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 520



• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type of the execution result is the DOUBLE PRECISION type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has the null value, the execution result will be a null value.

(4) Example
Example:

Determine the square root of the values in columns C1 to C3 in table T1.

SELECT SQRT("C1"),SQRT("C2"),SQRT("C3") FROM "T1"

8.4.12 TRUNC
Returns a value that has been truncated to the specified number of decimal places.

For the scalar function TRUNC that is used to truncate datetime data, see 8.9.8 TRUNC.

(1) Specification format
scalar-function-TRUNC ::= TRUNC(target-data[,num-digits])
 
  target-data ::= value-expression
  num-digits ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the numeric data to be processed.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify numeric data for the target data. For details about numeric data, see (1) Numeric data in 6.2.1 List of
data types.

• You cannot specify a dynamic parameter by itself for the target data.

num-digits:
Specifies the number of digits.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 521



The following rules apply:

• Specify num-digits in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify INTEGER type or SMALLINT type data for num-digits.

If the value specified for num-digits is positive (n), it leaves n decimal places of the target data and truncates the
decimal places at position n + 1 and beyond. If the value specified for num-digits is negative (-n), it truncates n digits
from the integer portion of the target data.
If num-digits is omitted, the target data is truncated to 0 decimal places.

The following example illustrates the result of executing the scalar function TRUNC.

Example
For numeric data 123.456, truncate everything past the second decimal place.
TRUNC(123.456,2) → 123.450

(3) Rules
1. If you specify a dynamic parameter for num-digits, the assumed data type of the dynamic parameter is INTEGER.

2. The length of the data type of the execution result will be the length of the data type of the argument numeric-data.

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If target-data or num-digits has a null value, the execution result will be a null value.

5. Because data of the DOUBLE PRECISION type includes an error, you must be careful when using the data for the
scalar function TRUNC. For example, you will not obtain expected calculation results in the following case:

TRUNC(2.172157E4,2) -> 2.1721560000000001E4

This is due to the fact that, because 0.01 does not have a finite binary representation, 0.01 and 1.0E-02 are not
exactly equal. If you want an exact value for the execution result of truncation, use DECIMAL-type data as the
target data.

6. The following table shows the data types that can be specified for the argument and the corresponding valid ranges
for num-digits.

Table 8-8: Data types that can be specified for the argument and valid ranges for num-digits

No. Data type specified for the argument (numeric data) Valid range of num-digits

1 INTEGER -18 to 0

2 SMALLINT -9 to 0

3 DECIMAL(m,n) -(m - n - 1) to n

4 DOUBLE PRECISION -308 to 323

Legend: m, n: Positive integers

Notes:
If the value specified for num-digits falls outside the valid range, it does not result in an error. For a positive value
outside the valid range, truncation does not occur. For a negative value outside the valid range, the result will be 0.
The following examples illustrate the results for different values of num-digits.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 522



Example 1:
The following SQL statement is executed on table T1, assuming the value of column C1 is 123456789, and
its type is INTEGER:

SELECT TRUNC("C1",x) FROM "T1"

The results of executing TRUNC("C1",x) for different values of x are shown in the following table.

Table 8-9: Execution results for the SQL statement for different values of x

Value of x Result of TRUNC(C1,x)

1 or greater 123456789

0 123456789

-1 123456780

-8 100000000

-9 or less 0

Example 2:
The following SQL statement is executed on table T1, assuming the value of column C2 is 123.45 and its type
is DECIMAL(5,2):

SELECT TRUNC("C2",y) FROM "T1"

The results of executing TRUNC("C2",y) for different values of y are shown in the following table.

Table 8-10: Execution results for the SQL statement for different values of y

Value of y Result of TRUNC(C2,y)

3 or greater 123.45

2 123.45

1 123.40

0 123.00

-1 120.00

-2 100.00

-3 or less 0.00

(4) Examples
Example 1:

Retrieve that data in columns C2 and C3 from table T1 and truncate the decimal portion starting at position 3, leaving
2 decimal places.

SELECT TRUNC("C2",2),TRUNC("C3",2) FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 523



Example 2:
Truncate 2 digits from the integer portion of the data in columns C1 to C3 from table T1.

SELECT TRUNC("C1",-2),TRUNC("C2",-2),TRUNC("C3",-2) FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 524



8.5 Character string functions (character string operations)

This section describes the functions and specification formats of the character string functions pertaining to operations
on character strings.

8.5.1 CONCAT
Concatenates two character string data items.

For the scalar function that concatenates binary data, see 8.10.1 CONCAT.

(1) Specification format
scalar-function-CONCAT ::= CONCAT(target-data-1,target-data-2)
 
  target-data-1 ::= value-expression
  target-data-2 ::= value-expression

(2) Explanation of specification format
target-data-1 and target-data-2:

Specifies the character string data to be concatenated.
The following rules apply:

• Specify target-data-1 and target-data-2 in the form of value expressions. For details about value expressions,
see 7.20 Value expression.

• Specify CHAR or VARCHAR type data for target-data-1 and target-data-2.

• You cannot specify a dynamic parameter by itself for target-data-1 and target-data-2.

The following example illustrates the result of executing the scalar function CONCAT.

Example
Concatenate the two character strings ABC and XYZ.
CONCAT('ABC','XYZ') → 'ABCXYZ'

(3) Rules
1. The data type and data length of the execution result are shown in the following table.

Table 8-11: Data type and data length of the execution result of the scalar function CONCAT

Data type and data length of
target-data-1

Data type and data length of
target-data-2

Data type and data length of the execution
result

CHAR(m) CHAR(n) CHAR(m+n)

VARCHAR(n)
Actual data length: L2

VARCHAR(m+n)
Actual data length: m+L2

VARCHAR(m)
Actual data length: L1

CHAR(n) VARCHAR(m+n)
Actual data length: L1+n

8. Scalar Functions

Hitachi Advanced Database SQL Reference 525



Data type and data length of
target-data-1

Data type and data length of
target-data-2

Data type and data length of the execution
result

VARCHAR(n)
Actual data length: L2

VARCHAR(m+n)
Actual data length: L1+L2

Legend:
m: Maximum length of target-data-1
n: Maximum length of target-data-2
L1: Actual data length of target-data-1
L2: Actual data length of target-data-2

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If either target-data-1 or target-data-2 has a null value, the execution result will be a null value.

4. You cannot concatenate target-data-1 and target-data-2 if the result of the concatenation operation would exceed
the maximum character string length of 32,000 bytes.

5. Spaces at the end of the character string data are also subject to concatenation.
Example
If column C1 is type CHAR(5) with a value of 'ABC ', and column C2 is type VARCHAR(10) with a value
of 'XYZ', the following concatenations are performed.
CONCAT("C1","C2") → 'ABC XYZ'
CONCAT("C2","C1") → 'XYZABC '
Legend:

Δ: Single-byte space

(4) Example
Example:

Find the rows in table T1 for which the execution result of concatenating character string data in columns C2 and
C3 is efg03v03.

SELECT * FROM "T1"
    WHERE CONCAT("C2","C3")='efg03v03'

8.5.2 LEFT
Extracts a substring from a character string starting from the beginning (leftmost position) of the character string data.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 526



(1) Specification format
scalar-function-LEFT ::= LEFT(source-character-string-data,extraction-length)
 
  source-character-string-data ::= value-expression
  extraction-length ::= value-expression

(2) Explanation of specification format
source-character-string-data:

Specifies the source character string data.
The following rules apply:

• Specify the source character string data in the form of a value expression. For details about value expressions,
see 7.20 Value expression.

• Specify CHAR or VARCHAR type data for the source character string data.

• You cannot specify a dynamic parameter by itself for the source character string data.

extraction-length:
Specifies the number of characters to extract. The specified number of characters will be extracted from the beginning
of the source character string data.
The following rules apply:

• Specify the extraction length in the form of a value expression. For details about value expressions, see 7.20 
Value expression.

• Specify an integer (data of type INTEGER or SMALLINT) for the extraction length.

• If a dynamic parameter is specified by itself for the extraction length, the assumed data type of the dynamic
parameter will be INTEGER.

The following example illustrates the result of executing the scalar function LEFT.

Example
Extract three characters from the beginning of the character string ABCDEF.
LEFT('ABCDEF',3) → 'ABC'

(3) Rules
1. The data type and data length of the execution result are shown in the following table.

Table 8-12: Data type and data length of the execution result of the scalar function LEFT

Data type and data length of the source character string
data

Data type and length of the execution result of the scalar
function LEFT

CHAR(n) VARCHAR(n)

VARCHAR(n)

Legend:
n: Maximum length of the source character string data

The number of characters that are extracted is determined as follows:
MIN(extraction length, number of characters in the source character string)

8. Scalar Functions

Hitachi Advanced Database SQL Reference 527



2. If the extraction length is greater than the number of characters in the source character string data, the amount of
data returned will be the number of characters in the source character string data.

3. In the following cases, the execution result will be data whose actual length is 0 bytes:

• If the length of the character string of the execution result is 0

• If the actual length of the source character string data is 0 bytes or 0 characters

4. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

5. In the following cases, the execution result will be a null value:

• If either the source character string data or extraction length has a null value

• If the extraction length has a negative value (the result will be the null value regardless of what is specified for
the source character string data)

(4) Example
Example:

Retrieve rows from table T1 where the data in column C1 begins with the three-character string A15.

SELECT * FROM "T1"
    WHERE LEFT("C1",3)='A15'

8.5.3 LPAD
Pads the beginning (left side) of the target data with the padding character string up to the specified number of characters.

(1) Specification format
scalar-function-LPAD ::= LPAD(target-data,num-chars[,padding-character-string])
 
  target-data ::= value-expression
  num-chars ::= value-expression
  padding-character-string ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the character string data to be padded.
The following rules apply:

8. Scalar Functions

Hitachi Advanced Database SQL Reference 528



• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify CHAR or VARCHAR type data for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

num-chars:
Specifies the number of characters in the result character string after it is padded.
The following rules apply:

• Specify the number of characters in the form of a value expression. For details about value expressions, see
7.20 Value expression.

• Specify INTEGER or SMALLINT type data for the number of characters.

• If a dynamic parameter is specified as the number of characters, the assumed data type of the dynamic parameter
will be INTEGER type.

padding-character-string:
Specifies the character string to be used for padding the beginning (left side) of the target data.
The following rules apply:

• Specify padding-character-string in the form of a value expression. For details about value expressions, see
7.20 Value expression.

• You must specify CHAR or VARCHAR type data for padding-character-string.

• If padding-character-string is omitted, its assumed value is a single-byte space character.

• If a dynamic parameter is specified by itself for padding-character-string, the assumed data type of the dynamic
parameter is VARCHAR(32000).

The following example illustrates the result of executing the scalar function LPAD.

Example
Pad the beginning (left side) of the data in column C1 with the character string 'xyz' repeatedly until the data has
a total length of 10 characters.
LPAD("C1",10,'xyz') → 'xyzxyzxABC'
Column C1 has type VARCHAR(20) and contains the character string 'ABC'.

(3) Rules
1. The data type and data length of the execution result are shown in the following table.

Table 8-13: Data type and data length of the execution result of the scalar function LPAD

Data type and data length of the target data Data type and data length of the execution result

CHAR(n) VARCHAR(n)

VARCHAR(n)

Legend:
n: Maximum length of the target data

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If either of the following conditions are met, the execution result will be a null value:

• If the target data, number of characters, or padding character string is the null value

8. Scalar Functions

Hitachi Advanced Database SQL Reference 529



• If you specify a negative value for the number of characters

4. If the actual length of the padding character string is 0 bytes or 0 characters, no character string padding will be
performed.

5. If the number of characters in the target-data character string is greater than the value of num-chars, the function
returns the specified number of characters from the beginning of the target-data character string.
Example: LPAD('ABCDE',3,'xy') → 'ABC'

6. If a character string of the specified number of characters cannot be represented in the data length of the execution
result, the padding characters will be truncated in mid-string. This means that the number of characters in the
execution result might be different from the specified number of characters. If you want to obtain a character string
with the specified number of characters, use the scalar function CAST to change the data length of the target data.

Examples
These examples assume that Unicode (UTF-8) is being used as the character encoding, and that the value and
data type of column C1 are as follows:
• Value of column C1:  
• Data type of column C1: VARCHAR(10)
LPAD("C1",5,'   ') → '   '
In the above example, the data type of the execution result of LPAD is VARCHAR(10). Because each character
is 3 bytes, the number of characters of the execution result is not the specified number of characters (5).
LPAD(CAST("C1" AS VARCHAR(15)),5,'   ') → '     '
In the above example, the data type of the execution result of LPAD is VARCHAR(15). Because each character
is 3 bytes, the number of characters of the execution result is the specified number of characters (5).

(4) Example
Example:

Column C1 of table T1 is a column of the VARCHAR(8) type. In column C1, for each row containing a character
string shorter than 8 characters, add an appropriate number of 0s to the left of each character string so that all rows
in the column contain an 8-character string.

SELECT LPAD("C1",8,'0') FROM "T1"

8.5.4 LTRIM
Removes instances of the specified characters, starting from the beginning of the target character string.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 530



Proceeding from the beginning of the character string, it removes all character that matches any of the characters targeted
for removal, stopping as soon as it encounters a character that is not targeted for removal.

(1) Specification format
scalar-function-LTRIM ::= LTRIM(target-data[,chars-to-remove])
 
  target-data ::= value-expression
  chars-to-remove ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the data from which the characters specified in chars-to-remove are to be removed.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify CHAR or VARCHAR type data for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

chars-to-remove:
Specifies the characters to be removed from the target data.
The following rules apply:

• Specify chars-to-remove in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• You must specify CHAR or VARCHAR type data for chars-to-remove.

• If chars-to-remove is omitted, its value is assumed to be a space character.

• If a dynamic parameter is specified by itself for chars-to-remove, the assumed data type of the dynamic
parameter is VARCHAR(32000).

The following examples illustrate the result of executing the scalar function LTRIM.

Examples
LTRIM('1020rst201','012') → 'rst201'

LTRIM('aaaadatabaseaaaa','a') → 'databaseaaaa'
LTRIM('aabbccdatabase','abc') → 'database'
LTRIM(' databaseΔ') → 'databaseΔ'
LTRIM('database','012') → 'database'
Legend:
Δ: Single-byte space

8. Scalar Functions

Hitachi Advanced Database SQL Reference 531



(3) Rules
1. The data type and data length of the execution result are shown in the following table.

Table 8-14: Data type and data length of the execution result of the scalar function LTRIM

Data type and data length of the target data Data type and data length of the execution result

CHAR(n) VARCHAR(n)

VARCHAR(n)

Legend:
n: Maximum length of the target data

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If target-data or chars-to-remove is the null value, the execution result will be the null value.

4. If the actual length of the target data is 0 bytes or 0 characters, the execution result will be data whose actual length
is 0 bytes.

5. If all the target character string data is removed, the execution result will be data whose actual length is 0 bytes.

6. If you specify data whose actual length is 0 bytes or 0 characters for chars-to-remove, the execution result will be
the target data.

(4) Example
Example:

Remove the numeric prefix from the character string data in column C2 of table T1.

SELECT "C1",LTRIM("C2",'0123456789') FROM "T1"

8.5.5 RIGHT
Extracts a substring from a character string starting from the end (rightmost position) of the character string data.

(1) Specification format
scalar-function-RIGHT ::= RIGHT(source-character-string-data,extraction-length)
 
  source-character-string-data ::= value-expression
  extraction-length ::= value-expression

8. Scalar Functions

Hitachi Advanced Database SQL Reference 532



(2) Explanation of specification format
source-character-string-data:

Specifies the source character string data.
The following rules apply:

• Specify the source character string data in the form of a value expression. For details about value expressions,
see 7.20 Value expression.

• Specify CHAR or VARCHAR type data for the source character string data.

• You cannot specify a dynamic parameter by itself for the source character string data.

extraction-length:
Specifies the number of characters to extract. The specified number of characters will be extracted from the end of
the source character string data.
The following rules apply:

• Specify the extraction length in the form of a value expression. For details about value expressions, see 7.20 
Value expression.

• Specify an integer (data of type INTEGER or SMALLINT) for the extraction length.

• If a dynamic parameter is specified by itself for the extraction length, the assumed data type of the dynamic
parameter will be INTEGER.

The following example illustrates the result of executing the scalar function RIGHT.

Example
Extract three characters from the end of the character string ABCDEF.
RIGHT('ABCDEF',3) → 'DEF'

(3) Rules
1. The data type and data length of the execution result are shown in the following table.

Table 8-15: Data type and data length of the execution result of the scalar function RIGHT

Data type and data length of the source character string
data

Data type and data length of the execution result of the
scalar function RIGHT

CHAR(n) VARCHAR(n)

VARCHAR(n)

Legend:
n: Maximum length of the source character string data

The number of characters that are extracted is determined as follows:
MIN(extraction length, number of characters in the source character string)

2. If the extraction length is greater than the number of characters in the source character string data, the amount of
data returned will be the number of characters in the source character string data.

3. In the following cases, the execution result will be data whose actual length is 0 bytes:

• If the length of the character string of the execution result is 0

• If the actual length of the source character string data is 0 bytes or 0 characters

4. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

8. Scalar Functions

Hitachi Advanced Database SQL Reference 533



5. In the following cases, the execution result will be a null value:

• If either the source character string data or extraction length has a null value

• If the extraction length has a negative value (the result will be the null value regardless of what is specified for
the source character string data)

(4) Example
Example:

Retrieve rows from table T1 where the data in column C1 ends with the three-character string 14B.

SELECT * FROM "T1"
    WHERE RIGHT("C1",3)='14B'

8.5.6 RPAD
Pad the end (right side) of the target data with the padding character string up to the specified number of characters.

(1) Specification format
scalar-function-RPAD ::= RPAD(target-data,num-chars[,padding-character-string])
 
  target-data ::= value-expression
  num-chars ::= value-expression
  padding-character-string ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the character string data to be padded.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify CHAR or VARCHAR type data for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

num-chars:
Specifies the number of characters in the result character string after it is padded.
The following rules apply:

8. Scalar Functions

Hitachi Advanced Database SQL Reference 534



• Specify the number of characters in the form of a value expression. For details about value expressions, see
7.20 Value expression.

• Specify INTEGER or SMALLINT type data for the number of characters.

• If a dynamic parameter is specified as the number of characters, the assumed data type of the dynamic parameter
will be INTEGER type.

padding-character-string:
Specifies the character string to be used for padding the end (right side) of the target data.
The following rules apply:

• Specify padding-character-string in the form of a value expression. For details about value expressions, see
7.20 Value expression.

• You must specify CHAR or VARCHAR type data for padding-character-string.

• If padding-character-string is omitted, its assumed value is a single-byte space character.

• If a dynamic parameter is specified by itself for padding-character-string, the assumed data type of the dynamic
parameter is VARCHAR(32000).

The following example illustrates the result of executing the scalar function RPAD.

Example
Pad the end (right side) of the data in column C1 with the character string 'xyz' repeatedly until it reaches 10
characters total.
RPAD("C1",10,'xyz') → 'ABCxyzxyzx'
Column C1 has type VARCHAR(20) and holds the character string 'ABC'.

(3) Rules
1. The data type and data length of the execution result are shown in the following table.

Table 8-16: Data type and data length of the execution result of the scalar function RPAD

Data type and data length of the target data Data type and data length of the execution result

CHAR(n) VARCHAR(n)

VARCHAR(n)

Legend:
n: Maximum length of the target data

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If either of the following conditions are met, the execution result will be a null value:

• If the target data, number of characters, or padding character string is the null value

• If you specify a negative value for the number of characters

4. If the actual length of the padding character string is 0 bytes or 0 characters, no character string padding will be
performed.

5. If the number of characters in the target-data character string is greater than the value of num-chars, the function
returns the specified number of characters from the beginning of the target-data character string.
Example: RPAD('ABCDE',3,'xy') → 'ABC'

6. If a character string of the specified number of characters cannot be represented in the data length of the execution
result, the padding characters will be truncated in mid-string. This means that the number of characters in the

8. Scalar Functions

Hitachi Advanced Database SQL Reference 535



execution result might be different from the specified number of characters. If you want to obtain a character string
with the specified number of characters, use the scalar function CAST to change the data length of the target data.

Examples
These examples assume that Unicode (UTF-8) is being used as the character encoding, and that the value and
data type of column C1 are as follows:
• Value of column C1:  
• Data type of column C1: VARCHAR(10)
RPAD("C1",5,'   ') → '   '
In the above example, the data type of the execution result of RPAD is VARCHAR(10). Because each character
is 3 bytes, the number of characters of the execution result is not the specified number of characters (5).
RPAD(CAST("C1" AS VARCHAR(15)),5,'   ') → '     '
In the above example, the data type of the execution result of RPAD is VARCHAR(15). Because each character
is 3 bytes, the number of characters of the execution result is the specified number of characters (5).

(4) Example
Example:

Column C1 of table T1 is a column of the VARCHAR(8) type. In column C1, for each row containing a character
string shorter than 8 characters, add an appropriate number of 0s to the right of each character string so that all rows
in the column contain an 8-character string.

SELECT RPAD("C1",8,'0') FROM "T1"

8.5.7 RTRIM
Removes instances of the specified characters, starting from the end of the target character string.

Proceeding from the end of the character string, it removes all character that matches any of the characters targeted for
removal, stopping as soon as it encounters a character that is not targeted for removal.

(1) Specification format
scalar-function-RTRIM ::= RTRIM(target-data[,chars-to-remove])
 
  target-data ::= value-expression
  chars-to-remove ::= value-expression

8. Scalar Functions

Hitachi Advanced Database SQL Reference 536



(2) Explanation of specification format
target-data:

Specifies the data from which the characters specified in chars-to-remove are to be removed.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify CHAR or VARCHAR type data for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

chars-to-remove:
Specifies the characters to be removed from the target data.
The following rules apply:

• Specify chars-to-remove in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• You must specify CHAR or VARCHAR type data for chars-to-remove.

• If chars-to-remove is omitted, its value is assumed to be a space character.

• If a dynamic parameter is specified by itself for chars-to-remove, the assumed data type of the dynamic
parameter is VARCHAR(32000).

The following examples illustrate the result of executing the scalar function RTRIM.

Examples
RTRIM('1020rst201','012') → '1020rst'

RTRIM('aaaadatabaseaaaa','a') → 'aaaadatabase'
RTRIM('aabbccdatabase','abes') → 'aabbccdat'
RTRIM(' databaseΔ') → ' database'
RTRIM('database','012') → 'database'
Legend:
Δ: Single-byte space

(3) Rules
1. The data type and data length of the execution result are shown in the following table.

Table 8-17: Data type and data length of the execution result of the scalar function RTRIM

Data type and data length of the target data Data type and data length of the execution result

CHAR(n) VARCHAR(n)

VARCHAR(n)

8. Scalar Functions

Hitachi Advanced Database SQL Reference 537



Legend:
n: Maximum length of the target data

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If target-data or chars-to-remove is the null value, the execution result will be the null value.

4. If the actual length of the target data is 0 bytes or 0 characters, the execution result will be data whose actual length
is 0 bytes.

5. If all the target character string data is removed, the execution result will be data whose actual length is 0 bytes.

6. If you specify data whose actual length is 0 bytes or 0 characters for chars-to-remove, the execution result will be
the target data.

(4) Example
Example:

Remove the numeric suffix from the character string data in column C2 of table T1.

SELECT "C1",RTRIM("C2",'0123456789') FROM "T1"

8.5.8 SUBSTR
Extracts a substring from a character string starting from any position in the character string data.

(1) Specification format
scalar-function-SUBSTR ::= SUBSTR(source-character-string-data, start-position[,extra
ction-length])
 
  source-character-string-data ::= value-expression
  start-position ::= value-expression
  extraction-length ::= value-expression

(2) Explanation of specification format
source-character-string-data:

Specifies the source character string data.
The following rules apply:

8. Scalar Functions

Hitachi Advanced Database SQL Reference 538



• Specify the source character string data in the form of a value expression. For details about value expressions,
see 7.20 Value expression.

• Specify CHAR or VARCHAR type data for the source character string data.

• You cannot specify a dynamic parameter by itself for the source character string data.

start-position:
Specifies the starting character position from which to extract character string data.
If you specify a value greater than or equal to 0 for the start position, the value represents the position from the
beginning of the source character string data. For example, if the start position is 2, the extraction will start at the
second character.
If you specify a negative value for the start position, the value represents a position from the end of the source
character string data. For example, if the start position is -2, the extraction will start at the second character from
the end.
The following rules apply:

• Specify the start position in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify an integer for the start position (INTEGER or SMALLINT type data).

• If you specify 0 for the start position, a start position of 1 is assumed.

• If a dynamic parameter is specified by itself for the start position, the assumed data type of the dynamic parameter
will be INTEGER.

extraction-length:
Specifies the number of characters to extract.
The following rules apply:

• Specify the extraction length in the form of a value expression. For details about value expressions, see 7.20 
Value expression.

• Specify an integer greater than or equal to 0 (data of type INTEGER or SMALLINT) for the extraction length.

• If no extraction length is specified, when the source character string data is CHAR type, it extracts from the start
position to the last character of the defined length.When the source character string data is VARCHAR type, it
extracts from the start position to the last character of the actual data.

• If a dynamic parameter is specified by itself for the extraction length, the assumed data type of the dynamic
parameter will be INTEGER.

The following examples illustrate the result of executing the scalar function SUBSTR.

Examples

• Extract three characters starting from the second character from the beginning of the character string ABCDEF.
SUBSTR('ABCDEF',2,3) → 'BCD'

• Extract two characters starting from the third character from the end of the character string ABCDEF.
SUBSTR('ABCDEF',-3,2) → 'DE'

(3) Rules
1. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

2. In the following cases, the execution result will be a null value:

8. Scalar Functions

Hitachi Advanced Database SQL Reference 539



• If the extraction length has a negative value (the result will be the null value regardless of what is specified for
the source character string data or the start position)

• If the source character string data, start position, or extraction length is a null value

3. The data type and data length of the execution result are shown in the following table.

Table 8-18: Data type and data length of the execution result of the scalar function SUBSTR

Data type and data length of the source character string
data

Data type and data length of the execution result

CHAR(n) VARCHAR(n)

VARCHAR(n)

Legend:
n: Maximum length of the source character string data

4. The following table shows the number of characters that can be extracted by the scalar function SUBSTR.

Table 8-19: Number of characters that can be extracted by the scalar function SUBSTR

Specification of the scalar function SUBSTR Number of characters that can be extracted

Specification of
extraction length

Value specified for
start position

Specified Positive value MAX{0, MIN(extraction length, number of characters in source character string
data - start position + 1)}

0 MIN(extraction length, number of characters in source character string data)

Negative value MIN(extraction length, absolute value of the start position, number of characters
in source character string data)

Omitted Positive value MAX(0, number of characters in source character string data - start position +
1)

0 number of characters in source character string data

Negative value MIN(absolute value of the start position, number of characters in source
character string data)

5. In the following cases, the execution result will be data whose actual length is 0 bytes:

• If the length of the character string of the execution result is 0

• If the actual length of the source character string data is 0 bytes or 0 characters

• If the specified start position satisfies either of the following inequalities:
start position > number of characters in source character string data
start position < -number of characters in source character string data

6. If the number of characters in the source character string data, starting from the start position, is less than the
extraction length, all of the source character string data, starting from the start position, is returned.
Example
SUBSTR('ABCDEF',5,3) → 'EF'

(4) Examples
Example 1:

Retrieve rows from table T1 where the data in column C1 contains the three-character substring 150 starting from
the second character.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 540



SELECT * FROM "T1"
    WHERE SUBSTR("C1",2,3)='150'

Example 2:
Retrieve rows from table T1 where the data in column C1 contains the two-character substring 01 starting from the
second character from the end.

SELECT * FROM "T1"
    WHERE SUBSTR("C1",-2,2)='01'

8.5.9 TRIM
Removes instances of the specified characters from the target character string. The characters can be removed in any
of the following ways:

• Remove the specified characters starting from the beginning of the character string.

• Remove the specified characters starting from the end of the character string.

• Remove characters starting from both the beginning and the end of the character string.

(1) Specification format
scalar-function-TRIM ::= TRIM([{where chars-to-remove
                               |where
                               |chars-to-remove} FROM] target-data)
 
  where ::= {LEADING|TRAILING|BOTH}
  chars-to-remove ::= value-expression
  target-data ::= value-expression

8. Scalar Functions

Hitachi Advanced Database SQL Reference 541



(2) Explanation of specification format
where:

Specifies where to begin the process of removing characters. If this is omitted, BOTH is assumed.

LEADING:
When LEADING is specified, it removes all characters that match any of the characters specified for removal,
proceeding from the beginning of the character string, and stopping as soon as it encounters a character that is
not targeted for removal.
The following examples illustrate the execution results when LEADING is specified.
Examples
TRIM(LEADING '012' FROM '1020rst201') → 'rst201'

TRIM(LEADING 'a' FROM 'aaaadatabaseaaaa') → 'databaseaaaa'
TRIM(LEADING 'abc' FROM 'aabbccdatabase') → 'database'
TRIM(LEADING FROM ' databaseΔ') → 'databaseΔ'
TRIM(LEADING '012' FROM 'database') → 'database'
Legend:
Δ: Single-byte space

TRAILING:
When TRAILING is specified, it removes all characters that match any of the characters specified for removal,
proceeding from the end of the character string, and stopping as soon as it encounters a character that is not
targeted for removal.
The following examples illustrate the execution results when TRAILING is specified.
Examples
TRIM(TRAILING '012' FROM '1020rst201') → '1020rst'

TRIM(TRAILING 'a' FROM 'aaaadatabaseaaaa') → 'aaaadatabase'
TRIM(TRAILING 'abes' FROM 'aabbccdatabase') → 'aabbccdat'
TRIM(TRAILING FROM ' databaseΔ') → ' database'
TRIM(TRAILING '012' FROM 'database') → 'database'
Legend:
Δ: Single-byte space

8. Scalar Functions

Hitachi Advanced Database SQL Reference 542



BOTH:
When BOTH is specified, it removes all characters that match any of the characters specified for removal,
proceeding from both the beginning and end of the character string, stopping as soon as it encounters a character
that is not targeted for removal.
The following examples illustrate the execution results when BOTH is specified.
Examples
TRIM(BOTH '012' FROM '1020r212st201') → 'r212st'

TRIM(BOTH 'a' FROM 'aaaadatabaseaaaa') → 'database'
TRIM(BOTH 'abces' FROM 'aabbccdatabase') → 'dat'
TRIM(BOTH FROM ' databaseΔ') → 'database'
TRIM(BOTH '012' FROM 'database') → 'database'
Legend:
Δ: Single-byte space

chars-to-remove:
Specifies the characters to be removed from the target data.
The following rules apply:

• Specify chars-to-remove in the form of a value expression. Specify the target data in the form of a value
expression. For details about value expressions, see 7.20 Value expression.

• You must specify CHAR or VARCHAR type data for chars-to-remove.

• If chars-to-remove is omitted, its value is assumed to be a space character.

• If a dynamic parameter is specified by itself for chars-to-remove, the assumed data type of the dynamic
parameter is VARCHAR(32000).

target-data:
Specifies the data from which the characters specified in chars-to-remove are to be removed.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify CHAR or VARCHAR type data for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type and data length of the execution result are shown in the following table.

Table 8-20: Data type and data length of the execution result of the scalar function TRIM

Data type and data length of the target data Data type and data length of the execution result

CHAR(n) VARCHAR(n)

VARCHAR(n)

8. Scalar Functions

Hitachi Advanced Database SQL Reference 543



Legend: n: Maximum length of the target data

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If target-data or chars-to-remove is the null value, the execution result will be the null value.

4. If the actual length of the target data is 0 bytes or 0 characters, the execution result will be data whose actual length
is 0 bytes.

5. If all the target character string data is removed, the execution result will be data whose actual length is 0 bytes.

6. If you specify data whose actual length is 0 bytes or 0 characters for chars-to-remove, the execution result will be
the target data.

(4) Example
Example:

Remove the numeric prefix and suffix from the character string data in column C2 of table T1.

SELECT "C1",TRIM(BOTH '0123456789' FROM "C2") FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 544



8.6 Character string functions (acquisition of character string
information)

This section describes the functions and specification formats of the character string functions pertaining to the
acquisition of character string information.

8.6.1 CONTAINS
Returns whether the target data contains any character strings that meet the conditions provided by the search condition
expression specification. If the target data contains any character strings that meet the conditions, this function returns
1. In the other cases, this function returns 0.

The scalar function CONTAINS can be specified in search conditions. However, it cannot be specified in a search
condition in the CASE expression.

(1) Specification format
scalar-function-CONTAINS ::= CONTAINS(target-data,search-condition-expression-specifi
cation)
 
  target-data ::= value-expression
  search-condition-expression-specification ::= character-string-literal

(2) Explanation of specification format
target-data:

Specifies the data to be searched.
The following rules apply:

• Specify target-data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• The data type of target-data must be CHAR or VARCHAR.

• You cannot specify a dynamic parameter by itself for target-data.

search-condition-expression-specification:
Specifies a search condition.
The following rules apply:

• You must specify search-condition-expression-specification in the form of a character string literal. For details
about character string literals, see 6.3 Literals.

• All characters other than those in the search string and synonym dictionary name in search-condition-expression-
specification are assumed to be half-width uppercase.

• Separators cannot be specified.

• For search-condition-expression-specification, one of the following four methods can be specified: simple-string
specification, notation-correction-search specification, synonym-search specification, and word-context search
specification.

search-condition-expression-specification ::= {simple-string-specification|notatio
n-correction-search-specification|synonym-search-specification
                    |word-context-search-specification}

8. Scalar Functions

Hitachi Advanced Database SQL Reference 545



 
  simple-string-specification ::= "search-character-string"
 
  notation-correction-search-specification ::= {IGNORECASE(simple-string-specifica
tion)|SORTCODE(simple-string-specification)}
 
  synonym-search-specification ::= SYNONYM("synonym-dictionary-name",{simple-strin
g-specification|notation-correction-search-specification})
 
  word-context-search-specification ::= {WORDCONTEXT({simple-string-specification|
notation-correction-search-specification
                                    |synonym-search-specification})
                      |WORDCONTEXT_PREFIX({simple-string-specification|notation-co
rrection-search-specification})}

simple-string-specification:
Specifies the search string in the following format:

simple-string-specification ::= "search-string"

The following shows an example of a simple-string specification.
Example: "COMPUTER" or "computer"
Enclose the search string (COMPUTER or computer) in double quotation marks (").
Note the following points:

• The characters in search-string are case sensitive.

• To use a double quotation mark (") as an ordinary character in search-string, specify two consecutive double
quotation marks ("").

• If search-string is 0-byte character string data, 1 is returned as the execution result. In this case, regardless
of target-data, the function judges that target-data contains search-string.

notation-correction-search-specification:
Specify this item when you perform a correction search. For details about correction searches, see Correction
search in the HADB Setup and Operation Guide.
Specify the search string in either of the following formats:

notation-correction-search-specification ::= {IGNORECASE(simple-string-specifica
tion) | SORTCODE(simple-string-specification)}

• IGNORECASE(simple-string-specification):
If IGNORECASE is specified, correction search ignores only the difference between half-width uppercase
and lowercase letters.
You can also use the following specification format:
I(simple-string-specification)

• SORTCODE(simple-string-specification):
Specify this item when you perform a correction search.
You can also use the following specification format:
S(simple-string-specification)

synonym-search-specification:
Specify this item if you want to search for the synonyms specified as the same synonym group in the synonym
dictionary at the same time. The following shows the specification format:

synonym-search-specification ::= SYNONYM("synonym-dictionary-name",{simple-strin
g-specification | notation-correction-search-specification})

8. Scalar Functions

Hitachi Advanced Database SQL Reference 546



• synonym-dictionary-name:
Specifies the name of the synonym dictionary.

The following shows an example of a synonym-search specification.
Note that this example assumes that the following character strings are registered in a synonym dictionary named
Dictionary1.

PC,personal computer,microcomputer

Example 1 (Simple-string specification)

SYNONYM("Dictionary1","COMPUTER")

In this case, all of the following words registered in the synonym dictionary are used as search strings: PC,
personal computer, and microcomputer.
Example 2 (Notation-correction-search specification)

SYNONYM("Dictionary1",IGNORECASE("COMPUTER"))

In this case, in addition to PC, personal computer, and microcomputer, which are registered in the
synonym dictionary, all their variants, such as pc, Personal Computer, and Microcomputer, are used
as search strings.

Important
When you register or update a synonym dictionary, if you specify CASESENSITIVE (do not create
a synonym dictionary that supports correction search) as a notation-correction option, you cannot
include notation-correction-search specification in the synonym-search specification.

word-context-search-specification:
Specify this item when you perform a word-context search. For details about word-context searches, see Word-
context search in the HADB Setup and Operation Guide. The following shows the specification format of a
word-context search specification:

word-context-search-specification ::= {WORDCONTEXT({simple-string-specification|
notation-correction-search-specification
                                  |synonym-search-specification})
                    |WORDCONTEXT_PREFIX({simple-string-specification|notation-co
rrection-search-specification})}

To perform word-based complete-match retrieval, specify WORDCONTEXT. To perform word-based leading-
match search, specify WORDCONTEXT_PREFIX.

(3) Rules
1. The scalar function CONTAINS can be specified as the comparison operand on the left side of a comparison predicate.

For the comparison operator and the right-side comparison operand, specify >0.

2. If the character encoding that is used on the HADB server is Shift-JIS, notation-correction-search specification
cannot be used.

3. The data type of the execution result will be INTEGER.

4. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

5. If the target data is the null value, the execution result will be the null value.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 547



(4) Examples
Assume that you have the table T1 whose column C2 (of the VARCHAR type) contains document information. In the
following examples, you use the scalar function CONTAINS to search the document information for specific character
strings.

Example 1 (Search using a simple-string specification)
In this example, you retrieve rows whose document information contains the character string COMPUTER.

SELECT "C1" FROM "T1"
    WHERE CONTAINS("C2",'"COMPUTER"') > 0

In this case, half-width uppercase and lowercase letters are distinguished. Therefore, computer and other variants
of the specified string are not treated as search strings.

Example 2 (Correction search)
In this example, you retrieve rows whose document information contains the character string COMPUTER and its
variants.

SELECT "C1" FROM "T1"
    WHERE CONTAINS("C2",'IGNORECASE("COMPUTER")') > 0

In this case, as a result of notation correction, in addition to the rows that contain COMPUTER, the rows that contain
computer, Computer, and other similar variants are to be retrieved.

