HITACHI

Inspire the Next

Hitachi Advanced Database
Application Development Guide

3000-6-502-HO(E)

I Notices

m Relevant program products
P-9W62-C411 Hitachi Advanced Data Binder version 05-01 (for Red Hat® Enterprise Linux® Server 6 (64-bit
x86_64) and Red Hat® Enterprise Linux®) Server 7 (64-bit x86_64))

P-9W62-C311 Hitachi Advanced Data Binder Client version 05-01 (for Red Hat®) Enterprise Linux® Server 6 (64-
bit x86_64) and Red Hat®) Enterprise Linux(®) Server 7 (64-bit x86_64))

P-2462-C114 Hitachi Advanced Data Binder Client version 05-01 (for Windows 7, Windows 8.1, Windows 10,
Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016)

This manual can be used for products other than the products shown above. For details, see the Release Notes.
Hitachi Advanced Data Binder is the product name of Hitachi Advanced Database in Japan.

m Trademarks
HITACHI, HA Monitor, HIRDB, Job Management Partner 1 and JP1 are either trademarks or registered trademarks
of Hitachi, Ltd. in Japan and other countries.

Access is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.

AMD is a trademark of Advanced Micro Devices, Inc.

Excel is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.
Intel is a trademark of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.

MSDN is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Red Hat is a registered trademark of Red Hat, Inc. in the United States and other countries.
Red Hat Enterprise Linux is a registered trademark of Red Hat, Inc. in the United States and other countries.
UNIX is a trademark of The Open Group.

Visual Studio is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.

Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.

Windows Server is either a registered trademark or trademark of Microsoft Corporation in the United States and/or
other countries.

Other company and product names mentioned in this document may be the trademarks of their respective owners.

1. This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://
www.openssl.org/)

2. This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
3. This product includes software written by Tim Hudson (tjh@cryptsoft.com).

4. This product uses OpenSSL Toolkit software in accordance with the OpenSSL License and Original SSLeay License,
which are described as follows.

Hitachi Advanced Database Application Development Guide 2

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/*
* Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.
k

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

k

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

%

* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

*

* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:

* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

k

* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without

* prior written permission. For written permission, please contact

* openssl-core@openssl.org.

%

* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

%

* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:

* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

Hitachi Advanced Database Application Development Guide

sk

* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR

* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

%

%

* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).

sk

*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

%

* This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.
k

* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).

k

* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.

* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.

* This can be in the form of a textual message at program startup or

* in documentation (online or textual) provided with the package.

Hitachi Advanced Database Application Development Guide

sk

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3, All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* "This product includes cryptographic software written by

* Eric Young (eay@cryptsoft.com)"

* The word 'cryptographic' can be left out if the rouines from the library

* being used are not cryptographic related :-).

* 4, If you include any Windows specific code (or a derivative thereof) from

* the apps directory (application code) you must include an acknowledgement:

* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

*

* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

%

* The licence and distribution terms for any publically available version or

* derivative of this code cannot be changed. i.e. this code cannot simply be

* copied and put under another distribution licence

* [including the GNU Public Licence.]

*/

mDouble precision SIMD-oriented Fast Mersenne Twister (ASFMT)

Copyright (c) 2007, 2008, 2009 Mutsuo Saito, Makoto Matsumoto

and Hiroshima University.

Copyright (c) 2011, 2002 Mutsuo Saito, Makoto Matsumoto, Hiroshima

University and The University of Tokyo.

All rights reserved.

Hitachi Advanced Database Application Development Guide

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided

with the distribution.

* Neither the name of the Hiroshima University nor the names of

its contributors may be used to endorse or promote products

derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

m Microsoft product screen shots

Microsoft product screen shots reprinted with permission from Microsoft Corporation.

m Microsoft product name abbreviations

This manual uses the following abbreviations for Microsoft product names:

Abbreviation Full name or meaning

Windows Windows 7 Windows 7 x86 Microsoft® Windows® 7 Professional (32-bit)
Microsoft®) Windows®) 7 Enterprise (32-bit)
Microsoft® Windows® 7 Ultimate (32-bit)

Windows 7 x64 Microsoft®) Windows®) 7 Professional (64-bit)
Microsoft®) Windows®) 7 Enterprise (64-bit)
Microsoft®) Windows®) 7 Ultimate (64-bit)
Windows 8.1 Windows 8.1 x86 Windows®) 8.1 Pro (32-bit)

Windows®) 8.1 Enterprise (32-bit)

Hitachi Advanced Database Application Development Guide

Abbreviation Full name or meaning
Windows 8.1 x64 Windows®) 8.1 Pro (64-bit)
Windows®) 8.1 Enterprise (64-bit)
Windows 10 Windows 10 x86 Windows® 10 Pro (32-bit)
Windows® 10 Enterprise (32-bit)
Windows 10 x64 Windows® 10 Pro (64-bit)
Windows®) 10 Enterprise (64-bit)
Windows Server 2008 R2 Microsoft®) Windows Server®) 2008 R2 Standard
Microsoft®) Windows Server(®) 2008 R2 Enterprise
Microsoft® Windows Server(®) 2008 R2 Datacenter
Windows Server 2012 Microsoft®) Windows Server(® 2012 Standard
Microsoft® Windows Server®) 2012 Datacenter
Windows Server 2012 R2 Microsoft®) Windows Server® 2012 R2 Standard
Microsoft® Windows Server®) 2012 R2 Datacenter
Windows Server 2016 Microsoft®) Windows Server®) 2016 Standard

Microsoft® Windows Server® 2016 Datacenter

m Restrictions

Information in this document is subject to change without notice and does not represent a commitment on the part of
Hitachi. The software described in this manual is furnished according to a license agreement with Hitachi. The license
agreement contains all of the terms and conditions governing your use of the software and documentation, including
all warranty rights, limitations of liability, and disclaimers of warranty.

Material contained in this document may describe Hitachi products not available or features not available in your
country.

No part of this material may be reproduced in any form or by any means without permission in writing from the
publisher.

m Issued
Apr. 2020

m Copyright
All Rights Reserved. Copyright (C) 2012, 2020, Hitachi, Ltd.

Hitachi Advanced Database Application Development Guide 7

I Preface

This manual describes the basic techniques for using Hitachi Advanced Database to develop applications. It also
explains how to set up an HADB client environment.

Note that, in this manual, and in the information output by the product (messages, command output results, and so on),
HADRB is often used in place of Hitachi Advanced Database.

m Intended readers

This manual is intended for:

* Application program developers

¢ HADB client administrators
Readers of this manual must have:

* A basic knowledge of SQL

* Abasic knowledge of Java programming and a basic knowledge of JDBC (if you plan to create application programs
in Java)

* A basic knowledge of ODBC (if you plan to create ODBC-compliant application programs)
* A basic knowledge of programming in C or C++ (if you plan to create application programs in C or C++)

* A basic knowledge of Linux or Windows system management

m Organization of this manual

This manual is organized into the following parts, chapters, and appendixes:

PART 1: Environment Setup (Common)

1. Overview of Application Program Development and Execution
This chapter provides an overview of application program development, explains the prerequisites that you
need to know before you begin developing an application program, and shows the application program
execution modes.

2. Designing Client Definitions
This chapter explains the format in which operands for client definitions are to be specified, the content of
client definitions, and the syntax rules that apply to client definitions.

3. Setting Up an Environment for the JDBC Driver
This chapter explains how to set up an environment for the JDBC driver, including how to install the JDBC
driver and specify the environment variables.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

This chapter explains how to set up an environment for an HADB client, including installation of an HADB
client and specification of environment variables.

Hitachi Advanced Database Application Development Guide 8

PART 2: Application Program Creation (Common)

5. Designs Related to Improvement of Application Program Performance
This chapter explains designs related to improving the performance of application programs.
6. Tuning Application Programs

This chapter explains how to use access paths.
PART 3: Application Program Creation (JDBC)
7. Creating Application Programs
This chapter explains how to create application programs that use the JDBC driver.
8. The JDBC 1.2 API
This chapter describes the interfaces and methods available in the JDBC 1.2 APL
9. The JDBC 2.1 Core API
This chapter explains HADB's scope of support for the functions added in the JDBC 2.1 Core APIL
10. The JDBC 2.0 Optional Package
This chapter describes the interfaces and methods available in the JDBC 2.0 Optional Package.
11. The JDBC 3.0 API
This chapter describes the interfaces and methods available in the JDBC 3.0 APL
12. The JDBC 4.0 API
This chapter describes the interfaces and methods available in the JDBC 4.0 APL
13. JDBC 4.1 API
This chapter explains HADB's scope of support for the functions added in the JDBC 4.1 API.
14. JDBC 4.2 API
This chapter explains HADB's scope of support for the functions added in the JDBC 4.2 APIL
PART 4: Application Program Creation (ODBC)
15. Creating Application Programs

This chapter explains how to set up an environment for the HADB ODBC driver and provides notes about
creating application programs that support ODBC.

16. ODBC Functions
This chapter describes the capabilities and syntax of the ODBC functions provided by HADB.
17. Troubleshooting
This chapter explains how to troubleshoot use of the ODBC interfaces.
PART 5: Application Program Creation (CLI Functions)

18. Creating Application Programs

This chapter explains the basic considerations involved in designing and creating application programs in C
and C++.

19. CLI Functions
This chapter describes the capabilities and syntax of the CLI functions provided by HADB.

A. Sample Application Program

This appendix provides an overview of the sample application program that is provided, explains the preparations
for using the sample program, and explains the sample program execution procedure.

Hitachi Advanced Database Application Development Guide 9

B. Structure of HADB Client Directories

This appendix describes the structures of the client directories of HADB clients (during installation and operation).

C. Estimating the Memory Requirements for an HADB Client
This appendix explains how to estimate the memory requirements for an HADB client.

m Related publications
This manual is part of a related set of manuals. The manuals in the set are listed below (with the manual numbers):
* Hitachi Advanced Database Setup and Operation Guide (3000-6-501(E))
* Hitachi Advanced Database Command Reference (3000-6-503(E))
* Hitachi Advanced Database SOL Reference (3000-6-504(E))
* Hitachi Advanced Database Messages (3000-6-505(E))
 HA Monitor Cluster Software Guide (for Linux™® (x86) Systems) (3000-9-201(E))

e Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3 System
Design (Work Tasks) Guide (3021-3-320(E))

* JPI Version 11 JP1/Base User's Guide (3021-3-A01(E))
In references to Hitachi Advanced Database manuals, this manual uses HADB in place of Hitachi Advanced Database.
Example: HADB Setup and Operation Guide

In references to the HA Monitor manual, this manual uses H4 Monitor for Linux™® (x86) in place of HA Monitor
Cluster Software Guide (for Linux® (x86) Systems).

Example: HA Monitor for Linux® (x86)

In references to the Job Management Partner 1/Automatic Job Management System 3 manual, this manual uses Job
Management Partner 1/Automatic Job Management System 3 System Design (Work Tasks) Guide in place of Job
Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3 System Design
(Work Tasks) Guide.

Example: Job Management Partner 1/Automatic Job Management System 3 System Design (Work Tasks) Guide

In references to the JP1/Base manual, this manual uses JP1/Base User's Guide in place of JPI Version 11 JP1/Base
User's Guide.

Example: JP1/Base User's Guide

m Conventions: Abbreviations for product names

This manual uses the following abbreviations for product names:

Abbreviation Full name or meaning

HADB HADB server Hitachi Advanced Database
HADB client Hitachi Advanced Database Client

Linux Linux Linux®

Hitachi Advanced Database Application Development Guide 10

Abbreviation

Red Hat Enterprise Linux
Server 6

Red Hat Enterprise Linux Server
6 (64-bit x86_64)

Red Hat Enterprise Linux
Server 7

Red Hat Enterprise Linux Server
7 (64-bit x86_64)

HDLM

JP1/AJS3

JP1/Audit

Red Hat Enterprise Linux Server 6 (64-bit x86_64)

Red Hat Enterprise Linux Server 7 (64-bit x86_64)

m Conventions: Acronyms

This manual also uses the following acronyms:

Full name or meaning

Red Hat® Enterprise Linux(®) Server 6 (64-bit x86_64)

Red Hat® Enterprise Linux®) Server 7 (64-bit x86_64)

Hitachi Dynamic Link Manager Software

Job Management Partner 1/Automatic Job Management System 3
JP1/Audit Management - Manager

Red Hat® Enterprise Linux®) Server 6 (64-bit x86_64)

Red Hat® Enterprise Linux®) Server 7 (64-bit x86_64)

Acronym Full name or meaning

APD Application Parameter Descriptor
API Application Programming Interface
ARD Application Row Descriptor

BI Business Intelligence

BLOB Binary Large Object

BNF Backus-Naur Form

BOM Byte Order Mark

CLI Call Level Interface

CLOB Character Large Object

CPU Central Processing Unit

CSv Character-Separated Values

DB Database

DBMS Database Management System
DMMP Device Mapper Multipath

DNS Domain Name System

ER Entity Relationship

HBA Host Bus Adapter

ID Identification number

Hitachi Advanced Database Application Development Guide

1"

Acronym Full name or meaning

IEF Integrity Enhancement Facility

1P Internet Protocol

IPD Implementation Parameter Descriptor
IRD Implementation Row Descriptor

JAR Java Archive File

JDBC Java Database Connectivity

JDK Java Developer's Kit

JNDI Java Naming and Directory Interface
JRE Java Runtime Environment

JTA Java Transaction API

LOB Large Object

LRU Least Recently Used

LV Logical Volume

LVM Logical Volume Manager

MSDN Microsoft Developer Network

NFS Network File System

NIC Network Interface Card

NTP Network Time Protocol

ODBC Open Database Connectivity

oS Operating System

PP Program Product

RAID Redundant Array of Independent Disks
RDBMS Relational Database Management System
TLB Translation Lookaside Buffer

URL Uniform Resource Locator

VG Volume Group

WWN World Wide Name

m Conventions: Fonts and symbols

The following table explains the fonts used in this manual:

Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes menus, menu options,
buttons, radio box options, or explanatory labels. For example:

* From the File menu, choose Open.

Hitachi Advanced Database Application Development Guide

12

Font Convention
* Click the Cancel button.
* In the Enter name entry box, type your name.
Italics Italics are used to indicate a placeholder for some actual text to be provided by the user or system. For example:
e Write the command as follows:
copy source-file target-file
* The following message appears:
A filewas not found. (file = file-name)
Italics are also used for emphasis. For example:
* Do not delete the configuration file.
Code font A code font indicates text that the user enters without change, or text (such as messages) output by the system.

For example:
¢ At the prompt, enter dir.
¢ Use the send command to send mail.
* The following message is displayed:

The password is incorrect.

The table below shows the symbols used in this manual for explaining commands and operands, such as the operands
used in server definitions.

Note that these symbols are used for explanatory purposes only; do not specify them in the actual operand or command.

Symbol Meaning Example
\ In syntax explanations, a vertical bar separates = adb_sgl text out = {Y|N}
multiple items, and has the meaning of OR. In this example, the vertical bar means that you can specify either Y
or N.
[] In syntax explanations, square brackets adbsqgl [-V]
1nd}cate that the enclosed item or items are In this example, the square brackets mean that you can specify
optional. adbsql, or you can specify adbsqgl -V.
{} In syntax explanations, curly brackets indicate =~ adbcancel {--ALL | -u connection-ID}
that only one of the enclosed items is to be In this example, the curly brackets mean that you can specify either
selected. —--ALL or —u connection-ID.
In syntax explanations, an ellipsis (. . .) adbbuff -n DB-area-name [, DB-area-name] . . .
indicates that the immediately preceding item [p this example, the ellipsis means that you can specify DB-area-
can be repeated as many times as necessary. name as many times as necessary.
{{1} In syntax explanations, double curly brackets { {adbinitdbarea —-n data-DB-area-name} }
mdlcgte that the enclosed items can be repeated 1 this example, the double curly brackets mean that you can specify
as a single unit. adbinitdbarea -n data-DB-area-name as many times as
necessary.
X In syntax explanations, underlined characters = adb import errmsg lv= {01}
(underline) indicate a default value. In this example, the underline means that the value 0 is assumed by
HADB when the operand is omitted.
~ A swung dash indicates that the text following = adb_sys max_ users = maximum-number-of-concurrent-
it explains the properties of the specified value. = connections
. . ~ <integer> ((1 to 1024)) <<10>>
<> Single angle brackets explain the data type of ger> (()

the specified value.

Hitachi Advanced Database Application Development Guide

13

Symbol Meaning Example

() Double parentheses indicate the scope of the In this example, the text following the swung dash means that you
specified value. can specify an integer in the range from 1 to 1024. If the operand is

) not specified, the value 10 is assumed by HADB.
<< >> Double angle brackets indicate a default value.

m Conventions: Method abbreviations

* This manual uses "getxxx method" to represent any method whose name begins with get.
¢ This manual uses the "setxxx method" to represent any method whose name begins with set.

¢ This manual uses "executexxx method" to represent any method whose name begins with execute.

m Conventions: Path names

e SINSTDIR is used to indicate the server directory path (for installation).
* SADBDIR is used to indicate the server directory path (for operation).
* S$DBDIR is used to indicate the DB directory path.

* $ADBCLTDIRS% (for a Windows HADB client) or SADBCLTDIR (for a Linux HADB client) is used to indicate
the client directory path.

* $ADBODBTRCPATHS is used to indicate the folder path where HADB's ODBC driver trace files are stored.

m Conventions: Symbols used in mathematical formulas

The following table explains special symbols used by this manual in mathematical formulas:

Symbol Meaning

T Round up the result to the next integer.
Example: The result of 134 + 31 is 12.

1! Discard digits following the decimal point.
Example: The result of |34 + 3] is 11.

MAX Select the largest value as the result.
Example: The result of MAX(3 x 6,4 + 7) is 18.

MIN Select the smallest value as the result.
Example: The result of MIN(3 x 6,4 + 7) is 11.

m Conventions: Syntax elements

Syntax Meaning
element
notation
<path name> The following characters can be used in path names:
e In Linux

Alphanumeric characters, hash mark (#), hyphen (-), forward slash (/), at mark (@), and underscore (_)
* In Windows

Hitachi Advanced Database Application Development Guide 14

Syntax
element
notation

<OS path name>

<character
string>

<integer suffixed
by the unit>

Meaning

Alphanumeric characters, hash mark (#), hyphen (-), forward slash (/), at mark (@), underscore (_), backslash (\),
and colon (:)

Note, however, that the characters that can be used might differ depending on the operating system.

For an OS path name, all characters that can be used in a path name in the operating system can be used. For details
about available characters, see the documentation for the operating system you are using.

Any character string can be specified.

Specify the value in a format consisting of a numeric character (in the range from 0 to 9) followed by a unit (MB
(megabyte), GB (gigabyte), or TB (terabyte)). Do not enter a space between the numeric character and the unit.
» Examples of correct specification
1024MB
512GB
32TB
» Example of specification that causes an error
512 GB

m Abbreviation of function names

* Functions whose names begin with SQL are referred to generically as SQLxxx functions.

* Functions whose names begin with SQOL and end with W are referred to generically as SQLxxxW functions.

m Conventions: KB, MB, GB, TB, PB, and EB

This manual uses the following conventions:

* 1 KB (kilobyte) is 1,024 bytes.

+ 1 MB (megabyte) is 1,0242 bytes.
* 1 GB (gigabyte) is 1,024° bytes.
1 TB (terabyte) is 1,024% bytes.

1 PB (petabyte) is 1,024° bytes.

* 1 EB (exabyte) is 1,024° bytes.

m Conventions: Version numbers

The version numbers of Hitachi program products are usually written as two sets of two digits each, separated by a
hyphen. For example:

Version 1.00 (or 1.0) is written as 01-00.

e Version 2.05 is written as 02-05.

Version 2.50 (or 2.5) is written as 02-50.

e Version 12.25 is written as 12-25.

Hitachi Advanced Database Application Development Guide 15

The version number might be shown on the spine of a manual as Ver: 2.00, but the same version number would be
written in the program as 02-00.

Hitachi Advanced Database Application Development Guide

16

Notices 2
Preface 8

Part 1: Environment Setup (Common)

Overview of Application Program Development and Execution 39
Procedure and prerequisites for application program development 40

Programming languages for application programs 40
Character encoding 40

Application program development environment 41
Application program execution modes 42

Designing Client Definitions 44

Specification formats for operands in the client definition 45

Contents of operands in the client definition 46

Operands related to system configuration 46

Operands related to application program status monitoring 47

Operands related to performance 48

Operands related to SQL 53

Operand specification rules 57

Notes about using the function for centrally managing client definitions 58

Setting Up an Environment for the JDBC Driver 59

Environment setup procedure for the JDBC driver 60

Installing Java Runtime Environment or Java Development Kit 60

Installing the JDBC driver 60

Specifying the CLASSPATH environment variable 61

Checking the value of the TZ environment variable 61

Granting the write permission for the trace file output destination directory 62
Setting system properties 62

Reviewing the scope of scans by antivirus software 65

Handling unresponsive application programs 66

Upgrading the JDBC driver (replacing the JAR file) 68

Replacing the JDBC driver with a revised version 70

Changing the time of the OS on a machine on which the JDBC driver has been installed
Uninstalling the JDBC driver 72

Hitachi Advanced Database Application Development Guide

4 Setting Up an Environment for an HADB Client (If the ODBC Driver
and CLI Functions Are Used) 73

4.1 HADB client environment setup procedure 74

411 HADB client for Windows 74

4.1.2 HADB client for Linux 74

4.2 Installing and uninstalling an HADB client 76

421 HADB client for Windows 76

422 HADB client for Linux 77

4.3 Specifying environment variables 82

4.3.1 HADB client for Windows 82

4.3.2 HADB client for Linux 83

4.4 Creating a client definition 85

441 How to create a client definition 85

4472 Notes about changing a client definition 85

443 Choosing a client definition 85

4.5 Handling unresponsive application programs 86

4.6 Upgrading an HADB client 88

461 Preparations before upgrading an HADB client 88
46.2 Notes about upgrading 88

4.6.3 How to upgrade an HADB client 89

4.6.4 Tasks to be performed after upgrading 90

4.7 Downgrading an HADB client version (restoring the previous version)
4.71 Preparations before downgrading an HADB client 92
4.7.2 Notes about downgrading 92

4.7.3 Downgrade procedure 92

474 Tasks to be performed after downgrading 94

4.8 Replacing HADB client with a revised version 95
4.8.1 Procedure for replacing HADB client with a revised version 95
4.9 Changing the OS time on a client machine 97

491 Notes (changing the OS time) 97

49.2 How to advance the OS time on a client machine 97
493 How to restore the OS time on a client machine 97

Part 2: Application Program Creation (Common)

5 Designs Related to Improvement of Application Program

Performance 99
5.1 How to retrieve tables 100

About table scans 100
About index scans 101

About key scans 102
B-tree indexes and text indexes used during execution of SQL statements 105

Hitachi Advanced Database Application Development Guide

Priority and selection rules for indexes 106

Examples of indexes that are used during retrieval of a table 113

Examples of indexes that are used during retrieval of a table (examples of index priority) 115
Cases where an index is not used 120

How to check the index used during execution of an SQL statement 121

Notes on searching using a text index 122

Range indexes used during execution of SQL statements 123

Conditions under which range indexes are used during execution of an SQL statement 123
Examples of range indexes used during retrieval 125

How to check the range index used during execution of an SQL statement 130

How to evaluate the search conditions when indexes are used 131

Evaluation method when B-tree indexes are used 131

Evaluation method when range indexes are used 133

Table joining methods 137

About nested-loop join 137

About hash join 138

Characteristics of the joining methods 145

How to process subqueries 146

Methods for processing subqueries that do not contain an external reference column 146

Characteristics of the methods for processing subqueries that do not contain an external
reference column 152

Methods for processing subqueries that contain an external reference column 152

Characteristics of the methods for processing subqueries that contain an external reference
column 158

Grouping methods 159

Hash grouping 159

Sort grouping 161

Characteristics of each type of grouping 161

Methods for processing set operations 163

Hash execution 163

Work table execution 165

Characteristics of the methods for processing set operations 166

Method for processing SELECT DISTINCT 167

Hash execution 167

Work table execution 169

Characteristics of the methods for processing SELECT DISTINCT 170
Considerations when executing an SQL statement that creates work tables 171
Types of work tables 171

Work tables created when SQL statements are executed 172

Number of work tables that are created 176

Equivalent exchange of search conditions 184

Equivalent exchange for OR conditions (removing from the OR conditions) 184

Hitachi Advanced Database Application Development Guide

5.11.2
5113

5.11.4
5.11.5
5.11.6
5.11.7

5.12
5.12.1
5.12.2
5.12.3
5.12.4
5.13
5.14
5.15

6
6.1

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7

Equivalent exchange for OR conditions (converting to IN conditions) 189

Equivalent exchange for OR conditions (equivalent exchange to derived tables for which the
UNION ALL set operation is specified) 191

Equivalent exchange for scalar operations 197
Equivalent exchange for an IN predicate 199
Equivalent exchange for a HAVING clause (converting to the WHERE clauses) 200

Equivalent exchange for search conditions in SQL statements that specify derived queries
(transposition to the WHERE clause of a derived query) 201

Considerations when searching an archivable multi-chunk table 206

Tips for searching an archivable multi-chunk table 206

Using the datetime information of the archive range column to narrow the search range 208
Notes about specifying JOIN (joined table) 213

Equivalent exchange of SQL statements that search archivable multi-chunk tables 215
Expanding internal derived tables 218

Improving performance by batch transfer of retrieval results 219

Batch transfer of dynamic parameter values 221

Tuning Application Programs 223

How to use access paths (how to use SQL statement execution plans) 224

About access paths 224

How to check access paths 226

Examples of access paths 228

Information displayed in the tree view 230

Information displayed in the details view 246

Information output in identification information view (SQL statement identification information) 256

Information displayed for an access path (alphabetical order) 257

Part 3: Application Program Creation (JDBC)

7
7.1

7.11
7.1.2
7.2
7.3
7.31
7.3.2
7.3.3
7.4
741
7.4.2
7.5
7.6

Creating Application Programs 262
JDBC driver provided by HADB 263

Scope of JDBC standards compliance 263

Package name and directory structure of the JAR file 265

Basic procedure for application program processing 266

How to connect to the HADB server 267

Using the getConnection method of the DriverManager class to connect to the HADB server 267
Using the getConnection method of the DataSource class to connect to the HADB server 277
Connection information priorities 280

Retrieving data (executing the SELECT statement) 285

How to retrieve data 285

How to use dynamic parameters 287

Adding, updating, or deleting data (executing the INSERT, UPDATE, or DELETE statement) 289
Data processing 290

Hitachi Advanced Database Application Development Guide 20

Mapping data types 290

Data conversion process 294

Overflow handling 296

Conversion of character encoding 301

Troubleshooting 303

JDBC interface method traces 303

Exception trace log 305

Scalar functions that can be specified in the escape clause

The JDBC 1.2 APl 321

Driver interface 322

List of the methods in the Driver interface 322
acceptsURL(String url) 323

connect(String url, Properties info) 323
getMajorVersion() 324

getMinorVersion() 325
getPropertylnfo(String url, Properties info) 325
jdbcCompliant() 328

Escape clause 328

Connection interface 330

List of the methods in the Connection interface 330
clearWarnings() 332

close() 333

commit() 333
createStatement() 334
createStatement(int resultSetType, int resultSetConcurrency) 335

createStatement(int resultSetType, int resultSetConcurrency, int resultSetHoldability) 336
getAutoCommit() 337

getCatalog() 337
getHADBConnectionID() 338
getHADBConnectionSerialNum() 338
getHADBOrderMode() 339
getHADBSQLHashFItSize() 339
getHADBSQLHashTbISize() 340
getHADBSQLMaxRthdNum() 341
getHADBTransactionID() 341
getHoldability() 342

getMetaData() 343

getSchema() 343
getTransactionlsolation() 344
getTypeMap() 344

getWarnings() 345

Hitachi Advanced Database Application Development Guide

isClosed() 345

isReadOnly() 346

isValid(int timeout) 346
nativeSQL(String sql) 347
prepareStatement(String sql) 350

prepareStatement(String sql, int resultSetType, int resultSetConcurrency) 351

prepareStatement(String sql, int resultSetType, int resultSetConcurrency, int resultSetHoldability) 352
rollback() 353

setAutoCommit(boolean autoCommit) 354
setCatalog(String catalog) 354
setHADBAuditInfo(int pos,String userinfo) 355
setHADBOrderMode(int mode) 356
setHADBSQLHashFItSize(int areaSize) 358
setHADBSQLHashTblSize(int areaSize) 359
setHADBSQLMaxRthdNum(int thdNum) 360
setHoldability(int holdability) 363
setReadOnly(boolean readOnly) 363
setSchema(String schema) 364
setTransactionlsolation(int level) 365
Statement interface 367

List of the methods in the Statement interface 367
addBatch(String sql) 369

cancel() 370

clearBatch() 371

clearWarnings() 371

close() 372

closeOnCompletion() 372

execute(String sql) 373

executeBatch() 374

executeLargeBatch() 375
executeLargeUpdate(String sql) 375
executeQuery(String sql) 376
executeUpdate(String sql) 377
getConnection() 378

getFetchDirection() 378

getFetchSize() 379
getHADBSQLSerialNum() 379
getHADBStatementHandle() 380
getLargeMaxRows() 381
getLargeUpdateCount() 381
getMaxFieldSize() 382

Hitachi Advanced Database Application Development Guide

getMaxRows() 383

getMoreResults() 383
getQueryTimeout() 384

getResultSet() 384
getResultSetConcurrency() 385
getResultSetHoldability() 385
getResultSetType() 386
getUpdateCount() 387

getWarnings() 388

isClosed() 388
isCloseOnCompletion() 389
isPoolable() 389
setCursorName(String name) 390
setEscapeProcessing(boolean enable) 391
setFetchDirection(int direction) 391
setFetchSize(int rows) 392
setLargeMaxRows(long max) 393
setMaxFieldSize(int max) 394
setMaxRows(int max) 395
setQueryTimeout(int seconds) 395
Notes about the Statement interface 396
PreparedStatement interface 398

List of the methods in the PreparedStatement interface
addBatch() 400

clearParameters() 400

execute() 401

executeLargeUpdate() 402

executeQuery() 402

executeUpdate() 403

getHADBSQLSerialNum() 404

getHADBStatementHandle() 404

getMetaData() 405

getParameterMetaData() 406

setAsciiStream(int parameterindex, InputStream x, int length) 406

setBigDecimal(int parameterindex, BigDecimal x) 407
setBinaryStream(int parameterindex, InputStream x, int length) 408
setBoolean(int parameterindex, boolean x) 409

setByte(int parameterindex, byte x) 409

setBytes(int parameterindex, byte[] x) 410

setCharacterStream(int parameterindex, Reader reader, int length) 411
setDate(int parameterindex, Date x) 411

Hitachi Advanced Database Application Development Guide

setDate(int parameterindex, Date x, Calendar cal) 412
setDouble(int parameterindex, double x) 413

setFloat(int parameterindex, float x) 414

setInt(int parameterindex, int x) 414

setLong(int parameterindex, long x) 415

setNull(int parameterindex,int sqlType) 416

setObject(int parameterindex, Object x) 416

setObject(int parameterindex, Object x, int targetSqlType) 417
setObject(int parameterindex, Object x, int targetSqlType, int scale) 418
setShort(int parameterindex, short x) 419

setString(int parameterindex, String x) 420

setTime(int parameterindex, Time x) 420

setTime(int parameterindex, Time x, Calendar cal) 421
setTimestamp(int parameterindex, Timestamp x) 422
setTimestamp(int parameterindex, Timestamp x, Calendar cal) 423
Notes about the PreparedStatement interface 423

ResultSet interface 426

List of the methods in the ResultSet interface 426

absolute(int row) 429

afterLast() 430

beforeFirst() 431

clearWarnings() 432

close() 432

findColumn(String columnName) 433
first() 434
getAsciiStream(int columnindex) 434

getAsciiStream(String columnName) 435
getBigDecimal(int columnindex) 436
getBigDecimal(String columnName) 438
getBinaryStream(int columnindex) 439
getBinaryStream(String columnName) 440
getBoolean(int columnindex) 440
getBoolean(String columnName) 442
getByte(int columnindex) 443
getByte(String columnName) 444
getBytes(int columnindex) 445
getBytes(String columnName) 446
getCharacterStream(int columnindex) 447
getCharacterStream(String columnName) 448
getConcurrency() 449

getCursorName() 449

Hitachi Advanced Database Application Development Guide

getDate(int columnindex) 450

getDate(int columnindex, Calendar cal) 451
getDate(String columnName) 452
getDate(String columnName, Calendar cal) 453
getDouble(int columnindex) 454
getDouble(String columnName) 456
getFetchDirection() 457

getFetchSize() 457

getFloat(int columnindex) 458

getFloat(String columnName) 460
getHoldability() 461

getint(int columnindex) 462

getint(String columnName) 463

getLong(int columnindex) 464

getLong(String columnName) 466
getMetaData() 467

getObject(int columnindex) 467
getObject(String columnName) 469
getObiject(int columnindex,Class<T> type) 470
getObject(String columnLabel,Class<T> type) 472
getRow() 473

getShort(int columnindex) 473
getShort(String columnName) 475
getStatement() 476

getString(int columnindex) 476
getString(String columnName) 478

getTime(int columnindex) 479

getTime(int columnindex, Calendar cal) 480
getTime(String columnName) 481

getTime(String columnName, Calendar cal) 482
getTimestamp(int columnindex) 483
getTimestamp(int columnindex, Calendar cal) 484
getTimestamp(String columnName) 485
getTimestamp(String columnName, Calendar cal) 486
getType() 486

getWarnings() 487

isAfterLast() 488

isBeforeFirst() 488

isClosed() 489

isFirst() 490

isLast() 490

Hitachi Advanced Database Application Development Guide

last() 491

next() 492

previous() 492

relative(int rows) 493

setFetchDirection(int direction) 494
setFetchSize(int rows) 494

wasNull() 495

Fields supported by the ResultSet interface 496
Notes about the ResultSet interface 497
DatabaseMetaData interface 500

List of the methods in the DatabaseMetaData interface 500
allProceduresAreCallable() 509
allTablesAreSelectable() 509
autoCommitFailureClosesAllResultSets() 510
dataDefinitionCausesTransactionCommit() 510
dataDefinitionlgnoredinTransactions() 511
deletesAreDetected(int type) 511
doesMaxRowsSizelncludeBlobs() 512
generatedKeyAlwaysReturned() 513

getAttributes(String catalog, String schemaPattern, String typeNamePattern, String
attributeNamePattern) 513

getBestRowldentifier(String catalog, String schema, String table, int scope, boolean nullable) 514
getCatalogs() 516

getCatalogSeparator() 516

getCatalogTerm() 517

getClientinfoProperties() 517

getColumnPrivileges(String catalog, String schema, String table, String columnNamePattern) 518

getColumns(String catalog, String schemaPattern, String tableNamePattern, String
columnNamePattern) 519

getConnection() 521

getCrossReference(String parentCatalog, String parentSchema, String parentTable, String
foreignCatalog, String foreignSchema, String foreignTable) 522

getDatabaseMajorVersion() 523
getDatabaseMinorVersion() 524
getDatabaseProductName() 525
getDatabaseProductVersion() 525
getDefaultTransactionlsolation() 526
getDriverMajorVersion() 526
getDriverMinorVersion() 527
getDriverName() 527
getDriverVersion() 528

getExportedKeys(String catalog, String schema, String table) 528

Hitachi Advanced Database Application Development Guide

getExtraNameCharacters() 530

getFunctionColumns(String catalog, String schemaPattern, String functionNamePattern, String
columnNamePattern) 530

getFunctions(String catalog, String schemaPattern, String functionNamePattern) 531
getldentifierQuoteString() 532

getimportedKeys(String catalog, String schema, String table) 533
getindexInfo(String catalog, String schema, String table, boolean unique, boolean approximate) 534
getJDBCMajorVersion() 536

getJDBCMinorVersion() 537

getMaxBinaryLiteralLength() 537
getMaxCatalogNameLength() 538

getMaxCharLiteralLength() 538

getMaxColumnNameLength() 539
getMaxColumnsinGroupBy() 539

getMaxColumnsinindex() 540

getMaxColumnsInOrderBy() 540

getMaxColumnsinSelect() 541

getMaxColumnsinTable() 541

getMaxConnections() 542

getMaxCursorNamelLength() 542

getMaxIndexLength() 543

getMaxLogicalLobSize() 543

getMaxProcedureNamelLength() 544

getMaxRowSize() 544

getMaxSchemaNamelLength() 545

getMaxStatementLength() 545

getMaxStatements() 546

getMaxTableNamelLength() 546

getMaxTablesInSelect() 547

getMaxUserNamelLength() 547

getNumericFunctions() 548

getPrimaryKeys(String catalog, String schema, String table) 548

getProcedureColumns(String catalog, String schemaPattern, String procedureNamePattern,
String columnNamePattern) 549

getProcedures(String catalog, String schemaPattern, String procedureNamePattern) 551
getProcedureTerm() 552

getPseudoColumns(String catalog,String schemaPattern,String tableNamePattern,String
columnNamePattern) 552

getResultSetHoldability() 553

getRowldLifetime() 554

getSchemas() 554

getSchemas(String catalog, String schemaPattern) 555

Hitachi Advanced Database Application Development Guide

getSchemaTerm() 556

getSearchStringEscape() 556

getSQLKeywords() 557

getSQLStateType() 557

getStringFunctions() 558

getSuperTables(String catalog, String schemaPattern, String tableNamePattern) 558
getSuperTypes(String catalog, String schemaPattern, String typeNamePattern) 559
getSystemFunctions() 560

getTablePrivileges(String catalog, String schemaPattern, String tableNamePattern) 561
getTables(String catalog, String schemaPattern, String tableNamePattern, String[] types) 562
getTableTypes() 564

getTimeDateFunctions() 564

getTypelnfo() 565

getUDTs(String catalog, String schemaPattern, String typeNamePattern, int[] types) 566
getURL() 567

getUserName() 568

getVersionColumns(String catalog, String schema, String table) 568
insertsAreDetected(int type) 569

isCatalogAtStart() 570

isReadOnly() 570

locatorsUpdateCopy() 571

nullPlusNonNulllsNull() 571

nullsAreSortedAtEnd() 572

nullsAreSortedAtStart() 572

nullsAreSortedHigh() 573

nullsAreSortedLow() 573

othersDeletesAreVisible(int type) 574

othersinsertsAreVisible(int type) 574

othersUpdatesAreVisible(int type) 575

ownDeletesAreVisible(int type) 575

ownlnsertsAreVisible(int type) 576

ownUpdatesAreVisible(int type) 577

storesLowerCaseldentifiers() 577

storesLowerCaseQuotedldentifiers() 578

storesMixedCaseldentifiers() 578
storesMixedCaseQuotedldentifiers() 579
storesUpperCaseldentifiers() 579

storesUpperCaseQuotedldentifiers() 580

supportsAlterTableWithAddColumn() 580

supportsAlterTableWithDropColumn() 581
supportsANSI92EntryLevelSQL() 581

Hitachi Advanced Database Application Development Guide

supportsANSI92FullSQL() 582
supportsANSI92IntermediateSQL() 582
supportsBatchUpdates() 583
supportsCatalogsinDataManipulation() 583
supportsCatalogsinindexDefinitions() 584
supportsCatalogsInPrivilegeDefinitions() 584
supportsCatalogsinProcedureCalls() 585
supportsCatalogsinTableDefinitions() 585
supportsColumnAliasing() 586
supportsConvert() 586

supportsConvert(int fromType, int toType) 587
supportsCoreSQLGrammar() 588
supportsCorrelatedSubqueries() 589
supportsDataDefinitionAndDataManipulationTransactions()
supportsDataManipulationTransactionsOnly() 590
supportsDifferentTableCorrelationNames() 590
supportsExpressionsinOrderBy() 591
supportsExtendedSQLGrammar() 591
supportsFullOuterJoins() 592
supportsGetGeneratedKeys() 592
supportsGroupBy() 593
supportsGroupByBeyondSelect() 593
supportsGroupByUnrelated() 594
supportsintegrityEnhancementFacility() 594
supportsLikeEscapeClause() 595
supportsLimitedOuterJoins() 595
supportsMinimumSQLGrammar() 596
supportsMixedCaseldentifiers() 596
supportsMixedCaseQuotedldentifiers() 597
supportsMultipleOpenResults() 597
supportsMultipleResultSets() 598
supportsMultipleTransactions() 598
supportsNamedParameters() 599
supportsNonNullableColumns() 599
supportsOpenCursorsAcrossCommit() 600
supportsOpenCursorsAcrossRollback() 600
supportsOpenStatementsAcrossCommit() 601
supportsOpenStatementsAcrossRollback() 601
supportsOrderByUnrelated() 602

supportsOuterJoins() 602

supportsPositionedDelete() 603

Hitachi Advanced Database Application Development Guide

supportsPositionedUpdate() 603
supportsRefCursors() 604
supportsResultSetConcurrency(int type, int concurrency)
supportsResultSetHoldability(int holdability) 605
supportsResultSetType(int type) 606
supportsSavepoints() 606
supportsSchemasinDataManipulation() 607
supportsSchemasinindexDefinitions() 607
supportsSchemasInPrivilegeDefinitions() 608
supportsSchemasinProcedureCalls() 608
supportsSchemasinTableDefinitions() 609
supportsSelectForUpdate() 609
supportsStatementPooling() 610
supportsStoredFunctionsUsingCallSyntax() 610
supportsStoredProcedures() 611
supportsSubqueriesinComparisons() 611
supportsSubqueriesinExists() 612
supportsSubqueriesinins() 612
supportsSubqueriesinQuantifieds() 613
supportsTableCorrelationNames() 613
supportsTransactionlsolationLevel(int level) 614
supportsTransactions() 615

supportsUnion() 615

supportsUnionAll() 616
updatesAreDetected(int type) 616
usesLocalFilePerTable() 617
usesLocalFiles() 617

ResultSetMetaData interface 618

List of the methods in the ResultSetMetaData interface 618
getCatalogName(int column) 619
getColumnClassName(int column) 620
getColumnCount() 621
getColumnDisplaySize(int column) 621
getColumnLabel(int column) 623
getColumnName(int column) 623
getColumnType(int column) 624
getColumnTypeName(int column) 624
getPrecision(int column) 625

getScale(int column) 627

getSchemaName(int column) 627
getTableName(int column) 628

Hitachi Advanced Database Application Development Guide

isAutolncrement(int column) 629
isCaseSensitive(int column) 629
isCurrency(int column) 630
isDefinitelyWritable(int column) 630
isNullable(int column) 631
isReadOnly(int column) 631
isSearchable(int column) 632
isSigned(int column) 633
isWritable(int column) 633
SQLException interface 635
SQLWarning interface 636
Creating an SQLWarning object 636
Releasing SQLWarning objects 636
Unsupported interfaces 637

The JDBC 2.1 Core APl 638

Scope of support for the result set extended functions 639
Scope of support for batch update functionality 640

SQL statements that can use the batch update functionality 640
Batch update functionality with the Statement class 640

Batch update functionality with the PreparedStatement class 640
Notes 641

Added data types 643

Unsupported interfaces 644

The JDBC 2.0 Optional Package 645
HADB's scope of support for the functions added in the JDBC 2.0 Optional Package 646

DataSource interface 647

List of the methods in the DataSource interface 647
getConnection() 647

getConnection(String username, String password) 648
getLoginTimeout() 649

getLogWriter() 649

setLoginTimeout(int seconds) 650
setLogWriter(PrintWriter out) 651
ConnectionPoolDataSource interface 652

List of the methods in the ConnectionPoolDataSource interface
getLoginTimeout() 652

getLogWriter() 653

getPooledConnection() 653
getPooledConnection(String user, String password) 654
setLoginTimeout(int seconds) 655

Hitachi Advanced Database Application Development Guide

setLogWriter(PrintWriter out) 655

PooledConnection interface 657

List of the methods in the PooledConnection interface 657
addConnectionEventListener(ConnectionEventListener listener) 657
close() 658

getConnection() 658
removeConnectionEventListener(ConnectionEventListener listener) 659
Connection information setup and acquisition interface 661

List of the methods in the connection information setup and acquisition interface 661
getApName() 662

getEncodelLang() 662

getinterfaceMethodTrace() 663

getNotErrorOccurred() 663

getPassword() 664

getSQLWarningKeep() 665

getTraceNumber() 665

getUser() 666

getHostName() 666

getPort() 667

setApName(String name) 667

setEncodelLang(String lang) 668

setinterfaceMethodTrace(boolean flag) 669
setNotErrorOccurred(boolean mode) 670

setPassword(String password) 670

setSQLWarningKeep(boolean mode) 671

setTraceNumber(int num) 672

setUser(String user) 672

setHostName(String name) 673

setPort(int port) 673

The JDBC 3.0 APl 675
HADB's scope of support for the functions added in the JDBC 3.0 API

ParameterMetaData interface 677

List of the methods in the ParameterMetaData interface 677
getParameterClassName(int param) 678
getParameterCount() 679

getParameterMode(int param) 679

getParameterType(int param) 680
getParameterTypeName(int param) 680

getPrecision(int param) 681

getScale(int param) 682

isNullable(int param) 683

Hitachi Advanced Database Application Development Guide

isSigned(int param) 684
Unsupported interfaces 685

The JDBC 4.0 APl 686
HADB's scope of support for the functions added in the JDBC 4.0 APl 687

Automatic loading of java.sql.Driver 687
Wrapper pattern 688

SQL exception extension 688
Connection management 689

Added scalar functions 689

Wrapper interface 690

List of the methods in the Wrapper interface 690
isWrapperFor(Class<?> iface) 691
unwrap(Class<T> iface) 691

SQL exception extension function 693
Unsupported interfaces 695

13 The JDBC 4.1 APl 696
13.1 HADB's scope of support for the functions added in the JDBC 4.1 APl 697

13.1.1 try-with-resources statement 697
13.1.2 Closing Statement objects when their dependent objects close 697

14 The JDBC 4.2 APl 698
141 HADB's scope of support for the functions added in the JDBC 4.2 APl 699

14.1.1 Large update counts 699

Part 4: Application Program Creation (ODBC)

15 Creating Application Programs 700
15.1 ODBC driver provided by HADB 701

15.1.1 ODBC driver version with which the HADB ODBC driver is compliant 701
15.1.2 System configuration 701

15.1.3 About conversion of character encoding 702

15.1.4 About using the ODBC cursor library 704

15.2 HADB ODBC driver environment setup 705

15.2.1 Specifying data sources 705

15.2.2 Registering the registry key 706

15.2.3 Deleting data sources 706

15.3 Correspondence between data types 707

15.3.1 Correspondence between ODBC's SQL data types and HADB's data types 707
15.3.2 Correspondence between ODBC's SQL data types and C data types 708
15.3.3 Notes about data type conversion 710

Hitachi Advanced Database Application Development Guide

Information that is returned in the event of an error 713

Limitations 714

ROW specification 714

AUTOCOMMIT specifications 714

Notes about the maximum number SQL processing real threads 714
Notes 715

Effects of update operations on a retrieval using a cursor 715

Notes on using the HADB ODBC driver in ODBC 2.x applications 715

ODBC Functions 717
List of ODBC functions 718

Notes about SQLxxx and SQLxxxW functions 722
Connecting to the data source 723
SQLAllocHandle 723

SQLConnect, SQLConnectW 724
SQLDriverConnect, SQLDriverConnectW 727
SQLBrowseConnect, SQLBrowseConnectW 733
Acquiring driver and data source information 738
SQLDataSources, SQLDataSourcesW 738
SQLDrivers, SQLDriversW 740

SQLGetInfo, SQLGetInfoW 742
SQLGetFunctions 744

SQLGetTypelnfo, SQLGetTypelnfoW 745
Specifying and obtaining driver options 749
SQLSetConnectAttr, SQLSetConnectAttrW 749
SQLGetConnectAttr, SQLGetConnectAttrWW 751
SQLSetEnvAttr 753

SQLGetEnvAttr 754

SQLSetStmtAttr, SQLSetStmtAttrww 756
SQLGetStmtAttr, SQLGetStmtAttr\W 757
Specifying descriptor values 760
SQLGetDescField, SQLGetDescFieldW 760
SQLGetDescRec, SQLGetDescRecW 762
SQLSetDescField, SQLSetDescFieldW 765
SQLSetDescRec 767

SQLCopyDesc 769

Creating SQL requests 771

SQLPrepare, SQLPrepareW 771
SQLBindParameter 773

SQLGetCursorName, SQLGetCursorNameW 776
SQLSetCursorName, SQLSetCursorNameW 778
SQLDescribeParam 780

Hitachi Advanced Database Application Development Guide

16.7.6 SQLNumParams 781

16.8 Executing SQL statements 783

16.8.1 SQLExecute 783

16.8.2 SQLExecDirect, SQLExecDirectWW 785

16.8.3 SQLNativeSql, SQLNativeSqlW 789

16.8.4 SQLParamData 793

16.8.5 SQLPutData 795

16.9 Acquiring execution results and execution result information
16.9.1 SQLRowCount 798

16.9.2 SQLNumResultCols 799

16.9.3 SQLDescribeCol, SQLDescribeColW 800

16.9.4 SQLColAttribute, SQLColAttributeW 803

16.9.5 SQLBindCol 806

16.9.6 SQLFetch 808

16.9.7 SQLFetchScroll 810

16.9.8 SQLGetData 812

16.9.9 SQLSetPos 815

16.9.10 SQLBulkOperations 817

16.9.11 SQLMoreResults 819

16.9.12 SQLGetDiagField, SQLGetDiagFieldW 820
16.9.13 SQLGetDiagRec, SQLGetDiagRecW 822

16.10 Acquiring system information for the data source 826
16.10.1 SQLColumnPrivileges, SQLColumnPrivilegesW 826
16.10.2 SQLColumns, SQLColumnsW 829

16.10.3 SQLForeignKeys, SQLForeignKeysW 833
16.10.4 SQLPrimaryKeys, SQLPrimaryKeysW 838
16.10.5 SQLProcedureColumns, SQLProcedureColumnsW 840
16.10.6 SQLProcedures, SQLProceduresW 842

16.10.7 SQLSpecialColumns, SQLSpecialColumnsW 844
16.10.8 SQLStatistics, SQLStatisticsW 847

16.10.9 SQLTablePrivileges, SQLTablePrivilegesW 851
16.10.10 SQLTables, SQLTablesW 854

16.11 Terminating execution of SQL statements 858
16.11.1 SQLFreeStmt 858

16.11.2 SQLCloseCursor 859

16.11.3 SQLCancel 860

16.11.4 SQLEndTran 861

16.12 Disconnecting from the data source 864

16.12.1 SQLDisconnect 864

16.12.2 SQLFreeHandle 865

16.13 Information types that can be specified for InfoType in SQLGetInfo and SQLGetInfoW 867

Hitachi Advanced Database Application Development Guide

16.14 Attributes that can be specified in SQLSetConnectAttr, SQLSetConnectAttr\W,
SQLGetConnectAttr, and SQLGetConnectAttrW 887

16.15 Attributes that can be specified in SQLSetEnvAttr and SQLGetEnvAtlr 891

16.16 Attributes that can be specified in SQLSetStmtAttr, SQLSetStmtAttrW, SQLGetStmtAttr, and
SQLGetStmtAttrWw 893

16.17 Attributes that can be specified in SQLGetDescField, SQLGetDescFieldW, SQLSetDescField,
and SQLSetDescFieldW 898

16.18 Attributes that can be specified in Diagldentifier of SQLGetDiagField and SQLGetDiagFieldW 906

17 Troubleshooting 909

17.1 Information used for troubleshooting 910

17.1.1 Messages output by Bl tools and ODBC modules 910

17.1.2 ODBC traces 910

17.1.3 HADB ODBC driver trace information 910

17.1.4 Messages output by the HADB server and HADB client 911
1715 SQL trace information 911

17.2 Troubleshooting procedure 912

17.2.1 Handling errors 912

17.2.2 Troubleshooting tips 914

17.3 Settings for outputting HADB ODBC driver trace information 917
17.3.1 Configuration in ODBC Data Source Administrator 917

17.3.2 Configuration using environment variables 921

17.3.3 Relative priority of configuration in ODBC Data Source Administrator and environment variables 922
17.4 Information output as HADB ODBC driver trace information 923
17.41 About trace levels 923

17.4.2 Information output when trace levelis 1 924

17.4.3 Information output when trace level is 2 929

17.5 Notes about HADB ODBC driver trace information 934

Part 5: Application Program Creation (CLI Functions)

18 Creating Application Programs 935
18.1 Designing application programs 936

18.1.1 Flow of application program processing 936

18.1.2 Transaction control 936

18.1.3 Flow of processing using dynamic parameters 937

18.1.4 Effects of update operations on a retrieval using a cursor 938
18.1.5 Evaluation and handling of SQL statement errors 939

18.2 How to use the CLI functions 941

18.2.1 Connecting to and disconnecting from the HADB server 941
18.2.2 Referencing data 943

18.2.3 Using dynamic parameters 948

18.2.4 Adding, updating, or deleting data 951

Hitachi Advanced Database Application Development Guide

18.2.5
18.2.6
18.3

19
19.1

19.1.1
19.1.2
19.2
19.21
19.2.2
19.2.3
19.2.4
19.2.5
19.3
19.3.1
19.3.2
19.4
19.4.1
19.4.2
19.4.3
19.4.4
19.4.5
19.4.6
1947
19.4.8
19.4.9
19.4.10
19.4.11
19.4.12
19.4.13
19.4.14
19.5
19.5.1
19.56.2
19.56.3
19.5.4
19.5.5
19.5.6
19.5.7
19.5.8
19.5.9

Canceling SQL processing that is executing 952
Notes about using the CLI functions 953
Compiling and linking application programs 955

CLI Functions 956

List of CLI functions and common rules 957

List of CLI functions 957

Common rules 959

CLI functions for connecting to and disconnecting from the HADB server 961
a_rdb_SQLAllocConnect() (allocate a connection handle) 961
a_rdb_SQLConnect() (establish a connection) 962
a_rdb_SQLSetConnectAttr() (set connection attributes) 963
a_rdb_SQLDisconnect() (close a connection) 965
a_rdb_SQLFreeConnect() (release a connection handle) 966

CLI functions for controlling transactions 967

a_rdb_SQLCancel() (cancel SQL processing) 967

a_rdb_SQLEndTran() (terminate the transaction) 968

CLI functions for execution of SQL statements 970

a_rdb_SQLAllocStmt() (allocate a statement handle) 970
a_rdb_SQLBindArrayParams() (bind dynamic parameters in batch mode) 971
a_rdb_SQLBindCols() (associate retrieval result columns) 973
a_rdb_SQLBindParams() (associate dynamic parameters) 974
a_rdb_SQLCloseCursor() (close the cursor) 975

a_rdb_SQLDescribeCols() (acquire information about the retrieval result columns) 976
a_rdb_SQLDescribeParams() (acquire dynamic parameter information) 979
a_rdb_SQLExecDirect() (preprocess and execute an SQL statement) 981
a_rdb_SQLExecute() (execute a preprocessed SQL statement) 982
a_rdb_SQLFetch() (fetch arow) 983

a_rdb_SQLFreeStmt() (release a statement handle) 984
a_rdb_SQLNumParams() (acquire the number of dynamic parameters) 985
a_rdb_SQLNumResultCols() (acquire the number of retrieval result columns) 986
a_rdb_SQLPrepare() (preprocess an SQL statement) 987

CLI functions for data type conversion 989

a_rdb_CNV_charBINARY() (convert to BINARY-type data) 989
a_rdb_CNV_charDATE() (convert to DATE-type data) 991
a_rdb_CNV_charDECIMAL() (convert to DECIMAL-type data) 992
a_rdb_CNV_charTIME() (convert to TIME-type data) 994
a_rdb_CNV_charTIMESTAMP() (convert to TIMESTAMP-type data) 996
a_rdb_CNV_charVARBINARY() (convert to VARBINARY-type data) 998
a_rdb_CNV_BINARYchar() (convert BINARY-type data) 1000
a_rdb_CNV_DATEchar() (convert DATE-type data) 1002
a_rdb_CNV_DECIMALchar() (convert DECIMAL-type data) 1004

Hitachi Advanced Database Application Development Guide 37

19.5.10 a_rdb_CNV_TIMEchar() (convert TIME-type data) 1006

19.5.11 a_rdb_CNV_TIMESTAMPchar() (convert TIMESTAMP-type data) 1007
19.5.12 a_rdb_CNV_VARBINARYchar() (convert VARBINARY-type data) 1009
19.6 Correspondence to the SQL data types 1012

19.6.1 Correspondences among SQL data types, symbolic literals, and values 1012
19.6.2 Correspondences between SQL data types and data descriptions 1012
19.6.3 Correspondence to the VARCHAR type 1013

19.6.4 VARBINARY type 1014

19.7 Data types used in the CLI functions 1015

19.7.1 a_rdb_SQLColumninfo_t structure (column information) 1015

19.7.2 a_rdb_SQLNamelnfo_t structure (name information) 1016

19.7.3 a_rdb_SQLDataType_t structure (data type information) 1017

19.7.4 a_rdb_SQLInd_t (indicator) 1018

19.7.5 a_rdb_SQLParameterinfo_t structure (parameter information) 1018
19.7.6 a_rdb_SQLResultinfo_t structure (SQL results information) 1019

19.8 Return values of the CLI functions 1022

Appendixes 1024

A Sample Application Program 1025

A1 Overview of sample application program 1025

A.2 Preparations before executing the sample application program 1025
A3 How to create the SAMPLE table 1025

A4 Sample application program execution procedure 1027

B Structure of HADB Client Directories 1029

B.1 HADB clients for Windows 1029

B.2 HADB clients for Linux 1036

C Estimating the Memory Requirements for an HADB Client 1039

C.1 Memory required for connecting to the HADB server 1039

C.2 Memory required for communication between an HADB client and the HADB server

Index 1041

Hitachi Advanced Database Application Development Guide

Part 1: Environment Setup (Common)

Overview of Application Program Development
and Execution

This chapter explains the application program development procedure, the prerequisites for
application program development, and the application program execution modes.

Hitachi Advanced Database Application Development Guide 39

1.1 Procedure and prerequisites for application program development

The following figure shows the application program development procedure.

Figure 1-1: Application program development procedure
Start

v _

Design a table and indexes.

* Tasks performed by system
designer and installer

Define the table and indexes.

v

Design an application program.

* Tasks performed by application
program developer

Create the application program.

v

Execute the application program.

v

End

The following subsections explain the prerequisites for developing application programs.

1.1.1 Programming languages for application programs

An application program must be written in one of the following programming languages:

e Java
e C

o C++
In Java, you can use the JDBC API to access the database.

In C or C++, you can use CLI functions (an API provided by HADB that supports C and C++) or ODBC functions to
access the database.

You can also use ODBC functions from application programs to access the database.

1.1.2 Character encoding

The following character encodings are supported for HADB servers and HADB clients:

* UTF-8
e Shift-JIS

1. Overview of Application Program Development and Execution

Hitachi Advanced Database Application Development Guide 40

1.1.3 Application program development environment

Application programs can be developed on a computer where either HADB server or HADB client is installed.

1. Overview of Application Program Development and Execution

Hitachi Advanced Database Application Development Guide

41

1.2 Application program execution modes

You can execute application programs on HADB clients and on HADB servers.

Figure 1-2 shows the mode in which application programs are executed on an HADB client, and Figure 1-3 shows the
mode in which application programs are executed on an HADB server.

Figure 1-2: Mode in which application programs are executed on an HADB client
HADB server

Database
X T —] AT =
JDBC driver HADB client HADB client
library library
ODBC driver
CLI
JDBC AP functions
ODBC
functions
Application Application Application
ro er;m (Java) (PRGN program that
Pros (CorC+t+) supports ODBC
v
. .y Iy
HADB client HADB client HADB client

Note: The OS for HADB clients is Linux or Windows.

1. Overview of Application Program Development and Execution

Hitachi Advanced Database Application Development Guide

42

Figure 1-3: Mode in which application programs are executed on an HADB server
HADB server

HADB server process
Inter-process Inter-process Database
communication communication

| | L 1
: ! ! !

1 H 1 H 1
i JDBC driver | i HAPB client : E HAI?B client i
H i library 1 library |
i i i |
1 [[] 1
1 [[[}
! Vo i ODBC driver '
! JDBC 11 CLI ' !
! API i functions | | 1
! Lo H ODBC !
! P ! functions |
1 [[1
: . ! :
1 [H 1 [H 1 1
: Application b Application i Appllcatlcr)]n :
i rogram (Java) P program i SN £ i
i P o (C or C++) 11| supports ODBC !
1 [1 1

Remote login

X
i i : HADB client process &.

1. Overview of Application Program Development and Execution

Hitachi Advanced Database Application Development Guide

Designing Client Definitions

This chapter explains the format in which operands for client definitions are to be specified, the
content of client definitions, and the syntax rules that apply to client definitions.

Hitachi Advanced Database Application Development Guide

44

2.1 Specification formats for operands in the client definition

Specify the execution environment of the HADB client in the client definition. The following shows the specification
formats for operands in the client definition.

Operands related to system configuration
set adb_clt rpc srv host = HADB-server's-host-name
[set adb_clt rpc srv _port = HADB-server's-port-number]
[set adb_clt group name = client-group-name]

Operands related to application program status monitoring

[set adb_clt rpc con wait time = wait-time-until-completion-of-connection-to-HADB-s
erver]

[set adb_clt rpc sql wait time = HADB-server's-response-walt-time]

[set adb _clt ap name = application-identifier]

Operands related to performance
[set adb_clt fetch size = number-of-batch-transmission-rows-during-FETCH-processing

]
[set adb _dbbuff wrktbl clt blk num = number-of-local-work-table-buffer-pages]
[set adb_sgl exe max rthd num = maximum-number-of-SQL-processing-real-threads]
[set adb_sqgl exe hashgrp area size = hash-grouping-area-size]
[set adb _sgl exe hashtbl area size = hash-table-area-size]
[set adb_sgl exe hashflt area size = hash-filter-area-size]

Operands related to SQL
[set adb_sqgl prep delrsvd use srvdef = {Y|N}]
[set adb_clt trn iso 1lv = {READ COMMITTED|REPEATABLE READ}]
[set adb_clt trn access mode = {READ WRITE|READ ONLY}]
[set adb_clt sgl text out = {Y[N}]
[set adb _clt sgl order mode = {BYTE|ISO}]
[set adb_sgl prep dec div_rs prior = {INTEGRAL PART|FRACTIONAL PART}]

For explanations of operands in the client definition, see 2.2 Contents of operands in the client definition.

For details about how to create and modify the client definition, see 4.4 Creating a client definition.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 45

2.2 Contents of operands in the client definition

This section provides detailed descriptions of the operands in the client definition.

0 Important

* Operands specified in the client definition are applied when the ODBC driver or CLI functions are used.
They are not applied when the JDBC driver is used.

* Ifyouuse the JDBC driver, you can use system properties, user properties, or URL connection properties
to specify the same information as is specified in the client definition operands.
For details about system properties, see 3.1.6 Setting system properties.

For details about the user properties, see (d) Values to be specified in the info argument (specifying the
user properties) in (2) Connecting to the HADB server with the getConnection method in 7.3.1 Using
the getConnection method of the DriverManager class to connect to the HADB server.

For details about the URL connection properties, see (a) Values to be specified in the url argument
(specifying the URL for the connection) in (2) Connecting to the HADB server with the getConnection
method in 7.3.1 Using the getConnection method of the DriverManager class to connect to the HADB
server.

* The operands specified in the client definition are applied when the adbsgl command is used to execute
SQL statements.

2.2.1 Operands related to system configuration

*adb clt rpc srv_host = HADB-server's-host-name
~<character string>((1 to 255 bytes))

Specify the host name of the HADB server to which the client will be connected. This host name is used for
communication between the HADB client and the HADB server.

Specify the host's host name, domain name, or IP address.
This operand is mandatory.

You must specify this operand even when using the function for centrally managing client definitions. However,
this operand is ignored when specified in a client definition file that uses the function for centrally managing client
definitions.

In a cold standby configuration, specify the alias IP address used for communication between the HADB server and
the HADB client.
Multi-node function:
When you use the multi-node function, specify the alias IP address that will be used for communication between
the HADB server and the HADB client.
*adb clt rpc srv_ port = HADB-server's-port-number
~<integer>((5,001 to 65,535))<<23,650>>
Specify the port number to be used for communication between the HADB client and the HADB server. Specify
the port number specified in the adb _rpc_port operand in the server definition.
*adb clt group name = client-group-name
~<character string>((1 to 30 bytes))

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 46

Specify the name of the client group to which applications that use this client definition belong. Specify the client
group name specified in the adbcltgrp operand in the server definition.

If you omit this operand, applications that use this client definition will not belong to a client group.

If you specify a client group name that is not specified in the adbcltgrp operand, the application will be seen as
not belonging to a client group.

For details about client groups, see Client-group facility in the HADB Setup and Operation Guide.

2.2.2 Operands related to application program status monitoring

*adb clt rpc con wait time =wait-time-until-completion-of-connection-to-HADB-server
~<integer>((1 to 300))<<300>> (seconds)

Specify the maximum amount of time (in seconds) to wait for HADB server connection processing to be completed.
If HADB server connection processing is not completed within the specified amount of time, the connection
processing is canceled and control is returned to the application program with an error.

Normally, there is no need to specify this operand. Specify this operand to reduce the timeout time if it takes a long
time to establish a connection when the HADB server is busy.
m When adb_clt rpc con_wait time is specified in the JDBC driver properties

You can specify 0 inthe adb clt rpc con wait time operand in the JDBC driver properties. If you
specify 0, the default value applies.

*adb _clt rpc sql wait time =HADB-server's-response-wait-time
~<integer>((0 to 65,535))<<0>> (seconds)

Specify the maximum amount of time (in seconds) to wait for a response after a processing request has been issued
from the HADB client to the HADB server. If there is no response from the HADB server within the specified time,
a timeout error whose SQLCODE is =732 (KFAA30732-E) is returned to the application. When this occurs,

processing of the SQL statement is canceled, and the transaction is rolled back. Then, the application is disconnected
from the HADB server.

Note that depending on factors such as the timing with which the processing request was canceled and the nature
of the communication error, there are situations in which the transaction might not be rolled back. If this occurs, we
recommend that you check the result by viewing relevant information such as the messages output to the message
log of the HADB server.

Specify this operand if you monitor SQL statements that require a long processing time. To determine an appropriate
wait time to be specified in this operand, see 4.5 Handling unresponsive application programs.

If this operand is omitted or 0 is specified, no wait time is set.

m When adb_clt rpc sql wait time is specified in the JDBC driver properties
When adb_clt rpc sgl wait time is specified in the JDBC driver properties, HADB also monitors
the following wait times:

* When multiple SELECT statements are executed concurrently in the same connection, the wait time for
processing real thread allocation when there are insufficient processing real threads

If this wait time is exceeded, HADB returns a timeout error whose SQL.CODE is —1071570 (KFAA71570-
E) to the application. When this happens, processing of the SQL statement is canceled but the transaction is not
rolled back. Nor is the application disconnected from the HADB server.

For details about the purpose of specifying adb clt rpc sgl wait time,see(4) Note about executing
multiple SELECT statements concurrently in the same connection in 7.4.1 How to retrieve data.

*adb clt ap name =application-identifier

~<character string>((1 to 30 bytes))<<****x k% *>>

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 47

Specify the identification information (application identifier) for the application program that is to be connected to
the HADB server.

The application identifier you specify is displayed in the output of the command that displays connection statuses
(adbls -d cnct), in messages, and in SQL trace information. This information is required in order to determine
which application program is running.

Because application identifiers are recognized on the basis of the specification of the ADBCLTLANG environment
variable, we recommend that you use a name consisting of only alphanumeric characters that do not depend on the
character encoding.

2.2.3 Operands related to performance

*adb clt fetch size = number-of-batch-transmission-rows-during-FETCH-processing
~<integer>((1 to 65,535))<<1,024>>

Specify the maximum number of rows that are to be sent as retrieval results from the HADB server to the HADB
client by a single FETCH process.

If you specify a large value in this operand, an improvement in performance can be expected because more result
rows are sent per FETCH process, but more memory is required.

*adb_dbbuff wrktbl clt blk num = number-of-local-work-table-buffer-pages
~<integer>((5 to 100,000,000))<<value of adb_dbbuff wrktbl clt blk numin the server definition>>
Specify the number of local work table buffer pages.

Normally, you do not need to specify this operand. Specify this operand to reduce the execution time of SQL
statements that create local work tables. For details, see Tuning to shorten SQL statement execution time by re-
examining the buffers in Tuning in the HADB Setup and Operation Guide.

For details about how to estimate an appropriate value for this operand, see Estimating the number of pages in the
buffer for local work tables in the HADB Setup and Operation Guide.

The following notes apply to this operand:

* If this operand and the adb_dbbuff wrktbl clt blk num operand in the server definition are both
specified, this operand value takes effect.

* The buffer specified in this operand is used for an SQL processing real thread only when SQL statements for
creating local work tables are executed. Local work tables are specific to real threads, and one local work table
is created for each real thread. Therefore, the HADB server allocates for each real thread the amount of local
work table buffer space as matches the number of pages specified in this operand. For details about the SQL
statements for creating local work tables, see 5.10.2 Work tables created when SQL statements are executed.

* The adbmodbuf f command cannot be used to change the number of local work table buffer pages for a
connection to which this operand is applied.

* Youcanuse the adbls —d 1buf command to check the number of local work table buffer pages that are applied
for each connection.
*adb sgl exe max rthd num =maximum-number-of-SQL-processing-real-threads
~<integer>((0 to 4,096)) <<value of adb_sql exe max rthd numin the server definition or maximum
number of processing real threads usable by the group>>
Specify the maximum number of processing real threads that are to be used during SQL statement execution.

Specify this operand if you are changing the maximum number of processing real threads for SQL statement
execution that was specified in the server definition's adb sqgl exe max rthd num operand.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 48

When you specify this operand, see the explanation of the adb sgl exe max rthd num operand under the
topic Operands related to performance (set format) in Detailed descriptions of the server definition operands in
Designing the Server Definition in the HADB Setup and Operation Guide.

m When not using the client-group facility

* Ifyou omit this operand, the value specified forthe adb sqgl exe max rthd numoperandinthe server
definition is assumed.

* If'the value you specify in this operand is greater than the value specified in the
adb_sqgl exe max rthd num operand in the server definition, the value specified in this operand is
ignored. In this case, the value specified for the adb sgl exe max rthd num operand in the server
definition is assumed.

m When using the client-group facility
* If you omit this operand, the maximum number of processing real threads usable by the group is assumed.

* Ifthe value you specify in this operand is greater than the maximum number of processing real threads usable
by the group, the value specified in this operand is ignored. In this case, the maximum number of processing
real threads usable by the group is assumed.

For details about the client-group facility, see Client-group facility in the HADB Setup and Operation Guide.

m Relationship between this operand and the setHADBSQLMaxRthdNum method of the JDBC driver

The setHADBSQLMaxRthdNum method can be used to specify the maximum number of SQL processing real
threads.

The following table shows which of the values is applied to this operand according to the relationships among
them and depending on whether the set HADBSQILMaxRthdNum method is specified.

For details about the set HADBSQLMaxRthdNum method, see 8.2.37 setHADBSQLMaxRthdNum(int

rthdNum).
Whether the Relationship between SV = Relationships among V, Value applied to this
setHADBSQLMaxRthdNum and CGV SV, and CGV operand
method is specified
Specified CGV <S8V sv<v cGril
CGr<r=<Sr
Vy<CcaGgr V
SV<CcGv 14314 V
SV <V<CGV sy
cGr<v
CGYV not specified”? V<Sv 14
sy<v N
Not specified -- -- CNV
Legend:
V. Value specified for the setHADBSQLMaxRthdNum method

SV: Value in the server definition™

CGV: Maximum number of processing real threads usable by a group if the client-group facility is used

CNV: Maximum number of SQL processing real threads determined when a connection to the HADB server
is established™

--: No condition

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 49

#1:

Disables the value specified for the se t HADBSQLMaxRthdNum method. At this time, the KFAA41106-
W message is output to indicate that the specified value was disabled.

#2:
This is the case where no client-group facility is used.

#3:
The maximum number of SQL processing real threads determined when the HADB server starts. This value
is determined by conditions, such as whether the adb sgl exe max rthd num operand is specified
in the server definition, and the magnitude relationship with the number of processing real threads. For
details, see the explanation of the adb sgl exe max rthd num operand in Operands related to
performance (set format) in the HADB Setup and Operation Guide.

#4:
This value is determined by the following conditions: 1) whether the adb sgl exe max rthd num
operand is specified in the client definition, 2) the value specified forthe adb sgl exe max rthd num

operand in the server definition, and 3) the magnitude relationship with the maximum number of processing
real threads usable by a group of the client-group facility.

0 Important

The HADB server references the value of this operand when performing the preprocessing of an
SQL statement. Therefore, if you use the set HADBSQLMaxRthdNum method to specify the
maximum number of SQL processing real threads, make sure that the set HADBSQLMaxRthdNum
method is run before the Statement or PreparedStatement object that executes the SQL
statement is generated.

*adb sqgl exe hashgrp area size = hash-grouping-area-size
~<integer>((0, 4 to 1,000,000))<<value of adb_sql exe hashgrp area_size in the server definition>>
(kilobytes)
Specify a size (in kilobytes) for the hash grouping area.
Specify this operand if you are changing the hash grouping area size that was specified in the server definition's
adb_sqgl exe hashgrp area size operand.

When you specify this operand, see the explanation oftheadb sgl exe hashgrp area size operandunder
the topic Operands related to performance (set format) in Detailed descriptions of the server definition operands
in Designing the Server Definition in the HADB Setup and Operation Guide.

*adb sgl exe hashtbl area size = hash-table-area-size

~<integer>((0 to 4,194,304))<<value of adb_sql exe hashtbl area_size in the server
definition>>(megabytes)

Specify the size (in megabytes) of the hash table area.

Use this operand to change the size of the hash table area specifiedintheadb sql exe hashtbl area size
operand in the server definition.

When you specify this operand, see the explanationoftheadb sgl exe hashtbl area size operandunder

the topic Operands related to performance (set format) in Detailed descriptions of the server definition operands
in Designing the Server Definition in the HADB Setup and Operation Guide.

If this operand's value is greater than the value of the adb sqgl exe hashtbl area size operand in the
server definition, the specification in the server definition is assumed. The specification in the server definition is
assumed also when this operand is omitted.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 50

m Relationship between this operand and the setHADBSQLHashTblSize method of the JDBC driver
The setHADBSQLHashTb1S1ze method can be used to specify the size of the hash table area.

The following table shows which of the values is applied to this operand according to the relationships among
them and depending on whether the set HADBSQLHashTb1S1ze method is specified.

For details about the setHADBSQLHashTb1Size method, see 8.2.36 setHADBSQLHashTblSize(int

arcaSize).
Whether the Relationship between V and SV Value applied to this operand (in
setHADBSQLHashTblSize method megabytes)
is specified
Specified NAS4 N Za
V<Sv 4
Not specified -- CNV
Legend:
V. Value specified for the setHADBSQLHashTb1Size method

SV: Value in the server definition’?

CNV: Size of the hash table area determined when a connection to the HADB server is established™
--: No condition

#1:

Disables the value specified for the set HADBSQLHashTb1S1ze method. At this time, the KFAA41106—
W message is output to indicate that the specified value was disabled.

#2:
The size of the hash table area determined when a connection to the HADB server is established. This is the
value specified for the adb sgl exe hashtbl area size operand in the server definition. If the
adb _sqgl exe hashtbl area size operand in the server definition is omitted, the default value is
applied.

#3:

This value is determined by conditions such as: whether the adb sgl exe hashtbl area size
operand is specified in the client definition, and the magnitude relationship between the values specified
for the adb sgl exe hashtbl area size operand in the server definition and the

adb_sqgl exe hashtbl area size operand in the client definition.

0 Important

The HADB server references the value of this operand when performing the preprocessing of an
SQL statement. Therefore, if you use the set HADBSQLHashTb1S1ize method to specify the size
of the hash table area, make sure that the setHADBSQLHashTb1S1ze method is run before the
Statement or PreparedStatement object that executes the SQL statement is generated.

*adb _sgl exe hashflt area size = hash-filter-area-size
~<integer>((0 to 419,430)) (megabytes)
Specify the size (in megabytes) of the hash filter area.

Normally, you will omit this operand. Specify this operand to reduce the execution time of SQL statements to which
a hash filter is applied.

When you specify this operand, see the explanation of the adb sgl exe hashflt area size operand in
Operands related to performance (set format) in Detailed descriptions of the server definition operands in Designing
the Server Definition in the HADB Setup and Operation Guide.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 51

For details about how to tune the value to be specified for this operand, see Tuning to shorten SOL statement execution
time by re-examining the hash filter area size in the HADB Setup and Operation Guide.

The following rules apply to this operand:

1. The value that is assumed when this operand is omitted varies depending on whether the
adb _sqgl exe hashtbl area size operand is specified in the client definition.
* Ifthe adb sgl exe hashtbl area size operand is specified:

1 Value of the adb _sgl exe hashtbl area size operand in the client definition + 10 1

e Ifthe adb sgl exe hashtbl area size operand is not specified:
Value of the adb_sgl exe hashflt area size operand in the server definition

Note thatif the value of theadb sgl exe hashtbl area size operandin the client definition is greater
than the value of this operand in the server definition, the value of the server definition is assumed.

2.If the following condition is satisfied, the value of the adb sql exe hashflt area size operandin
the server definition (not in the client definition) is applied:

A < B or C

A: Value specified for the adb sgl exe hashflt area size operand in the server definition
B: Value specified for the adb _sql exe hashflt area size operand in the client definition
C: Value that is assumed if the adb_sgl exe hashflt area size operand is omitted in the client
definition
m Relationship between this operand and the setHADBSQLHashFItSize method of the JDBC driver

The setHADBSQLHashF1tSize method can be used to specify the size of the hash filter area. The following
table shows which of the values is applied to this operand according to the relationships among them and
depending on whether the setHADBSQLHashF1tSize method is specified.

