HITACHI

Inspire the Next

Hitachi Advanced Database
SQL Reference

3000-6-504-HO(E)

I Notices

m Relevant program products
P-9W62-C411 Hitachi Advanced Data Binder version 05-01 (for Red Hat® Enterprise Linux® Server 6 (64-bit
x86_64) and Red Hat® Enterprise Linux®) Server 7 (64-bit x86_64))

P-9W62-C311 Hitachi Advanced Data Binder Client version 05-01 (for Red Hat®) Enterprise Linux® Server 6 (64-
bit x86_64) and Red Hat®) Enterprise Linux(®) Server 7 (64-bit x86_64))

P-2462-C114 Hitachi Advanced Data Binder Client version 05-01 (for Windows 7, Windows 8.1, Windows 10,
Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016)

This manual can be used for products other than the products shown above. For details, see the Release Notes.
Hitachi Advanced Data Binder is the product name of Hitachi Advanced Database in Japan.

m Trademarks
HITACHI, HA Monitor, HIRDB, Job Management Partner 1 and JP1 are either trademarks or registered trademarks
of Hitachi, Ltd. in Japan and other countries.

Access is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.

AMD is a trademark of Advanced Micro Devices, Inc.

Excel is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.
Intel is a trademark of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.

MSDN is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Red Hat is a registered trademark of Red Hat, Inc. in the United States and other countries.
Red Hat Enterprise Linux is a registered trademark of Red Hat, Inc. in the United States and other countries.
UNIX is a trademark of The Open Group.

Visual Studio is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.

Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.

Windows Server is either a registered trademark or trademark of Microsoft Corporation in the United States and/or
other countries.

Other company and product names mentioned in this document may be the trademarks of their respective owners.

1. This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://
www.openssl.org/)

2. This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
3. This product includes software written by Tim Hudson (tjh@cryptsoft.com).

4. This product uses OpenSSL Toolkit software in accordance with the OpenSSL License and Original SSLeay License,
which are described as follows.

Hitachi Advanced Database SQL Reference 2

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/*
* Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.
k

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

k

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

%

* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

*

* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:

* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

k

* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without

* prior written permission. For written permission, please contact

* openssl-core@openssl.org.

%

* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

%

* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:

* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

Hitachi Advanced Database SQL Reference

sk

* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR

* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

%

%

* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).

sk

*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

%

* This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.
k

* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).

k

* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.

* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.

* This can be in the form of a textual message at program startup or

* in documentation (online or textual) provided with the package.

Hitachi Advanced Database SQL Reference

sk

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3, All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* "This product includes cryptographic software written by

* Eric Young (eay@cryptsoft.com)"

* The word 'cryptographic' can be left out if the rouines from the library

* being used are not cryptographic related :-).

* 4, If you include any Windows specific code (or a derivative thereof) from

* the apps directory (application code) you must include an acknowledgement:

* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

*

* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

%

* The licence and distribution terms for any publically available version or

* derivative of this code cannot be changed. i.e. this code cannot simply be

* copied and put under another distribution licence

* [including the GNU Public Licence.]

*/

mDouble precision SIMD-oriented Fast Mersenne Twister (ASFMT)

Copyright (c) 2007, 2008, 2009 Mutsuo Saito, Makoto Matsumoto

and Hiroshima University.

Copyright (c) 2011, 2002 Mutsuo Saito, Makoto Matsumoto, Hiroshima

University and The University of Tokyo.

All rights reserved.

Hitachi Advanced Database SQL Reference

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided

with the distribution.

* Neither the name of the Hiroshima University nor the names of

its contributors may be used to endorse or promote products

derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

m Microsoft product screen shots

Microsoft product screen shots reprinted with permission from Microsoft Corporation.

m Microsoft product name abbreviations

This manual uses the following abbreviations for Microsoft product names:

Abbreviation Full name or meaning

Windows Windows 7 Windows 7 x86 Microsoft® Windows® 7 Professional (32-bit)
Microsoft®) Windows®) 7 Enterprise (32-bit)
Microsoft® Windows® 7 Ultimate (32-bit)

Windows 7 x64 Microsoft®) Windows®) 7 Professional (64-bit)
Microsoft®) Windows®) 7 Enterprise (64-bit)
Microsoft®) Windows®) 7 Ultimate (64-bit)
Windows 8.1 Windows 8.1 x86 Windows®) 8.1 Pro (32-bit)

Windows®) 8.1 Enterprise (32-bit)

Hitachi Advanced Database SQL Reference

Abbreviation Full name or meaning
Windows 8.1 x64 Windows®) 8.1 Pro (64-bit)
Windows®) 8.1 Enterprise (64-bit)
Windows 10 Windows 10 x86 Windows® 10 Pro (32-bit)
Windows® 10 Enterprise (32-bit)
Windows 10 x64 Windows® 10 Pro (64-bit)
Windows®) 10 Enterprise (64-bit)
Windows Server 2008 R2 Microsoft®) Windows Server®) 2008 R2 Standard
Microsoft®) Windows Server(®) 2008 R2 Enterprise
Microsoft® Windows Server(®) 2008 R2 Datacenter
Windows Server 2012 Microsoft®) Windows Server(® 2012 Standard
Microsoft® Windows Server®) 2012 Datacenter
Windows Server 2012 R2 Microsoft®) Windows Server® 2012 R2 Standard
Microsoft® Windows Server®) 2012 R2 Datacenter
Windows Server 2016 Microsoft®) Windows Server®) 2016 Standard

Microsoft® Windows Server® 2016 Datacenter

m Restrictions

Information in this document is subject to change without notice and does not represent a commitment on the part of
Hitachi. The software described in this manual is furnished according to a license agreement with Hitachi. The license
agreement contains all of the terms and conditions governing your use of the software and documentation, including
all warranty rights, limitations of liability, and disclaimers of warranty.

Material contained in this document may describe Hitachi products not available or features not available in your
country.

No part of this material may be reproduced in any form or by any means without permission in writing from the
publisher.

m Issued
Apr. 2020

m Copyright
All Rights Reserved. Copyright (C) 2012, 2020, Hitachi, Ltd.

Hitachi Advanced Database SQL Reference 7

I Preface

This manual describes the SQL syntax used for manipulating databases in Hitachi Advanced Database.

Note that, in this manual, and in the information output by the product (messages, command output results, and so on),
HADB is often used in place of Hitachi Advanced Database.

m Intended readers

This manual is intended for:

* Application developers

* System engineers who design and set up HADB systems, and system administrators
Readers of this manual must have:

* A basic knowledge of SQL

* Abasic knowledge of Java programming and a basic knowledge of JDBC (if you plan to create application programs
in Java)

* A basic knowledge of programming in C or C++ (if you plan to create application programs in C or C++)

* A basic knowledge of ODBC (if you plan to create ODBC-compliant application programs)

m Organization of this manual

This manual is organized into the following parts, chapters, and appendixes:

1. SELECT Statement Examples
Chapter 1 explains, using examples, how to write SELECT statements with constructs such as predicates, set
functions, GROUP BY clauses, and HAVING clauses. Read this chapter to understand how to write basic SELECT
statements.

2. List of SQL Statements

Chapter 2 provides a list of SQL statements that are supported by HADB, and explains how to read the SQL syntax
specification format used in this manual.

3. Definition SQL

Chapter 3 describes the functions, specification formats, and rules of definition SQL statements.

4. Data Manipulation SQL
Chapter 4 describes the functions, specification formats, and rules of data manipulation SQL statements.
5. Control SQL
Chapter 5 describes the functions, specification formats, and rules of control SQL statements.
6. SQL Basics
Chapter 6 describes the basic elements of SQL, including rules for writing SQL statements, data types, and literals.

7. Constituent Elements

Chapter 7 describes query expressions, query specifications, predicates, value expressions, set functions, and other
elements that comprise SQL.

Hitachi Advanced Database SQL Reference 8

8. Scalar Functions

Chapter 8 describes the functions, specification formats, and rules of scalar functions.

A. SQL Reverse Lookup Reference

Appendix A explains SQL syntax organized by where it is used. This appendix provides a reverse lookup reference
by which you can determine the SQL construct to use based on what you want to achieve.

B. List of Functions
Appendix B lists the functions supported by HADB and where each is used.

m Related publications
This manual is part of a related set of manuals. The manuals in the set are listed below (with the manual numbers):
* Hitachi Advanced Database Setup and Operation Guide (3000-6-501(E))
* Hitachi Advanced Database Application Development Guide (3000-6-502(E))
* Hitachi Advanced Database Command Reference (3000-6-503(E))
* Hitachi Advanced Database Messages (3000-6-505(E))
* HA Monitor Cluster Software Guide (for Linux™® (x86) Systems) (3000-9-201(E))

* Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3 System
Design (Work Tasks) Guide (3021-3-320(E))

e JPI Version 11 JP1/Base User's Guide (3021-3-A01(E))
In references to Hitachi Advanced Database manuals, this manual uses HADB in place of Hitachi Advanced Database.
Example: HADB Setup and Operation Guide

In references to the HA Monitor manual, this manual uses H4 Monitor for Linux® (x86) in place of HA Monitor
Cluster Software Guide (for Linux® (x86) Systems).

Example: HA Monitor for Linux® (x86)

In references to the Job Management Partner 1/Automatic Job Management System 3 manual, this manual uses Job
Management Partner 1/Automatic Job Management System 3 System Design (Work Tasks) Guide in place of Job
Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3 System Design
(Work Tasks) Guide.

Example: Job Management Partner 1/Automatic Job Management System 3 System Design (Work Tasks) Guide

In references to the JP1/Base manual, this manual uses JP1/Base User's Guide in place of JPI Version 11 JP1/Base
User's Guide.

Example: JP1/Base User's Guide

m Conventions: Abbreviations for product names

This manual uses the following abbreviations for product names:

Hitachi Advanced Database SQL Reference 9

Abbreviation

HADB HADB server
HADB client

Linux Linux

Red Hat Enterprise Linux
Server 6

Red Hat Enterprise Linux Server
6 (64-bit x86_64)

Red Hat Enterprise Linux
Server 7

Red Hat Enterprise Linux Server
7 (64-bit x86_64)

HDLM

JP1/AJS3

JP1/Audit

Red Hat Enterprise Linux Server 6 (64-bit x86_64)

Red Hat Enterprise Linux Server 7 (64-bit x86_64)

m Conventions: Acronyms

This manual also uses the following acronyms:

Full name or meaning

Hitachi Advanced Database
Hitachi Advanced Database Client
Linux®

Red Hat® Enterprise Linux(®) Server 6 (64-bit x86_64)

Red Hat® Enterprise Linux(®) Server 7 (64-bit x86_64)

Hitachi Dynamic Link Manager Software

Job Management Partner 1/Automatic Job Management System 3
JP1/Audit Management - Manager

Red Hat® Enterprise Linux(®) Server 6 (64-bit x86_64)

Red Hat® Enterprise Linux® Server 7 (64-bit x86_64)

Acronym Full name or meaning

APD Application Parameter Descriptor
API Application Programming Interface
ARD Application Row Descriptor

BI Business Intelligence

BLOB Binary Large Object

BNF Backus-Naur Form

BOM Byte Order Mark

CLI Call Level Interface

CLOB Character Large Object

CPU Central Processing Unit

CSV Character-Separated Values

DB Database

DBMS Database Management System
DMMP Device Mapper Multipath

DNS Domain Name System

Hitachi Advanced Database SQL Reference

10

Acronym
ER
HBA
ID

IEF

1P

IPD
IRD
JAR
JDBC
JDK
JNDI
JRE
JTA
LOB
LRU
LV
LVM
MSDN
NFS
NIC
NTP
ODBC
oS

PP
RAID
RDBMS
TLB
URL
VG

WWN

Full name or meaning

Entity Relationship

Host Bus Adapter

Identification number

Integrity Enhancement Facility
Internet Protocol

Implementation Parameter Descriptor
Implementation Row Descriptor

Java Archive File

Java Database Connectivity

Java Developer's Kit

Java Naming and Directory Interface
Java Runtime Environment

Java Transaction API

Large Object

Least Recently Used

Logical Volume

Logical Volume Manager

Microsoft Developer Network
Network File System

Network Interface Card

Network Time Protocol

Open Database Connectivity
Operating System

Program Product

Redundant Array of Independent Disks
Relational Database Management System
Translation Lookaside Buffer
Uniform Resource Locator

Volume Group

World Wide Name

m Conventions: Fonts and symbols

The following table explains the fonts used in this manual:

Hitachi Advanced Database SQL Reference

1"

Font

Bold

Italics

Code font

Convention

Bold type indicates text on a window, other than the window title. Such text includes menus, menu options,
buttons, radio box options, or explanatory labels. For example:

¢ From the File menu, choose Open.
¢ Click the Cancel button.

¢ In the Enter name entry box, type your name.

Italics are used to indicate a placeholder for some actual text to be provided by the user or system. For example:

¢ Write the command as follows:
copy source-file target-file
* The following message appears:

A filewas not found. (file = file-name)

Italics are also used for emphasis. For example:

* Do not delete the configuration file.

A code font indicates text that the user enters without change, or text (such as messages) output by the system.

For example:
e At the prompt, enter dir.

¢ Use the send command to send mail.

¢ The following message is displayed:

The password is incorrect.

The table below shows the symbols used in this manual for explaining commands and operands, such as the operands
used in server definitions.

Note that these symbols are used for explanatory purposes only; do not specify them in the actual operand or command.

Symbol
\

({1

X

(underline)

Meaning

In syntax explanations, a vertical bar separates
multiple items, and has the meaning of OR.

In syntax explanations, square brackets
indicate that the enclosed item or items are
optional.

In syntax explanations, curly brackets indicate
that only one of the enclosed items is to be
selected.

In syntax explanations, an ellipsis (. . .)
indicates that the immediately preceding item
can be repeated as many times as necessary.

In syntax explanations, double curly brackets
indicate that the enclosed items can be repeated
as a single unit.

In syntax explanations, underlined characters
indicate a default value.

Example

adb_sgl text out = {Y|N}
In this example, the vertical bar means that you can specify either Y
or N.

adbsqgl [-V]

In this example, the square brackets mean that you can specify
adbsql, or you can specify adbsgl -V.

adbcancel {--ALL| —u connection-ID}

In this example, the curly brackets mean that you can specify either
—-—ALL or —u connection-ID.

adbbuff -n DB-area-name [, DB-area-name] . . .

In this example, the ellipsis means that you can specify DB-area-
name as many times as necessary.

{{adbinitdbarea -n data-DB-area-name} }

In this example, the double curly brackets mean that you can specify
adbinitdbarea -n data-DB-area-name as many times as
necessary.

adb import errmsg lv={0]1}
In this example, the underline means that the value 0 is assumed by
HADB when the operand is omitted.

Hitachi Advanced Database SQL Reference

12

Symbol Meaning Example

~ A swung dash indicates that the text following = adb sys max_users = maximum-number-of-concurrent-
it explains the properties of the specified value. = connections

~<j > <<10>>
<> Single angle brackets explain the data type of integer> (1 to 1024)) <<10

the specified value. In this example, the text following the swung dash means that you
can specify an integer in the range from 1 to 1024. If the operand is
()) Double parentheses indicate the scope of the not specified, the value 10 is assumed by HADB.
specified value.

<< >> Double angle brackets indicate a default value.

m Conventions: Path names

e SINSTDIR is used to indicate the server directory path (for installation).
e SADBDIR is used to indicate the server directory path (for operation).
e S$DBDIR is used to indicate the DB directory path.

* $ADBCLTDIRY (for a Windows HADB client) or $ADBCLTDIR (for a Linux HADB client) is used to indicate
the client directory path.

e $ADBODBTRCPATHS is used to indicate the folder path where HADB's ODBC driver trace files are stored.

m Conventions: Symbols used in mathematical formulas

The following table explains special symbols used by this manual in mathematical formulas:

Symbol Meaning

T Round up the result to the next integer.
Example: The result of 134 +~ 31 is 12.

1! Discard digits following the decimal point.
Example: The result of |34 + 3| is 11.

MAX Select the largest value as the result.
Example: The result of MAX(3 x 6,4 + 7) is 18.

MIN Select the smallest value as the result.
Example: The result of MIN(3 x 6,4 + 7) is 11.

m Conventions: Syntax elements

Syntax Meaning
element
notation
<path name> The following characters can be used in path names:
e In Linux

Alphanumeric characters, hash mark (#), hyphen (-), forward slash (/), at mark (@), and underscore (_)

* In Windows
Alphanumeric characters, hash mark (#), hyphen (-), forward slash (/), at mark (@), underscore (_), backslash (\),
and colon (:)

Note, however, that the characters that can be used might differ depending on the operating system.

Hitachi Advanced Database SQL Reference 13

Syntax Meaning
element
notation

<OS path name> = For an OS path name, all characters that can be used in a path name in the operating system can be used. For details
about available characters, see the documentation for the operating system you are using.

<character Any character string can be specified.
string>

<integer suffixed = Specify the value in a format consisting of a numeric character (in the range from 0 to 9) followed by a unit (MB
by the unit> (megabyte), GB (gigabyte), or TB (terabyte)). Do not enter a space between the numeric character and the unit.
» Examples of correct specification
1024MB
512GB
32TB

» Example of specification that causes an error
512 GB

m Conventions: KB, MB, GB, TB, PB, and EB

This manual uses the following conventions:

1 KB (kilobyte) is 1,024 bytes.
1 MB (megabyte) is 1,0242 bytes.
1 GB (gigabyte) is 1,024° bytes.
1 TB (terabyte) is 1,024 bytes.

1 PB (petabyte) is 1,024° bytes.

1 EB (exabyte) is 1,024° bytes.

m Conventions: Version numbers

The version numbers of Hitachi program products are usually written as two sets of two digits each, separated by a
hyphen. For example:

Version 1.00 (or 1.0) is written as 01-00.
e Version 2.05 is written as 02-05.

e Version 2.50 (or 2.5) is written as 02-50.
e Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same version number would be
written in the program as 02-00.

m HADB database language acknowledgements

The interpretations and specifications developed by Hitachi, Ltd. for the HADB database language specifications
described in this manual are based on the standards listed below. Along with citing the standards relevant to HADB
database language specifications, we would like to take this opportunity to express our appreciation to the original
developers of these standards.

