
Hitachi Advanced Database
Application Development Guide
3000-6-502-H0(E)

Notices

■ Relevant program products
P-9W62-C411 Hitachi Advanced Data Binder version 05-01 (for Red Hat(R) Enterprise Linux(R) Server 6 (64-bit
x86_64) and Red Hat(R) Enterprise Linux(R) Server 7 (64-bit x86_64))
P-9W62-C311 Hitachi Advanced Data Binder Client version 05-01 (for Red Hat(R) Enterprise Linux(R) Server 6 (64-
bit x86_64) and Red Hat(R) Enterprise Linux(R) Server 7 (64-bit x86_64))
P-2462-C114 Hitachi Advanced Data Binder Client version 05-01 (for Windows 7, Windows 8.1, Windows 10,
Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016)

This manual can be used for products other than the products shown above. For details, see the Release Notes.
Hitachi Advanced Data Binder is the product name of Hitachi Advanced Database in Japan.

■ Trademarks
HITACHI, HA Monitor, HiRDB, Job Management Partner 1 and JP1 are either trademarks or registered trademarks
of Hitachi, Ltd. in Japan and other countries.
Access is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.
AMD is a trademark of Advanced Micro Devices, Inc.
Excel is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.
Intel is a trademark of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.
MSDN is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.
Red Hat is a registered trademark of Red Hat, Inc. in the United States and other countries.
Red Hat Enterprise Linux is a registered trademark of Red Hat, Inc. in the United States and other countries.
UNIX is a trademark of The Open Group.
Visual Studio is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.
Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries.
Windows Server is either a registered trademark or trademark of Microsoft Corporation in the United States and/or
other countries.
Other company and product names mentioned in this document may be the trademarks of their respective owners.
1. This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://
www.openssl.org/)
2. This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
3. This product includes software written by Tim Hudson (tjh@cryptsoft.com).
4. This product uses OpenSSL Toolkit software in accordance with the OpenSSL License and Original SSLeay License,
which are described as follows.

Hitachi Advanced Database Application Development Guide 2

LICENSE ISSUES
==============
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.
OpenSSL License

/* ===
* Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

Hitachi Advanced Database Application Development Guide 3

*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.

Hitachi Advanced Database Application Development Guide 4

*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
■Double precision SIMD-oriented Fast Mersenne Twister (dSFMT)
Copyright (c) 2007, 2008, 2009 Mutsuo Saito, Makoto Matsumoto
and Hiroshima University.
Copyright (c) 2011, 2002 Mutsuo Saito, Makoto Matsumoto, Hiroshima
University and The University of Tokyo.
All rights reserved.

Hitachi Advanced Database Application Development Guide 5

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of the Hiroshima University nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

■ Microsoft product screen shots
Microsoft product screen shots reprinted with permission from Microsoft Corporation.

■ Microsoft product name abbreviations
This manual uses the following abbreviations for Microsoft product names:

Abbreviation Full name or meaning

Windows Windows 7 Windows 7 x86 Microsoft(R) Windows(R) 7 Professional (32-bit)

Microsoft(R) Windows(R) 7 Enterprise (32-bit)

Microsoft(R) Windows(R) 7 Ultimate (32-bit)

Windows 7 x64 Microsoft(R) Windows(R) 7 Professional (64-bit)

Microsoft(R) Windows(R) 7 Enterprise (64-bit)

Microsoft(R) Windows(R) 7 Ultimate (64-bit)

Windows 8.1 Windows 8.1 x86 Windows(R) 8.1 Pro (32-bit)

Windows(R) 8.1 Enterprise (32-bit)

Hitachi Advanced Database Application Development Guide 6

Abbreviation Full name or meaning

Windows 8.1 x64 Windows(R) 8.1 Pro (64-bit)

Windows(R) 8.1 Enterprise (64-bit)

Windows 10 Windows 10 x86 Windows(R) 10 Pro (32-bit)

Windows(R) 10 Enterprise (32-bit)

Windows 10 x64 Windows(R) 10 Pro (64-bit)

Windows(R) 10 Enterprise (64-bit)

Windows Server 2008 R2 Microsoft(R) Windows Server(R) 2008 R2 Standard

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Windows Server 2012 Microsoft(R) Windows Server(R) 2012 Standard

Microsoft(R) Windows Server(R) 2012 Datacenter

Windows Server 2012 R2 Microsoft(R) Windows Server(R) 2012 R2 Standard

Microsoft(R) Windows Server(R) 2012 R2 Datacenter

Windows Server 2016 Microsoft(R) Windows Server(R) 2016 Standard

Microsoft(R) Windows Server(R) 2016 Datacenter

■ Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of
Hitachi. The software described in this manual is furnished according to a license agreement with Hitachi. The license
agreement contains all of the terms and conditions governing your use of the software and documentation, including
all warranty rights, limitations of liability, and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your
country.
No part of this material may be reproduced in any form or by any means without permission in writing from the
publisher.

■ Issued
Apr. 2020

■ Copyright
All Rights Reserved. Copyright (C) 2012, 2020, Hitachi, Ltd.

Hitachi Advanced Database Application Development Guide 7

Preface

This manual describes the basic techniques for using Hitachi Advanced Database to develop applications. It also
explains how to set up an HADB client environment.

Note that, in this manual, and in the information output by the product (messages, command output results, and so on),
HADB is often used in place of Hitachi Advanced Database.

■ Intended readers
This manual is intended for:

• Application program developers

• HADB client administrators

Readers of this manual must have:

• A basic knowledge of SQL

• A basic knowledge of Java programming and a basic knowledge of JDBC (if you plan to create application programs
in Java)

• A basic knowledge of ODBC (if you plan to create ODBC-compliant application programs)

• A basic knowledge of programming in C or C++ (if you plan to create application programs in C or C++)

• A basic knowledge of Linux or Windows system management

■ Organization of this manual
This manual is organized into the following parts, chapters, and appendixes:

PART 1: Environment Setup (Common)

1. Overview of Application Program Development and Execution
This chapter provides an overview of application program development, explains the prerequisites that you
need to know before you begin developing an application program, and shows the application program
execution modes.

2. Designing Client Definitions
This chapter explains the format in which operands for client definitions are to be specified, the content of
client definitions, and the syntax rules that apply to client definitions.

3. Setting Up an Environment for the JDBC Driver
This chapter explains how to set up an environment for the JDBC driver, including how to install the JDBC
driver and specify the environment variables.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)
This chapter explains how to set up an environment for an HADB client, including installation of an HADB
client and specification of environment variables.

Hitachi Advanced Database Application Development Guide 8

PART 2: Application Program Creation (Common)

5. Designs Related to Improvement of Application Program Performance
This chapter explains designs related to improving the performance of application programs.

6. Tuning Application Programs
This chapter explains how to use access paths.

PART 3: Application Program Creation (JDBC)

7. Creating Application Programs
This chapter explains how to create application programs that use the JDBC driver.

8. The JDBC 1.2 API
This chapter describes the interfaces and methods available in the JDBC 1.2 API.

9. The JDBC 2.1 Core API
This chapter explains HADB's scope of support for the functions added in the JDBC 2.1 Core API.

10. The JDBC 2.0 Optional Package
This chapter describes the interfaces and methods available in the JDBC 2.0 Optional Package.

11. The JDBC 3.0 API
This chapter describes the interfaces and methods available in the JDBC 3.0 API.

12. The JDBC 4.0 API
This chapter describes the interfaces and methods available in the JDBC 4.0 API.

13. JDBC 4.1 API
This chapter explains HADB's scope of support for the functions added in the JDBC 4.1 API.

14. JDBC 4.2 API
This chapter explains HADB's scope of support for the functions added in the JDBC 4.2 API.

PART 4: Application Program Creation (ODBC)

15. Creating Application Programs
This chapter explains how to set up an environment for the HADB ODBC driver and provides notes about
creating application programs that support ODBC.

16. ODBC Functions
This chapter describes the capabilities and syntax of the ODBC functions provided by HADB.

17. Troubleshooting
This chapter explains how to troubleshoot use of the ODBC interfaces.

PART 5: Application Program Creation (CLI Functions)

18. Creating Application Programs
This chapter explains the basic considerations involved in designing and creating application programs in C
and C++.

19. CLI Functions
This chapter describes the capabilities and syntax of the CLI functions provided by HADB.

A. Sample Application Program
This appendix provides an overview of the sample application program that is provided, explains the preparations
for using the sample program, and explains the sample program execution procedure.

Hitachi Advanced Database Application Development Guide 9

B. Structure of HADB Client Directories
This appendix describes the structures of the client directories of HADB clients (during installation and operation).

C. Estimating the Memory Requirements for an HADB Client
This appendix explains how to estimate the memory requirements for an HADB client.

■ Related publications
This manual is part of a related set of manuals. The manuals in the set are listed below (with the manual numbers):

• Hitachi Advanced Database Setup and Operation Guide (3000-6-501(E))

• Hitachi Advanced Database Command Reference (3000-6-503(E))

• Hitachi Advanced Database SQL Reference (3000-6-504(E))

• Hitachi Advanced Database Messages (3000-6-505(E))

• HA Monitor Cluster Software Guide (for Linux(R) (x86) Systems) (3000-9-201(E))

• Job Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3 System
Design (Work Tasks) Guide (3021-3-320(E))

• JP1 Version 11 JP1/Base User's Guide (3021-3-A01(E))

In references to Hitachi Advanced Database manuals, this manual uses HADB in place of Hitachi Advanced Database.

Example: HADB Setup and Operation Guide

In references to the HA Monitor manual, this manual uses HA Monitor for Linux(R) (x86) in place of HA Monitor
Cluster Software Guide (for Linux(R) (x86) Systems).

Example: HA Monitor for Linux(R) (x86)

In references to the Job Management Partner 1/Automatic Job Management System 3 manual, this manual uses Job
Management Partner 1/Automatic Job Management System 3 System Design (Work Tasks) Guide in place of Job
Management Partner 1 Version 10 Job Management Partner 1/Automatic Job Management System 3 System Design
(Work Tasks) Guide.

Example: Job Management Partner 1/Automatic Job Management System 3 System Design (Work Tasks) Guide

In references to the JP1/Base manual, this manual uses JP1/Base User's Guide in place of JP1 Version 11 JP1/Base
User's Guide.

Example: JP1/Base User's Guide

■ Conventions: Abbreviations for product names
This manual uses the following abbreviations for product names:

Abbreviation Full name or meaning

HADB HADB server Hitachi Advanced Database

HADB client Hitachi Advanced Database Client

Linux Linux Linux(R)

Hitachi Advanced Database Application Development Guide 10

Abbreviation Full name or meaning

Red Hat Enterprise Linux
Server 6

Red Hat(R) Enterprise Linux(R) Server 6 (64-bit x86_64)

Red Hat Enterprise Linux Server
6 (64-bit x86_64)

Red Hat Enterprise Linux
Server 7

Red Hat(R) Enterprise Linux(R) Server 7 (64-bit x86_64)

Red Hat Enterprise Linux Server
7 (64-bit x86_64)

HDLM Hitachi Dynamic Link Manager Software

JP1/AJS3 Job Management Partner 1/Automatic Job Management System 3

JP1/Audit JP1/Audit Management - Manager

Red Hat Enterprise Linux Server 6 (64-bit x86_64) Red Hat(R) Enterprise Linux(R) Server 6 (64-bit x86_64)

Red Hat Enterprise Linux Server 7 (64-bit x86_64) Red Hat(R) Enterprise Linux(R) Server 7 (64-bit x86_64)

■ Conventions: Acronyms
This manual also uses the following acronyms:

Acronym Full name or meaning

APD Application Parameter Descriptor

API Application Programming Interface

ARD Application Row Descriptor

BI Business Intelligence

BLOB Binary Large Object

BNF Backus-Naur Form

BOM Byte Order Mark

CLI Call Level Interface

CLOB Character Large Object

CPU Central Processing Unit

CSV Character-Separated Values

DB Database

DBMS Database Management System

DMMP Device Mapper Multipath

DNS Domain Name System

ER Entity Relationship

HBA Host Bus Adapter

ID Identification number

Hitachi Advanced Database Application Development Guide 11

Acronym Full name or meaning

IEF Integrity Enhancement Facility

IP Internet Protocol

IPD Implementation Parameter Descriptor

IRD Implementation Row Descriptor

JAR Java Archive File

JDBC Java Database Connectivity

JDK Java Developer's Kit

JNDI Java Naming and Directory Interface

JRE Java Runtime Environment

JTA Java Transaction API

LOB Large Object

LRU Least Recently Used

LV Logical Volume

LVM Logical Volume Manager

MSDN Microsoft Developer Network

NFS Network File System

NIC Network Interface Card

NTP Network Time Protocol

ODBC Open Database Connectivity

OS Operating System

PP Program Product

RAID Redundant Array of Independent Disks

RDBMS Relational Database Management System

TLB Translation Lookaside Buffer

URL Uniform Resource Locator

VG Volume Group

WWN World Wide Name

■ Conventions: Fonts and symbols
The following table explains the fonts used in this manual:

Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes menus, menu options,
buttons, radio box options, or explanatory labels. For example:
• From the File menu, choose Open.

Hitachi Advanced Database Application Development Guide 12

Font Convention

• Click the Cancel button.
• In the Enter name entry box, type your name.

Italics Italics are used to indicate a placeholder for some actual text to be provided by the user or system. For example:
• Write the command as follows:
copy source-file target-file

• The following message appears:
A file was not found. (file = file-name)

Italics are also used for emphasis. For example:
• Do not delete the configuration file.

Code font A code font indicates text that the user enters without change, or text (such as messages) output by the system.
For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:
The password is incorrect.

The table below shows the symbols used in this manual for explaining commands and operands, such as the operands
used in server definitions.

Note that these symbols are used for explanatory purposes only; do not specify them in the actual operand or command.

Symbol Meaning Example

| In syntax explanations, a vertical bar separates
multiple items, and has the meaning of OR.

adb_sql_text_out = {Y|N}
In this example, the vertical bar means that you can specify either Y
or N.

[] In syntax explanations, square brackets
indicate that the enclosed item or items are
optional.

adbsql [-V]
In this example, the square brackets mean that you can specify
adbsql, or you can specify adbsql -V.

{ } In syntax explanations, curly brackets indicate
that only one of the enclosed items is to be
selected.

adbcancel {--ALL|-u connection-ID}
In this example, the curly brackets mean that you can specify either
--ALL or -u connection-ID.

... In syntax explanations, an ellipsis (...)
indicates that the immediately preceding item
can be repeated as many times as necessary.

adbbuff -n DB-area-name[, DB-area-name] ...
In this example, the ellipsis means that you can specify DB-area-
name as many times as necessary.

{{ }} In syntax explanations, double curly brackets
indicate that the enclosed items can be repeated
as a single unit.

{{adbinitdbarea -n data-DB-area-name}}
In this example, the double curly brackets mean that you can specify
adbinitdbarea -n data-DB-area-name as many times as
necessary.

X
(underline)

In syntax explanations, underlined characters
indicate a default value.

adb_import_errmsg_lv = {0|1}
In this example, the underline means that the value 0 is assumed by
HADB when the operand is omitted.

~ A swung dash indicates that the text following
it explains the properties of the specified value.

adb_sys_max_users = maximum-number-of-concurrent-
connections
~ <integer> ((1 to 1024)) <<10>>< > Single angle brackets explain the data type of

the specified value.

Hitachi Advanced Database Application Development Guide 13

Symbol Meaning Example

(()) In this example, the text following the swung dash means that you
can specify an integer in the range from 1 to 1024. If the operand is
not specified, the value 10 is assumed by HADB.

Double parentheses indicate the scope of the
specified value.

<< >> Double angle brackets indicate a default value.

■ Conventions: Method abbreviations
• This manual uses "getxxx method" to represent any method whose name begins with get.

• This manual uses the "setxxx method" to represent any method whose name begins with set.

• This manual uses "executexxx method" to represent any method whose name begins with execute.

■ Conventions: Path names
• $INSTDIR is used to indicate the server directory path (for installation).

• $ADBDIR is used to indicate the server directory path (for operation).

• $DBDIR is used to indicate the DB directory path.

• %ADBCLTDIR% (for a Windows HADB client) or $ADBCLTDIR (for a Linux HADB client) is used to indicate
the client directory path.

• %ADBODBTRCPATH% is used to indicate the folder path where HADB's ODBC driver trace files are stored.

■ Conventions: Symbols used in mathematical formulas
The following table explains special symbols used by this manual in mathematical formulas:

Symbol Meaning

↑ ↑ Round up the result to the next integer.
Example: The result of ↑34 ÷ 3↑ is 12.

↓ ↓ Discard digits following the decimal point.
Example: The result of ↓34 ÷ 3↓ is 11.

MAX Select the largest value as the result.
Example: The result of MAX(3 × 6, 4 + 7) is 18.

MIN Select the smallest value as the result.
Example: The result of MIN(3 × 6, 4 + 7) is 11.

■ Conventions: Syntax elements
Syntax
element
notation

Meaning

<path name> The following characters can be used in path names:
• In Linux

Alphanumeric characters, hash mark (#), hyphen (-), forward slash (/), at mark (@), and underscore (_)
• In Windows

Hitachi Advanced Database Application Development Guide 14

Syntax
element
notation

Meaning

Alphanumeric characters, hash mark (#), hyphen (-), forward slash (/), at mark (@), underscore (_), backslash (\),
and colon (:)

Note, however, that the characters that can be used might differ depending on the operating system.

<OS path name> For an OS path name, all characters that can be used in a path name in the operating system can be used. For details
about available characters, see the documentation for the operating system you are using.

<character
string>

Any character string can be specified.

<integer suffixed
by the unit>

Specify the value in a format consisting of a numeric character (in the range from 0 to 9) followed by a unit (MB
(megabyte), GB (gigabyte), or TB (terabyte)). Do not enter a space between the numeric character and the unit.
• Examples of correct specification
1024MB
512GB
32TB

• Example of specification that causes an error
512 GB

■ Abbreviation of function names
• Functions whose names begin with SQL are referred to generically as SQLxxx functions.

• Functions whose names begin with SQL and end with W are referred to generically as SQLxxxW functions.

■ Conventions: KB, MB, GB, TB, PB, and EB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

• 1 PB (petabyte) is 1,0245 bytes.

• 1 EB (exabyte) is 1,0246 bytes.

■ Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of two digits each, separated by a
hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00.

• Version 2.05 is written as 02-05.

• Version 2.50 (or 2.5) is written as 02-50.

• Version 12.25 is written as 12-25.

Hitachi Advanced Database Application Development Guide 15

The version number might be shown on the spine of a manual as Ver. 2.00, but the same version number would be
written in the program as 02-00.

Hitachi Advanced Database Application Development Guide 16

Contents

Notices 2
Preface 8

Part 1: Environment Setup (Common)

1 Overview of Application Program Development and Execution 39
1.1 Procedure and prerequisites for application program development 40
1.1.1 Programming languages for application programs 40
1.1.2 Character encoding 40
1.1.3 Application program development environment 41
1.2 Application program execution modes 42

2 Designing Client Definitions 44
2.1 Specification formats for operands in the client definition 45
2.2 Contents of operands in the client definition 46
2.2.1 Operands related to system configuration 46
2.2.2 Operands related to application program status monitoring 47
2.2.3 Operands related to performance 48
2.2.4 Operands related to SQL 53
2.3 Operand specification rules 57
2.4 Notes about using the function for centrally managing client definitions 58

3 Setting Up an Environment for the JDBC Driver 59
3.1 Environment setup procedure for the JDBC driver 60
3.1.1 Installing Java Runtime Environment or Java Development Kit 60
3.1.2 Installing the JDBC driver 60
3.1.3 Specifying the CLASSPATH environment variable 61
3.1.4 Checking the value of the TZ environment variable 61
3.1.5 Granting the write permission for the trace file output destination directory 62
3.1.6 Setting system properties 62
3.1.7 Reviewing the scope of scans by antivirus software 65
3.2 Handling unresponsive application programs 66
3.3 Upgrading the JDBC driver (replacing the JAR file) 68
3.4 Replacing the JDBC driver with a revised version 70
3.5 Changing the time of the OS on a machine on which the JDBC driver has been installed 71
3.6 Uninstalling the JDBC driver 72

Hitachi Advanced Database Application Development Guide 17

4 Setting Up an Environment for an HADB Client (If the ODBC Driver
and CLI Functions Are Used) 73

4.1 HADB client environment setup procedure 74
4.1.1 HADB client for Windows 74
4.1.2 HADB client for Linux 74
4.2 Installing and uninstalling an HADB client 76
4.2.1 HADB client for Windows 76
4.2.2 HADB client for Linux 77
4.3 Specifying environment variables 82
4.3.1 HADB client for Windows 82
4.3.2 HADB client for Linux 83
4.4 Creating a client definition 85
4.4.1 How to create a client definition 85
4.4.2 Notes about changing a client definition 85
4.4.3 Choosing a client definition 85
4.5 Handling unresponsive application programs 86
4.6 Upgrading an HADB client 88
4.6.1 Preparations before upgrading an HADB client 88
4.6.2 Notes about upgrading 88
4.6.3 How to upgrade an HADB client 89
4.6.4 Tasks to be performed after upgrading 90
4.7 Downgrading an HADB client version (restoring the previous version) 92
4.7.1 Preparations before downgrading an HADB client 92
4.7.2 Notes about downgrading 92
4.7.3 Downgrade procedure 92
4.7.4 Tasks to be performed after downgrading 94
4.8 Replacing HADB client with a revised version 95
4.8.1 Procedure for replacing HADB client with a revised version 95
4.9 Changing the OS time on a client machine 97
4.9.1 Notes (changing the OS time) 97
4.9.2 How to advance the OS time on a client machine 97
4.9.3 How to restore the OS time on a client machine 97

Part 2: Application Program Creation (Common)

5 Designs Related to Improvement of Application Program
Performance 99

5.1 How to retrieve tables 100
5.1.1 About table scans 100
5.1.2 About index scans 101
5.1.3 About key scans 102
5.2 B-tree indexes and text indexes used during execution of SQL statements 105

Hitachi Advanced Database Application Development Guide 18

5.2.1 Priority and selection rules for indexes 106
5.2.2 Examples of indexes that are used during retrieval of a table 113
5.2.3 Examples of indexes that are used during retrieval of a table (examples of index priority) 115
5.2.4 Cases where an index is not used 120
5.2.5 How to check the index used during execution of an SQL statement 121
5.2.6 Notes on searching using a text index 122
5.3 Range indexes used during execution of SQL statements 123
5.3.1 Conditions under which range indexes are used during execution of an SQL statement 123
5.3.2 Examples of range indexes used during retrieval 125
5.3.3 How to check the range index used during execution of an SQL statement 130
5.4 How to evaluate the search conditions when indexes are used 131
5.4.1 Evaluation method when B-tree indexes are used 131
5.4.2 Evaluation method when range indexes are used 133
5.5 Table joining methods 137
5.5.1 About nested-loop join 137
5.5.2 About hash join 138
5.5.3 Characteristics of the joining methods 145
5.6 How to process subqueries 146
5.6.1 Methods for processing subqueries that do not contain an external reference column 146
5.6.2 Characteristics of the methods for processing subqueries that do not contain an external

reference column 152
5.6.3 Methods for processing subqueries that contain an external reference column 152
5.6.4 Characteristics of the methods for processing subqueries that contain an external reference

column 158
5.7 Grouping methods 159
5.7.1 Hash grouping 159
5.7.2 Sort grouping 161
5.7.3 Characteristics of each type of grouping 161
5.8 Methods for processing set operations 163
5.8.1 Hash execution 163
5.8.2 Work table execution 165
5.8.3 Characteristics of the methods for processing set operations 166
5.9 Method for processing SELECT DISTINCT 167
5.9.1 Hash execution 167
5.9.2 Work table execution 169
5.9.3 Characteristics of the methods for processing SELECT DISTINCT 170
5.10 Considerations when executing an SQL statement that creates work tables 171
5.10.1 Types of work tables 171
5.10.2 Work tables created when SQL statements are executed 172
5.10.3 Number of work tables that are created 176
5.11 Equivalent exchange of search conditions 184
5.11.1 Equivalent exchange for OR conditions (removing from the OR conditions) 184

Hitachi Advanced Database Application Development Guide 19

5.11.2 Equivalent exchange for OR conditions (converting to IN conditions) 189
5.11.3 Equivalent exchange for OR conditions (equivalent exchange to derived tables for which the

UNION ALL set operation is specified) 191
5.11.4 Equivalent exchange for scalar operations 197
5.11.5 Equivalent exchange for an IN predicate 199
5.11.6 Equivalent exchange for a HAVING clause (converting to the WHERE clauses) 200
5.11.7 Equivalent exchange for search conditions in SQL statements that specify derived queries

(transposition to the WHERE clause of a derived query) 201
5.12 Considerations when searching an archivable multi-chunk table 206
5.12.1 Tips for searching an archivable multi-chunk table 206
5.12.2 Using the datetime information of the archive range column to narrow the search range 208
5.12.3 Notes about specifying JOIN (joined table) 213
5.12.4 Equivalent exchange of SQL statements that search archivable multi-chunk tables 215
5.13 Expanding internal derived tables 218
5.14 Improving performance by batch transfer of retrieval results 219
5.15 Batch transfer of dynamic parameter values 221

6 Tuning Application Programs 223
6.1 How to use access paths (how to use SQL statement execution plans) 224
6.1.1 About access paths 224
6.1.2 How to check access paths 226
6.1.3 Examples of access paths 228
6.1.4 Information displayed in the tree view 230
6.1.5 Information displayed in the details view 246
6.1.6 Information output in identification information view (SQL statement identification information) 256
6.1.7 Information displayed for an access path (alphabetical order) 257

Part 3: Application Program Creation (JDBC)

7 Creating Application Programs 262
7.1 JDBC driver provided by HADB 263
7.1.1 Scope of JDBC standards compliance 263
7.1.2 Package name and directory structure of the JAR file 265
7.2 Basic procedure for application program processing 266
7.3 How to connect to the HADB server 267
7.3.1 Using the getConnection method of the DriverManager class to connect to the HADB server 267
7.3.2 Using the getConnection method of the DataSource class to connect to the HADB server 277
7.3.3 Connection information priorities 280
7.4 Retrieving data (executing the SELECT statement) 285
7.4.1 How to retrieve data 285
7.4.2 How to use dynamic parameters 287
7.5 Adding, updating, or deleting data (executing the INSERT, UPDATE, or DELETE statement) 289
7.6 Data processing 290

Hitachi Advanced Database Application Development Guide 20

7.6.1 Mapping data types 290
7.6.2 Data conversion process 294
7.6.3 Overflow handling 296
7.6.4 Conversion of character encoding 301
7.7 Troubleshooting 303
7.7.1 JDBC interface method traces 303
7.7.2 Exception trace log 305
7.8 Scalar functions that can be specified in the escape clause 319

8 The JDBC 1.2 API 321
8.1 Driver interface 322
8.1.1 List of the methods in the Driver interface 322
8.1.2 acceptsURL(String url) 323
8.1.3 connect(String url, Properties info) 323
8.1.4 getMajorVersion() 324
8.1.5 getMinorVersion() 325
8.1.6 getPropertyInfo(String url, Properties info) 325
8.1.7 jdbcCompliant() 328
8.1.8 Escape clause 328
8.2 Connection interface 330
8.2.1 List of the methods in the Connection interface 330
8.2.2 clearWarnings() 332
8.2.3 close() 333
8.2.4 commit() 333
8.2.5 createStatement() 334
8.2.6 createStatement(int resultSetType, int resultSetConcurrency) 335
8.2.7 createStatement(int resultSetType, int resultSetConcurrency, int resultSetHoldability) 336
8.2.8 getAutoCommit() 337
8.2.9 getCatalog() 337
8.2.10 getHADBConnectionID() 338
8.2.11 getHADBConnectionSerialNum() 338
8.2.12 getHADBOrderMode() 339
8.2.13 getHADBSQLHashFltSize() 339
8.2.14 getHADBSQLHashTblSize() 340
8.2.15 getHADBSQLMaxRthdNum() 341
8.2.16 getHADBTransactionID() 341
8.2.17 getHoldability() 342
8.2.18 getMetaData() 343
8.2.19 getSchema() 343
8.2.20 getTransactionIsolation() 344
8.2.21 getTypeMap() 344
8.2.22 getWarnings() 345

Hitachi Advanced Database Application Development Guide 21

8.2.23 isClosed() 345
8.2.24 isReadOnly() 346
8.2.25 isValid(int timeout) 346
8.2.26 nativeSQL(String sql) 347
8.2.27 prepareStatement(String sql) 350
8.2.28 prepareStatement(String sql, int resultSetType, int resultSetConcurrency) 351
8.2.29 prepareStatement(String sql, int resultSetType, int resultSetConcurrency, int resultSetHoldability) 352
8.2.30 rollback() 353
8.2.31 setAutoCommit(boolean autoCommit) 354
8.2.32 setCatalog(String catalog) 354
8.2.33 setHADBAuditInfo(int pos,String userinfo) 355
8.2.34 setHADBOrderMode(int mode) 356
8.2.35 setHADBSQLHashFltSize(int areaSize) 358
8.2.36 setHADBSQLHashTblSize(int areaSize) 359
8.2.37 setHADBSQLMaxRthdNum(int rthdNum) 360
8.2.38 setHoldability(int holdability) 363
8.2.39 setReadOnly(boolean readOnly) 363
8.2.40 setSchema(String schema) 364
8.2.41 setTransactionIsolation(int level) 365
8.3 Statement interface 367
8.3.1 List of the methods in the Statement interface 367
8.3.2 addBatch(String sql) 369
8.3.3 cancel() 370
8.3.4 clearBatch() 371
8.3.5 clearWarnings() 371
8.3.6 close() 372
8.3.7 closeOnCompletion() 372
8.3.8 execute(String sql) 373
8.3.9 executeBatch() 374
8.3.10 executeLargeBatch() 375
8.3.11 executeLargeUpdate(String sql) 375
8.3.12 executeQuery(String sql) 376
8.3.13 executeUpdate(String sql) 377
8.3.14 getConnection() 378
8.3.15 getFetchDirection() 378
8.3.16 getFetchSize() 379
8.3.17 getHADBSQLSerialNum() 379
8.3.18 getHADBStatementHandle() 380
8.3.19 getLargeMaxRows() 381
8.3.20 getLargeUpdateCount() 381
8.3.21 getMaxFieldSize() 382

Hitachi Advanced Database Application Development Guide 22

8.3.22 getMaxRows() 383
8.3.23 getMoreResults() 383
8.3.24 getQueryTimeout() 384
8.3.25 getResultSet() 384
8.3.26 getResultSetConcurrency() 385
8.3.27 getResultSetHoldability() 385
8.3.28 getResultSetType() 386
8.3.29 getUpdateCount() 387
8.3.30 getWarnings() 388
8.3.31 isClosed() 388
8.3.32 isCloseOnCompletion() 389
8.3.33 isPoolable() 389
8.3.34 setCursorName(String name) 390
8.3.35 setEscapeProcessing(boolean enable) 391
8.3.36 setFetchDirection(int direction) 391
8.3.37 setFetchSize(int rows) 392
8.3.38 setLargeMaxRows(long max) 393
8.3.39 setMaxFieldSize(int max) 394
8.3.40 setMaxRows(int max) 395
8.3.41 setQueryTimeout(int seconds) 395
8.3.42 Notes about the Statement interface 396
8.4 PreparedStatement interface 398
8.4.1 List of the methods in the PreparedStatement interface 398
8.4.2 addBatch() 400
8.4.3 clearParameters() 400
8.4.4 execute() 401
8.4.5 executeLargeUpdate() 402
8.4.6 executeQuery() 402
8.4.7 executeUpdate() 403
8.4.8 getHADBSQLSerialNum() 404
8.4.9 getHADBStatementHandle() 404
8.4.10 getMetaData() 405
8.4.11 getParameterMetaData() 406
8.4.12 setAsciiStream(int parameterIndex, InputStream x, int length) 406
8.4.13 setBigDecimal(int parameterIndex, BigDecimal x) 407
8.4.14 setBinaryStream(int parameterIndex, InputStream x, int length) 408
8.4.15 setBoolean(int parameterIndex, boolean x) 409
8.4.16 setByte(int parameterIndex, byte x) 409
8.4.17 setBytes(int parameterIndex, byte[] x) 410
8.4.18 setCharacterStream(int parameterIndex, Reader reader, int length) 411
8.4.19 setDate(int parameterIndex, Date x) 411

Hitachi Advanced Database Application Development Guide 23

8.4.20 setDate(int parameterIndex, Date x, Calendar cal) 412
8.4.21 setDouble(int parameterIndex, double x) 413
8.4.22 setFloat(int parameterIndex, float x) 414
8.4.23 setInt(int parameterIndex, int x) 414
8.4.24 setLong(int parameterIndex, long x) 415
8.4.25 setNull(int parameterIndex,int sqlType) 416
8.4.26 setObject(int parameterIndex, Object x) 416
8.4.27 setObject(int parameterIndex, Object x, int targetSqlType) 417
8.4.28 setObject(int parameterIndex, Object x, int targetSqlType, int scale) 418
8.4.29 setShort(int parameterIndex, short x) 419
8.4.30 setString(int parameterIndex, String x) 420
8.4.31 setTime(int parameterIndex, Time x) 420
8.4.32 setTime(int parameterIndex, Time x, Calendar cal) 421
8.4.33 setTimestamp(int parameterIndex, Timestamp x) 422
8.4.34 setTimestamp(int parameterIndex, Timestamp x, Calendar cal) 423
8.4.35 Notes about the PreparedStatement interface 423
8.5 ResultSet interface 426
8.5.1 List of the methods in the ResultSet interface 426
8.5.2 absolute(int row) 429
8.5.3 afterLast() 430
8.5.4 beforeFirst() 431
8.5.5 clearWarnings() 432
8.5.6 close() 432
8.5.7 findColumn(String columnName) 433
8.5.8 first() 434
8.5.9 getAsciiStream(int columnIndex) 434
8.5.10 getAsciiStream(String columnName) 435
8.5.11 getBigDecimal(int columnIndex) 436
8.5.12 getBigDecimal(String columnName) 438
8.5.13 getBinaryStream(int columnIndex) 439
8.5.14 getBinaryStream(String columnName) 440
8.5.15 getBoolean(int columnIndex) 440
8.5.16 getBoolean(String columnName) 442
8.5.17 getByte(int columnIndex) 443
8.5.18 getByte(String columnName) 444
8.5.19 getBytes(int columnIndex) 445
8.5.20 getBytes(String columnName) 446
8.5.21 getCharacterStream(int columnIndex) 447
8.5.22 getCharacterStream(String columnName) 448
8.5.23 getConcurrency() 449
8.5.24 getCursorName() 449

Hitachi Advanced Database Application Development Guide 24

8.5.25 getDate(int columnIndex) 450
8.5.26 getDate(int columnIndex, Calendar cal) 451
8.5.27 getDate(String columnName) 452
8.5.28 getDate(String columnName, Calendar cal) 453
8.5.29 getDouble(int columnIndex) 454
8.5.30 getDouble(String columnName) 456
8.5.31 getFetchDirection() 457
8.5.32 getFetchSize() 457
8.5.33 getFloat(int columnIndex) 458
8.5.34 getFloat(String columnName) 460
8.5.35 getHoldability() 461
8.5.36 getInt(int columnIndex) 462
8.5.37 getInt(String columnName) 463
8.5.38 getLong(int columnIndex) 464
8.5.39 getLong(String columnName) 466
8.5.40 getMetaData() 467
8.5.41 getObject(int columnIndex) 467
8.5.42 getObject(String columnName) 469
8.5.43 getObject(int columnIndex,Class<T> type) 470
8.5.44 getObject(String columnLabel,Class<T> type) 472
8.5.45 getRow() 473
8.5.46 getShort(int columnIndex) 473
8.5.47 getShort(String columnName) 475
8.5.48 getStatement() 476
8.5.49 getString(int columnIndex) 476
8.5.50 getString(String columnName) 478
8.5.51 getTime(int columnIndex) 479
8.5.52 getTime(int columnIndex, Calendar cal) 480
8.5.53 getTime(String columnName) 481
8.5.54 getTime(String columnName, Calendar cal) 482
8.5.55 getTimestamp(int columnIndex) 483
8.5.56 getTimestamp(int columnIndex, Calendar cal) 484
8.5.57 getTimestamp(String columnName) 485
8.5.58 getTimestamp(String columnName, Calendar cal) 486
8.5.59 getType() 486
8.5.60 getWarnings() 487
8.5.61 isAfterLast() 488
8.5.62 isBeforeFirst() 488
8.5.63 isClosed() 489
8.5.64 isFirst() 490
8.5.65 isLast() 490

Hitachi Advanced Database Application Development Guide 25

8.5.66 last() 491
8.5.67 next() 492
8.5.68 previous() 492
8.5.69 relative(int rows) 493
8.5.70 setFetchDirection(int direction) 494
8.5.71 setFetchSize(int rows) 494
8.5.72 wasNull() 495
8.5.73 Fields supported by the ResultSet interface 496
8.5.74 Notes about the ResultSet interface 497
8.6 DatabaseMetaData interface 500
8.6.1 List of the methods in the DatabaseMetaData interface 500
8.6.2 allProceduresAreCallable() 509
8.6.3 allTablesAreSelectable() 509
8.6.4 autoCommitFailureClosesAllResultSets() 510
8.6.5 dataDefinitionCausesTransactionCommit() 510
8.6.6 dataDefinitionIgnoredInTransactions() 511
8.6.7 deletesAreDetected(int type) 511
8.6.8 doesMaxRowSizeIncludeBlobs() 512
8.6.9 generatedKeyAlwaysReturned() 513
8.6.10 getAttributes(String catalog, String schemaPattern, String typeNamePattern, String

attributeNamePattern) 513
8.6.11 getBestRowIdentifier(String catalog, String schema, String table, int scope, boolean nullable) 514
8.6.12 getCatalogs() 516
8.6.13 getCatalogSeparator() 516
8.6.14 getCatalogTerm() 517
8.6.15 getClientInfoProperties() 517
8.6.16 getColumnPrivileges(String catalog, String schema, String table, String columnNamePattern) 518
8.6.17 getColumns(String catalog, String schemaPattern, String tableNamePattern, String

columnNamePattern) 519
8.6.18 getConnection() 521
8.6.19 getCrossReference(String parentCatalog, String parentSchema, String parentTable, String

foreignCatalog, String foreignSchema, String foreignTable) 522
8.6.20 getDatabaseMajorVersion() 523
8.6.21 getDatabaseMinorVersion() 524
8.6.22 getDatabaseProductName() 525
8.6.23 getDatabaseProductVersion() 525
8.6.24 getDefaultTransactionIsolation() 526
8.6.25 getDriverMajorVersion() 526
8.6.26 getDriverMinorVersion() 527
8.6.27 getDriverName() 527
8.6.28 getDriverVersion() 528
8.6.29 getExportedKeys(String catalog, String schema, String table) 528

Hitachi Advanced Database Application Development Guide 26

8.6.30 getExtraNameCharacters() 530
8.6.31 getFunctionColumns(String catalog, String schemaPattern, String functionNamePattern, String

columnNamePattern) 530
8.6.32 getFunctions(String catalog, String schemaPattern, String functionNamePattern) 531
8.6.33 getIdentifierQuoteString() 532
8.6.34 getImportedKeys(String catalog, String schema, String table) 533
8.6.35 getIndexInfo(String catalog, String schema, String table, boolean unique, boolean approximate) 534
8.6.36 getJDBCMajorVersion() 536
8.6.37 getJDBCMinorVersion() 537
8.6.38 getMaxBinaryLiteralLength() 537
8.6.39 getMaxCatalogNameLength() 538
8.6.40 getMaxCharLiteralLength() 538
8.6.41 getMaxColumnNameLength() 539
8.6.42 getMaxColumnsInGroupBy() 539
8.6.43 getMaxColumnsInIndex() 540
8.6.44 getMaxColumnsInOrderBy() 540
8.6.45 getMaxColumnsInSelect() 541
8.6.46 getMaxColumnsInTable() 541
8.6.47 getMaxConnections() 542
8.6.48 getMaxCursorNameLength() 542
8.6.49 getMaxIndexLength() 543
8.6.50 getMaxLogicalLobSize() 543
8.6.51 getMaxProcedureNameLength() 544
8.6.52 getMaxRowSize() 544
8.6.53 getMaxSchemaNameLength() 545
8.6.54 getMaxStatementLength() 545
8.6.55 getMaxStatements() 546
8.6.56 getMaxTableNameLength() 546
8.6.57 getMaxTablesInSelect() 547
8.6.58 getMaxUserNameLength() 547
8.6.59 getNumericFunctions() 548
8.6.60 getPrimaryKeys(String catalog, String schema, String table) 548
8.6.61 getProcedureColumns(String catalog, String schemaPattern, String procedureNamePattern,

String columnNamePattern) 549
8.6.62 getProcedures(String catalog, String schemaPattern, String procedureNamePattern) 551
8.6.63 getProcedureTerm() 552
8.6.64 getPseudoColumns(String catalog,String schemaPattern,String tableNamePattern,String

columnNamePattern) 552
8.6.65 getResultSetHoldability() 553
8.6.66 getRowIdLifetime() 554
8.6.67 getSchemas() 554
8.6.68 getSchemas(String catalog, String schemaPattern) 555

Hitachi Advanced Database Application Development Guide 27

8.6.69 getSchemaTerm() 556
8.6.70 getSearchStringEscape() 556
8.6.71 getSQLKeywords() 557
8.6.72 getSQLStateType() 557
8.6.73 getStringFunctions() 558
8.6.74 getSuperTables(String catalog, String schemaPattern, String tableNamePattern) 558
8.6.75 getSuperTypes(String catalog, String schemaPattern, String typeNamePattern) 559
8.6.76 getSystemFunctions() 560
8.6.77 getTablePrivileges(String catalog, String schemaPattern, String tableNamePattern) 561
8.6.78 getTables(String catalog, String schemaPattern, String tableNamePattern, String[] types) 562
8.6.79 getTableTypes() 564
8.6.80 getTimeDateFunctions() 564
8.6.81 getTypeInfo() 565
8.6.82 getUDTs(String catalog, String schemaPattern, String typeNamePattern, int[] types) 566
8.6.83 getURL() 567
8.6.84 getUserName() 568
8.6.85 getVersionColumns(String catalog, String schema, String table) 568
8.6.86 insertsAreDetected(int type) 569
8.6.87 isCatalogAtStart() 570
8.6.88 isReadOnly() 570
8.6.89 locatorsUpdateCopy() 571
8.6.90 nullPlusNonNullIsNull() 571
8.6.91 nullsAreSortedAtEnd() 572
8.6.92 nullsAreSortedAtStart() 572
8.6.93 nullsAreSortedHigh() 573
8.6.94 nullsAreSortedLow() 573
8.6.95 othersDeletesAreVisible(int type) 574
8.6.96 othersInsertsAreVisible(int type) 574
8.6.97 othersUpdatesAreVisible(int type) 575
8.6.98 ownDeletesAreVisible(int type) 575
8.6.99 ownInsertsAreVisible(int type) 576
8.6.100 ownUpdatesAreVisible(int type) 577
8.6.101 storesLowerCaseIdentifiers() 577
8.6.102 storesLowerCaseQuotedIdentifiers() 578
8.6.103 storesMixedCaseIdentifiers() 578
8.6.104 storesMixedCaseQuotedIdentifiers() 579
8.6.105 storesUpperCaseIdentifiers() 579
8.6.106 storesUpperCaseQuotedIdentifiers() 580
8.6.107 supportsAlterTableWithAddColumn() 580
8.6.108 supportsAlterTableWithDropColumn() 581
8.6.109 supportsANSI92EntryLevelSQL() 581

Hitachi Advanced Database Application Development Guide 28

8.6.110 supportsANSI92FullSQL() 582
8.6.111 supportsANSI92IntermediateSQL() 582
8.6.112 supportsBatchUpdates() 583
8.6.113 supportsCatalogsInDataManipulation() 583
8.6.114 supportsCatalogsInIndexDefinitions() 584
8.6.115 supportsCatalogsInPrivilegeDefinitions() 584
8.6.116 supportsCatalogsInProcedureCalls() 585
8.6.117 supportsCatalogsInTableDefinitions() 585
8.6.118 supportsColumnAliasing() 586
8.6.119 supportsConvert() 586
8.6.120 supportsConvert(int fromType, int toType) 587
8.6.121 supportsCoreSQLGrammar() 588
8.6.122 supportsCorrelatedSubqueries() 589
8.6.123 supportsDataDefinitionAndDataManipulationTransactions() 589
8.6.124 supportsDataManipulationTransactionsOnly() 590
8.6.125 supportsDifferentTableCorrelationNames() 590
8.6.126 supportsExpressionsInOrderBy() 591
8.6.127 supportsExtendedSQLGrammar() 591
8.6.128 supportsFullOuterJoins() 592
8.6.129 supportsGetGeneratedKeys() 592
8.6.130 supportsGroupBy() 593
8.6.131 supportsGroupByBeyondSelect() 593
8.6.132 supportsGroupByUnrelated() 594
8.6.133 supportsIntegrityEnhancementFacility() 594
8.6.134 supportsLikeEscapeClause() 595
8.6.135 supportsLimitedOuterJoins() 595
8.6.136 supportsMinimumSQLGrammar() 596
8.6.137 supportsMixedCaseIdentifiers() 596
8.6.138 supportsMixedCaseQuotedIdentifiers() 597
8.6.139 supportsMultipleOpenResults() 597
8.6.140 supportsMultipleResultSets() 598
8.6.141 supportsMultipleTransactions() 598
8.6.142 supportsNamedParameters() 599
8.6.143 supportsNonNullableColumns() 599
8.6.144 supportsOpenCursorsAcrossCommit() 600
8.6.145 supportsOpenCursorsAcrossRollback() 600
8.6.146 supportsOpenStatementsAcrossCommit() 601
8.6.147 supportsOpenStatementsAcrossRollback() 601
8.6.148 supportsOrderByUnrelated() 602
8.6.149 supportsOuterJoins() 602
8.6.150 supportsPositionedDelete() 603

Hitachi Advanced Database Application Development Guide 29

8.6.151 supportsPositionedUpdate() 603
8.6.152 supportsRefCursors() 604
8.6.153 supportsResultSetConcurrency(int type, int concurrency) 604
8.6.154 supportsResultSetHoldability(int holdability) 605
8.6.155 supportsResultSetType(int type) 606
8.6.156 supportsSavepoints() 606
8.6.157 supportsSchemasInDataManipulation() 607
8.6.158 supportsSchemasInIndexDefinitions() 607
8.6.159 supportsSchemasInPrivilegeDefinitions() 608
8.6.160 supportsSchemasInProcedureCalls() 608
8.6.161 supportsSchemasInTableDefinitions() 609
8.6.162 supportsSelectForUpdate() 609
8.6.163 supportsStatementPooling() 610
8.6.164 supportsStoredFunctionsUsingCallSyntax() 610
8.6.165 supportsStoredProcedures() 611
8.6.166 supportsSubqueriesInComparisons() 611
8.6.167 supportsSubqueriesInExists() 612
8.6.168 supportsSubqueriesInIns() 612
8.6.169 supportsSubqueriesInQuantifieds() 613
8.6.170 supportsTableCorrelationNames() 613
8.6.171 supportsTransactionIsolationLevel(int level) 614
8.6.172 supportsTransactions() 615
8.6.173 supportsUnion() 615
8.6.174 supportsUnionAll() 616
8.6.175 updatesAreDetected(int type) 616
8.6.176 usesLocalFilePerTable() 617
8.6.177 usesLocalFiles() 617
8.7 ResultSetMetaData interface 618
8.7.1 List of the methods in the ResultSetMetaData interface 618
8.7.2 getCatalogName(int column) 619
8.7.3 getColumnClassName(int column) 620
8.7.4 getColumnCount() 621
8.7.5 getColumnDisplaySize(int column) 621
8.7.6 getColumnLabel(int column) 623
8.7.7 getColumnName(int column) 623
8.7.8 getColumnType(int column) 624
8.7.9 getColumnTypeName(int column) 624
8.7.10 getPrecision(int column) 625
8.7.11 getScale(int column) 627
8.7.12 getSchemaName(int column) 627
8.7.13 getTableName(int column) 628

Hitachi Advanced Database Application Development Guide 30

8.7.14 isAutoIncrement(int column) 629
8.7.15 isCaseSensitive(int column) 629
8.7.16 isCurrency(int column) 630
8.7.17 isDefinitelyWritable(int column) 630
8.7.18 isNullable(int column) 631
8.7.19 isReadOnly(int column) 631
8.7.20 isSearchable(int column) 632
8.7.21 isSigned(int column) 633
8.7.22 isWritable(int column) 633
8.8 SQLException interface 635
8.9 SQLWarning interface 636
8.9.1 Creating an SQLWarning object 636
8.9.2 Releasing SQLWarning objects 636
8.10 Unsupported interfaces 637

9 The JDBC 2.1 Core API 638
9.1 Scope of support for the result set extended functions 639
9.2 Scope of support for batch update functionality 640
9.2.1 SQL statements that can use the batch update functionality 640
9.2.2 Batch update functionality with the Statement class 640
9.2.3 Batch update functionality with the PreparedStatement class 640
9.2.4 Notes 641
9.3 Added data types 643
9.4 Unsupported interfaces 644

10 The JDBC 2.0 Optional Package 645
10.1 HADB's scope of support for the functions added in the JDBC 2.0 Optional Package 646
10.2 DataSource interface 647
10.2.1 List of the methods in the DataSource interface 647
10.2.2 getConnection() 647
10.2.3 getConnection(String username, String password) 648
10.2.4 getLoginTimeout() 649
10.2.5 getLogWriter() 649
10.2.6 setLoginTimeout(int seconds) 650
10.2.7 setLogWriter(PrintWriter out) 651
10.3 ConnectionPoolDataSource interface 652
10.3.1 List of the methods in the ConnectionPoolDataSource interface 652
10.3.2 getLoginTimeout() 652
10.3.3 getLogWriter() 653
10.3.4 getPooledConnection() 653
10.3.5 getPooledConnection(String user, String password) 654
10.3.6 setLoginTimeout(int seconds) 655

Hitachi Advanced Database Application Development Guide 31

10.3.7 setLogWriter(PrintWriter out) 655
10.4 PooledConnection interface 657
10.4.1 List of the methods in the PooledConnection interface 657
10.4.2 addConnectionEventListener(ConnectionEventListener listener) 657
10.4.3 close() 658
10.4.4 getConnection() 658
10.4.5 removeConnectionEventListener(ConnectionEventListener listener) 659
10.5 Connection information setup and acquisition interface 661
10.5.1 List of the methods in the connection information setup and acquisition interface 661
10.5.2 getApName() 662
10.5.3 getEncodeLang() 662
10.5.4 getInterfaceMethodTrace() 663
10.5.5 getNotErrorOccurred() 663
10.5.6 getPassword() 664
10.5.7 getSQLWarningKeep() 665
10.5.8 getTraceNumber() 665
10.5.9 getUser() 666
10.5.10 getHostName() 666
10.5.11 getPort() 667
10.5.12 setApName(String name) 667
10.5.13 setEncodeLang(String lang) 668
10.5.14 setInterfaceMethodTrace(boolean flag) 669
10.5.15 setNotErrorOccurred(boolean mode) 670
10.5.16 setPassword(String password) 670
10.5.17 setSQLWarningKeep(boolean mode) 671
10.5.18 setTraceNumber(int num) 672
10.5.19 setUser(String user) 672
10.5.20 setHostName(String name) 673
10.5.21 setPort(int port) 673

11 The JDBC 3.0 API 675
11.1 HADB's scope of support for the functions added in the JDBC 3.0 API 676
11.2 ParameterMetaData interface 677
11.2.1 List of the methods in the ParameterMetaData interface 677
11.2.2 getParameterClassName(int param) 678
11.2.3 getParameterCount() 679
11.2.4 getParameterMode(int param) 679
11.2.5 getParameterType(int param) 680
11.2.6 getParameterTypeName(int param) 680
11.2.7 getPrecision(int param) 681
11.2.8 getScale(int param) 682
11.2.9 isNullable(int param) 683

Hitachi Advanced Database Application Development Guide 32

11.2.10 isSigned(int param) 684
11.3 Unsupported interfaces 685

12 The JDBC 4.0 API 686
12.1 HADB's scope of support for the functions added in the JDBC 4.0 API 687
12.1.1 Automatic loading of java.sql.Driver 687
12.1.2 Wrapper pattern 688
12.1.3 SQL exception extension 688
12.1.4 Connection management 689
12.1.5 Added scalar functions 689
12.2 Wrapper interface 690
12.2.1 List of the methods in the Wrapper interface 690
12.2.2 isWrapperFor(Class<?> iface) 691
12.2.3 unwrap(Class<T> iface) 691
12.3 SQL exception extension function 693
12.4 Unsupported interfaces 695

13 The JDBC 4.1 API 696
13.1 HADB's scope of support for the functions added in the JDBC 4.1 API 697
13.1.1 try-with-resources statement 697
13.1.2 Closing Statement objects when their dependent objects close 697

14 The JDBC 4.2 API 698
14.1 HADB's scope of support for the functions added in the JDBC 4.2 API 699
14.1.1 Large update counts 699

Part 4: Application Program Creation (ODBC)

15 Creating Application Programs 700
15.1 ODBC driver provided by HADB 701
15.1.1 ODBC driver version with which the HADB ODBC driver is compliant 701
15.1.2 System configuration 701
15.1.3 About conversion of character encoding 702
15.1.4 About using the ODBC cursor library 704
15.2 HADB ODBC driver environment setup 705
15.2.1 Specifying data sources 705
15.2.2 Registering the registry key 706
15.2.3 Deleting data sources 706
15.3 Correspondence between data types 707
15.3.1 Correspondence between ODBC's SQL data types and HADB's data types 707
15.3.2 Correspondence between ODBC's SQL data types and C data types 708
15.3.3 Notes about data type conversion 710

Hitachi Advanced Database Application Development Guide 33

15.4 Information that is returned in the event of an error 713
15.5 Limitations 714
15.5.1 ROW specification 714
15.5.2 AUTOCOMMIT specifications 714
15.5.3 Notes about the maximum number SQL processing real threads 714
15.6 Notes 715
15.6.1 Effects of update operations on a retrieval using a cursor 715
15.6.2 Notes on using the HADB ODBC driver in ODBC 2.x applications 715

16 ODBC Functions 717
16.1 List of ODBC functions 718
16.2 Notes about SQLxxx and SQLxxxW functions 722
16.3 Connecting to the data source 723
16.3.1 SQLAllocHandle 723
16.3.2 SQLConnect, SQLConnectW 724
16.3.3 SQLDriverConnect, SQLDriverConnectW 727
16.3.4 SQLBrowseConnect, SQLBrowseConnectW 733
16.4 Acquiring driver and data source information 738
16.4.1 SQLDataSources, SQLDataSourcesW 738
16.4.2 SQLDrivers, SQLDriversW 740
16.4.3 SQLGetInfo, SQLGetInfoW 742
16.4.4 SQLGetFunctions 744
16.4.5 SQLGetTypeInfo, SQLGetTypeInfoW 745
16.5 Specifying and obtaining driver options 749
16.5.1 SQLSetConnectAttr, SQLSetConnectAttrW 749
16.5.2 SQLGetConnectAttr, SQLGetConnectAttrW 751
16.5.3 SQLSetEnvAttr 753
16.5.4 SQLGetEnvAttr 754
16.5.5 SQLSetStmtAttr, SQLSetStmtAttrW 756
16.5.6 SQLGetStmtAttr, SQLGetStmtAttrW 757
16.6 Specifying descriptor values 760
16.6.1 SQLGetDescField, SQLGetDescFieldW 760
16.6.2 SQLGetDescRec, SQLGetDescRecW 762
16.6.3 SQLSetDescField, SQLSetDescFieldW 765
16.6.4 SQLSetDescRec 767
16.6.5 SQLCopyDesc 769
16.7 Creating SQL requests 771
16.7.1 SQLPrepare, SQLPrepareW 771
16.7.2 SQLBindParameter 773
16.7.3 SQLGetCursorName, SQLGetCursorNameW 776
16.7.4 SQLSetCursorName, SQLSetCursorNameW 778
16.7.5 SQLDescribeParam 780

Hitachi Advanced Database Application Development Guide 34

16.7.6 SQLNumParams 781
16.8 Executing SQL statements 783
16.8.1 SQLExecute 783
16.8.2 SQLExecDirect, SQLExecDirectW 785
16.8.3 SQLNativeSql, SQLNativeSqlW 789
16.8.4 SQLParamData 793
16.8.5 SQLPutData 795
16.9 Acquiring execution results and execution result information 798
16.9.1 SQLRowCount 798
16.9.2 SQLNumResultCols 799
16.9.3 SQLDescribeCol, SQLDescribeColW 800
16.9.4 SQLColAttribute, SQLColAttributeW 803
16.9.5 SQLBindCol 806
16.9.6 SQLFetch 808
16.9.7 SQLFetchScroll 810
16.9.8 SQLGetData 812
16.9.9 SQLSetPos 815
16.9.10 SQLBulkOperations 817
16.9.11 SQLMoreResults 819
16.9.12 SQLGetDiagField, SQLGetDiagFieldW 820
16.9.13 SQLGetDiagRec, SQLGetDiagRecW 822
16.10 Acquiring system information for the data source 826
16.10.1 SQLColumnPrivileges, SQLColumnPrivilegesW 826
16.10.2 SQLColumns, SQLColumnsW 829
16.10.3 SQLForeignKeys, SQLForeignKeysW 833
16.10.4 SQLPrimaryKeys, SQLPrimaryKeysW 838
16.10.5 SQLProcedureColumns, SQLProcedureColumnsW 840
16.10.6 SQLProcedures, SQLProceduresW 842
16.10.7 SQLSpecialColumns, SQLSpecialColumnsW 844
16.10.8 SQLStatistics, SQLStatisticsW 847
16.10.9 SQLTablePrivileges, SQLTablePrivilegesW 851
16.10.10 SQLTables, SQLTablesW 854
16.11 Terminating execution of SQL statements 858
16.11.1 SQLFreeStmt 858
16.11.2 SQLCloseCursor 859
16.11.3 SQLCancel 860
16.11.4 SQLEndTran 861
16.12 Disconnecting from the data source 864
16.12.1 SQLDisconnect 864
16.12.2 SQLFreeHandle 865
16.13 Information types that can be specified for InfoType in SQLGetInfo and SQLGetInfoW 867

Hitachi Advanced Database Application Development Guide 35

16.14 Attributes that can be specified in SQLSetConnectAttr, SQLSetConnectAttrW,
SQLGetConnectAttr, and SQLGetConnectAttrW 887

16.15 Attributes that can be specified in SQLSetEnvAttr and SQLGetEnvAttr 891
16.16 Attributes that can be specified in SQLSetStmtAttr, SQLSetStmtAttrW, SQLGetStmtAttr, and

SQLGetStmtAttrW 893
16.17 Attributes that can be specified in SQLGetDescField, SQLGetDescFieldW, SQLSetDescField,

and SQLSetDescFieldW 898
16.18 Attributes that can be specified in DiagIdentifier of SQLGetDiagField and SQLGetDiagFieldW 906

17 Troubleshooting 909
17.1 Information used for troubleshooting 910
17.1.1 Messages output by BI tools and ODBC modules 910
17.1.2 ODBC traces 910
17.1.3 HADB ODBC driver trace information 910
17.1.4 Messages output by the HADB server and HADB client 911
17.1.5 SQL trace information 911
17.2 Troubleshooting procedure 912
17.2.1 Handling errors 912
17.2.2 Troubleshooting tips 914
17.3 Settings for outputting HADB ODBC driver trace information 917
17.3.1 Configuration in ODBC Data Source Administrator 917
17.3.2 Configuration using environment variables 921
17.3.3 Relative priority of configuration in ODBC Data Source Administrator and environment variables 922
17.4 Information output as HADB ODBC driver trace information 923
17.4.1 About trace levels 923
17.4.2 Information output when trace level is 1 924
17.4.3 Information output when trace level is 2 929
17.5 Notes about HADB ODBC driver trace information 934

Part 5: Application Program Creation (CLI Functions)

18 Creating Application Programs 935
18.1 Designing application programs 936
18.1.1 Flow of application program processing 936
18.1.2 Transaction control 936
18.1.3 Flow of processing using dynamic parameters 937
18.1.4 Effects of update operations on a retrieval using a cursor 938
18.1.5 Evaluation and handling of SQL statement errors 939
18.2 How to use the CLI functions 941
18.2.1 Connecting to and disconnecting from the HADB server 941
18.2.2 Referencing data 943
18.2.3 Using dynamic parameters 948
18.2.4 Adding, updating, or deleting data 951

Hitachi Advanced Database Application Development Guide 36

18.2.5 Canceling SQL processing that is executing 952
18.2.6 Notes about using the CLI functions 953
18.3 Compiling and linking application programs 955

19 CLI Functions 956
19.1 List of CLI functions and common rules 957
19.1.1 List of CLI functions 957
19.1.2 Common rules 959
19.2 CLI functions for connecting to and disconnecting from the HADB server 961
19.2.1 a_rdb_SQLAllocConnect() (allocate a connection handle) 961
19.2.2 a_rdb_SQLConnect() (establish a connection) 962
19.2.3 a_rdb_SQLSetConnectAttr() (set connection attributes) 963
19.2.4 a_rdb_SQLDisconnect() (close a connection) 965
19.2.5 a_rdb_SQLFreeConnect() (release a connection handle) 966
19.3 CLI functions for controlling transactions 967
19.3.1 a_rdb_SQLCancel() (cancel SQL processing) 967
19.3.2 a_rdb_SQLEndTran() (terminate the transaction) 968
19.4 CLI functions for execution of SQL statements 970
19.4.1 a_rdb_SQLAllocStmt() (allocate a statement handle) 970
19.4.2 a_rdb_SQLBindArrayParams() (bind dynamic parameters in batch mode) 971
19.4.3 a_rdb_SQLBindCols() (associate retrieval result columns) 973
19.4.4 a_rdb_SQLBindParams() (associate dynamic parameters) 974
19.4.5 a_rdb_SQLCloseCursor() (close the cursor) 975
19.4.6 a_rdb_SQLDescribeCols() (acquire information about the retrieval result columns) 976
19.4.7 a_rdb_SQLDescribeParams() (acquire dynamic parameter information) 979
19.4.8 a_rdb_SQLExecDirect() (preprocess and execute an SQL statement) 981
19.4.9 a_rdb_SQLExecute() (execute a preprocessed SQL statement) 982
19.4.10 a_rdb_SQLFetch() (fetch a row) 983
19.4.11 a_rdb_SQLFreeStmt() (release a statement handle) 984
19.4.12 a_rdb_SQLNumParams() (acquire the number of dynamic parameters) 985
19.4.13 a_rdb_SQLNumResultCols() (acquire the number of retrieval result columns) 986
19.4.14 a_rdb_SQLPrepare() (preprocess an SQL statement) 987
19.5 CLI functions for data type conversion 989
19.5.1 a_rdb_CNV_charBINARY() (convert to BINARY-type data) 989
19.5.2 a_rdb_CNV_charDATE() (convert to DATE-type data) 991
19.5.3 a_rdb_CNV_charDECIMAL() (convert to DECIMAL-type data) 992
19.5.4 a_rdb_CNV_charTIME() (convert to TIME-type data) 994
19.5.5 a_rdb_CNV_charTIMESTAMP() (convert to TIMESTAMP-type data) 996
19.5.6 a_rdb_CNV_charVARBINARY() (convert to VARBINARY-type data) 998
19.5.7 a_rdb_CNV_BINARYchar() (convert BINARY-type data) 1000
19.5.8 a_rdb_CNV_DATEchar() (convert DATE-type data) 1002
19.5.9 a_rdb_CNV_DECIMALchar() (convert DECIMAL-type data) 1004

Hitachi Advanced Database Application Development Guide 37

19.5.10 a_rdb_CNV_TIMEchar() (convert TIME-type data) 1006
19.5.11 a_rdb_CNV_TIMESTAMPchar() (convert TIMESTAMP-type data) 1007
19.5.12 a_rdb_CNV_VARBINARYchar() (convert VARBINARY-type data) 1009
19.6 Correspondence to the SQL data types 1012
19.6.1 Correspondences among SQL data types, symbolic literals, and values 1012
19.6.2 Correspondences between SQL data types and data descriptions 1012
19.6.3 Correspondence to the VARCHAR type 1013
19.6.4 VARBINARY type 1014
19.7 Data types used in the CLI functions 1015
19.7.1 a_rdb_SQLColumnInfo_t structure (column information) 1015
19.7.2 a_rdb_SQLNameInfo_t structure (name information) 1016
19.7.3 a_rdb_SQLDataType_t structure (data type information) 1017
19.7.4 a_rdb_SQLInd_t (indicator) 1018
19.7.5 a_rdb_SQLParameterInfo_t structure (parameter information) 1018
19.7.6 a_rdb_SQLResultInfo_t structure (SQL results information) 1019
19.8 Return values of the CLI functions 1022

Appendixes 1024
A Sample Application Program 1025
A.1 Overview of sample application program 1025
A.2 Preparations before executing the sample application program 1025
A.3 How to create the SAMPLE table 1025
A.4 Sample application program execution procedure 1027
B Structure of HADB Client Directories 1029
B.1 HADB clients for Windows 1029
B.2 HADB clients for Linux 1036
C Estimating the Memory Requirements for an HADB Client 1039
C.1 Memory required for connecting to the HADB server 1039
C.2 Memory required for communication between an HADB client and the HADB server 1039

Index 1041

Hitachi Advanced Database Application Development Guide 38

This chapter explains the application program development procedure, the prerequisites for
application program development, and the application program execution modes.