For details about the set HADBSQLHashF1tSize method, see 8.2.35 setHADBSQLHashFItSize(int

arcaSize).
Whether the Relationship between V Relationship between Value applied to this
setHADBSQLHashF1tSiz and SV HTV and SV operand (in megabytes)
e method is specified
Specified sv<v - syl
145314 - V
Not specified -- SV<tHTV + 107 N4
THTV + 101 < SV THTV = 101
HTV not specified”? CNV
Legend:
V. Value specified for the setHADBSQLHashF1tSize method

SV: Value in the server definition>

HTV: Size of the hash table area’™
CNV: Size of the hash filter area determined when a connection to the HADB server is established
--: No condition

#1:

Disables the value specified for the setHADBSQLHashF1tSize method. At this time, the KFAA41106-
W message is output to indicate that the specified value was disabled.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 52

#2:
This is the case where the setHADBSQLHashTb1S1i ze method is not specified.

#3:

The size of the hash filter area determined when a connection to the HADB server is established. This value
is determined by conditions, such as whether the adb sqgl exe hashflt area size operand is
specified in the server definition, and the magnitude relationship with the number of processing real threads.
For details, see the explanation of the adb _sgl exe hashflt area size operand in Operands
related to performance (set format) in the HADB Setup and Operation Guide.

#4:
The size of the hash table area that was last applied if the set HADBSQLHashTb1S1ize method is specified.

#5:

This value is determined by conditions such as: whether the adb_sgl exe hashflt area size
operand is specified in the client definition, and the magnitude relationship between the values specified
for the adb sgl exe hashflt area size operand in the server definition and the

adb_sqgl exe hashflt area size operand in the client definition.

0 Important

The HADB server references the value of this operand when performing the preprocessing of an
SQL statement. Therefore, if you use the set HADBSQLHashF1tS1ize method to specify the size
of the hash filter area, make sure that the set HADBSQLHashF1tSize method is run before the
Statement or PreparedStatement object that executes the SQL statement is generated.

2.2.4 Operands related to SQL

*adb sqgl prep delrsvd use srvdef ={Y|N}

Specify whether reserved words are to be unregistered if specified as such in the
adb_sql prep delrsvd words operand in the server definition.

Check the adb sgl prep delrsvd words operand in the server definition for the reserved words that are
unregistered:

Y

Enables the adb sgl prep delrsvd words operand in the server definition (reserved words specified
inthe adb_sgl prep delrsvd words operand are to be unregistered).

Disables the adb_sgl prep delrsvd words operand in the server definition (reserved words specified
inthe adb _sqgl prep delrsvd words operand are not to be unregistered).

If specification of this operand is omitted, Y is assumed.

*adb _clt trn iso lv={READ COMMITTED|REPEATABLE READ}

Specify the transaction isolation level that is to be applied. For details about the transaction isolation levels, see
Transaction isolation levels supported by HADB in the HADB Setup and Operation Guide.

READ COMMITTED
Applies READ COMMITTED as the transaction isolation level.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 53

REPEATABLE READ
Applies REPEATABLE READ as the transaction isolation level.

If this operand is omitted, the transaction isolation level specified in the adb _sys trn iso 1v operand in the
server definition is applied.

Multi-node function
* When both of the following conditions are met, transaction execution processing is also allocated to the slave
node:
* The transaction access mode is read-only mode.
* The transaction isolation level is READ COMMITTED.
We recommend that you specify READ COMMITTED in this operand if you want to utilize the resources of
the slave node.

* When transactions that use read/write mode and certain commands are running on the master node, all
transactions run on the master node for the duration of that transaction or command. No transactions run on
the slave node during this time. For details, see Nodes on which transactions and commands are executed
in the HADB Setup and Operation Guide.

For details about the commands to which this restriction applies, see Restrictions on simultaneously executing
commands with transactions in Nodes on which transactions and commands are executed in the HADB Setup
and Operation Guide.

*adb _clt trn access mode = {READ WRITE IREAD_ONLY)

Specify the transaction access mode. For details about the transaction access mode, see the topic Transaction access
modes in the HADB Setup and Operation Guide.

READ WRITE

Applies read/write as the transaction access mode. In this case, a transaction becomes a read/write transaction
and can execute all SQL statements.

READ ONLY

Applies read-only as the transaction access mode. In this case, a transaction becomes a read-only transaction
and cannot execute update SQL statements or definition SQL statements.

You can change the specified transaction access mode by setting the following connection attributes:
* ODBC functions: SQLSetConnectAttr or SQLSetConnectAttrW
* CLI functions: a_rdb_SQLSetConnectAttr ()

The transaction access mode is set to READ WRITE when it is not specified in this operand or with the connection
attribute.

Multi-node function:
* When both of the following conditions are met, transaction execution processing is also allocated to the slave
node:
* The transaction access mode is read-only mode.
* The transaction isolation level is READ COMMITTED.
We recommend that you specify READ ONLY in this operand if you want to utilize the resources of the slave
node.

* When transactions that use read/write mode and certain commands are running on the master node, all
transactions run on the master node for the duration of that transaction or command. No transactions run on
the slave node during this time. For details, see Nodes on which transactions and commands are executed
in the HADB Setup and Operation Guide.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 54

For details about the commands to which this restriction applies, see Restrictions on simultaneously executing
commands with transactions in Nodes on which transactions and commands are executed in the HADB Setup
and Operation Guide.
*adb _clt sgl text out ={Y|N}
Specify whether the SQL statements issued by the HADB client are to be output to the client message log files and
the server message log files.
The maximum length of each SQL statement that is output is 2,048 bytes.

Y
Outputs the SQL statements to the client message log files and the server message log files.

Does not output the SQL statements to either the client message log files or the server message log files.

The following table shows the relationship between this operand and the adb_sgl text out operand in the
server definition.

Table 2-1: Relationship between this operand and the adb_sql_text_out operand in the server

definition
adb_sql_text_out operand in the server adb_clt_sql_text_out operand in the client definition
definition
Y N
Y B S
B N
Legend:

B: Outputs the SQL statements to both the client message log files and server message log files.

S: Outputs the SQL statements to the server message log files only.

N: Does not output the SQL statements to either the client message log files or the server message log files.
When this operand is specified, the KFAA81 002 -TI message indicating normal termination of a transaction is output
to the server message log files. This message is not output to the client message log files.

If specification of this operand is omitted, N is assumed.

*adb clt sgl order mode= {BYTE|ISO}
Specify the sort order for character string data in a SELECT statement in which the ORDER BY clause is specified.

BYTE
Sort character string data by bytecode.

ISO
Sort character string data by sort code (ISO/IEC 14651:2011 compliance).
IS0 cannot be specified in this operand when SJIS is specified in the ADBCLTLANG environment variable.

You can also use the adb_sqgl order mode server definition operand and the connection attributes to specify
the sort order for character string data. If this sort order is specified by more than one of these methods, the
specification to be used is determined in the priority shown below (the smaller the numeric value, the higher the

priority).
Table 2-2: Priority for the sort order of character string data

Priority Location of specification of the character string data sort order
1 Connection attributes
2 adb_clt sql order mode client definition operand

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 55

Priority Location of specification of the character string data sort order

3 adb_sqgl order mode server definition operand

Explanation:

For example, if BYTE is specified in the adb clt sgl order mode client definition operand and ISO is
specified in the adb sgl order mode server definition operand, BYTE is applied to SELECT statements
(in which the ORDER BY clause is specified) that are executed from the application program.

BYTE is assumed when the specification is omitted at all locations shown in the table.
*adb sql prep dec div rs prior = {INTEGRAL PART|FRACTIONAL PART}

Specify the minimum scaling value of the result of a division operation (arithmetic operation) specified in an SQL
statement when the data type of the result is DECIMAL.

INTEGRAL PART

The minimum scaling value of the result of he division operation is 0. If you specify INTEGRAL PART, the
number of digits in the integer part has priority. Specify INTEGRAL PART when the division result might be
a large value and you want to avoid overflow errors where possible.

FRACTIONAL PART

The scaling of the first operand (dividend) of the division operation is used as the minimum scaling value of the
division result. When you specify FRACTIONAL PART, the number of decimal places in the first operand is
the minimum number of decimal places in the division result.

When the first operand is DECIMAL (p!/, sI) and the second operand is DECIMAL (p2, s2), the scaling of the
division result is DECIMAL (38, s) .

e When INTEGRAL PART is specified
s =MAX{0,38 - (pI - s1 +52)}

* When FRACTIONAL PART is specified
s =MAX{s1,38 - (pI - s1 +s2)}

The following example shows how value specified for this operand affects the division result.

Example:
Table T1
Column c1 Column c2
DECIMAL (38, 4) DECIMAL (10, 5)
30.5256 | 0.05223 |

Suppose that the following SELECT statement is executed:
SELECT "ci"/"c2" AS "division result" FROM "T1"
* Division result when INTEGRAL_PART is specified

584.

* Division result when FRACTIONAL PART is specified
584.4457
For an example of the scaling of the division result when retrieving data from a viewed table, see Notes applying
when the data type of the division result is DECIMAL in the manual HADB SQL Reference.

If you omit this operand, the value specified fortheadb sgl prep dec div rs prior operandinthe server
definition applies.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 56

2.3 Operand specification rules

The specification rules for operands in the client definition are the same as those for server definition operands. For
details about the syntax rules for the server definition operands, see the topic Syntax rules for the server definition in
the HADB Setup and Operation Guide.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 57

2.4 Notes about using the function for centrally managing client
definitions

The function for centrally managing client definitions does not support the following client definition operands. Specify
these operands directly in the client definition of each HADB client.

e adb _clt rpc srv host
e adb clt rpc srv port
* adb clt rpc con wait time
* adb clt rpc sql wait time

For details about the function for centrally managing client definitions, see Centralized management of client definitions
in the HADB Setup and Operation Guide.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 58

Setting Up an Environment for the JDBC Driver

This chapter explains how to set up an environment for the JDBC driver, including installation of the
JDBC driver and specification of environment variables.

Hitachi Advanced Database Application Development Guide 59

3.1 Environment setup procedure for the JDBC driver

This section describes how to set up an environment for the JDBC driver. Set up an environment for the JDBC driver,
following the description in 3.1.1 Installing Java Runtime Environment or Java Development Kit and the subsequent
subsections.

3.1.1 Installing Java Runtime Environment or Java Development Kit

Install either of the following products on a machine on which application programs are to be executed or developed:

* Java Runtime Environment (JRE) version 8 or later

» Java Development Kit (JDK) version 8 or later

JRE is required to execute application programs. JDK is required to develop and execute application programs.

é Note

To execute application programs on an HADB server, install JRE on the HADB server machine. If you use
the HADB server to develop and run applications, JDK must be installed on the computer where the HADB
server is installed.

m JDBC driver provided by HADB
The following table shows the JDBC driver provided by HADB.

Table 3-1: JDBC driver provided by HADB

JRE or JDK version Types of JDBC drivers JAR file name Corresponding JDBC
provided by HADB standard
JRE 8 or later, or JDK 8 or later = JDBC driver for JRE 8 adbjdbc8.jar JDBC 4.2

3.1.2 Installing the JDBC driver

The following shows the procedure for installing the JDBC driver.

Procedure
1. Copy a compressed file from the HADB client installation CD-ROM to a folder of your choice.
The file to be copied is as follows:
* In the 64-bit edition of Windows

hitachi advanced data binder client.zip

¢ In the 32-bit edition of Windows
hitachi advanced data binder client32.zip

* In Linux
hitachi advanced data binder client-SVER.tar.gz
The SVER portion is replaced by an HADB version and release number.

2. Expand the compressed file that you copied.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 60

The following table describes the location in which the JAR file will be stored when the compressed file is
expanded.

Table 3-2: Location of the JAR file after the compressed file is expanded
Compressed file to be expanded Location where the JAR file will be stored

Either of the following compressed files: $INSTCLTDIR%\HADBCL\client\1lib
\adbjdbc8.jar

$INSTCLTDIRS indicates the folder in which the compressed

e hitachi advanced data binder client.zip

e hitachi advanced data binder client32.zi

o file is expanded.
hitachi advanced data binder client- SINSTCLTDIR/
SVER. tar.gz is expanded hitachi advanced data binder client S$VER/

client/lib/adbjdbc8.jar

$INSTCLTDIR indicates the directory in which the compressed
file is expanded.

3. Copy the JAR file to a folder of your choice.
4. Delete the following folders and files:
* The compressed file you copied in step 1.

* The folders and files you expanded in step 2.

3.1.3 Specifying the CLASSPATH environment variable

For CLASSPATH, specify the absolute path of the JAR file.

0 Important

» Ifthe OS is Windows, set CLASSPATH as a system environment variable.

* If you change the location of the JAR file, also change the specification of CLASSPATH accordingly.

3.1.4 Checking the value of the TZ environment variable

Confirm that the correct time zone is set for the TZ environment variable.

0 Important

* Do not specify a time zone that uses leap seconds.

* Ifthe OS is Windows, set TZ as a system environment variable.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 61

3.1.5 Granting the write permission for the trace file output destination
directory

Be careful when the JDBC interface method trace or Exception trace log, which is a troubleshooting function for the
JDBC driver, is to be used. In this case, give the write permission for the trace file output destination folder (directory)
to the user who uses the JDBC driver.

For details about these troubleshooting functions, see 7.7 Troubleshooting.

3.1.6 Setting system properties

Use system properties to set up an execution environment for application programs. The following table lists the
properties that can be specified as system properties.

0 Important

* In the following table, properties from 1 to 18 are functionally the same as the operands in the client
definition.

» Property 19 and subsequent properties specify the settings related to the Exception trace log.

Table 3-3: System properties that can be specified
No. Property name Description

1 adb_clt_rpc_srv_host Specifies the host name of the HADB server at the connection destination.
Functionally, this property is the same as the adb_clt rpc srv_host operand
in the client definition. For details about this property and its permitted values, see
the description of the adb_clt rpc srv_host operand in the client definition.

2 adb_clt rpc srv_port Specifies the port number of the HADB server that is used for communication
between the HADB client and the HADB server.
Functionally, this property is the same as the adb_clt rpc srv_port operand
in the client definition. For details about this property and its permitted values, see
the description of the adb _clt rpc srv_ port operand in the client definition.

3 adb_clt rpc con wait time Specifies the maximum amount of time to wait for HADB server connection
processing to be completed.
Functionally, this property is the same as the adb_clt rpc con wait time
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt rpc con wait time operand in
the client definition.

4 adb_clt rpc sqgl wait time Specifies the following wait times:
¢ How long a HADB client waits for the HADB server to respond to a processing
request.

¢ How long to wait to secure processing real threads if a shortage occurs when
multiple SELECT statements are executed concurrently in the same connection.

For details about the wait time monitoring performed if this property is specified,
see 3.2 Handling unresponsive application programs.

Functionally, this property is the same as the adb_clt rpc sgl wait time
operand in the client definition. For details about this property and its permitted
values, see the description of the adb _clt rpc sgl wait time operand in
the client definition.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 62

No.

10

11

12

14

Property name

adb_clt ap name

adb_clt group name

adb clt fetch size

adb_dbbuff wrktbl clt blk num

adb_sgl exe max rthd num

adb_sgl exe hashgrp area size

adb sgl exe hashtbl area size

adb sgl exe hashflt area size

adb_sqgl prep delrsvd use srvd
ef

adb clt trn iso 1v

adb_clt trn access mode

3. Setting Up an Environment for the JDBC Driver

Description

Specifies the identification information (application identifier) for the application
program that is to be connected to the HADB server.

Functionally, this property is the same as the adb_clt ap name operand in the
client definition. For details about this property and its permitted values, see the
description of the adb_clt ap name operand in the client definition.

Specifies the name of the client group to which the application belongs.
Functionally, this property is the same as the adb _clt group name operand in
the client definition. For details about this property and its permitted values, see the
description of the adb_clt group name operand in the client definition.

Specifies the maximum number of rows that are to be sent as retrieval results from
the HADB server to the HADB client by a single FETCH process.

Functionally, this property is the same as the adb_clt fetch size operandin
the client definition. For details about this property and its permitted values, see the
description of the adb_clt fetch size operand in the client definition.

Specifies the number of local work table buffer pages.

Functionally, this property is the same as the

adb_dbbuff wrktbl clt blk num operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_dbbuff wrktbl clt blk num operand in the client definition.

Specifies the maximum number of SQL processing real threads.

Functionally, this property is the same as the adb_sgl exe max rthd num
operand in the client definition. For details about this property and its permitted
values, see the description of the adb _sqgl exe max_ rthd numoperand in the
client definition.

Specifies the size (in kilobytes) of the hash grouping area.

Functionally, this property is the same as the

adb sqgl exe hashgrp area size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb sql exe hashgrp area size operand in the client definition.

Specifies the size (in megabytes) of the hash table area.

Functionally, this property is the same as the

adb_sgl exe hashtbl area size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb _sqgl exe hashtbl area size operand in the client definition.

Specifies the size (in megabytes) of the hash filter area.

Functionally, this property is the same as the

adb sgl exe hashflt area size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb _sqgl exe hashflt area size operand in the client definition.

Specifies whether reserved words are to be unregistered if specified as such in the
adb sqgl prep delrsvd words operand in the server definition.
Functionally, this property is the same as the

adb_sqgl prep delrsvd use_ srvdef operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sqgl prep delrsvd use srvdef operand in the client definition.

Specifies the transaction isolation level.

Functionally, this property is the same as the adb_clt_trn iso_1lv operand in
the client definition. For details about this property and its permitted values, see the
description of the adb_clt trn iso 1v operand in the client definition.

Specifies the transaction access mode.

Hitachi Advanced Database Application Development Guide

63

No.

Property name

16 adb_clt_sqgl_text out

17 adb_clt_sgl order_mode

18 adb_sql prep dec div rs prior
19 adb_jdbc exc trc out path

20 adb_jdbc_info_max

21 adb_jdbc cache info max

22 adb_jdbc trc out 1lv

0 Important

Description

Functionally, this property is the same as the adb_clt trn _access_mode
operand in the client definition. For details about this property and its permitted
values, see the description of the adb clt trn access mode operand in the
client definition.

Specifies whether SQL statements issued by the HADB client are to be output to the
client message log files and the server message log files.

Functionally, this property is the same as the adb_clt sql text out operand
in the client definition. For details about this property and its permitted values, see
the description of the adb _clt sgl text out operand in the client definition.

Specifies the sort order for character string data in a SELECT statement in which the
ORDER BY clause is specified.

Functionally, this property is the same as the adb_clt sgl order mode
operand in the client definition. For details about this property and its permitted
values, see the description of the adb _clt sgl order mode operand in the
client definition.

Specifies the minimum scaling value of the result of a division operation (arithmetic
operation) specified in an SQL statement when the data type of the result is
DECIMAL.

Functionally, this property is the same as the

adb_sqgl prep dec div_rs_ prior operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sgl prep dec div_rs prior operand in the client definition.

Specifies the absolute path of the For details about these properties and

directory to which exception trace logs their permitted values, see (b) Setup for

are to be output. acquisition of the exception trace log
(setting properties) in (1) Methods to be

Specifies the maximum number of acquired and setup for log acquisition in

information items to be output to one 7.7.2 Exception trace log.

file.

Specifies the maximum number of
information items to be stored in
memory.

Specifies the trace acquisition level.

The values of the properties listed in the preceding table can also be specified by using user properties or
the properties of the URL to be used for connection.

For details about the user properties, see (d) Values to be specified in the info argument (specifying the
user properties) in (2) Connecting to the HADB server with the getConnection method in 7.3.1 Using the
getConnection method of the DriverManager class to connect to the HADB server.

For details about the properties of the URL to be used for connection, see (a) Values to be specified in the
url argument (specifying the URL for the connection) in (2) Connecting to the HADB server with the
getConnection method in 7.3.1 Using the getConnection method of the DriverManager class to connect to

the HADB server.

For details about the priority of each specification, see 7.3.3 Connection information priorities.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide

64

5 Note

The property names of system properties were changed in HADB 03-00, as shown below. The previous
property names are still supported, but if you have upgraded your HADB to version 03-00 or later, we

recommend that you change the property names.
No. Property name before change (property name
used in HADB versions earlier than 03-00)
1 adb jdbc_ap name
2 adb_jdbc_dbbuff wrktbl blk num
3 adb_jdbc fetch size
4 adb_jdbc rpc sql wait time
5 adb jdbc rpc srv _host
6 adb_jdbc rpc srv_port
7 adb jdbc sql delrsvd use srvdef
8 adb_jdbc sqgl hashgrp area size
9 adb jdbc sgl hashtbl area size
10 adb jdbc sgl max rthd num
11 adb jdbc sql order mode
12 adb_jdbc_sqgl_ text out
13 adb_jdbc trn access_mode

14 adb_jdbc_trn_iso_lv

Property name after change (property name used
in HADB version 03-00 or later)

adb _clt ap name
adb_dbbuff wrktbl clt blk num
adb_clt fetch size

adb clt rpc sql wait time

adb clt rpc srv host

adb _clt rpc srv port

adb sgl prep delrsvd use srvdef
adb sgl exe hashgrp area size
adb sql exe hashtbl area size
adb sgl exe max rthd num

adb clt sgl order mode

adb sgl text out

adb clt trn access mode

adb clt trn iso 1v

3.1.7 Reviewing the scope of scans by antivirus software

If antivirus software has been installed on the machine on which the JDBC driver is installed, review the scope of virus
scans. If the files and directories used by the JDBC driver are included in the scope of scans by antivirus software, the
JDBC driver might not work correctly. For this reason, you need to configure the antivirus software to not scan the

directories and files used by the JDBC driver.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide

65

3.2 Handling unresponsive application programs

A problem such as a communication error, temporary failure (including power outage), or disk failure might cause an
application program to stop responding. Such an unresponsive application program might delay other application
programs and command processing.

Therefore, in order to minimize the effects of an unresponsive application program, specify the following property as
a system property, user property, or connection URL property:

* adb _clt rpc sgl wait time

For this property, specify the maximum amount of time to wait for a response after a processing request has been sent
from the client (machine on which the JDBC driver is installed) to the HADB server. If there is no response from the
HADB server within the specified time, a timeout error whose SQLCODE is —=732 (KFAA30732-E) is returned to the
application. When this occurs, processing of the SQL statement is canceled, and the transaction is rolled back. Then,
the application is disconnected from the HADB server.

The following figure shows the wait time monitoring procedure based on the specification of
adb clt rpc sqgl wait time.

Figure 3-1: Wait time monitoring procedure based on the specification of adb_clt_rpc_sql_wait_time
HADB client HADB server

CONNECT

W

CONNECT processing

SQL1

A Wi A

Wait time monitoring period SQL1 processing
A T

[

SQL2
A Vi
Wait time monitoring period | SQL2 processing | Transaction 1
]
Application
program COMMIT
rocessin
p g 7y
Wait time monitoring period | COMMIT processing |
 — A

SQL3

‘i‘
Lt <%

Wait ti

me monitoring period

SQI3 processing
]

COMMIT

‘I‘
Ll <%

Wait ti

me monitoring period

V/

COMMIT processing

DISCONNECT

|z

3. Setting Up an Environment for the JDBC Driver

Transaction 2

Hitachi Advanced Database Application Development Guide

66

Explanation:

This example monitors the wait time until a response is received after a processing request has been issued from the
client to the HADB server. For example, if 600 seconds is specifiedinadb clt rpc sqgl wait time,a wait
time of 600 seconds is set for the monitoring interval. Therefore, as a guideline, specify a wait time at least equal
to the longest SQL statement processing time. Specify a realistic value that most likely will indicate when the
application program has become unresponsive.

Ifadb clt rpc sql wait time is specified, HADB also monitors the following wait times:

¢ How long to wait to secure processing real threads if a shortage occurs when multiple SELECT statements are
executed concurrently in the same connection.

If this wait time is exceeded, HADB returns a timeout error whose SQLCODE is =1071570 (KFAA71570-E) to the
application. When this happens, processing of the SQL statement is canceled but the transaction is not rolled back. Nor
is the application disconnected from the HADB server.

For details about the purpose of specifyingadb clt rpc sqgl wait time,see(4) Noteaboutexecuting multiple
SELECT statements concurrently in the same connection in 7.4.1 How to retrieve data.

5 Note

For details about adb _clt rpc sgl wait time,see 3.1.6 Setting system properties.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 67

3.3 Upgrading the JDBC driver (replacing the JAR file)

The following shows the procedure for upgrading the JDBC driver:

Procedure

1. Copy a compressed file from the HADB client installation CD-ROM to a folder of your choice.
The file to be copied is as follows:
* In the 64-bit edition of Windows
hitachi advanced data binder client.zip
* In the 32-bit edition of Windows
hitachi advanced data binder client32.zip
e In Linux
hitachi advanced data binder client-S$VER.tar.gz
The $VER portion is replaced by an HADB version and release number.

2. Expand the compressed file that you copied.

For details about the location of the JAR file after the compressed file is expanded, see Table 3-2: Location of
the JAR file after the compressed file is expanded.

3. Replace the existing JAR file with the new one.
4. Confirm that a connection to the HADB server is established.
5. Delete the following folders and files:

* The compressed file you copied in step 1.

* The folders and files you expanded in step 2.

0 Important

Steps 1 to 3 in the preceding procedure must be performed by the same OS user. If the OS user changes,
the upgrade might not be completed correctly.

m Points to be checked after the upgrade

When the JDBC driver is upgraded, the default values of some properties” might be changed. Check whether the
default values of those properties have been changed. If the default values have been changed, respecify the properties
as needed. The default values of properties are the same as the values of the corresponding operands in the client
environment definition. For details about the operands in the client definition, see 2.2 Contents of operands in the
client definition.

#
The properties in Table 3-3: System properties that can be specified apply.

m To downgrade the JDBC driver
See the following procedure.
Procedure

1. Replace the current JAR file with the previously used JAR file.

2. Restore the previous values of system properties.

If the current values of system properties are different from the values that were set before the JDBC driver was
upgraded, you must change the values back to the previous ones when downgrading the version.

3. Confirm that a connection to the HADB server is established.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 68

0 Important

Steps 1 to 2 in the preceding procedure must be performed by the same OS user. If the OS user changes,
the JDBC driver might not work correctly.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide

69

3.4 Replacing the JDBC driver with a revised version

The procedure for replacing the JDBC driver with a revised version is the same as the procedure for upgrading the JDBC
driver. For details about the procedure, see 3.3 Upgrading the JDBC driver (replacing the JAR file).

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 70

3.5 Changing the time of the OS on a machine on which the JDBC driver
has been installed

For details about how to change the time of the OS on which the JDBC driver has been installed, see 4.9 Changing the
OS time on a client machine. When referring to that section, interpret the term client machine as machine on which the

JDBC driver has been installed.

3. Setting Up an Environment for the JDBC Driver

4l

Hitachi Advanced Database Application Development Guide

3.6 Uninstalling the JDBC driver

The following shows the procedure for uninstalling the JDBC driver.

Procedure
1. Delete the JAR file.

2. Delete the specification of the CLASSPATH environment variable.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide

72

Setting Up an Environment for an HADB Client (If
the ODBC Driver and CLI Functions Are Used)

This chapter explains how to set up an environment for an HADB client, including installation of an
HADB client and specification of environment variables.

Hitachi Advanced Database Application Development Guide 73

4.1 HADB client environment setup procedure

This section explains how to set up an HADB client environment.

4.1.1 HADB client for Windows

When you create or execute application programs on a computer other than an HADB server, you are using your computer
as an HADB client. The following figure shows the environment setup procedure for an HADB client for Windows.

Figure 4-1: Environment setup procedure for an HADB client for Windows

Install the HADB client.

Tasks to perform
before compiling
the application
Set the environment variables.

Tasks performed by
administrator of HADB client

Create the client definition.

Tasks to perform
before running
the application
Handle an unresponsive application.

Detailed description of each procedure
* For details about installing an HADB client, see 4.2.1 HADB client for Windows.
* For details about setting environment variables, see 4.3.1 HADB client for Windows.

* For details about creating client definitions, see 4.4 Creating a client definition.
For explanations of operands in the client definition, see 2. Designing Client Definitions.

* For details about handling unresponsive application programs, see 4.5 Handling unresponsive application
programs.

Before you install an HADB client, estimate the memory requirements for the HADB client. For the formula for

estimating the memory requirements for an HADB client, see C. Estimating the Memory Requirements for an HADB
Client.

4.1.2 HADB client for Linux

If you create or execute application programs on a computer other than an HADB server, you are using your computer
as an HADB client. The following figure shows the environment setup procedure for an HADB client for Linux.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 74

Figure 4-2: Environment setup procedure for an HADB client for Linux

Install the HADB client.

Tasks to perform
before compiling
the application
Set the environment variables.

Tasks performed by
administrator of HADB client

Create the client definition.

Tasks to perform
before running
the application
Handle an unresponsive application.

Detailed description of each procedure
* For details about installing an HADB client, see 4.2.2 HADB client for Linux.
* For details about setting environment variables, see 4.3.2 HADB client for Linux.

* For details about creating client definitions, see 4.4 Creating a client definition.

For explanations of operands in the client definition, see 2. Designing Client Definitions.

* For details about handling unresponsive application programs, see 4.5 Handling unresponsive application
programs.

Before you install an HADB client, estimate the memory requirements for the HADB client. For the formula for
estimating the memory requirements for an HADB client, see C. Estimating the Memory Requirements for an HADB
Client.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 75

4.2 Installing and uninstalling an HADB client

This section explains how to install and uninstall an HADB client.

4.2.1 HADB client for Windows

This subsection explains how to install and uninstall an HADB client for Windows.

Administrator permissions are required to install and uninstall an HADB client.

(1) Installing an HADB client

The following explains how to install an HADB client.

To install an HADB client:

1. Copy the following compressed file from the CD-ROM to any folder on the client computer:
* 064-bit edition of Windows: hitachi advanced data binder client.zip
* 32-bit edition of Windows: hitachi advanced data binder client32.zip

Make sure that the length of the path for the target folder does not exceed 200 bytes.
For information on the characters that can be used in a copy-to folder path, see <path name> under m Conventions:
Syntax elements in the Preface.

2. Expand the compressed file.

Example:
Copy the hitachi advanced data binder client.zip fileto D:\hadb clt, and then expand the

file.
The folders and files are expanded under D: \hadb clt\hitachi advanced data binder client

\HADBCL.
Note: This is the default target folder when the compressed file is expanded.

0 Important

To use an ODBC driver, the version information of the ODBC driver must be the same as the version
information of the HADB client. Therefore, do not replace some of the DLL files in the client\bin

folder under the client directory.

m Tasks to be performed after installation
After you have finished the installation, perform the following tasks:
* Specifying environment variables
For details about the environment variables to be specified, see 4.3.1 HADB client for Windows.
Specify in the ADBCLTDIR environment variable the absolute path of the client directory. In the installation

procedure example provided above, the client directory is D: \hadb clt
\hitachi advanced data binder client\HADBCL.

A client directory stores a group of files that are related to a single client process.

* Registering the registry key

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 76

After you have specified the environment variables, register the registry key by executing the following registry
registration command:

* 64-bit edition of Windows: $ADBCLTDIR%\adbreg.reg
* 32-bit edition of Windows: $ADBCLTDIR%\adbreg32.reg

* Granting write permission for the folder

Grant write permission for the following folder to each OS user who might use the HADB client (including the
ODBC driver):

* $SADBCLTDIR%\spool
* SADBODBTRCPATHS
This folder is common to 32 and 64-bit Windows.

* Reviewing the targets of scans by antivirus software

If antivirus software is installed on the client machine where HADB client is installed, review the scope of virus
scans.

If the files and directories used by the HADB client are included in the scope of scans by antivirus software, the
HADB client might not work correctly. For this reason, you need to configure the antivirus software to not scan
the client directory.

(2) Uninstalling an HADB client

You must perform the following before you uninstall an HADB client:

* Check that no command or application program is being executed from the HADB client. Uninstallation might fail
if an attempt is made to uninstall an HADB client while a command or application program is executing.

* Back up all the files that you might need from the client directory.
The following explains how to uninstall an HADB client.
To uninstall an HADB client:

1. Delete the registry key.

Delete the registry key that was registered during installation by executing the following registry deletion command:
e 64-bit edition of Windows: $ADBCLTDIR%\adbunreg.reg
e 32-bit edition of Windows: $ADBCLTDIRS%\adbunreg32.reg

2. Delete all folders and files that were copied when the HADB client was installed.
Delete folders and files that were created after the HADB client was installed.

4.2.2 HADB client for Linux

This subsection explains how to install and uninstall an HADB client for Linux.

0 Important
* An HADB client is installed by the OS user who will be managing the HADB client.

* This OS user's user name must not exceed 32 bytes.

Note that the client directory, as described later in this document, stores the files that relate to a single client process.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 77

(1) Matters to check before installing an HADB client

Before installing an HADB client, you need to make sure that the libraries required for the HADB client to operate
correctly have been installed in the operating system.

= How to checks
You can check which packages are installed in the OS by running the yum command. Execute the command as
follows:

yum list installed

Review the output of the command. Ifall of the packages listed in the following table have been installed, the required
libraries are in place in your operating system.

Table 4-1: List of packages to check

No. Name and version of package to check Prerequisite library for HADB client contained in package

1 glibc (2.12 or later) libc.so.6
2 librt.so.1l
3 libm.so.6
4 libpthread.so.0
5 1d-1linux-x86-64.so0.2 (runtime loader)
6 libdl.so.2
7 libaio (0.3.107 or later) libaio.so.1
8 openssl (1.0.0 or later) libcrypto.so.10
9 z1ib (1.2.3 or later) libz.so.1
10 libuuid (2.17.2 or later) libuuid.so.1l
11 None linux-vdso.so.1"

#

Because this library is a virtual shared library provided by the kernel, you do not need to check for a corresponding
package.

If any of the packages listed in the table are not installed, install them in the operating system. For details about how
to install packages, see the documentation for your operating system. Install the packages as a superuser.

é Note

The following shows an example of how to execute the command to check whether a specific package
is installed.

Example:
To check whether the package 1ibaio is installed, you execute the command as follows:

yum list installed | grep libaio

If the package 1ibaio appears in the command output, this means that the package is installed. If
the package 1ibaio does not appear in the command output, this means that the package is not
installed.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 78

(2) Installing an HADB client

The following explains how to install an HADB client.
To install an HADB client:

1. Create a directory.
mkdir /home/osuser0l/client
Create a directory for storing the installation data (tar . gz file) and the adbinstall command. In the following
example, /home/osuser01/client is specified as the storage directory path:
2. Assign write permission to the directory you created.

chmod 755 /home/osuser0l/client

Assign write permission so that the OS user who manages the HADB client can write to the directory you created.

3. Mount the file system CD-ROM.

Automatically mount the file system CD-ROM that contains the installation data (tar . gz file) and the installation
command (adbinstall command) for the HADB client.

If the file system CD-ROM cannot be mounted automatically, you must mount it manually. To mount the file system
CD-ROM manually, enter the following OS command:

mount /dev/cdrom /media

The underlined part is the mount directory of the CD-ROM file system. It might differ in your environment.

0 Important

The directory names and file names on the CD-ROM might differ depending on the computer.
Execute the 1s OS command and enter the displayed directory names as they are shown.

4. Copy the installation data (tar . gz file) and the installation command (adbinstall command) to the directory
created in step 1.

cp /media/hitachi advanced data binder client-$VER.tar.gz /home/osuser0l/client
cp /media/adbinstall /home/osuser0l/client

The underlined part is the mount directory of the CD-ROM file system. It might differ in your environment.
SVER indicates the HADB version and release number.

You must copy the tar. gz file and the adbinstall command to the same directory.
5. Assign execution privileges for the install command to the OS user who manages the HADB client.

chmod 777 /home/osuser0l/client/adbinstall

This command assigns execution privileges for the install command you copied in step 4 (adbinstall command)
to the OS user who manages the HADB client.

6. Execute the installation command (adbinstall command).

/home/osuser0l/client/adbinstall -c /home/osuser0l/clientdir

The HADB client is installed under the directory specified for the —c option. This directory becomes the client
directory.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 79

5 Note

If the directory specified for the —c option does not exist, the directory is automatically created when
the adbinstall command is executed.

The following rules apply to the client directory:
* The client directory path must not exceed 118 bytes.

* For information on the characters that can be used in a client directory path, see <path name> under m
Conventions: Syntax elements in the Preface.

* When you specify a directory for the —c option of the adbinstall command, make sure that the OS user
who will manage the HADB client can write to the directory.

m Action to take when KFAA91553-E message is output
In the —c option of the adbinstall command, if you specify a directory for which the OS user who manages the
HADRB client does not have write permissions, the KFAA91553~E message is output.
This message is also output if the OS user who manages the HADB client lacks write permissions for the directory
that stores the install command (adbinstall) and the installation data (tar . gz file).

If the KFAA91553-F message is output, assign write permission to the OS user for the directory concerned.

m Action to take when KFAA91558-W message is output
If the root user executes the adbinstall command instead of the OS user who manages the HADB client, the
KFAA91558-W message is output.
Under normal circumstances, the OS user who manages the HADB client executes the adbinstall command.
If the KFAA91558-W message is output, check whether executing the adbinstall command as a root user
might cause any issues.

If doing so might cause an issue, press n or N when prompted for input by the KFAA91559-0 message output after
the KFAA91558-W message. Then, execute the adbinstall command using the account of the OS user who
manages the HADB client.

é Note

e The KFAA91558-W message is not output if a superuser other than root executes the
adbinstall command.

e root is the user whose value is O in the output of the 1d —u OS command. This includes situations
in which you use the su command of the OS to elevate an OS user to root, giving that user a value
of 0 in the output of the 1d —u command.

m Tasks to be performed after installation

» Setting environment variables

After you have finished the installation, specify environment variables. For details about the environment
variables to be specified, see 4.3.2 HADB client for Linux.

Specify in the ADBCLTDIR environment variable the absolute path of the client directory. In the installation
procedure example provided above, the client directory is /home/osuser01/clientdir.

* Reviewing the targets of scans by antivirus software
If antivirus software is installed on the client machine where HADB client is installed, review the scope of virus
scans.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 80

If the files and directories used by the HADB client are included in the scope of scans by antivirus software, the
HADRB client might not work correctly. For this reason, you need to configure the antivirus software to not scan
the client directory.

a Note

For details about the structure of the client directory that is created when an HADB client is installed by
using the adbinstall command, see (1) Structure of the client directory (at installation) in B.2 HADB

clients for Linux.

(3) Uninstalling an HADB client
An HADB client is uninstalled by the OS user who installed the HADB client.

Before uninstalling an HADB client, perform the following:

¢ Check that no command or application program is being executed from the HADB client. Uninstallation might fail
if an attempt is made to uninstall an HADB client while a command or application program is executing.

* Back up all the files that you might need from the client directory.
This subsection explains how to uninstall an HADB client.
To uninstall an HADB client:

1. Delete the client directory.
The client directory must be deleted by the OS user who installed the HADB client.

rm -rf /home/osuser0l/clientdir

2. Delete the installation data (tar. gz file and adbinstall command).

The installation data (tar . gz file and adbinstall command) that was used to install the HADB client must be
deleted by the OS user who installed the HADB client.

rm -rf /home/osuser0l/client

3. Delete the specifications for the environment variables that were set during installation.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 81

4.3 Specifying environment variables

This section explains the environment variables to be specified at the HADB client.

4.3.1 HADB client for Windows

In the HADB client for Windows, specify the environment variables listed in the following table.

Table 4-2: Values to be specified in the environment variables
No. Environment variable Value to be specified

1 PATH Add the following folder to this environment variable:
64-bit edition of Windows:
* $ADBCLTDIR%\client\bin
* $ADBCLTDIR%\vclib

32-bit edition of Windows:
¢ $ADBCLTDIR%\client\bin
¢ 3ADBCLTDIR%\vclib32

Specify this environment variable as a system environment variable.

2 TZ Specify in this environment variable the time zone of the computer on which the HADB
client is installed.

Specify this environment variable as a system environment variable.

Do not specify a time zone that uses leap seconds.

3 ADBCLTDIR Specify in this environment variable the absolute path of the client directory. Be sure to
specify this environment variable before you execute the registry registration or deletion
command.

Specify the first three characters of the path in accordance with the following rules:
* First character
Alphabetic character indicating the drive
» Second character
Colon (:)
e Third character
Forward slash (/) or backlash (\)

4 ADBCLTLANG Specify in this environment variable the character encoding used on the HADB client.
Specify the same character encoding as used on the HADB server. This must be the
character encoding specified in the ADBLANG environment variable for the HADB server.

 Ifusing Unicode (UTF-8) on the HADB server
Specify UTF8 in this environment variable.
e Ifusing Shift-JIS on the HADB server

Specify SJIS in this environment variable.

5 ADBMSGLOGSIZE Specify in this environment variable the maximum size (in megabytes) of a client message
log file. The permitted value range is from 1 to 2000.

Four client message log files are created on an HADB client. If you omit this environment
variable, the maximum size of each client message log file is set to 16 megabytes.

If you start multiple client processes from a single client directory, specify for each of them
the same value in this environment variable. If different values are specified when multiple
client processes are run, the client message log files might become corrupted.

6 ADBODBTRC Specity whether to output HADB ODBC driver trace information. Specify one of the
following values in this environment variable:

e YES: Specify this value to output HADB ODBC driver trace information.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 82

No. Environment variable Value to be specified

e NO: Specify this value to not output HADB ODBC driver trace information.

If you omit this environment variable or specify an invalid value, NO is assumed.

Consider setting this environment variable when using the ODBC driver.

7 ADBODBTRCSIZE Specify the maximum size of an HADB ODBC driver trace file (in MB). You can specify
a value in the range from 32 to 1, 024.

If you omit this environment variable or specify an invalid value, 256 is assumed.

Consider setting this environment variable when using the ODBC driver.

8 ADBODBTRCPATH Specity the absolute path of the folder in which to store HADB ODBC driver trace files.
The path name cannot be longer than 210 bytes.

In the following circumstances, HADB ODBC driver trace information is not output even
if YES is specified in ADBODBTRC:

¢ This environment variable is omitted.
¢ An invalid folder is specified.
¢ The path name is 211 bytes or longer.

Consider setting this environment variable when using the ODBC driver.

9 ADBODBTRCLV This environment variable specifies the trace level to apply when outputting HADB ODBC
driver trace information. Specify one of the following values:

* 1: Specify this value to output information at trace level 1.

e 2: Specify this value to output information at trace level 2.

For details about trace levels, see 17.4.1 About trace levels.
If you omit this environment variable or specify an invalid value, 1 is assumed.

Consider setting this environment variable when using the ODBC driver.

10 ADBODBAPMODE Specify the application mode of the HADB ODBC driver. Normally, you do not need to
specify this environment variable.

The value specified for this environment variable changes the behavior of the HADB
ODBC driver.

* ACCESS: The HADB ODBC driver operates in Microsoft Access(R) compatibility
mode, rather than following the ODBC 3.5 specification.

Specify this value when using Microsoft Access to access the HADB server. Specifying
this value allows you to avoid certain issues, such as #Deleted replacing search
results or errors occurring.

e NORMAL: The HADB ODBC driver operates as normal.

If you omit this environment variable or specify an invalid value, NORMAL is assumed.

Consider setting this environment variable when using the ODBC driver.

4.3.2 HADB client for Linux

In the HADB client for Linux, specify the environment variables listed in the table below. These environment variables
are specified by the OS user who manages the HADB client.

Make sure that the values specified for the environment variables take effect on the shell when the HADB client is used.
For details about the specification method, see the shell documentation.

Table 4-3: Values to be specified in the environment variables
No. Environment variable Value to be specified

1 LANG Specify in this environment variable the character encoding used in the OS. This must be
the same as the value of the LANG environment variable for the HADB server.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 83

No. Environment variable

2 LD LIBRARY PATH
3 PATH

4 TZ

5 ADBCLTDIR

6 ADBCLTLANG

7 ADBMSGLOGSIZE

8 ADBSQLNULLCHAR

Value to be specified

Add the following directory to the value of this environment variable:
* SADBCLTDIR/client/1ib

Set this environment variable when either of the following conditions is satisfied:
¢ The adbsgl command will be run on the HADB client.
* Applications that use the CLI function will be developed or run on the HADB client.

Add the following directory to the value of this environment variable:
* SADBCLTDIR/client/bin

Specify in this environment variable the time zone of the computer on which the HADB
client is installed.

Do not specify a time zone that uses leap seconds.

Specify in this environment variable the absolute path of the client directory.
The first character of the path must be a forward slash (/).

Specity in this environment variable the character encoding used on the HADB client.
Specity the same character encoding as used on the HADB server. This must be the
character encoding specified in the ADBLANG environment variable for the HADB server.
* Ifusing Unicode (UTF-8) on the HADB server
Specify UTF8 in this environment variable.
e [fusing Shift-JIS on the HADB server
Specify SJIS in this environment variable.

Specify in this environment variable the maximum size (in megabytes) of a client message
log file. The permitted value range is from 1 to 2000.

Four client message log files are created on an HADB client. If you omit this environment
variable, the maximum size of each client message log file is set to 16 megabytes.

If you start multiple client processes from a single client directory, specify for each of them
the same value in this environment variable. If different values are specified when multiple
client processes are run, the client message log files might become corrupted.

For this environment variable, specify the character string that will be displayed as a null
value in the search result returned by the adbsqgl command. You can specify a character
string that is O to 32 bytes long. If you specify a 0-byte character string, a blank is displayed
as a null value.

If you omit this environment variable, null values are displayed as asterisks (*).

Specify this environment variable when retrieved data contains asterisks, or you want a
particular character string to appear in place of null values.

Note that if you specify multi-byte characters, the search results might become garbled.
Consider setting this environment variable when the adbsgl command will be run on the
HADB client.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 84

4.4 Creating a client definition

Specify a client definition to set up an environment for running the HADB client. The OS user who manages the HADB
client creates the client definition.

4.4.1 How to create a client definition

The following explains how to create a client definition.

To create a client definition:

1. Copy the model client definition file (client .def") from $ADBCLTDIR%\sample\conf\ to
$ADBCLTDIR®\conf\.

#: For an HADB client for Linux, the model client definition file is SADBCLTDIR/sample/conf/
client.def.

2. Use a text editor to open the copied client definition file (3ADBCLTDIR%\conf\client .def?).
#: For an HADB client for Linux, the model client definition file is SADBCLTDIR/conf/client.def.

3. Specify each operand in the client definition. For explanations of operands in the client definition, see 2.
Designing Client Definitions.

4. After you have created the client definition, overwrite the file. Do not change the file name (c1lient.def).
Grant read and write permissions for the client definition file only to the OS user who manages the HADB client.

The specified operand values in the client definition are output as the KFAA50027-T1 message to the client message
log file when a connection handle is allocated.

4.4.2 Notes about changing a client definition

Before you change a client definition, disconnect from the HADB server the application program that uses that client
definition file.

4.4.3 Choosing a client definition

You specify the path of the client definition file in the C1ientDefPath argument of the
a rdb SQLAllocConnect () CLI function. If you create multiple client definitions, you can choose the appropriate
file when you allocate a connection handle.

If the C1ientDefPath argument is omitted, $ADBCLTDIR%\conf\client .def" is assumed. For details about
a rdb SQLAllocConnect (),see 19.2.1 a_rdb_SQLAllocConnect() (allocate a connection handle).

#: For an HADB client for Linux, SADBCLTDIR/conf/client.def is assumed.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 85

4.5 Handling unresponsive application programs

A problem such as a communication error, temporary failure (including power outage), or disk failure might cause an
application program to stop responding. Such an unresponsive application program might delay other application
programs and command processing.

Specify the following operand in the client definition in order to minimize the effects of an unresponsive application
program:

* adb _clt rpc sgl wait time operand

Specify in this operand the maximum amount of time to wait for a response after a processing request has been sent
from the HADB client to the HADB server. If there is no response from the HADB server within the specified time, a
timeout error whose SQLCODE is =732 (KFAA30732-E) is returned to the application, processing of the SQL
statement is canceled, and the transaction is rolled back. Then, the application is disconnected from the HADB server.

The following figure shows the wait time monitoring procedure based on the specification of the
adb_clt rpc sgl wait time operand.

Figure 4-3: Wait time monitoring procedure based on the specification of the
adb_clt_rpc_sqgl_wait_time operand
HADB client HADB server

CONNECT

W

CONNECT processing
]

SQL1

g

Wait time monitoring period SQL1 processing
]

‘i‘

SQL2
W .
Wait time monitoring period | SQL2 processing | Transaction 1
\ T
Application
rocessin
P 9 \ \
Wait time monitoring period | COMMIT processing |
Y T \

SQL3

4

»
»
|

Wait time monitoring period SQL3 processing
|

COMMIT Transaction 2

Y

ime monitoring period || COMMIT processing

‘i‘
L <%

=
o
=
=

DISCONNECT

|

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 86

Explanation:

This example monitors the wait time until a response is received after a processing request has been issued from the
HADRB client to the HADB server. For example, if 600 seconds is specified in the

adb _clt rpc sgl wait time operand, a wait time of 600 seconds is set for the monitoring interval.
Therefore, as a guideline, specify a wait time at least equal to the longest SQL processing time. Specify a realistic
value that most likely will indicate when the application program has become unresponsive.

For details about the adb_clt rpc sqgl wait time operand, see the explanation of the
adb clt rpc sql wait time operand in 2.2.2 Operands related to application program status monitoring.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 87

4.6 Upgrading an HADB client

This section explains how to upgrade an HADB client.

If you are replacing the HADB client with a revised version rather than upgrading it, see 4.8 Replacing HADB client
with arevised version. 4.8 Replacing HADB client with a revised version also explains when replacement with a revised
version of the HADB client applies.

4.6.1 Preparations before upgrading an HADB client

You must perform the following tasks before you attempt to upgrade an HADB client.

(1) Check environment variables

When an HADB client is upgraded, the values of environment variables might change. For details, see 4.3 Specifying
environment variables.

(2) Check the client definition

When an HADB client is upgraded, some client definition default values might change. If you have set client definition
operands to their default values, see 2.2 Contents of operands in the client definition and check whether operand values
have been changed.

Note that the following operand cannot be specified in the client definition of HADB client version 03-00 or later. If
you are using version 03-00 or later and this operand is specified, delete it from the client definition.

* adb clt rpc open wait time

(3) Back up the client directories

Before you upgrade your HADB client, back up the client directories.

Delete the backup after you have confirmed that the new version operates correctly.

4.6.2 Notes about upgrading

Note the following about upgrading an HADB client:
* You must not change the OS user while the HADB client is being upgraded. If the OS user is changed, the HADB
client might not be upgraded successfully.

* You must not change the value of the ADBCLTLANG environment variable while the HADB client is being upgraded.
If the value is changed, the HADB client might not be upgraded successfully.

e Make sure that the versions of the HADB client and ODBC driver match. If the versions do not match, an error
occurs before the HADB client connects to the HADB server.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 88

4.6.3 How to upgrade an HADB client

This subsection provides the steps to upgrade an HADB client.

(1) Upgrading an HADB client (Windows edition)
The OS user who manages the HADB client upgrades the HADB client.

To upgrade an HADB client:
Procedure

1. Log in as the OS user who manages the HADB client.
2. Copy the zip file from the installation media to a folder of your choice.

3. Expand the zip file to the client directory specified in the ADBCLTDIR environment variable.
If you expand the zip file to a path other than the client directory, perform the following additional step:

* Change the client directory path specified in the ADBCLTDIR environment variable.

(2) Upgrading an HADB client (Linux edition)
To upgrade an HADB client:

Procedure

1. Log in as the OS user who manages the HADB client.
2. Create a directory.
mkdir /home/osuser0l/client
Create the directory /home/osuser01/client in which the installation data (tar . gz file) and the
adbinstall command will be stored.
3. Assign write permission to the directory you created.
chmod 755 /home/osuser0l/client
Assign write permission to the directory you created so that the OS user who manages the HADB client can write
to the directory.

4. Copy the installation data (tar . gz file) and installation command (adbinstall) from the installation media to
the directory you created in step 2.

cp /media/hitachi advanced data binder client-$VER.tar.gz /home/osuser0l/client
cp /media/adbinstall /home/osuser0l/client

The underlined portion indicates the mount directory of the CD-ROM file system. The actual mount directory will
depend on the environment.

SVER represents the HADB version and release number.

You must copy the tar.gz file and the adbinstall command to the same directory.
5. Assign execution permission for the installation command to the OS user who manages the HADB client.

chmod 777 /home/osuserOl/client/adbinstall

Assign execution permission for the installation command (adbinstall) you copied in step 4 to the OS user who
manages the HADB client.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 89

6. Execute the installation command (adbinstall command).

/home/osuser0l/client/adbinstall -c¢ /home/osuser0l/clientdir

As the client directory path in the —c option, specify a directory of your choice or the path specified in the
ADBCLTDIR environment variable.

The directory you specify must be one for which the OS user who manages the HADB client has write permission.
If you specify a path in the —c option that differs from the path specified in the ADBCLTDIR environment variable,
perform the following additional step:

* In the ADBCLTDIR environment variable, specify the path of the directory you specified in the —c option.

é Note

For details about how to execute the adbinstall command and the rules, see adbinstall (Install
HADB Server or Client) in the manual HADB Command Reference.

= Action to take when KFAA91553-E message is output

If the OS user who manages the HADB client does not have write permission for the directory specified in the -c
option of the adbinstall command, the KFAA91553-E message is output.

The KFAA91553-E message is also output if the OS user who manages the HADB client does not have write
permission for the directory that contains the installation command (adbinstall) and installation data (tar.gz
file).

If the KFAA91553-F message is output, assign write permission for the directory concerned.

= Action to take when KFAA91558-W message is output
If the root user executes the adbinstall command instead of the OS user who manages the HADB client, the
KFAA91558-W message is output.

Under normal circumstances, the OS user who manages the HADB client executes the adbinstall command.
If the KFAA91558-W message is output, check whether executing the adbinstall command as root might
cause any issues.

If doing so might cause an issue, press n or N when prompted for input by the KFAA91559-0 message output after
the KFAAS1558-W message. Then, execute the adbinstall command using the account of the OS user who
manages the HADB client.

é Note

e The KFAA91558-W message is not output if a superuser other than root executes the
adbinstall command.

e root is the user whose value is O in the output of the 1d —u OS command. This includes situations
in which you use the su command of the OS to elevate an OS user to root, giving that user a value
of 0 in the output of the 1d —u OS command.

4.6.4 Tasks to be performed after upgrading

Use the procedure described below to verify that the HADB client upgraded successfully.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 90

(1) HADB client (Windows edition)

Check one of the following file properties to verify that the new version of the file is installed:

¢ 64-bit edition of Windows: $ADBCLTDIR%client\bin\adbclt.dll

¢ 32-bit edition of Windows: $ADBCLTDIR%client\bin\adbclt32.d11

If an ODBC driver is used, also check the versions of all DLL files whose names begin with adbodbc.

(2) HADB client (Linux edition)

Verity that the HADB client has been upgraded successfully:
Procedure

1. Execute the adbsgl command to connect to the HADB server.

2. Check the contents of the KFAA70003-T message.

Verify that the KFAA70003~-TI message output to the client's message log file displays the new version.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide

91

4.7 Downgrading an HADB client version (restoring the previous version)

This section describes how to downgrade an HADB client.

When you downgrade an HADB server, you also need to downgrade the HADB clients. That is, the version of the HADB
client must match the version of the HADB server.

é Note

For details about downgrading the HADB server, see Downgrading the HADB server version (restoring
the previous version) under Building a System in the HADB Setup and Operation Guide.

4.7.1 Preparations before downgrading an HADB client

Before downgrading an HADB client, check the values specified for the following elements:

¢ Environment variables

¢ Client definition

Any values that you changed when upgrading the HADB client must be changed back to values appropriate to the earlier
version before downgrading.

4.7.2 Notes about downgrading

Note the following when downgrading an HADB client:

* Do not change the OS user during the process of downgrading the HADB client. If you change the OS user, the
downgrade process might not work correctly.

* Do not change the value specified for the ADBCLTLANG environment variable when downgrading the HADB client.
If you change the value, the downgrade process might not work correctly.

¢ Make sure that the versions of the HADB client and ODBC driver match. If the versions do not match, an error
occurs before the HADB client connects to the HADB server.

4.7.3 Downgrade procedure

The following explains the procedure for downgrading an HADB client.

The user who performs this procedure is the OS user who manages the HADB client.

(1) Downgrading an HADB client (Windows edition)
To downgrade an HADB client:

Procedure

1. Log in as the OS user who manages the HADB client.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 92

2. Copy the zip file from the installation media to a folder of your choice.

3. Expand the zip file to the client directory specified in the ADBCLTDIR environment variable.
If you expand the zip file to a path other than the client directory, perform the following additional step:

* Change the client directory path specified in the ADBCLTDIR environment variable.

(2) Downgrading an HADB client (Linux edition)

To downgrade an HADB client:
Procedure

1. Log in as the OS user who manages the HADB client.
2. Create a directory.
mkdir /home/osuser0l/client
Create the directory (/home/osuser01/client) in which the installation data (tar . gz file) and the
adbinstall command will be stored.
3. Assign write permission to the directory you created.
chmod 755 /home/osuser0l/client
Assign write permission to the directory you created so that the OS user who manages the HADB client can write
to the directory.

4. Copy the installation data (tar . gz file) and installation command (adbinstall) from the installation media to
the directory you created in step 2.

cp /media/hitachi advanced data binder client-$VR.tar.gz /home/osuser0l/client
cp /media/adbinstall /home/osuser(0l/client

The underlined portions indicate the mount directory of the CD-ROM file system. The actual mount directory will
depend on the environment.

$VR represents the HADB version and release number.

You must copy the tar.gz file and the adbinstall command to the same directory.
5. Assign execution privilege for the installation command to the OS user who manages the HADB client.
chmod 777 /home/osuser0l/client/adbinstall
Assign execution privilege for the installation command (adbinstall) you copied in step 4 to the OS user who
manages the HADB client.

6. Run the installation command (adbinstall).
/home/osuser0l/client/adbinstall -c /home/osuser0l/clientdir

As the client directory path in the —c option, specify a directory of your choice or the path specified in the
ADBCLTDIR environment variable.

The directory you specify must be one for which the OS user who manages the HADB client has write permission.

If you specify a path in the —c option that differs from the path specified in the ADBCLTDIR environment variable,
perform the following additional step:

e Inthe ADBCLTDIR environment variable, specify the path of the directory you specified in the —c option.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 93

5 Note

For details about how to run the adbinstall command and the rules that apply when doing so, see
adbinstall (Install HADB Server or Client) in the manual HADB Command Reference.

= Action to take when message KFAA91553-E is output

If the OS user who manages the HADB client does not have write permission for the directory specified in the —c
option of the adbinstall command, the message KFAA91553~E is output.

The message KFAA91553-E is also output if the OS user who manages the HADB client does not have write
permission for the directory that contains the installation command (adbinstall) and installation data (tar.gz
file).

If the message KFAA91553-E is output, assign write permission for the directory concerned.

4.7.4 Tasks to be performed after downgrading

Use the following procedure to verify that the HADB client has been downgraded successfully.

(1) HADB client (Windows edition)

Check the properties of one of the following files to verify that the old version of the file is installed.

¢ In 64-bit Windows: $ADBCLTDIR%client\bin\adbclt.dll
¢ In 32-bit Windows: $ADBCLTDIR%client\bin\adbclt32.d1l1l

If an ODBC driver is used, also check the versions of all DLL files whose names begin with adbodbc.

(2) HADB client (Linux edition)

To verify that the HADB client has been downgraded successfully:
Procedure

1. Connect to the HADB server by executing the adbsgl command.

2. Check the message KFAA70003-1.
Confirm that the message KFAA70003-TI output to the client message log file displays the old version.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 94

4.8 Replacing HADB client with a revised version

This section describes how to replace HADB client with a revised version.
When the following condition is met, you can replace HADB client with a revised version instead of upgrading it.

* Youintend to perform an overwrite installation of HADB client with an edition that has the same version and revision
number but a different code

é Note

The following explains how to identify the version number, revision number, and code.
As an example, consider a HADB client with the version information 03-02-/A:

¢ 03 is the version number.
¢ 02 is the revision number.

¢ The underlined part (-/A) is the code.

The following shows examples that constitute replacement with a revised version of HADB client is possible, and
examples that do not.

» Scenarios where HADB client is replaced with a revised version

For example, in the following scenarios, because the version numbers and revision numbers are the same, the process
constitutes replacement with a revised version.

03-02 -> 03-02-/A
03-02-/B -> 03-02-/D
= Scenarios where HADB client is not replaced with a revised version

For example, in the following scenarios, because the version number or revision number differs, the process does
not constitute replacement with a revised version.

03-02 -> 03-03-/A
03-02-/B -> 03-03-/D

This scenario is considered to be an upgrade of the HADB client. For details about how to upgrade an HADB
client, see 4.6 Upgrading an HADB client.

4.8.1 Procedure for replacing HADB client with a revised version

To replace an HADB client with a revised version:
Procedure

1. Perform the required preparation.

The preparation required before you can replace the HADB client is the same as before upgrading an HADB client.
For details, see 4.6.1 Preparations before upgrading an HADB client.

2. Check the cautionary notes that apply to HADB client replacement.

The cautionary notes regarding HADB client replacement are the same as when upgrading the HADB client. For
details, see 4.6.2 Notes about upgrading.

3. Replace the HADB client with the revised version.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 95

The procedure for replacing the HADB client is the same as the upgrade process. For details, see 4.6.3 How to
upgrade an HADB client.

4. Confirm that the replacement process is complete.

Confirm that the code in the version information of the HADB client has changed. For details about the confirmation
method, see 4.6.4 Tasks to be performed after upgrading.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 96

4.9 Changing the OS time on a client machine

This section explains how to change the OS time on a client machine on which HADB client is installed.

To change the OS time on a client machine, firstread 4.9.1 Notes (changing the OS time), and then perform the procedure
described in one of the following subsections:
* 4.9.2 How to advance the OS time on a client machine

e 4.9.3 How to restore the OS time on a client machine

4.9.1 Notes (changing the OS time)

The following notes apply to changing the OS time on a client machine:

* Before you change the OS time on a client machine, make sure that all application programs that connect to the
HADB server are stopped. If the OS time is changed on a client machine while an application program connected
to the HADB server is running, unexpected HADB server and client operations might occur.

* After the OS time has been changed on a client machine, the new OS time is applied to the items below. This change
might affect application programs that handle time.

¢ Command execution time

* Timestamps in message logs in the client message log file

4.9.2 How to advance the OS time on a client machine

First read 4.9.1 Notes (changing the OS time), and then follow the procedure described below. To advance the OS time
on a client machine on which HADB client is installed:

Procedure

1. Terminate all application programs that connect to the HADB server.

Terminate all application programs that connect from the HADB client to the HADB server.

2. Advance the OS time on the client machine.

After all application programs have terminated, advance the OS time on the client machine on which the HADB
client is installed.

3. Start the application programs that connect to the HADB server.
After you have advanced the OS time on the client machine, start the application programs that were terminated.

The OS time is now advanced on the client machine.

4.9.3 How to restore the OS time on a client machine

First read 4.9.1 Notes (changing the OS time), and then follow the procedure described below. To restore the OS time
on a client machine on which HADB client is installed:

Procedure

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 97

1. Terminate all application programs that connect to the HADB server.
Terminate all application programs that connect from the HADB client to the HADB server.

2. Restore the OS time on the client machine.

After all application programs have terminated, restore the OS time on the client machine on which the HADB client
is installed.

3. Start the application programs that connect to the HADB server.
After you have restored the OS time on the client machine, start the application programs that were terminated.

The OS time is now restored on the client machine.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 98

Part 2: Application Program Creation (Common)

Designs Related to Improvement of Application
Program Performance

This chapter explains designs related to improving application program performance.

Hitachi Advanced Database Application Development Guide 99

5.1 How to retrieve tables

HADB supports the following three retrieval methods for searching tables:

¢ Table scan
¢ Index scan
* Key scan

HADB determines the table retrieval method automatically. You can check which method was used when executing a
SQL statement by checking the access path. For details about access paths, see the following subsections:

* How to check access paths

See 6.1.2 How to check access paths.

¢ Information displayed in access paths
See (20) Table retrieval method in 6.1.4 Information displayed in the tree view.

a Note

By using an index specification, you can specify the index to use when retrieving a table, or prevent the use
of indexes for a particular retrieval. For details about index specifications, see Specification format and
rules for index specifications in the manual HADB SQL Reference.

Note that table here refers to a base table.

5.1.1 About table scans

A table scan is a base table retrieval method that does not use B-tree indexes and text indexes. A table scan is used in
the following cases:

* No B-tree index or text index is defined for the table.
* No search condition is specified that can effectively use a B-tree index or text index.

* WITHOUT INDEX is specified in the index specification.

The following figure shows an example of a table scan.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 100

Figure 5-1: Example of a table scan

W Table and B-tree index definitions

CREATE TABLE "T1"
("C1" INTEGER,
"C2" INTEGER,
"C3" INTEGER) IN "DBAREAQ1"

CREATE INDEX "IDX C1C2" ON "T1"("C1","C2")
IN "DBAREAO1" EMPTY

W Executed SQL statement

SELECT * FROM "T1" WHERE "C3"<300

Access all rows

and retrieve the Table T1
corresponding rows. Col. c1[Col. c2|Col. Cc3
—> 3 40| 100
—> 1 50| 300
—> 0 10| 600 Data page
—™ 1 9 [100
—> 2 60 [200
|

Indexed columns

Explanation:
Because column C3 specified in the search conditions is not an indexed column, B-tree index IDX C1C2 is not
used when the SELECT statement shown above is executed. Therefore, HADB performs a table scan and accesses

all rows in the data pages.

If range indexes are defined for the table, the range indexes might also be used.

a Note

If you have specified in the index specification that B-tree indexes or text indexes are not to be used, HADB
uses a table scan.

0 Important

If a table scan is to be performed, we recommend that you define range indexes for the table. Using range
indexes might improve performance. For details about the conditions under which range indexes are
used, see 5.3 Range indexes used during execution of SQL statements.

5.1.2 About index scans

An index scan uses a B-tree index or text index to evaluate the search conditions and retrieves from data pages all rows
that satisfy the search conditions. An index scan is run in the following cases:

* B-tree indexes or text indexes are defined in the table, and a search condition is specified that can effectively use
these indexes.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 101

* A B-tree index or text index that can be used for retrieval is specified in the index specification.
The following figure shows an example of an index scan.

Figure 5-2: Example of an index scan

W Table and B-tree index definitions

CREATE TABLE "T1"
("C1" INTEGER,
"C2" INTEGER,
"C3" INTEGER) IN "DBAREAOL"

CREATE INDEX "IDX C1C2" ON "T1"("C1","C2")
IN "DBAREAQI" EMPTY

W Executed SQL statement

SELECT "C3" FROM "T1"
WHERE "C1" IN(1,2)
AND "C2" BETWEEN 40 AND 60

B-tree index IDX cl1c2

range

Search i| Index page
®)

Access only the Table T1
corresponding rows. Col. c1lcol. c2]col. c3
3 40 100
— > 1 50| 300
0 10 600 Data page
1 90 100
> 2 60 200
|

Indexed columns

Explanation:
This example uses B-tree index IDX C1C2 to evaluate the search conditions and accesses a data page to retrieve

the column C3 values.

If range indexes are defined for the table, the range indexes might also be used.

5.1.3 About key scans

A key scan uses a B-tree index to evaluate the search conditions and retrieves from index pages the column values in
the rows that satisfy the search conditions. This method can reduce the number of pages to be referenced because it
retrieves column values directly from B-tree-indexed columns (keys).

A key scan is performed when a B-tree index is defined as an indexed column for all the columns specified in the SQL
statement, and one of the following conditions is met:

* A B-tree index is defined in the table, and a search condition is specified that can effectively use the B-tree index.
* The B-tree index used for retrieval is specified in an index specification.

* A set function MIN or MAX is specified.”

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 102

e SELECT DISTINCT is specified.”

e UNION or UNION DISTINCT is specified.”

e EXCEPT or EXCEPT DISTINCT is specified.”

e INTERSECT or INTERSECT DISTINCT is specified.”

e A quantified predicate with =ANY specification is specified.”

 An IN predicate with a table subquery is specified.”

The B-tree index is used only when HADB determines that the B-tree index can be used efficiently.
However, if any of the following conditions are satisfied, HADB might reference the data pages:

* A table in which rows have been added, updated, or deleted is being retrieved

* A column of the VARCHAR type that contains data ending with a single-byte space is being retrieved

* Data in the VARBINARY column whose binary data ends with X' 00" is being referenced
The following figure shows an example of a key scan.

Figure 5-3: Example of a key scan

W Table and B-tree index definitions

CREATE TABLE "T1"
("C1" INTEGER,
"C2" INTEGER,
"C3" INTEGER) IN "DBAREAOL"

CREATE INDEX "IDX C1C2" ON "T1"("Cl","C2")
IN "DBAREAQ1" EMPTY

W Executed SQL statement

SELECT "C1","C2" FROM "T1"
WHERE "C1" IN(1,2)
AND "C2" BETWEEN 40 AND 60

B-tree index IDX C1cC2

Search Index page
range

The data page
is not referenced.

Table T1
Col. c1|Col. c2|Cal. Cc3
3 40 100
1 50 300
Retrieve column values 0 10 600 Data page
from the index page.
1 90 100
60 200
L

Indexed columns
Explanation:

This example uses B-tree index IDX C1C2 to evaluate the search conditions. HADB does not access data pages
because it retrieves the values of columns C1 and C2 directly from the index page.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 103

a Note

Key scans are not executed for text indexes.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 104

5.2 B-tree indexes and text indexes used during execution of SQL

statements

You must define B-tree indexes and text indexes that are appropriate for your intended search conditions because the
availability of B-tree indexes and text indexes greatly affects performance.

This section explains how to determine the B-tree indexes and text indexes to be used during execution of SQL
statements, and how to check the index used during execution of an SQL statement.

In this section, the term index refers to both B-tree indexes and text indexes.

Notes

The index selection method explained here is applicable to query expressions obtained after internal derived
tables have been expanded or to search conditions that have been converted by equivalent exchange. For details
about expansion of internal derived tables, see the topic Internal derived tables in the manual HADB SQL
Reference. For details about equivalent exchange for search conditions, see 5.11 Equivalent exchange of search
conditions.

If, in a value expression specified in the search conditions, only literals are specified in a scalar operation, that
scalar operation might be treated as a literal. For details about scalar operations equivalent to literals, see the
table Conditions under which value expressions are equivalent to literals under Rules in Specification format
and rules for value expressions in the manual HADB SQL Reference.

When an index is specified, that index is used, regardless of the B-tree index priority or selection rules described
here. For details about index specifications, see Specification format and rules for index specifications in the
manual HADB SQOL Reference.

When joining tables, depending on the table joining method, indexes might not be used when evaluating the join
condition. For details about table joining methods, see 5.5 Table joining methods.

You cannot define a text index for a column store table.

0 Important

B-tree indexes defined for a column store table are used in the following cases:

* An index specification is specified.

For details about index specifications, see Specification format and rules for index specifications in the
manual HADB SQL Reference.

* A set function MIN or MAX is specified.”

« SELECT DISTINCT is specified.”

e UNION or UNION DISTINCT is specified.”

e EXCEPT or EXCEPT DISTINCT is specified.”

e INTERSECT or INTERSECT DISTINCT is Speciﬁed.#

* A quantified predicate with =ANY specification is specified.”

* An IN predicate with a table subquery is specified.”

* A column store table is specified as the table to be updated by the UPDATE statement.
* A column store table is specified as the table to be deleted by the DELETE statement.

¢ Cost information for a column store table is collected.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 105

The B-tree index is used only when the HADB server determines that the B-tree index can be used
efficiently.

For details about how to check the B-tree index to be used, see 5.2.5 How to check the index used during
execution of an SQL statement.

5.2.1 Priority and selection rules for indexes

If multiple indexes are defined for a table, HADB determines which index to use based on the search condition specified
in the WHERE clause, or the ON search condition specified for a joined table.

This section explains the priority and selection rules for indexes used during execution of an SQL statement.

(1) Index priority

If the predicate specified for a search condition is in any of the formats shown in the following table, an index is used
during execution of an SQL statement. Note that only one index is used during execution of an SQL statement. Therefore,
if multiple indexes are defined for a table, the index to be used is determined according to the priority shown in the
following table.

Table 5-1: Index priority when multiple indexes are defined for a table

Priority Condition for index Example of this priority (C1 is the column for
which the index has been defined)

1 Unique index (B-tree index) that specifies all indexed columnsina= "C1"=100
condition
"C1"=100+2
"T1"."C1"=CAST("T2"."C1l" AS INTEGER)

2 B-tree index with indexed columns specified in a = condition "C1l"=100

"C1"=100+"?

"T1™."C1l"=CAST ("T2"."Cl" AS INTEGER)
3 B-tree index with indexed columns specified inan IS NULL condition = "C1" IS NULL

4 B-tree index with indexed columns specified in a LIKE predicate that = "C1" LIKE 'ABC%'
satisfies all the following conditions:
. . . . "Cl" LIKE 'AB\%C%' ESCAPE '\'
» A literal is specified as the pattern character string

¢ The predicate performs a leading-match search that specifies the
special character %

Escape characters must be specified as literals.

5 B-tree index with indexed columns specified in a LIKE predicate that "C1" LIKE 'ABC__ '
satisfies both of the following conditions:
. . . . "C1l"™ LIKE 'ABCSE'
¢ A literal is specified as the pattern character string

* The predicate performs a leading-match search specifiedinaway | "C1" LIKE 'AB\ CS$E' ESCAPE '\'
other than that described for priority 4

Escape characters must be specified as literals.
B-tree index with indexed columns specified in a LIKE predicate that "C1" LIKE 'ABCDE'

uses complete-match retrieval with a literal specified as the pattern

character string. "Cl" LIKE 'AB\ CDE' ESCAPE '\'

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 106

Priority

Condition for index

Escape characters must be specified as literals.

B-tree index with indexed columns specified in a LIKE predicate that
specifies a user information acquisition function as the pattern
character string.

Escape characters must be specified as literals.

B-tree index with indexed columns specified in a LIKE predicate in
which a dynamic parameter is used as the pattern character string.
Escape characters must be specified as literals.

B-tree index with indexed columns specified in a LIKE predicate that
specifies a dynamic parameter as an escape character.

A literal, user information acquisition function, or dynamic parameter
must be specified as the pattern character string.

Text index with indexed columns specified in a CONTAINS scalar
function that includes a word-context search specification (in which a
notation-correction-search specification or a synonym-search
specification is not included)*2 #8

Text index with indexed columns specified in a CONTAINS scalar
function that satisfies either of the following conditions’2: #4 #8;
¢ A word-context search specification and notation-correction-
search specification are included.
¢ A word-context search specification and synonym-search
specification are included.

Text index with indexed columns specified in a LIKE predicate®!

Text index with indexed columns specified in a CONTAINS scalar
function (in which a notation-correction-search specification,
synonym-search specification, or word-context search specification is
not included)™?

Text index that satisfies all of the following conditions™!: #3:

* OR logical operators are used to specify multiple conditions that
specify LIKE predicates.

* An indexed column is specified as the match value of the LIKE
predicate.

Text index with indexed columns specified in a CONTAINS scalar

function that includes either of the following specifications’? #4;

¢ Notation-correction-search specification (only when a word-
context search specification is not included)

* Synonym-search specification (only when a word-context search
specification is not included)

Text index that satisfies all of the following conditions?!: #2, #3. #4;

5. Designs Related to Improvement of Application Program Performance

Example of this priority (C1 is the column for
which the index has been defined)

"C1l" LIKE CURRENT USER

"Cl" LIKE CURRENT USER ESCAPE '\'

"Cl" LIKE ?

"C1l" LIKE ? ESCAPE '\'

"C1l" LIKE 'AB\%C%' ESCAPE ?
"C1l" LIKE CURRENT USER ESCAPE ?
"C1l"™ LIKE ? ESCAPE ?

CONTAINS ("C1", '"WORDCONTEXT ("ABC") ') >
0

CONTAINS ("C1", '"WORDCONTEXT (IGNORECAS
E("ABC")) ')>0

CONTAINS ("C1", "WORDCONTEXT (SORTCODE (
"ABC")) ')>O

CONTAINS ("C1", 'WORDCONTEXT (SYNONYM ("
DIC1","ABC")) ')>0

"Cl™ LIKE 'ABC'
"C1l"™ LIKE 'ABCS%'
"Cl" LIKE 'S$ABCS%'
"C1l"™ LIKE
"C1l"™ LIKE °?

CONTAINS ("C1"™, ""ABC"')>0

"C1l"™ LIKE 'ABC' OR "C1" LIKE 'DEF'
"C1l"™ LIKE 'ABC%' OR "Cl1" LIKE 'DEF%'
"Cl" LIKE '%ABC%' OR "Cl1" LIKE 'S$DEF
o

"C1l"™ LIKE ? OR "Cl1" LIKE °?

CONTAINS ("C1", 'IGNORECASE ("ABC") ') >0
CONTAINS ("C1", 'SORTCODE ("ABC") ") >0

CONTAINS ("C1"™, 'SYNONYM ("DIC1","ABC")
"y>0

"C1l"™ LIKE 'SABCS'
OR

Hitachi Advanced Database Application Development Guide

107

Priority Condition for index

¢ At least one each of a condition that specifies a LIKE predicate

and a condition that specifies the CONTAINS scalar function are

specified using the OR logical operator.

¢ An indexed column is specified as the match value of the LIKE
predicate.

¢ Anindexed column is specified in the CONTAINS scalar function.

Text index that satisfies all of the following conditions®2: #3: #4:

¢ Two or more of a condition that specifies the CONTAINS scalar
function are specified using the OR logical operator.

¢ Anindexed column is specified in the CONTAINS scalar function.

10 Text index with indexed columns specified in a match value of a
LIKE_REGEX predicate® #3

11 Text index that satisfies both of the following conditions™3: #4: #5:

» Two or more conditions that specify LIKE REGEX predicates are

specified using an OR logical operator.