Hitachi Advanced Database SQL Reference 14

e JIS X 3005 Family of Standards: Information Technology - Database Languages - SQL
e ISO/IEC 9075: Information Technology - Database Languages - SQL

Note:
JIS: Japanese Industrial Standard
ISO: International Organization for Standardization

IEC: International Electrotechnical Commission

Hitachi Advanced Database SQL Reference

15

Notices 2
Preface 8

SELECT Statement Examples 25

Basic syntax and rules for writing SELECT statements 26

Basic syntax for writing a SELECT statement 26

Basic rules for writing a SELECT statement 27

Relationship between SELECT statement syntax and its constituent elements 27
Notes on reading sections 1.2 through the end of the chapter 28

Retrieving all the rows from a table 29

Example: Retrieve customer information for all customers 29

Sorting retrieval results (ORDER BY clause) 30

Example 1: Sort retrieval results by customer ID 30

Example 2: Sort retrieval results by date of purchase and customer ID 31
Specifying the maximum number of rows of retrieval results (LIMIT clause) 33
Example: Specify the maximum number of rows in the retrieval results 33
Retrieving data with search conditions specified 35

Example 1: Retrieve data conditioned on date of purchase 35

Example 2: Retrieve data conditioned on date of purchase and product code 37
Example 3: Retrieve data conditioned on date of purchase and two product codes 38
Retrieving data with a search range specified (BETWEEN predicate) 39
Example 1: Retrieve customers who purchased products during a period 39
Example 2: Retrieve customers who purchased products outside of a period 40
Retrieving data that meets one of multiple conditions (IN predicate) 42

Example 1: Retrieve customers who purchased product code P001 or PO03 42
Example 2: Retrieve customers who purchased products except for a specific customer 43
Retrieving data that contains a specific character string (LIKE predicate) 45
Example 1: Retrieve customers whose name begins with M 45

Example 2: Retrieve customers whose name does not begin with M 46

Retrieving data with multiple tables specified (table join) 47

Example 1: Retrieve customer purchases from the customer table and sales history table (1 of 3) 47
Example 2: Retrieve customer purchases from the customer table and sales history table (2 of 3) 49
Example 3: Retrieve customer purchases from the customer table and sales history table (3 of 3) 50
Eliminating duplication in retrieval results (SELECT DISTINCT) 51

Example: Retrieve customers who purchased products 51

Determining the number of retrieved data items (COUNT(*)) 53

Example 1: Determine the total number of customers 53

Hitachi Advanced Database SQL Reference

Example 2: Determine the number of people who purchased a product 53

Determining the maximum, minimum, average, or sum of the retrieved data (set functions) 55
Example 1: Determine the maximum, minimum, and average quantities purchased 55

Example 2: Determine the sum of quantities purchased) 56

Aggregating retrieved data by group (GROUP BY clause, HAVING clause) 57

Example 1: Determine the number of purchases for each customer 58

Example 2: Determine the number of sales for each product code 59

Example 3: Determine the sum and average of the quantities purchased for each product code 60

R U UL UL U U U UL UL U

Example 4: Determine the quantity purchased for each product code (narrow down retrieval by
specifying a HAVING clause) 61

Example 5: Aggregate data from the sales history table and customer table 62
Retrieving by specifying a SELECT statement in the search condition (subquery) 64
Example: Find the customer who purchased the greatest quantity of a product 64
Common errors in SQL statements and how to handle them 66

If message KFAA30104-E is displayed 66

If message KFAA30105-E is displayed 66

If message KFAA30119-E is displayed 67

If message KFAA30202-E is displayed 67

If message KFAA30203-E is displayed 68

If message KFAA30204-E is displayed 68

If message KFAA30401-E is displayed 68

List of references by purpose 70

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

List of SQL Statements 73
List of SQL statements 74

How to read the SQL syntax specification format 76

Definition SQL 77
ALTER TABLE (alter table definition) 78

Specification format and rules for the ALTER TABLE statement 78
ALTER USER (alter an HADB user's information) 89

Specification format and rules for the ALTER USER statement 89
ALTER VIEW (re-create a viewed table) 91

Specification format and rules for the ALTER VIEW statement 91
CREATE AUDIT (define audit targets) 94

Specification format and rules for the CREATE AUDIT statement 94
CREATE INDEX (define an index) 96

Specification format and rules for the CREATE INDEX statement 96
CREATE SCHEMA (define a schema) 105

Specification format and rules for the CREATE SCHEMA statement 105
CREATE TABLE (define a table) 106

Specification format and rules for the CREATE TABLE statement 106

Hitachi Advanced Database SQL Reference

CREATE USER (create an HADB user) 124

Specification format and rules for the CREATE USER statement 124
CREATE VIEW (define a viewed table) 126

Specification format and rules for the CREATE VIEW statement 126
DROP AUDIT (delete the audit target definition) 133

Specification format and rules for the DROP AUDIT statement 133
DROP INDEX (delete an index) 134

Specification format and rules for the DROP INDEX statement 134
DROP SCHEMA (delete a schema) 136

Specification format and rules for the DROP SCHEMA statement 136
DROP TABLE (delete a table) 138

Specification format and rules for the DROP TABLE statement 138
DROP USER (delete an HADB user) 140

Specification format and rules for the DROP USER statement 140
DROP VIEW (delete a viewed table) 142

Specification format and rules for the DROP VIEW statement 142
GRANT (grant privileges) 144

Granting user privileges, schema operation privileges, and audit privileges 144
Granting access privileges 146

REVOKE (revoke privileges) 152

Revoking user privileges, schema operation privileges, and audit privileges 152
Revoking access privileges 155

Definition SQL runtime considerations 161

Data Manipulation SQL 162

DELETE (delete rows) 163

Specification format and rules for the DELETE statement 163
INSERT (insert rows) 168

Specification format and rules for the INSERT statement 168
PURGE CHUNK (delete all rows in a chunk) 173

Specification format and rules for the PURGE CHUNK statement 173
SELECT (retrieve rows) 178

Specification format and rules for the SELECT statement 178
TRUNCATE TABLE (delete all rows in a base table) 182
Specification format and rules for the TRUNCATE TABLE statement 182
UPDATE (update rows) 184

Specification format and rules for the UPDATE statement 184

Control SQL 191

COMMIT (terminate a transaction normally) 192
Specification format for the COMMIT statement 192
ROLLBACK (cancel a transaction) 193

Hitachi Advanced Database SQL Reference

Specification format for the ROLLBACK statement

SQL Basics 194

SQL writing conventions 195

Rules for writing SQL statements 195

Rules for separators 196

Characters permitted in SQL statements 199
Specifying names 201

Qualifying a name 203

Data types 205

List of data types 205

Data types that can be converted, assigned, and compared 211
Literals 222

Types of literals 222

Description format of literals 222

Predefined character-string representations 226
Datetime information acquisition functions 230
CURRENT_DATE 230

CURRENT_TIME 231
CURRENT_TIMESTAMP 232

User information acquisition function 234
CURRENT_USER 234

Variables (dynamic parameters) 235

Rules for specifying dynamic parameters 235
Where dynamic parameters can be specified 235
Notes 236

Null value 237

Scope variables 238

About scope variables 238

Scope variable names 238

Effective scope of scope variables 239

Derived column names 244

Decision rules for derived column names in query specifications
Decision rules for derived column names in query results 244
Effective scope of derived column names 245

Reserved words 248

List of reserved words 248

What to do when a name conflicts with a reserved word 250

Constituent Elements 251
Query expression 252
Specification format and rules for query expressions 252

Hitachi Advanced Database SQL Reference

Query specification 264

Specification format and rules for query specifications 264
Subqueries 269

Specification format and rules for subqueries 269

Table expression 276

Specification format and rules for table expressions 276
FROM clause 278

Specification format and rules for FROM clauses 278
WHERE clause 280

Specification format for WHERE clauses 280

GROUP BY clause 281

Specification format and rules for GROUP BY clauses 281
HAVING clause 288

Specification format and rules for HAVING clauses 288
LIMIT clause 291

Specification format and rules for LIMIT clauses 291
DEFAULT clause 298

Specification format and rules for the DEFAULT clause 298
Table reference 301

Specification format for table references 301

Joined tables 306

Specification format and rules for joined tables 306

Inner join using INNER JOIN 314

Outer join using LEFT OUTER JOIN 315

QOuter join using RIGHT OUTER JOIN 316

Quter join using FULL OUTER JOIN 318

Join method specification 322

Specification format and rules for join method specifications 322
Index specification 324

Specification format and rules for index specifications 324
System-defined functions 326

Specification format and rules for system-defined functions 326
ADB_AUDITREAD function 326

ADB_CSVREAD function 332

Multiset value expression 344

Specification format and rules for multiset value expressions 344
Table value constructors 347

Specification format and rules for table value constructors 347
Search conditions 350

Specification format and rules for search conditions 350
Predicates 353

Hitachi Advanced Database SQL Reference

BETWEEN predicate 353

EXISTS predicate 354

IN predicate 355

LIKE predicate 357

LIKE_REGEX predicate 364

NULL predicate 368

Comparison predicate 369

Quantified predicate 371

Value expression 374

Specification format and rules for value expressions 374
Data types of the results of value expressions 379
Value specification 383

Specification format for value specifications 383

Set functions 385

COUNT(*) 385

AVG 386

COUNT 387

MAX 389

MIN 391

SUM 393

STDDEV_POP 394

STDDEV_SAMP 395

VAR_POP 396

VAR_SAMP 397

MEDIAN 398

PERCENTILE_CONT 400

PERCENTILE_DISC 402

Common rules and considerations for set functions 403
Window functions 407

Specification format for window functions 407

Rules for specifying windows (partitions) 412

Rules for specifying the window frame (when RANGE is specified in the window frame clause) 413
Rules for specifying the window frame (when ROWS is specified in the window frame clause) 418
Rules and considerations pertaining to window functions 421

Examples of using window functions 422

Sort specification list 427

Specification format for the sort specification list 427

Rules for specifying a sort specification list in an ORDER BY clause 429

Rules for specifying a sort specification listin a WITHIN group specification or window order clause432
Examples 432

Arithmetic operations 435

Hitachi Advanced Database SQL Reference

Specification format and rules for arithmetic operations 435

Data types of the results of arithmetic operations 436

Notes applying when the data type of the division result is DECIMAL 437
Concatenation operations 440

Specification format and rules for concatenation operations 440

Data types of the results of concatenation operations 442

Datetime operations 444

Specification format and rules for datetime operations 444

Labeled duration 447

Specification format and rules for labeled durations 447

CASE expression 450

Specification format and rules for CASE expressions 450

Internal derived tables 453

Examples of using internal derived tables 453

Derived queries and derived query names 454

Rules for derived table expansion 454

Conditions under which derived table expansion is not performed 457
Summary of when derived table expansion is performed 465

When the scalar function CONVERT is added to an internal derived table 471

Scalar Functions 473
List of scalar functions 474

Mathematical functions (trigonometric functions) 479
ACOS 479

ASIN 480

ATAN 480

ATAN2 481

COS 482

COSH 483

DEGREES 484

Pl 485

RADIANS 486

SIN 487

SINH 488

TAN 489

TANH 490

Mathematical functions (exponent and logarithm) 492
EXP 492

LN 493

LOG 494

POWER 495

Mathematical functions (numerical calculations) 498

Hitachi Advanced Database SQL Reference

ABS 498

CEIL 499

FLOOR 500

MOD 501

RANDOM 504
RANDOMCURSOR 507
RANDOMROW 511
RANDOM_NORMAL 515
ROUND 516

SIGN 519

SQRT 520

TRUNC 521

Character string functions (character string operations) 525
CONCAT 525

LEFT 526

LPAD 528

LTRIM 530

RIGHT 532

RPAD 534

RTRIM 536

SUBSTR 538

TRIM 541

Character string functions (acquisition of character string information) 545
CONTAINS 545

INSTR 549

LENGTH 552
Character string functions (Character substitution) 554
REPLACE 554
TRANSLATE 556
Character string functions (character string conversion) 559
LOWER 559

UPPER 560

Datetime functions 563
DATEDIFF 563
DAYOFWEEK 566
DAYOFYEAR 568
EXTRACT 569
GETAGE 572
LASTDAY 573

ROUND 574

TRUNC 579

Hitachi Advanced Database SQL Reference

8.10

8.10.1
8.10.2
8.11

8.11.1
8.11.2
8.11.3
8.11.4
8.11.5
8.11.6
8.12

8.12.1
8.12.2
8.12.3
8.12.4
8.12.5
8.12.6
8.13

8.13.1
8.13.2
8.13.3
8.13.4
8.14

8.14.1
8.15

8.15.1
8.15.2
8.15.3
8.154

Binary column functions (binary data operations)
CONCAT 584

SUBSTRB 585

Binary column functions (bit operations) 588
BITAND 588

BITLSHIFT 589

BITNOT 591

BITOR 592

BITRSHIFT 593

BITXOR 595

Data conversion functions 597
ASCIl 597

BIN 598

CAST 599

CHR 607

CONVERT 608

HEX 650

NULL evaluation functions 652
COALESCE 652

ISNULL 653

NULLIF 655

NVL 656

Information acquisition functions 658
LENGTHB 658

Comparison functions 660
DECODE 660

GREATEST 665

LEAST 666

LTDECODE 667

Appendixes 675
A
B

SQL Reverse Lookup Reference 676
List of Functions 681

Index 686

584

Hitachi Advanced Database SQL Reference

SELECT Statement Examples

This chapter explains, through the use of examples, how to write SELECT statements.

Section 1.1 explains the basics of writing a SELECT statement. The remaining sections, starting with
section 1.2, give examples illustrating how to write SELECT statements.

Hitachi Advanced Database SQL Reference 25

1.1 Basic syntax and rules for writing SELECT statements

This section describes the basic syntax and rules for writing a SELECT statement.

1.1.1 Basic syntax for writing a SELECT statement

SELECT "USERID", "NAME", "SEX" e—— Column name

FROM "USERSLIST" *® Name of table to search

WHERE "USERID">='U00600 "' *—— Search conditions (retrieval criteria)

Column name:
Specify the column from which search results are retrieved (the column to display). Multiple column names can be
specified.

Name of table to search:
In the FROM clause, specify the table to be searched. Multiple table names can be specified.

Search conditions (retrieval criteria):

In the WHERE clause, specify the search conditions to narrow down the retrieval data. You can use AND and OR to
connect multiple search conditions in a WHERE clause.

Example: WHERE "USERID">='U00600"' AND "SEX"="'M"

If you execute the following SELECT statement, the retrieved results will be as shown below.

SELECT "USERID", "NAME"
FROM "USERSLIST"
WHERE "USERID">='U00600"

* Configuration of table to be searched (customer table USERSLIST)

User ID Customer name Sex
(USERID) (NAME) (SEX)
U00555 Mike Johnson M

U00358 Nancy White

Uu00212 Maria Gomez

Uu00687 Taro Tanaka

= INcol B |

U00869 Bob Clinton

Note: Column names are shown in parentheses.

¢ Retrieval results

Customer ID Customer name
(USERID) (NAME)

Uu00687 Taro Tanaka

U00869 Bob Clinton

L Retrieves data for customers
whose USERID is U0O0600 or higher.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 26

5 Note

For details about the syntax of search conditions, FROM clauses, and WHERE clauses, see the following:

e FROM clauses: 7.5.1 Specification format and rules for FROM clauses
* WHERE clauses: 7.6.1 Specification format for WHERE clauses

¢ Search conditions: 7.18.1 Specification format and rules for search conditions

1.1.2 Basic rules for writing a SELECT statement

The basic rules for writing a SELECT statement are as follows:

* We recommend that table names and column names specified in the SELECT statement be enclosed in double
quotation marks ("). Enclosing a table or column name in double quotation marks allows you to specify the same
name as an SQL reserved word, and eliminates the need to rewrite the SQL statement if a reserved word with that
same name is added in the future.

In addition, if a name is not enclosed in double quotation marks, any lowercase letters are treated as uppercase. For
example, if you specify name, it is treated as NAME.

* Enclose CHAR type and VARCHAR type character string data in single quotation marks ().
Example: WHERE "NAME"='Taro Tanaka'

* For type DATE data, enter dates in the following manner.
Example 1: WHERE "PUR-DATE">=DATE'2011-09-06"
Example 2: WHERE "PUR-DATE">=DATE'2011/09/06"

The date format in Example 1 is used in the examples of SELECT statements given in this chapter.

e INTEGER type numeric data is not enclosed in single quotation marks ().
Example: WHERE "PUR-NUM"=10

1.1.3 Relationship between SELECT statement syntax and its constituent
elements

This subsection describes how the syntax of the SELECT statement is broken down into its constituent elements. The
following figure shows the relationship between the SELECT statement syntax and its constituent elements.

Figure 1-1: Relationship between SELECT statement syntax and its constituent elements

Selection list

SELECT "column-name"
FROM "table-name"
WHERE search-conditions
GROUP BY "column-name"
HAVING search-conditions
ORDER BY "column-name™ ASC
LIMIT limit-row-count

Query

specification Table expression

The following describes each constituent element.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 27

Query specification:

The query specification is the part of the statement that specifies the search conditions, the table to be searched, and
the column from which retrieval results are to be extracted.

Selection list:

The selection list specifies items to be extracted as retrieval results. It is typically a column name, but set functions
can also be specified.

Table expression:

The FROM clause, WHERE clause, GROUP BY clause, and HAVING clause are referred to collectively as fable
expressions.

ORDER BY clause

Specify this when you want the retrieval results sorted in ascending or descending order. For examples, see 1.3
Sorting retrieval results (ORDER BY clause).

LIMIT clause

Specify this when you want to set an upper limit on the number of rows in the retrieval results. For examples, see
1.4 Specifying the maximum number of rows of retrieval results (LIMIT clause).

a Note

For details about the syntax of a query specification, selection list, or table expression, see the following.

* Query specification: 7.2.1 Specification format and rules for query specifications

* Selection list: (¢c) Selection listin (2) Explanation of specification formatin7.2.1 Specification format
and rules for query specifications

» Table expression: 7.4.1 Specification format and rules for table expressions

1.1.4 Notes on reading sections 1.2 through the end of the chapter

* The remaining sections in this chapter give examples of how to write SELECT statements. Where multiple examples
are presented, we start with a basic example and then progress through applied examples.

* For readability considerations, the order of rows in the retrieval results in our examples might differ from the order
of rows in actual retrieval results.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 28

1.2 Retrieving all the rows from a table

1.2.1 Example: Retrieve customer information for all customers

Retrieve all rows from the customer table (USERSLIST) and display the results. The customer table consists of columns

for customer ID (USERID), name (NAME), and sex (SEX).

Table to search

B USERSLIST

USERID NAME SEX
U00555 Mike Johnson M
U00358 Nancy White F
Uu00212 Maria Gomez F
u00687 Taro Tanaka M
U00869 Bob Clinton M

Specification example

SELECT "USERID","NAME", "SEX"
FROM "USERSLIST"
Retrieval results

USERID NAME SEX
U00555 Mike Johnson M
U00358 Nancy White F
Uu00212 Maria Gomez F
Uu00687 Taro Tanaka M
Uu00869 Bob Clinton M

é Note

To retrieve all columns of a table, you can specify an asterisk (*) instead of the column names. The
following is an example.

Specification example

SELECT * FROM "USERSLIST"

Retrieval results

USERID NAME SEX
U00555 Mike Johnson M
U00358 Nancy White F
U00212 Maria Gomez F
u00687 Taro Tanaka M
Uu00869 Bob Clinton M

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

29

1.3 Sorting retrieval results (ORDER BY clause)

Use the ORDER BY clause to sort retrieval results in ascending or descending order. The specification format of the
ORDER BY clause is as follows.

Specification format

SELECT "column-name" FROM "table-name"
WHERE search-condition
ORDER BY "column-name" ASC

ORDER BY "column-name" ASC:

Specify the column to be sorted on in column-name. Specify ASC to sort the retrieval results in ascending order, or
DESC to sort them in descending order.

a Note

You can also specify a sort key that is not a column name in the ORDER BY clause. For details about the
syntax of the ORDER BY clause, see 7.24 Sort specification list.

1.3.1 Example 1: Sort retrieval results by customer ID

Sort all of the data in the customer table (USERSLIST) by customer ID (USERID). The customer table consists of
columns for customer ID (USERID), name (NAME), and sex (SEX).
Table to search

B USERSLIST
USERID NAME SEX

U00555 Mike Johnson

U00358 Nancy White

U00212 Maria Gomez

Uu00687 Taro Tanaka

2RI HR

U00869 Bob Clinton

Specification example

SELECT "USERID", "NAME", "SEX"
FROM "USERSLIST"
ORDER BY "USERID" ASC

Retrieval results

USERID NAME SEX

Uu00212 Maria Gomez

U00358 Nancy White

U00555 Mike Johnson

Uu00687 Taro Tanaka

RIR|I=E|mH

U00869 Bob Clinton

L Retrieval results are sorted by customer ID.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 30

5 Note

The name of the column to be sorted on is specified in the ORDER BY clause. In this example, we are sorting
by customer ID, so we specify USERID in the ORDER BY clause.