Part 1: Environment Setup (Common)

1 Overview of Application Program Development
and Execution

Hitachi Advanced Database Application Development Guide 39

1.1 Procedure and prerequisites for application program development

The following figure shows the application program development procedure.

Figure 1-1: Application program development procedure

The following subsections explain the prerequisites for developing application programs.

1.1.1 Programming languages for application programs
An application program must be written in one of the following programming languages:

• Java

• C

• C++

In Java, you can use the JDBC API to access the database.

In C or C++, you can use CLI functions (an API provided by HADB that supports C and C++) or ODBC functions to
access the database.

You can also use ODBC functions from application programs to access the database.

1.1.2 Character encoding
The following character encodings are supported for HADB servers and HADB clients:

• UTF-8

• Shift-JIS

1. Overview of Application Program Development and Execution

Hitachi Advanced Database Application Development Guide 40

1.1.3 Application program development environment
Application programs can be developed on a computer where either HADB server or HADB client is installed.

1. Overview of Application Program Development and Execution

Hitachi Advanced Database Application Development Guide 41

1.2 Application program execution modes

You can execute application programs on HADB clients and on HADB servers.

Figure 1-2 shows the mode in which application programs are executed on an HADB client, and Figure 1-3 shows the
mode in which application programs are executed on an HADB server.

Figure 1-2: Mode in which application programs are executed on an HADB client

Note: The OS for HADB clients is Linux or Windows.

1. Overview of Application Program Development and Execution

Hitachi Advanced Database Application Development Guide 42

Figure 1-3: Mode in which application programs are executed on an HADB server

1. Overview of Application Program Development and Execution

Hitachi Advanced Database Application Development Guide 43

This chapter explains the format in which operands for client definitions are to be specified, the
content of client definitions, and the syntax rules that apply to client definitions.

2 Designing Client Definitions

Hitachi Advanced Database Application Development Guide 44

2.1 Specification formats for operands in the client definition

Specify the execution environment of the HADB client in the client definition. The following shows the specification
formats for operands in the client definition.

Operands related to system configuration
 set adb_clt_rpc_srv_host = HADB-server's-host-name
 [set adb_clt_rpc_srv_port = HADB-server's-port-number]
 [set adb_clt_group_name = client-group-name]

Operands related to application program status monitoring
 [set adb_clt_rpc_con_wait_time = wait-time-until-completion-of-connection-to-HADB-s
erver]
 [set adb_clt_rpc_sql_wait_time = HADB-server's-response-wait-time]
 [set adb_clt_ap_name = application-identifier]

Operands related to performance
 [set adb_clt_fetch_size = number-of-batch-transmission-rows-during-FETCH-processing
]
 [set adb_dbbuff_wrktbl_clt_blk_num = number-of-local-work-table-buffer-pages]
 [set adb_sql_exe_max_rthd_num = maximum-number-of-SQL-processing-real-threads]
 [set adb_sql_exe_hashgrp_area_size = hash-grouping-area-size]
 [set adb_sql_exe_hashtbl_area_size = hash-table-area-size]
 [set adb_sql_exe_hashflt_area_size = hash-filter-area-size]

Operands related to SQL
 [set adb_sql_prep_delrsvd_use_srvdef = {Y|N}]
 [set adb_clt_trn_iso_lv = {READ_COMMITTED|REPEATABLE_READ}]
 [set adb_clt_trn_access_mode = {READ_WRITE|READ_ONLY}]
 [set adb_clt_sql_text_out = {Y|N}]
 [set adb_clt_sql_order_mode = {BYTE|ISO}]
 [set adb_sql_prep_dec_div_rs_prior = {INTEGRAL_PART|FRACTIONAL_PART}]

For explanations of operands in the client definition, see 2.2 Contents of operands in the client definition.

For details about how to create and modify the client definition, see 4.4 Creating a client definition.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 45

2.2 Contents of operands in the client definition

This section provides detailed descriptions of the operands in the client definition.

Important
• Operands specified in the client definition are applied when the ODBC driver or CLI functions are used.

They are not applied when the JDBC driver is used.

• If you use the JDBC driver, you can use system properties, user properties, or URL connection properties
to specify the same information as is specified in the client definition operands.
For details about system properties, see 3.1.6 Setting system properties.
For details about the user properties, see (d) Values to be specified in the info argument (specifying the
user properties) in (2) Connecting to the HADB server with the getConnection method in 7.3.1 Using
the getConnection method of the DriverManager class to connect to the HADB server.
For details about the URL connection properties, see (a) Values to be specified in the url argument
(specifying the URL for the connection) in (2) Connecting to the HADB server with the getConnection
method in 7.3.1 Using the getConnection method of the DriverManager class to connect to the HADB
server.

• The operands specified in the client definition are applied when the adbsql command is used to execute
SQL statements.

2.2.1 Operands related to system configuration
• adb_clt_rpc_srv_host = HADB-server's-host-name

~<character string>((1 to 255 bytes))
Specify the host name of the HADB server to which the client will be connected. This host name is used for
communication between the HADB client and the HADB server.
Specify the host's host name, domain name, or IP address.
This operand is mandatory.
You must specify this operand even when using the function for centrally managing client definitions. However,
this operand is ignored when specified in a client definition file that uses the function for centrally managing client
definitions.
In a cold standby configuration, specify the alias IP address used for communication between the HADB server and
the HADB client.

Multi-node function:
When you use the multi-node function, specify the alias IP address that will be used for communication between
the HADB server and the HADB client.

• adb_clt_rpc_srv_port = HADB-server's-port-number
~<integer>((5,001 to 65,535))<<23,650>>
Specify the port number to be used for communication between the HADB client and the HADB server. Specify
the port number specified in the adb_rpc_port operand in the server definition.

• adb_clt_group_name = client-group-name
~<character string>((1 to 30 bytes))

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 46

Specify the name of the client group to which applications that use this client definition belong. Specify the client
group name specified in the adbcltgrp operand in the server definition.
If you omit this operand, applications that use this client definition will not belong to a client group.
If you specify a client group name that is not specified in the adbcltgrp operand, the application will be seen as
not belonging to a client group.
For details about client groups, see Client-group facility in the HADB Setup and Operation Guide.

2.2.2 Operands related to application program status monitoring
• adb_clt_rpc_con_wait_time =wait-time-until-completion-of-connection-to-HADB-server

~<integer>((1 to 300))<<300>> (seconds)
Specify the maximum amount of time (in seconds) to wait for HADB server connection processing to be completed.
If HADB server connection processing is not completed within the specified amount of time, the connection
processing is canceled and control is returned to the application program with an error.
Normally, there is no need to specify this operand. Specify this operand to reduce the timeout time if it takes a long
time to establish a connection when the HADB server is busy.

■ When adb_clt_rpc_con_wait_time is specified in the JDBC driver properties
You can specify 0 in the adb_clt_rpc_con_wait_time operand in the JDBC driver properties. If you
specify 0, the default value applies.

• adb_clt_rpc_sql_wait_time =HADB-server's-response-wait-time
~<integer>((0 to 65,535))<<0>> (seconds)
Specify the maximum amount of time (in seconds) to wait for a response after a processing request has been issued
from the HADB client to the HADB server. If there is no response from the HADB server within the specified time,
a timeout error whose SQLCODE is -732 (KFAA30732-E) is returned to the application. When this occurs,
processing of the SQL statement is canceled, and the transaction is rolled back. Then, the application is disconnected
from the HADB server.
Note that depending on factors such as the timing with which the processing request was canceled and the nature
of the communication error, there are situations in which the transaction might not be rolled back. If this occurs, we
recommend that you check the result by viewing relevant information such as the messages output to the message
log of the HADB server.
Specify this operand if you monitor SQL statements that require a long processing time. To determine an appropriate
wait time to be specified in this operand, see 4.5 Handling unresponsive application programs.
If this operand is omitted or 0 is specified, no wait time is set.

■ When adb_clt_rpc_sql_wait_time is specified in the JDBC driver properties
When adb_clt_rpc_sql_wait_time is specified in the JDBC driver properties, HADB also monitors
the following wait times:

• When multiple SELECT statements are executed concurrently in the same connection, the wait time for
processing real thread allocation when there are insufficient processing real threads

If this wait time is exceeded, HADB returns a timeout error whose SQLCODE is -1071570 (KFAA71570-
E) to the application. When this happens, processing of the SQL statement is canceled but the transaction is not
rolled back. Nor is the application disconnected from the HADB server.
For details about the purpose of specifying adb_clt_rpc_sql_wait_time, see (4) Note about executing
multiple SELECT statements concurrently in the same connection in 7.4.1 How to retrieve data.

• adb_clt_ap_name =application-identifier
~<character string>((1 to 30 bytes))<<********>>

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 47

Specify the identification information (application identifier) for the application program that is to be connected to
the HADB server.
The application identifier you specify is displayed in the output of the command that displays connection statuses
(adbls -d cnct), in messages, and in SQL trace information. This information is required in order to determine
which application program is running.
Because application identifiers are recognized on the basis of the specification of the ADBCLTLANG environment
variable, we recommend that you use a name consisting of only alphanumeric characters that do not depend on the
character encoding.

2.2.3 Operands related to performance
• adb_clt_fetch_size = number-of-batch-transmission-rows-during-FETCH-processing

~<integer>((1 to 65,535))<<1,024>>
Specify the maximum number of rows that are to be sent as retrieval results from the HADB server to the HADB
client by a single FETCH process.
If you specify a large value in this operand, an improvement in performance can be expected because more result
rows are sent per FETCH process, but more memory is required.

• adb_dbbuff_wrktbl_clt_blk_num = number-of-local-work-table-buffer-pages
~<integer>((5 to 100,000,000))<<value of adb_dbbuff_wrktbl_clt_blk_num in the server definition>>
Specify the number of local work table buffer pages.
Normally, you do not need to specify this operand. Specify this operand to reduce the execution time of SQL
statements that create local work tables. For details, see Tuning to shorten SQL statement execution time by re-
examining the buffers in Tuning in the HADB Setup and Operation Guide.
For details about how to estimate an appropriate value for this operand, see Estimating the number of pages in the
buffer for local work tables in the HADB Setup and Operation Guide.
The following notes apply to this operand:

• If this operand and the adb_dbbuff_wrktbl_clt_blk_num operand in the server definition are both
specified, this operand value takes effect.

• The buffer specified in this operand is used for an SQL processing real thread only when SQL statements for
creating local work tables are executed. Local work tables are specific to real threads, and one local work table
is created for each real thread. Therefore, the HADB server allocates for each real thread the amount of local
work table buffer space as matches the number of pages specified in this operand. For details about the SQL
statements for creating local work tables, see 5.10.2 Work tables created when SQL statements are executed.

• The adbmodbuff command cannot be used to change the number of local work table buffer pages for a
connection to which this operand is applied.

• You can use the adbls -d lbuf command to check the number of local work table buffer pages that are applied
for each connection.

• adb_sql_exe_max_rthd_num =maximum-number-of-SQL-processing-real-threads
~<integer>((0 to 4,096)) <<value of adb_sql_exe_max_rthd_num in the server definition or maximum
number of processing real threads usable by the group>>
Specify the maximum number of processing real threads that are to be used during SQL statement execution.
Specify this operand if you are changing the maximum number of processing real threads for SQL statement
execution that was specified in the server definition's adb_sql_exe_max_rthd_num operand.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 48

When you specify this operand, see the explanation of the adb_sql_exe_max_rthd_num operand under the
topic Operands related to performance (set format) in Detailed descriptions of the server definition operands in
Designing the Server Definition in the HADB Setup and Operation Guide.

■ When not using the client-group facility
• If you omit this operand, the value specified for the adb_sql_exe_max_rthd_num operand in the server

definition is assumed.

• If the value you specify in this operand is greater than the value specified in the
adb_sql_exe_max_rthd_num operand in the server definition, the value specified in this operand is
ignored. In this case, the value specified for the adb_sql_exe_max_rthd_num operand in the server
definition is assumed.

■ When using the client-group facility
• If you omit this operand, the maximum number of processing real threads usable by the group is assumed.

• If the value you specify in this operand is greater than the maximum number of processing real threads usable
by the group, the value specified in this operand is ignored. In this case, the maximum number of processing
real threads usable by the group is assumed.

For details about the client-group facility, see Client-group facility in the HADB Setup and Operation Guide.

■ Relationship between this operand and the setHADBSQLMaxRthdNum method of the JDBC driver
The setHADBSQLMaxRthdNum method can be used to specify the maximum number of SQL processing real
threads.
The following table shows which of the values is applied to this operand according to the relationships among
them and depending on whether the setHADBSQLMaxRthdNum method is specified.
For details about the setHADBSQLMaxRthdNum method, see 8.2.37 setHADBSQLMaxRthdNum(int
rthdNum).

Whether the
setHADBSQLMaxRthdNum
method is specified

Relationship between SV
and CGV

Relationships among V,
SV, and CGV

Value applied to this
operand

Specified CGV < SV SV < V CGV#1

CGV < V ≤ SV

V ≤ CGV V

SV ≤ CGV V ≤ SV V

SV < V ≤ CGV SV#1

CGV < V

CGV not specified#2 V ≤ SV V

SV < V SV#1

Not specified -- -- CNV

Legend:
V: Value specified for the setHADBSQLMaxRthdNum method
SV: Value in the server definition#3

CGV: Maximum number of processing real threads usable by a group if the client-group facility is used
CNV: Maximum number of SQL processing real threads determined when a connection to the HADB server
is established#4

--: No condition

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 49

#1:
Disables the value specified for the setHADBSQLMaxRthdNum method. At this time, the KFAA41106-
W message is output to indicate that the specified value was disabled.

#2:
This is the case where no client-group facility is used.

#3:
The maximum number of SQL processing real threads determined when the HADB server starts. This value
is determined by conditions, such as whether the adb_sql_exe_max_rthd_num operand is specified
in the server definition, and the magnitude relationship with the number of processing real threads. For
details, see the explanation of the adb_sql_exe_max_rthd_num operand in Operands related to
performance (set format) in the HADB Setup and Operation Guide.

#4:
This value is determined by the following conditions: 1) whether the adb_sql_exe_max_rthd_num
operand is specified in the client definition, 2) the value specified for the adb_sql_exe_max_rthd_num
operand in the server definition, and 3) the magnitude relationship with the maximum number of processing
real threads usable by a group of the client-group facility.

Important
The HADB server references the value of this operand when performing the preprocessing of an
SQL statement. Therefore, if you use the setHADBSQLMaxRthdNum method to specify the
maximum number of SQL processing real threads, make sure that the setHADBSQLMaxRthdNum
method is run before the Statement or PreparedStatement object that executes the SQL
statement is generated.

• adb_sql_exe_hashgrp_area_size = hash-grouping-area-size
~<integer>((0, 4 to 1,000,000))<<value of adb_sql_exe_hashgrp_area_size in the server definition>>
(kilobytes)
Specify a size (in kilobytes) for the hash grouping area.
Specify this operand if you are changing the hash grouping area size that was specified in the server definition's
adb_sql_exe_hashgrp_area_size operand.
When you specify this operand, see the explanation of the adb_sql_exe_hashgrp_area_size operand under
the topic Operands related to performance (set format) in Detailed descriptions of the server definition operands
in Designing the Server Definition in the HADB Setup and Operation Guide.

• adb_sql_exe_hashtbl_area_size = hash-table-area-size
~<integer>((0 to 4,194,304))<<value of adb_sql_exe_hashtbl_area_size in the server
definition>>(megabytes)
Specify the size (in megabytes) of the hash table area.
Use this operand to change the size of the hash table area specified in the adb_sql_exe_hashtbl_area_size
operand in the server definition.
When you specify this operand, see the explanation of the adb_sql_exe_hashtbl_area_size operand under
the topic Operands related to performance (set format) in Detailed descriptions of the server definition operands
in Designing the Server Definition in the HADB Setup and Operation Guide.
If this operand's value is greater than the value of the adb_sql_exe_hashtbl_area_size operand in the
server definition, the specification in the server definition is assumed. The specification in the server definition is
assumed also when this operand is omitted.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 50

■ Relationship between this operand and the setHADBSQLHashTblSize method of the JDBC driver
The setHADBSQLHashTblSize method can be used to specify the size of the hash table area.
The following table shows which of the values is applied to this operand according to the relationships among
them and depending on whether the setHADBSQLHashTblSize method is specified.
For details about the setHADBSQLHashTblSize method, see 8.2.36 setHADBSQLHashTblSize(int
areaSize).

Whether the
setHADBSQLHashTblSize method
is specified

Relationship between V and SV Value applied to this operand (in
megabytes)

Specified SV < V SV#1

V ≤ SV V

Not specified -- CNV

Legend:
V: Value specified for the setHADBSQLHashTblSize method
SV: Value in the server definition#2

CNV: Size of the hash table area determined when a connection to the HADB server is established#3

--: No condition

#1:
Disables the value specified for the setHADBSQLHashTblSize method. At this time, the KFAA41106-
W message is output to indicate that the specified value was disabled.

#2:
The size of the hash table area determined when a connection to the HADB server is established. This is the
value specified for the adb_sql_exe_hashtbl_area_size operand in the server definition. If the
adb_sql_exe_hashtbl_area_size operand in the server definition is omitted, the default value is
applied.

#3:
This value is determined by conditions such as: whether the adb_sql_exe_hashtbl_area_size
operand is specified in the client definition, and the magnitude relationship between the values specified
for the adb_sql_exe_hashtbl_area_size operand in the server definition and the
adb_sql_exe_hashtbl_area_size operand in the client definition.

Important
The HADB server references the value of this operand when performing the preprocessing of an
SQL statement. Therefore, if you use the setHADBSQLHashTblSize method to specify the size
of the hash table area, make sure that the setHADBSQLHashTblSize method is run before the
Statement or PreparedStatement object that executes the SQL statement is generated.

• adb_sql_exe_hashflt_area_size = hash-filter-area-size
~<integer>((0 to 419,430)) (megabytes)
Specify the size (in megabytes) of the hash filter area.
Normally, you will omit this operand. Specify this operand to reduce the execution time of SQL statements to which
a hash filter is applied.
When you specify this operand, see the explanation of the adb_sql_exe_hashflt_area_size operand in
Operands related to performance (set format) in Detailed descriptions of the server definition operands in Designing
the Server Definition in the HADB Setup and Operation Guide.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 51

For details about how to tune the value to be specified for this operand, see Tuning to shorten SQL statement execution
time by re-examining the hash filter area size in the HADB Setup and Operation Guide.
The following rules apply to this operand:

1. The value that is assumed when this operand is omitted varies depending on whether the
adb_sql_exe_hashtbl_area_size operand is specified in the client definition.

• If the adb_sql_exe_hashtbl_area_size operand is specified:
↑ Value of the adb_sql_exe_hashtbl_area_size operand in the client definition ÷ 10 ↑

• If the adb_sql_exe_hashtbl_area_size operand is not specified:
Value of the adb_sql_exe_hashflt_area_size operand in the server definition

Note that if the value of the adb_sql_exe_hashtbl_area_size operand in the client definition is greater
than the value of this operand in the server definition, the value of the server definition is assumed.

2. If the following condition is satisfied, the value of the adb_sql_exe_hashflt_area_size operand in
the server definition (not in the client definition) is applied:

A < B or C

A: Value specified for the adb_sql_exe_hashflt_area_size operand in the server definition
B: Value specified for the adb_sql_exe_hashflt_area_size operand in the client definition
C: Value that is assumed if the adb_sql_exe_hashflt_area_size operand is omitted in the client
definition

■ Relationship between this operand and the setHADBSQLHashFltSize method of the JDBC driver
The setHADBSQLHashFltSize method can be used to specify the size of the hash filter area. The following
table shows which of the values is applied to this operand according to the relationships among them and
depending on whether the setHADBSQLHashFltSize method is specified.
For details about the setHADBSQLHashFltSize method, see 8.2.35 setHADBSQLHashFltSize(int
areaSize).

Whether the
setHADBSQLHashFltSiz
e method is specified

Relationship between V
and SV

Relationship between
HTV and SV

Value applied to this
operand (in megabytes)

Specified SV < V -- SV#1

V ≤ SV -- V

Not specified -- SV < ↑HTV ÷ 10↑ SV

↑HTV ÷ 10↑ ≤ SV ↑HTV ÷ 10↑

HTV not specified#2 CNV

Legend:
V: Value specified for the setHADBSQLHashFltSize method
SV: Value in the server definition#3

HTV: Size of the hash table area#4

CNV: Size of the hash filter area determined when a connection to the HADB server is established#5

--: No condition

#1:
Disables the value specified for the setHADBSQLHashFltSize method. At this time, the KFAA41106-
W message is output to indicate that the specified value was disabled.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 52

#2:
This is the case where the setHADBSQLHashTblSize method is not specified.

#3:
The size of the hash filter area determined when a connection to the HADB server is established. This value
is determined by conditions, such as whether the adb_sql_exe_hashflt_area_size operand is
specified in the server definition, and the magnitude relationship with the number of processing real threads.
For details, see the explanation of the adb_sql_exe_hashflt_area_size operand in Operands
related to performance (set format) in the HADB Setup and Operation Guide.

#4:
The size of the hash table area that was last applied if the setHADBSQLHashTblSize method is specified.

#5:
This value is determined by conditions such as: whether the adb_sql_exe_hashflt_area_size
operand is specified in the client definition, and the magnitude relationship between the values specified
for the adb_sql_exe_hashflt_area_size operand in the server definition and the
adb_sql_exe_hashflt_area_size operand in the client definition.

Important
The HADB server references the value of this operand when performing the preprocessing of an
SQL statement. Therefore, if you use the setHADBSQLHashFltSize method to specify the size
of the hash filter area, make sure that the setHADBSQLHashFltSize method is run before the
Statement or PreparedStatement object that executes the SQL statement is generated.

2.2.4 Operands related to SQL
• adb_sql_prep_delrsvd_use_srvdef ={Y|N}

Specify whether reserved words are to be unregistered if specified as such in the
adb_sql_prep_delrsvd_words operand in the server definition.
Check the adb_sql_prep_delrsvd_words operand in the server definition for the reserved words that are
unregistered:

Y
Enables the adb_sql_prep_delrsvd_words operand in the server definition (reserved words specified
in the adb_sql_prep_delrsvd_words operand are to be unregistered).

N
Disables the adb_sql_prep_delrsvd_words operand in the server definition (reserved words specified
in the adb_sql_prep_delrsvd_words operand are not to be unregistered).

If specification of this operand is omitted, Y is assumed.

• adb_clt_trn_iso_lv = {READ_COMMITTED|REPEATABLE_READ}
Specify the transaction isolation level that is to be applied. For details about the transaction isolation levels, see
Transaction isolation levels supported by HADB in the HADB Setup and Operation Guide.

READ_COMMITTED
Applies READ COMMITTED as the transaction isolation level.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 53

REPEATABLE_READ
Applies REPEATABLE READ as the transaction isolation level.

If this operand is omitted, the transaction isolation level specified in the adb_sys_trn_iso_lv operand in the
server definition is applied.

Multi-node function

• When both of the following conditions are met, transaction execution processing is also allocated to the slave
node:
• The transaction access mode is read-only mode.
• The transaction isolation level is READ COMMITTED.
We recommend that you specify READ_COMMITTED in this operand if you want to utilize the resources of
the slave node.

• When transactions that use read/write mode and certain commands are running on the master node, all
transactions run on the master node for the duration of that transaction or command. No transactions run on
the slave node during this time. For details, see Nodes on which transactions and commands are executed
in the HADB Setup and Operation Guide.
For details about the commands to which this restriction applies, see Restrictions on simultaneously executing
commands with transactions in Nodes on which transactions and commands are executed in the HADB Setup
and Operation Guide.

• adb_clt_trn_access_mode = {READ_WRITE|READ_ONLY)
Specify the transaction access mode. For details about the transaction access mode, see the topic Transaction access
modes in the HADB Setup and Operation Guide.

READ_WRITE
Applies read/write as the transaction access mode. In this case, a transaction becomes a read/write transaction
and can execute all SQL statements.

READ_ONLY
Applies read-only as the transaction access mode. In this case, a transaction becomes a read-only transaction
and cannot execute update SQL statements or definition SQL statements.

You can change the specified transaction access mode by setting the following connection attributes:

• ODBC functions: SQLSetConnectAttr or SQLSetConnectAttrW
• CLI functions: a_rdb_SQLSetConnectAttr()

The transaction access mode is set to READ_WRITE when it is not specified in this operand or with the connection
attribute.

Multi-node function:

• When both of the following conditions are met, transaction execution processing is also allocated to the slave
node:
• The transaction access mode is read-only mode.
• The transaction isolation level is READ COMMITTED.
We recommend that you specify READ_ONLY in this operand if you want to utilize the resources of the slave
node.

• When transactions that use read/write mode and certain commands are running on the master node, all
transactions run on the master node for the duration of that transaction or command. No transactions run on
the slave node during this time. For details, see Nodes on which transactions and commands are executed
in the HADB Setup and Operation Guide.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 54

For details about the commands to which this restriction applies, see Restrictions on simultaneously executing
commands with transactions in Nodes on which transactions and commands are executed in the HADB Setup
and Operation Guide.

• adb_clt_sql_text_out ={Y|N}
Specify whether the SQL statements issued by the HADB client are to be output to the client message log files and
the server message log files.
The maximum length of each SQL statement that is output is 2,048 bytes.

Y
Outputs the SQL statements to the client message log files and the server message log files.

N
Does not output the SQL statements to either the client message log files or the server message log files.

The following table shows the relationship between this operand and the adb_sql_text_out operand in the
server definition.

Table 2-1: Relationship between this operand and the adb_sql_text_out operand in the server
definition

adb_sql_text_out operand in the server
definition

adb_clt_sql_text_out operand in the client definition

Y N

Y B S

N B N

Legend:
B: Outputs the SQL statements to both the client message log files and server message log files.
S: Outputs the SQL statements to the server message log files only.
N: Does not output the SQL statements to either the client message log files or the server message log files.

When this operand is specified, the KFAA81002-I message indicating normal termination of a transaction is output
to the server message log files. This message is not output to the client message log files.
If specification of this operand is omitted, N is assumed.

• adb_clt_sql_order_mode= {BYTE|ISO}
Specify the sort order for character string data in a SELECT statement in which the ORDER BY clause is specified.

BYTE
Sort character string data by bytecode.

ISO
Sort character string data by sort code (ISO/IEC 14651:2011 compliance).
ISO cannot be specified in this operand when SJIS is specified in the ADBCLTLANG environment variable.

You can also use the adb_sql_order_mode server definition operand and the connection attributes to specify
the sort order for character string data. If this sort order is specified by more than one of these methods, the
specification to be used is determined in the priority shown below (the smaller the numeric value, the higher the
priority).

Table 2-2: Priority for the sort order of character string data

Priority Location of specification of the character string data sort order

1 Connection attributes

2 adb_clt_sql_order_mode client definition operand

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 55

Priority Location of specification of the character string data sort order

3 adb_sql_order_mode server definition operand

Explanation:
For example, if BYTE is specified in the adb_clt_sql_order_mode client definition operand and ISO is
specified in the adb_sql_order_mode server definition operand, BYTE is applied to SELECT statements
(in which the ORDER BY clause is specified) that are executed from the application program.
BYTE is assumed when the specification is omitted at all locations shown in the table.

• adb_sql_prep_dec_div_rs_prior = {INTEGRAL_PART|FRACTIONAL_PART}
Specify the minimum scaling value of the result of a division operation (arithmetic operation) specified in an SQL
statement when the data type of the result is DECIMAL.

INTEGRAL_PART
The minimum scaling value of the result of he division operation is 0. If you specify INTEGRAL_PART, the
number of digits in the integer part has priority. Specify INTEGRAL_PART when the division result might be
a large value and you want to avoid overflow errors where possible.

FRACTIONAL_PART
The scaling of the first operand (dividend) of the division operation is used as the minimum scaling value of the
division result. When you specify FRACTIONAL_PART, the number of decimal places in the first operand is
the minimum number of decimal places in the division result.

When the first operand is DECIMAL(p1,s1) and the second operand is DECIMAL(p2,s2), the scaling of the
division result is DECIMAL(38,s).

• When INTEGRAL_PART is specified
s = MAX{0,38 - (p1 - s1 + s2)}

• When FRACTIONAL_PART is specified
s = MAX{s1,38 - (p1 - s1 + s2)}

The following example shows how value specified for this operand affects the division result.
Example:

Suppose that the following SELECT statement is executed:

SELECT "C1"/"C2" AS "division result" FROM "T1"

• Division result when INTEGRAL_PART is specified
584.

• Division result when FRACTIONAL_PART is specified
584.4457

For an example of the scaling of the division result when retrieving data from a viewed table, see Notes applying
when the data type of the division result is DECIMAL in the manual HADB SQL Reference.
If you omit this operand, the value specified for the adb_sql_prep_dec_div_rs_prior operand in the server
definition applies.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 56

2.3 Operand specification rules

The specification rules for operands in the client definition are the same as those for server definition operands. For
details about the syntax rules for the server definition operands, see the topic Syntax rules for the server definition in
the HADB Setup and Operation Guide.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 57

2.4 Notes about using the function for centrally managing client
definitions

The function for centrally managing client definitions does not support the following client definition operands. Specify
these operands directly in the client definition of each HADB client.

• adb_clt_rpc_srv_host
• adb_clt_rpc_srv_port
• adb_clt_rpc_con_wait_time
• adb_clt_rpc_sql_wait_time

For details about the function for centrally managing client definitions, see Centralized management of client definitions
in the HADB Setup and Operation Guide.

2. Designing Client Definitions

Hitachi Advanced Database Application Development Guide 58

This chapter explains how to set up an environment for the JDBC driver, including installation of the
JDBC driver and specification of environment variables.

3 Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 59

3.1 Environment setup procedure for the JDBC driver

This section describes how to set up an environment for the JDBC driver. Set up an environment for the JDBC driver,
following the description in 3.1.1 Installing Java Runtime Environment or Java Development Kit and the subsequent
subsections.

3.1.1 Installing Java Runtime Environment or Java Development Kit
Install either of the following products on a machine on which application programs are to be executed or developed:

• Java Runtime Environment (JRE) version 8 or later

• Java Development Kit (JDK) version 8 or later

JRE is required to execute application programs. JDK is required to develop and execute application programs.

Note
To execute application programs on an HADB server, install JRE on the HADB server machine. If you use
the HADB server to develop and run applications, JDK must be installed on the computer where the HADB
server is installed.

■ JDBC driver provided by HADB
The following table shows the JDBC driver provided by HADB.

Table 3-1: JDBC driver provided by HADB

JRE or JDK version Types of JDBC drivers
provided by HADB

JAR file name Corresponding JDBC
standard

JRE 8 or later, or JDK 8 or later JDBC driver for JRE 8 adbjdbc8.jar JDBC 4.2

3.1.2 Installing the JDBC driver
The following shows the procedure for installing the JDBC driver.

Procedure
1. Copy a compressed file from the HADB client installation CD-ROM to a folder of your choice.

The file to be copied is as follows:

• In the 64-bit edition of Windows
hitachi_advanced_data_binder_client.zip

• In the 32-bit edition of Windows
hitachi_advanced_data_binder_client32.zip

• In Linux
hitachi_advanced_data_binder_client-$VER.tar.gz
The $VER portion is replaced by an HADB version and release number.

2. Expand the compressed file that you copied.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 60

The following table describes the location in which the JAR file will be stored when the compressed file is
expanded.

Table 3-2: Location of the JAR file after the compressed file is expanded

Compressed file to be expanded Location where the JAR file will be stored

Either of the following compressed files:
• hitachi_advanced_data_binder_client.zip
• hitachi_advanced_data_binder_client32.zi
p

%INSTCLTDIR%\HADBCL\client\lib
\adbjdbc8.jar
%INSTCLTDIR% indicates the folder in which the compressed
file is expanded.

hitachi_advanced_data_binder_client-
$VER.tar.gz is expanded

$INSTCLTDIR/
hitachi_advanced_data_binder_client_$VER/
client/lib/adbjdbc8.jar
$INSTCLTDIR indicates the directory in which the compressed
file is expanded.

3. Copy the JAR file to a folder of your choice.

4. Delete the following folders and files:

• The compressed file you copied in step 1.

• The folders and files you expanded in step 2.

3.1.3 Specifying the CLASSPATH environment variable
For CLASSPATH, specify the absolute path of the JAR file.

Important
• If the OS is Windows, set CLASSPATH as a system environment variable.

• If you change the location of the JAR file, also change the specification of CLASSPATH accordingly.

3.1.4 Checking the value of the TZ environment variable
Confirm that the correct time zone is set for the TZ environment variable.

Important
• Do not specify a time zone that uses leap seconds.

• If the OS is Windows, set TZ as a system environment variable.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 61

3.1.5 Granting the write permission for the trace file output destination
directory

Be careful when the JDBC interface method trace or Exception trace log, which is a troubleshooting function for the
JDBC driver, is to be used. In this case, give the write permission for the trace file output destination folder (directory)
to the user who uses the JDBC driver.

For details about these troubleshooting functions, see 7.7 Troubleshooting.

3.1.6 Setting system properties
Use system properties to set up an execution environment for application programs. The following table lists the
properties that can be specified as system properties.

Important
• In the following table, properties from 1 to 18 are functionally the same as the operands in the client

definition.

• Property 19 and subsequent properties specify the settings related to the Exception trace log.

Table 3-3: System properties that can be specified

No. Property name Description

1 adb_clt_rpc_srv_host Specifies the host name of the HADB server at the connection destination.
Functionally, this property is the same as the adb_clt_rpc_srv_host operand
in the client definition. For details about this property and its permitted values, see
the description of the adb_clt_rpc_srv_host operand in the client definition.

2 adb_clt_rpc_srv_port Specifies the port number of the HADB server that is used for communication
between the HADB client and the HADB server.
Functionally, this property is the same as the adb_clt_rpc_srv_port operand
in the client definition. For details about this property and its permitted values, see
the description of the adb_clt_rpc_srv_port operand in the client definition.

3 adb_clt_rpc_con_wait_time Specifies the maximum amount of time to wait for HADB server connection
processing to be completed.
Functionally, this property is the same as the adb_clt_rpc_con_wait_time
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt_rpc_con_wait_time operand in
the client definition.

4 adb_clt_rpc_sql_wait_time Specifies the following wait times:
• How long a HADB client waits for the HADB server to respond to a processing

request.
• How long to wait to secure processing real threads if a shortage occurs when

multiple SELECT statements are executed concurrently in the same connection.

For details about the wait time monitoring performed if this property is specified,
see 3.2 Handling unresponsive application programs.
Functionally, this property is the same as the adb_clt_rpc_sql_wait_time
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt_rpc_sql_wait_time operand in
the client definition.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 62

No. Property name Description

5 adb_clt_ap_name Specifies the identification information (application identifier) for the application
program that is to be connected to the HADB server.
Functionally, this property is the same as the adb_clt_ap_name operand in the
client definition. For details about this property and its permitted values, see the
description of the adb_clt_ap_name operand in the client definition.

6 adb_clt_group_name Specifies the name of the client group to which the application belongs.
Functionally, this property is the same as the adb_clt_group_name operand in
the client definition. For details about this property and its permitted values, see the
description of the adb_clt_group_name operand in the client definition.

7 adb_clt_fetch_size Specifies the maximum number of rows that are to be sent as retrieval results from
the HADB server to the HADB client by a single FETCH process.
Functionally, this property is the same as the adb_clt_fetch_size operand in
the client definition. For details about this property and its permitted values, see the
description of the adb_clt_fetch_size operand in the client definition.

8 adb_dbbuff_wrktbl_clt_blk_num Specifies the number of local work table buffer pages.
Functionally, this property is the same as the
adb_dbbuff_wrktbl_clt_blk_num operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_dbbuff_wrktbl_clt_blk_num operand in the client definition.

9 adb_sql_exe_max_rthd_num Specifies the maximum number of SQL processing real threads.
Functionally, this property is the same as the adb_sql_exe_max_rthd_num
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_sql_exe_max_rthd_num operand in the
client definition.

10 adb_sql_exe_hashgrp_area_size Specifies the size (in kilobytes) of the hash grouping area.
Functionally, this property is the same as the
adb_sql_exe_hashgrp_area_size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sql_exe_hashgrp_area_size operand in the client definition.

11 adb_sql_exe_hashtbl_area_size Specifies the size (in megabytes) of the hash table area.
Functionally, this property is the same as the
adb_sql_exe_hashtbl_area_size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sql_exe_hashtbl_area_size operand in the client definition.

12 adb_sql_exe_hashflt_area_size Specifies the size (in megabytes) of the hash filter area.
Functionally, this property is the same as the
adb_sql_exe_hashflt_area_size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sql_exe_hashflt_area_size operand in the client definition.

13 adb_sql_prep_delrsvd_use_srvd
ef

Specifies whether reserved words are to be unregistered if specified as such in the
adb_sql_prep_delrsvd_words operand in the server definition.
Functionally, this property is the same as the
adb_sql_prep_delrsvd_use_srvdef operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sql_prep_delrsvd_use_srvdef operand in the client definition.

14 adb_clt_trn_iso_lv Specifies the transaction isolation level.
Functionally, this property is the same as the adb_clt_trn_iso_lv operand in
the client definition. For details about this property and its permitted values, see the
description of the adb_clt_trn_iso_lv operand in the client definition.

15 adb_clt_trn_access_mode Specifies the transaction access mode.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 63

No. Property name Description

Functionally, this property is the same as the adb_clt_trn_access_mode
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt_trn_access_mode operand in the
client definition.

16 adb_clt_sql_text_out Specifies whether SQL statements issued by the HADB client are to be output to the
client message log files and the server message log files.
Functionally, this property is the same as the adb_clt_sql_text_out operand
in the client definition. For details about this property and its permitted values, see
the description of the adb_clt_sql_text_out operand in the client definition.

17 adb_clt_sql_order_mode Specifies the sort order for character string data in a SELECT statement in which the
ORDER BY clause is specified.
Functionally, this property is the same as the adb_clt_sql_order_mode
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt_sql_order_mode operand in the
client definition.

18 adb_sql_prep_dec_div_rs_prior Specifies the minimum scaling value of the result of a division operation (arithmetic
operation) specified in an SQL statement when the data type of the result is
DECIMAL.
Functionally, this property is the same as the
adb_sql_prep_dec_div_rs_prior operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sql_prep_dec_div_rs_prior operand in the client definition.

19 adb_jdbc_exc_trc_out_path Specifies the absolute path of the
directory to which exception trace logs
are to be output.

For details about these properties and
their permitted values, see (b) Setup for
acquisition of the exception trace log
(setting properties) in (1) Methods to be
acquired and setup for log acquisition in
7.7.2 Exception trace log.

20 adb_jdbc_info_max Specifies the maximum number of
information items to be output to one
file.

21 adb_jdbc_cache_info_max Specifies the maximum number of
information items to be stored in
memory.

22 adb_jdbc_trc_out_lv Specifies the trace acquisition level.

Important
The values of the properties listed in the preceding table can also be specified by using user properties or
the properties of the URL to be used for connection.

For details about the user properties, see (d) Values to be specified in the info argument (specifying the
user properties) in (2) Connecting to the HADB server with the getConnection method in 7.3.1 Using the
getConnection method of the DriverManager class to connect to the HADB server.

For details about the properties of the URL to be used for connection, see (a) Values to be specified in the
url argument (specifying the URL for the connection) in (2) Connecting to the HADB server with the
getConnection method in 7.3.1 Using the getConnection method of the DriverManager class to connect to
the HADB server.

For details about the priority of each specification, see 7.3.3 Connection information priorities.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 64

Note
The property names of system properties were changed in HADB 03-00, as shown below. The previous
property names are still supported, but if you have upgraded your HADB to version 03-00 or later, we
recommend that you change the property names.

No. Property name before change (property name
used in HADB versions earlier than 03-00)

Property name after change (property name used
in HADB version 03-00 or later)

1 adb_jdbc_ap_name adb_clt_ap_name

2 adb_jdbc_dbbuff_wrktbl_blk_num adb_dbbuff_wrktbl_clt_blk_num

3 adb_jdbc_fetch_size adb_clt_fetch_size

4 adb_jdbc_rpc_sql_wait_time adb_clt_rpc_sql_wait_time

5 adb_jdbc_rpc_srv_host adb_clt_rpc_srv_host

6 adb_jdbc_rpc_srv_port adb_clt_rpc_srv_port

7 adb_jdbc_sql_delrsvd_use_srvdef adb_sql_prep_delrsvd_use_srvdef

8 adb_jdbc_sql_hashgrp_area_size adb_sql_exe_hashgrp_area_size

9 adb_jdbc_sql_hashtbl_area_size adb_sql_exe_hashtbl_area_size

10 adb_jdbc_sql_max_rthd_num adb_sql_exe_max_rthd_num

11 adb_jdbc_sql_order_mode adb_clt_sql_order_mode

12 adb_jdbc_sql_text_out adb_sql_text_out

13 adb_jdbc_trn_access_mode adb_clt_trn_access_mode

14 adb_jdbc_trn_iso_lv adb_clt_trn_iso_lv

3.1.7 Reviewing the scope of scans by antivirus software
If antivirus software has been installed on the machine on which the JDBC driver is installed, review the scope of virus
scans. If the files and directories used by the JDBC driver are included in the scope of scans by antivirus software, the
JDBC driver might not work correctly. For this reason, you need to configure the antivirus software to not scan the
directories and files used by the JDBC driver.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 65

3.2 Handling unresponsive application programs

A problem such as a communication error, temporary failure (including power outage), or disk failure might cause an
application program to stop responding. Such an unresponsive application program might delay other application
programs and command processing.

Therefore, in order to minimize the effects of an unresponsive application program, specify the following property as
a system property, user property, or connection URL property:

• adb_clt_rpc_sql_wait_time

For this property, specify the maximum amount of time to wait for a response after a processing request has been sent
from the client (machine on which the JDBC driver is installed) to the HADB server. If there is no response from the
HADB server within the specified time, a timeout error whose SQLCODE is -732 (KFAA30732-E) is returned to the
application. When this occurs, processing of the SQL statement is canceled, and the transaction is rolled back. Then,
the application is disconnected from the HADB server.

The following figure shows the wait time monitoring procedure based on the specification of
adb_clt_rpc_sql_wait_time.

Figure 3-1: Wait time monitoring procedure based on the specification of adb_clt_rpc_sql_wait_time

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 66

Explanation:
This example monitors the wait time until a response is received after a processing request has been issued from the
client to the HADB server. For example, if 600 seconds is specified in adb_clt_rpc_sql_wait_time, a wait
time of 600 seconds is set for the monitoring interval. Therefore, as a guideline, specify a wait time at least equal
to the longest SQL statement processing time. Specify a realistic value that most likely will indicate when the
application program has become unresponsive.

If adb_clt_rpc_sql_wait_time is specified, HADB also monitors the following wait times:

• How long to wait to secure processing real threads if a shortage occurs when multiple SELECT statements are
executed concurrently in the same connection.

If this wait time is exceeded, HADB returns a timeout error whose SQLCODE is -1071570 (KFAA71570-E) to the
application. When this happens, processing of the SQL statement is canceled but the transaction is not rolled back. Nor
is the application disconnected from the HADB server.

For details about the purpose of specifying adb_clt_rpc_sql_wait_time, see (4) Note about executing multiple
SELECT statements concurrently in the same connection in 7.4.1 How to retrieve data.

Note
For details about adb_clt_rpc_sql_wait_time, see 3.1.6 Setting system properties.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 67

3.3 Upgrading the JDBC driver (replacing the JAR file)

The following shows the procedure for upgrading the JDBC driver:

Procedure
1. Copy a compressed file from the HADB client installation CD-ROM to a folder of your choice.

The file to be copied is as follows:

• In the 64-bit edition of Windows
hitachi_advanced_data_binder_client.zip

• In the 32-bit edition of Windows
hitachi_advanced_data_binder_client32.zip

• In Linux
hitachi_advanced_data_binder_client-$VER.tar.gz

The $VER portion is replaced by an HADB version and release number.

2. Expand the compressed file that you copied.
For details about the location of the JAR file after the compressed file is expanded, see Table 3-2: Location of
the JAR file after the compressed file is expanded.

3. Replace the existing JAR file with the new one.

4. Confirm that a connection to the HADB server is established.

5. Delete the following folders and files:

• The compressed file you copied in step 1.

• The folders and files you expanded in step 2.

Important
Steps 1 to 3 in the preceding procedure must be performed by the same OS user. If the OS user changes,
the upgrade might not be completed correctly.

■ Points to be checked after the upgrade
When the JDBC driver is upgraded, the default values of some properties# might be changed. Check whether the
default values of those properties have been changed. If the default values have been changed, respecify the properties
as needed. The default values of properties are the same as the values of the corresponding operands in the client
environment definition. For details about the operands in the client definition, see 2.2 Contents of operands in the
client definition.

#
The properties in Table 3-3: System properties that can be specified apply.

■ To downgrade the JDBC driver
See the following procedure.
Procedure

1. Replace the current JAR file with the previously used JAR file.

2. Restore the previous values of system properties.
If the current values of system properties are different from the values that were set before the JDBC driver was
upgraded, you must change the values back to the previous ones when downgrading the version.

3. Confirm that a connection to the HADB server is established.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 68

Important
Steps 1 to 2 in the preceding procedure must be performed by the same OS user. If the OS user changes,
the JDBC driver might not work correctly.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 69

3.4 Replacing the JDBC driver with a revised version

The procedure for replacing the JDBC driver with a revised version is the same as the procedure for upgrading the JDBC
driver. For details about the procedure, see 3.3 Upgrading the JDBC driver (replacing the JAR file).

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 70

3.5 Changing the time of the OS on a machine on which the JDBC driver
has been installed

For details about how to change the time of the OS on which the JDBC driver has been installed, see 4.9 Changing the
OS time on a client machine. When referring to that section, interpret the term client machine as machine on which the
JDBC driver has been installed.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 71

3.6 Uninstalling the JDBC driver

The following shows the procedure for uninstalling the JDBC driver.

Procedure
1. Delete the JAR file.

2. Delete the specification of the CLASSPATH environment variable.

3. Setting Up an Environment for the JDBC Driver

Hitachi Advanced Database Application Development Guide 72

This chapter explains how to set up an environment for an HADB client, including installation of an
HADB client and specification of environment variables.

4 Setting Up an Environment for an HADB Client (If
the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 73

4.1 HADB client environment setup procedure

This section explains how to set up an HADB client environment.

4.1.1 HADB client for Windows
When you create or execute application programs on a computer other than an HADB server, you are using your computer
as an HADB client. The following figure shows the environment setup procedure for an HADB client for Windows.

Figure 4-1: Environment setup procedure for an HADB client for Windows

Detailed description of each procedure
• For details about installing an HADB client, see 4.2.1 HADB client for Windows.

• For details about setting environment variables, see 4.3.1 HADB client for Windows.

• For details about creating client definitions, see 4.4 Creating a client definition.
For explanations of operands in the client definition, see 2. Designing Client Definitions.

• For details about handling unresponsive application programs, see 4.5 Handling unresponsive application
programs.

Before you install an HADB client, estimate the memory requirements for the HADB client. For the formula for
estimating the memory requirements for an HADB client, see C. Estimating the Memory Requirements for an HADB
Client.

4.1.2 HADB client for Linux
If you create or execute application programs on a computer other than an HADB server, you are using your computer
as an HADB client. The following figure shows the environment setup procedure for an HADB client for Linux.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 74

Figure 4-2: Environment setup procedure for an HADB client for Linux

Detailed description of each procedure
• For details about installing an HADB client, see 4.2.2 HADB client for Linux.

• For details about setting environment variables, see 4.3.2 HADB client for Linux.

• For details about creating client definitions, see 4.4 Creating a client definition.
For explanations of operands in the client definition, see 2. Designing Client Definitions.

• For details about handling unresponsive application programs, see 4.5 Handling unresponsive application
programs.

Before you install an HADB client, estimate the memory requirements for the HADB client. For the formula for
estimating the memory requirements for an HADB client, see C. Estimating the Memory Requirements for an HADB
Client.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 75

4.2 Installing and uninstalling an HADB client

This section explains how to install and uninstall an HADB client.

4.2.1 HADB client for Windows
This subsection explains how to install and uninstall an HADB client for Windows.

Administrator permissions are required to install and uninstall an HADB client.

(1) Installing an HADB client
The following explains how to install an HADB client.

To install an HADB client:

1. Copy the following compressed file from the CD-ROM to any folder on the client computer:

• 64-bit edition of Windows: hitachi_advanced_data_binder_client.zip
• 32-bit edition of Windows: hitachi_advanced_data_binder_client32.zip

Make sure that the length of the path for the target folder does not exceed 200 bytes.
For information on the characters that can be used in a copy-to folder path, see <path name> under ■ Conventions:
Syntax elements in the Preface.

2. Expand the compressed file.

Example:
Copy the hitachi_advanced_data_binder_client.zip file to D:\hadb_clt, and then expand the
file.
The folders and files are expanded under D:\hadb_clt\hitachi_advanced_data_binder_client
\HADBCL.
Note: This is the default target folder when the compressed file is expanded.

Important
To use an ODBC driver, the version information of the ODBC driver must be the same as the version
information of the HADB client. Therefore, do not replace some of the DLL files in the client\bin
folder under the client directory.

■ Tasks to be performed after installation
After you have finished the installation, perform the following tasks:

• Specifying environment variables
For details about the environment variables to be specified, see 4.3.1 HADB client for Windows.
Specify in the ADBCLTDIR environment variable the absolute path of the client directory. In the installation
procedure example provided above, the client directory is D:\hadb_clt
\hitachi_advanced_data_binder_client\HADBCL.
A client directory stores a group of files that are related to a single client process.

• Registering the registry key

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 76

After you have specified the environment variables, register the registry key by executing the following registry
registration command:
• 64-bit edition of Windows: %ADBCLTDIR%\adbreg.reg
• 32-bit edition of Windows: %ADBCLTDIR%\adbreg32.reg

• Granting write permission for the folder
Grant write permission for the following folder to each OS user who might use the HADB client (including the
ODBC driver):
• %ADBCLTDIR%\spool
• %ADBODBTRCPATH%
This folder is common to 32 and 64-bit Windows.

• Reviewing the targets of scans by antivirus software
If antivirus software is installed on the client machine where HADB client is installed, review the scope of virus
scans.
If the files and directories used by the HADB client are included in the scope of scans by antivirus software, the
HADB client might not work correctly. For this reason, you need to configure the antivirus software to not scan
the client directory.

(2) Uninstalling an HADB client
You must perform the following before you uninstall an HADB client:

• Check that no command or application program is being executed from the HADB client. Uninstallation might fail
if an attempt is made to uninstall an HADB client while a command or application program is executing.

• Back up all the files that you might need from the client directory.

The following explains how to uninstall an HADB client.

To uninstall an HADB client:

1. Delete the registry key.
Delete the registry key that was registered during installation by executing the following registry deletion command:

• 64-bit edition of Windows: %ADBCLTDIR%\adbunreg.reg
• 32-bit edition of Windows: %ADBCLTDIR%\adbunreg32.reg

2. Delete all folders and files that were copied when the HADB client was installed.
Delete folders and files that were created after the HADB client was installed.

4.2.2 HADB client for Linux
This subsection explains how to install and uninstall an HADB client for Linux.

Important
• An HADB client is installed by the OS user who will be managing the HADB client.

• This OS user's user name must not exceed 32 bytes.

Note that the client directory, as described later in this document, stores the files that relate to a single client process.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 77

(1) Matters to check before installing an HADB client
Before installing an HADB client, you need to make sure that the libraries required for the HADB client to operate
correctly have been installed in the operating system.

▪ How to checks
You can check which packages are installed in the OS by running the yum command. Execute the command as
follows:

yum list installed

Review the output of the command. If all of the packages listed in the following table have been installed, the required
libraries are in place in your operating system.

Table 4-1: List of packages to check

No. Name and version of package to check Prerequisite library for HADB client contained in package

1 glibc (2.12 or later) libc.so.6

2 librt.so.1

3 libm.so.6

4 libpthread.so.0

5 ld-linux-x86-64.so.2 (runtime loader)

6 libdl.so.2

7 libaio (0.3.107 or later) libaio.so.1

8 openssl (1.0.0 or later) libcrypto.so.10

9 zlib (1.2.3 or later) libz.so.1

10 libuuid (2.17.2 or later) libuuid.so.1

11 None linux-vdso.so.1#

#
Because this library is a virtual shared library provided by the kernel, you do not need to check for a corresponding
package.

If any of the packages listed in the table are not installed, install them in the operating system. For details about how
to install packages, see the documentation for your operating system. Install the packages as a superuser.

Note
The following shows an example of how to execute the command to check whether a specific package
is installed.

Example:
To check whether the package libaio is installed, you execute the command as follows:

yum list installed | grep libaio

If the package libaio appears in the command output, this means that the package is installed. If
the package libaio does not appear in the command output, this means that the package is not
installed.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 78

(2) Installing an HADB client
The following explains how to install an HADB client.

To install an HADB client:

1. Create a directory.

mkdir /home/osuser01/client

Create a directory for storing the installation data (tar.gz file) and the adbinstall command. In the following
example, /home/osuser01/client is specified as the storage directory path:

2. Assign write permission to the directory you created.

chmod 755 /home/osuser01/client

Assign write permission so that the OS user who manages the HADB client can write to the directory you created.

3. Mount the file system CD-ROM.
Automatically mount the file system CD-ROM that contains the installation data (tar.gz file) and the installation
command (adbinstall command) for the HADB client.
If the file system CD-ROM cannot be mounted automatically, you must mount it manually. To mount the file system
CD-ROM manually, enter the following OS command:

mount /dev/cdrom /media

The underlined part is the mount directory of the CD-ROM file system. It might differ in your environment.

Important
The directory names and file names on the CD-ROM might differ depending on the computer.
Execute the ls OS command and enter the displayed directory names as they are shown.

4. Copy the installation data (tar.gz file) and the installation command (adbinstall command) to the directory
created in step 1.

cp /media/hitachi_advanced_data_binder_client-$VER.tar.gz /home/osuser01/client
cp /media/adbinstall /home/osuser01/client

The underlined part is the mount directory of the CD-ROM file system. It might differ in your environment.
$VER indicates the HADB version and release number.
You must copy the tar.gz file and the adbinstall command to the same directory.

5. Assign execution privileges for the install command to the OS user who manages the HADB client.

chmod 777 /home/osuser01/client/adbinstall

This command assigns execution privileges for the install command you copied in step 4 (adbinstall command)
to the OS user who manages the HADB client.

6. Execute the installation command (adbinstall command).

/home/osuser01/client/adbinstall -c /home/osuser01/clientdir

The HADB client is installed under the directory specified for the -c option. This directory becomes the client
directory.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 79

Note
If the directory specified for the -c option does not exist, the directory is automatically created when
the adbinstall command is executed.

The following rules apply to the client directory:

• The client directory path must not exceed 118 bytes.

• For information on the characters that can be used in a client directory path, see <path name> under ■
Conventions: Syntax elements in the Preface.

• When you specify a directory for the -c option of the adbinstall command, make sure that the OS user
who will manage the HADB client can write to the directory.

■ Action to take when KFAA91553-E message is output
In the -c option of the adbinstall command, if you specify a directory for which the OS user who manages the
HADB client does not have write permissions, the KFAA91553-E message is output.
This message is also output if the OS user who manages the HADB client lacks write permissions for the directory
that stores the install command (adbinstall) and the installation data (tar.gz file).
If the KFAA91553-E message is output, assign write permission to the OS user for the directory concerned.

■ Action to take when KFAA91558-W message is output
If the root user executes the adbinstall command instead of the OS user who manages the HADB client, the
KFAA91558-W message is output.
Under normal circumstances, the OS user who manages the HADB client executes the adbinstall command.
If the KFAA91558-W message is output, check whether executing the adbinstall command as a root user
might cause any issues.
If doing so might cause an issue, press n or N when prompted for input by the KFAA91559-Q message output after
the KFAA91558-W message. Then, execute the adbinstall command using the account of the OS user who
manages the HADB client.

Note
• The KFAA91558-W message is not output if a superuser other than root executes the
adbinstall command.

• root is the user whose value is 0 in the output of the id -u OS command. This includes situations
in which you use the su command of the OS to elevate an OS user to root, giving that user a value
of 0 in the output of the id -u command.

■ Tasks to be performed after installation
• Setting environment variables

After you have finished the installation, specify environment variables. For details about the environment
variables to be specified, see 4.3.2 HADB client for Linux.
Specify in the ADBCLTDIR environment variable the absolute path of the client directory. In the installation
procedure example provided above, the client directory is /home/osuser01/clientdir.

• Reviewing the targets of scans by antivirus software
If antivirus software is installed on the client machine where HADB client is installed, review the scope of virus
scans.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 80

If the files and directories used by the HADB client are included in the scope of scans by antivirus software, the
HADB client might not work correctly. For this reason, you need to configure the antivirus software to not scan
the client directory.

Note
For details about the structure of the client directory that is created when an HADB client is installed by
using the adbinstall command, see (1) Structure of the client directory (at installation) in B.2 HADB
clients for Linux.

(3) Uninstalling an HADB client
An HADB client is uninstalled by the OS user who installed the HADB client.

Before uninstalling an HADB client, perform the following:

• Check that no command or application program is being executed from the HADB client. Uninstallation might fail
if an attempt is made to uninstall an HADB client while a command or application program is executing.

• Back up all the files that you might need from the client directory.

This subsection explains how to uninstall an HADB client.

To uninstall an HADB client:

1. Delete the client directory.
The client directory must be deleted by the OS user who installed the HADB client.

rm -rf /home/osuser01/clientdir

2. Delete the installation data (tar.gz file and adbinstall command).
The installation data (tar.gz file and adbinstall command) that was used to install the HADB client must be
deleted by the OS user who installed the HADB client.

rm -rf /home/osuser01/client

3. Delete the specifications for the environment variables that were set during installation.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 81

4.3 Specifying environment variables

This section explains the environment variables to be specified at the HADB client.

4.3.1 HADB client for Windows
In the HADB client for Windows, specify the environment variables listed in the following table.

Table 4-2: Values to be specified in the environment variables

No. Environment variable Value to be specified

1 PATH Add the following folder to this environment variable:
64-bit edition of Windows:
• %ADBCLTDIR%\client\bin
• %ADBCLTDIR%\vclib

32-bit edition of Windows:
• %ADBCLTDIR%\client\bin
• %ADBCLTDIR%\vclib32

Specify this environment variable as a system environment variable.

2 TZ Specify in this environment variable the time zone of the computer on which the HADB
client is installed.
Specify this environment variable as a system environment variable.
Do not specify a time zone that uses leap seconds.

3 ADBCLTDIR Specify in this environment variable the absolute path of the client directory. Be sure to
specify this environment variable before you execute the registry registration or deletion
command.
Specify the first three characters of the path in accordance with the following rules:
• First character

Alphabetic character indicating the drive
• Second character

Colon (:)
• Third character

Forward slash (/) or backlash (\)

4 ADBCLTLANG Specify in this environment variable the character encoding used on the HADB client.
Specify the same character encoding as used on the HADB server. This must be the
character encoding specified in the ADBLANG environment variable for the HADB server.
• If using Unicode (UTF-8) on the HADB server

Specify UTF8 in this environment variable.
• If using Shift-JIS on the HADB server

Specify SJIS in this environment variable.

5 ADBMSGLOGSIZE Specify in this environment variable the maximum size (in megabytes) of a client message
log file. The permitted value range is from 1 to 2000.
Four client message log files are created on an HADB client. If you omit this environment
variable, the maximum size of each client message log file is set to 16 megabytes.
If you start multiple client processes from a single client directory, specify for each of them
the same value in this environment variable. If different values are specified when multiple
client processes are run, the client message log files might become corrupted.

6 ADBODBTRC Specify whether to output HADB ODBC driver trace information. Specify one of the
following values in this environment variable:
• YES: Specify this value to output HADB ODBC driver trace information.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 82

No. Environment variable Value to be specified

• NO: Specify this value to not output HADB ODBC driver trace information.

If you omit this environment variable or specify an invalid value, NO is assumed.
Consider setting this environment variable when using the ODBC driver.