* An indexed column is specified in the match values of the
LIKE REGEX predicates.

Text index that meets all of the following conditions®!> #3. #4, #5.

* At least one each of a condition that specifies a LIKE predicate
and a condition that specifies a LIKE REGEX predicate are
specified using an OR logical operator.

¢ An indexed column is specified as a match value of the LIKE
predicate.

¢ An indexed column is specified as a match value of a
LIKE REGEX predicate.

Text index that meets all of the following conditions™2 #3, #4, #5.

* At least one each of a condition that specifies a LIKE REGEX
predicate and a condition that specifies a CONTAINS scalar
function are specified using an OR logical operator.

5. Designs Related to Improvement of Application Program Performance

Example of this priority (C1 is the column for
which the index has been defined)

CONTAINS ("C1", ""DEF""')>0

"C1l"™ LIKE 'S$ABCS%'

OR

CONTAINS ("C1", ""DEF""')>0

OR

CONTAINS ("C1", 'IGNORECASE ("GHI") ') >0

CONTAINS ("C1", ""ABC"')>0
OR
CONTAINS ("C1", ""DEF"')>0

CONTAINS ("C1", '"ABC"'")>0

OR

CONTAINS ("C1", 'IGNORECASE ("ABC") ') >0
OR

CONTAINS ("C1", 'SORTCODE ("ABC") ') >0

CONTAINS ("C1"™, ""ABC"')>0

OR

CONTAINS ("C1", 'IGNORECASE ("DEF") ') >0
OR

CONTAINS ("C1", 'SORTCODE ("GHI") ") >0
OR

CONTAINS ("C1"™, 'SYNONYM ("DIC1","JKL")
"y>0

CONTAINS ("C1", 'WORDCONTEXT ("ABC") ") >
0

OR

CONTAINS ("C1", '"WORDCONTEXT ("DEF") ') >
0

"Cl" LIKE REGEX '"ABC'

"C1l" LIKE REGEX '"“ABC' FLAG
IGNORECASE

"Cl" LIKE REGEX '"ABC'
OR
"Cl" LIKE REGEX '“DEF'

"C1l"™ LIKE 'S$ABCS%'
OR
"Cl" LIKE REGEX '“DEF'

"Cl" LIKE REGEX '"ABC'
OR
CONTAINS ("C1"™, ""XYZ""')>0

Hitachi Advanced Database Application Development Guide

108

Priority

12

13

14

15

16

18

Condition for index

¢ An indexed column is specified in a match value of a
LIKE REGEX predicate.

¢ An indexed column is specified in a CONTAINS scalar function.

Text index that meets all of the following conditions®!> #2, #3, #4, #5.

* Multiple conditions that specify a LIKE predicate, a
LIKE REGEX predicate, and a CONTAINS scalar function are
specified using OR logical operators.

¢ An indexed column is specified as the match value of a LIKE
predicate.

¢ An indexed column is specified in a match value of a
LIKE_ REGEX predicate.

¢ An indexed column is specified in a CONTAINS scalar function.

B-tree index with indexed columns specified in an IN predicate whose
comparison values are value specifications only

B-tree index with indexed columns specified in an IN predicate whose
comparison values are only value specifications that include scalar
operations

B-tree index with indexed columns specified in a BETWEEN predicate

B-tree index with indexed columns specified in a range condition that
combines two comparison predicates

B-tree index with indexed columns specified in an IN predicate that
satisfies the following condition:

* A subquery is specified whose comparison values do not include
an external reference column.

B-tree index with indexed columns specified in an =ANY condition
that specifies a subquery that does not include an external reference
column

B-tree index with indexed columns specified in a =SOME condition
that specifies a subquery that does not include an external reference
column

B-tree index with indexed columns specified in a >, >=, <, or <=
condition

B-tree index with indexed columns specified in an IN predicate whose
comparison values include a column specification

B-tree index with indexed columns specified in a condition that
specifies an OR logical operator™®

B-tree index with indexed columns specified in a LIKE predicate that
satisfies both of the following conditions™’:

¢ A literal is specified in the pattern character string.

5. Designs Related to Improvement of Application Program Performance

Example of this priority (C1 is the column for
which the index has been defined)

"Cl" LIKE REGEX '~ABC'

OR
"Cl" LIKE 'SDEFS%'
OR

CONTAINS ("C1"™, '"XYZ"')>0

"Cl"™ IN (10,20,30)

"Cl" IN (10,20,30+?)

"T1"™."Cl" IN (CASE WHEN 100=? THEN
10 ELSE 20 END, 30,40)

"C1l" BETWEEN 20 AND 40
"C1l"™ BETWEEN 20 AND 40+?

"T1"."Cl" BETWEEN "T2"."C1l"-6 MONTH
AND "TZ"-"C]."

"C1l">=20 AND "C1"<=40

"Cl" IN (SELECT "C1" FROM "T2")

"C1"=ANY (SELECT "C1" FROM "T2")

"C1"=SOME (SELECT "C1" FROM "T2")

"C1">50

"C1M<=200

"C1">=50+2

"TIMLUCLY <MT2M.UCLM || 'K
"T1M."C1" IN (10,"T2"."C1")
"T1M."Cl" IN (10,"T2"."C1"+2,50)

"C1l"<20 OR "C1">40

"Cl" LIKE '%BCD%'

"Cl" LIKE '$B\ CD%' ESCAPE '\'

Hitachi Advanced Database Application Development Guide

109

Priority Condition for index Example of this priority (C1 is the column for
which the index has been defined)

¢ The search is not a leading-match search.

B-tree index with indexed columns specified in a LIKE predicate that "T1"."C1" LIKE "T2"."C2" || '%'
satisfies the following condition:

* The pattern character string specifies a value expression that
contains a column specification.

B-tree index with indexed columns specified in a LIKE predicate that "C1" LIKE CURRENT_USER || 'S%'
satisfies the following condition:

* The pattern character string specifies a value expression that
contains a scalar operation.

B-tree index with indexed columns specified in a LIKE predicate that = "T1"."C1" LIKE 'A\%B@ C%'
satisfies the following condition: ESCAPE "T2"."C1"

* A value expression that specifies a column specification is
specified in an escape character.

B-tree index with indexed columns specified in a LIKE predicate that "C1" LIKE 'A\%B@ C%' ESCAPE CASE
satisfies the following condition: WHEN 10=? THEN '\' ELSE '@' END

¢ A value expression that includes a scalar operation is specified in
an escape character.

Notes

* For a multiple-column index, the priority shown in this table is applied sequentially starting from the first B-
tree indexed column.

* Basically, the index to be used is determined by the priority shown above. However, depending on the specified
search conditions, the priority shown above might not result in an effective evaluation. In this case, a index that
does not follow the above priority might be used. If you want to check the index that was actually used for a
retrieval, see 5.2.5 How to check the index used during execution of an SQL statement.

#1
This condition does not apply when the LIKE predicate specifies a pattern character string in the following formats:

* The pattern character string consists only of the special character %.
Example: "C1" LIKE '%'

* The pattern character string is an empty string.
Example: "C1" LIKE ''

¢ The pattern character string does not specify two or more consecutive non-special characters.
Example: "C1" LIKE '%A%', "C1" LIKE '$A%B%'
* The pattern character string specifies a column in the same table as the column in the match value.
Example: "T1"."C1" LIKE "T1"."C2"
#2

This condition does not apply when the CONTAINS scalar function specifies a search character string in the following
formats. It does apply if a synonym-search specification is not specified, or one is specified but its synonym does
not exist in relation to the search character string.

¢ The search character string is an empty string.
Example 1: CONTAINS ("C1", """ ")>0
Example 2: CONTAINS ("C1", ' IGNORECASE ("") ') >0
Example 3: CONTAINS ("C1", 'SORTCODE ("") ') >0

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 110

#3

#4

#5

#6

#7

Example 4: CONTAINS ("C1", '"WORDCONTEXT ("") ') >0
Example 5: CONTAINS ("C1", '"WORDCONTEXT PREFIX("")"')>0

* The search character string consists of a single character.
Example 1: CONTAINS ("C1", ""A"')>0
Example 2: CONTAINS ("C1", ' IGNORECASE ("A™) ') >0
Example 3: CONTAINS ("C1", 'SORTCODE ("A") ') >0
Example 4: CONTAINS ("C1", "WORDCONTEXT ("A") ') >0
Example 5: CONTAINS ("C1", 'WORDCONTEXT PREFIX("A™)')>0

'C
'C
This condition also does not apply when a synonym-search specification is specified in a CONTAINS scalar

function and its synonym exists in relation to the search character string, if the synonym is a single character
such as A.

* A word-context search specification is included in a CONTAINS scalar function, and the number of characters
in the search character string after elimination of the following symbols is no more than 1:

» Half-width space (0x20),tab (0x09), line break (0x02), return (0x0D), period, question mark, exclamation
mark, and other single-byte symbols (0x21 to 0x2F, 0x3A to 0x40, 0x5B to 0x60, and 0x7B to 0x7E)
Example 1: CONTAINS ("C1", '"WORDCONTEXT ("###A™) ') >0
Example 2: CONTAINS ("C1", 'WORDCONTEXT PREFIX ("H##H#A") ") >0

Every condition included in the scope of the OR logical operator must be one that uses a LIKE predicate, a
LIKE REGEX predicate, or a CONTAINS scalar function. All columns in the OR logical operator must be indexed
columns of the text index subject to selection.

In either of the following circumstances, only text indexes defined with CORRECTIONRULE (notation-correction-
search text-index specification) specified in a CREATE INDEX statement are subject to selection.

* A LIKE REGEX predicate is specified that specifies IGNORECASE (or I) for FLAG.

* A CONTAINS scalar function is specified that specifies a notation-correction-search specification.

This condition does not apply when the regular expression character string of the LIKE REGEX predicate consists
of 1 or fewer characters.

All the columns included in the OR logical operator must be indexed columns of the B-tree index subject to selection.
The index priority order might change depending on the number of predicates and the format of the condition
specified in the OR logical operator.

This condition does not apply if the data type of an indexed column for which a LIKE condition is specified is a
variable-length character string data type and a pattern character string in one of the following formats:
» The special character % (percent sign) is not specified at the end.
Example 1: "C1" LIKE '$BCD'
Example 2: "C1" LIKE '%$BCD '
* The special character % (percent sign) specified at the end is preceded by a single-byte space or the special
character _ (underscore).
Example 1: "C1" LIKE '$BCDA%'

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 111

Example 2: "C1" LIKE '$BCD %'
Legend: A: Half-width space

#8
Only a text index for a word-context search can be selected as the index to be used during a search.

(2) Selection rules for indexes

The index priority described in (1) Index priority is not the only factor that determines which index is used during
execution of an SQL statement. The conditions described here are just one of the factors that determine which index is
selected.

(a) Selection rules for B-tree indexes

The following table describes the selection rules for B-tree indexes.

Note that selection rules are applied sequentially in ascending order. That is, if selection rule No. 1 does not determine
which index to use, selection rule No. 2 is applied next.

Table 5-2: Selection rules for B-tree indexes

Selection rule Method of condition specification

1 An = condition is specified for all columns of a unique index.
2 The index with a = join condition contained in consecutive = conditions at the beginning of a search condition is prioritized.
3 If a search condition is specified for the first B-tree indexed column of the indexes, selection is based on the priority of

that search condition.

4 The index with more search conditions is prioritized.
5 The index with more key conditions is prioritized.
6 The index with fewer indexed columns is prioritized. For indexes that satisty selection rule 1, the index with more indexed

columns is prioritized.

7 An index that uses a condition specified previously in an SQL statement as a search condition is prioritized.

8 An index that does not create a work table is prioritized.

9 A unique index is prioritized. For indexes for which no search condition is specified, the non-unique index is prioritized.
10 The index with the shorter key length is prioritized.

11 If none of selection rules from 1 to 10 is applied, the B-tree index is selected depending on internal processing.

For details about search conditions and key conditions, see 5.4.1 Evaluation method when B-tree indexes are used.

(b) Selection rules for text indexes

The following table describes the selection rules for text indexes.

Note that selection rules are applied sequentially in ascending order. That is, if selection rule No. 1 does not determine
the index to use, selection rule No. 2 is tested next.

Table 5-3: Selection rules for text indexes

Selection rule Method of condition specification

1 ¢ A text index that can evaluate more conditions that specify LIKE predicates is prioritized.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 112

Selection rule Method of condition specification

* A text index that can evaluate more conditions that specify LIKE REGEX predicates is prioritized.

¢ A text index that can evaluate more conditions that specify the scalar function CONTAINS is prioritized.

2 ¢ A text index with the longer pattern character string for LIKE predicates is prioritized.
* A text index with the longer regular expression character string for LIKE REGEX predicates is prioritized.

* A text index with the longer search character string for the scalar function CONTAINS is prioritized.
3 A text index with the shorter indexed column definition is prioritized.

4 * A text index that evaluates fewer LIKE predicates, LIKE REGEX predicates, and CONTAINS scalar functions
specified in OR conditions is prioritized.

* If CONTAINS scalar functions that specify synonym-search specification are specified, the number of synonyms for
the search string is added to the number of such scalar functions and compared.

5 If none of selection rules 1 to 4 result in an index being selected, internal processing determines the text index that is
selected.

(c) Notes

* If HADB determines that it cannot use the index effectively based on cost information or other resources, these
selection rules might be set aside in favor of a different approach.

* If HADB determines that it cannot use the index effectively for such reasons as only not predicates being specified
in the search conditions for a WHERE clause or the ON search condition for a joined table, the index might not be
used.

5.2.2 Examples of indexes that are used during retrieval of a table

This section describes examples of indexes that are used during retrieval of a table.

(1) Example 1 (B-tree index(single-column indexes))

Example of the B-tree index definition:

CREATE INDEX "IDX C1"
ON "Tl" ("Cl")
IN "DBAREAO1"
EMPTY

Example of the SELECT statement to be executed:

SELECT "C1","C2","C3" FROM "T1"
WHERE "C1"=100

SELECT "C1","C2","C3" FROM "T1"
WHERE "C1">100 AND "C2"='U0100"

When the SELECT statement shown above is executed, B-tree index IDX C1 is used.

m When a B-tree index is not used
A B-tree index is not used in the following case.
Example of the B-tree index definition:

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 113

CREATE INDEX "IDX C1"
ON "Tl" ("Cl")
IN "DBAREAOL"
EMPTY

Example of the SELECT statement to be executed:

SELECT "C1","C2","C3" FROM "T1"
WHERE "C1">100 OR "C2"='U0100"

With an OR condition, if a B-tree index is defined only for column C1 (or only for column C2), that B-tree index is
not used. Therefore, when the SELECT statement shown above is executed, B-tree index IDX_ C1 is not used.

If B-tree indexes are defined for both columns C1 and C2, those B-tree indexes are not used.

(2) Example 2 (B-tree index (multiple-column indexes))

Example of the B-tree index definition:

CREATE INDEX "IDX C2C1"
ON "Tl" ("C2","C1")
IN "DBAREAOL"
EMPTY

Example of the SELECT statement to be executed:

SELECT "C1","C2","C3" FROM "T1"
WHERE "C1"=100

SELECT "C1","C2","C3" FROM "T1"
WHERE "C2"='U0100"

SELECT "C1","C2","C3" FROM "T1"
WHERE "C1">100 AND "C2"='U0100"

SELECT "C1","C2","C3" FROM "T1"
WHERE "C1">100 OR "C2"='U0100"

If the SELECT statement shown above is executed, B-tree index IDX C2C1 is used.

(1) and (2) above are typical examples of cases in which a B-tree index is used and in which a B-tree index is not used.
Even in the case above where the B-tree index is used, the B-tree index might not actually be used depending on the
format of the specified search condition. For details about how to determine the B-tree index that was actually used

during retrieval, see 3.2.5 How to check the index that was used for retrieval.

(3) Example 3 (text index)

Example of text index definition:

CREATE INDEX "IDX TXT C1"
ON "T1" ("C1")
IN "DBAREAOL1"
EMPTY
INDEXTYPE TEXT

Example of SELECT statement to execute:

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide

114

SELECT "C1","C2","C3" FROM "T1"
WHERE "C1" LIKE '%XYZ7%'

SELECT "C1","C2","C3" FROM "T1"
WHERE "C1" LIKE '%XYZ%' AND "C2"='U0100"'

When you execute this SELECT statement, HADB uses the text index IDX TXT C1.

= Scenario in which a text index is not used
In the following scenario, the text index will not be used.
Example of text index definition:

CREATE INDEX "IDX_TXT_C1"
ON "Tl" ("61")_
IN "DBAREAOL"
EMPTY
INDEXTYPE TEXT

Example of SELECT statement to execute:

SELECT "C1","C2","C3" FROM "T1"
WHERE "C1" LIKE '$XYZ%' OR "C2"='U0100"

In the case of an OR condition, if a text index is defined only for column C1 (or only for column C2), then that text
index will not be used. Consequently, when you execute this SELECT statement, HADB does not use the text index
IDX TXT CI1.

The examples described in (1) to (3) are representative examples of situations in which indexes are used and not used.
In any of these examples in which the index is used, the index might not be used if the search condition is written in a
certain way. If you want to check the index that will actually be used for a retrieval, see 5.2.5 How to check the index
used during execution of an SQL statement.

5.2.3 Examples of indexes that are used during retrieval of a table
(examples of index priority)

If multiple indexes are defined for a table, the index to be used is determined on the basis of the priority shown in
Table 5-1: Index priority when multiple indexes are defined for a table.

This section explains typical examples of the priority of indexes that are used during retrieval of a table.

If you want to check the index that will actually be used for a retrieval, see 5.2.5 How to check the index used during
execution of an SQL statement.

(1) Example 1 (priority between single-column indexes)

The following is an example of the relative priority between B-tree indexes (single-column indexes):

Example of the B-tree index definition:

CREATE INDEX "IDX C1"
ON "Tlll ("Cl")
IN "DBAREAO1"
EMPTY

CREATE INDEX "IDX C2"

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 115

ON "Tl" ("CZ")
IN "DBAREAQO1"
EMPTY

Example of the SELECT statement to be executed:

SELECT "C1","C2","C3" FROM "T1"
WHERE "C1">100 AND "C2"='U0100"

In this example, the B-tree index IDX C1 has a priority of 15, and the B-tree index IDX C2 has a priority of 2. As
such, the B-tree index IDX C2 is used for retrieval.

0 Important

In the example above, if only one of the B-tree indexes is selected to be used on the basis of the priority,
change the search condition, if possible, in such a manner that the B-tree index that can narrow the search
most effectively will be used. You can expect an improvement in performance by using a B-tree index that
provides more effective narrowing.

(2) Example 2 (priority between single-column indexes)

The following is an example of the relative priority between B-tree indexes (single-column indexes):

Example of the B-tree index definition:

CREATE INDEX "IDX C1"
ON "Tl" ("Cl")
IN "DBAREAOL1"
EMPTY

CREATE INDEX "IDX C2"
ON "Tl" ("CZ")
IN "DBAREAOL1"
EMPTY

Example of the SELECT statement to be executed:

SELECT * FROM "T1"
WHERE "C2"='U0100' AND "C1"=100

In this example, B-tree indexes IDX C1 and IDX C2 both have a priority of 2. Because a B-tree index for the first
column specified in the search condition has the higher priority, B-tree index IDX C2 is used for retrieval.

(3) Example 3 (priority between multiple-column indexes)

The following is an example of the relative priority between B-tree indexes (multiple-column indexes):

Example of the B-tree index definition:

CREATE INDEX "IDX ClcC2"
ON "Tl" ("CI","CZ")
IN "DBAREAOL"
EMPTY

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 116

CREATE INDEX "IDX C2C3"
ON "Tl" ("C2","C3")
IN "DBAREAOL"
EMPTY

Example of the SELECT statement to be executed:

SELECT "C1","C2","C3" FROM "T1"
WHERE "C2"='U0100"

In this example, B-tree index IDX C2C3 is used.

IDX C1C2 has column C2 as its second indexed column, while IDX C2C3 has column C2 as its first indexed
column, so IDX C2C3 is used.

(4) Example 4 (priority between single-column index and multiple-column
index)

The following is an example of the relative priority between single-column and multiple-column B-tree indexes:

Example of the B-tree index definition:

CREATE INDEX "IDX C1"
ON "Tl" ("Cl")
IN "DBAREAOQO1"
EMPTY

CREATE INDEX "IDX C3C2"
ON "Tl" ("C3","C2")
IN "DBAREAOQO1"™
EMPTY

Example of the SELECT statement to be executed:

SELECT "C1","C2","C3" FROM "T1"
WHERE "C1">100 AND "C2"='U0100"

In this example, B-tree index IDX C1 is used.

IDX C3C2 has column C2 as its second indexed column, while IDX C1 has column C1 as its indexed column, so
IDX C1 is used.

(5) Example 5 (priority between single-column index and multiple-column
index)

The following is an example of the relative priority between single-column and multiple-column B-tree indexes:

Example of the B-tree index definition:

CREATE INDEX "IDX C1"
ON "Tlll ("Cl")
IN "DBAREAOL"
EMPTY

CREATE INDEX "IDX C2C3"

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 117

ON "Tl" ("CZ","C3")
IN "DBAREAOL"
EMPTY

Example of the SELECT statement to be executed:

SELECT "C1","C2","C3" FROM "T1"
WHERE "C1">100 AND "C2"='U0100"

In this example, the B-tree index IDX C1 has a priority of 15, and the B-tree index IDX C2C3 has a priority of 2. As
such, the B-tree index IDX C2C3 is used.

IDX C1 that has column C1 as an indexed column and IDX C2C3 that has column C2 as the first indexed column
are subject to comparison to determine priority, as shown in Table 5-1: Index priority when multiple indexes are defined
for a table.

(6) Example 6 (priority between text index and B-tree index)

The following is an example of the relative priority of a text index and B-tree index (single-column index).

Example of index definitions:

CREATE INDEX "IDX TXT C1" <- Definition of text index
ON "Tl" ("Cl")
IN "DBAREAOL"
EMPTY

INDEXTYPE TEXT

CREATE INDEX "IDX C2" <- Definition of B-tree index
ON "Tl" ("C2")
IN "DBAREAQOL1"
EMPTY

Example of SELECT statement to execute:

SELECT "C1","C2","C3" FROM "T1"
WHERE "C1" LIKE '$XY7Z%' AND "C2" LIKE 'ABC%'

In this example, the text index IDX TXT C1 has a priority of 8, and the B-tree index IDX C2 has a priority of 4. As
such, the B-tree index IDX C2 is used for retrieval.

0 Important

In this scenario, if the relative priority results in only one of the indexes being used, if possible, change the
search condition so that the index that can narrow the search scope most effectively is used. You can expect
to see an improvement in performance by using an index that more efficiently narrows the search scope.

(7) If you want to change the index to be used during retrieval

This subsection explains how to change the index to be used during retrieval.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 118

(a) If there are multiple indexed columns with the same priority value, specify the one
that you want to use first

As explained in (2) Example 2 (priority between single-column indexes), a B-tree index for the first column specified
in the search condition is used if multiple indexes with the same priority value are specified. You can use this rule to
change the B-tree index to be used. The following example changes the search condition specification:

Before change:

SELECT * FROM "T1"
WHERE "C3"='AQO1l' AND "C2"='U0100"'

After change:

SELECT * FROM "T1"
WHERE "C2"='U0100' AND "C3"='AQ01'

Before the change, B-tree index IDX C3 defined for column C3 would be used, but after change, B-tree index IDX C2
defined for column C2 is used.

(b) To lower the priority value of the current index that is used

You can lower the priority value of the index that would be used, so that another index will be used. The following
example changes the search condition specification:
Before change:

SELECT * FROM "T1"
WHERE "C1"=100 AND "C2" LIKE 'ABC%'

After change:

SELECT * FROM "T1"
WHERE "C1" BETWEEN 100 AND 100 AND "C2" LIKE 'ABC%'

Before the change, the priority of IDX C1 was 2 and the priority of IDX C2 was 4, but after the change, the priority
of IDX C1 is 13. Therefore, B-tree index IDX C1 would have been used before the change, but B-tree index IDX C2
will be used after the change.

(c) Using the index specification
You can specify the index to be used for retrieval. The following shows an example.

Before change:

SELECT * FROM "T1"
WHERE "C1"=100 AND "C2" LIKE 'ABC%'

The priority of B-tree index IDX C1 defined for column C1 is 2 and the priority of B-tree index IDX C2 defined
for column C2 is 4. Therefore, B-tree index IDX C1 is used.

After change:

SELECT * FROM "T1" /*>> WITH INDEX (IDX C2) <<*
WHERE "C1"=100 AND "C2" LIKE 'ABC%'

You can specify the index to be used for retrieval by using the index specification indicated by the underlining.
When the SELECT statement shown here is executed, index IDX C2 will be used.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 119

For details about the index specification, see Index specification in the manual HADB SQOL Reference.

5.2.4 Cases where an index is not used

If any of the following search conditions is specified, no index is used. In the examples below, C1 and C2 are the names
of table columns.

* Negative conditions are specified.

As shown in the example below, if a index that has column C1 as its indexed column is defined, but negative
conditions are specified as the search conditions, that index is not used.

Example:

WHERE "C1"<>100

WHERE "C1" IS NOT NULL

WHERE "C1" NOT LIKE 'ABC%'

WHERE "C1" NOT IN (10,20,30)

WHERE "C1" NOT BETWEEN 20 AND 40
* Logical operator NOT is specified.

Example:

WHERE NOT ("C1"=100)

* Conditions containing scalar operations, such as arithmetic operations and CASE expressions, are specified.

As shown in the example below, if an index that has column C1 as its indexed column is defined, but the specified
search condition contains a scalar operation, such as arithmetic operations or CASE expressions, that index is not
used.

Example:
WHERE C1*10=200
When a scalar operation is specified in a certain way, its search condition is automatically subjected to equivalent

exchange to allow the use of indexes. For details about equivalent exchange for scalar operations, see 5.11.4
Equivalent exchange for scalar operations.

If only literals are specified in a scalar operation, that scalar operation might be treated as a literal. For details about
scalar operations equivalent to literals, see the table Conditions under which value expressions are equivalent to
literals under Rules in Specification format and rules for value expressions in the manual HADB SQL Reference.

* An IN subquery in which is specified a subquery containing an external reference column is specified.

Example:

WHERE "T1"."C1"™ IN (SELECT "C1" FROM "T2" WHERE "C2"="T1"."C2")

* An=ANY quantified predicate in which is specified a subquery containing an external reference column is specified.

Example:

WHERE "T1"."C1"=ANY (SELECT "C1" FROM "T2" WHERE "C2"="T1"."C2")

* An=SOME quantified predicate in which is specified a subquery containing an external reference column is specified.

Example:

WHERE "T1"."C1"=SOME (SELECT "C1" FROM "T2" WHERE "C2"="T1"."C2")

* A quantified predicate other than =ANY or =SOME is specified.

Example:

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 120

WHERE "C1"<>ANY (SELECT "C1" FROM "T2")
WHERE "C1"<>SOME (SELECT "C1" FROM "T2")
WHERE "C1"=ALL (SELECT "C1" FROM "T2")

e The EXISTS predicate is specified.

Example:

WHERE EXISTS (SELECT * FROM "T2")

* The pattern character string of a LIKE predicate is specified as follows:

e The pattern character string consists only of the special character %.
Example:

WHERE "C1" LIKE '%'

* The pattern character string is an empty string.
Example:

WHERE "C1" LIKE ''

» The pattern character string does not contain two or more consecutive non-special characters.

Example:
WHERE "C1" LIKE '3%AS'
WHERE "C1" LIKE '3%A%BS'

» The pattern character string specifies a column in the same table as the column in the match value.
Example:

WHERE "T1"."C1"™ LIKE "T1"."C2"

When search conditions are specified as in the preceding examples, even if a text index is defined that has the C1
column as an indexed column, that index will not be used.

5.2.5 How to check the index used during execution of an SQL statement

You can check which index was used during execution of an SQL statement by checking the access path. For details
about access paths, see the following sections:

* How to check access paths
See 6.1.2 How to check access paths.

* Information displayed in access paths

See (b) Information related to indexes in (1) Information related to table retrieval methods and indexes in 6.1.5
Information displayed in the details view.

By checking access paths, you can find out whether indexes were used as intended.

If an index is defined for a target table, it is used for search processing according to the specified search condition.
However, depending on the specified search condition, the index might not be used or a different index might be used
unexpectedly. If the results obtained by the above check indicate that the index was not used as intended, the specified
search condition or index definition might not be appropriate. In such a case, consider changing the index definition or
the search condition.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 121

If the index definition needs to be changed, the application program developer must request that the HADB system
designer or system administrator change the index definition.

5.2.6 Notes on searching using a text index

If you use the logical operator OR to specify multiple LIKE predicates, LIKE REGEX predicates, or CONTAINS scalar
functions that specify text indexed columns, the search is conducted using the search strings from all the conditions.
Example: Suppose that C1 is a text indexed column.

SELECT * FROM "T1" WHERE "C1" LIKE 'ABCDEFG%'
OR "C1" LIKE REGEX 'XYZ[0-91+'

When this SELECT statement is executed, the search strings (ABCDEFG% and XYZ [0-9] +) specified in the
conditions of the LIKE predicate and the LIKE REGEX predicate are used in the search processing.

If the total number of characters in the pattern character strings specified in the LTKE predicates, the regular expressions
in LIKE REGEX predicates, and the search conditions in CONTAINS scalar functions exceeds 1,000 characters, search
processing might slow down significantly. If the total number of characters is 1,001 or more, consider using one of the
following approaches:

* Change the SQL statement, for example by using a UNION to join the search results.

* Use index specification or other means to conduct a search that avoids the use of a text index.

For details about the UNION statement, see Query expression in the manual HADB SQL Reference. For details about
index specification, see Index specification in the manual HADB SQL Reference.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 122

5.3 Range indexes used during execution of SQL statements

This section explains how to determine the range indexes are used during execution of SQL statements, and how to
check the range index used during execution of an SQL statement.

5.3.1 Conditions under which range indexes are used during execution of

an SQL statement

Ifrange indexes are defined for a table, whether the range indexes are actually used during execution of an SQL statement
is determined by the search conditions specified in the WHERE clause, the ON search conditions for joined tables, and
the B-tree indexes or text indexes used during execution of an SQL statement.

This subsection explains the conditions under which range indexes are used for skipping chunks, and the conditions
under which they are used for skipping segments.

Notes

The conditions explained here are those, used by range indexes, that are applied to query expressions after
expansion of internal derived tables or applied to search conditions converted by an equivalent exchange of
search conditions. For details about expanding internal derived tables, see Internal derived tables in the manual
HADB SQL Reference. For details about the equivalent exchange of search conditions, see 5.11 Equivalent
exchange of search conditions.

If only literals are specified in a scalar operation in the value expression specified in the search conditions, that
scalar operation might be treated as a literal. For details about scalar operations equivalent to literals, see the
table Conditions under which value expressions are equivalent to literals under Rules in Specification format
and rules for value expressions in the manual HADB SQL Reference.

When joining tables, range indexes might not be used when evaluating the join condition. This depends on the
method used to join the table. For details about table joining methods, see 5.5 Table joining methods.

If subqueries are specified, depending on how they are processed, the range index might not be used. For details
about how to process subqueries, see 5.6 How to process subqueries.

(1) Range indexes used for skipping chunks

If all the conditions shown in the following table are satisfied, a range index is used to skip chunks during execution of
an SQL statement.

Table 5-4: Conditions under which range indexes are used

No.

1

Conditions under which range indexes are used Example

A range-indexed column must be specified in one of the predicates listed below in a search condition --
specified in the WHERE clause or in an ON search condition for joined tables.

¢ Comparison predicate Example 1
Note that no range index is used if the same table's columns are specified in both the left-hand and the = Example 2
right-hand terms of a comparison operator. Example 3

Example 14
Example 15

* BETWEEN predicate Example 4

Note that no range index is used if the same table's columns are specified in value expression 1 and Example 5

value expression 2 or 3.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 123

No. Conditions under which range indexes are used

e IN predicate (value expression)

Note that no range index is used if the same table's columns are specified in value expression 1 and
value expression 2 or any subsequent value expression.

e IN predicate (table subquery)

The range index is used in only a case where hash execution is applied as the subquery processing
method.

e LIKE predicate
If LIKE is specified, one of the following conditions must be satisfied. Note that if ESCAPE is specified
in the LIKE predicate, the escape characters must be specified in a literal or a dynamic parameter.
* Only a user information acquisition function is specified in the pattern character string.
* Only a dynamic parameter is specified in the pattern character string.

* Only a literal that begins with 'character-string%' (% is a special character) is specified in the
pattern character string.
* Only a literal that begins with 'character-string '(_is a special character) is specified in the
pattern character string.

* Only a literal that does not contain a special character (% or) is specified in the pattern character
string (complete match).

If NOT LIKE is specified, one of the following conditions must be satisfied:
* Only a dynamic parameter is specified in the pattern character string.

* Only a literal that begins with 'character-string%' (% is a special character) is specified in the
pattern character string.

* Quantified predicate

The range index is used in only a case where hash execution is applied as the subquery processing
method.

2 If a predicate explained in 1 is specified in the condition using the logical operator OR or NOT, no range
index is used.

3 If a scalar operation is used in a predicate explained in 1, no range index is used.

4 If columns from three or more different tables are specified in a predicate explained in 1, no range index is
used.

5 ¢ A predicate explained in 1 is specified in a subquery that contains an external reference column and

nested loop execution is applied as the subquery processing method.
However, if a predicate explained in 1 contains external reference columns, range indexes whose indexed
columns are those external reference columns are not used.

* A predicate explained in 1 is specified in a subquery that contains an external reference column and
hash execution is applied as the subquery processing method.
The range index is used in only a case where a predicate explained in 1 contains an external reference
column in external-reference-column=column-specification format or column-specification=external-
reference-column format.

If multiple range indexes that satisfy all the conditions in Table 5-4: Conditions under which range indexes are used

are defined for the table, all range indexes that satisfy all conditions are used.

To determine if a range index can be used for skipping chunks, see Checking a range index (whether it can skip chunks)

in the HADB Setup and Operation Guide.

(2) Range indexes used for skipping segments

If all the conditions shown in Table 5-4: Conditions under which range indexes are used are satisfied, a range index is
used to skip segments during execution of an SQL statement. If multiple range indexes that satisfy all the conditions in
Table 5-4: Conditions under which range indexes are used are defined for the table, all range indexes that satisfy all

conditions are used.

5. Designs Related to Improvement of Application Program Performance

Example

Example 6
Example 7

Example 17

Example 8
Example 9

Example 17

Example 10

Example 11

Example 12

Example 13
Example 16

Hitachi Advanced Database Application Development Guide

However, if a B-tree index or text index is used during execution of an SQL statement, segments are not skipped by
using a range index.

5.3.2 Examples of range indexes used during retrieval

(1) Example 1

Definition of range indexes

CREATE INDEX "RIDX1"™ ON "T1" ("C1") IN "DBAREAO1" EMPTY INDEXTYPE RANGE

Example SQL statement
SELECT * FROM "T1" WHERE "C1">10

Explanation:

In this example, range index RIDX1 is used to skip chunks and segments that do not contain data that satisfies the
conditions.

(2) Example 2

Definition of range indexes

CREATE INDEX "RIDX1"™ ON "T1" ("C1") IN "DBAREAO1" EMPTY INDEXTYPE RANGE
CREATE INDEX "RIDX2" ON "T1" ("C2") IN "DBAREAO1" EMPTY INDEXTYPE RANGE
CREATE INDEX "RIDX3"™ ON "T1" ("C3") IN "DBAREAQO1" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1"=10 AND "C2">20 AND "C3">30

Explanation:

In this example, range indexes RIDX1, RIDX2, and RIDX3 are used to skip chunks and segments that do not contain
data that satisfies the conditions.

(3) Example 3 (range indexes are not used)

Definition of range indexes

CREATE INDEX "RIDX1"™ ON "T1" ("C1") IN "DBAREA(O1" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1">"C2"

Explanation:

When columns from the same table are specified in the right-hand and left-hand terms of a comparison operator, a
range index is not used (chunks and segments that do not contain data that satisfies the conditions are not skipped).
In this example, range index RIDX1 is not used because columns C1 and C2 both belong to table T1.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 125

(4) Example 4

Definition of range indexes

CREATE INDEX "RIDX1"™ ON "T1" ("C1l") IN "DBAREA(O1" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1" BETWEEN 10 AND 30

Explanation:

In this example, range index RIDX1 is used to skip chunks and segments that do not contain data that satisfies the
conditions.

(5) Example 5 (range indexes are not used)

Definition of range indexes

CREATE INDEX "RIDX1"™ ON "T1" ("C1") IN "DBAREAO1" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1" BETWEEN "C2" AND "C3"

Explanation:

When columns from the same table are specified in value expression 1 and value expression 2 or 3, a range index
is not used (chunks and segments that do not contain data that satisfies the conditions are not skipped). In this
example, range index RIDX1 is not used because columns C1, C2, and C3 all belong to table T1.

(6) Example 6

Definition of range indexes

CREATE INDEX "RIDX1" ON "TI1"("C1l") IN "DBAREAQO1" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1" IN (10,20,30)

Explanation:

In this example, range index RIDX1 is used to skip chunks and segments that do not contain data that satisfies the
conditions.

(7) Example 7 (range indexes are not used)

Definition of range indexes

CREATE INDEX "RIDX1"™ ON "T1" ("C1l") IN "DBAREAO1" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1" IN ("C2",20,30)

Explanation:

When columns from the same table are specified in value expression 1 and value expression 2 or any subsequent
value expression, a range index is not used (chunks and segments that do not contain data that satisfies the conditions

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 126

are not skipped). In this example, range index RIDX1 is not used because columns C1 and C2 both belong to table

T1.

(8) Example 8

Definition of range indexes

CREATE INDEX

"RIDX1"

Example SQL statement

SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT

Explanation:

b . S R S . S S S S e

FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM

"Tl"
"Tl"
"Tl"
wpn
"Tl"
"Tl"
wpn
"Tl"
"Tl"
"Tl"
"Tl"
wpn
"Tl"
"Tl"
wpn

WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE

"Cl "
llcl"
"Cl"
Ilclll
"Cl"
"Cl"
Hclll
"cln
"Cl "
llcl"
"Cl"
Ilclll
"Cl"
"Cl"
Hclll

ON "T1" ("C1") IN "DBAREAQO1" EMPTY INDEXTYPE RANGE

LIKE CURRENT USER
LIKE °?

LIKE 'ABC%'

LIKE 'ABCRE'

LIKE 'ABC%ES%'

LIKE 'ABC%ESG'

LIKE 'ABC '

LIKE 'ABC E'

LIKE 'ABC E '

LIKE 'ABC E G'

LIKE 'ABC'

NOT LIKE °?

NOT LIKE 'ABCS%'

LIKE 'AB\ C%' ESCAPE '\'

NOT LIKE 'AB\ C%' ESCAPE '\'

In this example, range index RIDX1 is used to skip chunks and segments that do not contain data that satisfies the
conditions when any of these SELECT statements is executed.

If a dynamic parameter is specified in the LIKE predicate, the range index is used. However, if the pattern character
string that does not satisfy the following conditions is specified, there is no benefit to using range indexes:

e LIKE

* A pattern character string that starts with 'character-string%' (% is a special character)

* A pattern character string that starts with 'character-string '(_ is a special character)

* A pattern character string that does not contain special character ¢ or _ (complete match)

e NOT LIKE

* The pattern character string 'character-string%' (% is a special character)

(9) Example 9 (range indexes are not used)

Definition of range indexes

CREATE INDEX

"RIDX1"

Example SQL statement

SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT

. S R S S S

FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM

"Tl"
"Tl"
"Tl"
wpn
"Tl"
"Tl"
wpn
"Tl"
"Tl"

WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE

"Cl "
llcl"
"Cl "
llclll
"Cl"
"Cl "
llclll
"Cl"
"Cl "

ON "T1" ("C1"™) IN "DBAREAQO1" EMPTY INDEXTYPE RANGE

LIKE '$ABCS%'

LIKE '%ABC'

LIKE ' ABC '

LIKE ' ABC'

NOT LIKE CURRENT USER
NOT LIKE 'ABCSE'

NOT LIKE 'ABCSES'

NOT LIKE 'ABCSE%G'
NOT LIKE 'S$ABCS'

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 127

SELECT * FROM "T1" WHERE "C1" NOT LIKE 'S$ABC'

SELECT * FROM "T1" WHERE "C1" NOT LIKE 'ABC '

SELECT * FROM "T1" WHERE "C1" NOT LIKE 'ABC E'

SELECT * FROM "T1" WHERE "Cl1" NOT LIKE 'ABC E '

SELECT * FROM "T1" WHERE "C1" NOT LIKE 'ABC E G'

SELECT * FROM "T1" WHERE "C1" NOT LIKE ' ABC '

SELECT * FROM "T1" WHERE "C1" NOT LIKE ' ABC'

SELECT * FROM "T1" WHERE "C1" NOT LIKE 'ABC'

SELECT * FROM "T1" WHERE "C1" LIKE '$AB\ C%' ESCAPE '\'
SELECT * FROM "T1" WHERE "C1" LIKE 'A\%B@ C%'

ESCAPE CASE WHEN 10=? THEN '\' ELSE 'Q' END
SELECT * FROM "T1" WHERE "C1" NOT LIKE 'S$AB\ C%' ESCAPE '\'

Explanation:

None of the SELECT statements shown above satisfies the condition for LIKE predicate in No. 1 in Table 5-4:
Conditions under which range indexes are used. Therefore, range index RIDX1 is not used (chunks and segments
that do not contain data that satisfies the conditions are not skipped).

(10) Example 10 (range indexes are not used)

Definition of range indexes

CREATE INDEX "RIDX1"™ ON "T1" ("C1") IN "DBAREAQO1l" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1"=10 OR "C2"=20
SELECT * FROM "T1" WHERE NOT ("C1"=10)

Explanation:

When the predicate specified in the condition uses the logical operator OR or NOT, a range index is not used (chunks
and segments that do not contain data that satisfies the conditions are not skipped).

(11) Example 11 (range indexes are not used)

Definition of range indexes

CREATE INDEX "RIDX1"™ ON "T1" ("C1") IN "DBAREAO1" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "T1"."C1"+10=20

Explanation:

When a scalar operation containing a range-indexed column is used, no range index is used (chunks and segments
that do not contain data that satisfies the conditions are not skipped).

(12) Example 12 (range indexes are not used)

Definition of range indexes

CREATE INDEX "RIDX1"™ ON "T1" ("C1") IN "DBAREAO1" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1","T2","T3" WHERE "T1"."C1l" BETWEEN "T2"."C2" AND "T3"."C3"
SELECT * FROM "T1","T2","T3"™ WHERE "T1"."C1" IN ("T2"."C2","T3"."C3")

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 128

Explanation:

When columns from three or more different tables are specified in the predicates, a range index is not used (chunks
and segments that do not contain data that satisfies the conditions are not skipped).

(13) Example 13

Definition of range indexes

CREATE INDEX "RIDX1"™ ON "T1" ("C2") IN "DBAREAO1" EMPTY INDEXTYPE RANGE
CREATE INDEX "RIDX2" ON "T1" ("C3") IN "DBAREAO1" EMPTY INDEXTYPE RANGE
CREATE INDEX "RIDX3"™ ON "T2" ("C1") IN "DBAREAQO1" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1™ "X"
WHERE "X"."C1"=ANY (SELECT "T2"."C1" FROM "T2"
WHERE "X"."czﬂzlo AND "X"."c3":"T2"."Cl")

Explanation:

Range indexes RIDX1 and RIDX2 will not be used because their indexed columns (columns C2 and C3 of table
T1) are specified as external reference columns.

Range index RIDX3 will be used to skip chunks and segments that do not contain data that satisfies the conditions
because its indexed column (column C1 of table T2) is not specified as an external reference column.

(14) Example 14

Definition of range indexes

CREATE INDEX "RIDX1"™ ON "T2" ("C1") IN "DBAREAO1" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1","T2" WHERE "T1"."C1l"<"T2"."C1"
SELECT * FROM "T1" INNER JOIN "T2" ON "TI1"."Cl"<"T2"."C1l"

Explanation:

If anested loop join that uses table T1 as an outer table and table T2 as an inner table is applied, range index RIDX1
is used to skip chunks and segments. For details about a nested loop join, see 5.5.1 About nested-loop join.

(15) Example 15

Definition of range indexes

CREATE INDEX "RIDX1"™ ON "T2" ("C1") IN "DBAREAO1" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1","T2" WHERE "T1"."C1l"="T2"."C1"
SELECT * FROM "T1" INNER JOIN "T2" ON "TI1"."Cl"="T2"."C1l"

Explanation:

If a hash join that uses table T1 as an outer table and table T2 as an inner table is applied as the table joining method,
range index RIDX1 is used to skip chunks and segments. For details about a hash join, see 5.5.2 About hash join.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 129

(16) Example 16

Definition of range indexes

CREATE INDEX "RIDX1"™ ON "T1" ("C1") IN "DBAREAO1" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1™ "X"
WHERE EXISTS (SELECT * FROM "T2" WHERE "X"."Cl"="T2"."C1")

Explanation:

If hash execution is applied as the processing method to a subquery that contains an external reference column,
range index RIDX1 is used to skip chunks and segments. For details about hash execution as the processing method
of a subquery that contains an external reference column, see (3) Hash execution in 5.6.3 Methods for processing
subqueries that contain an external reference column.

(17) Example 17

Definition of range indexes

CREATE INDEX "RIDX1"™ ON "T1" ("C1") IN "DBAREA(O1l" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1" IN (SELECT "T2"."C1" FROM "T2")
SELECT * FROM "T1" WHERE "C1"=ANY (SELECT "T2"."C1" FROM "T2")

Explanation:

If hash execution is applied as the processing method to a subquery that does not contain an external reference
column, range index RIDX1 is used to skip chunks and segments. For details about hash execution as the processing
method of a subquery that does not contain an external reference column, see (4) Hash execution in 5.6.1 Methods
for processing subqueries that do not contain an external reference column.

5.3.3 How to check the range index used during execution of an SQL
statement

By checking the access path, you can check the range index used during execution of an SQL statement. For details
about access paths, see the following:

* How to check access paths
See 6.1.2 How to check access paths.

¢ Information displayed in access paths

See (b) Information related to indexes in (1) Information related to table retrieval methods and indexes in 6.1.5
Information displayed in the details view.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 130

5.4 How to evaluate the search conditions when indexes are used

There are two ways to evaluate the search conditions when indexes are used:

¢ Evaluation method when B-tree indexes are used

¢ Evaluation method when range indexes are used

This section explains how to evaluate the search conditions specified in the WHERE clause or the ON condition when
indexes are used.

5.4.1 Evaluation method when B-tree indexes are used

When B-tree indexes are used, the search conditions are evaluated according to the range search condition and the key
condition.

(1) About the range search condition

A condition for specifying a search range when B-tree indexes are used is called a range search condition. This includes
mainly the following conditions:

e =, not-equal sign, IS NULL, LIKE predicate leading match (literal specification), LIKE predicate dynamic
parameter specification, IN predicate”, BETWEEN predicate, quantified predicate (=ANY, =SOME)

#

An IN predicate (that is not a table subquery specification) specified for an inner table of a nested loop join
might not be a search condition.

The following figure shows an example of the evaluation method based on a range search condition.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 131

Figure 5-4:. Example of evaluation method based on a range search condition

W Table and B-tree index definitions

CREATE TABLE "T1"
("C1" INTEGER,
"C2" INTEGER,

IN "DBAREAQ1" EMPTY

"C3" INTEGER) IN "DBAREAO1"

CREATE INDEX "IDX C1C2" ON "T1"("C1","C2")

W Executed SQL statement

SELECT * FROM "T1" WHERE "C1" BETWEEN 50 AND 100

B-tree index IDX1 cl1c2

Search
range
[B) ®
Table T1
Col. c1|Col. c2|Col. c3
40 3 100
L PN—P— 50 1| 300
10 0 600
el 90 1| 100
> 60 2 200
Access only those rows
I |

that satisfy the range

search condition. Indexed columns

Explanation:

i| Index page

Data page

In this example, the range search condition is 50 < C1 < 100. HADB accesses the data pages that contain the rows

that satisfy the range search condition.

(2) About the key condition

A condition that can be evaluated only by B-tree-indexed columns is called a key condition. A key condition cannot be
used to narrow down the search range when B-tree indexes are used, as a range search condition can do. However, a
key condition can reduce the number of times a data page is referenced because the key condition can be evaluated by

using only B-tree index pages, thereby improving search performance.

The following figure shows an example of the evaluation method based on a key condition.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide

132

Figure 5-5: Example of evaluation method based on a key condition

W Table and B-tree index definitions

CREATE TABLE "T1"
("C1" INTEGER,
"Cc2" INTEGER,
"C3" INTEGER) IN "DBARFAQ1"

CREATE INDEX "IDX C1C2" ON "T1"("C1","C2")
IN "DBAREAQI" EMPTY

W Executed SQL statement

SELECT * FROM "T1"
WHERE "C1" BETWEEN 40 AND 60
AND "C2" IN(1,2)

B-tree index IDX c1c2

Search i| Index page
range
® {] 9
i
1
i
! Table T1
1
1 Col. c1|Col. c2|Col. Cc3
1
Lemoof oo - 40 3| 100
Tl 50 1| 300
The data page is not
accessed because it 10 0 600 Data page
is not applicable to 90 1 100
the key condition. |, 0 > 200
I

Indexed columns

Explanation:
In this example, the conditions are as follows:

» Range search condition: 40 < C1 <60
¢ Key condition: C2 IN (1, 2)

HADB uses the range search condition to narrow down the search range and accesses only those data pages that
contain the rows that satisfy the key condition.

5.4.2 Evaluation method when range indexes are used

When range indexes are used, the search conditions are evaluated according to the following two range index conditions:

* Condition in which range indexes are used to skip chunks
This condition uses range indexes to skip chunks that do not contain data that satisfies the search condition. Because
this condition reduces the number of chunks to be accessed, the amount of data pages to be referenced is reduced
and search performance improves.
This condition is used only for range indexes that can be used to skip chunks.
To determine whether a range index can be used to skip chunks, see When checking whether the index is a range
index that can skip chunks in Searching a dictionary table in the HADB Setup and Operation Guide.

* Condition in which range indexes are used to skip segments

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 133

This condition uses range indexes to skip segments that do not contain data that satisfies the search condition.

Because this condition reduces the number of segments to be accessed, the amount of data pages to be referenced

is reduced and search performance improves.

a Note

(1) Example of skipping chunks by using range indexes

The following provides an example of skipping chunks by using range indexes.

H Table

For details about skipping chunks and segments, see Range indexes in the HADB Setup and Operation

Guide.

, B-tree index, and range index definitions

CREATE

CREATE

CREATE

CREATE

CREATE

TABLE

INDEX

INDEX

INDEX

INDEX

nppn
("C1" INTEGER,
"C2" INTEGER,
"C3" INTEGER) IN "DBAREAQ1" CHUNK

"IDX C1C2" ON "T1"("C1","C2") <— B-tree index definition

IN "DBAREAO1" EMPTY

"RIDX_C]." ON "T1"("C1")
IN "DBAREAQ1" EMPTY INDEXTYPE RANGE

"RIDX7C2" ON "T1"("C2")
IN "DBAREAQ1" EMPTY INDEXTYPE RANGE

"RIDX7C3" ON "T1"("C3")
IN "DBAREAQ1" EMPTY INDEXTYPE RANGE

Range index definitions

W Executed SQL statement

SELECT * FROM "T1"
WHERE "C1" BETWEEN 100 AND 300
AND "C2" IN(1,2)
AND "C3"<300

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide

134

Range indexes (RIDX C1, RIDX C2,and RIDX C3) Chunks that do not

meet the search
condition are skipped.

<.______

Skip Skip Skip
—_ 1 /’/ ~~~~~~~~~~~
Chunk T T
S Chunk T
B-tree index (IDX C1C2)
Search :| Index page
range
®
Table T1
Col. c1|Col. c2|Col. c3
98 3 500
101 1 280
109 0 299 Data page
» 299 1 400
303 1 300
I —
B-tree indexed
columns
Explanation:

The following describes the procedure for retrieval processing.

1. Before accessing chunks, HADB evaluates the range index condition used to skip chunks.
* Range index condition used to skip chunks: 100<C1<300, C2 IN(1, 2), C3<300

2. HADB evaluates the search condition and key condition based on the B-tree indexes of the search target chunks.
* Search condition: 100<C1<300
* Key condition: C2 IN (1, 2)

3. HADB accesses the data page and evaluates the remaining search condition.
» Search condition to be evaluated after the data page is accessed: C3<300

Note that range indexes defined in columns C1, C2, and C3 are not used to skip a segment.

(2) Example of skipping segments by using range indexes

The following provides an example of skipping segments by using range indexes.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 135

M Table and range index definitions

CREATE TABLE "T1"
(e
neom
R

INTEGER,
INTEGER,

INTEGER) IN "DBAREAQO1" CHUNK

CREATE INDEX "RIDX C1" ON "T1"("C1")

<¢— Range index definition

IN "DBAREAQ1" EMPTY INDEXTYPE RANGE

M Executed SQL statement

SELECT * FROM "T1"
WHERE "C1" BETWEEN 100 AND 110
AND "C2" IN(1,2)

Range index (RIDX C1) Chunks that do not

meet the search
condition are skipped.

<.______

Skip Skip Skip
[T T -
Chunk L
L Chunk TTTT—
|-~ Table T1
Skip
Col. c1|Col. c2|Col. c3
98 3 500
Range » 101 1 280
index > 109 0 299 Data page
(RIDX C1)
- - - - - - 299 1 400
Skip
303 1 300
Segment
Segments that do not
meet the search
condition are skipped.
Explanation:

The following describes the procedure for retrieval processing.
1. Before accessing chunks, HADB evaluates the range index condition used to skip chunks.

* Range index condition used to skip chunks: 100<C1<110

2. HADB evaluates the range index condition used to skip segments in the search target chunk.

* Range index condition used to skip segments: 100<C1<110
3. HADB accesses the data page and evaluates the search condition.

» Search condition to be evaluated after the data page is accessed: C2 IN(1,2)

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide

136

5.5 Table joining methods

There are two table joining methods:

¢ Nested loop join

* Hash join
This section explains these two joining methods and their characteristics.

HADB automatically determines the table joining method to use. You can find out which join method was used by
checking the access path after the SQL statement was executed. For details about access paths, see the following
subsections:

* How to check access paths
See 6.1.2 How to check access paths.

* Information that is displayed as access paths
See (27) Table joining methods in 6.1.4 Information displayed in the tree view.

a Note

In the case of a joined table, you can specify the join method in a join method specification. For details
about join method specifications, see Specification format and rules for join method specifications in the
manual HADB SQOL Reference.

5.5.1 About nested-loop join

HADB joins tables by repeating as many times as there are rows in the outer table a matching process that involves
using the value in the joined column in the outer table as the basis for searching the joined column in the inner table.
This joining method is called nested loop join.

If an index is defined for the column that is specified in the join condition for joining the outer and inner tables, the
index is used when evaluating the join condition. This narrows the search range of the inner table.

The following explains the table joining method using a nested loop join by way of an example in which a nested loop
join is used when the SELECT statement shown below is executed.

Example:

SELECT * FROM "T1","T2" WHERE "T1"."C2">10 AND "T1"."C1">"T2"."C1"

HADB determines the table that is to be the outer table and the table that is to be the inner table. In this example, table
T1 is the outer table and table T2 is the inner table. Columns T1.C1 and T2.C1 specified in the underlined join

condition are the joined columns.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 137

Figure 5-6: Table joining method using a nested loop join

Outer table (T1) Inner table (T2)
Col. Col. Col. Col. Col. Col. Col.
Cl C2 C3 Cl c2 C3 Cc4
B3 a7
Al Al
= B3

C5 A7

C2 BS

A3 Cc2

B5 B2

A7 Al

L Joined column L Joined column
Explanation:

HADB retrieves the value of joined column B3 from the outer table and matches it with the value of the joined
column in the inner table. Next, HADB retrieves the value of joined column A1 from the outer table and matches
it with the value of the joined column in the inner table. HADB repeats this processing as many times as there are
rows in the outer table.

Consider the example of a nested loop join with table T1 as the outer table and table T2 as the inner table. If an
index is defined for the columns specified in the join condition ("T1"."C1" and "T2"."C1"), the index might
be used when evaluating the join condition ("T1"."C1">"T2"."C1"). This can narrow the search range of the
inner table.

a Note

In the case of a joined table, you can specify the outer table in a join method specification. For details about
join method specifications, see Specification format and rules for join method specifications in the manual
HADB SQL Reference.

5.5.2 About hash join

HADB joins tables by matching the hash table created based on the joined column of the outer table with the results of
hashing the joined column of the inner table. This joining method is called hash join.

Indexes defined for columns specified in the join condition used to join the outer and inner tables will not be used when
evaluating the join condition. The join condition will be evaluated using hashing. However, if a range index is defined
for a column of the inner table that is specified in a join condition, if conditions allow, the range index might be used.

(1) Joining tables using the hash join method

The following explains how tables are joined by a hash join method, by way of an example in which the hash join is
applied when the following SELECT statement is executed.

Example:

SELECT * FROM "T1","T2" WHERE "T1"."C2">10 AND "T1"."Cl"="T2"."C1"

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 138

HADB determines which table is to be the outer table and which table is to be the inner table. In this example, table T1
is the outer table and table T2 is the inner table. The columns T1.C1 and T2 . C1 specified in the underlined join
condition become the joined column.

Figure 5-7: Joining tables using the hash join method

Outer table Inner table
(table T1) (table T2)
Col. Col. Col.) Col. Col. Col.
c1 o 3 Hash table Hash filter c1 c2 c3

2. Hashing
B3 B7 —— | A7
A9 00 | A8 - Cc2
B6 1. Create a hash B2 2. Match < A1
tgble and hash processing
c5 filter. A3 ————— - A7
01
C2 C2 D BE— -— B5
A3 C5 -+ Cc2
B7 02 | A9 - B6
A8 B3 — A4
T\ Joined column IJoined column
Explanation:

1. HADB creates a hash table and hash filter based on the values in the joined column in the outer table (table T1).

2. Next, HADB matches the result of hashing the value in the joined column of the inner table (table T2) with the
hash table, and joins the tables. Before matching the joined column in the inner table with the hash table, HADB
performs filtering by using the hash filter. This reduces the number of times the joined column in the inner table
is matched with the hash table.

For a hash join where table T1 is the outer table and table T2 is the inner table, even if an index is defined for the
columns ("T1"."C1" and "T2"."C1") specified in the join condition, that index is not used when evaluating
the join condition ("T1"™."C1"="T2"."C1").
If an index is defined for "T1" . "C2", that index might be used when evaluating "T1"."C2">10.
The range index might be used when a hash join is processed if both of the following two conditions are met:
* The range index is defined for a joined column of the inner table for a hash join (column C1 of table T2 in the
preceding example).
* The conditions under which the range index can be used are met.
For details about the conditions under which range indexes are used, see 5.3.1 Conditions under which range

indexes are used during execution of an SQL statement.

If both of the preceding two conditions are met, when a hash table is created from a joined column of the outer table
during hash join processing, the maximum and minimum values of that joined column are obtained. Then, when the
inner table is searched, the range index is used to skip the inner table's chunks or segments that are not within the
obtained maximum and minimum values of the joined column.

HADB creates the hash table in the hash table area. The size of the hash table area is specified in the
adb_sgl exe hashtbl area size operand in the server definition or the client definition.

A hash filter is created in the hash filter area. The size of the hash filter area is specified in the
adb sgl exe hashflt area size operand in the server definition or the client definition.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 139

(2) Example where hash join is applied

Example 1:

SELECT * FROM "T1","T2" WHERE "T1"."C1"="T2"."C1"

A hash join is applied when a single column specification is specified on each side of a join condition specified by
a = operator.

Example 2:

SELECT * FROM "T1","T2" WHERE "T1"."C1"="T2"."C1"+10

A hash join is applied when the following condition is met:

* A single column is specified on one side of a join condition specified by a = operator, and the other side specifies
a scalar operation that includes a column specification.

Example 3:

SELECT * FROM "T1" INNER JOIN "T2"
ON "T1"."C1"=CAST("T2"."C1" AS INTEGER)

A hash join is applied when the following condition is met:

* A ssingle column is specified on one side of a join condition specified by a = operator, and the other side specifies
a scalar function that includes a column specification.

Example 4:

SELECT * FROM "T1" LEFT JOIN "T2"
ON "Tl"'"C:L":"Tzﬂ"lcl"| |"T2"."C2"

A hash join is applied when the following condition is met:

* A ssingle column is specified on one side of a join condition specified by a = operator, and the other side specifies
a concatenation operation that includes a column specification.

(3) Notes on applying hash joins

Try to make the data type and data length of the value expressions on the left and right of the = of the join condition the
same if possible. When the data type and data length of the value expressions on the left and right of the = of the join
condition differ, they are converted to the same data type and length before creating the hash table. Hashing takes place
after this process has finished. This conversion process incurs an overhead.

For details about the data types after conversion, see Data types that can be converted, assigned, and compared in the
manual HADB SQL Reference.

Note that if the data type after conversion is DECIMAL, precision and scaling are determined based on the following
equations:

Equations

Precision = Pmax + Smax
Scaling = Smax

Pmax = MAX (pl-sl1,p2-s2)
Smax = MAX (sl1,s2)

pl, sI: The precision and scaling of the value expression specified on the left side of the join condition specified by

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 140

p2, s2: The precision and scaling of the value expression specified on the right side of the join condition specified
by =

Note that if the data type prior to conversion is INTEGER, these equations are calculated as DECIMAL (20, 0) . If
the data type prior to conversion is SMALLINT, these equations are calculated as DECIMAL (10, 0).

Example:

The following shows an example of determining precision and scaling when the data type after conversion is
DECIMAL.

Table definitions

CREATE TABLE "T1" ("C1" INTEGER,"C2" CHAR(3),"C3" DATE) IN "DBAREAO1l"
CREATE TABLE "T2" ("C1" DECIMAL(7,3),"C2" CHAR(3),"C3" DATE) IN "DBAREAQOL"

Example of SQL statement

SELECT * FROM "T1","T2" WHERE "T1"."C1"="T2"."C1"

The column specified on the left side ("T1" . "C1") of the underlined join condition specified by the = operator
has a different data type and data length from the column specified on the right side ("T2" . "C1"). This means
that the data type and data length undergo conversion. The column "T1"."C1" is INTEGER type data, and the
column "T2"."C1" is DECIMAL type data.

In this scenario, the data types of the columns specified on the left and right sides of the join condition specified by
the = operator are converted to DECIMAL type data. Column "T1"."C1" is treated as if it were

DECIMAL (20, 0). The precision and scaling of the converted DECIMAL type data are calculated as follows:

Pmax = MAX (pl-sl,p2-s2) = MAX (20-0,7-3) = 20
Smax = MAX (sl,s2) = MAX (0,3) = 3
Precision = Pmax + Smax = 23

Scaling = Smax = 3

The data type and data length of the value expressions on the left and right of the = of the join condition are converted
to DECIMAL (23, 3), the hash table is created, and hashing takes place.

(4) Action to take when the hash table area has insufficient space

= Flow of processing when hash table area has insufficient space
The following explains the flow of processing when the hash table area has insufficient space to create the hash
table.

1. If there is insufficient hash table area to create the hash table, the outer table data is stored in multiple work
tables. Similarly, the inner table data is also stored in multiple work tables.

Hash table area
is insufficient.

Outer table Inner table
Work tables Work tables
are created. are created.
Work Work Work Work Work Work
able B1 table B2 table B3 able P1 table P2 table P3

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 141

a Note

In the preceding example, three work tables are created for the outer table, and three work tables
are created for the inner table. The number of work tables that are created differs depending on
conditions, such as the specification of the SQL statement.

2. A hash table is created with a work table for the outer table (work table B1), and then the hash table is matched
with a work table for the inner table (work table P1).

After matching between the hash table and work table P1 is complete, a hash table is created with work table
B2, and the hash table is matched with work table P2.

After matching between the hash table and work table P2 is complete, a hash table is created with work table
B3, and the hash table is matched with work table P3.

Work table B1 Work table B2
A hash table A hash table
is created. is created.
Hash table Hash table
Matching is
complete.
Matching T Matching T
Work table P1 Work table P2

Work table B3

A hash table
is created.

Matching is
complete.

Hash table

Matching T
Work table P3

If the hash table area becomes insufficient during the processing in step 2

If the hash table area becomes insufficient during the processing in step 2, any data that cannot fit in the hash
table is stored in another work table. In this case, in addition to matching between a work table for the inner
table and a hash table, matching between a work table for the inner table and the newly created work table

(work table B4) occurs.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide

142

Work table B1

Hash table area is
insufficient (and message
KFAAS51130-W is output).

A hash table A work table
is created. is created.

Hash table Work table B4

C A new work table is created
to store any data that cannot
fit in the hash table.

Matching T Matching

Work table P1

a Note

Ifanew work table (work table B4) is created due to insufficient hash table area during the processing
in step 2, the KFAA51130-W message is output to the server message log file.

m Action to take when the hash table area has insufficient space

If the hash table area is insufficient, processing time for the SQL statement might take longer due to work table
creation and matching. To remedy a situation in which the hash table area has insufficient space, increase the value
specified forthe adb sgl exe hashtbl area size operand in the server definition or the client definition.
This operand specifies the size of the hash table area.

(5) Conditions where a hash join is not applied

A hash join will not be applied as the join method when any of the following conditions are met:

* Oisspecified fortheadb sgl exe hashtbl area size operandin the server definition or client definition.
* 0 is specified for the adb sys uthd num operand in the server definition.

* 0 is specified for the adb sgl exe max rthd num operand in the server definition or client definition.

* The query is specified in an update SQL statement.

* There is no join condition specified by = between the tables to be joined.

* There is a join condition specified by = between the tables to be joined, but it meets one of the following conditions:

* The left or right of the join condition specified by = specifies a scalar operation that includes a column
specification.

* One side of the join condition specified by = specifies a scalar operation that includes a column specification,
the other side specifies a single column specification, and any of the following conditions is met:

- The scalar operation that includes a column specification specifies a subquery that includes an external reference
column.

- The scalar operation that includes a column specification specifies a column in the same table as the single
column specification specified on the other side of the join condition specified by =.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 143

* The post-conversion data type of the value expressions specified on the left and right of the join condition
specified by = is DECIMAL, and the precision is greater than 38.

* All of the following conditions are met:

- The data type of the value expression specified on either the left or right of the join condition specified by =
is VARCHAR, and the data length of the value expression exceeds 32,000 bytes.

- The data types or data lengths of the value expressions specified on the left and right of the join condition
specified by = are different.

» The tables to be joined are specified in the subquery that contains external reference columns.

» There is a join condition specified by = between the tables to be joined, but one or other of the tables is a derived
table derived by a table value constructor.

* The query specifies ROW in a selection expression.

* Nested loop join is specified as the join method in the join method specification.

a Note

You can specify the outer table of a joined table by join method specification. For details about join method
specification, see Specification format and rules for join method specifications in the manual HADB SQOL
Reference.

(6) Conditions where a hash filter is applied

1. A hash filter is applied during hash join when all the following conditions are satisfied:

* 0 isnot specified for the adb _sgl exe hashflt area size operand in the server definition or client
definition.

* Tables are joined by a comma join or INNER JOIN specified.

2. If the size of the hash filter area specified for the adb sql exe hashflt area size operand in the server
definition or client definition is too small, a shortage might occur in the hash filter area allocated for each hash
retrieval. As aresult, a hash filter is not applied to any hash retrieval for which the size of the hash filter is insufficient.
If you want to apply the hash filter to all types of hash retrieval, change the value of the
adb _sqgl exe hashflt area size operand so that the following condition is satisfied:

value-specified-for-adb sql exe hashflt area size>tAxBxnumber-of-processing-real-t
hreads-in-SQ0L-statement+10241

A:
Number of hash filters to be used for the hash retrieval to which a hash filter was not applied

If there are two or more cases in which a hash filter was not applied to hash retrieval, determine the number of
hash filters for each hash retrieval, and then assign the largest value among those values. The following shows
the number of hash filters to be used for a hash retrieval process:

* For hash join: Number of = join conditions for hash join
* For subqueries to which hash execution is applied, and which do not contain an external reference: 1

* For subqueries to which hash execution is applied, and which contain external references: The number of =
conditions that contains an external reference column

Sum total of all the following specified in SQL statements
* Number of hash joins to which a hash filter is applied

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 144

* Number of subqueries to which hash execution using a hash filter is applied

5.5.3 Characteristics of the joining methods

The following table describes the characteristics of the two joining methods.

Table 5-5: Characteristics of the table joining methods

Joining method Speed of the Advantage

initial data
retrieval
operation
Nested loop join Fast Retrieval is faster when the
joined column in the inner table
can be narrowed down using a B-
tree index or text index.
Hash join Slow If there are few hit rows in the

outer table and many hit rows in
the inner table, high-speed
retrieval can be achieved.

5. Designs Related to Improvement of Application Program Performance

Disadvantage

If there are many hit rows in the outer table, processing
performance decreases.

If there are many hit rows in the outer table, the hash table area
might become large.

If a shortage occurs in the hash table area, processing
performance decreases because the data is first saved to a work
table.

Hitachi Advanced Database Application Development Guide

145

5.6 How to process subqueries

There are two types of subquery processing methods:

¢ Methods for processing subqueries that do not contain an external reference column

* Methods for processing subqueries that contain an external reference column
This section explains these subquery processing methods and their characteristics.

Note that you can check which processing method was used by viewing the access path after the SQL statement is
executed. For details about access paths, see the following subsections:

* How to check access paths
See 6.1.2 How to check access paths.

* Information that is displayed as access paths
See (2) Subquery processing methods in 6.1.4 Information displayed in the tree view.

For details about external reference columns, see Specification format and rules for subqueries in the manual HADB
SQL Reference.

5.6.1 Methods for processing subqueries that do not contain an external
reference column

There are four methods for processing subqueries that do not contain an external reference column:

¢ Work table execution
¢ Row value execution
¢ Work table row value execution

¢ Hash execution

These processing methods are explained below.

(1) Work table execution

Subquery processing might be performed with work table execution applied in the following cases:

* A quantified predicate is specified
* A table subquery is specified in the IN predicate

The following shows an example of work table execution.

m SELECT statement to be executed

SELECT "T1"."C1"™ FROM "T1"
WHERE ABS ("T1"."C2")=ANY (SELECT "T2"."C2" FROM "T2")

This example assumes that no B-tree index or text index is defined for column C2 in table T1.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 146

Figure 5-8: Processing method for work table execution

Table T1 Work table Table T2
C1l Cc2 Cl Cc2
1
1 -
! 1. Store the value
i of column C2
i of table T2.
i
\J

2. Fetch one row at
a time and match.

Explanation:

1. Stores the result of the subquery in the work table.

This example searches table T2 specified in the subquery, and then stores the value of column C2 of table T2
in the work table.

2. Executes the query that is outside the subquery. Each time HADB retrieves one row of query outside the subquery,
HADB matches that row with the result of the subquery (in the work table) and evaluates the search condition.

This example retrieves one row of table T1 at a time, and then matches the absolute value of column C2 of table
T1 with the value of column C2 of table T2 stored in the work table to evaluate the search condition.

(2) Row value execution

Subquery processing might be performed with row value execution applied in the following cases:

* A scalar subquery is specified.

* The EXISTS predicate is specified.
The following shows an example of row value execution.

m SELECT statement to be executed

SELECT "T1"."C1" FROM "T1"
WHERE "T1"."C2"< (SELECT MAX("T2"."C2") FROM "T2")

Figure 5-9: Processing method for row value execution

Table T1 Result of Table T2
cl | c2 subquery cl | c2
1. Obtain

2. Retrieve table T1 using
MAX ("T2","C2") as
the condition value.

MAX("T2", "C2").

Explanation:

1. Obtains the result of the subquery.
This example searches table T2 specified in the subquery, and then obtains MAX ("T2"."C2").
2. Uses the result of the subquery to evaluate the condition that contains a subquery of the query outside the

subquery. For a comparison predicate, B-tree indexes or text indexes might be used to execute the query outside
the subquery.

This example retrieves table T1 using MAX ("T2"."C2") obtained in 1 as the condition value. Depending on
the condition, B-tree indexes or text indexes might be used for the retrieval.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 147

(3) Work table row value execution

Subquery processing might be performed with work table row value execution applied in the following cases:

* A quantified predicate is specified
* A table subquery is specified in the IN predicate

The following shows an example of work table row value execution.

m SELECT statement to be executed

SELECT "T1"."C1"™ FROM "T1"
WHERE "T1"."C2"=ANY (SELECT "T2"."C2" FROM "T2")

This example assumes that B-tree indexes are defined for column C2 of table T1.

Figure 5-10: Processing method for work table row value execution

Work
table Table T2

Cl | C2

A

1. Stores values of column C2 of table T2.

Table T1
Cc1l c2
2. HADB extracts rows one by one from the work table and
retrieves data from table T1 using the B-tree index.
Explanation:

1. Stores the result of the subquery in the work table.

This example searches table T2 specified in the subquery, and then stores the value of column C2 of table T2
in the work table.

2. Fetches one row value from the work table at a time and executes the query outside the subquery to evaluate the
search condition. A B-tree index is used for this processing. A text index is used if one is defined.

This example fetches the value of column C2 of table T2 from the work table one row at a time and retrieves
table T1 by using the B-tree index defined for the column C2 of table T1.

(4) Hash execution

A method for processing subqueries by using a hash table is called iash execution. Hash execution might be applied in
the following cases:

* A quantified predicate is specified
* A table subquery is specified in the IN predicate

If hash execution is applied during subquery processing, HADB first creates a hash table on the basis of the result of
the subquery. Then, HADB executes the query outside the subquery, and then generates hash values from the value of

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 148

the column specified to the left of the quantified predicate or IN predicate. Finally, processing is performed to match

the values with the hash table.

When a hash table is created, a hash filter is also created. HADB filters hash values by using the hash filter before

matching the hash values with the hash table. This reduces the number of times hash values are matched with the hash

table.
The following shows an example of hash execution.

m SELECT statement to be executed

SELECT "T1"."C1"™ FROM "T1"
WHERE "T1"."C2"=ANY (SELECT "T2"."C2" FROM "T2")

Figure 5-11: Processing method for hash execution

2. Check the hash value 1. Create a hash table
by using the hash filter. and hash filter.

Table T1 Hash filter Hash table Table T2

c1 | c2] c1 | c2

|\, quEE
— —— O
7 Mo
— JEEE

3. Match the hash table with the hash
values that have passed the hash filter.

Explanation:

1. Creates a hash table and hash filter on the basis of the result of the subquery (underlined portion in the

example SQL statement). This example retrieves table T2 specified in the subquery, and then creates a hash

table and hash filter from the value of column C2 of table T2.

2. Executes the query outside the subquery, and then generates a hash value from the value of the column

specified to the left of the quantified predicate (in the example SQL statement, column C2 of table T1).

The

hash value is checked by using the hash filter. This example fetches one row from table T1 at a time, generates

the hash value from the value of column C2 of table T1, and then checks the hash value by using the h
filter.

3. Performs processing to match the hash table with the hash values that have passed the hash filter.

The range index might be used when a hash execution is processed if both of the following two conditions
met:

ash

arc

* There is a table specified in a query outside a subquery (table T1 in the preceding example). In the table, the
range index is defined for the column specified to the left of the quantified predicate or IN predicate (column

T1.C2 in the preceding example).

* The conditions under which the range index can be used are met.

For details about the conditions under which range indexes are used, see 5.3.1 Conditions under which range

indexes are used during execution of an SQL statement.

If both of the preceding two conditions are met, when a hash table is created from the subquery result during
processing of a hash execution, the maximum and minimum values of the subquery are obtained. The range
index is then used when the table specified in a query outside the subquery (table T1 in the preceding example)

is searched. The range index is used to skip the table's chunks or segments that are not within the obtained
maximum and minimum values of the subquery result.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide

149

A hash table is created in the hash table area. The size of the hash table area is specified in the
adb sgl exe hashtbl area size operand in the server definition or the client definition. Note that when 0

is specified in the adb sql exe hashtbl area size operand, hash execution is not applied.

A hash filter is created in the hash filter area. The size of the hash filter area is specified in the
adb_sqgl exe hashflt area size operand in the server definition or the client definition. If 0 is specified
forthe adb sgl exe hashflt area size operand, a hash filter is not applied during hash execution.

m Flow of processing when hash table area has insufficient space
The following explains the flow of processing when the hash table area has insufficient space to create the hash
table.
Note that the tables T1 and T2 in the following explanation correspond to tables T1 and T2 in Figure 5-11:
Processing method for hash execution.

1. If there is insufficient hash table area to create the hash table, the data of table T2 is stored in multiple work
tables. Also, the data of table T1 is stored in multiple work tables in the same way as for the data of table T2.

Hash table area
is insufficient.

Table T2 Hash table Table T1

Work tables

Work tables
are created.

are created.

Work Work Work Work Work Work
table T2-1 table T2-2 table T2-3 table T1-1 table T1-2 table T1-3

é Note

In the preceding example, three work tables are created for table T2, and three work tables are
created for table T1. The number of work tables that are created differs depending on conditions,
such as the specification of the SQL statement.

2. A hash table is created with a work table for table T2 (work table T2-1), and then the hash table is matched
with a work table for table T1 (work table T1-1).

After matching between the hash table and work table T1-1 is complete, a hash table is created with work table
T2-2, and the hash table is matched with work table T1-2.

After matching between the hash table and work table T1-2 is complete, a hash table is created with work table
T2 -3, and the hash table is matched with work table T1-3.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 150

Work table T2-1 Work table T2-2 Work table T2-3

A hash table A hash table A hash table
is created. is created. is created.
Hash table Hash table Hash table
Matching is Matching is
complete. complete.
Matching T Matching T Matching T
Work table T1-1 Work table T1-2 Work table T1-3

If the hash table area becomes insufficient during the processing in step 2

If the hash table area becomes insufficient during the processing in step 2, any data that cannot fit in the hash
table is stored in another work table. In this case, in addition to matching between a work table for table T1 and
a hash table, matching between a work table for table T1 and the newly created work table (work table T2-4)
occurs.