1.3.2 Example 2: Sort retrieval results by date of purchase and customer
ID

Sort all of the data in the sales history table (SALESLIST) by date of purchase (PUR-DATE). In cases where the date
of purchase is the same, order by customer ID (USERID). The sales history table consists of columns for customer ID
(USERID), product code (PUR-CODE), quantity purchased (PUR-NUM), and date of purchase (PUR-DATE).

Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 3(2011-09-03
U00358 PO01 1]12011-09-04
U00555 P002 5(2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P0O03 212011-09-05
U00358 P002 61 2011-09-07
U00212 P002 12| 2011-09-05
Uu00687 P002 81 2011-09-06
Uu00687 P0O03 5(2011-09-07
U00212 POO01 6 2011-09-05
U00358 P0O01 912011-09-03
U00358 P002 3(2011-09-04

Specification example

SELECT "USERID", "PUR-CODE", "PUR-NUM", "PUR-DATE"
FROM "SALESLIST"
ORDER BY "PUR-DATE" ASC,"USERID" ASC

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 31

Retrieval results

f
USERID PUR-CODE PUR-NUM; PUR-DATE

!
U00212 | P002 3; 2011-09-03 i
U00212 | P003 1oi 2011-09-03 i
U00358 | P0O1 9i 2011-09-03 i
U00358 | P0O1 1§ 2011-09-04 i
U00358 | P00O2 3i 2011-09-04 i
v00212 | POO1 61 2011-09-05 ||
U00212 | P0O2 121 2011-09-05 |1
U00358 | P003 2@ 2011-09-05 i
U00555 | P002 5i 2011-09-06 i
U00687 | P002 8i 2011-09-06 i
U00358 | P002 61 2011-09-07 |!
U00687 | P0O3 5i 2011-09-07 i

L Sort by date of purchase.

When date of purchase is the same, sort by customer ID.

a Note

You can specify multiple columns in the ORDER BY clause. The column that is specified first is given highest
priority in the ordering. In this example, results are first ordered by date of purchase (PUR-DATE), and
then ordered by customer ID (USERID) in cases where the date of purchase is the same.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

1.4 Specifying the maximum number of rows of retrieval results (LIMIT
clause)

Use the LIMIT clause to specify the maximum number of rows in the retrieval results. The specification format of the
LIMIT clause is as follows.

Specification format

SELECT "column-name" FROM "table-name"
WHERE search-condition
LIMIT row—-count

LIMIT row-count.

Specify the maximum number of rows allowed in the retrieval results in row-count.

é Note

In addition to the maximum number of rows to be returned (row-count), you can also specify in the LIMIT
clause the offset of the first row to be returned (offset). The offset option will be omitted in these examples.
For details about the syntax of the LIMIT clause, see 7.9.1 Specification format and rules for LIMIT
clauses.

1.4.1 Example: Specify the maximum number of rows in the retrieval
results

Search the sales history table (SALESLIST) and display the top three results ordered by quantity purchased (PUR-NUM).

Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 3(2011-09-03
U00358 PO01 1]12011-09-04
U00555 P002 5(2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P0O03 212011-09-05
U00358 P002 61 2011-09-07
U00212 P002 12| 2011-09-05
Uu00687 P002 81 2011-09-06
Uu00687 P0O03 5(2011-09-07
U00212 POO01 6 2011-09-05
U00358 P0O01 912011-09-03
U00358 P002 3(2011-09-04

Specification example

SELECT "USERID", "PUR-CODE", "PUR-NUM", "PUR-DATE"
FROM "SALESLIST"
ORDER BY "PUR-NUM" DESC
LIMIT 3

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 33

Retrieval results

USERID PUR-CODE PUR-NUM PUR-DATE
000212 P002 12(/2011-09-05
000212 P003 10(/2011-09-03
U00358 POOL 9112011-09-03

Only the top three results are
displayed because 3 was

specified in the LIMIT clause.

L Sorted by quantity purchased because
DESC was specified in the ORDER BY clause.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

34

1.5 Retrieving data with search conditions specified

Specify search conditions (retrieval criteria) in the WHERE clause to narrow down the rows to be retrieved. The
specification format of the WHERE clause is as follows.

Specification format

* To specify only one search condition

SELECT "column-name" FROM "table-name"
WHERE search-condition

* To specify two or more search conditions

SELECT "column-name" FROM "table-name"
WHERE search-condition-1 AND search-condition-2 ...

or

SELECT "column-name" FROM "table-name"
WHERE search-condition-1 OR search-condition-2 ...

To specify multiple search conditions in the WHERE clause, connect them using AND or OR. You can specify a mix of
ANDs and ORs.

WHERE search-condition-1 AND search-condition-2:
Rows that satisfy both search-condition-1 and search-condition-2 will be retrieved.

WHERE search-condition-1 OR search-condition-2:
Rows that satisfy either search-condition-1 or search-condition-2 will be retrieved.

a Note

For details about the syntax of WHERE clauses or search conditions, see the following.

* WHERE clause: 7.6.1 Specification format for WHERE clauses

* Search conditions: 7.18.1 Specification format and rules for search conditions

1.5.1 Example 1: Retrieve data conditioned on date of purchase

Retrieve the customer ID (USERID), product code (PUR-CODE), and date of purchase (PUR-DATE) from the sales
history table (SALESLIST) for customers who purchased a product on September 6, 2011 or later.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 35

Table to search

B SALESLIST

USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 3(2011-09-03
U00358 PO01 1]12011-09-04
U00555 P002 5(2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P0O03 212011-09-05
U00358 P002 61 2011-09-07
U00212 P002 12| 2011-09-05
Uu00687 P002 81 2011-09-06
Uu00687 P0O03 5(2011-09-07
U00212 POO01 6 2011-09-05
U00358 P0O01 912011-09-03
U00358 P002 3(2011-09-04

Specification example

SELECT
FROM

"USERID", "PUR-CODE", "PUR-DATE"
"SALESLIST"

WHERE "PUR-DATE">=DATE'2011-09-06"

Retrieval results

USERID PUR-CODE PUR-DATE

U00555 P002 2011-09-06
U00687 P002 2011-09-06
U00358 P002 2011-09-07
U00687 P0O03 2011-09-07

a Note

* When specifying search conditions in the WHERE clause, you can use the comparison operators listed
below. The following table lists the comparison operators and their meanings.

L Retrieves data for September 6, 2011 or later.

Table 1-1: Comparison operators and their meanings

No.

1

6

Comparison operator

Meaning

equal to

not equal to

less than

less than or equal to
greater than

greater than or equal to

* Ifthe value specified in the conditional expression is a CHAR type or VARCHAR type character string,

enclose the value in single quotation marks (').
Example: WHERE "NAME"='Taro Tanaka'

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

* [f the value specified in the conditional expression is a date of type DATE, specify it in the following
manner.

Example: WHERE "PUR-DATE">=DATE'2011-09-06"

1.5.2 Example 2: Retrieve data conditioned on date of purchase and

product code

Retrieve the customer ID (USERID), product code (PUR-CODE), and date of purchase (PUR-DATE) from the sales
history table (SALESLIST) for customers who purchased a product whose product code is PO02 on September 6, 2011

or later.

Table to search

B SALESLIST

USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 3(2011-09-03
U00358 PO01 1]12011-09-04
U00555 P002 5(2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P0O03 212011-09-05
U00358 P002 61 2011-09-07
U00212 P002 12| 2011-09-05
Uu00687 P002 81 2011-09-06
Uu00687 P0O03 5(2011-09-07
U00212 POO01 6 2011-09-05
U00358 P0O01 912011-09-03
U00358 P002 3(2011-09-04

Specification example

SELECT "USERID", "PUR-CODE", "PUR-DATE"
"SALESLIST"
WHERE "PUR-DATE">=DATE'2011-09-06"

FROM

AND "PUR-CODE"='P(002'

Retrieval results

USERID PUR-CODE PUR-DATE

U00555 P002 2011-09-06
U00687 P002 2011-09-06
U00358 P002 2011-09-07

% Note

The WHERE clause specifies the following two search conditions connected by AND.

* Purchase of a product on or after September 6, 2011

L Retrieves data for September 6, 2011 or later.

Retrieves data for product code P002.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

37

* Purchase of a product whose product code is P002

1.5.3 Example 3: Retrieve data conditioned on date of purchase and two
product codes

Retrieve the customer ID (USERID), product code (PUR-CODE), and date of purchase (PUR-DATE) from the sales
history table (SALESLIST) for customers who purchased a product whose product code is PO01 or PO03 on September
4,2011 or later.

Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 3(2011-09-03
U00358 PO01 1]12011-09-04
U00555 P002 5(2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P0O03 212011-09-05
U00358 P002 61 2011-09-07
U00212 P002 12| 2011-09-05
Uu00687 P002 81 2011-09-06
Uu00687 P0O03 5(2011-09-07
U00212 POO01 6 2011-09-05
U00358 P0O01 912011-09-03
U00358 P002 3(2011-09-04

Specification example

SELECT "USERID", "PUR-CODE", "PUR-DATE"
FROM "SALESLIST"
WHERE "PUR-DATE">=DATE'2011-09-04"
AND ("PUR-CODE"='P001' OR "PUR-CODE"='P003')

Retrieval results

USERID PUR-CODE PUR-DATE

U00358 POO1 2011-09-04
U00358 PO03 2011-09-05
U00212 P0O01 2011-09-05
U00687 P0O03 2011-09-07

L Retrieves data for September 4, 2011 or later.

Retrieves data for product code P001 or P003.

a Note

If both AND and OR are specified, AND is evaluated first. To change the priority of evaluation, specify ()
as in the specification example above.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 38

1.6 Retrieving data with a search range specified (BETWEEN predicate)

The BETWEEN predicate is used to specify a search range. The specification format of the BETWEEN predicate is as
follows.
Specification format

SELECT "column-name" FROM "table-name"
WHERE "column-name" BETWEEN value-1 AND value-2

column-name:
Specify the column that is being narrowed down by the search range.

BETWEEN value-1 AND value-2:

Specify the lower limit of the search range in value-1. Specify the upper limit of the search range in value-2.

Example: WHERE Cl BETWEEN 10 AND 20

In this example, the search range includes rows where the value of column C1 is between 10 and 20 (including
both 10 and 20).

5 Note

For details about the syntax of the BETWEEN predicate, see 7.19.1 BETWEEN predicate.

1.6.1 Example 1: Retrieve customers who purchased products during a
period

Retrieve the customer ID (USERID), product code (PUR-CODE), and date of purchase (PUR-DATE) from the sales
history table (SALESLIST) for customers who purchased products between September 4, 2011 and September 5, 2011.

Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 3(2011-09-03
U00358 PO01 1]12011-09-04
U00555 P002 5(2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P0O03 212011-09-05
U00358 P002 61 2011-09-07
U00212 P002 12| 2011-09-05
Uu00687 P002 81 2011-09-06
Uu00687 P0O03 5(2011-09-07
U00212 POO01 6 2011-09-05
U00358 P0O01 912011-09-03
U00358 P002 3(2011-09-04

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 39

Specification example

SELECT "USERID", "PUR-CODE", "PUR-DATE"
FROM "SALESLIST"
WHERE "PUR-DATE" BETWEEN DATE'2011-09-04' AND DATE'2011-09-05"

Retrieval results

USERID PUR-CODE PUR-DATE

U00358 POO1 2011-09-04
U00358 P002 2011-09-04
U00212 P002 2011-09-05
U00212 P0O01 2011-09-05
U00358 P003 2011-09-05

é Note

A BETWEEN predicate could instead be rewritten using AND conditions. For example, the SELECT
statement below, which uses an AND condition, gives the same retrieval results as the specification example
above, which uses a BETWEEN predicate.

For details about AND conditions, see 1.5 Retrieving data with search conditions specified.

SELECT "USERID", "PUR-CODE", "PUR-DATE"
FROM "SALESLIST"
WHERE "PUR-DATE">=DATE'2011-09-04"
AND "PUR-DATE"<=DATE'2011-09-05"

1.6.2 Example 2: Retrieve customers who purchased products outside of
a period

Retrieve the customer ID (USERID), product code (PUR-CODE), and date of purchase (PUR-DATE) from the sales
history table (SALESLIST) for customers who purchased products outside of the period September 4, 2011 and
September 5, 2011.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 40

Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 3(2011-09-03
U00358 PO01 1]12011-09-04
U00555 P002 5(2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P0O03 212011-09-05
U00358 P002 61 2011-09-07
U00212 P002 12| 2011-09-05
Uu00687 P002 81 2011-09-06
Uu00687 P0O03 5(2011-09-07
U00212 POO01 6 2011-09-05
U00358 P0O01 912011-09-03
U00358 P002 3(2011-09-04

Specification example

SELECT "USERID", "PUR-CODE", "PUR-DATE"
FROM "SALESLIST"
WHERE "PUR-DATE" NOT BETWEEN DATE'2011-09-04' AND DATE'2011-09-05"

Retrieval results

USERID PUR-CODE PUR-DATE

U00212 P002 2011-09-03
U00212 P003 2011-09-03
U00358 P0O01 2011-09-03
U00555 P002 2011-09-06
Uu00687 P002 2011-09-06
Uu00687 P003 2011-09-07
U00358 P002 2011-09-07

a Note

IfNOT is specified, the search will target values that do not satisfy the conditional expression immediately
following the NOT. If you specify NOT BETWEEN DATE'2011-09-04" AND DATE'2011-09-05",

as in the specification example above, the retrieval criteria will exclude September 4, 2011 through
September 5, 2011.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

1.7 Retrieving data that meets one of multiple conditions (IN predicate)

Use the IN predicate if you want to specify multiple conditions (values) and retrieve data that match any one of them.
The specification format of the IN predicate is as follows.
Specification format

SELECT "column-name" FROM "table-name"
WHERE "column-name" IN (value-1,value-2,...)

column-name:

Specify the column to use for narrowing down the retrieval.
IN (value-1, value-2, ...):

Specify the values to be retrieved. Rows that match any of the values specified here will be retrieved.

é Note

For details about the syntax of the IN predicate, see 7.19.3 IN predicate.

1.7.1 Example 1: Retrieve customers who purchased product code P001
or P003

Retrieve the customer ID (USERID), product code (PUR-CODE), and date of purchase (PUR-DATE) from the sales
history table (SALESLIST) of customers who purchased products with product code PO01 or PO03 on or after
September 5, 2011.

Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 3(2011-09-03
U00358 PO01 1]12011-09-04
U00555 P002 5(2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P0O03 212011-09-05
U00358 P002 61 2011-09-07
U00212 P002 12| 2011-09-05
Uu00687 P002 81 2011-09-06
Uu00687 P0O03 5(2011-09-07
U00212 POO01 6 2011-09-05
U00358 P0O01 912011-09-03
U00358 P002 3(2011-09-04

Specification example

SELECT "USERID", "PUR-CODE", "PUR-DATE"
FROM "SALESLIST"
WHERE "PUR-CODE" IN ('POO1','PO03'")
AND "PUR-DATE">=DATE'2011-09-05"

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 42

Retrieval results

USERID PUR-CODE PUR-DATE

U00212 POO1 2011-09-05
U00358 P0O03 2011-09-05
U00687 PO03 2011-09-07

a Note

An IN predicate could be rewritten using OR conditions. For example, the SELECT statement below, which
uses an OR condition, gives the same retrieval results as the specification example above, which uses an
IN predicate.

For details about OR conditions, see 1.5 Retrieving data with search conditions specified.

SELECT "USERID", "PUR-CODE", "PUR-DATE"
FROM "SALESLIST"
WHERE ("PUR-CODE"='P001' OR "PUR-CODE"='P(003"')
AND "PUR-DATE">=DATE'2011-09-05"

1.7.2 Example 2: Retrieve customers who purchased products except for
a specific customer

Retrieve the customer ID (USERID), product code (PUR-CODE), and quantity purchased (PUR-NUM) from the sales
history table (SALESLIST). At this time, skip retrieval for customers whose customer IDs (USERID) are U00212 and
U00358.

Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 3(2011-09-03
U00358 PO01 1]12011-09-04
U00555 P002 5(2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P0O03 212011-09-05
U00358 P002 61 2011-09-07
U00212 P002 12| 2011-09-05
Uu00687 P002 81 2011-09-06
Uu00687 P0O03 5(2011-09-07
U00212 POO01 6 2011-09-05
U00358 P0O01 912011-09-03
U00358 P002 3(2011-09-04

Specification example

SELECT "USERID", "PUR-CODE", "PUR-NUM"
FROM "SALESLIST"
WHERE "USERID" NOT IN ('U0U00212','U00358")

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 43

Retrieval results

USERID PUR-CODE PUR-NUM

U00555 P002 5
U00687 P002 8
U00687 P0O03 5

a Note

IfNOT is specified, the search will return values that do not satisfy the conditional expression immediately
following the NOT. If you specify NOT IN ('U00212', 'U00358"), as in the specification example
above, the retrieval criteria will exclude customer IDs U00212 and U00358.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

1.8 Retrieving data that contains a specific character string (LIKE
predicate)

Use the LIKE predicate to retrieve data that contains a specific character string. The specification format of the LIKE
predicate is as follows.
Specification format

SELECT "column-name" FROM "table-name"
WHERE "column-name" LIKE 'pattern-character-string'

column name:
Specify the column to use for narrowing down the retrieval.

é Note

You can also specify expressions other than column names. For details about the syntax of the LIKE
predicate, see 7.19.4 LIKE predicate.

LIKE 'pattern-character-string"':

Specify the pattern character string to search for. The main pattern character strings (wildcards) are the following:

This denotes any character string of zero or more characters. If you specify ' ACT% ', it will match the character
strings such as ACT, ACTOR, and ACTION.

* _ (underscore)
This denotes any single character. If you specify ' I ', it will match the character strings such as BIT, HIT,
and KIT.

a Note

* For details about the syntax of pattern character strings, see 7.19.4 LIKE predicate.
* You can also specify ESCAPE in the LIKE predicate. For details, see 7.19.4 LIKE predicate.

1.8.1 Example 1: Retrieve customers whose name begins with M

Retrieve from the customer table (USERSLIST) the customer ID (USERID), name (NAME), and sex (SEX) of customers
whose name begins with M.
Table to search

B USERSLIST
USERID NAME SEX

U00555 Mike Johnson

U00358 Nancy White

U00212 Maria Gomez

Uu00687 Taro Tanaka

2RI HR

U00869 Bob Clinton

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 45

Specification example

SELECT "USERID", "NAME", "SEX"
FROM "USERSLIST"
WHERE "NAME" LIKE 'M%'

Retrieval results

USERID NAME SEX
U00212 Maria Gomez F
U00555 Mike Johnson M

1.8.2 Example 2: Retrieve customers whose name does not begin with M

Retrieve from the customer table (USERSLIST) the customer ID (USERID), name (NAME), and sex (SEX) of female
customers whose name does not begin with M.
Table to search

B USERSLIST
USERID NAME SEX

U00555 Mike Johnson

U00358 Nancy White

U00212 Maria Gomez

Uu00687 Taro Tanaka

2RI HR

U00869 Bob Clinton

Specification example

SELECT "USERID","NAME", "SEX"
FROM "USERSLIST"
WHERE "NAME" NOT LIKE 'M%'
AND "SEX"='F'

Retrieval results

USERID NAME SEX

|UOO358 |Nancy White | F |

é Note

If NOT is specified, the search will return values that do not satisfy the conditional expression immediately
following the NOT. If you specify NOT LIKE 'MS%', as in the specification example above, the retrieval
criteria will exclude character strings that begin with M.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 46

1.9 Retrieving data with multiple tables specified (table join)

If the data to be retrieved is distributed across multiple tables, perform the retrieval by associating columns that contain
the same information. This is called a table join. As an example, we describe a table join of the sales history table
(SALESLIST) and customer table (USERSLIST).