Example 3 (Correction search)
In this example, you retrieve rows whose document information contains máquina and its variants.

SELECT "C1" FROM "T1"
    WHERE CONTAINS("C2",'SORTCODE("máquina")') > 0

In this case, as a result of notation correction, in addition to the rows that contain máquina, the rows that contain
maquina, Maquina, and other variants are to be retrieved.

Example 4 (Synonym search)
Assume that the following character strings are registered in the synonym dictionary Dictionary1 as synonyms:
PC, personal computer, and microcomputer. In this example, you search for these character strings in
one operation.

SELECT "C1" FROM "T1"
    WHERE CONTAINS("C2",'SYNONYM("Dictionary1","PC")') > 0

Example 5 (Synonym search + correction search)
Assume that the following character strings are registered in the synonym dictionary Dictionary1 as synonyms:
PC, personal computer, and microcomputer. In this example, you search for these character strings in
one operation. In this case, a correction search is also performed for each of the character strings registered in the
synonym dictionary.
Note that the synonym dictionary Dictionary1 must support correction search.

SELECT "C1" FROM "T1"
    WHERE CONTAINS("C2",'SYNONYM("Dictionary1",SORTCODE("PC"))') > 0

When the preceding SELECT statement is run, in addition to the character strings registered in the synonym
dictionary (PC, personal computer, microcomputer), their variants, such as pc, Personal
Computer, and MICROCOMPUTER, are to be retrieved.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 548



Example 6 (Word-based complete-match word-context search)
In this example, you retrieve rows that contain the English word COMPUTER or its variant from the English document
stored in column C2.

SELECT "C1" FROM "T1"
    WHERE CONTAINS("C2",'WORDCONTEXT(IGNORECASE("COMPUTER"))') > 0

In this case, because the correction search (IGNORECASE) is specified, in addition to the rows that contain
COMPUTER, the rows that contain computer, Computer, and other similar variants are also retrieved.

Example 7 (Word-based leading-match word-context search)
In this example, you retrieve rows that contain an English word that begins with COMP from the English document
stored in column C2.

SELECT "C1" FROM "T1"
    WHERE CONTAINS("C2",'WORDCONTEXT_PREFIX("COMP")') > 0

In this case, the rows that contain a word such as COMPUTER, COMPUTERS, or COMPANY are also retrieved.

8.6.2 INSTR
Searches the target data for a character string and returns the starting position of the string.

A starting position at which to begin the search can also be specified.

For example, using this function, you can find the starting position of the character string 'ABC' in the target data, or
even find the starting position of the third occurrence of 'ABC'.

(1) Specification format
scalar-function-INSTR ::= INSTR(target-data,search-character-string[,search-start-pos
ition[,nth-occurrence]])
 
  target-data ::= value-expression
  search-character-string ::= value-expression
  search-start-position ::= value-expression
  nth-occurrence ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the target data in which to search for the character string.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify CHAR or VARCHAR type data for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

search-character-string:
Specifies the character string to search for.
The following rules apply:

8. Scalar Functions

Hitachi Advanced Database SQL Reference 549



• Specify search-character-string in the form of a value expression. For details about value expressions, see 7.20 
Value expression.

• Specify CHAR or VARCHAR type data for search-character-string.

• You cannot specify a dynamic parameter by itself for search-character-string.

search-start-position:
Specifies the starting character position to begin searching the target data.

• If you specify a positive integer for search-start-position
The search starts at that position in the target data and proceeds in the forward direction (left to right). For
example, if you specify 2 for search-start-position, the search starts at the second character of the target data
and proceeds in the forward direction (left to right).
Example: INSTR('AB01AB02AB03','AB',2) → 5

• If you specify a negative integer for search-start-position
The search starts at that position from the end of the target data and proceeds backwards (right to left). For
example, if you specify -2 for search-start-position, the search starts at the second character from the end of
the target data and proceeds backwards (right to left).
Example 1: INSTR('AB01AB02AB03','AB',-2) → 9

Example 2: INSTR('AB01AB02AB03','AB',-4) → 9

In the above example, the search begins at A, which is immediately followed by B. The execution results is
therefore 9.

The following rules apply:

• Specify search-start-position in the form of a value expression. For details about value expressions, see 7.20 
Value expression.

• Specify INTEGER or SMALLINT type data for search-start-position.

• If search-start-position is omitted, 1 is assumed.

• If you specify a dynamic parameter by itself for search-start-position, the assumed data type of the dynamic
parameter is INTEGER.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 550



nth-occurrence:
Specifies which occurrence of the character string to search for. For example, if you specify 3 for nth-occurrence,
it returns the starting position of the third occurrence of the character string in the target data.
The following rules apply:

• Specify nth-occurrence in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify a positive integer for nth-occurrence.

• Specify INTEGER or SMALLINT type data for nth-occurrence.

• If nth-occurrence is omitted, 1 is assumed.

• If you specify a dynamic parameter by itself for nth-occurrence, the assumed data type of the dynamic
parameter is INTEGER.

The following examples illustrate the result of executing the scalar function INSTR.

Examples

• INSTR('AB01AB02AB03','AB') → 1
This example returns 1 because the search character string 'AB' is found at the first position in the target data.

• INSTR('AB01AB02AB03','AB',3) → 5
In this example, the search begins at the third character from the beginning of the target data. It returns 5 because
the search character string 'AB' is found at the fifth position in the target data.

• INSTR('AB01AB02AB03','AB',3,2) → 9
In this example, the search begins at the third character from the beginning of the target data. Furthermore,
because nth-occurrence is 2, it returns the starting position of the second occurrence of 'AB', which in this case
is 9 because the second occurrence of 'AB' starts at the ninth character of the target data.

• INSTR('AB01AB02AB03','AB',-2,3) → 1
In this example, the search begins at the second character from the end of the target data. Furthermore, because
nth-occurrence is 3, it returns the starting position of the third occurrence of 'AB', which in this case is 1
because the third occurrence of 'AB' starts at the first character of the target data.

(3) Rules
1. The value of the execution result is expressed in units of number of characters.

2. Regardless of the value of search-start-position, the value returned as the execution result will be the position of
the occurrence of the character string as counted from the beginning of the target data (from the left).

3. If the specified character string is not found, 0 is returned as the value of the execution result.

4. The data type of the execution result is the INTEGER type.

5. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

6. In the following cases, the execution result will be a null value:

• If either target-data, search-character-string, search-start-position, or nth-occurrence has a null value

• If you specify 0 for search-start-position

• If you specify 0 or a negative value for nth-occurrence

7. If either target-data or search-character-string has an actual length of 0 bytes or 0 characters, the value of the
execution result will be 0, except in the following cases:

8. Scalar Functions

Hitachi Advanced Database SQL Reference 551



• If either target-data or search-character-string has a null value

• If you specify 0 for search-start-position

• If you specify 0 or a negative value for nth-occurrence

8. The character strings search-character-string and target-data are compared character-by-character until either the
nth occurrence (specified in nth-occurrence) of search-character-string is found, or the end of target-data is reached.

(4) Example
Example:

From the email addresses stored in column C1 of table T1, extract the character string preceding the @ part of each
address.

SELECT LEFT("C1",INSTR("C1",'@')-1) FROM "T1"

8.6.3 LENGTH
Returns the number of characters in the target character string.

(1) Specification format
scalar-function-LENGTH ::= LENGTH(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the data whose length in characters is to be counted.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify CHAR or VARCHAR type data for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 552



(3) Rules
1. The data type of the execution result is the INTEGER type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has the null value, the execution result will be a null value.

4. If the actual length of the target data is 0 bytes or 0 characters, the execution result will be 0.

(4) Example
Example:

Determine the number of characters in the data in columns C1 and C2 from table T1.
In this case, the character encoding being used is Unicode (UTF-8).

SELECT LENGTH("C1"),LENGTH("C2") FROM "T1"

In the above example, each space is counted as one character.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 553



8.7 Character string functions (Character substitution)

This section describes the functions and specification formats of the character string functions pertaining to character
substitution.

8.7.1 REPLACE
Replaces any character string in the target data. All instances of the character string to be replaced in the target data are
replaced with a replacement character string.

(1) Specification format
scalar-function-REPLACE ::= REPLACE(target-data,character-string-to-replace[,replacem
ent-character-string])
 
  target-data ::= value-expression
  character-string-to-replace ::= value-expression
  replacement-character-string ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the target data.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify CHAR or VARCHAR type data for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

character-string-to-replace:
Specifies the character string to be replaced.
The following rules apply:

• Specify character-string-to-replace in the form of a value expression. For details about value expressions, see
7.20 Value expression.

• You must specify CHAR or VARCHAR type data for character-string-to-replace.

• If a dynamic parameter is specified by itself for character-string-to-replace, the assumed data type of the dynamic
parameter is VARCHAR(32000).

replacement-character-string:
Specifies the replacement character string.
The following rules apply:

• Specify replacement-character-string in the form of a value expression. For details about value expressions, see
7.20 Value expression.

• You must specify CHAR or VARCHAR type data for replacement-character-string.

• If a dynamic parameter is specified by itself for replacement-character-string, the assumed data type of the
dynamic parameter is VARCHAR(32000).

8. Scalar Functions

Hitachi Advanced Database SQL Reference 554



• If replacement-character-string is omitted, data whose actual length is 0 bytes is assumed.

The following example illustrates the result of executing the scalar function REPLACE.

Example
Replace all instances of the character string BCD in the target data with YZ.
REPLACE('ABCDEBCD','BCD','YZ') → 'AYZEYZ'

(3) Rules
1. The data type and data length of the execution result are shown in the following table.

Table 8-21: Data type and data length of the execution result of the scalar function REPLACE

Data type and data length of the target data Data type and data length of the execution result

CHAR(n) VARCHAR(n)

VARCHAR(n)

Legend: n: Maximum length of the target data

2. An error results if, after the replacement, the data length of the execution result is exceeded. If you want to increase
the data length of the execution result, use the scalar function CAST to change the data length of the target data.

Examples
These examples assume that column C1 has type VARCHAR(5) and contains the character string 'ABCD'.
REPLACE("C1",'AB','WXYZ') → Error
The above example results in an error because the data length of the result of executing REPLACE is too large
for VARCHAR(5).
REPLACE(CAST("C1" AS VARCHAR(10)),'AB','WXYZ') → 'WXYZCD'
The above example does not result in an error because the data length of the result of executing REPLACE can
fit in VARCHAR(10).

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If the target data, character string to replace, or replacement character string is the null value, the execution result
will be the null value.

5. If all the characters in the target data are deleted as a result of the replacement, the actual data length of the execution
result will be 0 bytes.

6. If you specify data whose actual length is 0 bytes or 0 characters for the character string to replace, no characters in
the target data are replaced.

7. If you specify data whose actual length is 0 bytes or 0 characters for the replacement character string, all instances
of the character string to replace are removed from the target data.

(4) Example
Example:

This example assumes that column C1 (CHAR type) of table T1 holds dates in the format YYYY.MM.DD (where
YYYY is the year, MM is the month, and DD is the day).
All instances of 2013 are replaced with 2014.

SELECT REPLACE("C1",'2013','2014') FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 555



8.7.2 TRANSLATE
Replaces any character in character string data.

(1) Specification format
scalar-function-TRANSLATE ::= TRANSLATE(target-data,characters-to-replace,replacement
-characters)
 
  target-data ::= value-expression
  characters-to-replace ::= value-expression
  replacement-characters ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the target data.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify CHAR or VARCHAR type data for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

characters-to-replace:
Specifies the characters to be replaced.
The following rules apply:

• Specify characters-to-replace in the form of a value expression. For details about value expressions, see 7.20 
Value expression.

• If you specify the same character more than once in characters-to-replace, it uses the character that was specified
first.

• If a dynamic parameter is specified by itself for characters-to-replace, the assumed data type of the dynamic
parameter is VARCHAR(32000).

replacement-characters:
Specifies the replacement characters.
The following rules apply:

8. Scalar Functions

Hitachi Advanced Database SQL Reference 556



• Specify replacement-characters in the form of a value expression. For details about value expressions, see 7.20 
Value expression.

• If a dynamic parameter is specified by itself for replacement-characters, the assumed data type of the dynamic
parameter is VARCHAR(32000).

Tip
To replace multiple characters, align the characters in the same positions in characters-to-replace and
replacement-characters. For example, to replace A with a, B with b, and C with c, specify 'ABC' for
characters-to-replace, and 'abc' for replacement-characters.

The following example illustrates the result of executing the scalar function TRANSLATE.

Example
In a character string, replace A with a, B with b, and C with c.
TRANSLATE('AXBYCZ','ABC','abc') → 'aXbYcZ'

(3) Rules
1. The data type and data length of the execution result are shown in the following table.

Table 8-22: Data type and data length of the execution result of the scalar function TRANSLATE

Data type and data length of the target data Data type and data length of the execution result

CHAR(n) VARCHAR(n)

VARCHAR(n)

Legend:
n: Maximum length of the target data

2. An error results if, after the replacement, the data length of the execution result is exceeded. If you want to increase
the data length of the execution result, use the scalar function CAST to change the data length of the target data.

Examples
These examples assume that Unicode (UTF-8) is the character encoding, and that column C1 has type
VARCHAR(5) and holds the character string 'ABC'.
TRANSLATE("C1",'ABC','   ') → Error
This example generates an error because the type VARCHAR(5) is insufficient to store the data length of the
execution result of TRANSLATE.
TRANSLATE(CAST("C1" AS VARCHAR(9)),'ABC','   ') → '   '
This time there is no error because the data length of the execution result of TRANSLATE is VARCHAR(9).

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If target-data, characters-to-replace, or replacement-characters is the null value, the execution result will be the
null value.

5. In the target data, the characters in characters-to-replace are replaced with the characters in replacement-
characters. If no characters are specified in characters-to-replace, no characters in the target data are replaced.

6. When characters-to-replace is longer than replacement-characters, the extra characters in characters-to-replace
are deleted from the target data if they are present.
Example: TRANSLATE('ABCD','ABC','ab') → 'abD'

8. Scalar Functions

Hitachi Advanced Database SQL Reference 557



7. When characters-to-replace is shorter than replacement-characters, the extra characters in replacement-characters
are ignored.
Example: TRANSLATE('ABCD','AB','abc') → 'abCD'

8. If all the characters in the target data are deleted as a result of the replacement, the actual data length of the execution
result will be 0 bytes.

(4) Example
Example:

Translate the format of the dates that are stored in column C1 (type CHAR) in table T1 from YYYY.MM.DD to
YYYY/MM/DD, where YYYY is the year, MM is the month, and DD is the day.

SELECT TRANSLATE("C1",'.','/') FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 558



8.8 Character string functions (character string conversion)

This section describes the functions and specification formats of the character string functions pertaining to character
string conversion.

8.8.1 LOWER
Converts character string data from uppercase (A to Z) to lowercase (a to z). Single- and double-byte letters are
supported.

(1) Specification format
scalar-function-LOWER ::= LOWER(character-string-data-to-convert)
 
  character-string-data-to-convert ::= value-expression

(2) Explanation of specification format
character-string-data-to-convert:

Specifies the character string data to convert.
The following rules apply:

• Specify character-string-data-to-convert in the form of a value expression. For details about value expressions,
see 7.20 Value expression.

• Specify CHAR or VARCHAR type data for character-string-data-to-convert.

• You cannot specify a dynamic parameter by itself for character-string-data-to-convert.

The following table shows the character encodings and character ranges that are converted.

Table 8-23: Character encodings and character ranges that are converted by the scalar function
LOWER

Character
encoding

Range of characters to be converted Range of characters post-conversion Single-byte/
double-byte

Unicode (UTF-8) A (0x41) to Z (0x5a) a (0x61) to z (0x7a) Single-byte
characters

 (0xefbca1) to  (0xefbcba)  (0xefbd81) to  (0xefbd9a) Double-byte
characters

Shift-JIS A (0x41) to Z (0x5a) a (0x61) to z (0x7a) Single-byte
characters

 (0x8260) to  (0x8279)  (0x8281) to  (0x829a) Double-byte
characters

The following example illustrates the result of executing the scalar function LOWER.

Example
Convert the uppercase letters in the character string aBc123XyZ to lowercase.
LOWER('aBc123XyZ') → 'abc123xyz'

8. Scalar Functions

Hitachi Advanced Database SQL Reference 559



(3) Rules
1. The length of the data type of character-string-data-to-convert becomes the length of the data type of the execution

result.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If character-string-data-to-convert has the null value, the execution result will be a null value.

(4) Example
Example:

Convert the data in the NAME column of the employee table (EMPLIST) to all lowercase.

  SELECT "USERID",LOWER("NAME")
     FROM "EMPLIST"

8.8.2 UPPER
Converts character string data from lowercase (a to z) to uppercase (A to Z). Single- and double-byte letters are
supported.

(1) Specification format
scalar-function-UPPER ::= UPPER(character-string-data-to-convert)
 
  character-string-data-to-convert ::= value-expression

(2) Explanation of specification format
character-string-data-to-convert:

Specifies the character string data to convert.
The following rules apply:

• Specify character-string-data-to-convert in the form of a value expression. For details about value expressions,
see 7.20 Value expression.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 560



• Specify CHAR or VARCHAR type data for character-string-data-to-convert.

• You cannot specify a dynamic parameter by itself for character-string-data-to-convert.

The following table shows the character encodings and character ranges that are converted.

Table 8-24: Character encodings and character ranges that are converted by the scalar function
UPPER

Character
encoding

Range of characters to be converted Range of characters post-conversion Single-byte/
double-byte

Unicode (UTF-8) a (0x61) to z (0x7a) A (0x41) to Z (0x5a) Single-byte
characters

 (0xefbd81) to  (0xefbd9a)  (0xefbca1) to  (0xefbcba) Double-byte
characters

Shift-JIS a (0x61) to z (0x7a) A (0x41) to Z (0x5a) Single-byte
characters

 (0x8281) to  (0x829a)  (0x8260) to  (0x8279) Double-byte
characters

The following example illustrates the result of executing the scalar function UPPER.

Example
Convert the lowercase letters in the character string aBc123XyZ to uppercase.
UPPER('aBc123XyZ') → 'ABC123XYZ'

(3) Rules
1. The length of the data type of character-string-data-to-convert becomes the length of the data type of the execution

result.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If character-string-data-to-convert has the null value, the execution result will be a null value.

(4) Example
Example:

Convert the data in the NAME column of the employee table (EMPLIST) to all uppercase.

  SELECT "USERID",UPPER("NAME")
     FROM "EMPLIST"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 561



8. Scalar Functions

Hitachi Advanced Database SQL Reference 562



8.9 Datetime functions

This section describes the functions and specification formats of the datetime functions.

8.9.1 DATEDIFF
Returns the difference between the start date and time and the end date and time.

(1) Specification format
scalar-function-DATEDIFF ::= DATEDIFF(datetime-unit,start-datetime,end-datetime)
 
  datetime-unit ::= {YEAR|QUARTER|MONTH|WEEK|DAY
                    |DAYOFYEAR|HOUR|MINUTE|SECOND
                    |MILLISECOND|MICROSECOND|NANOSECOND|PICOSECOND}
  start-datetime ::= value-expression
  end-datetime ::= value-expression

(2) Explanation of specification format
datetime-unit:

Specifies the unit to be used when determining the difference between start-datetime and end-datetime. Specify one
of the following values:

• YEAR
Specify this to determine the difference in years between start-datetime and end-datetime.
Examples
DATEDIFF(YEAR,'2011-05-05','2013-07-10') → 2
DATEDIFF(YEAR,'2013-05-05','2013-07-10') → 0
DATEDIFF(YEAR,'2012-12-31 23:59:59','2013-01-01 00:00:00') → 1

• QUARTER
Specify this to determine the difference in quarters between start-datetime and end-datetime. Quarters are
calculated as three-month periods beginning January 1.
• First quarter: January 1 to March 31
• Second quarter: April 1 to June 30
• Third quarter: July 1 to September 30
• Fourth quarter: October 1 to December 31
Examples
DATEDIFF(QUARTER,'2013-01-05','2013-07-10') → 2
DATEDIFF(QUARTER,'2013-01-05','2013-03-10') → 0
DATEDIFF(QUARTER,'2012-12-31 23:59:59','2013-01-01 00:00:00') → 1

• MONTH
Specify this to determine the difference in months between start-datetime and end-datetime.
Examples
DATEDIFF(MONTH,'2013-01-05','2013-07-10') → 6
DATEDIFF(MONTH,'2013-01-05','2013-01-10') → 0

8. Scalar Functions

Hitachi Advanced Database SQL Reference 563



DATEDIFF(MONTH,'2012-12-31 23:59:59','2013-01-01 00:00:00') → 1
• WEEK

Specify this to determine the difference in weeks between start-datetime and end-datetime. Weeks are calculated
as beginning on Sunday.
Examples
DATEDIFF(WEEK,'2013-07-05','2013-07-10') → 1
This example returns 1 because the week changes on July 7, 2013, which is a Sunday.
DATEDIFF(WEEK,'2012-12-30','2013-01-01') → 0
This example returns 0 because December 30, 2012 is a Sunday, so the week does not change.

• DAY
Specify this to determine the difference in days between start-datetime and end-datetime.
Examples
DATEDIFF(DAY,'2013-07-05','2013-07-10') → 5
DATEDIFF(DAY,'2013-07-05 08:02:25','2013-07-05 17:55:18') → 0
DATEDIFF(DAY,'2012-12-31 23:59:59','2013-01-01 00:00:00') → 1

• DAYOFYEAR
Specify this to determine the difference between start-datetime and end-datetime in terms of cumulative number
of days. It returns the same result as when DAY is specified.
Examples
DATEDIFF(DAYOFYEAR,'2013-07-05','2013-07-10') → 5
DATEDIFF(DAYOFYEAR,'2013-07-05 08:02:25','2013-07-05 17:55:18') → 0
DATEDIFF(DAYOFYEAR,'2012-12-31 23:59:59','2013-01-01 00:00:00') → 1

• HOUR
Specify this to determine the difference in hours between start-datetime and end-datetime.
Examples
DATEDIFF(HOUR,'2013-07-10 08:02:25','2013-07-10 11:37:55') → 3
DATEDIFF(HOUR,'2013-07-10 08:02:25','2013-07-10 08:45:15') → 0
DATEDIFF(HOUR,'2012-12-31 23:59:59','2013-01-01 00:00:00') → 1

• MINUTE
Specify this to determine the difference in minutes between start-datetime and end-datetime.
Examples
DATEDIFF(MINUTE,'2013-07-10 08:02:25','2013-07-10 08:07:25') → 5
DATEDIFF(MINUTE,'2013-07-10 08:02:25','2013-07-10 08:02:32') → 0
DATEDIFF(MINUTE,'2012-12-31 23:59:59','2013-01-01 00:00:00') → 1

• SECOND
Specify this to determine the difference in seconds between start-datetime and end-datetime.
Examples
DATEDIFF(SECOND,'2013-07-10 08:02:25','2013-07-10 08:02:33') → 8
DATEDIFF(SECOND,'2012-12-31 23:59:59','2013-01-01 00:00:00') → 1

• MILLISECOND
Specify this to determine the difference in milliseconds (1/1,000 seconds) between start-datetime and end-
datetime.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 564



Examples
DATEDIFF(MILLISECOND,'08:02:25.000','08:02:25.003') → 3
DATEDIFF(MILLISECOND,'08:02:24.000','08:02:25.001') → 1001
DATEDIFF(MILLISECOND,'08:02:25.000000','08:02:25.003111') → 3

• MICROSECOND
Specify this to determine the difference in microseconds (1/1,000,000 seconds) between start-datetime and end-
datetime.
Example
DATEDIFF(MICROSECOND,'08:02:25.000000','08:02:25.000012') → 12

• NANOSECOND
Specify this to determine the difference in nanoseconds (1/1,000,000,000 seconds) between start-datetime and
end-datetime.
Example
DATEDIFF(NANOSECOND,'08:02:25.000000000','08:02:25.000000123') → 123

• PICOSECOND
Specify this to determine the difference in picoseconds (1/1,000,000,000,000 seconds) between start-datetime
and end-datetime.
Example
DATEDIFF(PICOSECOND,'08:02:25.000000000000','08:02:25.000000000003') → 3

start-datetime:
Specifies the start datetime.
The following rules apply:

• Specify start-datetime in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• The data type of start-datetime must be DATE, TIME, TIMESTAMP, CHAR, or VARCHAR. In the case of CHAR
or VARCHAR, you must specify a character string literal that adheres to the predefined input representation
formats. For details about the predefined input representations, see 6.3.3 Predefined character-string
representations.

• You cannot specify a dynamic parameter by itself for start-datetime.

end-datetime:
Specifies the end datetime.
The following rules apply:

• Specify end-datetime in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• The data type of end-datetime must be DATE, TIME, TIMESTAMP, CHAR, or VARCHAR. In the case of CHAR
or VARCHAR, you must specify a character string literal that adheres to the predefined input representation
formats. For details about the predefined input representations, see 6.3.3 Predefined character-string
representations.

• You cannot specify a dynamic parameter by itself for end-datetime.

(3) Rules
1. For the execution result, the value obtained by subtracting start-datetime from end-datetime is returned. If end-

datetime is earlier than start-datetime, a negative value is returned.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 565



2. When the hour, minutes, and seconds are missing, for example when start-datetime is DATE type and end-datetime
is TIMESTAMP type, the hour, minutes, and seconds are assumed to be 00:00:00. When the fractional seconds
are missing, all the missing digits are assumed to be 0.
Example: DATEDIFF(SECOND,'2013-07-10','2013-07-10 00:00:07') → 7
In the example above, start-datetime is assumed to be 2013-07-10 00:00:00.

3. If you specify a DATE type, TIMESTAMP type, predefined character-string representation of a date, or a predefined
character-string representation of a time stamp for start-datetime, you must also specify a DATE type, TIMESTAMP
type, predefined character-string representation of a date, or a predefined character-string representation of a time
stamp for end-datetime.

4. If you specify a TIME type or a predefined character-string representation of a time for start-datetime, you must
also specify a TIME type or a predefined character-string representation of a time for end-datetime.

5. If you specify a TIME type or a predefined character-string representation of a time for start-datetime and end-
datetime, and YEAR, QUARTER, MONTH, DAYOFYEAR, DAY, or WEEK for datetime-unit, the value of the execution
result will be 0.

6. The data type of the execution result is the INTEGER type. An error results if the execution result exceeds the range
that can be represented by the INTEGER type. For the range that can be represented by the INTEGER type, see (1) 
Numeric data in 6.2.1 List of data types.

7. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

8. If start-datetime or end-datetime has a null value, the execution result will be a null value.

(4) Example
Example:

Determine the difference in days between the datetime data in columns C1 and C2 from table T1.

SELECT DATEDIFF(DAY,"C1","C2") FROM "T1"

8.9.2 DAYOFWEEK
Returns the day of the week that the specified date falls on. Note that the first day of the week is Sunday.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 566



(1) Specification format
scalar-function-DAYOFWEEK ::= {DAYOFWEEK|DOW}(target-data)
 
  target-data ::= value-expression

Note: DOW can be used as an abbreviated form for DAYOFWEEK.

(2) Explanation of specification format
target-data:

Specifies the data representing the day.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• The data type of the target data must be DATE, TIMESTAMP, CHAR, or VARCHAR. In the case of CHAR or
VARCHAR, you must specify a character string literal that adheres to the predefined input representation formats.
For details about the predefined input representations, see 6.3.3 Predefined character-string representations.

• You cannot specify a dynamic parameter by itself for the target data.

The following example illustrates the result of executing the scalar function DAYOFWEEK.

Example
Return an integer value indicating the day of the week that September 12, 2012 falls on.
DAYOFWEEK(DATE'2012-09-12') → 4
September 12, 2012 is a Wednesday, so it returns 4.

(3) Rules
1. The data type of the execution result is INTEGER.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has the null value, the execution result will be a null value.

4. The relationship between the value of the execution result and the day of the week is shown in the following table.

Table 8-25: Relationship between the value of the execution result and the day of the week

Value of execution result Day of week

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

8. Scalar Functions

Hitachi Advanced Database SQL Reference 567



(4) Example
Example:

Return an integer value that indicates the day of the week for the data in column C2 in table T1.

SELECT "C1",DAYOFWEEK("C2") FROM "T1"

8.9.3 DAYOFYEAR
Returns the specified date as the number of days elapsed since January 1 of that year.

(1) Specification format
scalar-function-DAYOFYEAR ::= {DAYOFYEAR|DOY}(target-data)
 
  target-data ::= value-expression

Note: DOY can be used as an abbreviated form for DAYOFYEAR.

(2) Explanation of specification format
target-data:

Specifies the data representing the day.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• The data type of the target data must be DATE, TIMESTAMP, CHAR, or VARCHAR. In the case of CHAR or
VARCHAR, you must specify a character string literal that adheres to the predefined input representation formats.
For details about the predefined input representations, see 6.3.3 Predefined character-string representations.

• You cannot specify a dynamic parameter by itself for the target data.

The following example illustrates the result of executing the scalar function DAYOFYEAR.

Example
Return the number of days elapsed in the year associated with the date January 15, 2013.
DAYOFYEAR(DATE'2013-01-15') → 15

8. Scalar Functions

Hitachi Advanced Database SQL Reference 568



(3) Rules
1. The value of the execution result will be an integer value from 1 to 366 representing the number of days elapsed

since January 1 of that year.

2. The data type of the execution result will be INTEGER.

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If the target data has the null value, the execution result will be a null value.

(4) Example
Example:

Determine the number of days elapsed in the year associated with target data in column C2 of table T1.

SELECT "C1",DAYOFYEAR("C2") FROM "T1"

8.9.4 EXTRACT
Extracts a part (year, month, day, hour, minute, or second) from data representing the date and time.

(1) Specification format
scalar-function-EXTRACT ::= EXTRACT(extraction-part FROM source-data)
 
  extraction-part ::= {YEAR|MONTH|DAY|HOUR|MINUTE|SECOND}
  source-data ::= value-expression

(2) Explanation of specification format
extraction-part:

Specifies the part to be extracted from the source data. Specify one of the values listed below. Note that HOUR,
MINUTE, and SECOND can be specified only when the source data contains data that represents time.

• YEAR
Specify this to extract the year part from the source data. The range of values of the execution result is 1 to 9999.

• MONTH

8. Scalar Functions

Hitachi Advanced Database SQL Reference 569



Specify this to extract the month part from the source data. The range of values of the execution result is 1 to 12.

• DAY
Specify this to extract the day part from the source data. The range of values of the execution result is 1 to 31.

• HOUR
Specify this to extract the hour part from the source data. The range of values of the execution result is 0 to 23.

• MINUTE
Specify this to extract the minute part from the source data. The range of values of the execution result is 0 to 59.

• SECOND
Specify this to extract the second part from the source data. The range of values of the execution result varies
depending on the fractional seconds precision of the source data, as shown in the following table.

Table 8-26: Range of values of the execution result of the scalar function EXTRACT (when
SECOND is specified as the extraction part)

Fractional seconds precision of the
source data

Range of values of the execution result

0 0 to 59

3 0.000 to 59.999

6 0.000000 to 59.999999

9 0.000000000 to 59.999999999

12 0.000000000000 to 59.999999999999

source-data:
Specifies the source data to be extracted from.
The following rules apply:

• Specify the source data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• If you specify YEAR, MONTH, or DAY for extraction-part, the data type of source-data must be DATE,
TIMESTAMP, CHAR, or VARCHAR. In the case of CHAR or VARCHAR, you must specify a character string literal
that adheres to the format of the predefined input representation of a date or time stamp. For details about
predefined input representations, see 6.3.3 Predefined character-string representations.

• If you specify HOUR, MINUTE, or SECOND for extraction-part, the data type of source-data must be TIME,
TIMESTAMP, CHAR, or VARCHAR. In the case of CHAR or VARCHAR, you must specify a character string literal
that adheres to the format of the predefined input representation of a time or time stamp. For details about
predefined input representations, see 6.3.3 Predefined character-string representations.

• You cannot specify a dynamic parameter by itself for the source data.

The following example illustrates the result of executing the scalar function EXTRACT.

Example
Extract the year part of from the DATE type data DATE'2012-03-15'.
EXTRACT(YEAR FROM DATE'2012-03-15') → 2012

8. Scalar Functions

Hitachi Advanced Database SQL Reference 570



(3) Rules
1. If you specify anything other than SECOND for extraction-part, the data type of the execution result will be
INTEGER.

2. If you specify SECOND for extraction-part, the data type of the execution result varies depending on the fractional
seconds precision of the source data, as shown in the following table.

Table 8-27: Data type of the execution result of the scalar function EXTRACT (when SECOND
is specified as the extraction part)

Fractional seconds precision of the source data Data type of the execution result

0 INTEGER

3 DECIMAL(5,3)

6 DECIMAL(8,6)

9 DECIMAL(11,9)

12 DECIMAL(14,12)

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If the source data has a null value, the execution result will be a null value.

(4) Examples
Example 1:

Retrieve data from table T1 where the year in column C2 is 2012.

SELECT "C1","C2" FROM "T1"
    WHERE EXTRACT(YEAR FROM "C2")=2012

Example 2:
Delete all of the rows from table T1 where the month in column C2 is not March.

DELETE FROM "T1"
    WHERE EXTRACT(MONTH FROM "C2")<>3

8. Scalar Functions

Hitachi Advanced Database SQL Reference 571



8.9.5 GETAGE
Determines a person's age on a reference date given their birth date.

(1) Specification format
scalar-function-GETAGE ::= GETAGE(birth-date,reference-date)
 
  birth-date ::= value-expression
  reference-date ::= value-expression

(2) Explanation of specification format
birth-date:

Specifies the person's birth date.
The following rules apply:

• Specify birth-date in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• The data type of birth-date must be DATE, TIMESTAMP, CHAR, or VARCHAR. In the case of CHAR or
VARCHAR, you must specify a character string literal that adheres to the format of the predefined input
representation of a date or time stamp. For details about predefined input representations, see 6.3.3 Predefined
character-string representations.

• If a dynamic parameter is specified by itself for birth-date, the assumed data type of the dynamic parameter is
DATE.

reference-date:
Specifies the reference date for calculating the person's age.
The following rules apply:

• Specify reference-date in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• The data type of reference-date must be DATE, TIMESTAMP, CHAR, or VARCHAR. In the case of CHAR or
VARCHAR, you must specify a character string literal that adheres to the format of the predefined input
representation of a date or time stamp. For details about predefined input representations, see 6.3.3 Predefined
character-string representations.

• If a dynamic parameter is specified by itself for reference-date, the assumed data type of the dynamic parameter
is DATE.

The following example illustrates the result of executing the scalar function GETAGE.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 572



Example
Determine the age on September 30, 2014 of a person born on January 15, 1986.
GETAGE(DATE'1986-01-15',DATE'2014-09-30') → 28

(3) Rules
1. The data type of the execution result is INTEGER.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If birth-date or reference-date is the null value, the execution result will be the null value.

4. If reference-date is earlier than birth-date, the execution result will be 0.

5. The scalar function GETAGE returns a person's age on the reference date. The same day one year after the birth date
counts as 1 year old. Note that a birth date of February 29 is treated as March 1 in non-leap years.

(4) Example
Example:

Using the data in the employees table (EMPLIST), determine the number of employees 30 years of age or older as
of January 1, 2015. The column BIRTH holds the employees' birth dates.

SELECT COUNT(*) FROM "EMPLIST"
    WHERE GETAGE("BIRTH",DATE'2015-01-01')>=30

8.9.6 LASTDAY
Returns the date or datetime of the last day of the month specified in the datetime data.

(1) Specification format
scalar-function-LASTDAY ::= {LASTDAY|LAST_DAY}(datetime-data)
 
  datetime-data ::= value-expression

(2) Explanation of specification format
datetime-data:

Specifies the datetime data to be processed.
The following rules apply:

• Specify datetime-data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• The data type of datetime-data must be DATE, TIMESTAMP, CHAR, or VARCHAR. In the case of CHAR or
VARCHAR, you must specify a character string literal that adheres to the format of the predefined input
representation of a date or time stamp. For details about predefined input representations, see 6.3.3 Predefined
character-string representations.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 573



• You cannot specify a dynamic parameter by itself for datetime-data.

(3) Rules
1. The data type of the execution result will be as follows.

• If datetime-data is a DATE type or a predefined input representation of a date (CHAR or VARCHAR type), the
data type of the execution result will be DATE.

• If datetime-data is a TIMESTAMP type or a predefined input representation of a time stamp (CHAR or VARCHAR
type), the data type of the execution result will be TIMESTAMP.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If datetime-data is the null value, the execution result will be the null value.

4. If datetime-data is a TIMESTAMP type or a predefined input representation of a time stamp (CHAR or VARCHAR
type), the values that were entered for the hours, minutes, seconds, and fractional seconds parts are returned
unchanged.
Example
LASTDAY(TIMESTAMP'2014-07-03 15:30:45.123') → '2014-07-31 15:30:45.123'

(4) Example
Example:

Determine the date of the last day of the month of the datetime data in column C2 of table T1.

SELECT "C1",LASTDAY("C2") FROM "T1"

8.9.7 ROUND
Return the datetime data rounded to the unit specified in the datetime format.

For the scalar function ROUND that is used to round numeric data, see 8.4.9 ROUND.

(1) Specification format
scalar-function-ROUND ::= ROUND(datetime-data,datetime-format)
 
  datetime-data ::= value-expression
  datetime-format ::= literal

8. Scalar Functions

Hitachi Advanced Database SQL Reference 574



(2) Explanation of specification format
datetime-data:

Specifies the datetime data to be rounded.
The following rules apply:

• Specify the datetime data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• The data type of the datetime data must be DATE, TIME, or TIMESTAMP.

• You cannot specify a dynamic parameter by itself for the datetime data.

datetime-format:
Specifies the units of the datetime data to be rounded.
The following rules apply:

• Specify a character string literal for datetime-format. For details about character string literals, see 6.3 Literals.

• The following table shows the elements that can be specified in the datetime format.