Work table T2-1

Hash table area is
insufficient (and message
KFAA51130-W is output).

A hash table A work table
is created. is created.

Hash table Work table T2-4

A new work table is created
to store any data that cannot
fit in the hash table.

Matching Matching

Work table T1-1

a Note

If a new work table (work table T2-4) is created due to insufficient hash table area during the
processing in step 2, the KFAA51130-W message is output to the server message log file.

m Action to take when the hash table area has insufficient space

If the hash table area is insufficient, processing time for the SQL statement might take longer due to work table
creation and matching. To remedy a situation in which the hash table area has insufficient space, increase the value
specified forthe adb sgl exe hashtbl area size operand in the server definition or the client definition.
This operand specifies the size of the hash table area.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 151

m Action to take when the hash filter area has insufficient space

If the size of the hash filter area specified for the adb _sqgl exe hashflt area size operand in the server
definition or client definition is too small, a shortage might occur in the hash filter area allocated for each hash
retrieval. As aresult, a hash filter is not applied to any hash retrieval for which the size of the hash filter is insufficient.
If you want to apply the hash filter to all types of hash retrieval, increase the value of the

adb_sqgl exe hashflt area size operand. For details about the formula for estimating the value to be
specified, see (6) Conditions where a hash filter is applied in 5.5.2 About hash join.

5.6.2 Characteristics of the methods for processing subqueries that do

not contain an external reference column

The following table describes the characteristics of each method for processing subqueries that do not contain an external

reference column.

Table 5-6: Methods for processing subqueries that do not contain an external reference column

No. Processing method
1 Work table execution
2 Row value execution
3 Work table row value
execution
4 Hash execution

Benefits

This method can be applied to the conditions of
all subqueries that require work tables.

B-tree indexes or text indexes can be used for
queries outside the subquery. When there are
many such queries, this allows data to be
retrieved at a higher speed when B-tree indexes
or text indexes are used to narrow the search
range.

B-tree indexes or text indexes can be used for
queries outside the subquery. When there are
many such queries and the subquery hit count is
low, this allows data to be retrieved at a higher
speed when B-tree indexes or text indexes are
used to narrow the search range.

Data can be retrieved at a higher speed if all data
required for the processing can be stored in the
hash table.

Disadvantages

Processing performance decreases when there
are many queries outside the subquery.

Processing performance decreases when there
are many queries outside the subquery and the
predicates containing the subquery cannot be
narrowed down by using B-tree indexes or text
indexes.

Processing performance decreases when the
subquery hit count is high, because B-tree
indexes or text indexes are used for as many
queries outside the subquery as there are rows
resulting from the subquery.

If a large amount of data must be stored in the
hash table, the size of the hash table area
becomes large. Processing performance
decreases if a shortage occurs in the hash table
area, because all data is first saved to a work
table.

5.6.3 Methods for processing subqueries that contain an external
reference column

There are three methods for processing subqueries that contain an external reference column:

* Nested loops work table execution

* Nested loops row value execution

¢ Hash execution

When using the nested loops row value execution method, cache area is sometimes created to store the results of the
subquery. This is to reduce the number of times the subquery is executed.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide

152

These processing methods are explained below.

(1) Nested loops work table execution

Subquery processing might be performed with nested loops work table execution applied in the following cases:

¢ A quantified predicate is specified
* A table subquery is specified in the IN predicate

The following shows an example of nested loops work table execution.

m SELECT statement to be executed

SELECT "T1"."C1"™ FROM "T1"
WHERE "T1"."C1"=ANY (SELECT "T2"."C1"™ FROM "T2"
WHERE "T2"."CZ":"Tl"."CZ")

Figure 5-12: Processing method for nested loops work table execution

2. Retrieve table T2 using external
reference column "T1", "C2" as
the condition for each row of table Table T2

Table T1 .
T1 retrieval results.

Cl | Cc2

Cl | C2

1. Retrieve table T1.

1 -,

- 3. Retrieve table T2

1

1 -
/ s and store

"T1 " , uc2 " in
the work table.

1
1
1

Work tableg " \Work table,

\

4. Match one row of data in
table T1 with the work table.
Explanation:

1. Executes the query that is outside the subquery
This example retrieves table T1.

2. Executes the subquery by using the value of an external reference column each time one row of query outside

the subquery is fetched.
This example retrieves table T2 by using the value of an external reference column ("T1"."C2") as the

condition value for each row of table T1 retrieval results.

3. Creates a work table based on the result of the executed subquery.
This example retrieves table T2 and stores the value of "T2" . "C1" in the work table.

4. Uses the created work table to evaluate the condition that contains a subquery outside the subquery.

This example evaluates the condition containing the subquery by matching with the value of corresponding

"T2"™ . "C1" in the work table for each row of table T1 retrieval results.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide

153

(2) Nested loops row value execution

Subquery processing might be performed with nested loops row value execution applied in the following cases:

* A scalar subquery is specified

e The EXISTS predicate is specified
The following shows an example of nested loops row value execution.

m SELECT statement to be executed
SELECT "T1"."C1" FROM "T1"

WHERE "T1"."Cl"=(SELECT MAX ("T2"."C1l") FROM "T2"
WHERE "T2"."C2"="T1"."C2">

Figure 5-13: Processing method for nested loops row value execution

2. Retrieve table T2 using external
reference column "T1", "C2" as
Table T1 the condition for each row of table T5pe T2
T1 retrieval results.

Cl | Cc2 Cl | C2

1. Retrieve table T1.

3. Evaluate the condition on the basis of each
row of the table T1 retrieval result data and
the result of subquery MAX ("T2","C1").

Explanation:

1. Executes the query that is outside the subquery.
This example retrieves table T1.

2. Executes the subquery by using the value of an external reference column each time one row of query outside
the subquery is fetched.

This example obtains the result of subquery MAX ("T2"."C1") by using an external reference column
("T1"."Cc2") for each row of table T1 retrieval results.

3. Obtains the results of the executed subquery (no work table is created). HADB then uses the results of the
subquery to evaluate the condition that contains a subquery outside the subquery.

This example evaluates the condition by using the value of the corresponding MAX ("T2"."C1") for each
row of table T1 retrieval results.

(3) Hash execution

A method for processing subqueries by using a hash table is called sash execution. Hash execution might be applied in
the following cases:

* The EXISTS predicate is specified

¢ A scalar subquery is specified

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 154

If hash execution is applied during subquery processing, HADB first executes the subquery from which a condition
containing the external reference column is excluded, and then creates a hash table from the result. Then, HADB executes
the query outside the subquery, and then generates a hash value from the value of the external reference column. Finally,
processing is performed to match the values with the hash table.

When a hash table is created, a hash filter is also created. HADB filters hash values by using the hash filter before
matching the hash values with the hash table. This reduces the number of times hash values are matched with the hash
table.

The following shows an example of hash execution.

m SELECT statement to be executed

SELECT "T1"."C1"™ FROM "T1"
WHERE "T1"."C3"<(SELECT "T2"."C3" FROM "T2"
WHERE "TZ"."C:L":'A' AND "TZ"."C2":"T1"."C2">

Figure 5-14: Processing method for hash execution

2. Check the hash value 1. Create a hash table
by using the hash filter. and hash filter.
Table T1 Hash filter Hash table Table T2
c1 [ez] c1 | c2

SN gHEN
— > | L
-, o LITT
— gHEN

3. Match the hash table with the hash
values that have passed the hash filter.

Explanation:

1. Executes the subquery from which a condition containing the external reference column (underlined portion
in the example SQL statement) is excluded, and then creates a hash table and hash filter based on the result.

2. Executes the query outside the subquery, and then generates a hash value from the value of the external
reference column ("T1"."C2"). The hash value is checked by using the hash filter. This example
retrieves table T1, generates a hash value from the value of the external reference column ("T1"."C2"),
and then checks the hash value by using the hash filter.

3. Performs processing to match the hash table with the hash values that have passed the hash filter.

The range index might be used when a hash execution is processed if both of the following two conditions are
met:

» There is a table specified in a query outside a subquery (table T1 in the preceding example). In the table, the
range index is defined for an external reference column (T1.C2 in the preceding example).

* The conditions under which the range index can be used are met.

For details about the conditions under which range indexes are used, see 5.3.1 Conditions under which range
indexes are used during execution of an SQL statement.

If both of the preceding two conditions are met, the maximum and minimum values of the column to be compared
with an external reference column are obtained when: a hash table is created from the result of executing a
subquery excluding the conditions that contain the external reference column during processing of a hash
execution. The range index is then used when the table specified in a query outside the subquery (table T1 in
the preceding example) is searched. The range index is used to skip the table's chunks or segments that are not

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 155

within the obtained maximum and minimum values of the column to be compared with the external reference
column.

A hash table is created in the hash table area. The size of the hash table area is specified in the
adb_sgl exe hashtbl area size operand in the server definition or the client definition. Note that when 0

is specified in the adb_sgl exe hashtbl area size operand, hash execution is not applied.

A hash filter is created in the hash filter area. The size of the hash filter area is specified in the
adb _sqgl exe hashflt area size operand in the server definition or the client definition. If 0 is specified
forthe adb sgl exe hashflt area size operand, a hash filter is not applied during hash execution.

m Flow of processing when hash table area has insufficient space

The following explains the flow of processing when the hash table area has insufficient space to create the hash
table.

Note that tables T1 and T2 in the following explanation correspond to tables T1 and T2 in Figure 5-14: Processing
method for hash execution.

1. If there is insufficient hash table area to create the hash table, the data of table T2 is stored in multiple work
tables. Also, the data of table T1 is stored in multiple work tables in the same way as for the data of table T2.

Hash table area
is insufficient.

Table T2 Hash table Table T1

~ r="17"

Work tables Work tables
are created. are created.
Work Work Work Work Work Work
table T2-1 table T2-2 table T2-3 table T1-1 table T1-2 table T1-3

a Note

In the preceding example, three work tables are created for table T2, and three work tables are
created for table T1. The number of work tables that are created differs depending on conditions,
such as the specification of the SQL statement.

2. A hash table is created with a work table for table T2 (work table T2-1), and then the hash table is matched
with a work table for table T1 (work table T1-1).

After matching between the hash table and work table T1-1 is complete, a hash table is created with work table
T2-2, and the hash table is matched with work table T1-2.

After matching between the hash table and work table T1-2 is complete, a hash table is created with work table
T2 -3, and the hash table is matched with work table T1-3.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 156

Work table T2-1 Work table T2-2 Work table T2-3

A hash table A hash table A hash table
is created. is created. is created.
Hash table Hash table Hash table
Matching is Matching is
complete. complete.
Matching T Matching T Matching T
Work table T1-1 Work table T1-2 Work table T1-3

If the hash table area becomes insufficient during the processing in step 2

If the hash table area becomes insufficient during the processing in step 2, any data that cannot fit in the hash
table is stored in another work table. In this case, in addition to matching between a work table for table T1 and
a hash table, matching between a work table for table T1 and the newly created work table (work table T2-4)
occurs.

Work table T2-1

Hash table area is
insufficient (and message
KFAA51130-W is output).

A hash table A work table
is created. is created.

Hash table Work table T2-4

A new work table is created to
store any data that cannot fit
in the hash table.

Matching Matching

Work table T1-1

a Note

If a new work table (work table T2-4) is created due to insufficient hash table area during the
processing in step 2, the KFAA51130-W message is output to the server message log file.

m Action to take when the hash table area has insufficient space

If the hash table area is insufficient, processing time for the SQL statement might take longer due to work table
creation and matching. To remedy a situation in which the hash table area has insufficient space, increase the value
specified forthe adb sgl exe hashtbl area size operand in the server definition or the client definition.
This operand specifies the size of the hash table area.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 157

m Action to take when the hash filter area has insufficient space

If the size of the hash filter area specified for the adb _sqgl exe hashflt area size operand in the server
definition or client definition is too small, a shortage might occur in the hash filter area allocated for each hash
retrieval. As aresult, a hash filter is not applied to any hash retrieval for which the size of the hash filter is insufficient.
If you want to apply the hash filter to all types of hash retrieval, increase the value of the

adb_sqgl exe hashflt area size operand. For details about the formula for estimating the value to be
specified, see (6) Conditions where a hash filter is applied in 5.5.2 About hash join.

5.6.4 Characteristics of the methods for processing subqueries that
contain an external reference column

The following table describes the characteristics of each method for processing subqueries that contain an external

reference column.

Table 5-7: Methods for processing subqueries that contain an external reference column

No. Processing method
1 Nested loops work table
execution
2 Nested loops row value
execution
3 Hash execution

Benefits

B-tree indexes or text indexes can be used for
subquery search conditions that contain an
external reference column. This allows data to
be retrieved at a higher speed when B-tree
indexes or text indexes are used to narrow the
search range.

Data can be retrieved at a higher speed when all
data required for the processing can be stored in
the hash table.

5. Designs Related to Improvement of Application Program Performance

Disadvantages

Processing performance decreases when the hit
count of the queries outside the subquery is high.

If a large amount of data must be stored in the
hash table, the size of the hash table areca
becomes large. Processing performance
decreases if a shortage occurs in the hash table
area, because all data is first saved to a work
table.

Hitachi Advanced Database Application Development Guide

158

5.7 Grouping methods

There are two types of grouping methods:
* Hash grouping
* Sort grouping

Grouping is performed when the GROUP BY clause or the DISTINCT set function is specified. This section explains
the grouping methods.

HADB automatically determines which grouping method to use. You can find out which grouping method was used by
viewing the access path after the SQL statement is executed. For details about access paths, see the following subsections:

* How to check access paths
See 6.1.2 How to check access paths.

¢ Information that is displayed as access paths
See (13) Grouping methods in 6.1.4 Information displayed in the tree view.

a Note

You can prevent the application of global hash grouping by specifying a grouping method specification.
For details about grouping method specifications, see Specification format and rules for GROUP BY clauses
in the manual HADB SQL Reference.

5.7.1 Hash grouping

A hash grouping method groups data while creating a hash table by hashing the values of grouped columns. The following
figure shows the hash grouping methods.

Figure 5-15: Hash grouping method

Table T1 Hash table
cl | c2

Create a hash table
by hashing the
values of grouping
columns in table T1.

The two types of hash grouping are described below.

(1) Local hash grouping

First, a hash table is created for each SQL processing real thread and grouping is performed. Next, the results grouped
by SQL processing real threads are collected, and then the entire data is grouped. This processing method is called local
hash grouping.

A hash table is created for each SQL processing real thread in the hash grouping area. The size of a hash grouping area
per hash table is specifiedinthe adb sgl exe hashgrp area size operand inthe server definition or the client
definition.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 159

(2) Global hash grouping

A hash table to be shared among multiple SQL processing real threads is created, and then grouping is performed. This
processing method is called global hash grouping.

A hash table is created in the hash table area. The size of the hash table area is specified in the
adb sqgl exe hashtbl area size operand in the server definition or the client definition. Note that when 0
is specified in the adb_sgl exe hashtbl area size operand, global hash grouping is not applied.

If an SQL statement containing the DISTINCT set function is executed, global hash grouping might be applied to
eliminate duplicate retrieval results.

m Action to take when the hash table area has insufficient space

When the hash table area has insufficient space, the data stored in the hash table is spread over multiple work tables.
This results in SQL statements taking longer to process. To remedy a situation in which the hash table area has
insufficient space, increase the value specified for the adb _sgl exe hashtbl area size operandin the
server definition or the client definition. This operand specifies the size of the hash table area.

When a work table is created due to insufficient hash table area, the KFAA51130-W message is output to the server
message log file.

m Flow of processing when hash table area has insufficient space
The following explains the flow of processing when the hash table area has insufficient space to create the hash
table.

1. If there is insufficient space in the hash table area when creating the hash table, HADB creates multiple work
tables. The data stored in the hash table is spread across these work tables.

Table that includes Shortage of hash
grouping column Hash table table area occurs.

Work Work Work
table 1 table 2 table 3

New work table is created.

2. HADB performs grouping while creating the hash table for work table 1.

Work
table 1 Hash table

Grouping processing _

'

When this grouping has finished, HADB performs grouping while creating the hash table for work table 2. It
then performs the same processing for work table 3.

If the hash table area runs out of space when creating the hash table for a work table, HADB creates a new work
table. The data that did not fit in the hash table area is stored in the new work table. In this situation, additional
grouping using the newly created work table takes place.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 160

table 3

Work

Grouping processing

5.7.2

Work
table
Grouping processing
> =

Sort grouping

Shortage of hash

Hash table table area occurs.

New work table is created.

Sort grouping is a grouping method that groups data after sorting the data.

First, a work table is created for each SQL processing real thread. Next, the data in each work table is sorted by the
values of the grouping column, and then the sorted data for all SQL processing real threads is collected to create a group.

If an SQL statement containing the DISTINCT set function is executed, sort grouping might be applied to eliminate
duplicate retrieval results.

The following figure shows the sort grouping methods.

Figure 5-16: Sort grouping method

Table T1

Work table

Cl | Cc2

—_— >

1. Create a work

table for each

SQL processing

real thread.

2. Sort the data in the work table

by the grouping column values.

3. Gather the sorting

results to create groups.

5.7.3 Characteristics of each type of grouping

The following table describes the characteristics of each type of grouping.

Table 5-8: Characteristics of each type of grouping

No.

1

3

Grouping type

Hash grouping Local hash
grouping
Global hash
grouping
Sort grouping

Benefits

Grouping is performed at a higher speed
if the data required for grouping can fit in
the hash grouping area for each SQL
processing real thread, such as when there
are only a few groups.

Grouping is performed at a higher speed
if the data required for grouping can fit in
the hash table area.

Grouping is possible even if no hash
grouping area or hash table area is
allocated.

5. Designs Related to Improvement of Application Program Performance

Disadvantages

Processing performance decreases when
there are many groups.

Processing performance decreases when
grouping requires a large amount of data,
and a shortage of space occurs in the hash
table area, because the data is first stored
in the work table.

If there are many retrieval results, a large
amount of data is stored in the work table.
Processing performance decreases

Hitachi Advanced Database Application Development Guide

161

No.

Grouping type

Benefits

Disadvantages

because the data stored in the work table
is sorted, and then is grouped.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide

162

5.8 Methods for processing set operations

If you specify a set operation (excluding UNION ALL), the set operation is executed by using either of the following
processing methods:

* Hash execution

¢ Work table execution

HADB automatically determines which method to use. You can find out which processing method is used by viewing
the access path. For details about access paths, see the following sections:

* How to check access paths
See 6.1.2 How to check access paths.

» Information that is displayed as access paths
See (12) Processing method for duplicate removal in 6.1.4 Information displayed in the tree view.

5 Note

* You can prevent the application of hash execution by specifying a set operation method specification.
For details about set operation method specifications, see Specification format and rules for query
expressions in the manual HADB SQL Reference.

* Ifyou specify UNION ALL, data of the query expression body specified in the operands of the set
operation will be returned as is.

5.8.1 Hash execution

If hash execution is used as the method for processing the set operation, HADB performs deduplication while creating
a hash table by hashing retrieval results.

The following shows an example of hash execution.

m SELECT statement to be executed

SELECT "T1"."C1"™ FROM "T1"
UNION
SELECT "T2"."C1"™ FROM "T2"

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 163

Figure 5-17: Processing method for hash execution

Table T1 1. Retrieve table T1.
Cl C2

3. Perform hashing based on
the value of column C1.

Hash table
Table T2 2. Retrieve table T2.
C1l Cc2
3. Perform hashing based on 3. Create a hash table
the value of column C1. while performing
deduplication.
Explanation:

1. Retrieves table T1, and then extracts the value of column C1 of table T1.
2. Retrieves table T2, and then extracts the value of column C1 of table T2.

3. Performs deduplication while creating a hash table by hashing the results of steps 1 and 2.

A hash table is created in the hash table area. The size of the hash table area is specified in the
adb _sqgl exe hashtbl area size operand in the server definition or the client definition. Note that when 0
is specified in the adb_sgl exe hashtbl area size operand, hash execution is not applied.

m Action to take when the hash table area has insufficient space

When the hash table area has insufficient space, the data stored in the hash table is spread over multiple work tables.
This results in SQL statements taking longer to process. To remedy a situation in which the hash table area has
insufficient space, increase the value specified for the adb sgl exe hashtbl area size operand in the
server definition or the client definition. This operand specifies the size of the hash table area.

When a work table is created as a result of insufficient hash table area, the message KFAA51130-W is output to the
server message log file.

m Flow of processing when hash table area has insufficient space

The following explains the flow of processing when the hash table area has insufficient space to create the hash
table.

1. If there is insufficient space in the hash table area to create the hash table, HADB creates multiple work tables.
The data to be stored in the hash table is spread across these work tables.

Shortage of hash
Hash table table area occurs.

Table T1

Table T2

Work Work Work
table 1 table2 table 3

Work tables are created.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 164

2. A hash table is created for each work table.

Work Work Work
table 1 table 2 table 3

.

Hash table Hash table Hash table

Create hash tables while
performing deduplication.

If the hash table area runs out of space when creating hash tables for work tables, HADB creates a new work
table. HADB stores in this work table the data that did not fit in the hash table area, and then performs
deduplication.

Work table 3

F

Hash table Work table

Shortage of hash
table area occurs.

Create a new work table and
then perform deduplication.

5.8.2 Work table execution

If work table execution is used as the method for processing the set operation, HADB creates a work table for each
query specification, and then sorts data. If the set operation does not contain an ALL specification, HADB performs
deduplication of data in the work table. Then, HADB evaluates the set operation by matching data in each work table.
If the set operation does not contain an ALL specification, HADB performs deduplication of the evaluation result of the

set operation.
The following shows an example of work table execution.

m SELECT statement to be executed

SELECT "T1"."C1l" FROM "T1"
UNION
SELECT "T2"."C1"™ FROM "T2"

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 165

Figure 5-18: Processing method for work table execution

Work
Table T1 table 1
Cl c2
1. Store the value of
column C1 of table
T1 in work table 1.
2. Perform data
deduplication and > 5. Extract data from each
sort processing. work table and then
match the values and
Table T2 tZ\t/)cl)erkz perform deduplication.
Cl Cc2
3. Store the value of
column C1 of table
T2 in work table 2.
4. Perform data
deduplication and
sort processing.
Explanation:

1. Creates work table 1 for storing the value resulting from query specification SELECT "T1"."C1" FROM
"T1" (retrieves table T1, and then stores the value of column C1 of table T1 in work table 1).

2. Performs data deduplication and sort processing for work table 1 created in step 1.

3. Creates work table 2 for storing the value resulting from query specification SELECT "T2"."C1" FROM
"T2" (retrieves table T2, and then stores the value of column C1 of table T2 in work table 2).

4. Performs data deduplication and sort processing for work table 2 created in step 3.

5. Fetches data from one row at a time, and then matches the values and performs deduplication.

5.8.3 Characteristics of the methods for processing set operations

The following table shows the characteristics of each method for processing set operations.

Table 5-9: Characteristics of the methods for processing set operations

Methods for processing Benefits Disadvantages

set operations

Hash execution Results can be obtained at a higher speed when the If a shortage occurs in the hash table area due to a
data required for the set operation can be stored in large amount of data required for the set operation,
the hash table area. processing performance decreases because the data

is temporarily saved in a work table.

Work table execution This method is applicable to all set operations. If there are a large number of retrieval results, the
amount of data stored in the work table becomes
large. In this case, processing performance decreases
because deduplication is performed after the data
stored in the work table is sorted.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 166

5.9 Method for processing SELECT DISTINCT

If you specify DISTINCT in the SELECT statement, deduplication is performed by using either of the following
processing methods:

¢ Hash execution
¢ Work table execution

HADB automatically determines which method to use. You can find out which processing method is used by viewing
the access path. For details about access paths, see the following sections:

* How to check access paths
See 6.1.2 How to check access paths.

* Information that is displayed as access paths

See (12) Processing method for duplicate removal in 6.1.4 Information displayed in the tree view.

5 Note

* You can prevent the application of hash execution by specifying the SELECT deduplication method
specification. For details about the SELECT deduplication method specification, see Specification
format and rules for query specifications in the manual HADB SQL Reference.

e If HADB determines that deduplication processing for SELECT DISTINCT is unnecessary,
deduplication processing is not performed.

* The method for processing SELECT DISTINCT is determined based on the query expressions
rewritten by expanding internal derived tables and the search conditions rewritten by equivalent
exchange of search conditions. For details about expanding internal derived tables, see 5.13 Expanding
internal derived tables. For details about equivalent exchange for search conditions, see 5.11 Equivalent
exchange of search conditions.

* Ifonly literals are specified in a scalar operation, that scalar operation might be treated as a literal. For
details about scalar operations equivalent to literals, see the table Conditions under which value
expressions are equivalent to literals under Rules in Specification format and rules for value expressions
in the manual HADB SQL Reference.

5.9.1 Hash execution

If hash execution is used as the method for processing SELECT DISTINCT, HADB performs deduplication while
creating a hash table by hashing retrieval results.

The following shows an example of hash execution.

m SELECT statement to be executed

SELECT DISTINCT "C1" FROM "T1"

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 167

Figure 5-19: Processing method for hash execution

Table T1 1. Retrieve table T1.
c1 | c2 Hash table

2. Perform hashing based on
the value of column C1.

2. Create a hash table while
performing deduplication.

Explanation:
1. Retrieves table T1, and then extracts the value of column C1 of table T1.

2. Performs deduplication while creating a hash table by hashing the result of step 1.

A hash table is created in the hash table area. The size of the hash table area is specified in the
adb_sgl exe hashtbl area size operand in the server definition or the client definition. Note that when 0
is specified in the adb sql exe hashtbl area size operand, hash execution is not applied.

m Action to take when the hash table area has insufficient space

When the hash table area has insufficient space, the data stored in the hash table is spread over multiple work tables.
This results in SQL statements taking longer to process. To remedy a situation in which the hash table area has
insufficient space, increase the value specified for the adb sgl exe hashtbl area size operand in the
server definition or the client definition. This operand specifies the size of the hash table area.

When a work table is created as a result of insufficient hash table area, the message KFAA51130-W is output to the
server message log file.

m Flow of processing when hash table area has insufficient space

The following explains the flow of processing when the hash table area has insufficient space to create the hash
table.

1. If there is insufficient space in the hash table area to create the hash table, HADB creates multiple work tables.
The data to be stored in the hash table is spread across these work tables.

Shortage of hash
Hash table table area occurs.

Table T1| -==---------- >

Work Work Work
table 1 table2 table 3

Work tables are created.

2. A hash table is created for each work table.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 168

Work Work Work
table 1 table 2 table 3

ooy

Hash table Hash table Hash table

Create hash tables while
performing deduplication.

If the hash table area runs out of space when creating hash tables for work tables, HADB creates a new work

table. HADB stores in this work table the data that did not fit in the hash table area, and then performs

deduplication.

Work table 3

.

Hash table = Work table

Shortage of hash
table area occurs.

Create a new work table
and perform deduplication.

5.9.2 Work table execution

If work table execution is used as the method for processing SELECT DISTINCT, HADB creates a work table
containing the retrieval result. Then, HADB sorts data in the work table and performs deduplication.

The following shows an example of work table execution.

m SELECT statement to be executed
SELECT DISTINCT "C1"™ FROM "T1"

Figure 5-20: Processing method for work table execution

Table T1 Work table
c1l | c2

1. Store the value of
column C1 of table
T1 in the work table.

2. Perform data and
sort processing and
deduplication.

Explanation:

1. Retrieves table T1, and then stores the value of column C1 of table T1 in the work table.

2. Performs data sort processing and deduplication for the work table created in step 1.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide

169

5.9.3 Characteristics of the methods for processing SELECT DISTINCT

The following table shows the characteristics of each method for processing SELECT DISTINCT.

Table 5-10: Characteristics of the methods for processing SELECT DISTINCT

Method for processing Benefits Disadvantages

SELECT DISTINCT

Hash execution Results can be obtained at a higher speed when the = If a shortage occurs in the hash table area due to a
data required for executing SELECT DISTINCT large amount of data required for executing SELECT
can be stored in the hash table area. DISTINCT, processing performance decreases

because the data is temporarily saved in a work table.

Work table execution This method is applicable to any SELECT If there are a large number of retrieval results, the
DISTINCT. amount of data stored in the work table becomes
large. In this case, processing performance decreases
because deduplication is performed after the data
stored in the work table is sorted.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 170

5.10 Considerations when executing an SQL statement that creates work
tables

If data sort processing or deduplication is performed during execution of an SQL statement, a work table might be
created in the work table DB area. Data being sorted or data after deduplication is stored temporarily in a work table.
Therefore, if you sort a large amount of data or perform deduplication for such data, sufficient performance improvement
might not be obtained due to the workload of creating work tables.

0 Important

To avoid performance degradation, you must estimate accurately the size of the work table DB area that is
needed. If more SQL statements for which work tables are created are executed than initially expected, the
application program developer must request that the HADB system designer or system administrator re-
estimate the size of the work table DB area.

5.10.1 Types of work tables

The two types of work tables are global work tables and local work tables.

(1) Global work table

Global work tables are used to share data in work tables among multiple real threads when the same SQL statement is
processed by multiple real threads. These work tables are used for joining tables and processing subqueries.

The number of pages in the global buffer that is used by global work tables is specified in the

adb_dbbuff wrktbl glb blk num server definition operand. For details about the

adb_dbbuff wrktbl glb blk num operand, see the topic Operands related to performance (set format) in
Detailed descriptions of the server definition operands in Designing the Server Definition in the HADB Setup and
Operation Guide.

(2) Local work table

A local work table is created for each SQL processing real thread. These work tables are used when the ORDER BY
clause is specified and for grouping when local hash grouping is selected as the grouping method.

The number of local work table buffer pages that are used by local work tables is specified in the

adb dbbuff wrktbl clt blk num server definition operand, the adb dbbuff wrktbl clt blk num
client definition operand, or the adb export wrktbl blk numexportoption (when the adbexport command
is executed). For details about these operands and option, see the following sections:

* adb dbbuff wrktbl clt blk numoperandintheserverdefinition: Topic Operands related to performance
(set format) in Detailed descriptions of the server definition operands in Designing the Server Definition in the
HADB Setup and Operation Guide

* adb _dbbuff wrktbl clt blk numoperand in the client definition: Explanation of the
adb_dbbuff wrktbl clt blk num operand in 2.2.3 Operands related to performance

* adb_export wrktbl blk numexportoption: Specification format for the adbexport command in adbexport
(Export Data) in the manual HADB Command Reference

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 171

5.10.2 Work tables created when SQL statements are executed

Work tables are created when you execute the SQL statements listed in the table below.

0 Important

If the row length of the work table exceeds the maximum row length, the SQL statement will result in an

error. For details about the maximum row length of a work table, see Maximum and minimum values related

to database in the HADB Setup and Operation Guide. For details about how to determine the row length

of a work table, see the description of variable ROWSZ in Determining the number of pages for base rows
that are needed for storing work tables in the HADB Setup and Operation Guide.

Table 5-11: SQL statements for which work tables are created

No.

5. Designs Related to Improvement of Application Program Performance

SQL statement for which
work table is created

ORDER BY Results of a set
clause is operation are
specified. used as a sort

key.

Results of a
query
specification
are used as a
sort key.

Purpose of work table

Sorting the retrieval results

Columns of work table

Store the values of columns
resulting from query
expressions

Store the results of value
expressions specified for sort
keys in the ORDER BY clause

Store the row IDs of the rows
in the retrieval results for the
base table (when the base
table is specified in the FROM
clause)”!

Store the values of retrieval
target columns (when the
base table with key scan used
as the table retrieval method
is specified in the FROM
clause)

Store the values of retrieval
target columns in the column
store table”!! (when a column
store table is specified in the
FROM clause)

Store the column values of
results derived from query
expression bodies in derived
tables (when a derived table
is specified in the FROM
clause)®

Store the column values of
results derived from query
expressions in view
definitions (when a viewed
table is specified in the FROM
clause)®

Store the column values of
results derived from query
expression bodies in WITH
clauses (when a query name
is specified in the FROM
clause)®

Work table type

Local work table

Hitachi Advanced Database Application Development Guide

172

No.

2

3

SQL statement for which
work table is created

GROUP BY
clause is
specified.

SELECT
DISTINCT is
specified.

DISTINCT
set function or
inverse
distribution
function is
specified.

The grouping
method is
global hash
grouping.#2

The grouping
method is
local hash
grouping??

The grouping
method is sort
grouping®Z.

The method
for processing
SELECT
DISTINCT is
hash

execution.”12

The method
for processing
SELECT
DISTINCT is
work table

execution.”12

The grouping
method is
global hash
grouping.’2

Purpose of work table

Retaining the grouping results.
This work table is used when a
shortage occurs in the hash table
area.

The size of the hash table area is
specified in the

adb sgl exe hashtbl a
rea_size operandinthe server
definition or the client definition.

Sorting for grouping. This work
table is used when there is
insufficient hash grouping area.
The size of the hash grouping
area is specified in the

adb sqgl exe hashgrp a
rea_ size operandinthe server
or client definition.

Sorting for grouping.

Retaining retrieval results. This
work table is used when a
shortage occurs in the hash table
area. The size of the hash table
area is specified in the

adb sqgl exe hashtbl a
rea_size operandinthe server
definition or the client definition.

Sorting retrieval results or
eliminating duplicate retrieval
results

Retaining the input values of set
functions whose duplicates have
been eliminated. This work table
is used when a shortage occurs in
the hash table area. The size of the
hash table area is specified in the
adb _sgl exe hashtbl a

rea_size operandin the server
definition or the client definition.

5. Designs Related to Improvement of Application Program Performance

Columns of work table

¢ Store the column values of
results derived from system-
defined functions specified in
table function derived tables
(when a table function
derived table is specified in
the FROM clause)

* Store the values resulting
from the scalar function
RANDOMROW (when the
scalar function RANDOMROW
is specified in the selection
expression)

* Store the values resulting
from the value expressions
specified for grouped
columns in the GROUP BY
clause

¢ Store the results of set
functions

» Store information the HADB
server uses for hashing®% #10

¢ Store the values resulting
from the value expressions
specified for grouped
columns in the GROUP BY
clause

¢ Store the columns specified
in the arguments of set
functions

¢ Store the results of set
functions

 Store the values of columns
resulting from selection
expressions

¢ Store information HADB
uses for hashing- #10

 Store the values of columns
resulting from selection
expressions

 Store the values resulting
from the value expressions
specified for grouped
columns in the GROUP BY
clause

* Store the values of columns
specified in the arguments of
the ALL set function

Work table type

* Local work table”’
* Global work table”®

Local work table

* Local work table”’
* Global work table

Local work table

* Local work table”’
* Global work table8

Hitachi Advanced Database Application Development Guide

173

No.

5

10

SQL statement for which
work table is created

The grouping
method is not
global hash
grouping.”?

Window functions are specified.

Multiple table = The table
references are | joining
specified in method is hash
the FROM join.#3
clause.
The table
joining
method is
nested loop
join.#3

Derived tables are specified.

Viewed tables are specified.

WITH clause is specified.

A table function derived table is
specified.

Joined tables are specified.

Purpose of work table

Eliminating the duplicates of
input values for set functions or
sorting the input values for set
functions

Sorting for obtaining the results
of window functions

Retaining the results of table
references subject to table join
processing. This work table is
used when a shortage occurs in
the hash table area. The size of the
hash table area is specified in the
adb_sgl exe hashtbl a
rea_size operand in the server
definition or the client definition.

Retaining the results of table
references subject to table join
processing

Retaining the results of query
expression bodies corresponding
to derived tables

Retaining the results of query
expressions corresponding to
viewed tables

Retaining the results of query
expression bodies corresponding
to query names

Retaining the results of system-
defined functions that derive
table function derived tables.

Retaining the results of joined
tables.

5. Designs Related to Improvement of Application Program Performance

Columns of work table

* Store the results of value
expressions specified in the
arguments of the DISTINCT
set function

* Store the results of value
expressions specified for a
sortkey inthe WITHIN group
specification in an inverse
distribution function

¢ Store the results of value
expressions specified in the
arguments of the MEDIAN
inverse distribution function

 Store information the HADB
server uses for hashing®% #10

¢ Store the values of columns
of a table specified in the
FROM clause

¢ Store the values resulting
from the window function
specified in the selection
expression

¢ Store the values of columns
of a table specified in the
FROM clause

» Store information the HADB
server uses for hashing®%- #10

¢ Store the values of columns
resulting from a query
expression body in derived
tables™

* Store the values of result
columns derived from a query
expression in view
definitions™®

¢ Store the values of columns
resulting from a query
expression body in the WITH
clause”®

¢ Store the values resulting
from the system-defined
function

¢ Store the values of columns in
joined tables

Work table type

Local work table

* Local work table”’
* Global work table

Global work table

Global work table

Global work table

Global work table

Global work table

Global work table

Hitachi Advanced Database Application Development Guide

174

No. SQL statement for which Purpose of work table Columns of work table Work table type
work table is created
For details about the work tables
used to obtain the results of
joined tables, see Multiple table
references are specified in the
FROM clause in row 6.
12 Subqueries are | The subquery = Retaining the results of Store the values of columns * Local work table’
specified. processing subqueries. This work table is resulting from a selection o Global work table#®
method is hash | used when a shortage occurs in expression in subqueries
execution. the hash table area. The sizeofthe |« Store the values of external
hash table area is specified in the reference columns contained
adb sqgl exe hashtbl a in subqueries™’
rea_sizeoperandintheserver g oo oo of et
definition or the client definition. functions contained in
subqueries
* Store information the HADB
server uses for hashing?®: #10
The subquery = Retaining the results of * Store the values of columns | Global work table
processing subqueries resulting from a selection
method is not expression in subqueries
hash
execution.
13 A set The method Retaining the results of Store the values of columns * Local work table®’
operation is for processing ~ deduplication. This work table is resulting from the selection o Global work table’®
specified. the set used when a shortage occurs in expression specified in a
operation is the hash table area. The size of the query specification
hash hash table area is specified inthe ~ « Store information HADB
execution®13 adb sql exe ha shtbl_a uses for hashing®: #10
rea_size operandin the server
definition or the client definition.
The method Sorting retrieval results or ¢ Store the values of columns Local work table
for processing = eliminating duplicate retrieval resulting from the selection
the set results expression specified in a
operation is query specification
work table
execution.”13
14 A recursive query is specified. Retaining the results of anchor * Store the values of columns Global work table
members and recursive members resulting from a recursive
query
#1
The row ID is a value that indicates a row's storage location. The data type of a row ID is CHAR (16) .
#2
For details about grouping methods, see 5.7 Grouping methods.
#3
For details about table joining methods, see 5.5 Table joining methods.
#4
For details about how to process subqueries, see 5.6 How to process subqueries.
#5

For details about external reference columns, see Specification format and rules for subqueries in the manual HADB
SQOL Reference.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide

175

#6

Expansion of the internal derived table might result in this table being handled as the base table. For details about
expansion of internal derived tables, see Internal derived tables in the manual HADB SQL Reference.

#7
A work table used to store data that the hash table area cannot accommodate due to insufficient space.

#8

A work table used to store data that cannot be processed because there is still insufficient hash table area after data
has been stored in work tables.

#9
The data type of columns that store the information HADB uses for hashing is INTEGER.

#10

A column created in a work table used to store data that cannot be processed because there is still insufficient hash
table area after data has been stored in work tables.

#11

Columns with a definition length of 128 or more bytes are not subject to retrieval. A column with a definition length
of 128 or more bytes refers to any of the following columns:

* A column of CHARACTER type with a definition length of 128 or more bytes
* A column of VARCHAR type with a definition length of 128 or more bytes

* A column of BINARY type with a definition length of 128 or more bytes

* A column of VARBINARY type with a definition length of 128 or more bytes

#12

For details about the method for processing SELECT DISTINCT, see 5.9 Method for processing SELECT
DISTINCT.

#13
For details about the method for processing the set operation, see 5.8 Methods for processing set operations.

You can find out whether work tables were created by checking the access path after the SQL statement has executed.
For details about access paths, see the following sections:

* How to check access paths

See 6.1.2 How to check access paths.

¢ Information displayed in access paths
See (7) Work table creation information in 6.1.4 Information displayed in the tree view.

5.10.3 Number of work tables that are created

This subsection explains by way of examples the number of work tables that are created when an SQL statement is
executed. Note that the number of work tables explained here is based on the SQL statements. The number of work
tables that are actually created during execution of SQL statements is affected by other factors, including the maximum
number of SQL processing real threads in the server definition or client definition (adb sgl exe max rthd num
operand) and the number of data items to be manipulated.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 176

(1) Example 1 (when the ORDER BY clause is specified)

Example SQL statement
SELECT "C1","C2","C3" FROM "T1" ORDER BY "CI1" ASC

Explanation:

One work table is created for sort processing by the ORDER BY clause.

(2) Example 2 (when the GROUP BY clause is specified)

Example SQL statement
SELECT "C1","C2" FROM "T1" GROUP BY "C1","C2"

Explanation:

The number of work tables that are created depends on whether global hash grouping is selected as the grouping
method.

e When global hash grouping is applied
Two work tables are created for processing by the GROUP BY clause.

* When global hash grouping is not applied
One work table is created for processing by the GROUP BY clause.

For details about grouping methods, see 5.7 Grouping methods.

(3) Example 3 (when SELECT DISTINCT is specified)

Example SQL statement
SELECT DISTINCT "C1","C2","C3" FROM "T1"
Explanation:
The number of work tables that are created depends on the applied method for processing SELECT DISTINCT.

* When hash execution is applied
Two work tables are created for processing SELECT DISTINCT.

* When work table execution is applied
One work table is created for processing SELECT DISTINCT.

For details about the method for processing SELECT DISTINCT, see 5.9 Method for processing SELECT
DISTINCT.

(4) Example 4 (when the DISTINCT set function is specified)

Example SQL statement

SELECT COUNT (DISTINCT "C1") FROM "T1"

Explanation:

The number of work tables that are created depends on whether global hash grouping is selected as the grouping
method.

* When global hash grouping is applied

Two work tables are created for processing by the set function.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 177

* When global hash grouping is not applied
One work table is created for processing by the set function.

For details about grouping methods, see 5.7 Grouping methods.

(5) Example 5 (when the RANK window function is specified)

Example SQL statement

SELECT "C1",RANK() OVER (PARTITION BY "C2" ORDER BY "C3" ASC) FROM "T1"

Explanation:
One work table is created for the RANK window function processing.

(6) Example 6 (when the GROUP BY and ORDER BY clauses are both
specified)

Example SQL statement

SELECT "C1","C2" FROM "T1" GROUP BY "C1","C2" ORDER BY "C1" ASC

Explanation:

The number of work tables that are created depends on whether global hash grouping is selected as the grouping
method.

¢ When global hash grouping is applied
A total of three work tables are created. Two are created for processing by the GROUP BY clause, and one is
created for processing by the ORDER BY clause.

e When global hash grouping is not applied

One work table is created for processing by the GROUP BY clause. Only one work table is created in this example
because the GROUP BY and ORDER BY clauses only require sorting to take place once.

For details about grouping methods, see 5.7 Grouping methods.

(7) Example 7 (when the GROUP BY and ORDER BY clauses are both
specified)

Example SQL statement

SELECT "C1","C2",COUNT(*) "DCl" FROM "T1"
GROUP BY "C1","C2" ORDER BY "DC1" ASC

Explanation:
The number of work tables that are created depends on whether global hash grouping is selected as the grouping
method.
¢ When global hash grouping is applied
A total of three work tables are created. Two are created for processing by the GROUP BY clause, and one is
created for processing by the ORDER BY clause.
e When global hash grouping is not applied
A total of two work tables are created. One is created for processing by the GROUP BY clause, and one is created
for processing by the ORDER BY clause.

For details about grouping methods, see 5.7 Grouping methods.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 178

(8) Example 8 (when SELECT DISTINCT and the ORDER BY clause are
specified)

Example SQL statement

SELECT DISTINCT "C1","C2","C3" FROM "T1" ORDER BY "C1" ASC

Explanation:
One work table is created for sort processing by SELECT DISTINCT.

In this example, only one work table is created because the number of sort processes required for SELECT
DISTINCT and the ORDER BY clause is only one.

(9) Example 9 (when the GROUP BY clause and a DISTINCT set function
are specified)

Example SQL statement

SELECT "C1",COUNT(DISTINCT "C2") FROM "T1" GROUP BY "C1"

Explanation:

The number of work tables that are created depends on whether global hash grouping is selected as the grouping
method.

* When global hash grouping is applied
A total of three work tables are created. Two are created for processing by the GROUP BY clause, and one is
created for processing by the set function.

* When global hash grouping is not applied

One work table is created for processing by the GROUP BY clause. Only one work table is created in this example
because the GROUP BY clause and set function only require sorting to take place once.

For details about grouping methods, see 5.7 Grouping methods.

(10) Example 10 (when tables are joined)

Example SQL statement
SELECT "Tl"."cl","Tl"."cz","TZ"."C:L","TZ"."CZ" FROM "Tl","TZ"
WHERE "Tl"."Cl":"T2"."C1"

Explanation:

Three work tables for join processing are created.

(11) Example 11 (multiple table references are specified in the FROM
clause)

Example SQL statement

SELECT "DT1"."C1","DT2"."C1"
FROM (SELECT COUNT ("T1"."C1l") FROM "T1") AS "DT1" ("C1"),
(SELECT COUNT ("T2"."C1") FROM "T2") AS "DT2" ("Cl1l")
WHERE "DT1"."C1">"DT2"."C1"

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 179

Explanation:

One work table that is used for table join processing is created.

(12) Example 12 (subquery is specified)

Example SQL statement

SELECT "Tl"."Cl","Tl"."CZ","Tl"."C3" FROM "Tl"
WHERE "T1"."Cl"=(SELECT "T2"."Cl" FROM "T2"
WHERE "TZ"."CZ":"T:L"."C2")

Explanation:

The number of work tables that are created depends on whether hash execution is specified as the subquery processing
method.

* When hash execution is applied

Three work tables are created to process the subquery containing the external reference columns.

* When hash execution is not applied
No work table is created to process the subquery containing the external reference columns.

For details about how to process subqueries, see 5.6 How to process subqueries.

(13) Example 13 (IN subqueries are specified)

Example SQL statement

SELECTf"C1","C2","C3" FROM "T1" WHERE "C1" IN (SELECT "C1" FROM "T2")

Explanation:

The number of work tables that are created depends on whether hash execution is specified as the subquery processing
method.

e When hash execution is applied
Three work tables are created to process the subquery specified in the IN predicate.

* When hash execution is not applied
One work table is created to process the subquery specified in the IN predicate.

For details about how to process subqueries, see 5.6 How to process subqueries.

(14) Example 14 (quantified predicates are specified)

Example SQL statement

SELECT "C1","C2","C3" FROM "T1" WHERE "C1"=ANY (SELECT "C1" FROM "T2")

Explanation:

The number of work tables that are created depends on whether hash execution is specified as the subquery processing
method.

* When hash execution is applied
Three work tables are created to process the subquery specified in the quantified predicate.

* When hash execution is not applied
One work table is created to process the subquery specified in the quantified predicate.

For details about how to process subqueries, see 5.6 How to process subqueries.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 180

(15) Example 15 (EXISTS predicate is specified)

Example SQL statement

SELECT "Tl".llcl","Tl'l."CZH,"Tl"."C3" FROM "Tl"
WHERE EXISTS (SELECT * FROM "T2" WHERE "T2"."C2"="T1"."C2")

Explanation:
The number of work tables that are created depends on whether hash execution is specified as the subquery processing
method.
* When hash execution is applied
Three work tables are created to process the subquery specified in the EXISTS predicate.

* When hash execution is not applied
No work table is created to process the subquery specified in the EXISTS predicate.

For details about how to process subqueries, see 5.6 How to process subqueries.

(16) Example 16 (table function derived table is specified)

Example SQL statement

SELECT "C1","C2","Cc3"
FROM TABLE (ADB_CSVREAD (MULTISET (SELECT "FNAME" FROM "TFILE"),
'COMPRESSION FORMAT=GZIP;
FIELD NUM=1,2,3;"'))
AS "T1" ("C1l" INTEGER,"C2" CHAR(10),"C3" DATE)

Explanation:

One work table is created to store the results of the table subquery specified in the multiset value expression. For
details about multiset value expressions, see Specification format and rules for multiset value expressions in the
manual HADB SQL Reference.

(17) Example 17 (viewed tables are specified)

Example SQL statement

CREATE VIEW "VT1"("Cl","C2")
AS SELECT "Tl"."C1","T2"."C1l" FROM "T1","T2"
WHERE "T1"."C2"<="T2"."C2"
SELECT * FROM "VT1" AS "XT1","VT1" AS "XT2"
WHERE "XT1"."C1">"XT2"."C1"

Explanation:
One work table that is used in the viewed table processing is created.

(18) Example 18 (WITH clauses are specified)

Example SQL statement

WITH "QTl"("Cl","CZ") AS (SELECT "Tl"."Cl","TZ"."Cl" FROM lleH,"Tzlv
WHERE "Tl"."C2"<="T2"."C2")
SELECT * FROM "QT1" WHERE "C1"=(SELECT MAX("C1l") FROM "QT1")

Explanation:

One work table that is used in the WITH clause processing is created.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 181

(19) Example 19 (a set operation is specified)

Example SQL statement

SELECT "C1","C2" FROM "T1" UNION SELECT "C1","C2" FROM "T2"

Explanation:

Two work tables are created to process the set operation.

(20) Example 20 (a recursive query is specified)

Example SQL statement

WITH "QT1" ("C1","C2")
AS (SELECT "C1","C2" FROM "T1" WHERE "C2" BETWEEN 'AA' AND 'EE'
UNION ALL
SELECT "C1"+1,"C2" FROM "QT1" WHERE "C1"<=10)
SELECT * FROM "QT1"

Explanation:

In a recursive query, to retain the results of anchor and recursive members, two work tables that will be used to
process the recursive query are created. For details about recursive queries, see Query expression in the manual
HADB SQL Reference.

(21) Example 21 (a DISTINCT set function and GROUP BY clause are
specified)

Example SQL statement

SELECT "C1",COUNT(DISTINCT "C2"),SUM("C3") FROM "T1"
GROUP BY "C1"

Explanation:

The number of work tables that are created depends on whether global hash grouping is selected as the grouping
method.

* When global hash grouping is applied
A total of four work tables are created. Two are created for processing by the GROUP BY clause, and two are
created for processing by the set function.

* When global hash grouping is not applied

One work table is created for processing by the GROUP BY clause. In the case of this example, no work tables
are created for processing by the set function because the sort processing by the GROUP BY clause and the sort
processing by the set function are executed concurrently.

For details about grouping methods, see 5.7 Grouping methods.

(22) Example 22 (multiple DISTINCT set functions are specified)

Example SQL statement

SELECT COUNT (DISTINCT "C1"),COUNT (DISTINCT "C2") FROM "T1"

Explanation:

The number of work tables that are created depends on whether global hash grouping is selected as the grouping
method.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 182

* When global hash grouping is applied
Three work tables are created for processing by the set functions.

e When global hash grouping is not applied
Two work tables are created for processing by the set functions.

For details about grouping methods, see 5.7 Grouping methods.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 183

5.11 Equivalent exchange of search conditions

HADB might convert a specified search condition so that the search condition can be evaluated more efficiently. This
is called equivalent exchange of search conditions. When equivalent exchange is performed on search conditions, the
indexes to be used during retrieval are determined based on the search conditions obtained after equivalent exchange
has been applied. For details about the method for determining the index to be used during retrieval, see 5.2 B-tree
indexes and text indexes used during execution of SQL statements and 5.3 Range indexes used during execution of
SQL statements.

HADB performs equivalent exchange in the following order for the conditions specified in search conditions:

1. Equivalent exchange for OR conditions (removing from the OR conditions)”
This is an equivalent exchange that removes a condition from the inside of an OR condition to the outside of the OR
condition.

2. Equivalent exchange for OR conditions (converting to IN conditions)*
This is an equivalent exchange that adds an IN condition created from an = condition in an OR condition to the
outside of the OR condition.

3. Equivalent exchange for OR conditions (equivalent exchange to derived tables for which the UNION ALL set
operation is specified)”
This is an equivalent exchange from a search condition inside an OR condition to a derived table for which the
UNION ALL set operation is specified.

4. Equivalent exchange for scalar operations
This is an equivalent exchange that transposes scalar operations.

5. Equivalent exchange for an IN predicate

This is an equivalent exchange from an IN predicate to the = conditions or <> conditions.

6. Equivalent exchange for a HAVING clause (converting to the WHERE clauses)

This is an equivalent exchange from the search condition for a HAVING clause to the search condition for a WHERE
clause.

7. Equivalent exchange for search conditions in SQL statements that specify derived queries (transposition to the
WHERE clause of a derived query)

This is an equivalent exchange that moves the search condition specified in the WHERE clause of an SQL statement
in which a derived query is specified to the WHERE clause of the derived query.

The target of this equivalent exchange is the search condition in the WHERE clause.

The following subsections explain each of these types of equivalent exchange.

5.11.1 Equivalent exchange for OR conditions (removing from the OR
conditions)

If the same condition is specified in an OR condition, equivalent exchange is performed in such a manner that the same

condition is removed from the OR condition. When the same condition is removed from the OR condition, the search

condition sometimes becomes more effective in narrowing down the retrieval range. This can also reduce the workload
for condition evaluation because the number of identical conditions in an OR condition is reduced to one.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 184

The OR conditions specified in the search condition in the WHERE clause, the ON search condition for joined tables, and
the search condition in the HAVING clause are subject to this equivalent exchange.

When equivalent exchange has been performed on search conditions, the indexes to be used during retrieval are
determined based on the search conditions obtained after equivalent exchange.

The following shows examples of equivalent exchange. In the examples, C1, C2, and C3 are column names.

(1) Examples of search conditions on which equivalent exchange is
performed

(a) Example 1

W Specified search condition

WHERE ("C1" = 100 AND "C2" = 'A'")

OR ("C1" 100 AND "C3" > 20)

Equivalent exchange

W Search condition resulting from equivalent exchange

WHERE "C1" = 100
AND ("C2"™ = 'A' OR "C3" > 20)

Explanation:

Because condition "C1"™ = 100 is specified on both sides of the OR condition, "C1"™ = 100 is removed from the
OR condition.

(b) Example 2

W Specified search condition

WHERE ("C1" < CURRENT DATE AND "C2" = 'A')
OR ("C1" < CURRENT DATE AND "C3" > 20)

Equivalent exchange

W Search condition resulting from equivalent exchange

WHERE "C1" < CURRENT DATE
AND ("C2"™ = 'A' OR "C3" > 20)

Explanation:

Because condition "C1" < CURRENT DATE is specified on both sides of the OR condition, "C1" <
CURRENT _DATE is removed from the OR condition.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 185

(c) Example 3

W Specified search condition

WHERE ("T1"."Cl"™ = "T2"."Cl"™ AND "T1"."C2" = 'A')
OR ("T1"."Cl"™ = "T2"."Cl"™ AND "T1"."C3" > 20)

Equivalent exchange

W Search condition resulting from equivalent exchange

WHERE "T1"."C1l" = "T2"."Cl"
AND ("T1"."C2"™ = 'A' OR "T1"."C3" > 20)
Explanation:
Because condition "T1"."C1" ="T2"."C1" is specified on both sides of the OR condition, "T1"."C1" =

nT2n" , "C1"™ is removed from the OR condition.

(d) Example 4

W Specified search condition

WHERE ("C1" IS NULL AND "C2" = 'A')
OR ("C1" IS NULL AND "C3" > 20)

Equivalent exchange

W Search condition resulting from equivalent exchange

WHERE "C1" IS NULL
AND ("C2"™ = 'A' OR "C3" > 20)

Explanation:

Because condition "C1"™ IS NULL is specified on both sides of the OR condition, "C1" IS NULL is removed from
the OR condition.

(e) Example 5

W Specified search condition

WHERE ("C1" IN(100,200,300) AND "C2" = 'A")
OR ("C1" IN(100,200,300) AND "C3" > 20)

Equivalent exchange

W Search condition resulting from equivalent exchange

WHERE "C1" TN (100,200,300)
AND ("C2"™ = 'A' OR "C3" > 20)

Explanation:

Because condition "C1" IN (100,200, 300) is specified on both sides of the OR condition, "C1" IN
(100,200, 300) is removed from the OR condition.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 186

(f) Example 6

B Specified search condition

WHERE ("C1" BETWEEN 100 AND 300 AND "C2" = 'A'")
OR ("C1" BETWEEN 100 AND 300 AND "C3" > 20

Equivalent exchange

B Search condition resulting from equivalent exchange

WHERE "C1" BETWEEN 100 AND 300
AND ("C2" = 'A' OR "C3" > 20)

Explanation:

Because condition "C1" BETWEEN 100 AND 300 is specified on both sides of the OR condition, "C1"
BETWEEN 100 AND 300 is removed from the OR condition.

(g) Example 7

W Specified search condition

WHERE "C1" = 100 OR "C1" = 100 OR "C1" = 100

Equivalent exchange

W Search condition resulting from equivalent exchange

WHERE "C1" = 100

Explanation:

Because the conditions specified in the OR conditions are all "C1" = 100, they are converted to a single = condition.

(h) Example 8

B Specified search condition

WHERE "C1" <> 100 OR "C1" <> 100 OR "C1" <> 100

Equivalent exchange

M Search condition resulting from equivalent exchange

WHERE "C1" <> 100

Explanation:

Because the conditions specified in the OR conditions are all "C1" <> 100, they are converted to a single <>
condition.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 187

(2) Examples of search conditions on which equivalent exchange is not
performed

(a) Example 1

W Specified search condition

WHERE ("Tl" ."Cl"™ = wT2w wel"™ AND "T1M"."C2" = 'A')
OR (IIT2II‘IIC1" = "Tl'l.llclll AND llTlll‘llc3" > 20)
Explanation:
Equivalent exchange is not performed because "T1" ."C1" ="T2" ."C1" and "T2"."C1" ="T1"."C1" are

regarded as different conditions.

(b) Example 2

W Specified search condition

WHERE NOT (("C1" = 100 AND "C2" = 'A')
OR ("Cl" = 100 AND "C3" > 20))
Explanation:

"C1" =100 is specified on both sides of the OR condition, but no equivalent exchange is performed because this
OR condition is specified inside a NOT condition.

(c) Example 3

Equivalent exchange is not performed on an OrR
condition that is specified in an AND condition.

B Specified search condition

WHERE (("C1"
OR| (("C1"

100 [OR "C1" > 200) |[AND|"C2" = 'A")
100 OR "C1" > 200) AND "C3" > 20)

tThe same condition is specified on both sides of the OR condition.

Explanation:
"C1" =100O0R "C1" > 200 is specified on both sides of the OR condition, but equivalent exchange is not
performed on an OR condition specified inside an AND condition.

(3) Rules for equivalent exchange

1. If a comparison predicate is in any of the following formats, a condition inside the OR condition is removed from
the OR condition:

* column-specification comparison-operator literal
Equivalent exchange is performed, even if the column specification and literal are specified in reverse order.

* column-specification comparison-operator datetime-information-acquisition-function (or user-information-
acquisition-function)
Equivalent exchange is performed, even if the column specification and datetime information acquisition
function (or user information acquisition function) are specified in reverse order.

* column-specification comparison-operator column-specification

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 188

If the columns specified as the column specification are specified in reverse order, equivalent exchange is not
performed because they are regarded as different conditions (see (a) Example 1 in (2) Examples of search
conditions on which equivalent exchange is not performed).

2. If the NULL predicates are specified in either of the following formats, the condition in the OR condition is removed
from the OR condition:

* column-specification TS NULL
e column-specification TS NOT NULL

3. If the IN predicates are specified in either of the following formats, the condition in the OR condition is removed
from the OR condition:

* column-specification IN (value-expression, . . .)

Equivalent exchange is performed if only literals, datetime information acquisition functions, or user information
acquisition functions are specified in the value expressions.

* column-specification NOT IN (value-expression, . . .)

Equivalent exchange is performed if only literals, datetime information acquisition functions, or user information
acquisition functions are specified in the value expressions.

4.1f the BETWEEN predicates are specified in either of the following formats, the condition in the OR condition is
removed from the OR condition:

* column-specification BETWEEN value-expression-1 AND value-expression-2

Equivalent exchange is performed if only literals, datetime information acquisition functions, or user information
acquisition functions are specified in value expressions 1 and 2.

e column-specification NOT BETWEEN value-expression-1 AND value-expression-2

Equivalent exchange is performed if only literals, datetime information acquisition functions, or user information
acquisition functions are specified in value expressions 1 and 2.

5. Equivalent exchange is not performed in the following cases:

* OR conditions specified in NOT conditions (see (b) Example 2 in (2) Examples of search conditions on which
equivalent exchange is not performed)

* OR conditions specified in AND conditions (see (¢) Example 3 in (2) Examples of search conditions on which
equivalent exchange is not performed)

5.11.2 Equivalent exchange for OR conditions (converting to IN
conditions)

If multiple = conditions are specified for the same column in an OR condition, the following equivalent exchange is
performed:

¢ The = conditions for the same column are converted to an IN condition.

¢ The = conditions for the same column are converted to an IN condition, which is added outside of the OR condition.

If the = conditions are converted to an IN condition and then added outside of the OR condition, the resulting condition
can be effective in narrowing down the search range; however, the workload for condition evaluation might increase
when an IN condition is added.

The OR conditions specified in the search condition in the WHERE clause, the ON search condition for joined tables, and
the search condition in the HAVING clause are subject to this equivalent exchange.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 189

If equivalent exchange has been performed on search conditions, the indexes to be used during retrieval are determined
based on the search conditions obtained after equivalent exchange.

The following shows examples of equivalent exchange. In the examples, C1, C2, and C3 are column names.

(1) Examples of search conditions on which equivalent exchange is
performed

(a) Example 1

W Specified search condition

WHERE "C1" = 100 OR "Cl1" = 200 OR "C1" =300

Equivalent exchange

W Search condition resulting from equivalent exchange

WHERE "C1" IN (100,200,300)

Explanation:

The OR conditions are converted to an IN condition because the conditions specified in the OR conditions are all =
conditions for column C1.

(b) Example 2

W Specified search condition

WHERE ("C1" CURRENT DATE AND "C2" = 'A'")

OR ("C1"™ = ? AND "C3" > 20)

Equivalent exchange

B Search condition resulting from equivalent exchange

WHERE "C1" IN (CURRENT DATE,?)

AND (("C1" = CURRENT DATE AND "C2" = 'A')
OR ("C1" = 2 AND "C3" > 20))
Explanation:

The = condition for column C1 specified in the OR condition is converted to an IN condition, which is then added
outside of the OR condition.

(2) Examples of search conditions on which equivalent exchange is not
performed

(a) Example 1

W Specified search condition

WHERE NOT ("C1" = 100 OR "C1" = 200 OR "Cl1" = 300)

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 190

Explanation:
The conditions specified in the OR conditions are all = conditions for column C1, but equivalent exchange is not
performed because they are specified inside a NOT condition.

(b) Example 2

Equivalent exchange is not performed on an ORrR
condition that is specified in an AND condition.

B Specified search condition

WHERE (("C1" = 100 |OR/ "C1" = 200) AND| "C2" = 'A')
OR "C3" > 20) A

—— The same condition is specified on both sides of the OR condition.

Explanation:
"C1l" =100and "C1" =200 are specified on either side of the OR condition, but equivalent exchange is not
performed on an OR condition that is specified inside an AND condition.

(3) Rules for equivalent exchange

1. If a comparison predicate is in any of the formats shown below, an IN condition is added outside the OR condition.
Note that if a column specified in the column specification is an external reference column, equivalent exchange is
not performed. For details about external reference columns, see Specification format and rules for subqueries in
the manual HADB SQL Reference.

* column-specification = literal
Equivalent exchange is performed, even if the column specification and literal are specified in reverse order.

* column-specification = datetime-information-acquisition-function (or user-information-acquisition-function)

Equivalent exchange is performed, even if the column specification and datetime information acquisition
function (or user information acquisition function) are specified in reverse order.

* column-specification = dynamic-parameter

Equivalent exchange is performed, even if the column specification and dynamic parameter are specified in
reverse order.

2. Equivalent exchange is not performed in the following cases:

* OR conditions specified in NOT conditions (see (a) Example 1 in (2) Examples of search conditions on which
equivalent exchange is not performed)

* OR conditions specified in AND conditions (see (b) Example 2 in (2) Examples of search conditions on which
equivalent exchange is not performed)

5.11.3 Equivalent exchange for OR conditions (equivalent exchange to
derived tables for which the UNION ALL set operation is specified)

A specified SQL statement might be subject to equivalent exchange if the SQL statement satisfies the following two
conditions:

* A comma join or a joined table is specified in the FROM clause.

* The OR condition is specified in the WHERE clause.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 191

The search conditions specified in the form of an OR condition are converted by equivalent exchange to derived tables
for which the UNION ALL set operation is specified. The following explains this equivalent exchange in detail by using
examples. In the examples, T1 and T2 are table names, and C1 is a column name.

m SQL statement before equivalent exchange (specified SQL statement)

SELECT "T1"."Cl"™ FROM "T1","T2"
WHERE "T1"."C1" R ZAA N ON
AND ("T1"."C1" =1 OR "T2"."C1" = 2) <1

In the preceding SQL statement, a comma join is specified in the FROM clause and an OR condition is specified in
the WHERE clause (see the underscored portions). Therefore, the SQL statement is subject to equivalent exchange.

m SQL statement after equivalent exchange

SELECT "DRVTBL"."C1"

FROM (.
SELECT "T1"."C1" FROM "T1","T2" < Set operation
WHERE "T1M."C1M = mpom_mopm operands
AND "T1"."C1" = 1 —2

UNION ALL
SELECT "T1"."Cl" FROM "T1","T2"

WHERE "T1"."Cl" = mwppn _mnolw <
AND |"T2"."C1" = 2 <3
AND (CASE WHEN ("T1"."Cl" = 1) THEN 1 ELSE 0 END) <> 1

)AS DRVTBL("C1")

As shown in the preceding example, the SQL statement is converted by equivalent exchange to derived tables for
which the UNION ALL set operation is specified. In the SQL statement before equivalent exchange, search
conditions were specified in the form of an OR condition (see 1 in the SQL statement before equivalent exchange).
Now, in the SQL statement after equivalent exchange, these search conditions are specified as the search conditions
ofthe query specifications in the set operation operands (see 2 and 3 in the SQL statement after equivalent exchange).

m Advantages of equivalent exchange

For the SQL statement before equivalent exchange, because the WHERE clause contains an OR condition, table
joining takes place before search conditions are evaluated.

For the SQL statement after equivalent exchange, however, because the WHERE clauses in the set operation operands
contain no OR condition, table joining takes place after search conditions are evaluated. This might be able to reduce
the number of input rows that are required for table joining (that is, the search performance might be improved).

If indexes are defined for columns "T1"."C1" and "T2"."C1", any of the indexes are used during a search. The
indexes that will be used for a search are determined from the search conditions after equivalent exchange.

Note that, in some cases, the search time might become longer because query specifications and search conditions
increase due to equivalent exchange.

(1) Example of equivalent exchange

The following shows examples of equivalent exchange. In the examples, T1, T2, and T3 are table names, and C1 is a
column name.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 192

Example 1: Case where two OR conditions are specified in the search conditions

B SQL statement before equivalent exchange (specified SQL statement)

SELECT "T1"."C1",SUM("T2"."C1"),MIN("T3"."C1"
FROM "T1" INNER JOIN ("T2" INNER JOIN "T3" ON "T2"."C1" = "T3"."Cl") ON "T1"."C1" = "T2"."C1"
WHERE |"T1"."C1" = 1| OR ["T2"."C1" = 10 OR["T3"."C1" = 100
GROUP BY "T1"."C1"

Equivalent exchange

B SQL statement after equivalent exchange

SELECT "DRVTBL"."C1",SUM("DRVTBL"."C2"),MIN ("DRVTBL"."C3"
FROM (
SELECT "T1"."CL"™,"T2"."Cl","T3"."C1"

)AS DRVTBL("C1","C2","C3")
GROUP BY "DRVTBL"."C1"

FROM "T1" INNER JOIN ("T2" INNER JOIN "T3" ON "T2"."Cl" = "T3"."Cl") ON "T1"."Cl" = "T2".
WHERE "T1"."C1" = 1
UNION ALL
SELECT "T1"."Cl","T2"."C1","T3"."C1"
FROM "T1" INNER JOIN ("T2" INNER JOIN "T3" ON "T2"."Cl" = "T3"."Cl") ON "T1"."Cl" = "T2".
WHERE "T2"."C1" = 10
AND (CASE WHEN ("T1"."Cl" = 1) THEN 1 ELSE 0 END) <> 1
UNION ALL
SELECT "T1"."Cl","T2"."C1l","T3"."C1"
FROM "T1" INNER JOIN ("T2" INNER JOIN "T3" ON "T2"."Cl" = "T3"."Cl") ON "T1"."Cl" = "T2".
WHERE "T3"."C1" = 100
AND (CASE WHEN ("T1"."Cl1" = 1 OR "T2"."C1" = 10) THEN 1 ELSE 0 END) <> 1

non

nolw

nolw

Set operation
operand

Set operation
operand

Set operation
operand

Explanation:

* Inthe SQL statement before equivalent exchange, a joined table is specified in the FROM clause and OR conditions
are specified in the WHERE clause (see the underscored portion in the preceding example). Therefore, the SQL

statement is subject to equivalent exchange.

* The search conditions that were specified with OR conditions in the SQL statement before equivalent exchange
are, after equivalent exchange, specified as search conditions of query specifications in separate set operation
operands. If two OR conditions are specified as shown in the SQL statement before equivalent exchange, three

set operation operands are generated after equivalent exchange.

Example 2: Case where AND and OR conditions are specified in the search conditions

B SQL statement before equivalent exchange (specified SQL statement)

SELECT "T1"."C1",SUM("T2"."C2") FROM "T1","T2"
WHERE ["T1"."C1" = "T2"."C1" AND ("T1"."C2" = 1] OR ["T2"."C2" = 10)
GROUP BY "T1"."C1"

Equivalent exchange

B SQL statement after equivalent exchange

SELECT "DRVTBL"."C1",SUM("DRVTBL"."C2")

FROM (
SELECT "T1"."C1","T2"."C2" FROM "T1",6"T2" Set operation
WHERE ["T1"."C1" = "T2"."C1" operand
AND ["T1"."C2" = 1 _
UNION ALL
SELECT "T1"."C1","T2"."C2" FROM "T1",6"T2" 7
WHERE "T1"."C1l" = "T2"."C1" Set operation
AND |"T2"."C2" = 10 operand
AND (CASE WHEN ("T1"."C2" = 1) THEN 1 ELSE 0 END) <> 1
)AS DRVTBL ("C1","C2") -

GROUP BY "DRVTBL"."C1"

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide

Explanation:

* Inthe SQL statement before equivalent exchange, a comma join is specified in the FROM clause and an OR
condition is specified in the WHERE clause (see the underscored portions). Therefore, the SQL statement is
subject to equivalent exchange.

* The search conditions that were specified with OR conditions in the SQL statement before equivalent exchange
are, after equivalent exchange, specified as search conditions of query specifications in separate set operation
operands. The search condition that was specified on the left side of the AND condition in the SQL statement
before equivalent exchange are, after equivalent exchange, specified as search conditions of query specifications
in all set operation operands.

(2) Conditions for equivalent exchange to take place

For equivalent exchange to take place, all of the following conditions must be met.

m Conditions for the server definition or client definition
All of the following conditions must be met:

* 0 is not specified for the adb sqgl exe hashtbl area size operand in the server definition or client
definition.

* 0 is not specified for the adb _sys uthd num operand in the server definition.
* Oisnotspecified fortheadb sgl exe max rthd numoperand in the server definition or client definition.

m Conditions for SQL statements
All of the following conditions must be met:

e The SQL statement is a retrieval SQL statement.

* An HADB server whose version is 04-03 or later has collected cost information from any of tables specified in
the SQL statement.

* The SQL statement does not have a query specification that includes an external reference column.
m Conditions for query specifications
All of the following conditions must be met:
1. Conditions for selection expressions
* ROW is not specified in the selection expression.
2. Conditions for a table reference specified in the FROM clause
* The number of tables specified in the selection expression does not exceed 16.

* Comma joins are specified in the FROM clause.

Note that this condition is met if only comma joins are specified or if both comma joins and joined tables
are specified.

The following shows the types of tables that can be specified. This condition is met even if the specifications
of the following types of tables co-exist:

* Base table (Note that equivalent exchange does not take place if an archivable multi-chunk table is
specified.)

* Joined table (Note that equivalent exchange does not take place if FULL OUTER JOIN is specified.)
* Derived table (A table subquery, query name, or viewed table applies.)

m Conditions for join conditions
All of the following conditions must be met:

* No OR condition is specified in the join specifications of joined tables.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 194

* The join conditions of tables to which the columns specified in OR conditions belong satisfy the following
condition:

Atleast one join condition in the column-specification=column-specification format exists between the tables
to which the columns specified in OR conditions.

* When HADB performs equivalent exchange to derived tables for which the UNION ALL set operation is
specified, a join condition for all join-target tables must exist in the search condition of the query specification
in each set operation operand.

m Conditions for the search conditions specified in the WHERE clause

All of the following conditions must be met:

1. Two or more conditions are not specified in OR conditions in the conditions specified by using the AND logical
operator.

N N B W

Examples:

Example of a search condition that satisfies the conditions for equivalent exchange to take place

condition-1 AND condition-2 AND (condition-3 OR condition-4 OR condition-=5)

The conditions for equivalent exchange to take place are satisfied because there is only one condition that
includes OR conditions.

Example of a search condition that does not satisfy the conditions for equivalent exchange to take place

(condition-1 OR condition-2) AND condition-3 AND (condition-4 OR condition-5)

The conditions for equivalent exchange to take place are not satisfied because there are two conditions
that include OR conditions.

If multiple OR conditions are nested, the conditions for equivalent exchange to take place are satisfied.

The number of tables specified in successive search conditions other than OR conditions is not taken into
account (the specifications of these tables do not need to be join specifications).

An OR condition with NOT specified does not satisfy the conditions for equivalent exchange to take place.

. Columns of joined tables are not specified in OR conditions.

However, the conditions for equivalent exchange to take place are satisfied if a joined table is converted to a
comma join.

. No subquery is specified with an OR condition.

. Scalar function RANDOM or RANDOM NORMAL is not specified with an OR condition.
. The number of OR logical operators does not exceed 15.

. An OR condition includes a search condition for two or more tables.

. The search condition in each set operation operand after equivalent exchange includes one or more search

conditions in any of the following formats. In addition, logical operator OR or NOT is not specified for those
conditions.

Comparison predicate

e column-specification comparison-operator {literal|dynamic-parameter|datetim
e-information-acquisition-function|user-information-acquisition-function}
e {literal|dynamic-parameter|datetime-information-acquisition-function|user-i
nformation-acquisition-function} comparison-operator column-specification

BETWEEN predicate

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 195

column-specification BETWEEN {literall|dynamic-parameter|datetime-information-
acquisition-function|user-information-acquisition-function}

AND {literall|dynamic-parameter|datetime-information-acquisition-fu
nction|luser-information-acquisition-function}

* IN predicate

column-specification IN ({literal|dynamic-parameter|datetime-information-acqu

isition-function|user-information-acquisition-function}
[,{literal|dynamic-parameter|datetime-information-acquisition-functio

nluser-information-acquisition-function}]...)

* LIKE predicate

column-specification LIKE pattern-character-string [ESCAPE escape-character]
pattern-character-string ::= {literall|dynamic-parameter|datetime-informatio

n-acquisition-function|user-information-acquisition-function}
escape-character ::= {literall|dynamic-parameter}

* LIKE REGEX predicate

column-specification LIKE REGEX regular-expression-character-string [FLAG {I|
IGNORECASE}]
regular-expression-character-string ::= literal

* NULL predicate

column-specification IS NULL

é Note

If only literals are specified in a scalar operation, that scalar operation might be treated as a literal.
For details about scalar operations equivalent to literals, see the table Conditions under which value
expressions are equivalent to literals under Rules in Specification format and rules for value
expressions in the manual HADB SQL Reference.

m Conditions for the locations of query specifications subject to equivalent exchange

Ifa query specification is included in the following locations, the HADB server checks whether to perform equivalent
exchange:

* The query expression body in a query expression
* Scalar subquery
* Table subquery

* Set operation operands of a set operation
If derived tables with UNION ALL specified are created when equivalent exchange is performed for an SQL

statement, the maximum number of set operations might be exceeded. In such a case, however, equivalent
exchange of the SQL statement continues.

e WITH list element

Equivalent exchange is not performed for query specifications of recursive members.

* Query expression in the CREATE VIEW statement

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 196

5.11.4 Equivalent exchange for scalar operations

When one of the terms of a search condition specifies a scalar operation that contains a column specification, the scalar
operation is transposed. That is, the search condition undergoes equivalent exchange so as to leave only a column
specification. A scalar operation is transposed when all of the following conditions are met:

* The operand satisfies either of the following conditions:
* The operator is an arithmetic operator (addition or subtraction) between a column specification and a literal.
» The operator is a datetime operator between a column specification and a labeled duration.

* The data type of the column specification is SMALLINT, INTEGER, TIME, DATE, or TIMESTAMP.

* The scalar operation is not nested.

When a search condition is subjected to equivalent exchange, the indexes to be used during retrieval are determined
based on the search conditions after equivalent exchange.

The following shows examples of equivalent exchange. In the examples, C1 is a column name.
(1) Examples where equivalent exchange is performed

(a) Example 1

B Specified search condition

WHERE "C1" + 10 = 100

Equivalent
exchange

B Search condition after equivalent exchange

WHERE "C1" = 90

Explanation:

A term that includes a column specification has the scalar operation +10. By equivalent exchange, this scalar
operation is moved to the right-hand side, leaving the condition with just a column specification. Because the format
after equivalent exchange is column-specification comparison-operator literal, an index will be used during retrieval.