Example:

The following retrieves the name (NAME) of customers who purchased a product on September 7, 2011 from the
sales history table (SALESLIST) and customer table (USERSLIST).

SELECT statement specification

SELECT "NAME"
FROM "SALESLIST","USERSLIST"
WHERE "PUR-DATE"=DATE'2011-09-07"
AND "SALESLIST"."USERID"="USERSLIST"."USERID"

Description
The date of purchase (PUR-DATE) information specified in the search condition is located in the sales history
table (SALESLIST), while the name (NAME) information to be output as the retrieval result is located in the
customer table (USERSLIST). In this case, we join the SALESLIST and USERSLIST tables using the customer
ID column (USERID), which is common to both tables.

B SAIESLIST B USERSLIST
USERID PUR-CODE PUR-NUM PUR-DATE USERID NAME SEX

U00212 P002 3] 2011-09-03 U00555 Mike Johnson M
U00358 P001 1| 2011-09-04 U00358 Nancy White

U00555 P002 5] 2011-09-06 U00212 Maria Gomez

U00212 P03 10| 2011-09-03 | u00687 | Taro Tanaka | M |
U00358 P003 2| 2011-09-05 | 00869 ¢ | Bob Clintong | M |
U00358 P002 6| 2011-09-07 Column output
U00212 PO02 12| 2011-09-05 as retrieval result
u00687 P002 8] 2011-09-06 Column with
| 700687 | P003 5| 2011-09-07 | common information

U00212 POO1 6| 2011-09-05

U00358 POO1 9| 2011-09-03

U00358 ? P002 3] 2011-09-04 ?

I— Column with I— Column on which search
common information condition is specified

Retrieval results

Nancy White

Taro Tanaka

1.9.1 Example 1: Retrieve customer purchases from the customer table
and sales history table (1 of 3)

Retrieve the customer ID (USERID), name (NAME), product code (PUR-CODE), and date of purchase (PUR-DATE) of
customers who purchased products on or after September 6, 2011 from the sales history table (SALESLIST) and
customer table (USERSLIST).

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 47

Table to search

B SALESLIST

USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 3(2011-09-03
U00358 PO01 1]12011-09-04
U00555 P002 5(2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P0O03 212011-09-05
U00358 P002 61 2011-09-07
U00212 P002 12| 2011-09-05
Uu00687 P002 81 2011-09-06
Uu00687 P0O03 5(2011-09-07
U00212 POO01 6 2011-09-05
U00358 P0O01 912011-09-03
U00358 P002 3(2011-09-04

B USERSLIST

USERID NAME SEX
U00555 Mike Johnson M
U00358 Nancy White F
Uu00212 Maria Gomez F
u00687 Taro Tanaka M
U00869 Bob Clinton M

Specification example

SELECT "SALESLIST"."USERID", "NAME", "PUR-CODE", "PUR-DATE"
FROM "SALESLIST", "USERSLIST"

WHERE "PUR-DATE">=DATE'2011-09-06"
AND "SALESLIST"."USERID"="USERSLIST"."USERID"

Retrieval results

USERID NAME PUR-CODE PUR-DATE

U00555 Mike Johnson P002 2011-09-06
u00687 Taro Tanaka P002 2011-09-06
U00358 Nancy White P002 2011-09-07
u00687 Taro Tanaka P0O03 2011-09-07

5 Note

* Note that if both tables include columns with the same name, these columns are identified by using a

specification in the "table-name" . " column-name" format. In this example, the USERID column
applies. Therefore, the "SALESLIST" ."USERID" and "USERSLIST"."USERID" specifications
are used for identification.

In the FROM clause, specify all the tables to be searched.

Specify the conditional expression AND "SALESLIST"."USERID"="USERSLIST"."USERID"
in order to join the tables based on the value of the customer ID column (USERID) as the key.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

1.9.2 Example 2: Retrieve customer purchases from the customer table

and sales history table (2 of 3)

Retrieve the customer ID (USERID), name (NAME), sex (SEX), product code (PUR-CODE), and date of purchase (PUR-

DATE) from the sales history table (SALESLIST) and customer table (USERSLIST) for customers who meet the

following condition:
¢ Male customers who purchased a product on or after September 6, 2011

Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 312011-09-03
U00358 POO1 1]12011-09-04
U00555 P002 51 2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P0O03 21 2011-09-05
U00358 P002 612011-09-07
U00212 P002 12| 2011-09-05
U00687 P002 812011-09-06
U00687 P0O03 51 2011-09-07
U00212 POO1 612011-09-05
U00358 P0OO1 912011-09-03
U00358 P002 312011-09-04
B USERSLIST

USERID NAME SEX
U00555 Mike Johnson M

U00358 Nancy White F

Uu00212 Maria Gomez F

u00687 Taro Tanaka M

U00869 Bob Clinton M

Specification example

SELECT "SALESLIST"."USERID", "NAME","SEX", "PUR-CODE", "PUR-DATE"

FROM "SALESLIST","USERSLIST"
WHERE "PUR-DATE">=DATE'2011-09-06"
AND "SEX"='M'
AND "SALESLIST"."USERID"="USERSLIST"."USERID"

Retrieval results

USERID NAME SEX PUR-CODE PUR-DATE

U00555 Mike Johnson M P002 2011-09-06
u00687 Taro Tanaka M P002 2011-09-06
u00687 Taro Tanaka M P003 2011-09-07

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

49

1.9.3 Example 3: Retrieve customer purchases from the customer table

and sales history table (3 of 3)

Retrieve the customer ID (USERID), name (NAME), sex (SEX), product code (PUR-CODE), and date of purchase (PUR-
DATE) from the sales history table (SALESLIST) and customer table (USERSLIST) for customers who meet either

of the following conditions:

¢ Male customers who purchased products on or after September 6, 2011

¢ Female customers who purchased products on or after September 5, 2011

Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 312011-09-03
U00358 POO1 1]12011-09-04
U00555 P002 51 2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P0O03 21 2011-09-05
U00358 P002 612011-09-07
U00212 P002 12| 2011-09-05
U00687 P002 812011-09-06
U00687 P0O03 51 2011-09-07
U00212 POO1 612011-09-05
U00358 P0OO1 912011-09-03
U00358 P002 312011-09-04
B USERSLIST

USERID NAME SEX
U00555 Mike Johnson M

U00358 Nancy White F

Uu00212 Maria Gomez F

u00687 Taro Tanaka M

U00869 Bob Clinton M

Specification example

SELECT "SALESLIST"."USERID", "NAME","SEX", "PUR-CODE", "PUR-DATE"
FROM "SALESLIST","USERSLIST"
WHERE (("PUR-DATE">=DATE'2011-09-06"' AND "SEX"='M')
OR ("PUR-DATE">=DATE'2011-09-05" AND "SEX"='F"'))
AND "SALESLIST"."USERID"="USERSLIST"."USERID"

Retrieval results

USERID NAME SEX PUR-CODE PUR-DATE

Uu00212 Maria Gomez F P001 2011-09-05
U00212 Maria Gomez F P002 2011-09-05
U00358 Nancy White F P003 2011-09-05
U00555 Mike Johnson M P002 2011-09-06
Uu00687 Taro Tanaka M P002 2011-09-06
U00358 Nancy White F P002 2011-09-07
Uu00687 Taro Tanaka M P003 2011-09-07

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

50

1.10 Eliminating duplication in retrieval results (SELECT DISTINCT)

Use SELECT DISTINCT to eliminate duplication in retrieval results. The specification format of SELECT DISTINCT
is as follows.

Specification format

SELECT DISTINCT "column-name" FROM "table-name"
WHERE search-condition

DISTINCT:

Specify this if you want to eliminate duplication in retrieval results.

é Note

For details about the syntax of SELECT DISTINCT, see 7.2.1 Specification format and rules for query
specifications.

1.10.1 Example: Retrieve customers who purchased products

Retrieve from the sales history table (SALESLIST) and customer table (USERSLIST) the customer ID (USERID) and
name (NAME) of customers who purchased products on September 5, 2011.
Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 312011-09-03
U00358 POO1 1]12011-09-04
U00555 P002 51 2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P0O03 21 2011-09-05
U00358 P002 612011-09-07
U00212 P002 12| 2011-09-05
U00687 P002 812011-09-06
U00687 P0O03 51 2011-09-07
U00212 POO1 612011-09-05
U00358 P0OO1 912011-09-03
U00358 P002 312011-09-04
B USERSLIST

USERID NAME SEX
U00555 Mike Johnson M

U00358 Nancy White F

Uu00212 Maria Gomez F

u00687 Taro Tanaka M

U00869 Bob Clinton M

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 51

Specification example

SELECT DISTINCT "SALESLIST"."USERID", "NAME"
FROM "SALESLIST","USERSLIST"
WHERE "PUR-DATE"=DATE'2011-09-05"
AND "SALESLIST"."USERID"="USERSLIST"."USERID"

Retrieval results

USERID NAME

U00212 Maria Gomez

U00358 Nancy White

a Note

If you do not specify SELECT DISTINCT, the retrieval results are as follows.

Specification example

SELECT "SALESLIST"."USERID", "NAME"
FROM "SALESLIST","USERSLIST"
WHERE "PUR-DATE"=DATE'2011-09-05"
AND "SALESLIST"."USERID"="USERSLIST"."USERID"

Retrieval results

USERID NAME

Uu00212 Maria Gomez

Uu00212 Maria Gomez

U00358 Nancy White

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

52

1.11 Determining the number of retrieved data items (COUNT(*))

Use the set function COUNT (*) to determine the number of retrieved data items.

a Note

For details about the syntax of COUNT (*), see 7.22.3 COUNT.

1.11.1 Example 1: Determine the total number of customers

Determine the total number of customers in the customer table (USERSLIST).

Table to search

B USERSLIST
USERID NAME SEX

U00555 Mike Johnson

U00358 Nancy White

U00212 Maria Gomez

Uu00687 Taro Tanaka

2RI HR

U00869 Bob Clinton

Specification example

SELECT COUNT (*)
FROM "USERSLIST"

Retrieval results

COUNT (*)

1.11.2 Example 2: Determine the number of people who purchased a
product

Determine the total number of people in the sales history table (SALESLIST) who purchased the product of product

code P003 on or after September 5, 2011.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

53

Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 3(2011-09-03
U00358 PO01 1]12011-09-04
U00555 P002 5(2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P003 2(2011-09-05
U00358 P002 61 2011-09-07
U00212 P002 12| 2011-09-05
Uu00687 P002 81 2011-09-06
u00687 P003 5(2011-09-07
U00212 POO01 6 2011-09-05
U00358 P0O01 912011-09-03
U00358 P002 3(2011-09-04

Specification example
SELECT COUNT (*)
FROM "SALESLIST"

WHERE "PUR-DATE">=DATE'2011-09-05"
AND "PUR-CODE"='P003'

Retrieval results

COUNT (*)

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

1.12 Determining the maximum, minimum, average, or sum of the
retrieved data (set functions)

Use the set functions MAX, MIN, AVG, and SUM to determine the maximum value, minimum value, average, or sum of
the retrieved data.

a Note

For details about the syntax of set functions, see 7.22 Set functions.

1.12.1 Example 1: Determine the maximum, minimum, and average
quantities purchased

Determine the maximum, minimum, and average value of the quantity purchased (PUR-NUM) for product code P002
in the sales history table (SALESLIST).
Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 3(2011-09-03
U00358 PO01 1]12011-09-04
U00555 P002 5(2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P0O03 212011-09-05
U00358 P002 6 2011-09-07
U00212 P002 12| 2011-09-05
Uu00687 P002 81 2011-09-06
Uu00687 P0O03 5(2011-09-07
U00212 POO01 6 2011-09-05
U00358 P0O01 912011-09-03
U00358 P002 3(2011-09-04

Specification example

SELECT MAX ("PUR-NUM") ,MIN ("PUR-NUM") , AVG ("PUR-NUM")
FROM "SALESLIST"
WHERE "PUR-CODE"='P002'

Retrieval results

MAX (PUR-NUM) MIN (PUR-NUM) AVG (PUR-NUM)
12 3 6

Maximum value Minimum value Average value

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 55

1.12.2 Example 2: Determine the sum of quantities purchased)

Determine the sum of quantities purchased (PUR-NUM) on September 6, 2011 for product code P002 in the sales history

table (SALESLIST).

Table to search

B SALESLIST

USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 3(2011-09-03
U00358 PO01 1]12011-09-04
U00555 P002 5(2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P0O03 212011-09-05
U00358 P002 61 2011-09-07
U00212 P002 12| 2011-09-05
Uu00687 P002 81 2011-09-06
Uu00687 P0O03 5(2011-09-07
U00212 POO01 6 2011-09-05
U00358 P0O01 912011-09-03
U00358 P002 3(2011-09-04

Specification example

SELECT SUM ("PUR-NUM")

FROM "SALESLIST"

WHERE "PUR-CODE"='P002'
AND "PUR-DATE"=DATE'2011-09-06"

Retrieval results

SUM (PUR-NUM)

Sum

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

56

1.13 Aggregating retrieved data by group (GROUP BY clause, HAVING
clause)

Use the GROUP BY clause to aggregate retrieved data by group. In the examples of the GROUP BY clause shown below,
the sales history table (SALESLIST) is used.

Example:

The following determines the sum of the quantities purchased for each product code (PUR-CODE) in the sales
history table (SALESLIST).

SELECT statement specification

SELECT "PUR-CODE", SUM ("PUR-NUM")
FROM "SALESLIST"
GROUP BY "PUR-CODE"

Column name specified in the

GROUP BY clause
B SALESLIST

USERID PUR-CODE PUR-NUM PUR-DATE

U00358 POO01 9| 2011-09-03 For POO1, sum of

U00358 PO01 1| 2011-09-04 quantities

V00212 | POO1 6 | 2011-09-05| | Purchasedis 16.

U00358 P002 31 2011-09-04]

U00212 P002 12| 2011-09-05

V00555 | P002 5| 2011-09-06 For P002, sum of Aggregate dgt_a bythe
quantities column specified in the

U00687 | P002 8] 2011-09-06 purchased is 37. GROUP BY clause

U00358 P002 6| 2011-09-07

U00212 P002 31 2011-09-03 |

U00212 P0O03 10| 2011-09-03 For P003, sum of

U00358 P003 2| 2011-09-05 quantities

U00687 | P003 5| 2011-09-07] | Purchasedis 17.

Retrieval results

PUR-CODE SUM (PUR-NUM)

P001 16
P002 37
P003 17

t Sum of quantities
purchased, by product code

The specification format of the GROUP BY clause and HAVING clause is as follows.

Specification format

SELECT "column-name" FROM "table-name"
WHERE search-condition
GROUP BY "column-name"
HAVING search-condition

GROUP BY "column-name":

Specify the column by which the retrieved data is aggregated. For example, the following will aggregate the retrieved
data by product code (PUR-CODE).

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 57

Example: GROUP BY "PUR-CODE"

HAVING search-condition:

You can specify search conditions to narrow down the retrieved data that was aggregated by groups in the GROUP
BY clause. For a specification example, see 1.13.4 Example 4: Determine the quantity purchased for each product
code (narrow down retrieval by specifying a HAVING clause).

a Note

You can also specify a grouping specification that is not a column name in the GROUP BY clause. For details
about the syntax of the GROUP BY clause and HAVING clause, see the following.

* GROUP BY clause: 7.7.1 Specification format and rules for GROUP BY clauses

* HAVING clause: 7.8.1 Specification format and rules for HAVING clauses

1.13.1 Example 1: Determine the number of purchases for each customer

Obtain from the sales history table (SALESLIST) a list of the number of purchases for each customer.

Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

Uu00212 P0O01 6 2011-09-05
U00212 P002 3(2011-09-03
U00212 P002 12 | 2011-09-05
Uu00212 P003 10 | 2011-09-03
U00358 P0O01 1]2011-09-04
U00358 P0O01 91 2011-09-03
U00358 P002 3(2011-09-04
U00358 P002 6 2011-09-07
U00358 P003 2(2011-09-05
U00555 P002 5(2011-09-06
Uu00687 P002 81 2011-09-06
U00687 P003 5(2011-09-07

Specification example

SELECT "USERID", COUNT (*)
FROM "SALESLIST"
GROUP BY "USERID"

Retrieval results

USERID COUNT (*)

U00212

U00358

U00555

N~ O] s

U00687

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 58

5 Note

The columns specified in the GROUP BY clause must match the columns specified between the SELECT
statement and the FROM clause, or an SQL error results. In the example above, the USERID column is
specified in both locations.

An example of an SQL statement that generates an error is given below.

Example of an SQL statement that generates an error

SELECT "USERID", "PUR-CODE", COUNT (*)
FROM "SALESLIST"
GROUP BY "USERID"

Example of a correct SQL statement

SELECT "USERID", "PUR-CODE", COUNT (*)
FROM "SALESLIST"
GROUP BY "USERID", "PUR-CODE"

The SQL statement above obtains the number of purchases by customer (USERID) and product code (PUR-
CODE). The retrieval results are as follows.

Retrieval results

USERID PUR-CODE COUNT (*)

U00212 P001 1
U00212 P002 2
U00212 P003 1
U00358 P001 2
U00358 P002 2
U00358 P003 1
U00555 P002 1
U00687 P002 1
Uu00687 P003 1

1.13.2 Example 2: Determine the number of sales for each product code

Determine the number of sales on or after September 5, 2011 for each product code (PUR-CODE) in the sales history
table (SALESLIST).

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 59

Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

U00358 POO1 912011-09-03
U00212 P002 3(2011-09-03
U00212 P0O03 10| 2011-09-03
U00358 POO01 1]12011-09-04
U00358 P002 3(2011-09-04
U00212 P0O01 6 2011-09-05
U00212 P002 12| 2011-09-05
Uu00687 P002 81 2011-09-06
U00555 P002 5(2011-09-06
U00358 P002 6 2011-09-07
U00358 P003 2(2011-09-05
U00687 P003 5(2011-09-07

Specification example

SELECT "PUR-CODE", COUNT (*)
FROM "SALESLIST"
WHERE "PUR-DATE">=DATE'2011-09-05"
GROUP BY "PUR-CODE"

Retrieval results

PUR-CODE COUNT (PUR-CODE)

P0O01 1
P002 4
P003 2

1.13.3 Example 3: Determine the sum and average of the quantities
purchased for each product code

Determine the sum and average of the quantities purchased on or after September 3, 2011 for each product code (PUR-

CODE) in the sales history table (SALESLIST).

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

60

Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

U00358 POO1 912011-09-03
U00358 P0O01 1]2011-09-04
U00212 P0O01 6 2011-09-05
U00358 P002 3(2011-09-04
U00212 P002 12| 2011-09-05
U00555 P002 5(2011-09-06
Uu00687 P002 81 2011-09-06
U00358 P002 6 2011-09-07
U00212 P002 3(2011-09-03
U00212 P003 10 | 2011-09-03
U00358 P003 2(2011-09-05
U00687 P003 5(2011-09-07

Specification example

SELECT "PUR-CODE", SUM ("PUR-NUM") , AVG ("PUR-NUM")
FROM "SALESLIST"
WHERE "PUR-DATE">=DATE'2011-09-03"
GROUP BY "PUR-CODE"

Retrieval results

PUR-CODE SUM (PUR-NUM) AVG (PUR-NUM)

P001 16 5
P002 37 6
P003 17 5

Sums Averages

1.13.4 Example 4: Determine the quantity purchased for each product
code (narrow down retrieval by specifying a HAVING clause)

Determine the sum and average of the quantities purchased on or after September 3, 2011 for each product code (PUR-
CODE) in the sales history table (SALESLIST).