Table 8-28: Elements that can be specified in the datetime format

No. Element that can be
specified in the datetime
format

Unit Description

1 CC Century If the datetime data is on or after the 51st year of the century, it is rounded
up to January 1 00:00:00 of the first year of the next century. If it is on or
before the 50th year, it is rounded down to January 1 00:00:00 of the first
year of the same century.
• Example of rounding up
ROUND(TIMESTAMP'1951-10-04 15:25:38','CC')
→ TIMESTAMP'2001-01-01 00:00:00'

• Example of rounding down
ROUND(TIMESTAMP'1950-10-04 15:25:38','CC')
→ TIMESTAMP'1901-01-01 00:00:00'

2 YYYY
YYYYN
YY
YYN

Year If the datetime data is on or after July 1, it is rounded up to January 1 00:00:00
of the next year. If it is on or before June 30, it is rounded down to January
1 00:00:00 of the same year.
• Example of rounding up
ROUND(TIMESTAMP'2013-07-01 15:25:38','YYYY')
→ TIMESTAMP'2014-01-01 00:00:00'

• Example of rounding down
ROUND(TIMESTAMP'2013-06-30 15:25:38','YYYY')
→ TIMESTAMP'2013-01-01 00:00:00'

3 Q Quarter If the datetime data is on or after the 16th of the second month of the quarter
(February, May, August, or November), it is rounded up to 00:00:00 on the
first day of the first month of the next quarter. If it is on or before the 15th,
it is rounded down to 00:00:00 on the first day of the first month of the same
quarter.
• Example of rounding up
ROUND(TIMESTAMP'2013-11-16 15:25:38','Q')
→ TIMESTAMP'2014-01-01 00:00:00'

• Example of rounding down
ROUND(TIMESTAMP'2013-11-15 15:25:38','Q')
→ TIMESTAMP'2013-10-01 00:00:00'

8. Scalar Functions

Hitachi Advanced Database SQL Reference 575



No. Element that can be
specified in the datetime
format

Unit Description

Quarters are assumed to be three months long, starting on January 1.
• First quarter: January 1 - March 31
• Second quarter: April 1 - June 30
• Third quarter: July 1 - September 30
• Fourth quarter: October 1 - December 31

4 MONTH
MON
MM

Month If the datetime data is on or after the 16th, it is rounded up to 00:00:00 on
the first day of the next month. If it is on or before the 15th, it is rounded
down to 00:00:00 on the first day of the same month.
• Example of rounding up
ROUND(TIMESTAMP'2014-01-16 15:25:38','MONTH')
→ TIMESTAMP'2014-02-01 00:00:00'

• Example of rounding down
ROUND(TIMESTAMP'2014-01-15 15:25:38','MONTH')
→ TIMESTAMP'2014-01-01 00:00:00'

5 WW Week The first day of the week is assumed to be the day of the week of the first
day of the same year.
If the datetime data is on or after 12:00 noon on the fourth day from the start
of the week, it is rounded up to 00:00:00 on the first day of the next week.
If it is before 12:00 noon on the fourth day, it is rounded down to 00:00:00
on the first day of the same week.
• Example of rounding up
ROUND(TIMESTAMP'2014-01-04 15:25:38','WW')
→ TIMESTAMP'2014-01-08 00:00:00'
Because January 1, 2014 falls on a Wednesday, the first day of the week
is taken to be Wednesday. The example is on or after 12:00 noon on the
fourth day of that week (Saturday January 4), and so is rounded up to
00:00:00 on the first day of the next week (January 8).

• Example of rounding down
ROUND(TIMESTAMP'2014-01-04 10:25:38','WW')
→ TIMESTAMP'2014-01-01 00:00:00'
Because January 1, 2014 falls on a Wednesday, the first day of the week
is taken to be Wednesday. The example is before 12:00 noon on the fourth
day of that week (Saturday January 4), and so is rounded down to
00:00:00 on the first day of the same week (January 1).

6 W Week The first day of the week is assumed to be the day of the week of the first
day of the same month.
If the datetime data is on or after 12:00 noon on the fourth day from the start
of the week, it is rounded up to 00:00:00 on the first day of the next week.
If it is before 12:00 noon on the fourth day, it is rounded down to 00:00:00
on the first day of the same week.
• Example of rounding up
ROUND(TIMESTAMP'2014-02-04 12:25:38','W')
→ TIMESTAMP'2014-02-08 00:00:00'
Because February 1, 2014 falls on a Saturday, the first day of the week
is taken to be Saturday. The example is on or after 12:00 noon on the
fourth day of that week (Tuesday, February 4), and so is rounded up to
00:00:00 on the first day of the next week (February 8).

• Example of rounding down
ROUND(TIMESTAMP'2014-02-04 11:55:38','W')
→ TIMESTAMP'2014-02-01 00:00:00'
Because February 1, 2014 falls on a Saturday, the first day of the week
is taken to be Saturday. The example is before 12:00 noon on the fourth

8. Scalar Functions

Hitachi Advanced Database SQL Reference 576



No. Element that can be
specified in the datetime
format

Unit Description

day of that week (Tuesday, February 4), and so is rounded down to
00:00:00 on the first day of the same week (February 1).

7 DAY
DAYN
DY
DYN
D

Week The first day of the week is defined as Sunday.
If the datetime data is on or after 12:00 noon on the fourth day (Wednesday)
from the start of the week, it is rounded up to 00:00:00 on the first day of
the next week. If it is before 12:00 noon on the fourth day, it is rounded down
to 00:00:00 on the first day of the same week.
• Example of rounding up
ROUND(TIMESTAMP'2014-02-05 12:25:38','DAY')
→ TIMESTAMP'2014-02-09 00:00:00'
February 5, 2014 falls on a Wednesday. Therefore, it is rounded up to
00:00:00 on February 9 (Sunday).

• Example of rounding down
ROUND(TIMESTAMP'2014-02-05 11:55:38','DAY')
→ TIMESTAMP'2014-02-02 00:00:00'
February 5, 2014 falls on a Wednesday. Therefore, it is rounded down
to 00:00:00 on February 2 (Sunday).

8 DD
DDD

Day If the datetime data is on or after 12:00 noon, it is rounded up to 00:00:00
on the next day. If it is before 12:00 noon, it is rounded down to 00:00:00
on the same day.
• Example of rounding up
ROUND(TIMESTAMP'2014-01-16 15:25:38','DD')
→ TIMESTAMP'2014-01-17 00:00:00'

• Example of rounding down
ROUND(TIMESTAMP'2014-01-16 10:25:38','DD')
→ TIMESTAMP'2014-01-16 00:00:00'

9 HH
HH12
HH24

Hour If the datetime data is on or after the 30 minute mark, it is rounded up to the
beginning of the next hour. If it is on or before the 29 minute mark, it is
rounded down to the beginning of the same hour.
• Example of rounding up
ROUND(TIMESTAMP'2014-01-16 15:35:38','HH')
→ TIMESTAMP'2014-01-16 16:00:00'

• Example of rounding down
ROUND(TIMESTAMP'2014-01-16 15:25:38','HH')
→ TIMESTAMP'2014-01-16 15:00:00'

10 MI Minute If the datetime data is on or after the 30 second mark, it is rounded up to the
beginning of the next minute. If it is on or before the 29 second mark, it is
rounded down to the beginning of the same minute.
• Example of rounding up
ROUND(TIMESTAMP'2014-01-16 15:35:33','MI')
→ TIMESTAMP'2014-01-16 15:36:00'

• Example of rounding down
ROUND(TIMESTAMP'2014-01-16 15:35:28','MI')
→ TIMESTAMP'2014-01-16 15:35:00'

11 SSSSS
SS

Second If the datetime data is on or after the 500 millisecond mark, it is rounded up
to the beginning of the next second. If it is before the 500 millisecond mark,
it is rounded down to the beginning of the same second.
• Example of rounding up
ROUND(TIME'11:59:30.596123','SS')

8. Scalar Functions

Hitachi Advanced Database SQL Reference 577



No. Element that can be
specified in the datetime
format

Unit Description

→ TIME'11:59:31.000000'
• Example of rounding down
ROUND(TIME'11:59:30.488123','SS')
→ TIME'11:59:30.000000'

• The datetime format must be specified as single-byte character string data. Uppercase and lowercase letters are
treated the same.

• In the cases where multiple datetime format elements are listed, the execution results will be the same regardless
of which alternative is specified. For example, you can specify YYYY or YYYYN and the execution results will
be the same.

• Spaces before and after the datetime format element are ignored.

• The length of the datetime format cannot exceed 64 bytes.

(3) Rules
1. The data type and data length of the execution result are shown in the following table.

Table 8-29: Data type and data length of the execution result of the scalar function ROUND

Data type and data length of the datetime data Data type and data length of the execution result

DATE DATE

TIME(p) TIME(p)

TIMESTAMP(p) TIMESTAMP(p)

Legend: p: Fractional seconds precision

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the datetime data has a null value, the execution result will be a null value.

4. When the type of datetime-data is DATE but the datetime format is an element for rounding based on time within
the day (DDD, DD, HH, HH12, HH24, MI, SSSSS, or SS), the original datetime data is returned unchanged.

5. When you specify TIME type data as the datetime data, you cannot specify the non-time elements in the datetime
format (CC, YYYY, YYYYN, YY, YYN, Q, MONTH, MON, MM, WW, W, DAY, DAYN, DY, DYN, D, DDD, and DD).

6. When the type of datetime-data is DATE, 00:00:00 is assumed for the time elements. This is why the week is rounded
down (not up) in the following example.
Example
ROUND(DATE'2013-10-04','W') → DATE'2013-10-01'

7. If the data type of the execution result is DATE, an error occurs if the execution result falls outside the range January
1, 0001 to December 31, 9999.

8. If the data type of the execution result is TIME, an error occurs if the execution result falls outside the range
00:00:00.000000000000 to 23:59:59.999999999999.

9. If the data type of the execution result is TIMESTAMP, an error occurs if the execution result falls outside the range
January 1, 0001 00:00:00.000000000000 to December 31, 9999 23:59:59.999999999999.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 578



(4) Example
Example:

From the sales history table (SALESLIST), retrieve the quantities purchased in 2013 of product code (PUR-
CODE) P001, and group the results into six-month periods (January 1 to June 30 and July 1 to December 31).

SELECT SUM("PUR-NUM") FROM "SALESLIST"
    WHERE "PUR-DATE" BETWEEN DATE'2013-01-01' AND DATE'2013-12-31'
    AND "PUR-CODE"='P001'
    GROUP BY ROUND("PUR-DATE",'YYYY')

When element YYYY is specified for the datetime format, data from July 1 and later is rounded up, and data from
June 30 and earlier is rounded down. The data can therefore be grouped into six-month periods, with 1/1 - 6/30 as
the first half and 7/1 - 12/31 as the second half.

8.9.8 TRUNC
Returns the datetime data truncated to the unit specified in the datetime format.

For the scalar function TRUNC that is used to truncate numeric data, see 8.4.12 TRUNC.

(1) Specification format
scalar-function-TRUNC ::= TRUNC(datetime-data,datetime-format)
 
  datetime-data ::= value-expression
  datetime-format ::= literal

(2) Explanation of specification format
datetime-data:

Specifies the datetime data to be truncated.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 579



The following rules apply:

• Specify the datetime data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• The data type of the datetime data must be DATE, TIME, or TIMESTAMP.

• You cannot specify a dynamic parameter by itself for the datetime data.

datetime-format:
Specifies the units of the datetime data to be truncated.
The following rules apply:

• Specify a character string literal for datetime format. For details about character string literals, see 6.3 Literals.

• The following table shows the elements that can be specified in the datetime format.

Table 8-30: Elements that can be specified in the datetime format

No. Element that can be
specified in the datetime
format

Unit Description

1 CC Century The datetime data is rounded down to January 1 00:00:00 of the first year
of the same century.
Example
TRUNC(TIMESTAMP'2014-03-14 15:25:38','CC')
→ TIMESTAMP'2001-01-01 00:00:00'

2 YYYY
YYYYN
YY
YYN

Year The datetime data is rounded down to January 1 00:00:00 of the same year.
Example
TRUNC(TIMESTAMP'2014-03-14 15:25:38','YYYY')
→ TIMESTAMP'2014-01-01 00:00:00'

3 Q Quarter The datetime data is rounded down to 00:00:00 on the first day of the first
month of the same quarter.
Example
TRUNC(TIMESTAMP'2014-03-14 15:25:38','Q')
→ TIMESTAMP'2014-01-01 00:00:00'
Quarters are assumed to be three months long, starting on January 1.
• First quarter: January 1 to March 31
• Second quarter: April 1 to June 30
• Third quarter: July 1 to September 30
• Fourth quarter: October 1 to December 31

4 MONTH
MON
MM

Month The datetime data is rounded down to 00:00:00 on the first day of the same
month.
Example
TRUNC(TIMESTAMP'2014-03-14 15:25:38','MONTH')
→ TIMESTAMP'2014-03-01 00:00:00'

5 WW Week The datetime data is rounded down to 00:00:00 on the first day of the same
week. The first day of the week is assumed to be the day of the week of the
first day of the same year.
Example
TRUNC(TIMESTAMP'2014-03-14 15:25:38','WW')
→ TIMESTAMP'2014-03-12 00:00:00'
Because January 1, 2014 falls on a Wednesday, the first day of the week is
taken to be Wednesday. The datetime data is therefore rounded down to
00:00:00 on March 12, which is the first day (Wednesday) of that week.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 580



No. Element that can be
specified in the datetime
format

Unit Description

6 W Week The datetime data is rounded down to 00:00:00 on the first day of the same
week. The first day of the week is assumed to be the day of the week of the
first day of the same month.
Example
TRUNC(TIMESTAMP'2014-03-14 15:25:38','W')
→ TIMESTAMP'2014-03-08 00:00:00'
Because March 1, 2014 falls on a Saturday, the first day of the week is taken
to be Saturday. The datetime data is therefore rounded down to 00:00:00 on
March 8, which is the first day (Saturday) of that week.

7 DAY
DAYN
DY
DYN
D

Week The datetime data is rounded down to 00:00:00 on the first day of the same
week. The first day of the week is assumed to be Sunday.
Example
TRUNC(TIMESTAMP'2014-03-14 15:25:38','DAY')
→ TIMESTAMP'2014-03-09 00:00:00'
March 14, 2014 falls on a Friday. The datetime data is therefore rounded
down to 00:00:00 on March 9, which is the first day (Sunday) of that week.

8 DD
DDD

Day The datetime data is rounded down to 00:00:00 on the same day.
Example
TRUNC(TIMESTAMP'2014-03-14 15:25:38','DD')
→ TIMESTAMP'2014-03-14 00:00:00'

9 HH
HH12
HH24

Hour The datetime data is rounded down to the beginning of the same hour.
Example
TRUNC(TIMESTAMP'2014-03-14 15:25:38','HH')
→ TIMESTAMP'2014-03-14 15:00:00'

10 MI Minute The datetime data is rounded down to the beginning of the same minute.
Example
TRUNC(TIMESTAMP'2014-03-14 15:25:38','MI')
→ TIMESTAMP'2014-03-14 15:25:00'

11 SSSSS
SS

Second The datetime data is rounded down to the beginning of the same second.
Example
TRUNC(TIME'11:58:31.784','SS')
→ TIME'11:58:31.000'

• The datetime format must be specified as single-byte character string data. Uppercase and lowercase letters are
treated the same.

• In the cases where multiple datetime format elements are listed, specify one of them. The execution results will
be the same regardless of which alternative is specified. For example, you can specify YYYY or YYYYN and the
execution results will be the same.

• Spaces before and after the datetime format element are ignored.

• The length of the datetime format cannot exceed 64 bytes.

(3) Rules
1. The data type and data length of the execution result are shown in the following table.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 581



Table 8-31: Data type and data length of the execution result of the scalar function TRUNC

Data type and data length of the datetime data Data type and data length of the execution result

DATE DATE

TIME(p) TIME(p)

TIMESTAMP(p) TIMESTAMP(p)

Legend: p: Fractional seconds precision

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the datetime data has a null value, the execution result will be a null value.

4. When the type of datetime data is DATE but the datetime format is an element for rounding based on the time of
day (DDD, DD, HH, HH12, HH24, MI, SSSSS, or SS), the original datetime data is returned unchanged.

5. When you specify TIME type data as the datetime data, you cannot specify the non-time elements in the datetime
format (CC, YYYY, YYYYN, YY, YYN, Q, MONTH, MON, MM, WW, W, DAY, DAYN, DY, DYN, D, DDD, and DD).

6. An error results if you specify DAY, DAYN, DY, DYN, or D in the datetime format and the execution result is earlier
than January 1, 0001.

(4) Example
Example:

From the sales history table (SALESLIST), retrieve the quantities of product code (PUR-CODE) P001 purchased
in November 2013 and group the results by week.

SELECT SUM("PUR-NUM") FROM "SALESLIST"
    WHERE "PUR-DATE" BETWEEN DATE'2013-11-01' AND DATE'2013-11-30'
    AND "PUR-CODE"='P001'
    GROUP BY TRUNC("PUR-DATE",'DAY')

8. Scalar Functions

Hitachi Advanced Database SQL Reference 582



When you specify the element DAY for the datetime format, it groups the quantities purchased by week, using Sunday
as the first day of the week.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 583



8.10 Binary column functions (binary data operations)

This section describes the functions and specification formats of the binary column functions that operate on binary
data.

8.10.1 CONCAT
Concatenates two binary data items.

For the scalar function that concatenates character data, see 8.5.1 CONCAT.

(1) Specification format
scalar-function-CONCAT ::= CONCAT(target-data-1,target-data-2)
 
  target-data-1 ::= value-expression
  target-data-2 ::= value-expression

(2) Explanation of specification format
target-data-1 and target-data-2:

Specifies the binary data to be concatenated.
The following rules apply:

• Specify target-data-1 and target-data-2 in the form of value expressions. For details about value expressions,
see 7.20 Value expression.

• Specify BINARY or VARBINARY type data for target-data-1 and target-data-2.

• You cannot specify a dynamic parameter by itself for target-data-1 and target-data-2.

The following example illustrates the result of executing the scalar function CONCAT.

Example:
Concatenate two binary data items (X'ABC1230000' and X'DEF456').
CONCAT(X'ABC1230000',X'DEF456') → X'ABC1230000DEF456'

(3) Rules
1. The data type and data length of the execution result are shown in the following table.

Table 8-32: Data type and data length of the execution result of the scalar function CONCAT

Data type and data length of
target-data-1

Data type and data length of
target-data-2

Data type and data length of the execution
result

BINARY(m) BINARY(n) BINARY(m + n)

VARBINARY(n)
Actual data length: L2

VARBINARY(m + n)
Actual data length: m + L2

VARBINARY(m)
Actual data length: L1

BINARY(n) VARBINARY(m + n)
Actual data length: L1 + n

8. Scalar Functions

Hitachi Advanced Database SQL Reference 584



Data type and data length of
target-data-1

Data type and data length of
target-data-2

Data type and data length of the execution
result

VARBINARY(n)
Actual data length: L2

VARBINARY(m + n)
Actual data length: L1 + L2

Legend:
m: Maximum length of target-data-1
n: Maximum length of target-data-2
L1: Actual data length of target-data-1
L2: Actual data length of target-data-2

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If either target-data-1 or target-data-2 has a null value, the execution result will be a null value.

4. You cannot concatenate target-data-1 and target-data-2 if the result of the concatenation operation would exceed
the maximum binary data length of 32,000 bytes.

8.10.2 SUBSTRB
Extracts a substring from binary data starting from any position in the binary data.

(1) Specification format
scalar-function-SUBSTRB ::= SUBSTRB(source-binary-data, start-position[,number-of-byt
es-to-extract])
 
  source-binary-data ::= value-expression
  start-position ::= value-expression
  number-of-bytes-to-extract ::= value-expression

(2) Explanation of specification format
source-binary-data:

Specifies the source binary data.
The following rules apply:

• Specify the source binary data in the form of a value expression. For details about value expressions, see 7.20 
Value expression.

• Specify BINARY or VARBINARY type data for the source binary data.

• You cannot specify a dynamic parameter by itself for the source binary data.

start-position:
Specifies the starting byte position from which binary data is to be extracted.
If you specify a value greater than or equal to 0 for the start position, the value represents the position from the
beginning of the source binary data. For example, if the start position is 2, the extraction will start at the second
byte.
If you specify a negative value for the start position, the value represents a position from the end of the source binary
data. For example, if the start position is -2, the extraction will start at the second byte from the end.
The following rules apply:

8. Scalar Functions

Hitachi Advanced Database SQL Reference 585



• Specify the start position in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify an integer for the start position (INTEGER or SMALLINT type data).

• If you specify 0 for the start position, a start position of 1 is assumed.

• If a dynamic parameter is specified by itself for the start position, the assumed data type of the dynamic parameter
will be INTEGER.

number-of-bytes-to-extract:
Specifies the length of the binary data to extract.
The following rules apply:

• Specify number-of-bytes-to-extract in the form of a value expression. For details about value expressions, see
7.20 Value expression.

• Specify an integer greater than or equal to 0 (data of type INTEGER or SMALLINT) for number-of-bytes-to-
extract.

• If you specify a dynamic parameter by itself for number-of-bytes-to-extract, the assumed data type of the dynamic
parameter is INTEGER.

The following examples illustrate the result of executing the scalar function SUBSTRB.

Examples:

• Extract three bytes starting from the second byte from the beginning of the binary data
X'ABCDEF1234567890'.
SUBSTRB(X'ABCDEF1234567890',2,3) → X'CDEF12'

• Extract two bytes starting from the third byte from the end of the binary data X'ABCDEF1234567890'.
SUBSTRB(X'ABCDEF1234567890',-3,2) → X'5678'

(3) Rules
1. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

2. In the following cases, the execution result will be a null value:

• If number-of-bytes-to-extract has a negative value (the result will be the null value regardless of what is specified
for the source binary data or the start position)

• If the source binary data, start position, or number of bytes to extract is a null value

3. The data type and data length of the execution result are shown in the following table.

Table 8-33: Data type and data length of the execution result of the scalar function SUBSTRB

Data type and data length of the source binary data Data type and data length of the execution result

BINARY(n) VARBINARY(n)

VARBINARY(n)

Legend:
n: Maximum length of the source binary data

4. The following table shows the number of bytes of binary data that can be extracted by the scalar function SUBSTRB.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 586



Table 8-34: Number of bytes of binary data that can be extracted by the scalar function
SUBSTRB

Specification of the scalar function
SUBSTRB

Number of bytes of binary data that can be extracted

Specification of
number of bytes to
extract

Value specified for
start position

Specified Positive value MAX{0, MIN (number of bytes to extract, number of bytes in source binary data
- start position + 1)}

0 MIN(number of bytes to extract, number of bytes in source binary data)

Negative value MIN(number of bytes to extract, absolute value of the start position, number of
bytes in source binary data)

Omitted Positive value MAX(0, number of bytes in source binary data - start position + 1)

0 number of bytes in source binary data

Negative value MIN(absolute value of the start position, number of bytes in source binary data)

5. In the following cases, the execution result will be data whose actual length is 0 bytes:

• If the execution result is binary data of length 0

• If the actual length of the source binary data is 0 bytes

• If the specified start position satisfies either of the following inequalities:
start position > number of bytes in source binary data
start position < -number of bytes in source binary data

6. If the number of bytes in the source binary data, starting from the start position, is less than the number of bytes to
extract, all of the source binary data, starting from the start position, is returned.
Example:
SUBSTRB(X'ABCDEF',2,5) → X'CDEF'

8. Scalar Functions

Hitachi Advanced Database SQL Reference 587



8.11 Binary column functions (bit operations)

This section describes the functions and specification formats of the binary column functions that perform bit operations.

8.11.1 BITAND
Returns the bitwise logical AND of two binary data items.

(1) Specification format
scalar-function-BITAND ::= BITAND(target-data-1,target-data-2)
 
  target-data-1 ::= value-expression
  target-data-2 ::= value-expression

(2) Explanation of specification format
target-data-1 and target-data-2:

Specifies the target binary data.
The following rules apply:

• Specify target-data-1 and target-data-2 in the form of value expressions. For details about value expressions,
see 7.20 Value expression.

• Specify BINARY or VARBINARY type data for target-data-1 and target-data-2.

• Make sure that target-data-1 and target-data-2 have the same data length (if the target data is BINARY type),
or actual length (if the target data is VARBINARY type).

• You cannot specify a dynamic parameter by itself for target-data-1.

• If you specify a dynamic parameter by itself for target-data-2, the data type and data length of target-data-1 are
assumed for the data type and data length of the dynamic parameter.

The following example illustrates the result of executing the scalar function BITAND.

Examples:
Return the bitwise logical AND of two binary data items.
BITAND(B'01011011',B'01001110') → B'01001010'
BITAND(B'01011011',X'FF') → B'01011011'
BITAND(X'0F',X'FF') → X'0F'

(3) Rules
1. The execution result of the scalar function BITAND (the value of the nth bit) is shown in the following table.

Table 8-35: Execution result of the scalar function BITAND (value of the nth bit)

Value of the nth bit of target-
data-1

Value of the nth bit of target-
data-2

Execution result of the scalar function
BITAND (value of the nth bit)

0 0 0

1 0

8. Scalar Functions

Hitachi Advanced Database SQL Reference 588



Value of the nth bit of target-
data-1

Value of the nth bit of target-
data-2

Execution result of the scalar function
BITAND (value of the nth bit)

1 0 0

1 1

2. The data type and data length of the execution result are determined by the data types and data lengths of target-
data-1 and target-data-2. The data type and data length of the execution result of the scalar function BITAND are
shown in the following table.

Table 8-36: Data type and data length of the execution result of the scalar function BITAND

Data type and data length of
target-data-1

Data type and data length of
target-data-2

Data type and data length of the execution
result

BINARY(m) BINARY(m) BINARY(m)

VARBINARY(Y)
Actual length of target data: m

VARBINARY(Y)
Actual length of target data: m

VARBINARY(X)
Actual length of target data: m

BINARY(m) VARBINARY(X)
Actual length of target data: m

VARBINARY(Y)
Actual length of target data: m

VARBINARY(MAX(X,Y))
Actual length of target data: m

Legend:
m: Data length or actual length
X: Data length (when X ≥ m)
Y: Data length (when Y ≥ m)

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If either target-data-1 or target-data-2 has a null value, the execution result will be a null value.

5. If the actual length of target-data-1 and target-data-2 is 0 bytes, the execution result will be binary data whose actual
length is 0 bytes.

8.11.2 BITLSHIFT
Returns the value resulting from shifting the bits of a binary data value to the left.

(1) Specification format
scalar-function-BITLSHIFT ::= BITLSHIFT(target-data,number-of-bits-to-shift)
 
  target-data ::= value-expression
  number-of-bits-to-shift ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the target binary data.
The following rules apply:

8. Scalar Functions

Hitachi Advanced Database SQL Reference 589



• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify BINARY or VARBINARY type data for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

number-of-bits-to-shift:
Specifies the number of bits to shift the binary data.
The following rules apply:

• Specify number-of-bits-to-shift in the form of a value expression. For details about value expressions, see 7.20 
Value expression.

• Specify an integer (data of type INTEGER or SMALLINT) for number-of-bits-to-shift.

• If you specify a positive value for number-of-bits-to-shift, the return value is the target data shifted to the left.

• If you specify a negative value for number-of-bits-to-shift, the return value is the target data shifted to the right.

• If you specify 0 for number-of-bits-to-shift, the same binary data as the target data is returned.

• If you specify a dynamic parameter by itself for number-of-bits-to-shift, the assumed data type of the dynamic
parameter is INTEGER.

The following example illustrates the result of executing the scalar function BITLSHIFT.

Examples:
Return the specified binary data value with its bits shifted to the left.
BITLSHIFT(B'01011011',1) → B'10110110'
BITLSHIFT(B'01011011',8) → B'00000000'
BITLSHIFT(B'01011011',0) → B'01011011'
BITLSHIFT(X'0F0F',8) → X'0F00'
If you specify a negative value for number-of-bits-to-shift, the return value is the target data shifted to the right.
BITLSHIFT(B'01011011',-3) → B'00001011'
BITLSHIFT(X'0F0F',-16) → X'0000'

(3) Rules
1. The bits vacated by shifting are filled with B'0'.

2. If the data length of the target data (or the actual length if the target data is VARBINARY type) is m, and the number
of bits to shift is n, the execution result of BITLSHIFT will be as shown in the following table.

Table 8-37: Execution result of BITLSHIFT

Conditions Execution result of BITLSHIFT

n > 0 8 × m ≤ n Returns binary data in which X'00' is set to the number of bytes
in the data length of the target data (or actual length if the target
data is VARBINARY type).

0 < n < 8 × m Returns binary data in which the target data is shifted n bits to the
left.

n=0 The same binary data as the target data is returned.

n < 0 0 < |n| < 8 × m Returns binary data in which the target data is shifted |n| bits to the
right.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 590



Conditions Execution result of BITLSHIFT

Other than the above Returns binary data in which X'00' is set to the number of bytes
in the data length of the target data (or actual length if the target
data is VARBINARY type).

3. The data type and data length of the execution result will be the data type and data length of the target data.

4. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

5. If either the target data or number-of-bits-to-shift is the null value, the execution result will be the null value.

6. If the target data is binary data whose actual length is 0 bytes, the execution result will be binary data whose actual
length is 0 bytes.

8.11.3 BITNOT
Returns the bitwise logical NOT of a binary data item.

(1) Specification format
scalar-function-BITNOT ::= BITNOT(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the target binary data.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify BINARY or VARBINARY type data for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

The following example illustrates the result of executing the scalar function BITNOT.

Examples:
Return the bitwise logical NOT of a binary data item.
BITNOT (B'01011011') → B'10100100'
BITNOT (B'11010001') → B'00101110'
BITNOT (X'0F') → X'F0'

(3) Rules
1. The data type and data length of the execution result will be the data type and data length of the target data.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has a null value, the execution result will be a null value.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 591



4. If the target data is binary data whose actual length is 0 bytes, the execution result will be binary data whose actual
length is 0 bytes.

5. The execution result of the scalar function BITNOT (value of the nth bit) is shown in the following table.

Table 8-38: Execution result of the scalar function BITNOT (value of the nth bit)

Value of the nth bit of the target data Execution result of the scalar function BITNOT (value of
the nth bit)

0 1

1 0

8.11.4 BITOR
Returns the bitwise inclusive OR of two binary data items.

(1) Specification format
scalar-function-BITOR ::= BITOR(target-data-1,target-data-2)
 
  target-data-1 ::= value-expression
  target-data-2 ::= value-expression

(2) Explanation of specification format
target-data-1 and target-data-2:

Specifies the target binary data.
The following rules apply:

• Specify target-data-1 and target-data-2 in the form of value expressions. For details about value expressions,
see 7.20 Value expression.

• Specify BINARY or VARBINARY type data for target-data-1 and target-data-2.

• Make sure that target-data-1 and target-data-2 have the same data length (if the target data is BINARY type),
or actual length (if the target data is VARBINARY type).

• You cannot specify a dynamic parameter by itself for target-data-1.

• If you specify a dynamic parameter by itself for target-data-2, the data type and data length of target-data-1 are
assumed for the data type and data length of the dynamic parameter.

The following example illustrates the result of executing the scalar function BITOR.

Examples:
Return the bitwise inclusive OR of two binary data items.
BITOR(B'01011011',B'01001110') → B'01011111'
BITOR(B'01011011',X'FF') → B'11111111'
BITOR(X'0F',X'FF') → X'FF'

(3) Rules
1. The execution result of the scalar function BITOR (value of the nth bit) is shown in the following table.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 592



Table 8-39: Execution result of the scalar function BITOR (value of the nth bit)

Value of the nth bit of target-
data-1

Value of the nth bit of target-
data-2

Execution result of the scalar function BITOR
(value of the nth bit)

0 0 0

1 1

1 0 1

1 1

2. The data type and data length of the execution result are determined by the data types and data lengths of target-
data-1 and target-data-2. The data type and data length of the execution result of the scalar function BITOR are
shown in the following table.

Table 8-40: Data type and data length of the execution result of the scalar function BITOR

Data type and data length of
target-data-1

Data type and data length of
target-data-2

Data type and data length of the execution
result

BINARY(m) BINARY(m) BINARY(m)

VARBINARY(Y)
Actual length of target data: m

VARBINARY(Y)
Actual length of target data: m

VARBINARY(X)
Actual length of target data: m

BINARY(m) VARBINARY(X)
Actual length of target data: m

VARBINARY(Y)
Actual length of target data: m

VARBINARY(MAX(X,Y))
Actual length of target data: m

Legend:
m: Data length or actual length
X: Data length (when X ≥ m)
Y: Data length (when Y ≥ m)

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If either target-data-1 or target-data-2 has a null value, the execution result will be a null value.

5. If the actual length of target-data-1 and target-data-2 is 0 bytes, the execution result will be binary data whose actual
length is 0 bytes.

8.11.5 BITRSHIFT
Returns the value resulting from shifting the bits of a binary data value to the right.

(1) Specification format
scalar-function-BITRSHIFT ::= BITRSHIFT(target-data,number-of-bits-to-shift)
 
  target-data ::= value-expression
  number-of-bits-to-shift ::= value-expression

8. Scalar Functions

Hitachi Advanced Database SQL Reference 593



(2) Explanation of specification format
target-data:

Specifies the target binary data.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify BINARY or VARBINARY type data for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

number-of-bits-to-shift:
Specifies the number of bits to shift the binary data.
The following rules apply:

• Specify number-of-bits-to-shift in the form of a value expression. For details about value expressions, see 7.20 
Value expression.

• Specify an integer (data of type INTEGER or SMALLINT) for number-of-bits-to-shift.

• If you specify a positive value for number-of-bits-to-shift, the return value is the target data shifted to the right.

• If you specify a negative value for number-of-bits-to-shift, the return value is the target data shifted to the left.

• If you specify 0 for number-of-bits-to-shift, the same binary data as the target data is returned.

• If you specify a dynamic parameter by itself for number-of-bits-to-shift, the assumed data type of the dynamic
parameter is INTEGER.

The following example illustrates the result of executing the scalar function BITRSHIFT.

Examples:
Return the specified binary data value with its bits shifted to the right.
BITRSHIFT (B'01011011',1) → B'00101101'
BITRSHIFT (B'01011011',8) → B'00000000'
BITRSHIFT (B'01011011',0) → B'01011011'
BITRSHIFT (X'0F0F',8) → X'000F'
If you specify a negative value for number-of-bits-to-shift, the return value is the target data shifted to the left.
BITRSHIFT (B'01011011',-3) → B'11011000'
BITRSHIFT (X'0F0F',-16) → X'0000'

(3) Rules
1. The bits vacated by shifting are filled with B'0'.

2. If the data length of the target data (or the actual length if the target data is VARBINARY type) is m, and the number
of bits to shift is n, the execution result of BITRSHIFT will be as shown in the following table.

Table 8-41: Execution result of BITRSHIFT

Conditions Execution result of BITRSHIFT

n > 0 8 × m ≤ n Returns binary data in which X'00' is set to the number of bytes
in the data length of the target data (or actual length if the target
data is VARBINARY type).

8. Scalar Functions

Hitachi Advanced Database SQL Reference 594



Conditions Execution result of BITRSHIFT

0 < n < 8 × m Returns binary data in which the target data is shifted n bits to the
right.

n=0 The same binary data as the target data is returned.

n < 0 0 < |n| < 8 × m Returns binary data in which the target data is shifted |n| bits to the
left.

Other than the above Returns binary data in which X'00' is set to the number of bytes
in the data length of the target data (or actual length if the target
data is VARBINARY type).

3. The data type and data length of the execution result will be the data type and data length of the target data.

4. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

5. If either the target data or number-of-bits-to-shift is the null value, the execution result will be the null value.

6. If the target data is binary data whose actual length is 0 bytes, the execution result will be binary data whose actual
length is 0 bytes.

8.11.6 BITXOR
Returns the bitwise exclusive OR of two binary data items.

(1) Specification format
scalar-function-BITXOR ::= BITXOR(target-data-1,target-data-2)
 
  target-data-1 ::= value-expression
  target-data-2 ::= value-expression

(2) Explanation of specification format
target-data-1 and target-data-2:

Specifies the target binary data.
The following rules apply:

• Specify target-data-1 and target-data-2 in the form of value expressions. For details about value expressions,
see 7.20 Value expression.

• Specify BINARY or VARBINARY type data for target-data-1 and target-data-2.

• Make sure that target-data-1 and target-data-2 have the same data length (if the target data is BINARY type),
or actual length (if the target data is VARBINARY type).

• You cannot specify a dynamic parameter by itself for target-data-1.

• If you specify a dynamic parameter by itself for target-data-2, the data type and data length of target-data-1 are
assumed for the data type and data length of the dynamic parameter.

The following example illustrates the result of executing the scalar function BITXOR.

Examples:
Return the bitwise exclusive OR of two binary data items.
BITXOR(B'01011011',B'01001110') → B'00010101'

8. Scalar Functions

Hitachi Advanced Database SQL Reference 595



BITXOR(B'01011011',X'FF') → B'10100100'
BITXOR(X'0F',X'FF') → X'F0'

(3) Rules
1. The execution result of the scalar function BITXOR (value of the nth bit) is shown in the following table.

Table 8-42: Execution result of the scalar function BITXOR (value of the nth bit)

Value of the nth bit of target-
data-1

Value of the nth bit of target-
data-2

Execution result of the scalar function
BITXOR (value of the nth bit)

0 0 0

1 1

1 0 1

1 0

2. The data type and data length of the execution result are determined by the data types and data lengths of target-
data-1 and target-data-2. The data type and data length of the execution result of the scalar function BITXOR are
shown in the following table.

Table 8-43: Data type and data length of the execution result of the scalar function BITXOR

Data type and data length of
target-data-1

Data type and data length of
target-data-2

Data type and data length of the execution
result

BINARY(m) BINARY(m) BINARY(m)

VARBINARY(Y)
Actual length of target data: m

VARBINARY(Y)
Actual length of target data: m

VARBINARY(X)
Actual length of target data: m

BINARY(m) VARBINARY(X)
Actual length of target data: m

VARBINARY(Y)
Actual length of target data: m

VARBINARY(MAX(X,Y))
Actual length of target data: m

Legend:
m: Data length or actual length
X: Data length (when X ≥ m)
Y: Data length (when Y ≥ m)

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If either target-data-1 or target-data-2 has a null value, the execution result will be a null value.

5. If the actual length of target-data-1 and target-data-2 is 0 bytes, the execution result will be binary data whose actual
length is 0 bytes.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 596



8.12 Data conversion functions

This section describes the functions and specification formats of the data conversion functions.

8.12.1 ASCII
Returns the character code of the first character of the target data as an integer value.

(1) Specification format
scalar-function-ASCII ::= ASCII(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the target data.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify CHAR or VARCHAR type data for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

The following example illustrates the result of executing the scalar function ASCII. The example assumes Unicode
(UTF-8) as the character encoding.