7 ADBODBTRCSIZE Specify the maximum size of an HADB ODBC driver trace file (in MB). You can specify
a value in the range from 32 to 1,024.
If you omit this environment variable or specify an invalid value, 256 is assumed.
Consider setting this environment variable when using the ODBC driver.

8 ADBODBTRCPATH Specify the absolute path of the folder in which to store HADB ODBC driver trace files.
The path name cannot be longer than 210 bytes.
In the following circumstances, HADB ODBC driver trace information is not output even
if YES is specified in ADBODBTRC:
• This environment variable is omitted.
• An invalid folder is specified.
• The path name is 211 bytes or longer.

Consider setting this environment variable when using the ODBC driver.

9 ADBODBTRCLV This environment variable specifies the trace level to apply when outputting HADB ODBC
driver trace information. Specify one of the following values:
• 1: Specify this value to output information at trace level 1.
• 2: Specify this value to output information at trace level 2.

For details about trace levels, see 17.4.1 About trace levels.
If you omit this environment variable or specify an invalid value, 1 is assumed.
Consider setting this environment variable when using the ODBC driver.

10 ADBODBAPMODE Specify the application mode of the HADB ODBC driver. Normally, you do not need to
specify this environment variable.
The value specified for this environment variable changes the behavior of the HADB
ODBC driver.
• ACCESS: The HADB ODBC driver operates in Microsoft Access(R) compatibility

mode, rather than following the ODBC 3.5 specification.
Specify this value when using Microsoft Access to access the HADB server. Specifying
this value allows you to avoid certain issues, such as #Deleted replacing search
results or errors occurring.

• NORMAL: The HADB ODBC driver operates as normal.

If you omit this environment variable or specify an invalid value, NORMAL is assumed.
Consider setting this environment variable when using the ODBC driver.

4.3.2 HADB client for Linux
In the HADB client for Linux, specify the environment variables listed in the table below. These environment variables
are specified by the OS user who manages the HADB client.

Make sure that the values specified for the environment variables take effect on the shell when the HADB client is used.
For details about the specification method, see the shell documentation.

Table 4-3: Values to be specified in the environment variables

No. Environment variable Value to be specified

1 LANG Specify in this environment variable the character encoding used in the OS. This must be
the same as the value of the LANG environment variable for the HADB server.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 83

No. Environment variable Value to be specified

2 LD_LIBRARY_PATH Add the following directory to the value of this environment variable:
• $ADBCLTDIR/client/lib

Set this environment variable when either of the following conditions is satisfied:
• The adbsql command will be run on the HADB client.
• Applications that use the CLI function will be developed or run on the HADB client.

3 PATH Add the following directory to the value of this environment variable:
• $ADBCLTDIR/client/bin

4 TZ Specify in this environment variable the time zone of the computer on which the HADB
client is installed.
Do not specify a time zone that uses leap seconds.

5 ADBCLTDIR Specify in this environment variable the absolute path of the client directory.
The first character of the path must be a forward slash (/).

6 ADBCLTLANG Specify in this environment variable the character encoding used on the HADB client.
Specify the same character encoding as used on the HADB server. This must be the
character encoding specified in the ADBLANG environment variable for the HADB server.
• If using Unicode (UTF-8) on the HADB server

Specify UTF8 in this environment variable.
• If using Shift-JIS on the HADB server

Specify SJIS in this environment variable.

7 ADBMSGLOGSIZE Specify in this environment variable the maximum size (in megabytes) of a client message
log file. The permitted value range is from 1 to 2000.
Four client message log files are created on an HADB client. If you omit this environment
variable, the maximum size of each client message log file is set to 16 megabytes.
If you start multiple client processes from a single client directory, specify for each of them
the same value in this environment variable. If different values are specified when multiple
client processes are run, the client message log files might become corrupted.

8 ADBSQLNULLCHAR For this environment variable, specify the character string that will be displayed as a null
value in the search result returned by the adbsql command. You can specify a character
string that is 0 to 32 bytes long. If you specify a 0-byte character string, a blank is displayed
as a null value.
If you omit this environment variable, null values are displayed as asterisks (*).
Specify this environment variable when retrieved data contains asterisks, or you want a
particular character string to appear in place of null values.
Note that if you specify multi-byte characters, the search results might become garbled.
Consider setting this environment variable when the adbsql command will be run on the
HADB client.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 84

4.4 Creating a client definition

Specify a client definition to set up an environment for running the HADB client. The OS user who manages the HADB
client creates the client definition.

4.4.1 How to create a client definition
The following explains how to create a client definition.

To create a client definition:
1. Copy the model client definition file (client.def#) from %ADBCLTDIR%\sample\conf\ to
%ADBCLTDIR%\conf\.
#: For an HADB client for Linux, the model client definition file is $ADBCLTDIR/sample/conf/
client.def.

2. Use a text editor to open the copied client definition file (%ADBCLTDIR%\conf\client.def#).
#: For an HADB client for Linux, the model client definition file is $ADBCLTDIR/conf/client.def.

3. Specify each operand in the client definition. For explanations of operands in the client definition, see 2. 
Designing Client Definitions.

4. After you have created the client definition, overwrite the file. Do not change the file name (client.def).

Grant read and write permissions for the client definition file only to the OS user who manages the HADB client.

The specified operand values in the client definition are output as the KFAA50027-I message to the client message
log file when a connection handle is allocated.

4.4.2 Notes about changing a client definition
Before you change a client definition, disconnect from the HADB server the application program that uses that client
definition file.

4.4.3 Choosing a client definition
You specify the path of the client definition file in the ClientDefPath argument of the
a_rdb_SQLAllocConnect() CLI function. If you create multiple client definitions, you can choose the appropriate
file when you allocate a connection handle.

If the ClientDefPath argument is omitted, %ADBCLTDIR%\conf\client.def# is assumed. For details about
a_rdb_SQLAllocConnect(), see 19.2.1 a_rdb_SQLAllocConnect() (allocate a connection handle).

#: For an HADB client for Linux, $ADBCLTDIR/conf/client.def is assumed.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 85

4.5 Handling unresponsive application programs

A problem such as a communication error, temporary failure (including power outage), or disk failure might cause an
application program to stop responding. Such an unresponsive application program might delay other application
programs and command processing.

Specify the following operand in the client definition in order to minimize the effects of an unresponsive application
program:

• adb_clt_rpc_sql_wait_time operand

Specify in this operand the maximum amount of time to wait for a response after a processing request has been sent
from the HADB client to the HADB server. If there is no response from the HADB server within the specified time, a
timeout error whose SQLCODE is -732 (KFAA30732-E) is returned to the application, processing of the SQL
statement is canceled, and the transaction is rolled back. Then, the application is disconnected from the HADB server.

The following figure shows the wait time monitoring procedure based on the specification of the
adb_clt_rpc_sql_wait_time operand.

Figure 4-3: Wait time monitoring procedure based on the specification of the
adb_clt_rpc_sql_wait_time operand

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 86

Explanation:
This example monitors the wait time until a response is received after a processing request has been issued from the
HADB client to the HADB server. For example, if 600 seconds is specified in the
adb_clt_rpc_sql_wait_time operand, a wait time of 600 seconds is set for the monitoring interval.
Therefore, as a guideline, specify a wait time at least equal to the longest SQL processing time. Specify a realistic
value that most likely will indicate when the application program has become unresponsive.

For details about the adb_clt_rpc_sql_wait_time operand, see the explanation of the
adb_clt_rpc_sql_wait_time operand in 2.2.2 Operands related to application program status monitoring.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 87

4.6 Upgrading an HADB client

This section explains how to upgrade an HADB client.

If you are replacing the HADB client with a revised version rather than upgrading it, see 4.8 Replacing HADB client
with a revised version. 4.8 Replacing HADB client with a revised version also explains when replacement with a revised
version of the HADB client applies.

4.6.1 Preparations before upgrading an HADB client
You must perform the following tasks before you attempt to upgrade an HADB client.

(1) Check environment variables
When an HADB client is upgraded, the values of environment variables might change. For details, see 4.3 Specifying
environment variables.

(2) Check the client definition
When an HADB client is upgraded, some client definition default values might change. If you have set client definition
operands to their default values, see 2.2 Contents of operands in the client definition and check whether operand values
have been changed.

Note that the following operand cannot be specified in the client definition of HADB client version 03-00 or later. If
you are using version 03-00 or later and this operand is specified, delete it from the client definition.

• adb_clt_rpc_open_wait_time

(3) Back up the client directories
Before you upgrade your HADB client, back up the client directories.

Delete the backup after you have confirmed that the new version operates correctly.

4.6.2 Notes about upgrading
Note the following about upgrading an HADB client:

• You must not change the OS user while the HADB client is being upgraded. If the OS user is changed, the HADB
client might not be upgraded successfully.

• You must not change the value of the ADBCLTLANG environment variable while the HADB client is being upgraded.
If the value is changed, the HADB client might not be upgraded successfully.

• Make sure that the versions of the HADB client and ODBC driver match. If the versions do not match, an error
occurs before the HADB client connects to the HADB server.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 88

4.6.3 How to upgrade an HADB client
This subsection provides the steps to upgrade an HADB client.

(1) Upgrading an HADB client (Windows edition)
The OS user who manages the HADB client upgrades the HADB client.

To upgrade an HADB client:

Procedure

1. Log in as the OS user who manages the HADB client.

2. Copy the zip file from the installation media to a folder of your choice.

3. Expand the zip file to the client directory specified in the ADBCLTDIR environment variable.
If you expand the zip file to a path other than the client directory, perform the following additional step:

• Change the client directory path specified in the ADBCLTDIR environment variable.

(2) Upgrading an HADB client (Linux edition)
To upgrade an HADB client:

Procedure

1. Log in as the OS user who manages the HADB client.

2. Create a directory.

mkdir /home/osuser01/client

Create the directory /home/osuser01/client in which the installation data (tar.gz file) and the
adbinstall command will be stored.

3. Assign write permission to the directory you created.

chmod 755 /home/osuser01/client

Assign write permission to the directory you created so that the OS user who manages the HADB client can write
to the directory.

4. Copy the installation data (tar.gz file) and installation command (adbinstall) from the installation media to
the directory you created in step 2.

cp /media/hitachi_advanced_data_binder_client-$VER.tar.gz /home/osuser01/client
cp /media/adbinstall /home/osuser01/client

The underlined portion indicates the mount directory of the CD-ROM file system. The actual mount directory will
depend on the environment.
$VER represents the HADB version and release number.
You must copy the tar.gz file and the adbinstall command to the same directory.

5. Assign execution permission for the installation command to the OS user who manages the HADB client.

chmod 777 /home/osuser01/client/adbinstall

Assign execution permission for the installation command (adbinstall) you copied in step 4 to the OS user who
manages the HADB client.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 89

6. Execute the installation command (adbinstall command).

/home/osuser01/client/adbinstall -c /home/osuser01/clientdir

As the client directory path in the -c option, specify a directory of your choice or the path specified in the
ADBCLTDIR environment variable.
The directory you specify must be one for which the OS user who manages the HADB client has write permission.
If you specify a path in the -c option that differs from the path specified in the ADBCLTDIR environment variable,
perform the following additional step:

• In the ADBCLTDIR environment variable, specify the path of the directory you specified in the -c option.

Note
For details about how to execute the adbinstall command and the rules, see adbinstall (Install
HADB Server or Client) in the manual HADB Command Reference.

▪ Action to take when KFAA91553-E message is output
If the OS user who manages the HADB client does not have write permission for the directory specified in the -c
option of the adbinstall command, the KFAA91553-E message is output.
The KFAA91553-E message is also output if the OS user who manages the HADB client does not have write
permission for the directory that contains the installation command (adbinstall) and installation data (tar.gz
file).
If the KFAA91553-E message is output, assign write permission for the directory concerned.

▪ Action to take when KFAA91558-W message is output
If the root user executes the adbinstall command instead of the OS user who manages the HADB client, the
KFAA91558-W message is output.
Under normal circumstances, the OS user who manages the HADB client executes the adbinstall command.
If the KFAA91558-W message is output, check whether executing the adbinstall command as root might
cause any issues.
If doing so might cause an issue, press n or N when prompted for input by the KFAA91559-Q message output after
the KFAA91558-W message. Then, execute the adbinstall command using the account of the OS user who
manages the HADB client.

Note
• The KFAA91558-W message is not output if a superuser other than root executes the
adbinstall command.

• root is the user whose value is 0 in the output of the id -u OS command. This includes situations
in which you use the su command of the OS to elevate an OS user to root, giving that user a value
of 0 in the output of the id -u OS command.

4.6.4 Tasks to be performed after upgrading
Use the procedure described below to verify that the HADB client upgraded successfully.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 90

(1) HADB client (Windows edition)
Check one of the following file properties to verify that the new version of the file is installed:

• 64-bit edition of Windows: %ADBCLTDIR%client\bin\adbclt.dll
• 32-bit edition of Windows: %ADBCLTDIR%client\bin\adbclt32.dll

If an ODBC driver is used, also check the versions of all DLL files whose names begin with adbodbc.

(2) HADB client (Linux edition)
Verify that the HADB client has been upgraded successfully:

Procedure

1. Execute the adbsql command to connect to the HADB server.

2. Check the contents of the KFAA70003-I message.
Verify that the KFAA70003-I message output to the client's message log file displays the new version.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 91

4.7 Downgrading an HADB client version (restoring the previous version)

This section describes how to downgrade an HADB client.

When you downgrade an HADB server, you also need to downgrade the HADB clients. That is, the version of the HADB
client must match the version of the HADB server.

Note
For details about downgrading the HADB server, see Downgrading the HADB server version (restoring
the previous version) under Building a System in the HADB Setup and Operation Guide.

4.7.1 Preparations before downgrading an HADB client
Before downgrading an HADB client, check the values specified for the following elements:

• Environment variables

• Client definition

Any values that you changed when upgrading the HADB client must be changed back to values appropriate to the earlier
version before downgrading.

4.7.2 Notes about downgrading
Note the following when downgrading an HADB client:

• Do not change the OS user during the process of downgrading the HADB client. If you change the OS user, the
downgrade process might not work correctly.

• Do not change the value specified for the ADBCLTLANG environment variable when downgrading the HADB client.
If you change the value, the downgrade process might not work correctly.

• Make sure that the versions of the HADB client and ODBC driver match. If the versions do not match, an error
occurs before the HADB client connects to the HADB server.

4.7.3 Downgrade procedure
The following explains the procedure for downgrading an HADB client.

The user who performs this procedure is the OS user who manages the HADB client.

(1) Downgrading an HADB client (Windows edition)
To downgrade an HADB client:

Procedure

1. Log in as the OS user who manages the HADB client.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 92

2. Copy the zip file from the installation media to a folder of your choice.

3. Expand the zip file to the client directory specified in the ADBCLTDIR environment variable.
If you expand the zip file to a path other than the client directory, perform the following additional step:

• Change the client directory path specified in the ADBCLTDIR environment variable.

(2) Downgrading an HADB client (Linux edition)
To downgrade an HADB client:

Procedure

1. Log in as the OS user who manages the HADB client.

2. Create a directory.

mkdir /home/osuser01/client

Create the directory (/home/osuser01/client) in which the installation data (tar.gz file) and the
adbinstall command will be stored.

3. Assign write permission to the directory you created.

chmod 755 /home/osuser01/client

Assign write permission to the directory you created so that the OS user who manages the HADB client can write
to the directory.

4. Copy the installation data (tar.gz file) and installation command (adbinstall) from the installation media to
the directory you created in step 2.

cp /media/hitachi_advanced_data_binder_client-$VR.tar.gz /home/osuser01/client
cp /media/adbinstall /home/osuser01/client

The underlined portions indicate the mount directory of the CD-ROM file system. The actual mount directory will
depend on the environment.
$VR represents the HADB version and release number.
You must copy the tar.gz file and the adbinstall command to the same directory.

5. Assign execution privilege for the installation command to the OS user who manages the HADB client.

chmod 777 /home/osuser01/client/adbinstall

Assign execution privilege for the installation command (adbinstall) you copied in step 4 to the OS user who
manages the HADB client.

6. Run the installation command (adbinstall).

/home/osuser01/client/adbinstall -c /home/osuser01/clientdir

As the client directory path in the -c option, specify a directory of your choice or the path specified in the
ADBCLTDIR environment variable.
The directory you specify must be one for which the OS user who manages the HADB client has write permission.
If you specify a path in the -c option that differs from the path specified in the ADBCLTDIR environment variable,
perform the following additional step:

• In the ADBCLTDIR environment variable, specify the path of the directory you specified in the -c option.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 93

Note
For details about how to run the adbinstall command and the rules that apply when doing so, see
adbinstall (Install HADB Server or Client) in the manual HADB Command Reference.

▪ Action to take when message KFAA91553-E is output
If the OS user who manages the HADB client does not have write permission for the directory specified in the -c
option of the adbinstall command, the message KFAA91553-E is output.
The message KFAA91553-E is also output if the OS user who manages the HADB client does not have write
permission for the directory that contains the installation command (adbinstall) and installation data (tar.gz
file).
If the message KFAA91553-E is output, assign write permission for the directory concerned.

4.7.4 Tasks to be performed after downgrading
Use the following procedure to verify that the HADB client has been downgraded successfully.

(1) HADB client (Windows edition)
Check the properties of one of the following files to verify that the old version of the file is installed.

• In 64-bit Windows: %ADBCLTDIR%client\bin\adbclt.dll
• In 32-bit Windows: %ADBCLTDIR%client\bin\adbclt32.dll

If an ODBC driver is used, also check the versions of all DLL files whose names begin with adbodbc.

(2) HADB client (Linux edition)
To verify that the HADB client has been downgraded successfully:

Procedure

1. Connect to the HADB server by executing the adbsql command.

2. Check the message KFAA70003-I.
Confirm that the message KFAA70003-I output to the client message log file displays the old version.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 94

4.8 Replacing HADB client with a revised version

This section describes how to replace HADB client with a revised version.

When the following condition is met, you can replace HADB client with a revised version instead of upgrading it.

• You intend to perform an overwrite installation of HADB client with an edition that has the same version and revision
number but a different code

Note
The following explains how to identify the version number, revision number, and code.

As an example, consider a HADB client with the version information 03-02-/A:

• 03 is the version number.

• 02 is the revision number.

• The underlined part (-/A) is the code.

The following shows examples that constitute replacement with a revised version of HADB client is possible, and
examples that do not.

▪ Scenarios where HADB client is replaced with a revised version
For example, in the following scenarios, because the version numbers and revision numbers are the same, the process
constitutes replacement with a revised version.
03-02 -> 03-02-/A
03-02-/B -> 03-02-/D

▪ Scenarios where HADB client is not replaced with a revised version
For example, in the following scenarios, because the version number or revision number differs, the process does
not constitute replacement with a revised version.
03-02 -> 03-03-/A
03-02-/B -> 03-03-/D
This scenario is considered to be an upgrade of the HADB client. For details about how to upgrade an HADB
client, see 4.6 Upgrading an HADB client.

4.8.1 Procedure for replacing HADB client with a revised version
To replace an HADB client with a revised version:

Procedure

1. Perform the required preparation.
The preparation required before you can replace the HADB client is the same as before upgrading an HADB client.
For details, see 4.6.1 Preparations before upgrading an HADB client.

2. Check the cautionary notes that apply to HADB client replacement.
The cautionary notes regarding HADB client replacement are the same as when upgrading the HADB client. For
details, see 4.6.2 Notes about upgrading.

3. Replace the HADB client with the revised version.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 95

The procedure for replacing the HADB client is the same as the upgrade process. For details, see 4.6.3 How to
upgrade an HADB client.

4. Confirm that the replacement process is complete.
Confirm that the code in the version information of the HADB client has changed. For details about the confirmation
method, see 4.6.4 Tasks to be performed after upgrading.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 96

4.9 Changing the OS time on a client machine

This section explains how to change the OS time on a client machine on which HADB client is installed.

To change the OS time on a client machine, first read 4.9.1 Notes (changing the OS time), and then perform the procedure
described in one of the following subsections:

• 4.9.2 How to advance the OS time on a client machine

• 4.9.3 How to restore the OS time on a client machine

4.9.1 Notes (changing the OS time)
The following notes apply to changing the OS time on a client machine:

• Before you change the OS time on a client machine, make sure that all application programs that connect to the
HADB server are stopped. If the OS time is changed on a client machine while an application program connected
to the HADB server is running, unexpected HADB server and client operations might occur.

• After the OS time has been changed on a client machine, the new OS time is applied to the items below. This change
might affect application programs that handle time.

• Command execution time

• Timestamps in message logs in the client message log file

4.9.2 How to advance the OS time on a client machine
First read 4.9.1 Notes (changing the OS time), and then follow the procedure described below. To advance the OS time
on a client machine on which HADB client is installed:

Procedure

1. Terminate all application programs that connect to the HADB server.
Terminate all application programs that connect from the HADB client to the HADB server.

2. Advance the OS time on the client machine.
After all application programs have terminated, advance the OS time on the client machine on which the HADB
client is installed.

3. Start the application programs that connect to the HADB server.
After you have advanced the OS time on the client machine, start the application programs that were terminated.

The OS time is now advanced on the client machine.

4.9.3 How to restore the OS time on a client machine
First read 4.9.1 Notes (changing the OS time), and then follow the procedure described below. To restore the OS time
on a client machine on which HADB client is installed:

Procedure

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 97

1. Terminate all application programs that connect to the HADB server.
Terminate all application programs that connect from the HADB client to the HADB server.

2. Restore the OS time on the client machine.
After all application programs have terminated, restore the OS time on the client machine on which the HADB client
is installed.

3. Start the application programs that connect to the HADB server.
After you have restored the OS time on the client machine, start the application programs that were terminated.

The OS time is now restored on the client machine.

4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)

Hitachi Advanced Database Application Development Guide 98

This chapter explains designs related to improving application program performance.

Part 2: Application Program Creation (Common)

5 Designs Related to Improvement of Application
Program Performance

Hitachi Advanced Database Application Development Guide 99

5.1 How to retrieve tables

HADB supports the following three retrieval methods for searching tables:

• Table scan

• Index scan

• Key scan

HADB determines the table retrieval method automatically. You can check which method was used when executing a
SQL statement by checking the access path. For details about access paths, see the following subsections:

• How to check access paths
See 6.1.2 How to check access paths.

• Information displayed in access paths
See (20) Table retrieval method in 6.1.4 Information displayed in the tree view.

Note
By using an index specification, you can specify the index to use when retrieving a table, or prevent the use
of indexes for a particular retrieval. For details about index specifications, see Specification format and
rules for index specifications in the manual HADB SQL Reference.

Note that table here refers to a base table.

5.1.1 About table scans
A table scan is a base table retrieval method that does not use B-tree indexes and text indexes. A table scan is used in
the following cases:

• No B-tree index or text index is defined for the table.

• No search condition is specified that can effectively use a B-tree index or text index.

• WITHOUT INDEX is specified in the index specification.

The following figure shows an example of a table scan.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 100

Figure 5-1: Example of a table scan

Explanation:
Because column C3 specified in the search conditions is not an indexed column, B-tree index IDX_C1C2 is not
used when the SELECT statement shown above is executed. Therefore, HADB performs a table scan and accesses
all rows in the data pages.

If range indexes are defined for the table, the range indexes might also be used.

Note
If you have specified in the index specification that B-tree indexes or text indexes are not to be used, HADB
uses a table scan.

Important
If a table scan is to be performed, we recommend that you define range indexes for the table. Using range
indexes might improve performance. For details about the conditions under which range indexes are
used, see 5.3 Range indexes used during execution of SQL statements.

5.1.2 About index scans
An index scan uses a B-tree index or text index to evaluate the search conditions and retrieves from data pages all rows
that satisfy the search conditions. An index scan is run in the following cases:

• B-tree indexes or text indexes are defined in the table, and a search condition is specified that can effectively use
these indexes.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 101

• A B-tree index or text index that can be used for retrieval is specified in the index specification.

The following figure shows an example of an index scan.

Figure 5-2: Example of an index scan

Explanation:
This example uses B-tree index IDX_C1C2 to evaluate the search conditions and accesses a data page to retrieve
the column C3 values.

If range indexes are defined for the table, the range indexes might also be used.

5.1.3 About key scans
A key scan uses a B-tree index to evaluate the search conditions and retrieves from index pages the column values in
the rows that satisfy the search conditions. This method can reduce the number of pages to be referenced because it
retrieves column values directly from B-tree-indexed columns (keys).

A key scan is performed when a B-tree index is defined as an indexed column for all the columns specified in the SQL
statement, and one of the following conditions is met:

• A B-tree index is defined in the table, and a search condition is specified that can effectively use the B-tree index.

• The B-tree index used for retrieval is specified in an index specification.

• A set function MIN or MAX is specified.#

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 102

• SELECT DISTINCT is specified.#

• UNION or UNION DISTINCT is specified.#

• EXCEPT or EXCEPT DISTINCT is specified.#

• INTERSECT or INTERSECT DISTINCT is specified.#

• A quantified predicate with =ANY specification is specified.#

• An IN predicate with a table subquery is specified.#

#
The B-tree index is used only when HADB determines that the B-tree index can be used efficiently.

However, if any of the following conditions are satisfied, HADB might reference the data pages:

• A table in which rows have been added, updated, or deleted is being retrieved

• A column of the VARCHAR type that contains data ending with a single-byte space is being retrieved

• Data in the VARBINARY column whose binary data ends with X'00' is being referenced

The following figure shows an example of a key scan.

Figure 5-3: Example of a key scan

Explanation:
This example uses B-tree index IDX_C1C2 to evaluate the search conditions. HADB does not access data pages
because it retrieves the values of columns C1 and C2 directly from the index page.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 103

Note
Key scans are not executed for text indexes.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 104

5.2 B-tree indexes and text indexes used during execution of SQL
statements

You must define B-tree indexes and text indexes that are appropriate for your intended search conditions because the
availability of B-tree indexes and text indexes greatly affects performance.

This section explains how to determine the B-tree indexes and text indexes to be used during execution of SQL
statements, and how to check the index used during execution of an SQL statement.

In this section, the term index refers to both B-tree indexes and text indexes.

Notes
• The index selection method explained here is applicable to query expressions obtained after internal derived

tables have been expanded or to search conditions that have been converted by equivalent exchange. For details
about expansion of internal derived tables, see the topic Internal derived tables in the manual HADB SQL
Reference. For details about equivalent exchange for search conditions, see 5.11 Equivalent exchange of search
conditions.

• If, in a value expression specified in the search conditions, only literals are specified in a scalar operation, that
scalar operation might be treated as a literal. For details about scalar operations equivalent to literals, see the
table Conditions under which value expressions are equivalent to literals under Rules in Specification format
and rules for value expressions in the manual HADB SQL Reference.

• When an index is specified, that index is used, regardless of the B-tree index priority or selection rules described
here. For details about index specifications, see Specification format and rules for index specifications in the
manual HADB SQL Reference.

• When joining tables, depending on the table joining method, indexes might not be used when evaluating the join
condition. For details about table joining methods, see 5.5 Table joining methods.

• You cannot define a text index for a column store table.

Important
B-tree indexes defined for a column store table are used in the following cases:

• An index specification is specified.
For details about index specifications, see Specification format and rules for index specifications in the
manual HADB SQL Reference.

• A set function MIN or MAX is specified.#

• SELECT DISTINCT is specified.#

• UNION or UNION DISTINCT is specified.#

• EXCEPT or EXCEPT DISTINCT is specified.#

• INTERSECT or INTERSECT DISTINCT is specified.#

• A quantified predicate with =ANY specification is specified.#

• An IN predicate with a table subquery is specified.#

• A column store table is specified as the table to be updated by the UPDATE statement.

• A column store table is specified as the table to be deleted by the DELETE statement.

• Cost information for a column store table is collected.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 105

#
The B-tree index is used only when the HADB server determines that the B-tree index can be used
efficiently.

For details about how to check the B-tree index to be used, see 5.2.5 How to check the index used during
execution of an SQL statement.

5.2.1 Priority and selection rules for indexes
If multiple indexes are defined for a table, HADB determines which index to use based on the search condition specified
in the WHERE clause, or the ON search condition specified for a joined table.

This section explains the priority and selection rules for indexes used during execution of an SQL statement.

(1) Index priority
If the predicate specified for a search condition is in any of the formats shown in the following table, an index is used
during execution of an SQL statement. Note that only one index is used during execution of an SQL statement. Therefore,
if multiple indexes are defined for a table, the index to be used is determined according to the priority shown in the
following table.

Table 5-1: Index priority when multiple indexes are defined for a table

Priority Condition for index Example of this priority (C1 is the column for
which the index has been defined)

1 Unique index (B-tree index) that specifies all indexed columns in a =
condition

"C1"=100

"C1"=100+?

"T1"."C1"=CAST("T2"."C1" AS INTEGER)

2 B-tree index with indexed columns specified in a = condition "C1"=100

"C1"=100+?

"T1"."C1"=CAST("T2"."C1" AS INTEGER)

3 B-tree index with indexed columns specified in an IS NULL condition "C1" IS NULL

4 B-tree index with indexed columns specified in a LIKE predicate that
satisfies all the following conditions:
• A literal is specified as the pattern character string
• The predicate performs a leading-match search that specifies the

special character %
Escape characters must be specified as literals.

"C1" LIKE 'ABC%'

"C1" LIKE 'AB\%C%' ESCAPE '\'

5 B-tree index with indexed columns specified in a LIKE predicate that
satisfies both of the following conditions:
• A literal is specified as the pattern character string
• The predicate performs a leading-match search specified in a way

other than that described for priority 4

Escape characters must be specified as literals.

"C1" LIKE 'ABC__'

"C1" LIKE 'ABC%E'

"C1" LIKE 'AB_C%E' ESCAPE '\'

B-tree index with indexed columns specified in a LIKE predicate that
uses complete-match retrieval with a literal specified as the pattern
character string.

"C1" LIKE 'ABCDE'

"C1" LIKE 'AB_CDE' ESCAPE '\'

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 106

Priority Condition for index Example of this priority (C1 is the column for
which the index has been defined)

Escape characters must be specified as literals.

B-tree index with indexed columns specified in a LIKE predicate that
specifies a user information acquisition function as the pattern
character string.
Escape characters must be specified as literals.

"C1" LIKE CURRENT_USER

"C1" LIKE CURRENT_USER ESCAPE '\'

B-tree index with indexed columns specified in a LIKE predicate in
which a dynamic parameter is used as the pattern character string.
Escape characters must be specified as literals.

"C1" LIKE ?

"C1" LIKE ? ESCAPE '\'

B-tree index with indexed columns specified in a LIKE predicate that
specifies a dynamic parameter as an escape character.
A literal, user information acquisition function, or dynamic parameter
must be specified as the pattern character string.

"C1" LIKE 'AB\%C%' ESCAPE ?

"C1" LIKE CURRENT_USER ESCAPE ?

"C1" LIKE ? ESCAPE ?

6 Text index with indexed columns specified in a CONTAINS scalar
function that includes a word-context search specification (in which a
notation-correction-search specification or a synonym-search
specification is not included)#2, #8

CONTAINS("C1",'WORDCONTEXT("ABC")')>
0

7 Text index with indexed columns specified in a CONTAINS scalar
function that satisfies either of the following conditions#2, #4, #8:
• A word-context search specification and notation-correction-

search specification are included.
• A word-context search specification and synonym-search

specification are included.

CONTAINS("C1",'WORDCONTEXT(IGNORECAS
E("ABC"))')>0

CONTAINS("C1",'WORDCONTEXT(SORTCODE(
"ABC"))')>0

CONTAINS("C1",'WORDCONTEXT(SYNONYM("
DIC1","ABC"))')>0

8 Text index with indexed columns specified in a LIKE predicate#1 "C1" LIKE 'ABC'

"C1" LIKE 'ABC%'

"C1" LIKE '%ABC%'

"C1" LIKE '%ABC'

"C1" LIKE ?

Text index with indexed columns specified in a CONTAINS scalar
function (in which a notation-correction-search specification,
synonym-search specification, or word-context search specification is
not included)#2

CONTAINS("C1",'"ABC"')>0

9 Text index that satisfies all of the following conditions#1, #3:
• OR logical operators are used to specify multiple conditions that

specify LIKE predicates.
• An indexed column is specified as the match value of the LIKE

predicate.

"C1" LIKE 'ABC' OR "C1" LIKE 'DEF'

"C1" LIKE 'ABC%' OR "C1" LIKE 'DEF%'

"C1" LIKE '%ABC%' OR "C1" LIKE '%DEF
%'

"C1" LIKE ? OR "C1" LIKE ?

Text index with indexed columns specified in a CONTAINS scalar
function that includes either of the following specifications#2, #4:
• Notation-correction-search specification (only when a word-

context search specification is not included)
• Synonym-search specification (only when a word-context search

specification is not included)

CONTAINS("C1",'IGNORECASE("ABC")')>0

CONTAINS("C1",'SORTCODE("ABC")')>0

CONTAINS("C1",'SYNONYM("DIC1","ABC")
')>0

Text index that satisfies all of the following conditions#1, #2, #3, #4: "C1" LIKE '%ABC%'
OR

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 107

Priority Condition for index Example of this priority (C1 is the column for
which the index has been defined)

• At least one each of a condition that specifies a LIKE predicate
and a condition that specifies the CONTAINS scalar function are
specified using the OR logical operator.

• An indexed column is specified as the match value of the LIKE
predicate.

• An indexed column is specified in the CONTAINS scalar function.

CONTAINS("C1",'"DEF"')>0

"C1" LIKE '%ABC%'
OR
CONTAINS("C1",'"DEF"')>0
OR
CONTAINS("C1",'IGNORECASE("GHI")')>0

Text index that satisfies all of the following conditions#2, #3, #4:
• Two or more of a condition that specifies the CONTAINS scalar

function are specified using the OR logical operator.
• An indexed column is specified in the CONTAINS scalar function.

CONTAINS("C1",'"ABC"')>0
OR
CONTAINS("C1",'"DEF"')>0

CONTAINS("C1",'"ABC"')>0
OR
CONTAINS("C1",'IGNORECASE("ABC")')>0
OR
CONTAINS("C1",'SORTCODE("ABC")')>0

CONTAINS("C1",'"ABC"')>0
OR
CONTAINS("C1",'IGNORECASE("DEF")')>0
OR
CONTAINS("C1",'SORTCODE("GHI")')>0
OR
CONTAINS("C1",'SYNONYM("DIC1","JKL")
')>0

CONTAINS("C1",'WORDCONTEXT("ABC")')>
0
OR
CONTAINS("C1",'WORDCONTEXT("DEF")')>
0

10 Text index with indexed columns specified in a match value of a
LIKE_REGEX predicate#4, #5

"C1" LIKE_REGEX '^ABC'

"C1" LIKE_REGEX '^ABC' FLAG
IGNORECASE

11 Text index that satisfies both of the following conditions#3, #4, #5:
• Two or more conditions that specify LIKE_REGEX predicates are

specified using an OR logical operator.
• An indexed column is specified in the match values of the
LIKE_REGEX predicates.

"C1" LIKE_REGEX '^ABC'
OR
"C1" LIKE_REGEX '^DEF'

Text index that meets all of the following conditions#1, #3, #4, #5:
• At least one each of a condition that specifies a LIKE predicate

and a condition that specifies a LIKE_REGEX predicate are
specified using an OR logical operator.

• An indexed column is specified as a match value of the LIKE
predicate.

• An indexed column is specified as a match value of a
LIKE_REGEX predicate.

"C1" LIKE '%ABC%'
OR
"C1" LIKE_REGEX '^DEF'

Text index that meets all of the following conditions#2, #3, #4, #5:
• At least one each of a condition that specifies a LIKE_REGEX

predicate and a condition that specifies a CONTAINS scalar
function are specified using an OR logical operator.

"C1" LIKE_REGEX '^ABC'
OR
CONTAINS("C1",'"XYZ"')>0

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 108

Priority Condition for index Example of this priority (C1 is the column for
which the index has been defined)

• An indexed column is specified in a match value of a
LIKE_REGEX predicate.

• An indexed column is specified in a CONTAINS scalar function.

Text index that meets all of the following conditions#1, #2, #3, #4, #5:
• Multiple conditions that specify a LIKE predicate, a
LIKE_REGEX predicate, and a CONTAINS scalar function are
specified using OR logical operators.

• An indexed column is specified as the match value of a LIKE
predicate.

• An indexed column is specified in a match value of a
LIKE_REGEX predicate.

• An indexed column is specified in a CONTAINS scalar function.

"C1" LIKE_REGEX '^ABC'
OR
"C1" LIKE '%DEF%'
OR
CONTAINS("C1",'"XYZ"')>0

12 B-tree index with indexed columns specified in an IN predicate whose
comparison values are value specifications only

"C1" IN (10,20,30)

B-tree index with indexed columns specified in an IN predicate whose
comparison values are only value specifications that include scalar
operations

"C1" IN (10,20,30+?)

"T1"."C1" IN (CASE WHEN 100=? THEN
10 ELSE 20 END,30,40)

13 B-tree index with indexed columns specified in a BETWEEN predicate "C1" BETWEEN 20 AND 40

"C1" BETWEEN 20 AND 40+?

"T1"."C1" BETWEEN "T2"."C1"-6 MONTH
AND "T2"."C1"

B-tree index with indexed columns specified in a range condition that
combines two comparison predicates

"C1">=20 AND "C1"<=40

14 B-tree index with indexed columns specified in an IN predicate that
satisfies the following condition:
• A subquery is specified whose comparison values do not include

an external reference column.

"C1" IN (SELECT "C1" FROM "T2")

B-tree index with indexed columns specified in an =ANY condition
that specifies a subquery that does not include an external reference
column

"C1"=ANY(SELECT "C1" FROM "T2")

B-tree index with indexed columns specified in a =SOME condition
that specifies a subquery that does not include an external reference
column

"C1"=SOME(SELECT "C1" FROM "T2")

15 B-tree index with indexed columns specified in a >, >=, <, or <=
condition

"C1">50

"C1"<=200

"C1">=50+?

"T1"."C1" <"T2"."C1"||'X'

16 B-tree index with indexed columns specified in an IN predicate whose
comparison values include a column specification

"T1"."C1" IN (10,"T2"."C1")

"T1"."C1" IN (10,"T2"."C1"+?,50)

17 B-tree index with indexed columns specified in a condition that
specifies an OR logical operator#6

"C1"<20 OR "C1">40

18 B-tree index with indexed columns specified in a LIKE predicate that
satisfies both of the following conditions#7:
• A literal is specified in the pattern character string.

"C1" LIKE '%BCD%'

"C1" LIKE '%B_CD%' ESCAPE '\'

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 109

Priority Condition for index Example of this priority (C1 is the column for
which the index has been defined)

• The search is not a leading-match search.

B-tree index with indexed columns specified in a LIKE predicate that
satisfies the following condition:
• The pattern character string specifies a value expression that

contains a column specification.

"T1"."C1" LIKE "T2"."C2" || '%'

B-tree index with indexed columns specified in a LIKE predicate that
satisfies the following condition:
• The pattern character string specifies a value expression that

contains a scalar operation.

"C1" LIKE CURRENT_USER || '%'

B-tree index with indexed columns specified in a LIKE predicate that
satisfies the following condition:
• A value expression that specifies a column specification is

specified in an escape character.

"T1"."C1" LIKE 'A\%B@_C%'
ESCAPE "T2"."C1"

B-tree index with indexed columns specified in a LIKE predicate that
satisfies the following condition:
• A value expression that includes a scalar operation is specified in

an escape character.

"C1" LIKE 'A\%B@_C%' ESCAPE CASE
WHEN 10=? THEN '\' ELSE '@' END

Notes

• For a multiple-column index, the priority shown in this table is applied sequentially starting from the first B-
tree indexed column.

• Basically, the index to be used is determined by the priority shown above. However, depending on the specified
search conditions, the priority shown above might not result in an effective evaluation. In this case, a index that
does not follow the above priority might be used. If you want to check the index that was actually used for a
retrieval, see 5.2.5 How to check the index used during execution of an SQL statement.

#1
This condition does not apply when the LIKE predicate specifies a pattern character string in the following formats:

• The pattern character string consists only of the special character %.
Example: "C1" LIKE '%'

• The pattern character string is an empty string.
Example: "C1" LIKE ''

• The pattern character string does not specify two or more consecutive non-special characters.
Example: "C1" LIKE '%A%', "C1" LIKE '%A%B%'

• The pattern character string specifies a column in the same table as the column in the match value.
Example: "T1"."C1" LIKE "T1"."C2"

#2
This condition does not apply when the CONTAINS scalar function specifies a search character string in the following
formats. It does apply if a synonym-search specification is not specified, or one is specified but its synonym does
not exist in relation to the search character string.

• The search character string is an empty string.
Example 1: CONTAINS("C1",'""')>0
Example 2: CONTAINS("C1",'IGNORECASE("")')>0
Example 3: CONTAINS("C1",'SORTCODE("")')>0

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 110

Example 4: CONTAINS("C1",'WORDCONTEXT("")')>0
Example 5: CONTAINS("C1",'WORDCONTEXT_PREFIX("")')>0

• The search character string consists of a single character.
Example 1: CONTAINS("C1",'"A"')>0
Example 2: CONTAINS("C1",'IGNORECASE("A")')>0
Example 3: CONTAINS("C1",'SORTCODE("A")')>0
Example 4: CONTAINS("C1",'WORDCONTEXT("A")')>0
Example 5: CONTAINS("C1",'WORDCONTEXT_PREFIX("A")')>0
This condition also does not apply when a synonym-search specification is specified in a CONTAINS scalar
function and its synonym exists in relation to the search character string, if the synonym is a single character
such as A.

• A word-context search specification is included in a CONTAINS scalar function, and the number of characters
in the search character string after elimination of the following symbols is no more than 1:

• Half-width space (0x20), tab (0x09), line break (0x0A), return (0x0D), period, question mark, exclamation
mark, and other single-byte symbols (0x21 to 0x2F, 0x3A to 0x40, 0x5B to 0x60, and 0x7B to 0x7E)

Example 1: CONTAINS("C1",'WORDCONTEXT("###A")')>0
Example 2: CONTAINS("C1",'WORDCONTEXT_PREFIX("###A")')>0

#3
Every condition included in the scope of the OR logical operator must be one that uses a LIKE predicate, a
LIKE_REGEX predicate, or a CONTAINS scalar function. All columns in the OR logical operator must be indexed
columns of the text index subject to selection.

#4
In either of the following circumstances, only text indexes defined with CORRECTIONRULE (notation-correction-
search text-index specification) specified in a CREATE INDEX statement are subject to selection.

• A LIKE_REGEX predicate is specified that specifies IGNORECASE (or I) for FLAG.

• A CONTAINS scalar function is specified that specifies a notation-correction-search specification.

#5
This condition does not apply when the regular expression character string of the LIKE_REGEX predicate consists
of 1 or fewer characters.

#6
All the columns included in the OR logical operator must be indexed columns of the B-tree index subject to selection.
The index priority order might change depending on the number of predicates and the format of the condition
specified in the OR logical operator.

#7
This condition does not apply if the data type of an indexed column for which a LIKE condition is specified is a
variable-length character string data type and a pattern character string in one of the following formats:

• The special character % (percent sign) is not specified at the end.
Example 1: "C1" LIKE '%BCD'
Example 2: "C1" LIKE '%BCD_'

• The special character % (percent sign) specified at the end is preceded by a single-byte space or the special
character _ (underscore).
Example 1: "C1" LIKE '%BCDΔ%'

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 111

Example 2: "C1" LIKE '%BCD_%'
Legend: ∆: Half-width space

#8
Only a text index for a word-context search can be selected as the index to be used during a search.

(2) Selection rules for indexes
The index priority described in (1) Index priority is not the only factor that determines which index is used during
execution of an SQL statement. The conditions described here are just one of the factors that determine which index is
selected.

(a) Selection rules for B-tree indexes
The following table describes the selection rules for B-tree indexes.

Note that selection rules are applied sequentially in ascending order. That is, if selection rule No. 1 does not determine
which index to use, selection rule No. 2 is applied next.

Table 5-2: Selection rules for B-tree indexes

Selection rule Method of condition specification

1 An = condition is specified for all columns of a unique index.

2 The index with a = join condition contained in consecutive = conditions at the beginning of a search condition is prioritized.

3 If a search condition is specified for the first B-tree indexed column of the indexes, selection is based on the priority of
that search condition.

4 The index with more search conditions is prioritized.

5 The index with more key conditions is prioritized.

6 The index with fewer indexed columns is prioritized. For indexes that satisfy selection rule 1, the index with more indexed
columns is prioritized.

7 An index that uses a condition specified previously in an SQL statement as a search condition is prioritized.

8 An index that does not create a work table is prioritized.

9 A unique index is prioritized. For indexes for which no search condition is specified, the non-unique index is prioritized.

10 The index with the shorter key length is prioritized.

11 If none of selection rules from 1 to 10 is applied, the B-tree index is selected depending on internal processing.

For details about search conditions and key conditions, see 5.4.1 Evaluation method when B-tree indexes are used.

(b) Selection rules for text indexes
The following table describes the selection rules for text indexes.

Note that selection rules are applied sequentially in ascending order. That is, if selection rule No. 1 does not determine
the index to use, selection rule No. 2 is tested next.

Table 5-3: Selection rules for text indexes

Selection rule Method of condition specification

1 • A text index that can evaluate more conditions that specify LIKE predicates is prioritized.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 112

Selection rule Method of condition specification

• A text index that can evaluate more conditions that specify LIKE_REGEX predicates is prioritized.
• A text index that can evaluate more conditions that specify the scalar function CONTAINS is prioritized.

2 • A text index with the longer pattern character string for LIKE predicates is prioritized.
• A text index with the longer regular expression character string for LIKE_REGEX predicates is prioritized.
• A text index with the longer search character string for the scalar function CONTAINS is prioritized.

3 A text index with the shorter indexed column definition is prioritized.

4 • A text index that evaluates fewer LIKE predicates, LIKE_REGEX predicates, and CONTAINS scalar functions
specified in OR conditions is prioritized.

• If CONTAINS scalar functions that specify synonym-search specification are specified, the number of synonyms for
the search string is added to the number of such scalar functions and compared.

5 If none of selection rules 1 to 4 result in an index being selected, internal processing determines the text index that is
selected.

(c) Notes
• If HADB determines that it cannot use the index effectively based on cost information or other resources, these

selection rules might be set aside in favor of a different approach.

• If HADB determines that it cannot use the index effectively for such reasons as only not predicates being specified
in the search conditions for a WHERE clause or the ON search condition for a joined table, the index might not be
used.

5.2.2 Examples of indexes that are used during retrieval of a table
This section describes examples of indexes that are used during retrieval of a table.

(1) Example 1 (B-tree index(single-column indexes))
Example of the B-tree index definition:

 CREATE INDEX "IDX_C1"
 ON "T1" ("C1")
 IN "DBAREA01"
 EMPTY

Example of the SELECT statement to be executed:

 SELECT "C1","C2","C3" FROM "T1"
 WHERE "C1"=100

 SELECT "C1","C2","C3" FROM "T1"
 WHERE "C1">100 AND "C2"='U0100'

When the SELECT statement shown above is executed, B-tree index IDX_C1 is used.

■ When a B-tree index is not used
A B-tree index is not used in the following case.
Example of the B-tree index definition:

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 113

 CREATE INDEX "IDX_C1"
 ON "T1" ("C1")
 IN "DBAREA01"
 EMPTY

Example of the SELECT statement to be executed:

 SELECT "C1","C2","C3" FROM "T1"
 WHERE "C1">100 OR "C2"='U0100'

With an OR condition, if a B-tree index is defined only for column C1 (or only for column C2), that B-tree index is
not used. Therefore, when the SELECT statement shown above is executed, B-tree index IDX_C1 is not used.
If B-tree indexes are defined for both columns C1 and C2, those B-tree indexes are not used.

(2) Example 2 (B-tree index (multiple-column indexes))
Example of the B-tree index definition:

 CREATE INDEX "IDX_C2C1"
 ON "T1" ("C2","C1")
 IN "DBAREA01"
 EMPTY

Example of the SELECT statement to be executed:

 SELECT "C1","C2","C3" FROM "T1"
 WHERE "C1"=100

 SELECT "C1","C2","C3" FROM "T1"
 WHERE "C2"='U0100'

 SELECT "C1","C2","C3" FROM "T1"
 WHERE "C1">100 AND "C2"='U0100'

 SELECT "C1","C2","C3" FROM "T1"
 WHERE "C1">100 OR "C2"='U0100'

If the SELECT statement shown above is executed, B-tree index IDX_C2C1 is used.

(1) and (2) above are typical examples of cases in which a B-tree index is used and in which a B-tree index is not used.
Even in the case above where the B-tree index is used, the B-tree index might not actually be used depending on the
format of the specified search condition. For details about how to determine the B-tree index that was actually used
during retrieval, see 3.2.5 How to check the index that was used for retrieval.

(3) Example 3 (text index)
Example of text index definition:

 CREATE INDEX "IDX_TXT_C1"
 ON "T1" ("C1")
 IN "DBAREA01"
 EMPTY
 INDEXTYPE TEXT

Example of SELECT statement to execute:

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 114

 SELECT "C1","C2","C3" FROM "T1"
 WHERE "C1" LIKE '%XYZ%'

 SELECT "C1","C2","C3" FROM "T1"
 WHERE "C1" LIKE '%XYZ%' AND "C2"='U0100'

When you execute this SELECT statement, HADB uses the text index IDX_TXT_C1.

▪ Scenario in which a text index is not used
In the following scenario, the text index will not be used.
Example of text index definition:

 CREATE INDEX "IDX_TXT_C1"
 ON "T1" ("C1")
 IN "DBAREA01"
 EMPTY
 INDEXTYPE TEXT

Example of SELECT statement to execute:

 SELECT "C1","C2","C3" FROM "T1"
 WHERE "C1" LIKE '%XYZ%' OR "C2"='U0100'

In the case of an OR condition, if a text index is defined only for column C1 (or only for column C2), then that text
index will not be used. Consequently, when you execute this SELECT statement, HADB does not use the text index
IDX_TXT_C1.

The examples described in (1) to (3) are representative examples of situations in which indexes are used and not used.
In any of these examples in which the index is used, the index might not be used if the search condition is written in a
certain way. If you want to check the index that will actually be used for a retrieval, see 5.2.5 How to check the index
used during execution of an SQL statement.

5.2.3 Examples of indexes that are used during retrieval of a table
(examples of index priority)

If multiple indexes are defined for a table, the index to be used is determined on the basis of the priority shown in
Table 5-1: Index priority when multiple indexes are defined for a table.

This section explains typical examples of the priority of indexes that are used during retrieval of a table.

If you want to check the index that will actually be used for a retrieval, see 5.2.5 How to check the index used during
execution of an SQL statement.

(1) Example 1 (priority between single-column indexes)
The following is an example of the relative priority between B-tree indexes (single-column indexes):

Example of the B-tree index definition:

 CREATE INDEX "IDX_C1"
 ON "T1" ("C1")
 IN "DBAREA01"
 EMPTY

 CREATE INDEX "IDX_C2"

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 115

 ON "T1" ("C2")
 IN "DBAREA01"
 EMPTY

Example of the SELECT statement to be executed:

 SELECT "C1","C2","C3" FROM "T1"
 WHERE "C1">100 AND "C2"='U0100'

In this example, the B-tree index IDX_C1 has a priority of 15, and the B-tree index IDX_C2 has a priority of 2. As
such, the B-tree index IDX_C2 is used for retrieval.

Important
In the example above, if only one of the B-tree indexes is selected to be used on the basis of the priority,
change the search condition, if possible, in such a manner that the B-tree index that can narrow the search
most effectively will be used. You can expect an improvement in performance by using a B-tree index that
provides more effective narrowing.

(2) Example 2 (priority between single-column indexes)
The following is an example of the relative priority between B-tree indexes (single-column indexes):

Example of the B-tree index definition:

 CREATE INDEX "IDX_C1"
 ON "T1" ("C1")
 IN "DBAREA01"
 EMPTY

 CREATE INDEX "IDX_C2"
 ON "T1" ("C2")
 IN "DBAREA01"
 EMPTY

Example of the SELECT statement to be executed:

 SELECT * FROM "T1"
 WHERE "C2"='U0100' AND "C1"=100

In this example, B-tree indexes IDX_C1 and IDX_C2 both have a priority of 2. Because a B-tree index for the first
column specified in the search condition has the higher priority, B-tree index IDX_C2 is used for retrieval.

(3) Example 3 (priority between multiple-column indexes)
The following is an example of the relative priority between B-tree indexes (multiple-column indexes):

Example of the B-tree index definition:

 CREATE INDEX "IDX_C1C2"
 ON "T1" ("C1","C2")
 IN "DBAREA01"
 EMPTY

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 116

 CREATE INDEX "IDX_C2C3"
 ON "T1" ("C2","C3")
 IN "DBAREA01"
 EMPTY

Example of the SELECT statement to be executed:

 SELECT "C1","C2","C3" FROM "T1"
 WHERE "C2"='U0100'

In this example, B-tree index IDX_C2C3 is used.

IDX_C1C2 has column C2 as its second indexed column, while IDX_C2C3 has column C2 as its first indexed
column, so IDX_C2C3 is used.

(4) Example 4 (priority between single-column index and multiple-column
index)

The following is an example of the relative priority between single-column and multiple-column B-tree indexes:

Example of the B-tree index definition:

 CREATE INDEX "IDX_C1"
 ON "T1" ("C1")
 IN "DBAREA01"
 EMPTY

 CREATE INDEX "IDX_C3C2"
 ON "T1" ("C3","C2")
 IN "DBAREA01"
 EMPTY

Example of the SELECT statement to be executed:

 SELECT "C1","C2","C3" FROM "T1"
 WHERE "C1">100 AND "C2"='U0100'

In this example, B-tree index IDX_C1 is used.

IDX_C3C2 has column C2 as its second indexed column, while IDX_C1 has column C1 as its indexed column, so
IDX_C1 is used.

(5) Example 5 (priority between single-column index and multiple-column
index)

The following is an example of the relative priority between single-column and multiple-column B-tree indexes:

Example of the B-tree index definition:

 CREATE INDEX "IDX_C1"
 ON "T1" ("C1")
 IN "DBAREA01"
 EMPTY

 CREATE INDEX "IDX_C2C3"

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 117

 ON "T1" ("C2","C3")
 IN "DBAREA01"
 EMPTY

Example of the SELECT statement to be executed:

 SELECT "C1","C2","C3" FROM "T1"
 WHERE "C1">100 AND "C2"='U0100'

In this example, the B-tree index IDX_C1 has a priority of 15, and the B-tree index IDX_C2C3 has a priority of 2. As
such, the B-tree index IDX_C2C3 is used.

IDX_C1 that has column C1 as an indexed column and IDX_C2C3 that has column C2 as the first indexed column
are subject to comparison to determine priority, as shown in Table 5-1: Index priority when multiple indexes are defined
for a table.

(6) Example 6 (priority between text index and B-tree index)
The following is an example of the relative priority of a text index and B-tree index (single-column index).

Example of index definitions:

 CREATE INDEX "IDX_TXT_C1" <- Definition of text index
 ON "T1" ("C1")
 IN "DBAREA01"
 EMPTY
 INDEXTYPE TEXT

 CREATE INDEX "IDX_C2" <- Definition of B-tree index
 ON "T1" ("C2")
 IN "DBAREA01"
 EMPTY

Example of SELECT statement to execute:

 SELECT "C1","C2","C3" FROM "T1"
 WHERE "C1" LIKE '%XYZ%' AND "C2" LIKE 'ABC%'

In this example, the text index IDX_TXT_C1 has a priority of 8, and the B-tree index IDX_C2 has a priority of 4. As
such, the B-tree index IDX_C2 is used for retrieval.

Important
In this scenario, if the relative priority results in only one of the indexes being used, if possible, change the
search condition so that the index that can narrow the search scope most effectively is used. You can expect
to see an improvement in performance by using an index that more efficiently narrows the search scope.

(7) If you want to change the index to be used during retrieval
This subsection explains how to change the index to be used during retrieval.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 118

(a) If there are multiple indexed columns with the same priority value, specify the one
that you want to use first

As explained in (2) Example 2 (priority between single-column indexes), a B-tree index for the first column specified
in the search condition is used if multiple indexes with the same priority value are specified. You can use this rule to
change the B-tree index to be used. The following example changes the search condition specification:

Before change:

SELECT * FROM "T1"
 WHERE "C3"='A001' AND "C2"='U0100'

After change:

SELECT * FROM "T1"
 WHERE "C2"='U0100' AND "C3"='A001'

Before the change, B-tree index IDX_C3 defined for column C3 would be used, but after change, B-tree index IDX_C2
defined for column C2 is used.

(b) To lower the priority value of the current index that is used
You can lower the priority value of the index that would be used, so that another index will be used. The following
example changes the search condition specification:

Before change:

SELECT * FROM "T1"
 WHERE "C1"=100 AND "C2" LIKE 'ABC%'

After change:

SELECT * FROM "T1"
 WHERE "C1" BETWEEN 100 AND 100 AND "C2" LIKE 'ABC%'

Before the change, the priority of IDX_C1 was 2 and the priority of IDX_C2 was 4, but after the change, the priority
of IDX_C1 is 13. Therefore, B-tree index IDX_C1 would have been used before the change, but B-tree index IDX_C2
will be used after the change.

(c) Using the index specification
You can specify the index to be used for retrieval. The following shows an example.

Before change:

SELECT * FROM "T1"
 WHERE "C1"=100 AND "C2" LIKE 'ABC%'

The priority of B-tree index IDX_C1 defined for column C1 is 2 and the priority of B-tree index IDX_C2 defined
for column C2 is 4. Therefore, B-tree index IDX_C1 is used.

After change:

SELECT * FROM "T1" /*>> WITH INDEX (IDX_C2) <<*/
 WHERE "C1"=100 AND "C2" LIKE 'ABC%'

You can specify the index to be used for retrieval by using the index specification indicated by the underlining.
When the SELECT statement shown here is executed, index IDX_C2 will be used.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 119

For details about the index specification, see Index specification in the manual HADB SQL Reference.

5.2.4 Cases where an index is not used
If any of the following search conditions is specified, no index is used. In the examples below, C1 and C2 are the names
of table columns.

• Negative conditions are specified.
As shown in the example below, if a index that has column C1 as its indexed column is defined, but negative
conditions are specified as the search conditions, that index is not used.
Example:

WHERE "C1"<>100
WHERE "C1" IS NOT NULL
WHERE "C1" NOT LIKE 'ABC%'
WHERE "C1" NOT IN (10,20,30)
WHERE "C1" NOT BETWEEN 20 AND 40

• Logical operator NOT is specified.
Example:

WHERE NOT ("C1"=100)

• Conditions containing scalar operations, such as arithmetic operations and CASE expressions, are specified.
As shown in the example below, if an index that has column C1 as its indexed column is defined, but the specified
search condition contains a scalar operation, such as arithmetic operations or CASE expressions, that index is not
used.
Example:

WHERE C1*10=200

When a scalar operation is specified in a certain way, its search condition is automatically subjected to equivalent
exchange to allow the use of indexes. For details about equivalent exchange for scalar operations, see 5.11.4 
Equivalent exchange for scalar operations.
If only literals are specified in a scalar operation, that scalar operation might be treated as a literal. For details about
scalar operations equivalent to literals, see the table Conditions under which value expressions are equivalent to
literals under Rules in Specification format and rules for value expressions in the manual HADB SQL Reference.

• An IN subquery in which is specified a subquery containing an external reference column is specified.
Example:

WHERE "T1"."C1" IN (SELECT "C1" FROM "T2" WHERE "C2"="T1"."C2")

• An =ANY quantified predicate in which is specified a subquery containing an external reference column is specified.
Example:

WHERE "T1"."C1"=ANY(SELECT "C1" FROM "T2" WHERE "C2"="T1"."C2")

• An =SOME quantified predicate in which is specified a subquery containing an external reference column is specified.
Example:

WHERE "T1"."C1"=SOME(SELECT "C1" FROM "T2" WHERE "C2"="T1"."C2")

• A quantified predicate other than =ANY or =SOME is specified.
Example:

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 120

WHERE "C1"<>ANY(SELECT "C1" FROM "T2")
WHERE "C1"<>SOME(SELECT "C1" FROM "T2")
WHERE "C1"=ALL(SELECT "C1" FROM "T2")

• The EXISTS predicate is specified.
Example:

WHERE EXISTS(SELECT * FROM "T2")

• The pattern character string of a LIKE predicate is specified as follows:

• The pattern character string consists only of the special character %.
Example:

WHERE "C1" LIKE '%'

• The pattern character string is an empty string.
Example:

WHERE "C1" LIKE ''

• The pattern character string does not contain two or more consecutive non-special characters.
Example:

WHERE "C1" LIKE '%A%'
WHERE "C1" LIKE '%A%B%'

• The pattern character string specifies a column in the same table as the column in the match value.
Example:

WHERE "T1"."C1" LIKE "T1"."C2"

When search conditions are specified as in the preceding examples, even if a text index is defined that has the C1
column as an indexed column, that index will not be used.

5.2.5 How to check the index used during execution of an SQL statement
You can check which index was used during execution of an SQL statement by checking the access path. For details
about access paths, see the following sections:

• How to check access paths
See 6.1.2 How to check access paths.

• Information displayed in access paths
See (b) Information related to indexes in (1) Information related to table retrieval methods and indexes in 6.1.5 
Information displayed in the details view.

By checking access paths, you can find out whether indexes were used as intended.

If an index is defined for a target table, it is used for search processing according to the specified search condition.
However, depending on the specified search condition, the index might not be used or a different index might be used
unexpectedly. If the results obtained by the above check indicate that the index was not used as intended, the specified
search condition or index definition might not be appropriate. In such a case, consider changing the index definition or
the search condition.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 121

If the index definition needs to be changed, the application program developer must request that the HADB system
designer or system administrator change the index definition.

5.2.6 Notes on searching using a text index
If you use the logical operator OR to specify multiple LIKE predicates, LIKE_REGEX predicates, or CONTAINS scalar
functions that specify text indexed columns, the search is conducted using the search strings from all the conditions.

Example: Suppose that C1 is a text indexed column.

SELECT * FROM "T1" WHERE "C1" LIKE 'ABCDEFG%'
 OR "C1" LIKE_REGEX 'XYZ[0-9]+'

When this SELECT statement is executed, the search strings (ABCDEFG% and XYZ[0-9]+) specified in the
conditions of the LIKE predicate and the LIKE_REGEX predicate are used in the search processing.

If the total number of characters in the pattern character strings specified in the LIKE predicates, the regular expressions
in LIKE_REGEX predicates, and the search conditions in CONTAINS scalar functions exceeds 1,000 characters, search
processing might slow down significantly. If the total number of characters is 1,001 or more, consider using one of the
following approaches:

• Change the SQL statement, for example by using a UNION to join the search results.

• Use index specification or other means to conduct a search that avoids the use of a text index.