In this case, we retrieve only those product codes where the quantities purchased is 20 or fewer.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 61

Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

U00358 POO1 912011-09-03
U00358 P0O01 1]2011-09-04
U00212 P0O01 6 2011-09-05
U00358 P002 3(2011-09-04
U00212 P002 12| 2011-09-05
U00555 P002 5(2011-09-06
Uu00687 P002 81 2011-09-06
U00358 P002 6 2011-09-07
U00212 P002 3(2011-09-03
Uu00212 P003 10 | 2011-09-03
U00358 P003 2(2011-09-05
Uu00687 P003 5(2011-09-07

Specification example

SELECT "PUR-CODE", SUM ("PUR-NUM") , AVG ("PUR-NUM")
FROM "SALESLIST"
WHERE "PUR-DATE">=DATE'2011-09-03"
GROUP BY "PUR-CODE"
HAVING SUM ("PUR-NUM")<=20

Retrieval results

PUR-CODE SUM (PUR-NUM) AVG (PUR-NUM)

P001 16 5
P003 17 5
Sums Averages

L Retrieves only product codes where
20 or fewer items were purchased.

1.13.5 Example 5: Aggregate data from the sales history table and
customer table

From the sales history table (SALESLIST) and customer table (USERSLIST), obtain the sum by customer of the
quantities purchased (PUR-NUM) on or after September 4, 2011 for product code P002.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE

U00212 P002 312011-09-03
U00358 POO1 1]12011-09-04
U00555 P002 51 2011-09-06
U00212 P0O03 10| 2011-09-03
U00358 P0O03 21 2011-09-05
U00358 P002 612011-09-07
U00212 P002 12| 2011-09-05
U00687 P002 812011-09-06
U00687 P0O03 51 2011-09-07
U00212 POO1 612011-09-05
U00358 P0OO1 912011-09-03
U00358 P002 312011-09-04
B USERSLIST

USERID NAME SEX
U00555 Mike Johnson M

U00358 Nancy White F

U00212 Maria Gomez F

u00687 Taro Tanaka M

U00869 Bob Clinton M

Specification example

SELECT "NAME", SUM ("PUR-NUM")
FROM "SALESLIST","USERSLIST"
WHERE "PUR-DATE">=DATE'2011-09-04"
AND "PUR-CODE"='P002'
AND "SALESLIST"."USERID"="USERSLIST"."USERID"
GROUP BY "NAME"

Retrieval results

NAME SUM (PUR-NUM)
Maria Gomez 12
Nancy White 9
Mike Johnson 5
Taro Tanaka 8

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

63

1.14 Retrieving by specifying a SELECT statement in the search condition

(subquery)

Subqueries can be used to retrieve data from a table by specifying a SELECT statement in the search condition. This
provides a way to make retrieval using a SELECT statement more powerful and flexible, by using a search condition
based on the retrieval results obtained in another SELECT statement. The SELECT statement that is specified in the

search condition is called a subquery. The following figure shows an example of specifying a subquery:

Figure 1-2: Example of specifying a subquery

WHERE "column-name" = (SELECT "column-name

SELECT "column-name" FROM "table-name" Subquery

#n FROM "table-name" WHERE search-condition)

Search condition

#: You can specify a set function in addition to a column name.

Description

You can retrieve data using a search condition based on the results of a SELECT statement specified in a subquery.

é Note

For details about the syntax of subqueries, see 7.3.1 Specification format and rules for subqueries.

1.14.1 Example: Find the customer who purchased the greatest quantity
of a product

From the sales history table (SALESLIST), find the customer ID (USERID) and quantity purchased (PUR-NUM) for
the customer who purchased the greatest quantity of product code POO1.

Table to search

B SALESLIST
USERID PUR-CODE PUR-NUM PUR-DATE
000212 PO02 3 | 2011-09-03
U00358 POO1 1 | 2011-09-04
U00555 PO02 5 | 2011-09-06
000212 P003 10 | 2011-09-03
000358 P003 2 | 2011-09-05
000358 PO02 2011-09-07
000212 PO02 12 | 2011-09-05
000687 PO02 8 | 2011-09-06
V00687 P003 5 | 2011-09-07
000212 POO1 6 |2011-09-05
U00358 PO01 9 |2011-09-03
U00358 PO02 3 | 2011-09-04

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

64

Specification example

SELECT "USERID", "PUR-NUM"
FROM "SALESLIST"
WHERE "PUR-NUM"=(SELECT MAX ("PUR-NUM") FROM "SALESLIST"
WHERE "PUR-CODE"='P(001"'")

Retrieval results

USERID PUR-NUM
| 000358 | 9 |

O Tip

The subquery specified in the underlined portion searches the sales history table (SALESLIST) to find
the greatest quantity purchased (9) for product code POO1.

Next, it finds the customer ID (USERID) and quantity purchased (PUR-NUM) where PUR-NUM equals
the greatest quantity purchased (9) identified in the subquery.

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference

65

1.15 Common errors in SQL statements and how to handle them

This section describes some common errors that occur when executing SQL statements, and how to handle them.

Only the most typical ways of dealing with the most common mistakes are described here; there might be cases where
you cannot use the solutions described here. For such cases, follow the action recommended for the message that is
output.

1.15.1 If message KFAA30104-E is displayed

Check if there is an error such as the following:

e Character string not enclosed in single quotation marks (')

If a value specified in a conditional expression is a CHAR type or VARCHAR type character string, you must enclose
the character string in single quotation marks (').

Example:

SELECT "USERID" FROM "USERSLIST" WHERE "NAME"=Taro Tanaka
KFAA30104-E There is an unnecessary part "Tanaka" in the SQL statement.

In this example, the underlined portion of the statement is incorrect. The correct specification is ' Taro Tanaka"'.

e Column name or table name not properly enclosed in double quotation marks (")
Example:

SELECT "USERID, "PUR-CODE", "PUR-DATE" FROM "SALESLIST"
WHERE "PUR-DATE">=DATE'2011-09-06"

KFAA30104-E There is an unnecessary part ", (0x2c)" in the SQL statement.

In this example, the underlined portion of the statement is incorrect. There is no double quotation mark (") specified
after USERID.

* WHERE not correctly spelled

Example:

SELECT "USERID", "PUR-CODE", "PUR-DATE" FROM "SALESLIST"
WHRER "PUR-DATE">=DATE'2011-09-06"

KFAA30104-E There is an unnecessary part ""PUR-DATE">=DATE'2011-09-06""
in the SQL statement.

In this example, the underlined portion of the statement is incorrect. The correct specification is WHERE.

1.15.2 If message KFAA30105-E is displayed

Check if there is an error such as the following:

Example:

SELECT "USERID", "PUR-CODE", "PUR-DATE" FROM "SALESLIST"
WHERE "PUR-DATE"=>DATE'2011-09-06"

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 66

KFAA30105-E Token ">" (non-reserved word), which is after token "=", is invalid.

The underlined portion of the statement is incorrect. The correct specification is >=.

The syntax error occurred at the location of the character string ">", which is displayed after Token in message
KFAA30105-E.

1.15.3 If message KFAA30119-E is displayed

Check whether the column specified immediately after the SELECT is different from the column specified in the GROUP
BY clause.

Example 1:

SELECT "USERID",COUNT (*) FROM "SALESLIST"
GROUP BY "PUR-CODE"

KFAA30119-E In a query using a GROUP BY clause or a set function specification,
the column "USERID" specified in a select expression, a HAVING clause

or an ORDER BY clause must be specified as an argument of the GROUP BY clause
or the set function. (query number = 1, 1)

In this example, the underlined portions of the statement are incorrect. Make the column names specified in the
underlined portions the same.

Example 2:

SELECT "USERID", "PUR-CODE",COUNT (*) FROM "SALESLIST"
GROUP BY "USERID"

KFAA30119-E In a query using a GROUP BY clause or a set function specification,
the column "PUR-CODE" specified in a select expression, a HAVING clause

or an ORDER BY clause must be specified as an argument of the GROUP BY clause
or the set function. (query number = 1, 1)

In this example, the underlined portions of the statement are incorrect. Make the number of columns and the column
names specified in the underlined portions the same.

1.15.4 If message KFAA30202-E is displayed

Check if there is an error in a specified column name.

Example:

SELECT "USRID", "PUR-CODE", "PUR-DATE" FROM "SALESLIST"
WHERE "PUR-DATE">=DATE'2011-09-06"

KFAA30202-E Column "USRID" is not found in any table. (query number = 1)

In this example, the underlined portion of the statement is incorrect. The correct column name is "USERID".

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 67

1.15.5 If message KFAA30203-E is displayed

In a retrieval that spans two tables, if both tables contain a column with the same name, the column name must be
specified in the format "table-name" . " column-name" in order to identify which table the column is in.

Example:

SELECT "USERID", "NAME", "PUR-CODE", "PUR-DATE"
FROM "SALESLIST","USERSLIST" WHERE "PUR-DATE">=DATE'2011-09-06"
AND "SALESLIST"."USERID"="USERSLIST"."USERID"

KFAA30203-E Column "USERID" cannot be determined in the SQL statement. (query number =
1)

In this example, the underlined portion of the statement is incorrect. Specify it using the format "table-
name" . "USERID" (for example, "SALESLIST"."USERID").

1.15.6 If message KFAA30204-E is displayed

Check if there is an error in a specified table name.

Example:

SELECT "USERID", "PUR-CODE", "PUR-DATE" FROM "SALELIST"
WHERE "PUR-DATE">=DATE'2011-09-06"

KFAA30204-E The table or index "ADBUSERO1"."SALELIST" is not found in the system.

In this example, the underlined portion of the statement is incorrect. The correct table name is "SALESLIST".

1.15.7 If message KFAA30401-E is displayed

Check if there is an error in the specification of a search condition.

Example 1:

SELECT "USERID", "PUR-CODE", "PUR-DATE" FROM "SALESLIST"
WHERE "USERID">=DATE'2011-09-06"

KFAA30401-E The data types of both operands specified in predicate
"COMPARISON" are not compatible. (query number = 1)

In this example, the underlined portion of the statement is incorrect. It specifies an impossible condition in which you
are attempting to compare the USERID column (customer ID) to the date range September 6, 2011 or later. Examples
of correct specifications are as follows:

¢ "USERID">='U00500"'

e "PUR-DATE">=DATE'2011-09-06"

Example 2:

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 68

SELECT "USERID", "PUR-CODE", "PUR-DATE" FROM "SALESLIST"
WHERE "PUR-DATE">='2011-9-6"

KFAA30401-E The data types of both operands specified in predicate
"COMPARISON" are not compatible. (query number = 1)

In this example, the underlined portion of the statement is incorrect. The correct specificationis DATE ' 2011-09-06".

1. SELECT Statement Examples

Hitachi Advanced Database SQL Reference 69

1.16 List of references by purpose

The table below lists the clauses, predicates, and functions that can be used in SELECT statements, as well as references
to examples, organized according to the purpose of the retrieval.

Note that the descriptions given as examples assume that you are using the example tables used above, the sales history

table (SALESLIST) and the customer table (USERSLIST).

Table 1-2: List of clauses, predicates, and functions usable in SELECT statements, with references

to examples

No. Purpose of retrieval

1 You want to see all the data in a table.
Examples:
¢ See customer information for all customers.

¢ See all sales history information for a product.

2 You want to sort retrieved results in ascending or
descending order.

Examples:
 Sort customer information by customer ID.
» Sort a product's sales history information by date.

3 You want to specify a maximum number of rows for the
retrieval results.

Examples:
¢ See some but not all customer data.

* See some but not all sales history information for a
product.

4 You want to limit the search by specifying conditions.
Examples:
¢ Obtain yesterday's product sales history information.

* Obtain the product purchase history for a specific
customer.

5 You want to search within a specified range.
Example:
* Obtain this week's product sales history information.

6 You want to search for data that matches any of multiple
conditions.

Example:

¢ Find customers who purchased a product of product
code P001 or PO03.

7 You want to search for data that contains a specific
character string.

Examples:

¢ Obtain customer information for customers with the
last name Johnson.

¢ Obtain customer information for customers with a
name whose initial letter is A.

8 You want to retrieve data from multiple tables (table join).
Example:

1. SELECT Statement Examples

Clause, predicate, or function to
use

ORDER BY clause

LIMIT clause

WHERE clause

BETWEEN predicate

IN predicate

LIKE predicate

WHERE clause

Reference to example

1.2 Retrieving all the
rows from a table

1.3 Sorting retrieval
results (ORDER BY
clause)

1.4 Specifying the
maximum number of
rows of retrieval results
(LIMIT clause)

1.5 Retrieving data with
search conditions
specified

1.6 Retrieving data with
a search range specified
(BETWEEN predicate)

1.7 Retrieving data that
meets one of multiple
conditions (IN predicate)

1.8 Retrieving data that
contains a specific
character string (LIKE
predicate)

1.9 Retrieving data with
multiple tables specified
(table join),

Hitachi Advanced Database SQL Reference

70

No.

10

11

12

13

14

15

16

17

Purpose of retrieval

¢ Obtain customer information for customers who
purchased a product yesterday.

You want to eliminate duplication in the retrieval results.
Examples:
* Find the names of customers who purchased products.

¢ Obtain the product codes of items sold.

You want to determine the total number of data items in a
table.

Example:
¢ Determine the total number of customers.

You want to determine the number of retrieved rows.
Examples:

* Determine the number of people who purchased a
product.

¢ Determine the number of product sales yesterday.

¢ Determine the number of times a product was
purchased by a specific customer.

You want to determine a maximum value from the
retrieved data

Example:

¢ Determine the maximum quantity purchased of a
product.

You want to determine a minimum value from the
retrieved data.

Example:

¢ Determine the minimum quantity purchased of a
product.

You want to determine an average value from the retrieved
data.

Example:
* Determine the average quantity purchased of a product

You want to determine the sum of the retrieved data.
Examples:

» Determine the quantity purchased yesterday of a
product.

¢ Determine the number of products purchased for a
particular customer.

You want to aggregate data into groups.
Examples:
¢ For each customer, determine the number of times a
product was purchased or the quantities purchased.
» For each product code, determine the number of sales
or the quantities sold.

You want to retrieve data based on the results of another
SELECT statement specified in a search condition.

1. SELECT Statement Examples

Clause, predicate, or function to
use

SELECT DISTINCT

Set function COUNT (*)

Set function COUNT (*)

Set function MAX

Set function MIN

Set function AVG

Set function SUM

GROUP BY clause
HAVING clause

Subquery

Reference to example

1.10.1 Example:
Retrieve customers who
purchased products, and

1.13.5 Example 5:
Aggregate data from the
sales history table and
customer table

1.10 Eliminating
duplication in retrieval
results (SELECT
DISTINCT)

1.11.1 Example 1:
Determine the total
number of customers

1.11.2 Example 2:
Determine the number of
people who purchased a
product

1.12.1 Example 1:
Determine the maximum,
minimum, and average
quantities purchased

1.12.2 Example 2:
Determine the sum of
quantities purchased)

1.13 Aggregating
retrieved data by group
(GROUP BY clause,
HAVING clause)

1.14 Retrieving by
specifying a SELECT

Hitachi Advanced Database SQL Reference

4l

No. Purpose of retrieval

Example:

* Find information on the customer who purchased the
greatest quantity of a product.

Legend: --: Not applicable.

1. SELECT Statement Examples

Clause, predicate, or function to
use

Reference to example

statement in the search
condition (subquery)

Hitachi Advanced Database SQL Reference

72

List of SQL Statements

This chapter lists the SQL statements supported by HADB, and explains how to read the SQL syntax
specification format.

Hitachi Advanced Database SQL Reference 73

2.1 List of SQL statements

The following table lists the SQL statements supported by HADB.

Table 2-1: List of SQL statements supported by HADB

No. Classification

—

Definition SQL

10
11
12
13
14
15
16
17
18 Data manipulation SQL
19
20
21
22
23

24 Control SQL

25

Notes:

SQL statement supported by

HADB

ALTER TABLE
ALTER USER
ALTER VIEW
CREATE AUDIT
CREATE INDEX
CREATE SCHEMA
CREATE TABLE
CREATE USER
CREATE VIEW
DROP AUDIT
DROP INDEX
DROP SCHEMA
DROP TABLE
DROP USER
DROP VIEW
GRANT

REVOKE
DELETE
INSERT

PURGE CHUNK
SELECT
TRUNCATE TABLE
UPDATE

COMMIT

ROLLBACK

Description

Change a base table's definition information.

Change an HADB user's information.
Re-create a viewed table.

Define audit targets.

Define an index on a column in a base table.

Define a schema.

Define a base table.

Create an HADB user.

Define a viewed table.

Delete the audit target definition.
Delete an index.

Delete a schema.

Delete a base table.

Delete an HADB user.

Delete a viewed table.

Grant privileges to an HADB user.
Revoke privileges of an HADB user.
Delete rows.

Insert rows into a table.

Delete all the rows in a chunk.
Retrieve data from a table.

Delete all the rows in a base table.

Update values in a row.

Validate the database contents that were updated by a
transaction, and terminate the transaction normally.

Invalidate the database contents that were updated by a

transaction, and cancel the transaction.

You can execute the above SQL statements from application programs or by using the adbsgl command. However,
control SQL statements (COMMIT and ROLLBACK) cannot be used in application programs.

2. List of SQL Statements

Hitachi Advanced Database SQL Reference

74

* Ifyouareusing the JDBC driver, use the commi t method or rol 1back method inthe Connection interface.
For details about these methods, see the HADB Application Development Guide.

* Ifyou are using the ODBC driver, use the ODBC function SQLEndTran. For details about SOQLEndTran,
see the HADB Application Development Guide.

* Ifyou are using CLI functions, use a_rdb SQLEndTran (). For details about a_rdb SQLEndTran (),
see the HADB Application Development Guide.

é Note

e The SELECT statement is also called the retrieval SQL statement.

* The INSERT, UPDATE, DELETE, PURGE CHUNK, and TRUNCATE TABLE statements are generically
called update SQL statements.

2. List of SQL Statements

Hitachi Advanced Database SQL Reference 75

2.2 How to read the SQL syntax specification format

This section describes the SQL statement syntax specification format using BNF notation. To explain how to read the
SQL statement syntax specification format, the LIKE predicate is used as an example.

Description of the specification format of the LIKE predicate

LIRKE-predicate ::= match-value [NOT] LIKE pattern-character-string [ESCAPE escape-cha
racter] Lol

match-value ::= value expression ...2

pattern-character-string ::= value expression ...2

escape-character ::= value expression ...2
This notation means that the item on the left of the : : = is described in the format shown on the right of it. Therefore,

the meanings of the specifications indicated by 1 and 2 in the preceding format are as follows:

1. The LIKE predicate takes the form match-value [NOT] LIKE pattern-character-string [ESCAPE escape-
character]

2. match-value, pattern-character-string, and escape-character take the form of value expressions.

In other words, a LIKE predicate is written in the following format:
value-expression [NOT] LIKE value-expression ESCAPE value-expression

Value expressions are described in 7.20 Value expression. Refer to that section for the specification format of a value
expression.

2. List of SQL Statements

Hitachi Advanced Database SQL Reference 76

Definition SQL

This chapter describes the functions, rules, and specification formats of definition SQL statements.