Examples:
ASCII('A') → 65
ASCII('ABCD') → 65
ASCII(' ') → 14845345

(3) Rules
1. The data type of the execution result is the INTEGER type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. In either of the following cases, the execution result will be a null value:

• If the target data is the null value

• If the actual length of the target data is 0 bytes or 0 characters

(4) Example
Example:

From the character string data items in column C1 of table T1, find the character string data items for which the
first character falls in the range of ASCII codes.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 597



SELECT "C1" FROM "T1" WHERE ASCII("C1")<128

8.12.2 BIN
Converts binary data to a binary string representation (character string data consisting of 0 and 1).

(1) Specification format
scalar-function-BIN ::= BIN(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the target binary data.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify BINARY or VARBINARY type data for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

• You cannot specify binary data whose defined length is 4,001 bytes or greater for the target data.

The following example illustrates the result of executing the scalar function BIN.

Examples:
BIN(B'10100100') → '10100100'
BIN(X'A4') → '10100100'

(3) Rules
1. The data type and data length of the execution result are shown in the following table.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 598



Table 8-44: Data type and data length of the execution result of the scalar function BIN

Data type and data length of target data Data type and data length of the execution result

Data type Defined length Actual length Data type Defined length Actual length

BINARY(n) 1 ≤ n ≤ 4,000 Not applicable. VARCHAR n × 8 n × 8

VARBINARY(n) 1 ≤ n ≤ 4,000 r r × 8

Legend:
n: Defined length of target data
r: Actual length of target data

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has a null value, the execution result will be a null value.

4. If the actual length of the target data is 0 bytes, the execution result will be data with an actual length of 0 bytes.

8.12.3 CAST
Converts the data type of the data.

(1) Specification format
scalar-function-CAST ::= CAST(data-to-convert AS post-conversion-data-type)
 
  data-to-convert ::= {value-expression|NULL}
  post-conversion-data-type ::= data-type

(2) Explanation of specification format
data-to-convert:

Specifies the data whose data type is to be converted.
Specify the data to be converted in the form of a value expression. Alternatively, specify NULL. For details about
value expressions, see 7.20 Value expression.

post-conversion-data-type:
Specifies the data type after conversion. The following are examples:

• INTEGER
Convert to INTEGER type data.

• DECIMAL(5,2)
Convert to DECIMAL type data with a precision of 5 and a scaling of 2.

• CHAR(8)
Convert to CHAR type data with a data length of 8 bytes.

For the specification formats of each data type, see 6.2.1 List of data types.
Note that you cannot specify a VARCHAR type whose data length exceeds 32,000 bytes for the post-conversion-data
type.

The following example illustrates the result of executing the scalar function CAST.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 599



Example:
Convert the DECIMAL type data -12.37 to INTEGER type.
CAST(-12.37 AS INTEGER) → -12

(3) Rules

(a) Common rules
1. The data type of the execution result will be the data type specified in post-conversion-data-type.

2. If a dynamic parameter is specified by itself for data-to-convert, post-conversion-data-type will be assumed to be
the data type of the dynamic parameter.

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If the data to be converted has a null value, or you specify NULL for data-to-convert, the execution result will be a
null value.

5. If the data to be converted is character string data with a length of 0 bytes or 0 characters, it is converted as follows:

• When converting to CHAR type: It is converted to spaces. For example, in the case of CHAR(3), it is converted
to ' '. ∆ represents a half-width space.

• When converting to VARCHAR type: It is converted to VARCHAR type data with a length of 0 bytes or 0 characters.

• When converting to BINARY type: It is converted to X'00'. In the case of BINARY(3), it is converted to
X'000000'.

• When converting to VARBINARY type: It is converted to VARBINARY type data with a length of 0 bytes or 0
characters.

• In the case of other data types, it is converted to the null value.

6. The data types that can be converted are shown in the following table.

Table 8-45: Data types that can be converted

Data type of the
data to be
converted

Post-conversion data type

INTEGER,
SMALLINT

DECIMAL,
DOUBLE
PRECISION

CHAR,
VARCHAR

DATE,
TIMESTAMP

TIME BINARY,
VARBINARY

INTEGER,
SMALLINT

Y Y Y Y N N

DECIMAL,
DOUBLE
PRECISION

Y Y Y N N N

CHAR,
VARCHAR

Y Y Y Y Y Y

DATE,
TIMESTAMP

Y N Y Y N N

TIME N N Y N Y N

BINARY,
VARBINARY

N N Y N N Y

Legend:
Y: Can be converted.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 600



N: Cannot be converted.

(b) Rules for converting numeric data

■ To convert numeric data to numeric data:
Conversion of numeric data to numeric data is governed by the rules described in Storage assignment of numeric
data in (2) Storage assignments between data types in 6.2.2 Data types that can be converted, assigned, and
compared.

■ To convert character string data to numeric data:
• Any character string data to be converted (after leading and trailing spaces are removed) must obey the rules for

the description format of numeric literals. For the description format rules for numeric literals, see 6.3.2 
Description format of literals.
Examples of character string data that can be converted:
'219', '+56', '-3547', '-11.35', '887 ', 'Δ95Δ'
Examples of character string data that cannot be converted:
'a89', '77g9', '33Δ49'
Legend: Δ: Single-byte space

• If the character string data item is composed of only spaces, the null value is returned.

• Once the character string representation of the numeric literal has been converted to a numeric value, it is
converted to the post-conversion data type. At that point, it is governed by the rules described in Storage
assignment of numeric data in (2) Storage assignments between data types in 6.2.2 Data types that can be
converted, assigned, and compared.
Example:
CAST('11.35' AS INTEGER) → 11
Once the character string '11.35' has been converted to the DECIMAL type numeric value 11.35, it is
converted to an INTEGER type numeric value. At that point, it is governed by the rules for storage assignment
of numeric data, which in this case means that the decimal part is truncated.

■ To convert datetime data to numeric data:
Datetime data is converted to the cumulative number of days since January 1, year 1 (CE). In the case of January 1,
year 1 (CE), the cumulative number of days is 1. In the case of January 2, year 1 (CE), the cumulative number of
days is 2.
Examples:
CAST(DATE'0001-01-03' AS INTEGER) → 3
CAST(TIMESTAMP'0001-01-05 11:03:58' AS INTEGER) → 5

(c) Rules for converting to character string data
The rules for converting to character string data (rules about the length of data) are shown in the following table.

Table 8-46: Rules for converting to character string data (rules about the length of data)

Condition at the time
of conversion

Rules for converting to character string data

If data of character string type or binary type
is converted

If data of other types is converted

A < B If the post-conversion data type is CHAR, it is left-aligned and padded with spaces on the right.

A = B The conversion is performed.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 601



Condition at the time
of conversion

Rules for converting to character string data

If data of character string type or binary type
is converted

If data of other types is converted

A > B The data is left-aligned and the excess portion on the
right is truncated.#1

The data cannot be converted. Conversion will result in
an error.#2

Legend:
A: Length of the source data that is to be converted to character string data
B: Data length of the post-conversion data type

#1
If truncation occurs in the middle of a multi-byte character, part of the multi-byte character is returned as the value
of the execution result.

#2
If the data type of the data to be converted is DOUBLE PRECISION, the number of decimal places of the mantissa
is truncated to fit the data length specified in post-conversion-data-type (rounding to the nearest even number), so
no error is generated. However, an error will be generated if the length of the data to be converted exceeds the data
length specified in post-conversion-data-type even after all the decimal places of the mantissa have been truncated.

■ To convert INTEGER, SMALLINT, or DECIMAL type numeric data to character string data

• The result of converting numeric data to the format of a numeric literal is output as character string data. At that
point, the results are output in the shortest format that can represent the numeric literal.
However, conversion of DECIMAL type data is performed as follows:
• The number of digits after the decimal point equals the scaling of the data type of the numeric data, and trailing
zeros are not stripped.
• If the precision of the data type of the numeric data is greater than the scaling, the number of digits in the integer
part will not be 0.
• The decimal point is always added.
Example: +0025.100 → '25.100'
As shown in the example, the plus sign (+) is removed. In addition, any zeros are stripped from the beginning
of the integer part.

• If the data to be converted is less than 0, it is prefixed with a minus sign (-).

■ To convert DOUBLE PRECISION type numeric data to character string data

• The result of converting numeric data to the format of a floating-point numeric literal is output as character string
data. At that point, the results are output in the shortest format that can represent the floating-point numeric
literal.
Examples:
+1.0000000000000000E+010 → '1E10'
+3.2000000000000000E+001 → '3.2E1'
+0.1000000000000000E+001 → '1E0'
+0.0000000000000000E+000 → '0E0'
As shown in the examples, the sign is removed from the mantissa and any trailing zeros are removed from the
decimal part. Also, the plus sign (+) and leading zeros are removed from the exponent.

• If the data to be converted is less than 0, it is prefixed with a minus sign (-).

• Exponents that are less than 0 are prefixed with a minus sign (-).

8. Scalar Functions

Hitachi Advanced Database SQL Reference 602



■ To convert datetime data to character string data
• When datetime data is converted to character string data, it is converted to the format of the predefined output

representation. When DATE type data is converted to character string data, it is converted to the format of the
predefined output representation of a date. When TIME type data is converted to character string data, it is
converted to the format of the predefined output representation of a time. When TIMESTAMP type data is
converted to character string data, it is converted to the format of the predefined output representation of a time
stamp. For details about the predefined output representations, see 6.3.3 Predefined character-string
representations.
Examples:
CAST(DATE'2013-06-30' AS CHAR(10)) → '2013-06-30'
CAST(DATE'0001-01-01' AS CHAR(10)) → '0001-01-01'
CAST(TIME'05:33:48.123' AS CHAR(12)) → '05:33:48.123'
CAST(TIMESTAMP'2013-06-30 11:03:58' AS CHAR(19)) → '2013-06-30 11:03:58'

• Conversions of datetime data to CHAR(n) or VARCHAR(n) must meet the following conditions:

Data type of the data to be converted Condition on the post-conversion data
length

DATE n ≥ 10

TIME(p) when p = 0 n ≥ 8

when p > 0 n ≥ 9 + p

TIMESTAMP(p) when p = 0 n ≥ 19

when p > 0 n ≥ 20 + p

When n is less than the lengths indicated above, conversion is not possible.

• When converting DATE type data to CHAR type, if the data length of the post-conversion data is 11 bytes or
greater, the results are left-aligned and padded with spaces on the right.
Example:
CAST(DATE'2013-06-30' AS CHAR(15)) → '2013-06-30 '
Legend: Δ: Single-byte space

• When converting TIME type data with fractional seconds precision p to CHAR type, if the data length of the
post-conversion data is greater than or equal to 10 + p bytes (or greater than or equal to 9 bytes when p = 0), the
results are left-aligned and padded with spaces on the right.
Example:
CAST(TIME'11:03:58.123' AS CHAR(13)) → '11:03:58.123Δ'
Legend: Δ: Single-byte space

• When converting TIMESTAMP type data with fractional seconds precision p to CHAR type, if the data length of
the post-conversion data is greater than or equal to 21 + p bytes (or greater than or equal to 20 bytes when p =
0), the results are left-aligned and padded with spaces on the right.
Example:
CAST(TIMESTAMP'2013-06-30 11:03:58' AS CHAR(20)) → '2013-06-30 11:03:58Δ'
Legend: Δ: Single-byte space

▪ To convert binary data to character string data
• Only the data type is converted, and the data itself (character encoding itself) is not converted.

Example:
CAST(X'61626364' AS CHAR(4)) ==> 'abcd'

8. Scalar Functions

Hitachi Advanced Database SQL Reference 603



• If length-of-data-before-type-conversion > length-of-data-after-type-conversion, the excess portion on the right
is truncated.
Example:
CAST(X'61626364' AS CHAR(3)) ==> 'abc'
The underlined portion is truncated.

• If length-of-data-before-type-conversion < length-of-data-after-type-conversion, the results are padded with
half-width spaces on the right.
Example:
CAST(X'61626364' AS CHAR(5)) ==> 'abcd∆'
Legend: ∆: Half-width space

(d) Rules for converting to datetime data

■ To convert INTEGER or SMALLINT type numeric data to datetime data

• The data is first converted to the cumulative number of days since January 1, year 1 (CE).

• The time portion of the TIMESTAMP type is converted to 00:00:00, and fractional seconds are filled with
zeros. The following shows examples.
Example:
CAST(2 AS DATE) → DATE'0001-01-02'
CAST(2 AS TIMESTAMP(3)) → TIMESTAMP'0001-01-02 00:00:00.000'

• INTEGER and SMALLINT type data in the range 1 to 3,652,059 can be converted. Values outside this range
generate an error.

■ To convert character string data to datetime data:
• The character string data to be converted (after leading and trailing spaces are removed) can be converted to
DATE type data only when it adheres to the predefined input representation format of a date. For details about
the predefined input representation of a date, see (a) Predefined input representation in (1) Predefined character-
string representation of dates in 6.3.3 Predefined character-string representations.
Example:
CAST('2014-07-22 ' AS DATE) → DATE'2014-07-22'
Examples of character string data that can be converted:
'2014-06-30', '0001-01-02', ' 2014-07-30', 'Δ2014/07/30 '
Examples of character string data that cannot be converted:
'2013Δ06Δ30', '2013.06.30'
Legend: Δ: Single-byte space

• The character string data to be converted (after leading and trailing spaces are removed) can be converted to
TIME type data only when it adheres to the predefined input representation format of a time. For details about
the predefined input representation of a time, see (a) Predefined input representation in (2) Predefined
character-string representation of times in 6.3.3 Predefined character-string representations.
Example:
CAST('Δ19:46:23.123456' AS TIME(6)) → TIME'19:46:23.123456'
Examples of character string data that can be converted:
'18:05:22', '10:21:44.123', ' 10:21:44.123456Δ'
Examples of character string data that cannot be converted:
'18Δ05Δ22', '10:21:44Δ123456'
Legend: Δ: Single-byte space

8. Scalar Functions

Hitachi Advanced Database SQL Reference 604



• The character string data to be converted (after leading and trailing spaces are removed) can be converted to
TIMESTAMP type data only when it adheres to the predefined input representation format of a time stamp. For
details about the predefined input representation of a time stamp, see (a) Predefined input representation in (3) 
Predefined character-string representation of time stamps in 6.3.3 Predefined character-string representations.
Example:
CAST('2014/08/02 11:03:58.123456Δ' AS TIMESTAMP(6)) →
TIMESTAMP'2014-08-02 11:03:58.123456'
Examples of character string data that can be converted:
'2014-06-30 11:03:58', '2014/07/30 11:03:58.123', 'Δ2014/07/30
11:03:58.123456789 '
Examples of character string data that cannot be converted:
'2014-06-30 11-03-58', '2014/07/30 11:03:58:123456'
Legend: Δ: Single-byte space

• If the number of digits in the fractional seconds of the character string data to be converted is greater than the
number of digits in the fractional seconds of post-conversion-data-type, the fractional seconds beyond the
number of digits in the fractional seconds of post-conversion-data-type are truncated.
Example:
CAST('19:46:23.123456' AS TIME(3)) → TIME'19:46:23.123'

• If the number of digits in the fractional seconds of the character string data to be converted is less than the number
of digits in the fractional seconds of post-conversion-data-type, the fractional seconds are padded with zeros as
necessary.
Example:
CAST('2014-08-02 11:03:58.123' AS TIMESTAMP(9)) → TIMESTAMP'2014-08-02
11:03:58.123000000'

• If the character string data item is composed of only spaces, the null value is returned.

■ To convert datetime data to datetime data:
The conversion rules for converting datetime data to datetime data are given in the following table.

Table 8-47: Conversion rules for converting datetime data to datetime data

Data type of the data to be
converted

Specified post-conversion data
type

Conversion rules

DATE DATE No conversion is performed.

TIMESTAMP(p2) • The time part is converted to 00:00:00.
• The fractional seconds are padded with zeros.

TIME(p1) TIME(p2) • When p1 = p2
No conversion is performed.

• When p1 > p2
The fractional seconds beyond p2 are truncated.

• When p1 < p2
The missing fractional seconds are padded with
zeros.

TIMESTAMP(p1) DATE Only the date part is converted.

TIMESTAMP(p2) • When p1 = p2
No conversion is performed.

• When p1 > p2
The fractional seconds beyond p2 are truncated.

• When p1 < p2

8. Scalar Functions

Hitachi Advanced Database SQL Reference 605



Data type of the data to be
converted

Specified post-conversion data
type

Conversion rules

The missing fractional seconds are padded with
zeros.

Legend:
p1, p2: Fractional seconds precision

(e) Rules for converting to binary data

■ To convert character string data to binary data
• Only the data type is converted, and the data itself (character encoding itself) is not converted.

Example:
CAST('abcd' AS BINARY(4)) ==> X'61626364'

• If length-of-data-before-type-conversion > length-of-data-after-type-conversion, the excess portion on the right
is truncated.
Example:
CAST('abcd' AS BINARY(3)) ==> X'616263'
The underlined portion is truncated.
If truncation occurs in the middle of a multi-byte character, part of the multi-byte character is returned as the
value of the execution result.

• If length-of-data-before-type-conversion < length-of-data-after-type-conversion, the results are padded with
X'00' on the right.
Example:
CAST('abcd' AS BINARY(5)) ==> X'6162636400'

■ To convert binary data to binary data
• If length-of-data-before-type-conversion > length-of-data-after-type-conversion, the excess portion on the right

is truncated.
Example:
CAST(X'61626364' AS BINARY(3)) ==> X'616263'
The underlined portion is truncated.
If truncation occurs in the middle of a multi-byte character, part of the multi-byte character is returned as the
value of the execution result.

• If length-of-data-before-type-conversion < length-of-data-after-type-conversion, the results are padded with
X'00' on the right.
Example:
CAST(X'61626364' AS BINARY(5)) ==> X'6162636400'

(4) Example
Example:

Convert the data in column C2 in table T1 from TIMESTAMP type to DATE type and retrieve the rows where column
C2 is July 21, 2013.

SELECT * FROM "T1"
    WHERE CAST("C2" AS DATE)=DATE'2013-07-21'

8. Scalar Functions

Hitachi Advanced Database SQL Reference 606



8.12.4 CHR
Return the character corresponding to the character code represented by the integer target data.

(1) Specification format
scalar-function-CHR ::= CHR(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the target data.
The value specified in target-data must be a character code corresponding to a single character, expressed as an
integer greater than or equal to 0. For example, in the case of the multi-byte character expressed in hexadecimal as
0xE38182, specify 14909826, which is the decimal equivalent of hexadecimal 0xE38182.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify data of type INTEGER or SMALLINT for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

The following example illustrates the result of executing the scalar function CHR. The example assumes Unicode
(UTF-8) as the character encoding.

Examples:
CHR(65) → 'A'
CHR(97) → 'a'
CHR(14845345) → ' '

(3) Rules
1. The data type of the execution result will be VARCHAR(8).

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data is the null value or a negative value, the execution result will be a null value.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 607



4. If the value of the target data exceeds 255, it is treated as a multi-byte character. For example, 14909826, which
is the decimal representation of hexadecimal 0xE38182, is treated as a multi-byte character composed of the three
bytes 0xE3, 0x81, and 0x82.

(4) Example
Example:

Find the character string data items in column C1 in table T1 that end with the character NL (newline).

SELECT "C1" FROM "T1" WHERE SUBSTR("C1",-1)=CHR(10)

8.12.5 CONVERT
Converts the data type of the data.

You can also specify a datetime format or number format to control the conversion.

• If you specify a datetime format

• When converting datetime data to character string data, you can specify the output format of the character string
data after conversion.

• When converting character string data to datetime data, you can specify the input format of the character string
data before conversion.

• If you specify a number format

• When converting numeric data to character string data, you can specify the output format of the character string
data after conversion.

• When converting character string data to numeric data, you can specify the input format of the character string
data before conversion.

The following examples illustrate the result of executing the scalar function CONVERT.

Example 1::
• Convert the DECIMAL type data -12.37 to INTEGER type.
CONVERT(-12.37,INTEGER) → -12

Example 2: Specify a datetime format

• Convert the TIMESTAMP type data TIMESTAMP'2013-07-30 11:03:58' to CHAR(10) data.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 608



CONVERT(TIMESTAMP'2013-07-30 11:03:58',CHAR(10),'YYYY/MM/DD') →
'2013/07/30'

• Convert the CHAR type data 07/15/2013 12:34:56, which represents a datetime, to TIMESTAMP type.
CONVERT('07/15/2013 12:34:56',TIMESTAMP,'MM/DD/YYYY HH:MI:SS') →
TIMESTAMP'2013-07-15 12:34:56'

Example 3: Specify a number format

• Convert INTEGER type data to CHAR(7) data, and make it start with $ and have a comma between every 3
digits.
CONVERT(1000,CHAR(7),'$9,999') → 'Δ$1,000'
CONVERT(-1000,CHAR(7),'$9,999') → '-$1,000'
Δ represents a single-byte space character.

• Convert INTEGER type data that starts with $ and has a comma between every 3 digits to CHAR type data.
CONVERT('$1,000,000',INTEGER,'$9,999,999') → 1000000
CONVERT('-$1,000',INTEGER,'$9,999,999') → -1000

(1) Specification format
scalar-function-CONVERT ::= CONVERT(data-to-convert,post-conversion-data-type[,format
-specification])
 
  data-to-convert ::= {value-expression|NULL}
  post-conversion-data-type ::= data-type
  format-specification ::= {datetime-format|number-format}
    datetime-format ::= literal
    number-format ::= literal

(2) Explanation of specification format
data-to-convert:

Specifies the data whose data type is to be converted.
Specify the data to be converted in the form of a value expression. Alternatively, specify NULL. For details about
value expressions, see 7.20 Value expression.

post-conversion-data-type:
Specifies the data type after conversion. The following are examples:

• INTEGER
Convert to INTEGER type data.

• DECIMAL(5,2)
Convert to DECIMAL type data with a precision of 5 and a scaling of 2.

• CHAR(8)
Convert to CHAR type data with a data length of 8 bytes.

• TIMESTAMP(3)
Convert to TIMESTAMP type data with a fractional seconds precision of 3.

For the specification formats of each data type, see 6.2.1 List of data types.
Note that you cannot specify a VARCHAR type whose data length exceeds 32,000 bytes for the post-conversion-data
type.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 609



format-specification:
Specifies a datetime format or a number format.

datetime-format:
Specifies the datetime format in either of the following cases:

• When converting datetime data to character string data, specifies the output format of the character string data
after conversion.

• When converting character string data to datetime data, specifies the input format of the character string data
before conversion.

Specify a character string literal for the datetime format. For details about character string literals, see 6.3 Literals.
The following are examples of datetime formats:
Examples:
'YYYY-MM-DD HH:MI:SS'
'YYYY/MM/DD HH MI SS FF3'
'YYYY.MM.DD-HH:MI:SS.FF6'
'YYYY:MM'
'MM/DD-HH'
Items such as YYYY, MM, and DD in the examples above are called datetime format elements. For details about the
elements that can be specified in the datetime format, see (3) Datetime format elements and rules.
The following examples illustrate the result of executing the scalar function CONVERT when a datetime format is
specified.

• Examples of converting datetime data to character string data

Example of CONVERT specification Execution result

CONVERT(DATE'2013-01-01',VARCHAR(20),'YYYY/MM/DD') '2013/01/01'

CONVERT(DATE'2013-01-01',VARCHAR(20),'CC"st century"') '21st century'

CONVERT(DATE'2013-01-01',VARCHAR(20),'EYYN/Q"Q"') 'H25/1Q'

CONVERT(DATE'2013-01-01',VARCHAR(20),'YY-WW') '13-01'

CONVERT(DATE'2013-01-01',VARCHAR(20),'DD-Mon-YY') '01-Jan-13'

CONVERT(DATE'2013-01-01',VARCHAR(20),'YYYY/MM/
DD"("DY")"')

'2013/01/01(TUE)'

CONVERT(TIME'09:15:20.12',VARCHAR(20),'FMHH:MI:SS.FF6') '9:15:20.120000'

• Examples of converting character string data to datetime data

Example of CONVERT specification Execution result

CONVERT('01/02/2012 12:34:56',TIMESTAMP,'mm/dd/yyyy
hh:mi:ss')

TIMESTAMP'2012-01-02
12:34:56'

CONVERT(' 25 1 1  10 23 5 ',TIMESTAMP,
'fmeeyyn" "mm" "dd" "pmnhh12" "mi" "ss" "')

TIMESTAMP'2013-01-01
10:23:05'

CONVERT('1 2 3 45',TIME(6),'FMHH MI SS FF2') TIME'01:02:03.450000'

number-format:
Specifies the number format in either of the following cases:

• When converting numeric data to character string data, specifies the output format of the character string data
after conversion.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 610



• When converting character string data to numeric data, specifies the input format of the character string data
before conversion.

Specify a character string literal for number format. For details about character string literals, see 6.3 Literals.
The following are examples of number format specifications.
Examples:
'$9,999,999'
'00,000.00'
Items such as $, 0, 9, . (period) and , (the three-digit comma separator) in the examples above are called the
elements of the number format. For details about the elements that can be specified in a number format, see (4) 
Number format elements and rules.
The following examples illustrate the result of executing the scalar function CONVERT when a number format is
specified.

• Examples of converting numeric data to character string data

Example of CONVERT specification Execution result

CONVERT(1234567,CHAR(10),'9,999,999') 'Δ1,234,567'

CONVERT(1234,CHAR(10),'0,000,000') 'Δ0,001,234'

CONVERT(-1000,CHAR(7),'$9,999') '-$1,000'

CONVERT(1000,VARCHAR(12),'LJ9,999"dollars"') '1,000dollars'

Δ represents a single-byte space character.

• Examples of converting character string data to numeric data

Example of CONVERT specification Execution result

CONVERT('1,234,567',INTEGER,'9,999,999') 1234567

CONVERT('12',INTEGER,'9,999,999') 12

CONVERT('$1,000,000',INTEGER,'$9,999,999') 1000000

CONVERT('1,000dollars',INTEGER,'9,999"dollars"') 1000

CONVERT('+1.23E+10floating-point-character-string',DOUBLE
PRECISION,'9.99EEEE"floating-point-character-string"')

1.2300000000000000E1
0

(3) Datetime format elements and rules

(a) Datetime format elements
The table below shows the elements that can be specified in the datetime format.

Table 8-48: Elements that can be specified in the datetime format

No. Meaning of
datetime
format

Element that can be
specified in the
datetime format

Description

1 Century CC Represents the century. The range of values is 00 to 99.
Note that 00 represents the 100th century (the years 9901 to 9999 CE).

2 Year YYYY Represents the four-digit Western calendar year (CE). Values in the range 0001 to
9999 can be used.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 611



No. Meaning of
datetime
format

Element that can be
specified in the
datetime format

Description

Note that when converting character string data to datetime data, you cannot specify
an era name if YYYY is specified.

3 YY Represents the lower two digits of the year. The range of values is 00 to 99.

4 Era name E Represents the abbreviated form of the era
name in Japanese.
• 'M': Represents the Meiji era.
• 'T': Represents the Taisho era.
• 'S': Represents the Showa era.
• 'H': Represents the Heisei era.
• 'R': Represents the Reiwa era.

When converting character string
data to datetime data, an era name
must be specified together with a
Japanese calendar year.

5 EE Represents the era name in Japanese.
• ' ': Represents the Meiji era.
• ' ': Represents the Taisho era.
• ' ': Represents the Showa era.
• ' ': Represents the Heisei era.
• ' ': Represents the Reiwa era.

6 Japanese calendar
year

YYYYN Represents a four-digit Japanese calendar
year. The following shows the range of
values that can be specified for each era:
• Meiji: 0006 to 0045
• Taisho: 0001 to 0015
• Showa: 0001 to 0064
• Heisei: 0001 to 8011
• Reiwa: 0001 to 7981

When converting character string
data to datetime data, a Japanese
calendar year must be specified
together with an era name.

7 YYN Represents a two-digit Japanese calendar
year. Values in the range 00 to 99 can be
used.
Note that if a year of three or more digits
occurs when converting datetime data to
character string data, only the lower two
digits are converted.

8 Quarter Q Represents the quarter. The range of values is 1 to 4.
• 1: First quarter (January 1 to March 31)
• 2: Second quarter (April 1 to June 30)
• 3: Third quarter (July 1 to September 30)
• 4: Fourth quarter (October 1 to December 31)

9 Month MM Represents the month. Values in the range 01 to 12 can be used.

10 MON Represents the abbreviated form of the name of the month in English.
• 'JAN': January
• 'FEB': February
• 'MAR': March
• 'APR': April
• 'MAY': May
• 'JUN': June
• 'JUL': July
• 'AUG': August

8. Scalar Functions

Hitachi Advanced Database SQL Reference 612



No. Meaning of
datetime
format

Element that can be
specified in the
datetime format

Description

• 'SEP': September
• 'OCT': October
• 'NOV': November
• 'DEC': December

11 MONTH Represents the name of the month in English.
• 'JANUARY '
• 'FEBRUARYΔ'
• 'MARCH '
• 'APRIL '
• 'MAY '
• 'JUNE '
• 'JULY '
• 'AUGUST '
• 'SEPTEMBER'
• 'OCTOBER '
• 'NOVEMBERΔ'
• 'DECEMBERΔ'

Δ represents a single-byte space.

12 Week W Represents the week within the month. The range of values is 1 to 5.
• 1: Represents days 1 to 7 of the month.
• 2: Represents days 8 to 14 of the month.
• 3: Represents days 15 to 21 of the month.
• 4: Represents days 22 to 28 of the month.
• 5: Represents day 29 until the end of the month.

Note that the range of values will be 1 to 4 in February (except for leap years).

13 WW Represents the week within the year. The range of values is 01 to 53.
For example, 01 represents January 1 to January 7, 02 represents January 8 to
January 14, and so on.

14 Day DD Represents the ordinal date from the beginning of the month. The range of values
is from 01 until the last day of the relevant month.

15 DDD Represents the ordinal date from the beginning of the year. Values in the range 001
to 365 (001 to 366 in leap years) can be used.
For example, 001 represents January 1, and 002 represents January 2. 032
represents February 1.

16 Day of week D Represents the day of the week expressed as a number. Values in the range 1 to 7
can be used.
• 1: Sunday
• 2: Monday
• 3: Tuesday
• 4: Wednesday
• 5: Thursday
• 6: Friday
• 7: Saturday

17 DAY Represents the day of the week in English.
• 'SUNDAY '

8. Scalar Functions

Hitachi Advanced Database SQL Reference 613



No. Meaning of
datetime
format

Element that can be
specified in the
datetime format

Description

• 'MONDAY '
• 'TUESDAY '
• 'WEDNESDAY'
• 'THURSDAYΔ'
• 'FRIDAY '
• 'SATURDAYΔ'

Δ represents a single-byte space.

18 DY Represents the abbreviated form of the day of the week in English.
• 'SUN': Sunday
• 'MON': Monday
• 'TUE': Tuesday
• 'WED': Wednesday
• 'THU': Thursday
• 'FRI': Friday
• 'SAT': Saturday

19 DAYN Represents the day of the week in Japanese. Possible values are ' ': Sunday,
' ': Monday, ' ': Tuesday, ' ': Wednesday, ' ':
Thursday, ' ': Friday, ' ': Saturday.

20 DYN Represents the abbreviated form of the day of the week in Japanese. Possible
values are ' ': Sun, ' ': Mon, ' ': Tues, ' ': Weds, ' ': Thur,
' ': Fri, ' ': Sat.

21 Hour HH Represents the hour. Values in the range 00 to 23 can be used.
When converting character string data to datetime data, HH and HH24 cannot be
specified with an AM/PM designation.22 HH24

23 HH12 Represents the hour. Values in the range 01 to 12 can be used.
When converting character string data to datetime data, HH12 must be specified
together with an AM/PM designation.

24 AM/PM AM Represents the AM or PM designation in
English.#1

When converting character string
data to datetime data, the AM/PM
designation must be specified
together with HH12.

25 A.M.

26 PM

27 P.M.

28 AMN Represents the AM or PM designation in
Japanese.#2

29 PMN

30 Minute MI Represents the minute. Values in the range 00 to 59 can be used.

31 Second SS Represents the second. Values in the range 00 to 59 can be used.

32 SSSSS Represents seconds. Values in the range 00000 to 86399 can be used.
The value represents the number of seconds that have elapsed since 00:00:00
(midnight). For example, 03600 denotes 1:00:00 AM.

33 Fractional
seconds

FF Represents the fractional seconds.
When converting from character string data to datetime data, this is the number of
digits of fractional seconds of post-conversion-data-type.
When converting from datetime data to character string data, this is the number of
digits of fractional seconds of data-to-convert.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 614



No. Meaning of
datetime
format

Element that can be
specified in the
datetime format

Description

• If the number of digits of fractional seconds is 0, this specification is ignored.
• If the number of digits of fractional seconds is 3, FF is equivalent to FF3.
• If the number of digits of fractional seconds is 6, FF is equivalent to FF6.
• If the number of digits of fractional seconds is 9, FF is equivalent to FF9.
• If the number of digits of fractional seconds is 12, FF is equivalent to FF12.

34 FF1 Represents 1 digit of fractional seconds (0 to 9).

35 FF2 Represents 2 digits of fractional seconds (00 to 99).

36 FF3 Represents 3 digits of fractional seconds (000 to 999).

37 FF4 Represents 4 digits of fractional seconds (0000 to 9999).

38 FF5 Represents 5 digits of fractional seconds (00000 to 99999).

39 FF6 Represents 6 digits of fractional seconds (000000 to 999999).

40 FF7 Represents 7 digits of fractional seconds (0000000 to 9999999).

41 FF8 Represents 8 digits of fractional seconds (00000000 to 99999999).

42 FF9 Represents 9 digits of fractional seconds (000000000 to 999999999).

43 FF10 Represents 10 digits of fractional seconds (0000000000 to 9999999999).

44 FF11 Represents 11 digits of fractional seconds (00000000000 to 99999999999).

45 FF12 Represents 12 digits of fractional seconds (000000000000 to 999999999999).

46 Delimiting
character

- (hyphen) Characters used as delimiters between elements.
Example
'YYYY-MM-DD HH:MI:SS'47 / (slash)

48 , (comma)

49 . (period)

50 : (colon)

51 ; (semicolon)

52 Space

53 Other "character-string" You can specify an arbitrary string in double quotation marks (").
Example
CONVERT(DATE'2013-01-01',VARCHAR(20),'CC" "')

→ '21  ' ( : Represents the century.)
The underlined portion indicates the relevant section.
To specify a double quotation mark within the string itself, specify two consecutive
double quotation marks ("").
Example: Specify the character string AB"CD
"AB""CD"

54 FM Controls whether to delete the single-byte spaces at the end of the character strings
denoted by MONTH and DAY, and whether to suppress zeros in numbers such as
YYYY. For details, see (c) How to specify the datetime format element FM.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 615



#1

• When converting character string data to datetime data, the conversion result will be the same regardless of
whether you specify A.M., AM, P.M., or PM. If the target data uses AM, A.M., PM, or P.M., the conversion
result will all be the same regardless of whether you specify AM, A.M., PM, or P.M. in the datetime format
element. Uppercase and lowercase letters are treated the same.

• When converting datetime data to character string data, the conversion result will be the same regardless of
whether you specify AM or PM. The conversion result will also be the same regardless of whether you specify
A.M. or P.M.. The only difference between using AM vs. A.M., or PM vs. P.M., is whether the periods will
appear in the character string after conversion.

#2
The execution results will be the same whether you specify AMN or PMN. The corresponding Japanese character
strings are  for AM and  for PM.

Note
When datetime data is converted to character string data, it is converted based on the value of the datetime
data to be converted, regardless of the specification of AM, PM, or other elements in the datetime format.

When character string data is converted to datetime data, it follows the specification of AM, PM, or other
elements in the character string data to be converted, regardless of the specification of AM, PM, or other
elements in the datetime format.

(b) Rules pertaining to datetime format
• The length of the datetime format cannot exceed 64 bytes.

• Characters specified in the datetime format that are not enclosed in double quotation marks (") must be single-byte.

• The letters specified in the datetime format are not case-sensitive. However, the following letters are case-sensitive:

• The first letter in AM, A.M., PM, and P.M.
• The first two letters in MON, MONTH, DAY, and DY
• The letters in character strings that are enclosed in double quotation marks (")

• When converting character string data to datetime data, the following datetime format elements cannot be specified:

• CC (century)

• Q (quarter)

• WW (week within the year)

• W (week within the month)

• YY (year expressed in two digits)

• When converting TIME type data to character string data, you cannot specify the following datetime formatting
elements:

• CC (century)

• YYYY, YY (year)

• E, EE (era name)

• YYYYN, YYN (Japanese calendar year)

• Q (quarter)

8. Scalar Functions

Hitachi Advanced Database SQL Reference 616



• MM, MON, MONTH (month)

• W, WW (week)

• DD, DDD (day)

• D, DAY, DAYN, DY, DYN (day of week)

• When converting character string data to datetime data, you cannot specify two or more datetime format elements
with the same meaning. For example, the following are not allowed:

Example 1: 'YYYY-MM-DD-YYYY'
YYYY cannot be specified twice.

Example 2: 'YYYY-MM-DD-EYYN'
Because YYYY and YYN are datetime format elements with the same meaning, they cannot both be specified.
The datetime format elements with the same meaning are shown in the following table:

Table 8-49: Datetime format elements with the same meaning

No. Meaning of datetime format Datetime format elements with the same meaning

1 Year YYYY

2 YYYYN

3 YYN

4 Era name E

5 EE

6 Month MM

7 MON

8 MONTH

9 DDD

10 Day DD

11 DDD

12 Hour HH

13 HH24

14 HH12

15 SSSSS

16 AM/PM AM

17 A.M.

18 PM

19 P.M.

20 AMN

21 PMN

22 Minute MI

23 SSSSS

24 Second SS

8. Scalar Functions

Hitachi Advanced Database SQL Reference 617



No. Meaning of datetime format Datetime format elements with the same meaning

25 SSSSS

26 Fractional seconds FF

27 FF1

28 FF2

29 FF3

30 FF4

31 FF5

32 FF6

33 FF7

34 FF8

35 FF9

36 FF10

37 FF11

38 FF12

• When converting character string data to datetime data, if you specify the day of the week (D, DAY, DY, DAYN, or
DYN) and the specified day of the week conflicts with the specified date, it does not result in an error.

• If you specify AM, A.M., PM, or P.M. in the datetime format when converting datetime data to character string
data, if the first letter is uppercase, the entire element is output in uppercase, and if the first letter is lowercase, the
entire element is output in lowercase.