For details about the UNION statement, see Query expression in the manual HADB SQL Reference. For details about
index specification, see Index specification in the manual HADB SQL Reference.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 122

5.3 Range indexes used during execution of SQL statements

This section explains how to determine the range indexes are used during execution of SQL statements, and how to
check the range index used during execution of an SQL statement.

5.3.1 Conditions under which range indexes are used during execution of
an SQL statement

If range indexes are defined for a table, whether the range indexes are actually used during execution of an SQL statement
is determined by the search conditions specified in the WHERE clause, the ON search conditions for joined tables, and
the B-tree indexes or text indexes used during execution of an SQL statement.

This subsection explains the conditions under which range indexes are used for skipping chunks, and the conditions
under which they are used for skipping segments.

Notes

• The conditions explained here are those, used by range indexes, that are applied to query expressions after
expansion of internal derived tables or applied to search conditions converted by an equivalent exchange of
search conditions. For details about expanding internal derived tables, see Internal derived tables in the manual
HADB SQL Reference. For details about the equivalent exchange of search conditions, see 5.11 Equivalent
exchange of search conditions.

• If only literals are specified in a scalar operation in the value expression specified in the search conditions, that
scalar operation might be treated as a literal. For details about scalar operations equivalent to literals, see the
table Conditions under which value expressions are equivalent to literals under Rules in Specification format
and rules for value expressions in the manual HADB SQL Reference.

• When joining tables, range indexes might not be used when evaluating the join condition. This depends on the
method used to join the table. For details about table joining methods, see 5.5 Table joining methods.

• If subqueries are specified, depending on how they are processed, the range index might not be used. For details
about how to process subqueries, see 5.6 How to process subqueries.

(1) Range indexes used for skipping chunks
If all the conditions shown in the following table are satisfied, a range index is used to skip chunks during execution of
an SQL statement.

Table 5-4: Conditions under which range indexes are used

No. Conditions under which range indexes are used Example

1 A range-indexed column must be specified in one of the predicates listed below in a search condition
specified in the WHERE clause or in an ON search condition for joined tables.

--

• Comparison predicate
Note that no range index is used if the same table's columns are specified in both the left-hand and the
right-hand terms of a comparison operator.

Example 1
Example 2
Example 3
Example 14
Example 15

• BETWEEN predicate
Note that no range index is used if the same table's columns are specified in value expression 1 and
value expression 2 or 3.

Example 4
Example 5

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 123

No. Conditions under which range indexes are used Example

• IN predicate (value expression)
Note that no range index is used if the same table's columns are specified in value expression 1 and
value expression 2 or any subsequent value expression.

Example 6
Example 7

• IN predicate (table subquery)
The range index is used in only a case where hash execution is applied as the subquery processing
method.

Example 17

• LIKE predicate
If LIKE is specified, one of the following conditions must be satisfied. Note that if ESCAPE is specified
in the LIKE predicate, the escape characters must be specified in a literal or a dynamic parameter.
• Only a user information acquisition function is specified in the pattern character string.
• Only a dynamic parameter is specified in the pattern character string.
• Only a literal that begins with 'character-string%' (% is a special character) is specified in the
pattern character string.
• Only a literal that begins with 'character-string_' (_ is a special character) is specified in the
pattern character string.
• Only a literal that does not contain a special character (% or _) is specified in the pattern character
string (complete match).
If NOT LIKE is specified, one of the following conditions must be satisfied:
• Only a dynamic parameter is specified in the pattern character string.
• Only a literal that begins with 'character-string%' (% is a special character) is specified in the
pattern character string.

Example 8
Example 9

• Quantified predicate
The range index is used in only a case where hash execution is applied as the subquery processing
method.

Example 17

2 If a predicate explained in 1 is specified in the condition using the logical operator OR or NOT, no range
index is used.

Example 10

3 If a scalar operation is used in a predicate explained in 1, no range index is used. Example 11

4 If columns from three or more different tables are specified in a predicate explained in 1, no range index is
used.

Example 12

5 • A predicate explained in 1 is specified in a subquery that contains an external reference column and
nested loop execution is applied as the subquery processing method.
However, if a predicate explained in 1 contains external reference columns, range indexes whose indexed
columns are those external reference columns are not used.

• A predicate explained in 1 is specified in a subquery that contains an external reference column and
hash execution is applied as the subquery processing method.
The range index is used in only a case where a predicate explained in 1 contains an external reference
column in external-reference-column=column-specification format or column-specification=external-
reference-column format.

Example 13
Example 16

If multiple range indexes that satisfy all the conditions in Table 5-4: Conditions under which range indexes are used
are defined for the table, all range indexes that satisfy all conditions are used.

To determine if a range index can be used for skipping chunks, see Checking a range index (whether it can skip chunks)
in the HADB Setup and Operation Guide.

(2) Range indexes used for skipping segments
If all the conditions shown in Table 5-4: Conditions under which range indexes are used are satisfied, a range index is
used to skip segments during execution of an SQL statement. If multiple range indexes that satisfy all the conditions in
Table 5-4: Conditions under which range indexes are used are defined for the table, all range indexes that satisfy all
conditions are used.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 124

However, if a B-tree index or text index is used during execution of an SQL statement, segments are not skipped by
using a range index.

5.3.2 Examples of range indexes used during retrieval

(1) Example 1
Definition of range indexes

CREATE INDEX "RIDX1" ON "T1"("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1">10

Explanation:
In this example, range index RIDX1 is used to skip chunks and segments that do not contain data that satisfies the
conditions.

(2) Example 2
Definition of range indexes

CREATE INDEX "RIDX1" ON "T1"("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE
CREATE INDEX "RIDX2" ON "T1"("C2") IN "DBAREA01" EMPTY INDEXTYPE RANGE
CREATE INDEX "RIDX3" ON "T1"("C3") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1"=10 AND "C2">20 AND "C3">30

Explanation:
In this example, range indexes RIDX1, RIDX2, and RIDX3 are used to skip chunks and segments that do not contain
data that satisfies the conditions.

(3) Example 3 (range indexes are not used)
Definition of range indexes

CREATE INDEX "RIDX1" ON "T1"("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1">"C2"

Explanation:
When columns from the same table are specified in the right-hand and left-hand terms of a comparison operator, a
range index is not used (chunks and segments that do not contain data that satisfies the conditions are not skipped).
In this example, range index RIDX1 is not used because columns C1 and C2 both belong to table T1.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 125

(4) Example 4
Definition of range indexes

CREATE INDEX "RIDX1" ON "T1"("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1" BETWEEN 10 AND 30

Explanation:
In this example, range index RIDX1 is used to skip chunks and segments that do not contain data that satisfies the
conditions.

(5) Example 5 (range indexes are not used)
Definition of range indexes

CREATE INDEX "RIDX1" ON "T1"("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1" BETWEEN "C2" AND "C3"

Explanation:
When columns from the same table are specified in value expression 1 and value expression 2 or 3, a range index
is not used (chunks and segments that do not contain data that satisfies the conditions are not skipped). In this
example, range index RIDX1 is not used because columns C1, C2, and C3 all belong to table T1.

(6) Example 6
Definition of range indexes

CREATE INDEX "RIDX1" ON "T1"("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1" IN (10,20,30)

Explanation:
In this example, range index RIDX1 is used to skip chunks and segments that do not contain data that satisfies the
conditions.

(7) Example 7 (range indexes are not used)
Definition of range indexes

CREATE INDEX "RIDX1" ON "T1"("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1" IN ("C2",20,30)

Explanation:
When columns from the same table are specified in value expression 1 and value expression 2 or any subsequent
value expression, a range index is not used (chunks and segments that do not contain data that satisfies the conditions

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 126

are not skipped). In this example, range index RIDX1 is not used because columns C1 and C2 both belong to table
T1.

(8) Example 8
Definition of range indexes

CREATE INDEX "RIDX1" ON "T1"("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1" LIKE CURRENT_USER
SELECT * FROM "T1" WHERE "C1" LIKE ?
SELECT * FROM "T1" WHERE "C1" LIKE 'ABC%'
SELECT * FROM "T1" WHERE "C1" LIKE 'ABC%E'
SELECT * FROM "T1" WHERE "C1" LIKE 'ABC%E%'
SELECT * FROM "T1" WHERE "C1" LIKE 'ABC%E%G'
SELECT * FROM "T1" WHERE "C1" LIKE 'ABC_'
SELECT * FROM "T1" WHERE "C1" LIKE 'ABC_E'
SELECT * FROM "T1" WHERE "C1" LIKE 'ABC_E_'
SELECT * FROM "T1" WHERE "C1" LIKE 'ABC_E_G'
SELECT * FROM "T1" WHERE "C1" LIKE 'ABC'
SELECT * FROM "T1" WHERE "C1" NOT LIKE ?
SELECT * FROM "T1" WHERE "C1" NOT LIKE 'ABC%'
SELECT * FROM "T1" WHERE "C1" LIKE 'AB_C%' ESCAPE '\'
SELECT * FROM "T1" WHERE "C1" NOT LIKE 'AB_C%' ESCAPE '\'

Explanation:
In this example, range index RIDX1 is used to skip chunks and segments that do not contain data that satisfies the
conditions when any of these SELECT statements is executed.
If a dynamic parameter is specified in the LIKE predicate, the range index is used. However, if the pattern character
string that does not satisfy the following conditions is specified, there is no benefit to using range indexes:

• LIKE
• A pattern character string that starts with 'character-string%' (% is a special character)
• A pattern character string that starts with 'character-string_' (_ is a special character)
• A pattern character string that does not contain special character % or _ (complete match)

• NOT LIKE
• The pattern character string 'character-string%' (% is a special character)

(9) Example 9 (range indexes are not used)
Definition of range indexes

CREATE INDEX "RIDX1" ON "T1"("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1" LIKE '%ABC%'
SELECT * FROM "T1" WHERE "C1" LIKE '%ABC'
SELECT * FROM "T1" WHERE "C1" LIKE '_ABC_'
SELECT * FROM "T1" WHERE "C1" LIKE '_ABC'
SELECT * FROM "T1" WHERE "C1" NOT LIKE CURRENT_USER
SELECT * FROM "T1" WHERE "C1" NOT LIKE 'ABC%E'
SELECT * FROM "T1" WHERE "C1" NOT LIKE 'ABC%E%'
SELECT * FROM "T1" WHERE "C1" NOT LIKE 'ABC%E%G'
SELECT * FROM "T1" WHERE "C1" NOT LIKE '%ABC%'

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 127

SELECT * FROM "T1" WHERE "C1" NOT LIKE '%ABC'
SELECT * FROM "T1" WHERE "C1" NOT LIKE 'ABC_'
SELECT * FROM "T1" WHERE "C1" NOT LIKE 'ABC_E'
SELECT * FROM "T1" WHERE "C1" NOT LIKE 'ABC_E_'
SELECT * FROM "T1" WHERE "C1" NOT LIKE 'ABC_E_G'
SELECT * FROM "T1" WHERE "C1" NOT LIKE '_ABC_'
SELECT * FROM "T1" WHERE "C1" NOT LIKE '_ABC'
SELECT * FROM "T1" WHERE "C1" NOT LIKE 'ABC'
SELECT * FROM "T1" WHERE "C1" LIKE '%AB_C%' ESCAPE '\'
SELECT * FROM "T1" WHERE "C1" LIKE 'A\%B@_C%'
 ESCAPE CASE WHEN 10=? THEN '\' ELSE '@' END
SELECT * FROM "T1" WHERE "C1" NOT LIKE '%AB_C%' ESCAPE '\'

Explanation:
None of the SELECT statements shown above satisfies the condition for LIKE predicate in No. 1 in Table 5-4: 
Conditions under which range indexes are used. Therefore, range index RIDX1 is not used (chunks and segments
that do not contain data that satisfies the conditions are not skipped).

(10) Example 10 (range indexes are not used)
Definition of range indexes

CREATE INDEX "RIDX1" ON "T1"("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1"=10 OR "C2"=20
SELECT * FROM "T1" WHERE NOT("C1"=10)

Explanation:
When the predicate specified in the condition uses the logical operator OR or NOT, a range index is not used (chunks
and segments that do not contain data that satisfies the conditions are not skipped).

(11) Example 11 (range indexes are not used)
Definition of range indexes

CREATE INDEX "RIDX1" ON "T1"("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "T1"."C1"+10=20

Explanation:
When a scalar operation containing a range-indexed column is used, no range index is used (chunks and segments
that do not contain data that satisfies the conditions are not skipped).

(12) Example 12 (range indexes are not used)
Definition of range indexes

CREATE INDEX "RIDX1" ON "T1"("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1","T2","T3" WHERE "T1"."C1" BETWEEN "T2"."C2" AND "T3"."C3"
SELECT * FROM "T1","T2","T3" WHERE "T1"."C1" IN ("T2"."C2","T3"."C3")

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 128

Explanation:
When columns from three or more different tables are specified in the predicates, a range index is not used (chunks
and segments that do not contain data that satisfies the conditions are not skipped).

(13) Example 13
Definition of range indexes

CREATE INDEX "RIDX1" ON "T1"("C2") IN "DBAREA01" EMPTY INDEXTYPE RANGE
CREATE INDEX "RIDX2" ON "T1"("C3") IN "DBAREA01" EMPTY INDEXTYPE RANGE
CREATE INDEX "RIDX3" ON "T2"("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" "X"
 WHERE "X"."C1"=ANY(SELECT "T2"."C1" FROM "T2"
 WHERE "X"."C2"=10 AND "X"."C3"="T2"."C1")

Explanation:
Range indexes RIDX1 and RIDX2 will not be used because their indexed columns (columns C2 and C3 of table
T1) are specified as external reference columns.
Range index RIDX3 will be used to skip chunks and segments that do not contain data that satisfies the conditions
because its indexed column (column C1 of table T2) is not specified as an external reference column.

(14) Example 14
Definition of range indexes

CREATE INDEX "RIDX1" ON "T2" ("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1","T2" WHERE "T1"."C1"<"T2"."C1"
SELECT * FROM "T1" INNER JOIN "T2" ON "T1"."C1"<"T2"."C1"

Explanation:
If a nested loop join that uses table T1 as an outer table and table T2 as an inner table is applied, range index RIDX1
is used to skip chunks and segments. For details about a nested loop join, see 5.5.1 About nested-loop join.

(15) Example 15
Definition of range indexes

CREATE INDEX "RIDX1" ON "T2" ("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1","T2" WHERE "T1"."C1"="T2"."C1"
SELECT * FROM "T1" INNER JOIN "T2" ON "T1"."C1"="T2"."C1"

Explanation:
If a hash join that uses table T1 as an outer table and table T2 as an inner table is applied as the table joining method,
range index RIDX1 is used to skip chunks and segments. For details about a hash join, see 5.5.2 About hash join.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 129

(16) Example 16
Definition of range indexes

CREATE INDEX "RIDX1" ON "T1" ("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" "X"
 WHERE EXISTS(SELECT * FROM "T2" WHERE "X"."C1"="T2"."C1")

Explanation:
If hash execution is applied as the processing method to a subquery that contains an external reference column,
range index RIDX1 is used to skip chunks and segments. For details about hash execution as the processing method
of a subquery that contains an external reference column, see (3) Hash execution in 5.6.3 Methods for processing
subqueries that contain an external reference column.

(17) Example 17
Definition of range indexes

CREATE INDEX "RIDX1" ON "T1" ("C1") IN "DBAREA01" EMPTY INDEXTYPE RANGE

Example SQL statement

SELECT * FROM "T1" WHERE "C1" IN (SELECT "T2"."C1" FROM "T2")
SELECT * FROM "T1" WHERE "C1"=ANY(SELECT "T2"."C1" FROM "T2")

Explanation:
If hash execution is applied as the processing method to a subquery that does not contain an external reference
column, range index RIDX1 is used to skip chunks and segments. For details about hash execution as the processing
method of a subquery that does not contain an external reference column, see (4) Hash execution in 5.6.1 Methods
for processing subqueries that do not contain an external reference column.

5.3.3 How to check the range index used during execution of an SQL
statement

By checking the access path, you can check the range index used during execution of an SQL statement. For details
about access paths, see the following:

• How to check access paths
See 6.1.2 How to check access paths.

• Information displayed in access paths
See (b) Information related to indexes in (1) Information related to table retrieval methods and indexes in 6.1.5 
Information displayed in the details view.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 130

5.4 How to evaluate the search conditions when indexes are used

There are two ways to evaluate the search conditions when indexes are used:

• Evaluation method when B-tree indexes are used

• Evaluation method when range indexes are used

This section explains how to evaluate the search conditions specified in the WHERE clause or the ON condition when
indexes are used.

5.4.1 Evaluation method when B-tree indexes are used
When B-tree indexes are used, the search conditions are evaluated according to the range search condition and the key
condition.

(1) About the range search condition
A condition for specifying a search range when B-tree indexes are used is called a range search condition. This includes
mainly the following conditions:

• =, not-equal sign, IS NULL, LIKE predicate leading match (literal specification), LIKE predicate dynamic
parameter specification, IN predicate#, BETWEEN predicate, quantified predicate (=ANY, =SOME)

#
An IN predicate (that is not a table subquery specification) specified for an inner table of a nested loop join
might not be a search condition.

The following figure shows an example of the evaluation method based on a range search condition.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 131

Figure 5-4: Example of evaluation method based on a range search condition

Explanation:
In this example, the range search condition is 50 ≤ C1 ≤ 100. HADB accesses the data pages that contain the rows
that satisfy the range search condition.

(2) About the key condition
A condition that can be evaluated only by B-tree-indexed columns is called a key condition. A key condition cannot be
used to narrow down the search range when B-tree indexes are used, as a range search condition can do. However, a
key condition can reduce the number of times a data page is referenced because the key condition can be evaluated by
using only B-tree index pages, thereby improving search performance.

The following figure shows an example of the evaluation method based on a key condition.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 132

Figure 5-5: Example of evaluation method based on a key condition

Explanation:
In this example, the conditions are as follows:

• Range search condition: 40 ≤ C1 ≤ 60

• Key condition: C2 IN(1,2)
HADB uses the range search condition to narrow down the search range and accesses only those data pages that
contain the rows that satisfy the key condition.

5.4.2 Evaluation method when range indexes are used
When range indexes are used, the search conditions are evaluated according to the following two range index conditions:

• Condition in which range indexes are used to skip chunks
This condition uses range indexes to skip chunks that do not contain data that satisfies the search condition. Because
this condition reduces the number of chunks to be accessed, the amount of data pages to be referenced is reduced
and search performance improves.
This condition is used only for range indexes that can be used to skip chunks.
To determine whether a range index can be used to skip chunks, see When checking whether the index is a range
index that can skip chunks in Searching a dictionary table in the HADB Setup and Operation Guide.

• Condition in which range indexes are used to skip segments

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 133

This condition uses range indexes to skip segments that do not contain data that satisfies the search condition.
Because this condition reduces the number of segments to be accessed, the amount of data pages to be referenced
is reduced and search performance improves.

Note
For details about skipping chunks and segments, see Range indexes in the HADB Setup and Operation
Guide.

(1) Example of skipping chunks by using range indexes
The following provides an example of skipping chunks by using range indexes.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 134

Explanation:
The following describes the procedure for retrieval processing.

1. Before accessing chunks, HADB evaluates the range index condition used to skip chunks.

• Range index condition used to skip chunks: 100≤C1≤300, C2 IN(1, 2), C3<300
2. HADB evaluates the search condition and key condition based on the B-tree indexes of the search target chunks.

• Search condition: 100≤C1≤300
• Key condition: C2 IN(1,2)

3. HADB accesses the data page and evaluates the remaining search condition.

• Search condition to be evaluated after the data page is accessed: C3<300
Note that range indexes defined in columns C1, C2, and C3 are not used to skip a segment.

(2) Example of skipping segments by using range indexes
The following provides an example of skipping segments by using range indexes.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 135

Explanation:
The following describes the procedure for retrieval processing.

1. Before accessing chunks, HADB evaluates the range index condition used to skip chunks.

• Range index condition used to skip chunks: 100≤C1≤110
2. HADB evaluates the range index condition used to skip segments in the search target chunk.

• Range index condition used to skip segments: 100≤C1≤110
3. HADB accesses the data page and evaluates the search condition.

• Search condition to be evaluated after the data page is accessed: C2 IN(1,2)

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 136

5.5 Table joining methods

There are two table joining methods:

• Nested loop join

• Hash join

This section explains these two joining methods and their characteristics.

HADB automatically determines the table joining method to use. You can find out which join method was used by
checking the access path after the SQL statement was executed. For details about access paths, see the following
subsections:

• How to check access paths
See 6.1.2 How to check access paths.

• Information that is displayed as access paths
See (27) Table joining methods in 6.1.4 Information displayed in the tree view.

Note
In the case of a joined table, you can specify the join method in a join method specification. For details
about join method specifications, see Specification format and rules for join method specifications in the
manual HADB SQL Reference.

5.5.1 About nested-loop join
HADB joins tables by repeating as many times as there are rows in the outer table a matching process that involves
using the value in the joined column in the outer table as the basis for searching the joined column in the inner table.
This joining method is called nested loop join.

If an index is defined for the column that is specified in the join condition for joining the outer and inner tables, the
index is used when evaluating the join condition. This narrows the search range of the inner table.

The following explains the table joining method using a nested loop join by way of an example in which a nested loop
join is used when the SELECT statement shown below is executed.

Example:

SELECT * FROM "T1","T2" WHERE "T1"."C2">10 AND "T1"."C1">"T2"."C1"

HADB determines the table that is to be the outer table and the table that is to be the inner table. In this example, table
T1 is the outer table and table T2 is the inner table. Columns T1.C1 and T2.C1 specified in the underlined join
condition are the joined columns.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 137

Figure 5-6: Table joining method using a nested loop join

Explanation:
HADB retrieves the value of joined column B3 from the outer table and matches it with the value of the joined
column in the inner table. Next, HADB retrieves the value of joined column A1 from the outer table and matches
it with the value of the joined column in the inner table. HADB repeats this processing as many times as there are
rows in the outer table.
Consider the example of a nested loop join with table T1 as the outer table and table T2 as the inner table. If an
index is defined for the columns specified in the join condition ("T1"."C1" and "T2"."C1"), the index might
be used when evaluating the join condition ("T1"."C1">"T2"."C1"). This can narrow the search range of the
inner table.

Note
In the case of a joined table, you can specify the outer table in a join method specification. For details about
join method specifications, see Specification format and rules for join method specifications in the manual
HADB SQL Reference.

5.5.2 About hash join
HADB joins tables by matching the hash table created based on the joined column of the outer table with the results of
hashing the joined column of the inner table. This joining method is called hash join.

Indexes defined for columns specified in the join condition used to join the outer and inner tables will not be used when
evaluating the join condition. The join condition will be evaluated using hashing. However, if a range index is defined
for a column of the inner table that is specified in a join condition, if conditions allow, the range index might be used.

(1) Joining tables using the hash join method
The following explains how tables are joined by a hash join method, by way of an example in which the hash join is
applied when the following SELECT statement is executed.

Example:

SELECT * FROM "T1","T2" WHERE "T1"."C2">10 AND "T1"."C1"="T2"."C1"

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 138

HADB determines which table is to be the outer table and which table is to be the inner table. In this example, table T1
is the outer table and table T2 is the inner table. The columns T1.C1 and T2.C1 specified in the underlined join
condition become the joined column.

Figure 5-7: Joining tables using the hash join method

Explanation:

1. HADB creates a hash table and hash filter based on the values in the joined column in the outer table (table T1).

2. Next, HADB matches the result of hashing the value in the joined column of the inner table (table T2) with the
hash table, and joins the tables. Before matching the joined column in the inner table with the hash table, HADB
performs filtering by using the hash filter. This reduces the number of times the joined column in the inner table
is matched with the hash table.

For a hash join where table T1 is the outer table and table T2 is the inner table, even if an index is defined for the
columns ("T1"."C1" and "T2"."C1") specified in the join condition, that index is not used when evaluating
the join condition ("T1"."C1"="T2"."C1").
If an index is defined for "T1"."C2", that index might be used when evaluating "T1"."C2">10.
The range index might be used when a hash join is processed if both of the following two conditions are met:

• The range index is defined for a joined column of the inner table for a hash join (column C1 of table T2 in the
preceding example).

• The conditions under which the range index can be used are met.
For details about the conditions under which range indexes are used, see 5.3.1 Conditions under which range
indexes are used during execution of an SQL statement.

If both of the preceding two conditions are met, when a hash table is created from a joined column of the outer table
during hash join processing, the maximum and minimum values of that joined column are obtained. Then, when the
inner table is searched, the range index is used to skip the inner table's chunks or segments that are not within the
obtained maximum and minimum values of the joined column.

HADB creates the hash table in the hash table area. The size of the hash table area is specified in the
adb_sql_exe_hashtbl_area_size operand in the server definition or the client definition.

A hash filter is created in the hash filter area. The size of the hash filter area is specified in the
adb_sql_exe_hashflt_area_size operand in the server definition or the client definition.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 139

(2) Example where hash join is applied
Example 1:

SELECT * FROM "T1","T2" WHERE "T1"."C1"="T2"."C1"

A hash join is applied when a single column specification is specified on each side of a join condition specified by
a = operator.

Example 2:

SELECT * FROM "T1","T2" WHERE "T1"."C1"="T2"."C1"+10

A hash join is applied when the following condition is met:

• A single column is specified on one side of a join condition specified by a = operator, and the other side specifies
a scalar operation that includes a column specification.

Example 3:

SELECT * FROM "T1" INNER JOIN "T2"
 ON "T1"."C1"=CAST("T2"."C1" AS INTEGER)

A hash join is applied when the following condition is met:

• A single column is specified on one side of a join condition specified by a = operator, and the other side specifies
a scalar function that includes a column specification.

Example 4:

SELECT * FROM "T1" LEFT JOIN "T2"
 ON "T1"."C1"="T2"."C1"||"T2"."C2"

A hash join is applied when the following condition is met:

• A single column is specified on one side of a join condition specified by a = operator, and the other side specifies
a concatenation operation that includes a column specification.

(3) Notes on applying hash joins
Try to make the data type and data length of the value expressions on the left and right of the = of the join condition the
same if possible. When the data type and data length of the value expressions on the left and right of the = of the join
condition differ, they are converted to the same data type and length before creating the hash table. Hashing takes place
after this process has finished. This conversion process incurs an overhead.

For details about the data types after conversion, see Data types that can be converted, assigned, and compared in the
manual HADB SQL Reference.

Note that if the data type after conversion is DECIMAL, precision and scaling are determined based on the following
equations:

Equations

Precision = Pmax + Smax
Scaling = Smax
Pmax = MAX (p1−s1,p2−s2)
Smax = MAX (s1,s2)

p1, s1: The precision and scaling of the value expression specified on the left side of the join condition specified by
=

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 140

p2, s2: The precision and scaling of the value expression specified on the right side of the join condition specified
by =
Note that if the data type prior to conversion is INTEGER, these equations are calculated as DECIMAL(20,0). If
the data type prior to conversion is SMALLINT, these equations are calculated as DECIMAL(10,0).

Example:
The following shows an example of determining precision and scaling when the data type after conversion is
DECIMAL.
Table definitions

CREATE TABLE "T1"("C1" INTEGER,"C2" CHAR(3),"C3" DATE) IN "DBAREA01"
CREATE TABLE "T2"("C1" DECIMAL(7,3),"C2" CHAR(3),"C3" DATE) IN "DBAREA01"

Example of SQL statement

SELECT * FROM "T1","T2" WHERE "T1"."C1"="T2"."C1"

The column specified on the left side ("T1"."C1") of the underlined join condition specified by the = operator
has a different data type and data length from the column specified on the right side ("T2"."C1"). This means
that the data type and data length undergo conversion. The column "T1"."C1" is INTEGER type data, and the
column "T2"."C1" is DECIMAL type data.
In this scenario, the data types of the columns specified on the left and right sides of the join condition specified by
the = operator are converted to DECIMAL type data. Column "T1"."C1" is treated as if it were
DECIMAL(20,0). The precision and scaling of the converted DECIMAL type data are calculated as follows:

Pmax = MAX(p1−s1,p2−s2) = MAX (20−0,7−3) = 20
Smax = MAX (s1,s2) = MAX (0,3) = 3
Precision = Pmax + Smax = 23
Scaling = Smax = 3

The data type and data length of the value expressions on the left and right of the = of the join condition are converted
to DECIMAL(23,3), the hash table is created, and hashing takes place.

(4) Action to take when the hash table area has insufficient space
▪ Flow of processing when hash table area has insufficient space

The following explains the flow of processing when the hash table area has insufficient space to create the hash
table.

1. If there is insufficient hash table area to create the hash table, the outer table data is stored in multiple work
tables. Similarly, the inner table data is also stored in multiple work tables.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 141

Note
In the preceding example, three work tables are created for the outer table, and three work tables
are created for the inner table. The number of work tables that are created differs depending on
conditions, such as the specification of the SQL statement.

2. A hash table is created with a work table for the outer table (work table B1), and then the hash table is matched
with a work table for the inner table (work table P1).
After matching between the hash table and work table P1 is complete, a hash table is created with work table
B2, and the hash table is matched with work table P2.
After matching between the hash table and work table P2 is complete, a hash table is created with work table
B3, and the hash table is matched with work table P3.

If the hash table area becomes insufficient during the processing in step 2
If the hash table area becomes insufficient during the processing in step 2, any data that cannot fit in the hash
table is stored in another work table. In this case, in addition to matching between a work table for the inner
table and a hash table, matching between a work table for the inner table and the newly created work table
(work table B4) occurs.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 142

Note
If a new work table (work table B4) is created due to insufficient hash table area during the processing
in step 2, the KFAA51130-W message is output to the server message log file.

■ Action to take when the hash table area has insufficient space
If the hash table area is insufficient, processing time for the SQL statement might take longer due to work table
creation and matching. To remedy a situation in which the hash table area has insufficient space, increase the value
specified for the adb_sql_exe_hashtbl_area_size operand in the server definition or the client definition.
This operand specifies the size of the hash table area.

(5) Conditions where a hash join is not applied
A hash join will not be applied as the join method when any of the following conditions are met:

• 0 is specified for the adb_sql_exe_hashtbl_area_size operand in the server definition or client definition.

• 0 is specified for the adb_sys_uthd_num operand in the server definition.

• 0 is specified for the adb_sql_exe_max_rthd_num operand in the server definition or client definition.

• The query is specified in an update SQL statement.

• There is no join condition specified by = between the tables to be joined.

• There is a join condition specified by = between the tables to be joined, but it meets one of the following conditions:

• The left or right of the join condition specified by = specifies a scalar operation that includes a column
specification.

• One side of the join condition specified by = specifies a scalar operation that includes a column specification,
the other side specifies a single column specification, and any of the following conditions is met:
- The scalar operation that includes a column specification specifies a subquery that includes an external reference
column.
- The scalar operation that includes a column specification specifies a column in the same table as the single
column specification specified on the other side of the join condition specified by =.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 143

• The post-conversion data type of the value expressions specified on the left and right of the join condition
specified by = is DECIMAL, and the precision is greater than 38.

• All of the following conditions are met:
- The data type of the value expression specified on either the left or right of the join condition specified by =
is VARCHAR, and the data length of the value expression exceeds 32,000 bytes.
- The data types or data lengths of the value expressions specified on the left and right of the join condition
specified by = are different.

• The tables to be joined are specified in the subquery that contains external reference columns.

• There is a join condition specified by = between the tables to be joined, but one or other of the tables is a derived
table derived by a table value constructor.

• The query specifies ROW in a selection expression.

• Nested loop join is specified as the join method in the join method specification.

Note
You can specify the outer table of a joined table by join method specification. For details about join method
specification, see Specification format and rules for join method specifications in the manual HADB SQL
Reference.

(6) Conditions where a hash filter is applied
1. A hash filter is applied during hash join when all the following conditions are satisfied:

• 0 is not specified for the adb_sql_exe_hashflt_area_size operand in the server definition or client
definition.

• Tables are joined by a comma join or INNER JOIN specified.

2. If the size of the hash filter area specified for the adb_sql_exe_hashflt_area_size operand in the server
definition or client definition is too small, a shortage might occur in the hash filter area allocated for each hash
retrieval. As a result, a hash filter is not applied to any hash retrieval for which the size of the hash filter is insufficient.
If you want to apply the hash filter to all types of hash retrieval, change the value of the
adb_sql_exe_hashflt_area_size operand so that the following condition is satisfied:

value-specified-for-adb_sql_exe_hashflt_area_size>↑A×B×number-of-processing-real-t
hreads-in-SQL-statement÷1024↑

A:
Number of hash filters to be used for the hash retrieval to which a hash filter was not applied
If there are two or more cases in which a hash filter was not applied to hash retrieval, determine the number of
hash filters for each hash retrieval, and then assign the largest value among those values. The following shows
the number of hash filters to be used for a hash retrieval process:

• For hash join: Number of = join conditions for hash join

• For subqueries to which hash execution is applied, and which do not contain an external reference: 1

• For subqueries to which hash execution is applied, and which contain external references: The number of =
conditions that contains an external reference column

B:
Sum total of all the following specified in SQL statements

• Number of hash joins to which a hash filter is applied

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 144

• Number of subqueries to which hash execution using a hash filter is applied

5.5.3 Characteristics of the joining methods
The following table describes the characteristics of the two joining methods.

Table 5-5: Characteristics of the table joining methods

Joining method Speed of the
initial data
retrieval
operation

Advantage Disadvantage

Nested loop join Fast Retrieval is faster when the
joined column in the inner table
can be narrowed down using a B-
tree index or text index.

If there are many hit rows in the outer table, processing
performance decreases.

Hash join Slow If there are few hit rows in the
outer table and many hit rows in
the inner table, high-speed
retrieval can be achieved.

If there are many hit rows in the outer table, the hash table area
might become large.
If a shortage occurs in the hash table area, processing
performance decreases because the data is first saved to a work
table.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 145

5.6 How to process subqueries

There are two types of subquery processing methods:

• Methods for processing subqueries that do not contain an external reference column

• Methods for processing subqueries that contain an external reference column

This section explains these subquery processing methods and their characteristics.

Note that you can check which processing method was used by viewing the access path after the SQL statement is
executed. For details about access paths, see the following subsections:

• How to check access paths
See 6.1.2 How to check access paths.

• Information that is displayed as access paths
See (2) Subquery processing methods in 6.1.4 Information displayed in the tree view.

For details about external reference columns, see Specification format and rules for subqueries in the manual HADB
SQL Reference.

5.6.1 Methods for processing subqueries that do not contain an external
reference column

There are four methods for processing subqueries that do not contain an external reference column:

• Work table execution

• Row value execution

• Work table row value execution

• Hash execution

These processing methods are explained below.

(1) Work table execution
Subquery processing might be performed with work table execution applied in the following cases:

• A quantified predicate is specified

• A table subquery is specified in the IN predicate

The following shows an example of work table execution.

■ SELECT statement to be executed

SELECT "T1"."C1" FROM "T1"
 WHERE ABS("T1"."C2")=ANY(SELECT "T2"."C2" FROM "T2")

This example assumes that no B-tree index or text index is defined for column C2 in table T1.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 146

Figure 5-8: Processing method for work table execution

Explanation:

1. Stores the result of the subquery in the work table.
This example searches table T2 specified in the subquery, and then stores the value of column C2 of table T2
in the work table.

2. Executes the query that is outside the subquery. Each time HADB retrieves one row of query outside the subquery,
HADB matches that row with the result of the subquery (in the work table) and evaluates the search condition.
This example retrieves one row of table T1 at a time, and then matches the absolute value of column C2 of table
T1 with the value of column C2 of table T2 stored in the work table to evaluate the search condition.

(2) Row value execution
Subquery processing might be performed with row value execution applied in the following cases:

• A scalar subquery is specified.

• The EXISTS predicate is specified.

The following shows an example of row value execution.

■ SELECT statement to be executed

SELECT "T1"."C1" FROM "T1"
 WHERE "T1"."C2"< (SELECT MAX("T2"."C2") FROM "T2")

Figure 5-9: Processing method for row value execution

Explanation:

1. Obtains the result of the subquery.
This example searches table T2 specified in the subquery, and then obtains MAX("T2"."C2").

2. Uses the result of the subquery to evaluate the condition that contains a subquery of the query outside the
subquery. For a comparison predicate, B-tree indexes or text indexes might be used to execute the query outside
the subquery.
This example retrieves table T1 using MAX("T2"."C2") obtained in 1 as the condition value. Depending on
the condition, B-tree indexes or text indexes might be used for the retrieval.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 147

(3) Work table row value execution
Subquery processing might be performed with work table row value execution applied in the following cases:

• A quantified predicate is specified

• A table subquery is specified in the IN predicate

The following shows an example of work table row value execution.

■ SELECT statement to be executed

SELECT "T1"."C1" FROM "T1"
 WHERE "T1"."C2"=ANY(SELECT "T2"."C2" FROM "T2")

This example assumes that B-tree indexes are defined for column C2 of table T1.

Figure 5-10: Processing method for work table row value execution

Explanation:

1. Stores the result of the subquery in the work table.
This example searches table T2 specified in the subquery, and then stores the value of column C2 of table T2
in the work table.

2. Fetches one row value from the work table at a time and executes the query outside the subquery to evaluate the
search condition. A B-tree index is used for this processing. A text index is used if one is defined.
This example fetches the value of column C2 of table T2 from the work table one row at a time and retrieves
table T1 by using the B-tree index defined for the column C2 of table T1.

(4) Hash execution
A method for processing subqueries by using a hash table is called hash execution. Hash execution might be applied in
the following cases:

• A quantified predicate is specified

• A table subquery is specified in the IN predicate

If hash execution is applied during subquery processing, HADB first creates a hash table on the basis of the result of
the subquery. Then, HADB executes the query outside the subquery, and then generates hash values from the value of

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 148

the column specified to the left of the quantified predicate or IN predicate. Finally, processing is performed to match
the values with the hash table.

When a hash table is created, a hash filter is also created. HADB filters hash values by using the hash filter before
matching the hash values with the hash table. This reduces the number of times hash values are matched with the hash
table.

The following shows an example of hash execution.

■ SELECT statement to be executed

SELECT "T1"."C1" FROM "T1"
 WHERE "T1"."C2"=ANY(SELECT "T2"."C2" FROM "T2")

Figure 5-11: Processing method for hash execution

Explanation:

1. Creates a hash table and hash filter on the basis of the result of the subquery (underlined portion in the
example SQL statement). This example retrieves table T2 specified in the subquery, and then creates a hash
table and hash filter from the value of column C2 of table T2.

2. Executes the query outside the subquery, and then generates a hash value from the value of the column
specified to the left of the quantified predicate (in the example SQL statement, column C2 of table T1). The
hash value is checked by using the hash filter. This example fetches one row from table T1 at a time, generates
the hash value from the value of column C2 of table T1, and then checks the hash value by using the hash
filter.

3. Performs processing to match the hash table with the hash values that have passed the hash filter.

The range index might be used when a hash execution is processed if both of the following two conditions are
met:

• There is a table specified in a query outside a subquery (table T1 in the preceding example). In the table, the
range index is defined for the column specified to the left of the quantified predicate or IN predicate (column
T1.C2 in the preceding example).

• The conditions under which the range index can be used are met.
For details about the conditions under which range indexes are used, see 5.3.1 Conditions under which range
indexes are used during execution of an SQL statement.

If both of the preceding two conditions are met, when a hash table is created from the subquery result during
processing of a hash execution, the maximum and minimum values of the subquery are obtained. The range
index is then used when the table specified in a query outside the subquery (table T1 in the preceding example)
is searched. The range index is used to skip the table's chunks or segments that are not within the obtained
maximum and minimum values of the subquery result.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 149

A hash table is created in the hash table area. The size of the hash table area is specified in the
adb_sql_exe_hashtbl_area_size operand in the server definition or the client definition. Note that when 0
is specified in the adb_sql_exe_hashtbl_area_size operand, hash execution is not applied.

A hash filter is created in the hash filter area. The size of the hash filter area is specified in the
adb_sql_exe_hashflt_area_size operand in the server definition or the client definition. If 0 is specified
for the adb_sql_exe_hashflt_area_size operand, a hash filter is not applied during hash execution.

■ Flow of processing when hash table area has insufficient space
The following explains the flow of processing when the hash table area has insufficient space to create the hash
table.
Note that the tables T1 and T2 in the following explanation correspond to tables T1 and T2 in Figure 5-11: 
Processing method for hash execution.

1. If there is insufficient hash table area to create the hash table, the data of table T2 is stored in multiple work
tables. Also, the data of table T1 is stored in multiple work tables in the same way as for the data of table T2.

Note
In the preceding example, three work tables are created for table T2, and three work tables are
created for table T1. The number of work tables that are created differs depending on conditions,
such as the specification of the SQL statement.

2. A hash table is created with a work table for table T2 (work table T2-1), and then the hash table is matched
with a work table for table T1 (work table T1-1).
After matching between the hash table and work table T1-1 is complete, a hash table is created with work table
T2-2, and the hash table is matched with work table T1-2.
After matching between the hash table and work table T1-2 is complete, a hash table is created with work table
T2-3, and the hash table is matched with work table T1-3.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 150

If the hash table area becomes insufficient during the processing in step 2
If the hash table area becomes insufficient during the processing in step 2, any data that cannot fit in the hash
table is stored in another work table. In this case, in addition to matching between a work table for table T1 and
a hash table, matching between a work table for table T1 and the newly created work table (work table T2-4)
occurs.

Note
If a new work table (work table T2-4) is created due to insufficient hash table area during the
processing in step 2, the KFAA51130-W message is output to the server message log file.

■ Action to take when the hash table area has insufficient space
If the hash table area is insufficient, processing time for the SQL statement might take longer due to work table
creation and matching. To remedy a situation in which the hash table area has insufficient space, increase the value
specified for the adb_sql_exe_hashtbl_area_size operand in the server definition or the client definition.
This operand specifies the size of the hash table area.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 151

■ Action to take when the hash filter area has insufficient space
If the size of the hash filter area specified for the adb_sql_exe_hashflt_area_size operand in the server
definition or client definition is too small, a shortage might occur in the hash filter area allocated for each hash
retrieval. As a result, a hash filter is not applied to any hash retrieval for which the size of the hash filter is insufficient.
If you want to apply the hash filter to all types of hash retrieval, increase the value of the
adb_sql_exe_hashflt_area_size operand. For details about the formula for estimating the value to be
specified, see (6) Conditions where a hash filter is applied in 5.5.2 About hash join.

5.6.2 Characteristics of the methods for processing subqueries that do
not contain an external reference column

The following table describes the characteristics of each method for processing subqueries that do not contain an external
reference column.

Table 5-6: Methods for processing subqueries that do not contain an external reference column

No. Processing method Benefits Disadvantages

1 Work table execution This method can be applied to the conditions of
all subqueries that require work tables.

Processing performance decreases when there
are many queries outside the subquery.

2 Row value execution B-tree indexes or text indexes can be used for
queries outside the subquery. When there are
many such queries, this allows data to be
retrieved at a higher speed when B-tree indexes
or text indexes are used to narrow the search
range.

Processing performance decreases when there
are many queries outside the subquery and the
predicates containing the subquery cannot be
narrowed down by using B-tree indexes or text
indexes.

3 Work table row value
execution

B-tree indexes or text indexes can be used for
queries outside the subquery. When there are
many such queries and the subquery hit count is
low, this allows data to be retrieved at a higher
speed when B-tree indexes or text indexes are
used to narrow the search range.

Processing performance decreases when the
subquery hit count is high, because B-tree
indexes or text indexes are used for as many
queries outside the subquery as there are rows
resulting from the subquery.

4 Hash execution Data can be retrieved at a higher speed if all data
required for the processing can be stored in the
hash table.

If a large amount of data must be stored in the
hash table, the size of the hash table area
becomes large. Processing performance
decreases if a shortage occurs in the hash table
area, because all data is first saved to a work
table.

5.6.3 Methods for processing subqueries that contain an external
reference column

There are three methods for processing subqueries that contain an external reference column:

• Nested loops work table execution

• Nested loops row value execution

• Hash execution

When using the nested loops row value execution method, cache area is sometimes created to store the results of the
subquery. This is to reduce the number of times the subquery is executed.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 152

These processing methods are explained below.

(1) Nested loops work table execution
Subquery processing might be performed with nested loops work table execution applied in the following cases:

• A quantified predicate is specified

• A table subquery is specified in the IN predicate

The following shows an example of nested loops work table execution.

■ SELECT statement to be executed

SELECT "T1"."C1" FROM "T1"
 WHERE "T1"."C1"=ANY(SELECT "T2"."C1" FROM "T2"
 WHERE "T2"."C2"="T1"."C2")

Figure 5-12: Processing method for nested loops work table execution

Explanation:

1. Executes the query that is outside the subquery
This example retrieves table T1.

2. Executes the subquery by using the value of an external reference column each time one row of query outside
the subquery is fetched.
This example retrieves table T2 by using the value of an external reference column ("T1"."C2") as the
condition value for each row of table T1 retrieval results.

3. Creates a work table based on the result of the executed subquery.
This example retrieves table T2 and stores the value of "T2"."C1" in the work table.

4. Uses the created work table to evaluate the condition that contains a subquery outside the subquery.
This example evaluates the condition containing the subquery by matching with the value of corresponding
"T2"."C1" in the work table for each row of table T1 retrieval results.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 153

(2) Nested loops row value execution
Subquery processing might be performed with nested loops row value execution applied in the following cases:

• A scalar subquery is specified

• The EXISTS predicate is specified

The following shows an example of nested loops row value execution.

■ SELECT statement to be executed

SELECT "T1"."C1" FROM "T1"
 WHERE "T1"."C1"=(SELECT MAX("T2"."C1") FROM "T2"
 WHERE "T2"."C2"="T1"."C2")

Figure 5-13: Processing method for nested loops row value execution

Explanation:

1. Executes the query that is outside the subquery.
This example retrieves table T1.

2. Executes the subquery by using the value of an external reference column each time one row of query outside
the subquery is fetched.
This example obtains the result of subquery MAX("T2"."C1") by using an external reference column
("T1"."C2") for each row of table T1 retrieval results.

3. Obtains the results of the executed subquery (no work table is created). HADB then uses the results of the
subquery to evaluate the condition that contains a subquery outside the subquery.
This example evaluates the condition by using the value of the corresponding MAX("T2"."C1") for each
row of table T1 retrieval results.

(3) Hash execution
A method for processing subqueries by using a hash table is called hash execution. Hash execution might be applied in
the following cases:

• The EXISTS predicate is specified

• A scalar subquery is specified

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 154

If hash execution is applied during subquery processing, HADB first executes the subquery from which a condition
containing the external reference column is excluded, and then creates a hash table from the result. Then, HADB executes
the query outside the subquery, and then generates a hash value from the value of the external reference column. Finally,
processing is performed to match the values with the hash table.

When a hash table is created, a hash filter is also created. HADB filters hash values by using the hash filter before
matching the hash values with the hash table. This reduces the number of times hash values are matched with the hash
table.

The following shows an example of hash execution.

■ SELECT statement to be executed

SELECT "T1"."C1" FROM "T1"
 WHERE "T1"."C3"<(SELECT "T2"."C3" FROM "T2"
 WHERE "T2"."C1"='A' AND "T2"."C2"="T1"."C2")

Figure 5-14: Processing method for hash execution

Explanation:

1. Executes the subquery from which a condition containing the external reference column (underlined portion
in the example SQL statement) is excluded, and then creates a hash table and hash filter based on the result.

2. Executes the query outside the subquery, and then generates a hash value from the value of the external
reference column ("T1"."C2"). The hash value is checked by using the hash filter. This example
retrieves table T1, generates a hash value from the value of the external reference column ("T1"."C2"),
and then checks the hash value by using the hash filter.

3. Performs processing to match the hash table with the hash values that have passed the hash filter.

The range index might be used when a hash execution is processed if both of the following two conditions are
met:

• There is a table specified in a query outside a subquery (table T1 in the preceding example). In the table, the
range index is defined for an external reference column (T1.C2 in the preceding example).

• The conditions under which the range index can be used are met.
For details about the conditions under which range indexes are used, see 5.3.1 Conditions under which range
indexes are used during execution of an SQL statement.

If both of the preceding two conditions are met, the maximum and minimum values of the column to be compared
with an external reference column are obtained when: a hash table is created from the result of executing a
subquery excluding the conditions that contain the external reference column during processing of a hash
execution. The range index is then used when the table specified in a query outside the subquery (table T1 in
the preceding example) is searched. The range index is used to skip the table's chunks or segments that are not

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 155

within the obtained maximum and minimum values of the column to be compared with the external reference
column.

A hash table is created in the hash table area. The size of the hash table area is specified in the
adb_sql_exe_hashtbl_area_size operand in the server definition or the client definition. Note that when 0
is specified in the adb_sql_exe_hashtbl_area_size operand, hash execution is not applied.

A hash filter is created in the hash filter area. The size of the hash filter area is specified in the
adb_sql_exe_hashflt_area_size operand in the server definition or the client definition. If 0 is specified
for the adb_sql_exe_hashflt_area_size operand, a hash filter is not applied during hash execution.

■ Flow of processing when hash table area has insufficient space
The following explains the flow of processing when the hash table area has insufficient space to create the hash
table.
Note that tables T1 and T2 in the following explanation correspond to tables T1 and T2 in Figure 5-14: Processing
method for hash execution.

1. If there is insufficient hash table area to create the hash table, the data of table T2 is stored in multiple work
tables. Also, the data of table T1 is stored in multiple work tables in the same way as for the data of table T2.

Note
In the preceding example, three work tables are created for table T2, and three work tables are
created for table T1. The number of work tables that are created differs depending on conditions,
such as the specification of the SQL statement.

2. A hash table is created with a work table for table T2 (work table T2-1), and then the hash table is matched
with a work table for table T1 (work table T1-1).
After matching between the hash table and work table T1-1 is complete, a hash table is created with work table
T2-2, and the hash table is matched with work table T1-2.
After matching between the hash table and work table T1-2 is complete, a hash table is created with work table
T2-3, and the hash table is matched with work table T1-3.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 156

If the hash table area becomes insufficient during the processing in step 2
If the hash table area becomes insufficient during the processing in step 2, any data that cannot fit in the hash
table is stored in another work table. In this case, in addition to matching between a work table for table T1 and
a hash table, matching between a work table for table T1 and the newly created work table (work table T2-4)
occurs.

Note
If a new work table (work table T2-4) is created due to insufficient hash table area during the
processing in step 2, the KFAA51130-W message is output to the server message log file.

■ Action to take when the hash table area has insufficient space
If the hash table area is insufficient, processing time for the SQL statement might take longer due to work table
creation and matching. To remedy a situation in which the hash table area has insufficient space, increase the value
specified for the adb_sql_exe_hashtbl_area_size operand in the server definition or the client definition.
This operand specifies the size of the hash table area.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 157

■ Action to take when the hash filter area has insufficient space
If the size of the hash filter area specified for the adb_sql_exe_hashflt_area_size operand in the server
definition or client definition is too small, a shortage might occur in the hash filter area allocated for each hash
retrieval. As a result, a hash filter is not applied to any hash retrieval for which the size of the hash filter is insufficient.
If you want to apply the hash filter to all types of hash retrieval, increase the value of the
adb_sql_exe_hashflt_area_size operand. For details about the formula for estimating the value to be
specified, see (6) Conditions where a hash filter is applied in 5.5.2 About hash join.

5.6.4 Characteristics of the methods for processing subqueries that
contain an external reference column

The following table describes the characteristics of each method for processing subqueries that contain an external
reference column.

Table 5-7: Methods for processing subqueries that contain an external reference column

No. Processing method Benefits Disadvantages

1 Nested loops work table
execution

B-tree indexes or text indexes can be used for
subquery search conditions that contain an
external reference column. This allows data to
be retrieved at a higher speed when B-tree
indexes or text indexes are used to narrow the
search range.

Processing performance decreases when the hit
count of the queries outside the subquery is high.

2 Nested loops row value
execution

3 Hash execution Data can be retrieved at a higher speed when all
data required for the processing can be stored in
the hash table.

If a large amount of data must be stored in the
hash table, the size of the hash table area
becomes large. Processing performance
decreases if a shortage occurs in the hash table
area, because all data is first saved to a work
table.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 158

5.7 Grouping methods

There are two types of grouping methods:

• Hash grouping

• Sort grouping

Grouping is performed when the GROUP BY clause or the DISTINCT set function is specified. This section explains
the grouping methods.

HADB automatically determines which grouping method to use. You can find out which grouping method was used by
viewing the access path after the SQL statement is executed. For details about access paths, see the following subsections:

• How to check access paths
See 6.1.2 How to check access paths.

• Information that is displayed as access paths
See (13) Grouping methods in 6.1.4 Information displayed in the tree view.

Note
You can prevent the application of global hash grouping by specifying a grouping method specification.
For details about grouping method specifications, see Specification format and rules for GROUP BY clauses
in the manual HADB SQL Reference.

5.7.1 Hash grouping
A hash grouping method groups data while creating a hash table by hashing the values of grouped columns. The following
figure shows the hash grouping methods.

Figure 5-15: Hash grouping method

The two types of hash grouping are described below.

(1) Local hash grouping
First, a hash table is created for each SQL processing real thread and grouping is performed. Next, the results grouped
by SQL processing real threads are collected, and then the entire data is grouped. This processing method is called local
hash grouping.

A hash table is created for each SQL processing real thread in the hash grouping area. The size of a hash grouping area
per hash table is specified in the adb_sql_exe_hashgrp_area_size operand in the server definition or the client
definition.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 159

(2) Global hash grouping
A hash table to be shared among multiple SQL processing real threads is created, and then grouping is performed. This
processing method is called global hash grouping.

A hash table is created in the hash table area. The size of the hash table area is specified in the
adb_sql_exe_hashtbl_area_size operand in the server definition or the client definition. Note that when 0
is specified in the adb_sql_exe_hashtbl_area_size operand, global hash grouping is not applied.

If an SQL statement containing the DISTINCT set function is executed, global hash grouping might be applied to
eliminate duplicate retrieval results.

■ Action to take when the hash table area has insufficient space
When the hash table area has insufficient space, the data stored in the hash table is spread over multiple work tables.
This results in SQL statements taking longer to process. To remedy a situation in which the hash table area has
insufficient space, increase the value specified for the adb_sql_exe_hashtbl_area_size operand in the
server definition or the client definition. This operand specifies the size of the hash table area.
When a work table is created due to insufficient hash table area, the KFAA51130-W message is output to the server
message log file.

■ Flow of processing when hash table area has insufficient space
The following explains the flow of processing when the hash table area has insufficient space to create the hash
table.

1. If there is insufficient space in the hash table area when creating the hash table, HADB creates multiple work
tables. The data stored in the hash table is spread across these work tables.

2. HADB performs grouping while creating the hash table for work table 1.

When this grouping has finished, HADB performs grouping while creating the hash table for work table 2. It
then performs the same processing for work table 3.
If the hash table area runs out of space when creating the hash table for a work table, HADB creates a new work
table. The data that did not fit in the hash table area is stored in the new work table. In this situation, additional
grouping using the newly created work table takes place.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 160

5.7.2 Sort grouping
Sort grouping is a grouping method that groups data after sorting the data.

First, a work table is created for each SQL processing real thread. Next, the data in each work table is sorted by the
values of the grouping column, and then the sorted data for all SQL processing real threads is collected to create a group.

If an SQL statement containing the DISTINCT set function is executed, sort grouping might be applied to eliminate
duplicate retrieval results.

The following figure shows the sort grouping methods.

Figure 5-16: Sort grouping method

5.7.3 Characteristics of each type of grouping
The following table describes the characteristics of each type of grouping.

Table 5-8: Characteristics of each type of grouping

No. Grouping type Benefits Disadvantages

1 Hash grouping Local hash
grouping

Grouping is performed at a higher speed
if the data required for grouping can fit in
the hash grouping area for each SQL
processing real thread, such as when there
are only a few groups.

Processing performance decreases when
there are many groups.

2 Global hash
grouping

Grouping is performed at a higher speed
if the data required for grouping can fit in
the hash table area.

Processing performance decreases when
grouping requires a large amount of data,
and a shortage of space occurs in the hash
table area, because the data is first stored
in the work table.

3 Sort grouping Grouping is possible even if no hash
grouping area or hash table area is
allocated.

If there are many retrieval results, a large
amount of data is stored in the work table.
Processing performance decreases

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 161

No. Grouping type Benefits Disadvantages

because the data stored in the work table
is sorted, and then is grouped.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 162

5.8 Methods for processing set operations

If you specify a set operation (excluding UNION ALL), the set operation is executed by using either of the following
processing methods:

• Hash execution

• Work table execution

HADB automatically determines which method to use. You can find out which processing method is used by viewing
the access path. For details about access paths, see the following sections:

• How to check access paths
See 6.1.2 How to check access paths.

• Information that is displayed as access paths
See (12) Processing method for duplicate removal in 6.1.4 Information displayed in the tree view.

Note
• You can prevent the application of hash execution by specifying a set operation method specification.

For details about set operation method specifications, see Specification format and rules for query
expressions in the manual HADB SQL Reference.

• If you specify UNION ALL, data of the query expression body specified in the operands of the set
operation will be returned as is.

5.8.1 Hash execution
If hash execution is used as the method for processing the set operation, HADB performs deduplication while creating
a hash table by hashing retrieval results.

The following shows an example of hash execution.

■ SELECT statement to be executed

SELECT "T1"."C1" FROM "T1"
UNION
SELECT "T2"."C1" FROM "T2"

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 163

Figure 5-17: Processing method for hash execution

Explanation:

1. Retrieves table T1, and then extracts the value of column C1 of table T1.

2. Retrieves table T2, and then extracts the value of column C1 of table T2.

3. Performs deduplication while creating a hash table by hashing the results of steps 1 and 2.

A hash table is created in the hash table area. The size of the hash table area is specified in the
adb_sql_exe_hashtbl_area_size operand in the server definition or the client definition. Note that when 0
is specified in the adb_sql_exe_hashtbl_area_size operand, hash execution is not applied.

■ Action to take when the hash table area has insufficient space
When the hash table area has insufficient space, the data stored in the hash table is spread over multiple work tables.
This results in SQL statements taking longer to process. To remedy a situation in which the hash table area has
insufficient space, increase the value specified for the adb_sql_exe_hashtbl_area_size operand in the
server definition or the client definition. This operand specifies the size of the hash table area.
When a work table is created as a result of insufficient hash table area, the message KFAA51130-W is output to the
server message log file.

■ Flow of processing when hash table area has insufficient space
The following explains the flow of processing when the hash table area has insufficient space to create the hash
table.

1. If there is insufficient space in the hash table area to create the hash table, HADB creates multiple work tables.
The data to be stored in the hash table is spread across these work tables.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 164

2. A hash table is created for each work table.

If the hash table area runs out of space when creating hash tables for work tables, HADB creates a new work
table. HADB stores in this work table the data that did not fit in the hash table area, and then performs
deduplication.

5.8.2 Work table execution
If work table execution is used as the method for processing the set operation, HADB creates a work table for each
query specification, and then sorts data. If the set operation does not contain an ALL specification, HADB performs
deduplication of data in the work table. Then, HADB evaluates the set operation by matching data in each work table.
If the set operation does not contain an ALL specification, HADB performs deduplication of the evaluation result of the
set operation.

The following shows an example of work table execution.

■ SELECT statement to be executed

SELECT "T1"."C1" FROM "T1"
UNION
SELECT "T2"."C1" FROM "T2"

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 165

Figure 5-18: Processing method for work table execution

Explanation:

1. Creates work table 1 for storing the value resulting from query specification SELECT "T1"."C1" FROM
"T1" (retrieves table T1, and then stores the value of column C1 of table T1 in work table 1).

2. Performs data deduplication and sort processing for work table 1 created in step 1.

3. Creates work table 2 for storing the value resulting from query specification SELECT "T2"."C1" FROM
"T2" (retrieves table T2, and then stores the value of column C1 of table T2 in work table 2).

4. Performs data deduplication and sort processing for work table 2 created in step 3.

5. Fetches data from one row at a time, and then matches the values and performs deduplication.

5.8.3 Characteristics of the methods for processing set operations
The following table shows the characteristics of each method for processing set operations.

Table 5-9: Characteristics of the methods for processing set operations

Methods for processing
set operations

Benefits Disadvantages

Hash execution Results can be obtained at a higher speed when the
data required for the set operation can be stored in
the hash table area.

If a shortage occurs in the hash table area due to a
large amount of data required for the set operation,
processing performance decreases because the data
is temporarily saved in a work table.

Work table execution This method is applicable to all set operations. If there are a large number of retrieval results, the
amount of data stored in the work table becomes
large. In this case, processing performance decreases
because deduplication is performed after the data
stored in the work table is sorted.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 166

5.9 Method for processing SELECT DISTINCT

If you specify DISTINCT in the SELECT statement, deduplication is performed by using either of the following
processing methods:

• Hash execution

• Work table execution

HADB automatically determines which method to use. You can find out which processing method is used by viewing
the access path. For details about access paths, see the following sections:

• How to check access paths
See 6.1.2 How to check access paths.

• Information that is displayed as access paths
See (12) Processing method for duplicate removal in 6.1.4 Information displayed in the tree view.

Note
• You can prevent the application of hash execution by specifying the SELECT deduplication method

specification. For details about the SELECT deduplication method specification, see Specification
format and rules for query specifications in the manual HADB SQL Reference.

• If HADB determines that deduplication processing for SELECT DISTINCT is unnecessary,
deduplication processing is not performed.

• The method for processing SELECT DISTINCT is determined based on the query expressions
rewritten by expanding internal derived tables and the search conditions rewritten by equivalent
exchange of search conditions. For details about expanding internal derived tables, see 5.13 Expanding
internal derived tables. For details about equivalent exchange for search conditions, see 5.11 Equivalent
exchange of search conditions.

• If only literals are specified in a scalar operation, that scalar operation might be treated as a literal. For
details about scalar operations equivalent to literals, see the table Conditions under which value
expressions are equivalent to literals under Rules in Specification format and rules for value expressions
in the manual HADB SQL Reference.

5.9.1 Hash execution
If hash execution is used as the method for processing SELECT DISTINCT, HADB performs deduplication while
creating a hash table by hashing retrieval results.

The following shows an example of hash execution.

■ SELECT statement to be executed

SELECT DISTINCT "C1" FROM "T1"

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 167

Figure 5-19: Processing method for hash execution

Explanation:

1. Retrieves table T1, and then extracts the value of column C1 of table T1.

2. Performs deduplication while creating a hash table by hashing the result of step 1.

A hash table is created in the hash table area. The size of the hash table area is specified in the
adb_sql_exe_hashtbl_area_size operand in the server definition or the client definition. Note that when 0
is specified in the adb_sql_exe_hashtbl_area_size operand, hash execution is not applied.