Hitachi Advanced Database SQL Reference 77

3.1 ALTER TABLE (alter table definition)

This section describes the specification format and rules for the ALTER TABLE statement.

3.1.1 Specification format and rules for the ALTER TABLE statement

You can use the ALTER TABLE statement to perform the following operations:

* Add a column to a base table

* Rename a column of a base table

* Change the maximum number of chunks in a multi-chunk table

* Change a regular multi-chunk table into an archivable multi-chunk table
* Change an archivable multi-chunk table into a regular multi-chunk table

Note that you cannot perform two or more operations at the same time by a single execution of the ALTER TABLE
statement.

(1) Specification format and description

(a) Adding a column to a base table
Specification format

ALTER-TABLE-statement ::= ALTER TABLE table-name
ADD COLUMN column-definition

column-definition ::= column-name data-type [NOT NULL] [BRANCH {YES | NO | AUTO}] [
compression-type-specification]

® table-name

Specify the name of the base table to which to add a column. For rules on specifying a table name, see (2) Table
name specification format in 6.1.5 Qualifying a name.

Note that the following tables cannot be specified:
* Viewed tables
* Dictionary tables
* System tables

e ADD COLUMN column-definition

column-definition ::= column-name data-type [NOT NULL] [BRANCH {YES | NO | AUTO}]
[compression-type-specification]

Specify the column definition of the column to be added.

The following conditions govern the specifications for adding a column:
* Only one column can be added at a time. The column is added as the last column of the base table.
* Null values are stored in the added column.

* You cannot add a column to a base table under the following circumstances:

3. Definition SQL

Hitachi Advanced Database SQL Reference 78

* The number of columns in the target base table has already reached the maximum (1,000).
* The target base table is a FIX table to which row storage segments have been allocated.

* The target base table was created by running the CREATE TABLE statement with BRANCH ALL specified,
and row storage segments have been allocated to the target base table.

For details about the status in which row storage segments have been allocated, see Notes on defining B-tree
indexes (unfinished status of B-tree indexes) in the HADB Setup and Operation Guide.

5 Note

You cannot specify a DEFAULT clause in an ALTER TABLE statement.

column-name:
Specify the name of the column to be added.
You cannot specify a column name that is already used in the table.
Do not specify a character string in the EXPnnnn_NO NAME format as a column name. Such a column name
might duplicate a derived column name that is automatically set by HADB. In this format, nnnn is an unsigned
integer in the range from 0000 to 9999.

data-type:

Specify the data type of the column to be added. The data types that can be specified are shown in the following
table:

Table 3-1: Data types that can be specified (ALTER TABLE statement)

No. Data type Specification format
1 INTEGER INT or INTEGER
2 SMALLINT SMALLINT
3 DECIMAL DEC[(m[,n])] or DECIMAL[(m[,n])]

m: Precision (total number of digits)
n: Scaling (number of decimal places)
If m is omitted, 38 is assumed, and if # is omitted, O is assumed.

4 DOUBLE PRECISION DOUBLE or DOUBLE PRECISION

5 CHARACTER CHAR (n) or CHARACTER (n)
n: Length of the character string (number of bytes)
If CHAR or CHARACTER is specified without a length, the length of the character string

is assumed to be 1.

6 VARCHARM!, #2 VARCHAR (n)

n: Maximum length of the character string (number of bytes)
7 DATE DATE

8 TIME TIME (p) or TIME
p: Fractional seconds precision (number of digits to the right of the decimal point)

You can specify a value of 0, 3, 6, 9, or 12 for p. If TIME is specified, p is assumed
to be 0.

9 TIMESTAMP TIMESTAMP (p) or TIMESTAMP
p: Fractional seconds precision (number of digits to the right of the decimal point)

You can specify a value of 0, 3, 6, 9, or 12 for p. If TIMESTAMP is specified, p is
assumed to be 0.

3. Definition SQL

Hitachi Advanced Database SQL Reference 79

No. Data type Specification format

10 BINARY BINARY (n)
n: Length of the binary data (number of bytes)

If BINARY is specified without a length, the length of the binary data is assumed to
be 1.

11 VARBINARY#! VARBINARY (n)
n: Maximum length of the binary data (number of bytes)

#1: The VARCHAR and VARBINARY types cannot be specified for columns that are added to a FIX table.
#2: VARCHAR-type data whose data length exceeds 32,000 bytes cannot be specified.
For details about data types, see 6.2 Data types.

NOT NULL:

Specify this to define the NOT NULL constraint (the constraint that does not allow null values) on the column to
be added.

Note the following:
* You cannot specify NOT NULL for a base table to which row storage segments have been allocated. For

details about the status in which row storage segments have been allocated, see Notes on defining B-tree
indexes (unfinished status of B-tree indexes) in the HADB Setup and Operation Guide.

¢ In FIX tables, the NOT NULL constraint is set for all columns. When a column is added to a FIX table, the
NOT NULL constraint is considered to be specified even if it is omitted.
BRANCH {YES | NO | AUTOQ} :
Specifies how to store VARCHAR-type and VARBINARY-type column data.

For details about situations for which it is better to specify YES or NO for BRANCH, see Branch specification
for column data of variable-length data types (BRANCH) [Row store table] in the HADB Setup and Operation
Guide.

The types of storage methods that can be specified are the same as those that can be specified for a CREATE
TABLE statement. In addition, if BRANCH is omitted, this statement operates in the same way as when BRANCH
1s omitted from the CREATE TABLE statement. For details about BRANCH in the CREATE TABLE statement,

see (d) column-definition [Common] of (2) Explanation of specification format in 3.7.1 Specification format
and rules for the CREATE TABLE statement.

This option cannot be specified for the following tables and columns:
» Tables for which the BRANCH ALL table option is specified
* Columns of data types other than VARCHAR and VARBINARY
e Column store tables to which a column is to be added
compression-type-specification:
compression-type-specification ::= COMPRESSION TYPE {AUTO |NONE |RUNLENGTH|DICTION

ARY |DELTA |DELTA RUNLENGTH}

Specifies the compression type to be used to compress the data of the column to be added (column-data
compression type).

The compression types that can be specified are the same as those that can be specified for the CREATE TABLE
statement. In addition, if compression-type-specification is omitted, this statement operates in the same way as
when compression-type-specification is omitted from the CREATE TABLE statement. For details about
compression-type-specification inthe CREATE TABLE statement, see (d) column-definition [Common] of (2)
Explanation of specification formatin 3.7.1 Specification format and rules for the CREATE TABLE statement.

Note that you cannot specify this option if the table to which a column is to be added is a row store table.

3. Definition SQL

Hitachi Advanced Database SQL Reference 80

(b) Renaming a column in a base table

Specification format

ALTER-TABLE-statement ::= ALTER TABLE table-name
RENAME COLUMN [FROM] current-column—-name TO new-column-name

* table-name
Specify the name of the base table of which to rename a column. For rules on specifying a table name, see (2) Table
name specification format in 6.1.5 Qualifying a name.

Note that the following tables cannot be specified:
* Viewed tables
¢ Dictionary tables
¢ System tables
* RENAME COLUMN [FROM] current-column-name TO new-column-name

Specify the current column name and new column name. The current column name is changed to the new column
name.

The following rules apply:
* An existing column name cannot be specified as the new column name.
e The same name cannot be specified for both the current and new column names.

* Do not specify a character string in the EXPnnnn_NO_NAME format as a new column name. Such a column
name might duplicate a derived column name that is automatically set by HADB. In this format, nnnn is an
unsigned integer in the range from 0000 to 9999.

0 Important

If a column of a table is renamed, all viewed tables that are dependent on that table are invalidated. For
details about how to check the viewed tables that will be invalidated, see Checking dependent viewed
tables in the HADB Setup and Operation Guide.

(c) Changing the maximum number of chunks in a multi-chunk table

Specification format

ALTER-TABLE-statement ::= ALTER TABLE table-name
CHANGE OPTION CHUNK=maximum-number-of-chunks

* table-name
Specify the name of the multi-chunk table for which you want to change the maximum number of chunks. For rules
on specifying a table name, see (2) Table name specification format in 6.1.5 Qualifying a name.

* CHANGE OPTION CHUNK=maximum-number-of-chunks
~ <unsigned integer> ((2 to 30, 000)) (unit: chunks)

Specify a new maximum number of chunks, replacing the maximum number of chunks that was specified using the
chunk specification in the CREATE TABLE statement.

Note the following points:
» This option can be specified only for multi-chunk tables.

* You cannot specify a value that is less than the number of chunks that have already been created in the table.

3. Definition SQL

Hitachi Advanced Database SQL Reference 81

(d) Changing a regular multi-chunk table to an archivable multi-chunk table

Specification format

ALTER-TABLE-statement: :=LTER TABLE table-name
CHANGE OPTION CHUNK chunk-archive-specification

chunk-archive-specification: :=ARCHIVABLE
RANGECOLUMN=column-name
[RANGEINDEXNAME=1index-identifier]
[IN DB-area—-name]
ARCHIVEDIR=archive-directory-name

* table-name

Specify the name of the regular multi-chunk table that you want to change to an archivable multi-chunk table. For
rules on specifying a table name, see (2) Table name specification format in 6.1.5 Qualifying a name.

Note that the following tables cannot be specified:
» FIX tables
* Single-chunk tables
* Column store tables
* CHANGE OPTION CHUNK chunk-archive specification

chunk-archive-specification: :=ARCHIVABLE
RANGECOLUMN=column-name
[RANGEINDEXNAME=1index-identifier]
[IN DB-area-name]
ARCHIVEDIR=archive-directory—-name

Specify this option if you change a regular multi-chunk table to an archivable multi-chunk table.
* RANGECOLUMN=column-name
Specify a column name. The column specified here becomes the archive range column.
The following rules apply:
* You cannot use columns of the following data types as archive range columns:
* CHARACTER type (only if the defined length is 33 bytes or more)
¢ VARCHAR type
* BINARY type
* VARBINARY type
* When you specify a column to be used as an archive range column, make sure that the NOT NULL constraint
is specified for that column.
* RANGE INDEXNAME=index-identifier

When the ALTER TABLE statement is run, the HADB server automatically defines a range index that uses an
archive range column as the indexed column. Specify the index identifier to be assigned to this range index.

0 Important

If a range index has already been defined for the archive range column, no range index is
automatically defined when the ALTER TABLE statement is run. In this case, the already defined
range index is used. Therefore, if you specify RANGE INDEXNAME when a range index has already
been defined for the archive range column, the ALTER TABLE statement will result in an error.

3. Definition SQL

Hitachi Advanced Database SQL Reference 82

If RANGE INDEXNAME is not specified, the HADB server determines the index identifier in the following format:

ARCHIVE RANGE INDEX nnnnnnnn

nnnnnnnn is an eight-digit character string that represents the ID of the archivable multi-chunk table in
hexadecimal notation.

If the automatically determined index identifier already exists in the same schema, the ALTER TABLE statement
will result in an error. Therefore, if you use the CREATE INDEX statement to define an index, we recommend
that you do not use a name whose format resembles the preceding format.

5 Note

The range index that is automatically defined here is subject to the same rules as a range index
defined by the CREATE INDEX statement.

¢ IN DB-area-name

Specify the name of the DB area in which to store the range indexes that are automatically defined by the HADB
server.

In the following case, omit specifying IN DB-area-name:

* When a range index has already been defined for the archive range column
In this case, because the HADB server does not automatically define a range index, you do not need to specify
IN DB-area-name.

Also, if all of the following conditions are met, a range index automatically defined by the HADB server is
stored in the DB area specified for the adb _sqgl default dbarea shared operand in the server
definition:

* When the IN DB-area-name specification is omitted
* No range index is defined for the archive range column.

Note that, when both of the preceding two conditions are met, if the adb sql default dbarea shared
operand is not specified in the server definition, the ALTER TABLE statement will result in an error. Also, if
the DB area specified for the adb sgl default dbarea shared operand in the server definition does
not exist or if a DB area other than the data DB area is specified, the ALTER TABLE statement will result in an
error.

* ARCHIVEDIR=archive-directory-name
Specify the absolute path name of the archive directory in which to store archive files.
The following rules apply:

» Specify the archive directory name in the character string literal format. For details about character string
literals, see 6.3 Literals.

» Specify an existent directory for the archive directory. Make sure that read, write, and execution permissions
for the HADB administrator are assigned to the directory that you specify.

Also, make sure that execution permission for the HADB administrator is assigned to all directories that are
included in the path of the archive directory.

(Example) If the archive directory is /HADB/archive:
For the /HADB/archive directory, read, write, and execution permissions must be set.

For the / directory and the /HADB directory, the execution permission is necessary.

* The following directories cannot be used as the archive directory:
* Server directory
* Subdirectory of a server directory

3. Definition SQL

Hitachi Advanced Database SQL Reference 83

* Directory that contains a server directory
* DB directory

* Subdirectory of a DB directory

* Directory that contains a DB directory

* Root directory

The following shows examples of directories that can be and cannot be used as the archive directory when
the DB directory is /HADB/db:

Directory Reason

Example of directory that can | /HADB/archive None.

be used as the archive

directory

Example of directory that /HADB/db This directory is the same as the DB directory.

cannot be used as the archive

directory /HADB/db/archive This directory is a subdirectory of the DB
directory.

/HADB This directory contains the DB directory.

* Do not specify (as the archive directory) a directory in which installation data was stored when the HADB
server was installed.

* The name of the archive directory must be 1 to 400 bytes long except the heading and trailing spaces.

a Note

If you specify a directory name that begins and/or ends with spaces, these spaces are deleted
(the resulting character string is used as the archive directory name).

* Make sure that each element of the archive directory name is no more than NAME MAX bytes long. The
NAME MAX value differs depending on the environment.

If a symbolic link is specified as the archive directory name, the system checks whether the absolute path name
that the symbolic link substitutes for obeys the rules that are described here.
About the multi-node function:

If the multi-node function is enabled, note the following points:

* Use the NFS or other means to share the archive directory by all nodes. Note that the archive directory must
be shared by all nodes when the ALTER TABLE statement is run.

* On the master node, when the ALTER TABLE statement is run, a check to see whether the archive directory
name obeys the specification rules that are described here is conducted. On the slave nodes, this check is not
conducted. Therefore, after the ALTER TABLE statement, check the archive directory name on each slave
node.

About the location table that is defined when a regular multi-chunk table is changed to an archivable multi-
chunk table
If a regular multi-chunk table is changed to an archivable multi-chunk table by running the ALTER TABLE
statement, the HADB server automatically defines the location table and the index of the location table. The
HADB server uses the location table and index. Therefore, no user can directly manipulate, redefine, or delete
the location table or index. For details about the location table, see Searching an archivable multi-chunk table
in the HADB Setup and Operation Guide.
The location table and its index are stored in the same DB area as the archivable multi-chunk table.

The names of the location table and its index are determined according to the rules that are described in the
following table.

3. Definition SQL

Hitachi Advanced Database SQL Reference 84

Table 3-2: Naming rules for the location table and location table index

Item Naming rule Information managed by the Columns in the index
index

Location table "HADB" ."LOCATION TAB - -
LE nnnnnnnn"

Location table index "HADB"."LOCATION_IND | Manages the chunk ID of the chunk CHUNK_ID
EX nnnnnnnn_CHUNK _ID" | that corresponds to the archive file.

"HADB" ."LOCATION_IND | Manages the range (upper and lower * RANGE MAX

EX nnnnnnnn_RANGE 01" limits) of values in the archive range e RANGE MIN
column of data stored in the archive -
file.

"HADB" ."LOCATION IND = Manages the lower limit of valuesin =~ RANGE MIN
EX nnnnnnnn_RANGE 02" the archive range column of data
stored in the archive file.

Legend:
--: Not applicable.
Note:

nnnnnnnn is an eight-digit character string that represents the ID of the archivable multi-chunk table in
hexadecimal notation.

The schema name of the location table and location table index is HADB.
Note the following points when changing a regular multi-chunk table to an archivable multi-chunk table:

* Ifaregular multi-chunk table is changed to an archivable multi-chunk table, the HADB server automatically defines
the location table, the location table index, and the range index of the archive range column. However, if a range
index has been defined for the column that is specified as the archive range column, a new range index is not defined.
In this case, the already defined range index is used. For details about how to check whether a range index has
already been defined for a column, see Investigating whether range indexes are defined in the column specified as
the archive range column in Searching a dictionary table in the HADB Setup and Operation Guide.

 If a regular multi-chunk table is changed to an archivable multi-chunk table, all viewed tables that are dependent
on the table to be changed are invalidated. For details about how to check the viewed tables that will be
invalidated, see Checking dependent viewed tables in the HADB Setup and Operation Guide.

For details about how to change a regular multi-chunk table to an archivable multi-chunk table, see Changing a regular
multi-chunk table to an archivable multi-chunk table in the HADB Setup and Operation Guide.
(e) Changing an archivable multi-chunk table to a regular multi-chunk table

Specification format

ALTER-TABLE-statement ::= ALTER TABLE table-name
CHANGE OPTION CHUNK UNARCHIVABLE

* table-name

Specify the name of the archivable multi-chunk table that you want to change into a regular multi-chunk table. For
rules on specifying a table name, see (2) Table name specification format in 6.1.5 Qualifying a name.

* CHANGE OPTION CHUNK UNARCHIVABLE

Specify this option if you change an archivable multi-chunk table to a regular multi-chunk table.

Note the following points when changing an archivable multi-chunk table to a regular multi-chunk table:

3. Definition SQL

Hitachi Advanced Database SQL Reference 85

* You cannot change an archivable multi-chunk table to a regular multi-chunk table if there are archived chunks. In
this case, unarchive the chunks, and then change an archivable multi-chunk table to a regular multi-chunk table if
there are archived chunks.

e When an archivable multi-chunk table is changed to a regular multi-chunk table, the location table and the index
that has been defined for the location table are deleted. However, the range index that has automatically been defined
for the archive range column is not deleted. If this range index is unnecessary, delete it by using the DROP INDEX
statement after changing an archivable multi-chunk table to a regular multi-chunk table.

 If an archivable multi-chunk table is changed to a regular multi-chunk table, all viewed tables that are dependent
on the table to be changed are invalidated. For details about how to check the viewed tables that will be
invalidated, see Checking dependent viewed tables in the HADB Setup and Operation Guide.

For details about how to change an archivable multi-chunk table to a regular multi-chunk table, see Changing an
archivable multi-chunk table to a regular multi-chunk table in the HADB Setup and Operation Guide.

(2) Privileges required at execution

To execute the ALTER TABLE statement, the CONNECT privilege and schema definition privilege are required.

(3) Rules

1. You can only alter the definition of a table in the schema of the current user (the HADB user whose authorization
identifier is currently connected to the HADB server). You cannot alter the definition of a table in a schema owned
by another HADB user.

2. You cannot add a column unless the sum of the sizes of all columns in the base table (the row length) satisfies the
following formula:

e Formula (if the target base table is a row store table)

ROWSZ- (row-length) < page-size - 56 (unit: bytes)

e Formula (if the target base table is a column store table)

ROWSZ- (row-length) < page-size - 80 (unit: bytes)
For details about the formula for calculating ROWSZ (row length), see Determining the number of pages for storing
each type of row in the HADB Setup and Operation Guide.