(b) Example 2

B Specified search condition

WHERE "C1" + 1 DAY = DATE'2016-01-01"

Equivalent
exchange

B Search condition after equivalent exchange

WHERE "C1" = DATE'2015-12-31"

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 197

Explanation:

A term that includes a column specification has the scalar operation +1 DAY. By equivalent exchange, this scalar
operation is moved to the right-hand side, leaving just a column specification in the condition. Because the format
after equivalent exchange is column-specification comparison-operator literal, an index will be used during retrieval.

(c) Example 3

B Specified search condition

WHERE "C1" + 10 BETWEEN 50 AND 100

Equivalent
exchange

B Search condition after equivalent exchange

WHERE "C1" BETWEEN 40 AND 90

Explanation:

A term that includes a column specification has the scalar operation +10. By equivalent exchange, this scalar
operation is moved to the right-hand side, leaving just a column specification in the condition. Because the format
after equivalent exchange is column-specification BETWEEN literal, an index will be used during retrieval.

(d) Example 4

B Specified search condition

WHERE "C1" + 10 IN(100,200,300)

Equivalent
exchange

B Search condition after equivalent exchange

WHERE "C1" IN(90,190,290)

Explanation:

A term that includes a column specification has the scalar operation +10. By equivalent exchange, this scalar
operation is moved to the right-hand side, leaving just a column specification in the condition. Because the format
after equivalent exchange is column-specification IN literal, an index will be used during retrieval.

(2) Examples where equivalent exchange is not performed

(a) Example 1

B Specified search condition

WHERE ("C1" + 10) + 50 = 100

Explanation:
Equivalent exchange does not take place because the scalar operation that includes the column specification is nested.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 198

(3) Rules for equivalent exchange

1. When a comparison predicate is in any of the following formats, equivalent exchange is performed by transposing
the scalar operation to leave only the column specification.

* scalar-operation-containing-column-specification comparison-operator literal
* literal comparison-operator scalar-operation-containing-column-specification
Equivalent exchange does not occur if all of the following conditions are met:
» The scalar operation that includes the column specification specifies YEAR or MONTH as a labeled duration.

* The comparison operator of the comparison predicate is <>, ! =, or ~=.

2. When a BETWEEN predicate is used in any of the following formats, equivalent exchange is performed by transposing
the scalar operation to leave only the column specification in the condition.

e scalar-operation-including-column-specification BETWEEN literal AND literal
e scalar-operation-including-column-specification NOT BETWEEN literal AND literal
Equivalent exchange does not occur if all of the following conditions are met:
* The scalar operation that includes the column specification specifies YEAR or MONTH as a labeled duration.
* NOT BETWEEN is specified in the BETWEEN predicate.

3. When an IN predicate is used in any of the following formats, equivalent exchange is performed by transposing the
scalar operation to leave only the column specification in the condition.

* scalar-operation-including-column-specification IN (literal,...)
e scalar-operation-including-column-specification NOT IN (literal,...)

Equivalent exchange will not take place if the scalar operation that includes the column specification specifies YEAR
or MONTH as a labeled duration.

5.11.5 Equivalent exchange for an IN predicate

If only one comparison value is specified in the IN condition, equivalent exchange is performed on the specified search
condition. If equivalent exchange has been performed on search conditions, the indexes to be used during retrieval are
determined based on the search conditions obtained after equivalent exchange.

The following shows examples of equivalent exchange. In the examples, C1 is a column name.

(1) Example 1

B Specified search condition

WHERE "C1" IN(100)

Equivalent exchange

M Search condition resulting from equivalent exchange

WHERE "C1" = 100

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 199

Explanation:
If only one comparison value is specified in the IN condition, the search condition is converted to the = condition.

(2) Example 2

B Specified search condition

WHERE "C1" NOT IN(100)

Equivalent exchange

M Search condition resulting from equivalent exchange

WHERE "C1" <> 100

Explanation:
If only one comparison value is specified in the NOT IN condition, the search condition is converted to the <>
condition.

5.11.6 Equivalent exchange for a HAVING clause (converting to the
WHERE clauses)

The search condition in a HAVING clause might be converted to a search condition in the WHERE clause. This equivalent
exchange might enable unnecessary input rows to be deleted during grouping and indexes to be used for table retrieval
processing.

The formats of conditions that are converted to a search condition in the WHERE clause are shown below. If equivalent
exchange occurs for a search condition, the indexes to be used during retrieval processing are determined on the basis
of the search condition obtained after the equivalent exchange.

Format of conditions subject to equivalent exchange

* Comparison predicate

e column-specification comparison-operator {literal|dynamic-parameter|datetime-inf
ormation-acquisition-function|user-information-acquisition-function}

e {literall|dynamic-parameter|datetime-information-acquisition-function|user-inform
ation-acquisition-function} comparison-operator column-specification

e BETWEEN predicate

column-specification [NOT] BETWEEN {literall|dynamic-parameter|datetime-information
—acquisition-function|user-information-acquisition-function}

AND {literal|dynamic-parameter|datetime-information-acquisitio
n-function|user-information-acquisition-function}

e IN predicate

column-specification [NOT] IN ({literal|dynamic-parameter|datetime-information-acq

uisition-function|user-information-acquisition-function}
[,{literal|dynamic-parameter|datetime-information-acquisition-fu

nction|user-information-acquisition-function}]...)

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 200

e LIKE predicate

column-specification [NOT] LIKE pattern-character-string [ESCAPE escape-character]

pattern-character-string::={literal|dynamic-parameter|datetime-information-acqui

sition-function|user-information-acquisition-function}

escape character ::={literal|dynamic-parameter}

* LIKE REGEX predicate

column-specification [NOT] LIKE REGEX regular-expression-character-string [FLAG {I
| IGNORECASE }]

regular-expression-character-string::=1iteral

* NULL predicate

column-specification IS [NOT] NULL

Notes

5.11.

Conditions specified in an OR condition of a logical operation are not subject to this equivalent exchange.

However, if the following equivalent exchange is applied to the OR condition of the logical operation , after the
following equivalent exchange is applied, equivalent exchange related to the HAVING clause will take place.

* Equivalent exchange that moves a condition from inside the OR condition to outside the OR condition

* Equivalent exchange that adds the IN condition created from an = condition in the OR condition to outside the
OR condition

For details about equivalent exchange for the OR condition, see 5.11.1 Equivalent exchange for OR conditions
(removing from the OR conditions) and 5.11.2 Equivalent exchange for OR conditions (converting to IN
conditions).

Conditions specified in NOT in logical operations and conditions containing subqueries are not subject to this
equivalent exchange.

If column-specification columns are external reference columns, this equivalent exchange is not applied. For
details about external reference columns, see Specification format and rules for subqueries in the manual H4DB
SQL Reference.

If only literals are specified in a scalar operation, that scalar operation might be treated as a literal. For details
about scalar operations equivalent to literals, see the table Conditions under which value expressions are
equivalent to literals under Rules in Specification format and rules for value expressions in the manual HADB
SQOL Reference.

7 Equivalent exchange for search conditions in SQL statements that
specify derived queries (transposition to the WHERE clause of a
derived query)

Equivalent exchange is performed to move a search condition specified in the WHERE clause of an SQL statement that
specifies a derived query to the WHERE clause of the derived query. For details about derived queries, see Derived
queries and derived query names in the manual HADB SQL Reference.

The following shows examples of equivalent exchange. In the examples, C1, C2, and C3 are column names.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 201

(1) Examples where equivalent exchange is performed

(a) Example 1 (when derived query is a query specification)

B Specified SQL statement

SELECT "C1","C1","C2","C3"
FROM (SELECT DISTINCT "C1","C2","C3"
FROM "T1") "D1"("C1","C2","C3")
WHERE "D1"."C1"<10

Equivalent
exchange

B SQL statement after equivalent exchange

SELECT "C1","C1","Cc2","Cc3"
FROM (SELECT DISTINCT "C1","C2","C3"
FROM "T1" WHERE "T1"."C1"<10) "D1"("C1l","C2","C3")

Explanation:

The column specification on the left side of the WHERE clause of the SQL statement that specifies the derived query
isaderived column ("D1"."C1"). This column is derived based on the selection expression ("T1"."C1") of the
query specification in the derived query. Because the conditions for applying equivalent exchange are satisfied,
equivalent exchange is applied to the search condition in the SQL statement that specifies the derived query.

(b) Example 2 (when derived query is a query expression)

B Specified SQL statement

SELECT "C1","C1","C2","C3"
FROM (SELECT "C1","C2","C3" FROM "T1"
UNION DISTINCT
SELECT "C1","C2","C3" FROM "T2") "D1"("Cl","C2","C3")
WHERE "D1"."C1"<10

Equivalent
exchange

B SQL statement after equivalent exchange

SELECT "C1","C1","C2","C3"
FROM (SELECT "C1","C2","C3" FROM "T1"
WHERE "T1"."C1"<10
UNION DISTINCT
SELECT "C1","C2","C3" FROM "T2"
WHERE "T2"."C1"<10) "D1"("C1","C2","C3")

Explanation:
The column specification on the left side of the WHERE clause of the SQL statement that specifies the derived query
is a derived column ("D1"™."C1"). This column is derived based on the selection expression
("T1"."C1l","T2"."C1") of the query expression in the derived query. Because the conditions for applying
equivalent exchange are satisfied, equivalent exchange is applied to the search condition in the SQL statement that
specifies the derived query.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 202

(c) Example 3 (when derived query is a query specification)

B Specified SQL statement

SELECT "C1","C1","Cc2","Cc3"
FROM (SELECT DISTINCT "C1","C2","C3" FROM "T1") "D1"("C1"™,"C2","C3")
WHERE "D1"."C1"<10 OR ("D1"."C2">100 AND "D1"."C3"=200)

Equivalent
exchange

B SQL statement after equivalent exchange

SELECT llclll,llcl","cz","cB"
FROM (SELECT DISTINCT "C1","C2","C3" FROM "T1"
WHERE "T1"."C1"<10 OR ("T1"."C2">100 AND "T1"."C3"=200)
) Dlll(IIC1||’||C2"’"C3")

Explanation:

The column specification in the OR condition of the logical operation specified in the WHERE clause of the SQL
statement that specifies the derived query is a derived column ("D1"."C1","D1"."C2","D1"."C3"). This
column is derived based on the selection expression ("T1"."C1","T1"."C2","T1"."C3") of the query
specification in the derived query. Because the OR condition of the logical operation satisfies the conditions for
applying equivalent exchange, equivalent exchange is applied to the search condition in the SQL statement that
specifies the derived query.

(d) Example 4 (when derived query is a query expression)

B Specified SQL statement

SELECT "C1","Cl","C2","C3"
FROM (SELECT "Cl","C2","C3" FROM "TL"
UNION DISTINCT
SELECT "C1","C2","C3" FROM "T2"
) "D1"("Cl","C2","C3")
WHERE "D1"."C1"<10 OR ("D1"."C2">100 AND "D1"."C3"=200)

Equivalent
exchange

B SQL statement after equivalent exchange

SELECT "C1","Cl","C2","C3"
FROM (SELECT "C1","C2","C3" FROM "T1"
WHERE "T1"."C1"<10 OR ("T1"."C2">100 AND "T1"."C3"=200)
UNION DISTINCT
SELECT "C1","C2","C3" FROM "T2"
WHERE "T2"."C1"<10 OR ("T2"."C2">100 AND "T2"."C3"=200)
) "D1"("Cl","C2","C3")

Explanation:

The column specification in the OR condition of the logical operation specified in the WHERE clause of the SQL
statement that specifies the derived query is a derived column ("D1"."C1","D1"."C2","D1"."C3"). This
column is derived based on the selection expression

("mTiv.vcit,"T1"."Cc2", "TI."C3", T2 CL, T2 . "C2", "T2" . "C3") of the query expression
in the derived query. Because the OR condition of the logical operation satisfies the conditions for applying equivalent
exchange, equivalent exchange is applied to the search condition in the SQL statement that specifies the derived
query.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 203

(2) Format of conditions subject to equivalent exchange

The following shows the format of conditions that are subject to equivalent exchange:

Comparison predicate

» column-specification comparison-operator {literal|dynamic-parameter|datetime-inf
ormation-acquisition-function|user-information-acquisition-function}

= {literall|dynamic-parameter|datetime-information-acquisition-function|user-inform
ation-acquisition-function} comparison-operator column-specification

= CONTAINS (column-specification, search-condition-expression-string) > 0

BETWEEN predicate

column-specification [NOT] BETWEEN {literal|dynamic-parameter|datetime-information
—acquisition-function|user-information-acquisition-function}

AND {literal|dynamic-parameter|datetime-information-acquisition
-function|user-information-acquisition-function}

IN predicate
column-specification [NOT] IN ({literal|dynamic-parameter|datetime-information-acqg
uisition-function|user-information-acquisition-function}

[,{literal|dynamic-parameter|datetime-information-acquisition-func
tion|user-information-acquisition-function}]...)

LIKE predicate

column-specification [NOT] LIKE pattern-character-string [ESCAPE escape-character]

pattern-character-string::={1literal|dynamic-parameter|datetime-information-acqui
sition-function|user-information-acquisition-function}
escape-character::={1literal|dynamic-parameter}

LIKE REGEX predicate
column-specification [NOT] LIKE REGEX regular-expression-character-string [FLAG {I

| IGNORECASE}]
regular-expression-character-string::=1literal

NULL predicate

column-specification IS [NOT] NULL

(3) Notes

Equivalent exchange will be performed if the selection expression of the derived query on which the derived column
specified in the column specification of the search condition is based is a column specification.

Equivalent exchange is not performed if a window function is specified in the derived query.

Equivalent exchange is not performed if the derived query is expanded into the SQL statement that specifies the
derived query. For details about the expansion of derived queries, see Internal derived tables in the manual HADB
SQOL Reference.

Equivalent exchange is not performed for the following types of derived queries:

» The derived query specifies the name of a viewed table, and the same viewed table name is specified more than
once in the SQL statement.

* The derived query specifies the name of a query specified as a WITH list element, and the same query name is
specified more than once in the SQL statement.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide

204

* Multiple WITH list elements are specified, and the derived query specifies a query name that is already specified
as a WITH list element.

* The derived query is specified in a joined table other than a joined table for which only INNER JOIN is specified
its join type.
* A table value constructor is specified as the derived query.

e The derived query is a recursive query.

¢ When all of the following conditions are satisfied, equivalent exchange is applied to the search condition in the SQL
statement that specifies the derived query:

* A condition specified as an OR condition in a logical operation meets the format requirements for a search
condition that is subject to equivalent exchange for search conditions in SQL statements that specify derived
queries

* All column specifications point to columns in the same derived table

¢ When applying the following equivalent exchange to the OR condition of a logical operation, the following equivalent
exchange is applied first. Then, equivalent exchange for search conditions in SQL statements that specify derived
queries is applied.

* Equivalent exchange that moves a condition from inside the OR condition to outside the OR condition

* Equivalent exchange that adds the IN condition created from an = condition in the OR condition to the outside
of the OR condition

For details about equivalent exchange described earlier, see 5.11.1 Equivalent exchange for OR conditions
(removing from the OR conditions) and 5.11.2 Equivalent exchange for OR conditions (converting to IN
conditions).

* Conditions specified in NOT conditions in logical operations and conditions that contain subqueries are not subject
to equivalent exchange.

* Equivalent exchange is not performed if the columns specified by column-specification are external reference
columns. For details about external reference columns, see Specification format and rules for subqueries in the
manual HADB SQL Reference.

 Ifonly literals are specified in a scalar operation, that scalar operation might be treated as a literal. For details about
the conditions under which scalar operations are equivalent to literals, see Specification format and rules for value
expressions in the manual HADB SQL Reference.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 205

5.12 Considerations when searching an archivable multi-chunk table

This section explains the matters you need to consider when searching an archivable multi-chunk table.

The examples in this section use a table in which the archive range column contains datetime data in DATE format.

g Note

Make sure that you read Chunk archiving function (compressing data in a chunk) in the HADB Setup and
Operation Guide before reading this section.

5.12.1 Tips for searching an archivable multi-chunk table

This subsection explains by way of examples the process of searching an archivable multi-chunk table.

The definition of the archivable multi-chunk table used in these examples and the archived state of the data are as
follows:

= Definition of archivable multi-chunk table

Table ARCHIVE-T1

Ccl C2 C3 RECORD-DAY

2015/04/01
2015/04/02

2016/03/30
2016/03/31

L Archive range column

= Archived state of data
* The database stores data from April 2015 to March 2016.
* The data from April to December 2015 is archived.
* The data from January to March 2016 is not archived.

l— Values in archive range column (RECORD-DAY)

2015/04/01 to 2015/12/31 2016/01/01 to 2016/03/31

Legend: |:| : Archived data

(1) Basic concept when searching archivable multi-chunk tables

When searching an archivable multi-chunk table, you need to narrow the scope of the search by specifying the datetime

information for the archive range column as a search condition.

You also need to be aware of whether the data you are searching for is archived. Search processing can take longer when

searching archived data.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide

206

(2) Specifying search conditions
The following are the key considerations when specifying search conditions to search an archivable multi-chunk table:

» Narrow down the search range by specifying a condition that specifies the archive range column as a search condition
in a WHERE clause.

Example:

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" BETWEEN DATE'2016/02/01' AND DATE'2016/02/29'

You must specify the underlined portion. This narrows the search range using the datetime information for the archive
range column.

l— Values in archive range column (RECORD-DAY)

2015/04/01 to 2015/12/31 2016/01/01 to 2016/03/31

Range retrieved by
SELECT statement

Legend: |:| : Archived data

Note that restrictions apply to the predicates you can specify. For details, see 5.12.2 Using the datetime information
of the archive range column to narrow the search range.

* Narrow the search range further by adding AND conditions.

Example:

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" BETWEEN DATE'2016/02/01' AND DATE'2016/02/29'
AND "C1"='POO1'
AND "C2"=100

* We recommend that you specify literals as the comparison conditions for the archive range column.
Example: Example of recommended specification

WHERE "RECORD-DAY" BETWEEN DATE'2016/01/01' AND DATE'2016/03/31'
WHERE "RECORD-DAY" >= DATE'2016/02/01'

(3) When searching unarchived data

When searching unarchived data, specify search conditions a way that limits the search range to the unarchived data.
In this example, the unarchived data is data from January 2016.

Example:

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" >= DATE'2016/01/01"'
AND "C1"='POOL1'
AND "C2"=100

The search condition specified in this example restricts the search range to data from January 1st, 2016.

(4) When searching archived data

When searching archived data, the datetime information specified for the archive range column in the search condition
preferably references as narrow a range as possible. In this example, the archived data is data from April 2015 to
December 2015.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 207

Example:

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" BETWEEN DATE'2015/10/01' AND DATE'2015/10/05'
AND "C1"='POOL1'
AND "C2"=100

Narrow the search range as much as possible by specifying the underlined portion. This reduces the number of
archive files that need to be read. The search time increases in proportion to the number of archive files HADB has
to read.

5.12.2 Using the datetime information of the archive range column to
narrow the search range

When searching an archivable multi-chunk table, you need to narrow the scope of the search by using the datetime
information for the archive range column when specifying the search conditions.

0 Important

If you do not comply with the rules described here, searches will target all archived data and take longer as
aresult. The KFAA51121-W message will be output if you run a search that targets all archived data. In
this situation, amend the SQL statement, and then narrow the search range by using the datetime information
of the archive range column.

(1) Rules for specifying search conditions

The datetime information of the archive range column is used to narrow the search range under the following conditions:

* A condition that specifies the archive range column is specified as a search condition in a WHERE clause.

* In the search condition that specifies the archive range column, only a comparison predicate, IN predicate, or
BETWEEN predicate is specified.

* The comparison predicate, IN predicate, or BETWEEN predicate is specified in a way that meets the conditions
described in (2) Comparison predicate specification rules and the subsequent subsections.

* There is no NOT condition in the search condition that specifies the archive range column.

* There is no OR condition in the search condition that specifies the archive range column (a search condition that
specifies the archive range column is not specified on either side of an OR condition).

Example where search range is not narrowed:

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" BETWEEN DATE'2016/01/01' AND DATE'2016/01/10"'
OR "RECORD-DAY" BETWEEN DATE'2016/02/01' AND DATE'2016/02/10'

Example where search range is narrowed:

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" BETWEEN DATE'2016/01/01' AND DATE'2016/01/10"'
AND ("C1"='POO1l' OR "C2"='S002")

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 208

0 Important

Search conditions specified in DELETE and UPDATE statements are also subject to the specification rules
described here. DELETE and UPDATE statements that do not comply with these specification rules generate
errors.

For details about the rules for DELETE statements that delete rows in archivable multi-chunk tables, see
Rules under Specification format and rules for the DELETE statement in the manual HADB SQL Reference.

For details about the rules for UPDATE statements that update rows in archivable multi-chunk tables, see
Rules under Specification format and rules for the UPDATE statement in the manual HADB SQL Reference.

(2) Comparison predicate specification rules

When you specify a comparison predicate that complies with the following specification rules, the search range is
narrowed using the datetime information of the archive range column.

(a) Specification rules and example of recommended specification

Specification format of comparison predicate
comparison-predicate: :=comparison-operand-1 comparison-operator comparison-operand
-2
Specification rules
* = <, <=,>= or > is specified as the comparison operator.
* One of the comparison operands specifies the archive range column (as a single column specification).

* The opposite comparison operand specifies a value specification.

é Note

We recommend that you specify a literal in the value specification.

Example of recommended specification

SELECT * FROM "ARCHIVE-T1" WHERE "RECORD-DAY" >= DATE'2016/01/01'

Examples of deprecated specification

SELECT * FROM "ARCHIVE-T1" WHERE "RECORD-DAY" = 2
SELECT * FROM "ARCHIVE-T1" WHERE "RECORD-DAY" >= CURRENT DATE

Although these examples result in narrowing of the search range, use of non-literals is not recommended.

0 Important

Specifying a literal in the value specification results in faster narrowing of the search range than if a non-
literal were specified.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 209

(b) Specification examples where search range is not narrowed

Example 1

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" - 10 DAY > DATE'2016/02/10"'

In this example, the search range is not narrowed because a comparison operand specifies a datetime operation that
uses the archive range column. That is, it is not a single column specification. In this case, you can narrow the search
range by amending the SELECT statement as follows:

Amended example

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" > DATE'2016/02/10' + 10 DAY

In this example, the archive range column is specified as a single column specification in the comparison operand
on one side. The comparison operand on the other side specifies a value expression equivalent to a literal.

Example 2

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" > CURRENT DATE - 1 YEAR

In this example, the search range is not narrowed because the comparison operand does not specify a value
specification. In this case, you can narrow the search range by amending the SELECT statement as follows:

Amended example

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" > DATE'2016/02/10' - 1 YEAR

As in this example, specify CURRENT DATE explicitly as a literal. The search range will then be narrowed because
the comparison operand on the right side is a value expression equivalent to a literal.

For details about value expressions equivalent to literals, see the table Conditions under which value expressions are
equivalent to literals under Rules in Specification format and rules for value expressions in the manual HADB SQL
Reference.

(3) IN predicate specification rules

When you specify an IN predicate that complies with the following specification rules, the search range is narrowed
using the datetime information of the archive range column.

(a) Specification rules and example of recommended specification

Specification format of IN predicate

IN predicate::=value-expression-1 [IS] [NOT] IN { (value-expression-2[,value-expres
sion-3]...) | table-subquery}

Specification rules
* value-expression-1 specifies the archive range column (as a single column specification).
* value-expression-2 and subsequent value expressions specify value specifications.
* There is no table subquery specified in the IN predicate.

* NOT is not specified in the IN predicate.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 210

5 Note

We recommend that you specify literals for the value specifications specified in value-expression-2 onward.

Example of recommended specification

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" IN (DATE'2016/01/01',DATE'2016/02/01")

Example of deprecated specification

SELECT * FROM "ARCHIVE-T1" WHERE "RECORD-DAY" IN (2,2)

Although this example results in narrowing of the search range, use of non-literals is not recommended.

0 Important

Specifying a literal in the value specification results in faster narrowing of the search range than if a non-
literal were specified.

(b) Specification examples where search range is not narrowed

Example 1

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" IN (CURRENT DATE,
CURRENT DATE - 7 DAY,
CURRENT DATE - 14 DAY)

In this example, the search range is not narrowed because a condition other than a value specification is specified
in value-expression-2 and later in an IN predicate. In this case, you can narrow the search range by amending the
SELECT statement as follows:

Amended example

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" IN (DATE'2016/02/10°',
DATE'2016/02/10' - 7 DAY,
DATE'2016/02/10' - 14 DAY)

As in this example, specify CURRENT DATE explicitly as a literal. The search range will then be narrowed because
the value expressions specified in value-expression-2 and later in the IN predicate are equivalent to literals.
For details about value expressions equivalent to literals, see the table Conditions under which value expressions

are equivalent to literals under Rules in Specification format and rules for value expressions in the manual HADB
SQL Reference.

Example 2

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" IN (SELECT "SALES DATE" FROM "SALESLIST"
WHERE "USERID" = 'U001'")

In this example, the search range is not narrowed because a table subquery is specified in an IN predicate. In this
case, you can narrow the search range by amending the SELECT statement as follows:

Amended example

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 211

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" IN (SELECT "SALES DATE" FROM "SALESLIST"
WHERE "USERID" = 'U001")
AND "RECORD-DAY" > DATE'2015/10/01"'

As in this example, add a search condition that results in narrowing of the search range.

(4) BETWEEN predicate specification rules

When you specify a BETWEEN predicate that complies with the following specification rules, the search range is
narrowed using the datetime information of the archive range column.

(a) Specification rules and example of recommended specification

Specification format of BETWEEN predicate

BETWEEN predicate::=value-expression-1 [NOT] BETWEEN value-expression-2 AND value-
expression-3

Specification rules
* value-expression-1 specifies the archive range column (as a single column specification).
* value-expression-2 and value-expression-3 specify value specifications.

* NOT is not specified in the BETWEEN predicate.

% Note

We recommend that you specify literals for the value specifications in value-expression-2 and value-
expression-3.

Example of recommended specification

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" BETWEEN DATE'2016/01/01' AND DATE'2016/01/10'

Example of deprecated specification

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" BETWEEN 2?2 AND 2

Although this example results in narrowing of the search range, use of non-literals is not recommended.

0 Important

Specifying a literal in the value specification results in faster narrowing of the search range than if a non-
literal were specified.

(b) Specification examples where search range is not narrowed

Example 1

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" BETWEEN CURRENT DATE - 2 YEAR
AND CURRENT DATE - 1 YEAR

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 212

In this example, the search range is not narrowed because a condition other than a value specification is specified
as value-expression-2 or value-expression-3 of the BETWEEN predicate. In this case, you can narrow the search
range by amending the SELECT statement as follows:

Amended example

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" BETWEEN DATE'2016/02/10' - 2 YEAR
AND DATE'2016/02/10' - 1 YEAR

As in this example, specify CURRENT DATE explicitly as a literal. The search range will then be narrowed because
value-expression-2 or value-expression-3 in the BETWEEN predicate is a value expression that is equivalent to a
literal.

For details about value expressions equivalent to literals, see the table Conditions under which value expressions

are equivalent to literals under Rules in Specification format and rules for value expressions in the manual HADB
SQOL Reference.

Example 2
SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" NOT BETWEEN DATE'2016/01/01' AND DATE'2016/01/31"'

In this example, the search range is not narrowed because NOT is specified in a BETWEEN predicate. In this case,
you can narrow the search range by amending the SELECT statement as follows:

Amended example

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" BETWEEN DATE'2015/12/01' AND DATE'2015/12/31'
AND "RECORD-DAY" BETWEEN DATE'2016/02/01' AND DATE'2016/02/29'

As in this example, do not specify NOT in a BETWEEN predicate. Specify multiple BETWEEN predicates with an
AND condition.

5.12.3 Notes about specifying JOIN (joined table)

When you specify a joined table, depending on how the joined table is specified, the search range might not be narrowed
by the datetime information of the archive range column. The following explains how to specify joined tables in such
a way that the search range is narrowed.

In the examples, ARCHIVE-T1 represents the archivable multi-chunk table, and RECORD-DAY represents the archive
range column.

(1) Example 1 (LEFT OUTER JOIN)

If you specify the archivable multi-chunk table in the table reference on the right side of LEFT OUTER JOIN, the search
range is not narrowed using the datetime information of the archive range column.

= Example where search range is not narrowed (before)

SELECT "T1"."C1"™ FROM "T1"
LEFT OUTER JOIN "ADBUSERO1"."ARCHIVE-T1" AS "DT"
ON "T1"."C1l"™ = "DT"."C1"
WHERE "RECORD-DAY" BETWEEN DATE'2016/01/15' AND DATE'2016/02/15"
AND "C1"='POOL1'

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 213

Explanation:
If you specify the archivable multi-chunk table in the table reference on the right side of LEFT OUTER JOIN

as underlined, the search range is not narrowed using the datetime information of the archive range column. In
this case, searches will target all archived data and might take longer as a result.

To avoid this issue, modify the SQL statement as follows:
» Example where search range is narrowed (after)
SELECT "T1"."C1" FROM "T1"

LEFT OUTER JOIN (SELECT * FROM "ADBUSERO1"."ARCHIVE-T1"

WHERE "RECORD-DAY"
BETWEEN DATE'2016/01/15' AND DATE'2016/02/15

AND "C1"='PQO1') AS "DT"
ON "Tl"."clll = "DT"."C]_"
WHERE "RECORD-DAY" BETWEEN DATE'2016/01/15' AND DATE'2016/02/15"
AND "C1"='POOL1'

Explanation:
Asunderlined, the search condition that specifies the archive range column is replaced with an explicitly specified
derived table. When the SQL statement is amended in this way, the search range is narrowed using the datetime

information of the archive range column.

5 Note

No particular action is required if you specify the archivable multi-chunk table in the table reference on the
left side of LEFT OUTER JOIN. That is, you do not need to modify the SQL statement.

(2) Example 2 (RIGHT OUTER JOIN)

If you specify the archivable multi-chunk table in the table reference on the left side of RIGHT OUTER JOIN, the search
range is not narrowed using the datetime information of the archive range column.

= Example where search range is not narrowed (before)

SELECT "T1"."C1l" FROM "ADBUSERO1"."ARCHIVE-T1" AS "DT"
RIGHT OUTER JOIN "T1"
ON "DT"."C]_" = "Tl".'lcl'l
WHERE "RECORD-DAY" BETWEEN DATE'2016/01/15' AND DATE'2016/02/15"
AND "C1"='POO1'

Explanation:
If you specify the archivable multi-chunk table in the table reference on the left side of RIGHT OUTER JOIN

as underlined, the search range is not narrowed using the datetime information of the archive range column. In
this case, searches will target all archived data and might take longer as a result.

To avoid this issue, modify the SQL statement as follows:

= Example where search range is narrowed (after)

SELECT "T1"."C1" FROM (SELECT * FROM "ADBUSERQO1"."ARCHIVE-T1"
WHERE "RECORD-DAY" BETWEEN DATE'2016/01/15' AND DATE'2016

/02/15"
AND "C1"='PO0O1') AS "DT"

RIGHT OUTER JOIN "T1"
ON "DT"."C]_" . "Tll'.llclll
WHERE "RECORD-DAY" BETWEEN DATE'2016/01/15' AND DATE'2016/02/15"

AND "C1"='POO1'

5. Designs Related to Improvement of Application Program Performance

214

Hitachi Advanced Database Application Development Guide

Explanation:
Asunderlined, the search condition that specifies the archive range column is replaced with an explicitly specified
derived table. When the SQL statement is amended in this way, the search range is narrowed using the datetime
information of the archive range column.

é Note

No particular action is required if you specify the archivable multi-chunk table in the table reference on the
right side of RIGHT OUTER JOIN. That is, you do not need to modify the SQL statement.

(3) Example 3 (FULL OUTER JOIN)

If you specify the archivable multi-chunk table in the table reference on the left or right side of FULL OUTER JOIN,
the search range is not narrowed using the datetime information of the archive range column.

= Example where search range is not narrowed (before)

SELECT "T1"."C1" FROM "ADBUSERO1"."ARCHIVE-T1" AS "DT"
FULL OUTER JOIN "T1"
ON "DT""ICl" — "Tl'"'lcl'l
WHERE "RECORD-DAY" BETWEEN DATE'2016/01/15' AND DATE'2016/02/15"
AND "C1"='POO1'

Explanation:
If, as underlined, you specify the archivable multi-chunk table in the table reference on the left or right side of
FULL OUTER JOIN, the search range is not narrowed using the datetime information of the archive range
column. In this case, searches will target all archived data and might take longer as a result.

To avoid this issue, modify the SQL statement as follows:
» Example where search range is narrowed (after)

SELECT "T1"."C1l" FROM (SELECT * FROM "ADBUSERQO1"."ARCHIVE-T1"
WHERE "RECORD-DAY" BETWEEN DATE'2016/01/15' AND DATE'2016

/02/15"
AND "C1"='P001') AS "DT"

FULL OUTER JOIN "T1"
ON "DT"."clﬂ . "Tl'l."clﬂ
WHERE "RECORD-DAY" BETWEEN DATE'2016/01/15' AND DATE'2016/02/15"
AND "C1"='P0O1'

Explanation:
Asunderlined, the search condition that specifies the archive range column is replaced with an explicitly specified
derived table. When the SQL statement is amended in this way, the search range is narrowed using the datetime
information of the archive range column.

5.12.4 Equivalent exchange of SQL statements that search archivable
multi-chunk tables

When all of the following conditions are met, the HADB server uses equivalent exchange to automatically transform
SQL statements that search archivable multi-chunk tables.

* When searching archived data

* A condition that specifies the archive range column is specified as a search condition in a WHERE clause.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 215

* The search condition specified in the WHERE clause complies with the rules explained in 5.12.2 Using the datetime
information of the archive range column to narrow the search range.

a Note

» The SQL statement after equivalent exchange is output to the access path information.

* The rules for SQL statements are applied to the SQL statement after equivalent exchange.

The following shows an example of equivalent exchange.

Example of specified SELECT statement

SELECT * FROM "ARCHIVE-T1"
WHERE "RECORD-DAY" BETWEEN DATE'2015/11/01' AND DATE'2016/01/31'
AND "C1"='POOL1'

Search range used by this SELECT statement

l— Values in archive range column (RECORD-DAY)

2015/04/01 to 2015/12/31 2016/01/01 to 2016/03/31

Range retrieved by SELECT

statement
1

Legend: |:| : Archived data

Example of SELECT statement after equivalent exchange

SELECT * FROM
(SELECT * FROM "ARCHIVE-T1"
UNION ALL
SELECT * FROM
TABLE (ADB_CSVREAD (MULTISET (
SELECT "ARCHIVE FILE NAME" FROM
"HADB"."LOCATION TABLE 00020191" AS "LOC"
, "HADB"."STATUS CHUNKS" AS "SCK"
WHERE "RANGE MAX" >= DATE'2015/11/01" ..
AND "RANGE MIN" <= DATE'2016/01/31' ...5
AND "SCK"."TABLE SCHEMA" = 'ADBUSERO1'
AND "SCK"."TABLE NAME" = 'ARCHIVE-T1'
AND "SCK"."CHUNK ID" = "LOC"."CHUNK ID"
AND "SCK"."CHUNK STATUS" IS NULL

Sw N e

ol

)
,'omitted"')
) AS "TBLFUNC700020191" ("C1l"™ VARCHAR(10), "C2" INT, "RECORD DAY" DATE)

)
WHERE "RECORD DAY" BETWEEN DATE'2015/11/01' AND DATE'2016/01/31"'
AND "C1"='POO1'
Explanation:

The SQL statement in this example searches archived data and data that is not archived. In this example, the
SQL statement is rewritten into a query that searches archived data and a query that searches unarchived data,
and the union of these two queries is determined by a UNION ALL operator.

1. A query that searches unarchived data

2. Determines the union (UNION ALL) of the queries labeled 1 and 3

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 216

3. A query that searches archived data

4. This part is converted to an ADB_ CSVREAD function that reads the archive files that store the archived data.

5. The search condition specified in the WHERE clause is rewritten as a search condition that searches the

location table.”

6. TBLFUNC_ 00020191 is the correlation name of the table function derived table. Correlation names are

determined according to the following conventions:

TBLFUNC nnnnnnnn

nnnnnnnn: An 8 character string (0 to 9 and A to F) obtained by converting the table ID of the archivable

multi-chunk table to hexadecimal

Examples of rewriting the search condition as a search condition that searches the location table are as follows:

Example 1:

B Specified search condition

WHERE "RECORD_DAY" = DATE'2015/10/01'

Rewritten to

B Rewritten search condition

WHERE ("RANGE MIN" <= DATE'2015/10/01') AND
("RANGE MAX" >= DATE'2015/10/01")

Example 2:

B Specified search condition

WHERE "RECORD DAY" BETWEEN
DATE'2015-10-01"' AND DATE'2015/12/31"'

Rewritten to

W Rewritten search condition

WHERE ("RANGE MAX" >= DATE'2015/10/01') AND
("RANGE MIN" <= DATE'2015/12/31")

* RANGE MAX

A column in the location table. RANGE MAX is the maximum value in the archive range column for each

archive file.

* RANGE MIN

A column in the location table. RANGE MIN is the minimum value in the archive range column for each

archive file.

5 Note

The internal derived tables generated by equivalent exchange of SQL statements that search archivable
multi-chunk tables are not subject to expansion. For details about the expansion of internal derived
tables, see Internal derived tables in the manual HADB SQL Reference.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide

217

5.13 Expanding internal derived tables

HADB automatically changes query expressions containing internal derived tables and efficiently evaluates the internal
derived tables. Changing query expressions containing internal derived tables is called expanding internal derived tables.
For details about the rules for expanding internal derived tables, see the topic Internal derived tables in the manual
HADB SQL Reference.

The priority order and selection rules for indexes that are used during retrieval are applied to the query expressions
obtained after internal derived tables have been expanded. For details about the index to be used during retrieval, see
5.2 B-tree indexes and text indexes used during execution of SQL statements and 5.3 Range indexes used during
execution of SQL statements.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 218

5.14 Improving performance by batch transfer of retrieval results

You can transfer multiple rows of retrieval results in the batch mode from the HADB server to the HADB client. This
feature is useful when you retrieve a large amount of data.

The following figure provides an overview of batch transfer of retrieval results.

Figure 5-21: Overview of batch transfer of retrieval results

B Normal transfer processing of retrieval results

HADB client HADB server

Transferred one
row at a time

Retrieval results

Application program

MW Batch transfer of retrieval results

HADB client HADB server

Retrieval results

Batch transfer

Application program

Specify a setting to transfer retrieval results in the batch mode. The following are the possible settings:
e Ifyou use a JDBC driver:
Specify the number of rows to be transferred in the batch mode by using one of the following methods:
* adb _clt fetch size in the system properties, user properties, or URL connection properties
e setFetchSize method of the Statement object
* setFetchSize method of the ResultSet object

e If you use ODBC drivers or CLI functions:

Specify the number of rows to be transferred in the batch mode in the adb clt fetch size operand in the
client definition.

If the appropriate setting above is specified and rows are retrieved, the retrieval results are transferred in the batch mode.

Notes

* As the number of rows to be transferred in the batch mode increases, the amount of memory used by the HADB
server and HADB client also increases. Therefore, if you will be performing batch transfer, re-evaluate the

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 219

memory requirements. For details about the memory requirements for HADB servers, see Determining the
memory requirement during normal operation in the HADB Setup and Operation Guide. For details about the
memory requirements for HADB clients, see C. Estimating the Memory Requirements for an HADB Client

 If an error occurs during batch transfer, retrieval results buffered on the HADB server are discarded and only
error information is returned to the HADB client.

» Ifanupdate SQL statement is run during retrieval using a cursor, the result of the update operation might be
applied to the retrieval results, depending on the timing. However, the result of the update operation is never
applied to the retrieval results during retrieval using batch transfer. This is because the HADB server is not
accessed by an HADB client on which retrieval results remain.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 220

5.15 Batch transfer of dynamic parameter values

Multiple dynamic parameter values can be transferred from an HADB client to the HADB server in the batch mode.
This function is useful for accessing the HADB server from an HADB client and then using dynamic parameters to add,
update, and delete data.

The following figure provides an overview of batch transfer of dynamic parameter values.

Figure 5-22: Overview of batch transfer of dynamic parameter values

B Normal transfer of dynamic parameter values

HADB client HADB server
Dynamic
parameter values Table
Transfer Insert a row
1]10| o1 1]110] 001 | "
nsert a row
2 [20| vo2 Transfer 2 [20] vo2
AP Transfer Insert a row
3 130| U03 3 130] U003

B Batch transfer of dynamic parameter values

HADB client HADB server
Dynamic
Table

parameter values Tl oo Insert a row
L[oo Batch transfer Insert a row
> 2ol 0oz 2 20| U02

AP 350l 003 Insert a row
3|30 U003 -
Explanation:

When multiple rows are inserted (INSERT statement) by using dynamic parameter values as row insertion values,
the dynamic parameter values are normally transferred to the HADB server one set at a time (where a set consists
of the dynamic parameter values to be inserted into one row).

In the case of batch transfer of dynamic parameter values, two or more sets of dynamic parameter values are
transferred together in the batch mode. Because this method reduces the communication overhead, it also reduces
the application program's execution time.

The figure above shows an example of row insertion (INSERT statement), but batch transfer of dynamic parameter
values is also applicable to the UPDATE and DELETE statements.

Ifa JDBC driver is used, dynamic parameter values are transferred in the batch mode when SQL statements are executed
by using the executeBatch method or executeLargeBatch method of the PreparedStatement class.

If CLI functions are used, dynamic parameter values are transferred in the batch mode when the SQL statements are
executed in the following order:

1. Preprocess the INSERT, UPDATE, or DELETE statement.
2.Usea rdb SQLBindArrayParams () to perform batch binding of the dynamic parameters.

3. Use the statement handle preprocessed in 1 to execute the SQL statement by a_rdb SQLExecute ().

If an ODBC driver is used, batch transfer of dynamic parameter values is not available.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 221

Notes

 Ifan error occurs during execution of an SQL statement and the processing is rolled back, the number of results
rows is discarded and only the error information is returned to the HADB client.

* You must re-estimate the memory requirements for the HADB servers and clients, because batch transfer of
dynamic parameter values requires memory resources. For details about the memory requirements for HADB
servers, see Determining the memory requirement during normal operation in the HADB Setup and Operation
Guide. For details about the memory requirements for HADB clients, see C. Estimating the Memory
Requirements for an HADB Client

* If you perform batch transfer of dynamic parameter values for an SQL statement with the scalar function
RANDOMCURSOR specified, the scalar function RANDOMCURSOR generates a pseudorandom number for each
set of dynamic parameters.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 222

Tuning Application Programs

This chapter explains how to use access paths.

Hitachi Advanced Database Application Development Guide 223

6.1 How to use access paths (how to use SQL statement execution plans)

This section explains the information that is output as access paths (SQL statement execution plans) and how to use that
information.

6.1.1 About access paths

An access path is the execution plan that is used when HADB executes an SQL statement. By checking the access paths,
you can determine how the SQL statements to be executed will be processed by HADB.

(1) Example of displayed access path information

The following figure shows an example of displayed access path information.

Figure 6-1: Example of displayed access path information

Relevant items for each
query are displayed as

a tree.
<<Tree View>>
1 QUERY : 1
2 SELECT STATEMENT
3 | -SUBQUERY
4 | +-CREATE GLOBAL WORK TABLE (WORK TABLE 1)
5 | | -QUERY SCAN (QUERY 2)
Tree view 6 | +-SORTING BYTE
7 +-INDEX SCAN (ADBUSERO01.T1)
8 +-SUBQUERY
9 +-WORK TABLE SCAN (WORK TABLE 1)
10
11 QUERY : 2
1§ iUﬁigE:YSCAN ADBUSER01.T2 DSpmyedin
(-T2) more detail in
- details view.
<<Detail >>
QUERY : 1
Details view 7 INDEX SCAN (ADBUSERO01.T1) -+
INDEX NAME : IDX C1
INDEX TYPE : B-TREE
INDEX COLUMN : Cl ASC (=ANY)
<<SQL Info >>
Identification
information Version : 03-01(Apr 23 2015 15:32:27)
view Transaction ID HE
Connection Number : 1
L SQL Serial Number : 1
Explanation:

Access path information is displayed in three views: tree view, details view, and identification information view.

e Tree view

The information displayed in tree view includes table search methods, table joining methods, and information
about work tables. Related items are displayed in tree format.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 224

Access path information is displayed for each query. Each query is assigned a query tree number.
<<Tree View>> is displayed as the header for the tree view section.

¢ Details view

The details view displays detailed information about the items in tree view. The tree row numbers in the details
view correspond to the tree row numbers in tree view. In this example, details view displays detailed information
about the item assigned tree row number 7 in tree view.

<<Detail >> isdisplayed as the header for the details view section.

¢ Identification information view

The identification information view displays SQL statement identification information. SQL statement
identification information is information used to identify the SQL statement for which HADB acquired access
path statistical information. Based on the information in the identification information view, you can identify
the correlation between the output access path information and the output access path statistical information.

<<SQL Info >>isdisplayed as the header for the identification information view section.

For details about access path statistical information, see Examples of output of and output items for access path
statistical information in the HADB Setup and Operation Guide.

m Query trees, query tree numbers, and tree row numbers

<<Tree View>>
1/ QUERY :l 1 J¢&———— Query tree number
Tree row
| » 2| SELECT STATEMENT
numbers 3| |-SUBQUERY
4 | +-CREATE GLOBAL WORK TABLE (WORK TABLE 1)
5/ | |-QUERY SCAN(QUERY 2) Query tree
6 | +-SORTING BYTE
7| +-INDEX SCAN (ADBUSER01.T1)
8 +-SUBQUERY
9 +-WORK TABLE SCAN (WORK TABLE 1) |
10 -
11| QUERY :| 2 j¢&——— Query tree number
12 SUBQUERY Query tree
13| +-TABLE SCAN (ADBUSEROL.T2) i
<<Detail >>
QUERY :(1 <¢———— Query tree number
P 7| INDEX SCAN (ADBUSER01.T1)
INDEX NAME : IDX C1
INDEX TYPE : B-TREE
INDEX COLUMN : Cl ASC (=ANY)
Explanation:
* Query tree

Access path information is output in a form of a query tree for each query (query specification and table value
constructor).

* Query tree number
Each query tree is assigned a number (called a query tree number) for identification.

A query tree corresponding to a subquery is assigned a query tree number of 2 or larger. Note, however, that a
query tree number of 1 or larger is assigned to a query tree that corresponds to a subquery if the following
conditions are met:

* VALUES (in which a subquery is specified) is specified in the INSERT statement.

* A subquery is specified in the PURGE CHUNK statement.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 225

a Note

¢ Whether query tree numbers are output in exact ascending order (1, 2, ...) depends on the SQL
statement to be run.

* A query tree number of 0 is output for query trees that are not contained in the queries in the
SQL statement.

* Tree row number
A number assigned to each row in the tree.

(2) SQL statements for which access paths are output

Access path information is output for the following SQL statements:

e SELECT
e UPDATE

e INSERT
Access path information is output in the following circumstances:

* A query expression body is specified in the INSERT statement.
* VALUES is specified in the INSERT statement, and a subquery is specified.
e DELETE

¢ PURGE CHUNK
Access path information is output when a subquery is specified in the PURGE CHUNK statement.

Access path information is output when you run these SQL statements.

6.1.2 How to check access paths

There are two ways to check access paths:

* Check access path information by executing the #SET OPT REPORT subcommand of the adbsgl command

¢ Check access path information output in SQL trace information

(1) How to check access path information by running #SET OPT REPORT

You can display access path information by running the # SET OPT REPORT subcommand of the adbsgl command.
To display access path information:

Procedure

1. Run the adbsgl command.
2.Run the #SET OPT REPORT subcommand of the adbsgl command.

#SET OPT REPORT ON TYPE=PATH EXEC=PREPARE;

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 226

5 Note

In this example, EXEC=PREPARE is specified because the intention is to display the access path
information without actually running the SQL statement. If you want to run the SQL statement and
display the access path information, do not specify EXEC=PREPARE.

3. Run the SQL statement.
SELECT "C1" FROM "T1" WHERE "C1">10;
When you run this SQL statement, access path information is displayed as follows:
<<Tree View>>
1 QUERY : 1

2 SELECT STATEMENT
3 +-KEY SCAN (ADBUSERO01.T1)

<<Detail >>

QUERY : 1
3 KEY SCAN (ADBUSERO01.T1)
INDEX NAME : IDX C1
INDEX TYPE : B-TREE
INDEX COLUMN : C1 ASC (>)

<<SQL Info >>
Version : 03-01(Aug 5 2015 09:32:34)
Transaction ID : 6197

Connection Number : 3
SQL Serial Number : 1

In this example, the table and B-tree index are defined as follows:

CREATE TABLE "T1" ("C1" INT,"C2" DEC,"C3" CHAR(10)) IN "DBAREAQOL1"
CREATE INDEX "IDX C1"™ ON "T1" ("C1l") IN "DBAREAQ2" EMPTY
CREATE INDEX "IDX C3"™ ON "T1" ("C3") IN "DBAREA(O2" EMPTY

(2) How to check access path information output in SQL trace information

Use a text editor to view SQL trace information output in an SQL trace file. SQL trace files have the following file
names:

e SADBDIR/spool/adbsgltrc0l.log to adbsgltrc08.log
The following is an example of access path information output as SQL trace information:

Example:

[SQL]
SELECT * FROM "T1" WHERE "C1"=? AND "C2"=? AND "C3"=?

[access path]
<<Tree View>>

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 227

1 QUERY

2 SELECT STATEMENT

1

3 +-TABLE SCAN(T1)

For details about SQL trace information, see Running SQL tracing in the HADB Setup and Operation Guide.

6.1.3 Examples of access paths

(1) Example 1

Table B-tree index definitions

CREATE
CREATE
CREATE
CREATE

TABLE
INDEX
INDEX
TABLE

"Tl" ("Cl"

INT,"C2" DEC,"C3" CHAR(10))

IN

"DBAREAQOL"

"IDX C1"™ ON "T1"("C1l") IN "DBAREAQ2" EMPTY
"IDX C3" ON "T1"("C3") IN "DBAREAOZ2" EMPTY

"TZ" ("Cl"

Executed SQL statement

SELECT * FROM "T1","T2"
WHERE "T1".

Example of access paths

<<Tree View>>

1
2
3
4
5

<<Detai

QUERY

5 INDEX SCAN (ADBUSERO01.T1)

QUERY

SELECT STATEMENT

+-NESTED LOOP JOIN
| -TABLE SCAN (ADBUSERO01.T2)
+-INDEX SCAN (ADBUSERO1.T1) -ORDER

1 >>

1

1

INDEX NAME
INDEX TYPE
INDEX COLUMN

<<SQL Info >>

Version

Transaction ID

INT,"C2" DEC,"C3" CHAR(10))

"C:L":"T2" . "c2n

IDX C1
B-TREE
Cl ASC (=)

03-01(Aug 5 2015 09:32:34)

Connection Number : 3
SQL Serial Number : 2

Explanation:

6197

1. The SELECT statement is executed.

2. In the table join processing, a nested loop join is executed.

3. In table T2 retrieval processing, a table scan is performed.

IN

DSw N

@ J oy »

"DBAREAQOL"

4. In table T1 retrieval processing, an index scan is performed. ~-ORDER indicates that sequential execution,
not out-of-order execution, is applied.

5. Detailed information about the index scan on table T1 is displayed.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide

228

6. B-tree index IDX C1 is used during the index scan.
7. The index type is displayed. B-TREE means that this is a B-tree index.

8. Information about B-tree index IDX C1 is displayed:
* C1: Indexed column of B-tree index IDX C1
* ASC: Key value sort order (ascending)

* (=) : Range search condition specification

(2) Example 2

Table definition

CREATE TABLE "T1" ("C1" INT,"C2" DEC,"C3" CHAR(10)) IN "DBAREAQO1"
CREATE TABLE "T2" ("C1" INT,"C2" DEC,"C3" CHAR(10)) IN "DBAREAQO1"

Executed SQL statement

SELECT * FROM "T1"
WHERE "C1"=ANY (SELECT "C2" FROM "T2" WHERE "C1"="T1"."C2")

Example of access paths

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 +-TABLE SCAN (ADBUSERO01.T1)

4 +-SUBQUERY LOOP

5 | -CREATE LOCAL WORK TABLE (WORK TABLE 1)
6 | +-QUERY SCAN (QUERY 2)
7

8

9

0

1

oUW

+-WORK TABLE SCAN (WORK TABLE 1)

QUERY : 2

~J

SUBQUERY LOOP ..
+-TABLE SCAN (ADBUSERO01.T2) .29

[ee}

<<SQL Info >>

Version : 03-01(Aug 5 2015 09:32:34)
Transaction ID : 6197
Connection Number : 3

SQL Serial Number : 3

Explanation:
1. The SELECT statement is executed.
2.In table T1 retrieval processing, a table scan is executed.

3. Nested loops work table execution or nested loops row value execution is used to process the subquery
specified in the quantified predicate (ANY).

4. In the subquery processing, a local work table is created.

5. A query scan is performed. The query scan QUERY : 2 displayed in tree row number 9 is performed.
6. In the subquery processing, the work table is scanned.

7. Detailed information about the subquery is displayed.

8. In the subquery processing, nested loops work table execution or nested loops row value execution is used.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 229

9. In the table T2 retrieval processing, a table scan is performed.

6.1.4 Information displayed in the tree view

The tree view displays information for each query, such as the table retrieval method, table joining method, and subquery
processing method, in tree format.

(1) SQL statements executed

One of the following is displayed:

e SELECT STATEMENT
A SELECT statement is to be executed.

e UPDATE STATEMENT

An UPDATE statement is to be executed.
e INSERT STATEMENT

An INSERT statement is to be executed.
e DELETE STATEMENT

A DELETE statement is to be executed.

e PURGE CHUNK STATEMENT
PURGE CHUNK statement is to be executed.

Output example

<<Tree View>>

1 QUERY : 1
2 SELECT STATEMENT
3 +-TABLE SCAN (ADBUSERO01.T2)

Explanation:
A SELECT statement is executed.

(2) Subquery processing methods
One of the following is displayed:

e SUBQUERY

A subquery processing method other than nested loop execution or hash execution is applied.
¢ SUBQUERY LOOP

Nested loops work table execution or nested loops row value execution is applied as the subquery processing.
e SUBQUERY HASH

Hash execution is applied as the subquery processing method.
If SUBQUERY HASH is followed by FILTER, a hash filter is applied during hash execution.

For details about how to process subqueries, see 5.6 How to process subqueries.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 230

Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 +-SUBQUERY HASH -FILTER

4 | —-QUERY SCAN (QUERY 2)

5 +-TABLE SCAN (ADBUSERO01.T1)
6

7

8

9

QUERY : 2
SUBQUERY HASH
+-TABLE SCAN (ADBUSERO01.T2)

Explanation:
Hash execution is applied as the subquery processing method.

Because SUBQUERY HASH is followed by FILTER in tree row number 3, a hash filter is applied during hash
execution.

(3) Specification of derived tables

The following information is displayed:

* DERIVED TABLE(correlation-name)
One of the following is specified:

* A derived table
* A viewed table (if a correlation name is specified)
* A query name (if a correlation name is specified)

e DERIVED TABLE(query-name)

A query name is specified (without a correlation name).

e DERIVED TABLE(table-identifier)

A viewed table is specified (without a correlation name)

Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 +-DERIVED TABLE (D1)

4 +-QUERY SCAN (QUERY 2)

5

6 QUERY : 2

7 DERIVED TABLE (D1)

8 |-CREATE LOCAL WORK TABLE (WORK TABLE 1)
9 | |-TABLE SCAN (ADBUSEROL1.T2)

10 | |-SORTING BYTE

11 | +-LIMIT 10

12 |-WORK TABLE SCAN (WORK TABLE 1)

13 +-LIMIT 10

Explanation:
A derived table is specified in the SELECT statement. The correlation name is displayed in parentheses.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 231

(4) Specification of set operations

The following information is displayed:

e SET OPERATION

A set operation is specified.

é Note

The preceding information is also displayed in the following circumstances:

e FULL OUTER JOIN is specified for joining tables

* An archivable multi-chunk table is specified
When retrieving an archivable multi-chunk table, equivalent exchange of the SQL statement might
result in it being automatically rewritten as an SQL statement that specifies a set operation. For

details, see 5.12.4 Equivalent exchange of SQL statements that search archivable multi-chunk
tables.

* Equivalent exchange related to OR conditions (equivalent exchange to a derived table for which the
UNION ALL set operation is specified) is applied

If a comma join or joined table is specified in the FROM clause and an OR condition is specified in
the WHERE clause, the SQL statement might be automatically rewritten as a result of equivalent
exchange to derived tables for which the UNION ALL set operation is specified. For details, see

5.11.3 Equivalent exchange for OR conditions (equivalent exchange to derived tables for which
the UNION ALL set operation is specified).

Output example

<<Tree View>>

1 QUERY : O

2 SELECT STATEMENT

3 +-SET OPERATION

4 | —-QUERY SCAN (QUERY 1)
5 +-QUERY SCAN (QUERY 2)
6

7 QUERY : 1

8 QUERY

9 +-TABLE SCAN (ADBUSERO01.T1)
10
11 QUERY : 2
12 QUERY

13 +-TABLE SCAN (ADBUSER01.T2)

Explanation:
A set operation is specified in the SELECT statement.

Note that SET OPERATION might be followed by the following item:

¢ RECURSIVE

This item indicates that a recursive query will be run.

Output example

<<Tree View>>

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 232

1 QUERY : 3

2 SELECT STATEMENT

3 +-DERIVED TABLE (REC)

4 +-SET OPERATION -RECURSIVE
5 | -QUERY SCAN (QUERY 1)

6 +-QUERY SCAN (QUERY 2)

7

8

QUERY : 1

9 QUERY

10 | -CREATE GLOBAL WORK TABLE (WORK TABLE 1)
11 | +-TABLE SCAN (ADBUSER01.T1)

12 +-WORK TABLE SCAN (WORK TABLE 1)
13
14 QUERY : 2
15 QUERY
16 | -CREATE GLOBAL WORK TABLE (WORK TABLE 2)
17 | +-WORK TABLE SCAN (WORK TABLE 2)

18 +-WORK TABLE SCAN (WORK TABLE 2)

Explanation:
An item indicating that a recursive query will be run is included.

After SET OPERATION, the query information displayed first pertains to anchor members. The query
information displayed next pertains to recursive members. In the preceding output example, QUERY 1 is the
query information about anchor members, and QUERY 2 is the query information about recursive members.

(5) Set operation method specification

The following information is displayed:

e SPECIFIC
Set operation method specification is enabled.

For details about set operation method specifications, see Specification format and rules for query expressions in
the manual HADB SQL Reference.

Output example

<<Tree View>>

1 QUERY : O

2 SELECT STATEMENT

3 +-SET OPERATION -SPECIFIC

4 | —-QUERY SCAN (QUERY 1)

5 +-QUERY SCAN (QUERY 2)

6

7 QUERY : 1

8 QUERY

9 | -CREATE LOCAL WORK TABLE (WORK TABLE 1)
10 | |-TABLE SCAN (ADBUSERO1.T1)

11 | +-SORTING BYTE -DISTINCT

12 +-WORK TABLE SCAN (WORK TABLE 1)

13

14 QUERY : 2
15 QUERY
16 | -CREATE LOCAL WORK TABLE (WORK TABLE 2)
17 | |-TABLE SCAN (ADBUSER01.T2)
18 | +-SORTING BYTE -DISTINCT

19 +-WORK TABLE SCAN (WORK TABLE 2)

Explanation:
The set operation method specification specified in the SELECT statement is enabled.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 233

(6) Query types
The following information is displayed:

¢ QUERY

A query expression body other than a subquery or a derived table is specified.

é Note

If an archivable multi-chunk table is specified as the table to be updated by an UPDATE statement or
the table to be deleted by a DELETE statement, a query that retrieves the location table or system table
(STATUS_CHUNKS) might be displayed.

Output example

<<Tree View>>

QUERY : O
INSERT STATEMENT
+-QUERY SCAN (QUERY 1)

QUERY : 1
QUERY
+-TABLE SCAN (ADBUSER01.T2) -ORDER

~N o0 W N

Explanation:

A query expression body is specified in the INSERT statement.

(7) Work table creation information
One of the following is displayed:

¢ CREATE GLOBAL WORK TABLE (WORK TABLE work-table-number)
A global work table is created.

* CREATE LOCAL WORK TABLE (WORK TABLE work-table-number)

A local work table is created.
A unique work table number is assigned to each work table.

Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 | —-SUBQUERY

4 | +-CREATE GLOBAL WORK TABLE (WORK TABLE 1)
5 | | —-QUERY SCAN (QUERY 2)

6 | +-SORTING BYTE

7 +-INDEX SCAN (ADBUSERO01.T1)

8 +-SUBQUERY

9 +-WORK TABLE SCAN (WORK TABLE 1)

10

11 QUERY : 2
12 SUBQUERY
13 +-TABLE SCAN (ADBUSER01.T2)

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 234

Explanation:

A global work table is created in the subquery processing.

(8) Subquery processing method specification

The following information is displayed:

e SPECIFIC
Subquery processing method specification is enabled.

For details about subquery processing method specifications, see Specification format and rules for subqueries in
the manual HADB SQL Reference.

Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 | -SUBQUERY -SPECIFIC

4 | +-CREATE GLOBAL WORK TABLE (WORK TABLE 1)
5 | +-QUERY SCAN (QUERY 2)

6 +-TABLE SCAN (ADBUSERO01.T1 (A))

7 +-SUBQUERY

8 +-WORK TABLE SCAN (WORK TABLE 1)
9

10 QUERY : 2

11 SUBQUERY

12 +-TABLE SCAN (ADBUSERO01.T2)

Explanation:

The subquery processing method specification specified in the SELECT statement is enabled.

(9) Subquery processing delegation specification

The following information is displayed:

e DELEGATION
Subquery processing delegation specification is enabled.

For details about subquery processing delegation specifications, see Specification format and rules for subqueries
in the manual HADB SQL Reference.

Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 +-TABLE SCAN (ADBUSER(01.T1 (A))

4 +-SUBQUERY LOOP -DELEGATION -USING CACHE
5 +-QUERY SCAN (QUERY 2)

[

7 QUERY : 2

8 SUBQUERY LOOP

9 | ~-SUBQUERY LOOP -SPECIFIC -DELEGATION
10 | +-QUERY SCAN (QUERY 3)

11 +-TABLE SCAN (ADBUSER01.T1 (B))

12

13 QUERY : 3

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 235

14 SUBQUERY LOOP
15 +-TABLE SCAN (ADBUSERO01.T1 (C))

Explanation:
The subquery processing delegation method specification specified in the SELECT statement is enabled.

(10) Subquery cache usage information

The following information is displayed:

e USING CACHE

Cache is used to store the results of a subquery. Cache might be used when nested loops row value execution is used
to process the subquery.

For details about nested loops row value execution, see (2) Nested loops row value execution in 5.6.3 Methods for
processing subqueries that contain an external reference column.

Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 +-TABLE SCAN (ADBUSERO01.T1)

4 +-SUBQUERY LOOP -USING CACHE
5 +-QUERY SCAN (QUERY 2)

6

7 QUERY : 2

8 SUBQUERY LOOP

9 +-TABLE SCAN (ADBUSERO01.T2)

Explanation:

Nested loops row value execution is used to process the subquery, and the results of the subquery are stored
using cache.

(11) Specification of table function derived tables

The following information is displayed:

e TABLE FUNCTION DERIVED TABLE(correlation-name)

A table function derived table is specified.

Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 +-TABLE FUNCTION DERIVED TABLE (T4)
4 +-TABLE SCAN (ADBUSERO01.T4)

Explanation:

A table function derived table is specified in the SELECT statement. The information in parentheses is the
correlation name.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 236

(12) Processing method for duplicate removal

The following information is displayed:

¢ GLOBAL HASH UNIQUE
Duplication in the retrieval results will be eliminated by using one of the following methods:
* Hash execution for the method for processing the set operation
For details about hash execution for the method for processing the set operation, see 5.8.1 Hash execution.
* Hash execution for the method for processing SELECT DISTINCT
For details about hash execution for the method for processing SELECT DISTINCT,see5.9.1 Hash execution.

* Global hash grouping for the grouping method
For details about global hash grouping for the grouping method, see (2) Global hash grouping in 5.7.1 Hash
grouping.
GLOBAL HASH UNIQUE is also displayed if work tables might be created because some rows cannot be processed
in the hash table area.

Output example

<<Tree View>>

QUERY : 1
SELECT STATEMENT
| -KEY SCAN (ADBUSERO01.T1)
| -GLOBAL HASH UNIQUE
+-GROUPING

g w NP

Explanation:
Global hash grouping is used for the grouping method to eliminate duplicate retrieval results.

(13) Grouping methods
One of the following is displayed:

¢ GROUPING

Grouping that does not use work tables is performed.
¢ SORT GROUPING

Sort grouping is performed.
¢ GLOBAL HASH GROUPING

Global hash grouping is performed. If there are rows that cannot be processed in the hash table area, work tables
might be created.

e LOCAL HASH GROUPING

Local hash grouping is performed. If there are rows that cannot be processed in the hash grouping area, work tables
might be created.

For details about grouping methods, see 5.7 Grouping methods.

Output example

<<Tree View>>

1 QUERY : 1

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 237

2 SELECT STATEMENT

3 | -TABLE SCAN (ADBUSER01.T1)

4 +-GLOBAL HASH GROUPING
Explanation:

Global hash grouping is performed during the grouping method.
Following the grouping method information, the following item might be displayed:

e SPECIFIC
The grouping method specification specified in the GROUP BY clause is enabled.
Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 | -CREATE LOCAL WORK TABLE (WORK TABLE 1)
4 | |-TABLE SCAN (ADBUSERO1.T1)

5 | +-SORTING BYTE

6 | -WORK TABLE SCAN (WORK TABLE 1)

7 +-LOCAL HASH GROUPING -SPECIFIC

Explanation:
The grouping method specification specified in the GROUP BY clause is enabled and LOCAL HASH GROUPING
is applied as the grouping method. For details about the grouping method specification, see the topic Specification
format and rules for GROUP BY clauses in the manual HADB SQL Reference.
e TINDEX
The grouping method that uses the characteristics of B-tree indexes is performed.

Output example

<<Tree View>>

1 QUERY : 1
2 SELECT STATEMENT
3 | -KEY SCAN (ADBUSERO1.T1)
4 +-GROUPING -INDEX

Explanation:

The grouping method that uses the characteristics of B-tree indexes is performed for table T1.
¢ COLUMN
The grouping method that uses the characteristics of column store tables is performed.
Output example

<<Tree View>>

QUERY : 1
SELECT STATEMENT
| -TABLE SCAN (ADBUSERO01.T1) —-COLUMN STORE

1
2
3
4 +-GROUPING -COLUMN

Explanation:

The grouping method that uses the characteristics of column store tables is performed for table T1.

¢ GROUPING SET

Grouping processing is performed multiple times.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 238

Output example

<<Tree View>>

QUERY : 1

SELECT STATEMENT

| -DERIVED TABLE(##DRVTBL_OOOOOOOOOI)

| |-TABLE SCAN (ADBUSER01.T1)

| +-GLOBAL HASH GROUPING -GROUPING SET
+-GLOBAL HASH GROUPING

o Ul W N

Explanation:
Grouping processing is performed multiple times by global hash grouping.

é Note

GROUPING SET (grouping set information) might be output if multiple DISTINCT set functions are
specified with different arguments.

(14) HAVING clause specification

The following information is displayed:

e HAVING
The HAVING clause is specified. This information might also be displayed if a derived table is expanded even

though the HAVING clause is not specified.
Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 | -TABLE SCAN (ADBUSERO1.T1)
4 | -GLOBAL HASH GROUPING

5 +-HAVING

Explanation:
The HAVING clause is specified in the SELECT statement.

(15) Sort processing
The following information is displayed:
¢ SORTING {BYTE|ISO}
* BYTE: Sorts by bytecode.

* TISO0: Sorts by sort code (ISO/IEC 14651:2011 compliance).

Sort processing is performed according to the ORDER BY clause.
Note that this information might not be displayed even though the ORDER BY clause is specified.

Output example

<<Tree View>>

1 QUERY : 1
2 SELECT STATEMENT

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 239

3 | -CREATE LOCAL WORK TABLE (WORK TABLE 1)
4 | |-TABLE SCAN (ADBUSERO1.T1)

5 | +-SORTING BYTE

6 +-WORK TABLE SCAN (WORK TABLE 1)

Explanation:
Sort processing is performed according to the specified ORDER BY clause.

(16) Information about duplicate removal

The following information is displayed:

e DISTINCT

This item indicates that duplicate removal will be performed.

Output example

<<Tree View>>

QUERY : 1

SELECT STATEMENT

| -CREATE LOCAL WORK TABLE (WORK TABLE 1)
| |-KEY SCAN (ADBUSERO1.T1)

| +-SORTING BYTE -DISTINCT

+-WORK TABLE SCAN (WORK TABLE 1)

o U1 W N

Explanation:
The item indicating that duplicate removal will be performed during sort processing is output.

Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 |-CREATE LOCAL WORK TABLE (WORK TABLE 1)

4 | |-KEY SCAN(ADBUSER01.T1) -DISTINCT

5 | +-SORTING BYTE -DISTINCT

6 +-WORK TABLE SCAN (WORK TABLE 1)
Explanation:

Items indicating that duplicate removal will be performed during key scan processing and sort processing are
included.

(17) SELECT deduplication method specification

The following information is displayed:

e SPECIFIC
SELECT deduplication method specification is enabled.

For details about the SELECT deduplication method specification, see Specification format and rules for query
specifications in the manual HADB SQOL Reference.

Note that if DISTINCT described in (16) Information about duplicate removal is not output, SPECIFIC is not
output even if the SELECT deduplication method specification is specified.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 240

Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 | -CREATE LOCAL WORK TABLE (WORK TABLE 1)
4 | |-TABLE SCAN (ADBUSERO1.T1)

5 | +-SORTING BYTE -SPECIFIC -DISTINCT

6 +-WORK TABLE SCAN (WORK TABLE 1)

Explanation:

The SELECT deduplication method specification specified in the SELECT statement is enabled.

(18) LIMIT clause specification

The following information is displayed:

e LIMIT [{offset|? PARAMETER},] {row count|? PARAMETER}

* offset
A LIMIT clause specifying the offset for the first row to be returned is specified.
If the literal 0 is specified for the offset row count, no offset for the first row to be returned is displayed.

* row_count
A LIMIT clause specifying the maximum number of rows to be returned is specified.

e ? PARAMETER
A LIMIT clause containing dynamic parameters for both or either of the offset row count and limit row count
is specified.

Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 | -CREATE LOCAL WORK TABLE (WORK TABLE 1)
4 | |-TABLE SCAN (ADBUSERO1.T1)

5 | |-SORTING BYTE

6 | +-LIMIT ? PARAMETER,5

7 | -WORK TABLE SCAN (WORK TABLE 1)

8 +-LIMIT ? PARAMETER,5

Explanation:

A LIMIT clause containing a dynamic parameter for the offset row count and 5 for the limit row count is
specified.

(19) Specification of window functions

The following information is displayed:

e WINDOW

A window function is specified.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 241

Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 | -CREATE LOCAL WORK TABLE (WORK TABLE 1)
4 | |-TABLE SCAN (ADBUSERO1.T1)

5 | +-SORTING BYTE

6 | -WORK TABLE SCAN (WORK TABLE 1)

7 +-WINDOW

Explanation:

A window function is executed according to its specification.

(20) Table retrieval method
One of the following is displayed:

e TABLE SCAN

A table scan is performed in the table retrieval processing.

e INDEX SCAN (schema-name . table-identifier (query-name-or-correlation-name))

An index scan is performed in the table retrieval processing. If there is a query name or a correlation name, it is
displayed.

e KEY SCAN
A key scan is performed in the table retrieval processing.
For details about table scans, index scans, and key scans, see 5.1 How to retrieve tables.
Output example
<<Tree View>>
1 QUERY : 1

2 SELECT STATEMENT
3 +-INDEX SCAN (ADBUSER01.T1)

Explanation:

An index scan is performed in the table T1 retrieval processing.

(21) Table-data storage format

The following information is displayed:

e COLUMN STORE
The table-data storage format is column store format.

Output example

<<Tree View>>
1 QUERY : 1

2 SELECT STATEMENT
3 +-TABLE SCAN (ADBUSER01.T1) -COLUMN STORE

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 242

Explanation:
The table-data storage format of table T1 is column store format.

(22) Sequential execution

The following information is displayed:

¢ ORDER

Sequential execution, not out-of-order execution, is applied.

Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 +-NESTED LOOP JOIN

4 | -TABLE SCAN (ADBUSERO01.T2)

5 +-INDEX SCAN (ADBUSERO1.T1) -ORDER

Explanation:
In the table T1 retrieval processing, an index scan is performed using the sequential execution method.

(23) Index specification
One of the following is displayed:

e SPECIFIC

The index specification is enabled.

e SPECIFIC DISABLED

The index specification is disabled.
Output example
<<Tree View>>
1 QUERY : 1

2 SELECT STATEMENT
3 +-INDEX SCAN (ADBUSER01.T1) -SPECIFIC

Explanation:

An index scan is performed in the table T1 retrieval processing with an index specification specified in the
SELECT statement enabled.

(24) Collecting cost information

The following information is displayed:

¢ USING COST

Cost information is collected for a table or index.

Output example

<<Tree View>>

1 QUERY : 1

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 243

2 SELECT STATEMENT
3 +-TABLE SCAN (ADBUSER01.T3) -USING COST
Explanation:
Cost information was collected for the table T 3.

(25) Work table scan

The following information is displayed:

¢ WORK TABLE SCAN (WORK TABLE work-table-number)

A work table is scanned. A unique work table number is assigned to each work table.

Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 | —-SUBQUERY

4 | +-CREATE GLOBAL WORK TABLE (WORK TABLE 1)
5 | | —-QUERY SCAN (QUERY 2)

6 | +-SORTING BYTE

7 +-INDEX SCAN (ADBUSERO01.T1)

8 +-SUBQUERY

9 +-WORK TABLE SCAN (WORK TABLE 1)

11 QUERY : 2
12 SUBQUERY
13 +-TABLE SCAN (ADBUSER01.T2)

Explanation:

A work table is scanned in the subquery processing.

Note that you might encounter circumstances in which the row IDs of a table specified in a FROM clause are stored in
a work table created when executing an SQL statement that specifies an ORDER BY clause. In this case, data might be
retrieved from data pages using these row IDs immediately after the work table is retrieved. For details about the purposes
and columns of work tables, see 5.10 Considerations when executing an SQL statement that creates work tables.

(26) Query scan
The following information is displayed:
* QUERY SCAN (QUERY query-tree-number)
A query scan is performed.

Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 +-SUBQUERY HASH

4 | -QUERY SCAN (QUERY 2)

5 +-TABLE SCAN (ADBUSERO1.T1)
6

7

QUERY : 2

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 244

8 SUBQUERY HASH
9 +-TABLE SCAN (ADBUSERO01.T2)

Explanation:
A query scan is performed.
In this example, the query scan indicated as QUERY : 2 displayed in tree row number 7 is performed.
Example of the executed SELECT statement

SELECT * FROM "T1" WHERE "C1"=(SELECT "C2" FROM "T2" WHERE "C1"="T1"."C1l")

(27) Table joining methods
One of the following is displayed:

e NESTED LOOP JOIN
A nested loop join is performed in the table join processing.
e HASH JOIN
A hash join is performed in the table join processing.
If HASH JOIN is followed by FILTER, a hash filter is applied during hash join.

If there is an = condition that compares columns in two tables, a hash join might be performed. If there are rows
that cannot be processed in the hash table area, work tables might be created.

For details about table joining methods, see 5.5 Table joining methods.

Output example (NESTED LOOP JOIN)

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 +-NESTED LOOP JOIN

4 | -TABLE SCAN (ADBUSER01.T2)

5 +-INDEX SCAN (ADBUSER01.T1) -ORDER

Explanation:
* A nested loop join is performed to join tables T1 and T2.

* If the table joining method is nested loop join, the information is displayed under NESTED LOOP JOIN in
order, beginning with the outer table. In this example, the information in tree row number 4 is for the outer
table and the information in tree row number 5 is for the inner table.

Output example (HASH JOIN)

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 +-HASH JOIN -FILTER

4 | -TABLE SCAN (ADBUSERO1.T1)
5 +-TABLE SCAN (ADBUSERO01.T2)

Explanation:

* A hash join is performed to join tables T1 and T2.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 245

¢ If the table joining method is hash join, information for the outer table and the inner table for hash join is
displayed in this order under HASH JOIN. In this example, the information in tree row number 4 is for the

outer table and the information in tree row number 5 is for the inner table.

* Because HASH JOIN is followed by FILTER in tree row number 3, a hash filter is applied during hash

join.

(28) Join method specification
Either of the following is displayed:

e SPECIFIC
Join method specification is enabled.
e SPECIFICDISABLED

Join method specification is disabled.

Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 +-HASH JOIN -SPECIFIC

4 | -TABLE SCAN (ADBUSERO1.T1(A))
5 +-TABLE SCAN (ADBUSERO01.T2 (B))

Explanation:

The join method specification specified in the SELECT statement is enabled, and a hash join was executed in

the join processing for the table.

(29) Scan information for table value constructors

The following information is displayed:

e TABLE VALUE CONSTRUCTOR SCAN

Table value constructors are scanned.

Output example

<<Tree View>>

1 QUERY : 1

2 SELECT STATEMENT

3 +-NESTED LOOP JOIN

4 | -TABLE SCAN (ADBUSER01.T1)

5 +-DERIVED TABLE (DT)

6 +-TABLE VALUE CONSTRUCTOR SCAN

Explanation:
Table value constructors are scanned.

6.1.5 Information displayed in the details view

The following information is displayed in the details view:

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide

246

¢ Information about the table retrieval methods and indexes
* Information about the table joining methods

* Information about set operations

» Information about table function derived tables

¢ Information about subqueries

¢ Information about the grouping

Note that the details view is displayed only when there is detailed information for the query that is being displayed in
the query tree.