• If an era name is used as a datetime format element, the range of the corresponding Western calendar years will be
January 1, 1873 (January 1, Meiji 6) to December 31, 9999 (December 31, Reiwa 7981). The ranges of the
corresponding Japanese calendar years are as follows.

• Meiji: 06/01/ 01 to 45/07/29

• Taisho: 01/07/30 to 15/12/ 24

• Showa: 01/12/25 to 64/01/ 07

• Heisei: 01/01/08 to 31/04/30

• Reiwa: 01/05/01 to 7981/12/31

However, if you specify Heisei as the era name when converting character string data into datetime data, you can
specify December 31, Heisei 8011 or an earlier date.

Example:
CONVERT('05/01/0031/ ',DATE,'MM/DD/YYYYN/EE') → 2019-05-01
CONVERT('12/31/8011/H',DATE,'MM/DD/YYYYN/E') → 9999-12-31

• The time represented by 0 hours in the HH24 representation is equivalent to the time 12:00 AM in the HH12
representation. The time represented by 12 hours in the HH24 representation is equivalent to the time 12:00 PM in
the HH12 representation.

• Elements are extracted in order from the beginning (left) of the character string specified as the datetime format. In
cases of overlapping element names, the longest possible element name is extracted. For example, if 'DDD' is
specified, the first element extracted will be DDD, not D or DD.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 618



• When converting character string data to datetime data, if you specify a character string enclosed in double quotation
marks, make sure its case is consistent with the case of the letters in the target data. Note that uppercase and lowercase
letters are distinguished inside a character string enclosed in double quotation marks when the character string is
output.

• When converting character string data to datetime data, the conversion of E (Japanese era) is the same regardless
of the case of the letters in the data being converted. When converting datetime data to character string data, the
character string associated with E is always output in upper case.

(c) How to specify the datetime format element FM

■ When converting datetime data to character string data
If FM is not specified when MONTH or DAY is specified as an element of the datetime format, the character string
after conversion is always nine characters long. If the resulting character string is shorter than nine characters, half-
width spaces are added to produce a nine-character string.
Furthermore, zeros in the year, month, and date are not suppressed.
Example without FM:

CONVERT(DATE'2014-01-05',CHAR(17),'YYYY-MONTH-DD')
→ '2014-JANUARY∆∆-05'

The half-width spaces following JANUARY are not deleted. Two half-width spaces are added to produce a nine-
character string. Note that the zero in 05, which is the day number, is not suppressed.
Example with FM:

CONVERT(DATE'2014-01-05',CHAR(14),'FMYYYY-MONTH-DD')
→ 2014-JANUARY-5

The half-width spaces following JANUARY are deleted. Note that the zero in 05, which is the day number, is
suppressed.
Specify the datetime format element FM when you want to suppress zeros and remove single-byte spaces in the post-
conversion character string data in this way.
In addition, by specifying FM in the middle of the datetime format, you can control the point at which this takes
effect.
Example:

Explanation

1. The half-width spaces in the character string that corresponds to MONTH (in this example, JANUARY∆∆) are
not deleted. Note that the zeros in the numbers that correspond to YYYY (in this example, 0123) and DD (in
this example, 01) are not suppressed.

2. The character string corresponding to MONTH is JANUARY, with the spaces removed. Furthermore, the zeros
are suppressed from the numbers corresponding to YYYY (123) and DD (1).

8. Scalar Functions

Hitachi Advanced Database SQL Reference 619



3. The half-width spaces in the character string that corresponds to MONTH (in this example, JANUARY∆∆) are
not deleted. Note that zeros in the numbers that correspond to YYYY (in this example, 0123) and DD (in this
example, 01) are not suppressed.

■ When converting character string data to datetime data
• When the datetime format element MONTH or DAY is specified, spaces are required in the character string data

to be converted (for example, JANUARY ). If the character string data to be converted does not include the
spaces (for example, JANUARY), it can still be converted if the datetime format element FM is specified.
<Example that results in an error>
CONVERT('2014-JANUARY-05',DATE,'YYYY-MONTH-DD') → Error
This results in an error because the two spaces are missing from the end of JANUARY.
<Example that does not result in an error>
CONVERT('2014-JANUARY-05',DATE,'FMYYYY-MONTH-DD') → DATE'2014-01-05'
Because FM is specified, the two spaces are not required at the end of JANUARY.
Note that an error results if you express the month as JANUARY  when FM is specified.

Important
When FM is specified, the conversion results might not always come out as intended. For example,
if you attempt to convert the character string '2014111' to a DATE type value representing
January 11, 2014, you will not obtain the intended result, as illustrated below.

CONVERT('2014111',DATE,'FMYYYYMMDD') → DATE'2014-11-01'

In the above example, the character string is converted to November 1, 2014.

• When you specify one of the datetime format elements listed in Table 8-50: Datetime format elements specifying
numbers and their maximum number of characters including leading zeros as a numeric character, make sure
that the number of numeric characters in the character string data to be converted is equal to the maximum
number of characters indicated in Table 8-50: Datetime format elements specifying numbers and their maximum
number of characters including leading zeros. For example, if the element MM is specified, the numeric character
representing the months January through September must be expressed as 01 to 09 in the character string data
(the leading zero is required). If there is no leading zero in the character string data to be converted, it can still
be converted if the datetime format element FM is specified (no error results regardless of whether the leading
zero is there).
<Example that results in an error>
CONVERT('2014:1:5',DATE,'YYYY:MM:DD') → Error
<Examples that do not result in an error>
CONVERT('2014:1:5',DATE,'FMYYYY:MM:DD') → DATE'2014-01-05'
CONVERT('2014:01:05',DATE,'FMYYYY:MM:DD') → DATE'2014-01-05'

• Even when the value of an element listed in Table 8-50: Datetime format elements specifying numbers and their
maximum number of characters including leading zeros that you specify with a numeric character is 0, you must
specify at least one character for each element in the data to be converted. For example, when converting 0 hours,
0 minutes, and 0 seconds with the datetime format 'FMHH:MI:SS', the conversion works when the data to be
converted is '0:0:0', but generates an error when the data to be converted is '0:0:'.
However, in the case of elements FF and FF1 to FF12, which are unaffected by FM, you can omit the
specification of 0. For example, when converting 0 hours, 0 minutes, and 0.000 seconds with the datetime format
'FMHH:MI:SS.FF3', the conversion works even when the data to be converted is '0:0:0.'.

• By specifying FM in the middle of the datetime format, you can control the point at which this takes effect.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 620



• When FM is specified, HADB identifies the extent of a number corresponding to an element such as MM and DD
based on either the first occurrence of a non-digit character or the point when the maximum number of characters
in the specified datetime format has been reached. The following table shows the datetime format elements
specifying numbers and their maximum number of characters, including leading zeros.

Table 8-50: Datetime format elements specifying numbers and their maximum number of
characters including leading zeros

No. Datetime format element specifying number Maximum number of characters including leading
zeros

1 YYYY 4

2 YYYYN 4

3 YYN 2

4 MM 2

5 DD 2

6 DDD 3

7 D 1

8 HH 2

9 HH24 2

10 HH12 2

11 MI 2

12 SS 2

13 SSSSS 5

14 FF Not applicable

15 FF1

16 FF2

17 FF3

18 FF4

19 FF5

20 FF6

21 FF7

22 FF8

23 FF9

24 FF10

25 FF11

26 FF12

8. Scalar Functions

Hitachi Advanced Database SQL Reference 621



(4) Number format elements and rules

(a) Specification format for number format elements
This subsection describes the specification format for number format elements. Note that you must close up the spacing
for any elements you omit. An error results if elements are specified in the wrong order, or if elements are specified
where they are not permitted.

number-format ::= {fixed-point-representation | floating-point-representation | short
est-representation | hexadecimal-representation}
 
 
  fixed-point-representation ::=
       ["character-string"][[modifier-element][sign-element][B][currency-element]
       [numeric-element[[{delimiting-character-element | numeric-element}]...numeric-
element]][.] [numeric-element]...[sign-element]["character-string"]]
 
  floating-point-representation ::=
       ["character-string"][modifier-element][numeric-element]...[.][numeric-element]
... floating-point-element["character-string"]
 
  shortest-representation ::= ["character-string"]{TM | TM9 | TME}["character-string"
]
 
  hexadecimal-representation ::=
       ["character-string"][modifier-element][0]...hexadecimal-element[hexadecimal-el
ement]...["character-string"]
 
    modifier-element ::= {LJ | LS}
    sign-element ::= {MI | S | PR}
    currency-element ::= {$ | }
    numeric-element ::= {0 | 9}
    delimiting-character-element ::= {, | Δ}
    floating-point-element ::= {EEEE | eeee}
    hexadecimal-element ::= {X | x}

Note:

• The delimiting character element Δ represents a single-byte space character.

• "character-string" represents an arbitrary character string enclosed in double quotation marks.

(b) Number format element
The table below shows the elements that can be specified in the number format.

In the table, Δ represents a single-byte space character.

Table 8-51: Elements that can be specified in the number format

No. Type of element Element that can be
specified in the
number format

Description

1 Delimiting
character element

, (comma) ■ When converting numeric data to character string data
• Specifies that a comma is to be inserted for the separation of numeric elements

in the converted character string data. A comma is inserted at the position where
the comma is specified.
Example
CONVERT(1234567,CHAR(10),'9,999,999')

8. Scalar Functions

Hitachi Advanced Database SQL Reference 622



No. Type of element Element that can be
specified in the
number format

Description

→ 'Δ1,234,567'
• If the number of digits in the integer part of the numeric data is less than the

number of digits in the integer part specified in the number format, the extra
commas are not inserted.
Example
CONVERT(1234,CHAR(10),'9,999,999')
→ ' 1,234'

■ When converting character string data to numeric data
• Specify this when there are commas in the character string data to be converted.

The commas are removed from the specified positions during conversion to
numeric data.
Example
CONVERT('1,234,567',INTEGER,'9,999,999')
→ 1234567

• An error results if the character string data to be converted does not have a
comma at the position specified in the number format.
Example
CONVERT('1234',INTEGER,'9,999')
→ Error

• If the number of digits in the integer part of the character string data is less than
the number of digits in the integer part specified in the number format, the extra
commas are ignored.
Example
CONVERT('1,234',INTEGER,'9,999,999')
→ 1234

Specification rules
You cannot specify a comma to the right of the period that represents the decimal
point.
Examples of number format specifications that result in an error:
'999,999.9,99'
',999,999,999'

2 Δ (single-byte space) ■ When converting numeric data to character string data
• Specifies that a single-byte space is to be inserted for the separation of numeric

elements in the converted character string data. A single-byte space is inserted
at the position where the space is specified.
Example
CONVERT(1234567,CHAR(10),'9 999 999')
→ 'Δ1Δ234Δ567'

■ When converting character string data to numeric data
• Specify this when there are spaces in the character string data to be converted.

The spaces are removed from the specified positions during conversion to
numeric data.
Example
CONVERT('1 234 567',INTEGER,'9 999 999')
→ 1234567

• An error results if the character string data to be converted does not have a space
at the position specified in the number format.
Example
CONVERT('1234',INTEGER,'9 999')
→ Error

8. Scalar Functions

Hitachi Advanced Database SQL Reference 623



No. Type of element Element that can be
specified in the
number format

Description

• If the number of digits in the integer part of the character string data is less than
the number of digits in the integer part specified in the number format, the extra
spaces are ignored.
Example
CONVERT('1 234',INTEGER,'9 999 999')
→ 1234

Specification rules
You cannot specify a space to the right of the period that represents the decimal
point.
Example of a number format specification that results in an error:
'9.99 9'

3 Decimal point
character

. (period) Specifies the position of the decimal point using a period. In the number format, the
numeric element before the period represents the integer part, and the numeric
element after the period represents the decimal part.
■ When converting numeric data to character string data
• The numeric data is converted into the integer and decimal parts specified in the

number format.
Example
CONVERT(1234.56,CHAR(9),'9,999.99')
→ 'Δ1,234.56'

• If the number of decimal places in the numeric data is greater than the number
of decimal places specified in the number format, the numeric value is rounded
during conversion. The rounding method is the same as for the scalar function
ROUND. For details about the scalar function ROUND, see 8.4.9 ROUND.
Example
CONVERT(1.56,CHAR(4),'9.9')
→ 'Δ1.6'

■ When converting character string data to numeric data
• The left side of the period in the character string data is used as the integer part

of the numeric data, and the right side of the period is used as the decimal part.
Example
CONVERT('1,234.56',DECIMAL(6,2),'9,999.99')
→ 1234.56

Specification rules
Only one period can be specified. It must be specified before or after a numeric
element, or between two numeric elements.
Example of a number format specification that results in an error:
'.$999'

4 Currency element $ ■ When converting numeric data to character string data
• Specifies that $ (a dollar sign) is to be added in the converted character string

data.
Example
CONVERT(1000,CHAR(7),'$9,999')
→ 'Δ$1,000'
CONVERT(-1000,CHAR(7),'$9,999')
→ '-$1,000'

■ When converting character string data to numeric data
• Specifies this when there is a $ (dollar sign) in the character string data to be

converted. The dollar sign is removed during conversion to numeric data.
Example

8. Scalar Functions

Hitachi Advanced Database SQL Reference 624



No. Type of element Element that can be
specified in the
number format

Description

CONVERT('$1,000',INTEGER,'$9,999')
→ 1000

• An error results if there is no dollar sign in front of the number.
Example
CONVERT('1,000',INTEGER,'$9,999')
→ Error

• There must be no space between the dollar sign and the beginning of the number.
Example
CONVERT('$ 1,000',INTEGER,'$9,999')
→ Error

5 ■ When converting numeric data to character string data
• Specifies that  (a yen sign) is to be added in the converted character string

data.
Example
CONVERT(1000,CHAR(7),' 9,999')
→ 'Δ 1,000'
CONVERT(-1000,CHAR(7),' 9,999')
→ '- 1,000'

■ When converting character string data to numeric data
• Specifies this when there is a  (yen sign) in the character string data to be

converted. The yen sign is removed during conversion to numeric data.
Example
CONVERT(' 1,000',INTEGER,' 9,999')
→ 1000

• An error results if there is no yen sign in front of the number.
Example
CONVERT('1,000',INTEGER,' 9,999')
→ Error

• There must be no space between the yen sign and the beginning of the number.
Example
CONVERT('  1,000',INTEGER,' 9,999')
→ Error

6 Numeric element 0 Represents a single numeric digit when converting the digits corresponding to a
numeric value in the data to be converted. The following description pertains to the
numeric element 0 specified in a fixed-point representation. For details about the
numeric element 0 in a floating-point or hexadecimal representation, see the
descriptions of the floating-point and hexadecimal elements.
■ When converting numeric data to character string data
• The total number of 0 and 9 elements indicates the maximum number of digits

after conversion.
Example
CONVERT(1234.5,CHAR(10),'00,000.00')
→ 'Δ01,234.50'

• If the number of decimal places in the numeric data is greater than the number
of decimal places specified in the number format, the numeric value is rounded
during conversion. The rounding method is the same as for the scalar function
ROUND. For details about the scalar function ROUND, see 8.4.9 ROUND.
Example
CONVERT(2.34567,CHAR(5),'0.00')
→ 'Δ2.35'

8. Scalar Functions

Hitachi Advanced Database SQL Reference 625



No. Type of element Element that can be
specified in the
number format

Description

• A sign is prefixed to the character string data that is converted according to the
specifications of the period, delimiters, and numeric elements in the number
format. In the case of 0 or a positive value, a single-byte space is used. In the
case of a negative value, a minus sign (-) is used. However, when a sign element
is specified, it appends a character string indicating a sign as specified in the
sign element.
Examples
CONVERT(-1234.5,CHAR(8),'0,000.0')
→ '-1,234.5'
CONVERT(0,CHAR(8),'0,000.0')
→ 'Δ0,000.0'

• If the number of digits in the integer or decimal part of the numeric data is less
than the number of digits in the integer or decimal part specified in the number
format, the extra digits are converted to 0 in the character string.
Example
CONVERT(1.1,CHAR(10),'0,000.000')
→ 'Δ0,001.100'

• If the number of digits in the integer part of the numeric data is greater than the
number of digits in the integer part specified in the number format, the numeric
data is converted to a hash-mark (#) filled character string.
Example
CONVERT(1234,CHAR(3),'00')
→ '###'

■ When converting character string data to numeric data
• The conversion is the same whether the numeric element 0 or 9 is specified.

You can convert with numeric element 0 even if there are single-byte spaces in
the digits beyond the number of significant digits of the integer part of the
character string data. Similarly, you can convert with numeric element 9 even
if there are zeros in the digits beyond the number of significant digits of the
integer part of the character string data.
Example
CONVERT('0,123',INTEGER,'9,999')
→ 123

• The mapping between the digits of the character string data and the number
format begins at the decimal point, with the integer digits moving towards the
left, in the order ones, tens, and so on, and the decimal digits moving toward the
right, in the order first decimal place, second decimal place, and so on. Note that
even if the number of digits differs between the character string data and the
number format, conversion is possible if the number of digits in the integer part
of the character string data is less than the number of digits in the integer part
specified in the number format, and the number of decimal places in the
character string data is less than the number of decimal places specified in the
number format.
Example
CONVERT('1,234.56',DECIMAL(8,3),'00,000.000')
→ 1234.560

An error is generated in the following cases.
• If the number of digits in the integer part of the character string data is greater

than the number of digits in the integer part specified in the number format
Example
CONVERT('1234',INTEGER,'00')
→ Error

• If the number of decimal places in the character string data is greater than the
number of decimal places specified in the number format

8. Scalar Functions

Hitachi Advanced Database SQL Reference 626



No. Type of element Element that can be
specified in the
number format

Description

Example
CONVERT('1.234',DECIMAL(2,1),'0.0')
→ Error

• If there is a single-byte space between the sign and the most significant digit in
the character string data
Example
CONVERT('- 1,234',INTEGER,'0,000')
→ Error

Specification rules
The total number of 0 and 9 numeric elements cannot exceed 38.

7 9 Represents a single numeric digit when converting the digits corresponding to a
numeric value in the data to be converted. The following description pertains to the
numeric element 9 specified in a fixed-point representation. For details about the
numeric element 9 in a floating-point or hexadecimal representation, see the
descriptions of the floating-point and hexadecimal elements.
■ When converting numeric data to character string data
• The total number of 0 and 9 elements indicates the maximum number of digits

after conversion.
Example
CONVERT(1234.5,CHAR(10),'99,999.99')
→ ' 1,234.50'

• If the number of decimal places in the numeric data is greater than the number
of decimal places specified in the number format, the numeric value is rounded
during conversion. The rounding method is the same as for the scalar function
ROUND. For details about the scalar function ROUND, see 8.4.9 ROUND.
Example
CONVERT(2.34567,CHAR(5),'9.99')
→ 'Δ2.35'

• A sign is prefixed to the character string data that is converted according to the
specifications of the period, delimiters, and numeric elements in the number
format. In the case of 0 or a positive value, a single-byte space is used. In the
case of a negative value, a minus sign (-) is used. However, when a sign element
is specified, it appends a character string indicating a sign as specified in the
sign element.
Examples
CONVERT(1234.5,CHAR(8),'9,999.9')
→ 'Δ1,234.5'
CONVERT(-1234.5,CHAR(8),'9,999.9')
→ '-1,234.5'

• If the number of digits in the integer part of the numeric data is less than the
number of digits in the integer part specified in the number format, the extra
digits are converted to single-byte spaces. In addition, if the number of decimal
places in the numeric data is less than the number of decimal places specified
in the number format, the extra digits are converted to 0 in the character string.
Example
CONVERT(1.1,CHAR(10),'9,999.999')
→ ' 1.100'

• If no numeric element is specified for the decimal part, when the result of
rounding the numeric data to the number of digits in the number format is 0, it
is converted to the character string 0.
Example
CONVERT(0.1,CHAR(2),'9')

8. Scalar Functions

Hitachi Advanced Database SQL Reference 627



No. Type of element Element that can be
specified in the
number format

Description

→ 'Δ0'
If a numeric element is specified for the decimal part, the integer part in the
converted character string data is converted to a single-byte space, not 0.
Example
CONVERT(0.1,CHAR(5),'9.99')
→ ' .10'
CONVERT(0,CHAR(5),'9.99')
→ ' .00'
Finally, in the case of a negative value, it will be converted as follows.
Example
CONVERT(-0.1,CHAR(5),'9.99')
→ 'Δ-.10'

• If numeric element 0 is specified before a numeric element 9, any numeric
element 9s that follows the specified numeric element 0 are treated as numeric
element 0s.
Example
CONVERT(1,CHAR(5),'0999')
→ 'Δ0001'

• If the number of digits in the integer part of the numeric data is greater than the
number of digits in the integer part specified in the number format, the numeric
data is converted to a hash-mark (#) filled character string.
Example
CONVERT(1234,CHAR(3),'99')
→ '###'

■ When converting character string data to numeric data
• The conversion is the same whether the numeric element 0 or 9 is specified.

You can convert with numeric element 0 even if there are single-byte spaces in
the digits beyond the number of significant digits of the integer part of the
character string data. Similarly, you can convert with numeric element 9 even
if there are zeros in the digits beyond the number of significant digits of the
integer part of the character string data.
Example
CONVERT('0,123',INTEGER,'9,999')
→ 123

• The mapping between the digits of the character string data and the number
format begins at the decimal point, with the integer digits moving towards the
left, in the order ones, tens, and so on, and the decimal digits moving toward the
right, in the order first decimal place, second decimal place, and so on. Note that
even if the number of digits differs between the character string data and the
number format, conversion is possible if the number of digits in the integer part
of the character string data is less than the number of digits in the integer part
specified in the number format, and the number of decimal places in the
character string data is less than the number of decimal places specified in the
number format.
Example
CONVERT('1,234.56',DECIMAL(8,3),'99,999.999')
→ 1234.560

An error is generated in the following cases.
• If the number of digits in the integer part of the character string data is greater

than the number of digits in the integer part specified in the number format
Example
CONVERT('1234',INTEGER,'99')

8. Scalar Functions

Hitachi Advanced Database SQL Reference 628



No. Type of element Element that can be
specified in the
number format

Description

→ Error
• If the number of decimal places in the character string data is greater than the

number of decimal places specified in the number format
Example
CONVERT('1.234',DECIMAL(4,3),'9.9')
→ Error

• If there is a single-byte space between the sign and the most significant digit in
the character string data
Example
CONVERT('- 1,234',INTEGER,'9,999')
→ Error

Specification rules
The total number of 0 and 9 numeric elements cannot exceed 38.

8 Floating-point
element

EEEE
eeee

Specify this element to indicate a floating-point numeric literal. The conversion is
the same whether used with 0 or 9 as the numeric element for the digits. The
following are examples of number format specifications.
Examples
• '9.999EEEE'
• '9.999eeee'
• '9.EEEE'
• '9EEEE'
• '.9EEEE' #

• '99.9EEEE'#

#: Can be specified only when converting character string data to numeric data.
■ When converting numeric data to character string data
• The numeric data is converted to the format of a floating-point numeric literal

in accordance with the specification in the number format.
Example
CONVERT(12.3,CHAR(9),'9.99EEEE')
→ 'Δ1.23E+01'
CONVERT(0.01,CHAR(9),'9.99EEEE')
→ 'Δ1.00E-02'
If the exponent of the converted character string data is 0 or a positive value, a
plus sign (+) is prefixed to the exponent.
The exponent of the converted character string data will be either 2 or 3 digits.
If the value is 0, the exponent will be 00.

• If the number of decimal places in the numeric data is greater than the number
of decimal places specified in the number format, the numeric value is rounded
during conversion. The rounding method is the same as for the scalar function
ROUND. For details about the scalar function ROUND, see 8.4.9 ROUND.
Example
CONVERT(34.56,CHAR(9),'9.99EEEE')
→ 'Δ3.46E+01'

• A sign is prefixed to the character string data that is converted according to the
specifications of the period, delimiters, numeric elements, and EEEE element
in the number format. In the case of 0 or a positive value, a single-byte space is
used. In the case of a negative value, a minus sign (-) is used.
Example
CONVERT(0,CHAR(9),'9.99EEEE')
→ 'Δ0.00E+00'
CONVERT(-1,CHAR(9),'9.99EEEE')

8. Scalar Functions

Hitachi Advanced Database SQL Reference 629



No. Type of element Element that can be
specified in the
number format

Description

→ '-1.00E+00'
• If this element is specified as lowercase eeee, the E indicating a floating-point

numeric literal is converted to lowercase e.
Example
CONVERT(1,CHAR(9),'9.99eeee')
→ 'Δ1.00e+00'

• For the integer part, exactly one numeric element must be specified, or else an
error results.
Example
CONVERT(1,CHAR(9),'99.9EEEE')
→ Error

■ When converting character string data to numeric data
• Character string data that is expressed in the notation of a floating-point numeric

literal is converted to floating-point numeric data.
Examples
CONVERT('1.23E+10floating-point-character-string',DOUBLE
PRECISION,'9.99EEEE"floating-point-character-string"')
→ 1.2300000000000000E10
CONVERT('-1.23E+10floating-point-character-string',DOUBLE
PRECISION,'9.99EEEE"floating-point-character-string"')
→ -1.2300000000000000E10

• The element EEEE and the E character in the data to be converted are not case-
sensitive.
Example
CONVERT('1.23e+10',DOUBLE PRECISION,'9.99EEEE')
→ 1.2300000000000000E10

An error is generated in the following cases.
• If the number of digits in the integer part of the character string data is greater

than the number of digits in the integer part specified in the number format
Example
CONVERT('12.3E+1',DOUBLE PRECISION,'9.9EEEE')
→ Error

• If the number of decimal places in the character string data is greater than the
number of decimal places specified in the number format
Example
CONVERT('1.234E+1',DOUBLE PRECISION,'9.9EEEE')
→ Error

• If there is a single-byte space between the sign of the mantissa and the most
significant digit in the character string data
Example
CONVERT('- 1.23E+1',DOUBLE PRECISION,'9.99EEEE')
→ Error

Specification rules
The sum of the number of numeric elements specified in the integer part and the
decimal part cannot exceed 17.
You must specify either EEEE or eeee. Mixing uppercase and lowercase letters
is not permitted.

9 Sign element MI ■ When converting numeric data to character string data
• If the numeric data is a negative value, a minus sign (-) is appended to the end

of character string data that has been converted according to the specifications

8. Scalar Functions

Hitachi Advanced Database SQL Reference 630



No. Type of element Element that can be
specified in the
number format

Description

of the period, delimiters, and numeric elements in the number format. In the
case of 0 or a positive value, a single-byte space is used.
Examples
CONVERT(-123,CHAR(4),'999MI')
→ '123-'
CONVERT(123,CHAR(4),'999MI')
→ '123Δ'

■ When converting character string data to numeric data
• When the numeric data is converted, the position where the MI element is

specified is interpreted as the sign. In the case of a minus sign (-), it is converted
to a negative value; in the case of plus sign (+) or a single-byte space, it is
converted to a value greater than or equal to 0.
Example
CONVERT('123-',INTEGER,'999MI')
→ -123
The conversion also results in a 0 or a positive value if the end of the data to be
converted, excluding the part specified in "character-string", is a number or
period.
Example
CONVERT('123$',INTEGER,'999MI"$"')
→ 123

10 S (if S is specified at the
beginning of the element)

■ When converting numeric data to character string data
• A sign is prefixed before the character string data that has been converted

according to the specifications of the period, delimiters, and numeric elements
in the number format. In the case of a negative value a minus sign (-) is used,
whereas in the case of 0 or a positive value, a plus sign (+) is used.
Example
CONVERT(123,CHAR(4),'S999')
→ ' + 123'

• If a currency element is specified in the number format, the sign is added in front
of the currency symbol.
Example
CONVERT(123,CHAR(5),'S$999')
→ ' + $123'

■ When converting character string data to numeric data
• Converts the character string data to numeric data according to the sign at the

beginning of the character string. An error results if there is no sign.
Example
CONVERT('+$123',INTEGER,'S$999')
→ 123
CONVERT('123',INTEGER,'S999')
→ Error

• An error results if there is a single-byte space between the sign and the most
significant digit in the character string data.
Example
CONVERT('+ 123',INTEGER,'S999')
→ Error

• When a currency element is specified in the number format, an error results if
there is no sign in front of the currency symbol in the character string data.
Example
CONVERT('+$123',INTEGER,'S$999')

8. Scalar Functions

Hitachi Advanced Database SQL Reference 631



No. Type of element Element that can be
specified in the
number format

Description

→ 123
CONVERT('$123',INTEGER,'S$999')
→ Error

11 S (if S is specified at the
end of the element)

■ When converting numeric data to character string data
• A sign is affixed at the end of the character string data that has been converted

according to the specifications of the period, delimiters, and numeric elements
in the number format. In the case of a negative value, a minus sign (-) is used,
whereas in the case of 0 or a positive value a plus sign (+) is used.
Example
CONVERT(123,CHAR(4),'999S')
→ '123 + '

■ When converting character string data to numeric data
• Converts the character string data to numeric data according to the sign in the

position of the element S specified in the number format. An error results if
there is no sign.
Examples
CONVERT('123+',INTEGER,'999S')
→ 123
CONVERT('123',INTEGER,'999S')
→ Error

12 PR ■ When converting numeric data to character string data
• If the numeric data is a negative value, the character string data that was

converted according to the number format is enclosed in <>.
Example
CONVERT(-123,CHAR(5),'999PR')
→ '<123>'

• If the numeric data is 0 or a positive value, single-byte spaces are inserted
instead of <>.
Example
CONVERT(123,CHAR(5),'999PR')
→ 'Δ123Δ'

• If a currency element or "character-string" is specified in the number format,
the corresponding characters are set inside <> when the numeric data has a
negative value.
Examples
CONVERT(-123,CHAR(6),'$999PR')
→ '<$123>'
CONVERT(-123,CHAR(12),'999PR"dollars"')
→ '<123dollars>'

■ When converting character string data to numeric data
• If a number is enclosed in <> in the character string data, it is converted to a

negative value and <> is removed. If the number is not enclosed in <>, it is
converted to 0 or a positive value.
Example
CONVERT('<123>',INTEGER,'999PR')
→ -123
CONVERT('123',INTEGER,'999PR')
→ 123

8. Scalar Functions

Hitachi Advanced Database SQL Reference 632



No. Type of element Element that can be
specified in the
number format

Description

13 Character string "character- string"
(character string enclosed
in double quotation
marks)

A character string enclosed in double quotation marks (") can be specified at the
beginning or end of the number format. Double-byte characters are also permitted.
■ When converting numeric data to character string data
• The character string enclosed in double quotation marks is inserted at the

beginning or end of the converted character string data.
Example
CONVERT(123,CHAR(11),'999"dollars"')
→ 'Δ123dollars'

• Uppercase and lowercase letters are distinguished in the character string
enclosed in double quotation marks.

■ When converting character string data to numeric data
• The character string enclosed in double quotation marks is removed from the

character string data when it is converted to numeric data.
Example
CONVERT('123dollars',INTEGER,'999"dollars"')
→ 123

• An error results if there is no character string enclosed in double quotation marks
in the character string data.
Example
CONVERT('123',INTEGER,'999"dollars"')
→ Error
However, if there are one or more contiguous single-byte spaces at the beginning
of a character string enclosed in double quotation marks specified at the
beginning of the number format, or at the end of a character string enclosed in
double quotation marks specified at the end of the number format, it does not
generate an error if the spaces do not occur in the character string data.
Example
CONVERT('dollars123',INTEGER,'" dollars"999')
→ 123

• Make sure the case of the letters in the character string enclosed in double
quotation marks is consistent with the case of the letters in the data to be
converted.

Specification rules
You can specify character strings enclosed in double quotation marks at both
the beginning and end of the number format.
You cannot specify a character string enclosed in double quotation marks
between other elements.
To specify a double quotation mark in the string itself, specify two consecutive
double quotation marks.

14 Hexadecimal
element

X
x

■ When converting numeric data to character string data
• Converts numeric data to the hexadecimal digits representing the specified

number.
Example
CONVERT(10,CHAR(5),'XXXX')
→ ' A'
CONVERT(10,CHAR(5),'0XXX')
→ 'Δ000A'

• One single-byte space is inserted before the hexadecimal digits in the converted
character string data.
Example
CONVERT(10,CHAR(2),'X')
→ 'ΔA'

8. Scalar Functions

Hitachi Advanced Database SQL Reference 633



No. Type of element Element that can be
specified in the
number format

Description

• The elements 0, X, and x correspond to one converted hexadecimal digit.
• The maximum integer value that can be converted is the maximum positive

value that can be represented in the DECIMAL type (fixed-point).
• If the number of hexadecimal digits converted to character string data is less

than the specified number of digits (the total number of X and x elements), the
converted character string data is right-aligned and padded with single-byte
spaces.
Example
CONVERT(10,CHAR(5),'XXXX')
→ ' A'
If you want to pad with zeros instead of single-byte spaces, specify the element
0 at the beginning. Multiple consecutive 0 elements can be specified, but they
must be specified in front of an X or x element.
Example
CONVERT(10,CHAR(5),'0XXX')
→ 'Δ000A'

• If the specified numeric value is not an integer, it is rounded to an integer. The
rounding method is the same as for the scalar function ROUND.
Example
CONVERT(10.5,CHAR(6),'0XXXX')
→ 'Δ0000B'

• If the numeric data is a negative value, the numeric data is converted to a hash-
mark (#) filled character string.
Example
CONVERT(-20,CHAR(6),'0XXXX')
→ '######'

• If the first-specified element X is uppercase, the converted hexadecimal digits
will also be uppercase (A to F). If it is lowercase (x), the converted hexadecimal
digits will also be lowercase (a to f).
Example
CONVERT(10,CHAR(5),'xXXX')
→ ' a'

• If the number of characters converted to hexadecimal digits is greater than the
number of digits specified in the number format (the total number of elements
0, X, and x), they are converted to hash marks (#).
Example
CONVERT(1024,CHAR(5),'XX')
→ '### '

■ When converting character string data to numeric data
• The hexadecimal digits (0 to 9, A to F, a to f) in the character string data are

converted to numeric data.
Example
CONVERT('AB',INTEGER,'XXXX')
→ 171

• Elements 0, X, and x are treated the same when converting from hexadecimal
digits to hexadecimal numeric data. However, element 0 can only be specified
before element X or x.

• The execution results will be the same whether you specify element X or x. In
addition, conversion is possible even when the hexadecimal digits in the
character string data include a mixture of uppercase and lowercase.
Example
CONVERT('Ab',INTEGER,'xXXx')

8. Scalar Functions

Hitachi Advanced Database SQL Reference 634



No. Type of element Element that can be
specified in the
number format

Description

→ 171
• The element 0 can be specified even when there is a single-byte space in front

of the hexadecimal digits in the character string data.
Example
CONVERT('hexadecimal-character-string A',INTEGER,'"hexadecimal-
character-string"0XXX')
→ 10

• Conversion is possible when there is a leading zero, even when element 0 is not
specified in the number format. However, conversion is only possible when the
number of hexadecimal digits, including leading zeros, is less than or equal to
the number of digits specified in the number format (the total number of X and
x elements).
Example
CONVERT('00A',INTEGER,'XXXXX')
→ 10

• Conversion is possible even when the number of digits in the character string
data is less than the number of digits specified in the number format (the total
number of elements 0, X, or x).
Example
CONVERT('A',INTEGER,'XXX')
→ 10

• The hexadecimal digits in the character string data are treated as 0 or positive
integer values.

An error is generated in the following cases.
• There are characters in the character string data other than hexadecimal digits

(0 to 9, A to F, a to f)
• If the number of digits in the character string data is greater than the number of

digits specified in the number format (the total number of elements 0, X, or x)
Example
CONVERT('0001',INTEGER,'XX')
→ Error

Specification rules
The total number of elements 0, X, and x cannot exceed 32.

15 Modifier element LS ■ When converting numeric data to character string data
• Removes contiguous single-byte spaces from the beginning of the converted

character string data. The removed spaces are inserted at the end of the character
string.
Example
CONVERT(1,CHAR(4),'LS000')
→ '001Δ'
CONVERT(1,CHAR(4),'LS999')
→ '1 '

• Single-byte spaces inside a character string enclosed in double quotation marks
are not affected.

■ When converting character string data to numeric data
• The element LS is ignored. The character string data is converted to numeric

data according to the rest of the number format.

Specification rules
LS can only be specified once in the number format.

16 LJ ■ When converting numeric data to character string data

8. Scalar Functions

Hitachi Advanced Database SQL Reference 635



No. Type of element Element that can be
specified in the
number format

Description

• Removes single-byte spaces from the beginning and end of the converted
character string data.
Example
CONVERT(123,VARCHAR(3),'LJ999')
→ '123'

• Single-byte spaces inside a character string enclosed in double quotation marks
(") are not affected.

■ When converting character string data to numeric data
• The element LJ is ignored. The character string data is converted to numeric

data according to the rest of the number format.

Specification rules
LJ can only be specified once in the number format.

17 Other B ■ When converting numeric data to character string data
• This element denotes a single-byte space when the value of the data to be

converted (as a result of rounding to the number of digits in the number format)
is 0. Sign elements and currency elements are also set to spaces.
Examples
CONVERT(0,CHAR(4),'B999')
→ ' '
CONVERT(0,VARCHAR(4),'LJB999')
→ ''

■ When converting character string data to numeric data
• The element B is ignored. The character string data is converted to numeric data

according to the rest of the number format.

18 TM
TM9
TME

■ When converting numeric data to character string data
• Converts the numeric data according to the specified element (TM, TM9, or TME).
TM or TM9: Convert according to integer literal or decimal literal notation.
TME: Convert according to the notation for floating-point numeric literals.
Examples
CONVERT(1.28E2,CHAR(3),'TM')
→ '128'
CONVERT(128,CHAR(6),'TME')
→ '1.28E2'
The result of converting the numeric data to the format of a numeric literal is
output as character string data. At that time, it is converted to the shortest format
able to represent the numeric literal.

• When the numeric data cannot be represented in integer literal or decimal literal
notation, it is converted to the notation for floating-point numeric literals even
if TM or TM9 is specified.

■ When converting character string data to numeric data
• The conversion result is the same whether TM, TM9, or TME is specified.
• The character string data must conform to the following notations:

• Integer literal notation
• Decimal literal notation
• Floating-point numeric literal notation
Separators are permitted in the character string data but are not subject to
conversion.
Example
CONVERT('Result /* Comment */
12345',INTEGER,'"Result"TM')

8. Scalar Functions

Hitachi Advanced Database SQL Reference 636



No. Type of element Element that can be
specified in the
number format

Description

→ 12345

(c) Rules pertaining to number format
• The length of the number format cannot exceed 64 bytes.