3. You cannot change the definition of a table that has been rendered non-updatable due to an interrupted command.

(4) Examples

Example 1: Adding a column to a row store table

Add a column for the email address of each shop (EMAIL ADDRESS) to the shops table (SHOPSLIST), which is
a row store table.

e Column name: EMAIL ADDRESS
* Data type: VARCHAR (100)

¢ Branch the data in the column

ALTER TABLE "SHOPSLIST"
ADD COLUMN "EMAIL ADDRESS" VARCHAR(100) BRANCH YES

3. Definition SQL

Hitachi Advanced Database SQL Reference 86

SHOPSLIST

SHOP CODE RGN CODE SHOP NAME TEL NO ADDRESS EMATL, ADDRESS
S0000001 | PO000O2 XXXXXXX XXXXXXXXXX XXXXXXXXXX NULL
50000002 | POOOOL XXXXXXX D10:0:0:0:0:0:0:0:0:¢ XXXXXXXXXX NULL
50000003 | PO0002 KHXKKKK JOXXXXXXXX XOXXXXXXXK NULL

L Added column
Example 2: Adding a column to a column store table

Add a column for the times that receipts were issued (ISSUE _TIME) to the receipt table (RECEIPT), which is a
column store table.

* Column name: ISSUE_TIME
e Data type: TIME
* Compress the data in the column by using the delta run-length encoding algorithm (DELTA RUNLENGTH).

ALTER TABLE "RECEIPT"
ADD COLUMN "ISSUE TIME" TIME COMPRESSION TYPE DELTA RUNLENGTH
RECEIPT
RID SHOP CODE RGN CODE EMPLOYEE CODE ITEM CODE ISSUE TIME
XX [20000001 | RO0002 0:0:0:0:0:0:0.0:0:¢ XXXXKKXXKX NULL
Xx [A0000002 | RO0001 XXXXXXXXXX XXXXXXXKXKX NULL
XX [A0000003 | RO0002 XXXKXKXXXXX P 0:0:0:0:0.0:0:0:0:¢ NULL

L Added column
Example 3: Renaming a column
In the shops table (SHOPSLIST), rename the EMAIL ADDRESS column to EMATIL.

ALTER TABLE "SHOPSLIST"
RENAME COLUMN FROM EMAIL ADDRESS TO EMAIL

Example 4: Changing the maximum number of chunks
Change the maximum number of chunks in the shops table (SHOPSLIST) to 300.

ALTER TABLE "SHOPSLIST"
CHANGE OPTION CHUNK=300

Example 5: Changing a regular multi-chunk table to an archivable multi-chunk table

Change the format of the shops table (SHOPSLIST), which is a row store table, from that of a regular multi-chunk
table to that of an archivable multi-chunk table. The specifications related to the archive range column and other
items are as follows:

* The RECORD_ DAY column is used as the archive range column.
* The /mnt/nfs/archivedir directory is used as the archive directory.

* The DB area that stores the range indexes that are automatically defined by the HADB server is DBAREAO2.

ALTER TABLE "SHOPSLIST"
CHANGE OPTION CHUNK ARCHIVABLE
RANGECOLUMN="RECORD_DAY"
IN "DBAREAQO2"
ARCHIVEDIR='/mnt/nfs/archivedir'

3. Definition SQL

Hitachi Advanced Database SQL Reference

87

Example 6: Changing an archivable multi-chunk table to a regular multi-chunk table

Change the format of the shops table (SHOPSLIST) from an archivable multi-chunk table to a regular multi-chunk
table.

ALTER TABLE "SHOPSLIST"
CHANGE OPTION CHUNK UNARCHIVABLE

3. Definition SQL

Hitachi Advanced Database SQL Reference 88

3.2 ALTER USER (alter an HADB user's information)

This section describes the specification format and rules for the ALTER USER statement.

3.2.1 Specification format and rules for the ALTER USER statement

Change the following information for an HADB user:

¢ Password

(1) Specification format

ALTER-USER-statement ::= ALTER USER authorization-identifier IDENTIFIED BY new-passwo
rd

(2) Explanation of specification format

® authorization-identifier
Specify the authorization identifier of the HADB user whose user information is to be changed.
For rules about specifying authorization identifiers, see 6.1.4 Specifying names.
® IDENTIFIED BY new-password
Specify the new password.
The rules for specifying the password are as follows:

* The password can include single-byte uppercase and lowercase letters, numbers, backslashes (\), as well as the
following characters:

@ rmESSTEe () i+ 1Ay, => -0~/
* Specify the password in the form of a character string literal. Therefore, you must enclose the password in single
quotation marks. The following are examples:
Example 1: Set the new password to Password01
IDENTIFIED BY 'PasswordOl'
Example 2: Set the new password to Pass'01
IDENTIFIED BY 'Pass''01l'

If the password itself includes a single quotation mark ('), specify two single quotation marks (' ') to represent
the single quotation mark ('), as shown in the example above.

For rules on specifying a character string literal, see Table 6-10: Description formats and assumed data types
of literals.

e The password cannot be empty. That is, the following is not permitted:
IDENTIFIED BY "'

* The password cannot exceed 255 characters (255 bytes).

a Note

* Ifyou are using the JDBC driver, we recommend that you not use the following character in the
password:

3. Definition SQL

Hitachi Advanced Database SQL Reference 89

&

* Ifyou are using the ODBC driver, we recommend that you not use the following characters in the
password:

c1r ¢y)y, 2*x=1=~4¢a

(3) Privileges required at execution

To execute the ALTER USER statement, the CONNECT privilege is required.

(4) Rules

1. An HADB user with the DBA privilege can change the user information of every HADB user. However, the user
information of HADB users with the audit privilege cannot be changed. The user information of an HADB user
with the audit privilege can be changed by that HADB user only.

2. An HADB user without the DBA privilege can change the user information of only the current user (the HADB user
whose authorization identifier is currently connected to the HADB server).

(5) Examples

Example
Change the password of HADB user ADBUSERO1 to #Hel1oHADB 02.

ALTER USER "ADBUSER(Q1" IDENTIFIED BY '#HelloHADB 02'

3. Definition SQL

Hitachi Advanced Database SQL Reference 90

3.3 ALTER VIEW (re-create a viewed table)

This section describes the specification format and rules for the ALTER VIEW statement.

3.3.1 Specification format and rules for the ALTER VIEW statement

Re-create a viewed table.
Run the ALTER VIEW statement to re-create a viewed table in the following cases:

* When you revalidate a viewed table

After you have removed the cause that invalidated a viewed table, the viewed table is revalidated when you run the
ALTER VIEW statement to re-create the viewed table.

* When you become unsure of the reason why a viewed table has been invalidated

If you run the ALTER VIEW statement for a viewed table for which the cause of invalidation has not been
removed, the ALTER VIEW statement results in an error. In this case, an error message is output. From this error
message, you can identify the reason why the viewed table has been invalidated.

0 Important

The ALTER VIEW statement cannot change the definition of a viewed table. To change the definition of
a viewed table, use the DROP VIEW statement to delete the viewed table, and then use the CREATE VIEW
statement to redefine the viewed table.

(1) Specification format

ALTER-VIEW-statement ::= ALTER VIEW table-name RECREATE

(2) Explanation of specification format

® fable-name

Specifies the name of the viewed table to be re-created. For rules on specifying a table name, see (2) Table name
specification format in 6.1.5 Qualifying a name.

The following tables cannot be specified:
* Base tables
* Dictionary tables
¢ System tables
® RECREATE

Specify this to re-create a viewed table.

(3) Privileges required at execution

To run the ALTER VIEW statement, the CONNECT privilege and the schema definition privilege are required.

3. Definition SQL

Hitachi Advanced Database SQL Reference 91

(4) Rules

L.

If the authentication identifier connected to the HADB server is different from the schema name of a viewed table,
the ALTER VIEW statement results in an error.

. Even if viewed tables that depend on the viewed table to be re-created have been defined, the viewed table is re-

created when the ALTER VIEW statement is run. In this case, the viewed tables that depend on the re-created viewed
table are invalidated.

. Re-creating a viewed table by using the ALTER VIEW statement does not affect the access privileges for the viewed

tables that depend on the re-created viewed table.

. The viewed table specified in the ALTER VIEW statement is always re-created regardless of whether the viewed

table is valid or invalid.

.If the ALTER VIEW statement is used to re-create a viewed table, the number of columns or column names of the

viewed table might be changed. For example, the following cases apply.
Example of defining viewed table V1:

CREATE VIEW "V1" AS SELECT * FROM "T1" WHERE "C1">100

* Case where the number of columns of a viewed table increases
1. The CREATE VIEW statement is used to define viewed table V1.
2. The ALTER TABLE statement is used to add a column (for example, column C5) to underlying table T1.
3. The ALTER VIEW statement is used to re-create viewed table V1.

In this case, because column C5 is added to viewed table V1, the number of columns in the viewed table increases.

* Case where a column name of a viewed table changes
In step 2 of the preceding procedure, assume that, for example, you use the ALTER TABLE statement to change
the column name of column C2. In this case, if you then use the ALTER VIEW statement to re-create viewed
table V1, the column name of column C2 in viewed table V1 changes.

6. Whenthe ALTER VIEW statement is used to re-create a viewed table, the access privilege settings for the underlying

table might have been changed” since the viewed table was defined. In such a case, the dependent privileges of the
access privilege for the re-created viewed table might be revoked.

#
Either of the following changes applies.
* An access privilege with the grant option has been changed to an access privilege without the grant option.
* An access privilege with the grant option has been removed so that no access privilege is granted.

The following shows an example in which a dependent privilege of the access privilege for a re-created viewed table
is revoked.

Example:

1.

HADB user A, who has the SELECT privilege with the grant option for table X . T1, defines viewed table A. V1
by using table X . T1 as the underlying table.

HADB user A grants the SELECT privilege for viewed table A.V1 to another HADB user. The SELECT
privilege that was granted to another HADB user becomes a dependent privilege.

HADB user A has the SELECT privilege with the grant option for table X. T1 revoked. At this time, viewed
table A.V1 is invalidated because table X. T1 is an underlying table of the viewed table.

3. Definition SQL

Hitachi Advanced Database SQL Reference 92

To revalidate viewed table A . V1, the SELECT privilege without the grant option for table X. T1 is granted to
HADB user A. The SELECT privilege with the grant option for table X . T1 that HADB user A had when defining
viewed table A.V1 in step 1 has been changed to the SELECT privilege without the grant option.

The ALTER VIEW statement is run to re-create viewed table A. V1.
Because the SELECT privilege was changed to a SELECT privilege without the grant option in step 4, the

SELECT privilege that was granted to another HADB user and became a dependent privilege in step 2 is revoked.

(5) Examples

Example

Because a viewed table (VSHOPSLIST) for the shops table was invalidated, the ALTER VIEW statement is run to
revalidate VSHOPSLIST.

ALTER VIEW "VSHOPSLIST" RECREATE

3. Definition SQL

Hitachi Advanced Database SQL Reference 93

3.4 CREATE AUDIT (define audit targets)

This section describes the specification format and rules for the CREATE AUDIT statement.

Note that information defined by using the CREATE AUDIT statement is called an audit target definition.

3.4.1 Specification format and rules for the CREATE AUDIT statement
The CREATE AUDIT statement defines audit targets.

0 Important

You can execute the CREATE AUDIT statement when the audit trail facility is enabled. To check whether
the audit trail facility is enabled, execute the adbaudittrail -d command.

(1) Specification format

CREATE-AUDIT-statement: :=CREATE AUDIT AUDITTYPE EVENT
FOR ANY OPERATION

(2) Explanation of specification format

e AUDITTYPE EVENT

Specify this if you want to output an audit trail of the final event results.
® FOR ANY OPERATION

Specify this if the audit-target event is in the following table.

Table 3-3: Audit-target events
Event type Audit-target event
Session management event Execution of CONNECT (connection to an HADB server)
Execution of DISCONNECT (disconnection from an HADB server)

Privilege management event Executions of the following SQL statements:
¢ GRANT statement
¢ REVOKE statement
¢ CREATE USER statement
¢ DROP USER statement
¢ ALTER USER statement

Definition SQL event Executions of the following definition SQL statements:
e ALTER TABLE statement
e ALTER VIEW statement
e CREATE AUDIT statement
¢ CREATE INDEX statement
¢ CREATE SCHEMA statement
¢ CREATE TABLE statement
¢ CREATE VIEW statement

3. Definition SQL

Hitachi Advanced Database SQL Reference

94

Event type Audit-target event

DROP AUDIT statement
DROP INDEX statement
DROP SCHEMA statement
DROP TABLE statement
DROP VIEW statement

Data manipulation SQL event Executions of the following data manipulation SQL statements:

SELECT statement

INSERT statement

UPDATE statement

DELETE statement
TRUNCATE TABLE statement
PURGE CHUNK statement

Command operation event Executions of the following commands:

adbimport command
adbexport command
adbidxrebuild command
adbgetcst command
adbdbstatus command
adbmergechunk command
adbchgchunkcomment command
adbchgchunkstatus command
adbarchivechunk command
adbunarchivechunk command
adbreorgsystemdata command

adbsyndict command

(3) Privileges required at execution

To execute the CREATE AUDIT statement, the CONNECT privilege and the audit admin privilege are required.

(4) Rules

1. You cannot define multiple instances of the same audit target.

2. An HADB server checks the audit target definition during the determination processing for outputting an audit trail.
Therefore, depending on the audit trail output time, an audit trail about operations that were performed before the
audit targets are defined might be output although those operations are not to be audited.

(5) Examples

Example

The events listed in Table 3-3: Audit-target events are defined as audit targets.

CREATE AUDIT AUDITTYPE EVENT
FOR ANY OPERATION

3. Definition SQL

Hitachi Advanced Database SQL Reference

95

3.5 CREATE INDEX (define an index)

This section describes the specification format and rules for the CREATE INDEX statement.

3.5.1 Specification format and rules for the CREATE INDEX statement

The CREATE INDEX statement defines an index (a B-tree index, text index, or range index) on a column in a base table.

For details about B-tree indexes, text indexes, and range indexes, see B-tree indexes, Text indexes, and Range indexes
in the HADB Setup and Operation Guide.

A B-tree index can be defined on multiple columns. A B-tree index defined on only one column is called a single-column
index, and a B-tree index defined on multiple columns is called a multiple-column index.

0 Important

If you define an index for a base table to which row storage segments have been allocated, the index is
placed in unfinished status (status in which no index data is created).

For example, no row storage segments have been allocated at the following times. If you define an index
for a base table in this status, the index is created normally.

» Immediately after a base table is defined

* Immediately after the TRUNCATE TABLE statement is run

While a B-tree index is in unfinished status, you cannot perform searches that use the unfinished B-tree
index, nor can you execute INSERT, UPDATE, or DELETE statements on the table.

While a text index is in unfinished status, you cannot perform searches that use the unfinished text index,
nor can you execute INSERT, UPDATE, or DELETE on the table.

While a range index is in unfinished status, you cannot perform searches that use the unfinished range index,
nor can you execute INSERT or UPDATE on the table.

For details about how to release indexes from unfinished status, see the following sections (whichever is
applicable) in the HADB Setup and Operation Guide: Steps to take when unfinished status is applied to a
B-tree index, Steps to take when unfinished status is applied to a text index, or Steps to take when unfinished
status is applied to a range index.

For details about the status in which row storage segments have been allocated, see Notes on defining B-
tree indexes (unfinished status of B-tree indexes) in the HADB Setup and Operation Guide.

(1) Specification format

CREATE-INDEX-statement ::=
CREATE [UNIQUE] INDEX index-name
ON table-name (column-name [{ASC|DESC}] [, column-name [{ASC|DESC}]]...)
[IN DB-area-name]
[PCTFREE=percentage-of-unused-area]
EMPTY
[INDEXTYPE {BTREE|TEXT [WORDCONTEXT] |RANGE}]
[CORRECTIONRULE]

3. Definition SQL

Hitachi Advanced Database SQL Reference 96

[DELIMITER {DEFAULT|ALL}]
[EXCLUDE NULL VALUES]

é Note

e PCTFREE,EMPTY, INDEXTYPE, CORRECTIONRULE, DELIMITER, and EXCLUDE NULL VALUES
are generically called index options.

* Index options can be specified in any order.

The following table shows the different options that can be specified depending on which type of index is defined.

Table 3-4: Options for defining an index

No. CREATE INDEX option When defining a B- When defining a When defining a
tree index text index range index
1 UNIQUE Y N N
2 index-name Y Y Y
3 ON table-name Y Y Y
4 column-name Y Y Y
5 {ASC|DESC} Y N N
6 IN DB-area-name Y Y Y
7 PCTFREE Y Y N
8 EMPTY Y Y Y
9 INDEXTYPE Y Y Y
10 CORRECTIONRULE N Y N
11 DELIMITER N Y N
12 EXCLUDE NULL VALUES Y N N
Legend:

Y: An option that can be specified, or one that must be specified.
N: An option that cannot be specified.

% Note

It is not possible to define a primary key using the CREATE INDEX statement. To define a primary key,
specify a uniqueness constraint definition using the CREATE TABLE statement.

(2) Explanation of specification format

In the option descriptions, options marked [B-tree index] can be specified during definition of a B-tree index. Options
marked [Text index] can be specified during definition of a text index. Options marked [Range index] can be specified
during definition of a range index. Options marked [Common] are common to B-tree indexes, text indexes, and range
indexes.

3. Definition SQL

Hitachi Advanced Database SQL Reference 97

e UNIQUE [B-tree index]

Specify this if you want the B-tree index to be a unique index. A unique index is a B-tree index that does not allow
duplicate key values (the values of the columns on which the B-tree index is being defined). However, if the key
values can include null values, duplicate null values do not result in duplicate keys.

For a multiple-column index, a key value is considered different if its value in any one of the columns is different.
If UNIQUE is specified, you cannot update or add data that would result in a duplicate key value.
Note that you cannot define a unique index for a base table created by using the CREATE TABLE statement with
chunk specification.

® index-name [Common]

Specifies the name of the index to be defined. For rules on specifying an index name, see (3) Index name
specification format in 6.1.5 Qualifying a name.

Note that you cannot specify the index name of an index that has already been defined.

® ON fable-name [Common]

Specifies the name of the base table for which the index is to be defined. For rules on specifying a table name, see
(2) Table name specification format in 6.1.5 Qualifying a name.

Note that a viewed table cannot be specified in table-name.
® (column-name [{ASC|DESC}] [, column-name [{ASC|DESC}]]...) [Common]

* For a B-tree index
Specifies the names of the columns on which the B-tree index is being defined, and the ordering of the B-tree
index's key values.
column-name:

Specifies the names of the columns on which the B-tree index is being defined. A maximum of 16 column
names can be specified. If multiple column names are specified, each column name must be unique.

If multiple column names are specified, the resulting B-tree index is a multiple-column index.

ASC:
Specifies that the B-tree index is to be organized in ascending order of the key values.

DESC:
Specifies that the B-tree index is to be organized in descending order of the key values.
For a single-column index, DESC is ignored. The index's key values are always arranged in ascending order
(ASC is assumed).

If neither ASC nor DESC is specified, the system assumes that ASC is specified.

* For a text index or range index
Specifies the name of the column on which the text index or range index is being defined.

In the case of a text index or range index, only one column name can be specified. In addition, ASC and DESC
cannot be specified.

Therefore, the specification format in the case of a text index or range index is as follows:
(column-name)
® IN DB-area-name [Common]

Specifies the name of the DB area in which the index is to be defined.

If the IN DB-area-name specification is omitted, the index is stored in the DB area specified for the
adb_sqgl default dbarea shared operand in the server definition.

Note that if the IN DB-area-name specification is omitted when either of the following conditions is met, the
CREATE INDEX statement will result in an error:

3. Definition SQL

Hitachi Advanced Database SQL Reference 98

* Specification of the adb sgl default dbarea shared operand is omitted in the server definition.