(1) Information related to table retrieval methods and indexes

The following shows an example of the output format for information related to table retrieval methods and indexes.

Output example
<<Detail >>
QUERY : 1
3 INDEX SCAN (ADBUSER01.T1) *—— :ggc;;r?::;?envz:) ;Lgt:;?j
INDEX NAME : IDX ClC2
INDEX TYPE : B-TREE
INDEX COLUMN : C1 ASC (IN)
INDEX COLUMN : C2 ASC (>) Information about the
INDEX NAME : RIDX C2 index
INDEX TYPE : RANGE
SKIP COND : CHUNK (HASH)
INDEX COLUMN : C2 |

(a) Information related to table retrieval methods

One of the following is displayed as the information related to table retrieval methods:

e TABLE SCAN

A table scan is performed in the table retrieval processing.

e INDEX SCAN (schema-name . table-identifier (query-name-or-correlation-name))

An index scan is performed in the table retrieval processing. If there is a query name or a correlation name, it is
displayed.

¢ KEY SCAN

A key scan is performed in the table retrieval processing.
For details about table scans, index scans, and key scans, see 5.1 How to retrieve tables.

Output example

<<Detail >>

QUERY : 1
3 INDEX SCAN (ADBUSER01.T1)
INDEX NAME : IDX ClcC2
INDEX TYPE : B-TREE
INDEX COLUMN : Cl1 ASC (IN)
INDEX COLUMN : C2 ASC (>)
INDEX NAME : RIDX C2

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 247

INDEX TYPE : RANGE
SKIP COND : CHUNK (HASH)
INDEX COLUMN : C2

Explanation:
An index scan is performed in the table T1 retrieval processing.

(b) Information related to indexes

The following shows an output format for the information related to indexes.

Output format (B-tree index)

INDEX NAME : B-tree-index-name (uniqueness-constraint-information)

INDEX TYPE : Index-type

INDEX COLUMN : Indexed-column-name key-value-sort-order (range-search-conditi
on)

* uniqueness-constraint-information
If this B-tree index is a unique index, uniqueness constraint information is displayed. One of the following is
displayed:
UNIQUE: This unique index does not violate the uniqueness constraint.
UNIQUE INVALID: This unique index violates the uniqueness constraint.
* index-type
For a B-tree index, B-TREE is displayed as the index type.
* key-value-sort-order

Displays the sort order for the key values of the B-tree index that was specified when the B-tree index was
defined. One of the following is displayed:

ASC: The key values are sorted in ascending order.

DESC: The key values are sorted in descending order.

* range-search-condition
Displays one of the following as the range search condition:
=, <, <=,>,>=,=ANY, BETWEEN ({<,<|<,<=|<=,<|<=,<=}), IN, LIKE, IS NULL
Rules for search condition output
* Ifno range search condition is specified for an indexed column, none is displayed.
* If IN table-subquery or quantified-predicate=SOME is specified as the range search condition, =ANY is
displayed.

o If the left side of the comparison predicate is not a single column specification, the HADB server performs
equivalent exchange of the search condition. The comparison operator of the comparison predicate after
equivalent exchange is output as the search condition.

Example:

Search condition specified in WHERE clause of SELECT statement
WHERE 10 < C1

Search condition after equivalent exchange by HADB server
WHERE C1 > 10

Information output as search condition in access path information
INDEX COLUMN: Cl ASC (>)

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 248

Output format (text index)

INDEX NAME . text-index-name
INDEX TYPE : Index-type
INDEX COLUMN : Indexed-column-name
* index-type

For a text index, TEXT is displayed as the index type.

Output format (range index)

INDEX NAME : range-index-name
INDEX TYPE : Index-type

SKIP COND : range-index-condition-type
INDEX COLUMN : indexed-column-name

* index-type

For a range index, RANGE is displayed as the index type.
* range-index-condition-type
Displays one of the following as the range index condition to be used:
* CHUNK: The chunk skip condition is used.
* SEGMENT: The segment skip condition is used.
* CHUNK AND SEGMENT: The chunk skip condition and the segment skip condition are both used.

When a hash join is performed, (HASH) is output if a range index that is defined for a column that is to be
matched with a hash table is used. When hash execution is performed as the processing method for a subquery,
(HASH) is output if a range index that is defined for a column that is to be matched with a hash table is used.

Output example

SKIP COND : CHUNK _(HASH)

For details about a hash join, see 5.5.2 About hash join.

For details about hash execution as the processing method for a subquery, see either (4) Hash executionin5.6.1
Methods for processing subqueries that do not contain an external reference column or (3) Hash execution in
5.6.3 Methods for processing subqueries that contain an external reference column.

Output example

<<Detail >>

QUERY : 1
3 INDEX SCAN (ADBUSERO01.T1)

INDEX NAME 2 IDX_C1C2 .1

INDEX TYPE : B-TREE L2

INDEX COLUMN : Cl1 ASC (IN) .3

INDEX COLUMN : C2 ASC (>) .3

INDEX NAME : RIDX C2 .. 4

INDEX TYPE : RANGE ..5

SKIP COND : CHUNK (HASH) .6

INDEX COLUMN : C2 L
Explanation:

1. Name of the index to be used

2. Type of the index displayed by INDEX NAME in 1 In this example, IDX C1C2 is a B-tree index because
B-TREE is displayed.

The information displayed in 1 and 2 indicates that an index scan is performed using B-tree index IDX C1C2.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 249

3. Information about B-tree index IDX C1C2:
C1, C2: Indexed column
ASC: Key value sort order

(IN), (>):Range search condition specification
4. Name of the index to be used

5. Type of the index displayed by INDEX NAME in 4 In this example, RIDX C2 is a range index because
RANGE is displayed.

6. Type of range index condition to be used
CHUNK: Indicates that range index RIDX C2 is used for a chunk skip condition.

(HASH) : When a hash join is performed, (HASH) indicates that the range index RIDX C2 that is defined
for a column that is to be matched with a hash table is used. When hash execution is performed as the
processing method for a subquery, (HASH) indicates that the range index RIDX C2 that is defined for a
column that is to be matched with a hash table is used.

7. Indexed column of range index RIDX C2

a Note

* Information about the B-tree index is displayed when an index scan or a key scan is performed for table
retrieval.

If there are multiple indexed columns, information is displayed for each indexed column. In such a case,
the information is displayed in the order the indexed columns were defined in the CREATE INDEX
statement.

* Information about a text index is displayed when an index scan is implemented as the table retrieval
method.

* Information about a range index is displayed whenever there is a range index condition.

(2) Information related to table joining methods

The following shows an example of the output format for information related to table joining methods.

Example of the output format

<<Detail >>

QUERY : 1
3 HASH JOIN — Table joining method
JOIN TYPE : INNER JOIN ~ Join type
BUILD COLUMN : ADBUSERO1.T1.C3 — Hash retrieval information
PROBE COLUMN : ADBUSER01.T2.C3 ~ Hash retrieval information

(a) Table joining method
One of the following is displayed as the table joining method:

e NESTED LOOP JOIN

A nested loop join is performed in the table join processing.

e HASH JOIN

A hash join is performed in the table join processing.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 250

If there is an = condition that compares columns in two tables, a hash join might be performed. If there are rows
that cannot be processed in the hash table area, work tables might be created.

For details about table joining methods, see 5.5 Table joining methods.

Output example

<<Detail >>

QUERY : 1
3 HASH JOIN
JOIN TYPE : INNER JOIN
BUILD COLUMN : ADBUSERO1.T1.C3
PROBE COLUMN : ADBUSERO01.T2.C3
Explanation:

A hash join is applied as the table joining method.

(b) Join type (JOIN TYPE)

One of the following is displayed as JOIN TYPE:

¢ CROSS JOIN

A cross join is specified.

¢ INNER JOIN

An inner join is specified.

e LEFT OUTER JOIN
An outer join performed by a LEFT OUTER JOIN is specified.

e RIGHT OUTER JOIN
An outer join performed by a RIGHT OUTER JOIN is specified.

e FULL OUTER JOIN (LEFT)
An outer join performed by a FULL OUTER JOIN is specified.

e FULL OUTER JOIN (RIGHT)
An outer join performed by a FULL OUTER JOIN is specified.

For details about each join method, see the topic Specification format and rules for joined tables in the manual H4DB
SOL Reference.

Output example

<<Detail >>

QUERY : 1
3 HASH JOIN
JOIN TYPE : INNER JOIN
BUILD COLUMN : ADBUSERO01.T1.C3
PROBE COLUMN : ADBUSER01.T2.C3
Explanation:

An inner join is performed.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 251

0 Important

INNER JOIN or CROSS JOIN might be converted to a comma join during execution of an SQL
statement. In this case, the join type (JOIN TYPE) is not displayed. For details about a comma join, see
Explanation of specification format in Specification format and rules for FROM clauses in the manual
HADB SQL Reference.

The output rules are as follows:

* For an SQL statement that creates an internal derived table, the results of expanding the internal derived table are
output as the table name and correlation name of the outer table columns and inner table columns for the hash join.
For details about internal derived tables and the internal derived table expansion rules, see Internal derived tables
in the manual HADB SQL Reference.

(c) Hash retrieval information (BUILD COLUMN and PROBE COLUMN)

When hash join is performed, the following information is displayed as hash retrieval information:

e BUILD COLUMN

Information about the joined columns in the outer table

¢ PROBE COLUMN

Information about the joined columns in the inner table

Output example

<<Detail >>

QUERY : 1
3 HASH JOIN
BUILD COLUMN : ADBUSERO01.T1.C1 (CREATE FILTER 1) Lol
PROBE COLUMN : ADBUSER01.T2.C1 (USE FILTER 1) L..2
Explanation:

1. Column name ADBUSEROQO1.T1.C1 of the joined column in the outer table during hash join is displayed.
2. Column name ADBUSERO01.T2.C1 of the joined column in the inner table during hash join is displayed.

If a hash filter is applied during hash join, hash filter information is displayed in the underlined portion.
The output rules are as follows:

e For BUILD COLUMN or PROBE COLUMN, the column name is displayed in one of the following formats. Output
of a correlation name has the highest priority among those column names. If a column name cannot be displayed,
three asterisks (* * *) are displayed.

e table-name . column-name
e query-name . column-name
e correlation-name . column-name

e Ifahash filter is applied during hash join, (CREATE FILTER XXXXX)isdisplayed for BUILD COLUMN. XXXXX
is the number of the hash filter created based on the column value for the displayed column name.

(USE FILTER XXXXX)is displayed for PROBE COLUMN. XXXXX is the number of the hash filter to be used.

* For an SQL statement that creates an internal derived table, the results of expanding the internal derived table are
output as the table name and correlation name of the outer table columns and inner table columns for the hash join.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 252

For details about internal derived tables and the internal derived table expansion rules, see Internal derived tables
in the manual HADB SQL Reference.

(3) Information related to set operations

In information related to set operations, the type of set operation is output in the following format:
SET OPERATION TYPE:set-operation-type
One of the following is output as the set operation type:

e UNIONALL
The set operation UNION ALL is specified.

e UNIONDISTINCT
The set operation UNION DISTINCT is specified.

e EXCEPT ALL
The set operation EXCEPT ALL is specified.

e EXCEPT DISTINCT
The set operation EXCEPT DISTINCT is specified.

e INTERSECT ALL
The set operation INTERSECT ALL is specified.

e INTERSECT DISTINCT
The set operation INTERSECT DISTINCT is specified.

The following is an example of the output format of information related to set operations:

Output example

<<Detail >>

QUERY : O
3 SET OPERATION
SET OPERATION TYPE : UNION ALL

Explanation:
The set operation UNION ALL is specified.

Notes

* When a set operation that specifies ALL and one that specifies DISTINCT are specified consecutively in an
SQL statement, access path information might be output that interprets the ALL set operation as a DISTINCT
set operation. In this case, the set operations that are consecutively specified will appear combined in the output
shown in (4) Specification of set operations in 6.1.4 Information displayed in the tree view. The corresponding
information related to the set operations will also be combined.

* Ifboth of the following conditions are met, access path information might be output that interprets the UNION
DISTINCT set operation as a UNION ALL set operation.

* Set operations that are specified consecutively in an SQL statement contain set operations with UNION,
UNION ALL,and UNION DISTINCT specified.

* Hash execution is applied as the method for processing the set operation.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 253

In this case, the set operations that are consecutively specified will appear combined in the output shown in (4)
Specification of set operations in 6.1.4 Information displayed in the tree view. The corresponding information
related to the set operations will also be combined.

(4) Information about table function derived tables

In the information about table function derived tables, the names of system-defined functions to be executed are output
in the following format;:

FUNCTION NAME : schema-name.system-defined-function-name
Either of the following is output as the system-defined function:

* ADB AUDITREAD
The ADB_ AUDITREAD function is specified.

* ADB CSVREAD
The ADB_CSVREAD function is specified.

The following is an example of the output format of the information about table function derived tables:

Output example

<<Detail >>

QUERY : 1
3 TABLE FUNCTION DERIVED TABLE (T5)
FUNCTION NAME : MASTER.ADB_AUDITREAD
Explanation:
The ADB_ AUDITREAD function is specified.

(5) Information about subqueries

If hash execution is applied during subquery processing, hash retrieval information is output in information about
subqueries. The following information is output as hash retrieval information:

e BUILD COLUMN

If hash execution is applied as the method for processing subqueries that do not contain external reference columns,
information about the column resulting from the subquery is output.

If hash execution is applied as the method for processing subqueries that contain external reference columns,
information about the column to be compared with the external reference column specified in the subquery is output.

¢ PROBE COLUMN

If hash execution is applied as the method for processing subqueries that do not contain external reference columns,
column information to be compared with the result of the subquery specified in the search condition is output.

If hash execution is applied as the method for processing subqueries that contain external reference columns,
information about the external reference column specified in the subquery is output.

Output example

<<Detail >>

QUERY : 1
3 SUBQUERY HASH

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 254

BUILD COLUMN : ADBUSERO1.T2.C1 (CREATE FILTER 1) .
PROBE COLUMN : ADBUSERO1.T1.C1(USE FILTER 1) o2

Explanation:
In the preceding example, hash execution is applied as the method for processing subqueries that do not contain
external reference columns.
1. Column name ADBUSERO1.T2.C1 of the column resulting from the subquery is output.

2. Column name ADBUSERO01 . T1.C1 of the column to be compared with the result of the subquery specified
in the search condition is output.

If a hash filter is applied during hash execution, hash filter information is output in the underlined portion.
The output rules are as follows:

e For BUILD COLUMN or PROBE COLUMN, the column name is displayed in one of the following formats. Output
of a correlation name has the highest priority among those column names. If a column name cannot be displayed,
three asterisks (* * *) are displayed.

e table-name . column-name
* query-name . column-name
e correlation-name . column-name

e Ifa hash filter is applied during hash execution, (CREATE FILTER XXXXX) is displayed for BUILD COLUMN.
XXXXX is the number of the hash filter created based on the column value for the displayed column name.

(USE FILTER XXXXX)is displayed for PROBE COLUMN. XXXXX is the number of the hash filter to be used.

e When an internal derived table is expanded by using an SQL statement that creates an internal derived table, the
results of expanding the internal derived table are output as the table name and correlation name output for BUILD
COLUMN and PROBE COLUMN. For details about internal derived tables and the internal derived table expansion
rules, see Internal derived tables in the manual HADB SQL Reference.

(6) Information about the grouping

When the grouping processing is performed multiple times, information about the grouping (grouping set information)
is output in the following format:

GROUPING SET : {table-name|query-name|correlation-name}.grouping-column-name-1-for-gr
ouping-process-1

{table-name|query-name|correlation-name}.grouping-column-name-2-for-gr
ouping-process-1

GROUPING SET : {table-name|query-name|correlation-name}.grouping-column-name-1-for-gr
ouping-process-2

{table-name|query-name|correlation-name}.grouping-column-name-2-for-gr
ouping-process-2

GROUPING SET : {table-name|query-name|correlation-name}.grouping-column-name-l1-for-gr
ouping-process-N

{table-name|query-name|correlation-name}.grouping-column-name-2-for-gr
ouping-process-N

The following shows an example of the output format of the information about the grouping.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 255

Example of the output format

<<Detail >>
QUERY : 1
5 GLOBAL HASH GROUPING
GROUPING SET : ADBUSERO1.T1.C1l
ADBUSER(01.T1.C2
ADBUSER0O1.T1.C3
GROUPING SET : ADBUSER01.T2.C1l
ADBUSER(01.T2.C2
GROUPING SET : ADBUSER(01.T3.C1
ADBUSER(01.T3.C3

Explanation:
A grouping column name is output for each grouping.

If no grouping column name can be output, three asterisks (* * *) are output.
The output rules are as follows:

* When an internal derived table is expanded by using an SQL statement that creates an internal derived table, the
results of expanding the internal derived table are output as the table name and correlation name that are output in
the information about the grouping. For details about internal derived tables and the internal derived table expansion
rules, see Internal derived tables in the manual HADB SQL Reference.

6.1.6 Information output in identification information view (SQL statement
identification information)

The identification information view displays SQL statement identification information that is used to identify the SQL
statement for which HADB acquired access path statistical information. Based on the information displayed in this view,
you can identify the correlation between the access path information and the access path statistical information.

For details about access path statistical information, see Examples of output of and output items for access path statistical
information in the HADB Setup and Operation Guide.

The following is an example of the information displayed in the identification information view.

Output example

<<SQL Info >>

Version : 03-01(Apr 23 2015 15:32:27)
Transaction ID 1
Connection Number : 1

SQL Serial Number : 1

Explanation:

e Version

The version of the HADB server that ran the SQL statement for which the access path statistical information
was acquired.

The information in parentheses is additional version information.
e Transaction ID

The transaction ID of the SQL statement for which the access path statistical information was acquired.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 256

e Connection Number

The connection sequence number of the SQL statement for which the access path statistical information was
acquired.

e SQL Serial Number

The SQL statement sequence number of the SQL statement for which the access path statistical information was
acquired.

é Note

This information corresponds to the following information in the SQL statement execution information
output before the access path statistical information. The header name for the information is in parentheses.

 Transaction ID (tran_id)
* Connection sequence number (con_num)

* SQL statement sequence number (sql serial num)

For details about SQL statement execution information, see SOL statement execution information under
Information that is output as SQL trace information in the HADB Setup and Operation Guide.

6.1.7 Information displayed for an access path (alphabetical order)

The following table lists in alphabetical order and describes the information that is displayed for an access path.

Table 6-1: Information displayed for an access path (alphabetical order)

First letter Output information Description Classification

B BUILD COLUMN If hash join is applied as the table joining method, Hash retrieval
information about the joined columns in the outer information (BUILD
table is output. If a hash filter is applied, hash filter = COLUMN and PROBE
information is also output. COLUMN)
If hash execution is applied as the method for Information about

processing subqueries that do not contain external subqueries
reference columns, information about the column

resulting from the subquery is output.

If hash execution is applied as the method for

processing subqueries that contain external

reference columns, information about the column to

be compared with the external reference column

specified in the subquery is output.

If a hash filter is applied, hash filter information is

also output.

o] CHUNK The chunk skip condition is used. Information related to
indexes
CHUNK AND SEGMENT The chunk skip condition and the segment skip
condition are both used.

COLUMN The grouping method that uses the characteristics of =~ Grouping methods
column store tables is performed.

COLUMN STORE The table-data storage format is column store format. = Table-data storage format

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 257

First letter

Output information

CREATE FILTER

CREATE GLOBAL WORK TABLE
(WORK TABLE work-table-number)

CREATE LOCAL WORK TABLE (WORK
TABLE work-table-number)

CROSS JOIN

DELEGATION

DELETE STATEMENT

DERIVED TABLE (correlation-name,
query-name, or table-identifier))

DISTINCT

FILTER

FULL OUTER JOIN (LEFT)
FULL OUTER JOIN (RIGHT)

FUNCTION NAME

GLOBAL HASH GROUPING

GLOBAL HASH UNIQUE

GROUPING

GROUPING SET

(HASH)

6. Tuning Application Programs

Description

The number of the hash filter created based on the
column value for the column name shown in BUILD
COLUMN is output.

A global work table is created.

A local work table is created.

A unique work table number is assigned to each work
table.

A cross join is specified.

Subquery processing delegation specification is
enabled.

A DELETE statement is executed.

A derived table, viewed table, or query name is
specified.

This item indicates that duplicate removal will be
performed.

A hash filter is applied during hash execution for the
subquery processing method.

A hash filter is applied during hash join for the table
joining method.

An outer join performed by a FULL OUTER JOIN
is specified.

The type of system-defined function that is executed.

Global hash grouping is executed. Work tables might
be created if there are rows that cannot be processed
in the hash table area.

Duplication in the retrieval results has been
eliminated by using one of the following methods:

¢ Hash execution for the method for processing the
set operation

¢ Hash execution for the method for processing
SELECT DISTINCT

* Global hash grouping for the grouping method
Work tables are created if there are rows that cannot
be processed in the hash table area.

Grouping that does not use work tables is performed.

Grouping processing is performed multiple times.

When a hash join is performed, (HASH) indicates
that the range index that is defined for a column that
is to be matched with a hash table is used. When hash

Classification

Hash retrieval
information (BUILD
COLUMN and PROBE
COLUMN)

Information about
subqueries

Work table creation
information

Information related to
table joining methods

Subquery processing
delegation specification

SQL statements executed

Specification of derived
tables

Information about
duplicate removal

Subquery processing
methods

Table joining method

Information related to
table joining methods

Information about table
function derived tables

Grouping methods

Processing method for
duplicate removal

Grouping methods

¢ Grouping methods
¢ Information about the
grouping

Information related to
indexes

Hitachi Advanced Database Application Development Guide

258

First letter

Output information

HASH JOIN

HAVING

INDEX

INDEX COLUMN

INDEX NAME

INDEX SCAN (schema-name . table-
identifier (query-name-or-correlation-

name))

INDEX TYPE

INNER JOIN

INSERT STATEMENT

JOIN TYPE

KEY SCAN

LIMIT offset, row_count

LEFT OUTER JOIN

LOCAL HASH GROUPING

NESTED LOOP JOIN

6. Tuning Application Programs

Description

execution is performed as the processing method for
a subquery, (HASH) indicates that the range index
that is defined for a column that is to be matched with
a hash table is used.

A hash join is performed in the table join processing.

If there is an = condition that compares columns in
two tables, a hash join might be performed. If there
are rows that cannot be processed in the hash table
area, work tables might be created.

The HAVING clause is specified. This item might
also be displayed when a derived table is expanded
even though the HAVING clause is not specified.

The grouping method that uses the characteristics of
B-tree indexes is performed.

Information related to indexed columns.

For B-tree indexes, the name of the indexed column,
the key value sort order, and the search condition are
output.

For text indexes and range indexes, the name of the
indexed column is output.

Indicates the index name.

An index scan is performed in the table retrieval
processing. If there is a query name or a correlation
name, it is displayed.

The index type (B-tree index, text index, or range
index).

An inner join is specified.

An INSERT statement is executed.

Join type

A key scan is performed in the table retrieval
processing.

The LIMIT clause is specified. If the offset row
count is not specified, the offset row count is not
displayed.

If dynamic parameters are specified for either or both
of the offset row count and limit row count, ?
PARAMETER is displayed.

An outer join performed by a LEFT OUTER JOIN
is specified.

Local hash grouping is performed. If there are rows
that cannot be processed in the hash grouping area,
work tables might be created.

A nested loop join is performed in the table join
processing.

Classification

e Table joining method
(tree view)

e Table joining method
(details view)

HAVING clause
specification

Grouping methods

Information related to
indexes

¢ Table retrieval
method (tree view)

¢ Table retrieval
method (details view)

Information related to
indexes

Information related to
table joining methods

SQL statements executed

Information related to
table joining methods

e Table retrieval
method (tree view)

e Table retrieval
method (details view)

LIMIT clause
specification

Information related to
table joining methods

Grouping methods

* Table joining
methods (tree view)

Hitachi Advanced Database Application Development Guide

259

First letter

Output information

ORDER

PROBE COLUMN

PURGE CHUNK STATEMENT

QUERY

QUERY SCAN (QUERY query-tree-
number)

RECURSIVE

RIGHT OUTER JOIN

SEGMENT

SELECT STATEMENT

SET OPERATION

SET OPERATION TYPE

SKIP COND

SORT GROUPING

SORTING {BYTE|ISO}

SPECIFIC

6. Tuning Application Programs

Description

Sequential execution, not out-of-order execution, is
applied.

If hash join is applied as the table joining method,
information about the joined columns in the inner
table is output. If a hash filter is applied, hash filter
information is also output.

If hash execution is applied as the method for
processing subqueries that do not contain external
reference columns, column information to be
compared with the result of the subquery specified
in the search condition is output.

If hash execution is applied as the method for
processing subqueries that contain external
reference columns, information about the external
reference column specified in the subquery is output.

If a hash filter is applied, hash filter information is
also output.

A PURGE CHUNK statement is executed.

A query other than a subquery or a derived table is
specified.

A query scan is performed.

This item indicates that a recursive query will be run.

An outer join performed by a RIGHT OUTER JOIN
is specified.

The segment skip condition is used.

A SELECT statement is executed.

A set operation is specified.

The type of set operation that is executed.

Type of range index condition.

Sort grouping is performed.

Sort processing by the ORDER BY clause is
performed. This information might not be displayed
even though the ORDER BY clause is specified.

Set operation method specification is enabled.

Subquery processing method specification is
enabled.

Classification

¢ Table joining
methods (details
view)

Sequential execution

Hash retrieval
information (BUILD
COLUMN and PROBE
COLUMN)

Information about
subqueries

SQL statements executed

Query types

Query scan

Specification of set
operations

Information related to
table joining methods

Information related to
indexes

SQL statements executed

Specification of set
operations

Information related to
operations

Information related to
indexes

Grouping methods

Sort processing

Set operation method
specification

Subquery processing
method specification

set

Hitachi Advanced Database Application Development Guide

260

Output information

SPECIFIC DISABLED

SUBQUERY

SUBQUERY HASH

SUBQUERY LOOP

TABLE FUNCTION DERIVED

TABLE (correlation name)

TABLE SCAN

TABLE VALUE CONSTRUCTOR SCAN

UNIQUE

UNIQUE INVALID
UPDATE STATEMENT

USE FILTER

USING CACHE

USING COST

WINDOW

WORK TABLE SCAN (WORK TABLE
work-table-number)

6. Tuning Application Programs

Description

The grouping method specification specified in the
GROUP BY clause is enabled.

SELECT deduplication method specification is
enabled.

The index specification is enabled.

Join method specification is enabled.

The index specification is disabled.

The join method specification is disabled.

A subquery processing method other than nested
loop execution or hash execution is applied.

Hash execution is applied as the subquery processing
method.

Nested loop execution is applied as the subquery
processing method.

A table function derived table is specified.

A table scan is performed in the table retrieval
processing.

Table value constructors are retrieved.

This unique index does not violate the uniqueness
constraint.

This unique index violates the uniqueness constraint.
An UPDATE statement is executed.

The number of the hash filter to be used is output.

Cache is used to store the results of a subquery.

Cost information is collected in relation to a table or
index.

A window function is specified.

A work table is scanned. A unique work table
number is assigned to each work table.

Classification

Grouping methods

SELECT deduplication
method specification

Index specification
Join method specification
Index specification
Join method specification

Subquery processing
methods

Specification of table
function derived table

* Table retrieval
method (tree view)

¢ Table retrieval
method (details view)

Information retrieved for
table value constructors

Information related to
indexes

SQL statements executed

Hash retrieval
information (BUILD
COLUMN and PROBE
COLUMN)

Information about
subqueries

Subquery cache usage
information

Collecting cost
information

Specification of window
functions

Work table scan

Hitachi Advanced Database Application Development Guide

261

Part 3: Application Program Creation (JDBC)

Creating Application Programs

This chapter explains how to create application programs that use the JDBC driver. For details about
how to set up an environment for the JDBC driver, see 3. Setting Up an Environment for the JDBC
Driver.

Hitachi Advanced Database Application Development Guide 262

7.1 JDBC driver provided by HADB

This section explains the scope of the JDBC standard with which the JDBC driver provided by HADB is compliant.
This section also explains the package name and directory structure of the JAR file.

7.1.1 Scope of JDBC standards compliance

HADB is implemented with the Type 4 JDBC driver. The following table shows the scope of the JDBC standards with
which the HADB JDBC driver is compliant.

Table 7-1: Scope of the JDBC standards with which the HADB JDBC driver is compliant

No. JDBC standard Function Complia
nt
1 The JDBC™ API, Version 1.20 (JDBC 1.2 API) Driver interface Y
2 Connection interface Y
3 Statement interface Y
4 PreparedStatement interface Y
5 CallableStatement interface N
6 ResultSet interface Y
7 DatabaseMetaData interface Y
8 ResultSetMetaData interface Y
9 Blob interface N
10 Array interface N
11 SQLException interface Y
12 SQLWarning interface Y
13 The JDBC™ 2.1 API, Version 1.1 (the JDBC 2.1 Core Result set extensions L#1
API)
14 Batch updating Y
15 Support for persistent Java objects N
16 Addition of JDBC SQL data types N
17 Custom mapping of data types N
18 The JDBC 2.0 Standard Extension API, Version 1.0 (the = JNDI Y
JDBC 2.0 Optional Package API)
19 Connection pool Y
20 Distributed transactions (JTA support) N
21 Row sets N
22 JDBC™ 3.0 Specification (JDBC 3.0 API) Save points N
23 Enhancement of the connection pool function N
24 Parameter metadata Y
25 Automatic generation keys N
7. Creating Application Programs
Hitachi Advanced Database Application Development Guide 263

No. JDBC standard

26
27
28
29
30
31
32
33
34
35 JDBC™ 4.0 Specification (JDBC 4.0 API)
36
37
38
39
40
41
42
43
44
45 JDBC™ 4.1 Specification (JDBC 4.1 API)

46

47
48
49

50

51
52 JDBC™ 4.2 Specification (JDBC 4.2 API)
53
54
55

56

Legend:
Y: Supported

7. Creating Application Programs

Function

Concurrent opening of multiple result sets
Use of parameter names in CallableStatement
Holdable cursors

BOOLEAN type

Data manipulation in the B1ob class
Reference type

DATALINK and URL types

JCA-related architectures

API for adding database metadata
Automatic loading of java.sgl.Driver
ROWID data type

National character data type

Enhancement of BLOB and CLOB functions
XML support

Wrapper pattern

SQL exception extensions

Connection management

Addition of scalar functions

API for adding database metadata
try-with-resources statement

Java data type of conversion target of getObject
method

Acquisition of parent logger
Schema specification
Closing and timing out physical connections

Closing Statement objects when dependent objects
are closed

API that adds database metadata
REF CURSOR

SQLType interface

JDBCType enumerator (Enum)
Large update counts

API that adds database metadata

Complia

nt

<~/ < zZ z z| Z <K | <|z Z Z Z z <|Z Z

<z z| Z

<~ < z Z z| <

Hitachi Advanced Database Application Development Guide

264

L: Limited support
N: Not supported

#1
Only the scroll function is supported.

#2
Only Connection#isvValid () and Statement#isPoolable () are supported.

#3
Only CURRENT DATE, CURRENT TIME, CURRENT TIMESTAMP, and EXTRACT are supported.

#4

A getObject method of the ResultSet interface. This method only supports conversion to some Java data
types. For details, see 8.5.43 getObject(int columnIndex,Class<T> type).

Hereafter, the term JDBC driver refers to the Type 4 JDBC driver.

7.1.2 Package name and directory structure of the JAR file

The JAR file's package name and directory structure are as follows:

¢ Package name: com.hitachi.hadb. jdbc

* Directory structure: com/hitachi/hadb/jdbc/

5 Note

HADB and hadb are acronyms for Hitachi Advanced Database.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 265

7.2 Basic procedure for application program processing

The following figure shows the basic procedure for using an application program to manipulate a database.

Figure 7-1: Basic procedure for using an application program to manipulate a database

Connect to the HADB server.

'

Perform data manipulation using SQL statements.

'

Disconnect from the HADB server.

Explanation:

1. Use the getConnection method of the DriverManager or DataSource class to connect to the HADB
server. For details about how to connect to the HADB server, see 7.3 How to connect to the HADB server.

2. Execute SQL statements to manipulate data. If you execute a SELECT statement, see 7.4 Retrieving data
(executing the SELECT statement).

If you execute an INSERT, UPDATE, or DELETE statement, see 7.5 Adding, updating, or deleting data
(executing the INSERT, UPDATE, or DELETE statement).

3. Use the close method of the Connection object to disconnect from the HADB server.
The JDBC API packages are explained in detail beginning from 8. The JDBC 1.2 APL.

m Notes about creating multithreaded applications

When all of the following conditions are met, a wait condition might arise due to serialization.

* The application is designed to use multiple Statement objects created from the same Connection object
in different threads.

* SQL statements are executed concurrently using these Statement objects.

Because this wait condition occurs before the SQL statements are executed, it is not included in the timer monitoring
time for the SQL execution processing. This means that a timeout error might not occur even if the timer monitoring
time specified in the adb _clt rpc sgl wait time property or by the setQueryTimeout method is
exceeded.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 266

7.3 How to connect to the HADB server

You must first connect to the HADB server to access the HADB database. There are two ways to connect to the HADB
server:

¢ Use the getConnection method of the DriverManager class.

¢ Use the getConnection method of the DataSource class.
Note that you must have the CONNECT privilege to execute the get Connection method.

The following subsections provide details about both methods.

7.3.1 Using the getConnection method of the DriverManager class to
connect to the HADB server

Connect to the HADB server by executing the getConnection method of the DriverManager class. Before the
getConnection method is executed, the Driver class is automatically registered on the Java Virtual Machine
(JVM). (You can also manually perform registration. For details, see (1) How to register the Driver class into the Java
Virtual Machine (JVM).) You can then execute the getConnection method to connect to the HADB server.

The following subsections explain the steps.

(1) How to register the Driver class into the Java Virtual Machine (JVM)

Register the Driver class into the Java Virtual Machine (JVM). Note that when you register the Driver class into
the Java Virtual Machine (JVM), you need a driver name (package-name . class-name). The package name and class
name of the JDBC driver are as follows:

* Package name: com.hitachi.hadb.jdbc

¢ (Class name: HADBDriver

é Note

HADB and hadb are acronyms for Hitachi Advanced Database.

There are three ways to register the Driver class, as shown below.

m Method 1 (using the forName method of the Class class)
Execute the forName method of the C1ass class within the application as follows:
Class.forName ("com.hitachi.hadb.jdbc.HADBDriver") ;
m Method 2 (using the system properties)
Specify the following value in the Java Virtual Machine's (JVM) system property (jdbc.drivers):
System.setProperty ("jdbc.drivers", "com.hitachi.hadb.jdbc.HADBDriver");

m Method 3 (using the operation settings file for the Java Virtual Machine)
This method is applicable only to Java Applets.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 267

Specify the information provided below in the JAVA HOME\ .hotjaval\properties file (JAVA HOME
depends on the Java execution environment). If you register multiple JDBC drivers, delimit then with the colon (:).

jdbc.drivers="com.hitachi.hadb.jdbc.HADBDriver"

(2) Connecting to the HADB server with the getConnection method

Connect to the HADB server by executing the getConnection method of the DriverManager class. When a
connection to the HADB server is established successfully, the JDBC driver returns a reference to a Connection
class instance as the result of executing the method. If connection establishment with the HADB server fails, as in the
following cases, the method throws an SQLException:

* Required connection information is not specified in the arguments.

* Specified connection information is invalid.

» Connection cannot be established (for example, because the HADB server at the connection destination has not been
started).

The getConnection method is provided in the following three formats, each with its own set of arguments (url,
user, password, and info) that specify information about the connection to the HADB server:

e public static Connection getConnection (Stringurl)
e public static Connection getConnection(Stringurl, Stringuser, String password)

e public static Connection getConnection(Stringurl, Properties info)
The following subsections explain the values to be specified in these arguments.

(a) Values to be specified in the url argument (specifying the URL for the connection)

You specify in the url argument the URL to be used for the connection. The following shows the URL specification
format:

jdbc:hadb[://[host] [:port]/[?property=value[&property=value]...]]

a Note

HADB and hadb are acronyms for Hitachi Advanced Database.

Examples of URL specification
* Example 1: Omitting the property

Jjdbc:hadb://localhost:23650/
» Example 2: Specifying one property
jdbc:hadb://localhost:23650/?adb_clt ap name=AP001
» Example 3: Specifying multiple properties

jdbc:hadb://localhost:23650/?methodtrace=0ON&tracenum=600
&sglwarningkeep=FALSE&user=ADBUSEROl &password=passwordOl&adb clt ap name=AP001

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 268

URL specification rules
* Spaces are not allowed within an item or between items in the URL argument.
» Each item name is case sensitive.
» Specification of an item enclosed in square brackets ([]) is optional.

* Specify a question mark (?) before specifying the first property (property) and use the ampersand (&) as the
delimiter between properties.

* If the same property is specified more than once, the first value specified takes effect.

* Ampersands (&) cannot be used as property values. If a password contains an ampersand, use another connection
method because the password property cannot be specified in a URL. For details about passwords in HADB,
see the topic Password specification rules in the HADB Setup and Operation Guide.

* When an invalid value is specified in a property in a URL, SQLException will not be thrown if the correct
value is specified for a user property of the same name.

Explanation of each URL item

* jdbc:hadb
This item consists of the protocol name and subprotocol name. You must specify this item. This item is case sensitive.

*host

Specifies the host name of the HADB server at the connection destination. This host name is used for communication
between the HADB client and the HADB server.

You can use other methods of specifying the HADB server's host name. For details about other specification methods
and priorities, see 7.3.3 Connection information priorities.

Ifthe getConnection method is executed with no host name specified, the method throws an SQLException.
In a cold standby configuration, specify the alias IP address used for communication between the HADB server and
HADRB client.
Multi-node function:
When you use the multi-node function, specify the alias IP address that is used for communication between the
HADB server and the HADB client.
*port

Specifies the port number of the HADB server that is used for communication between the HADB client and the
HADB server.

You can use other methods of specifying the HADB server's port number. For details about other specification
methods and priorities, see 7.3.3 Connection information priorities.

If the getConnection method is executed with no port number specified, the method throws an
SQLException.
* property=value
Specifies a property (property) and a value (value) for that property.
The following table lists and describes the properties that can be specified in the ur1 argument.

Table 7-2: Properties that can be specified in the url argument

No. Property name Description

1 user Specifies the authorization identifier to be used to connect to the HADB server.

For the naming rules for authorization identifiers, see the topic Specifying names in
the manual HADB SQL Reference.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 269

No. Property name

2 password

3 encodelang

4 methodtrace

5 tracenum

6 sglwarningkeep

7. Creating Application Programs

Description

You can use other methods of specifying the authorization identifier to be used to
connect to the HADB server. For the specification priorities, see 7.3.3 Connection
information priorities.

If the getConnection method is executed with no authorization identifier
specified, the method throws an SQLException.

Specifies a password for the authorization identifier that is to be used to connect to
the HADB server.

Specifies the conversion character set to be used for character encoding conversion
processing when the String class is used to transfer data with the HADB server.
Select a supported conversion character set from the list of Supported encodings in
Internationalization support in the JavaTM Platform, Standard Edition JDK
document.

If this specification is omitted, the character encoding will be converted using the
supported conversion character set indicated in Table 7-15: Names of the character
sets supported for the HADB server's character encoding. Note that Java Virtual
Machine's (JVM) default conversion character set is used to convert the following
values:

* Application identifiers (such as those specified with the adb_clt ap name
user property)

 Authorization identifiers or passwords (such as those specified with the
getConnection method)

Specify this property only if you want to use a character set other than the supported
conversion character set shown in Table 7-15: Names of the character sets supported
for the HADB server's character encoding. If you already use the supported
conversion character set indicated in Table 7-15: Names of the character sets
supported for the HADB server's character encoding for conversion, you do not need
to specify this property.

Specifies whether JDBC interface method traces are to be obtained.
ON: Obtain JDBC interface method traces.

OFF: Do not obtain JDBC interface method traces.

For details about the JDBC interface method traces, see 7.7.1 JDBC interface
method traces.

If any other value is specified, the JDBC driver throws an SQLException.
If this specification is omitted, OFF is assumed.

If no valid log writer is specified with the set LogWriter method, JDBC interface
method traces are not obtained, even if ON is specified.

Specifies the number of entries for a JDBC interface method trace, in the range from
10 to 1,000. The default value is 500.

This property value takes effect when both of the following conditions are satisfied:
¢ A valid log writer is specified with the setLogWriter method.
e ON is specified in methodtrace.

Even if this property value is to take effect, the JDBC driver throws an
SQLException if the specified value is not within the range of 10 to 1,000.

Specifies whether warning information returned from the HADB server is to be
retained.

TRUE: Retain warning information.

FALSE: Do not retain warning information.

If this specification is omitted, TRUE is assumed. If any other value is specified, the
JDBC driver throws an SQLException.

For details about the warning information retention level for the Connection
object, see 8.9.1 Creating an SQLWarning object.

Hitachi Advanced Database Application Development Guide

270

No. Property name Description

7 adb _clt rpc con wait time Specifies the maximum amount of time to wait for HADB server connection
processing to be completed.
Functionally, this property is the same as the adb_clt rpc con wait time
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt rpc con wait time operandin
the client definition.

8 adb_clt rpc sgl wait time Specifies the following wait times:
* How long a HADB client waits for the HADB server to respond to a processing
request.

¢ How long to wait to secure processing real threads if a shortage occurs when
multiple SELECT statements are executed concurrently in the same connection.

Functionally, this property is the same as the adb_clt rpc sgl wait time
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt rpc sgl wait time operandin
the client definition.

9 adb_clt ap name Specifies the identification information (application identifier) for the application
program that is to connect to the HADB server.
Because application identifiers are converted to the Java Virtual Machine's (JVM)
default conversion character set, we recommend that you use a name consisting of
only single-byte alphanumeric characters that do not depend on the conversion
character set.
You can use other methods of specifying the application identifier. For the
specification priorities, see 7.3.3 Connection information priorities.
If the application program has connected to the HADB server without its application
identifier having been specified anywhere, * * * * * * * * will be set as the application
identifier.
Functionally, this property is the same as the adb_clt ap name operand in the
client definition. For details about this property and its permitted values, see the
description of the adb_clt ap name operand in the client definition.

10 adb_clt group name Specifies the name of the client group to which the application belongs.
Functionally, this property is the same as the adb_clt group name operand in

the client definition. For details about this property and its permitted values, see the
description of the adb_clt group name operand in the client definition.

11 adb_clt fetch size Specifies the maximum number of rows that are to be sent as retrieval results from
the HADB server to the HADB client by a single FETCH process.
Functionally, this property is the same as the adb _clt fetch size operandin
the client definition. For details about this property and its permitted values, see the
description of the adb_clt fetch size operand in the client definition.

12 adb dbbuff wrktbl clt blk num Specifies the number of local work table buffer pages.
Functionally, this property is the same as the
adb _dbbuff wrktbl clt blk numoperand in the client definition. For
details about this property and its permitted values, see the description of the
adb_dbbuff wrktbl clt blk num operand in the client definition.

13 adb_sgl exe max rthd num Specifies the maximum number of SQL processing real threads.
Functionally, this property is the same as the adb_sgl exe max rthd num
operand in the client definition. For details about this property and its permitted
values, see the description of the adb sqgl exe max rthd numoperand in the
client definition.

14 adb sqgl exe hashgrp area size | Specifies the size (in kilobytes) of the hash grouping area.
Functionally, this property is the same as the
adb _sgl exe hashgrp area_ size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sqgl exe hashgrp area size operand in the client definition.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 271

No.

16

17

18

19

20

21

22

23

24

25

Property name

adb sgl exe hashtbl area size

adb sgl exe hashflt area size

adb_sqgl prep delrsvd use srvd
ef

adb_clt trn iso 1lv

adb_clt trn access mode

adb clt sql text out

adb clt sql order mode

adb_sqgl prep dec div_rs prior

adb jdbc exc trc out path

adb jdbc info max

adb jdbc cache info max

7. Creating Application Programs

Description

Specifies the size (in megabytes) of the hash table area.

Functionally, this property is the same as the

adb_sgl exe hashtbl area size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb sqgl exe hashtbl area size operand in the client definition.

Specifies the size (in megabytes) of the hash filter area.

Functionally, this property is the same as the

adb_sqgl exe hashflt area size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sgl exe hashflt area size operand in the client definition.

Specifies whether reserved words are to be unregistered if specified as such in the
adb_sqgl prep delrsvd words operand in the server definition.

Functionally, this property is the same as the

adb_sqgl prep delrsvd use_ srvdef operand in the client definition. For
details about this property and its permitted values, see the description of the
adb sqgl prep delrsvd use srvdef operand in the client definition.

Specifies the transaction isolation level.

Functionally, this property is the same as the adb_clt trn iso_ 1v operand in
the client definition. For details about this property and its permitted values, see the
description of the adb_clt trn iso 1v operand in the client definition.

Specifies the transaction access mode.

Functionally, this property is the same as the adb_clt trn access mode
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt trn access mode operand in the
client definition.

Specifies whether SQL statements issued by the HADB client are to be output to the
client message log files and the server message log files.

Functionally, this property is the same asthe adb_clt sqgl text out operand
in the client definition. For details about this property and its permitted values, see
the description of the adb _clt sgl text out operand in the client definition.

Specifies the sort order for character string data in a SELECT statement in which the
ORDER BY clause is specified.

Functionally, this property is the same as the adb_clt sgl order mode
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt sgl order mode operand in the
client definition.

Specify the minimum scaling value of the result of a division operation (arithmetic
operation) specified in an SQL statement when the data type of the result is
DECIMAL.

Functionally, this property is the same as the

adb_sqgl prep dec div_rs_ prior operand in the client definition. For
details about this property and its permitted values, see the description of the
adb sql prep dec div rs prior operand in the client definition.

Specifies the absolute path of the For details about these properties and

directory to which exception trace logs their permitted values, see (b) Setup for

are to be output. acquisition of the exception trace log
(setting properties) in (1) Methods to be

Specifies the maximum number of acquired and setup for log acquisition in

information items to be output to one 7.7.2 Exception trace log.

file.

Specifies the maximum number of
information items to be stored in
memory.

Hitachi Advanced Database Application Development Guide

272

No. Property name Description

26 adb_jdbc_trc out lv Specifies the trace acquisition level.

Note

You can use other methods of specifying these properties. For details about other specification methods and
priorities, see 7.3.3 Connection information priorities.

a Note

The property names that are specified in the connection URL were changed in HADB 03-00, as shown
below. The previous property names are still supported, but if you have upgraded your HADB to version
03-00 or later, we recommend that you change the property names.

No. Property name before change (property name Property name after change (property name used
used in HADB versions earlier than 03-00) in HADB version 03-00 or later)
1 apname adb _clt ap name
2 extrcoutpath adb jdbc exc trc out path
3 extrcinfomax adb_jdbc_info max
4 extrccacheinfomax adb jdbc cache info max
5 extrcoutlv adb_jdbc trc out 1lv

(b) Value to be specified in the user argument (specifying the authorization identifier)

The user argument specifies the authorization identifier that is used to connect to the HADB server.
For the naming rules for authorization identifiers, see the topic Specifying names in the manual HA4DB SQL Reference.

You can use other methods of specifying the authorization identifier used to connect to the HADB server. For the
specification priorities, see 7.3.3 Connection information priorities.

If the getConnection method is executed with no authorization identifier specified, the method throws an
SQLException.

If null is specified, the JDBC driver assumes that specification of an authorization identifier was omitted.

If a character string with a length of zero is specified, the JDBC driver throws an SQLException.

(c) Value to be specified in the password argument (specifying the password)

The password argument specifies a password for the authorization identifier that is to be used to connect to the HADB
server.

Ifnull oracharacter string with a length of zero is specified, the JDBC driver assumes that specification of a password
was omitted.

(d) Values to be specified in the info argument (specifying the user properties)

The following table lists and describes the information that can be specified in the info argument (information that
can be specified in user properties).

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 273

Table 7-3: Information that can be specified in the info argument (information that can be specified
in user properties)

No. Property name Description

1 user Specifies the authorization identifier to be used to connect to the HADB server.
For the naming rules for authorization identifiers, see the topic Specifying names in
the manual HADB SQL Reference.

* You can use other methods of specifying the authorization identifier to be used
to connect to the HADB server. For the specification priorities, see 7.3.3
Connection information priorities.

¢ Ifthe getConnection method is executed with no authorization identifier
specified, the method throws an SQLException.

e Ifnull is specified, the JDBC driver assumes that specification of an
authorization identifier was omitted.

* [fa character string with a length of zero is specified, the JDBC driver throws an
SQLException.

2 password Specifies a password for the authorization identifier being used to connect to the
HADB server.
If null is specified, or if a character string with a length of zero is specified, the
JDBC driver assumes that no password is specified.

3 encodelang Specifies the conversion character set to be used for character encoding conversion
processing when the String class is used to transfer data with the HADB server.
For details about this property and its permitted values, see Table 7-2: Properties
that can be specified in the url argument.
If the specified conversion character set name is not supported by Java Virtual
Machine (JVM), the JDBC driver throws an SQLException when a connection
is established with the HADB server.

If this specification is omitted, the specification of encodelang for the connection
URL is applied.

4 methodtrace Specifies whether JDBC interface method traces are to be obtained. For details about
this property and its permitted values, see Table 7-2: Properties that can be specified
in the url argument.

If this specification is omitted, the specification of methodtrace for the
connection URL is applied.

5 tracenum Specifies the number of JDBC interface method trace entries. For details about this
property and its permitted values, see Table 7-2: Properties that can be specified in
the url argument.

If this specification is omitted, the specification of t racenum for the connection
URL is applied.

6 sglwarningkeep Specifies whether warning information returned from the HADB server is to be
retained. For details about this property and its permitted values, see Table 7-2:
Properties that can be specified in the url argument.
If this specification is omitted, the specification of sqlwarningkeep for the
connection URL is applied.

7 adb_clt rpc_srv_host Specifies the host name of the HADB server at the connection destination.

Functionally, this property is the same as the adb_clt rpc srv_host operand
in the client definition. For details about this property and its permitted values, see
the description of the adb _clt rpc srv_host operand in the client definition.

8 adb_clt rpc_srv_port Specifies the port number of the HADB server that is used for communication
between the HADB client and the HADB server.
Functionally, this property is the same as the adb_clt rpc_ srv_port operand
in the client definition. For details about this property and its permitted values, see
the description of the adb_clt rpc srv port operand in the client definition.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 274

No. Property name Description

O

adb _clt rpc con wait time Specifies the maximum amount of time to wait for HADB server connection
processing to be completed.
Functionally, this property is the same as the adb_clt rpc con wait time
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt rpc con wait time operandin
the client definition.

10 adb_clt rpc sgl wait time Specifies the following wait times:
* How long a HADB client waits for the HADB server to respond to a processing
request.

¢ How long to wait to secure processing real threads if a shortage occurs when
multiple SELECT statements are executed concurrently in the same connection.

Functionally, this property is the same as the adb_clt rpc sgl wait time
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt rpc sgl wait time operandin
the client definition.

11 adb_clt ap name Specifies the identification information (application identifier) for the application
program that is to connect to the HADB server.
Because application identifiers are converted to Java Virtual Machine's (JVM)
default conversion character set, we recommend that you use a name consisting of
only single-byte alphanumeric characters that do not depend on the conversion
character set.
You can use other methods of specifying the application identifier. For the
specification priorities, see 7.3.3 Connection information priorities.
If the application program has connected to the HADB server without its application
identifier having been specified anywhere, * * * * * * * * will be set as the application
identifier.
Functionally, this property is the same as the adb_clt ap name operand in the
client definition. For details about this property and its permitted values, see the
description of the adb_clt ap name operand in the client definition.

12 adb_clt group_name Specifies the name of the client group to which the application belongs.
Functionally, this property is the same as the adb _clt group name operand in

the client definition. For details about this property and its permitted values, see the
description of the adb_clt group name operand in the client definition.

13 adb_clt fetch size Specifies the maximum number of rows that are to be sent as retrieval results from
the HADB server to the HADB client by a single FETCH process.
Functionally, this property is the same as the adb _clt fetch size operand in
the client definition. For details about this property and its permitted values, see the
description of the adb _clt fetch size operand in the client definition.

14 adb_dbbuff wrktbl clt blk num Specifies the number of local work table buffer pages.
Functionally, this property is the same as the
adb dbbuff wrktbl clt blk numoperand in the client definition. For
details about this property and its permitted values, see the description of the
adb _dbbuff wrktbl clt blk num operand in the client definition.

15 adb_sgl exe max_ rthd num Specifies the maximum number of SQL processing real threads.
Functionally, this property is the same as the adb_sgl exe max rthd num
operand in the client definition. For details about this property and its permitted
values, see the description of the adb _sqgl exe max_ rthd numoperand in the
client definition.

16 adb sgl exe hashgrp area size | Specifies the size (in kilobytes) of the hash grouping area.
Functionally, this property is the same as the
adb sqgl exe hashgrp area size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sgl exe hashgrp area size operand in the client definition.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 275

No.

18

19

20

21

22

23

24

25

26

27

Property name

adb sgl exe hashtbl area size

adb sgl exe hashflt area size

adb_sqgl prep delrsvd use srvd
ef

adb_clt trn iso 1lv

adb_clt trn access mode

adb clt sql text out

adb clt sql order mode

adb_sqgl prep dec div_rs prior

adb jdbc exc trc out path

adb jdbc info max

adb jdbc cache info max

7. Creating Application Programs

Description

Specifies the size (in megabytes) of the hash table area.

Functionally, this property is the same as the

adb_sgl exe hashtbl area size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb sqgl exe hashtbl area size operand in the client definition.

Specifies the size (in megabytes) of the hash filter area.

Functionally, this property is the same as the

adb_sqgl exe hashflt area size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sgl exe hashflt area size operand in the client definition.

Specifies whether reserved words are to be unregistered if specified as such in the
adb_sqgl prep delrsvd words operand in the server definition.

Functionally, this property is the same as the

adb_sqgl prep delrsvd use_ srvdef operand in the client definition. For
details about this property and its permitted values, see the description of the
adb sqgl prep delrsvd use srvdef operand in the client definition.

Specifies the transaction isolation level.

Functionally, this property is the same as the adb_clt trn iso_ 1v operand in
the client definition. For details about this property and its permitted values, see the
description of the adb_clt trn iso 1v operand in the client definition.

Specifies the transaction access mode.

Functionally, this property is the same as the adb_clt trn access mode
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt trn access mode operand in the
client definition.

Specifies whether SQL statements issued by the HADB client are to be output to the
client message log files and the server message log files.

Functionally, this property is the same asthe adb_clt sqgl text out operand
in the client definition. For details about this property and its permitted values, see
the description of the adb _clt sgl text out operand in the client definition.

Specifies the sort order for character string data in a SELECT statement in which the
ORDER BY clause is specified.

Functionally, this property is the same as the adb_clt sgl order mode
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt sgl order mode operand in the
client definition.

Specifies the minimum scaling value of the result of a division operation (arithmetic
operation) specified in an SQL statement when the data type of the result is
DECIMAL.

Functionally, this property is the same as the

adb_sqgl prep dec div_rs_ prior operand. For details about this property
and its permitted values, see the description of the

adb sql prep dec div rs prior operand in the client definition.

Specifies the absolute path of the
directory to which exception trace logs
are to be output.

For details about these properties and
their permitted values, see (b) Setup for
acquisition of the exception trace log
(setting properties) in (1) Methods to be
acquired and setup for log acquisition in
7.7.2 Exception trace log.

Specifies the maximum number of
information items to be output to one
file.

Specifies the maximum number of
information items to be stored in
memory.

Hitachi Advanced Database Application Development Guide

276

No. Property name Description

28 adb_jdbc_trc out lv Specifies the trace acquisition level.

Note

* You can use other methods of specifying these properties. For details about other specification methods and
priorities, see 7.3.3 Connection information priorities.

e Ifnull is specified for any property, the JDBC driver assumes that specification of that property was omitted.

% Note

The property names of user properties were changed in HADB 03-00, as shown below. The previous
property names are still supported, but if you have upgraded your HADB to version 03-00 or later, we
recommend that you change the property names.

No. Property name before change (property name Property name after change (property name used
used in HADB versions earlier than 03-00) in HADB version 03-00 or later)
1 apname adb clt ap name
2 host adb_clt rpc srv _host
3 port adb clt rpc srv port

7.3.2 Using the getConnection method of the DataSource class to connect
to the HADB server

Database connection (connection to the HADB server) using DataSource and JNDI can now be used by the JDBC
2.0 Optional Package.

Although it is not essential to use JNDI, using it offers the benefit that you need to specify the connection information
only once. Because the DataSource class interface definition and JNDI are not included in JDK as standard features,
you must obtain them from the JavaSoft web site when you develop an application program.

The following explains the procedure for using DataSource and JNDI to connect to the HADB server.

To connect to the HADB server:
1. Generate the DataSource object.
2. Set up the connection information.
3. Register the DataSource object into JNDI.
4. Get the DataSource object from JNDI.
5. Connect to the HADB server.

If you are not using JNDI, steps 3 and 4 are not necessary.

If you are using JNDI, steps 1 through 3 need to be executed only once. Thereafter, you can connect to the HADB server
by performing only steps 4 and 5. Once you have performed step 4, you can change the connection information as
necessary.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 277

(1) Generating the DataSource object

Generate the DataSource class object to be provided by the JDBC driver.

The DataSource class name of the JDBC driver, which is necessary for generating the DataSource class object,
is AdbDataSource.

Shown below is an example of generating the DataSource class object:

com.hitachi.hadb.jdbc.AdbDataSource ds = null ;
ds = new com.hitachi.hadb.jdbc.AdbDataSource () ;

(2) Setting up the connection information

Call the method for setting up connection information for the DataSource object, and set up the connection
information. There is also a method for acquiring the connection information, which you can use to check the current
connection information. For details about the connection information setup and acquisition methods, see 10.5
Connection information setup and acquisition interface.

(3) Registering the DataSource object into JNDI

Register the DataSource object into JNDI.
JNDI can select from among several service providers, depending on the execution environment.

Shown below is an example of registering the DataSource object into JNDI (this example is for Windows). In the
registration example, the File System service provider, which is one of the service providers, is used. For details about
other service providers, see the JNDI documentation.

// Generate DataSource class object to be provided by JDBC driver
com.hitachi.hadb.jdbc.AdbDataSource ds;
ds = new com.hitachi.hadb.jdbc.AdbDataSource() ;

// Set connection information

// Get system properties
Properties sys prop = System.getProperties() ;

// Set properties of File System service provider
sys _prop.put (Context.INITIAL CONTEXT FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");

// Set directory to be used by File System service provider
// (Register under c:\JNDI DIR.)
sys_prop.put (Context.PROVIDER URL, "file:c:\\" + "JNDI DIR");

// Update system properties
System.setProperties (sys_prop) ;

// Initialize JNDI
Context ctx = new InitialContext();

// Register DataSource class object to be provided by HADB server

// driver into JNDI. Use logical name Jjdbc/TestDataSource
ctx.bind ("jdbc" + "\\" + "TestDataSource", ds);

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 278

When you register the logical name to be registered into JNDI, the JDBC 2.0 specifications recommend that you register
the logical name under a subcontext called jdbc (jdbc/TestDataSource in the registration example).

(4) Getting the DataSource object from JNDI

Get the DataSource object from JNDL

Shown below is an acquisition example for the DataSource object (this an example is for Windows). This acquisition
example uses the File System service provider, which is one of the service providers. For details about other service
providers, see the JNDI documentation.

// Get system properties

Properties sys prop = System.getProperties() ;

// Set properties of File System service provider
sys prop.put (Context.INITIAL CONTEXT FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");

// Set directory to be used by File System service provider
// (Register under c:\JNDI DIR.)
sys_prop.put (Context.PROVIDER URL, "file:c:\\" + "JNDI DIR");

// Update system properties
System.setProperties (sys_prop) ;

// Initialize JNDI
Context ctx = new InitialContext();

// Get object of local name jdbc/TestDataSource from JNDI
Object obj = ctx.lookup ("jdbc" + "\\" + "TestDataSource")

// Cast retrieved object to DataSource class type
DataSource ds = (DataSource)obj;

(5) Connecting to the HADB server

Call the getConnection method for the DataSource object. Shown below is an example of calling the
getConnection method.

DataSource ds

// Get DataSource object from JNDI

// Issue getConnection method
Connection con = ds.getConnection();
OR
Connection con = ds.getConnection ("USERID", "PASSWORD");#

The method's arguments (authorization identifier and password) take priority over the connection information that
was specified for the DataSource object. The JDBC driver throws an SQLException in the following cases:

* Required connection information is not specified in the DataSource object.
* Specified connection information is invalid.

¢ Connection with the HADB server fails.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 279

After you have obtained the DataSource object from JNDI, you can set up the connection information again, as
necessary. In this case, you must cast the DataSource object to the DataSource class type provided by the JDBC
driver before you set up the information. An example is shown below:

DataSource ds
com.hitachi.hadb.jdbc.AdbDataSource adb ds;

// Get DataSource object from JNDI

// Cast DataSource object to DataSource class type provided
// by JDBC driver
adb_ds = (com.hitachi.hadb.jdbc.AdbDataSource)ds;

// Set up connection information again

7.3.3 Connection information priorities

(1) Connection information needed when a connection to the HADB
server is established

When a connection to the HADB server is established, the following connection information is required:

HADB server's host name

HADB server's port number
* Authorization identifier and password used to connect to the HADB server
* Application identifier
¢ Other items that can be specified in properties
The JDBC driver enables you to use any of several methods of specifying this connection information. For example,

the HADB server's host name can be specified with the adb clt rpc srv_host system property as well as in
host for the connection URL.

The following table shows the priorities when the connection information is specified by multiple methods.

Table 7-4: Priorities for connection information

Connection information Specification method Priority
DM DS
HADB server's host name Value of the adb_clt rpc srv_host system property 1 1
adb_clt rpc_srv_host property value specified in the info argument of the 2 --

getConnection method of the DriverManager class

Value of host specified in the url argument of the getConnection method of 3 --
the DriverManager class

Host name specified by the setHostName method of an interface for setting/ -- 2
getting connection information

HADB server's port number Value of the adb _clt rpc srv_port system property 1 1

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 280

Connection information

Authorization identifier and
password used for establishing
a connection

Application identifier

Timeout time for HADB server
connection processing

Other items that can be specified
in properties:

7. Creating Application Programs

Specification method

adb_clt rpc_srv_port property value specified in the info argument of the
getConnection method of the DriverManager class

Value of port specified in the url argument of the getConnection method of
the DriverManager class

Port number specified by the setPort method of an interface for setting/getting
connection information

One of the following sets of values:
* Values of the user and password arguments of the getConnection
method of the DriverManager class

* user and password property values specified in the info argument of the
getConnection method of the DriverManager class

Values of user and password specified in the url argument of the
getConnection method of the DriverManager class

One of the following sets of values:

¢ Values of the username and password arguments of the getConnection
method of the DataSource interface

¢ Values of the user and password arguments of the
getPooledConnection method of the ConnectionPoolDataSource
interface

 Authorization identifier specified by the setUser method of an interface for
setting/getting connection information

¢ Password specified by the set Password method of an interface for setting/
getting connection information

Value of the adb_clt ap name system property

adb_clt ap name property value specified in the info argument of the
getConnection method of the DriverManager class

Value of adb _clt ap name specified in the url argument of the
getConnection method of the DriverManager class

Application identifier specified by the set ApName method of the connection
information setup and acquisition interface

Value of adb _clt rpc con wait time system property

Value of adb clt rpc con wait time specified in the info argument of
the getConnection method of the DriverManager class

Valueofadb clt rpc con wait time specified in the url argument of the
getConnection method of the DriverManager class

Value specified in the setLoginTimeout method of the DriverManager class

One of the following values:

* Value specified in the setLoginTimeout method of the DataSource
interface

¢ Value specified in the setLoginTimeout method of the
ConnectionPoolDataSource interface

Property values specified in system properties

Property values specified in the info argument of the getConnection method
of the DriverManager class

Priority
DM
2

DS

Hitachi Advanced Database Application Development Guide

281

Connection information

adb _clt rpc sql wa
it time

adb_clt group name
adb _clt fetch size
adb_clt sql text o
ut

adb _clt trn iso 1lv
adb clt sqgl order
mode

adb sql prep dec d
iv_rs prior

adb clt trn access
_mode

adb_dbbuff wrktbl
clt blk num

adb sqgl prep delrs
vd use srvdef

adb sgl exe max rt
hd num

adb sgl exe hashgr
p_area size
adb_sgl exe hashtb
1 area size

adb sgl exe hashfl
t area size

adb jdbc exc trc o
ut path

adb jdbc info max
adb_jdbc cache inf
o _max

adb _jdbc trc out 1
v

Legend:
DM: For a connection that uses the DriverManager class

DS: For a connection that uses the DataSource class

Specification method

Property values specified in the url argument of the getConnection method of

the DriverManager class

--: Connection information cannot be specified

Note

Priority
DM
3

DS

The smaller the priority number, the higher the priority. Priority number 1 is higher in priority than priority number

2.

properties

7. Creating Application Programs

(2) List of connection information items that can be specified in individual

You can use system properties, user properties, or URL connection properties to specify the connection information
needed to establish a connection to the HADB server. The following table lists the connection information that can be
specified in individual properties.

Hitachi Advanced Database Application Development Guide

282

Table 7-5: List of connection information items that can be specified in individual properties

No. Classification Property name Whether specifiable in
System User URL
properties properties connection
properties
1 Properties with the same adb_clt rpc srv_host Y Y A*2
name and function as in
2 the client definition®! adb_clt rpc srv port Y Y A3
3 adb_clt rpc con wait time Y Y Y
4 adb _clt rpc sgl wait time Y Y Y
5 adb_clt ap name Y Y Y
6 adb clt group name Y Y Y
7 adb _clt fetch size Y Y Y
8 adb_dbbuff wrktbl clt blk nu Y Y Y
m
9 adb_sgl exe max rthd num Y Y Y
10 adb sgl exe hashgrp area siz
e
11 adb sgl exe hashtbl area siz Y Y Y
e
12 adb_sqgl exe hashflt area siz Y Y Y
e
13 adb_sqgl prep delrsvd use srv Y Y Y
def
14 adb_clt trn iso 1lv Y Y Y
15 adb_clt trn access mode Y Y Y
16 adb clt sql text out Y Y Y
17 adb_clt sgl order mode Y Y Y
18 adb_sgl prep dec div_rs prio Y Y Y
r
19 Properties related to adb_jdbc_exc trc out path Y Y Y
exception trace logs
20 adb_jdbc_info max Y Y Y
21 adb_jdbc cache info max Y Y Y
22 adb_jdbc trc out 1lv Y Y Y
23 Other properties user N Y Y
24 password N Y Y
25 encodelang N Y Y
26 methodtrace N Y Y
27 tracenum N Y Y
28 sglwarningkeep N Y Y

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 283

Legend
Y: Property can be specified.
A: Property cannot be specified, but an alternate specification is available.
N: Property cannot be specified.

#1
Each of these properties has the same name and function as an operand in the client definition.
#2

The adb clt rpc srv host URL connection property cannot be used to specify the host name of the HADB
server at the connection destination. You must use the host URL connection property to specify this host name.

#3

Theadb clt rpc srv port URL connection property cannot be used to specify the port number of the HADB
server. You must use the port URL connection property to specify this port number.

0 Important

The client definition operands are not applicable when the JDBC driver is used. The specified system
properties, user properties, or URL connection properties are applied instead.

For details about system properties, see 3.1.6 Setting system properties.

For details about the user properties, see (d) Values to be specified in the info argument (specifying the user properties)
in (2) Connecting to the HADB server with the getConnection method in 7.3.1 Using the getConnection method of
the DriverManager class to connect to the HADB server.

For details about the URL connection properties, see (a) Values to be specified in the url argument (specifying the URL
for the connection) in (2) Connecting to the HADB server with the getConnection method in 7.3.1 Using the
getConnection method of the DriverManager class to connect to the HADB server.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 284

7.4 Retrieving data (executing the SELECT statement)

This section explains how to use the JDBC driver to retrieve data.

7.4.1 How to retrieve data

The procedure for using the SELECT statement to retrieve data is as follows:

* Generate a Statement object
¢ Execute the SELECT statement

¢ QGet the retrieval results

(1) Generating a Statement object

Generate a Statement object, and then send the SELECT statement to the HADB server.

If a connection to the HADB server has already been established, you can use the createStatement method of the
Connection object to generate a Statement object.

The following example generates a Statement object:

// Connect to the HADB server
Connection con = DriverManager.getConnection (url,info);

// Generate a Statement object
Statement stmt = con.createStatement ()

(2) Executing the SELECT statement

Execute the SELECT statement by specifying it in the argument of the executeQue ry method. The following example
executes a SELECT statement:

Statement stmt = con.createStatement ()

// Execute the SELECT statement and obtain the ResultSet object
ResultSet rs = stmt.executeQuery ("SELECT \"CODE\", \"STATE\" FROM \"SAMPLE\"");

When a SELECT statement is executed, the retrieval results are stored in a ResultSet object.

(3) Getting the retrieval results

The retrieval results are stored in a ResultSet object in a tabular format that consists of column numbers and values
corresponding to the retrieval results. The following figure shows an example of the format of a ResultSet object.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 285

Figure 7-2: Example of the format of a ResultSet object

1 2 <¢—— Column numbers
12345 Cupertino ¢——Row 1
83472 Redmond <e——Row?2
83492 Boston <«+—Row 3

The ResultSet object contains a cursor that points to the current row. You obtain retrieval results from the
ResultSet object by using the next method to move the cursor and then a ge t XXX method to obtain the data on
the current row.

When a ResultSet object is generated, the cursor is positioned immediately before the first row. When the first next
method is called, the cursor moves to the first row. Each time the next method is called thereafter, the cursor moves
down by one row.

The following example obtains retrieval results data:

ResultSet rs = stmt.executeQuery ("SELECT \"CODE\", \"STATE\" FROM \"SAMPLE\"");

// Repeat until there is no more result row
while(rs.next ())

{
// Get data from column 1
int i = rs.getInt(l);
// Get data from column 2
String s = rs.getString(2);
// Output the result data
System.out.println("Retrieval results: " + 1 + ", " + s);

(4) Note about executing multiple SELECT statements concurrently in the
same connection

When you execute multiple SELECT statements concurrently in the same connection, HADB might be unable to supply

enough processing real threads to execute the SELECT statements. In this situation, processing to allocate processing

real threads is repeated until the required number is allocated. You need to use one of the following approaches to make
sure that allocation processing will not continue indefinitely. We recommend that you use the first approach if possible.

Approaches to resolving the issue

1. Amend the application.
If you are able to amend the application, amend it so that unnecessary ResultSet objects are closed. If you are
unable to amend the application, look into whether you can change the server definition as follows.

2. Change the server definition.
If you are able to change the server definition, change it so that it meets the following formula:

A2Bx CxD
A: Number of processing threads (adb sys rthd num operand's value)

B: Maximum number of SQL processing real threads (adb_sgl exe max_ rthd num operand's value)

C: Number of SELECT statements that can be executed concurrently in one connection (that are placed in cursor
open status)

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 286

D: Number of connections that can execute SQL statements concurrently

3. Set a wait time.

If the preceding two approaches are unavailable to you, specify a wait time in the following method or property that
governs how long HADB waits to allocate the required processing real threads:

e setQueryTimeout method of the Statement interface

* adb _clt rpc sgl wait time inthe system properties, user properties, or connection URL properties

7.4.2 How to use dynamic parameters

The procedure for using dynamic parameters to retrieve data is as follows:

* Generate a PreparedStatement object
¢ Execute the SELECT statement

¢ QGet the retrieval results

(1) Generating a PreparedStatement object

Generate a PreparedStatement object, and then send the SELECT statement with the dynamic parameters specified
to the HADB server.

If a connection to the HADB server has already been established, you can use the prepareStatement method of
the Connection object to generate a PreparedStatement object.

The following example generates a PreparedStatement object:

// Connect to the HADB server
Connection con = DriverManager.getConnection (url, info);

// Generate a PreparedStatement object
PreparedStatement pstmt =
con.prepareStatement ("SELECT * FROM \"SAMPLE\" WHERE \"CODE\" = ? AND \"STATE\" = ?"

) 4

Ifthe SELECT statement is specified in the argument of the prepareStatement method, the SELECT statement is
preprocessed and a PreparedStatement object is generated.

To specify dynamic parameters in an SQL statement, values must have been set for all the specified dynamic parameters
before the SQL statement is executed. You use a se t XXX method to set a value in a dynamic parameter.

(2) Executing the SELECT statement

Use the executeQuery method with no argument specified to execute the SELECT statement. The following example
executes a SELECT statement that uses dynamic parameters:

PreparedStatement pstmt =
con.prepareStatement ("SELECT * FROM \"SAMPLE\" WHERE \"CODE\" = ? AND \"STATE\" = 2"

)
// Set a value in the first dynamic parameter

pstmt.setInt (1, 12345);
// Set a value in the second dynamic

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 287

pstmt.setString (2, "Boston");

// Execute a preprocessed SQL statement to obtain the ResultSet object
ResultSet rs = pstmt.executeQuery():;

When the SELECT statement is executed, the retrieval results are stored in a ResultSet object.

(3) Getting the retrieval results

For details about how to get the retrieval results, see (3) Getting the retrieval results in 7.4.1 How to retrieve data.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 288

7.5 Adding, updating, or deleting data (executing the INSERT, UPDATE, or
DELETE statement)

You use the executeUpdate method or the executelLargeUpdate method of the Statement object (the
PreparedStatement object if a dynamic parameter is used) to add, update, or delete data by executing a data
manipulation SQL statement, such as the INSERT, UPDATE, or DELETE statement.

The following example updates and deletes data:

Connection con = DriverManager.getConnection (url, info);
Statement stmt = con.createStatement();

// Update the data that satisfies the condition
stmt.executeUpdate ("UPDATE \"SAMPLE\" SET \"CODE\"=98765 WHERE \"STATE\" = 'Redmond'

") ;

// Delete all rows
stmt.executeUpdate ("DELETE FROM \"SAMPLE\" ");

m Effects of update operations on a retrieval using a cursor

If an update operation using a cursor is performed during a retrieval, the results of the update operation might be
applied to the retrieval results, depending on the timing. Do the following to prevent the results of such update
operations from being applied to retrieval results:

* Close the cursor before adding or updating rows.

* Specify data and search conditions in such a manner that rows to be added or updated will not be included in
the retrieval results.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 289

7.6 Data processing

This section explains how data is processed between the JDBC driver and the HADB server.

7.6.1 Mapping data types
This subsection explains mapping between HADB's data types and JDBC's SQL data types.

(1) Correspondence between HADB's data types and JDBC's SQL data
types

There is not an exact one-to-one match between the HADB data types and the JDBC SQL data types. For this reason,
the JDBC driver performs mapping (conversion) between HADB's data types and JDBC's SQL data types. If an
unmappable data type is used for data access, the JDBC driver throws an SQLException.

The data types are mapped with ge t XXX and se t XXX methods in the ResultSet or PreparedStatement class.
For details about the mapping rules employed by the ge t XXX and set XXX methods, see the documentation for the
JDBC 1.0 standard or the JDBC 2.0 basic standard.

The following table shows the correspondences between HADB's data types and JDBC's SQL data types.

Table 7-6: Correspondences between HADB's data types and JDBC's SQL data types

HADB's data type JDBC's SQL data type
INTEGER BIGINT
SMALLINT INTEGER, SMALLINT#!
DECIMAL DECIMAL (, NUMERIC)"2
DOUBLE PRECISION DOUBLE
CHAR CHAR
VARCHAR VARCHAR (, LONGVARCHAR)*2
DATE DATE
TIME TIME
TIMESTAMP TIMESTAMP
BINARY BINARY (, VARBINARY, LONGVARBINARY)*2
VARBINARY VARBINARY (, BINARY, LONGVARBINARY)*2
ROW BINARY (, VARBINARY, LONGVARBINARY)*2
BOOLEAN™ BOOLEAN
#1

This column is found only in a ResultSet created from DatabaseMetaData. If the column's data type is
defined as short, the JDBC driver returns the value corresponding to SMALLINT for the metadata that can be
obtained by ResultSetMetaData. For data other than metadata, the JDBC driver returns the value
corresponding to INTEGER.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 290

#2

Data types shown in parentheses are supported only when JDBC's SQL data types are specified in the arguments
of'the setNull or setObject method. Otherwise, they are not supported for mapping from HADB's data types
to JDBC's SQL data types.

#3

This refers to a BOOLEAN column in a ResultSet object that is generated by the get Type Info method of
DatabaseMetaData.

(2) Mapping during retrieval data acquisition

The table below shows the mapping between the ge t XXX methods in the ResultSet class and JDBC's SQL data
types. If a ge t XXX method is called for one of JDBC's unmappable SQL data types, the JDBC driver throws an
SQLException.

Table 7-7: Mapping between getXXX methods and JDBC's SQL data types

Method name JDBC's SQL data type
BIG INT DCML DBL CHAR VCHR DATE TIME TSTMP BIN,
VARBIN
getByte Y Y Y Y Y# Y N N N N
getShort Y Y Y Y Y# Y# N N N N
getInt Y Rec Y Y Y# Y N N N N
getLong Rec Y Y Y Y# Y# N N N N
getFloat Y Y Y Y Y# Y# N N N N
getDouble Y Y Y Rec Y# Y# N N N N
getBigDecimal Y Y Rec Y Y# Y# N N N N
getBoolean Y Y Y Y Y Y N N N N
getString Y Y Y Y Rec Rec Y Y Y Y
getBytes N N N N N N N N N Rec
getDate N N N N Y* Y# Rec Y Y N
getTime N N N N Y# Y N Rec Y N
getTimestamp N N N N Y* Y# Y Y Rec N
getAsciiStream N N N N Y Y N N N Y
getObject Y Y Y Y Y Y Y Y Y Y
getCharacterStream N N N N Y Y N N N Y
getBinaryStream N N N N N N N N N Y
Legend:

BIG: BIGINT

INT: INTEGER

DBL: DOUBLE

DCML: DECIMAL
VCHR: VARCHAR

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 291

TSTMP: TIMESTAMP

BIN: BINARY

VARBIN: VARBINARY

Rec: Mapping is recommended.