■ Action to take when the hash table area has insufficient space
When the hash table area has insufficient space, the data stored in the hash table is spread over multiple work tables.
This results in SQL statements taking longer to process. To remedy a situation in which the hash table area has
insufficient space, increase the value specified for the adb_sql_exe_hashtbl_area_size operand in the
server definition or the client definition. This operand specifies the size of the hash table area.
When a work table is created as a result of insufficient hash table area, the message KFAA51130-W is output to the
server message log file.

■ Flow of processing when hash table area has insufficient space
The following explains the flow of processing when the hash table area has insufficient space to create the hash
table.

1. If there is insufficient space in the hash table area to create the hash table, HADB creates multiple work tables.
The data to be stored in the hash table is spread across these work tables.

2. A hash table is created for each work table.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 168

If the hash table area runs out of space when creating hash tables for work tables, HADB creates a new work
table. HADB stores in this work table the data that did not fit in the hash table area, and then performs
deduplication.

5.9.2 Work table execution
If work table execution is used as the method for processing SELECT DISTINCT, HADB creates a work table
containing the retrieval result. Then, HADB sorts data in the work table and performs deduplication.

The following shows an example of work table execution.

■ SELECT statement to be executed

SELECT DISTINCT "C1" FROM "T1"

Figure 5-20: Processing method for work table execution

Explanation:

1. Retrieves table T1, and then stores the value of column C1 of table T1 in the work table.

2. Performs data sort processing and deduplication for the work table created in step 1.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 169

5.9.3 Characteristics of the methods for processing SELECT DISTINCT
The following table shows the characteristics of each method for processing SELECT DISTINCT.

Table 5-10: Characteristics of the methods for processing SELECT DISTINCT

Method for processing
SELECT DISTINCT

Benefits Disadvantages

Hash execution Results can be obtained at a higher speed when the
data required for executing SELECT DISTINCT
can be stored in the hash table area.

If a shortage occurs in the hash table area due to a
large amount of data required for executing SELECT
DISTINCT, processing performance decreases
because the data is temporarily saved in a work table.

Work table execution This method is applicable to any SELECT
DISTINCT.

If there are a large number of retrieval results, the
amount of data stored in the work table becomes
large. In this case, processing performance decreases
because deduplication is performed after the data
stored in the work table is sorted.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 170

5.10 Considerations when executing an SQL statement that creates work
tables

If data sort processing or deduplication is performed during execution of an SQL statement, a work table might be
created in the work table DB area. Data being sorted or data after deduplication is stored temporarily in a work table.
Therefore, if you sort a large amount of data or perform deduplication for such data, sufficient performance improvement
might not be obtained due to the workload of creating work tables.

Important
To avoid performance degradation, you must estimate accurately the size of the work table DB area that is
needed. If more SQL statements for which work tables are created are executed than initially expected, the
application program developer must request that the HADB system designer or system administrator re-
estimate the size of the work table DB area.

5.10.1 Types of work tables
The two types of work tables are global work tables and local work tables.

(1) Global work table
Global work tables are used to share data in work tables among multiple real threads when the same SQL statement is
processed by multiple real threads. These work tables are used for joining tables and processing subqueries.

The number of pages in the global buffer that is used by global work tables is specified in the
adb_dbbuff_wrktbl_glb_blk_num server definition operand. For details about the
adb_dbbuff_wrktbl_glb_blk_num operand, see the topic Operands related to performance (set format) in
Detailed descriptions of the server definition operands in Designing the Server Definition in the HADB Setup and
Operation Guide.

(2) Local work table
A local work table is created for each SQL processing real thread. These work tables are used when the ORDER BY
clause is specified and for grouping when local hash grouping is selected as the grouping method.

The number of local work table buffer pages that are used by local work tables is specified in the
adb_dbbuff_wrktbl_clt_blk_num server definition operand, the adb_dbbuff_wrktbl_clt_blk_num
client definition operand, or the adb_export_wrktbl_blk_num export option (when the adbexport command
is executed). For details about these operands and option, see the following sections:

• adb_dbbuff_wrktbl_clt_blk_num operand in the server definition: Topic Operands related to performance
(set format) in Detailed descriptions of the server definition operands in Designing the Server Definition in the
HADB Setup and Operation Guide

• adb_dbbuff_wrktbl_clt_blk_num operand in the client definition: Explanation of the
adb_dbbuff_wrktbl_clt_blk_num operand in 2.2.3 Operands related to performance

• adb_export_wrktbl_blk_num export option: Specification format for the adbexport command in adbexport
(Export Data) in the manual HADB Command Reference

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 171

5.10.2 Work tables created when SQL statements are executed
Work tables are created when you execute the SQL statements listed in the table below.

Important
If the row length of the work table exceeds the maximum row length, the SQL statement will result in an
error. For details about the maximum row length of a work table, see Maximum and minimum values related
to database in the HADB Setup and Operation Guide. For details about how to determine the row length
of a work table, see the description of variable ROWSZ in Determining the number of pages for base rows
that are needed for storing work tables in the HADB Setup and Operation Guide.

Table 5-11: SQL statements for which work tables are created

No. SQL statement for which
work table is created

Purpose of work table Columns of work table Work table type

1 ORDER BY
clause is
specified.

Results of a set
operation are
used as a sort
key.

Sorting the retrieval results • Store the values of columns
resulting from query
expressions

Local work table

Results of a
query
specification
are used as a
sort key.

• Store the results of value
expressions specified for sort
keys in the ORDER BY clause

• Store the row IDs of the rows
in the retrieval results for the
base table (when the base
table is specified in the FROM
clause)#1

• Store the values of retrieval
target columns (when the
base table with key scan used
as the table retrieval method
is specified in the FROM
clause)

• Store the values of retrieval
target columns in the column
store table#11 (when a column
store table is specified in the
FROM clause)

• Store the column values of
results derived from query
expression bodies in derived
tables (when a derived table
is specified in the FROM
clause)#6

• Store the column values of
results derived from query
expressions in view
definitions (when a viewed
table is specified in the FROM
clause)#6

• Store the column values of
results derived from query
expression bodies in WITH
clauses (when a query name
is specified in the FROM
clause)#6

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 172

No. SQL statement for which
work table is created

Purpose of work table Columns of work table Work table type

• Store the column values of
results derived from system-
defined functions specified in
table function derived tables
(when a table function
derived table is specified in
the FROM clause)

• Store the values resulting
from the scalar function
RANDOMROW (when the
scalar function RANDOMROW
is specified in the selection
expression)

2 GROUP BY
clause is
specified.

The grouping
method is
global hash
grouping.#2

Retaining the grouping results.
This work table is used when a
shortage occurs in the hash table
area.
The size of the hash table area is
specified in the
adb_sql_exe_hashtbl_a
rea_size operand in the server
definition or the client definition.

• Store the values resulting
from the value expressions
specified for grouped
columns in the GROUP BY
clause

• Store the results of set
functions

• Store information the HADB
server uses for hashing#9, #10

• Local work table#7

• Global work table#8

The grouping
method is
local hash
grouping#2

Sorting for grouping. This work
table is used when there is
insufficient hash grouping area.
The size of the hash grouping
area is specified in the
adb_sql_exe_hashgrp_a
rea_size operand in the server
or client definition.

• Store the values resulting
from the value expressions
specified for grouped
columns in the GROUP BY
clause

• Store the columns specified
in the arguments of set
functions

• Store the results of set
functions

Local work table

The grouping
method is sort
grouping#2.

Sorting for grouping.

3 SELECT
DISTINCT is
specified.

The method
for processing
SELECT
DISTINCT is
hash
execution.#12

Retaining retrieval results. This
work table is used when a
shortage occurs in the hash table
area. The size of the hash table
area is specified in the
adb_sql_exe_hashtbl_a
rea_size operand in the server
definition or the client definition.

• Store the values of columns
resulting from selection
expressions

• Store information HADB
uses for hashing#9, #10

• Local work table#7

• Global work table#8

The method
for processing
SELECT
DISTINCT is
work table
execution.#12

Sorting retrieval results or
eliminating duplicate retrieval
results

• Store the values of columns
resulting from selection
expressions

Local work table

4 DISTINCT
set function or
inverse
distribution
function is
specified.

The grouping
method is
global hash
grouping.#2

Retaining the input values of set
functions whose duplicates have
been eliminated. This work table
is used when a shortage occurs in
the hash table area. The size of the
hash table area is specified in the
adb_sql_exe_hashtbl_a
rea_size operand in the server
definition or the client definition.

• Store the values resulting
from the value expressions
specified for grouped
columns in the GROUP BY
clause

• Store the values of columns
specified in the arguments of
the ALL set function

• Local work table#7

• Global work table#8

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 173

No. SQL statement for which
work table is created

Purpose of work table Columns of work table Work table type

The grouping
method is not
global hash
grouping.#2

• Store the results of value
expressions specified in the
arguments of the DISTINCT
set function

• Store the results of value
expressions specified for a
sort key in the WITHIN group
specification in an inverse
distribution function

• Store the results of value
expressions specified in the
arguments of the MEDIAN
inverse distribution function

• Store information the HADB
server uses for hashing#9, #10

Eliminating the duplicates of
input values for set functions or
sorting the input values for set
functions

5 Window functions are specified. Sorting for obtaining the results
of window functions

• Store the values of columns
of a table specified in the
FROM clause

• Store the values resulting
from the window function
specified in the selection
expression

Local work table

6 Multiple table
references are
specified in
the FROM
clause.

The table
joining
method is hash
join.#3

Retaining the results of table
references subject to table join
processing. This work table is
used when a shortage occurs in
the hash table area. The size of the
hash table area is specified in the
adb_sql_exe_hashtbl_a
rea_size operand in the server
definition or the client definition.

• Store the values of columns
of a table specified in the
FROM clause

• Store information the HADB
server uses for hashing#9, #10

• Local work table#7

• Global work table#8

The table
joining
method is
nested loop
join.#3

Retaining the results of table
references subject to table join
processing

Global work table

7 Derived tables are specified. Retaining the results of query
expression bodies corresponding
to derived tables

• Store the values of columns
resulting from a query
expression body in derived
tables#6

Global work table

8 Viewed tables are specified. Retaining the results of query
expressions corresponding to
viewed tables

• Store the values of result
columns derived from a query
expression in view
definitions#6

Global work table

9 WITH clause is specified. Retaining the results of query
expression bodies corresponding
to query names

• Store the values of columns
resulting from a query
expression body in the WITH
clause#6

Global work table

10 A table function derived table is
specified.

Retaining the results of system-
defined functions that derive
table function derived tables.

• Store the values resulting
from the system-defined
function

Global work table

11 Joined tables are specified. Retaining the results of joined
tables.

• Store the values of columns in
joined tables

Global work table

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 174

No. SQL statement for which
work table is created

Purpose of work table Columns of work table Work table type

For details about the work tables
used to obtain the results of
joined tables, see Multiple table
references are specified in the
FROM clause in row 6.

12 Subqueries are
specified.

The subquery
processing
method is hash
execution.#4

Retaining the results of
subqueries. This work table is
used when a shortage occurs in
the hash table area. The size of the
hash table area is specified in the
adb_sql_exe_hashtbl_a
rea_size operand in the server
definition or the client definition.

• Store the values of columns
resulting from a selection
expression in subqueries

• Store the values of external
reference columns contained
in subqueries#5

• Store the results of set
functions contained in
subqueries

• Store information the HADB
server uses for hashing#9, #10

• Local work table#7

• Global work table#8

The subquery
processing
method is not
hash
execution.#4

Retaining the results of
subqueries

• Store the values of columns
resulting from a selection
expression in subqueries

Global work table

13 A set
operation is
specified.

The method
for processing
the set
operation is
hash
execution.#13

Retaining the results of
deduplication. This work table is
used when a shortage occurs in
the hash table area. The size of the
hash table area is specified in the
adb_sql_exe_hashtbl_a
rea_size operand in the server
definition or the client definition.

• Store the values of columns
resulting from the selection
expression specified in a
query specification

• Store information HADB
uses for hashing#9, #10

• Local work table#7

• Global work table#8

The method
for processing
the set
operation is
work table
execution.#13

Sorting retrieval results or
eliminating duplicate retrieval
results

• Store the values of columns
resulting from the selection
expression specified in a
query specification

Local work table

14 A recursive query is specified. Retaining the results of anchor
members and recursive members

• Store the values of columns
resulting from a recursive
query

Global work table

#1
The row ID is a value that indicates a row's storage location. The data type of a row ID is CHAR(16).

#2
For details about grouping methods, see 5.7 Grouping methods.

#3
For details about table joining methods, see 5.5 Table joining methods.

#4
For details about how to process subqueries, see 5.6 How to process subqueries.

#5
For details about external reference columns, see Specification format and rules for subqueries in the manual HADB
SQL Reference.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 175

#6
Expansion of the internal derived table might result in this table being handled as the base table. For details about
expansion of internal derived tables, see Internal derived tables in the manual HADB SQL Reference.

#7
A work table used to store data that the hash table area cannot accommodate due to insufficient space.

#8
A work table used to store data that cannot be processed because there is still insufficient hash table area after data
has been stored in work tables.

#9
The data type of columns that store the information HADB uses for hashing is INTEGER.

#10
A column created in a work table used to store data that cannot be processed because there is still insufficient hash
table area after data has been stored in work tables.

#11
Columns with a definition length of 128 or more bytes are not subject to retrieval. A column with a definition length
of 128 or more bytes refers to any of the following columns:

• A column of CHARACTER type with a definition length of 128 or more bytes

• A column of VARCHAR type with a definition length of 128 or more bytes

• A column of BINARY type with a definition length of 128 or more bytes

• A column of VARBINARY type with a definition length of 128 or more bytes

#12
For details about the method for processing SELECT DISTINCT, see 5.9 Method for processing SELECT
DISTINCT.

#13
For details about the method for processing the set operation, see 5.8 Methods for processing set operations.

You can find out whether work tables were created by checking the access path after the SQL statement has executed.
For details about access paths, see the following sections:

• How to check access paths
See 6.1.2 How to check access paths.

• Information displayed in access paths
See (7) Work table creation information in 6.1.4 Information displayed in the tree view.

5.10.3 Number of work tables that are created
This subsection explains by way of examples the number of work tables that are created when an SQL statement is
executed. Note that the number of work tables explained here is based on the SQL statements. The number of work
tables that are actually created during execution of SQL statements is affected by other factors, including the maximum
number of SQL processing real threads in the server definition or client definition (adb_sql_exe_max_rthd_num
operand) and the number of data items to be manipulated.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 176

(1) Example 1 (when the ORDER BY clause is specified)
Example SQL statement

SELECT "C1","C2","C3" FROM "T1" ORDER BY "C1" ASC

Explanation:
One work table is created for sort processing by the ORDER BY clause.

(2) Example 2 (when the GROUP BY clause is specified)
Example SQL statement

SELECT "C1","C2" FROM "T1" GROUP BY "C1","C2"

Explanation:
The number of work tables that are created depends on whether global hash grouping is selected as the grouping
method.

• When global hash grouping is applied
Two work tables are created for processing by the GROUP BY clause.

• When global hash grouping is not applied
One work table is created for processing by the GROUP BY clause.

For details about grouping methods, see 5.7 Grouping methods.

(3) Example 3 (when SELECT DISTINCT is specified)
Example SQL statement

SELECT DISTINCT "C1","C2","C3" FROM "T1"

Explanation:
The number of work tables that are created depends on the applied method for processing SELECT DISTINCT.

• When hash execution is applied
Two work tables are created for processing SELECT DISTINCT.

• When work table execution is applied
One work table is created for processing SELECT DISTINCT.

For details about the method for processing SELECT DISTINCT, see 5.9 Method for processing SELECT
DISTINCT.

(4) Example 4 (when the DISTINCT set function is specified)
Example SQL statement

SELECT COUNT(DISTINCT "C1") FROM "T1"

Explanation:
The number of work tables that are created depends on whether global hash grouping is selected as the grouping
method.

• When global hash grouping is applied
Two work tables are created for processing by the set function.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 177

• When global hash grouping is not applied
One work table is created for processing by the set function.

For details about grouping methods, see 5.7 Grouping methods.

(5) Example 5 (when the RANK window function is specified)
Example SQL statement

SELECT "C1",RANK() OVER (PARTITION BY "C2" ORDER BY "C3" ASC) FROM "T1"

Explanation:
One work table is created for the RANK window function processing.

(6) Example 6 (when the GROUP BY and ORDER BY clauses are both
specified)

Example SQL statement

SELECT "C1","C2" FROM "T1" GROUP BY "C1","C2" ORDER BY "C1" ASC

Explanation:
The number of work tables that are created depends on whether global hash grouping is selected as the grouping
method.

• When global hash grouping is applied
A total of three work tables are created. Two are created for processing by the GROUP BY clause, and one is
created for processing by the ORDER BY clause.

• When global hash grouping is not applied
One work table is created for processing by the GROUP BY clause. Only one work table is created in this example
because the GROUP BY and ORDER BY clauses only require sorting to take place once.

For details about grouping methods, see 5.7 Grouping methods.

(7) Example 7 (when the GROUP BY and ORDER BY clauses are both
specified)

Example SQL statement

SELECT "C1","C2",COUNT(*) "DC1" FROM "T1"
 GROUP BY "C1","C2" ORDER BY "DC1" ASC

Explanation:
The number of work tables that are created depends on whether global hash grouping is selected as the grouping
method.

• When global hash grouping is applied
A total of three work tables are created. Two are created for processing by the GROUP BY clause, and one is
created for processing by the ORDER BY clause.

• When global hash grouping is not applied
A total of two work tables are created. One is created for processing by the GROUP BY clause, and one is created
for processing by the ORDER BY clause.

For details about grouping methods, see 5.7 Grouping methods.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 178

(8) Example 8 (when SELECT DISTINCT and the ORDER BY clause are
specified)

Example SQL statement

SELECT DISTINCT "C1","C2","C3" FROM "T1" ORDER BY "C1" ASC

Explanation:
One work table is created for sort processing by SELECT DISTINCT.
In this example, only one work table is created because the number of sort processes required for SELECT
DISTINCT and the ORDER BY clause is only one.

(9) Example 9 (when the GROUP BY clause and a DISTINCT set function
are specified)

Example SQL statement

SELECT "C1",COUNT(DISTINCT "C2") FROM "T1" GROUP BY "C1"

Explanation:
The number of work tables that are created depends on whether global hash grouping is selected as the grouping
method.

• When global hash grouping is applied
A total of three work tables are created. Two are created for processing by the GROUP BY clause, and one is
created for processing by the set function.

• When global hash grouping is not applied
One work table is created for processing by the GROUP BY clause. Only one work table is created in this example
because the GROUP BY clause and set function only require sorting to take place once.

For details about grouping methods, see 5.7 Grouping methods.

(10) Example 10 (when tables are joined)
Example SQL statement

SELECT "T1"."C1","T1"."C2","T2"."C1","T2"."C2" FROM "T1","T2"
 WHERE "T1"."C1"="T2"."C1"

Explanation:
Three work tables for join processing are created.

(11) Example 11 (multiple table references are specified in the FROM
clause)

Example SQL statement

SELECT "DT1"."C1","DT2"."C1"
 FROM (SELECT COUNT("T1"."C1") FROM "T1") AS "DT1"("C1"),
 (SELECT COUNT("T2"."C1") FROM "T2") AS "DT2"("C1")
 WHERE "DT1"."C1">"DT2"."C1"

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 179

Explanation:
One work table that is used for table join processing is created.

(12) Example 12 (subquery is specified)
Example SQL statement

SELECT "T1"."C1","T1"."C2","T1"."C3" FROM "T1"
 WHERE "T1"."C1"=(SELECT "T2"."C1" FROM "T2"
 WHERE "T2"."C2"="T1"."C2")

Explanation:
The number of work tables that are created depends on whether hash execution is specified as the subquery processing
method.

• When hash execution is applied
Three work tables are created to process the subquery containing the external reference columns.

• When hash execution is not applied
No work table is created to process the subquery containing the external reference columns.

For details about how to process subqueries, see 5.6 How to process subqueries.

(13) Example 13 (IN subqueries are specified)
Example SQL statement

SELECTf"C1","C2","C3" FROM "T1" WHERE "C1" IN (SELECT "C1" FROM "T2")

Explanation:
The number of work tables that are created depends on whether hash execution is specified as the subquery processing
method.

• When hash execution is applied
Three work tables are created to process the subquery specified in the IN predicate.

• When hash execution is not applied
One work table is created to process the subquery specified in the IN predicate.

For details about how to process subqueries, see 5.6 How to process subqueries.

(14) Example 14 (quantified predicates are specified)
Example SQL statement

SELECT "C1","C2","C3" FROM "T1" WHERE "C1"=ANY(SELECT "C1" FROM "T2")

Explanation:
The number of work tables that are created depends on whether hash execution is specified as the subquery processing
method.

• When hash execution is applied
Three work tables are created to process the subquery specified in the quantified predicate.

• When hash execution is not applied
One work table is created to process the subquery specified in the quantified predicate.

For details about how to process subqueries, see 5.6 How to process subqueries.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 180

(15) Example 15 (EXISTS predicate is specified)
Example SQL statement

SELECT "T1"."C1","T1"."C2","T1"."C3" FROM "T1"
 WHERE EXISTS(SELECT * FROM "T2" WHERE "T2"."C2"="T1"."C2")

Explanation:
The number of work tables that are created depends on whether hash execution is specified as the subquery processing
method.

• When hash execution is applied
Three work tables are created to process the subquery specified in the EXISTS predicate.

• When hash execution is not applied
No work table is created to process the subquery specified in the EXISTS predicate.

For details about how to process subqueries, see 5.6 How to process subqueries.

(16) Example 16 (table function derived table is specified)
Example SQL statement

SELECT "C1","C2","C3"
 FROM TABLE(ADB_CSVREAD(MULTISET (SELECT "FNAME" FROM "TFILE"),
 'COMPRESSION_FORMAT=GZIP;
 FIELD_NUM=1,2,3;'))
 AS "T1"("C1" INTEGER,"C2" CHAR(10),"C3" DATE)

Explanation:
One work table is created to store the results of the table subquery specified in the multiset value expression. For
details about multiset value expressions, see Specification format and rules for multiset value expressions in the
manual HADB SQL Reference.

(17) Example 17 (viewed tables are specified)
Example SQL statement

CREATE VIEW "VT1"("C1","C2")
 AS SELECT "T1"."C1","T2"."C1" FROM "T1","T2"
 WHERE "T1"."C2"<="T2"."C2"
SELECT * FROM "VT1" AS "XT1","VT1" AS "XT2"
 WHERE "XT1"."C1">"XT2"."C1"

Explanation:
One work table that is used in the viewed table processing is created.

(18) Example 18 (WITH clauses are specified)
Example SQL statement

WITH "QT1"("C1","C2") AS (SELECT "T1"."C1","T2"."C1" FROM "T1","T2"
 WHERE "T1"."C2"<="T2"."C2")
SELECT * FROM "QT1" WHERE "C1"=(SELECT MAX("C1") FROM "QT1")

Explanation:
One work table that is used in the WITH clause processing is created.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 181

(19) Example 19 (a set operation is specified)
Example SQL statement

SELECT "C1","C2" FROM "T1" UNION SELECT "C1","C2" FROM "T2"

Explanation:
Two work tables are created to process the set operation.

(20) Example 20 (a recursive query is specified)
Example SQL statement

WITH "QT1"("C1","C2")
 AS (SELECT "C1","C2" FROM "T1" WHERE "C2" BETWEEN 'AA' AND 'EE'
 UNION ALL
 SELECT "C1"+1,"C2" FROM "QT1" WHERE "C1"<=10)
SELECT * FROM "QT1"

Explanation:
In a recursive query, to retain the results of anchor and recursive members, two work tables that will be used to
process the recursive query are created. For details about recursive queries, see Query expression in the manual
HADB SQL Reference.

(21) Example 21 (a DISTINCT set function and GROUP BY clause are
specified)

Example SQL statement

SELECT "C1",COUNT(DISTINCT "C2"),SUM("C3") FROM "T1"
 GROUP BY "C1"

Explanation:
The number of work tables that are created depends on whether global hash grouping is selected as the grouping
method.

• When global hash grouping is applied
A total of four work tables are created. Two are created for processing by the GROUP BY clause, and two are
created for processing by the set function.

• When global hash grouping is not applied
One work table is created for processing by the GROUP BY clause. In the case of this example, no work tables
are created for processing by the set function because the sort processing by the GROUP BY clause and the sort
processing by the set function are executed concurrently.

For details about grouping methods, see 5.7 Grouping methods.

(22) Example 22 (multiple DISTINCT set functions are specified)
Example SQL statement

SELECT COUNT(DISTINCT "C1"),COUNT(DISTINCT "C2") FROM "T1"

Explanation:
The number of work tables that are created depends on whether global hash grouping is selected as the grouping
method.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 182

• When global hash grouping is applied
Three work tables are created for processing by the set functions.

• When global hash grouping is not applied
Two work tables are created for processing by the set functions.

For details about grouping methods, see 5.7 Grouping methods.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 183

5.11 Equivalent exchange of search conditions

HADB might convert a specified search condition so that the search condition can be evaluated more efficiently. This
is called equivalent exchange of search conditions. When equivalent exchange is performed on search conditions, the
indexes to be used during retrieval are determined based on the search conditions obtained after equivalent exchange
has been applied. For details about the method for determining the index to be used during retrieval, see 5.2 B-tree
indexes and text indexes used during execution of SQL statements and 5.3 Range indexes used during execution of
SQL statements.

HADB performs equivalent exchange in the following order for the conditions specified in search conditions:

1. Equivalent exchange for OR conditions (removing from the OR conditions)#

This is an equivalent exchange that removes a condition from the inside of an OR condition to the outside of the OR
condition.

2. Equivalent exchange for OR conditions (converting to IN conditions)#

This is an equivalent exchange that adds an IN condition created from an = condition in an OR condition to the
outside of the OR condition.

3. Equivalent exchange for OR conditions (equivalent exchange to derived tables for which the UNION ALL set
operation is specified)#

This is an equivalent exchange from a search condition inside an OR condition to a derived table for which the
UNION ALL set operation is specified.

4. Equivalent exchange for scalar operations
This is an equivalent exchange that transposes scalar operations.

5. Equivalent exchange for an IN predicate
This is an equivalent exchange from an IN predicate to the = conditions or <> conditions.

6. Equivalent exchange for a HAVING clause (converting to the WHERE clauses)
This is an equivalent exchange from the search condition for a HAVING clause to the search condition for a WHERE
clause.

7. Equivalent exchange for search conditions in SQL statements that specify derived queries (transposition to the
WHERE clause of a derived query)
This is an equivalent exchange that moves the search condition specified in the WHERE clause of an SQL statement
in which a derived query is specified to the WHERE clause of the derived query.

#
The target of this equivalent exchange is the search condition in the WHERE clause.

The following subsections explain each of these types of equivalent exchange.

5.11.1 Equivalent exchange for OR conditions (removing from the OR
conditions)

If the same condition is specified in an OR condition, equivalent exchange is performed in such a manner that the same
condition is removed from the OR condition. When the same condition is removed from the OR condition, the search
condition sometimes becomes more effective in narrowing down the retrieval range. This can also reduce the workload
for condition evaluation because the number of identical conditions in an OR condition is reduced to one.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 184

The OR conditions specified in the search condition in the WHERE clause, the ON search condition for joined tables, and
the search condition in the HAVING clause are subject to this equivalent exchange.

When equivalent exchange has been performed on search conditions, the indexes to be used during retrieval are
determined based on the search conditions obtained after equivalent exchange.

The following shows examples of equivalent exchange. In the examples, C1, C2, and C3 are column names.

(1) Examples of search conditions on which equivalent exchange is
performed

(a) Example 1

Explanation:
Because condition "C1" = 100 is specified on both sides of the OR condition, "C1" = 100 is removed from the
OR condition.

(b) Example 2

Explanation:
Because condition "C1" < CURRENT_DATE is specified on both sides of the OR condition, "C1" <
CURRENT_DATE is removed from the OR condition.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 185

(c) Example 3

Explanation:
Because condition "T1"."C1" = "T2"."C1" is specified on both sides of the OR condition, "T1"."C1" =
"T2"."C1" is removed from the OR condition.

(d) Example 4

Explanation:
Because condition "C1" IS NULL is specified on both sides of the OR condition, "C1" IS NULL is removed from
the OR condition.

(e) Example 5

Explanation:
Because condition "C1" IN(100,200,300) is specified on both sides of the OR condition, "C1" IN
(100,200,300) is removed from the OR condition.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 186

(f) Example 6

Explanation:
Because condition "C1" BETWEEN 100 AND 300 is specified on both sides of the OR condition, "C1"
BETWEEN 100 AND 300 is removed from the OR condition.

(g) Example 7

Explanation:
Because the conditions specified in the OR conditions are all "C1" = 100, they are converted to a single = condition.

(h) Example 8

Explanation:
Because the conditions specified in the OR conditions are all "C1" <> 100, they are converted to a single <>
condition.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 187

(2) Examples of search conditions on which equivalent exchange is not
performed

(a) Example 1

Explanation:
Equivalent exchange is not performed because "T1"."C1" = "T2"."C1" and "T2"."C1" = "T1"."C1" are
regarded as different conditions.

(b) Example 2

Explanation:
"C1" = 100 is specified on both sides of the OR condition, but no equivalent exchange is performed because this
OR condition is specified inside a NOT condition.

(c) Example 3

Explanation:
"C1" = 100 OR "C1" > 200 is specified on both sides of the OR condition, but equivalent exchange is not
performed on an OR condition specified inside an AND condition.

(3) Rules for equivalent exchange
1. If a comparison predicate is in any of the following formats, a condition inside the OR condition is removed from

the OR condition:

• column-specification comparison-operator literal
Equivalent exchange is performed, even if the column specification and literal are specified in reverse order.

• column-specification comparison-operator datetime-information-acquisition-function (or user-information-
acquisition-function)
Equivalent exchange is performed, even if the column specification and datetime information acquisition
function (or user information acquisition function) are specified in reverse order.

• column-specification comparison-operator column-specification

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 188

If the columns specified as the column specification are specified in reverse order, equivalent exchange is not
performed because they are regarded as different conditions (see (a) Example 1 in (2) Examples of search
conditions on which equivalent exchange is not performed).

2. If the NULL predicates are specified in either of the following formats, the condition in the OR condition is removed
from the OR condition:

• column-specification IS NULL
• column-specification IS NOT NULL

3. If the IN predicates are specified in either of the following formats, the condition in the OR condition is removed
from the OR condition:

• column-specification IN (value-expression,...)
Equivalent exchange is performed if only literals, datetime information acquisition functions, or user information
acquisition functions are specified in the value expressions.

• column-specification NOT IN (value-expression,...)
Equivalent exchange is performed if only literals, datetime information acquisition functions, or user information
acquisition functions are specified in the value expressions.

4. If the BETWEEN predicates are specified in either of the following formats, the condition in the OR condition is
removed from the OR condition:

• column-specification BETWEEN value-expression-1 AND value-expression-2
Equivalent exchange is performed if only literals, datetime information acquisition functions, or user information
acquisition functions are specified in value expressions 1 and 2.

• column-specification NOT BETWEEN value-expression-1 AND value-expression-2
Equivalent exchange is performed if only literals, datetime information acquisition functions, or user information
acquisition functions are specified in value expressions 1 and 2.

5. Equivalent exchange is not performed in the following cases:

• OR conditions specified in NOT conditions (see (b) Example 2 in (2) Examples of search conditions on which
equivalent exchange is not performed)

• OR conditions specified in AND conditions (see (c) Example 3 in (2) Examples of search conditions on which
equivalent exchange is not performed)

5.11.2 Equivalent exchange for OR conditions (converting to IN
conditions)

If multiple = conditions are specified for the same column in an OR condition, the following equivalent exchange is
performed:

• The = conditions for the same column are converted to an IN condition.

• The = conditions for the same column are converted to an IN condition, which is added outside of the OR condition.

If the = conditions are converted to an IN condition and then added outside of the OR condition, the resulting condition
can be effective in narrowing down the search range; however, the workload for condition evaluation might increase
when an IN condition is added.

The OR conditions specified in the search condition in the WHERE clause, the ON search condition for joined tables, and
the search condition in the HAVING clause are subject to this equivalent exchange.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 189

If equivalent exchange has been performed on search conditions, the indexes to be used during retrieval are determined
based on the search conditions obtained after equivalent exchange.

The following shows examples of equivalent exchange. In the examples, C1, C2, and C3 are column names.

(1) Examples of search conditions on which equivalent exchange is
performed

(a) Example 1

Explanation:
The OR conditions are converted to an IN condition because the conditions specified in the OR conditions are all =
conditions for column C1.

(b) Example 2

Explanation:
The = condition for column C1 specified in the OR condition is converted to an IN condition, which is then added
outside of the OR condition.

(2) Examples of search conditions on which equivalent exchange is not
performed

(a) Example 1

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 190

Explanation:
The conditions specified in the OR conditions are all = conditions for column C1, but equivalent exchange is not
performed because they are specified inside a NOT condition.

(b) Example 2

Explanation:
"C1" = 100 and "C1" = 200 are specified on either side of the OR condition, but equivalent exchange is not
performed on an OR condition that is specified inside an AND condition.

(3) Rules for equivalent exchange
1. If a comparison predicate is in any of the formats shown below, an IN condition is added outside the OR condition.

Note that if a column specified in the column specification is an external reference column, equivalent exchange is
not performed. For details about external reference columns, see Specification format and rules for subqueries in
the manual HADB SQL Reference.

• column-specification = literal
Equivalent exchange is performed, even if the column specification and literal are specified in reverse order.

• column-specification = datetime-information-acquisition-function (or user-information-acquisition-function)
Equivalent exchange is performed, even if the column specification and datetime information acquisition
function (or user information acquisition function) are specified in reverse order.

• column-specification = dynamic-parameter
Equivalent exchange is performed, even if the column specification and dynamic parameter are specified in
reverse order.

2. Equivalent exchange is not performed in the following cases:

• OR conditions specified in NOT conditions (see (a) Example 1 in (2) Examples of search conditions on which
equivalent exchange is not performed)

• OR conditions specified in AND conditions (see (b) Example 2 in (2) Examples of search conditions on which
equivalent exchange is not performed)

5.11.3 Equivalent exchange for OR conditions (equivalent exchange to
derived tables for which the UNION ALL set operation is specified)

A specified SQL statement might be subject to equivalent exchange if the SQL statement satisfies the following two
conditions:

• A comma join or a joined table is specified in the FROM clause.

• The OR condition is specified in the WHERE clause.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 191

The search conditions specified in the form of an OR condition are converted by equivalent exchange to derived tables
for which the UNION ALL set operation is specified. The following explains this equivalent exchange in detail by using
examples. In the examples, T1 and T2 are table names, and C1 is a column name.

■ SQL statement before equivalent exchange (specified SQL statement)

In the preceding SQL statement, a comma join is specified in the FROM clause and an OR condition is specified in
the WHERE clause (see the underscored portions). Therefore, the SQL statement is subject to equivalent exchange.

■ SQL statement after equivalent exchange

As shown in the preceding example, the SQL statement is converted by equivalent exchange to derived tables for
which the UNION ALL set operation is specified. In the SQL statement before equivalent exchange, search
conditions were specified in the form of an OR condition (see 1 in the SQL statement before equivalent exchange).
Now, in the SQL statement after equivalent exchange, these search conditions are specified as the search conditions
of the query specifications in the set operation operands (see 2 and 3 in the SQL statement after equivalent exchange).

■ Advantages of equivalent exchange
For the SQL statement before equivalent exchange, because the WHERE clause contains an OR condition, table
joining takes place before search conditions are evaluated.
For the SQL statement after equivalent exchange, however, because the WHERE clauses in the set operation operands
contain no OR condition, table joining takes place after search conditions are evaluated. This might be able to reduce
the number of input rows that are required for table joining (that is, the search performance might be improved).
If indexes are defined for columns "T1"."C1" and "T2"."C1", any of the indexes are used during a search. The
indexes that will be used for a search are determined from the search conditions after equivalent exchange.
Note that, in some cases, the search time might become longer because query specifications and search conditions
increase due to equivalent exchange.

(1) Example of equivalent exchange
The following shows examples of equivalent exchange. In the examples, T1, T2, and T3 are table names, and C1 is a
column name.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 192

Example 1: Case where two OR conditions are specified in the search conditions

Explanation:

• In the SQL statement before equivalent exchange, a joined table is specified in the FROM clause and OR conditions
are specified in the WHERE clause (see the underscored portion in the preceding example). Therefore, the SQL
statement is subject to equivalent exchange.

• The search conditions that were specified with OR conditions in the SQL statement before equivalent exchange
are, after equivalent exchange, specified as search conditions of query specifications in separate set operation
operands. If two OR conditions are specified as shown in the SQL statement before equivalent exchange, three
set operation operands are generated after equivalent exchange.

Example 2: Case where AND and OR conditions are specified in the search conditions

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 193

Explanation:

• In the SQL statement before equivalent exchange, a comma join is specified in the FROM clause and an OR
condition is specified in the WHERE clause (see the underscored portions). Therefore, the SQL statement is
subject to equivalent exchange.

• The search conditions that were specified with OR conditions in the SQL statement before equivalent exchange
are, after equivalent exchange, specified as search conditions of query specifications in separate set operation
operands. The search condition that was specified on the left side of the AND condition in the SQL statement
before equivalent exchange are, after equivalent exchange, specified as search conditions of query specifications
in all set operation operands.

(2) Conditions for equivalent exchange to take place
For equivalent exchange to take place, all of the following conditions must be met.

■ Conditions for the server definition or client definition
All of the following conditions must be met:

• 0 is not specified for the adb_sql_exe_hashtbl_area_size operand in the server definition or client
definition.

• 0 is not specified for the adb_sys_uthd_num operand in the server definition.

• 0 is not specified for the adb_sql_exe_max_rthd_num operand in the server definition or client definition.

■ Conditions for SQL statements
All of the following conditions must be met:

• The SQL statement is a retrieval SQL statement.

• An HADB server whose version is 04-03 or later has collected cost information from any of tables specified in
the SQL statement.

• The SQL statement does not have a query specification that includes an external reference column.

■ Conditions for query specifications
All of the following conditions must be met:

1. Conditions for selection expressions

• ROW is not specified in the selection expression.

2. Conditions for a table reference specified in the FROM clause

• The number of tables specified in the selection expression does not exceed 16.

• Comma joins are specified in the FROM clause.
Note that this condition is met if only comma joins are specified or if both comma joins and joined tables
are specified.
The following shows the types of tables that can be specified. This condition is met even if the specifications
of the following types of tables co-exist:
• Base table (Note that equivalent exchange does not take place if an archivable multi-chunk table is
specified.)
• Joined table (Note that equivalent exchange does not take place if FULL OUTER JOIN is specified.)
• Derived table (A table subquery, query name, or viewed table applies.)

■ Conditions for join conditions
All of the following conditions must be met:

• No OR condition is specified in the join specifications of joined tables.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 194

• The join conditions of tables to which the columns specified in OR conditions belong satisfy the following
condition:

• At least one join condition in the column-specification=column-specification format exists between the tables
to which the columns specified in OR conditions.

• When HADB performs equivalent exchange to derived tables for which the UNION ALL set operation is
specified, a join condition for all join-target tables must exist in the search condition of the query specification
in each set operation operand.

■ Conditions for the search conditions specified in the WHERE clause
All of the following conditions must be met:

1. Two or more conditions are not specified in OR conditions in the conditions specified by using the AND logical
operator.
Examples:

• Example of a search condition that satisfies the conditions for equivalent exchange to take place

condition-1 AND condition-2 AND (condition-3 OR condition-4 OR condition-5)

The conditions for equivalent exchange to take place are satisfied because there is only one condition that
includes OR conditions.

• Example of a search condition that does not satisfy the conditions for equivalent exchange to take place

(condition-1 OR condition-2) AND condition-3 AND (condition-4 OR condition-5)

The conditions for equivalent exchange to take place are not satisfied because there are two conditions
that include OR conditions.

• If multiple OR conditions are nested, the conditions for equivalent exchange to take place are satisfied.

• The number of tables specified in successive search conditions other than OR conditions is not taken into
account (the specifications of these tables do not need to be join specifications).

• An OR condition with NOT specified does not satisfy the conditions for equivalent exchange to take place.

2. Columns of joined tables are not specified in OR conditions.
However, the conditions for equivalent exchange to take place are satisfied if a joined table is converted to a
comma join.

3. No subquery is specified with an OR condition.

4. Scalar function RANDOM or RANDOM_NORMAL is not specified with an OR condition.

5. The number of OR logical operators does not exceed 15.

6. An OR condition includes a search condition for two or more tables.

7. The search condition in each set operation operand after equivalent exchange includes one or more search
conditions in any of the following formats. In addition, logical operator OR or NOT is not specified for those
conditions.

• Comparison predicate

• column-specification comparison-operator {literal|dynamic-parameter|datetim
e-information-acquisition-function|user-information-acquisition-function}
• {literal|dynamic-parameter|datetime-information-acquisition-function|user-i
nformation-acquisition-function} comparison-operator column-specification

• BETWEEN predicate

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 195

column-specification BETWEEN {literal|dynamic-parameter|datetime-information-
acquisition-function|user-information-acquisition-function}
 AND {literal|dynamic-parameter|datetime-information-acquisition-fu
nction|user-information-acquisition-function}

• IN predicate

column-specification IN ({literal|dynamic-parameter|datetime-information-acqu
isition-function|user-information-acquisition-function}
 [,{literal|dynamic-parameter|datetime-information-acquisition-functio
n|user-information-acquisition-function}]...)

• LIKE predicate

column-specification LIKE pattern-character-string [ESCAPE escape-character]
 pattern-character-string ::= {literal|dynamic-parameter|datetime-informatio
n-acquisition-function|user-information-acquisition-function}
 escape-character ::= {literal|dynamic-parameter}

• LIKE_REGEX predicate

column-specification LIKE_REGEX regular-expression-character-string [FLAG {I|
IGNORECASE}]
 regular-expression-character-string ::= literal

• NULL predicate

column-specification IS NULL

Note
If only literals are specified in a scalar operation, that scalar operation might be treated as a literal.
For details about scalar operations equivalent to literals, see the table Conditions under which value
expressions are equivalent to literals under Rules in Specification format and rules for value
expressions in the manual HADB SQL Reference.

■ Conditions for the locations of query specifications subject to equivalent exchange
If a query specification is included in the following locations, the HADB server checks whether to perform equivalent
exchange:

• The query expression body in a query expression

• Scalar subquery

• Table subquery

• Set operation operands of a set operation
If derived tables with UNION ALL specified are created when equivalent exchange is performed for an SQL
statement, the maximum number of set operations might be exceeded. In such a case, however, equivalent
exchange of the SQL statement continues.

• WITH list element
Equivalent exchange is not performed for query specifications of recursive members.

• Query expression in the CREATE VIEW statement

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 196

5.11.4 Equivalent exchange for scalar operations
When one of the terms of a search condition specifies a scalar operation that contains a column specification, the scalar
operation is transposed. That is, the search condition undergoes equivalent exchange so as to leave only a column
specification. A scalar operation is transposed when all of the following conditions are met:

• The operand satisfies either of the following conditions:

• The operator is an arithmetic operator (addition or subtraction) between a column specification and a literal.

• The operator is a datetime operator between a column specification and a labeled duration.

• The data type of the column specification is SMALLINT, INTEGER, TIME, DATE, or TIMESTAMP.

• The scalar operation is not nested.

When a search condition is subjected to equivalent exchange, the indexes to be used during retrieval are determined
based on the search conditions after equivalent exchange.

The following shows examples of equivalent exchange. In the examples, C1 is a column name.

(1) Examples where equivalent exchange is performed

(a) Example 1

Explanation:
A term that includes a column specification has the scalar operation +10. By equivalent exchange, this scalar
operation is moved to the right-hand side, leaving the condition with just a column specification. Because the format
after equivalent exchange is column-specification comparison-operator literal, an index will be used during retrieval.

(b) Example 2

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 197

Explanation:
A term that includes a column specification has the scalar operation +1 DAY. By equivalent exchange, this scalar
operation is moved to the right-hand side, leaving just a column specification in the condition. Because the format
after equivalent exchange is column-specification comparison-operator literal, an index will be used during retrieval.

(c) Example 3

Explanation:
A term that includes a column specification has the scalar operation +10. By equivalent exchange, this scalar
operation is moved to the right-hand side, leaving just a column specification in the condition. Because the format
after equivalent exchange is column-specification BETWEEN literal, an index will be used during retrieval.

(d) Example 4

Explanation:
A term that includes a column specification has the scalar operation +10. By equivalent exchange, this scalar
operation is moved to the right-hand side, leaving just a column specification in the condition. Because the format
after equivalent exchange is column-specification IN literal, an index will be used during retrieval.

(2) Examples where equivalent exchange is not performed

(a) Example 1

Explanation:
Equivalent exchange does not take place because the scalar operation that includes the column specification is nested.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 198

(3) Rules for equivalent exchange
1. When a comparison predicate is in any of the following formats, equivalent exchange is performed by transposing

the scalar operation to leave only the column specification.

• scalar-operation-containing-column-specification comparison-operator literal

• literal comparison-operator scalar-operation-containing-column-specification

Equivalent exchange does not occur if all of the following conditions are met:

• The scalar operation that includes the column specification specifies YEAR or MONTH as a labeled duration.

• The comparison operator of the comparison predicate is <>, !=, or ^=.

2. When a BETWEEN predicate is used in any of the following formats, equivalent exchange is performed by transposing
the scalar operation to leave only the column specification in the condition.

• scalar-operation-including-column-specification BETWEEN literal AND literal

• scalar-operation-including-column-specification NOT BETWEEN literal AND literal

Equivalent exchange does not occur if all of the following conditions are met:

• The scalar operation that includes the column specification specifies YEAR or MONTH as a labeled duration.

• NOT BETWEEN is specified in the BETWEEN predicate.

3. When an IN predicate is used in any of the following formats, equivalent exchange is performed by transposing the
scalar operation to leave only the column specification in the condition.

• scalar-operation-including-column-specification IN (literal,...)

• scalar-operation-including-column-specification NOT IN (literal,...)

Equivalent exchange will not take place if the scalar operation that includes the column specification specifies YEAR
or MONTH as a labeled duration.

5.11.5 Equivalent exchange for an IN predicate
If only one comparison value is specified in the IN condition, equivalent exchange is performed on the specified search
condition. If equivalent exchange has been performed on search conditions, the indexes to be used during retrieval are
determined based on the search conditions obtained after equivalent exchange.

The following shows examples of equivalent exchange. In the examples, C1 is a column name.

(1) Example 1

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 199

Explanation:
If only one comparison value is specified in the IN condition, the search condition is converted to the = condition.

(2) Example 2

Explanation:
If only one comparison value is specified in the NOT IN condition, the search condition is converted to the <>
condition.

5.11.6 Equivalent exchange for a HAVING clause (converting to the
WHERE clauses)

The search condition in a HAVING clause might be converted to a search condition in the WHERE clause. This equivalent
exchange might enable unnecessary input rows to be deleted during grouping and indexes to be used for table retrieval
processing.

The formats of conditions that are converted to a search condition in the WHERE clause are shown below. If equivalent
exchange occurs for a search condition, the indexes to be used during retrieval processing are determined on the basis
of the search condition obtained after the equivalent exchange.

Format of conditions subject to equivalent exchange

• Comparison predicate

• column-specification comparison-operator {literal|dynamic-parameter|datetime-inf
ormation-acquisition-function|user-information-acquisition-function}

• {literal|dynamic-parameter|datetime-information-acquisition-function|user-inform
ation-acquisition-function} comparison-operator column-specification

• BETWEEN predicate

column-specification [NOT] BETWEEN {literal|dynamic-parameter|datetime-information
-acquisition-function|user-information-acquisition-function}
 AND {literal|dynamic-parameter|datetime-information-acquisitio
n-function|user-information-acquisition-function}

• IN predicate

column-specification [NOT] IN ({literal|dynamic-parameter|datetime-information-acq
uisition-function|user-information-acquisition-function}
 [,{literal|dynamic-parameter|datetime-information-acquisition-fu
nction|user-information-acquisition-function}]...)

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 200

• LIKE predicate

column-specification [NOT] LIKE pattern-character-string [ESCAPE escape-character]
 pattern-character-string::={literal|dynamic-parameter|datetime-information-acqui
sition-function|user-information-acquisition-function}
 escape character ::={literal|dynamic-parameter}

• LIKE_REGEX predicate

column-specification [NOT] LIKE_REGEX regular-expression-character-string [FLAG {I
|IGNORECASE}]
 regular-expression-character-string::=literal

• NULL predicate

column-specification IS [NOT] NULL

Notes
• Conditions specified in an OR condition of a logical operation are not subject to this equivalent exchange.

However, if the following equivalent exchange is applied to the OR condition of the logical operation , after the
following equivalent exchange is applied, equivalent exchange related to the HAVING clause will take place.
• Equivalent exchange that moves a condition from inside the OR condition to outside the OR condition
• Equivalent exchange that adds the IN condition created from an = condition in the OR condition to outside the
OR condition
For details about equivalent exchange for the OR condition, see 5.11.1 Equivalent exchange for OR conditions
(removing from the OR conditions) and 5.11.2 Equivalent exchange for OR conditions (converting to IN
conditions).

• Conditions specified in NOT in logical operations and conditions containing subqueries are not subject to this
equivalent exchange.

• If column-specification columns are external reference columns, this equivalent exchange is not applied. For
details about external reference columns, see Specification format and rules for subqueries in the manual HADB
SQL Reference.

• If only literals are specified in a scalar operation, that scalar operation might be treated as a literal. For details
about scalar operations equivalent to literals, see the table Conditions under which value expressions are
equivalent to literals under Rules in Specification format and rules for value expressions in the manual HADB
SQL Reference.

5.11.7 Equivalent exchange for search conditions in SQL statements that
specify derived queries (transposition to the WHERE clause of a
derived query)

Equivalent exchange is performed to move a search condition specified in the WHERE clause of an SQL statement that
specifies a derived query to the WHERE clause of the derived query. For details about derived queries, see Derived
queries and derived query names in the manual HADB SQL Reference.

The following shows examples of equivalent exchange. In the examples, C1, C2, and C3 are column names.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 201

(1) Examples where equivalent exchange is performed

(a) Example 1 (when derived query is a query specification)

Explanation:
The column specification on the left side of the WHERE clause of the SQL statement that specifies the derived query
is a derived column ("D1"."C1"). This column is derived based on the selection expression ("T1"."C1") of the
query specification in the derived query. Because the conditions for applying equivalent exchange are satisfied,
equivalent exchange is applied to the search condition in the SQL statement that specifies the derived query.

(b) Example 2 (when derived query is a query expression)

Explanation:
The column specification on the left side of the WHERE clause of the SQL statement that specifies the derived query
is a derived column ("D1"."C1"). This column is derived based on the selection expression
("T1"."C1","T2"."C1") of the query expression in the derived query. Because the conditions for applying
equivalent exchange are satisfied, equivalent exchange is applied to the search condition in the SQL statement that
specifies the derived query.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 202

(c) Example 3 (when derived query is a query specification)

Explanation:
The column specification in the OR condition of the logical operation specified in the WHERE clause of the SQL
statement that specifies the derived query is a derived column ("D1"."C1","D1"."C2","D1"."C3"). This
column is derived based on the selection expression ("T1"."C1","T1"."C2","T1"."C3") of the query
specification in the derived query. Because the OR condition of the logical operation satisfies the conditions for
applying equivalent exchange, equivalent exchange is applied to the search condition in the SQL statement that
specifies the derived query.

(d) Example 4 (when derived query is a query expression)

Explanation:
The column specification in the OR condition of the logical operation specified in the WHERE clause of the SQL
statement that specifies the derived query is a derived column ("D1"."C1","D1"."C2","D1"."C3"). This
column is derived based on the selection expression
("T1"."C1","T1"."C2","T1"."C3","T2"."C1","T2"."C2","T2"."C3") of the query expression
in the derived query. Because the OR condition of the logical operation satisfies the conditions for applying equivalent
exchange, equivalent exchange is applied to the search condition in the SQL statement that specifies the derived
query.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 203

(2) Format of conditions subject to equivalent exchange
The following shows the format of conditions that are subject to equivalent exchange:

• Comparison predicate

▪ column-specification comparison-operator {literal|dynamic-parameter|datetime-inf
ormation-acquisition-function|user-information-acquisition-function}
▪ {literal|dynamic-parameter|datetime-information-acquisition-function|user-inform
ation-acquisition-function} comparison-operator column-specification
▪ CONTAINS (column-specification,search-condition-expression-string) > 0

• BETWEEN predicate

column-specification [NOT] BETWEEN {literal|dynamic-parameter|datetime-information
-acquisition-function|user-information-acquisition-function}
 AND {literal|dynamic-parameter|datetime-information-acquisition
-function|user-information-acquisition-function}

• IN predicate

column-specification [NOT] IN ({literal|dynamic-parameter|datetime-information-acq
uisition-function|user-information-acquisition-function}
 [,{literal|dynamic-parameter|datetime-information-acquisition-func
tion|user-information-acquisition-function}]...)

• LIKE predicate

column-specification [NOT] LIKE pattern-character-string [ESCAPE escape-character]
 pattern-character-string::={literal|dynamic-parameter|datetime-information-acqui
sition-function|user-information-acquisition-function}
 escape-character::={literal|dynamic-parameter}

• LIKE_REGEX predicate

column-specification [NOT] LIKE_REGEX regular-expression-character-string [FLAG {I
|IGNORECASE}]
 regular-expression-character-string::=literal

• NULL predicate

column-specification IS [NOT] NULL

(3) Notes
• Equivalent exchange will be performed if the selection expression of the derived query on which the derived column

specified in the column specification of the search condition is based is a column specification.

• Equivalent exchange is not performed if a window function is specified in the derived query.

• Equivalent exchange is not performed if the derived query is expanded into the SQL statement that specifies the
derived query. For details about the expansion of derived queries, see Internal derived tables in the manual HADB
SQL Reference.

• Equivalent exchange is not performed for the following types of derived queries:

• The derived query specifies the name of a viewed table, and the same viewed table name is specified more than
once in the SQL statement.

• The derived query specifies the name of a query specified as a WITH list element, and the same query name is
specified more than once in the SQL statement.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 204

• Multiple WITH list elements are specified, and the derived query specifies a query name that is already specified
as a WITH list element.

• The derived query is specified in a joined table other than a joined table for which only INNER JOIN is specified
its join type.

• A table value constructor is specified as the derived query.

• The derived query is a recursive query.

• When all of the following conditions are satisfied, equivalent exchange is applied to the search condition in the SQL
statement that specifies the derived query:

• A condition specified as an OR condition in a logical operation meets the format requirements for a search
condition that is subject to equivalent exchange for search conditions in SQL statements that specify derived
queries

• All column specifications point to columns in the same derived table

• When applying the following equivalent exchange to the OR condition of a logical operation, the following equivalent
exchange is applied first. Then, equivalent exchange for search conditions in SQL statements that specify derived
queries is applied.

• Equivalent exchange that moves a condition from inside the OR condition to outside the OR condition

• Equivalent exchange that adds the IN condition created from an = condition in the OR condition to the outside
of the OR condition

For details about equivalent exchange described earlier, see 5.11.1 Equivalent exchange for OR conditions
(removing from the OR conditions) and 5.11.2 Equivalent exchange for OR conditions (converting to IN
conditions).

• Conditions specified in NOT conditions in logical operations and conditions that contain subqueries are not subject
to equivalent exchange.

• Equivalent exchange is not performed if the columns specified by column-specification are external reference
columns. For details about external reference columns, see Specification format and rules for subqueries in the
manual HADB SQL Reference.

• If only literals are specified in a scalar operation, that scalar operation might be treated as a literal. For details about
the conditions under which scalar operations are equivalent to literals, see Specification format and rules for value
expressions in the manual HADB SQL Reference.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 205

5.12 Considerations when searching an archivable multi-chunk table

This section explains the matters you need to consider when searching an archivable multi-chunk table.

The examples in this section use a table in which the archive range column contains datetime data in DATE format.

Note
Make sure that you read Chunk archiving function (compressing data in a chunk) in the HADB Setup and
Operation Guide before reading this section.

5.12.1 Tips for searching an archivable multi-chunk table
This subsection explains by way of examples the process of searching an archivable multi-chunk table.

The definition of the archivable multi-chunk table used in these examples and the archived state of the data are as
follows:

▪ Definition of archivable multi-chunk table

▪ Archived state of data
• The database stores data from April 2015 to March 2016.

• The data from April to December 2015 is archived.

• The data from January to March 2016 is not archived.

(1) Basic concept when searching archivable multi-chunk tables
When searching an archivable multi-chunk table, you need to narrow the scope of the search by specifying the datetime
information for the archive range column as a search condition.

You also need to be aware of whether the data you are searching for is archived. Search processing can take longer when
searching archived data.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 206

(2) Specifying search conditions
The following are the key considerations when specifying search conditions to search an archivable multi-chunk table:

• Narrow down the search range by specifying a condition that specifies the archive range column as a search condition
in a WHERE clause.
Example:

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" BETWEEN DATE'2016/02/01' AND DATE'2016/02/29'

You must specify the underlined portion. This narrows the search range using the datetime information for the archive
range column.

Note that restrictions apply to the predicates you can specify. For details, see 5.12.2 Using the datetime information
of the archive range column to narrow the search range.

• Narrow the search range further by adding AND conditions.
Example:

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" BETWEEN DATE'2016/02/01' AND DATE'2016/02/29'
 AND "C1"='P001'
 AND "C2"=100

• We recommend that you specify literals as the comparison conditions for the archive range column.
Example: Example of recommended specification

WHERE "RECORD-DAY" BETWEEN DATE'2016/01/01' AND DATE'2016/03/31'
WHERE "RECORD-DAY" >= DATE'2016/02/01'

(3) When searching unarchived data
When searching unarchived data, specify search conditions a way that limits the search range to the unarchived data.
In this example, the unarchived data is data from January 2016.

Example:

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" >= DATE'2016/01/01'
 AND "C1"='P001'
 AND "C2"=100

The search condition specified in this example restricts the search range to data from January 1st, 2016.

(4) When searching archived data
When searching archived data, the datetime information specified for the archive range column in the search condition
preferably references as narrow a range as possible. In this example, the archived data is data from April 2015 to
December 2015.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 207

Example:

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" BETWEEN DATE'2015/10/01' AND DATE'2015/10/05'
 AND "C1"='P001'
 AND "C2"=100

Narrow the search range as much as possible by specifying the underlined portion. This reduces the number of
archive files that need to be read. The search time increases in proportion to the number of archive files HADB has
to read.

5.12.2 Using the datetime information of the archive range column to
narrow the search range

When searching an archivable multi-chunk table, you need to narrow the scope of the search by using the datetime
information for the archive range column when specifying the search conditions.

Important
If you do not comply with the rules described here, searches will target all archived data and take longer as
a result. The KFAA51121-W message will be output if you run a search that targets all archived data. In
this situation, amend the SQL statement, and then narrow the search range by using the datetime information
of the archive range column.

(1) Rules for specifying search conditions
The datetime information of the archive range column is used to narrow the search range under the following conditions:

• A condition that specifies the archive range column is specified as a search condition in a WHERE clause.

• In the search condition that specifies the archive range column, only a comparison predicate, IN predicate, or
BETWEEN predicate is specified.

• The comparison predicate, IN predicate, or BETWEEN predicate is specified in a way that meets the conditions
described in (2) Comparison predicate specification rules and the subsequent subsections.

• There is no NOT condition in the search condition that specifies the archive range column.

• There is no OR condition in the search condition that specifies the archive range column (a search condition that
specifies the archive range column is not specified on either side of an OR condition).
Example where search range is not narrowed:

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" BETWEEN DATE'2016/01/01' AND DATE'2016/01/10'
 OR "RECORD-DAY" BETWEEN DATE'2016/02/01' AND DATE'2016/02/10'

Example where search range is narrowed:

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" BETWEEN DATE'2016/01/01' AND DATE'2016/01/10'
 AND ("C1"='P001' OR "C2"='S002')

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 208

Important
Search conditions specified in DELETE and UPDATE statements are also subject to the specification rules
described here. DELETE and UPDATE statements that do not comply with these specification rules generate
errors.

For details about the rules for DELETE statements that delete rows in archivable multi-chunk tables, see
Rules under Specification format and rules for the DELETE statement in the manual HADB SQL Reference.

For details about the rules for UPDATE statements that update rows in archivable multi-chunk tables, see
Rules under Specification format and rules for the UPDATE statement in the manual HADB SQL Reference.

(2) Comparison predicate specification rules
When you specify a comparison predicate that complies with the following specification rules, the search range is
narrowed using the datetime information of the archive range column.

(a) Specification rules and example of recommended specification

Specification format of comparison predicate

comparison-predicate::=comparison-operand-1 comparison-operator comparison-operand
-2

Specification rules
• =, <, <=, >=, or > is specified as the comparison operator.

• One of the comparison operands specifies the archive range column (as a single column specification).

• The opposite comparison operand specifies a value specification.

Note
We recommend that you specify a literal in the value specification.

Example of recommended specification

SELECT * FROM "ARCHIVE-T1" WHERE "RECORD-DAY" >= DATE'2016/01/01'

Examples of deprecated specification

SELECT * FROM "ARCHIVE-T1" WHERE "RECORD-DAY" = ?
SELECT * FROM "ARCHIVE-T1" WHERE "RECORD-DAY" >= CURRENT_DATE

Although these examples result in narrowing of the search range, use of non-literals is not recommended.

Important
Specifying a literal in the value specification results in faster narrowing of the search range than if a non-
literal were specified.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 209

(b) Specification examples where search range is not narrowed

Example 1

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" - 10 DAY > DATE'2016/02/10'

In this example, the search range is not narrowed because a comparison operand specifies a datetime operation that
uses the archive range column. That is, it is not a single column specification. In this case, you can narrow the search
range by amending the SELECT statement as follows:
Amended example

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" > DATE'2016/02/10' + 10 DAY

In this example, the archive range column is specified as a single column specification in the comparison operand
on one side. The comparison operand on the other side specifies a value expression equivalent to a literal.

Example 2

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" > CURRENT_DATE - 1 YEAR

In this example, the search range is not narrowed because the comparison operand does not specify a value
specification. In this case, you can narrow the search range by amending the SELECT statement as follows:
Amended example

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" > DATE'2016/02/10' - 1 YEAR

As in this example, specify CURRENT_DATE explicitly as a literal. The search range will then be narrowed because
the comparison operand on the right side is a value expression equivalent to a literal.

For details about value expressions equivalent to literals, see the table Conditions under which value expressions are
equivalent to literals under Rules in Specification format and rules for value expressions in the manual HADB SQL
Reference.

(3) IN predicate specification rules
When you specify an IN predicate that complies with the following specification rules, the search range is narrowed
using the datetime information of the archive range column.

(a) Specification rules and example of recommended specification

Specification format of IN predicate

IN predicate::=value-expression-1 [IS] [NOT] IN {(value-expression-2[,value-expres
sion-3]...)|table-subquery}

Specification rules
• value-expression-1 specifies the archive range column (as a single column specification).