• Characters specified in the number format that are not enclosed in double quotation marks (") must be single-byte.

• Uppercase and lowercase letters are treated the same in number format elements, except in the case of the elements
EEEE, X, and character strings enclosed in double quotation marks.

• When converting character string data to numeric data, numeric elements are typically required in the number format.
The exceptions are the hexadecimal element X and the shortest representation elements TM, TM9, TME, which do
not require numeric elements.

• If no numeric element is specified immediately before the decimal point character (.), a numeric element must be
specified immediately after the decimal point character (.).

• If you specify a currency element, decimal point character (.), or B element in the number format, a numeric element
must be specified.

• If you specify a modifier element in the number format, you must specify a numeric element or hexadecimal element
X.

• The sign element S can be specified either before or after a numeric element.

• The sign elements MI and PR can be specified only after a numeric element.

• If a sign element is specified, it must be one of the elements S, MI, or PR.

• The elements listed below can be specified two or more times in the character string specified in the number format.
Elements other than these cannot be specified more than once.

• Comma as a delimiting character element

• Single-byte space as a delimiting character element

• Numeric element (0 or 9)

• "character-string" (character string enclosed in double quotation marks)

• Hexadecimal element (X or x)

(5) Rules

(a) Common rules
1. The data type of the execution result will be the data type specified in post-conversion-data-type.

2. If a dynamic parameter is specified by itself for data-to-convert, post-conversion-data-type will be assumed to be
the data type of the dynamic parameter.

3. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

4. If the data to be converted has a null value, or you specify NULL for data-to-convert, the execution result will be a
null value.

5. If the data to be converted is character string data with a length of 0 bytes or 0 characters, it is converted as follows:

8. Scalar Functions

Hitachi Advanced Database SQL Reference 637



• When converting to CHAR type: it is converted to spaces. In the case of CHAR(3), it is converted to '∆∆∆'.
∆ represents a half-width space.

• When converting to VARCHAR type: it is converted to VARCHAR type data with a length of 0 bytes or 0 characters.

• When converting to BINARY type: It is converted to X'00'. In the case of BINARY(3), it is converted to
X'000000'.

• When converting to VARBINARY type: It is converted to VARBINARY type data with a length of 0 bytes or 0
characters.

• In the case of other data types, it is converted to the null value.

6. The data types that can be converted (with no format specified) are shown in the following table:

Table 8-52: Data types that can be converted (with no format specified)

Data type of the
data to be
converted

Post-conversion data type

INTEGER,
SMALLINT

DECIMAL,
DOUBLE
PRECISION

CHAR,
VARCHAR

DATE,
TIMESTAMP

TIME BINARY,
VARBINARY

INTEGER,
SMALLINT

Y Y Y Y N N

DECIMAL,
DOUBLE
PRECISION

Y Y Y N N N

CHAR,
VARCHAR

Y Y Y Y Y Y

DATE,
TIMESTAMP

Y N Y Y N N

TIME N N Y N Y N

BINARY,
VARBINARY

N N Y N N Y

Legend:
Y: Can be converted.
N: Cannot be converted.

7. The data types that can be converted (with a format specified) are shown in the following table.

Table 8-53: Data types that can be converted (with a format specified)

Data type of the
data to be
converted

Post-conversion data type

INTEGER,
SMALLINT

DECIMAL,
DOUBLE
PRECISION

CHAR,
VARCHAR

DATE,
TIMESTAMP

TIME BINARY,
VARBINARY

INTEGER,
SMALLINT

N N Y#1 N N N

DECIMAL,
DOUBLE
PRECISION

N N Y#1 N N N

CHAR,
VARCHAR

Y#1 Y#1 N Y#2 Y#2 N

8. Scalar Functions

Hitachi Advanced Database SQL Reference 638



Data type of the
data to be
converted

Post-conversion data type

INTEGER,
SMALLINT

DECIMAL,
DOUBLE
PRECISION

CHAR,
VARCHAR

DATE,
TIMESTAMP

TIME BINARY,
VARBINARY

DATE,
TIMESTAMP

N N Y#2 N N N

TIME N N Y#2 N N N

BINARY,
VARBINARY

N N N N N N

Legend:
Y: Can be converted.
N: Cannot be converted.

#1:
Can be converted when a number format is specified.

#2:
Can be converted when a datetime format is specified.

8. If a format specification is used, the data is first converted according to the specification, and then converted to the
post-conversion data type according to the storage assignment rules.
For details about the format specification in the case of the datetime format, see (3) Datetime format elements and
rules. For details about the format specification in the case of the number format, see (4) Number format elements
and rules.
For details about the storage assignment rules, see (2) Storage assignments between data types in 6.2.2 Data types
that can be converted, assigned, and compared.

(b) Rules for converting numeric data

■ To convert numeric data to numeric data:
Conversion of numeric data to numeric data is governed by the rules described in Storage assignment of numeric
data in (2) Storage assignments between data types in 6.2.2 Data types that can be converted, assigned, and
compared.

■ To convert character string data to numeric data (with no number format specified):
• Any character string data to be converted (after leading and trailing spaces are removed) must obey the rules for

the description format of numeric literals. For the description format rules for numeric literals, see 6.3.2 
Description format of literals.
Examples of character string data that can be converted:
'219', '+56', '-3547', '-11.35', '887 ', 'Δ95Δ'
Examples of character string data that cannot be converted:
'a89', '77g9', '33Δ49'
Legend: Δ: Single-byte space

• If the character string data item is composed of only spaces, the null value is returned.

• Once the character string representation of the numeric literal has been converted to a numeric value, it is
converted to the post-conversion data type. At that point, it is governed by the rules described in Storage
assignment of numeric data in (2) Storage assignments between data types in 6.2.2 Data types that can be
converted, assigned, and compared.
Example:

8. Scalar Functions

Hitachi Advanced Database SQL Reference 639



CONVERT('11.35',INTEGER) → 11
Once the character string '11.35' has been converted to the DECIMAL type numeric value 11.35, it is
converted to an INTEGER type numeric value. At that point, it is governed by the rules for storage assignment
of numeric data, which in this case means that the decimal part is truncated.

■ When converting character string data to numeric data (with a number format specified)
• The format of the character string data to be converted must match the number format specification. However,

conversion is possible even when there are single-byte spaces surrounding the number format or the character
string data to be converted.
Example:
CONVERT('Δ1,234Δ',INTEGER,'9,999') → 1234
CONVERT(' 1,234',INTEGER,'Δ9,999Δ') → 1234
Legend: Δ: Single-byte space

• If the character string data is composed of only a single-byte space, the null value is returned.

• If there is a character string enclosed in double quotation marks in the number format, that character string, along
with any surrounding spaces, is excluded from the character string data that is converted to numeric data
according to the number format.

• Once the character string data has been converted to a numeric value according to number format, it is converted
to the post-conversion data type. At that point, the rules described in Storage assignment of numeric data in (2) 
Storage assignments between data types in 6.2.2 Data types that can be converted, assigned, and compared
apply.
Example:
CONVERT('1,000.22',INTEGER,'9,999.99') → 1000
After the character string '1,000.22' is converted to the DECIMAL type numeric value 1000.22, it is
converted to an INTEGER type numeric value. At that point, it is governed by the rules for storage assignment
of numeric data, which in this case means that the decimal places are truncated.

■ To convert datetime data to numeric data:
Datetime data is converted to the cumulative number of days since January 1, year 1 (CE). In the case of January 1,
year 1 (CE), the cumulative number of days is 1. In the case of January 2, year 1 (CE), the cumulative number of
days is 2.
Examples:
CONVERT(DATE'0001-01-03',INTEGER) → 3
CONVERT(TIMESTAMP'0001-01-05 11:03:58',INTEGER) → 5

(c) Rules for converting to character string data
The rules for converting to character string data (rules about the length of data) are shown in the following table.

Table 8-54: Rules for converting to character string data (rules about the length of data)

Condition at the time
of conversion

Rules for converting to character string data

If data of character string type or binary type
is converted

If data of other types is converted

A < B If the post-conversion data type is CHAR, it is left-aligned and padded with spaces on the right.

A = B The conversion is performed

A > B The data is left-aligned and the excess portion on the
right is truncated.#1

The data cannot be converted. Conversion will result in
an error.#2

8. Scalar Functions

Hitachi Advanced Database SQL Reference 640



Legend:
A: Length of the source data that is to be converted to character string data
B: Data length of the post-conversion data type

#1
If truncation occurs in the middle of a multi-byte character, part of the multi-byte character is returned as the value
of the execution result.

#2
If the data type of the data to be converted is DOUBLE PRECISION and no number format is specified, the number
of decimal places of the mantissa is truncated to fit the data length specified in post-conversion-data-type (rounding
to the nearest even number), so no error is generated. However, an error will be generated if the length of the data
to be converted exceeds the data length specified in post-conversion-data-type even after all the decimal places of
the mantissa have been truncated.

■ To convert INTEGER, SMALLINT, or DECIMAL type numeric data to character string data (with no number
format specified)

• The result of converting numeric data to the format of a numeric literal is output as character string data. At that
point, the results are output in the shortest format that can represent the numeric literal.
However, conversion of DECIMAL type data is performed as follows:
■ The number of digits after the decimal point equals the scaling of the data type of the numeric data, and trailing
zeros are not stripped.
■ If the precision of the data type of the numeric data is greater than the scaling, the number of digits in the
integer part will not be 0.
■ The decimal point is always added.
Example: +0025.100 → '25.100'
As shown in the example, the plus sign (+) is removed. Any zeros are also stripped from the beginning of the
integer part.

• If the data to be converted is less than 0, it is prefixed with a minus sign (-).

■ To convert DOUBLE PRECISION type numeric data to character string data (with no number format specified)

• The result of converting numeric data to the format of a floating-point numeric literal is output as character string
data. At that point, the results are output in the shortest format that can represent the floating-point numeric
literal.
Examples:
+1.0000000000000000E+010 → '1E10'
+3.2000000000000000E+001 → '3.2E1'
+0.1000000000000000E+001 → '1E0'
+0.0000000000000000E+000 → '0E0'
As shown in the examples, the sign is removed from the mantissa and any trailing zeros are removed from the
decimal part. Also, the plus sign (+) and leading zeros are removed from the exponent.

• If the data to be converted is less than 0, it is prefixed with a minus sign (-).

• Exponents that are less than 0 are prefixed with a minus sign (-).

■ To convert numeric data to character string data (with a number format specified)
• The numeric data is converted to the format of a numeric literal, and then converted to character string data

according to the specified number format.
CONVERT(1000,VARCHAR(6),'LJ$9,999') → '$1,000'

8. Scalar Functions

Hitachi Advanced Database SQL Reference 641



• If the numeric data cannot be converted according to the number format, it returns the character string padded
with hash marks (#). Following the number format, delimiters, currency elements, decimal points, signs, numeric
elements, and character strings enclosed in double quotation marks are replaced with hash marks (#). If double-
byte characters are specified in the character string, they are replaced with hash marks (#) in proportion to their
character size (in bytes).
Example:
CONVERT(1000,CHAR(3),'99') → '###'

■ To convert datetime data to character string data (with no datetime format specified):
• When datetime data is converted to character string data, it is converted to the format of the predefined output

representation. When DATE type data is converted to character string data, it is converted to the format of the
predefined output representation of a date. When TIME type data is converted to character string data, it is
converted to the format of the predefined output representation of a time. When TIMESTAMP type data is
converted to character string data, it is converted to the format of the predefined output representation of a time
stamp. For details about the predefined output representations, see 6.3.3 Predefined character-string
representations.
Examples:
CONVERT(DATE'2013-06-30',CHAR(10)) → '2013-06-30'
CONVERT(DATE'0001-01-01',CHAR(10)) → '0001-01-01'
CONVERT(TIME'05:33:48.123',CHAR(12)) → '05:33:48.123'
CONVERT(TIMESTAMP'2013-06-30 11:03:58',CHAR(19)) → '2013-06-30 11:03:58'

• Conversions of datetime data to CHAR(n) or VARCHAR(n) must meet the following conditions:

Data type of the data to be converted Condition on the post-conversion data
length

DATE n ≥ 10

TIME(p) When p = 0 n ≥ 8

When p > 0 n ≥ 9 + p

TIMESTAMP(p) When p = 0 n ≥ 19

When p > 0 n ≥ 20 + p

When n is less than the lengths indicated above, conversion is not possible.

• When converting DATE type data to CHAR type, if the data length of the post-conversion data is 11 bytes or
greater, it is left-aligned and padded with spaces on the right.
Example:
CONVERT(DATE'2013-06-30',CHAR(15)) → '2013-06-30 '
Legend: Δ: Single-byte space

• When converting TIME type data with fractional seconds precision p to CHAR type, if the data length of the
post-conversion data is greater than or equal to 10 + p bytes (or greater than or equal to 9 bytes when p = 0), it
is left-aligned and padded with spaces on the right.
Example:
CONVERT(TIME'11:03:58.123',CHAR(13)) → '11:03:58.123Δ'
Legend: Δ: Single-byte space

• When converting TIMESTAMP type data with fractional seconds precision p to CHAR type, if the data length of
the post-conversion data is greater than or equal to 21 + p bytes (or greater than or equal to 20 bytes when p =
0), it is left-aligned and padded with spaces on the right.
Example:

8. Scalar Functions

Hitachi Advanced Database SQL Reference 642



CONVERT(TIMESTAMP'2013-06-30 11:03:58',CHAR(20)) → '2013-06-30 11:03:58Δ'
Legend: Δ: Single-byte space

■ To convert datetime data to character string data (with a datetime format specified):
• Datetime data is converted to character string data according to the specified datetime format.

• When you specify a datetime format element that is not in the datetime data to be converted, that element is set
to a default character string.
Example:
CONVERT(DATE'2013-07-30',CHAR(16),'YYYY/MM/DD HH:MI') → '2013/07/30
00:00'
The datetime data to be converted in the above example is DATE type, which has no time elements, but because
time elements (HH and MI) are specified in the datetime format, those portions are set to '00' by default.
The default character strings are shown in the following table:

Table 8-55: Default character strings for datetime format elements

No. Datetime format element Default character string

1 Time HH '00'

2 HH24

3 HH12 '12'

4 AM/PM AM 'AM'

5 A.M. 'A.M.'

6 PM 'AM'

7 P.M. 'A.M.'

8 AMN ' '

9 PMN

10 Minute MI '00'

11 Second SS '00'

12 SSSSS '00000'

13 Fractional seconds FF1 Any digits to the right of the fractional seconds precision of the target
data are padded with zeros.

14 FF2

15 FF3

16 FF4

17 FF5

18 FF6

19 FF7

20 FF8

21 FF9

22 FF10

23 FF11

24 FF12

8. Scalar Functions

Hitachi Advanced Database SQL Reference 643



• When converting datetime data to CHAR type, if the data length after conversion is less than the data length
specified for the post-conversion-data-type, it is left-aligned and padded with spaces on the right.
Example:
CONVERT(DATE'2013-07-30',CHAR(12),'YYYY/MM/DD') → '2013/07/30 '
Legend: Δ: Single-byte space

• If the datetime format element MON, MONTH, DAY, or DY is specified when converting datetime data to character
string data, depending on whether the first and second letters of the elements are uppercase or lowercase, the
post-conversion character string will vary as follows:
• If the first letter is lowercase, the post-conversion character string will be entirely lowercase.
• If the first letter is uppercase and the second letter is lowercase, the first letter of the post-conversion character
string will be uppercase, and the second and subsequent letters will be lowercase.
• If the first and second letters are uppercase, the post-conversion character string will be entirely uppercase.
This is illustrated in the following examples:

Specified datetime format element Post-conversion character string

mon 'jan'

Mon 'Jan'

MON or MOn 'JAN'

The above examples illustrate the case for January.

• If you specify FF1 to FF11 in the datetime format and the number of digits in the fractional seconds of the data
to be converted exceeds the number of digits specified in the datetime format, the excess digits in the fractional
seconds of the datetime format are truncated.
Example:
CONVERT(TIME'15:16:17.123456',CHAR(9),'HHMISS.FF2') → '151617.12'

■ To convert binary data to character string data
• Only the data type is converted, and the data itself (character encoding itself) is not converted.

Example:
CONVERT(X'61626364',CHAR(4)) ==> 'abcd'

• If length-of-data-before-type-conversion > length-of-data-after-type-conversion, the excess portion on the right
is truncated.
Example:
CONVERT(X'61626364',CHAR(3)) ==> 'abc'
The underlined portion is truncated.

• If length-of-data-before-type-conversion < length-of-data-after-type-conversion, the results are padded with
half-width spaces on the right.
Example:
CONVERT(X'61626364',CHAR(5)) ==> 'abcd∆'
Legend: ∆: Half-width space

(d) Rules for converting to datetime data

■ To convert INTEGER or SMALLINT type numeric data to datetime data

• The numeric data is converted to DATE or TIMESTAMP type data based on a starting point of January 1, 0001.
Example:

8. Scalar Functions

Hitachi Advanced Database SQL Reference 644



CONVERT(2,DATE) → DATE'0001-01-02'
• The time portion of the TIMESTAMP type is converted to 00:00:00, and the fractional seconds are filled with

zeros.
Example:
CONVERT(2,TIMESTAMP(3)) → TIMESTAMP'0001-01-02 00:00:00.000'

• INTEGER and SMALLINT type data in the range 1 to 3652059 can be converted. Values outside this range
generate an error.

■ To convert character string data to datetime data (with no datetime format specified):
• The character string data to be converted (after leading and trailing spaces are removed) can be converted to
DATE type data only when it adheres to the predefined input representation format of a date. For details about
the predefined input representation of a date, see (a) Predefined input representation in (1) Predefined character-
string representation of dates in 6.3.3 Predefined character-string representations.
Example:
CONVERT('2014-07-22 ',DATE) → DATE'2014-07-22'
Examples of character string data that can be converted:
'2014-06-30', '0001-01-02', ' 2014-07-30', 'Δ2014/07/30 '
Examples of character string data that cannot be converted:
'2013Δ06Δ30', '2013.06.30'
Legend: Δ: Single-byte space

• The character string data to be converted (after leading and trailing spaces are removed) can be converted to
TIME type data only when it adheres to the predefined input representation format of a time. For details about
the predefined input representation of a time, see (a) Predefined input representation in (2) Predefined
character-string representation of times in 6.3.3 Predefined character-string representations.
Example:
CONVERT('Δ19:46:23.123456',TIME(6)) → TIME'19:46:23.123456'
Examples of character string data that can be converted:
'18:05:22', '10:21:44.123', ' 10:21:44.123456Δ'
Examples of character string data that cannot be converted:
'18Δ05Δ22', '10:21:44Δ123456'
Legend: Δ: Single-byte space

• The character string data to be converted (after leading and trailing spaces are removed) can be converted to
TIMESTAMP type data only when it adheres to the predefined input representation format of a time stamp. For
details about the predefined input representation of a time stamp, see (a) Predefined input representation in (3) 
Predefined character-string representation of time stamps in 6.3.3 Predefined character-string representations.
Example:
CONVERT('2014/08/02 11:03:58.123456Δ',TIMESTAMP(6)) →
TIMESTAMP'2014-08-02 11:03:58.123456'
Examples of character string data that can be converted:
'2014-06-30 11:03:58', '2014/07/30 11:03:58.123', 'Δ2014/07/30
11:03:58.123456789 '
Examples of character string data that cannot be converted:
'2014-06-30 11-03-58', '2014/07/30 11:03:58:123456'
Legend: Δ: Single-byte space

8. Scalar Functions

Hitachi Advanced Database SQL Reference 645



• If the number of digits in the fractional seconds of the character string data to be converted is greater than the
number of digits in the fractional seconds of post-conversion-data-type, the fractional seconds beyond the
number of digits in the fractional seconds of post-conversion-data-type are truncated.
Example:
CONVERT('19:46:23.123456',TIME(3)) → TIME'19:46:23.123'

• If the number of digits in the fractional seconds of the character string data to be converted is less than the number
of digits in the fractional seconds of post-conversion-data-type, the fractional seconds are padded with zeros as
necessary.
Example:
CONVERT('2014-08-02 11:03:58.123',TIMESTAMP(9)) → TIMESTAMP'2014-08-02
11:03:58.123000000'

• If the character string data item is composed of only spaces, the null value is returned.

■ To convert character string data to datetime data (with a datetime format specified):
• To convert character string data to DATE type, specify the year, month, and day elements in the datetime format.

If you specify other elements (for example, time), they will not affect the results. For details about the elements
of the datetime format, see Table 8-49: Datetime format elements with the same meaning.

• To convert character string data to TIME type, specify the hour, minute, and second elements in the datetime
format. If you specify other elements (for example, the day), they will not affect the results. For details about
the elements of the datetime format, see Table 8-49: Datetime format elements with the same meaning.

• To convert character string data to TIMESTAMP type, specify the year, month, day, hour, minute, and second
elements in the datetime format. For details about the elements of the datetime format, see Table 8-49: Datetime
format elements with the same meaning.

• Consecutive single-byte spaces are stripped from the beginning and end of the character string data to be
converted, and then the data is converted to datetime data according to the datetime format. In addition, parts
inside the datetime format that correspond to consecutive single-byte spaces at the beginning or end of the
character string data are ignored. Therefore, the following example does not generate an error.
Example:
CONVERT('Δ19Δ46Δ23 ',TIME(12),'" "FMΔHHΔMIΔSSΔFFΔ')
→ TIME'19:46:23.000000000000'
Legend: Δ: Single-byte space

Note
In the above example, the single-byte spaces are handled as follows:

1. Consecutive single-byte spaces at the beginning and end of the character string data to be
converted are ignored.
'Δ19Δ46Δ23 ' → '19Δ46Δ23'

2. Consecutive single-byte spaces at the beginning and end of the datetime format are ignored.
'" "FMΔHHΔMIΔSSΔFFΔ' → 'FMΔHHΔMIΔSSΔFF'
The " " part is ignored because it corresponds to consecutive single-byte spaces at the
beginning of the character string data. The final single-byte space is ignored because it
corresponds to consecutive single-byte spaces at the end of the character string data.

3. Because there are no characters corresponding to FM, the single-byte space after FM corresponds
to consecutive single-byte spaces at the beginning of the character string data and is ignored.
'FMΔHHΔMIΔSSΔFF' → 'FMHHΔMIΔSSΔFF'

8. Scalar Functions

Hitachi Advanced Database SQL Reference 646



4. Because there are no fractional seconds in the character string data to be converted, the single-
byte space before FF corresponds to consecutive single-byte spaces at the end of the character
string data and is ignored.
'FMHHΔMIΔSSΔFF' → 'FMHHΔMIΔSSFF'
If fractional seconds were specified, the single-byte space before FF would not correspond to
consecutive single-byte spaces at the end of the character string data.

• If the character string data item is composed of only spaces, the null value is returned.

• If no fractional second elements are specified in the datetime format, and the data is converted to TIME or
TIMESTAMP type data with a fractional seconds precision of 3 or more, the values of the fractional seconds
after the conversion will be 0.
Example:
CONVERT('151617',TIME(3),'HHMISS') → TIME'15:16:17.000'

• The conversion is the same regardless of whether uppercase or lowercase is used for the datetime format
elements. Similarly, the conversion is the same regardless of whether uppercase or lowercase is used in the data
to be converted. However, uppercase and lowercase are distinguished inside character strings enclosed in double
quotation marks (").

• If FF or one of FF1 to FF12 is specified in the datetime format, the numeric characters in the character string
corresponding to the datetime format are extracted during the conversion. At this time, numeric characters are
extracted until a non-numeric character is encountered, or until the length associated with the element in the
datetime format is reached. If the length of the numeric characters in a character string is shorter than the length
associated with the corresponding element in the datetime format, the missing part is converted to 0.
Example:
CONVERT('151617.12',TIME(3),'HHMISS.FF3') → TIME'15:16:17.120'

• If FF or one of FF1 to FF12 is specified in the datetime format, and the number of digits of fractional seconds
in the character string data is less than the fractional seconds precision of the datetime data, the missing fractional
seconds are converted to 0.
Example:
CONVERT('151617.123',TIME(6),'HHMISS.FF3') → TIME'15:16:17.123000'

• If FF or one of FF1 to FF12 is specified in the datetime format, and the number of digits of fractional seconds
in the character string data is greater than the fractional seconds precision of the datetime data, the excess
fractional seconds in the datetime data are not converted.
Example:
CONVERT('151617.123456',TIME(3),'HHMISS.FF6') → TIME'15:16:17.123'

■ To convert datetime data to datetime data:
The conversion rules for converting datetime data to datetime data are given in the following table.

Table 8-56: Conversion rules for converting datetime data to datetime data

Data type of the data to be
converted

Specified post-conversion data
type

Conversion rules

DATE DATE No conversion is performed.

TIMESTAMP(p2) • The time part is converted to 00:00:00.
• The fractional seconds are filled with zeros.

TIME(p1) TIME(p2) • When p1 = p2
No conversion is performed.

• When p1 > p2

8. Scalar Functions

Hitachi Advanced Database SQL Reference 647



Data type of the data to be
converted

Specified post-conversion data
type

Conversion rules

The fractional seconds beyond p2 are truncated.
• When p1 < p2

The missing fractional seconds are padded with
zeros.

TIMESTAMP(p1) DATE Only the date part is converted.

TIMESTAMP(p2) • When p1 = p2
No conversion is performed.

• When p1 > p2
The fractional seconds beyond p2 are truncated.

• When p1 < p2
The missing fractional seconds are padded with
zeros.

Legend:
p1, p2: Fractional seconds precision

(e) Rules for converting to binary data

■ To convert character string data to binary data
• Only the data type is converted, and the data itself (character encoding itself) is not converted.

Example:
CONVERT('abcd',BINARY(4)) ==> X'61626364'

• If length-of-data-before-type-conversion > length-of-data-after-type-conversion, the excess portion on the right
is truncated.
Example:
CONVERT('abcd',BINARY(3)) ==> X'616263'
The underlined portion is truncated.
If truncation occurs in the middle of a multi-byte character, part of the multi-byte character is returned as the
value of the execution result.

• If length-of-data-before-type-conversion < length-of-data-after-type-conversion, the results are padded with
X'00' on the right.
Example:
CONVERT('abcd',BINARY(5)) ==> X'6162636400'

■ To convert binary data to binary data
• If length-of-data-before-type-conversion > length-of-data-after-type-conversion, the excess portion on the right

is truncated.
Example:
CONVERT(X'61626364',BINARY(3)) ==> X'616263'
The underlined portion is truncated.
If truncation occurs in the middle of a multi-byte character, part of the multi-byte character is returned as the
value of the execution result.

• If length-of-data-before-type-conversion < length-of-data-after-type-conversion, the results are padded with
X'00' on the right.
Example:
CONVERT(X'61626364',BINARY(5)) ==> X'6162636400'

8. Scalar Functions

Hitachi Advanced Database SQL Reference 648



(6) Examples
Example 1:

Convert the data in column C2 in table T1 from CHAR type to DATE type and retrieve the rows where column C2
is July 20, 2013.
In column C2, the CHAR type data representing the date is stored in the format MM/DD/YYYY.

SELECT * FROM "T1"
    WHERE CONVERT("C2",DATE,'MM/DD/YYYY')=DATE'2013-07-20'

Example 2:
Retrieve the rows from table T1 where column C1 is A10101, and convert the data in the corresponding column
C2 from INTEGER type to CHAR type. During conversion, prefix the character string with the currency symbol $
and separate every three digits with a comma.

SELECT "C1",CONVERT("C2",CHAR(13),'$999,999,999') FROM "T1"
    WHERE "C1"='A10101'

Example 3:
In this example, column C2 in table T1 holds CHAR type data representing the price, including the currency symbol
$ and commas between every three digits. Convert column C2 from CHAR type to INTEGER type and retrieve the
rows for which the discounted price is greater than or equal to $1,000.

SELECT * FROM "T1"
    WHERE CONVERT("C2",INTEGER,'$9,999')*0.7>=1000

8. Scalar Functions

Hitachi Advanced Database SQL Reference 649



8.12.6 HEX
Converts binary data to a hexadecimal string representation (character string data consisting of 0 to 9, and A to F).

(1) Specification format
scalar-function-HEX ::= HEX(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the target binary data.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• Specify BINARY or VARBINARY type data for the target data.

• You cannot specify a dynamic parameter by itself for the target data.

• You cannot specify binary data whose defined length is 16,001 bytes or greater for the target data.

The following example illustrates the result of executing the scalar function HEX.

Examples:
HEX(B'10100100') → 'A4'
HEX(X'1234') → '1234'

(3) Rules
1. The data type and data length of the execution result are shown in the following table.

Table 8-57: Data type and data length of the execution result of the scalar function HEX

Data type and data length of target data Data type and data length of the execution result

Data type Defined length Actual length Data type Defined length Actual length

BINARY(n) 1 ≤ n ≤ 16,000 Not applicable. VARCHAR n × 2 n × 2

8. Scalar Functions

Hitachi Advanced Database SQL Reference 650



Data type and data length of target data Data type and data length of the execution result

Data type Defined length Actual length Data type Defined length Actual length

VARBINARY(n) 1 ≤ n ≤ 16,000 r r × 2

Legend:
n: Defined length of target data
r: Actual length of target data

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has a null value, the execution result will be a null value.

4. If the actual length of the target data is 0 bytes, the execution result will be data with an actual length of 0 bytes.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 651



8.13 NULL evaluation functions

This section describes the functions and specification formats of the NULL evaluation functions.

8.13.1 COALESCE
Evaluates the specified target data in the order target-data-1, target-data-2, ..., and then returns the first non-null value.

(1) Specification format
scalar-function-COALESCE ::= COALESCE(target-data-1[,target-data-2]...)
 
  target-data-1 ::= value-expression
  target-data-2 ::= value-expression

(2) Explanation of specification format
target-data-1, target-data-2...:

Specifies the target data.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• In the target data, specify data whose data types can be compared. For details about data types that can be
compared, see (1) Data types that can be compared in 6.2.2 Data types that can be converted, assigned, and
compared. However, note the following exceptions:
• DATE type data cannot be compared to character string data (even to the predefined input representation of a
date).
• TIME type data cannot be compared to character string data (even to the predefined input representation of a
time).
• TIMESTAMP type data cannot be compared to character string data (even to the predefined input representation
of a time stamp).

• You cannot specify a dynamic parameter by itself for target-data-1.

• If you specify a dynamic parameter for target-data-2, or later, the data type of the dynamic parameter is assumed
to be the data type of target-data-1.

• A maximum of 255 target data items can be specified.

(3) Rules
1. The data type and data length of the execution result are determined according to the rules described in 7.20.2 Data

types of the results of value expressions.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If all the target data has a null value, the execution result will be a null value.

4. COALESCE(target-data-1,target-data-2) is equivalent to the following CASE expression:

CASE
   WHEN target-data-1 IS NOT NULL THEN target-data-1

8. Scalar Functions

Hitachi Advanced Database SQL Reference 652



   ELSE target-data-2
END

5. COALESCE(target-data-1,target-data-2,...,target-data-n) is equivalent to the following CASE expression
(where n is greater than or equal to 3).

CASE
   WHEN target-data-1 IS NOT NULL THEN target-data-1
   ELSE COALESCE(target-data-2,...,target-data-n)
END

(4) Example
Example:

Execute the scalar function COALESCE on the values of columns C1 to C3 in table T1.

SELECT COALESCE("C1","C2","C3") FROM "T1"

8.13.2 ISNULL
Evaluates the specified target data in the order target-data-1, target-data-2, and then returns the first non-null value.

Note
The scalar functions ISNULL and NVL are functionally equivalent.

(1) Specification format
scalar-function-ISNULL ::= ISNULL(target-data-1,target-data-2)
 
  target-data-1 ::= value-expression
  target-data-2 ::= value-expression

8. Scalar Functions

Hitachi Advanced Database SQL Reference 653



(2) Explanation of specification format
target-data-1, target-data-2:

Specifies the target data.
The following rules apply:

• Specify target-data-1 and target-data-2 in the form of value expressions. For details about value expressions,
see 7.20 Value expression.

• In target-data-1 and target-data-2, specify data whose data types can be compared. For details about data types
that can be compared, see (1) Data types that can be compared in 6.2.2 Data types that can be converted,
assigned, and compared.

• If the data type of target-data-1 is DATE, TIME, or TIMESTAMP, you can specify a character string literal that
adheres to the format of the predefined input representation for target-data-2. For details about the predefined
input representations, see 6.3.3 Predefined character-string representations.

• You cannot specify a dynamic parameter by itself for target-data-1.

• If you specify a dynamic parameter for target-data-2, the data type of the dynamic parameter is assumed to be
the data type of target-data-1.

• You must specify a value for target-data-2 that is capable of being assigned to the data type of target-data-1.
For details about storage assignments, see (2) Storage assignments between data types in 6.2.2 Data types that
can be converted, assigned, and compared.

(3) Rules
1. The data type and data length of the execution result will be the data type and data length of target-data-1.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If target-data-1 and target-data-2 have null values, the execution result will be a null value.

4. If target-data-1 has a null value, the value of target-data-2 is converted to the data type and data length of target-
data-1.

(4) Example
Example:

Execute the scalar function ISNULL on the values in column C1 and column C2 in table T1.

SELECT ISNULL("C1","C2") FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 654



8.13.3 NULLIF
Compares target-data-1 to target-data-2 and return NULL if they are equal, or target-data-1 if they are not equal.

(1) Specification format
scalar-function-NULLIF ::= NULLIF(target-data-1,target-data-2)
 
  target-data-1 ::= value-expression
  target-data-2 ::= value-expression

(2) Explanation of specification format
target-data-1, target-data-2:

Specifies the target data to be compared.
The following rules apply:

• Specify target-data-1 and target-data-2 in the form of value expressions. For details about value expressions,
see 7.20 Value expression.

• In target-data-1 and target-data-2, specify data whose data types can be compared. For details about data types
that can be compared, see (1) Data types that can be compared in 6.2.2 Data types that can be converted,
assigned, and compared. However, note the following exceptions:
• DATE type data cannot be compared to character string data (even to the predefined input representation of a
date).
• TIME type data cannot be compared to character string data (even to the predefined input representation of a
time).
• TIMESTAMP type data cannot be compared to character string data (even to the predefined input representation
of a time stamp).

• You cannot specify dynamic parameters by themselves for both target-data-1 and target-data-2.

• If you specify a dynamic parameter for either target-data-1 or target-data-2, the data type of the other one will
be assumed to be the data type of the dynamic parameter.

(3) Rules
1. The data type and data length of the execution result are determined according to the rules described in 7.20.2 Data

types of the results of value expressions.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If target-data-1 has a null value, the execution result will be a null value.

4. NULLIF(target-data-1,target-data-2) is equivalent to the following CASE expression.

CASE
   WHEN target-data-1 = target-data-2 THEN NULL
   ELSE target-data-1
END

(4) Example
Example:

Compare the values of columns C1 and C2 in table T1.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 655



SELECT NULLIF("C1","C2") FROM "T1"

8.13.4 NVL
Evaluates the specified target data in the order target-data-1, target-data-2, and then returns the first non-null value.

Note
The scalar functions NVL and ISNULL are functionally equivalent.

(1) Specification format
scalar-function-NVL ::= NVL(target-data-1,target-data-2)
 
  target-data-1 ::= value-expression
  target-data-2 ::= value-expression

(2) Explanation of specification format
target-data-1, target-data-2:

Specifies the target data.
The following rules apply:

• Specify target-data-1 and target-data-2 in the form of value expressions. For details about value expressions,
see 7.20 Value expression.

• In target-data-1 and target-data-2, specify data whose data types can be compared. For details about data types
that can be compared, see (1) Data types that can be compared in 6.2.2 Data types that can be converted,
assigned, and compared.

• If the data type of target-data-1 is DATE, TIME, or TIMESTAMP, you can specify a character string literal that
adheres to the format of the predefined input representation for target-data-2. For details about the predefined
input representations, see 6.3.3 Predefined character-string representations.

• You cannot specify a dynamic parameter by itself for target-data-1.

• If you specify a dynamic parameter for target-data-2, the data type of the dynamic parameter is assumed to be
the data type of target-data-1.

• You must specify a value for target-data-2 that is capable of being assigned to the data type of target-data-1.
For details about storage assignments, see (2) Storage assignments between data types in 6.2.2 Data types that
can be converted, assigned, and compared.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 656



(3) Rules
1. The data type and data length of the execution result will be the data type and data length of target-data-1.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If target-data-1 and target-data-2 have null values, the execution result will be a null value.

4. If target-data-1 has a null value, the value of target-data-2 is converted to the data type and data length of target-
data-1.

(4) Example
Example:

Execute the scalar function NVL on the values in column C1 and column C2 in table T1.

SELECT NVL("C1","C2") FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 657



8.14 Information acquisition functions

This section describes the functions and specification formats of the information acquisition functions.

8.14.1 LENGTHB
Returns the length of the target data in bytes.

(1) Specification format
scalar-function-LENGTHB ::= LENGTHB(target-data)
 
  target-data ::= value-expression

(2) Explanation of specification format
target-data:

Specifies the target data whose length is to be determined.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• For the target data, specify numeric data, character string data, datetime data, or binary data.

• You cannot specify a dynamic parameter by itself for the target data.

(3) Rules
1. The data type of the execution result is the INTEGER type.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If the target data has a null value, the execution result will be a null value.

4. The following table shows the value of the execution result for each target data type.

Table 8-58: Value of execution result for each target data type

No. Data type of target data Value of execution result (bytes)

1 INTEGER 8

2 SMALLINT 4

3 DECIMAL When the precision is 1 to 4 2

4 When the precision is 5 to 8 4

5 When the precision is 9 to 16 8

6 When the precision is 17 to 38 16

7 DOUBLE PRECISION 8

8 CHAR(n) n

9 VARCHAR Actual length

8. Scalar Functions

Hitachi Advanced Database SQL Reference 658



No. Data type of target data Value of execution result (bytes)

10 DATE 4

11 TIME(p) 3 + ↑p ÷ 2↑

12 TIMESTAMP(p) 7 + ↑p ÷ 2↑

13 BINARY(n) n

14 VARBINARY Actual length

(4) Example
Example 1 (in a case where the target data is character string data)

Determine the actual lengths of the VARCHAR type data in column C1 from table T1.
The assumed character encoding is Unicode (UTF-8).

SELECT LENGTHB("C1") FROM "T1"

Example 2 (in a case where the target data is binary data)
Determine the actual data length for each row of columns C1 (VARBINARY(5)) and C2 (BINARY(5)) in table T1.