Y: Can be mapped. Note, however, that data loss or a conversion error might occur, depending on the format of the
conversion-source data.

N: Cannot be mapped.

During conversion for this method, the JDBC driver removes any spaces preceding or following the character string
data retrieved from the database. After removing the spaces, the JDBC driver converts the data to the Java data type
returned by the ge t XXX method.

The following notes apply to converting data to a Java data type:

 Ifcharacter string data contains a fractional part and the getByte, get Int, getShort, or get Long method
is executed, the JDBC driver discards the fractional part, and then converts and returns only the integer.

* Ifthe character string data contains double-byte characters, the JDBC driver throws an SQLException without
converting the data.

e If overflow occurs after character string data is converted to a Java data type, the JDBC driver throws an
SQLException.
(3) Mapping when a dynamic parameter is specified

The following table lists the set XXX methods of the PreparedStatement class and JDBC's SQL data types that
can be mapped to the methods. For a JDBC's SQL data type that cannot be used, an SQLException is thrown.

If a set XXX method is called for one of JDBC's unmappable SQL data types, the JDBC driver throws an
SQLException.

Table 7-8: Mapping between setXXX methods and JDBC's SQL data types

Method JDBC's SQL data type

name
BIGINT INTEGE DECIM DOUBL CHAR VARCH DATE TIME TIMEST BINARY
R AL¥1 E AR AMP ,

VARBIN
ARY

setByte Y Y Y Y Y Y N N N N

setShor Y Y Y Y Y Y N N N N

t

setInt Y Rec Y Y Y Y N N N N

setLong Rec Y

setFloa Y Y Y Y Y Y N N N N

t

setDoub Y Y Y Rec Y Y N N N N

le

setBigD Y Y Rec Y Y Y N N N N

ecimal

setBool Y Y Y Y Y Y N N N N

ean

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 292

Method JDBC's SQL data type

name

BIGINT INTEGE DECIM DOUBL CHAR VARCH DATE TIME TIMEST BINARY

R AL¥1 E AR AMP ,
VARBIN
ARY

setStri Y Y Y Y Rec Rec Y Y Y Y
ng
setByte N N N N N N N N N Rec
s
setDate N N N N Y Y Rec Y Y N
setTime N N N N Y Y N Rec Y
setTime N N N N Y Y Y Y Rec N
stamp#2
setAsci N N N N Y Y N N N Y
iStream
setObje Y Y Y Y Y Y Y Y Y Y
Ct#3
setChar N N N N Y Y N N N Y
acterSt
ream
setBina N N N N N N N N N Y
ryStrea
m
Legend:

Rec: Mapping is recommended.

Y: Can be mapped. Note, however, that data loss or a conversion error might occur, depending on the format of the
conversion-source data.

N: Cannot be mapped.
#1

If a set XXX method specifies a value for a dynamic parameter of HADB's DECIMAL data type, and the dynamic
parameter and the value have different precisions or scalings, the JDBC driver performs one of the following
operations, as applicable:

* When the value has a larger precision than the dynamic parameter: Throws an SQLException.
* When the value has a smaller precision than the dynamic parameter: Increases the precision.

* When the value has a larger scaling than the dynamic parameter: Truncates the value according to the actual
scaling.

* When the value has a smaller scaling than the dynamic parameter: Adds zeros to increase the scaling.

#2

If a set XXX method specifies a value for a dynamic parameter of HADB's TIME or TIMESTAMP data type, and
the dynamic parameter and the value have different precisions for the fractional seconds part, the JDBC driver
performs one of the following operations:

* Ifthe value has a larger fractional seconds precision than the dynamic parameter: Truncates the fractional seconds
part of the value.

* If'the value has a smaller fractional seconds precision than the dynamic parameter: Expands the fractional
seconds part of the value.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 293

#3

#4

setObject method.

int X, Z;
java.io.Reader Y;

setCharacterStream(X, Y, Z)

Conversion result (length: z characters)

Data that can be obtained from v

Length of data that can be
obtained from Y (characters)

Length of data that can be
obtained from z-Y (characters)

7.6.2 Data conversion process

Objects of the TnputStream class and the Reader class (including subclasses) cannot be specified in the

If the length of the data that can be retrieved from a java. io.Reader object is shorter than the length specified
in the arguments, the JDBC driver adds zeros as shown below until the length specified in the arguments is reached:

This subsection explains the data conversion process when set XXX and ge t XXX methods are executed.

(1) Data conversion process during execution of a setXXX method (for
DATE, TIME or TIMESTAMP type)

This subsection explains the conversion process when data of HADB's DATE, TIME or TIMESTAMP data type is set
inthe setTime, setDate, setTimestamp, or setString method.

When the setTime, setDate, setTimestamp, or setString method is used to set data in a column of HADB's
DATE, TIME or TIMESTAMP data type, data conversion takes place according to the rules described in the following
table.

Table 7-9: Conversion process during execution of the setXXX methods

Method executed

setDate (Date Obj) #l

setTime (Time Ob7j) #2

setTimestamp (Timestamp
0b7) #3

7. Creating Application Programs

Conversion process for
DATE type

Stores the application program
settings in the database without
performing conversion.

Throws an SQLException.

Stores in the database the data
formed when YYYY-MM-DD is
removed from the application
program setting.

Conversion process
for TIME type

00:00:00 is stored in the
database.

The data for the application
program setting for
hh:mm:ss.fff is stored in
the database.

The data obtained by
extracting

hh:mm :ss . fffffffff from
the application program
setting is stored in the
database.

Conversion process for
TIMESTAMP type

Stores in the database the data
with 00:00: 00 added after
the application program
setting for YYYY-MM-DD.

Stores in the database the data
with 1970-01-01 added
before the application program
setting for hh :mm : ss . fff.

The data for the application
program setting for YYYY-

MM-DDAhRh :mm :ss . [

is stored in the database.”

Hitachi Advanced Database Application Development Guide

294

Method executed

setString (character string in YYYY-
MM-DD format)

setString (character string in
hh:mm:ss[.f...] format)

setString (character stringin YYYY-
MM-DDAhh:mm:ss[.f...]
format)

Note

Conversion process for
DATE type

Converts the specified date with
java.sqgl.Date.valueO

f () and stores the result in the
database.”

Throws an SQLException.

Throws an SQLException.

Conversion process
for TIME type

00:00:00 is stored in the
database.

The data for the application
program setting for
hh:mm:ss[.f...]1s
stored in the database.

The data for the application
program setting for
hh:mm:ss[.f...]1s
stored in the database.

Conversion process for
TIMESTAMP type

Throws an SQLException.

Throws an SQL.Exception.

The data for the application
program setting for YYYY~-
MM-
DDAhh:mm:ss[.f...]1s
stored in the database.”

If a non-existent date or time is specified, the Java Virtual Machine (JVM) returns the specified value.

#1

Date Ob7j is an object that has the value of the java.sqgl.Date object with the format year-month-date.

#2

Time Ob7j is an object that has the value of the java.sqgl . Time object with the format
hour : minute : second : millisecond.

#3

Timestamp Ob7j is an object that has the value of the Java.sqgl.Timestamp object with the format year—
month—-date hour : minute : second : nanosecond.

#4
A represents a space.

#5

The result when a non-existent date or time is specified depends on java.sqgl.Date.valueOf (),

java.sqgl.Time.valueOf (),or java.sqgl.Timestamp.valueOf ().
Example 1: 25:00: 00 becomes 01:00:00.

Example 2: 2000-01-32 becomes 2000-02-01.
Example 3: 1582-10-05 becomes 1582-10-15 (the calendar switches from the Julian to the Gregorian).

(2) Data conversion process during execution of a getXXX method (for
DATE, TIME, TIMESTAMP, or character string type)

This subsection explains the conversion process when data of HADB's DATE, TIME, TIMESTAMP, or character string
(CHAR or VARCHAR) data type is set in the getTime, getDate, or getTimestamp method.

When the getTime, getDate, or getTimestamp method is used to set data in a column of HADB's DATE, TIME,
TIMESTAMP, or character string data type, data conversion takes place according to the rules described in the

following table.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide

295

Table 7-10: Conversion process during execution of the getXXX methods

Method executed

getDate ()#l

getTime ()*

getTimestamp ()#l

#1

Conversion process
for DATE type

Gets the value stored in
the database and sets it
asthe java.sgl.Date
object without

performing conversion.”2

Throws an
SQLException.

Appends
00:00:00.00000000
0 to the DATE data
retrieved from the
database and sets the
result as the
java.sgl.Timestam
p object.

Conversion process
for TIME type

Gets the value as the
java.sqgl.Date
object that has the data
1970-01-01./2

Removes the

hour : minute : second . mi
llisecond data from the
TIME data retrieved from
the database and sets the
result as the
java.sqgl.Time
object .2

Adds 1970-01-01
before the TIME data
retrieved from the
database and sets the
result as the
java.sqgl.Timestam
p object.

Conversion process
for TIMESTAMP type

Removes the year-
month-date data from the
TIMESTAMP data
retrieved from the
database and sets the
result as the
java.sqgl.Date
object.”?

Removes the

hour : minute : second : mi
llisecond data from the
TIMESTAMP data
retrieved from the
database and sets the
result as the
java.sqgl.Time
object. 2

Removes the year-
month—

date/A
hour:minute:second . nan
osecond data from the
TIMESTAMP data
retrieved from the
database and sets the
result as the
java.sql.Timestam
p object.

Conversion process
for character string

type

Gets only a YYYY-MM-
DD character string
representation as the
java.sqgl.Date
object. For other
representations, the
method throws an
SQLException.

Gets only an
hh:mm:ss[.f...]
character string
representation as the
java.sql.Time
object. For other
representations, the
method throws an
SQLException.

Gets only a YYYY-MM-
DDAhh:mm:ss [.f. ..]
character string
representation of the
TIMESTAMP type as the
java.sqgl.Timestam
pobject (Aisaspace). For
other expressions, the
method throws an
SQLException.

The date and time stored in the database might be different from the date and time obtained from java.sgl.Time,
java.sqgl.Date, and java.sqgl.Timestamp:

Example 1: 25:00:00 becomes 01:00:00.
Example 2: 2000-01-32 becomes 2000-02-01.
Example 3: Both 1582-10-05and 1582-10-15 become 1582-10-15 (the calendar switches from the Julian

to the Gregorian).
#2

The setting for an unspecified date item (year—-month—day) is 1970-01-01, and the setting for an unspecified
time item (hour : minute : second) is 00: 00:00.

7.6.3 Overflow handling

This subsection discusses the possibility of overflow when a set XXX or ge t XXX method is executed.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide

296

(1) Possibility of overflow when a setXXX method (other than the
setObject method) is executed

The following table shows whether overflow might occur when a se t XXX method (other than the se t Object method)
is executed.

Table 7-11: Possibility of overflow when a setXXX method (other than the setObject method) is
executed
Method executed HADB data type

SML | INT DBL DCML CHAR DATE TIME* TSTM ROW BIN,
PREC , # p# VARBIN
VCHR

setByte N - - - - -
setShort
setInt
setLong
setFloat
setDouble

setBigDecimal

setBoolean

< Z < K| < < |z Z 6 z
< Z < <|=< Z 2z Z Z
z| |z z Z|z Z z Z| Z
< Z < K |I<K K| <K <
Z|z | Z |z | Z |z z| Z

setString

z

setBytes - -
setDate - - - -
setTime - - - -
setTimestamp - - - -
setAsciiStream - - - _

setBinaryStream - - - -

Z|z Z 'z Z| Z

setCharacterStream - - - -

Legend:
SML: SMALLINT
INT: INTEGER
DBL PREC: DOUBLE PRECISION
DCML: DECIMAL
VCHR: VARCHAR
TSTMP: TIMESTAMP
BIN: BINARY
VARBIN: VARBINARY
N: Overflow does not occur regardless of the value.
Y: Overflow might occur depending on the value.
--: Combination that is not allowed.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 297

Overflow occurs when the value obtained by the get Time method of the java.sgl.Date,
java.sqgl.Time, or Java.sql.Timestamp class is an object larger than 253,402,268,399,999 or smaller
than -62,135,802,000,000. The getTime method returns the number of milliseconds since 1970-01-01 00:00:00
(Greenwich Mean Time).

The methods shown below can be used to obtain 253,402,268,399,999 from the maximum value that can be stored
in HADB's TIMESTAMP type, and -62,135,802,000,000 from the minimum value that can be represented by the
java.sqgl.Timestamp class.

253,402,268,399,999
Timestamp.valueOf ("9999-12-3123:59:59.999999") .getTime ()

-62,135,802,000,000
Timestamp.valueOf ("0001-01-0100:00:00.0") .getTime ()

(2) Possibility of overflow when the setObject method is executed

The following table shows whether overflow might occur when the setObject method is executed.

Table 7-12: Possibility of overflow when the setObject method is executed
Data type of object HADB data type
specified by the
setObject method SML INT DBL DCML CHAR EATE TIME¥ TSTM ROW BIN,

PREC , p# VARBIN
VCHR

Byte N - - - - -
Short
Integer
Long
Decimal
Float

Double

Boolean

< Z < K| <K < |z Z 5 z
< Z < <|=< Z| z Z Z
z| |z z Z|z Z z Z| Z
< Z < K| <K K| < < =

String

Date

Time - - - --

z z z z

Timestamp - - - -

Zz\z |\ z Z |,z Z|\z Z| z Z z Z

bytel] - - - -

Legend:
SML: SMALLINT
INT: INTEGER
DBL PREC: DOUBLE PRECISION
DCML: DECIMAL
VCHR: VARCHAR
TSTMP: TIMESTAMP

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 298

BIN: BINARY

VARBIN: VARBINARY

N: Overflow does not occur regardless of the value.
Y: Overflow might occur depending on the value.
--: Combination that is not allowed.

Overflow occurs when the value obtained by the get Time method of the java.sqgl.Date,
java.sqgl.Time, or java.sqgl.Timestamp class is an object larger than 253,402,268,399,999 or smaller
than -62,135,802,000,000. The getTime method returns the number of milliseconds since 1970-01-01 00:00:00
(Greenwich Mean Time).

The methods shown below can be used to obtain 253,402,268,399,999 from the maximum value that can be stored
in HADB's TIMESTAMP type, and -62,135,802,000,000 from the minimum value that can be represented by the
java.sqgl.Timestamp class.

253,402,268,399,999
Timestamp.valueOf ("9999-12-3123:59:59.999999") .getTime ()

-62,135,802,000,000
Timestamp.valueOf ("0001-01-0100:00:00.0") .getTime ()

(3) Possibility of overflow when a getXXX method (other than the
getObject method) is executed

The following table shows whether overflow might occur when a ge t XXX method (other than the ge t Obj e ct method)
is executed.

Table 7-13: Possibility of overflow when a getXXX method (other than the getObject method) is
executed

Method executed HADB data type

SML INT DBL DCML CHAR DATE TIME TSTM ROW BIN,
PREC , P VARBIN
VCHR

getByte Y - - - - -
getShort
getInt
getLong
getFloat
getDouble

getBigDecimal

getBoolean

Z|z | zZ2 z z Z zZ < <
Z|z | z Z z Z < < | =
Z|z | zZ2 Z zZ < < < =
Z|z | Z zZ Z < < < =

Z|z |z z z < < X

getString

zZ

getBytes -

getDate -

z

getTime _

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 299

Method executed HADB data type

SML INT DBL DCML CHAR DATE TIME TSTM ROW
PREC , P
VCHR
getTimestamp - - - - N N N N -
getAsciiStream - - - - N - - — -
getBinaryStream - - - - N - - - -
getCharacterStream -- - - - N - - — -

Legend:
SML: SMALLINT
INT: INTEGER
DBL PREC: DOUBLE PRECISION
DCML: DECIMAL
VCHR: VARCHAR
TSTMP: TIMESTAMP
BIN: BINARY
VARBIN: VARBINARY
N: Overflow does not occur regardless of the value.
Y: Overflow might occur depending on the value.

--: Combination that is not allowed.

(4) Possibility of overflow when the getObject method is executed

The following table shows whether overflow might occur when the getObject method is executed.

Table 7-14: Possibility of overflow when the getObject method is executed
Data type of object HADB data type

obtained by the
getObject method SML INT DBL DCML CHAR DATE TIME TSTM ROW

PREC : P
VCHR

Byte Y - - - -
Short
Int
Long
Float
Double

BigDecimal

Boolean

Z|z | Z |z Z |z zZ < <
Z|z | Z|z2 zZ2Z < <
Zz | Z | zZ2 Z < < < < <
Z|z <K KK K <K

Z | Z <K KKK

String

z

Bytes

Date - - - - N N N N -

7. Creating Application Programs

BIN,

VARBIN

BIN,

VARBIN

Hitachi Advanced Database Application Development Guide

300

Data type of object HADB data type
obtained by the

getObject method SML INT DBL DCML CHAR DATE TIME TSTM ROW BIN,
PREC : P VARBIN
VCHR
Time - - - - N - N N - .
Timestamp - - - - N N - —
AsciiStream - - - - N - - - - N
BinaryStream - - - - N - - - - N
Object N N N N N N N N N N
CharacterStream -- - - - N - - - - N
Legend:

SML: SMALLINT

INT: INTEGER

DBL PREC: DOUBLE PRECISION

DCML: DECIMAL

VCHR: VARCHAR

TSTMP: TIMESTAMP

BIN: BINARY

VARBIN: VARBINARY

N: Overflow does not occur regardless of the value.
Y: Overflow might occur depending on the value.
--: Combination that is not allowed.

7.6.4 Conversion of character encoding

Because Java programs consider the character encoding that is used to be Unicode (UTF-16), the JDBC driver performs
bi-directional conversion processing of the character encoding between HADB character string data and Unicode
(UTF-16). The JDBC driver uses the encoder provided by the Java Virtual Machine (JVM) for this character encoding
conversion processing.

The following figure shows an overview of this bi-directional conversion of character encoding between HADB
character string data and Unicode (UTF-16).

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 301

Figure 7-3: Overview of bi-directional conversion of the character encoding between HADB
character string data and Unicode (UTF-16)

@ Transferring and converting the character string data H 37

Java application (Unicode (UTF-16)) HADB server (Unicode (UTF-8))
Data: H 3z Data: H3z
(0x65 0xe5 0x7a 0xcb) (0xe6 0x97 0xa5 0xe7 Oxab 0x8b)
JDBC driver

Java Virtual Machine

(L’L';T'leﬂz) (0x65 0xe5 0x7a Oxcb)
Data conversion
performed
Unicode

(0xe6 0x97 Oxab 0xe7 0xab 0x8b)

(UTF-8)

When the JDBC driver exchanges character string data with HADB, it specifies the character set name to the Java Virtual
Machine's (JVM) encoder. This is how the JDBC driver obtains the HADB server's character encoding (Unicode
(UTF-8)) and specifies the character set name that corresponds to that encoding.

The following table shows the character set names that correspond to the HADB server's character encoding for
specification in the Java Virtual Machine's (JVM) encoder.

Table 7-15: Names of the character sets supported for the HADB server's character encoding

No. HADB server's character encoding Name of the character encoding to be specified in the Java Virtual
(character encoding specified in the ~Machine's (JVM) encoder?
ADBLANG environment variable)

1 Unicode (UTF-8) (UTF8) UTF-8

2 Shift-JIS(SJIS) Windows-31j (MS932)

The appropriate character set name shown in the table is specified in the Java Virtual Machine's (JVM) encoder after
a connection has been established with the HADB server.

Before a connection is established, the Java Virtual Machine's (JVM) default character set is used for converting the
character encoding that is used.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 302

7.7 Troubleshooting

This section explains the JDBC interface method traces and exception trace logs that are provided as troubleshooting
functions.

7.7.1 JDBC interface method traces

You can acquire a JDBC interface method trace as troubleshooting information when you call a method in the JDBC
interface.

(1) Environment setup

(a) Connection with the DriverManager class

The following explains the environment setup procedure.

To set up the environment:
1. Specify a valid log writer by executing the setLogWriter method of the DriverManager class.

2. Connect to the HADB server by executing the getConnection method of the DriverManager class. In
the url or info argument of the getConnection method, specify that a JDBC interface method trace is to
be acquired (specify methodtrace and tracenum).

For details about the specification of the url argument of the getConnection method, see (a) Values to be
specified in the url argument (specifying the URL for the connection) in (2) Connecting to the HADB server with
the getConnection method in 7.3.1 Using the getConnection method of the DriverManager class to connect to the
HADB server.

For details about the specification of the info argument of the getConnection method, see (d) Values to be
specified in the info argument (specifying the user properties) in (2) Connecting to the HADB server with the
getConnection method in 7.3.1 Using the getConnection method of the DriverManager class to connect to the
HADRB server.

(b) Connection with the DataSource class

The following explains the environment setup procedure.

To set up the environment:

1. Specify a valid log writer by executing the setLogWriter method of the DataSource or
ConnectionPoolDataSource interface.

2. Specify that a JDBC interface method trace is to be acquired by executing the set InterfaceMethodTrace
and setTraceNumber methods in the connection information setup and acquisition interface.

For details about the set LogWriter method of the DataSource interface, see 10.2.7 setLogWriter(PrintWriter
out). For details about the set LogWriter method of the ConnectionPoolDataSource interface, see
10.3.7 setLogWriter(PrintWriter out).

For details about the set InterfaceMethodTrace method, see 10.5.14 setInterfaceMethodTrace(boolean
flag). For details about the set TraceNumber method, see 10.5.18 setTraceNumber(int num).

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 303

(2) Rules for acquiring a JDBC interface method trace

This subsection describes the rules for acquiring a JDBC interface method trace.

* Trace information is acquired when a method in the JDBC interface is called and when processing is returned from
the method. However, trace information is not acquired for methods executed before a connection to the database
is established. Trace information is also not acquired for the following methods:

Driver interface
* acceptsURL (Stringurl)
* getMajorVersion ()
* getMinorVersion ()
* getPropertyInfo(Stringurl, Properties info)
¢ jdbcCompliant ()
DataSource and ConnectionPoolDataSource interfaces
* getlLoginTimeout ()
* getLogWriter ()
* setlLoginTimeout (int seconds)
e setLogWriter (PrintWriter out)
Wrapper interfaces
* isWrapperFor (Class<?>iface)
e unwrap (Class<T> iface)

* Trace information is stored for the specified number of entries and is output to the specified log writer at the following
times:

* When the Connection.close method is called (normal termination)

e When an SQLException is thrown (error occurrence)

* When a BatchUpdateException is thrown (error occurrence)

* When an SQLClientInfoException is thrown (error occurrence)

* When an UnsupportedOperationException is thrown (error occurrence)

¢ If the number of trace information items exceeds the number of entries, the oldest stored trace information is
discarded in chronological order and the newest trace information is retained.

* A JDBC interface method trace uses a single-entry trace area for each Entry and each Return.

(3) Output example

This subsection shows an output example of a JDBC interface method trace. The item numbers in the explanation below
correspond to the bracketed numbers in the figure.

Output example

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 304

[1] [2] [3]
[Hitachi Advanced Data Binder JDBC Driver] [JDBC Interface Entry] [AdbStatement.executeQuery]
[4]
[Hitachi Advanced Data Binder JDBC Driver] sqgl=select * from pp
[Hitachi Advanced Data Binder JDBC Driver] [JDBC Interface Return] [AdbStatement.executeQuery]
[5]
Return=com.hitachi.hadb.jdbc.Adb. ..
[JDBC Interface Entry] [AdbResultSet.getMetaData]
[JDBC Interface Return] [AdbResultSet.getMetaData]
Return=com.hitachi.hadb.jdbc.Adb. ..

Hitachi Advanced Data Binder JDBC Driver
Hitachi Advanced Data Binder JDBC Driver
Hitachi Advanced Data Binder JDBC Driver

]
]
]
Hitachi Advanced Data Binder JDBC Driver]

[
[
[
[

Explanation

1. [Hitachi Advanced Data Binder JDBC Driver]
Name of the JDBC driver

2. [JDBC Interface Entry] and [JDBC Interface Return]
[JDBC Interface Entry]: Call to a JDBC method
[JDBC Interface Return]: Return from a JDBC method

3. [XXXXX.YYYYY]
YYYYY method of the XXXXX class

4. select * frompp
Argument in the JDBC method (for the password argument, an asterisk (*) is output, as in password=*)

5.com.hitachi.hadb.jdbc.Adb...
Value returned from the JDBC method

7.7.2 Exception trace log

You can acquire an exception trace log as troubleshooting information. If a failure caused by an exception occurs in the
JDBC driver, the cause of the failure is output to the exception trace log.

The following constitute the output contents:

* Information (such as error messages) generated when the exception occurred

* Execution record of JDBC's API methods up to the point where the exception occurred

When this function is used, information about JDBC's API methods that are called from an application program is stored
in the JDBC driver memory. If an SQLException, BatchUpdateException,
SQLClientInfoException, or UnSupportedOperationException occurs, the information stored in the
memory is output to a file before the exception is thrown.

(1) Methods to be acquired and setup for log acquisition

(a) Methods to be acquired in the exception trace log

The information to be acquired in the exception trace log is the calling and return of methods coded in the java.sgl
and Jjavax.sqgl packages found in the API specifications of Java Platform Standard Edition 6.

Methods that satisfy the following condition are acquired:

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 305

* Methods listed in Table 7-16: Methods that are acquisition targets of the exception trace log and their applicable
trace acquisition levels and for which a trace acquisition level that is needed to acquire the trace is specified

Methods that only look up and return information found in objects or methods that only store information into objects,
such as a get XXX method of the ResultSet object, a set XXX method of the PreparedStatement method, or
the i sClosed method of the Connection object, are not acquisition targets.

The following table lists the methods that are acquisition targets of the exception trace log. The table also shows the
trace acquisition levels applicable to each method.

Table 7-16: Methods that are acquisition targets of the exception trace log and their applicable trace
acquisition levels

Class Method Trace acquisition levels
1 2 3 4 5#1
Connection voidclose () Y Y Y Y Y
void commit () N Y Y Y Y
Statement createStatement ()#2 Y Y Y Y Y
Statement createStatement (int Y Y Y Y Y
resultSetType, int
resultSetConcurrency) #3
DatabaseMetaData getMetaData () Y Y Y Y
boolean isValid (int timeout) N Y Y Y Y
PreparedStatement Y Y Y Y Y
prepareStatement (String sqgl) #2
PreparedStatement Y Y Y Y Y
prepareStatement (String sgl, int
resultSetType, int
resultSetConcurrency) #3
void rollback () N Y Y Y Y
voidsetAutoCommit (booleanautoCommit) N Y Y Y Y
DatabaseMetaData boolean N Y Y Y Y
autoCommitFailureClosesAllResultSet
s ()
ResultSet getAttributes (String N Y Y Y Y
catalog, String schemaPattern, String
typeNamePattern, String
attributeNamePattern)
ResultSet getBestRowIdentifier (String N Y Y Y Y
catalog, String schema, String table,
int scope, booleannullable)
ResultSet getCatalogs () N Y Y Y Y
ResultSet getClientInfoProperties () N Y Y Y Y
ResultSet getColumnPrivileges (String N Y Y Y Y

catalog, String schema, String table,
String columnNamePattern)

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 306

Class Method Trace acquisition levels

1 2 3 4 5#1
ResultSet getColumns (String catalog, N Y Y Y Y
String schemaPattern, String
tableNamePattern, String
columnNamePattern)
Connection getConnection () N Y Y Y Y
ResultSet getCrossReference (String N Y Y Y Y
parentCatalog, String parentSchema,
String parentTable, String
foreignCatalog, String foreignSchema,
String foreignTable)
ResultSet getExportedKeys (String N Y Y Y Y
catalog, String schema, String table)
ResultSetgetFunctions (Stringcatalog, N Y Y Y Y
String schemaPattern, String
functionNamePattern)
ResultSet getFunctionColumns (String N Y Y Y Y
catalog, String schemaPattern, String
functionNamePattern, String
columnNamePattern)
ResultSet getImportedKeys (String N Y Y Y Y
catalog, String schema, String table)
ResultSetgetIndexInfo (Stringcatalog, N Y Y Y Y
String schema, String table, boolean
unique, boolean approximate)
ResultSet getPrimaryKeys (String N Y Y Y Y
catalog, String schema, String table)
ResultSet getProcedureColumns (String N Y Y Y Y
catalog, String schemaPattern, String
procedureNamePattern, String
columnNamePattern)
ResultSet getProcedures (String N Y Y Y Y
catalog, String schemaPattern, String
procedureNamePattern)
ResultSet getPseudoColumns (String N Y Y Y Y
catalog, String schemaPattern, String
tableNamePattern, String
columnNamePattern)
RowIdLifetime getRowIdLifetime () N Y Y Y Y
ResultSet getSchemas () N Y Y Y Y
ResultSet getSuperTables (String N Y Y Y Y
catalog, String schemaPattern, String
tableNamePattern)
ResultSet getSuperTypes (String N Y Y Y Y
catalog, String schemaPattern, String
typeNamePattern)

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 307

Class Method

ResultSet getTablePrivileges (String
catalog, String schemaPattern, String

tableNamePattern)

ResultSet getTables (String catalog,

String schemaPattern, String
tableNamePattern, String[] types)

ResultSet getTableTypes ()
ResultSet getTypeInfo ()

ResultSet getUDTs (String catalog,
String schemaPattern, String
typeNamePattern, int[] types)

ResultSet getVersionColumns (String
catalog, String schema, String table)

Driver Connection connect (Stringurl,
Properties info)

#2

PreparedStatement boolean execute ()

ResultSet executeQuery () #2

int executeUpdate () #2

long executelargeUpdate () #2
ResultSetMetaData getMetaData ()
boolean execute (String sql) #3, #4
int[] executeBatch ()#

long/[] executeLargeBatch()#4
ResultSet executeQuery (String sqgl)
int executeUpdate (String sqgl) #3, 44

long executelargeUpdate (String sql
#a

ParameterMetaData
getParameterMetaData ()

ResultSet boolean absolute (int row)
voidafterLast ()

void beforeFirst ()

void close ()

boolean first ()
ResultSetMetaData getMetaData ()

int getHoldability ()

Statement getStatement ()

7. Creating Application Programs

#3,#4

)#3,

Trace acquisition levels

1

< < | x| Z2 Z Z2| z z zZz|Zz Z

Z

z \z|zZ, zZ =z Z 5 zZ z

2

Y

T I S e e B T T I

=~

R S R A

3

Y

T I e B e e A T T e e

=

T e o e B I N T e I

T S e e A T T I e I B B

=~

T i B o S T T

T S S e e B S T I I R

=~

T i o S T T

Hitachi Advanced Database Application Development Guide

308

Class

Statement

DataSource

ConnectionPoolDataSour
ce

PooledConnection

Legend:

Method

boolean isClosed()

boolean last ()

boolean next ()

boolean relative (int rows)

boolean isAfterLast ()

boolean isBeforeFirst ()

boolean isLast ()

void cancel ()

void close ()

boolean execute (String sql)

int[] executeBatch ()

long[] executelLargeBatch ()
ResultSet executeQuery (String sqgl)
int executeUpdate (String sqgl)

long executelargeUpdate (String sql)
ResultSet getResultSet ()
getConnection()#2

getConnection (String username, String
password)#3

getPooledConnection () #2

getPooledConnection (String username,
String password)#3
close ()

getConnection ()

Y: Exception trace log is acquired.

N: Exception trace log is not acquired.

#1

When the trace acquisition level is 5, an exception trace log that includes internal calls is acquired.

#2

method-name (1) is output as the method name.

#3

method-name (2) is output as the method name.

#4

This method overrides the method in the Statement class.

7. Creating Application Programs

Trace acquisition levels

1

< <K Z K <K < Z Z < | < |Z z Z Z z Z Z Zz

2

T I A T T T T B o B T B T B B e B S T T e

=<

3

T I e A T T T e o B T B T B T o T B ST B B B e ¢

T I T T T B e B S T T e e T I T B S I S B S S

(3,]
E: 3
iy

T I T I T T B e B I B S S T e B ol R G B < B <

Hitachi Advanced Database Application Development Guide

309

(b) Setup for acquisition of the exception trace log (setting properties)

You use system properties, user properties, or URL connection properties to set the file output destination for the
exception trace log, the number of outputs to the file, the number of information items to be acquired in memory, and
the trace acquisition level.

The following table lists and describes the items that are specified in properties.

Table 7-17

Item

File output
destination

Number of
outputs to the
file

Number of

information
items to be

acquired in

memory

Trace

: Exception trace log items specified in properties

Property

adb jdbc exc trc ou
t path

adb jdbc info max

adb jdbc cache info
_max

adb jdbc trc out 1lv

acquisition level

Description

Specify the absolute path of the directory to which the exception trace
log is to be output. The exception trace log is output directly under the
specified directory

Specify the maximum number of information items to be output to one
file. The value must be in the range from 1 to 50.
The actual maximum number of information items to be output to one
file is number of outputs to the file X number of information items to be
acquired in memory.
For the number of outputs to the file, each of the formats from Format
2 to Format 4 shown in (2) Exception trace log output formats counts
as one output.
The information items are output to memory in the sequence they were
stored.
If information items exceeding the maximum value are to be output to
the file, the items are wrapped into a second file. The file names are as
follows:

e adbjdbcexceptionOl.trc

e adbjdbcexceptionl2.trc

Note that the output destination file does not change between Format 1
and Format 2 shown in (2) Exception trace log output formats.

Specify the maximum number of information items to be stored in
memory. The value must be in the range from 500 to 10,000.

For the information acquired in memory, each method shown in

Table 7-16: Methods that are acquisition targets of the exception trace
log and their applicable trace acquisition levels is counted as one item.
If the number of information items to be stored exceeds the maximum
value, old information items are overwritten with new information items
in chronological order.

Specify a trace acquisition level. The value must be in the range from
0toS.

If you specify 5, all methods that are trace acquisition targets, including
internally called methods, are acquired.

If you specify 0, an exception trace log is not acquired.

Default
value#

Current
directory

1,000

In an exception trace log that is acquired in the following cases, the system assumes that no value is specified for
the property. In this case, the default value applies.

* When an invalid value is specified in the properties and an SQLException is thrown at the time that a
connection to the database is established.

* When the Java Virtual Machine (JVM) denies the JDBC driver permission to exchange properties because of
security manager reasons.

* Before the initial connection of the Java Virtual Machine (JVM) is established.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide

310

(2) Exception trace log output formats

An exception trace log consists of the four formats show below.

Format 1: Header section

[AA....AA] Hitachi Advanced Data Binder JDBC Driver BB-CC

Format 2: Method execution history (start of a method's execution)

AAAAAAAAAAAAAAAAAAAAAAA BB....BB:[C] [DD....DD]
ConnectionID(EE....EE) : SID(FF....FF)
GG....GG

Format 3: Method execution history (normal termination of a method)

AAAAAAARAAAAAARAAAAAAAAAAA BB....BB:[C][DD....DD]
ConnectionID(EE....EE) : SID(FF....FF)

Format 4: Timing of output that occurred

AAAAAAAAAAAAAAAAAAAAAAA BB....BB:Exception:
I1....IT

Formats 2 and 3 are output in time sequence as many times as the number of methods that are executed.

(a) Explanation of variables in Format 1

AA....AA
Sequence number of the output information

The sequence number is incremented by 1 for each output (including failures caused by output errors). After the
value reaches 2,147,483,647, the sequence returns to 0.

BB
JDBC driver's version number

cC
JDBC driver's revision number

(b) Explanation of variables in Formats 2, 3, and 4

AAAAAAAAAAAAAAAAAAAAAAA
Acquisition date and time of the exception trace log, in the following format:

YYYY/MM/DD hh:mm:ss.SSS

YYYY: Year (Western calendar)

MM: Month

DD: Date

hh: Hour (24-hour clock)

mm: Minute

ss.sss: Second (includes 3 digits after the decimal point)

BB....BB:
Thread identification information for the target thread, in the following format:

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 311

Thread[aa....aa]@bb....bb

aa....aa.

Thread information, including the thread name, priority, and thread group name. The Java Virtual Machine (JVM)
determines the format.

bb....bb:
Hash code of the object. The Java Virtual Machine (JVM) determines the format.

C
Call identification information for the method:

E:

The information is history information for when the method was started.

The information is history information for when the method terminated normally.

DD....DD:
Object identifier and method name, in the following format:

aa....aa.bb....bb

aa....aa.

Object identifier (maximum of 32 characters). The Java Virtual Machine (JVM) determines the format.

bb....bb:
Method name
EE... EE:
Connection ID (maximum of four characters)
FFE..FF:
Section ID (maximum of four characters)
GG....GG:

Method arguments, in the following format (this information is not output for methods without arguments):
aa....aa=bb....bb
aa....aa=bb....bb
aa... .aa;bb. ...bb

aa....aa:

Argument name

bb....bb:
Argument contents (maximum of 256 characters). For reference type values, the object determines the format.

One asterisk (*) is output to bb....bb for the password argument of the following methods:
e getConnection (String username, String password) ofthe DataSource class

* getPooledConnection (String username, String password) of the
ConnectionPoolDataSource class

For the info argument in connect (Stringurl, Properties info) ofthe Driver class, the value of the
following property is replaced by one asterisk (*) and then output:

* password

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 312

HH...HH

Return value of the method, in the format shown below. This item is not output for methods that do not have a return
value. If the return value is a reference-type value, the Java Virtual Machine (JVM) determines the format.

Return=aa....aa

aa....aa:
Method's return value
1.1
Troubleshooting information, in the following format:

ExceptionClass: aa....aa

ConnectionInformation: bb....bb

Message: cc....cc

ErrorCode: dd....dd

UpdateCounts: ee....ee, ..<omitted>.. ,ee....ee
ff....ff

aa....aa.

Execution class name of the exception object that was thrown

bb....bb:

Connection information for the exception object, in the format shown below. If no definitions are to be output,
this variable is replaced by an asterisk (*) and then output.

VVeoono vy (zz..... zz), ..<omitted>.., yy..... vy (zz..... zZz)

wy.....yy: Type of connection information item:
* host (HADB server's host name)
* port (HADB server's port number)
* user (authorization identifier)
* sglwaittime (HADB client's maximum response wait time (seconds))
zz.....zz: Contents of the connection information item. Note that the password part of user is not displayed.

cc....cc:
Message of the exception object

If there are multiple messages, each message is displayed, separated by an end-of-line code, after the message
corresponding to SQL.CODE. In this case, the message that is returned by the getMessage method of an
exception object is also displayed as a character string separated by an end-of-line code.

dd....dd:
SQLCODE error code (maximum of 11 characters)

This item is output when the execution class of the thrown exception object is the following class or subclass:

* SQLException

Number of update rows for each update statement in a batch update that was executed normally before this
exception occurred (maximum of 11 characters).

This item is output when the execution class of the exception object is BatchUpdateException.

If the number of update rows cannot be obtained, an asterisk (*) is output.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 313

Stack trace in which the exception-throwing method is set as the base point. The Java Virtual Machine (JVM)
determines the format.

(3) Output example and analysis methodology

(a) Output example

[1] Hitachi Advanced Data Binder JDBC Driver VV-RR¥
2011/07/06 23:07:09.129 Thread[main,5,main]@1259414: [E] [AdbConnection@82c0lf.createSt

atement (1)]

2011/07/06 23:07:09.

atement (1)]

2011/07/06 23:07:09.

2011/07/06 23:07:14

2011/07/06 23:07:14

2011/07/06 23:07:14

2011/07/06 23:07:14
tatement (1)]

2011/07/06 23:07:14
tatement (1)]

2011/07/06 23:07:26.
2011/07/06 23:07:26.

2011/07/06 23:07:26.

uery]

2011/07/06 23:07:26.

uery]

2011/07/06 23:07:28
2011/07/06 23:07:28
2011/07/06 23:07:28
2011/07/06 23:07:28
2011/07/06 23:07:28

pareStatement (1)]

2011/07/06 23:07:28
pareStatement (1)]

7. Creating Application Programs

160

160

.285

.301

.301

.301

.348

567

567

567

676

.332

.332

.332

.332

.332

.332

ConnectionID(1l) : SID(0)
Thread[main, 5,main]@1259414: [R] [AdbConnection@82c0lf.createSt

ConnectionID (1) : SID(O0)
Return=com.hitachi.hadb.jdbc.AdbStatement@ledcbcd
Thread[main, 5,main]@1259414: [E] [AdbStatement@ledcbcd.execute]
ConnectionID (1) : SID(O0)

sql=DELETE FROM SE INO_ TABLE

Thread[main, 5,main]@1259414: [E] [AdbConnection@82c01lf.commit]
ConnectionID(1l) : SID(0)

Thread[main, 5,main]@1259414: [R] [AdbConnection@82c01lf.commit]
ConnectionID (1) : SID(O0)

Thread[main, 5,main]@1259414: [R] [AdbStatement@ledcbcd.execute]
ConnectionID (1) : SID(1)

Return=false

Thread[main, 5,main]@1259414: [E] [AdbConnection@82c0lf.prepareS

ConnectionID (1) : SID(O0)
sql=INSERT INTO SEINO TABLE VALUES (?, ?)
Thread[main, 5, main]@1259414: [R] [AdbConnection@82c0lf.preparesS

ConnectionID (1) : SID(O0)
Return=com.hitachi.hadb.jdbc.AdbPreparedStatement@15d56d5
Thread[main, 5,main]@1259414: [E] [AdbConnection@82c0lf.commit]
ConnectionID (1) : SID(O0)

Thread[main, 5,main]@1259414: [R] [AdbConnection@82c01lf.commit]
ConnectionID(1l) : SID(0)

Thread[main, 5,main]@1259414: [E] [AdbStatement@ledcbcd.executeQ

ConnectionID (1) : SID(O0)
sgl=SELECT * FROM SEINO_TABLE
Thread[main, 5,main]@1259414: [R] [AdbStatement@ledcbcd.executeQ

ConnectionID(1l) : SID(1)
Return=com.hitachi.hadb.jdbc.AdbResultSet@3ecald0
Thread[main, 5,main]@1259414: [E] [AdbResultSet@3eca%90.close]
ConnectionID (1) : SID(1l)

Thread[main, 5,main]@1259414: [E] [AdbConnection@82c01lf.commit]
ConnectionID(1) : SID(0)

Thread[main, 5,main]@1259414: [R] [AdbConnection@82c0lf.commit]
ConnectionID (1) : SID(O0)

Thread[main, 5,main]@1259414: [R] [AdbResultSet@3eca%90.close]
ConnectionID(1l) : SID(0)
Thread[Thread-0,5,main]@30090737: [E] [AdbConnection@82c0lf.pre

ConnectionID (1) : SID(O0)
sgl=SELECT * FROM SEINO_TABLE
Thread[Thread-0,5,main]@30090737: [R] [AdbConnection@82c0l1f.pre

ConnectionID (1) : SID(O0)
Return=com.hitachi.hadb.jdbc.AdbPreparedStatement@2808b3

Hitachi Advanced Database Application Development Guide 314

2011/07/06 23:07:28.348 Thread[Thread-1,5,main]@5462872: [E] [AdbConnection@82c01lf.prep
areStatement (1)]

ConnectionID(1l) : SID(0)

sql=DELETE FROM SEINO TABLE WHERE Il=?
2011/07/06 23:07:28.358 Thread[Thread-1,5,main]@5462872: [E] [AdbConnection@82c01f.comm
it]

ConnectionID (1) : SID(O0)
2011/07/06 23:07:29.672 Thread[Thread-1,5,main]@5462872: [R] [AdbConnection@82c01lf.comm
it]

ConnectionID (1) : SID(O0)
2011/07/06 23:07:30.098 Thread[Thread-1,5,main]@5462872: [R] [AdbConnection@82c01f.prep
areStatement (1)]

ConnectionID (1) : SID(0)

Return=com.hitachi.hadb.jdbc.AdbPreparedStatement@922804
2011/07/06 23:07:30.332 Thread[Thread-2,5,main]@25253977: [E] [AdbConnection@82c0lf.rol
lback (1)]

ConnectionID (1) : SID(O0)
2011/07/06 23:07:42.098 Thread[Thread-2,5,main]@25253977: [R] [AdbConnection@82c0lf.rol
lback (1)]

ConnectionID(1l) : SID(0)
2011/07/06 23:07:42.098 Thread[Thread-2,5,main]@25253977: [E] [AdbConnection@82c0lf.clo
se]

ConnectionID(1l) : SID(O0)
2011/07/06 23:07:42.098 Thread[Thread-2,5,main]@25253977: [R] [AdbConnection@82c0lf.clo
se]

ConnectionID(1l) : SID(O0)
2011/07/06 23:07:42.535 Thread[Thread-1,5,main]@5462872:Exception:
ExceptionClass: SQLException
ConnectionInformation: *
Message: KFAAT71206-E Processing cannot continue because the connection is already clo
sed. [AdbPreparedStatement.setInt]
ErrorCode: -1020006
java.sqgl.SQLException: KFAA71206-E Processing cannot continue because the connection
is already closed. [AdbPreparedStatement.setInt]
at com.hitachi.hadb.jdbc.JdbMakeException.generateSQLException (JdbMakeException.java:
31)
at com.hitachi.hadb.jdbc.AdbStatement.generateClosedSQLException (AdbStatement.java:30
05)
at com.hitachi.hadb.jdbc.AdbPreparedStatement.setInt (AdbPreparedStatement.java:1170)
at Exceptionl.run (ExceptionTraceSample.java:57)
[2] Hitachi Advanced Data Binder JDBC Driver vv-rR#
2011/07/06 23:07:25.723 Thread[Thread-3,5,main]@13249998: [E] [AdbConnection@119ccad.pr
epareStatement (1)]

ConnectionID(1l) : SID(0)

sql=SELECT * FROM SEINO TABLE
2011/07/06 23:07:25.770 Thread[Thread-4,5,main]@25839584: [E] [AdbConnection@ll9ccad.ro
llback (1)]

ConnectionID (1) : SID(O0)
2011/07/06 23:07:25.770 Thread[Thread-4,5,main]@25839584: [R] [AdbConnection@ll19ccad.ro
llback (1)]

ConnectionID(1l) : SID(0)
2011/07/06 23:07:25.770 Thread[Thread-5,5,main]@24431647: [E] [AdbConnection@119ccad.pr
epareStatement (1)]

ConnectionID (1) : SID(O0)

sql=SELECT ** FROM SEINO TABLE
2011/07/06 23:07:25.863 Thread[Thread-5,5,main]@24431647 :Exception:
ExceptionClass: SQLException
ConnectionInformation: user (ADBUSERO1l), sglwaittime(0), host (dragon2), port(20249)
Message: KFAA30105-E Token "*" (non-reserved word), which is after token "*", is inval
id. [AdbStatement.prepare]
ErrorCode: -105
java.sqgl.SQLException: KFAA30105-E Token "*" (non-reserved word), which is after toke
n "*", is invalid.[AdbStatement.prepare]
at com.hitachi.hadb.jdbc.JdbSection.prepare (JdbSection.java:1497)

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 315

at com.hitachi.hadb.jdbc.AdbStatement.prepare (AdbStatement.java:2834)

at com.hitachi.hadb.jdbc.AdbPreparedStatement.<init> (AdbPreparedStatement.java:109)
at com.hitachi.hadb.jdbc.AdbConnection.prepareStatement (AdbConnection.java:1041)

at Exceptionl.run (ExceptionTraceSample.java:64)

For VV-RR, the version of the JDBC driver is output.

(b) Analysis methodology

This subsection explains the analysis methodology for an exception trace log. You can use a text editor to view an

exception trace log.

This analysis example analyzes the exception trace log shown in (a) Output example.

To analyze the exception trace log:

1. From the sequentially numbered information, extract the exception to be investigated

2. Categorize the information by using the Thread identification information, and separate the information by thread.

3. Arrange the information in time sequence based on the acquisition times.

The following table shows what the results look like.

Table 7-18: Example in which the exception trace log is arranged in time sequence

Date and time

2011/07/06
23:07:09.129

2011/07/06
23:07:09.160

2011/07/06
23:07:14.285

2011/07/06
23:07:14.301

2011/07/06
23:07:26.567

2011/07/06
23:07:26.567

2011/07/06
23:07:26.567

2011/07/06
23:07:28.332

2011/07/06
23:07:28.332

Thread 1

Thread[main,5,main
1@1259414

AdbConnection@82c
Olf.createStateme
nt (1)

AdbStatement@ledc
bcd.execute

AdbConnection@82c
0lf.commit

AdbConnection@82c
0lf.prepareStatem
ent (1)

AdbConnection@82c
0lf.commit

AdbConnection@82c
0lf.commit

AdbStatementQ@ledc
bc4d.executeQuery

AdbResultSet@3eca
90.close

AdbConnection@82c
0lf.commit

7. Creating Application Programs

Thread 2

Thread[Thread-0,5,m
ain]@30090737

AdbConnection@82c
0lf.prepareStatem
ent (1)

Thread 3 Thread 4

Thread[Thread-1,5,m
ain]@5462872

Thread[Thread-2,5,m
ain]@25253977

Hitachi Advanced Database Application Development Guide

316

Date and time Thread 1

Thread[main,5,main

1@1259414

2011/07/06
23:07:28.348

2011/07/06
23:07:28.358

2011/07/06
23:07:30.332

2011/07/06
23:07:42.098

2011/07/06
23:07:42.535

4. Check the nature of the exception error.
The information indicates that an SQLException occurred in Thread 3 on July 6, 2011 at 23:07:42.535, and that

a Statement or Connection object had already been closed.

Thread 2

Thread[Thread-0,5,m
ain]@30090737

5. Check the operation of the object in the time sequence.

Thread 3

Thread[Thread-1,5,m
ain]@5462872

AdbConnection@82c
0lf.prepareStatem
ent (1)

AdbConnection@82c
01lf.commit

SQLException
occurred
"KFAAT71206-E
Processing cannot
continue because
the connection is
already closed."

Thread 4

Thread[Thread-2,5,m
ain]@25253977

AdbConnection@82c
0lf.rollback (1)

AdbConnection@82c
0lf.close

Because the object ID of the Connection object in the next thread is the same, we know that four threads were

being processed in the same connection.

e Thread 1at2011/07/06 23

e Thread2at2011/07/06 23:
e Thread3at2011/07/06 23:
e Thread4 at2011/07/06 23:

:07:

07:
07:
07:

09.129
28.332
28.348
30.332

6. Search for the location of the cause of the error.

Because we know that the four threads have the same connection, we can search for the locations where the
Statement.close or Connection.close method was executed, and we learn that Thread 4 executed the
Connection.close method on July 6, 2011 at 23:07:42.098. From this, we know that the reason for the
SQLException that occurred in Thread 3 on July 6, 2011 at 23:07:42.535 was that Thread 4 executed the
Connection.close method on July 6, 2011 at 23:07:42.098.

(4) Required memory size and file size

(a) Required memory size

The memory size required for acquiring an exception trace log is determined from the following formula:

Formula
1360 x n + 1,0241 (kilobytes)

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide

317

Explanation of variable

n: Number of information items to be acquired in memory (value ofadb jdbc cache info maxinthe system
properties, user properties, or URL connection properties)

(b) Required file size
The approximate file size required for acquiring an exception trace log is determined from the following formula:
Formula

1180 x n x m =+ 1,0241 + 1 (kilobytes)

Explanation of variables

n: Number of information items to be acquired in memory (value ofadb jdbc cache info maxinthesystem
properties, user properties, or URL connection properties)

m: Number of file output information items (value of adb jdbc info max in the system properties, user
properties, or URL connection properties)

(5) Notes

(a) First output after startup of the Java Virtual Machine (JVM)

The first exception trace log output to a file after the Java Virtual Machine (JVM) has started is the one output to the
file with the oldest update date and time. If the date and time are the same for both files, the log is output to
adbjdbcexceptionOl.trc.

(b) Specification of the file output destination

If the same file output destination is specified when exception trace logs are being acquired from multiple processes,
trace information for the different processes will be output to the same file. To acquire traces separately for each process,
specify a different file output destination for each process.

The JDBC driver uses the facilities of the Java Virtual Machine (JVM) to create log files in the file system provided by
the OS. Therefore, the following items depend on the Java Virtual Machine (JVM) and file system being used:

¢ Prefix for the absolute pathname
 Path delimiter character
¢ Maximum number of characters for the output destination file (absolute path)

* Size per file

(c) Error handling procedure

No information is output to the exception trace log when file creation or output fails. An error message is not returned
to the application program and file output is not retried.

(d) Character encoding

The exception trace log is output using the default conversion character set of the Java Virtual Machine (JVM) that is
being used.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 318

7.8 Scalar functions that can be specified in the escape clause

The following table lists the scalar functions that can be specified in the escape clause.

Table 7-19: Scalar functions that can be specified in the escape clause

Scalar function

Mathematical functions

String functions

7. Creating Application Programs

Standard format of scalar function
ABS (number)

ACOS (float)

ASIN (float)

ATAN (float)

ATANZ2 (floatl, float2)
CEILING (number)

COS (float)

DEGREES (number)

EXP (float)

FLOOR (number)

LOG (float)

LOG10 (float)

MOD (integerl, integer?)
PI()

POWER (number, power)
RADIANS (number)

RAND ([number, number])
ROUND (number, places)
SIGN (number)

SIN (float)

SQRT (float)

TAN (float)

TRUNCATE (number [, places])
ASCII (string)

CHAR (code)

CONCAT (stringl,string2)
LCASE (string)

LEFT (string, count)
LENGTH (string)

LTRIM (string)

OCTET LENGTH (string)

Hitachi Advanced Database Application Development Guide

319

Scalar function Standard format of scalar function
REPLACE (stringl,string2 [, string3])
RIGHT (string, count)
RTRIM(string)
SUBSTRING (string, start[, length])
UCASE (string)
Time and date functions CURDATE ()
CURRENT DATE ()
CURRENT TIME ()
CURRENT TIMESTAMP ()
CURTIME ()
DAYOFWEEK (date)
DAYOFYEAR (date)

EXTRACT (extract-field FROM extract-source)

NOW ()
System function USER ()
Data type conversion function CONVERT (value, SQLtype)

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 320

The JDBC 1.2 API

This chapter explains the interfaces and methods in the JDBC 1.2 API.

Hitachi Advanced Database Application Development Guide 321

8.1 Driver interface

This section explains the methods provided by the Driver interface.

8.1.1 List of the methods in the Driver interface

(1) Main functions of the Driver interface

The Driver interface provides the following main functions:

¢ Connection to a database

Validity check of the URL for connection
¢ Acquisition of connection properties specified with the DriverManager .getConnection method

¢ Return of the JDBC driver version

(2) Methods in the Driver interface that are supported by HADB

The following table lists and describes the methods in the Driver interface that are supported by HADB.

Table 8-1: Methods in the Driver interface

No. Method in the Driver interface Function

1 acceptsURL (Stringurl) Checks whether a connection can be established with the HADB
server by means of the connection information specified by the URL
for connection.

2 connect (Stringurl, Properties info) Connects to the HADB server according to the connection
information.
3 getMajorVersion () Acquires the JDBC driver's major version.
4 getMinorVersion () Acquires the JDBC driver's minor version.
5 getPropertyInfo (Stringurl, Properties Acquires information about the JDBC driver's valid properties.
info)
6 jdbcCompliant () Reports whether the JDBC driver is JDBC Compliant™.
0 Important

HADB does not support methods that are not listed in this table. If an unsupported method is executed, an
SQLException is thrown.

(3) Required package name and class name

The package and class names required in order to use the Driver interface are as follows:

¢ Package name: com.hitachi.hadb. jdbc

¢ (Class name: HADBDriver

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 322

8.1.2 acceptsURL(String url)

(1) Function

This method checks whether the JDBC driver can connect to the database specified by the URL.

(2) Format

public boolean acceptsURL (String url) throws SQLException

(3) Arguments

Stringurl
Specifies the URL to be used for a connection.

For details about the specification format of the URL to be used for connection, see (a) Values to be specified in
the url argument (specifying the URL for the connection) in (2) Connecting to the HADB server with the
getConnection method in 7.3.1 Using the getConnection method of the DriverManager class to connect to the
HADRB server.

(4) Return value

The method returns t rue if the JDBC driver can connect to the database specified by the URL; if not, the method
returns false.

(5) Exceptions

None.

8.1.3 connect(String url, Properties info)

(1) Function

This method connects to an HADB server according to the connection information.

Note that you must have the CONNECT privilege to execute the connect method.

(2) Format

public Connection connect (String url, Properties info) throws SQLException

(3) Arguments

Stringurl
Specifies the URL to be used for connection.

For details about the specification format of the URL to be used for connection, see (a) Values to be specified in
the url argument (specifying the URL for the connection) in (2) Connecting to the HADB server with the

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 323

getConnection method in 7.3.1 Using the getConnection method of the DriverManager class to connect to the
HADB server.

Properties info

Specifies a list of property names and their values as the connection arguments. For details about the specification
format, see (d) Values to be specified in the info argument (specifying the user properties) in (2) Connecting to the
HADB server with the getConnection method in 7.3.1 Using the getConnection method of the DriverManager class
to connect to the HADB server.

(4) Return value

The method returns a Connection object.

If the specified URL is not valid (the JDBC driver cannot connect to the database specified by the URL), the method
returns null.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

¢ A database access error occurs.

* The specified connection information is not valid.

(6) Notes

You can set connection information in a number of locations, such as in various properties and methods. For details
about the priority of connection information to be applied, see (1) Connection information needed when a connection
to the HADB server is established in 7.3.3 Connection information priorities.

8.1.4 getMajorVersion()

(1) Function

This method acquires the JDBC driver's major version.

(2) Format

public synchronized int getMajorVersion ()

(3) Arguments

None.

(4) Return value

This method returns the JDBC driver's major version number.

(5) Exceptions

None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 324

8.1.5 getMinorVersion()

(1) Function

This method acquires the JDBC driver's minor version.

(2) Format

public synchronized int getMinorVersion ()

(3) Arguments

None.

(4) Return value

This method returns the JDBC driver's minor version number.

(5) Exceptions

None.

8.1.6 getPropertyinfo(String url, Properties info)

(1) Function

This method acquires information about the JDBC driver's valid properties.

(2) Format

public synchronized DriverPropertyInfo[] getPropertyInfo (String url, Properties info)
throws SQLException

(3) Arguments

Stringurl
Specifies the URL to be used for connection.

For details about the specification format of the URL to be used for connection, see (a) Values to be specified in
the url argument (specifying the URL for the connection) in (2) Connecting to the HADB server with the
getConnection method in 7.3.1 Using the getConnection method of the DriverManager class to connect to the
HADRB server.

Properties info

Specifies a list of property names and their values as the connection arguments.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 325

(4) Return value

This method returns the array of the DriverPropertyInfo object for specifying valid properties. If no properties
are needed, this array might be empty.

The following table lists the settings for the fields of DriverPropertyInfo.

Table 8-2: Settings for fields of DriverPropertylnfo

Property name

adb clt rpc srv host
adb clt rpc srv port
adb clt rpc con wait
time

adb clt rpc sql wait
time

adb _clt ap name

adb clt group name

adb clt fetch size
adb _clt sgl text out

adb _clt trn iso 1v

adb clt sgql order mod
e

adb clt trn access mo
de

adb_dbbuff wrktbl clt
_blk num

adb_sgl prep delrsvd
use_ srvdef

adb sgl prep dec div_
rs_prior

adb _sgl exe max rthd
num

8. The JDBC 1.2 API

DriverPropertyinfo field

name

Same as the
property name

value
null

null

"300"

non

Mhkkxkkxk%xM

null

"1024"

"N"

"READ COMMIT
TED"

"BYTE"

"READ WRITE"

"o56"

nyn

"INTEGRAL PA
RT " -

ngn

description
"Host Name"

"Port
Number"

"Connect
Wait Time"

"Sgl Wait
Time"

"Application
Name"

"Client
Group Name"

"Fetch Size"
"Text Out"

"Isolation
Level"

"Order Mode"

"Access
Mode"

"Work Table
Block
Number"

"Delete
Reserved
Word Using
Server
Definition"

"Decimal
Division
Result
Prior"

"Sgl Execute
Max Real
Thread
Number"

required
true

true

false

false

false

false

false
false

false

false

false

false

false

false

false

choices
null

null

null

null

null

null

null
{Y", "N"}

{"READ COMMI
TTED", "REPEA
TABLE READ"}

{"BYTE", "ISO
"}

{"READ WRITE
", "READ ONLY
"}

null

{Y", "N"}

{"INTEGRAL P
ART", "FRACTI
ONAL PART"}

null

Hitachi Advanced Database Application Development Guide

326

Property name

adb _sgl exe hashgrp a
rea size

adb sgl exe hashtbl a
rea_size

adb sgl exe hashflt a
rea size

adb jdbc exc trc out

path

adb jdbc info max

adb jdbc cache info m
ax

adb jdbc trc out 1v

encodelang

methodtrace

tracenum

sglwarningkeep

user

password

DriverPropertylnfo field
name value

"4800"

"2000"

"o00"

null

ngn

"1000"

nwqmn

null

"OFEF"

"500"

"TRUE"

null

null

description

"Hash Group
Area Size"

"Hash Table
Area Size"

"Hash Filter
Area Size"

"Exception
Trace Out
Path"

"Exception
Trace

Information
Max Number"

"Exception
Trace Cache
Information
Max Number"

"Exception
Trace Out
Level"

"Encode
Lang"

"JDBC
Interface
Trace"

"Trace Entry
Number"

"Keeping up
the Warning
Objects"
"UserID"

"Password"

required

false

false

false

false

false

false

false

false

false

false

false

true

true

choices

null

null

null

null

null

null

null

null

{ "ON" , "OFEF" }

null

{"TRUE", "FAL

SE"}

null

null

This method analyzes the information specified in url and info and returns the information needed for connecting

to the HADB server.

If the accept sURL method returns false, this method returns null.

(5) Exceptions

None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide

327

8.1.7 jdbcCompliant()

(1) Function

This method reports whether this JDBC driver is JDBC Compliant™,

(2) Format

public synchronized boolean jdbcCompliant ()

(3) Arguments

None.

(4) Return value

If the JDBC driver is JDBC-compliant, this method returns t rue; if not, the method returns false.

(5) Exceptions

None.

8.1.8 Escape clause

A part enclosed in curly brackets ({ }) in an SQL statement is called an escape clause. An escape clause consists of a
keyword and parameters. The keyword is not case sensitive. The following table lists the escape clauses.

Table 8-3: List of escape clauses

Type of escape clause Keyword
Date d

Time t

Time stamp ts

LIKE escape-character escape
Outer join oj

Scalar function fn

For details about the scalar functions that can be specified in an escape clause, see 7.8 Scalar functions that can be
specified in the escape clause.

Analysis of escape syntax

You can use the setEscapeProcessing method of the Statement class to specify whether analysis of the
escape syntax is to be enabled. When this specification is omitted, analysis of escape syntax is enabled. Analysis of
escape syntax means that the JDBC driver checks each SQL statement for escape clauses. If an SQL statement
contains an escape clause, the JDBC driver converts the SQL statement so that the statement can be executed by
HADB.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 328

You can reduce the overhead required for syntax analysis by using the setEscapeProcessing method of the
Statement object to disable analysis of escape syntax.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 329

8.2 Connection interface

This section explains the methods provided by the Connection interface.

8.2.1 List of the methods in the Connection interface

(1) Main functions of the Connection interface

The Connection interface provides the following main functions:

e Creation of the Statement and PreparedStatement class objects

¢ Transaction settlement (commit or rollback)

* Specification of the automatic commit mode

(2) Methods in the Connection interface that are supported by HADB

The following table lists and describes the methods in the Connection interface that are supported by HADB.

Table 8-4: Methods in the Connection interface

No. Method in the Connection interface
1 clearWarnings ()
2 close ()
3 commit ()
4 createStatement ()
5 createStatement (int resultSetType, int

resultSetConcurrency)

6 createStatement (int resultSetType, int
resultSetConcurrency, int
resultSetHoldability)

7 getAutoCommit ()

8 getCatalog()

9 getHADBConnectionID ()

10 getHADBConnectionSerialNum ()
11 getHADBOrderMode ()

12 getHADBSQLHashF1tSize ()

13 getHADBSQLHashTblSize ()

8. The JDBC 1.2 API

Function

Clears all warnings reported to the Connection object.

Closes the connection with the HADB server.

Applies all changes made since the most recent commit or rollback.

Creates a Statement object for sending an SQL statement to the
HADB server.

Acquires the current automatic commit mode for this Connection
object.

Acquires the current catalog name for this Connection object.

Acquires the connection ID that is assigned to this Connection
object.

Acquires the connection sequence number that is assigned to this
Connection object.

Acquires for this Connection object the sort order for character
string data in a SELECT statement in which the ORDER BY clause is
specified.

Acquires the size of the hash filter area that is set for this
Connection object.

Acquires the size of the hash table area that is set for this
Connection object.

Hitachi Advanced Database Application Development Guide

330

No.

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Method in the Connection interface

getHADBSQLMaxRthdNum ()

getHADBTransactionID ()

getHoldability ()

getMetaData ()
getSchema ()

getTransactionIsolation ()

getTypeMap ()

getWarnings ()

isClosed()

isReadOnly ()

isvValid (int timeout)

nativeSQL (String sql)

prepareStatement (String sqgl)

prepareStatement (String sgl, int
resultSetType, int
resultSetConcurrency)

prepareStatement (String sgl, int
resultSetType, int
resultSetConcurrency, int
resultSetHoldability)

rollback ()

setAutoCommit (boolean autoCommit)
setCatalog (String cataloq)
setHADBAuditInfo (int pos,String
userinfo)

setHADBOrderMode (int mode)

setHADBSQLHashF1ltSize (int areaSize)
setHADBSQLHashTblSize (int areaSize)

setHADBSQLMaxRthdNum (int rthdNum)

setHoldability (int holdability)

8. The JDBC 1.2 API

Function

Acquires the maximum number of SQL processing real threads that
is set for this Connection object.

Acquires the transaction ID of the transaction that is being executed.

Acquires the current holdability of the ResultSet object that is
created by using this Connection object.

Creates a DatabaseMetaData object.
Acquires the current schema name for this Connection object.

Acquires the current transaction isolation level for this Connection
object.

Acquires the Map object related to this Connection object.

Acquires as an SQLWarning object a warning reported by a call
related to this Connection object.

Returns a value indicating whether this Connection object is
closed.

Acquires a value indicating whether this Connection object is in
read-only mode.

Acquires the current connection status.

Converts escape clauses in a specified SQL statement to a format that
can be executed by HADB.

Creates a PreparedStatement object for sending an SQL
statement with parameters to the HADB server.

Undoes all changes made by the transaction and releases all locks
currently held by the Connection object.

Sets the automatic commit mode for this connection.

Sets the passed catalog name and selects a database work subspace
for the Connection object.

Sets the user-specific connection information (user-added
information).

Sets for this Connection object the sort order for character string
data in a SELECT statement in which the ORDER BY clause is
specified.

Sets for this Connection object the size of the hash filter area.
Sets for this Connection object the size of the hash table area.

Sets for this Connection object the maximum number of SQL
processing real threads.

Sets the holdability of the ResultSet object that is created by
using this Connection object.

Hitachi Advanced Database Application Development Guide

331

No. Method in the Connection interface Function

38 setReadOnly (boolean readOnly) Sets this Connection object in the read-only mode. Sets the
transaction access mode.

39 setSchema (String schema) Sets the name of the schema to access.
40 setTransactionIsolation (int level) Sets the transaction isolation level for this Connection object.
0 Important

HADB does not support methods that are not listed in this table. If an unsupported method is executed, an
SQLException might be thrown.

(3) Required package name and class name

The package and class names required in order to use the Connection interface are as follows:

¢ Package name: com.hitachi.hadb. jdbc

¢ (Class name: AdbConnection

8.2.2 clearWarnings()

(1) Function

This method clears all warnings reported to the Connection object.

Once this method has been called, the return value of the getWarnings method is null until a new warning is
reported for this Connection object.

(2) Format

public synchronized void clearWarnings () throws SQLException

(3) Arguments

None.

(4) Return value

None.

(5) Exceptions

If this Connection object is closed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 332

8.2.3 close()

(1) Function

This method closes the connection with the HADB server.

When a normal connection is in effect, this method disconnects the HADB server, disables the corresponding objects,
and releases any unneeded resources.

(2) Format

public synchronized void close() throws SQLException

(3) Arguments

None.

(4) Return value

None.

(5) Exceptions

None.

(6) Notes

* If this method is executed in a pooling environment, the physical connection is not closed. In this case, the close
method of the PooledConnection object must be used to close the physical connection.

 If execution of this method in a pooling environment results in a fatal error and connection pooling becomes
unavailable, ConnectionEventListener.connectionErrorOccurred does not occur.

» [f this method is called by a Connection object that is already closed, this method does nothing.

 Ifan error occurred during row retrieval processing, an unsettled transaction is rolled back without being committed.
Connection to the HADB server is closed normally and resources are released.

8.2.4 commit()

(1) Function

This method applies all changes made since the most recent commit or rollback.

If this method is called while the automatic commit mode is enabled, the method performs commi t processing without
throwing an exception.

(2) Format

public synchronized void commit () throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 333

(3) Arguments

None.

(4) Return value

None.
(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Connection object is closed.
¢ A database access error occurs.

* A row retrieval error was detected in an extension of the commit processing.

(6) Notes

» Ifanexception occurs due to detection of a row retrieval error, the transaction is rolled back without being committed.

¢ If commit processing fails, the HADB server terminates abnormally.

8.2.5 createStatement()

(1) Function

This method creates a Statement object for sending an SQL statement to the HADB server.

(2) Format

public synchronized Statement createStatement () throws SQLException

(3) Arguments

None.

(4) Return value

The method returns the Statement object.
(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Connection object is closed.
* Creation of the Statement object resulted in an error.

¢ A database access error occurs.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 334

(6) Notes

The holdability of a ResultSet object generated from the Statement object created by this method is always
ResultSet.HOLD CURSORS_OVER COMMIT

8.2.6 createStatement(int resultSetType, int resultSetConcurrency)

(1) Function

This method creates a Statement object for sending an SQL statement to the HADB server.

(2) Format

public synchronized Statement createStatement (int resultSetType, int resultSetConcurr
ency) throws SQLException

(3) Arguments

int resultSetType
Specifies a result set type.

int resultSetConcurrency

Specifies the concurrent processing mode.

(4) Return value

The method returns the Statement object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Connection object is closed.

¢ Creation of the Statement object resulted in an error.

* A value other than a ResultSet literal is specified for the result set type.

e A value other than a ResultSet literal is specified for the concurrent processing mode.

¢ A database access error occurs.

(6) Notes

* The holdability of a ResultSet object generated from the Statement object created by this method is always
ResultSet.HOLD CURSORS OVER_ COMMIT.

* IfResultSet.TYPE SCROLL SENSITIVE is specified for the result set type, this JDBC driver changes it to
ResultSet.TYPE SCROLL INSENSITIVE, and then sets an SQLWarning.

* For the concurrent processing mode, the JDBC driver supports only ResultSet.CONCUR READ ONLY. If
ResultSet.CONCUR UPDATABLE is specified, the JDBC driver changes it to
ResultSet.CONCUR_READ ONLY, and then sets an SQLWarning.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 335

8.2.7 createStatement(int resultSetType, int resultSetConcurrency, int

resultSetHoldability)

(1) Function

This method creates a Statement object for sending an SQL statement to the HADB server.

(2) Format

public synchronized Statement createStatement (int resultSetType,
ency, int resultSetHoldability) throws SQLException

(3) Arguments

int resultSetType
Specifies a result set type.

int resultSetConcurrency

Specifies the concurrent processing mode.

int resultSetHoldability
Specifies the holdability of the ResultSet object.

(4) Return value

The method returns the Statement object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Connection object is closed.
¢ Creation of the Statement object resulted in an error.

* A value other than a ResultSet literal is specified for the result set type.

int resultSetConcurr

* A value other than a ResultsSet literal is specified for concurrent processing mode.

¢ A value other than a ResultSet literal is specified for the holdability of the ResultSet object.

¢ A database access error occurs.

(6) Notes

* IfResultSet.TYPE SCROLL SENSITIVE is specified for the result set type, this JDBC driver changes it to

ResultSet.TYPE SCROLL INSENSITIVE, and then sets an SQLWarning.

* For concurrent processing mode, the JDBC driver supports only ResultSet.CONCUR READ ONLY. If

ResultSet.CONCUR UPDATABLE is specified, the JDBC driver changes it to
ResultSet.CONCUR READ ONLY, and then sets an SQLWarning.

* For the holdability of the ResultSet object, the JDBC driver supports only

ResultSet.HOLD CURSORS OVER COMMIT.IfResultSet.CLOSE CURSORS AT COMMIT is

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide

336

specified, the JDBC driver changes it to ResultSet.HOLD CURSORS OVER COMMIT, and then sets an
SQLWarning.

8.2.8 getAutoCommit()

(1) Function

This method acquires the current automatic commit mode for this Connection object.

(2) Format

public synchronized boolean getAutoCommit () throws SQLException

(3) Arguments

None.

(4) Return value

The method returns the current automatic commit mode for this Connection object.

(5) Exceptions

If this Connection object is closed, the JDBC driver throws an SQLException.

8.2.9 getCatalog()

(1) Function

This method acquires the current catalog name for this Connection object.

(2) Format

public synchronized String getCatalog() throws SQLException

(3) Arguments

None.

(4) Return value

The method always returns null.

(5) Exceptions

If this Connection object is closed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 337

8.2.10 getHADBConnectionlD()

(1) Function

This method acquires the connection ID that is assigned to this Connection object.

(2) Format

public int getHADBConnectionID() throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the connection ID that is assigned to this Connection object.

(5) Exceptions

If the Connection object is closed, the JDBC driver throws an SQLException.

(6) Notes

This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8.2.11 getHADBConnectionSerialNum()

(1) Function

This method acquires the connection sequence number that is assigned to this Connection object.

(2) Format

public int getHADBConnectionSerialNum () throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the connection sequence number that is assigned to this Connection object.

(5) Exceptions

If the Connection object is closed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 338

(6) Notes

This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8.2.12 getHADBOrderMode()

(1) Function

This method acquires for this Connect ion object the current sort order for character string dataina SELECT statement
in which the ORDER BY clause is specified.

(2) Format

public int getHADBOrderMode () throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the current sort order for character string data in a SELECT statement in which the ORDER BY
clause is specified. One of the following values is returned:

+ AdbConnection.HADB SQIL ORDER MODE BYTE

¢ AdbConnection.HADB SQL ORDER MODE ISO

(5) Exceptions

If this Connection object is closed, the JDBC driver throws an SQLException.

(6) Notes

This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8.2.13 getHADBSQLHashFItSize()

(1) Function

This method acquires the size of the hash filter area that is set for this Connection object.

For details about how to use this method (how to change the size of the hash filter area for each SQL statement to be
executed), see (7) Examples in 8.2.37 setHADBSQLMaxRthdNum(int rthdNum).

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 339

(2) Format

public int getHADBSQLHashFltSize () throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the size of the hash filter area (in megabytes) that is set for this Connection object.

(5) Exceptions

If the Connection object is closed, the JDBC driver throws an SQLException.

(6) Notes

This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8.2.14 getHADBSQLHashTbISize()

(1) Function

This method acquires the size of the hash table area that is set for this Connection object.

For details about how to use this method (how to change the size of the hash table area for each SQL statement to be
executed), see (7) Examples in 8.2.37 setHADBSQLMaxRthdNum(int rthdNum).

(2) Format

public int getHADBSQLHashTblSize () throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the size of the hash table area (in megabytes) that is set for this Connection object.

(5) Exceptions

If the Connection object is closed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 340

(6) Notes

This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8.2.15 getHADBSQLMaxRthdNum()

(1) Function

This method acquires the maximum number of SQL processing real threads that is set for this Connection object.

For details about how to use this method (how to change the maximum number of SQL processing real threads for each
SQL statement to be executed), see (7) Examples in 8.2.37 setHADBSQLMaxRthdNum(int rthdNum).

(2) Format

public int getHADBSQLMaxRthdNum () throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the maximum number of SQL processing real threads that are set for this Connection object.

(5) Exceptions

If the Connection object is closed, the JDBC driver throws an SQLException.

(6) Notes

This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8.2.16 getHADBTransactionlD()

(1) Function

This method acquires the transaction ID of the transaction that is being executed.

(2) Format

public long getHADBTransactionID() throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 341

(3) Arguments

None.

(4) Return value

This method returns the transaction ID of the transaction that is being executed when the get HADBTransactionID
method is issued.

Note that if the get HADBTransactionID method is issued before executing the SQL statement, this method returns
0.

(5) Exceptions

If the Connection object is closed, the JDBC driver throws an SQLException.

(6) Notes

This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8.2.17 getHoldability()

(1) Function

This method acquires the current holdability of the ResultSet object that is created by using this Connection
object.

(2) Format

public synchronized int getHoldability () throws SQLException

(3) Arguments

None.

(4) Return value

The method always returns ResultSet.HOLD CURSORS OVER COMMIT.

(5) Exceptions

If this Connection object is closed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 342

8.2.18 getMetaData()

(1) Function

This method creates a DatabaseMetaData object.

(2) Format

public synchronized DatabaseMetaData getMetaData () throws SQLException

(3) Arguments

None.

(4) Return value

The method returns the DatabaseMetaData object.

(5) Exceptions

If this Connection object is closed, the JDBC driver throws an SQLException.

8.2.19 getSchema()

(1) Function

This method acquires the current schema name for this Connection object.

(2) Format

public synchronized String getSchema () throws SQLException

(3) Arguments

None.

(4) Return value

The method always returns null.

(5) Exceptions

If the Connection object is closed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 343

8.2.20 getTransactionlsolation()

(1) Function

This method acquires the current transaction isolation level for this Connection object.