• value-expression-2 and subsequent value expressions specify value specifications.

• There is no table subquery specified in the IN predicate.

• NOT is not specified in the IN predicate.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 210

Note
We recommend that you specify literals for the value specifications specified in value-expression-2 onward.

Example of recommended specification

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" IN (DATE'2016/01/01',DATE'2016/02/01')

Example of deprecated specification

SELECT * FROM "ARCHIVE-T1" WHERE "RECORD-DAY" IN (?,?)

Although this example results in narrowing of the search range, use of non-literals is not recommended.

Important
Specifying a literal in the value specification results in faster narrowing of the search range than if a non-
literal were specified.

(b) Specification examples where search range is not narrowed

Example 1

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" IN (CURRENT_DATE,
 CURRENT_DATE - 7 DAY,
 CURRENT_DATE - 14 DAY)

In this example, the search range is not narrowed because a condition other than a value specification is specified
in value-expression-2 and later in an IN predicate. In this case, you can narrow the search range by amending the
SELECT statement as follows:
Amended example

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" IN (DATE'2016/02/10',
 DATE'2016/02/10' - 7 DAY,
 DATE'2016/02/10' - 14 DAY)

As in this example, specify CURRENT_DATE explicitly as a literal. The search range will then be narrowed because
the value expressions specified in value-expression-2 and later in the IN predicate are equivalent to literals.
For details about value expressions equivalent to literals, see the table Conditions under which value expressions
are equivalent to literals under Rules in Specification format and rules for value expressions in the manual HADB
SQL Reference.

Example 2

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" IN (SELECT "SALES_DATE" FROM "SALESLIST"
 WHERE "USERID" = 'U001')

In this example, the search range is not narrowed because a table subquery is specified in an IN predicate. In this
case, you can narrow the search range by amending the SELECT statement as follows:
Amended example

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 211

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" IN (SELECT "SALES_DATE" FROM "SALESLIST"
 WHERE "USERID" = 'U001')
 AND "RECORD-DAY" > DATE'2015/10/01'

As in this example, add a search condition that results in narrowing of the search range.

(4) BETWEEN predicate specification rules
When you specify a BETWEEN predicate that complies with the following specification rules, the search range is
narrowed using the datetime information of the archive range column.

(a) Specification rules and example of recommended specification

Specification format of BETWEEN predicate

BETWEEN predicate::=value-expression-1 [NOT] BETWEEN value-expression-2 AND value-
expression-3

Specification rules
• value-expression-1 specifies the archive range column (as a single column specification).

• value-expression-2 and value-expression-3 specify value specifications.

• NOT is not specified in the BETWEEN predicate.

Note
We recommend that you specify literals for the value specifications in value-expression-2 and value-
expression-3.

Example of recommended specification

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" BETWEEN DATE'2016/01/01' AND DATE'2016/01/10'

Example of deprecated specification

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" BETWEEN ? AND ?

Although this example results in narrowing of the search range, use of non-literals is not recommended.

Important
Specifying a literal in the value specification results in faster narrowing of the search range than if a non-
literal were specified.

(b) Specification examples where search range is not narrowed

Example 1

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" BETWEEN CURRENT_DATE - 2 YEAR
 AND CURRENT_DATE - 1 YEAR

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 212

In this example, the search range is not narrowed because a condition other than a value specification is specified
as value-expression-2 or value-expression-3 of the BETWEEN predicate. In this case, you can narrow the search
range by amending the SELECT statement as follows:
Amended example

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" BETWEEN DATE'2016/02/10' - 2 YEAR
 AND DATE'2016/02/10' - 1 YEAR

As in this example, specify CURRENT_DATE explicitly as a literal. The search range will then be narrowed because
value-expression-2 or value-expression-3 in the BETWEEN predicate is a value expression that is equivalent to a
literal.
For details about value expressions equivalent to literals, see the table Conditions under which value expressions
are equivalent to literals under Rules in Specification format and rules for value expressions in the manual HADB
SQL Reference.

Example 2

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" NOT BETWEEN DATE'2016/01/01' AND DATE'2016/01/31'

In this example, the search range is not narrowed because NOT is specified in a BETWEEN predicate. In this case,
you can narrow the search range by amending the SELECT statement as follows:
Amended example

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" BETWEEN DATE'2015/12/01' AND DATE'2015/12/31'
 AND "RECORD-DAY" BETWEEN DATE'2016/02/01' AND DATE'2016/02/29'

As in this example, do not specify NOT in a BETWEEN predicate. Specify multiple BETWEEN predicates with an
AND condition.

5.12.3 Notes about specifying JOIN (joined table)
When you specify a joined table, depending on how the joined table is specified, the search range might not be narrowed
by the datetime information of the archive range column. The following explains how to specify joined tables in such
a way that the search range is narrowed.

In the examples, ARCHIVE-T1 represents the archivable multi-chunk table, and RECORD-DAY represents the archive
range column.

(1) Example 1 (LEFT OUTER JOIN)
If you specify the archivable multi-chunk table in the table reference on the right side of LEFT OUTER JOIN, the search
range is not narrowed using the datetime information of the archive range column.

▪ Example where search range is not narrowed (before)

SELECT "T1"."C1" FROM "T1"
 LEFT OUTER JOIN "ADBUSER01"."ARCHIVE-T1" AS "DT"
 ON "T1"."C1" = "DT"."C1"
 WHERE "RECORD-DAY" BETWEEN DATE'2016/01/15' AND DATE'2016/02/15'
 AND "C1"='P001'

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 213

Explanation:
If you specify the archivable multi-chunk table in the table reference on the right side of LEFT OUTER JOIN
as underlined, the search range is not narrowed using the datetime information of the archive range column. In
this case, searches will target all archived data and might take longer as a result.

To avoid this issue, modify the SQL statement as follows:

▪ Example where search range is narrowed (after)

SELECT "T1"."C1" FROM "T1"
 LEFT OUTER JOIN (SELECT * FROM "ADBUSER01"."ARCHIVE-T1"
 WHERE "RECORD-DAY"
 BETWEEN DATE'2016/01/15' AND DATE'2016/02/15
'
 AND "C1"='P001') AS "DT"
 ON "T1"."C1" = "DT"."C1"
 WHERE "RECORD-DAY" BETWEEN DATE'2016/01/15' AND DATE'2016/02/15'
 AND "C1"='P001'

Explanation:
As underlined, the search condition that specifies the archive range column is replaced with an explicitly specified
derived table. When the SQL statement is amended in this way, the search range is narrowed using the datetime
information of the archive range column.

Note
No particular action is required if you specify the archivable multi-chunk table in the table reference on the
left side of LEFT OUTER JOIN. That is, you do not need to modify the SQL statement.

(2) Example 2 (RIGHT OUTER JOIN)
If you specify the archivable multi-chunk table in the table reference on the left side of RIGHT OUTER JOIN, the search
range is not narrowed using the datetime information of the archive range column.

▪ Example where search range is not narrowed (before)

SELECT "T1"."C1" FROM "ADBUSER01"."ARCHIVE-T1" AS "DT"
 RIGHT OUTER JOIN "T1"
 ON "DT"."C1" = "T1"."C1"
 WHERE "RECORD-DAY" BETWEEN DATE'2016/01/15' AND DATE'2016/02/15'
 AND "C1"='P001'

Explanation:
If you specify the archivable multi-chunk table in the table reference on the left side of RIGHT OUTER JOIN
as underlined, the search range is not narrowed using the datetime information of the archive range column. In
this case, searches will target all archived data and might take longer as a result.

To avoid this issue, modify the SQL statement as follows:

▪ Example where search range is narrowed (after)

SELECT "T1"."C1" FROM (SELECT * FROM "ADBUSER01"."ARCHIVE-T1"
 WHERE "RECORD-DAY" BETWEEN DATE'2016/01/15' AND DATE'2016
/02/15'
 AND "C1"='P001') AS "DT"
 RIGHT OUTER JOIN "T1"
 ON "DT"."C1" = "T1"."C1"
 WHERE "RECORD-DAY" BETWEEN DATE'2016/01/15' AND DATE'2016/02/15'
 AND "C1"='P001'

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 214

Explanation:
As underlined, the search condition that specifies the archive range column is replaced with an explicitly specified
derived table. When the SQL statement is amended in this way, the search range is narrowed using the datetime
information of the archive range column.

Note
No particular action is required if you specify the archivable multi-chunk table in the table reference on the
right side of RIGHT OUTER JOIN. That is, you do not need to modify the SQL statement.

(3) Example 3 (FULL OUTER JOIN)
If you specify the archivable multi-chunk table in the table reference on the left or right side of FULL OUTER JOIN,
the search range is not narrowed using the datetime information of the archive range column.

▪ Example where search range is not narrowed (before)

SELECT "T1"."C1" FROM "ADBUSER01"."ARCHIVE-T1" AS "DT"
 FULL OUTER JOIN "T1"
 ON "DT"."C1" = "T1"."C1"
 WHERE "RECORD-DAY" BETWEEN DATE'2016/01/15' AND DATE'2016/02/15'
 AND "C1"='P001'

Explanation:
If, as underlined, you specify the archivable multi-chunk table in the table reference on the left or right side of
FULL OUTER JOIN, the search range is not narrowed using the datetime information of the archive range
column. In this case, searches will target all archived data and might take longer as a result.

To avoid this issue, modify the SQL statement as follows:

▪ Example where search range is narrowed (after)

SELECT "T1"."C1" FROM (SELECT * FROM "ADBUSER01"."ARCHIVE-T1"
 WHERE "RECORD-DAY" BETWEEN DATE'2016/01/15' AND DATE'2016
/02/15'
 AND "C1"='P001') AS "DT"
 FULL OUTER JOIN "T1"
 ON "DT"."C1" = "T1"."C1"
 WHERE "RECORD-DAY" BETWEEN DATE'2016/01/15' AND DATE'2016/02/15'
 AND "C1"='P001'

Explanation:
As underlined, the search condition that specifies the archive range column is replaced with an explicitly specified
derived table. When the SQL statement is amended in this way, the search range is narrowed using the datetime
information of the archive range column.

5.12.4 Equivalent exchange of SQL statements that search archivable
multi-chunk tables

When all of the following conditions are met, the HADB server uses equivalent exchange to automatically transform
SQL statements that search archivable multi-chunk tables.

• When searching archived data

• A condition that specifies the archive range column is specified as a search condition in a WHERE clause.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 215

• The search condition specified in the WHERE clause complies with the rules explained in 5.12.2 Using the datetime
information of the archive range column to narrow the search range.

Note
• The SQL statement after equivalent exchange is output to the access path information.

• The rules for SQL statements are applied to the SQL statement after equivalent exchange.

The following shows an example of equivalent exchange.

Example of specified SELECT statement

SELECT * FROM "ARCHIVE-T1"
 WHERE "RECORD-DAY" BETWEEN DATE'2015/11/01' AND DATE'2016/01/31'
 AND "C1"='P001'

Search range used by this SELECT statement

Example of SELECT statement after equivalent exchange

SELECT * FROM
 (SELECT * FROM "ARCHIVE-T1" ...1
 UNION ALL ...2
 SELECT * FROM ...3
 TABLE (ADB_CSVREAD(MULTISET(...4
 SELECT "ARCHIVE_FILE_NAME" FROM
 "HADB"."LOCATION_TABLE_00020191" AS "LOC"
 ,"HADB"."STATUS_CHUNKS" AS "SCK"
 WHERE "RANGE_MAX" >= DATE'2015/11/01' ...5
 AND "RANGE_MIN" <= DATE'2016/01/31' ...5
 AND "SCK"."TABLE_SCHEMA" = 'ADBUSER01'
 AND "SCK"."TABLE_NAME" = 'ARCHIVE-T1'
 AND "SCK"."CHUNK_ID" = "LOC"."CHUNK_ID"
 AND "SCK"."CHUNK_STATUS" IS NULL
)
 ,'omitted')
) AS "TBLFUNC_00020191" ("C1" VARCHAR(10), "C2" INT, "RECORD_DAY" DATE) ...
6
)
 WHERE "RECORD_DAY" BETWEEN DATE'2015/11/01' AND DATE'2016/01/31'
 AND "C1"='P001'

Explanation:
The SQL statement in this example searches archived data and data that is not archived. In this example, the
SQL statement is rewritten into a query that searches archived data and a query that searches unarchived data,
and the union of these two queries is determined by a UNION ALL operator.

1. A query that searches unarchived data

2. Determines the union (UNION ALL) of the queries labeled 1 and 3

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 216

3. A query that searches archived data

4. This part is converted to an ADB_CSVREAD function that reads the archive files that store the archived data.

5. The search condition specified in the WHERE clause is rewritten as a search condition that searches the
location table.#

6. TBLFUNC_00020191 is the correlation name of the table function derived table. Correlation names are
determined according to the following conventions:
TBLFUNC_nnnnnnnn
nnnnnnnn: An 8 character string (0 to 9 and A to F) obtained by converting the table ID of the archivable
multi-chunk table to hexadecimal

#
Examples of rewriting the search condition as a search condition that searches the location table are as follows:
Example 1:

Example 2:

• RANGE_MAX
A column in the location table. RANGE_MAX is the maximum value in the archive range column for each
archive file.

• RANGE_MIN
A column in the location table. RANGE_MIN is the minimum value in the archive range column for each
archive file.

Note
The internal derived tables generated by equivalent exchange of SQL statements that search archivable
multi-chunk tables are not subject to expansion. For details about the expansion of internal derived
tables, see Internal derived tables in the manual HADB SQL Reference.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 217

5.13 Expanding internal derived tables

HADB automatically changes query expressions containing internal derived tables and efficiently evaluates the internal
derived tables. Changing query expressions containing internal derived tables is called expanding internal derived tables.
For details about the rules for expanding internal derived tables, see the topic Internal derived tables in the manual
HADB SQL Reference.

The priority order and selection rules for indexes that are used during retrieval are applied to the query expressions
obtained after internal derived tables have been expanded. For details about the index to be used during retrieval, see
5.2 B-tree indexes and text indexes used during execution of SQL statements and 5.3 Range indexes used during
execution of SQL statements.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 218

5.14 Improving performance by batch transfer of retrieval results

You can transfer multiple rows of retrieval results in the batch mode from the HADB server to the HADB client. This
feature is useful when you retrieve a large amount of data.

The following figure provides an overview of batch transfer of retrieval results.

Figure 5-21: Overview of batch transfer of retrieval results

Specify a setting to transfer retrieval results in the batch mode. The following are the possible settings:

• If you use a JDBC driver:
Specify the number of rows to be transferred in the batch mode by using one of the following methods:

• adb_clt_fetch_size in the system properties, user properties, or URL connection properties

• setFetchSize method of the Statement object

• setFetchSize method of the ResultSet object

• If you use ODBC drivers or CLI functions:
Specify the number of rows to be transferred in the batch mode in the adb_clt_fetch_size operand in the
client definition.

If the appropriate setting above is specified and rows are retrieved, the retrieval results are transferred in the batch mode.

Notes

• As the number of rows to be transferred in the batch mode increases, the amount of memory used by the HADB
server and HADB client also increases. Therefore, if you will be performing batch transfer, re-evaluate the

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 219

memory requirements. For details about the memory requirements for HADB servers, see Determining the
memory requirement during normal operation in the HADB Setup and Operation Guide. For details about the
memory requirements for HADB clients, see C. Estimating the Memory Requirements for an HADB Client

• If an error occurs during batch transfer, retrieval results buffered on the HADB server are discarded and only
error information is returned to the HADB client.

• If an update SQL statement is run during retrieval using a cursor, the result of the update operation might be
applied to the retrieval results, depending on the timing. However, the result of the update operation is never
applied to the retrieval results during retrieval using batch transfer. This is because the HADB server is not
accessed by an HADB client on which retrieval results remain.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 220

5.15 Batch transfer of dynamic parameter values

Multiple dynamic parameter values can be transferred from an HADB client to the HADB server in the batch mode.
This function is useful for accessing the HADB server from an HADB client and then using dynamic parameters to add,
update, and delete data.

The following figure provides an overview of batch transfer of dynamic parameter values.

Figure 5-22: Overview of batch transfer of dynamic parameter values

Explanation:
When multiple rows are inserted (INSERT statement) by using dynamic parameter values as row insertion values,
the dynamic parameter values are normally transferred to the HADB server one set at a time (where a set consists
of the dynamic parameter values to be inserted into one row).
In the case of batch transfer of dynamic parameter values, two or more sets of dynamic parameter values are
transferred together in the batch mode. Because this method reduces the communication overhead, it also reduces
the application program's execution time.
The figure above shows an example of row insertion (INSERT statement), but batch transfer of dynamic parameter
values is also applicable to the UPDATE and DELETE statements.

If a JDBC driver is used, dynamic parameter values are transferred in the batch mode when SQL statements are executed
by using the executeBatch method or executeLargeBatch method of the PreparedStatement class.

If CLI functions are used, dynamic parameter values are transferred in the batch mode when the SQL statements are
executed in the following order:

1. Preprocess the INSERT, UPDATE, or DELETE statement.

2. Use a_rdb_SQLBindArrayParams() to perform batch binding of the dynamic parameters.

3. Use the statement handle preprocessed in 1 to execute the SQL statement by a_rdb_SQLExecute().

If an ODBC driver is used, batch transfer of dynamic parameter values is not available.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 221

Notes

• If an error occurs during execution of an SQL statement and the processing is rolled back, the number of results
rows is discarded and only the error information is returned to the HADB client.

• You must re-estimate the memory requirements for the HADB servers and clients, because batch transfer of
dynamic parameter values requires memory resources. For details about the memory requirements for HADB
servers, see Determining the memory requirement during normal operation in the HADB Setup and Operation
Guide. For details about the memory requirements for HADB clients, see C. Estimating the Memory
Requirements for an HADB Client

• If you perform batch transfer of dynamic parameter values for an SQL statement with the scalar function
RANDOMCURSOR specified, the scalar function RANDOMCURSOR generates a pseudorandom number for each
set of dynamic parameters.

5. Designs Related to Improvement of Application Program Performance

Hitachi Advanced Database Application Development Guide 222

This chapter explains how to use access paths.

6 Tuning Application Programs

Hitachi Advanced Database Application Development Guide 223

6.1 How to use access paths (how to use SQL statement execution plans)

This section explains the information that is output as access paths (SQL statement execution plans) and how to use that
information.

6.1.1 About access paths
An access path is the execution plan that is used when HADB executes an SQL statement. By checking the access paths,
you can determine how the SQL statements to be executed will be processed by HADB.

(1) Example of displayed access path information
The following figure shows an example of displayed access path information.

Figure 6-1: Example of displayed access path information

Explanation:
Access path information is displayed in three views: tree view, details view, and identification information view.

• Tree view
The information displayed in tree view includes table search methods, table joining methods, and information
about work tables. Related items are displayed in tree format.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 224

Access path information is displayed for each query. Each query is assigned a query tree number.
<<Tree View>> is displayed as the header for the tree view section.

• Details view
The details view displays detailed information about the items in tree view. The tree row numbers in the details
view correspond to the tree row numbers in tree view. In this example, details view displays detailed information
about the item assigned tree row number 7 in tree view.
<<Detail >> is displayed as the header for the details view section.

• Identification information view
The identification information view displays SQL statement identification information. SQL statement
identification information is information used to identify the SQL statement for which HADB acquired access
path statistical information. Based on the information in the identification information view, you can identify
the correlation between the output access path information and the output access path statistical information.
<<SQL Info >> is displayed as the header for the identification information view section.
For details about access path statistical information, see Examples of output of and output items for access path
statistical information in the HADB Setup and Operation Guide.

■ Query trees, query tree numbers, and tree row numbers

Explanation:

• Query tree
Access path information is output in a form of a query tree for each query (query specification and table value
constructor).

• Query tree number
Each query tree is assigned a number (called a query tree number) for identification.
A query tree corresponding to a subquery is assigned a query tree number of 2 or larger. Note, however, that a
query tree number of 1 or larger is assigned to a query tree that corresponds to a subquery if the following
conditions are met:

• VALUES (in which a subquery is specified) is specified in the INSERT statement.

• A subquery is specified in the PURGE CHUNK statement.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 225

Note
• Whether query tree numbers are output in exact ascending order (1, 2, ...) depends on the SQL

statement to be run.

• A query tree number of 0 is output for query trees that are not contained in the queries in the
SQL statement.

• Tree row number
A number assigned to each row in the tree.

(2) SQL statements for which access paths are output
Access path information is output for the following SQL statements:

• SELECT
• UPDATE
• INSERT

Access path information is output in the following circumstances:

• A query expression body is specified in the INSERT statement.

• VALUES is specified in the INSERT statement, and a subquery is specified.

• DELETE
• PURGE CHUNK

Access path information is output when a subquery is specified in the PURGE CHUNK statement.

Access path information is output when you run these SQL statements.

6.1.2 How to check access paths
There are two ways to check access paths:

• Check access path information by executing the #SET OPT REPORT subcommand of the adbsql command

• Check access path information output in SQL trace information

(1) How to check access path information by running #SET OPT REPORT
You can display access path information by running the #SET OPT REPORT subcommand of the adbsql command.
To display access path information:

Procedure

1. Run the adbsql command.

2. Run the #SET OPT REPORT subcommand of the adbsql command.

#SET OPT REPORT ON TYPE=PATH EXEC=PREPARE;

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 226

Note
In this example, EXEC=PREPARE is specified because the intention is to display the access path
information without actually running the SQL statement. If you want to run the SQL statement and
display the access path information, do not specify EXEC=PREPARE.

3. Run the SQL statement.

SELECT "C1" FROM "T1" WHERE "C1">10;

When you run this SQL statement, access path information is displayed as follows:

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-KEY SCAN(ADBUSER01.T1)

<<Detail >>

QUERY : 1
 3 KEY SCAN(ADBUSER01.T1)
 INDEX NAME : IDX_C1
 INDEX TYPE : B-TREE
 INDEX COLUMN : C1 ASC (>)

<<SQL Info >>

Version : 03-01(Aug 5 2015 09:32:34)
Transaction ID : 6197
Connection Number : 3
SQL Serial Number : 1

In this example, the table and B-tree index are defined as follows:

CREATE TABLE "T1"("C1" INT,"C2" DEC,"C3" CHAR(10)) IN "DBAREA01"
CREATE INDEX "IDX_C1" ON "T1"("C1") IN "DBAREA02" EMPTY
CREATE INDEX "IDX_C3" ON "T1"("C3") IN "DBAREA02" EMPTY

(2) How to check access path information output in SQL trace information
Use a text editor to view SQL trace information output in an SQL trace file. SQL trace files have the following file
names:

• $ADBDIR/spool/adbsqltrc01.log to adbsqltrc08.log

The following is an example of access path information output as SQL trace information:

Example:

[SQL]
SELECT * FROM "T1" WHERE "C1"=? AND "C2"=? AND "C3"=?

[access path]
<<Tree View>>

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 227

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-TABLE SCAN(T1)

For details about SQL trace information, see Running SQL tracing in the HADB Setup and Operation Guide.

6.1.3 Examples of access paths

(1) Example 1
Table B-tree index definitions

CREATE TABLE "T1"("C1" INT,"C2" DEC,"C3" CHAR(10)) IN "DBAREA01"
CREATE INDEX "IDX_C1" ON "T1"("C1") IN "DBAREA02" EMPTY
CREATE INDEX "IDX_C3" ON "T1"("C3") IN "DBAREA02" EMPTY
CREATE TABLE "T2"("C1" INT,"C2" DEC,"C3" CHAR(10)) IN "DBAREA01"

Executed SQL statement

SELECT * FROM "T1","T2"
 WHERE "T1"."C1"="T2"."C2"

Example of access paths

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT ...1
 3 +-NESTED LOOP JOIN ...2
 4 |-TABLE SCAN(ADBUSER01.T2) ...3
 5 +-INDEX SCAN(ADBUSER01.T1) -ORDER ...4

<<Detail >>

QUERY : 1
 5 INDEX SCAN(ADBUSER01.T1) ...5
 INDEX NAME : IDX_C1 ...6
 INDEX TYPE : B-TREE ...7
 INDEX COLUMN : C1 ASC (=) ...8

<<SQL Info >>

Version : 03-01(Aug 5 2015 09:32:34)
Transaction ID : 6197
Connection Number : 3
SQL Serial Number : 2

Explanation:

1. The SELECT statement is executed.

2. In the table join processing, a nested loop join is executed.

3. In table T2 retrieval processing, a table scan is performed.

4. In table T1 retrieval processing, an index scan is performed. -ORDER indicates that sequential execution,
not out-of-order execution, is applied.

5. Detailed information about the index scan on table T1 is displayed.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 228

6. B-tree index IDX_C1 is used during the index scan.

7. The index type is displayed. B-TREE means that this is a B-tree index.

8. Information about B-tree index IDX_C1 is displayed:
• C1: Indexed column of B-tree index IDX_C1
• ASC: Key value sort order (ascending)
• (=): Range search condition specification

(2) Example 2
Table definition

CREATE TABLE "T1"("C1" INT,"C2" DEC,"C3" CHAR(10)) IN "DBAREA01"
CREATE TABLE "T2"("C1" INT,"C2" DEC,"C3" CHAR(10)) IN "DBAREA01"

Executed SQL statement

SELECT * FROM "T1"
 WHERE "C1"=ANY(SELECT "C2" FROM "T2" WHERE "C1"="T1"."C2")

Example of access paths

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT ...1
 3 +-TABLE SCAN(ADBUSER01.T1) ...2
 4 +-SUBQUERY LOOP ...3
 5 |-CREATE LOCAL WORK TABLE(WORK TABLE 1) ...4
 6 | +-QUERY SCAN(QUERY 2) ...5
 7 +-WORK TABLE SCAN(WORK TABLE 1) ...6
 8
 9 QUERY : 2 ...7
 10 SUBQUERY LOOP ...8
 11 +-TABLE SCAN(ADBUSER01.T2) ...9

<<SQL Info >>

Version : 03-01(Aug 5 2015 09:32:34)
Transaction ID : 6197
Connection Number : 3
SQL Serial Number : 3

Explanation:

1. The SELECT statement is executed.

2. In table T1 retrieval processing, a table scan is executed.

3. Nested loops work table execution or nested loops row value execution is used to process the subquery
specified in the quantified predicate (ANY).

4. In the subquery processing, a local work table is created.

5. A query scan is performed. The query scan QUERY : 2 displayed in tree row number 9 is performed.

6. In the subquery processing, the work table is scanned.

7. Detailed information about the subquery is displayed.

8. In the subquery processing, nested loops work table execution or nested loops row value execution is used.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 229

9. In the table T2 retrieval processing, a table scan is performed.

6.1.4 Information displayed in the tree view
The tree view displays information for each query, such as the table retrieval method, table joining method, and subquery
processing method, in tree format.

(1) SQL statements executed
One of the following is displayed:

• SELECT STATEMENT
A SELECT statement is to be executed.

• UPDATE STATEMENT
An UPDATE statement is to be executed.

• INSERT STATEMENT
An INSERT statement is to be executed.

• DELETE STATEMENT
A DELETE statement is to be executed.

• PURGE CHUNK STATEMENT
PURGE CHUNK statement is to be executed.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-TABLE SCAN(ADBUSER01.T2)

Explanation:
A SELECT statement is executed.

(2) Subquery processing methods
One of the following is displayed:

• SUBQUERY
A subquery processing method other than nested loop execution or hash execution is applied.

• SUBQUERY LOOP
Nested loops work table execution or nested loops row value execution is applied as the subquery processing.

• SUBQUERY HASH
Hash execution is applied as the subquery processing method.
If SUBQUERY HASH is followed by FILTER, a hash filter is applied during hash execution.

For details about how to process subqueries, see 5.6 How to process subqueries.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 230

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-SUBQUERY HASH -FILTER
 4 |-QUERY SCAN(QUERY 2)
 5 +-TABLE SCAN(ADBUSER01.T1)
 6
 7 QUERY : 2
 8 SUBQUERY HASH
 9 +-TABLE SCAN(ADBUSER01.T2)

Explanation:
Hash execution is applied as the subquery processing method.
Because SUBQUERY HASH is followed by FILTER in tree row number 3, a hash filter is applied during hash
execution.

(3) Specification of derived tables
The following information is displayed:

• DERIVED TABLE(correlation-name)
One of the following is specified:

• A derived table

• A viewed table (if a correlation name is specified)

• A query name (if a correlation name is specified)

• DERIVED TABLE(query-name)
A query name is specified (without a correlation name).

• DERIVED TABLE(table-identifier)
A viewed table is specified (without a correlation name)

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-DERIVED TABLE(D1)
 4 +-QUERY SCAN(QUERY 2)
 5
 6 QUERY : 2
 7 DERIVED TABLE(D1)
 8 |-CREATE LOCAL WORK TABLE(WORK TABLE 1)
 9 | |-TABLE SCAN(ADBUSER01.T2)
 10 | |-SORTING BYTE
 11 | +-LIMIT 10
 12 |-WORK TABLE SCAN(WORK TABLE 1)
 13 +-LIMIT 10

Explanation:
A derived table is specified in the SELECT statement. The correlation name is displayed in parentheses.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 231

(4) Specification of set operations
The following information is displayed:

• SET OPERATION
A set operation is specified.

Note
The preceding information is also displayed in the following circumstances:

• FULL OUTER JOIN is specified for joining tables

• An archivable multi-chunk table is specified
When retrieving an archivable multi-chunk table, equivalent exchange of the SQL statement might
result in it being automatically rewritten as an SQL statement that specifies a set operation. For
details, see 5.12.4 Equivalent exchange of SQL statements that search archivable multi-chunk
tables.

• Equivalent exchange related to OR conditions (equivalent exchange to a derived table for which the
UNION ALL set operation is specified) is applied
If a comma join or joined table is specified in the FROM clause and an OR condition is specified in
the WHERE clause, the SQL statement might be automatically rewritten as a result of equivalent
exchange to derived tables for which the UNION ALL set operation is specified. For details, see
5.11.3 Equivalent exchange for OR conditions (equivalent exchange to derived tables for which
the UNION ALL set operation is specified).

Output example

<<Tree View>>

 1 QUERY : 0
 2 SELECT STATEMENT
 3 +-SET OPERATION
 4 |-QUERY SCAN(QUERY 1)
 5 +-QUERY SCAN(QUERY 2)
 6
 7 QUERY : 1
 8 QUERY
 9 +-TABLE SCAN(ADBUSER01.T1)
 10
 11 QUERY : 2
 12 QUERY
 13 +-TABLE SCAN(ADBUSER01.T2)

Explanation:
A set operation is specified in the SELECT statement.

Note that SET OPERATION might be followed by the following item:

• RECURSIVE
This item indicates that a recursive query will be run.

Output example

<<Tree View>>

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 232

 1 QUERY : 3
 2 SELECT STATEMENT
 3 +-DERIVED TABLE(REC)
 4 +-SET OPERATION -RECURSIVE
 5 |-QUERY SCAN(QUERY 1)
 6 +-QUERY SCAN(QUERY 2)
 7
 8 QUERY : 1
 9 QUERY
 10 |-CREATE GLOBAL WORK TABLE(WORK TABLE 1)
 11 | +-TABLE SCAN(ADBUSER01.T1)
 12 +-WORK TABLE SCAN(WORK TABLE 1)
 13
 14 QUERY : 2
 15 QUERY
 16 |-CREATE GLOBAL WORK TABLE(WORK TABLE 2)
 17 | +-WORK TABLE SCAN(WORK TABLE 2)
 18 +-WORK TABLE SCAN(WORK TABLE 2)

Explanation:
An item indicating that a recursive query will be run is included.
After SET OPERATION, the query information displayed first pertains to anchor members. The query
information displayed next pertains to recursive members. In the preceding output example, QUERY 1 is the
query information about anchor members, and QUERY 2 is the query information about recursive members.

(5) Set operation method specification
The following information is displayed:

• SPECIFIC
Set operation method specification is enabled.
For details about set operation method specifications, see Specification format and rules for query expressions in
the manual HADB SQL Reference.

Output example

<<Tree View>>

 1 QUERY : 0
 2 SELECT STATEMENT
 3 +-SET OPERATION -SPECIFIC
 4 |-QUERY SCAN(QUERY 1)
 5 +-QUERY SCAN(QUERY 2)
 6
 7 QUERY : 1
 8 QUERY
 9 |-CREATE LOCAL WORK TABLE(WORK TABLE 1)
 10 | |-TABLE SCAN(ADBUSER01.T1)
 11 | +-SORTING BYTE -DISTINCT
 12 +-WORK TABLE SCAN(WORK TABLE 1)
 13
 14 QUERY : 2
 15 QUERY
 16 |-CREATE LOCAL WORK TABLE(WORK TABLE 2)
 17 | |-TABLE SCAN(ADBUSER01.T2)
 18 | +-SORTING BYTE -DISTINCT
 19 +-WORK TABLE SCAN(WORK TABLE 2)

Explanation:
The set operation method specification specified in the SELECT statement is enabled.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 233

(6) Query types
The following information is displayed:

• QUERY
A query expression body other than a subquery or a derived table is specified.

Note
If an archivable multi-chunk table is specified as the table to be updated by an UPDATE statement or
the table to be deleted by a DELETE statement, a query that retrieves the location table or system table
(STATUS_CHUNKS) might be displayed.

Output example

<<Tree View>>

 1 QUERY : 0
 2 INSERT STATEMENT
 3 +-QUERY SCAN(QUERY 1)
 4
 5 QUERY : 1
 6 QUERY
 7 +-TABLE SCAN(ADBUSER01.T2) -ORDER

Explanation:
A query expression body is specified in the INSERT statement.

(7) Work table creation information
One of the following is displayed:

• CREATE GLOBAL WORK TABLE (WORK TABLE work-table-number)
A global work table is created.

• CREATE LOCAL WORK TABLE (WORK TABLE work-table-number)
A local work table is created.

A unique work table number is assigned to each work table.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 |-SUBQUERY
 4 | +-CREATE GLOBAL WORK TABLE(WORK TABLE 1)
 5 | |-QUERY SCAN(QUERY 2)
 6 | +-SORTING BYTE
 7 +-INDEX SCAN(ADBUSER01.T1)
 8 +-SUBQUERY
 9 +-WORK TABLE SCAN(WORK TABLE 1)
 10
 11 QUERY : 2
 12 SUBQUERY
 13 +-TABLE SCAN(ADBUSER01.T2)

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 234

Explanation:
A global work table is created in the subquery processing.

(8) Subquery processing method specification
The following information is displayed:

• SPECIFIC
Subquery processing method specification is enabled.
For details about subquery processing method specifications, see Specification format and rules for subqueries in
the manual HADB SQL Reference.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 |-SUBQUERY -SPECIFIC
 4 | +-CREATE GLOBAL WORK TABLE(WORK TABLE 1)
 5 | +-QUERY SCAN(QUERY 2)
 6 +-TABLE SCAN(ADBUSER01.T1(A))
 7 +-SUBQUERY
 8 +-WORK TABLE SCAN(WORK TABLE 1)
 9
 10 QUERY : 2
 11 SUBQUERY
 12 +-TABLE SCAN(ADBUSER01.T2)

Explanation:
The subquery processing method specification specified in the SELECT statement is enabled.

(9) Subquery processing delegation specification
The following information is displayed:

• DELEGATION
Subquery processing delegation specification is enabled.
For details about subquery processing delegation specifications, see Specification format and rules for subqueries
in the manual HADB SQL Reference.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-TABLE SCAN(ADBUSER01.T1(A))
 4 +-SUBQUERY LOOP -DELEGATION -USING CACHE
 5 +-QUERY SCAN(QUERY 2)
 6
 7 QUERY : 2
 8 SUBQUERY LOOP
 9 |-SUBQUERY LOOP -SPECIFIC -DELEGATION
 10 | +-QUERY SCAN(QUERY 3)
 11 +-TABLE SCAN(ADBUSER01.T1(B))
 12
 13 QUERY : 3

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 235

 14 SUBQUERY LOOP
 15 +-TABLE SCAN(ADBUSER01.T1(C))

Explanation:
The subquery processing delegation method specification specified in the SELECT statement is enabled.

(10) Subquery cache usage information
The following information is displayed:

• USING CACHE
Cache is used to store the results of a subquery. Cache might be used when nested loops row value execution is used
to process the subquery.

For details about nested loops row value execution, see (2) Nested loops row value execution in 5.6.3 Methods for
processing subqueries that contain an external reference column.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-TABLE SCAN(ADBUSER01.T1)
 4 +-SUBQUERY LOOP -USING CACHE
 5 +-QUERY SCAN(QUERY 2)
 6
 7 QUERY : 2
 8 SUBQUERY LOOP
 9 +-TABLE SCAN(ADBUSER01.T2)

Explanation:
Nested loops row value execution is used to process the subquery, and the results of the subquery are stored
using cache.

(11) Specification of table function derived tables
The following information is displayed:

• TABLE FUNCTION DERIVED TABLE(correlation-name)
A table function derived table is specified.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-TABLE FUNCTION DERIVED TABLE(T4)
 4 +-TABLE SCAN(ADBUSER01.T4)

Explanation:
A table function derived table is specified in the SELECT statement. The information in parentheses is the
correlation name.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 236

(12) Processing method for duplicate removal
The following information is displayed:

• GLOBAL HASH UNIQUE
Duplication in the retrieval results will be eliminated by using one of the following methods:

• Hash execution for the method for processing the set operation
For details about hash execution for the method for processing the set operation, see 5.8.1 Hash execution.

• Hash execution for the method for processing SELECT DISTINCT
For details about hash execution for the method for processing SELECT DISTINCT, see 5.9.1 Hash execution.

• Global hash grouping for the grouping method
For details about global hash grouping for the grouping method, see (2) Global hash grouping in 5.7.1 Hash
grouping.

GLOBAL HASH UNIQUE is also displayed if work tables might be created because some rows cannot be processed
in the hash table area.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 |-KEY SCAN(ADBUSER01.T1)
 4 |-GLOBAL HASH UNIQUE
 5 +-GROUPING

Explanation:
Global hash grouping is used for the grouping method to eliminate duplicate retrieval results.

(13) Grouping methods
One of the following is displayed:

• GROUPING
Grouping that does not use work tables is performed.

• SORT GROUPING
Sort grouping is performed.

• GLOBAL HASH GROUPING
Global hash grouping is performed. If there are rows that cannot be processed in the hash table area, work tables
might be created.

• LOCAL HASH GROUPING
Local hash grouping is performed. If there are rows that cannot be processed in the hash grouping area, work tables
might be created.

For details about grouping methods, see 5.7 Grouping methods.

Output example

<<Tree View>>

 1 QUERY : 1

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 237

 2 SELECT STATEMENT
 3 |-TABLE SCAN(ADBUSER01.T1)
 4 +-GLOBAL HASH GROUPING

Explanation:
Global hash grouping is performed during the grouping method.

Following the grouping method information, the following item might be displayed:

• SPECIFIC
The grouping method specification specified in the GROUP BY clause is enabled.
Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 |-CREATE LOCAL WORK TABLE(WORK TABLE 1)
 4 | |-TABLE SCAN(ADBUSER01.T1)
 5 | +-SORTING BYTE
 6 |-WORK TABLE SCAN(WORK TABLE 1)
 7 +-LOCAL HASH GROUPING -SPECIFIC

Explanation:
The grouping method specification specified in the GROUP BY clause is enabled and LOCAL HASH GROUPING
is applied as the grouping method. For details about the grouping method specification, see the topic Specification
format and rules for GROUP BY clauses in the manual HADB SQL Reference.

• INDEX
The grouping method that uses the characteristics of B-tree indexes is performed.
Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 |-KEY SCAN(ADBUSER01.T1)
 4 +-GROUPING -INDEX

Explanation:
The grouping method that uses the characteristics of B-tree indexes is performed for table T1.

• COLUMN
The grouping method that uses the characteristics of column store tables is performed.
Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 |-TABLE SCAN(ADBUSER01.T1) -COLUMN STORE
 4 +-GROUPING -COLUMN

Explanation:
The grouping method that uses the characteristics of column store tables is performed for table T1.

• GROUPING SET
Grouping processing is performed multiple times.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 238

Output example

<<Tree View>>
 1 QUERY : 1
 2 SELECT STATEMENT
 3 |-DERIVED TABLE(##DRVTBL_0000000001)
 4 | |-TABLE SCAN(ADBUSER01.T1)
 5 | +-GLOBAL HASH GROUPING -GROUPING SET
 6 +-GLOBAL HASH GROUPING

Explanation:
Grouping processing is performed multiple times by global hash grouping.

Note
GROUPING SET (grouping set information) might be output if multiple DISTINCT set functions are
specified with different arguments.

(14) HAVING clause specification
The following information is displayed:

• HAVING
The HAVING clause is specified. This information might also be displayed if a derived table is expanded even
though the HAVING clause is not specified.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 |-TABLE SCAN(ADBUSER01.T1)
 4 |-GLOBAL HASH GROUPING
 5 +-HAVING

Explanation:
The HAVING clause is specified in the SELECT statement.

(15) Sort processing
The following information is displayed:

• SORTING {BYTE|ISO}
• BYTE: Sorts by bytecode.

• ISO: Sorts by sort code (ISO/IEC 14651:2011 compliance).

Sort processing is performed according to the ORDER BY clause.
Note that this information might not be displayed even though the ORDER BY clause is specified.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 239

 3 |-CREATE LOCAL WORK TABLE(WORK TABLE 1)
 4 | |-TABLE SCAN(ADBUSER01.T1)
 5 | +-SORTING BYTE
 6 +-WORK TABLE SCAN(WORK TABLE 1)

Explanation:
Sort processing is performed according to the specified ORDER BY clause.

(16) Information about duplicate removal
The following information is displayed:

• DISTINCT
This item indicates that duplicate removal will be performed.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 |-CREATE LOCAL WORK TABLE(WORK TABLE 1)
 4 | |-KEY SCAN(ADBUSER01.T1)
 5 | +-SORTING BYTE -DISTINCT
 6 +-WORK TABLE SCAN(WORK TABLE 1)

Explanation:
The item indicating that duplicate removal will be performed during sort processing is output.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 |-CREATE LOCAL WORK TABLE(WORK TABLE 1)
 4 | |-KEY SCAN(ADBUSER01.T1) -DISTINCT
 5 | +-SORTING BYTE -DISTINCT
 6 +-WORK TABLE SCAN(WORK TABLE 1)

Explanation:
Items indicating that duplicate removal will be performed during key scan processing and sort processing are
included.

(17) SELECT deduplication method specification
The following information is displayed:

• SPECIFIC
SELECT deduplication method specification is enabled.
For details about the SELECT deduplication method specification, see Specification format and rules for query
specifications in the manual HADB SQL Reference.
Note that if DISTINCT described in (16) Information about duplicate removal is not output, SPECIFIC is not
output even if the SELECT deduplication method specification is specified.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 240

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 |-CREATE LOCAL WORK TABLE(WORK TABLE 1)
 4 | |-TABLE SCAN(ADBUSER01.T1)
 5 | +-SORTING BYTE -SPECIFIC -DISTINCT
 6 +-WORK TABLE SCAN(WORK TABLE 1)

Explanation:
The SELECT deduplication method specification specified in the SELECT statement is enabled.

(18) LIMIT clause specification
The following information is displayed:

• LIMIT [{offset|? PARAMETER},]{row_count|? PARAMETER}
• offset

A LIMIT clause specifying the offset for the first row to be returned is specified.
If the literal 0 is specified for the offset row count, no offset for the first row to be returned is displayed.

• row_count
A LIMIT clause specifying the maximum number of rows to be returned is specified.

• ? PARAMETER
A LIMIT clause containing dynamic parameters for both or either of the offset row count and limit row count
is specified.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 |-CREATE LOCAL WORK TABLE(WORK TABLE 1)
 4 | |-TABLE SCAN(ADBUSER01.T1)
 5 | |-SORTING BYTE
 6 | +-LIMIT ? PARAMETER,5
 7 |-WORK TABLE SCAN(WORK TABLE 1)
 8 +-LIMIT ? PARAMETER,5

Explanation:
A LIMIT clause containing a dynamic parameter for the offset row count and 5 for the limit row count is
specified.

(19) Specification of window functions
The following information is displayed:

• WINDOW
A window function is specified.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 241

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 |-CREATE LOCAL WORK TABLE(WORK TABLE 1)
 4 | |-TABLE SCAN(ADBUSER01.T1)
 5 | +-SORTING BYTE
 6 |-WORK TABLE SCAN(WORK TABLE 1)
 7 +-WINDOW

Explanation:
A window function is executed according to its specification.

(20) Table retrieval method
One of the following is displayed:

• TABLE SCAN
A table scan is performed in the table retrieval processing.

• INDEX SCAN(schema-name.table-identifier(query-name-or-correlation-name))
An index scan is performed in the table retrieval processing. If there is a query name or a correlation name, it is
displayed.

• KEY SCAN
A key scan is performed in the table retrieval processing.

For details about table scans, index scans, and key scans, see 5.1 How to retrieve tables.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-INDEX SCAN(ADBUSER01.T1)

Explanation:
An index scan is performed in the table T1 retrieval processing.

(21) Table-data storage format
The following information is displayed:

• COLUMN STORE
The table-data storage format is column store format.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-TABLE SCAN(ADBUSER01.T1) -COLUMN STORE

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 242

Explanation:
The table-data storage format of table T1 is column store format.

(22) Sequential execution
The following information is displayed:

• ORDER
Sequential execution, not out-of-order execution, is applied.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-NESTED LOOP JOIN
 4 |-TABLE SCAN(ADBUSER01.T2)
 5 +-INDEX SCAN(ADBUSER01.T1) -ORDER

Explanation:
In the table T1 retrieval processing, an index scan is performed using the sequential execution method.

(23) Index specification
One of the following is displayed:

• SPECIFIC
The index specification is enabled.

• SPECIFIC DISABLED
The index specification is disabled.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-INDEX SCAN(ADBUSER01.T1) -SPECIFIC

Explanation:
An index scan is performed in the table T1 retrieval processing with an index specification specified in the
SELECT statement enabled.

(24) Collecting cost information
The following information is displayed:

• USING COST
Cost information is collected for a table or index.

Output example

<<Tree View>>

 1 QUERY : 1

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 243

 2 SELECT STATEMENT
 3 +-TABLE SCAN(ADBUSER01.T3) -USING COST

Explanation:
Cost information was collected for the table T3.

(25) Work table scan
The following information is displayed:

• WORK TABLE SCAN(WORK TABLE work-table-number)
A work table is scanned. A unique work table number is assigned to each work table.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 |-SUBQUERY
 4 | +-CREATE GLOBAL WORK TABLE(WORK TABLE 1)
 5 | |-QUERY SCAN(QUERY 2)
 6 | +-SORTING BYTE
 7 +-INDEX SCAN(ADBUSER01.T1)
 8 +-SUBQUERY
 9 +-WORK TABLE SCAN(WORK TABLE 1)
 10
 11 QUERY : 2
 12 SUBQUERY
 13 +-TABLE SCAN(ADBUSER01.T2)

Explanation:
A work table is scanned in the subquery processing.

Note that you might encounter circumstances in which the row IDs of a table specified in a FROM clause are stored in
a work table created when executing an SQL statement that specifies an ORDER BY clause. In this case, data might be
retrieved from data pages using these row IDs immediately after the work table is retrieved. For details about the purposes
and columns of work tables, see 5.10 Considerations when executing an SQL statement that creates work tables.

(26) Query scan
The following information is displayed:

• QUERY SCAN(QUERY query-tree-number)
A query scan is performed.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-SUBQUERY HASH
 4 |-QUERY SCAN(QUERY 2)
 5 +-TABLE SCAN(ADBUSER01.T1)
 6
 7 QUERY : 2

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 244

 8 SUBQUERY HASH
 9 +-TABLE SCAN(ADBUSER01.T2)

Explanation:
A query scan is performed.
In this example, the query scan indicated as QUERY : 2 displayed in tree row number 7 is performed.
Example of the executed SELECT statement

SELECT * FROM "T1" WHERE "C1"=(SELECT "C2" FROM "T2" WHERE "C1"="T1"."C1")

(27) Table joining methods
One of the following is displayed:

• NESTED LOOP JOIN
A nested loop join is performed in the table join processing.

• HASH JOIN
A hash join is performed in the table join processing.
If HASH JOIN is followed by FILTER, a hash filter is applied during hash join.
If there is an = condition that compares columns in two tables, a hash join might be performed. If there are rows
that cannot be processed in the hash table area, work tables might be created.

For details about table joining methods, see 5.5 Table joining methods.

Output example (NESTED LOOP JOIN)

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-NESTED LOOP JOIN
 4 |-TABLE SCAN(ADBUSER01.T2)
 5 +-INDEX SCAN(ADBUSER01.T1) -ORDER

Explanation:

• A nested loop join is performed to join tables T1 and T2.

• If the table joining method is nested loop join, the information is displayed under NESTED LOOP JOIN in
order, beginning with the outer table. In this example, the information in tree row number 4 is for the outer
table and the information in tree row number 5 is for the inner table.

Output example (HASH JOIN)

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-HASH JOIN -FILTER
 4 |-TABLE SCAN(ADBUSER01.T1)
 5 +-TABLE SCAN(ADBUSER01.T2)

Explanation:

• A hash join is performed to join tables T1 and T2.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 245

• If the table joining method is hash join, information for the outer table and the inner table for hash join is
displayed in this order under HASH JOIN. In this example, the information in tree row number 4 is for the
outer table and the information in tree row number 5 is for the inner table.

• Because HASH JOIN is followed by FILTER in tree row number 3, a hash filter is applied during hash
join.

(28) Join method specification
Either of the following is displayed:

• SPECIFIC
Join method specification is enabled.

• SPECIFIC DISABLED
Join method specification is disabled.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-HASH JOIN -SPECIFIC
 4 |-TABLE SCAN(ADBUSER01.T1(A))
 5 +-TABLE SCAN(ADBUSER01.T2(B))

Explanation:
The join method specification specified in the SELECT statement is enabled, and a hash join was executed in
the join processing for the table.

(29) Scan information for table value constructors
The following information is displayed:

• TABLE VALUE CONSTRUCTOR SCAN
Table value constructors are scanned.

Output example

<<Tree View>>

 1 QUERY : 1
 2 SELECT STATEMENT
 3 +-NESTED LOOP JOIN
 4 |-TABLE SCAN(ADBUSER01.T1)
 5 +-DERIVED TABLE(DT)
 6 +-TABLE VALUE CONSTRUCTOR SCAN

Explanation:
Table value constructors are scanned.

6.1.5 Information displayed in the details view
The following information is displayed in the details view:

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 246

• Information about the table retrieval methods and indexes

• Information about the table joining methods

• Information about set operations

• Information about table function derived tables

• Information about subqueries

• Information about the grouping

Note that the details view is displayed only when there is detailed information for the query that is being displayed in
the query tree.

(1) Information related to table retrieval methods and indexes
The following shows an example of the output format for information related to table retrieval methods and indexes.

Output example

(a) Information related to table retrieval methods
One of the following is displayed as the information related to table retrieval methods:

• TABLE SCAN
A table scan is performed in the table retrieval processing.

• INDEX SCAN(schema-name.table-identifier(query-name-or-correlation-name))
An index scan is performed in the table retrieval processing. If there is a query name or a correlation name, it is
displayed.

• KEY SCAN
A key scan is performed in the table retrieval processing.

For details about table scans, index scans, and key scans, see 5.1 How to retrieve tables.

Output example

<<Detail >>

QUERY : 1
 3 INDEX SCAN(ADBUSER01.T1)
 INDEX NAME : IDX_C1C2
 INDEX TYPE : B-TREE
 INDEX COLUMN : C1 ASC (IN)
 INDEX COLUMN : C2 ASC (>)
 INDEX NAME : RIDX_C2

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 247

 INDEX TYPE : RANGE
 SKIP COND : CHUNK (HASH)
 INDEX COLUMN : C2

Explanation:
An index scan is performed in the table T1 retrieval processing.

(b) Information related to indexes
The following shows an output format for the information related to indexes.

Output format (B-tree index)

INDEX NAME : B-tree-index-name (uniqueness-constraint-information)
 INDEX TYPE : index-type
 INDEX COLUMN : indexed-column-name key-value-sort-order (range-search-conditi
on)

• uniqueness-constraint-information
If this B-tree index is a unique index, uniqueness constraint information is displayed. One of the following is
displayed:
UNIQUE: This unique index does not violate the uniqueness constraint.
UNIQUE INVALID: This unique index violates the uniqueness constraint.

• index-type
For a B-tree index, B-TREE is displayed as the index type.

• key-value-sort-order
Displays the sort order for the key values of the B-tree index that was specified when the B-tree index was
defined. One of the following is displayed:
ASC: The key values are sorted in ascending order.
DESC: The key values are sorted in descending order.

• range-search-condition
Displays one of the following as the range search condition:
=, <, <=, >, >=, =ANY, BETWEEN({<,<|<,<=|<=,<|<=,<=}), IN, LIKE, IS NULL

Rules for search condition output
• If no range search condition is specified for an indexed column, none is displayed.

• If IN table-subquery or quantified-predicate=SOME is specified as the range search condition, =ANY is
displayed.

• If the left side of the comparison predicate is not a single column specification, the HADB server performs
equivalent exchange of the search condition. The comparison operator of the comparison predicate after
equivalent exchange is output as the search condition.
Example:
Search condition specified in WHERE clause of SELECT statement
WHERE 10 < C1
Search condition after equivalent exchange by HADB server
WHERE C1 > 10
Information output as search condition in access path information
INDEX COLUMN: C1 ASC (>)

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 248

Output format (text index)

INDEX NAME : text-index-name
 INDEX TYPE : index-type
 INDEX COLUMN : indexed-column-name

• index-type
For a text index, TEXT is displayed as the index type.

Output format (range index)

INDEX NAME : range-index-name
 INDEX TYPE : index-type
 SKIP COND : range-index-condition-type
 INDEX COLUMN : indexed-column-name

• index-type
For a range index, RANGE is displayed as the index type.

• range-index-condition-type
Displays one of the following as the range index condition to be used:

• CHUNK: The chunk skip condition is used.

• SEGMENT: The segment skip condition is used.

• CHUNK AND SEGMENT: The chunk skip condition and the segment skip condition are both used.

When a hash join is performed, (HASH) is output if a range index that is defined for a column that is to be
matched with a hash table is used. When hash execution is performed as the processing method for a subquery,
(HASH) is output if a range index that is defined for a column that is to be matched with a hash table is used.
Output example

SKIP COND : CHUNK (HASH)

For details about a hash join, see 5.5.2 About hash join.
For details about hash execution as the processing method for a subquery, see either (4) Hash execution in 5.6.1 
Methods for processing subqueries that do not contain an external reference column or (3) Hash execution in
5.6.3 Methods for processing subqueries that contain an external reference column.

Output example

<<Detail >>

QUERY : 1
 3 INDEX SCAN(ADBUSER01.T1)
 INDEX NAME : IDX_C1C2 ...1
 INDEX TYPE : B-TREE ...2
 INDEX COLUMN : C1 ASC (IN) ...3
 INDEX COLUMN : C2 ASC (>) ...3
 INDEX NAME : RIDX_C2 ...4
 INDEX TYPE : RANGE ...5
 SKIP COND : CHUNK (HASH) ...6
 INDEX COLUMN : C2 ...7

Explanation:

1. Name of the index to be used

2. Type of the index displayed by INDEX NAME in 1 In this example, IDX_C1C2 is a B-tree index because
B-TREE is displayed.
The information displayed in 1 and 2 indicates that an index scan is performed using B-tree index IDX_C1C2.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 249

3. Information about B-tree index IDX_C1C2:
C1, C2: Indexed column
ASC: Key value sort order
(IN), (>): Range search condition specification

4. Name of the index to be used

5. Type of the index displayed by INDEX NAME in 4 In this example, RIDX_C2 is a range index because
RANGE is displayed.

6. Type of range index condition to be used
CHUNK: Indicates that range index RIDX_C2 is used for a chunk skip condition.
(HASH): When a hash join is performed, (HASH) indicates that the range index RIDX_C2 that is defined
for a column that is to be matched with a hash table is used. When hash execution is performed as the
processing method for a subquery, (HASH) indicates that the range index RIDX_C2 that is defined for a
column that is to be matched with a hash table is used.

7. Indexed column of range index RIDX_C2

Note
• Information about the B-tree index is displayed when an index scan or a key scan is performed for table

retrieval.
If there are multiple indexed columns, information is displayed for each indexed column. In such a case,
the information is displayed in the order the indexed columns were defined in the CREATE INDEX
statement.

• Information about a text index is displayed when an index scan is implemented as the table retrieval
method.

• Information about a range index is displayed whenever there is a range index condition.

(2) Information related to table joining methods
The following shows an example of the output format for information related to table joining methods.

Example of the output format

<<Detail >>

QUERY : 1
 3 HASH JOIN ← Table joining method
 JOIN TYPE : INNER JOIN ← Join type
 BUILD COLUMN : ADBUSER01.T1.C3 ← Hash retrieval information
 PROBE COLUMN : ADBUSER01.T2.C3 ← Hash retrieval information

(a) Table joining method
One of the following is displayed as the table joining method:

• NESTED LOOP JOIN
A nested loop join is performed in the table join processing.

• HASH JOIN
A hash join is performed in the table join processing.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 250

If there is an = condition that compares columns in two tables, a hash join might be performed. If there are rows
that cannot be processed in the hash table area, work tables might be created.

For details about table joining methods, see 5.5 Table joining methods.

Output example

<<Detail >>

QUERY : 1
 3 HASH JOIN
 JOIN TYPE : INNER JOIN
 BUILD COLUMN : ADBUSER01.T1.C3
 PROBE COLUMN : ADBUSER01.T2.C3

Explanation:
A hash join is applied as the table joining method.

(b) Join type (JOIN TYPE)
One of the following is displayed as JOIN TYPE:

• CROSS JOIN
A cross join is specified.

• INNER JOIN
An inner join is specified.

• LEFT OUTER JOIN
An outer join performed by a LEFT OUTER JOIN is specified.

• RIGHT OUTER JOIN
An outer join performed by a RIGHT OUTER JOIN is specified.

• FULL OUTER JOIN(LEFT)
An outer join performed by a FULL OUTER JOIN is specified.

• FULL OUTER JOIN(RIGHT)
An outer join performed by a FULL OUTER JOIN is specified.

For details about each join method, see the topic Specification format and rules for joined tables in the manual HADB
SQL Reference.

Output example

<<Detail >>

QUERY : 1
 3 HASH JOIN
 JOIN TYPE : INNER JOIN
 BUILD COLUMN : ADBUSER01.T1.C3
 PROBE COLUMN : ADBUSER01.T2.C3

Explanation:
An inner join is performed.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 251

Important
INNER JOIN or CROSS JOIN might be converted to a comma join during execution of an SQL
statement. In this case, the join type (JOIN TYPE) is not displayed. For details about a comma join, see
Explanation of specification format in Specification format and rules for FROM clauses in the manual
HADB SQL Reference.

The output rules are as follows:

• For an SQL statement that creates an internal derived table, the results of expanding the internal derived table are
output as the table name and correlation name of the outer table columns and inner table columns for the hash join.
For details about internal derived tables and the internal derived table expansion rules, see Internal derived tables
in the manual HADB SQL Reference.

(c) Hash retrieval information (BUILD COLUMN and PROBE COLUMN)
When hash join is performed, the following information is displayed as hash retrieval information:

• BUILD COLUMN
Information about the joined columns in the outer table

• PROBE COLUMN
Information about the joined columns in the inner table

Output example

<<Detail >>

QUERY : 1
 3 HASH JOIN
 BUILD COLUMN : ADBUSER01.T1.C1(CREATE FILTER 1) ...1
 PROBE COLUMN : ADBUSER01.T2.C1(USE FILTER 1) ...2

Explanation:

1. Column name ADBUSER01.T1.C1 of the joined column in the outer table during hash join is displayed.

2. Column name ADBUSER01.T2.C1 of the joined column in the inner table during hash join is displayed.

If a hash filter is applied during hash join, hash filter information is displayed in the underlined portion.

The output rules are as follows:

• For BUILD COLUMN or PROBE COLUMN, the column name is displayed in one of the following formats. Output
of a correlation name has the highest priority among those column names. If a column name cannot be displayed,
three asterisks (***) are displayed.

• table-name.column-name

• query-name.column-name

• correlation-name.column-name

• If a hash filter is applied during hash join, (CREATE FILTER XXXXX) is displayed for BUILD COLUMN. XXXXX
is the number of the hash filter created based on the column value for the displayed column name.
(USE FILTER XXXXX) is displayed for PROBE COLUMN. XXXXX is the number of the hash filter to be used.

• For an SQL statement that creates an internal derived table, the results of expanding the internal derived table are
output as the table name and correlation name of the outer table columns and inner table columns for the hash join.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 252

For details about internal derived tables and the internal derived table expansion rules, see Internal derived tables
in the manual HADB SQL Reference.

(3) Information related to set operations
In information related to set operations, the type of set operation is output in the following format:

SET OPERATION TYPE:set-operation-type

One of the following is output as the set operation type:

• UNION ALL
The set operation UNION ALL is specified.

• UNION DISTINCT
The set operation UNION DISTINCT is specified.

• EXCEPT ALL
The set operation EXCEPT ALL is specified.

• EXCEPT DISTINCT
The set operation EXCEPT DISTINCT is specified.

• INTERSECT ALL
The set operation INTERSECT ALL is specified.

• INTERSECT DISTINCT
The set operation INTERSECT DISTINCT is specified.

The following is an example of the output format of information related to set operations:

Output example

<<Detail >>

QUERY : 0
 3 SET OPERATION
 SET OPERATION TYPE : UNION ALL

Explanation:
The set operation UNION ALL is specified.

Notes
• When a set operation that specifies ALL and one that specifies DISTINCT are specified consecutively in an

SQL statement, access path information might be output that interprets the ALL set operation as a DISTINCT
set operation. In this case, the set operations that are consecutively specified will appear combined in the output
shown in (4) Specification of set operations in 6.1.4 Information displayed in the tree view. The corresponding
information related to the set operations will also be combined.

• If both of the following conditions are met, access path information might be output that interprets the UNION
DISTINCT set operation as a UNION ALL set operation.

• Set operations that are specified consecutively in an SQL statement contain set operations with UNION,
UNION ALL, and UNION DISTINCT specified.

• Hash execution is applied as the method for processing the set operation.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 253

In this case, the set operations that are consecutively specified will appear combined in the output shown in (4) 
Specification of set operations in 6.1.4 Information displayed in the tree view. The corresponding information
related to the set operations will also be combined.

(4) Information about table function derived tables
In the information about table function derived tables, the names of system-defined functions to be executed are output
in the following format:

FUNCTION NAME : schema-name.system-defined-function-name

Either of the following is output as the system-defined function:

• ADB_AUDITREAD
The ADB_AUDITREAD function is specified.

• ADB_CSVREAD
The ADB_CSVREAD function is specified.