SELECT LENGTHB("C1"), LENGTHB("C2") FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 659



8.15 Comparison functions

This section describes the functions and specification formats of the comparison functions.

8.15.1 DECODE
Compares the values in the target data and the comparison data one at a time, and if there is a match, returns the
corresponding value as the return value. If no match is found between the target data and comparison data, returns the
predefined return value.

When multiple comparison data items are specified, it returns the return value corresponding to the first comparison
data item that is matched.

(1) Specification format
scalar-function-DECODE ::= DECODE(target-data,comparison-data,return-value
                             [,comparison-data,return-value]...
                             [,predefined-return-value])
 
  target-data ::= {value-expression | NULL}
  comparison-data ::= {value-expression | NULL}
  return-value ::= {value-expression | NULL}
  predefined-return-value ::= {value-expression | NULL}

(2) Explanation of specification format
target-data:

Specifies the target data. Specify the target data in the form of a value expression, or as NULL. For details about
value expressions, see 7.20 Value expression.

comparison-data:
Specifies the comparison data.
The following rules apply:

• Specify the comparison data in the form of a value expression, or as NULL. For details about value expressions,
see 7.20 Value expression.

• The first specification of comparison-data cannot be NULL.

• The first specification of comparison-data cannot be a dynamic parameter by itself.

• If you specify a dynamic parameter by itself for the second or subsequent specification of comparison-data, the
data type of the dynamic parameter is assumed to be the data type of the first comparison-data.

return-value:
Specifies the value to return when the target data matches a comparison data item.
The following rules apply:

• Specify the return value in the form of a value expression, or as NULL. For details about value expressions, see
7.20 Value expression.

• The first-specified return value cannot be NULL.

• The first-specified return value cannot be a dynamic parameter by itself.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 660



• If you specify a dynamic parameter by itself for the second or subsequent return value, the data type of the
dynamic parameter is assumed to be the data type of the first return value.

predefined-return-value:
Specifies a predefined value to return when the target data does not match any of the comparison data. If predefined-
return-value is omitted, NULL is assumed.
The following rules apply:

• Specify the predefined return value in the form of a value expression, or as NULL. For details about value
expressions, see 7.20 Value expression.

• If you specify a dynamic parameter by itself for predefined-return-value, the data type of the dynamic parameter
is assumed to be the data type of the first return value.

(3) Rules
1. You must specify numeric data, character string data, or datetime data for target-data, comparison-data, return-

value, and predefined-return-value.

2. When NULL is specified for target-data, comparison-data, return-value, or predefined-return-value, it denotes the
null value.

3. You must specify data types that can be compared (except when specifying NULL) for target-data and comparison-
data. For details about data types that can be compared, see (1) Data types that can be compared in 6.2.2 Data types
that can be converted, assigned, and compared.
Note, however, that if target-data and comparison-data are character string data or datetime data, specify a
combination of data types based on the following table.

Table 8-59: Combinations of data types that can be specified for the target data and the
comparison data for the scalar function DECODE

Target data Comparison data

Character string data Datetime data

Character
string
literal that
is the
predefine
d input
represent
ation for
date data

Character
string
literal that
is the
predefine
d input
represent
ation for
time data

Character
string
literal that
is the
predefine
d input
represent
ation for
time
stamp
data

Other
data

Date data Time data Time
stamp
data

Character
string data

Character
string literal
that is the
predefined
input
representatio
n for date
data

Y Y Y Y N N N

Character
string literal
that is the
predefined
input
representatio

Y Y Y Y N N N

8. Scalar Functions

Hitachi Advanced Database SQL Reference 661



Target data Comparison data

Character string data Datetime data

Character
string
literal that
is the
predefine
d input
represent
ation for
date data

Character
string
literal that
is the
predefine
d input
represent
ation for
time data

Character
string
literal that
is the
predefine
d input
represent
ation for
time
stamp
data

Other
data

Date data Time data Time
stamp
data

n for time
data

Character
string literal
that is the
predefined
input
representatio
n for time
stamp data

Y Y Y Y N N N

Other data Y Y Y Y N N N

Datetime
data

Date data Y N Y N Y N Y

Time data N Y N N N Y N

Time stamp
data

Y N Y N Y N Y

Legend:
Y: Can be specified.
N: Cannot be specified.

4. You must specify data types that can be compared (except when specifying NULL) for return-value and predefined-
return-value. For details about data types that can be compared, see (1) Data types that can be compared in 6.2.2 
Data types that can be converted, assigned, and compared.
However, if return-value and predefined-return-value are character string data or datetime data, specify a
combination of data types based on the following table.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 662



Table 8-60: Combinations of data types that can be specified for the return value and the
predefined return value for the scalar function DECODE

Return value Predefined return value, or return value#

Character string data Datetime data

Character
string
literal that
is the
predefine
d input
represent
ation for
date data

Character
string
literal that
is the
predefine
d input
represent
ation for
time data

Character
string
literal that
is the
predefine
d input
represent
ation for
time
stamp
data

Other
data

Date data Time data Time
stamp
data

Character
string data

Character
string literal
that is the
predefined
input
representatio
n for date
data

Y Y Y Y N N N

Character
string literal
that is the
predefined
input
representatio
n for time
data

Y Y Y Y N N N

Character
string literal
that is the
predefined
input
representatio
n for time
stamp data

Y Y Y Y N N N

Other data Y Y Y Y N N N

Datetime
data

Date data N N N N Y N Y

Time data N N N N N Y N

Time stamp
data

N N N N Y N Y

Legend:
Y: Can be specified.
N: Cannot be specified.

#
If multiple return-value items are specified and all return-value items are character string data or datetime data,
the combinations of data types that can be specified for each return-value item are as shown in Table 8-60: 
Combinations of data types that can be specified for the return value and the predefined return value for the
scalar function DECODE.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 663



5. You can specify a maximum of 127 comparison-data and return-value pairs.

6. The data type and data length of the execution result depends on the data types of the results of return-value and
predefined-return-value, and is determined according to the rules described in 7.20.2 Data types of the results of
value expressions.
Note that the specification of NULL for return-value and predefined-return-value does not affect the data type and
data length of the execution result.

7. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

8. If the target data is the null value and NULL is specified for one of the comparison data items, the return value
associated with that item is returned.

(4) Examples
Example 1:

Convert the abbreviations of country names in column C2 from table T1 as follows:

• JPN → Japan
• IND → India
• Null value → NODATA
• Other → Other
SELECT "C1",DECODE("C2",'JPN','Japan','IND','India',NULL,'NODATA','Other')
    FROM "T1"

Example 2:
Search the employee table (EMPLIST) as follows:

• Determine the number of males and females in each section (SCODE)

SELECT "SCODE",SUM(DECODE("SEX",'M',1,0)) AS "Men",
               SUM(DECODE("SEX",'F',1,0)) AS "Women"
    FROM "EMPLIST"
    GROUP BY "SCODE"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 664



8.15.2 GREATEST
Returns the greatest value among the specified target data.

In addition to comparing numeric data items, you can also compare character string data items and datetime data items.

(1) Specification format
scalar-function-GREATEST ::= GREATEST(target-data-1[,target-data-2]...)
 
  target-data-1 ::= value-expression
  target-data-2 ::= value-expression

(2) Explanation of specification format
target-data-1, target-data-2, ...:

Specifies the numeric data whose greatest value is to be determined.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• A maximum of 255 target data items can be specified.

• The data types that can be specified for the target data are numeric data, character string data, and datetime data.

• You must specify data types that can be compared in target-data-1, target-data-2, .... For details about data types
that can be compared, see (1) Data types that can be compared in 6.2.2 Data types that can be converted,
assigned, and compared. However, note the following exceptions:
• DATE type data cannot be compared to character string data (even to the predefined input representation of a
date).
• TIME type data cannot be compared to character string data (even to the predefined input representation of a
time).
• TIMESTAMP type data cannot be compared to character string data (even to the predefined input representation
of a time stamp).
For details about predefined input representations, see 6.3.3 Predefined character-string representations.

• You cannot specify a dynamic parameter by itself for target-data-1.

• If a dynamic parameter is specified by itself for target-data-2, or later, the data type of target-data-1 is assumed
for the data type of the dynamic parameter.

(3) Rules
1. The data type and data length of the execution result are determined according to the rules described in 7.20.2 Data

types of the results of value expressions.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 665



2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If any of the specified target data has a null value, the execution result will be a null value.

(4) Example
Example:

Determine the greatest value among the values of columns C1 to C4 in table T1.

SELECT GREATEST("C1","C2","C3","C4") FROM "T1"

8.15.3 LEAST
Returns the smallest value among the specified target data items.

In addition to comparing numeric data items, you can also compare character string data items and datetime data items.

(1) Specification format
scalar-function-LEAST ::= LEAST(target-data-1[,target-data-2]...)
 
  target-data-1 ::= value-expression
  target-data-2 ::= value-expression

(2) Explanation of specification format
target-data-1, target-data-2, ...:

Specifies the numeric data whose smallest value is to be determined.
The following rules apply:

• Specify the target data in the form of a value expression. For details about value expressions, see 7.20 Value
expression.

• A maximum of 255 target data items can be specified.

• The data types that can be specified for the target data are numeric data, character string data, and datetime data.

• You must specify data types that can be compared in target-data-1, target-data-2, .... For details about data types
that can be compared, see (1) Data types that can be compared in 6.2.2 Data types that can be converted,
assigned, and compared. However, note the following exceptions:
• DATE type data cannot be compared to character string data (even to the predefined input representation of a
date).
• TIME type data cannot be compared to character string data (even to the predefined input representation of a
time).

8. Scalar Functions

Hitachi Advanced Database SQL Reference 666



• TIMESTAMP type data cannot be compared to character string data (even to the predefined input representation
of a time stamp).
For details about predefined input representations, see 6.3.3 Predefined character-string representations.

• You cannot specify a dynamic parameter by itself for target-data-1.

• If a dynamic parameter is specified by itself for target-data-2, or later, the data type of target-data-1 is assumed
for the data type of the dynamic parameter.

(3) Rules
1. The data type and data length of the execution result are determined according to the rules described in 7.20.2 Data

types of the results of value expressions.

2. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

3. If any of the specified target data has a null value, the execution result will be a null value.

(4) Example
Example:

Determine the smallest value among the values of columns C1 to C4 in table T1.

SELECT LEAST("C1","C2","C3","C4") FROM "T1"

8.15.4 LTDECODE
Compares the values in the target data and in the comparison data one at a time, and, if any value in the target data is
less than the value in the comparison data, returns the corresponding return value. If no value in the target data is less
than any of the values in the comparison data, this function returns the predefined return value.

If multiple comparison data items are specified, the function returns the return value that corresponds to the first
comparison data item whose value is greater than the value in the target data.

(1) Specification format
scalar-function-LTDECODE ::= LTDECODE(target-data,comparison-data,return-value
                        [,comparison-data,return-value]...
                        [,predefined-return-value])
 
  target-data ::= value-expression
  comparison-data ::= value-expression
  return-value ::= {value-expression | NULL}
  predefined-return-value ::= {value-expression | NULL}

8. Scalar Functions

Hitachi Advanced Database SQL Reference 667



(2) Explanation of specification format
target-data:

Specifies the target data. Specify the target data in the form of a value expression. For details about value
expressions, see 7.20 Value expression.

comparison-data:
Specifies the comparison data. Specify the comparison data in the form of a value expression. For details about
value expressions, see 7.20 Value expression.

return-value:
Specifies the value to be returned if the value of the target data is less than the value of the comparison data. Specify
the return value in the form of a value expression, or as NULL. For details about value expressions, see 7.20 Value
expression.

predefined-return-value:
Specifies the predefined value to be returned if the value of the target data is equal to or greater than any of the
values of the comparison data. Specify the predefined return value in the form of a value expression, or as NULL.
For details about value expressions, see 7.20 Value expression.
Note that if predefined-return-value is omitted, NULL is assumed.

(3) Rules
1. You must specify numeric data, character string data, or datetime data for target-data, comparison-data, return-

value, and predefined-return-value.

2. When NULL is specified for return-value or predefined-return-value, it denotes the null value.

3. You must specify data types that can be compared for target-data and comparison-data. For details about data types
that can be compared, see (1) Data types that can be compared in 6.2.2 Data types that can be converted, assigned,
and compared.
Note, however, that if target-data and comparison-data are character string data or datetime data, specify a
combination of data types based on the following table.

Table 8-61: Combinations of data types that can be specified for the target data and the
comparison data for the scalar function LTDECODE

Target data Comparison data

Character string data Datetime data

Character
string
literal that
is the
predefine
d input
represent
ation for
date data

Character
string
literal that
is the
predefine
d input
represent
ation for
time data

Character
string
literal that
is the
predefine
d input
represent
ation for
time
stamp
data

Other
data

Date data Time data Time
stamp
data

Character
string data

Character
string literal
that is the
predefined
input
representatio

Y Y Y Y N N N

8. Scalar Functions

Hitachi Advanced Database SQL Reference 668



Target data Comparison data

Character string data Datetime data

Character
string
literal that
is the
predefine
d input
represent
ation for
date data

Character
string
literal that
is the
predefine
d input
represent
ation for
time data

Character
string
literal that
is the
predefine
d input
represent
ation for
time
stamp
data

Other
data

Date data Time data Time
stamp
data

n for date
data

Character
string literal
that is the
predefined
input
representatio
n for time
data

Y Y Y Y N N N

Character
string literal
that is the
predefined
input
representatio
n for time
stamp data

Y Y Y Y N N N

Other data Y Y Y Y N N N

Datetime
data

Date data Y N Y N Y N Y

Time data N Y N N N Y N

Time stamp
data

Y N Y N Y N Y

Legend:
Y: Can be specified.
N: Cannot be specified.

4. You must specify data types that can be compared (except when specifying NULL) for return-value and predefined-
return-value. For details about data types that can be compared, see (1) Data types that can be compared in 6.2.2 
Data types that can be converted, assigned, and compared.
However, if return-value and predefined-return-value are character string data or datetime data, specify a
combination of data types based on the following table.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 669



Table 8-62: Combinations of data types that can be specified for the return value and the
predefined return value for the scalar function LTDECODE

Return value Predefined return value, or return value#

Character string data Datetime data

Character
string
literal that
is the
predefine
d input
represent
ation for
date data

Character
string
literal that
is the
predefine
d input
represent
ation for
time data

Character
string
literal that
is the
predefine
d input
represent
ation for
time
stamp
data

Other
data

Date data Time data Time
stamp
data

Character
string data

Character
string literal
that is the
predefined
input
representatio
n for date
data

Y Y Y Y N N N

Character
string literal
that is the
predefined
input
representatio
n for time
data

Y Y Y Y N N N

Character
string literal
that is the
predefined
input
representatio
n for time
stamp data

Y Y Y Y N N N

Other data Y Y Y Y N N N

Datetime
data

Date data N N N N Y N Y

Time data N N N N N Y N

Time stamp
data

N N N N Y N Y

Legend:
Y: Can be specified.
N: Cannot be specified.

#
If multiple return-value items are specified and all return-value items are character string data or datetime data,
the combinations of data types that can be specified for each return-value item are as shown in Table 8-62: 
Combinations of data types that can be specified for the return value and the predefined return value for the
scalar function LTDECODE.

8. Scalar Functions

Hitachi Advanced Database SQL Reference 670



5. You can specify a maximum of 256 target-data, comparison-data, return-value, and predefined-return-value
items in total.

6. The data type and data length of the execution result depends on the data types of the results of return-value and
predefined-return-value, and is determined according to the rules described in 7.20.2 Data types of the results of
value expressions.
Note that the following specification for return-value and predefined-return-value does not affect the data type and
data length of the execution result.

• The specification of only a single dynamic parameter

• NULL
7. The NOT NULL constraint does not apply to the value of the execution result (the null value is allowed).

8. You must specify comparison-data and return-value as a set. The return-value that corresponds to comparison-data
is the value to be specified following the comparison-data.

9. For target-data or comparison-data, you must specify at least one value expression other than the single dynamic
parameter that is specified.

10. For return-value or predefined-return-value, you must specify at least one value expression other than the following:

• The specification of only a single dynamic parameter

• NULL
11. If you specify only a single dynamic parameter for target-data, the data type of the dynamic parameter of target-

data is assumed to be the data type of the first comparison-data item. Note, however, that if you specify only a single
dynamic parameter for the first comparison-data item, the data type of the second or subsequent comparison-data
item (which is not an item for which only a single dynamic parameter is specified) is assumed.

12. If only a single dymanic parameter is specified for comparison-data, the data type of target-data is assumed as the
data type of the dynamic parameter. Note, however, that if you specify only a single dynamic parameter for target-
data, the data type of the first comparison-data item is assumed. In addition, if you specify only a single dynamic
parameter for the first comparison-data item, the data type of the second or subsequent comparison-data item (which
is not an item for which only a single dynamic parameter is specified) is assumed.
The data types to be assumed are described based on the following specification examples:

• Specification example 1

LTDECODE(?, 10, 'A', 20, 'C')

Because the first comparison-data item (10) is of the INTEGER type, the data type of the dynamic parameter
of target-data is assumed to be INTEGER.

• Specification example 2

LTDECODE(CURRENT_DATE, ?, 'A', DATE'2017/01/01', 'C')

Because target-data (CURRENT_DATE) is of the DATE type, the data type of the dynamic parameter of
comparison-data is assumed to be DATE.

• Specification example 3

LTDECODE(?, ?, 'A', 'B', 'C')

For the first comparison-data item, only a single dynamic parameter is specified. The data type of the second
comparison-data item ('B') is CHAR(1). For this reason, the data type of the dynamic parameter of target-
data and the data type of the dynamic parameter of the first comparison-data item are both assumed to be
CHAR(1).

8. Scalar Functions

Hitachi Advanced Database SQL Reference 671



13. If you specify only a single dynamic parameter for return-value or predefined-return-value, the data type of the
dynamic parameter is assumed to be the data type of the scalar function's execution result.
The data types to be assumed are described based on the following specification examples:

• Specification example 1

LTDECODE("C1", 10, -1, 20, 0, 30, ?)

Because the data type of the execution result of LTDECODE is INTEGER, the data type of the dynamic
parameter of return-value is assumed to be INTEGER.

• Specification example 2

LTDECODE("C1", DATE'2017/01/01', 'A', DATE'2017/02/01',
         ?, DATE'2017/02/01', 'BB')

Because the data type of the execution result of LTDECODE is VARCHAR(2), the data type of the dynamic
parameter of return-value is assumed to be VARCHAR(2).

• Specification example 3

LTDECODE("C1", 10, 'A', 20, ?, ?)

Because the data type of the execution result of LTDECODE is VARCHAR(1), the data types of the dynamic
parameters of return-value and predefined-return-value are both assumed to be VARCHAR(1).

14. The return value that corresponds to the comparison data item whose value is greater than the value in the target
data (the following comparison predicate is true) is returned.

Target data < Comparison data

15. If there are multiple comparison data items whose values are greater than the value in the target data, the return
value that corresponds to the first comparison data item is returned.

(4) Examples
Example 1:

Convert the values in column C1 of table T1 as follows. Then, store the converted values in column C2.

• Value less than 0 → Null value

• Value greater than or equal to 1 → 2

SELECT "C1", LTDECODE("C1", 0, NULL, 1, "C1", 2) "C2"
    FROM "T1"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 672



Example 2:
Convert the values in the height column (HEIGHT) of the employee table (EMPLIST) as follows. Then, store the
converted values in column HEIGHT2.

• Value less than 150 → 150

• Value greater than or equal to 190 → 190

SELECT "USERID", LTDECODE("HEIGHT", 150, 150, 190, "HEIGHT", 190) "HEIGHT2"
    FROM "EMPLIST"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 673



Example 3:
Search the employee table (EMPLIST), and determine the following values:

• Based on the ages (AGE) of the employees, determine the number of employees in each age group.

SELECT "GEN", COUNT("GEN") "GEN-NUM"
   FROM "EMPLIST"
     GROUP BY LTDECODE("AGE", 20, 'Under  20'
                            , 30, '20s'
                            , 40, '30s', '40 and older')
   "GEN"

8. Scalar Functions

Hitachi Advanced Database SQL Reference 674



Appendixes

Hitachi Advanced Database SQL Reference 675



A. SQL Reverse Lookup Reference

The following table lists the relevant SQL syntax organized according to purpose.

Table A-1: Relevant SQL syntax organized by purpose

No. Category Purpose Relevant SQL syntax

1 Data retrieval Retrieve data by specifying a range. BETWEEN predicate

2 Retrieve data that matches any of multiple values. IN predicate

3 Retrieve data that contains a specific character string. LIKE predicate

4 Retrieve data by using a regular expression LIKE_REGEX predicate

5 Retrieve null-valued data. NULL predicate

6 Eliminate duplication in the retrieval results. SELECT DISTINCT

7 Sort retrieval results in ascending or descending order. ORDER BY clause

8 Specify the maximum number of rows in the retrieval results. LIMIT clause

9 Re-use the same derived table within a SELECT statement. WITH clause

10 Change a column name in the retrieval results. AS clause

11 Retrieve by specifying multiple branch conditions. CASE expression

12 Retrieve by joining multiple tables. Joined tables

13 Perform a subquery. Subquery

14 EXISTS predicate

15 IN predicate

16 Comparison predicate

17 Quantified predicate

18 Create the union of query results from multiple tables. UNION ALL
UNION DISTINCT

19 Data deletion Delete all the rows in a base table. TRUNCATE TABLE statement

20 Delete all the rows in a chunk in a base table. PURGE CHUNK statement

21 Data aggregation Determine the sum of retrieved values. General set function SUM

22 Determine the maximum value. General set function MAX

23 Determine the minimum value. General set function MIN

24 Determine the average of retrieved values. General set function AVG

25 Determine the row count (number of results) General set function COUNT

26 Set function COUNT(*)

27 Determine the standard deviation of a population. General set function STDDEV_POP

28 Determine the standard deviation of a sample. General set function STDDEV_SAMP

29 Determine the variance of a population. General set function VAR_POP

30 Determine the variance of a sample. General set function VAR_SAMP

A. SQL Reverse Lookup Reference

Hitachi Advanced Database SQL Reference 676



No. Category Purpose Relevant SQL syntax

31 Determine the median of an ordered set of values. Inverse distribution function MEDIAN

32 Determine the percentile of an ordered set of values. Inverse distribution function
PERCENTILE_CONT

33 Inverse distribution function
PERCENTILE_DISC

34 Set a range in which to aggregate data. Window functions

35 Aggregate the data into groups. GROUP BY clause

36 HAVING clause

37 Character strings Check whether the target data contains character strings that
meet the search condition expression.

Scalar function CONTAINS

38 Concatenate two character string data items. Scalar function CONCAT

39 Concatenation operations

40 Remove specific characters from character string data. Scalar function TRIM

41 Scalar function LTRIM

42 Scalar function RTRIM

43 Extract a substring from character string data. Scalar function SUBSTR

44 Scalar function LEFT

45 Scalar function RIGHT

46 Pad the beginning or end of character string data with any
specified character string.

Scalar function LPAD

47 Scalar function RPAD

48 Replace any character string in the target data. Scalar function REPLACE

49 Replace any character in character string data. Scalar function TRANSLATE

50 Determine the number of characters in character string data. Scalar function LENGTH

51 Search the target data for a character string and return the
starting position of the string.

Scalar function INSTR

52 Convert uppercase letters to lowercase. Scalar function LOWER

53 Convert lowercase letters to uppercase. Scalar function UPPER

54 Binary data Concatenate two binary data items. Scalar function CONCAT

55 Extract a substring from binary data. Scalar function SUBSTRB

56 Determine the value resulting from shifting the bits of a binary
data value to the left.

Scalar function BITLSHIFT

57 Determine the value resulting from shifting the bits of a binary
data value to the right.

Scalar function BITRSHIFT

58 Determine the bitwise logical AND of two binary data items. Scalar function BITAND

59 Determine the bitwise inclusive OR of two binary data items. Scalar function BITOR

60 Determine the bitwise logical NOT of a binary data item. Scalar function BITNOT

61 Determine the bitwise exclusive OR of two binary data items. Scalar function BITXOR

A. SQL Reverse Lookup Reference

Hitachi Advanced Database SQL Reference 677



No. Category Purpose Relevant SQL syntax

62 Convert binary data to a binary string representation
(character string data consisting of 0 and 1).

Scalar function BIN

63 Convert binary data to a hex string representation (character
string data consisting of 0 to 9, and A to F).

Scalar function HEX

64 Numerical calculations Determine the remainder after a division. Scalar function MOD

65 Determine the absolute value. Scalar function ABS

66 Determine the square root. Scalar function SQRT

67 Determine the sign of the data (positive, negative, or 0). Scalar function SIGN

68 Determine pseudorandom numbers that follow a uniform
distribution and are greater than or equal to the value specified
for the minimum value and less than the value specified for
the maximum value.#

Scalar function RANDOM

69 Scalar function RANDOMCURSOR

70 Scalar function RANDOMROW

71 Determine pseudorandom numbers that follow a normal
distribution with an average μ, and a standard deviation σ.

Scalar function RANDOM_NORMAL

72 Rounding Round off a numeric value. Scalar function ROUND

73 Truncate a numeric value. Scalar function TRUNC

74 Determine the greatest integer that is equal to or less than the
specified numeric value.

Scalar function FLOOR

75 Determine the smallest integer that is equal to or greater than
the specified numeric value.

Scalar function CEIL

76 Exponent and logarithm Determine a power of the specified data. Scalar function POWER

77 Determine the logarithm of the specified antilogarithm and
base.

Scalar function LOG

78 Determine the natural logarithm. Scalar function LN

79 Determine a power of the base of the natural logarithm. Scalar function EXP

80 Trigonometric functions Determine the sine (SIN trigonometric function). Scalar function SIN

81 Determine the cosine (COS trigonometric function). Scalar function COS

82 Determine the tangent (TAN trigonometric function). Scalar function TAN

83 Determine the inverse sine (inverse trigonometric function). Scalar function ASIN

84 Determine the inverse cosine (inverse trigonometric
function).

Scalar function ACOS

85 Determine the inverse tangent (inverse trigonometric
function).

Scalar function ATAN

86 Scalar function ATAN2

87 Determine the hyperbolic sine. Scalar function SINH

88 Determine the hyperbolic cosine. Scalar function COSH

89 Determine the hyperbolic tangent. Scalar function TANH

90 Convert an angle from radians to degrees. Scalar function DEGREES

91 Convert an angle from degrees to radians. Scalar function RADIANS

A. SQL Reverse Lookup Reference

Hitachi Advanced Database SQL Reference 678



No. Category Purpose Relevant SQL syntax

92 Determine the value of . Scalar function PI

93 Date and time Extract a portion of a date or time (for example, extract only
the month).

Scalar function EXTRACT

94 Given a date, determine the ordinal number of the date in the
year.

Scalar function DAYOFYEAR

95 Given a date, determine what day of week it falls on as an
ordinal number from the first day in the week.

Scalar function DAYOFWEEK

96 Determine the date of the last day of the specified month. Scalar function LASTDAY

97 Determine the difference between the start date and time and
the end date and time.

Scalar function DATEDIFF

98 Determine a person's age on a reference date given their birth
date.

Scalar function GETAGE

99 Round a date by the year, month, day, hour, or second. Scalar function ROUND

100 Truncate a date by the year, month, day, hour, or second. Scalar function TRUNC

101 Determine the current date. Datetime information acquisition
function CURRENT_DATE

102 Determine the current time. Datetime information acquisition
function CURRENT_TIME

103 Determine the current data and time stamp. Datetime information acquisition
function CURRENT_TIMESTAMP

104 Perform operations on datetime data. Datetime operations

105 Labeled duration

106 Null value Determine the first non-null value among the specified data. Scalar function COALESCE

107 Scalar function ISNULL

108 Scalar function NVL

109 Data comparison Determine whether two data items are equal. Scalar function NULLIF

110 Compare the values in the target data and the comparison data
one at a time, and if there is a match, return the corresponding
return value.

Scalar function DECODE

111 Compare the values in the target data and in the comparison
data one at a time, and, if any value in the target data is less
than the value in the comparison data, return the
corresponding return value.

Scalar function LTDECODE

112 Determine the greatest value. Scalar function GREATEST

113 Determine the smallest value. Scalar function LEAST

114 Data types Convert the data type. Scalar function CAST

115 Scalar function CONVERT

116 Data information
acquisition

Determine the number of bytes in the target data. Scalar function LENGTHB

117 Determine the character code of the first character of character
string data.

Scalar function ASCII

A. SQL Reverse Lookup Reference

Hitachi Advanced Database SQL Reference 679



No. Category Purpose Relevant SQL syntax

118 Determine the character corresponding to numeric value
character code in the target data.

Scalar function CHR

119 User information Determine the authorization identifier of the currently
executing HADB user.

User information acquisition function
CURRENT_USER

#
There are differences in specifications among the scalar functions RANDOM, RANDOMCURSOR, and RANDOMROW.
For details about the differences in specifications, see (6) List of scalar functions that return pseudorandom numbers
in 8.4.5 RANDOM.

A. SQL Reverse Lookup Reference

Hitachi Advanced Database SQL Reference 680



B. List of Functions

The following table provides a list of functions.

Table B-1: List of functions

No. Function Use

1 Set functions MAX Determine the maximum value.

2 MIN Determine the minimum value.

3 SUM Determine the sum of the retrieved values.

4 AVG Determine the average of the retrieved values.

5 COUNT Determine the row count (number of results).

6 COUNT(*) Determine the row count (number of results).

7 STDDEV_POP Determine the standard deviation of a population.

8 STDDEV_SAMP Determine the standard deviation of a sample.

9 VAR_POP Determine the variance of a population.

10 VAR_SAMP Determine the variance of a sample.

11 MEDIAN Determine the median of an ordered set of values.

12 PERCENTILE_CONT Determine the percentile of an ordered set of values.

13 PERCENTILE_DISC

14 Mathematical
functions

Trigonometric functions SIN Return the sine (SIN trigonometric function) of the target
data, which must be specified in radians.

15 COS Return the cosine (COS trigonometric function) of the
target data, which must be specified in radians.

16 TAN Return the tangent (TAN trigonometric function) of the
target data, which must be specified in radians.

17 ASIN Return the angle (in radians) that is the inverse sine of the
target data, in the range - /2 to /2.

18 ACOS Return the angle (in radians) that is the inverse cosine of
the target data, in the range 0 to .

19 ATAN Return the angle (in radians) that is the inverse tangent of
the target data, in the range - /2 to /2.

20 ATAN2 Return the angle (in radians) that is the inverse tangent of
y/x, in the range -  to .

21 SINH Return the hyperbolic sine of the target data.

22 COSH Return the hyperbolic cosine of the target data.

23 TANH Return the hyperbolic tangent of the target data.

24 DEGREES Return the result of converting an angle from radians to
degrees.

25 RADIANS Return the result of converting an angle from degrees to
radians.

26 PI Return the value of .

B. List of Functions

Hitachi Advanced Database SQL Reference 681



No. Function Use

27 Exponent and logarithm POWER Return the result of raising the target data to a specified
power.

28 LOG Return the logarithm of the target data (antilogarithm) to
the specified base.

29 LN Return the natural logarithm of the target data.

30 EXP Return the result of raising the base of the natural logarithm
to a power.

31 Numerical calculation MOD Return the remainder after dividing the dividend by the
divisor.

32 ABS Return the absolute value of the target data.

33 SQRT Return the square root of the target data.

34 SIGN Return the sign of the target data (+1 for positive, -1 for
negative, 0 for 0).

35 RANDOM Return pseudorandom numbers that follow a uniform
distribution and are greater than or equal to the minimum
specified value and less than the maximum specified value.

36 RANDOMCURSOR Return pseudorandom numbers that follow a uniform
distribution and are greater than or equal to the value
specified for the minimum value and less than the value
specified for the maximum value.
If an SQL statement contains multiple RANDOMCURSOR
functions for which the same identification number is
specified, those functions always return the same values.

37 RANDOMROW Return pseudorandom numbers that follow a uniform
distribution and are greater than or equal to the value
specified for the minimum value and less than the value
specified for the maximum value.
If a query specification contains multiple RANDOMROW
functions for which the same identification number is
specified, those functions return the same values for each
result row of the query specification.

38 RANDOM_NORMAL Return pseudorandom numbers that follow a normal
distribution with an average μ and a standard deviation σ.

39 Rounding ROUND Return the value of the target data rounded to the nth digit
after the decimal point.

40 TRUNC Return a value that has been truncated to the specified
number of decimal places.

41 FLOOR Return the greatest integer that is equal to or less than the
value of the target data.

42 CEIL Return the smallest integer that is equal to or greater than
the target data.

43 Character string
functions

Character string retrieval CONTAINS Return whether character strings that meet the search
condition expression are included in the target data.

44 Concatenating character
string data

CONCAT Concatenate two character string data items.

45 Extracting a substring
from character string data

SUBSTR Extract a substring from a character string starting from
any position in the character string data.

B. List of Functions

Hitachi Advanced Database SQL Reference 682



No. Function Use

46 LEFT Extract a substring from a character string starting from
the beginning (leftmost position) of the character string
data.

47 RIGHT Extract a substring from a character string starting from
the end (rightmost position) of the character string data.

48 Removing characters
from character string data

TRIM Remove instances of the specified characters from the
target character string. The characters can be removed in
any of the following ways:
• Remove the specified characters starting from the

beginning of the character string.
• Remove the specified characters starting from the end

of the character string.
• Remove characters starting from both the beginning

and the end of the character string.

49 LTRIM Remove instances of the specified characters, starting from
the beginning of the target character string.

50 RTRIM Remove instances of the specified characters, starting from
the end of the target character string.

51 Padding character strings LPAD Pad the beginning of the target data (from the left) with the
padding character string up to the specified number of
characters.

52 RPAD Pad the end of the target data (from the right) with the
padding character string up to the specified number of
characters.

53 Replacement of character
strings in character string
data

REPLACE Replace any character string in the target data. All
instances of the character string to be replaced in the target
data are replaced with the replacement character string.

54 Replacement of
characters in character
string data

TRANSLATE Replace any character in the target data.

55 Number of characters in
character string data

LENGTH Return the number of characters in the target character
string.

56 Starting position of a
character string in
character string data

INSTR Search the target data for a character string and return the
starting position of the string.

57 Conversion between
uppercase and lowercase
letters

LOWER Convert uppercase letters (A to Z) to lowercase letters (a
to z) in character string data.

58 UPPER Convert lowercase letters (a to z) to uppercase letters (A
to Z) in character string data.

59 Datetime
functions

DATEDIFF Return the difference between the start date and time and
the end date and time.

60 DAYOFWEEK Return the day of the week that the specified date falls on.

61 DAYOFYEAR Return the specified date as the number of days elapsed
since January 1 of that year.

62 EXTRACT Extract a part (year, month, day, hour, minute, or second)
from data representing the date and time.

63 GETAGE Determine a person's age on a reference date given their
birth date.

B. List of Functions

Hitachi Advanced Database SQL Reference 683



No. Function Use

64 LASTDAY Return the date or datetime of the last day of the month
specified in the datetime data.

65 ROUND Return the datetime data rounded to the unit specified in
the datetime format.

66 TRUNC Return the datetime data truncated to the unit specified in
the datetime format.

67 Binary column
functions

Concatenating binary
data

CONCAT Concatenate two binary data items.

68 Extracting a substring
from binary data

SUBSTRB Extract a substring from binary data starting from any
position in the binary data.

69 Bit operations on binary
data

BITAND Return the bitwise logical AND of two binary data items.

70 BITOR Return the bitwise inclusive OR of two binary data items.

71 BITNOT Return the bitwise logical NOT of a binary data item.

72 BITXOR Return the bitwise exclusive OR of two binary data items.

73 BITLSHIFT Return the value resulting from shifting the bits of a binary
data value to the left.

74 BITRSHIFT Return the value resulting from shifting the bits of a binary
data value to the right.

75 Data conversion
functions

CAST Convert the data type of the data.

76 CONVERT Convert the data type of the data.
In addition, by specifying a datetime format or number
format, you can control the conversion as follows.

By specifying a datetime format:
• When converting datetime data to character string

data, you can specify the output format of the
character string data after conversion.

• When converting character string data to datetime
data, you can specify the input format of the
character string data before conversion.

By specifying a number format:
• When converting numeric data to character string

data, you can specify the output format of the
character string data after conversion.

• When converting character string data to numeric
data, you can specify the input format of the
character string data before conversion.

77 ASCII Return the character code of the first character of the target
data as an integer value.

78 CHR Return the character corresponding to a character code
represented by the integer target data.

79 BIN Convert binary data to a binary string representation
(character string data consisting of 0 and 1).

80 HEX Convert binary data to a hexadecimal string representation
(character string data consisting of 0 to 9, and A to F).

81 NULL evaluation
functions

COALESCE Evaluate the specified target data items in the order in
which they are specified, and then return the first non-null
value.82 ISNULL

B. List of Functions

Hitachi Advanced Database SQL Reference 684



No. Function Use

83 NULLIF Compare target data 1 to target data 2 and return NULL if
they are equal, or target data 1 if they are not equal.

84 NVL Evaluate the specified target data items in the order in
which they are specified, and then return the first non-null
value.

85 Information
acquisition
functions

LENGTHB Return the length of the target data in bytes.

86 Comparison
functions

DECODE Compare the values in the target data and the comparison
data one at a time, and if there is a match, return the
corresponding return value. If no match is found between
the target data and comparison data, this function returns
the predefined return value.

87 LTDECODE Compare the values in the target data and in the comparison
data one at a time, and, if any value in the target data is less
than the value in the comparison data, return the
corresponding return value. If no value in the target data
is less than any of the values in the comparison data, this
function returns the predefined return value.

88 GREATEST Return the greatest value among the specified target data.

89 LEAST Return the smallest value among specified target data.

90 Datetime
information
acquisition
functions

CURRENT_DATE Return the current date.

91 CURRENT_TIME Return the current time.

92 CURRENT_TIMESTAMP Return the current time stamp (date and time).

93 User information
acquisition
function

CURRENT_USER Return the authorization identifier of the currently
executing HADB user.