(2) Format

public synchronized int getTransactionIsolation() throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the current transaction isolation level, which is one of the following:

* Connection.TRANSACTION READ COMMITTED
This value is returned when READ COMMITTED is applied as the transaction isolation level.

* Connection.TRANSACTION REPEATABLE READ

This value is returned when REPEATABLE READ is applied as the transaction isolation level.

(5) Exceptions

If this Connection object is closed, the JDBC driver throws an SQLException.

8.2.21 getTypeMap()

(1) Function

This method acquires the Map object related to this Connection object.

(2) Format

public synchronized java.util.Map getTypeMap () throws SQLException

(3) Arguments

None.

(4) Return value

The method always returns an empty java.util.Map object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide

344

(5) Exceptions

If this Connection object is closed, the JDBC driver throws an SQLException.

8.2.22 getWarnings()

(1) Function

This method acquires as an SQLWarning object a warning reported by a call related to this Connection object.

This method acquires the SQLWarning object held by the corresponding Connection object. By executing the
getNextWarning method of the acquired SQLWarning object, you can acquire the next warning.

(2) Format

public synchronized SQLWarning getWarnings () throws SQLException

(3) Arguments

None.

(4) Return value

The method returns the first SQLWarning object. If there is no SQLWarning object, the method returns null.

(5) Exceptions

If this Connection object is closed, the JDBC driver throws an SQLException.

8.2.23 isClosed()

(1) Function

This method returns a value indicating whether this Connection object is closed.

The HADB server connection is closed when the c1ose method is called or when a specific fatal error has occurred.
This method is guaranteed to return t rue only when it is executed after a c1ose method.

This method cannot be used to determine whether the HADB server connection is valid.

(2) Format

public synchronized boolean isClosed() throws SQLException

(3) Arguments

None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 345

(4) Return value

If this Connection object is closed, the method returns t rue; if not, the method returns false.

(5) Exceptions

None.

8.2.24 isReadOnly()

(1) Function

This method acquires a value indicating whether this Connect ion object is in read-only mode.

(2) Format

public synchronized boolean isReadOnly () throws SQLException

(3) Arguments

None.

(4) Return value

If this Connection object is in read-only mode, the method returns t rue; if not, the method returns false.

(5) Exceptions

If this Connection object is closed, the JDBC driver throws an SQLException.

8.2.25 isValid(int timeout)

(1) Function

This method acquires the current connection status.

(2) Format

public synchronized boolean isValid(int timeout) throws SQLException

(3) Arguments

int timeout
Specifies the wait time (in seconds), in the range from 0 to 65,535.
If zero is specified, there will be no limit to the wait time.
If 65,536 or a greater value is specified, 65, 535 is assumed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 346

(4) Return value

If the method verifies that the connection is alive, it returns true. If the Connection object is closed, or if the wait
time specified in the argument has expired and a timeout has occurred, the method returns false.

(5) Exceptions

If -1 or a smaller value is specified in the argument, the JDBC driver throws an SQLException.

8.2.26 nativeSQL(String sql)

(1) Function

This method converts escape clauses in a specified SQL statement to a format that can be executed by HADB.

(2) Format

public synchronized String nativeSQL (String sgl) throws SQLException

(3) Arguments

String sqgl
Specifies an SQL statement.

(4) Return value

The method returns an SQL statement that can be executed by HADB.

If null is specified for sql, the method returns null. If an empty string is specified for sql, the method returns an
empty string.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:
e The Connection object is closed.
* The format of an escape clause in the specified SQL statement is invalid for the following reason:

* { and a keyword are specified, but } is missing.

e The specified SQL statement exceeds 16,000,000 characters.

(6) Syntax rules for escape clause

This method converts any escape clauses in the specified SQL statement to a format that can be executed by HADB,
and then returns the SQL statement. The following are the syntax rules for an escape clause:

escape-clause ::= escape-sequence-for-date-or-time-or-time-stamp
| escape-sequence-for-escape-character-in-LIKE-predicate
| escape-sequence-for-outer-join
| scalar-function-escape-sequence

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 347

escape-sequence-for-date-or-time-or-time-stamp ::= date-escape-sequence
| time-escape-sequence
| time-stamp-escape-sequence
date-escape-sequence ::=
escape-start-code d default-character-string-representation-of-date-data'l e
scape—-end-code
time-escape-sequence ::=
escape-start-code t default-character-string-representation-of-time-data*? e
scape—-end-code
time-stamp-escape-sequence ::=
escape-start-code ts default-character-string-representation-of-time-stamp-
datat3 escape-end-code
escape-sequence-for-escape-character-in-LIKE-predicate ::=
escape-start-code escape escape-character escape-end-code

escape-sequence-for-outer-join ::= escape-start-code oj joined-table escape-end-code
scalar-function-escape-sequence ::= escape-start-code fn scalar-function escape-end-c
ode

scalar-function = scalar-function-in-default-formatt?

escape-start-code ::= '{'
escape-end-code Ty

#1
Character string representation ' YYYY-MM-DD'
#2
Character string representation 'hh:mm:ss[.f...]1"
#3
Character string representation ' YYYY-MM-DD hh:mm:ss[.f...]"
#4
For details about the scalar function in the default format, see 7.8 Scalar functions that can be specified in the escape
clause.

Note that an escape clause cannot be specified in an underlined part. Because the JDBC driver does not perform syntax
analysis on the underlined parts, they will remain the same after conversion and will be subject to syntax analysis by
the HADB server.

The following keywords can be used in escape sequences. These keywords are not case sensitive.

1. d in a date escape sequence

2. t in a time escape sequence

3. ts in a time stamp escape sequence

4. escape in an escape sequence of an escape character of a LIKE predicate
5. 07 in an outer join escape sequence

6. fn in a scalar function escape sequence
The escape clause entry rules are as follows:

» The space can be used as the delimiter character in an escape clause.
* The delimiter can be inserted following an escape start code, following a keyword, and before an escape end code.

* You can specify multiple escape clauses in a single SQL statement.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 348

* The JDBC driver converts the escape clauses in an SQL statement to a format that can be executed by HADB. Note
that only the part of each escape clause that is enclosed in curly brackets is converted. The driver converts nothing

outside the escape clauses.
The following table shows the escape clause conversion rules.

Table 8-5: Escape clause conversion rules
Escape clause Before conversion

Date escape-start-code d default-character-string-representation-of-date-
data escape-end-code

Time escape-start-code t default-character-string-representation-of-time-
data escape-end-code

Time stamp escape-start-code t s default-character-string-representation-of-
time-stamp-data escape-end-code

LIKE escape-start-code escape escape-character escape-end-code

Outer join escape-start-code o7 joined-table escape-end-code

Scalar function escape-start-code £n scalar-function escape-end-code

After conversion

default-character-string-
representation-of-date-data

default-character-string-
representation-of-time-data

default-character-string-
representation-of-time-stamp-data

escape escape-character
joined-table

scalar-function-in-HADB-formar*

The JDBC driver converts a scalar function in the default format to the HADB format.
The table below shows the conversion formats of scalar functions whose default format differs from the HADB

server format.

In general, the JDBC driver does not check the number of arguments in scalar functions.

Table 8-6: Conversion formats of scalar functions whose default format differs from the HADB

server format

Scalar functions Format before conversion

Format after conversion (HADB format)

Mathematical function

String function

Time and date functions

8. The JDBC 1.2 API

CEILING (number)

LOG (float)

LOG10 (float)

RAND ([number, number])
TRUNCATE (number [, places])
CHAR (code)

LCASE (string)

OCTET LENGTH (string)
SUBSTRING (string, start[,lengthl])
UCASE (string)

CURDATE ()

CURRENT DATE ()

CURRENT TIME ()

CURRENT TIMESTAMP ()

CURTIME ()

CEIL (number)

LN (float)

LOG (10, float)

RANDOM ([number, number])
TRUNC (number [, places])
CHR (code)

LOWER (string)

LENGTHB (string)

SUBSTR (string, start[,length])
UPPER (string)

CURRENT DATE

CURRENT_ DATE

CURRENT TIME

CURRENT TIMESTAMP

CURRENT TIME

Hitachi Advanced Database Application Development Guide

349

Scalar functions Format before conversion Format after conversion (HADB format)
NOW () CURRENT TIMESTAMP

System function USER () CURRENT USER

8.2.27 prepareStatement(String sql)

(1) Function

This method creates a PreparedStatement object for sending an SQL statement with parameters to the HADB
server.

(2) Format

public synchronized PreparedStatement prepareStatement (String sgl) throws SQLExceptio
n

(3) Arguments

String sgl
Specifies the SQL statement that is to be executed.

(4) Return value

The method returns the PreparedStatement object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

* The Connection object is closed.
* Creation of the PreparedStatement object resulted in an error.
¢ A database access error occurs.

¢ The specified SQL statement exceeds 16,000,000 characters.

(6) Notes

The holdability of a ResultSet object generated from the PreparedStatement object created by this method
is always ResultSet .HOLD CURSORS OVER COMMIT.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 350

8.2.28 prepareStatement(String sql, int resultSetType, int
resultSetConcurrency)

(1) Function

This method creates a PreparedStatement object for sending an SQL statement with parameters to the HADB
server.

(2) Format

public synchronized PreparedStatement prepareStatement (String sgl, int resultSetType,
int resultSetConcurrency) throws SQLException

(3) Arguments

Stringsqgl
Specifies the SQL statement that is to be executed.

int resultSetType
Specifies a result set type.

int resultSetConcurrency

Specifies the concurrent processing mode.

(4) Return value

The method returns the PreparedStatement object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Connection object is closed.

¢ Creation of the PreparedStatement object resulted in an error.

¢ A value other than a ResultSet literal is specified for the result set type.

* A value other than a ResultSet literal is specified for the concurrent processing mode.
* A database access error occurs.

* The specified SQL statement exceeds 16,000,000 characters.

(6) Notes

* IfResultSet.TYPE SCROLL SENSITIVE is specified for the result set type, this JDBC driver changes it to
ResultSet.TYPE SCROLL INSENSITIVE, and then sets an SQLWarning.

* For the concurrent processing mode, the JDBC driver supports only ResultSet.CONCUR READ ONLY. If
ResultSet.CONCUR_UPDATABLE is specified, the JDBC driver changes it to
ResultSet.CONCUR READ ONLY, and then sets an SQLWarning.

* The holdability of a ResultSet object generated from the PreparedStatement object created by this
method is always ResultSet.HOLD CURSORS OVER COMMIT.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 351

8.2.29 prepareStatement(String sql, int resultSetType, int
resultSetConcurrency, int resultSetHoldability)

(1) Function

This method creates a PreparedStatement object for sending an SQL statement with parameters to the HADB
server.

(2) Format

public synchronized PreparedStatement prepareStatement (String sgl, int resultSetType,
int resultSetConcurrency, int resultSetHoldability) throws SQLException

(3) Arguments

Stringsqgl
Specifies the SQL statement that is to be executed.
int resultSetType

Specifies a result set type.

int resultSetConcurrency

Specifies the concurrent processing mode.

int resultSetHoldability
Specifies the holdability of the ResultSet object.

(4) Return value

The method returns the PreparedStatement object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

* The Connection object is closed.

* Creation of the PreparedStatement object resulted in an error.

¢ A value other than a ResultSet literal is specified for the result set type.

* A value other than a ResultSet literal is specified for the concurrent processing mode.

e A value other than a ResultSet literal is specified for the holdability of the ResultSet object.
¢ A database access error occurs.

* The specified SQL statement exceeds 16,000,000 characters.

(6) Notes

* IfResultSet.TYPE SCROLL SENSITIVE is specified for the result set type, this JDBC driver changes it to
ResultSet.TYPE SCROLL INSENSITIVE, and then sets an SQLWarning.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 352

* For the concurrent processing mode, the JDBC driver supports only ResultSet.CONCUR READ ONLY. If
ResultSet.CONCUR UPDATABLE is specified, the JDBC driver changes it to
ResultSet.CONCUR READ ONLY, and then sets an SQLWarning.

* For the holdability of the ResultSet object, the JDBC driver supports only
ResultSet.HOLD CURSORS OVER COMMIT. IfResultSet. CLOSE CURSORS AT COMMIT is
specified, the JDBC driver changes it to ResultSet .HOLD CURSORS OVER COMMIT, and then sets an
SQLWarning.

8.2.30 rollback()

(1) Function

This method undoes all changes made by the transaction and releases all locks currently held by the Connection
object.

If you call this method while the automatic commit mode is enabled, the method performs rollback processing without
throwing an exception.

(2) Format

public synchronized void rollback() throws SQLException

(3) Arguments

None.

(4) Return value

None.
(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Connection object is closed.

e A database access error occurs.

(6) Notes

 Ifrollback processing is successful, the ResultSet object is invalidated.

» Ifrollback processing fails, the HADB server terminates abnormally.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 353

8.2.31 setAutoCommit(boolean autoCommit)

(1) Function

This method sets the automatic commit mode for this connection.

(2) Format

public synchronized void setAutoCommit (boolean autoCommit) throws SQLException

(3) Arguments

boolean autoCommit

Specifies t rue to enable the automatic commit mode or false to disable it.

(4) Return value

None.

(5) Exceptions

If this Connection object is closed, the JDBC driver throws an SQLException.

(6) Notes

* When the automatic commit mode is enabled, an SQL statement is committed automatically when its processing is
completed. Therefore, each SQL statement is treated as one transaction. When the automatic commit mode is
disabled, an SQL statement is not completed until the commit or rollback method is executed. By default, the
automatic commit mode is enabled.

* Automatic commit is performed upon completion of an SQL statement. If the SQL statement returns a ResultSet
object, the SQL statement is completed when the ResultSet object is closed.

* A transaction that is executing when this method is called will not be committed.

8.2.32 setCatalog(String catalog)

(1) Function

This method sets the name of the catalog that is to be passed and selects a database work subspace for the Connection
object.

(2) Format

public synchronized void setCatalog(String catalog) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 354

(3) Arguments

String catalog

This argument is ignored, if specified.

(4) Return value

None.

(5) Exceptions

If this Connection object is closed, the JDBC driver throws an SQLException.

8.2.33 setHADBAuditinfo(int pos,String userinfo)

(1) Function

This method sets user-added information, such as the account information of applications that access the HADB server.
The user-added information that is set has effect until it is revoked.

The user-added information set by using this function is output as an audit trail at the following times:

* When an SQL statement that includes a Statement object generated by using the Connection objectis executed

e When an SQL statement that includes a PreparedStatement object generated by using the Connection
object is executed

e When the Connection object is closed

(2) Format

public synchronized void setHADBAuditInfo (int pos,String userinfo) throws SQLExceptio
n

(3) Arguments

int pos
Specifies which column in the audit trail the user-added information specified by userinfo is to be output to.
Specify one of the following values:

1: Specify this value to output the user-added information specified by userinfo to user-added information 1 in
the audit trail.

2: Specify this value to output the user-added information specified by userinfo to user-added information 2 in
the audit trail.
3: Specify this value to output the user-added information specified by userinfo to user-added information 3 in
the audit trail.

String userinfo

Specifies user-added information.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 355

The user-added information specified here is converted in the character encoding that is used on the HADB server.
Make sure that the size of the specified user-added information does not exceed 100 bytes after the character encoding
is converted.

Note that a null character (0x00) cannot be used.

To revoke the specification of the user-added information, specify null.

(4) Return value

None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:
* The Connection object is closed.
e The value specified in pos is not a value in the range from 1 to 3.
¢ Character encoding conversion of the user-added information fails.
¢ The size of the user-added information exceeds 100 bytes after the character encoding is converted.
¢ The user-added information includes a null character (0x00).

¢ A transaction has already started.

(6) Notes

 This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

* Ifthe Connection object is pooled and then reused, the user-added information that was set by using the
setHADBAuditInfo method is not reused. In such a case, the status changes to the status that existed before the
setHADBAuditInfo method was executed.

8.2.34 setHADBOrderMode(int mode)

(1) Function

This method sets for this Connection object the sort order for character string data in a SELECT statement in which
the ORDER BY clause is specified.

The information set in this method corresponds to the adb clt sgl order mode operand in the client definition.

(2) Format

public void setHADBOrderMode (int mode) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 356

(3) Arguments

int mode

Specifies the sort order for character string data in a SELECT statement in which the ORDER BY clause is specified.
Specify one of the following values:

¢ AdbConnection.HADB SQL ORDER MODE BYTE
Sort character string data by bytecode.

+ AdbConnection.HADB SQL ORDER MODE_ISO
Sort character string data by sort code (ISO/IEC 14651:2011 compliance).

(4) Return value

None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Connection object is closed.
* A transaction has already started.

* The specified sort order is not one of the following:
« AdbConnection.HADB SQL ORDER MODE BYTE
« AdbConnection.HADB SQL ORDER MODE_ISO

(6) Notes

* The sort order for character string data in a SELECT statement in which the ORDER BY clause is specified is
determined in the priority order shown below (the smaller the number, the higher the priority). For example, if 1
and 2 are both specified, 1 takes effect.

1. Sort order specified with the set HADBOrderMode method
2. Sort order specified with the adb_clt sgl order mode system property

3. Value of the adb _clt sgl order mode property specified in the info argument of the
getConnection method of the DriverManager class

4. Value of adb clt sgl order mode property specified in the url argument of the getConnection
method of the DriverManager class

5. Sort order specified with the adb sgl order mode server definition operand

* When the set HADBOrderMode method is used to specify the sort order for character string data in a SELECT
statement in which the ORDER BY clause is specified, that sort order setting is not inherited when the Connection
object has been pooled and then reused. In such a case, the sort order remains the same as it was before the
setHADBOrderMode method was executed.

 This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 357

8.2.35 setHADBSQLHashFItSize(int areaSize)

(1) Function

This method sets for this Connection object the size of the hash filter area.

The value set by this method is compatible with the adb sgl exe hashflt area size operand in the client
definition.

0 Important

For the Statement or PreparedStatement object generated from the Connection object for
which this method is specified, the size of the hash filter area that is set by this method is applied until the
Connection object is closed.

For details about how to use this method (how to change the size of the hash filter area for each SQL statement to be
executed), see (7) Examples in 8.2.37 setHADBSQLMaxRthdNum(int rthdNum).

(2) Format

public void setHADBSQLHashFltSize (int areaSize) throws SQLException

(3) Arguments

int areaSize

Specifies in megabytes the size of the hash filter area to be set.

(4) Return value

None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

¢ The Connection object is closed.

* An invalid value is specified in areaSize.

(6) Notes

* This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

* For the size of the hash filter area specified by using the set HADBSQLHashF1tSize method, the previously set
value is not inherited if the Connection object is pooled and then reused. This is the same case as when the
setHADBSQLHashF1tSize method has not been executed.

¢ Evenifthe setHADBSQLHashF1tSize method is used to set the size of the hash filter area again, the new setting
is not applied to the Statement or PreparedStatement object that has already been generated.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 358

* For details about how the size of the hash filter area is determined, see the explanation of the operand
adb sql exe hashflt area size in 2.2.3 Operands related to performance.

8.2.36 setHADBSQLHashTblSize(int areaSize)

(1) Function

This method sets for this Connection object the size of the hash table area.

The value set by this method is compatible with the adb sgl exe hashtbl area size operand in the client
definition.

0 Important

For the Statement or PreparedStatement object generated from the Connection object for
which this method is specified, the size of the hash table area that is set by this method is applied until the
Connection object is closed.

For details about how to use this method (how to change the size of the hash table area for each SQL statement to be
executed), see (7) Examples in 8.2.37 setHADBSQLMaxRthdNum(int rthdNum).

(2) Format

public void setHADBSQLHashTblSize (int areaSize) throws SQLException

(3) Arguments

int areaSize

Specifies in megabytes the size of the hash table area to be set.

(4) Return value

None.
(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

¢ The Connection object is closed.

* An invalid value is specified in areaSize.

(6) Notes

* This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 359

 For the size of the hash table area specified by using the set HADBSQLHashTb1S1 ze method, the previously set
value is not inherited if the Connection object is pooled and then reused. This is the same case as when the
setHADBSQLHashTbl1S1ize method has not been executed.

* Evenifthe setHADBSQLHashTb1S1ize method is used to set the size of the hash table area again, the new setting
is not applied to the Statement or PreparedStatement object that has already been generated.

 For details about how the size of the hash table area is determined, see the explanation of the
adb_sql_exe hashtbl area size operand in 2.2.3 Operands related to performance.

8.2.37 setHADBSQLMaxRthdNum(int rthdNum)

(1) Function

This method sets for this Connection object the maximum number of SQL processing real threads.

The value set by this method is compatible withthe adb sql exe max rthd numoperand in the client definition.

0 Important

For the Statement or PreparedStatement object generated from the Connection object for
which this method is specified, the maximum number of SQL processing real threads that is set by this
method is applied until the Connection object is closed.

(2) Format

public void setHADBSQLMaxRthdNum(int rthdNum) throws SQLException

(3) Arguments

int rthdNum

Specifies the maximum number of SQL processing real threads to be set.

(4) Return value

None.
(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Connection object is closed.

* Aninvalid value is specified in rthdNum.

(6) Notes

 This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 360

¢ For the maximum number of SQL processing real threads specified by using the set HADBSQLMaxRthdNum
method, the previously set value is not inherited if the Connection object is pooled and then reused. This is the
same case as when the set HADBSQLMaxRthdNum method has not been executed.

e Evenifthe set HADBSQLMaxRthdNum method is used to set the maximum number of SQL processing real threads
again, the new setting is not applied to the Statement or PreparedStatement object that has already been
generated.

* For details about how the maximum number of SQL processing real threads is determined, see the explanation of
the adb_sql exe max rthd num operand in 2.2.3 Operands related to performance.

(7) Examples

In the following example, the set HADBSQLMaxRthdNum and get HADBSQLMaxRthdNum methods are used to
change the maximum number of SQL processing real threads for each SQL statement to be executed.

Example 1:

Connection cnct = ds.getConnection();
AdbConnection con = cnct.unwrap (com.hitachi.hadb.jdbc.AdbConnection.class);

// Back up the default of the maximum number of SQL processing real threads.
int default sgl exe rthd num = con.getHADBSQLMaxRthdNum/() ;

// Change the maximum number of SQL processing real threads to O.
con.setHADBSQLMaxRthdNum (0) ;

// Generate a PreparedStatement object.

// All SQL statements executed with this PreparedStatement object operate under

// the condition where the maximum number of SQL processing real threads is 0.
PreparedStatement pstmt = con.prepareStatement ("SELECT * FROM MASTER.SQL USERS WHE
RE USER NAME=?");

// Reset the maximum number of SQL processing real threads to the default.
con.setHADBSQLMaxRthdNum (default sgl exe rthd num);
// This operation does not affect the preceding pstmt.

pstmt.setString (1, "FOO");

ResultSet rs = pstmt.executeQuery(); // Execute an SQL statement under the
// condition where the maximum number of SQL processing real threads is 0.
while (rs.next()) {

}
rs.close();
pstmt.close();

Example 2:

In the following example, each SQL statement is executed with a different maximum number of SQL processing
real threads.

Connection cnct = ds.getConnection();
AdbConnection con = cnct.unwrap (com.hitachi.hadb.jdbc.AdbConnection.class);

// Back up the default of the maximum number of SQL processing real threads.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 361

int default sgl exe rthd num = con.getHADBSQLMaxRthdNum/() ;

// Change the maximum number of SQL processing real threads to O.
con.setHADBSQLMaxRthdNum (0) ;

// Generate a PreparedStatement object.

// All SQL statements executed with pstmtl operate under the condition

// where the maximum number of SQL processing real threads is O.

PreparedStatement pstmtl = con.prepareStatement ("SELECT * FROM MASTER.SQL USERS WH
ERE USER NAME=?") ;

// Change the maximum number of SQL processing real threads to 4.
con.setHADBSQLMaxRthdNum(4); // This operation does not affect
// the preceding pstmtl.

// Generate a PreparedStatement object.

// All SQL statements executed with pstmt2 operate under the condition

// where the maximum number of SQL processing real threads is 4.

PreparedStatement pstmt2 = con.prepareStatement ("SELECT * FROM MASTER.SQL TABLE PR
IVILEGES WHERE GRANTOR=?") ;

// Reset the maximum number of SQL processing real threads to the default.
con.setHADBSQLMaxRthdNum (default sgl exe rthd num);
// This operation does not affect the preceding pstmtl and pstmt2.

pstmtl.setString(l, "HOGE");

ResultSet rsl = pstmtl.executeQuery(); // Execute an SQL statement under the
// condition where the maximum number of SQL processing real threads is 0.
while (rsl.next()) {

}
rsl.close();
pstmtl.close();

pstmt2.setString (1, "FOO");

ResultSet rs2 = pstmt2.executeQuery(); // Execute an SQL statement under the
// condition where the maximum number of SQL processing real threads is 4.
while (rs2.next()) {

}
rs2.close();
pstmt2.close () ;

a Note

* In the preceding examples, the processing to handle exceptions and other errors is omitted.

* The preceding examples will also be useful for reference purposes when you change the size of the hash
table area for each SQL statement to be executed by using the set HADBSQLHashTb1Size and
getHADBSQLHashTb1S1ize methods.

» The preceding examples will also be useful for reference purposes when you change the size of the hash
filter area for each SQL statement to be executed by using the setHADBSQLHashF1tSize and
getHADBSQLHashF1tSize methods.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 362

8.2.38 setHoldability(int holdability)

(1) Function

This method sets the holdability of the ResultSet object that is created by using this Connection object.

(2) Format

public synchronized void setHoldability(int holdability) throws SQLException

(3) Arguments

int holdability

This argument is ignored, if specified. The JDBC driver always assumes that
ResultSet.HOLD CURSORS OVER COMMIT is specified.

(4) Return value

None.

(5) Exceptions

If this Connection object is closed, the JDBC driver throws an SQLException.

8.2.39 setReadOnly(boolean readOnly)

(1) Function

This method sets this Connection object in the read-only mode. The method sets the transaction access mode.

(2) Format

public synchronized void setReadOnly(boolean readOnly) throws SQLException

(3) Arguments

boolean readOnly

Specify true to set the Connection object in the read-only mode; otherwise, specify false.

(4) Return value

None.

(5) Exceptions

The JDBC driver throws an SQLException in the following cases:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 363

e The Connection object is closed.
* A transaction has already started.

* AResultSet object created by this Connection object with HOLD CURSORS OVER COMMIT specified for
holdability has not been closed.

(6) Notes

* The transaction access mode is determined in the priority order described below. A smaller number represents a
higher priority (for example, 1 has a higher priority than 2).

1. Transaction access mode specified with the setReadOnly method
2. Transaction access mode specified with the adb clt trn access mode system property

3.adb_clt trn access_mode property value specified in the info argument of the getConnection
method of the DriverManager class

4. Value of adb_clt trn access mode specified in the url argument of the getConnection method
of the DriverManager class

* In the case of the transaction access mode specified with the setReadOnly method, if the Connection object
is pooled and then is reused, the previous transaction access mode is not inherited. This is the same status as when
the setReadOnly method has not been executed.

8.2.40 setSchema(String schema)

(1) Function

This method sets the name of the schema to access. This method does not set a schema name. The value specified in
the argument of this method is ignored.

(2) Format

public synchronized void setSchema (String schema) throws SQLException

(3) Arguments

String schema

Specifies the schema name. However, any value you specify is ignored.

(4) Return value

None.

(5) Exceptions

If the Connection object is closed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 364

8.2.41 setTransactionlsolation(int level)

(1) Function

This method sets the transaction isolation level for this Connection object.

(2) Format

public synchronized void setTransactionIsolation(int level) throws SQLException

(3) Arguments

int level

Specifies the transaction isolation level to be applied. Specify one of the following values:

* Connection.TRANSACTION READ COMMITTED
Specifies that READ COMMITTED is to be applied as the transaction isolation level.

* Connection.TRANSACTION REPEATABLE READ
Specifies that REPEATABLE READ is to be applied as the transaction isolation level.

(4) Return value

None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

* The Connection object is closed.
¢ A transaction has already started.

* AResultSet object created by this Connection object with HOLD CURSORS OVER COMMIT specified for
holdability has not been closed.

* The value specified for the transaction isolation level is neither of the following:
* Connection.TRANSACTION READ COMMITTED

* Connection.TRANSACTION REPEATABLE READ

(6) Notes

¢ The transaction isolation level is determined in the priority order described below. A smaller number represents a
higher priority (for example, 1 has a higher priority than 2).

1. Transaction isolation level specified with the setTransactionIsolation method
2. Transaction isolation level specified in the adb clt trn iso_ 1v system property

3.adb clt trn iso 1v property value specified in the info argument of the getConnection method
of the DriverManager class

4. Value of adb_clt trn iso 1v specified in the url argument of the getConnection method of the
DriverManager class

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 365

5. Transaction isolation level specified in the adb sys trn iso 1v server definition operand

* The transaction isolation level specified with the setTransactionIsolation method is not inherited when
the Connection object has been pooled and then reused. In such a case, it remains the same as it was before the
setTransactionIsolation method was executed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 366

8.3 Statement interface

This section explains the methods provided by the Statement interface.

8.3.1 List of the methods in the Statement interface

(1) Main functions of the Statement interface

The Statement interface provides the following main functions:

¢ Execution of SQL statements

* Creation of a result set (ResultSet object) for retrieval results

* Return of the number of updated rows as the result of updating

* Specification of the maximum number of rows to be retrieved

* Specification of a retrieval limit time

(2) Methods in the Statement interface that are supported by HADB

The following table lists and describes the methods in the Statement interface that are supported by HADB.

Table 8-7: Methods in the Statement interface

No.

10

11

12

13

Method in the Statement interface
addBatch (String sqgl)

cancel ()

clearBatch ()
clearWarnings ()

close ()

closeOnCompletion ()

execute (String sqgl)

executeBatch ()

executeLargeBatch ()

executelargeUpdate (String sqgl)

executeQuery (String sqgl)

executeUpdate (String sql)

getConnection ()

8. The JDBC 1.2 API

Function
Adds SQL statements to the Statement object's batch.

Cancels the SQL statements executing in the corresponding object and in objects
using the same connection as that object.

Clears all SQL statements registered in this Statement object's batch.
Clears all warnings that have been reported for this Statement object.

Closes the Statement object and any ResultSet object created from this
Statement object.

Closes this Statement object when all result sets that depend on the
Statement object are closed.

Executes an SQL statement.

Executes the SQL statements registered in a batch and returns the number of
updated rows as int data in an array.

Executes the SQL statements registered in a batch and returns the number of
updated rows as 1ong data in an array.

Executes an SQL statement (other than a retrieval SQL statement) and returns
the number of updated rows as 1ong data.

Executes a retrieval SQL statement and returns a Resul t Set object containing
the retrieval result.

Executes an SQL statement (other than a retrieval SQL statement) and returns
the number of updated rows as int data.

Returns the Connection object that created the Statement object.

Hitachi Advanced Database Application Development Guide

367

No.

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Method in the Statement interface

getFetchDirection ()

getFetchSize ()

getHADBSQLSerialNum()

getHADBStatementHandle ()

getLargeMaxRows ()

getLargeUpdateCount ()

getMaxFieldSize ()

getMaxRows ()

getMoreResults ()

getQueryTimeout ()

getResultSet ()

getResultSetConcurrency ()

getResultSetHoldability ()

getResultSetType ()

getUpdateCount ()

getWarnings ()

isClosed()

isCloseOnCompletion ()

isPoolable ()

setCursorName (String name)

setEscapeProcessing (boolean

enable)

setFetchDirection (int direction)

setFetchSize (int rows)

8. The JDBC 1.2 API

Function

Acquires the default fetch direction for a result set that is created from this
Statement object.

Acquires the default fetch size (number of retrieval result rows to be transferred
from the HADB server to the HADB client in the batch mode) foraResultSet
object that is created from the Statement object.

Acquires the SQL statement sequence number that is assigned to this
Statement object.

Acquires the statement handle that is assigned to this Statement object.

Acquires the maximum number of rows that can be stored in a ResultSet
object created from this Statement object as 1ong data.

Returns the number of updated rows as 1ong data.

Acquires the maximum number of bytes for a CHAR or VARCHAR column of a
ResultSet object that is created by this Statement object.

Acquires the maximum number of rows that can be stored in a ResultSet
object created from this Statement object as int data.

Moves to the next result set.

Acquires the timeout time set for SQL processing in the setQueryTimeout
method.

Acquires retrieval results as a ResultSet object.

Acquires the concurrent processing mode for a ResultSet object that is
created from this Statement object.

Acquires the holdability of the ResultSet object that is created from this
Statement object.

Acquires the result set type of a ResultSet object that is created from this
Statement object.

Returns the number of updated rows as int data.

Acquires the first warning that is reported by a call related to this Statement
object.

Acquires a value indicating whether this Statement object is closed.

Acquires a value that indicates whether this Statement object is closed when
all result sets that depend on the object are closed.

Acquires a value indicating whether this Statement object can be pooled.

Specifies the SQL cursor name to be used by the execute method of the next
Statement object.

Specifies whether escape syntax analysis by this Statement object is to be
enabled or disabled.

Specifies the fetch direction for a result set that is created from this Statement
object.

Specifies the default fetch size (number of retrieval result rows to be transferred
from the HADB server to the HADB client in the batch mode) foraResultSet
object that is created from this Statement object.

Hitachi Advanced Database Application Development Guide

368

No. Method in the Statement interface Function

37 setLargeMaxRows (long max) Sets the maximum number of rows that can be stored in a ResultSet object
created from this Statement object, as 1ong data.

38 setMaxFieldSize (int max) Specifies the maximum number of bytes for a CHAR or VARCHAR column in a
ResultSet object that is created from this Statement object.

39 setMaxRows (int max) Sets the maximum number of rows that can be stored in a ResultSet object
created from this Statement object, as int data.

40 setQueryTimeout (int seconds) Specifies the SQL processing timeout value.

0 Important

HADB does not support methods that are not listed in this table. If an unsupported method is executed, an
SQLException might be thrown.

(3) Required package name and class name

The package and class names required in order to use the Statement interface are as follows:

* Package name: com.hitachi.hadb.jdbc

¢ (Class name: AdbStatement

8.3.2 addBatch(String sql)

(1) Function

This method adds SQL statements to the Statement object's batch. You can add a maximum of 2,147,483,647 SQL
statements.

(2) Format

public synchronized void addBatch(String sgl) throws SQLException

(3) Arguments

Stringsgl
Specifies the SQL statements to be added.

(4) Return value

None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 369

* The Connection object that created the Statement object is closed.
e An attempt was made to add more than 2,147,483,647 SQL statements.
* null or acharacter string with a length of zero is specified as the SQL statements.

* A specified SQL statement exceeds 16,000,000 characters.

8.3.3 cancel()

(1) Function

This method cancels the SQL statements executing in the corresponding object and in objects using the same connection
as that object.

You can use this method to cancel executing SQL statements asynchronously.

(2) Format

public void cancel () throws SQLException

(3) Arguments

None.

(4) Return value

None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

* The Connection object that created the Statement object is closed.

(6) Notes

» Ifthe corresponding Statement object is not executing any SQL statements, but another object is executing SQL
statements on the same connection object, this method performs asynchronous cancellation.

» Ifthe corresponding Statement object is not executing any SQL statements and no other object is executing SQL
statements on the same connection object, this method does not perform cancellation processing.

 If asynchronous cancellation of SQL statements is successful, the transaction is rolled back.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 370

8.3.4 clearBatch()

(1) Function

This method clears all SQL statements registered in this Statement object's batch.

(2) Format

public synchronized void clearBatch() throws SQLException

(3) Arguments

None.

(4) Return value

None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

* The Statement object is closed.

* The Connection object that created the Statement object is closed.

8.3.5 clearWarnings()

(1) Function

This method clears all warnings that have been reported for this Statement object.

(2) Format

public synchronized void clearWarnings () throws SQLException

(3) Arguments

None.

(4) Return value

None.

(5) Exceptions

None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 371

8.3.6 close()

(1) Function

This method closes the Statement object and any ResultSet object created from this Statement object.

(2) Format

public synchronized void close() throws SQLException

(3) Arguments

None.

(4) Return value

None.

(5) Exceptions

If a database access error occurs, the JDBC driver throws an SQLException.

8.3.7 closeOnCompletion()

(1) Function

This method closes the Statement object when all result sets that depend on the Statement object have been
closed. This method is invalid when running the Statement object does not generate a result set.

The effect on the Statement object is the same regardless of how many times this method is called.

Calling this method affects subsequent executions of Statement objects, and any Statement objects with
dependent result sets that are currently open.

(2) Format

public synchronized void closeOnCompletion () throws SQLException

(3) Arguments

None.

(4) Return value

None.

(5) Exceptions

The JDBC driver throws an SQLException in the following cases:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 372

* The Statement object is closed.

* The Connection object that created the Statement object is closed.

8.3.8 execute(String sq|l)

(1) Function

This method executes an SQL statement. You can use the getResultSet and getUpdateCount methods (or the
getLargeUpdateCount method) to acquire the ResultSet object and the number of updated rows.

The following table shows the return values of the getResultSet and getUpdateCount methods (or the
getLargeUpdateCount method) depending on the type of the SQL statement that was executed.

Table 8-8: Return values of the getResultSet and getUpdateCount methods (or the
getLargeUpdateCount method) depending on the type of the SQL statement that was

executed
Type of the SQL statement that Return value of the getResultSet method Return value of the getUpdateCount
was executed method or getLargeUpdateCount
method
Retrieval SQL statement ResultSet object obtained as the execution = -1
result
Non-retrieval SQL statement null 0 or a greater value®
SQL execution resulting in an error null -1
#

If the number of updated rows might exceed Integer .MAX VALUE, use the getLargeUpdateCount method
instead of the get UpdateCount method. If youuse the get UpdateCount method, it will return 0 if the number
of updated rows exceeds Integer .MAX VALUE.

é Note

A retrieval SQL statement means a SELECT statement. Non-retrieval SQL statements include update SQL
statements (such as the UPDATE statement) and definition SQL statements (such as CREATE TABLE).

An update SQL statement means INSERT, UPDATE, DELETE, PURGE CHUNK, and TRUNCATE TABLE
statements.

(2) Format

public synchronized boolean execute (String sqgl) throws SQLException

(3) Arguments

String sqgl
Specifies the SQL statement that is to be executed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 373

(4) Return value

If a retrieval SQL statement was executed, this method returns t rue; if not, the method returns false.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

e The Connection object that created the Statement object is closed.

* null or a character string with a length of zero was specified in the sgl argument.
* A database access error occurs.

* The specified SQL statement exceeds 16,000,000 characters.

8.3.9 executeBatch()

(1) Function

This method executes the SQL statements registered in a batch and returns the number of updated rows as int data in
an array.

The method clears all the SQL statements registered in the batch after executing all of them. If an error occurs during
processing, the method still clears all the SQL statements registered in the batch.

If the number of updated rows might exceed Integer .MAX VALUE, use the executeLargeBatch method
instead of the executeBatch method. If you use the executeBatch method, it will return 0 if the number of
updated rows exceeds Integer .MAX VALUE.

(2) Format

public synchronized int[] executeBatch () throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the number of updated rows for each SQL statement that was executed, as int data in an array.
The elements of the array are in the order the SQL statements were registered into the batch. If no SQL statements are
registered in the batch, or if the first SQL statement in the batch resulted in an error, the method returns an array containing
no elements.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 374

* The Connection object that created the Statement object is closed.
The method throws a BatchUpdateException (subclass of SQLException) in the following cases:

* A retrieval SQL statement was executed in the batch.

¢ A database access error occurs.

8.3.10 executeLargeBatch()

(1) Function

This method executes the SQL statements registered in a batch and returns an array of update counts in 1 ong format.

This method clears the SQL statements in the batch after executing all of them. All SQL statements will be cleared even
if an error occurs during processing.

If there is a possibility that the update count might exceed Integer.MAX VALUE, use the executeLargeBatch
method instead of executeBatch. Ifyouuse the executeBatch method, it will return 0 if the update count exceeds
Integer.MAX VALUE.

(2) Format

public synchronized long[] executelargeBatch() throws SQLException

(3) Arguments

None.

(4) Return value

This method returns a 1 ong array of the numbers of updated rows for each of the executed SQL statements. The elements
of the array are in the order in which the SQL statements are registered in the batch. If there are no SQL statements
registered in the batch or the first SQL statement in the batch results in an error, the method returns an array containing
zero elements.

(5) Exceptions

For details about exceptions, see (5) Exceptions in 8.3.9 executeBatch().

8.3.11 executelLargeUpdate(String sql)

(1) Function

This method executes an SQL statement (other than a retrieval SQL statement) and returns the number of updated rows
as a long value.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 375

If it is possible that the number of updated rows might exceed Integer .MAX VALUE, use the
executelLargeUpdate (String sql) method instead of executeUpdate (String sqgl). If you use the
executeUpdate (String sgl) method, it will return O if the update count exceeds Integer .MAX VALUE.

(2) Format

public synchronized long executelargeUpdate (String sqgl) throws SQLException

(3) Arguments

String sgl
Specifies the SQL statement (other than a retrieval SQL statement) to be executed.

(4) Return value

Ifan INSERT, UPDATE, or DELETE statement was executed, the method returns the number of updated rows as 1ong
data. If any other SQL statement was executed, the method returns 0.

(5) Exceptions

For details about exceptions, see (5) Exceptions in 8.3.13 executeUpdate(String sql).

8.3.12 executeQuery(String sql)

(1) Function

This method executes a retrieval SQL statement and returns a ResultSet object containing the retrieval result.

(2) Format

public synchronized ResultSet executeQuery(String sgl) throws SQLException

(3) Arguments

String sqgl
Specifies the SQL statement (retrieval SQL statement) that is to be executed.

(4) Return value

The method returns a ResultSet object containing the retrieval result.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

* The Connection object that created the Statement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 376

¢ A non-retrieval SQL statement (such as the INSERT statement) was executed.
* null or acharacter string with a length of zero was specified in the sgl argument.
* A database access error occurs.

¢ The specified SQL statement exceeds 16,000,000 characters.

8.3.13 executeUpdate(String sql)

(1) Function

This method executes a SQL statement (other than a retrieval SQL statement), and returns the number of updated rows
as int data. If the number of updated rows might exceed Integer .MAX VALUE, use the
executelLargeUpdate (String sgl) method instead of the executeUpdate (String sgl) method. If you
use the executeUpdate (String sqgl) method, it will return O if the number of updated rows exceeds
Integer.MAX VALUE.

(2) Format

public synchronized int executeUpdate (String sgl) throws SQLException

(3) Arguments

String sgl

Specifies the SQL statement (non-retrieval SQL statement) that is to be executed.

(4) Return value

If an INSERT, UPDATE, or DELETE statement was executed, this method returns the number of updated rows as int
data. If any other SQL statement was executed, the method returns 0.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

* The Statement object is closed.

* The Connection object that created the Statement object is closed.

¢ A retrieval SQL statement (SELECT statement) was executed.

e null or a character string with a length of zero was specified in the sql argument.
* A database access error occurs.

¢ The specified SQL statement exceeds 16,000,000 characters.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 377

8.3.14 getConnection()

(1) Function

This method returns the Connection object that created the Statement object.

(2) Format

public synchronized Connection getConnection() throws SQLException

(3) Arguments

None.

(4) Return value

The method returns a Connection object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

* The Connection object that created the Statement object is closed.

8.3.15 getFetchDirection()

(1) Function

This method acquires the default fetch direction for a result set that is created from this Statement object.

(2) Format

public synchronized int getFetchDirection() throws SQLException

(3) Arguments

None.

(4) Return value

The method always returns ResultSet . FETCH FORWARD.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide

378

* The Connection object that created the Statement object is closed.

8.3.16 getFetchSize()

(1) Function

This method acquires the default fetch size (number of retrieval result rows to be transferred from the HADB server to
the HADB client in the batch mode) for a ResultSet object that is created from the Statement object.

(2) Format

public synchronized int getFetchSize () throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the default fetch size (number of retrieval result rows to be transferred from the HADB server to
the HADB client in the batch mode) for a ResultSet object that is created from this Statement object.

If 0 is specified in the setFetchSize method, the value of adb clt fetch size inthe system properties, user
properties, or URL connection properties is applied as the fetch size, but the return value is 0. The following table shows
the relationship between the fetch size and the return value.

Table 8-9: Relationship between the fetch size and the return value

Setting by the setFetchSize method (m) Return value
0 0
1 <m<65,535 m

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

* The Connection object that created the Statement object is closed.

8.3.17 getHADBSQLSerialNum()

(1) Function

This method acquires the SQL statement sequence number that is assigned to this Statement object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 379

(2) Format

public long getHADBSQLSerialNum() throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the SQL statement sequence number that is assigned to this Statement object.
This method returns 0 if executed before an SQL statement is executed.

(5) Exceptions

The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

* The Connection object that created the Statement object is closed.

(6) Notes

This is an HADB-specific method provided by the AdbStatement interface. For details about the execution
method, see 12.2 Wrapper interface.

8.3.18 getHADBStatementHandle()

(1) Function

This method acquires the statement handle that is assigned to this Statement object.

(2) Format

public int getHADBStatementHandle () throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the statement handle that is assigned to this Statement object.

This method returns 0 if executed before an SQL statement is executed.

(5) Exceptions

The JDBC driver throws an SQLException in the following cases:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 380

* The Statement object is closed.

* The Connection object that created the Statement object is closed.

(6) Notes

This is an HADB-specific method provided by the AdbStatement interface. For details about the execution
method, see 12.2 Wrapper interface.

8.3.19 getLargeMaxRows()

(1) Function

This method specifies the maximum number of rows that can be stored in a ResultSet object created from this
Statement object, as a 1ong value. Any rows in excess of this value are not stored in the ResultSet object. You
will not be notified that these rows have not been stored.

If you specify a value in the setLargeMaxRows method that exceeds Integer .MAX VALUE, use the
getLargeMaxRows method instead of getMaxRows. When you use the getMaxRows method, if the value of
Integer.MAX VALUE is exceeded, O is returned.

(2) Format

public synchronized long getLargeMaxRows () throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the maximum number of rows that can be stored in a ResultSet object created from this
Statement object, as a 1ong value. The value it returns is the value set by the setMaxRows or the
setLargeMaxRows method. A return value of 0 means that a maximum number of rows has not been set.

(5) Exceptions

For details about exceptions, see (5) Exceptions in 8.3.22 getMaxRows().

8.3.20 getLargeUpdateCount()

(1) Function

This method returns the number of updated rows as a 1ong value.

If the number of updated rows might exceed Integer .MAX VALUE, use the getLargeUpdateCount method
instead of getUpdateCount. If you use the getUpdateCount method, it will return 0 if the number of updated
rows exceeds Integer .MAX VALUE.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 381

(2) Format

public synchronized long getLargeUpdateCount () throws SQLException

(3) Arguments

None.

(4) Return value

For details about return values, see (4) Return value in 8.3.29 getUpdateCount().

(5) Exceptions

For details about exceptions, see (5) Exceptions in 8.3.29 getUpdateCount().

8.3.21 getMaxFieldSize()

(1) Function

This method acquires the maximum number of bytes for a CHAR or VARCHAR column of a ResultSet object that is
created by this Statement object. Any bytes in excess of this value are discarded.

(2) Format

public synchronized int getMaxFieldSize () throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the maximum number of bytes for a CHAR or VARCHAR column. The method returns the value set
by the setMaxFieldSize method. A value of 0 means that no maximum number of bytes has been set.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

* The Statement object is closed.

* The Connection object that created the Statement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 382

8.3.22 getMaxRows()

(1) Function

This method acquires the maximum number of rows that can be stored in a ResultSet object created from this
Statement object, as int data. Any rows in excess of this value are not stored in the Re sult Set object (and without
notification).

If the value specified in the setLargeMaxRows method exceeds Integer .MAX VALUE, use the
getLargeMaxRows method instead of the ge t MaxRows method. If you use the ge t MaxRows method, it will return
0 if the number of rows exceeds Integer .MAX VALUE.

(2) Format

public synchronized int getMaxRows () throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the maximum number of rows that can be stored in a ResultSet object created from this
Statement object, as int data. The value set in the setMaxRows or setLargeMaxRows method is returned. A
value of 0 means that no maximum number of rows has been set.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

* The Connection object that created the Statement object is closed.

8.3.23 getMoreResults()

(1) Function

This method moves to the next result set.

(2) Format

public synchronized boolean getMoreResults () throws SQLException

(3) Arguments

None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 383

(4) Return value

If there is another result set, the method returns t rue; if not, the method returns false.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

e The Connection object that created the Statement object is closed.

8.3.24 getQueryTimeout()

(1) Function

This method acquires the timeout time set for SQL processing in the setQueryTimeout method.

(2) Format

public synchronized int getQueryTimeout () throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the timeout value (in seconds) that was set by the setQueryTimeout method. If the
setQueryTimeout method has not been executed, the method returns 0.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

e The Connection object that created the Statement object is closed.

8.3.25 getResultSet()

(1) Function

This method acquires retrieval results as a ResultSet object.

(2) Format

public synchronized ResultSet getResultSet () throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide

384

(3) Arguments

None.

(4) Return value

This method returns the ResultSet object held by the Statement object. If there are no retrieval results in the
ResultSet object, the method returns null.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

¢ The Connection object that created the Statement object is closed.

8.3.26 getResultSetConcurrency()

(1) Function

This method acquires the concurrent processing mode for a ResultSet object that is created from this Statement
object.

(2) Format

public synchronized int getResultSetConcurrency() throws SQLException

(3) Arguments

None.

(4) Return value

This method always returns ResultSet .CONCUR READ ONLY.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

* The Statement object is closed.

* The Connection object that created the Statement object is closed.

8.3.27 getResultSetHoldability()

(1) Function

This method acquires the holdability of the ResultSet object that is created from this Statement object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 385

(2) Format

public synchronized int getResultSetHoldability() throws SQLException

(3) Arguments

None.

(4) Return value

The method always returns ResultSet .HOLD CURSORS OVER COMMIT.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

* The Connection object that created the Statement object is closed.

8.3.28 getResultSetType()

(1) Function

This method acquires the result set type of a ResultSet object that is created from this Statement object.

(2) Format

public synchronized int getResultSetType () throws SQLException

(3) Arguments

None.

(4) Return value

TMsnwﬂmdermsResultSet.TYPE_FORWARD_ONLYorResultSet.TYPE_SCROLL_INSENSITIVE

ResultSet.TYPE FORWARD ONLY

The only direction the cursor can move is forward.

ResultSet.TYPE SCROLL INSENSITIVE

The cursor can be scrolled, but changes to the underlying values are not reflected in the result set.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 386

* The Connection object that created the Statement object is closed.

8.3.29 getUpdateCount()

(1) Function

This method returns the number of updated rows as int data.

If the number of updated rows might exceed Integer .MAX VALUE, use the getLargeUpdateCount method
instead of the getUpdateCountmethod. If you use the getUpdateCount method, 0 is returned if
Integer.MAX VALUE is exceeded.

(2) Format

public synchronized int getUpdateCount () throws SQLException

(3) Arguments

None.

(4) Return value

The following table describes the details of the return value.

Table 8-10: Details of the return values of getUpdateCount and getLargeUpdateCount methods

Statement object's method execution status Return value of
getUpdateCou
nt or
getLargeUpdat
eCount method

No executeXXX method has been executed. -1

An executeXXX A getMoreResults method was executed after the last executeXXX method was -1

method has been executed.

executed.

The last executeXXX method executed resulted in an error. -1
The last method to be executed was an executeBatch or executeLargeBatch -1
method
The last method to be A retrieval SQL statement was executed at the end. -1
executed was an
executeXXXmethod other A non-retrieval SQL INSERT, UPDATE, Number of
than an executeBatch statement was executed at the = DELETE updated rows”
method o end.

. Other 0
executelargeBatch
method

If the number of updated rows might exceed Integer .MAX VALUE, use the getLargeUpdateCount method
instead of the getUpdateCount method. If you use the getUpdateCount method, it returns 0 if
Integer.MAX VALUE is exceeded.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 387

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

e The Connection object that created the Statement object is closed.

8.3.30 getWarnings()

(1) Function

This method acquires the first warning reported by a call related to this Statement object. If there is more than one
warning, the subsequent warnings are chained to the first warning and can be acquired by calling the
getNextWarning method of the SQLWarning object for the immediately preceding warning that was acquired.

(2) Format

public synchronized SQLWarning getWarnings () throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the first SQLWarning object. If there is no SQLWarning object, the method returns null.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

e The Connection object that created the Statement object is closed.

8.3.31 isClosed()

(1) Function

This method acquires a value indicating whether this Statement object is closed.

(2) Format

public synchronized boolean isClosed() throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 388

(3) Arguments

None.

(4) Return value

If this Statement object is closed, the method returns t rue; if it is not closed, the method returns false.

(5) Exceptions

None.

8.3.32 isCloseOnCompletion()

(1) Function

This method acquires a value that indicates whether the Statement object will be closed when all result sets that
depend on the Statement have been closed.

(2) Format

public synchronized boolean isCloseOnCompletion () throws SQLException

(3) Arguments

None.

(4) Return value

This method returns t rue when the Statement object is closed after all result sets that depend on the Statement
object have been closed. It returns false if the object is not closed.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

* The Connection object that created the Statement object is closed.

8.3.33 isPoolable()

(1) Function

This method acquires a value indicating whether this Statement object can be pooled.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 389

(2) Format

public synchronized boolean isPoolable() throws SQLException

(3) Arguments

None.

(4) Return value

The method always returns false.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

e The Connection object that created the Statement object is closed.

8.3.34 setCursorName(String name)

(1) Function

This method specifies the SQL cursor name to be used by the execute method of the next Statement object.

(2) Format

public synchronized void setCursorName (String name) throws SQLException

(3) Arguments

String name

Specifies an SQL cursor name.

(4) Return value

None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

e The Connection object that created the Statement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 390

8.3.35 setEscapeProcessing(boolean enable)

(1) Function

This method specifies whether escape syntax analysis by this Statement object is to be enabled or disabled.

(2) Format

public synchronized void setEscapeProcessing(boolean enable) throws SQLException

(3) Arguments

boolean enable
Specifies t rue to enable escape syntax analysis and false to disable it.

If this method is not executed, t rue is assumed.

(4) Return value

None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.

* The Connection object that created the Statement object is closed.

8.3.36 setFetchDirection(int direction)

(1) Function

This method specifies the fetch direction for a result set that is created from this Statement object.

(2) Format

public synchronized void setFetchDirection (int direction) throws SQLException

(3) Arguments

int direction

Specifies the fetch direction. Only ResultSet . FETCH FORWARD can be specified.

(4) Return value

None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 391

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.
e The Connection object that created the Statement object is closed.

* A value other than ResultSet .FETCH FORWARD was specified for direction.

8.3.37 setFetchSize(int rows)

(1) Function

This method specifies the default fetch size (number of retrieval result rows to be transferred from the HADB server to
the HADB client in the batch mode) for a ResultSet object that is created from this Statement object.

(2) Format

public synchronized void setFetchSize (int rows) throws SQLException

(3) Arguments

int rows
Specifies the number of rows to be transferred in the batch mode, in the range from 0 to 65,535.

If the specified value is 1 or greater, the JDBC driver transfers the specified number of rows of data from the HADB
server to the HADB client in the batch mode.

If 0 is specified or this method is not executed, the value of adb _clt fetch size in the system properties,
user properties, or URL connection properties is applied.

The following table shows the relationship between the set FetchSize method setting and the
adb _clt fetch size property setting.

Table 8-11: Relationship between the setFetchSize method setting and the adb_clt_fetch_size

property setting
setFetchSize method setting (m) adb_clt_fetch_size property setting (n) Number of rows to be transferred
in the batch mode
0 1 <n<65,535 n
Not specified 1
1 <m<65,535 1<n<65535 m
Not specified m

(4) Return value

None.

(5) Exceptions

The JDBC driver throws an SQLException in the following cases:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 392

* The Statement object is closed.
* The Connection object that created the Statement object is closed.
¢ A value outside the range from 0 to 65,535 was specified in rows.

¢ The value specified in rows is greater than the maximum number of rows that can be stored (se tMaxRows method
setting).

¢ The value specified in rows is greater than the maximum number of rows that can be stored (set LargeMaxRows
method setting).

(6) Notes

The following table shows the priority order for determining the number of rows that the JDBC driver requests the
HADB server to transfer in a single transmission.

Table 8-12: Priorities for number of rows that the JDBC driver requests the HADB server to transfer
in one transmission

Priority Number of rows that the JDBC driver requests the HADB server to transfer in one transmission
1 Value specified in the argument of the setFetchSize method of the ResultSet class
2 Value specified in the argument of the setFetchSize method of the Statement class
3 Value specified in the adb_clt fetch size system property
4 adb _clt fetch size property value specified in the info argument of the get Connection method of

the DriverManager class

5 Value of adb _clt fetch size specified in the url argument of the get Connection method of the
DriverManager class

If the retrieval result is larger than the number of transfer rows shown in the table above, the JDBC driver requests
transfer to the HADB server as many times as necessary until retrieval is completed (or until all retrieval requests from
the application program have been processed).

8.3.38 setLargeMaxRows(long max)

(1) Function

This method sets the maximum number of rows that can be stored in a ResultSet object created from this
Statement object, as a 1ong value. Any rows in excess of this value are not stored in the ResultSet object. You
will not be notified that these rows have not been stored.

The setting you specify in this method does not apply to ResultSet objects that have already been created.

(2) Format

public synchronized void setLargeMaxRows (long max) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 393

(3) Arguments

long max
Specifies the maximum number of rows that can be stored.

If you specify 0, no maximum is set. If the result set type is ResultSet.TYPE SCROLL INSENSITIVE, the
maximum number of rows that can be stored is set to Integer.MAX VALUE if you specify 0.

If you do not execute this method, HADB operates as if 0 were specified (no maximum is set).

(4) Return value

None.

(5) Exceptions

For details about exceptions, see (5) Exceptions in 8.3.40 setMaxRows(int max).

8.3.39 setMaxFieldSize(int max)

(1) Function

This method specifies the maximum number of bytes for a CHAR or VARCHAR column in a ResultSet object that is
created from this Statement object. Any bytes in excess of this value are discarded.

The setting specified by this method is not applied to ResultSet objects that have already been created.

(2) Format

public synchronized void setMaxFieldSize (int max) throws SQLException

(3) Arguments

int max
Specifies the maximum number of bytes to be applied to each CHAR and VARCHAR column.
If 0 is specified, no maximum number of bytes is set.

If this method is not executed, 0 (no maximum number of bytes is set) is assumed.

(4) Return value

None.
(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.
* The Connection object that created the Statement object is closed.

¢ A value less than 0 is specified for max.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 394

8.3.40 setMaxRows(int max)

(1) Function

This method sets the maximum number of rows that can be stored in a ResultSet object created from this
Statement object, as int data. Any rows in excess of this value are not stored in the Re sult Set object (and without
notification).

The setting specified by this method is not applied to ResultSet objects that have already been created.

(2) Format

public synchronized void setMaxRows (int max) throws SQLException

(3) Arguments

int max
Specifies the maximum number of rows that can be stored.

If 0 is specified, no maximum number of rows that can be stored is set. If the result set type is
ResultSet.TYPE SCROLL INSENSITIVE, the maximum number of rows that can be stored is set to
Integer.MAX VALUE even if O is specified here.

If this method is not executed, 0 (no maximum number of rows that can be stored is set) is assumed.

(4) Return value

None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The Statement object is closed.
e The Connection object that created the Statement object is closed.

* A value less than 0 is specified for max.

8.3.41 setQueryTimeout(int seconds)

(1) Function

This method specifies the SQL processing timeout value.

(2) Format

public synchronized void setQueryTimeout (int seconds) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 395

(3) Arguments

int seconds
Specifies an SQL processing timeout value (in seconds), in the range from 0 to 65,535.

If 0 is specified or this method is not executed, the value of adb _clt rpc sgl wait time in the system
properties, user properties, or URL connection properties takes effect.

If this method is executed, HADB monitors the following wait times:

* How long the HADB client waits for the HADB server to respond to a processing request

If this wait time is exceeded, a timeout error whose SQLCODE is =732 (KFAA30732-E) is returned to the
application. When this occurs, processing of the SQL statement is canceled, and the transaction is rolled back.
Then, the application is disconnected from the HADB server.

* How long to wait to secure processing real threads if a shortage occurs when multiple SELECT statements are
executed concurrently in the same connection

If this wait time is exceeded, HADB returns a timeout error whose SQL.CODE is —1071570 (KFAA71570-
E) to the application. When this happens, processing of the SQL statement is canceled but the transaction is not
rolled back. Nor is the application disconnected from the HADB server.

For details about the purpose of monitoring wait times using this method, see (4) Note about executing multiple
SELECT statements concurrently in the same connection in 7.4.1 How to retrieve data.

(4) Return value

None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:
* The Statement object is closed.

* The Connection object that created the Statement object is closed.

¢ A value less than 0 is specified for seconds.

(6) Notes

If 65,536 (maximum value of adb_clt rpc sqgl wait time property) or a greater value is specified for
seconds, the specification of this method is ignored.

8.3.42 Notes about the Statement interface

(1) Notes about executing executeXXX methods

If you execute an executeXXX method before the ResultSet object created by the corresponding Statement
object has been closed, the JDBC driver closes the previous ResultSet object that was created. If an attempt is made
to use the previously created ResultSet object to acquire retrieval results after the executeXXX method has been
executed, the JDBC driver will throw an SQLException. The following shows an example that results in an
SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 396

m Example that results in an SQLException

Statement st = con.createStatement();

ResultSet rsl st.executeQuery ("select * from tbl");
ResultSet rs2 st.executeQuery ("select * from tb2");
rsl.next(); // SQLException is thrown.

rs2.next () ;

(2) Closing the Statement object

After you have used a Statement object, make sure that you close the Statement object explicitly with the close
method. When a Statement object is closed explicitly, the corresponding statement handle in HADB is released. If
you do not close Statement objects, a shortage of statement handles might occur.

The statement handle is also released when a transaction is settled by issuing COMMIT or ROLLBACK. Therefore, if you
settle transactions at appropriate intervals, you can prevent a shortage of statement handles.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 397

8.4 PreparedStatement interface

This section explains the methods provided by the PreparedStatement interface.

8.4.1 List of the methods in the PreparedStatement interface

(1) Main functions of the PreparedStatement interface
The PreparedStatement interface provides the following main functions:

* Execution of SQL statements in which dynamic parameters are specified

* Specification of dynamic parameters

¢ Generation and return of a ResultSet object as a retrieval result

e Return of the number of updated rows as an updating result

Because the PreparedStatement interface is a subinterface of the Statement interface, it inherits all of the
Statement interface functions.

(2) Methods in the PreparedStatement interface that are supported by
HADB

The following table lists and describes the methods in the PreparedStatement interface that are supported by
HADB.

Table 8-13: Methods in the PreparedStatement interface

No. Method in the PreparedStatement interface Function
1 addBatch () Adds the current parameter set to this PreparedStatement
object's batch.
2 clearParameters () Clears all values from the current parameter set that is specified.
3 execute () Executes the preprocessed SQL statement.
4 executelLargeUpdate () Executes a preprocessed SQL statement (other than a retrieval SQL

statement) and returns the number of updated rows as 1ong data.

5 executeQuery () Executes a preprocessed retrieval SQL statement and returns the
ResultSet object that contains the execution results.

6 executeUpdate () Executes a preprocessed SQL statement (other than a retrieval SQL
statement) and returns the number of updated rows as int data.

7 getHADBSQLSerialNum () Acquires the SQL statement sequence number that is assigned to this
PreparedStatement object.

8 getHADBStatementHandle () Acquires the statement handle that is assigned to this
PreparedStatement object.

9 getMetaData () Returns the ResultSetMetaData object that stores information
about the columns in the ResultSet object that is returned when
this PreparedStatement object is executed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 398

No. Method in the PreparedStatement interface
10 getParameterMetaData ()
11 setAsciiStream(int parameterIndex,

InputStreamx, int length)

12 setBigDecimal (int parameterIndex,
BigDecimal x)

13 setBinaryStream (int parameterIndex,
InputStreamx, int length)

14 setBoolean (int parameterIndex, boolean
X)

15 setByte (int parameterIndex, byte x)

16 setBytes (int parameterIndex, byte[] x)

17 setCharacterStream(int parameterIndex,

Reader reader, int length)

18 setDate (int parameterIndex, Date x)

19 setDate (int parameterIndex, Date x,
Calendar cal)

20 setDouble (int parameterIndex, double x)
21 setFloat (int parameterIndex, float x)

22 setInt (int parameterIndex, int x)

23 setLong (int parameterIndex, long x)

24 setNull (int parameterIndex, int sqlType)
25 setObject (int parameterIndex, Object x)
26 setObject (int parameterIndex, Object x,

int targetSglType)

27 setObject (int parameterIndex, Object x,
int targetSqglType, int scale)

28 setShort (int parameterIndex, short x)
29 setString (int parameterIndex, String x)
30 setTime (int parameterIndex, Time x)

31 setTime (int parameterIndex, Time x,

Calendar cal)

32 setTimestamp (int parameterIndex,
Timestamp x)

33 setTimestamp (int parameterIndex,
Timestamp x, Calendar cal)

8. The JDBC 1.2 API

Function

Returns the ParameterMetaData object that contains meta
information for the parameters in this PreparedStatement
object.

Sets the value of a specified InputStream object as a dynamic
parameter value.

Sets a specified BigDecimal object as a dynamic parameter value.

Sets the value of a specified InputStream object as a dynamic
parameter value.

Sets a specified boolean value as a dynamic parameter value.

Sets a specified byte value as a dynamic parameter value.
Sets a specified byte array as a dynamic parameter value.

Sets a specified Reader object as a dynamic parameter value.

Sets a specified java.sqgl.Date object as a dynamic parameter
value.

Converts a java.sqgl.Date object specified in local time to the
equivalent value in a specified calendar's time zone, and then sets the
resulting value as a dynamic parameter value.

Sets a specified double value as a dynamic parameter value.
Sets a specified £1oat value as a dynamic parameter value.
Sets a specified int value as a dynamic parameter value.
Sets a specified 1ong value as a dynamic parameter value.
Sets the null value in a specified dynamic parameter.

Sets the value of a specified object as a dynamic parameter value.

Sets a specified short value as a dynamic parameter value.
Sets a specified String object as a dynamic parameter value.

Sets a specified java.sqgl.Time object as a dynamic parameter
value.

Converts a java.sqgl.Time object specified in local time to the
equivalent value in a specified calendar's time zone, and then sets the
resulting value as a dynamic parameter value.

Sets a specified java.sgl.Timestamp object as a dynamic
parameter value.

Converts a java.sqgl.Timestamp object specified in local time
to the equivalent value in a specified calendar's time zone, and then
sets the resulting value as a dynamic parameter value.

Hitachi Advanced Database Application Development Guide

399

0 Important

HADB does not support methods that are not listed in this table. If an unsupported method is executed, an
SQLException is thrown.

(3) Required package name and class name

The package and class names required in order to use the PreparedStatement interface are as follows:

* Package name: com.hitachi.hadb.jdbc

¢ (Class name: AdbPreparedStatement

8.4.2 addBatch()

(1) Function

This method adds the current parameter set to this PreparedStatement object's batch. You can add a maximum of
2,147,483,647 parameter sets.

(2) Format

public synchronized void addBatch() throws SQLException

(3) Arguments

None.

(4) Return value

None.
(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

¢ The PreparedStatement object is closed.
e The Connection object that created this PreparedStatement object is closed.
* No value is set for at least one dynamic parameter.

* More than 2,147,483,647 items have been registered in the batch.

8.4.3 clearParameters|)

(1) Function

This method clears all values from the current parameter set that is specified.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 400

(2) Format

public synchronized void clearParameters () throws SQLException

(3) Arguments

None.

(4) Return value

None.
(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The PreparedStatement object is closed.

e The Connection object that created this PreparedStatement object is closed.

8.4.4 execute()

(1) Function

This method executes the preprocessed SQL statement.

You can use the getResultSet and getUpdateCount methods (or the getLargeUpdateCount method) of
the PreparedStatement object to obtain the ResultSet object and the number of updated rows as execution
results.

For the return values of the getResul t Set method and getUpdateCount method (or get LargeUpdateCount
method) after execution of the execute method, see Table 8-8: Return values of the getResultSet and getUpdateCount
methods (or the getLargeUpdateCount method) depending on the type of the SQL statement that was executed.

(2) Format

public synchronized boolean execute() throws SQLException

(3) Arguments

None.

(4) Return value

If a retrieval SQL statement was executed, this method returns t rue; if not, the method returns false.

(5) Exceptions

The JDBC driver throws an SQLException in the following cases:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 401

* The PreparedStatement object is closed.
* The Connection object that created this PreparedStatement object is closed.
* No value is set in at least one dynamic parameter.

¢ A database access error occurs.

8.4.5 executeLargeUpdate()

(1) Function

This method executes an SQL statement (other than a retrieval SQL statement) that has undergone preprocessing, and
returns the number of updated rows as a 1ong value.

If the number of updated rows might exceed Integer .MAX VALUE, use the executeLargeUpdate () method
instead of executeUpdate (). Ifyouuse the executeUpdate () method, it will return O if the number of updated
rows exceeds Integer .MAX VALUE.

(2) Format

public synchronized long executelargeUpdate () throws SQLException

(3) Arguments

None.

(4) Return value

Ifan INSERT, UPDATE, or DELETE statement was executed, the method returns the number of updated rows as 1ong
data. If any other SQL statement was executed, the method returns 0.

(5) Exceptions

For details about exceptions, see (5) Exceptions in 8.4.7 executeUpdate().

8.4.6 executeQuery()

(1) Function

This method executes the preprocessed retrieval SQL statement and returns the ResultSet object that contains the
execution results.

(2) Format

public synchronized ResultSet executeQuery () throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 402

(3) Arguments

None.

(4) Return value

This method returns the ResultSet object that contains the execution results.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

* The PreparedStatement object is closed.

* The Connection object that created this PreparedStatement object is closed.
¢ A non-retrieval SQL statement (such as an INSERT statement) was executed.

* No value is set in at least one dynamic parameter.

¢ A database access error occurs.

8.4.7 executeUpdate()

(1) Function

This method executes a preprocessed SQL statement (other than a retrieval SQL statement) and returns the number of
updated rows as int data.

If the number of updated rows might exceed Integer .MAX VALUE, use the executeLargeUpdate () method
instead of the executeUpdate () method. If youuse the executeUpdate () method, it will return 0 if the number
of updated rows exceeds Integer .MAX VALUE.

(2) Format

public synchronized int executeUpdate () throws SQLException

(3) Arguments

None.

(4) Return value

If an INSERT, UPDATE, or DELETE statement was executed, the method returns the number of updated rows as int
data. If any other SQL statement was executed, the method returns 0.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The PreparedStatement object is closed.

* The Connection object that created this object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 403

¢ A retrieval SQL statement was executed.
* No value is set in at least one dynamic parameter.

e A database access error occurs.

8.4.8 getHADBSQLSerialNum()

(1) Function

This method acquires the SQL statement sequence number that is assigned to this PreparedStatement object.

(2) Format

public long getHADBSQLSerialNum() throws SQLException

(3) Arguments

None.

(4) Return value

This method returns the SQL statement sequence number that is assigned to this PreparedStatement object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

* The PreparedStatement object is closed.

* The Connection object that created this PreparedStatement object is closed.

(6) Notes

This is an HADB-specific method provided by the AdbPreparedStatement interface. For details about the
execution method, see 12.2 Wrapper interface.

8.4.9 getHADBStatementHandle()

(1) Function

This method acquires the statement handle that is assigned to this PreparedStatement object.

(2) Format

public int getHADBStatementHandle () throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 404

(3) Arguments

None.

(4) Return value

This method returns the statement handle that is assigned to this PreparedStatement object.
(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

* The PreparedStatement object is closed.

* The Connection object that created this PreparedStatement object is closed.

(6) Notes

This is an HADB-specific method provided by the AdbPreparedStatement interface. For details about the
execution method, see 12.2 Wrapper interface.

8.4.10 getMetaData()

(1) Function

This method returns the ResultSetMetaData object that stores information about the columns in the ResultSet
object that is returned when this PreparedStatement object is executed.

(2) Format

public synchronized ResultSetMetaData getMetaData () throws SQLException

(3) Arguments

None.

(4) Return value

This method returns meta information for this PreparedStatement object as a ResultSetMetaData object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

* The PreparedStatement object is closed.

* The Connection object that created this PreparedStatement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 405

8.4.11 getParameterMetaData()

(1) Function

This method returns the ParameterMetaData object that contains meta information for the parameters in this
PreparedStatement object. The returned ParameterMetaData object is meta information for parameters
acquired from the server when the Connection.prepareStatement () method is executed.

(2) Format

public synchronized ParameterMetaData getParameterMetaData () throws SQLException

(3) Arguments

None.

(4) Return value

This method returns meta information for this PreparedStatement object as a ParametertMetaData object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The PreparedStatement object is closed.

* The Connection object that created this PreparedStatement object is closed.

8.4.12 setAsciiStream(int parameterindex, InputStream x, int length)

(1) Function

This method sets the value of a specified InputStream object as a dynamic parameter value.

(2) Format

public synchronized void setAsciiStream(int parameterIndex, InputStream x, int length
) throws SQLException

(3) Arguments

int parameterIndex

Specifies the number of a dynamic parameter.

InputStream x

Specifies the java.io. InputStreamobject that contains the value to be set in the specified dynamic parameter.

int length

Specifies the number of bytes to be set.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 406

(4) Return value

None.
(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

* The PreparedStatement object is closed.

* The Connection object that created this PreparedStatement object is closed.
¢ A value less than 0 was specified for 1ength.

¢ A nonexistent dynamic parameter number was specified.

¢ This method does not support the HADB data type specified in the dynamic parameter.

¢ The specified value is outside the range of data types for the column or in a format that cannot be converted.

(6) Notes

The setAsciiStreammethod does notexecute the c1ose method on x, even after input from x has been completed.

8.4.13 setBigDecimal(int parameterindex, BigDecimal x)

(1) Function

This method sets a specified BigDecimal object as a dynamic parameter value.

(2) Format

public synchronized void setBigDecimal (int parameterIndex, BigDecimal x) throws SQLEx
ception

(3) Arguments

int parameterIndex

Specifies the number of a dynamic parameter.

BigDecimal x

Specifies the java.math.BigDecimal object that is to be set in the specified dynamic parameter.

(4) Return value

None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

* The PreparedStatement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 407

e The Connection object that created this PreparedStatement object is closed.
* A nonexistent dynamic parameter number was specified.
* This method does not support the HADB data type specified in the dynamic parameter.

* The specified value is outside the range of data types for the column or in a format that cannot be converted.

8.4.14 setBinaryStream(int parameterindex, InputStream x, int length)

(1) Function

Sets the value of a specified Input Stream object as a dynamic parameter value.

(2) Format

public synchronized void setBinaryStream(int parameterIndex, InputStream x, int lengt
h) throws SQLException

(3) Arguments

int parameterIndex

Specifies the number of a dynamic parameter.

InputStream x

Specifies the java.io. InputStreamobject that contains the value to be set in the specified dynamic parameter.

int length
Specifies the number of bytes to be set.

(4) Return value

None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:
e The PreparedStatement object is closed.
* The Connection object that created this PreparedStatement object is closed.
¢ A value less than 0 was specified for length.
* A nonexistent dynamic parameter number was specified.

» This method does not support the HADB data type specified in the dynamic parameter.

¢ The specified value is outside the range of data types for the column or in a format that cannot be converted.

(6) Notes

The setBinaryStreammethod does not execute the close method on x, even after input from x has been completed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 408

8.4.15 setBoolean(int parameterindex, boolean x)

(1) Function

This method sets a specified boolean value as a dynamic parameter value.

(2) Format

public synchronized void setBoolean (int parameterIndex, boolean x) throws SQLExceptio
n

(3) Arguments

int parameterIndex

Specifies the number of a dynamic parameter.

boolean x

Specifies the value to be set in the specified dynamic parameter.

(4) Return value

None.
(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The PreparedStatement object is closed.
* The Connection object that created this PreparedStatement object is closed.

¢ A nonexistent dynamic parameter number was specified.

This method does not support the HADB data type specified in the dynamic parameter.

8.4.16 setByte(int parameterindex, byte x)

(1) Function

This method sets a specified byte value as a dynamic parameter value.

(2) Format

public synchronized void setByte (int parameterIndex, byte x) throws SQLException

(3) Arguments

int parameterIndex

Specifies the number of a dynamic parameter.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 409

byte x

Specifies the value to be set in the specified dynamic parameter.

(4) Return value

None.
(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The PreparedStatement object is closed.
e The Connection object that created this PreparedStatement object is closed.

* A nonexistent dynamic parameter number was specified.

This method does not support the HADB data type specified in the dynamic parameter.

8.4.17 setBytes(int parameterindex, byte[] x)

(1) Function

This method sets a specified byte array as a dynamic parameter value.

(2) Format

public synchronized void setBytes (int parameterIndex, byte[] x) throws SQLException

(3) Arguments

int parameterIndex

Specifies the number of a dynamic parameter.
byte[] x

Specifies the value to be set in the specified dynamic parameter.

(4) Return value

None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

e The PreparedStatement object is closed.
e The Connection object that created this PreparedStatement object is closed.
* A nonexistent dynamic parameter number was specified.

» This method does not support the HADB data type specified in the dynamic parameter.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 410

* The specified value is outside the range of data types for the column or in a format that cannot be converted.

8.4.18 setCharacterStream(int parameterindex, Reader reader, int length)

(1) Function

This method sets a specified Reader object as a dynamic parameter value.

(2) Format

public synchronized void setCharacterStream(int parameterIndex, Reader reader, int le
ngth) throws SQLException

(3) Arguments

int parameterIndex

Specifies the number of a dynamic parameter.

Reader reader

Specifies the java.io.Reader object that contains the value to be set in the specified dynamic parameter.

int length

Specifies the number of characters.

(4) Return value

None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:
* The PreparedStatement object is closed.
* The Connection object that created this PreparedStatement object is closed.
e A value less than 0 was specified for length.
* A nonexistent dynamic parameter number was specified.
¢ This method does not support the HADB data type specified in the dynamic parameter.

¢ The specified value is outside the ran