* A non-existent DB area or a DB area other than a data DB area is specified for the
adb sgl default dbarea shared operand in the server definition.
® PCTFREE=percentage-of-unused-area [B-tree index] [Text index]|
~ <unsigned integer> ((0 to 99)) <<30>> (unit: %)

Specifies the percentage of unused area to maintain in the index page of a B-tree index or text index. Specify a
percentage from 0 to 99. If omitted, 30 (%) is assumed.

When data is imported and an index is created or when the index is rebuilt, the B-tree index data or text index data
will be stored leaving the percentage of unused area specified here.

For details about the percentage of unused area in an index page, see Allocating an unused area inside a B-tree index
page (PCTFREE) or Allocating an unused area inside a text index page (PCTFREE) in the HADB Setup and
Operation Guide.

Note that PCTFREE cannot be specified more than once.
e EMPTY [Common]
EMPTY must be specified. If EMPTY is omitted, the CREATE INDEX statement cannot be executed.
EMPTY cannot be specified more than once.
® INDEXTYPE {BTREE | TEXT [WORDCONTEXT] | RANGE } [Common]
Specifies the type of index to be defined.

BTREE:
Specify this if you want to define a B-tree index.
TEXT [WORDCONTEXT]:

Specify this if you want to define a text index. To define a text index for a word-context search, specify TEXT
WORDCONTEXT.

RANGE:
Specify this if you want to define a range index.
If specification of INDEXTYPE is omitted, the system assumes that BTREE (B-tree index) is specified.
INDEXTYPE can only be specified once.
e CORRECTIONRULE [Text index]

Specify this option when you define a text index that supports correction search. For details about the correction
search in a text index, see Correction search in the HADB Setup and Operation Guide.

Note that correction search cannot be used if the character encoding used on the HADB server is Shift-JIS (if the
value of the ADBLANG environment variable is SJIS). In such a case, you cannot specify CORRECTIONRULE.

Also note that you cannot specify the CORRECTIONRULE option more than once.

é Note

This option specification is referred to as the notation-correction-search text-index specification.

e DELIMITER {DEFAULT |ALL} [Text index]
Specifies the group of characters that can be used as word delimiters during a word-context search.
DEFAULT:
Handles the following characters as delimiters during a word-context search:

» Half-width space (0x20)

3. Definition SQL

Hitachi Advanced Database SQL Reference 99

ALL:

Tab (0x09)

Line break (0x02)
Return (0x0D)

Period (0x2E)
Question mark (0x3F)

Exclamation mark (0x21)

Handles the following characters as delimiters during a word-context search:

Half-width space (0x20)
Tab (0x09)

Line break (0x02)
Return (0x0D)

Single-byte symbols including periods, question marks, and exclamation marks (0x21 to O0x2F, 0x3A to
0x40, 0x5Bto 0x60, and 0x7B to Ox7E)

To specify this option, TEXT WORDCONTEXT must be specified for INDEXTYPE.

If specification of DELIMITER is omitted when TEXT WORDCONTEXT is specified for INDEXTYPE, the system
assumes that DEFAULT is specified.

é Note

The specification of this option is called text-index delimiter specification.

e EXCLUDE NULL VALUES [B-tree index]

If this option is specified and a B-tree index is created, no B-tree index key values that are composed of null values
alone will be created. Consider specifying this option if you want to index columns in which most of the values are

null.

Specifying this option can reduce the time it takes to create a B-tree index, because no B-tree index key values
composed of null values alone will be created. Among other benefits, this can reduce the time it takes to import data
and reduce the amount data required for the B-tree index.

Note that you cannot specify this option for a B-tree index that is defined on columns on which the NOT NULL
constraint is defined.

Also note that you cannot specify the EXCLUDE NULL VALUES option more than once.

é Note

This option is referred to as the null-value exclusion specification.

(3) Privileges required at execution

To execute the CREATE INDEX statement, the CONNECT privilege and schema definition privilege are required.

3. Definition SQL

Hitachi Advanced Database SQL Reference 100

(4) Rules

(@) Common rules for indexes

1

. An index can only be defined for a base table owned by the current user (the HADB user whose authorization

identifier is currently connected to the HADB server). You cannot define an index for a base table owned by another
HADB user.

. Indexes cannot be defined on viewed tables.
. A maximum combined total of 32 B-tree, text, and range indexes can be created for one table.

. A maximum combined total of 8,192 B-tree, text, and range indexes can be defined in the system (excluding indexes

defined for the base tables of dictionary tables and system tables).

. A maximum of 400 indexes can be stored in one DB area.
. The same column can have B-tree indexes (single-column indexes), text indexes, and range indexes defined on it.

. To define an index for a multi-chunk table, see Points to consider in storing a multi-chunk table in the data DB area

in the HADB Setup and Operation Guide.

8. You cannot define an index for a table that has become non-updatable due to interruption of a command.

(b) Rules for B-tree indexes

1.

When a single-column index is defined, it must satisfy the formula below. You cannot define a single-column index
that does not satisfy this formula.

size-of-column-that-comprises-single-column-index < MIN{ (a + 3) - 128, 4036 } (uni
t: bytes)

a: Page size of the DB area where the B-tree index is to be stored

The size of a column that comprises a single-column index can be calculated by using the information in the following
table.

Table 3-5: Size of a column that comprises a single-column index

No. Data type of the column Size of the column (unit: bytes)

1 INTEGER 8

2 SMALLINT 4

3 DECIMAL (m, n) Ifl<m<4 2
If5<m<8 4
If9<m<16 8
If17<m <38 16

4 DOUBLE PRECISION 8

5 CHAR (n) n

6 VARCHAR (n) n

7 DATE 4

8 TIME (p) 34 1p+21

9 TIMESTAMP (p) 7+1p+21

10 BINARY (n) n

3. Definition SQL

Hitachi Advanced Database SQL Reference 101

No. Data type of the column Size of the column (unit: bytes)

11 VARBINARY (n) n

Legend:
m, n: Positive integers
p:0,3,6,9,0rl2

2. To define a multiple-column index, the following conditional expression must be satisfied. You cannot define a
multiple-column index that does not satisfy this formula.

total-size-of-columns—-that-comprise-multiple-column-index < MIN{(a + 3) - 128, 403
6 } (unit: bytes)

a: Page size of the DB area where the B-tree index is to be stored

To obtain the total size of the columns that comprise a multiple-column index, see the following table.

Table 3-6: Size of columns that comprise a multiple-column index

No. Data type of a column Size of the columns that comprise a multiple-column index (unit:
bytes)#

If the total defined size If the total defined size of all columns
of all columns does exceeds 255 bytes
not exceed 255 bytes

If only fixed size If variable size
columns are columns are also
included included
1 INTEGER 9 9 10
2 SMALLINT 5 5 6
3 DECIMAL (m, n) If1<m<4 3 3 4
If5<m<8 5 5 6
If9<m<16 9 9 10
If17<m<38 17 17 18
4 DOUBLE PRECISION 9 9 10
5 CHARACTER (n) n+1 n+1 n+2
6 VARCHAR (n) n+1 - n+2
7 DATE 5 5 6
§ TIME(p) 4+1p=21 4+1p+21 5+1p+21
9 TIMESTAMP (p) 8+1p+21 8+1p+21 9+1p+21
10 BINARY (n) ntl ntl n+2
11 VARBINARY (n) n+1 -- n+2

Legend:
m, n: Positive integers
p:0,3,6,9,0orl2
--: Not applicable

3. Definition SQL

Hitachi Advanced Database SQL Reference 102

If the result calculated based on the formulas under If the total defined size of all columns does not exceed 255
bytes yields a total that exceeds 255 bytes, re-calculate the sizes of the columns using the formulas under If the
total defined size of all columns exceeds 255 bytes.

3. You cannot define more than one of the following kinds of B-tree indexes:

* B-tree indexes that have the same column structure, and where the same ascending or descending order is
specified for all columns.

* B-tree indexes that have the same column structure, but where the opposite ascending or descending order is
specified for all columns.

4. A column on which a single-column index is defined can be specified when defining a multiple-column index.

5. When a multiple-column index is defined, the order in which the columns are specified determines the order of
precedence for creating key values.

(c) Rules for text indexes
1. Text indexes can be defined on columns of the following data types:
e CHARACTER types
¢ VARCHAR types
2. You cannot define multiple text indexes with the same indexed columns.

3. You cannot define a text index for column store tables.

(d) Rules for range indexes
1. Range indexes cannot be defined on columns of the following data types:
* CHARACTER types whose length exceeds 32 bytes
¢ VARCHAR types
¢ BINARY types
e VARBINARY types

2. You cannot define multiple range indexes with the same indexed columns.

(5) Examples

Example 1: Define a B-tree index
Define a B-tree index for the shops table (SHOPSLIST) as follows:
* Define a single-column index (SHOP_CODE IDX) on the shop code column (SHOP CODE).
* Make the B-tree index a unique index.
* Store the B-tree index in the DB area DBAREAOL.

* Because rows are added frequently to the shops table (SHOPSLIST), let the percentage of unused area in an
index page be 50 percent.

CREATE UNIQUE INDEX "SHOP CODE IDX"
ON "SHOPSLIST" ("SHOP_CODE")
IN "DBAREAOL"
PCTFREE = 50
EMPTY

3. Definition SQL

Hitachi Advanced Database SQL Reference 103

Example 2: Define a B-tree index
Define a B-tree index for the shops table (SHOPSLIST) as follows:

* Define a multiple-column index (SHOP RGN _IDX) with the shop code column (SHOP_CODE) and the region
code column (RGN CODE) as the indexed columns.

» Sort the key values of the index in ascending order (ASC) for the shop code, and in descending order (DESC)
for the region code.

¢ Store the B-tree index in the DB area DBAREAO1L.

CREATE INDEX "SHOP RGN _ IDX"
ON "SHOPSLIST" ("SHOP_CODE" ASC,"RGN CODE" DESC)
IN "DBAREAOL"
EMPTY

Example 3: Define a text index
Define a text index for the employee table (EMPLOYEE) as follows:

* Define a text index (ADDRESS_IDX) on the address column (ADDRESS).

CREATE INDEX "ADDRESS IDX"
ON "EMPLOYEE" ("ADDRESS")
IN "DBAREAOL1"
EMPTY
INDEXTYPE TEXT

Ifyou want the text index to support correction search, define the text index as follows. In this example, the underlined
option is added.

CREATE INDEX "ADDRESS IDX"
ON "EMPLOYEE" ("ADDRESS")
IN "DBAREAOL"
EMPTY
INDEXTYPE TEXT
CORRECTIONRULE

If you want to define the text index for a word-context search, define the text index as follows. In this example, the
underlined options are added.

CREATE INDEX "ADDRESS IDX"
ON "EMPLOYEE" ("ADDRESS")
IN "DBAREAOL"
EMPTY
INDEXTYPE TEXT WORDCONTEXT
DELIMITER DEFAULT

Example 4: Define a range index
Define a range index for the shops table (SHOPSLIST) as follows:

* Define a range index (SHOP CODE RIDX) on the shop code column (SHOP CODE)

* Store the range index in the DB area DBAREAO1.

CREATE INDEX "SHOP CODE RIDX"
ON "SHOPSLIST" ("SHOP_ CODE")
IN "DBAREAOL"
EMPTY
INDEXTYPE RANGE

3. Definition SQL

Hitachi Advanced Database SQL Reference 104

3.6 CREATE SCHEMA (define a schema)

This section describes the specification format and rules for the CREATE SCHEMA statement.

3.6.1 Specification format and rules for the CREATE SCHEMA statement

The CREATE SCHEMA statement defines a schema.

(1) Specification format

CREATE-SCHEMA-statement ::= CREATE SCHEMA [schema-name]

(2) Explanation of specification format

® schema-name

Specifies the name of the schema to be defined. In schema-name, specify the authorization identifier of the current
user (the HADB user whose authorization identifier is currently connected to the HADB server).

If the schema name is omitted, the assumed value is the authorization identifier of the HADB user who executed
the CREATE SCHEMA statement.

For rules on specifying a schema name, see (1) Schema name specification format in 6.1.5 Qualifying a name.
Note that you cannot specify ALL, HADB, MASTER, or PUBLIC for schema-name.

(3) Privileges required at execution

To execute the CREATE SCHEMA statement, the CONNECT privilege and schema definition privilege are required.

(4) Rules

1. Each HADB user can own only one schema.

2. You can only define a schema for the current user (the HADB user whose authorization identifier is currently
connected to the HADB server). You cannot define a schema for another HADB user. For example, if the adbsql
command is executed with ADBUSERO1 specified as the authorization identifier, schema ADBUSERO1 is the only
schema that can be defined with CREATE SCHEMA.

(5) Examples

Example
Define a schema with the schema name ADBUSERO1.

CREATE SCHEMA "ADBUSERO1"

3. Definition SQL

Hitachi Advanced Database SQL Reference 105

3.7 CREATE TABLE (define a table)

This section describes the specification format and rules for the CREATE TABLE statement.

3.7.1 Specification format and rules for the CREATE TABLE statement

The CREATE TABLE statement defines a base table.

(1) Specification format

CREATE-TABLE-statement ::=
CREATE [FIX] TABLE table-name(table-element|[, table-element]...)
[IN DB-area—-name]
[PCTFREE=percentage—of—unused—area]#
[BRANCH ALL]*
[chunk—specification]#
[STORAGE FORMAT {BQWICOLUMN}]#

table-element ::= {column-definition|table-constraint}

column-definition ::= column-name data-type [DEFAULT-clause] [NOT NULL] [BRANCH ({
YES|NO|AUTO}]
[compression-type-specification]
DEFAULT-clause ::= DEFAULT default-option
default-option ::= {literalICURRENT_DATEICURRENT_TIME[(p)]
| CURRENT TIMESTAMP|[(p)] |CURRENT USER|NULL}

compression-type-specification ::= COMPRESSION TYPE {AUTO|NONE |RUNLENGTH|DICTIO
NARY | DELTA

| DELTA RUNLENGTH}

table-constraint ::= {uniqueness-constraint-definition|referential-constraint-def
inition}
uniqueness-constraint-definition ::= [CONSTRAINT constraint-name] PRIMARY KEY (

column-name [{ASC|DESC}]
[, column-name [{ASC|DESC}]]...)
[IN DB-area-name]
[PCTFREE=percentage-of-unused-area]

referential-constraint-definition ::= [CONSTRAINT constraint-name] FOREIGN KEY
(column-name[, column-name]...)

REFERENCES table—-name DISABLE

chunk-specification ::= CHUNK [=maximum-number-of-chunks]
[chunk-archive-specification]
chunk-archive-specification ::= ARCHIVABLE

RANGECOLUMN=column—-name
[RANGEINDEXNAME=1ndex-identifier]
[IN DB-area-name]
ARCHIVEDIR=archive-directory-name

PCTFREE, BRANCH ALL, chunk-specification, and STORAGE FORMAT can be specified in any order.

3. Definition SQL

Hitachi Advanced Database SQL Reference 106

5 Note

PCTFREE, BRANCH ALL, chunk-specification, and STORAGE FORMAT are referred to collectively as
table options.

The following table lists the options for defining row store tables and the options for defining column store tables.

Table 3-7: Options for defining row store tables or column store tables

No. CREATE TABLE option For defining row store For defining column store
tables tables
1 FIX Y N
2 table-name Y Y
3 column- column-name Y Y
definition
4 data-type Y Y
5 DEFAULT-clause Y Y
6 NOT NULL Y Y
7 BRANCH Y N
8 compression-type-specification N Y
9 table-constraint Y Y
10 IN DB-area-name Y Y
11 PCTFREE Y N
12 BRANCH ALL Y N
13 chunk- maximum-number-of-chunks Y Y
specification
14 chunk-archive-specification Y N
15 STORAGE FORMAT Y Y

Legend:
Y: An option that can be specified, or one that must be specified.
N: An option that cannot be specified.

(2) Explanation of specification format

In the option descriptions, options marked [Row store table] can be specified to define a row store table. Options marked
[Column store table] can be specified to define a column store table. Options marked [Common] can be specified to
define both a row store table and a column store table.

(a) FIX [Row store table]
Defines a base table in which every row has a fixed length (a FIX table).

The following rules apply:

* If FIX is specified, the following data type cannot be specified for any row in this table:

e VARCHAR

3. Definition SQL

Hitachi Advanced Database SQL Reference 107

e VARBINARY
e If FIXis specified, NOT NULL constraint is set for all columns of the base table.
¢ Only FIX tables allow you to perform reference, update, and insert operations by row (ROW specification).

¢ For archivable multi-chunk tables, FIX cannot be specified.

(b) table-name [Common]

Specifies the name of the base table to be defined. You cannot specify the table name of a table that has already been
defined. For rules on specifying a table name, see (2) Table name specification format in 6.1.5 Qualifying a name.

(c) table-element [Common]

table-element ::= {column-definition | table-constraint}
A table element specifies either a column definition or a table constraint.

(d) column-definition [Common]

column-definition ::= column-name data-type [DEFAULT-clause] [NOT NULL] [BRANCH {YES
| NO | AUTO}]
[compression-type-specification]

Specifies the definitions of the columns that make up the base table. At least one column definition must be specified.

® column-name [Common]|
Specifies the names of the columns that comprise the table. Each column name must be unique.
Do not specify a character string in the EXPnnnn_NO_NAME format as a column name. Such a column name might
duplicate a derived column name that is automatically set by HADB. In this format, nnnn is an unsigned integer in
the range from 0000 to 9999.

® data-type [Common]
Specifies the data types of the columns. The following table lists the data types that can be specified.

Table 3-8: Data types that can be specified (CREATE TABLE statement)

No. Data type Specification format
1 INTEGER INT or INTEGER
2 SMALLINT SMALLINT
3 DECIMAL DEC[(m[,n])] or DECIMAL[(m[,n])]

m: Precision (total number of digits)
n: Scaling (number of decimal places)
If m is omitted, 38 is assumed, and if # is omitted, O is assumed.

4 DOUBLE PRECISION DOUBLE or DOUBLE PRECISION

5 CHARACTER CHAR (n) or CHARACTER (n)
n: Length of character string (in bytes)
If CHAR or CHARACTER is specified without a length, the length of the character
string is assumed to be 1.

6 VARCHAR VARCHAR (n)

n: Maximum length of character string (in bytes)

3. Definition SQL

Hitachi Advanced Database SQL Reference 108

No. Data type Specification format
7 DATE DATE

8 TIME TIME (p) or TIME
p: Fractional seconds precision (number of digits to the right of the decimal point)

You can specify a value of 0, 3, 6, 9, or 12 for p. If TIME is specified, p is assumed
to be 0.

9 TIMESTAMP TIMESTAMP (p) or TIMESTAMP
p: Fractional seconds precision (number of digits to the right of the decimal point)

You can specify a value of 0, 3, 6, 9, or 12 for p. If TIMESTAMP is specified, p
is assumed to be 0.

10 BINARY BINARY (n)
n: Length of the binary data (number of bytes) (number of bytes)

If BINARY is specified without a length, the length of the binary data is assumed
tobe 1.

11 VARBINARY VARBINARY (n)
n: Maximum length of the binary data (number of bytes)

For details about data types, see 6.2 Data types.

0 Important
A VARCHAR-type column whose defined length exceeds 32,000 bytes cannot be specified.

® DEFAULT-clause [Common]

DEFAULT-clause ::= DEFAULT default-option
default-option ::= {literal|CURRENT DATE|CURRENT TIME[(p)]
| CURRENT TIMESTAMP[(p)]| CURRENT USER|NULL}
Specify a DEFAULT clause when you want to set a default value for a column.

For details about the specification format of the DEFAULT clause and the default values for columns, see 7.10
DEFAUL