The following is an example of the output format of the information about table function derived tables:

Output example

<<Detail >>

QUERY : 1
 3 TABLE FUNCTION DERIVED TABLE(T5)
 FUNCTION NAME : MASTER.ADB_AUDITREAD

Explanation:
The ADB_AUDITREAD function is specified.

(5) Information about subqueries
If hash execution is applied during subquery processing, hash retrieval information is output in information about
subqueries. The following information is output as hash retrieval information:

• BUILD COLUMN
If hash execution is applied as the method for processing subqueries that do not contain external reference columns,
information about the column resulting from the subquery is output.
If hash execution is applied as the method for processing subqueries that contain external reference columns,
information about the column to be compared with the external reference column specified in the subquery is output.

• PROBE COLUMN
If hash execution is applied as the method for processing subqueries that do not contain external reference columns,
column information to be compared with the result of the subquery specified in the search condition is output.
If hash execution is applied as the method for processing subqueries that contain external reference columns,
information about the external reference column specified in the subquery is output.

Output example

<<Detail >>

QUERY : 1
 3 SUBQUERY HASH

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 254

 BUILD COLUMN : ADBUSER01.T2.C1(CREATE FILTER 1) ...1
 PROBE COLUMN : ADBUSER01.T1.C1(USE FILTER 1) ...2

Explanation:
In the preceding example, hash execution is applied as the method for processing subqueries that do not contain
external reference columns.

1. Column name ADBUSER01.T2.C1 of the column resulting from the subquery is output.

2. Column name ADBUSER01.T1.C1 of the column to be compared with the result of the subquery specified
in the search condition is output.

If a hash filter is applied during hash execution, hash filter information is output in the underlined portion.

The output rules are as follows:

• For BUILD COLUMN or PROBE COLUMN, the column name is displayed in one of the following formats. Output
of a correlation name has the highest priority among those column names. If a column name cannot be displayed,
three asterisks (***) are displayed.

• table-name.column-name

• query-name.column-name

• correlation-name.column-name

• If a hash filter is applied during hash execution, (CREATE FILTER XXXXX) is displayed for BUILD COLUMN.
XXXXX is the number of the hash filter created based on the column value for the displayed column name.
(USE FILTER XXXXX) is displayed for PROBE COLUMN. XXXXX is the number of the hash filter to be used.

• When an internal derived table is expanded by using an SQL statement that creates an internal derived table, the
results of expanding the internal derived table are output as the table name and correlation name output for BUILD
COLUMN and PROBE COLUMN. For details about internal derived tables and the internal derived table expansion
rules, see Internal derived tables in the manual HADB SQL Reference.

(6) Information about the grouping
When the grouping processing is performed multiple times, information about the grouping (grouping set information)
is output in the following format:

GROUPING SET : {table-name|query-name|correlation-name}.grouping-column-name-1-for-gr
ouping-process-1
 {table-name|query-name|correlation-name}.grouping-column-name-2-for-gr
ouping-process-1
 :
GROUPING SET : {table-name|query-name|correlation-name}.grouping-column-name-1-for-gr
ouping-process-2
 {table-name|query-name|correlation-name}.grouping-column-name-2-for-gr
ouping-process-2
 :
GROUPING SET : {table-name|query-name|correlation-name}.grouping-column-name-1-for-gr
ouping-process-N
 {table-name|query-name|correlation-name}.grouping-column-name-2-for-gr
ouping-process-N
 :

The following shows an example of the output format of the information about the grouping.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 255

Example of the output format

<<Detail >>
QUERY : 1
 5 GLOBAL HASH GROUPING
 GROUPING SET : ADBUSER01.T1.C1
 ADBUSER01.T1.C2
 ADBUSER01.T1.C3
 GROUPING SET : ADBUSER01.T2.C1
 ADBUSER01.T2.C2
 GROUPING SET : ADBUSER01.T3.C1
 ADBUSER01.T3.C3

Explanation:
A grouping column name is output for each grouping.
If no grouping column name can be output, three asterisks (***) are output.

The output rules are as follows:

• When an internal derived table is expanded by using an SQL statement that creates an internal derived table, the
results of expanding the internal derived table are output as the table name and correlation name that are output in
the information about the grouping. For details about internal derived tables and the internal derived table expansion
rules, see Internal derived tables in the manual HADB SQL Reference.

6.1.6 Information output in identification information view (SQL statement
identification information)

The identification information view displays SQL statement identification information that is used to identify the SQL
statement for which HADB acquired access path statistical information. Based on the information displayed in this view,
you can identify the correlation between the access path information and the access path statistical information.

For details about access path statistical information, see Examples of output of and output items for access path statistical
information in the HADB Setup and Operation Guide.

The following is an example of the information displayed in the identification information view.

Output example

<<SQL Info >>

Version : 03-01(Apr 23 2015 15:32:27)
Transaction ID : 1
Connection Number : 1
SQL Serial Number : 1

Explanation:

• Version
The version of the HADB server that ran the SQL statement for which the access path statistical information
was acquired.
The information in parentheses is additional version information.

• Transaction ID
The transaction ID of the SQL statement for which the access path statistical information was acquired.

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 256

• Connection Number
The connection sequence number of the SQL statement for which the access path statistical information was
acquired.

• SQL Serial Number
The SQL statement sequence number of the SQL statement for which the access path statistical information was
acquired.

Note
This information corresponds to the following information in the SQL statement execution information
output before the access path statistical information. The header name for the information is in parentheses.

• Transaction ID (tran_id)

• Connection sequence number (con_num)

• SQL statement sequence number (sql_serial_num)

For details about SQL statement execution information, see SQL statement execution information under
Information that is output as SQL trace information in the HADB Setup and Operation Guide.

6.1.7 Information displayed for an access path (alphabetical order)
The following table lists in alphabetical order and describes the information that is displayed for an access path.

Table 6-1: Information displayed for an access path (alphabetical order)

First letter Output information Description Classification

B BUILD COLUMN If hash join is applied as the table joining method,
information about the joined columns in the outer
table is output. If a hash filter is applied, hash filter
information is also output.

Hash retrieval
information (BUILD
COLUMN and PROBE
COLUMN)

If hash execution is applied as the method for
processing subqueries that do not contain external
reference columns, information about the column
resulting from the subquery is output.
If hash execution is applied as the method for
processing subqueries that contain external
reference columns, information about the column to
be compared with the external reference column
specified in the subquery is output.
If a hash filter is applied, hash filter information is
also output.

Information about
subqueries

C CHUNK The chunk skip condition is used. Information related to
indexes

CHUNK AND SEGMENT The chunk skip condition and the segment skip
condition are both used.

COLUMN The grouping method that uses the characteristics of
column store tables is performed.

Grouping methods

COLUMN STORE The table-data storage format is column store format. Table-data storage format

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 257

First letter Output information Description Classification

CREATE FILTER The number of the hash filter created based on the
column value for the column name shown in BUILD
COLUMN is output.

Hash retrieval
information (BUILD
COLUMN and PROBE
COLUMN)

Information about
subqueries

CREATE GLOBAL WORK TABLE
(WORK TABLE work-table-number)

A global work table is created. Work table creation
information

CREATE LOCAL WORK TABLE (WORK
TABLE work-table-number)

A local work table is created.
A unique work table number is assigned to each work
table.

CROSS JOIN A cross join is specified. Information related to
table joining methods

D DELEGATION Subquery processing delegation specification is
enabled.

Subquery processing
delegation specification

DELETE STATEMENT A DELETE statement is executed. SQL statements executed

DERIVED TABLE(correlation-name,
query-name, or table-identifier))

A derived table, viewed table, or query name is
specified.

Specification of derived
tables

DISTINCT This item indicates that duplicate removal will be
performed.

Information about
duplicate removal

F FILTER A hash filter is applied during hash execution for the
subquery processing method.

Subquery processing
methods

A hash filter is applied during hash join for the table
joining method.

Table joining method

FULL OUTER JOIN(LEFT)
FULL OUTER JOIN(RIGHT)

An outer join performed by a FULL OUTER JOIN
is specified.

Information related to
table joining methods

FUNCTION NAME The type of system-defined function that is executed. Information about table
function derived tables

G GLOBAL HASH GROUPING Global hash grouping is executed. Work tables might
be created if there are rows that cannot be processed
in the hash table area.

Grouping methods

GLOBAL HASH UNIQUE Duplication in the retrieval results has been
eliminated by using one of the following methods:
• Hash execution for the method for processing the

set operation
• Hash execution for the method for processing
SELECT DISTINCT

• Global hash grouping for the grouping method

Work tables are created if there are rows that cannot
be processed in the hash table area.

Processing method for
duplicate removal

GROUPING Grouping that does not use work tables is performed. Grouping methods

GROUPING SET Grouping processing is performed multiple times. • Grouping methods
• Information about the

grouping

H (HASH) When a hash join is performed, (HASH) indicates
that the range index that is defined for a column that
is to be matched with a hash table is used. When hash

Information related to
indexes

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 258

First letter Output information Description Classification

execution is performed as the processing method for
a subquery, (HASH) indicates that the range index
that is defined for a column that is to be matched with
a hash table is used.

HASH JOIN A hash join is performed in the table join processing.
If there is an = condition that compares columns in
two tables, a hash join might be performed. If there
are rows that cannot be processed in the hash table
area, work tables might be created.

• Table joining method
(tree view)

• Table joining method
(details view)

HAVING The HAVING clause is specified. This item might
also be displayed when a derived table is expanded
even though the HAVING clause is not specified.

HAVING clause
specification

I INDEX The grouping method that uses the characteristics of
B-tree indexes is performed.

Grouping methods

INDEX COLUMN Information related to indexed columns.
For B-tree indexes, the name of the indexed column,
the key value sort order, and the search condition are
output.
For text indexes and range indexes, the name of the
indexed column is output.

Information related to
indexes

INDEX NAME Indicates the index name.

INDEX SCAN(schema-name.table-
identifier(query-name-or-correlation-
name))

An index scan is performed in the table retrieval
processing. If there is a query name or a correlation
name, it is displayed.

• Table retrieval
method (tree view)

• Table retrieval
method (details view)

INDEX TYPE The index type (B-tree index, text index, or range
index).

Information related to
indexes

INNER JOIN An inner join is specified. Information related to
table joining methods

INSERT STATEMENT An INSERT statement is executed. SQL statements executed

J JOIN TYPE Join type Information related to
table joining methods

K KEY SCAN A key scan is performed in the table retrieval
processing.

• Table retrieval
method (tree view)

• Table retrieval
method (details view)

L LIMIT offset,row_count The LIMIT clause is specified. If the offset row
count is not specified, the offset row count is not
displayed.
If dynamic parameters are specified for either or both
of the offset row count and limit row count, ?
PARAMETER is displayed.

LIMIT clause
specification

LEFT OUTER JOIN An outer join performed by a LEFT OUTER JOIN
is specified.

Information related to
table joining methods

LOCAL HASH GROUPING Local hash grouping is performed. If there are rows
that cannot be processed in the hash grouping area,
work tables might be created.

Grouping methods

N NESTED LOOP JOIN A nested loop join is performed in the table join
processing.

• Table joining
methods (tree view)

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 259

First letter Output information Description Classification

• Table joining
methods (details
view)

O ORDER Sequential execution, not out-of-order execution, is
applied.

Sequential execution

P PROBE COLUMN If hash join is applied as the table joining method,
information about the joined columns in the inner
table is output. If a hash filter is applied, hash filter
information is also output.

Hash retrieval
information (BUILD
COLUMN and PROBE
COLUMN)

If hash execution is applied as the method for
processing subqueries that do not contain external
reference columns, column information to be
compared with the result of the subquery specified
in the search condition is output.
If hash execution is applied as the method for
processing subqueries that contain external
reference columns, information about the external
reference column specified in the subquery is output.
If a hash filter is applied, hash filter information is
also output.

Information about
subqueries

PURGE CHUNK STATEMENT A PURGE CHUNK statement is executed. SQL statements executed

Q QUERY A query other than a subquery or a derived table is
specified.

Query types

QUERY SCAN(QUERY query-tree-
number)

A query scan is performed. Query scan

R RECURSIVE This item indicates that a recursive query will be run. Specification of set
operations

RIGHT OUTER JOIN An outer join performed by a RIGHT OUTER JOIN
is specified.

Information related to
table joining methods

S SEGMENT The segment skip condition is used. Information related to
indexes

SELECT STATEMENT A SELECT statement is executed. SQL statements executed

SET OPERATION A set operation is specified. Specification of set
operations

SET OPERATION TYPE The type of set operation that is executed. Information related to set
operations

SKIP COND Type of range index condition. Information related to
indexes

SORT GROUPING Sort grouping is performed. Grouping methods

SORTING {BYTE|ISO} Sort processing by the ORDER BY clause is
performed. This information might not be displayed
even though the ORDER BY clause is specified.

Sort processing

SPECIFIC Set operation method specification is enabled. Set operation method
specification

Subquery processing method specification is
enabled.

Subquery processing
method specification

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 260

First letter Output information Description Classification

The grouping method specification specified in the
GROUP BY clause is enabled.

Grouping methods

SELECT deduplication method specification is
enabled.

SELECT deduplication
method specification

The index specification is enabled. Index specification

Join method specification is enabled. Join method specification

SPECIFIC DISABLED The index specification is disabled. Index specification

The join method specification is disabled. Join method specification

SUBQUERY A subquery processing method other than nested
loop execution or hash execution is applied.

Subquery processing
methods

SUBQUERY HASH Hash execution is applied as the subquery processing
method.

SUBQUERY LOOP Nested loop execution is applied as the subquery
processing method.

T TABLE FUNCTION DERIVED
TABLE(correlation name)

A table function derived table is specified. Specification of table
function derived table

TABLE SCAN A table scan is performed in the table retrieval
processing.

• Table retrieval
method (tree view)

• Table retrieval
method (details view)

TABLE VALUE CONSTRUCTOR SCAN Table value constructors are retrieved. Information retrieved for
table value constructors

U UNIQUE This unique index does not violate the uniqueness
constraint.

Information related to
indexes

UNIQUE INVALID This unique index violates the uniqueness constraint.

UPDATE STATEMENT An UPDATE statement is executed. SQL statements executed

USE FILTER The number of the hash filter to be used is output. Hash retrieval
information (BUILD
COLUMN and PROBE
COLUMN)

Information about
subqueries

USING CACHE Cache is used to store the results of a subquery. Subquery cache usage
information

USING COST Cost information is collected in relation to a table or
index.

Collecting cost
information

W WINDOW A window function is specified. Specification of window
functions

WORK TABLE SCAN(WORK TABLE
work-table-number)

A work table is scanned. A unique work table
number is assigned to each work table.

Work table scan

6. Tuning Application Programs

Hitachi Advanced Database Application Development Guide 261

This chapter explains how to create application programs that use the JDBC driver. For details about
how to set up an environment for the JDBC driver, see 3. Setting Up an Environment for the JDBC
Driver.

Part 3: Application Program Creation (JDBC)

7 Creating Application Programs

Hitachi Advanced Database Application Development Guide 262

7.1 JDBC driver provided by HADB

This section explains the scope of the JDBC standard with which the JDBC driver provided by HADB is compliant.
This section also explains the package name and directory structure of the JAR file.

7.1.1 Scope of JDBC standards compliance
HADB is implemented with the Type 4 JDBC driver. The following table shows the scope of the JDBC standards with
which the HADB JDBC driver is compliant.

Table 7-1: Scope of the JDBC standards with which the HADB JDBC driver is compliant

No. JDBC standard Function Complia
nt

1 The JDBCTM API, Version 1.20 (JDBC 1.2 API) Driver interface Y

2 Connection interface Y

3 Statement interface Y

4 PreparedStatement interface Y

5 CallableStatement interface N

6 ResultSet interface Y

7 DatabaseMetaData interface Y

8 ResultSetMetaData interface Y

9 Blob interface N

10 Array interface N

11 SQLException interface Y

12 SQLWarning interface Y

13 The JDBCTM 2.1 API, Version 1.1 (the JDBC 2.1 Core
API)

Result set extensions L#1

14 Batch updating Y

15 Support for persistent Java objects N

16 Addition of JDBC SQL data types N

17 Custom mapping of data types N

18 The JDBC 2.0 Standard Extension API, Version 1.0 (the
JDBC 2.0 Optional Package API)

JNDI Y

19 Connection pool Y

20 Distributed transactions (JTA support) N

21 Row sets N

22 JDBCTM 3.0 Specification (JDBC 3.0 API) Save points N

23 Enhancement of the connection pool function N

24 Parameter metadata Y

25 Automatic generation keys N

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 263

No. JDBC standard Function Complia
nt

26 Concurrent opening of multiple result sets N

27 Use of parameter names in CallableStatement N

28 Holdable cursors Y

29 BOOLEAN type N

30 Data manipulation in the Blob class N

31 Reference type N

32 DATALINK and URL types N

33 JCA-related architectures N

34 API for adding database metadata Y

35 JDBCTM 4.0 Specification (JDBC 4.0 API) Automatic loading of java.sql.Driver Y

36 ROWID data type N

37 National character data type N

38 Enhancement of BLOB and CLOB functions N

39 XML support N

40 Wrapper pattern Y

41 SQL exception extensions Y

42 Connection management L#2

43 Addition of scalar functions L#3

44 API for adding database metadata Y

45 JDBCTM 4.1 Specification (JDBC 4.1 API) try-with-resources statement Y

46 Java data type of conversion target of getObject
method

L#4

47 Acquisition of parent logger N

48 Schema specification N

49 Closing and timing out physical connections N

50 Closing Statement objects when dependent objects
are closed

Y

51 API that adds database metadata Y

52 JDBCTM 4.2 Specification (JDBC 4.2 API) REF CURSOR N

53 SQLType interface N

54 JDBCType enumerator (Enum) N

55 Large update counts Y

56 API that adds database metadata Y

Legend:
Y: Supported

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 264

L: Limited support
N: Not supported

#1
Only the scroll function is supported.

#2
Only Connection#isValid() and Statement#isPoolable() are supported.

#3
Only CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, and EXTRACT are supported.

#4
A getObject method of the ResultSet interface. This method only supports conversion to some Java data
types. For details, see 8.5.43 getObject(int columnIndex,Class<T> type).

Hereafter, the term JDBC driver refers to the Type 4 JDBC driver.

7.1.2 Package name and directory structure of the JAR file
The JAR file's package name and directory structure are as follows:

• Package name: com.hitachi.hadb.jdbc
• Directory structure: com/hitachi/hadb/jdbc/

Note
HADB and hadb are acronyms for Hitachi Advanced Database.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 265

7.2 Basic procedure for application program processing

The following figure shows the basic procedure for using an application program to manipulate a database.

Figure 7-1: Basic procedure for using an application program to manipulate a database

Explanation:

1. Use the getConnection method of the DriverManager or DataSource class to connect to the HADB
server. For details about how to connect to the HADB server, see 7.3 How to connect to the HADB server.

2. Execute SQL statements to manipulate data. If you execute a SELECT statement, see 7.4 Retrieving data
(executing the SELECT statement).
If you execute an INSERT, UPDATE, or DELETE statement, see 7.5 Adding, updating, or deleting data
(executing the INSERT, UPDATE, or DELETE statement).

3. Use the close method of the Connection object to disconnect from the HADB server.

The JDBC API packages are explained in detail beginning from 8. The JDBC 1.2 API.

■ Notes about creating multithreaded applications
When all of the following conditions are met, a wait condition might arise due to serialization.

• The application is designed to use multiple Statement objects created from the same Connection object
in different threads.

• SQL statements are executed concurrently using these Statement objects.

Because this wait condition occurs before the SQL statements are executed, it is not included in the timer monitoring
time for the SQL execution processing. This means that a timeout error might not occur even if the timer monitoring
time specified in the adb_clt_rpc_sql_wait_time property or by the setQueryTimeout method is
exceeded.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 266

7.3 How to connect to the HADB server

You must first connect to the HADB server to access the HADB database. There are two ways to connect to the HADB
server:

• Use the getConnection method of the DriverManager class.

• Use the getConnection method of the DataSource class.

Note that you must have the CONNECT privilege to execute the getConnection method.

The following subsections provide details about both methods.

7.3.1 Using the getConnection method of the DriverManager class to
connect to the HADB server

Connect to the HADB server by executing the getConnection method of the DriverManager class. Before the
getConnection method is executed, the Driver class is automatically registered on the Java Virtual Machine
(JVM). (You can also manually perform registration. For details, see (1) How to register the Driver class into the Java
Virtual Machine (JVM).) You can then execute the getConnection method to connect to the HADB server.

The following subsections explain the steps.

(1) How to register the Driver class into the Java Virtual Machine (JVM)
Register the Driver class into the Java Virtual Machine (JVM). Note that when you register the Driver class into
the Java Virtual Machine (JVM), you need a driver name (package-name.class-name). The package name and class
name of the JDBC driver are as follows:

• Package name: com.hitachi.hadb.jdbc
• Class name: HADBDriver

Note
HADB and hadb are acronyms for Hitachi Advanced Database.

There are three ways to register the Driver class, as shown below.

■ Method 1 (using the forName method of the Class class)
Execute the forName method of the Class class within the application as follows:

Class.forName("com.hitachi.hadb.jdbc.HADBDriver");

■ Method 2 (using the system properties)
Specify the following value in the Java Virtual Machine's (JVM) system property (jdbc.drivers):

System.setProperty("jdbc.drivers", "com.hitachi.hadb.jdbc.HADBDriver");

■ Method 3 (using the operation settings file for the Java Virtual Machine)
This method is applicable only to Java Applets.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 267

Specify the information provided below in the JAVA_HOME\.hotjava\properties file (JAVA_HOME
depends on the Java execution environment). If you register multiple JDBC drivers, delimit then with the colon (:).

jdbc.drivers="com.hitachi.hadb.jdbc.HADBDriver"

(2) Connecting to the HADB server with the getConnection method
Connect to the HADB server by executing the getConnection method of the DriverManager class. When a
connection to the HADB server is established successfully, the JDBC driver returns a reference to a Connection
class instance as the result of executing the method. If connection establishment with the HADB server fails, as in the
following cases, the method throws an SQLException:

• Required connection information is not specified in the arguments.

• Specified connection information is invalid.

• Connection cannot be established (for example, because the HADB server at the connection destination has not been
started).

The getConnection method is provided in the following three formats, each with its own set of arguments (url,
user, password, and info) that specify information about the connection to the HADB server:

• public static Connection getConnection(String url)
• public static Connection getConnection(String url, String user, String password)
• public static Connection getConnection(String url, Properties info)

The following subsections explain the values to be specified in these arguments.

(a) Values to be specified in the url argument (specifying the URL for the connection)
You specify in the url argument the URL to be used for the connection. The following shows the URL specification
format:

jdbc:hadb[://[host][:port]/[?property=value[&property=value]...]]

Note
HADB and hadb are acronyms for Hitachi Advanced Database.

Examples of URL specification
• Example 1: Omitting the property

jdbc:hadb://localhost:23650/

• Example 2: Specifying one property

jdbc:hadb://localhost:23650/?adb_clt_ap_name=AP001

• Example 3: Specifying multiple properties

jdbc:hadb://localhost:23650/?methodtrace=ON&tracenum=600
&sqlwarningkeep=FALSE&user=ADBUSER01&password=password01&adb_clt_ap_name=AP001

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 268

URL specification rules
• Spaces are not allowed within an item or between items in the URL argument.

• Each item name is case sensitive.

• Specification of an item enclosed in square brackets ([]) is optional.

• Specify a question mark (?) before specifying the first property (property) and use the ampersand (&) as the
delimiter between properties.

• If the same property is specified more than once, the first value specified takes effect.

• Ampersands (&) cannot be used as property values. If a password contains an ampersand, use another connection
method because the password property cannot be specified in a URL. For details about passwords in HADB,
see the topic Password specification rules in the HADB Setup and Operation Guide.

• When an invalid value is specified in a property in a URL, SQLException will not be thrown if the correct
value is specified for a user property of the same name.

Explanation of each URL item

• jdbc:hadb
This item consists of the protocol name and subprotocol name. You must specify this item. This item is case sensitive.

• host
Specifies the host name of the HADB server at the connection destination. This host name is used for communication
between the HADB client and the HADB server.
You can use other methods of specifying the HADB server's host name. For details about other specification methods
and priorities, see 7.3.3 Connection information priorities.
If the getConnection method is executed with no host name specified, the method throws an SQLException.
In a cold standby configuration, specify the alias IP address used for communication between the HADB server and
HADB client.

Multi-node function:
When you use the multi-node function, specify the alias IP address that is used for communication between the
HADB server and the HADB client.

• port
Specifies the port number of the HADB server that is used for communication between the HADB client and the
HADB server.
You can use other methods of specifying the HADB server's port number. For details about other specification
methods and priorities, see 7.3.3 Connection information priorities.
If the getConnection method is executed with no port number specified, the method throws an
SQLException.

• property=value
Specifies a property (property) and a value (value) for that property.
The following table lists and describes the properties that can be specified in the url argument.

Table 7-2: Properties that can be specified in the url argument

No. Property name Description

1 user Specifies the authorization identifier to be used to connect to the HADB server.
For the naming rules for authorization identifiers, see the topic Specifying names in
the manual HADB SQL Reference.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 269

No. Property name Description

You can use other methods of specifying the authorization identifier to be used to
connect to the HADB server. For the specification priorities, see 7.3.3 Connection
information priorities.
If the getConnection method is executed with no authorization identifier
specified, the method throws an SQLException.

2 password Specifies a password for the authorization identifier that is to be used to connect to
the HADB server.

3 encodelang Specifies the conversion character set to be used for character encoding conversion
processing when the String class is used to transfer data with the HADB server.
Select a supported conversion character set from the list of Supported encodings in
Internationalization support in the JavaTM Platform, Standard Edition JDK
document.
If this specification is omitted, the character encoding will be converted using the
supported conversion character set indicated in Table 7-15: Names of the character
sets supported for the HADB server's character encoding. Note that Java Virtual
Machine's (JVM) default conversion character set is used to convert the following
values:
• Application identifiers (such as those specified with the adb_clt_ap_name

user property)
• Authorization identifiers or passwords (such as those specified with the
getConnection method)

Specify this property only if you want to use a character set other than the supported
conversion character set shown in Table 7-15: Names of the character sets supported
for the HADB server's character encoding. If you already use the supported
conversion character set indicated in Table 7-15: Names of the character sets
supported for the HADB server's character encoding for conversion, you do not need
to specify this property.

4 methodtrace Specifies whether JDBC interface method traces are to be obtained.
ON: Obtain JDBC interface method traces.
OFF: Do not obtain JDBC interface method traces.
For details about the JDBC interface method traces, see 7.7.1 JDBC interface
method traces.
If any other value is specified, the JDBC driver throws an SQLException.
If this specification is omitted, OFF is assumed.
If no valid log writer is specified with the setLogWriter method, JDBC interface
method traces are not obtained, even if ON is specified.

5 tracenum Specifies the number of entries for a JDBC interface method trace, in the range from
10 to 1,000. The default value is 500.
This property value takes effect when both of the following conditions are satisfied:
• A valid log writer is specified with the setLogWriter method.
• ON is specified in methodtrace.

Even if this property value is to take effect, the JDBC driver throws an
SQLException if the specified value is not within the range of 10 to 1,000.

6 sqlwarningkeep Specifies whether warning information returned from the HADB server is to be
retained.
TRUE: Retain warning information.
FALSE: Do not retain warning information.
If this specification is omitted, TRUE is assumed. If any other value is specified, the
JDBC driver throws an SQLException.
For details about the warning information retention level for the Connection
object, see 8.9.1 Creating an SQLWarning object.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 270

No. Property name Description

7 adb_clt_rpc_con_wait_time Specifies the maximum amount of time to wait for HADB server connection
processing to be completed.
Functionally, this property is the same as the adb_clt_rpc_con_wait_time
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt_rpc_con_wait_time operand in
the client definition.

8 adb_clt_rpc_sql_wait_time Specifies the following wait times:
• How long a HADB client waits for the HADB server to respond to a processing

request.
• How long to wait to secure processing real threads if a shortage occurs when

multiple SELECT statements are executed concurrently in the same connection.

Functionally, this property is the same as the adb_clt_rpc_sql_wait_time
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt_rpc_sql_wait_time operand in
the client definition.

9 adb_clt_ap_name Specifies the identification information (application identifier) for the application
program that is to connect to the HADB server.
Because application identifiers are converted to the Java Virtual Machine's (JVM)
default conversion character set, we recommend that you use a name consisting of
only single-byte alphanumeric characters that do not depend on the conversion
character set.
You can use other methods of specifying the application identifier. For the
specification priorities, see 7.3.3 Connection information priorities.
If the application program has connected to the HADB server without its application
identifier having been specified anywhere, ******** will be set as the application
identifier.
Functionally, this property is the same as the adb_clt_ap_name operand in the
client definition. For details about this property and its permitted values, see the
description of the adb_clt_ap_name operand in the client definition.

10 adb_clt_group_name Specifies the name of the client group to which the application belongs.
Functionally, this property is the same as the adb_clt_group_name operand in
the client definition. For details about this property and its permitted values, see the
description of the adb_clt_group_name operand in the client definition.

11 adb_clt_fetch_size Specifies the maximum number of rows that are to be sent as retrieval results from
the HADB server to the HADB client by a single FETCH process.
Functionally, this property is the same as the adb_clt_fetch_size operand in
the client definition. For details about this property and its permitted values, see the
description of the adb_clt_fetch_size operand in the client definition.

12 adb_dbbuff_wrktbl_clt_blk_num Specifies the number of local work table buffer pages.
Functionally, this property is the same as the
adb_dbbuff_wrktbl_clt_blk_num operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_dbbuff_wrktbl_clt_blk_num operand in the client definition.

13 adb_sql_exe_max_rthd_num Specifies the maximum number of SQL processing real threads.
Functionally, this property is the same as the adb_sql_exe_max_rthd_num
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_sql_exe_max_rthd_num operand in the
client definition.

14 adb_sql_exe_hashgrp_area_size Specifies the size (in kilobytes) of the hash grouping area.
Functionally, this property is the same as the
adb_sql_exe_hashgrp_area_size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sql_exe_hashgrp_area_size operand in the client definition.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 271

No. Property name Description

15 adb_sql_exe_hashtbl_area_size Specifies the size (in megabytes) of the hash table area.
Functionally, this property is the same as the
adb_sql_exe_hashtbl_area_size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sql_exe_hashtbl_area_size operand in the client definition.

16 adb_sql_exe_hashflt_area_size Specifies the size (in megabytes) of the hash filter area.
Functionally, this property is the same as the
adb_sql_exe_hashflt_area_size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sql_exe_hashflt_area_size operand in the client definition.

17 adb_sql_prep_delrsvd_use_srvd
ef

Specifies whether reserved words are to be unregistered if specified as such in the
adb_sql_prep_delrsvd_words operand in the server definition.
Functionally, this property is the same as the
adb_sql_prep_delrsvd_use_srvdef operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sql_prep_delrsvd_use_srvdef operand in the client definition.

18 adb_clt_trn_iso_lv Specifies the transaction isolation level.
Functionally, this property is the same as the adb_clt_trn_iso_lv operand in
the client definition. For details about this property and its permitted values, see the
description of the adb_clt_trn_iso_lv operand in the client definition.

19 adb_clt_trn_access_mode Specifies the transaction access mode.
Functionally, this property is the same as the adb_clt_trn_access_mode
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt_trn_access_mode operand in the
client definition.

20 adb_clt_sql_text_out Specifies whether SQL statements issued by the HADB client are to be output to the
client message log files and the server message log files.
Functionally, this property is the same as the adb_clt_sql_text_out operand
in the client definition. For details about this property and its permitted values, see
the description of the adb_clt_sql_text_out operand in the client definition.

21 adb_clt_sql_order_mode Specifies the sort order for character string data in a SELECT statement in which the
ORDER BY clause is specified.
Functionally, this property is the same as the adb_clt_sql_order_mode
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt_sql_order_mode operand in the
client definition.

22 adb_sql_prep_dec_div_rs_prior Specify the minimum scaling value of the result of a division operation (arithmetic
operation) specified in an SQL statement when the data type of the result is
DECIMAL.
Functionally, this property is the same as the
adb_sql_prep_dec_div_rs_prior operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sql_prep_dec_div_rs_prior operand in the client definition.

23 adb_jdbc_exc_trc_out_path Specifies the absolute path of the
directory to which exception trace logs
are to be output.

For details about these properties and
their permitted values, see (b) Setup for
acquisition of the exception trace log
(setting properties) in (1) Methods to be
acquired and setup for log acquisition in
7.7.2 Exception trace log.

24 adb_jdbc_info_max Specifies the maximum number of
information items to be output to one
file.

25 adb_jdbc_cache_info_max Specifies the maximum number of
information items to be stored in
memory.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 272

No. Property name Description

26 adb_jdbc_trc_out_lv Specifies the trace acquisition level.

Note
You can use other methods of specifying these properties. For details about other specification methods and
priorities, see 7.3.3 Connection information priorities.

Note
The property names that are specified in the connection URL were changed in HADB 03-00, as shown
below. The previous property names are still supported, but if you have upgraded your HADB to version
03-00 or later, we recommend that you change the property names.

No. Property name before change (property name
used in HADB versions earlier than 03-00)

Property name after change (property name used
in HADB version 03-00 or later)

1 apname adb_clt_ap_name

2 extrcoutpath adb_jdbc_exc_trc_out_path

3 extrcinfomax adb_jdbc_info_max

4 extrccacheinfomax adb_jdbc_cache_info_max

5 extrcoutlv adb_jdbc_trc_out_lv

(b) Value to be specified in the user argument (specifying the authorization identifier)
The user argument specifies the authorization identifier that is used to connect to the HADB server.

For the naming rules for authorization identifiers, see the topic Specifying names in the manual HADB SQL Reference.

You can use other methods of specifying the authorization identifier used to connect to the HADB server. For the
specification priorities, see 7.3.3 Connection information priorities.

If the getConnection method is executed with no authorization identifier specified, the method throws an
SQLException.

If null is specified, the JDBC driver assumes that specification of an authorization identifier was omitted.

If a character string with a length of zero is specified, the JDBC driver throws an SQLException.

(c) Value to be specified in the password argument (specifying the password)
The password argument specifies a password for the authorization identifier that is to be used to connect to the HADB
server.

If null or a character string with a length of zero is specified, the JDBC driver assumes that specification of a password
was omitted.

(d) Values to be specified in the info argument (specifying the user properties)
The following table lists and describes the information that can be specified in the info argument (information that
can be specified in user properties).

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 273

Table 7-3: Information that can be specified in the info argument (information that can be specified
in user properties)

No. Property name Description

1 user Specifies the authorization identifier to be used to connect to the HADB server.
For the naming rules for authorization identifiers, see the topic Specifying names in
the manual HADB SQL Reference.
• You can use other methods of specifying the authorization identifier to be used

to connect to the HADB server. For the specification priorities, see 7.3.3 
Connection information priorities.

• If the getConnection method is executed with no authorization identifier
specified, the method throws an SQLException.

• If null is specified, the JDBC driver assumes that specification of an
authorization identifier was omitted.

• If a character string with a length of zero is specified, the JDBC driver throws an
SQLException.

2 password Specifies a password for the authorization identifier being used to connect to the
HADB server.
If null is specified, or if a character string with a length of zero is specified, the
JDBC driver assumes that no password is specified.

3 encodelang Specifies the conversion character set to be used for character encoding conversion
processing when the String class is used to transfer data with the HADB server.
For details about this property and its permitted values, see Table 7-2: Properties
that can be specified in the url argument.
If the specified conversion character set name is not supported by Java Virtual
Machine (JVM), the JDBC driver throws an SQLException when a connection
is established with the HADB server.
If this specification is omitted, the specification of encodelang for the connection
URL is applied.

4 methodtrace Specifies whether JDBC interface method traces are to be obtained. For details about
this property and its permitted values, see Table 7-2: Properties that can be specified
in the url argument.
If this specification is omitted, the specification of methodtrace for the
connection URL is applied.

5 tracenum Specifies the number of JDBC interface method trace entries. For details about this
property and its permitted values, see Table 7-2: Properties that can be specified in
the url argument.
If this specification is omitted, the specification of tracenum for the connection
URL is applied.

6 sqlwarningkeep Specifies whether warning information returned from the HADB server is to be
retained. For details about this property and its permitted values, see Table 7-2: 
Properties that can be specified in the url argument.
If this specification is omitted, the specification of sqlwarningkeep for the
connection URL is applied.

7 adb_clt_rpc_srv_host Specifies the host name of the HADB server at the connection destination.
Functionally, this property is the same as the adb_clt_rpc_srv_host operand
in the client definition. For details about this property and its permitted values, see
the description of the adb_clt_rpc_srv_host operand in the client definition.

8 adb_clt_rpc_srv_port Specifies the port number of the HADB server that is used for communication
between the HADB client and the HADB server.
Functionally, this property is the same as the adb_clt_rpc_srv_port operand
in the client definition. For details about this property and its permitted values, see
the description of the adb_clt_rpc_srv_port operand in the client definition.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 274

No. Property name Description

9 adb_clt_rpc_con_wait_time Specifies the maximum amount of time to wait for HADB server connection
processing to be completed.
Functionally, this property is the same as the adb_clt_rpc_con_wait_time
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt_rpc_con_wait_time operand in
the client definition.

10 adb_clt_rpc_sql_wait_time Specifies the following wait times:
• How long a HADB client waits for the HADB server to respond to a processing

request.
• How long to wait to secure processing real threads if a shortage occurs when

multiple SELECT statements are executed concurrently in the same connection.

Functionally, this property is the same as the adb_clt_rpc_sql_wait_time
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt_rpc_sql_wait_time operand in
the client definition.

11 adb_clt_ap_name Specifies the identification information (application identifier) for the application
program that is to connect to the HADB server.
Because application identifiers are converted to Java Virtual Machine's (JVM)
default conversion character set, we recommend that you use a name consisting of
only single-byte alphanumeric characters that do not depend on the conversion
character set.
You can use other methods of specifying the application identifier. For the
specification priorities, see 7.3.3 Connection information priorities.
If the application program has connected to the HADB server without its application
identifier having been specified anywhere, ******** will be set as the application
identifier.
Functionally, this property is the same as the adb_clt_ap_name operand in the
client definition. For details about this property and its permitted values, see the
description of the adb_clt_ap_name operand in the client definition.

12 adb_clt_group_name Specifies the name of the client group to which the application belongs.
Functionally, this property is the same as the adb_clt_group_name operand in
the client definition. For details about this property and its permitted values, see the
description of the adb_clt_group_name operand in the client definition.

13 adb_clt_fetch_size Specifies the maximum number of rows that are to be sent as retrieval results from
the HADB server to the HADB client by a single FETCH process.
Functionally, this property is the same as the adb_clt_fetch_size operand in
the client definition. For details about this property and its permitted values, see the
description of the adb_clt_fetch_size operand in the client definition.

14 adb_dbbuff_wrktbl_clt_blk_num Specifies the number of local work table buffer pages.
Functionally, this property is the same as the
adb_dbbuff_wrktbl_clt_blk_num operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_dbbuff_wrktbl_clt_blk_num operand in the client definition.

15 adb_sql_exe_max_rthd_num Specifies the maximum number of SQL processing real threads.
Functionally, this property is the same as the adb_sql_exe_max_rthd_num
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_sql_exe_max_rthd_num operand in the
client definition.

16 adb_sql_exe_hashgrp_area_size Specifies the size (in kilobytes) of the hash grouping area.
Functionally, this property is the same as the
adb_sql_exe_hashgrp_area_size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sql_exe_hashgrp_area_size operand in the client definition.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 275

No. Property name Description

17 adb_sql_exe_hashtbl_area_size Specifies the size (in megabytes) of the hash table area.
Functionally, this property is the same as the
adb_sql_exe_hashtbl_area_size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sql_exe_hashtbl_area_size operand in the client definition.

18 adb_sql_exe_hashflt_area_size Specifies the size (in megabytes) of the hash filter area.
Functionally, this property is the same as the
adb_sql_exe_hashflt_area_size operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sql_exe_hashflt_area_size operand in the client definition.

19 adb_sql_prep_delrsvd_use_srvd
ef

Specifies whether reserved words are to be unregistered if specified as such in the
adb_sql_prep_delrsvd_words operand in the server definition.
Functionally, this property is the same as the
adb_sql_prep_delrsvd_use_srvdef operand in the client definition. For
details about this property and its permitted values, see the description of the
adb_sql_prep_delrsvd_use_srvdef operand in the client definition.

20 adb_clt_trn_iso_lv Specifies the transaction isolation level.
Functionally, this property is the same as the adb_clt_trn_iso_lv operand in
the client definition. For details about this property and its permitted values, see the
description of the adb_clt_trn_iso_lv operand in the client definition.

21 adb_clt_trn_access_mode Specifies the transaction access mode.
Functionally, this property is the same as the adb_clt_trn_access_mode
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt_trn_access_mode operand in the
client definition.

22 adb_clt_sql_text_out Specifies whether SQL statements issued by the HADB client are to be output to the
client message log files and the server message log files.
Functionally, this property is the same as the adb_clt_sql_text_out operand
in the client definition. For details about this property and its permitted values, see
the description of the adb_clt_sql_text_out operand in the client definition.

23 adb_clt_sql_order_mode Specifies the sort order for character string data in a SELECT statement in which the
ORDER BY clause is specified.
Functionally, this property is the same as the adb_clt_sql_order_mode
operand in the client definition. For details about this property and its permitted
values, see the description of the adb_clt_sql_order_mode operand in the
client definition.

24 adb_sql_prep_dec_div_rs_prior Specifies the minimum scaling value of the result of a division operation (arithmetic
operation) specified in an SQL statement when the data type of the result is
DECIMAL.
Functionally, this property is the same as the
adb_sql_prep_dec_div_rs_prior operand. For details about this property
and its permitted values, see the description of the
adb_sql_prep_dec_div_rs_prior operand in the client definition.

25 adb_jdbc_exc_trc_out_path Specifies the absolute path of the
directory to which exception trace logs
are to be output.

For details about these properties and
their permitted values, see (b) Setup for
acquisition of the exception trace log
(setting properties) in (1) Methods to be
acquired and setup for log acquisition in
7.7.2 Exception trace log.

26 adb_jdbc_info_max Specifies the maximum number of
information items to be output to one
file.

27 adb_jdbc_cache_info_max Specifies the maximum number of
information items to be stored in
memory.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 276

No. Property name Description

28 adb_jdbc_trc_out_lv Specifies the trace acquisition level.

Note

• You can use other methods of specifying these properties. For details about other specification methods and
priorities, see 7.3.3 Connection information priorities.

• If null is specified for any property, the JDBC driver assumes that specification of that property was omitted.

Note
The property names of user properties were changed in HADB 03-00, as shown below. The previous
property names are still supported, but if you have upgraded your HADB to version 03-00 or later, we
recommend that you change the property names.

No. Property name before change (property name
used in HADB versions earlier than 03-00)

Property name after change (property name used
in HADB version 03-00 or later)

1 apname adb_clt_ap_name

2 host adb_clt_rpc_srv_host

3 port adb_clt_rpc_srv_port

7.3.2 Using the getConnection method of the DataSource class to connect
to the HADB server

Database connection (connection to the HADB server) using DataSource and JNDI can now be used by the JDBC
2.0 Optional Package.

Although it is not essential to use JNDI, using it offers the benefit that you need to specify the connection information
only once. Because the DataSource class interface definition and JNDI are not included in JDK as standard features,
you must obtain them from the JavaSoft web site when you develop an application program.

The following explains the procedure for using DataSource and JNDI to connect to the HADB server.

To connect to the HADB server:
1. Generate the DataSource object.

2. Set up the connection information.

3. Register the DataSource object into JNDI.

4. Get the DataSource object from JNDI.

5. Connect to the HADB server.

If you are not using JNDI, steps 3 and 4 are not necessary.

If you are using JNDI, steps 1 through 3 need to be executed only once. Thereafter, you can connect to the HADB server
by performing only steps 4 and 5. Once you have performed step 4, you can change the connection information as
necessary.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 277

(1) Generating the DataSource object
Generate the DataSource class object to be provided by the JDBC driver.

The DataSource class name of the JDBC driver, which is necessary for generating the DataSource class object,
is AdbDataSource.

Shown below is an example of generating the DataSource class object:

com.hitachi.hadb.jdbc.AdbDataSource ds = null ;
ds = new com.hitachi.hadb.jdbc.AdbDataSource() ;

(2) Setting up the connection information
Call the method for setting up connection information for the DataSource object, and set up the connection
information. There is also a method for acquiring the connection information, which you can use to check the current
connection information. For details about the connection information setup and acquisition methods, see 10.5 
Connection information setup and acquisition interface.

(3) Registering the DataSource object into JNDI
Register the DataSource object into JNDI.

JNDI can select from among several service providers, depending on the execution environment.

Shown below is an example of registering the DataSource object into JNDI (this example is for Windows). In the
registration example, the File System service provider, which is one of the service providers, is used. For details about
other service providers, see the JNDI documentation.

// Generate DataSource class object to be provided by JDBC driver
com.hitachi.hadb.jdbc.AdbDataSource ds;
ds = new com.hitachi.hadb.jdbc.AdbDataSource();

// Set connection information
 :
// Get system properties
Properties sys_prop = System.getProperties() ;

// Set properties of File System service provider
sys_prop.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");

// Set directory to be used by File System service provider
// (Register under c:\JNDI_DIR.)
sys_prop.put(Context.PROVIDER_URL, "file:c:\\" + "JNDI_DIR");

// Update system properties
System.setProperties(sys_prop) ;

// Initialize JNDI
Context ctx = new InitialContext();

// Register DataSource class object to be provided by HADB server
// driver into JNDI. Use logical name jdbc/TestDataSource
ctx.bind("jdbc" + "\\" + "TestDataSource", ds);
 :

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 278

When you register the logical name to be registered into JNDI, the JDBC 2.0 specifications recommend that you register
the logical name under a subcontext called jdbc (jdbc/TestDataSource in the registration example).

(4) Getting the DataSource object from JNDI
Get the DataSource object from JNDI.

Shown below is an acquisition example for the DataSource object (this an example is for Windows). This acquisition
example uses the File System service provider, which is one of the service providers. For details about other service
providers, see the JNDI documentation.

// Get system properties
Properties sys_prop = System.getProperties() ;

// Set properties of File System service provider
sys_prop.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");

// Set directory to be used by File System service provider
// (Register under c:\JNDI_DIR.)
sys_prop.put(Context.PROVIDER_URL, "file:c:\\" + "JNDI_DIR");

// Update system properties
System.setProperties(sys_prop) ;

// Initialize JNDI
Context ctx = new InitialContext();

// Get object of local name jdbc/TestDataSource from JNDI
Object obj = ctx.lookup("jdbc" + "\\" + "TestDataSource") ;

// Cast retrieved object to DataSource class type
DataSource ds = (DataSource)obj;
 :

(5) Connecting to the HADB server
Call the getConnection method for the DataSource object. Shown below is an example of calling the
getConnection method.

 DataSource ds

 // Get DataSource object from JNDI
 :

// Issue getConnection method
Connection con = ds.getConnection();
 OR
Connection con = ds.getConnection("USERID", "PASSWORD");#

#
The method's arguments (authorization identifier and password) take priority over the connection information that
was specified for the DataSource object. The JDBC driver throws an SQLException in the following cases:

• Required connection information is not specified in the DataSource object.

• Specified connection information is invalid.

• Connection with the HADB server fails.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 279

After you have obtained the DataSource object from JNDI, you can set up the connection information again, as
necessary. In this case, you must cast the DataSource object to the DataSource class type provided by the JDBC
driver before you set up the information. An example is shown below:

 DataSource ds
 com.hitachi.hadb.jdbc.AdbDataSource adb_ds;

 // Get DataSource object from JNDI
 :

 // Cast DataSource object to DataSource class type provided
 // by JDBC driver
 adb_ds = (com.hitachi.hadb.jdbc.AdbDataSource)ds;

 // Set up connection information again
 :

7.3.3 Connection information priorities

(1) Connection information needed when a connection to the HADB
server is established

When a connection to the HADB server is established, the following connection information is required:

• HADB server's host name

• HADB server's port number

• Authorization identifier and password used to connect to the HADB server

• Application identifier

• Other items that can be specified in properties

The JDBC driver enables you to use any of several methods of specifying this connection information. For example,
the HADB server's host name can be specified with the adb_clt_rpc_srv_host system property as well as in
host for the connection URL.

The following table shows the priorities when the connection information is specified by multiple methods.

Table 7-4: Priorities for connection information

Connection information Specification method Priority

DM DS

HADB server's host name Value of the adb_clt_rpc_srv_host system property 1 1

adb_clt_rpc_srv_host property value specified in the info argument of the
getConnection method of the DriverManager class

2 --

Value of host specified in the url argument of the getConnection method of
the DriverManager class

3 --

Host name specified by the setHostName method of an interface for setting/
getting connection information

-- 2

HADB server's port number Value of the adb_clt_rpc_srv_port system property 1 1

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 280

Connection information Specification method Priority

DM DS

adb_clt_rpc_srv_port property value specified in the info argument of the
getConnection method of the DriverManager class

2 --

Value of port specified in the url argument of the getConnection method of
the DriverManager class

3 --

Port number specified by the setPort method of an interface for setting/getting
connection information

-- 2

Authorization identifier and
password used for establishing
a connection

One of the following sets of values:
• Values of the user and password arguments of the getConnection

method of the DriverManager class
• user and password property values specified in the info argument of the
getConnection method of the DriverManager class

1 --

Values of user and password specified in the url argument of the
getConnection method of the DriverManager class

2 --

One of the following sets of values:
• Values of the username and password arguments of the getConnection

method of the DataSource interface
• Values of the user and password arguments of the
getPooledConnection method of the ConnectionPoolDataSource
interface

-- 1

• Authorization identifier specified by the setUser method of an interface for
setting/getting connection information

• Password specified by the setPassword method of an interface for setting/
getting connection information

-- 2

Application identifier Value of the adb_clt_ap_name system property 1 1

adb_clt_ap_name property value specified in the info argument of the
getConnection method of the DriverManager class

2 --

Value of adb_clt_ap_name specified in the url argument of the
getConnection method of the DriverManager class

3 --

Application identifier specified by the setApName method of the connection
information setup and acquisition interface

-- 2

Timeout time for HADB server
connection processing

Value of adb_clt_rpc_con_wait_time system property 1 1

Value of adb_clt_rpc_con_wait_time specified in the info argument of
the getConnection method of the DriverManager class

2 --

Value of adb_clt_rpc_con_wait_time specified in the url argument of the
getConnection method of the DriverManager class

3 --

Value specified in the setLoginTimeout method of the DriverManager class 4 --

One of the following values:
• Value specified in the setLoginTimeout method of the DataSource

interface
• Value specified in the setLoginTimeout method of the
ConnectionPoolDataSource interface

-- 2

Other items that can be specified
in properties:

Property values specified in system properties 1 1

Property values specified in the info argument of the getConnection method
of the DriverManager class

2 --

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 281

Connection information Specification method Priority

DM DS

• adb_clt_rpc_sql_wa
it_time

• adb_clt_group_name
• adb_clt_fetch_size
• adb_clt_sql_text_o
ut

• adb_clt_trn_iso_lv
• adb_clt_sql_order_
mode

• adb_sql_prep_dec_d
iv_rs_prior

• adb_clt_trn_access
_mode

• adb_dbbuff_wrktbl_
clt_blk_num

• adb_sql_prep_delrs
vd_use_srvdef

• adb_sql_exe_max_rt
hd_num

• adb_sql_exe_hashgr
p_area_size

• adb_sql_exe_hashtb
l_area_size

• adb_sql_exe_hashfl
t_area_size

• adb_jdbc_exc_trc_o
ut_path

• adb_jdbc_info_max
• adb_jdbc_cache_inf
o_max

• adb_jdbc_trc_out_l
v

Property values specified in the url argument of the getConnection method of
the DriverManager class

3 --

Legend:
DM: For a connection that uses the DriverManager class
DS: For a connection that uses the DataSource class
--: Connection information cannot be specified

Note
The smaller the priority number, the higher the priority. Priority number 1 is higher in priority than priority number
2.

(2) List of connection information items that can be specified in individual
properties

You can use system properties, user properties, or URL connection properties to specify the connection information
needed to establish a connection to the HADB server. The following table lists the connection information that can be
specified in individual properties.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 282

Table 7-5: List of connection information items that can be specified in individual properties

No. Classification Property name Whether specifiable in

System
properties

User
properties

URL
connection
properties

1 Properties with the same
name and function as in
the client definition#1

adb_clt_rpc_srv_host Y Y A#2

2 adb_clt_rpc_srv_port Y Y A#3

3 adb_clt_rpc_con_wait_time Y Y Y

4 adb_clt_rpc_sql_wait_time Y Y Y

5 adb_clt_ap_name Y Y Y

6 adb_clt_group_name Y Y Y

7 adb_clt_fetch_size Y Y Y

8 adb_dbbuff_wrktbl_clt_blk_nu
m

Y Y Y

9 adb_sql_exe_max_rthd_num Y Y Y

10 adb_sql_exe_hashgrp_area_siz
e

Y Y Y

11 adb_sql_exe_hashtbl_area_siz
e

Y Y Y

12 adb_sql_exe_hashflt_area_siz
e

Y Y Y

13 adb_sql_prep_delrsvd_use_srv
def

Y Y Y

14 adb_clt_trn_iso_lv Y Y Y

15 adb_clt_trn_access_mode Y Y Y

16 adb_clt_sql_text_out Y Y Y

17 adb_clt_sql_order_mode Y Y Y

18 adb_sql_prep_dec_div_rs_prio
r

Y Y Y

19 Properties related to
exception trace logs

adb_jdbc_exc_trc_out_path Y Y Y

20 adb_jdbc_info_max Y Y Y

21 adb_jdbc_cache_info_max Y Y Y

22 adb_jdbc_trc_out_lv Y Y Y

23 Other properties user N Y Y

24 password N Y Y

25 encodelang N Y Y

26 methodtrace N Y Y

27 tracenum N Y Y

28 sqlwarningkeep N Y Y

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 283

Legend
Y: Property can be specified.
A: Property cannot be specified, but an alternate specification is available.
N: Property cannot be specified.

#1
Each of these properties has the same name and function as an operand in the client definition.

#2
The adb_clt_rpc_srv_host URL connection property cannot be used to specify the host name of the HADB
server at the connection destination. You must use the host URL connection property to specify this host name.

#3
The adb_clt_rpc_srv_port URL connection property cannot be used to specify the port number of the HADB
server. You must use the port URL connection property to specify this port number.

Important
The client definition operands are not applicable when the JDBC driver is used. The specified system
properties, user properties, or URL connection properties are applied instead.

For details about system properties, see 3.1.6 Setting system properties.

For details about the user properties, see (d) Values to be specified in the info argument (specifying the user properties)
in (2) Connecting to the HADB server with the getConnection method in 7.3.1 Using the getConnection method of
the DriverManager class to connect to the HADB server.

For details about the URL connection properties, see (a) Values to be specified in the url argument (specifying the URL
for the connection) in (2) Connecting to the HADB server with the getConnection method in 7.3.1 Using the
getConnection method of the DriverManager class to connect to the HADB server.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 284

7.4 Retrieving data (executing the SELECT statement)

This section explains how to use the JDBC driver to retrieve data.

7.4.1 How to retrieve data
The procedure for using the SELECT statement to retrieve data is as follows:

• Generate a Statement object

• Execute the SELECT statement

• Get the retrieval results

(1) Generating a Statement object
Generate a Statement object, and then send the SELECT statement to the HADB server.

If a connection to the HADB server has already been established, you can use the createStatement method of the
Connection object to generate a Statement object.

The following example generates a Statement object:

 // Connect to the HADB server
 Connection con = DriverManager.getConnection(url,info);

 // Generate a Statement object
 Statement stmt = con.createStatement();

(2) Executing the SELECT statement
Execute the SELECT statement by specifying it in the argument of the executeQuery method. The following example
executes a SELECT statement:

 Statement stmt = con.createStatement();

 // Execute the SELECT statement and obtain the ResultSet object
 ResultSet rs = stmt.executeQuery("SELECT \"CODE\", \"STATE\" FROM \"SAMPLE\"");

When a SELECT statement is executed, the retrieval results are stored in a ResultSet object.

(3) Getting the retrieval results
The retrieval results are stored in a ResultSet object in a tabular format that consists of column numbers and values
corresponding to the retrieval results. The following figure shows an example of the format of a ResultSet object.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 285

Figure 7-2: Example of the format of a ResultSet object

The ResultSet object contains a cursor that points to the current row. You obtain retrieval results from the
ResultSet object by using the next method to move the cursor and then a getXXX method to obtain the data on
the current row.

When a ResultSet object is generated, the cursor is positioned immediately before the first row. When the first next
method is called, the cursor moves to the first row. Each time the next method is called thereafter, the cursor moves
down by one row.

The following example obtains retrieval results data:

 ResultSet rs = stmt.executeQuery("SELECT \"CODE\", \"STATE\" FROM \"SAMPLE\"");

 // Repeat until there is no more result row
 while(rs.next())
 {
 // Get data from column 1
 int i = rs.getInt(1);
 // Get data from column 2
 String s = rs.getString(2);
 // Output the result data
 System.out.println("Retrieval results: " + i + ", " + s);
 }

(4) Note about executing multiple SELECT statements concurrently in the
same connection

When you execute multiple SELECT statements concurrently in the same connection, HADB might be unable to supply
enough processing real threads to execute the SELECT statements. In this situation, processing to allocate processing
real threads is repeated until the required number is allocated. You need to use one of the following approaches to make
sure that allocation processing will not continue indefinitely. We recommend that you use the first approach if possible.

Approaches to resolving the issue

1. Amend the application.
If you are able to amend the application, amend it so that unnecessary ResultSet objects are closed. If you are
unable to amend the application, look into whether you can change the server definition as follows.

2. Change the server definition.
If you are able to change the server definition, change it so that it meets the following formula:

A ≥ B x C x D

A: Number of processing threads (adb_sys_rthd_num operand's value)
B: Maximum number of SQL processing real threads (adb_sql_exe_max_rthd_num operand's value)
C: Number of SELECT statements that can be executed concurrently in one connection (that are placed in cursor
open status)

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 286

D: Number of connections that can execute SQL statements concurrently

3. Set a wait time.
If the preceding two approaches are unavailable to you, specify a wait time in the following method or property that
governs how long HADB waits to allocate the required processing real threads:

• setQueryTimeout method of the Statement interface

• adb_clt_rpc_sql_wait_time in the system properties, user properties, or connection URL properties

7.4.2 How to use dynamic parameters
The procedure for using dynamic parameters to retrieve data is as follows:

• Generate a PreparedStatement object

• Execute the SELECT statement

• Get the retrieval results

(1) Generating a PreparedStatement object
Generate a PreparedStatement object, and then send the SELECT statement with the dynamic parameters specified
to the HADB server.

If a connection to the HADB server has already been established, you can use the prepareStatement method of
the Connection object to generate a PreparedStatement object.

The following example generates a PreparedStatement object:

 // Connect to the HADB server
 Connection con = DriverManager.getConnection(url, info);

 // Generate a PreparedStatement object
 PreparedStatement pstmt =
 con.prepareStatement("SELECT * FROM \"SAMPLE\" WHERE \"CODE\" = ? AND \"STATE\" = ?"
);

If the SELECT statement is specified in the argument of the prepareStatement method, the SELECT statement is
preprocessed and a PreparedStatement object is generated.

To specify dynamic parameters in an SQL statement, values must have been set for all the specified dynamic parameters
before the SQL statement is executed. You use a setXXX method to set a value in a dynamic parameter.

(2) Executing the SELECT statement
Use the executeQuery method with no argument specified to execute the SELECT statement. The following example
executes a SELECT statement that uses dynamic parameters:

 PreparedStatement pstmt =
 con.prepareStatement("SELECT * FROM \"SAMPLE\" WHERE \"CODE\" = ? AND \"STATE\" = ?"
);

 // Set a value in the first dynamic parameter
 pstmt.setInt(1, 12345);
 // Set a value in the second dynamic

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 287

 pstmt.setString(2, "Boston");

 // Execute a preprocessed SQL statement to obtain the ResultSet object
 ResultSet rs = pstmt.executeQuery();

When the SELECT statement is executed, the retrieval results are stored in a ResultSet object.

(3) Getting the retrieval results
For details about how to get the retrieval results, see (3) Getting the retrieval results in 7.4.1 How to retrieve data.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 288

7.5 Adding, updating, or deleting data (executing the INSERT, UPDATE, or
DELETE statement)

You use the executeUpdate method or the executeLargeUpdate method of the Statement object (the
PreparedStatement object if a dynamic parameter is used) to add, update, or delete data by executing a data
manipulation SQL statement, such as the INSERT, UPDATE, or DELETE statement.

The following example updates and deletes data:

 Connection con = DriverManager.getConnection(url, info);
 Statement stmt = con.createStatement();

 // Update the data that satisfies the condition
 stmt.executeUpdate("UPDATE \"SAMPLE\" SET \"CODE\"=98765 WHERE \"STATE\" = 'Redmond'
");

 // Delete all rows
 stmt.executeUpdate("DELETE FROM \"SAMPLE\" ");

■ Effects of update operations on a retrieval using a cursor
If an update operation using a cursor is performed during a retrieval, the results of the update operation might be
applied to the retrieval results, depending on the timing. Do the following to prevent the results of such update
operations from being applied to retrieval results:

• Close the cursor before adding or updating rows.

• Specify data and search conditions in such a manner that rows to be added or updated will not be included in
the retrieval results.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 289

7.6 Data processing

This section explains how data is processed between the JDBC driver and the HADB server.

7.6.1 Mapping data types
This subsection explains mapping between HADB's data types and JDBC's SQL data types.

(1) Correspondence between HADB's data types and JDBC's SQL data
types

There is not an exact one-to-one match between the HADB data types and the JDBC SQL data types. For this reason,
the JDBC driver performs mapping (conversion) between HADB's data types and JDBC's SQL data types. If an
unmappable data type is used for data access, the JDBC driver throws an SQLException.

The data types are mapped with getXXX and setXXX methods in the ResultSet or PreparedStatement class.
For details about the mapping rules employed by the getXXX and setXXX methods, see the documentation for the
JDBC 1.0 standard or the JDBC 2.0 basic standard.

The following table shows the correspondences between HADB's data types and JDBC's SQL data types.