B. List of Functions

Hitachi Advanced Database SQL Reference 685



Index

Symbols
* 265

A
abbreviations for products 9
ABS (scalar function) 498
access privilege for viewed table 127
access privileges

granting 146
revoking 155

ACOS (scalar function) 479
acronyms 10
ADB_AUDITREAD function 326
ADB_CSVREAD function 332
ADD COLUMN (ALTER TABLE) 78
adding column 78
aggregated argument 403
aggregated column specification 403
aggregating retrieved data by group 57
ALL

quantified predicate 372
query specification 264

ALL set function 403
ALTER TABLE 78
ALTER USER 89
ALTER VIEW 91
anchor member 257
ANY (quantified predicate) 372
ARCHIVABLE

ALTER TABLE 82
CREATE TABLE 114

archivable multi-chunk table 114
ARCHIVE CHUNK privilege

granting 146
revoking 155

archive directory 82, 114
archive range column 82, 114
ARCHIVEDIR

ALTER TABLE 82
CREATE TABLE 114

arithmetic operation 435
AS (query expression body) 252
AS (table reference) 301
AS query expression 126

ASC
CREATE INDEX 97
sort specification list 427

ASCII (scalar function) 597
ASIN (scalar function) 480
ATAN (scalar function) 480
ATAN2 (scalar function) 481
audit target definition 94
audit trail file path name specification 327
AUDITTYPE

CREATE AUDIT statement 94
DROP AUDIT statement 133

authorization identifier 201
average value, determining

SELECT statement example 55
AVG (general set function) 386

B
base table, deleting all rows in 182
BETWEEN predicate

example of SELECT statement 39
format 353

BIN (scalar function) 598
BINARY 210
binary column function

binary data operation 584
bit operation 588

binary data 210
comparing 211

binary data operation (scalar function) 584
binary format specification 336
binary literal 222
binary string format option 335
BINARY type, data format of 210
binary value expression 374
BINARY_STRING_FORMAT 335
binary-format binary literal 222
bit operation (scalar function) 588
BITAND (scalar function) 588
BITLSHIFT (scalar function) 589
BITNOT (scalar function) 591
BITOR (scalar function) 592
BITRSHIFT (scalar function) 593
BITXOR (scalar function) 595

Hitachi Advanced Database SQL Reference 686



BNF notation 76
BRANCH

ALTER TABLE 78
CREATE TABLE 108

BRANCH ALL 114

C
candidate key 110
CASCADE

DROP SCHEMA 136
DROP TABLE 138
DROP USER 140
DROP VIEW 142
REVOKE 152, 155

CASE expression 450
CAST (scalar function) 599
CEIL (scalar function) 499
CHANGE CHUNK COMMENT privilege

granting 146
revoking 155

CHANGE CHUNK STATUS privilege
granting 146
revoking 155

CHANGE OPTION 81
CHANGE OPTION CHUNK UNARCHIVABLE 85
changing archivable multi-chunk table to regular multi-
chunk table 85
changing maximum number of chunks 81
changing regular multi-chunk table to archivable multi-
chunk table 82
CHARACTER 207
character class (LIKE_REGEX predicate) 364
character encoding 199
character string conversion (scalar function) 559
character string data 207

comparing 211
comparing to datetime data 211

character string function
acquisition of character string information 545
character string conversion 559
character string operation 525
character substitution 554

character string information, acquisition of (scalar
function) 545
character string literal 222
character string operation (scalar function) 525
character string value expression 374

character substitution (scalar function) 554
CHR (scalar function) 607
CHUNK

ALTER TABLE 81
CREATE TABLE 114

chunk archive specification
ALTER TABLE 82
CREATE TABLE 114

chunk specification (CREATE TABLE) 114
chunk, deleting all rows in 173
CLI function 74
COALESCE (scalar function) 652
column

specification format 204
column definition

ALTER TABLE 78
CREATE TABLE 108

column descriptor 278
column name 201

CREATE INDEX 97
column name list

CREATE VIEW 126
column store format 118
column store table 118
column-data compression type 108
comma join 278
comment 198
COMMIT 192
comparison function 660
comparison operand 369
comparison operator 369
comparison predicate 369
compression format option 333
COMPRESSION_FORMAT 333
compression-type specification

ALTER TABLE 78
CREATE TABLE 108

CONCAT
binary column function 584
character string function 525

concatenation operation 440
constituent element 251
CONSTRAINT constraint name (referential constraint
definition) 112
CONSTRAINT constraint name (uniqueness
constraint definition) 110

Hitachi Advanced Database SQL Reference 687



constraint name
rules for characters that can be used 201

CONTAINS (scalar function) 545
control SQL 191
conventions

abbreviations for products 9
acronyms 10
fonts and symbols 11
KB, MB, GB, TB, PB, and EB 14
version numbers 14

CONVERT (scalar function) 608
correction search 97
CORRECTIONRULE 97
correlation name

DELETE statement 163
INSERT statement 168
PURGE CHUNK statement 173
restrictions on characters and lengths that are
permitted 201
table reference 301
table specification format 204
UPDATE statement 184

COS (scalar function) 482
COSH (scalar function) 483
COUNT (general set function) 387
COUNT(*)

format 385
SELECT statement example 53

CREATE AUDIT 94
CREATE INDEX 96
CREATE SCHEMA 105
CREATE TABLE 106
CREATE USER 124
CREATE VIEW 126
cross join 306
CROSS JOIN 306
CSV file path name specification 332
currency element (number format) 622
CURRENT_DATE

datetime information acquisition function 230
DEFAULT clause 298

CURRENT_TIME
datetime information acquisition function 231
DEFAULT clause 298

CURRENT_TIMESTAMP
datetime information acquisition function 232
DEFAULT clause 298

CURRENT_USER 234
DEFAULT clause 298

D
data conversion function 597
data format of VARCHAR type 207
data manipulation SQL 162
data storage, length of 205
data type 205

ALTER TABLE 78
CREATE TABLE 108
that can be compared 211
that can be converted, assigned, and compared 211

data type code 205
data types of results of value expressions 379
data types, list of 205
date

predefined character-string representation of 226
predefined input representation of 226

DATE 208
date literal 222
DATE type, data format of 208
DATEDIFF (scalar function) 563
datetime data 208

comparing 211
comparing to character string data 211

datetime format
CONVERT 609
ROUND 575
TRUNC 579

datetime format element
ROUND 575
TRUNC 579

datetime function 563
datetime information acquisition function 230
datetime operation 444
datetime value expression 374
DAYOFWEEK (scalar function) 566
DAYOFYEAR (scalar function) 568
DB area name 201
DECIMAL 206

data format of 206
decimal literal 222
DECODE

scalar function 660
DEFAULT clause 298

CREATE TABLE 108

Hitachi Advanced Database SQL Reference 688



default value for column 298
DEFAULT VALUES 168
default-option 298
definition SQL 77
DEGREES (scalar function) 484
DELETE 163
DELETE privilege

granting 146
revoking 155

deleting audit target definition 133
deleting index 134
deletion target table 163
delimited identifier 201
DELIMITER (CREATE INDEX) 97
DELIMITER_CHAR 338
delimiting character element (number format) 622
delimiting character specification option 338
derived column list 301
derived column name 244

effective scope of 245
derived query 454
derived query name 454
derived table 301
derived table expansion 454
DESC

CREATE INDEX 97
sort specification list 427

description format of literals 222
description formats and assumed data types of literals

222
descriptor 278
determines percentile 400
determining average 386
determining maximum value 389
determining median 398
determining minimum value 391
determining percentile 402
determining standard deviation of population 394
determining standard deviation of sample 395
determining sum 393
determining variance of population 396
determining variance of sample 397
DISABLE (referential constraint definition) 112
DISTINCT

format 264
SELECT statement example 51

DISTINCT set function 403

DOUBLE PRECISION 206
DROP AUDIT 133
drop behavior

DROP SCHEMA 136
DROP TABLE 138
DROP USER 140
DROP VIEW 142
REVOKE (revoking access privileges) 155
REVOKE (revoking schema privileges) 152

DROP INDEX 134
DROP SCHEMA 136
DROP TABLE 138
DROP USER 140
DROP VIEW 142
dynamic parameter 235

E
EB meaning 14
elements of datetime format

CONVERT 609
ELSE 450
EMPTY 97
enclosing character specification option 337
ENCLOSING_CHAR 337
error in SQL statement 66

how to handle 66
escape character 358
example (SELECT statement) 25
example of INNER JOIN 314
EXCEPT 254
EXCLUDE NULL VALUES 97
EXISTS predicate 354
EXP (scalar function) 492
exponent

floating-point numeric literal 222
exponent (scalar function) 492
EXPORT TABLE privilege

granting 146
revoking 155

external reference column 271
EXTRACT (scalar function) 569
extraction-length

LEFT 527
RIGHT 533
SUBSTR 538

Hitachi Advanced Database SQL Reference 689



F
field data number 333
field data number specification 334
FIELD_NUM 334
FIX 107
FIX table 107
fixed point representation (number format) 622
FLAG 364
floating point representation (number format) 622
floating-point element (number format) 622
floating-point numeric literal 222
FLOOR (scalar function) 500
font conventions 11
FOR ANY OPERATION

CREATE AUDIT statement 94
DROP AUDIT statement 133

foreign key definition 112
FROM clause 278
FULL [OUTER] JOIN 306
FULL OUTER JOIN, example of 318
function option 332
function option specification 332
functions, list of 681

G
GB meaning 14
general literal 222
general set function 385
GET COSTINFO privilege

granting 146
revoking 155

GETAGE (scalar function) 572
GRANT 144
GRANT OPTION FOR 155
granting audit admin privilege 144
granting audit privileges 144
granting audit viewer privilege 144
granting CONNECT privilege 144
granting DBA privilege 144
granting grant option 146
granting schema definition privilege 144
granting schema operation privileges 144
granting user privileges 144
GREATEST (scalar function) 665
GROUP BY clause

example of SELECT statement 57

format 281
grouping column 281
grouping column name 281
grouping method specification 281
grouping specification 281

H
HADB user

altering information of 89
creating 124
deleting 140

HAVING clause
example of SELECT statement 57
format 288

HEX (scalar function) 650
hexadecimal element (number format) 622
hexadecimal representation (number format) 622
hexadecimal-format binary literal 222
how to read SQL syntax specification format 76

I
identification number

RANDOMCURSOR 508
RANDOMROW 511

IDENTIFIED BY
ALTER USER 89
CREATE USER 124

identifier 201
IGNORECASE 364, 545
IMPORT TABLE privilege

granting 146
revoking 155

IN DB area name
ALTER TABLE 82
CREATE INDEX 97
CREATE TABLE 113

IN predicate
example of SELECT statement 42
format 355

index
defining 96

index identifier 201
index name

CREATE INDEX 97
DROP INDEX 134

index name specification format 203

Hitachi Advanced Database SQL Reference 690



index option 96
index specification 324
INDEXTYPE 97
information acquisition function 658
inner join 306
INNER JOIN 306
INSERT 168
INSERT privilege

granting 146
revoking 155

insertion target table 168
insertion value 168
INSTR (scalar function) 549
INTEGER 206
integer literal 222
internal derived table 453
INTERSECT (query expression body) 254
inverse distribution function 385
ISNULL (scalar function) 653

J
JDBC driver 74
join 278

SELECT statement example 47
join method specification 322
join specification 306
joined table 306

table reference 301

K
KB meaning 14
keyword, specifying 195

L
labeled duration 447
labeled-duration-qualifier 447
LASTDAY (scalar function) 573
LEAST (scalar function) 666
LEFT (scalar function) 526
LEFT [OUTER] JOIN 306
LEFT OUTER JOIN, example of 315
LENGTH (scalar function) 552
LENGTHB (scalar function) 658
LIKE predicate

example of SELECT statement 45
format 357

LIKE_REGEX predicate 364
LIMIT clause 291

example of SELECT statement 33
list of SQL statements 74
literal 222
LN (scalar function) 493
location table 82, 114
LOG (scalar function) 494
logarithm (scalar function) 492
logical value specification 350
LOWER (scalar function) 559
LPAD (scalar function) 528
LTDECODE (scalar function) 667
LTRIM (scalar function) 530

M
mantissa (floating-point numeric literal) 222
match value

LIKE predicate 358
LIKE_REGEX predicate 364

mathematical function
exponent and logarithm 492
numerical calculation 498
trigonometric function 479

MAX (general set function) 389
maximum number of chunks

ALTER TABLE 81
CREATE TABLE 114

maximum number of recursions 252
maximum size of SQL statement 196
maximum value, determining

SELECT statement example 55
maximum-number-of-recursions specification 252
MB meaning 14
MEDIAN (inverse distribution function) 398
MERGE CHUNK privilege

granting 146
revoking 155

MIN (general set function) 391
minimum value, determining

SELECT statement example 55
MOD (scalar function) 501
modifier element (number format) 622
multi-chunk table 114
multiple-column index 96
MULTISET 344
multiset value constructor by enumeration 344

Hitachi Advanced Database SQL Reference 691



multiset value constructor by query 344
multiset value expression 344

N
name 201

conflict with SQL reserved word 203
qualifying 203
specifying 201
what to do when name conflicts with reserved word

250
normal identifier 201
NOT NULL

ALTER TABLE 78
CREATE TABLE 108

NOT NULL constraint 108
notation-correction-search specification 545
notation-correction-search text-index specification 97
NULL (selection expression) 265
NULL evaluation function 652
NULL predicate 368
null value 237
null-value exclusion specification 97
null-value sort order specification (sort specification
list) 427
NULLIF (scalar function) 655
NULLS FIRST (null-value sort order specification) 427
NULLS LAST (null-value sort order specification) 427
number format 609

currency element 622
delimiting character element 622
floating-point element 622
hexadecimal element 622
modifier element 622
numeric element 622
sign element 622

number format element 622
number of digits (TRUNC) 521
numeric data 206

comparing 211
numeric element (number format) 622
numeric literal 222
numeric value expression 374
numeric value, specifying 196
numerical calculation (scalar function) 498
NVL (scalar function) 656

O
object

GRANT statement 146
REVOKE statement 155

ODBC driver 74
offset 291
ON object name

GRANT statement 146
ON object-name

REVOKE statement 155
ON search-condition 306
ORDER BY clause

example of SELECT statement 30
format 178

order specification (sort specification list) 427
outer join 306

P
password

changing 89
pattern-character-string 358
PB meaning 14
PCTFREE

CREATE INDEX 97
CREATE TABLE 114
uniqueness constraint definition 110

percentage of unused area
CREATE INDEX 97
CREATE TABLE 114
uniqueness constraint definition 110

percentage of unused area in index page 97
PERCENTILE_CONT (inverse distribution function)
400
PERCENTILE_DISC (inverse distribution function)402
PI (scalar function) 485
POWER (scalar function) 495
precision 206
predefined character-string representation 226

of dates 226
of time stamps 228
of times 226

predefined input representation
date 226
of time stamp 228
time 227
time stamp 228

Hitachi Advanced Database SQL Reference 692



predefined input representation of time 227
predefined output representation

date 226
time 227
time stamp 228

predefined return value (DECODE) 660
predefined return value (LTDECODE) 668
predicate 353
primary key definition 110
privilege grantee

GRANT statement 146
REVOKE statement 155

privileges
granting 144
revoking 152

propagating access privilege 149
PUBLIC

GRANT statement 146
REVOKE statement 155

PURGE CHUNK 173

Q
qualified join 306
qualified query 403
quantified predicate 371
query expression 252
query expression body 254

INSERT 168
query name

rules for characters that can be used 201
table reference 301
WITH clause 252

query primary 254
query specification, format 264
query term 254

R
RADIANS (scalar function) 486
RANDOM (scalar function) 504
RANDOM_NORMAL (scalar function) 515
RANDOMCURSOR (scalar function) 507
RANDOMROW (scalar function) 511
RANGECOLUMN

ALTER TABLE 82
CREATE TABLE 114

RANGEINDEXNAME
ALTER TABLE 82
CREATE TABLE 114

re-creating viewed table 91
read-only viewed table 127
REBUILD INDEX privilege

granting 146
revoking 155

RECREATE (ALTER VIEW) 91
recursive member 257
recursive query 252
recursive query name 252
REFERENCES privilege

granting 146
revoking 155

referential constraint check suppression specification
112

referential constraint definition 112
regular expression rules 364
regular expression specification examples 366
regular expression string 364
regular multi-chunk table 114
RENAME COLUMN (ALTER TABLE) 81
renaming column 81
REPLACE (scalar function) 554
reserved word 248

unregistering 250
what to do when name conflicts with 250

reserved words, list of 248
RESTRICT

DROP SCHEMA 136
DROP TABLE 138
DROP USER 140
DROP VIEW 142
REVOKE 152, 155

retrieval item column name 179
retrieval result

eliminating duplication in 51
retrieval SQL statement 74
retrieved data items, determining number of (SELECT
statement example) 53
retrieving data

with multiple tables specified 47
retrieving data that contains specific character string 45
retrieving data with search conditions specified 35
retrieving data with search range specified 39
return value (DECODE) 660

Hitachi Advanced Database SQL Reference 693



return value (LTDECODE) 668
REVOKE 152
revoking audit admin privilege 152
revoking audit privileges 152
revoking audit viewer privilege 152
revoking CONNECT privilege 152
revoking DBA privilege 152
revoking grant option 155
revoking schema definition privilege 152
revoking schema operation privileges 152
revoking user privileges 152
RIGHT (scalar function) 532
RIGHT [OUTER] JOIN 306
RIGHT OUTER JOIN, example of 316
ROLLBACK 193
ROUND (scalar function)

for rounding datetime data 574
for rounding numeric data 516

row
deleting 163
inserting 168
retrieving 178
updating 184

ROW
INSERT 168
UPDATE 184

row insertion value 168
row store format 118
row store table 118
row update value 184
row value constructor 347
row value constructor element 347
row-count 291
rows, deleting all

PURGE CHUNK 173
TRUNCATE TABLE 182

rows, retrieving all 29
RPAD (scalar function) 534
RTRIM (scalar function) 536
rules for characters that can be used in names 201
rules for CSV format (ADB_CSVREAD function) 340
rules for recursive queries 257
rules for set operations 259
rules for specifying authorization identifier 124
rules for specifying password 124
rules for WITH clause 255

rules pertaining to escape character (LIKE_REGEX
predicate) 367

S
scalar function 473
scalar operation 375
scalar subquery 269
scaling 206
schema

defining 105
deleting 136

schema identifier 201
schema name

CREATE SCHEMA 105
DROP SCHEMA 136

schema name specification format 203
schema object

GRANT statement 146
REVOKE statement 155

scope variable 238
effective scope of 239
name 238

search assignment 215
search condition 350
search condition expression specification 545
SELECT 178
SELECT deduplication method specification 265
SELECT privilege

granting 146
revoking 155

SELECT statement
basic syntax and rules for writing 26
example 25

selection expression 265
selection list 265
separator 196

where separator cannot be inserted 197
where separator must be inserted 196

set function
format 385
SELECT statement example 55

set operation 252, 254
set operation method specification 254
set operation operand 259
set operator 254
shortest representation (number format) 622
SIGN (scalar function) 519

Hitachi Advanced Database SQL Reference 694



sign element (number format) 622
simple-string specification 545
SIN (scalar function) 487
single-column index 96
SINH (scalar function) 488
size of columns that comprise multiple-column index
101
SMALLINT 206
SOME (quantified predicate) 372
sort item specification number 427
sort key 427
sort specification 427
sort specification list 427
SORTCODE 545
sorting retrieval results 30
source-character-string-data

scalar function 538
scalar function LEFT 527
scalar function RIGHT 533

source-data 569
special character 358
specification column option 333
specification format (CONVERT) 609
specifying maximum number of rows of retrieval results

33
SQL statement

character permitted in 199
SQL, writing convention 195
SQRT (scalar function) 520
start-position (SUBSTR) 538
STDDEV_POP (general set function) 394
STDDEV_SAMP (general set function) 395
storage assignment 213

table function derived table 216
storage assignment of binary data 213
storage assignment of character string data 213
storage assignment of character string data into
datetime data 213
storage assignment of datetime data 213
storage assignment of numeric data 213
storage assignment of row data 213
STORAGE FORMAT 118
subquery 269

SELECT statement example 64
subquery processing delegation specification 269
subquery processing method specification 269
SUBSTR (scalar function) 538

SUBSTRB (scalar function) 585
SUM (general set function) 393
sum, determining

SELECT statement example 56
summary of when derived table expansion is
performed 465
symbol conventions 11
synonym dictionary 545
synonym-search specification 545
system-defined function 326

T
table

defining 106
deleting 138

table definition, altering 78
table expression 276

query specification 265
table function column list 301
table function derived table 301

storage assignment 216
table identifier 201
table join 278

SELECT statement example 47
table name

CREATE INDEX 97
CREATE TABLE 108
CREATE VIEW 126
DROP TABLE 138
DROP VIEW 142
table reference 301

table name specification format 203
table option 106
table reference 301

joined table 301
table specification format 204
table subquery 269
table value constructor 347
table-constraint 110
table-data storage format 118
table-element (CREATE TABLE) 108
table-primary 301
table-specification.* 265
table-specification.ROW 265
table-storage-format specification 118
TAN (scalar function) 489
TANH (scalar function) 490

Hitachi Advanced Database SQL Reference 695



TB meaning 14
text index delimiter specification 97
text index for word-context search 97
THEN 450
time

predefined character-string representation of 226
TIME 208
time literal 222
time stamp literal 222
time stamp, predefined character-string
representation of 228
TIME type, data format of 208
TIMESTAMP 208
TIMESTAMP type, data format of 208
transaction

canceling 193
terminating normally 192

TRANSLATE (scalar function) 556
trigonometric function (scalar function) 479
TRIM (scalar function) 541
TRUNC (scalar function)

for truncating datetime data 579
for truncating numeric data 521

TRUNCATE privilege
granting 146
revoking 155

TRUNCATE TABLE 182

U
UNARCHIVE CHUNK privilege

granting 146
revoking 155

underlying table 126
UNION 254
UNIQUE 97
unique index 97
uniqueness constraint 110
uniqueness constraint definition 110
updatable viewed table 127
UPDATE 184
UPDATE privilege

granting 146
revoking 155

update SQL statement 74
update target table 184
update value 184
UPPER (scalar function) 560

user information acquisition function 234

V
value expression 374

equivalent to literals, conditions under which 375
value expression [AS clause] 265
value specification 383
value-expression-primary 374
VALUES 168
VAR_POP (general set function) 396
VAR_SAMP (general set function) 397
VARBINARY 210
VARBINARY type, data format of 210
VARCHAR 207
version number conventions 14
viewed table

defining 126
deleting 142

W
WHERE clause 280
where separators can be inserted 197
window function 407
window-frame-clause 409
window-order-clause 408
window-partition-clause 408
window-specification 407
WITH clause 252
WITH column list 252
WITH GRANT OPTION 146
WITH INDEX 324
WITH list element 252
WITHIN-group-specification

PERCENTILE_CONT 400
PERCENTILE_DISC 402

WITHOUT GLOBAL HASH GROUPING 281
WITHOUT INDEX 324
word-context search 97
word-context search specification 545
WORDCONTEXT (CREATE INDEX) 97

Hitachi Advanced Database SQL Reference 696



6-6, Marunouchi 1-chome, Chiyoda-ku, Tokyo, 100-8280 Japan


	Hitachi Advanced Database SQL Reference
	Notices
	Preface
	Contents
	1. SELECT Statement Examples
	1.1 Basic syntax and rules for writing SELECT statements
	1.1.1 Basic syntax for writing a SELECT statement
	1.1.2 Basic rules for writing a SELECT statement
	1.1.3 Relationship between SELECT statement syntax and its constituent elements
	1.1.4 Notes on reading sections 1.2 through the end of the chapter

	1.2 Retrieving all the rows from a table
	1.2.1 Example: Retrieve customer information for all customers

	1.3 Sorting retrieval results (ORDER BY clause)
	1.3.1 Example 1: Sort retrieval results by customer ID
	1.3.2 Example 2: Sort retrieval results by date of purchase and customer ID

	1.4 Specifying the maximum number of rows of retrieval results (LIMIT clause)
	1.4.1 Example: Specify the maximum number of rows in the retrieval results

	1.5 Retrieving data with search conditions specified
	1.5.1 Example 1: Retrieve data conditioned on date of purchase
	1.5.2 Example 2: Retrieve data conditioned on date of purchase and product code
	1.5.3 Example 3: Retrieve data conditioned on date of purchase and two product codes

	1.6 Retrieving data with a search range specified (BETWEEN predicate)
	1.6.1 Example 1: Retrieve customers who purchased products during a period
	1.6.2 Example 2: Retrieve customers who purchased products outside of a period

	1.7 Retrieving data that meets one of multiple conditions (IN predicate)
	1.7.1 Example 1: Retrieve customers who purchased product code P001 or P003
	1.7.2 Example 2: Retrieve customers who purchased products except for a specific customer

	1.8 Retrieving data that contains a specific character string (LIKE predicate)
	1.8.1 Example 1: Retrieve customers whose name begins with M
	1.8.2 Example 2: Retrieve customers whose name does not begin with M

	1.9 Retrieving data with multiple tables specified (table join)
	1.9.1 Example 1: Retrieve customer purchases from the customer table and sales history table (1 of 3)
	1.9.2 Example 2: Retrieve customer purchases from the customer table and sales history table (2 of 3)
	1.9.3 Example 3: Retrieve customer purchases from the customer table and sales history table (3 of 3)

	1.10 Eliminating duplication in retrieval results (SELECT DISTINCT)
	1.10.1 Example: Retrieve customers who purchased products

	1.11 Determining the number of retrieved data items (COUNT(*))
	1.11.1 Example 1: Determine the total number of customers
	1.11.2 Example 2: Determine the number of people who purchased a product

	1.12 Determining the maximum, minimum, average, or sum of the retrieved data (set functions)
	1.12.1 Example 1: Determine the maximum, minimum, and average quantities purchased
	1.12.2 Example 2: Determine the sum of quantities purchased)

	1.13 Aggregating retrieved data by group (GROUP BY clause, HAVING clause)
	1.13.1 Example 1: Determine the number of purchases for each customer
	1.13.2 Example 2: Determine the number of sales for each product code
	1.13.3 Example 3: Determine the sum and average of the quantities purchased for each product code
	1.13.4 Example 4: Determine the quantity purchased for each product code (narrow down retrieval by specifying a HAVING clause)
	1.13.5 Example 5: Aggregate data from the sales history table and customer table

	1.14 Retrieving by specifying a SELECT statement in the search condition (subquery)
	1.14.1 Example: Find the customer who purchased the greatest quantity of a product

	1.15 Common errors in SQL statements and how to handle them
	1.15.1 If message KFAA30104-E is displayed
	1.15.2 If message KFAA30105-E is displayed
	1.15.3 If message KFAA30119-E is displayed
	1.15.4 If message KFAA30202-E is displayed
	1.15.5 If message KFAA30203-E is displayed
	1.15.6 If message KFAA30204-E is displayed
	1.15.7 If message KFAA30401-E is displayed

	1.16 List of references by purpose

	2. List of SQL Statements
	2.1 List of SQL statements
	2.2 How to read the SQL syntax specification format

	3. Definition SQL
	3.1 ALTER TABLE (alter table definition)
	3.1.1 Specification format and rules for the ALTER TABLE statement

	3.2 ALTER USER (alter an HADB user's information)
	3.2.1 Specification format and rules for the ALTER USER statement

	3.3 ALTER VIEW (re-create a viewed table)
	3.3.1 Specification format and rules for the ALTER VIEW statement

	3.4 CREATE AUDIT (define audit targets)
	3.4.1 Specification format and rules for the CREATE AUDIT statement

	3.5 CREATE INDEX (define an index)
	3.5.1 Specification format and rules for the CREATE INDEX statement

	3.6 CREATE SCHEMA (define a schema)
	3.6.1 Specification format and rules for the CREATE SCHEMA statement

	3.7 CREATE TABLE (define a table)
	3.7.1 Specification format and rules for the CREATE TABLE statement

	3.8 CREATE USER (create an HADB user)
	3.8.1 Specification format and rules for the CREATE USER statement

	3.9 CREATE VIEW (define a viewed table)
	3.9.1 Specification format and rules for the CREATE VIEW statement

	3.10 DROP AUDIT (delete the audit target definition)
	3.10.1 Specification format and rules for the DROP AUDIT statement

	3.11 DROP INDEX (delete an index)
	3.11.1 Specification format and rules for the DROP INDEX statement

	3.12 DROP SCHEMA (delete a schema)
	3.12.1 Specification format and rules for the DROP SCHEMA statement

	3.13 DROP TABLE (delete a table)
	3.13.1 Specification format and rules for the DROP TABLE statement

	3.14 DROP USER (delete an HADB user)
	3.14.1 Specification format and rules for the DROP USER statement

	3.15 DROP VIEW (delete a viewed table)
	3.15.1 Specification format and rules for the DROP VIEW statement

	3.16 GRANT (grant privileges)
	3.16.1 Granting user privileges, schema operation privileges, and audit privileges
	3.16.2 Granting access privileges

	3.17 REVOKE (revoke privileges)
	3.17.1 Revoking user privileges, schema operation privileges, and audit privileges
	3.17.2 Revoking access privileges

	3.18 Definition SQL runtime considerations

	4. Data Manipulation SQL
	4.1 DELETE (delete rows)
	4.1.1 Specification format and rules for the DELETE statement

	4.2 INSERT (insert rows)
	4.2.1 Specification format and rules for the INSERT statement

	4.3 PURGE CHUNK (delete all rows in a chunk)
	4.3.1 Specification format and rules for the PURGE CHUNK statement

	4.4 SELECT (retrieve rows)
	4.4.1 Specification format and rules for the SELECT statement

	4.5 TRUNCATE TABLE (delete all rows in a base table)
	4.5.1 Specification format and rules for the TRUNCATE TABLE statement

	4.6 UPDATE (update rows)
	4.6.1 Specification format and rules for the UPDATE statement


	5. Control SQL
	5.1 COMMIT (terminate a transaction normally)
	5.1.1 Specification format for the COMMIT statement

	5.2 ROLLBACK (cancel a transaction)
	5.2.1 Specification format for the ROLLBACK statement


	6. SQL Basics
	6.1 SQL writing conventions
	6.1.1 Rules for writing SQL statements
	6.1.2 Rules for separators
	6.1.3 Characters permitted in SQL statements
	6.1.4 Specifying names
	6.1.5 Qualifying a name

	6.2 Data types
	6.2.1 List of data types
	6.2.2 Data types that can be converted, assigned, and compared

	6.3 Literals
	6.3.1 Types of literals
	6.3.2 Description format of literals
	6.3.3 Predefined character-string representations

	6.4 Datetime information acquisition functions
	6.4.1 CURRENT_DATE
	6.4.2 CURRENT_TIME
	6.4.3 CURRENT_TIMESTAMP

	6.5 User information acquisition function
	6.5.1 CURRENT_USER

	6.6 Variables (dynamic parameters)
	6.6.1 Rules for specifying dynamic parameters
	6.6.2 Where dynamic parameters can be specified
	6.6.3 Notes

	6.7 Null value
	6.8 Scope variables
	6.8.1 About scope variables
	6.8.2 Scope variable names
	6.8.3 Effective scope of scope variables

	6.9 Derived column names
	6.9.1 Decision rules for derived column names in query specifications
	6.9.2 Decision rules for derived column names in query results
	6.9.3 Effective scope of derived column names

	6.10 Reserved words
	6.10.1 List of reserved words
	6.10.2 What to do when a name conflicts with a reserved word


	7. Constituent Elements
	7.1 Query expression
	7.1.1 Specification format and rules for query expressions

	7.2 Query specification
	7.2.1 Specification format and rules for query specifications

	7.3 Subqueries
	7.3.1 Specification format and rules for subqueries

	7.4 Table expression
	7.4.1 Specification format and rules for table expressions

	7.5 FROM clause
	7.5.1 Specification format and rules for FROM clauses

	7.6 WHERE clause
	7.6.1 Specification format for WHERE clauses

	7.7 GROUP BY clause
	7.7.1 Specification format and rules for GROUP BY clauses

	7.8 HAVING clause
	7.8.1 Specification format and rules for HAVING clauses

	7.9 LIMIT clause
	7.9.1 Specification format and rules for LIMIT clauses

	7.10 DEFAULT clause
	7.10.1 Specification format and rules for the DEFAULT clause

	7.11 Table reference
	7.11.1 Specification format for table references

	7.12 Joined tables
	7.12.1 Specification format and rules for joined tables
	7.12.2 Inner join using INNER JOIN
	7.12.3 Outer join using LEFT OUTER JOIN
	7.12.4 Outer join using RIGHT OUTER JOIN
	7.12.5 Outer join using FULL OUTER JOIN

	7.13 Join method specification
	7.13.1 Specification format and rules for join method specifications

	7.14 Index specification
	7.14.1 Specification format and rules for index specifications

	7.15 System-defined functions
	7.15.1 Specification format and rules for system-defined functions
	7.15.2 ADB_AUDITREAD function
	7.15.3 ADB_CSVREAD function

	7.16 Multiset value expression
	7.16.1 Specification format and rules for multiset value expressions

	7.17 Table value constructors
	7.17.1 Specification format and rules for table value constructors

	7.18 Search conditions
	7.18.1 Specification format and rules for search conditions

	7.19 Predicates
	7.19.1 BETWEEN predicate
	7.19.2 EXISTS predicate
	7.19.3 IN predicate
	7.19.4 LIKE predicate
	7.19.5 LIKE_REGEX predicate
	7.19.6 NULL predicate
	7.19.7 Comparison predicate
	7.19.8 Quantified predicate

	7.20 Value expression
	7.20.1 Specification format and rules for value expressions
	7.20.2 Data types of the results of value expressions

	7.21 Value specification
	7.21.1 Specification format for value specifications

	7.22 Set functions
	7.22.1 COUNT(*)
	7.22.2 AVG
	7.22.3 COUNT
	7.22.4 MAX
	7.22.5 MIN
	7.22.6 SUM
	7.22.7 STDDEV_POP
	7.22.8 STDDEV_SAMP
	7.22.9 VAR_POP
	7.22.10 VAR_SAMP
	7.22.11 MEDIAN
	7.22.12 PERCENTILE_CONT
	7.22.13 PERCENTILE_DISC
	7.22.14 Common rules and considerations for set functions

	7.23 Window functions
	7.23.1 Specification format for window functions
	7.23.2 Rules for specifying windows (partitions)
	7.23.3 Rules for specifying the window frame (when RANGE is specified in the window frame clause)
	7.23.4 Rules for specifying the window frame (when ROWS is specified in the window frame clause)
	7.23.5 Rules and considerations pertaining to window functions
	7.23.6 Examples of using window functions

	7.24 Sort specification list
	7.24.1 Specification format for the sort specification list
	7.24.2 Rules for specifying a sort specification list in an ORDER BY clause
	7.24.3 Rules for specifying a sort specification list in a WITHIN group specification or window order clause
	7.24.4 Examples

	7.25 Arithmetic operations
	7.25.1 Specification format and rules for arithmetic operations
	7.25.2 Data types of the results of arithmetic operations
	7.25.3 Notes applying when the data type of the division result is DECIMAL

	7.26 Concatenation operations
	7.26.1 Specification format and rules for concatenation operations
	7.26.2 Data types of the results of concatenation operations

	7.27 Datetime operations
	7.27.1 Specification format and rules for datetime operations

	7.28 Labeled duration
	7.28.1 Specification format and rules for labeled durations

	7.29 CASE expression
	7.29.1 Specification format and rules for CASE expressions

	7.30 Internal derived tables
	7.30.1 Examples of using internal derived tables
	7.30.2 Derived queries and derived query names
	7.30.3 Rules for derived table expansion
	7.30.4 Conditions under which derived table expansion is not performed
	7.30.5 Summary of when derived table expansion is performed
	7.30.6 When the scalar function CONVERT is added to an internal derived table


	8. Scalar Functions
	8.1 List of scalar functions
	8.2 Mathematical functions (trigonometric functions)
	8.2.1 ACOS
	8.2.2 ASIN
	8.2.3 ATAN
	8.2.4 ATAN2
	8.2.5 COS
	8.2.6 COSH
	8.2.7 DEGREES
	8.2.8 PI
	8.2.9 RADIANS
	8.2.10 SIN
	8.2.11 SINH
	8.2.12 TAN
	8.2.13 TANH

	8.3 Mathematical functions (exponent and logarithm)
	8.3.1 EXP
	8.3.2 LN
	8.3.3 LOG
	8.3.4 POWER

	8.4 Mathematical functions (numerical calculations)
	8.4.1 ABS
	8.4.2 CEIL
	8.4.3 FLOOR
	8.4.4 MOD
	8.4.5 RANDOM
	8.4.6 RANDOMCURSOR
	8.4.7 RANDOMROW
	8.4.8 RANDOM_NORMAL
	8.4.9 ROUND
	8.4.10 SIGN
	8.4.11 SQRT
	8.4.12 TRUNC

	8.5 Character string functions (character string operations)
	8.5.1 CONCAT
	8.5.2 LEFT
	8.5.3 LPAD
	8.5.4 LTRIM
	8.5.5 RIGHT
	8.5.6 RPAD
	8.5.7 RTRIM
	8.5.8 SUBSTR
	8.5.9 TRIM

	8.6 Character string functions (acquisition of character string information)
	8.6.1 CONTAINS
	8.6.2 INSTR
	8.6.3 LENGTH

	8.7 Character string functions (Character substitution)
	8.7.1 REPLACE
	8.7.2 TRANSLATE

	8.8 Character string functions (character string conversion)
	8.8.1 LOWER
	8.8.2 UPPER

	8.9 Datetime functions
	8.9.1 DATEDIFF
	8.9.2 DAYOFWEEK
	8.9.3 DAYOFYEAR
	8.9.4 EXTRACT
	8.9.5 GETAGE
	8.9.6 LASTDAY
	8.9.7 ROUND
	8.9.8 TRUNC

	8.10 Binary column functions (binary data operations)
	8.10.1 CONCAT
	8.10.2 SUBSTRB

	8.11 Binary column functions (bit operations)
	8.11.1 BITAND
	8.11.2 BITLSHIFT
	8.11.3 BITNOT
	8.11.4 BITOR
	8.11.5 BITRSHIFT
	8.11.6 BITXOR

	8.12 Data conversion functions
	8.12.1 ASCII
	8.12.2 BIN
	8.12.3 CAST
	8.12.4 CHR
	8.12.5 CONVERT
	8.12.6 HEX

	8.13 NULL evaluation functions
	8.13.1 COALESCE
	8.13.2 ISNULL
	8.13.3 NULLIF
	8.13.4 NVL

	8.14 Information acquisition functions
	8.14.1 LENGTHB

	8.15 Comparison functions
	8.15.1 DECODE
	8.15.2 GREATEST
	8.15.3 LEAST
	8.15.4 LTDECODE


	Appendixes
	A. SQL Reverse Lookup Reference
	B. List of Functions

	Index