Table 7-6: Correspondences between HADB's data types and JDBC's SQL data types

HADB's data type JDBC's SQL data type

INTEGER BIGINT

SMALLINT INTEGER, SMALLINT#1

DECIMAL DECIMAL (, NUMERIC)#2

DOUBLE PRECISION DOUBLE

CHAR CHAR

VARCHAR VARCHAR (, LONGVARCHAR)#2

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

BINARY BINARY (, VARBINARY, LONGVARBINARY)#2

VARBINARY VARBINARY (, BINARY, LONGVARBINARY)#2

ROW BINARY (, VARBINARY, LONGVARBINARY)#2

BOOLEAN#3 BOOLEAN

#1
This column is found only in a ResultSet created from DatabaseMetaData. If the column's data type is
defined as short, the JDBC driver returns the value corresponding to SMALLINT for the metadata that can be
obtained by ResultSetMetaData. For data other than metadata, the JDBC driver returns the value
corresponding to INTEGER.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 290

#2
Data types shown in parentheses are supported only when JDBC's SQL data types are specified in the arguments
of the setNull or setObject method. Otherwise, they are not supported for mapping from HADB's data types
to JDBC's SQL data types.

#3
This refers to a BOOLEAN column in a ResultSet object that is generated by the getTypeInfo method of
DatabaseMetaData.

(2) Mapping during retrieval data acquisition
The table below shows the mapping between the getXXX methods in the ResultSet class and JDBC's SQL data
types. If a getXXX method is called for one of JDBC's unmappable SQL data types, the JDBC driver throws an
SQLException.

Table 7-7: Mapping between getXXX methods and JDBC's SQL data types

Method name JDBC's SQL data type

BIG INT DCML DBL CHAR VCHR DATE TIME TSTMP BIN,
VARBIN

getByte Y Y Y Y Y# Y# N N N N

getShort Y Y Y Y Y# Y# N N N N

getInt Y Rec Y Y Y# Y# N N N N

getLong Rec Y Y Y Y# Y# N N N N

getFloat Y Y Y Y Y# Y# N N N N

getDouble Y Y Y Rec Y# Y# N N N N

getBigDecimal Y Y Rec Y Y# Y# N N N N

getBoolean Y Y Y Y Y Y N N N N

getString Y Y Y Y Rec Rec Y Y Y Y

getBytes N N N N N N N N N Rec

getDate N N N N Y# Y# Rec Y Y N

getTime N N N N Y# Y# N Rec Y N

getTimestamp N N N N Y# Y# Y Y Rec N

getAsciiStream N N N N Y Y N N N Y

getObject Y Y Y Y Y Y Y Y Y Y

getCharacterStream N N N N Y Y N N N Y

getBinaryStream N N N N N N N N N Y

Legend:
BIG: BIGINT
INT: INTEGER
DBL: DOUBLE
DCML: DECIMAL
VCHR: VARCHAR

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 291

TSTMP: TIMESTAMP
BIN: BINARY
VARBIN: VARBINARY
Rec: Mapping is recommended.
Y: Can be mapped. Note, however, that data loss or a conversion error might occur, depending on the format of the
conversion-source data.
N: Cannot be mapped.

#
During conversion for this method, the JDBC driver removes any spaces preceding or following the character string
data retrieved from the database. After removing the spaces, the JDBC driver converts the data to the Java data type
returned by the getXXX method.
The following notes apply to converting data to a Java data type:

• If character string data contains a fractional part and the getByte, getInt, getShort, or getLong method
is executed, the JDBC driver discards the fractional part, and then converts and returns only the integer.

• If the character string data contains double-byte characters, the JDBC driver throws an SQLException without
converting the data.

• If overflow occurs after character string data is converted to a Java data type, the JDBC driver throws an
SQLException.

(3) Mapping when a dynamic parameter is specified
The following table lists the setXXX methods of the PreparedStatement class and JDBC's SQL data types that
can be mapped to the methods. For a JDBC's SQL data type that cannot be used, an SQLException is thrown.

If a setXXX method is called for one of JDBC's unmappable SQL data types, the JDBC driver throws an
SQLException.

Table 7-8: Mapping between setXXX methods and JDBC's SQL data types

Method
name

JDBC's SQL data type

BIGINT INTEGE
R

DECIM
AL#1

DOUBL
E

CHAR VARCH
AR

DATE TIME TIMEST
AMP

BINARY
,
VARBIN
ARY

setByte Y Y Y Y Y Y N N N N

setShor
t

Y Y Y Y Y Y N N N N

setInt Y Rec Y Y Y Y N N N N

setLong Rec Y Y Y Y Y N N N N

setFloa
t

Y Y Y Y Y Y N N N N

setDoub
le

Y Y Y Rec Y Y N N N N

setBigD
ecimal

Y Y Rec Y Y Y N N N N

setBool
ean

Y Y Y Y Y Y N N N N

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 292

Method
name

JDBC's SQL data type

BIGINT INTEGE
R

DECIM
AL#1

DOUBL
E

CHAR VARCH
AR

DATE TIME TIMEST
AMP

BINARY
,
VARBIN
ARY

setStri
ng

Y Y Y Y Rec Rec Y Y Y Y

setByte
s

N N N N N N N N N Rec

setDate N N N N Y Y Rec Y Y N

setTime N N N N Y Y N Rec Y N

setTime
stamp#2

N N N N Y Y Y Y Rec N

setAsci
iStream

N N N N Y Y N N N Y

setObje
ct#3

Y Y Y Y Y Y Y Y Y Y

setChar
acterSt
ream

N N N N Y#4 Y#4 N N N Y

setBina
ryStrea
m

N N N N N N N N N Y

Legend:
Rec: Mapping is recommended.
Y: Can be mapped. Note, however, that data loss or a conversion error might occur, depending on the format of the
conversion-source data.
N: Cannot be mapped.

#1
If a setXXX method specifies a value for a dynamic parameter of HADB's DECIMAL data type, and the dynamic
parameter and the value have different precisions or scalings, the JDBC driver performs one of the following
operations, as applicable:

• When the value has a larger precision than the dynamic parameter: Throws an SQLException.

• When the value has a smaller precision than the dynamic parameter: Increases the precision.

• When the value has a larger scaling than the dynamic parameter: Truncates the value according to the actual
scaling.

• When the value has a smaller scaling than the dynamic parameter: Adds zeros to increase the scaling.

#2
If a setXXX method specifies a value for a dynamic parameter of HADB's TIME or TIMESTAMP data type, and
the dynamic parameter and the value have different precisions for the fractional seconds part, the JDBC driver
performs one of the following operations:

• If the value has a larger fractional seconds precision than the dynamic parameter: Truncates the fractional seconds
part of the value.

• If the value has a smaller fractional seconds precision than the dynamic parameter: Expands the fractional
seconds part of the value.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 293

#3
Objects of the InputStream class and the Reader class (including subclasses) cannot be specified in the
setObject method.

#4
If the length of the data that can be retrieved from a java.io.Reader object is shorter than the length specified
in the arguments, the JDBC driver adds zeros as shown below until the length specified in the arguments is reached:

7.6.2 Data conversion process
This subsection explains the data conversion process when setXXX and getXXX methods are executed.

(1) Data conversion process during execution of a setXXX method (for
DATE, TIME or TIMESTAMP type)

This subsection explains the conversion process when data of HADB's DATE, TIME or TIMESTAMP data type is set
in the setTime, setDate, setTimestamp, or setString method.

When the setTime, setDate, setTimestamp, or setString method is used to set data in a column of HADB's
DATE, TIME or TIMESTAMP data type, data conversion takes place according to the rules described in the following
table.

Table 7-9: Conversion process during execution of the setXXX methods

Method executed Conversion process for
DATE type

Conversion process
for TIME type

Conversion process for
TIMESTAMP type

setDate(Date Obj)#1 Stores the application program
settings in the database without
performing conversion.

00:00:00 is stored in the
database.

Stores in the database the data
with 00:00:00 added after
the application program
setting for YYYY-MM-DD.

setTime(Time Obj)#2 Throws an SQLException. The data for the application
program setting for
hh:mm:ss.fff is stored in
the database.

Stores in the database the data
with 1970-01-01 added
before the application program
setting for hh:mm:ss.fff.

setTimestamp(Timestamp
Obj)#3

Stores in the database the data
formed when YYYY-MM-DD is
removed from the application
program setting.

The data obtained by
extracting
hh:mm:ss.fffffffff from
the application program
setting is stored in the
database.

The data for the application
program setting for YYYY-
MM-DDΔhh:mm:ss.fffffffff
is stored in the database.#4

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 294

Method executed Conversion process for
DATE type

Conversion process
for TIME type

Conversion process for
TIMESTAMP type

setString (character string in YYYY-
MM-DD format)

Converts the specified date with
java.sql.Date.valueO
f() and stores the result in the
database.#5

00:00:00 is stored in the
database.

Throws an SQLException.

setString (character string in
hh:mm:ss[.f...] format)

Throws an SQLException. The data for the application
program setting for
hh:mm:ss[.f...] is
stored in the database.

Throws an SQLException.

setString (character string in YYYY-
MM-DDΔhh:mm:ss[.f...]
format)#4

Throws an SQLException. The data for the application
program setting for
hh:mm:ss[.f...] is
stored in the database.

The data for the application
program setting for YYYY-
MM-
DDΔhh:mm:ss[.f...] is
stored in the database.#5

Note
If a non-existent date or time is specified, the Java Virtual Machine (JVM) returns the specified value.

#1
Date Obj is an object that has the value of the java.sql.Date object with the format year-month-date.

#2
Time Obj is an object that has the value of the java.sql.Time object with the format
hour:minute:second:millisecond.

#3
Timestamp Obj is an object that has the value of the java.sql.Timestamp object with the format year-
month-date hour:minute:second:nanosecond.

#4
Δ represents a space.

#5
The result when a non-existent date or time is specified depends on java.sql.Date.valueOf(),
java.sql.Time.valueOf(), or java.sql.Timestamp.valueOf().
Example 1: 25:00:00 becomes 01:00:00.
Example 2: 2000-01-32 becomes 2000-02-01.
Example 3: 1582-10-05 becomes 1582-10-15 (the calendar switches from the Julian to the Gregorian).

(2) Data conversion process during execution of a getXXX method (for
DATE, TIME, TIMESTAMP, or character string type)

This subsection explains the conversion process when data of HADB's DATE, TIME, TIMESTAMP, or character string
(CHAR or VARCHAR) data type is set in the getTime, getDate, or getTimestamp method.

When the getTime, getDate, or getTimestamp method is used to set data in a column of HADB's DATE, TIME,
TIMESTAMP, or character string data type, data conversion takes place according to the rules described in the
following table.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 295

Table 7-10: Conversion process during execution of the getXXX methods

Method executed Conversion process
for DATE type

Conversion process
for TIME type

Conversion process
for TIMESTAMP type

Conversion process
for character string
type

getDate()#1 Gets the value stored in
the database and sets it
as the java.sql.Date
object without
performing conversion.#2

Gets the value as the
java.sql.Date
object that has the data
1970-01-01.#2

Removes the year-
month-date data from the
TIMESTAMP data
retrieved from the
database and sets the
result as the
java.sql.Date
object.#2

Gets only a YYYY-MM-
DD character string
representation as the
java.sql.Date
object. For other
representations, the
method throws an
SQLException.

getTime()#1 Throws an
SQLException.

Removes the
hour:minute:second.mi
llisecond data from the
TIME data retrieved from
the database and sets the
result as the
java.sql.Time
object.#2

Removes the
hour:minute:second:mi
llisecond data from the
TIMESTAMP data
retrieved from the
database and sets the
result as the
java.sql.Time
object.#2

Gets only an
hh:mm:ss[.f...]
character string
representation as the
java.sql.Time
object. For other
representations, the
method throws an
SQLException.

getTimestamp()#1 Appends
00:00:00.00000000
0 to the DATE data
retrieved from the
database and sets the
result as the
java.sql.Timestam
p object.

Adds 1970-01-01
before the TIME data
retrieved from the
database and sets the
result as the
java.sql.Timestam
p object.

Removes the year-
month-
dateΔ
hour:minute:second.nan
osecond data from the
TIMESTAMP data
retrieved from the
database and sets the
result as the
java.sql.Timestam
p object.

Gets only a YYYY-MM-
DDΔhh:mm:ss[.f...]
character string
representation of the
TIMESTAMP type as the
java.sql.Timestam
p object (Δ is a space). For
other expressions, the
method throws an
SQLException.

#1
The date and time stored in the database might be different from the date and time obtained from java.sql.Time,
java.sql.Date, and java.sql.Timestamp:
Example 1: 25:00:00 becomes 01:00:00.
Example 2: 2000-01-32 becomes 2000-02-01.
Example 3: Both 1582-10-05 and 1582-10-15 become 1582-10-15 (the calendar switches from the Julian
to the Gregorian).

#2
The setting for an unspecified date item (year-month-day) is 1970-01-01, and the setting for an unspecified
time item (hour:minute:second) is 00:00:00.

7.6.3 Overflow handling
This subsection discusses the possibility of overflow when a setXXX or getXXX method is executed.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 296

(1) Possibility of overflow when a setXXX method (other than the
setObject method) is executed

The following table shows whether overflow might occur when a setXXX method (other than the setObject method)
is executed.

Table 7-11: Possibility of overflow when a setXXX method (other than the setObject method) is
executed

Method executed HADB data type

SML INT DBL
PREC

DCML CHAR
,
VCHR

DATE
#

TIME# TSTM
P#

ROW BIN,
VARBIN

setByte N N N Y N -- -- -- -- --

setShort N N N Y N -- -- -- -- --

setInt N N N Y N -- -- -- -- --

setLong Y N N Y N -- -- -- -- --

setFloat Y Y N Y N -- -- -- -- --

setDouble Y Y N Y N -- -- -- -- --

setBigDecimal Y Y N Y N -- -- -- -- --

setBoolean N N N N N -- -- -- -- --

setString Y Y N Y N Y N Y -- N

setBytes -- -- -- -- -- -- -- -- N N

setDate -- -- -- -- N Y N Y -- --

setTime -- -- -- -- N -- N Y -- --

setTimestamp -- -- -- -- N Y N Y -- --

setAsciiStream -- -- -- -- N -- -- -- -- N

setBinaryStream -- -- -- -- N -- -- -- -- N

setCharacterStream -- -- -- -- N -- -- -- -- N

Legend:
SML: SMALLINT
INT: INTEGER
DBL PREC: DOUBLE PRECISION
DCML: DECIMAL
VCHR: VARCHAR
TSTMP: TIMESTAMP
BIN: BINARY
VARBIN: VARBINARY
N: Overflow does not occur regardless of the value.
Y: Overflow might occur depending on the value.
--: Combination that is not allowed.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 297

#
Overflow occurs when the value obtained by the getTime method of the java.sql.Date,
java.sql.Time, or java.sql.Timestamp class is an object larger than 253,402,268,399,999 or smaller
than -62,135,802,000,000. The getTime method returns the number of milliseconds since 1970-01-01 00:00:00
(Greenwich Mean Time).
The methods shown below can be used to obtain 253,402,268,399,999 from the maximum value that can be stored
in HADB's TIMESTAMP type, and -62,135,802,000,000 from the minimum value that can be represented by the
java.sql.Timestamp class.

253,402,268,399,999
Timestamp.valueOf("9999-12-31 23:59:59.999999").getTime()

-62,135,802,000,000
Timestamp.valueOf("0001-01-01 00:00:00.0").getTime()

(2) Possibility of overflow when the setObject method is executed
The following table shows whether overflow might occur when the setObject method is executed.

Table 7-12: Possibility of overflow when the setObject method is executed

Data type of object
specified by the
setObject method

HADB data type

SML INT DBL
PREC

DCML CHAR
,
VCHR

DATE
#

TIME# TSTM
P#

ROW BIN,
VARBIN

Byte N N N Y N -- -- -- -- --

Short N N N Y N -- -- -- -- --

Integer N N N Y N -- -- -- -- --

Long Y N N Y N -- -- -- -- --

Decimal Y Y N Y N -- -- -- -- --

Float Y Y N Y N -- -- -- -- --

Double Y Y N Y N -- -- -- -- --

Boolean N N N N N -- -- -- -- --

String Y Y N Y N Y N Y -- --

Date -- -- -- -- N Y N Y -- --

Time -- -- -- -- N -- N -- -- --

Timestamp -- -- -- -- N Y N Y -- --

byte[] -- -- -- -- N -- -- -- N N

Legend:
SML: SMALLINT
INT: INTEGER
DBL PREC: DOUBLE PRECISION
DCML: DECIMAL
VCHR: VARCHAR
TSTMP: TIMESTAMP

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 298

BIN: BINARY
VARBIN: VARBINARY
N: Overflow does not occur regardless of the value.
Y: Overflow might occur depending on the value.
--: Combination that is not allowed.

#
Overflow occurs when the value obtained by the getTime method of the java.sql.Date,
java.sql.Time, or java.sql.Timestamp class is an object larger than 253,402,268,399,999 or smaller
than -62,135,802,000,000. The getTime method returns the number of milliseconds since 1970-01-01 00:00:00
(Greenwich Mean Time).
The methods shown below can be used to obtain 253,402,268,399,999 from the maximum value that can be stored
in HADB's TIMESTAMP type, and -62,135,802,000,000 from the minimum value that can be represented by the
java.sql.Timestamp class.

253,402,268,399,999
Timestamp.valueOf("9999-12-31 23:59:59.999999").getTime()

-62,135,802,000,000
Timestamp.valueOf("0001-01-01 00:00:00.0").getTime()

(3) Possibility of overflow when a getXXX method (other than the
getObject method) is executed

The following table shows whether overflow might occur when a getXXX method (other than the getObject method)
is executed.

Table 7-13: Possibility of overflow when a getXXX method (other than the getObject method) is
executed

Method executed HADB data type

SML INT DBL
PREC

DCML CHAR
,
VCHR

DATE TIME TSTM
P

ROW BIN,
VARBIN

getByte Y Y Y Y Y -- -- -- -- --

getShort Y Y Y Y Y -- -- -- -- --

getInt N Y Y Y Y -- -- -- -- --

getLong N N Y Y Y -- -- -- -- --

getFloat N N N N N -- -- -- -- --

getDouble N N N N N -- -- -- -- --

getBigDecimal N N N N N -- -- -- -- --

getBoolean N N N N N -- -- -- -- --

getString N N N N N N N N -- N

getBytes -- -- -- -- -- -- -- -- N N

getDate -- -- -- -- N N N N -- --

getTime -- -- -- -- N -- N N -- --

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 299

Method executed HADB data type

SML INT DBL
PREC

DCML CHAR
,
VCHR

DATE TIME TSTM
P

ROW BIN,
VARBIN

getTimestamp -- -- -- -- N N N N -- --

getAsciiStream -- -- -- -- N -- -- -- -- N

getBinaryStream -- -- -- -- N -- -- -- -- N

getCharacterStream -- -- -- -- N -- -- -- -- N

Legend:
SML: SMALLINT
INT: INTEGER
DBL PREC: DOUBLE PRECISION
DCML: DECIMAL
VCHR: VARCHAR
TSTMP: TIMESTAMP
BIN: BINARY
VARBIN: VARBINARY
N: Overflow does not occur regardless of the value.
Y: Overflow might occur depending on the value.
--: Combination that is not allowed.

(4) Possibility of overflow when the getObject method is executed
The following table shows whether overflow might occur when the getObject method is executed.

Table 7-14: Possibility of overflow when the getObject method is executed

Data type of object
obtained by the
getObject method

HADB data type

SML INT DBL
PREC

DCML CHAR
,
VCHR

DATE TIME TSTM
P

ROW BIN,
VARBIN

Byte Y Y Y Y Y -- -- -- -- --

Short Y Y Y Y Y -- -- -- -- --

Int N Y Y Y Y -- -- -- -- --

Long N N Y Y Y -- -- -- -- --

Float N N Y Y Y -- -- -- -- --

Double N N N Y Y -- -- -- -- --

BigDecimal N N N Y Y -- -- -- -- --

Boolean N N N N N -- -- -- -- --

String N N N N N N N N -- N

Bytes -- -- -- -- -- -- -- -- N N

Date -- -- -- -- N N N N -- --

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 300

Data type of object
obtained by the
getObject method

HADB data type

SML INT DBL
PREC

DCML CHAR
,
VCHR

DATE TIME TSTM
P

ROW BIN,
VARBIN

Time -- -- -- -- N -- N N -- --

Timestamp -- -- -- -- N N N N -- --

AsciiStream -- -- -- -- N -- -- -- -- N

BinaryStream -- -- -- -- N -- -- -- -- N

Object N N N N N N N N N N

CharacterStream -- -- -- -- N -- -- -- -- N

Legend:
SML: SMALLINT
INT: INTEGER
DBL PREC: DOUBLE PRECISION
DCML: DECIMAL
VCHR: VARCHAR
TSTMP: TIMESTAMP
BIN: BINARY
VARBIN: VARBINARY
N: Overflow does not occur regardless of the value.
Y: Overflow might occur depending on the value.
--: Combination that is not allowed.

7.6.4 Conversion of character encoding
Because Java programs consider the character encoding that is used to be Unicode (UTF-16), the JDBC driver performs
bi-directional conversion processing of the character encoding between HADB character string data and Unicode
(UTF-16). The JDBC driver uses the encoder provided by the Java Virtual Machine (JVM) for this character encoding
conversion processing.

The following figure shows an overview of this bi-directional conversion of character encoding between HADB
character string data and Unicode (UTF-16).

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 301

Figure 7-3: Overview of bi-directional conversion of the character encoding between HADB
character string data and Unicode (UTF-16)

When the JDBC driver exchanges character string data with HADB, it specifies the character set name to the Java Virtual
Machine's (JVM) encoder. This is how the JDBC driver obtains the HADB server's character encoding (Unicode
(UTF-8)) and specifies the character set name that corresponds to that encoding.

The following table shows the character set names that correspond to the HADB server's character encoding for
specification in the Java Virtual Machine's (JVM) encoder.

Table 7-15: Names of the character sets supported for the HADB server's character encoding

No. HADB server's character encoding
(character encoding specified in the
ADBLANG environment variable)

Name of the character encoding to be specified in the Java Virtual
Machine's (JVM) encoder#

1 Unicode(UTF-8)(UTF8) UTF-8

2 Shift-JIS(SJIS) Windows-31j (MS932)

#
The appropriate character set name shown in the table is specified in the Java Virtual Machine's (JVM) encoder after
a connection has been established with the HADB server.
Before a connection is established, the Java Virtual Machine's (JVM) default character set is used for converting the
character encoding that is used.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 302

7.7 Troubleshooting

This section explains the JDBC interface method traces and exception trace logs that are provided as troubleshooting
functions.

7.7.1 JDBC interface method traces
You can acquire a JDBC interface method trace as troubleshooting information when you call a method in the JDBC
interface.

(1) Environment setup

(a) Connection with the DriverManager class
The following explains the environment setup procedure.

To set up the environment:
1. Specify a valid log writer by executing the setLogWriter method of the DriverManager class.

2. Connect to the HADB server by executing the getConnection method of the DriverManager class. In
the url or info argument of the getConnection method, specify that a JDBC interface method trace is to
be acquired (specify methodtrace and tracenum).

For details about the specification of the url argument of the getConnection method, see (a) Values to be
specified in the url argument (specifying the URL for the connection) in (2) Connecting to the HADB server with
the getConnection method in 7.3.1 Using the getConnection method of the DriverManager class to connect to the
HADB server.
For details about the specification of the info argument of the getConnection method, see (d) Values to be
specified in the info argument (specifying the user properties) in (2) Connecting to the HADB server with the
getConnection method in 7.3.1 Using the getConnection method of the DriverManager class to connect to the
HADB server.

(b) Connection with the DataSource class
The following explains the environment setup procedure.

To set up the environment:
1. Specify a valid log writer by executing the setLogWriter method of the DataSource or
ConnectionPoolDataSource interface.

2. Specify that a JDBC interface method trace is to be acquired by executing the setInterfaceMethodTrace
and setTraceNumber methods in the connection information setup and acquisition interface.

For details about the setLogWriter method of the DataSource interface, see 10.2.7 setLogWriter(PrintWriter
out). For details about the setLogWriter method of the ConnectionPoolDataSource interface, see
10.3.7 setLogWriter(PrintWriter out).
For details about the setInterfaceMethodTrace method, see 10.5.14 setInterfaceMethodTrace(boolean
flag). For details about the setTraceNumber method, see 10.5.18 setTraceNumber(int num).

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 303

(2) Rules for acquiring a JDBC interface method trace
This subsection describes the rules for acquiring a JDBC interface method trace.

• Trace information is acquired when a method in the JDBC interface is called and when processing is returned from
the method. However, trace information is not acquired for methods executed before a connection to the database
is established. Trace information is also not acquired for the following methods:
Driver interface
• acceptsURL(String url)
• getMajorVersion()
• getMinorVersion()
• getPropertyInfo(String url, Properties info)
• jdbcCompliant()

DataSource and ConnectionPoolDataSource interfaces
• getLoginTimeout()
• getLogWriter()
• setLoginTimeout(int seconds)
• setLogWriter(PrintWriter out)

Wrapper interfaces
• isWrapperFor(Class<?> iface)
• unwrap(Class<T> iface)

• Trace information is stored for the specified number of entries and is output to the specified log writer at the following
times:

• When the Connection.close method is called (normal termination)

• When an SQLException is thrown (error occurrence)

• When a BatchUpdateException is thrown (error occurrence)

• When an SQLClientInfoException is thrown (error occurrence)

• When an UnsupportedOperationException is thrown (error occurrence)

• If the number of trace information items exceeds the number of entries, the oldest stored trace information is
discarded in chronological order and the newest trace information is retained.

• A JDBC interface method trace uses a single-entry trace area for each Entry and each Return.

(3) Output example
This subsection shows an output example of a JDBC interface method trace. The item numbers in the explanation below
correspond to the bracketed numbers in the figure.

Output example

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 304

Explanation

1. [Hitachi Advanced Data Binder JDBC Driver]
Name of the JDBC driver

2. [JDBC Interface Entry] and [JDBC Interface Return]
[JDBC Interface Entry]: Call to a JDBC method
[JDBC Interface Return]: Return from a JDBC method

3. [XXXXX.YYYYY]
YYYYY method of the XXXXX class

4. select * from pp
Argument in the JDBC method (for the password argument, an asterisk (*) is output, as in password=*)

5. com.hitachi.hadb.jdbc.Adb...
Value returned from the JDBC method

7.7.2 Exception trace log
You can acquire an exception trace log as troubleshooting information. If a failure caused by an exception occurs in the
JDBC driver, the cause of the failure is output to the exception trace log.

The following constitute the output contents:

• Information (such as error messages) generated when the exception occurred

• Execution record of JDBC's API methods up to the point where the exception occurred

When this function is used, information about JDBC's API methods that are called from an application program is stored
in the JDBC driver memory. If an SQLException, BatchUpdateException,
SQLClientInfoException, or UnSupportedOperationException occurs, the information stored in the
memory is output to a file before the exception is thrown.

(1) Methods to be acquired and setup for log acquisition

(a) Methods to be acquired in the exception trace log
The information to be acquired in the exception trace log is the calling and return of methods coded in the java.sql
and javax.sql packages found in the API specifications of Java Platform Standard Edition 6.

Methods that satisfy the following condition are acquired:

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 305

• Methods listed in Table 7-16: Methods that are acquisition targets of the exception trace log and their applicable
trace acquisition levels and for which a trace acquisition level that is needed to acquire the trace is specified

Methods that only look up and return information found in objects or methods that only store information into objects,
such as a getXXX method of the ResultSet object, a setXXX method of the PreparedStatement method, or
the isClosed method of the Connection object, are not acquisition targets.

The following table lists the methods that are acquisition targets of the exception trace log. The table also shows the
trace acquisition levels applicable to each method.

Table 7-16: Methods that are acquisition targets of the exception trace log and their applicable trace
acquisition levels

Class Method Trace acquisition levels

1 2 3 4 5#1

Connection void close() Y Y Y Y Y

void commit() N Y Y Y Y

Statement createStatement()#2 Y Y Y Y Y

Statement createStatement(int
resultSetType, int
resultSetConcurrency)#3

Y Y Y Y Y

DatabaseMetaData getMetaData() N Y Y Y Y

boolean isValid(int timeout) N Y Y Y Y

PreparedStatement
prepareStatement(String sql)#2

Y Y Y Y Y

PreparedStatement
prepareStatement(String sql, int
resultSetType, int
resultSetConcurrency)#3

Y Y Y Y Y

void rollback()#2 N Y Y Y Y

void setAutoCommit(boolean autoCommit) N Y Y Y Y

DatabaseMetaData boolean
autoCommitFailureClosesAllResultSet
s()

N Y Y Y Y

ResultSet getAttributes(String
catalog, String schemaPattern, String
typeNamePattern, String
attributeNamePattern)

N Y Y Y Y

ResultSet getBestRowIdentifier(String
catalog, String schema, String table,
int scope, boolean nullable)

N Y Y Y Y

ResultSet getCatalogs() N Y Y Y Y

ResultSet getClientInfoProperties() N Y Y Y Y

ResultSet getColumnPrivileges(String
catalog, String schema, String table,
String columnNamePattern)

N Y Y Y Y

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 306

Class Method Trace acquisition levels

1 2 3 4 5#1

ResultSet getColumns(String catalog,
String schemaPattern, String
tableNamePattern, String
columnNamePattern)

N Y Y Y Y

Connection getConnection() N Y Y Y Y

ResultSet getCrossReference(String
parentCatalog, String parentSchema,
String parentTable, String
foreignCatalog, String foreignSchema,
String foreignTable)

N Y Y Y Y

ResultSet getExportedKeys(String
catalog, String schema, String table)

N Y Y Y Y

ResultSet getFunctions(String catalog,
String schemaPattern, String
functionNamePattern)

N Y Y Y Y

ResultSet getFunctionColumns(String
catalog, String schemaPattern, String
functionNamePattern, String
columnNamePattern)

N Y Y Y Y

ResultSet getImportedKeys(String
catalog, String schema, String table)

N Y Y Y Y

ResultSet getIndexInfo(String catalog,
String schema, String table, boolean
unique, boolean approximate)

N Y Y Y Y

ResultSet getPrimaryKeys(String
catalog, String schema, String table)

N Y Y Y Y

ResultSet getProcedureColumns(String
catalog, String schemaPattern, String
procedureNamePattern, String
columnNamePattern)

N Y Y Y Y

ResultSet getProcedures(String
catalog, String schemaPattern, String
procedureNamePattern)

N Y Y Y Y

ResultSet getPseudoColumns(String
catalog,String schemaPattern,String
tableNamePattern,String
columnNamePattern)

N Y Y Y Y

RowIdLifetime getRowIdLifetime() N Y Y Y Y

ResultSet getSchemas() N Y Y Y Y

ResultSet getSuperTables(String
catalog, String schemaPattern, String
tableNamePattern)

N Y Y Y Y

ResultSet getSuperTypes(String
catalog, String schemaPattern, String
typeNamePattern)

N Y Y Y Y

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 307

Class Method Trace acquisition levels

1 2 3 4 5#1

ResultSet getTablePrivileges(String
catalog, String schemaPattern, String
tableNamePattern)

N Y Y Y Y

ResultSet getTables(String catalog,
String schemaPattern, String
tableNamePattern, String[] types)

N Y Y Y Y

ResultSet getTableTypes() N Y Y Y Y

ResultSet getTypeInfo() N Y Y Y Y

ResultSet getUDTs(String catalog,
String schemaPattern, String
typeNamePattern, int[] types)

N Y Y Y Y

ResultSet getVersionColumns(String
catalog, String schema, String table)

N Y Y Y Y

Driver Connection connect(String url,
Properties info)

Y Y Y Y Y

PreparedStatement boolean execute()#2 N Y Y Y Y

ResultSet executeQuery()#2 N Y Y Y Y

int executeUpdate()#2 N Y Y Y Y

long executeLargeUpdate()#2 N Y Y Y Y

ResultSetMetaData getMetaData() N Y Y Y Y

boolean execute(String sql)#3, #4 N Y Y Y Y

int[] executeBatch()#4 N Y Y Y Y

long[] executeLargeBatch()#4 N Y Y Y Y

ResultSet executeQuery(String sql)#3, #4 Y Y Y Y Y

int executeUpdate(String sql)#3, #4 Y Y Y Y Y

long executeLargeUpdate(String sql)#3,
#4

Y Y Y Y Y

ParameterMetaData
getParameterMetaData()

N Y Y Y Y

ResultSet boolean absolute(int row) N Y Y Y Y

void afterLast() N Y Y Y Y

void beforeFirst() N Y Y Y Y

void close() N Y Y Y Y

boolean first() N Y Y Y Y

ResultSetMetaData getMetaData() N Y Y Y Y

int getHoldability() N Y Y Y Y

Statement getStatement() N Y Y Y Y

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 308

Class Method Trace acquisition levels

1 2 3 4 5#1

boolean isClosed() N Y Y Y Y

boolean last() N Y Y Y Y

boolean next() N Y Y Y Y

boolean relative(int rows) N Y Y Y Y

boolean isAfterLast() N Y Y Y Y

boolean isBeforeFirst() N Y Y Y Y

boolean isLast() N Y Y Y Y

Statement void cancel() N Y Y Y Y

void close() Y Y Y Y Y

boolean execute(String sql) Y Y Y Y Y

int[] executeBatch() N Y Y Y Y

long[] executeLargeBatch() N Y Y Y Y

ResultSet executeQuery(String sql) Y Y Y Y Y

int executeUpdate(String sql) Y Y Y Y Y

long executeLargeUpdate(String sql) Y Y Y Y Y

ResultSet getResultSet() N Y Y Y Y

DataSource getConnection()#2 Y Y Y Y Y

getConnection(String username, String
password)#3

Y Y Y Y Y

ConnectionPoolDataSour
ce

getPooledConnection()#2 Y Y Y Y Y

getPooledConnection(String username,
String password)#3

Y Y Y Y Y

PooledConnection close() Y Y Y Y Y

getConnection() Y Y Y Y Y

Legend:
Y: Exception trace log is acquired.
N: Exception trace log is not acquired.

#1
When the trace acquisition level is 5, an exception trace log that includes internal calls is acquired.

#2
method-name(1) is output as the method name.

#3
method-name(2) is output as the method name.

#4
This method overrides the method in the Statement class.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 309

(b) Setup for acquisition of the exception trace log (setting properties)
You use system properties, user properties, or URL connection properties to set the file output destination for the
exception trace log, the number of outputs to the file, the number of information items to be acquired in memory, and
the trace acquisition level.

The following table lists and describes the items that are specified in properties.

Table 7-17: Exception trace log items specified in properties

Item Property Description Default
value#

File output
destination

adb_jdbc_exc_trc_ou
t_path

Specify the absolute path of the directory to which the exception trace
log is to be output. The exception trace log is output directly under the
specified directory

Current
directory

Number of
outputs to the
file

adb_jdbc_info_max Specify the maximum number of information items to be output to one
file. The value must be in the range from 1 to 50.
The actual maximum number of information items to be output to one
file is number of outputs to the file × number of information items to be
acquired in memory.
For the number of outputs to the file, each of the formats from Format
2 to Format 4 shown in (2) Exception trace log output formats counts
as one output.
The information items are output to memory in the sequence they were
stored.
If information items exceeding the maximum value are to be output to
the file, the items are wrapped into a second file. The file names are as
follows:
• adbjdbcexception01.trc
• adbjdbcexception02.trc

Note that the output destination file does not change between Format 1
and Format 2 shown in (2) Exception trace log output formats.

5

Number of
information
items to be
acquired in
memory

adb_jdbc_cache_info
_max

Specify the maximum number of information items to be stored in
memory. The value must be in the range from 500 to 10,000.
For the information acquired in memory, each method shown in
Table 7-16: Methods that are acquisition targets of the exception trace
log and their applicable trace acquisition levels is counted as one item.
If the number of information items to be stored exceeds the maximum
value, old information items are overwritten with new information items
in chronological order.

1,000

Trace
acquisition level

adb_jdbc_trc_out_lv Specify a trace acquisition level. The value must be in the range from
0 to 5.
If you specify 5, all methods that are trace acquisition targets, including
internally called methods, are acquired.
If you specify 0, an exception trace log is not acquired.

1

#
In an exception trace log that is acquired in the following cases, the system assumes that no value is specified for
the property. In this case, the default value applies.

• When an invalid value is specified in the properties and an SQLException is thrown at the time that a
connection to the database is established.

• When the Java Virtual Machine (JVM) denies the JDBC driver permission to exchange properties because of
security manager reasons.

• Before the initial connection of the Java Virtual Machine (JVM) is established.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 310

(2) Exception trace log output formats
An exception trace log consists of the four formats show below.

Format 1: Header section

[AA....AA] Hitachi Advanced Data Binder JDBC Driver BB-CC

Format 2: Method execution history (start of a method's execution)

AAAAAAAAAAAAAAAAAAAAAAA BB....BB:[C][DD....DD]
 ConnectionID(EE....EE) : SID(FF....FF)
 GG....GG

Format 3: Method execution history (normal termination of a method)

AAAAAAAAAAAAAAAAAAAAAAA BB....BB:[C][DD....DD]
 ConnectionID(EE....EE) : SID(FF....FF)
 HH....HH

Format 4: Timing of output that occurred

AAAAAAAAAAAAAAAAAAAAAAA BB....BB:Exception:
II....II

Formats 2 and 3 are output in time sequence as many times as the number of methods that are executed.

(a) Explanation of variables in Format 1

AA....AA
Sequence number of the output information
The sequence number is incremented by 1 for each output (including failures caused by output errors). After the
value reaches 2,147,483,647, the sequence returns to 0.

BB
JDBC driver's version number

CC
JDBC driver's revision number

(b) Explanation of variables in Formats 2, 3, and 4

AAAAAAAAAAAAAAAAAAAAAAA
Acquisition date and time of the exception trace log, in the following format:

YYYY/MM/DD hh:mm:ss.sss

YYYY: Year (Western calendar)
MM: Month
DD: Date
hh: Hour (24-hour clock)
mm: Minute
ss.sss: Second (includes 3 digits after the decimal point)

BB....BB:
Thread identification information for the target thread, in the following format:

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 311

Thread[aa....aa]@bb....bb

aa....aa:
Thread information, including the thread name, priority, and thread group name. The Java Virtual Machine (JVM)
determines the format.

bb....bb:
Hash code of the object. The Java Virtual Machine (JVM) determines the format.

C
Call identification information for the method:

E:
The information is history information for when the method was started.

R:
The information is history information for when the method terminated normally.

DD....DD:
Object identifier and method name, in the following format:

aa....aa.bb....bb

aa....aa:
Object identifier (maximum of 32 characters). The Java Virtual Machine (JVM) determines the format.

bb....bb:
Method name

EE....EE:
Connection ID (maximum of four characters)

FF....FF:
Section ID (maximum of four characters)

GG....GG:
Method arguments, in the following format (this information is not output for methods without arguments):

aa....aa=bb....bb
aa....aa=bb....bb
 :
aa....aa=bb....bb

aa....aa:
Argument name

bb....bb:
Argument contents (maximum of 256 characters). For reference type values, the object determines the format.

One asterisk (*) is output to bb....bb for the password argument of the following methods:

• getConnection(String username, String password) of the DataSource class

• getPooledConnection(String username, String password) of the
ConnectionPoolDataSource class

For the info argument in connect(String url,Properties info) of the Driver class, the value of the
following property is replaced by one asterisk (*) and then output:

• password

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 312

HH....HH
Return value of the method, in the format shown below. This item is not output for methods that do not have a return
value. If the return value is a reference-type value, the Java Virtual Machine (JVM) determines the format.

Return=aa....aa

aa....aa:
Method's return value

II....II:
Troubleshooting information, in the following format:

ExceptionClass: aa....aa
ConnectionInformation: bb....bb
Message: cc....cc
ErrorCode: dd....dd
UpdateCounts: ee....ee, ..<omitted>.. ,ee....ee
ff....ff

aa....aa:
Execution class name of the exception object that was thrown

bb....bb:
Connection information for the exception object, in the format shown below. If no definitions are to be output,
this variable is replaced by an asterisk (*) and then output.

yy.....yy (zz.....zz), ..<omitted>.., yy.....yy (zz.....zz)

yy.....yy: Type of connection information item:

• host (HADB server's host name)

• port (HADB server's port number)

• user (authorization identifier)

• sqlwaittime (HADB client's maximum response wait time (seconds))

zz.....zz: Contents of the connection information item. Note that the password part of user is not displayed.

cc....cc:
Message of the exception object
If there are multiple messages, each message is displayed, separated by an end-of-line code, after the message
corresponding to SQLCODE. In this case, the message that is returned by the getMessage method of an
exception object is also displayed as a character string separated by an end-of-line code.

dd....dd:
SQLCODE error code (maximum of 11 characters)
This item is output when the execution class of the thrown exception object is the following class or subclass:

• SQLException
ee.....ee:

Number of update rows for each update statement in a batch update that was executed normally before this
exception occurred (maximum of 11 characters).
This item is output when the execution class of the exception object is BatchUpdateException.
If the number of update rows cannot be obtained, an asterisk (*) is output.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 313

ff.....ff:
Stack trace in which the exception-throwing method is set as the base point. The Java Virtual Machine (JVM)
determines the format.

(3) Output example and analysis methodology

(a) Output example

[1] Hitachi Advanced Data Binder JDBC Driver VV-RR#
2011/07/06 23:07:09.129 Thread[main,5,main]@1259414:[E][AdbConnection@82c01f.createSt
atement(1)]
 ConnectionID(1) : SID(0)
2011/07/06 23:07:09.160 Thread[main,5,main]@1259414:[R][AdbConnection@82c01f.createSt
atement(1)]
 ConnectionID(1) : SID(0)
 Return=com.hitachi.hadb.jdbc.AdbStatement@1e4cbc4
2011/07/06 23:07:09.160 Thread[main,5,main]@1259414:[E][AdbStatement@1e4cbc4.execute]
 ConnectionID(1) : SID(0)
 sql=DELETE FROM SEINO_TABLE
2011/07/06 23:07:14.285 Thread[main,5,main]@1259414:[E][AdbConnection@82c01f.commit]
 ConnectionID(1) : SID(0)
2011/07/06 23:07:14.301 Thread[main,5,main]@1259414:[R][AdbConnection@82c01f.commit]
 ConnectionID(1) : SID(0)
2011/07/06 23:07:14.301 Thread[main,5,main]@1259414:[R][AdbStatement@1e4cbc4.execute]
 ConnectionID(1) : SID(1)
 Return=false
2011/07/06 23:07:14.301 Thread[main,5,main]@1259414:[E][AdbConnection@82c01f.prepareS
tatement(1)]
 ConnectionID(1) : SID(0)
 sql=INSERT INTO SEINO_TABLE VALUES(?, ?)
2011/07/06 23:07:14.348 Thread[main,5,main]@1259414:[R][AdbConnection@82c01f.prepareS
tatement(1)]
 ConnectionID(1) : SID(0)
 Return=com.hitachi.hadb.jdbc.AdbPreparedStatement@15d56d5
2011/07/06 23:07:26.567 Thread[main,5,main]@1259414:[E][AdbConnection@82c01f.commit]
 ConnectionID(1) : SID(0)
2011/07/06 23:07:26.567 Thread[main,5,main]@1259414:[R][AdbConnection@82c01f.commit]
 ConnectionID(1) : SID(0)
2011/07/06 23:07:26.567 Thread[main,5,main]@1259414:[E][AdbStatement@1e4cbc4.executeQ
uery]
 ConnectionID(1) : SID(0)
 sql=SELECT * FROM SEINO_TABLE
2011/07/06 23:07:26.676 Thread[main,5,main]@1259414:[R][AdbStatement@1e4cbc4.executeQ
uery]
 ConnectionID(1) : SID(1)
 Return=com.hitachi.hadb.jdbc.AdbResultSet@3eca90
2011/07/06 23:07:28.332 Thread[main,5,main]@1259414:[E][AdbResultSet@3eca90.close]
 ConnectionID(1) : SID(1)
2011/07/06 23:07:28.332 Thread[main,5,main]@1259414:[E][AdbConnection@82c01f.commit]
 ConnectionID(1) : SID(0)
2011/07/06 23:07:28.332 Thread[main,5,main]@1259414:[R][AdbConnection@82c01f.commit]
 ConnectionID(1) : SID(0)
2011/07/06 23:07:28.332 Thread[main,5,main]@1259414:[R][AdbResultSet@3eca90.close]
 ConnectionID(1) : SID(0)
2011/07/06 23:07:28.332 Thread[Thread-0,5,main]@30090737:[E][AdbConnection@82c01f.pre
pareStatement(1)]
 ConnectionID(1) : SID(0)
 sql=SELECT * FROM SEINO_TABLE
2011/07/06 23:07:28.332 Thread[Thread-0,5,main]@30090737:[R][AdbConnection@82c01f.pre
pareStatement(1)]
 ConnectionID(1) : SID(0)
 Return=com.hitachi.hadb.jdbc.AdbPreparedStatement@2808b3

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 314

2011/07/06 23:07:28.348 Thread[Thread-1,5,main]@5462872:[E][AdbConnection@82c01f.prep
areStatement(1)]
 ConnectionID(1) : SID(0)
 sql=DELETE FROM SEINO_TABLE WHERE I1=?
2011/07/06 23:07:28.358 Thread[Thread-1,5,main]@5462872:[E][AdbConnection@82c01f.comm
it]
 ConnectionID(1) : SID(0)
2011/07/06 23:07:29.672 Thread[Thread-1,5,main]@5462872:[R][AdbConnection@82c01f.comm
it]
 ConnectionID(1) : SID(0)
2011/07/06 23:07:30.098 Thread[Thread-1,5,main]@5462872:[R][AdbConnection@82c01f.prep
areStatement(1)]
 ConnectionID(1) : SID(0)
 Return=com.hitachi.hadb.jdbc.AdbPreparedStatement@922804
2011/07/06 23:07:30.332 Thread[Thread-2,5,main]@25253977:[E][AdbConnection@82c01f.rol
lback(1)]
 ConnectionID(1) : SID(0)
2011/07/06 23:07:42.098 Thread[Thread-2,5,main]@25253977:[R][AdbConnection@82c01f.rol
lback(1)]
 ConnectionID(1) : SID(0)
2011/07/06 23:07:42.098 Thread[Thread-2,5,main]@25253977:[E][AdbConnection@82c01f.clo
se]
 ConnectionID(1) : SID(0)
2011/07/06 23:07:42.098 Thread[Thread-2,5,main]@25253977:[R][AdbConnection@82c01f.clo
se]
 ConnectionID(1) : SID(0)
2011/07/06 23:07:42.535 Thread[Thread-1,5,main]@5462872:Exception:
ExceptionClass: SQLException
ConnectionInformation: *
Message: KFAA71206-E Processing cannot continue because the connection is already clo
sed. [AdbPreparedStatement.setInt]
ErrorCode: -1020006
java.sql.SQLException: KFAA71206-E Processing cannot continue because the connection
is already closed. [AdbPreparedStatement.setInt]
at com.hitachi.hadb.jdbc.JdbMakeException.generateSQLException(JdbMakeException.java:
31)
at com.hitachi.hadb.jdbc.AdbStatement.generateClosedSQLException(AdbStatement.java:30
05)
at com.hitachi.hadb.jdbc.AdbPreparedStatement.setInt(AdbPreparedStatement.java:1170)
at Exception1.run(ExceptionTraceSample.java:57)
[2] Hitachi Advanced Data Binder JDBC Driver VV-RR#
2011/07/06 23:07:25.723 Thread[Thread-3,5,main]@13249998:[E][AdbConnection@119cca4.pr
epareStatement(1)]
 ConnectionID(1) : SID(0)
 sql=SELECT * FROM SEINO_TABLE
2011/07/06 23:07:25.770 Thread[Thread-4,5,main]@25839584:[E][AdbConnection@119cca4.ro
llback(1)]
 ConnectionID(1) : SID(0)
2011/07/06 23:07:25.770 Thread[Thread-4,5,main]@25839584:[R][AdbConnection@119cca4.ro
llback(1)]
 ConnectionID(1) : SID(0)
2011/07/06 23:07:25.770 Thread[Thread-5,5,main]@24431647:[E][AdbConnection@119cca4.pr
epareStatement(1)]
 ConnectionID(1) : SID(0)
 sql=SELECT ** FROM SEINO_TABLE
2011/07/06 23:07:25.863 Thread[Thread-5,5,main]@24431647:Exception:
ExceptionClass: SQLException
ConnectionInformation: user(ADBUSER01), sqlwaittime(0), host(dragon2), port(20249)
Message: KFAA30105-E Token "*"(non-reserved word), which is after token "*", is inval
id.[AdbStatement.prepare]
ErrorCode: -105
java.sql.SQLException: KFAA30105-E Token "*"(non-reserved word), which is after toke
n "*", is invalid.[AdbStatement.prepare]
at com.hitachi.hadb.jdbc.JdbSection.prepare(JdbSection.java:1497)

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 315

at com.hitachi.hadb.jdbc.AdbStatement.prepare(AdbStatement.java:2834)
at com.hitachi.hadb.jdbc.AdbPreparedStatement.<init>(AdbPreparedStatement.java:109)
at com.hitachi.hadb.jdbc.AdbConnection.prepareStatement(AdbConnection.java:1041)
at Exception1.run(ExceptionTraceSample.java:64)

#
For VV-RR, the version of the JDBC driver is output.

(b) Analysis methodology
This subsection explains the analysis methodology for an exception trace log. You can use a text editor to view an
exception trace log.

This analysis example analyzes the exception trace log shown in (a) Output example.

To analyze the exception trace log:

1. From the sequentially numbered information, extract the exception to be investigated

2. Categorize the information by using the Thread identification information, and separate the information by thread.

3. Arrange the information in time sequence based on the acquisition times.
The following table shows what the results look like.

Table 7-18: Example in which the exception trace log is arranged in time sequence

Date and time Thread 1 Thread 2 Thread 3 Thread 4

Thread[main,5,main
]@1259414

Thread[Thread-0,5,m
ain]@30090737

Thread[Thread-1,5,m
ain]@5462872

Thread[Thread-2,5,m
ain]@25253977

2011/07/06
23:07:09.129

AdbConnection@82c
01f.createStateme
nt(1)

2011/07/06
23:07:09.160

AdbStatement@1e4c
bc4.execute

2011/07/06
23:07:14.285

AdbConnection@82c
01f.commit

2011/07/06
23:07:14.301

AdbConnection@82c
01f.prepareStatem
ent(1)

2011/07/06
23:07:26.567

AdbConnection@82c
01f.commit

2011/07/06
23:07:26.567

AdbConnection@82c
01f.commit

2011/07/06
23:07:26.567

AdbStatement@1e4c
bc4.executeQuery

2011/07/06
23:07:28.332

AdbResultSet@3eca
90.close

AdbConnection@82c
01f.prepareStatem
ent(1)

2011/07/06
23:07:28.332

AdbConnection@82c
01f.commit

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 316

Date and time Thread 1 Thread 2 Thread 3 Thread 4

Thread[main,5,main
]@1259414

Thread[Thread-0,5,m
ain]@30090737

Thread[Thread-1,5,m
ain]@5462872

Thread[Thread-2,5,m
ain]@25253977

2011/07/06
23:07:28.348

AdbConnection@82c
01f.prepareStatem
ent(1)

2011/07/06
23:07:28.358

AdbConnection@82c
01f.commit

2011/07/06
23:07:30.332

AdbConnection@82c
01f.rollback(1)

2011/07/06
23:07:42.098

AdbConnection@82c
01f.close

2011/07/06
23:07:42.535

SQLException
occurred
"KFAA71206-E
Processing cannot
continue because
the connection is
already closed."

4. Check the nature of the exception error.
The information indicates that an SQLException occurred in Thread 3 on July 6, 2011 at 23:07:42.535, and that
a Statement or Connection object had already been closed.

5. Check the operation of the object in the time sequence.
Because the object ID of the Connection object in the next thread is the same, we know that four threads were
being processed in the same connection.

• Thread 1 at 2011/07/06 23:07:09.129
• Thread 2 at 2011/07/06 23:07:28.332
• Thread 3 at 2011/07/06 23:07:28.348
• Thread 4 at 2011/07/06 23:07:30.332

6. Search for the location of the cause of the error.
Because we know that the four threads have the same connection, we can search for the locations where the
Statement.close or Connection.close method was executed, and we learn that Thread 4 executed the
Connection.close method on July 6, 2011 at 23:07:42.098. From this, we know that the reason for the
SQLException that occurred in Thread 3 on July 6, 2011 at 23:07:42.535 was that Thread 4 executed the
Connection.close method on July 6, 2011 at 23:07:42.098.

(4) Required memory size and file size

(a) Required memory size
The memory size required for acquiring an exception trace log is determined from the following formula:

Formula
↑360 × n ÷ 1,024↑ (kilobytes)

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 317

Explanation of variable
n: Number of information items to be acquired in memory (value of adb_jdbc_cache_info_max in the system
properties, user properties, or URL connection properties)

(b) Required file size
The approximate file size required for acquiring an exception trace log is determined from the following formula:

Formula
↑180 × n × m ÷ 1,024↑ + 1 (kilobytes)

Explanation of variables
n: Number of information items to be acquired in memory (value of adb_jdbc_cache_info_max in the system
properties, user properties, or URL connection properties)
m: Number of file output information items (value of adb_jdbc_info_max in the system properties, user
properties, or URL connection properties)

(5) Notes

(a) First output after startup of the Java Virtual Machine (JVM)
The first exception trace log output to a file after the Java Virtual Machine (JVM) has started is the one output to the
file with the oldest update date and time. If the date and time are the same for both files, the log is output to
adbjdbcexception01.trc.

(b) Specification of the file output destination
If the same file output destination is specified when exception trace logs are being acquired from multiple processes,
trace information for the different processes will be output to the same file. To acquire traces separately for each process,
specify a different file output destination for each process.

The JDBC driver uses the facilities of the Java Virtual Machine (JVM) to create log files in the file system provided by
the OS. Therefore, the following items depend on the Java Virtual Machine (JVM) and file system being used:

• Prefix for the absolute pathname

• Path delimiter character

• Maximum number of characters for the output destination file (absolute path)

• Size per file

(c) Error handling procedure
No information is output to the exception trace log when file creation or output fails. An error message is not returned
to the application program and file output is not retried.

(d) Character encoding
The exception trace log is output using the default conversion character set of the Java Virtual Machine (JVM) that is
being used.

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 318

7.8 Scalar functions that can be specified in the escape clause

The following table lists the scalar functions that can be specified in the escape clause.

Table 7-19: Scalar functions that can be specified in the escape clause

Scalar function Standard format of scalar function

Mathematical functions ABS(number)

ACOS(float)

ASIN(float)

ATAN(float)

ATAN2(float1, float2)

CEILING(number)

COS(float)

DEGREES(number)

EXP(float)

FLOOR(number)

LOG(float)

LOG10(float)

MOD(integer1, integer2)

PI()

POWER(number, power)

RADIANS(number)

RAND([number, number])

ROUND(number, places)

SIGN(number)

SIN(float)

SQRT(float)

TAN(float)

TRUNCATE(number[, places])

String functions ASCII(string)

CHAR(code)

CONCAT(string1,string2)

LCASE(string)

LEFT(string,count)

LENGTH(string)

LTRIM(string)

OCTET_LENGTH(string)

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 319

Scalar function Standard format of scalar function

REPLACE(string1,string2[,string3])

RIGHT(string,count)

RTRIM(string)

SUBSTRING(string, start[, length])

UCASE(string)

Time and date functions CURDATE()

CURRENT_DATE()

CURRENT_TIME()

CURRENT_TIMESTAMP()

CURTIME()

DAYOFWEEK(date)

DAYOFYEAR(date)

EXTRACT(extract-field FROM extract-source)

NOW()

System function USER()

Data type conversion function CONVERT(value, SQLtype)

7. Creating Application Programs

Hitachi Advanced Database Application Development Guide 320

This chapter explains the interfaces and methods in the JDBC 1.2 API.

8 The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 321

8.1 Driver interface

This section explains the methods provided by the Driver interface.

8.1.1 List of the methods in the Driver interface

(1) Main functions of the Driver interface
The Driver interface provides the following main functions:

• Connection to a database

• Validity check of the URL for connection

• Acquisition of connection properties specified with the DriverManager.getConnection method

• Return of the JDBC driver version

(2) Methods in the Driver interface that are supported by HADB
The following table lists and describes the methods in the Driver interface that are supported by HADB.

Table 8-1: Methods in the Driver interface

No. Method in the Driver interface Function

1 acceptsURL(String url) Checks whether a connection can be established with the HADB
server by means of the connection information specified by the URL
for connection.

2 connect(String url, Properties info) Connects to the HADB server according to the connection
information.

3 getMajorVersion() Acquires the JDBC driver's major version.

4 getMinorVersion() Acquires the JDBC driver's minor version.

5 getPropertyInfo(String url, Properties
info)

Acquires information about the JDBC driver's valid properties.

6 jdbcCompliant() Reports whether the JDBC driver is JDBC CompliantTM.

Important
HADB does not support methods that are not listed in this table. If an unsupported method is executed, an
SQLException is thrown.

(3) Required package name and class name
The package and class names required in order to use the Driver interface are as follows:

• Package name: com.hitachi.hadb.jdbc
• Class name: HADBDriver

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 322

8.1.2 acceptsURL(String url)

(1) Function
This method checks whether the JDBC driver can connect to the database specified by the URL.

(2) Format
public boolean acceptsURL(String url) throws SQLException

(3) Arguments
String url

Specifies the URL to be used for a connection.
For details about the specification format of the URL to be used for connection, see (a) Values to be specified in
the url argument (specifying the URL for the connection) in (2) Connecting to the HADB server with the
getConnection method in 7.3.1 Using the getConnection method of the DriverManager class to connect to the
HADB server.

(4) Return value
The method returns true if the JDBC driver can connect to the database specified by the URL; if not, the method
returns false.

(5) Exceptions
None.

8.1.3 connect(String url, Properties info)

(1) Function
This method connects to an HADB server according to the connection information.

Note that you must have the CONNECT privilege to execute the connect method.

(2) Format
public Connection connect(String url, Properties info) throws SQLException

(3) Arguments
String url

Specifies the URL to be used for connection.
For details about the specification format of the URL to be used for connection, see (a) Values to be specified in
the url argument (specifying the URL for the connection) in (2) Connecting to the HADB server with the

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 323

getConnection method in 7.3.1 Using the getConnection method of the DriverManager class to connect to the
HADB server.

Properties info
Specifies a list of property names and their values as the connection arguments. For details about the specification
format, see (d) Values to be specified in the info argument (specifying the user properties) in (2) Connecting to the
HADB server with the getConnection method in 7.3.1 Using the getConnection method of the DriverManager class
to connect to the HADB server.

(4) Return value
The method returns a Connection object.

If the specified URL is not valid (the JDBC driver cannot connect to the database specified by the URL), the method
returns null.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• A database access error occurs.

• The specified connection information is not valid.

(6) Notes
You can set connection information in a number of locations, such as in various properties and methods. For details
about the priority of connection information to be applied, see (1) Connection information needed when a connection
to the HADB server is established in 7.3.3 Connection information priorities.

8.1.4 getMajorVersion()

(1) Function
This method acquires the JDBC driver's major version.

(2) Format
public synchronized int getMajorVersion()

(3) Arguments
None.

(4) Return value
This method returns the JDBC driver's major version number.

(5) Exceptions
None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 324

8.1.5 getMinorVersion()

(1) Function
This method acquires the JDBC driver's minor version.

(2) Format
public synchronized int getMinorVersion()

(3) Arguments
None.

(4) Return value
This method returns the JDBC driver's minor version number.

(5) Exceptions
None.

8.1.6 getPropertyInfo(String url, Properties info)

(1) Function
This method acquires information about the JDBC driver's valid properties.

(2) Format
public synchronized DriverPropertyInfo[] getPropertyInfo(String url, Properties info)
 throws SQLException

(3) Arguments
String url

Specifies the URL to be used for connection.
For details about the specification format of the URL to be used for connection, see (a) Values to be specified in
the url argument (specifying the URL for the connection) in (2) Connecting to the HADB server with the
getConnection method in 7.3.1 Using the getConnection method of the DriverManager class to connect to the
HADB server.

Properties info
Specifies a list of property names and their values as the connection arguments.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 325

(4) Return value
This method returns the array of the DriverPropertyInfo object for specifying valid properties. If no properties
are needed, this array might be empty.

The following table lists the settings for the fields of DriverPropertyInfo.

Table 8-2: Settings for fields of DriverPropertyInfo

Property name DriverPropertyInfo field

name value description required choices

adb_clt_rpc_srv_host Same as the
property name

null "Host Name" true null

adb_clt_rpc_srv_port null "Port
Number"

true null

adb_clt_rpc_con_wait_
time

"300" "Connect
Wait Time"

false null

adb_clt_rpc_sql_wait_
time

"0" "Sql Wait
Time"

false null

adb_clt_ap_name "********" "Application
Name"

false null

adb_clt_group_name null "Client
Group Name"

false null

adb_clt_fetch_size "1024" "Fetch Size" false null

adb_clt_sql_text_out "N" "Text Out" false {Y","N"}

adb_clt_trn_iso_lv "READ_COMMIT
TED"

"Isolation
Level"

false {"READ_COMMI
TTED","REPEA
TABLE_READ"}

adb_clt_sql_order_mod
e

"BYTE" "Order Mode" false {"BYTE","ISO
"}

adb_clt_trn_access_mo
de

"READ_WRITE" "Access
Mode"

false {"READ_WRITE
","READ_ONLY
"}

adb_dbbuff_wrktbl_clt
_blk_num

"256" "Work Table
Block
Number"

false null

adb_sql_prep_delrsvd_
use_srvdef

"Y" "Delete
Reserved
Word Using
Server
Definition"

false {Y","N"}

adb_sql_prep_dec_div_
rs_prior

"INTEGRAL_PA
RT"

"Decimal
Division
Result
Prior"

false {"INTEGRAL_P
ART","FRACTI
ONAL_PART"}

adb_sql_exe_max_rthd_
num

"4" "Sql Execute
Max Real
Thread
Number"

false null

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 326

Property name DriverPropertyInfo field

name value description required choices

adb_sql_exe_hashgrp_a
rea_size

"4800" "Hash Group
Area Size"

false null

adb_sql_exe_hashtbl_a
rea_size

"2000" "Hash Table
Area Size"

false null

adb_sql_exe_hashflt_a
rea_size

"200" "Hash Filter
Area Size"

false null

adb_jdbc_exc_trc_out_
path

null "Exception
Trace Out
Path"

false null

adb_jdbc_info_max "5" "Exception
Trace
Information
Max Number"

false null

adb_jdbc_cache_info_m
ax

"1000" "Exception
Trace Cache
Information
Max Number"

false null

adb_jdbc_trc_out_lv "1" "Exception
Trace Out
Level"

false null

encodelang null "Encode
Lang"

false null

methodtrace "OFF" "JDBC
Interface
Trace"

false {"ON","OFF"}

tracenum "500" "Trace Entry
Number"

false null

sqlwarningkeep "TRUE" "Keeping up
the Warning
Objects"

false {"TRUE","FAL
SE"}

user null "UserID" true null

password null "Password" true null

This method analyzes the information specified in url and info and returns the information needed for connecting
to the HADB server.

If the acceptsURL method returns false, this method returns null.

(5) Exceptions
None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 327

8.1.7 jdbcCompliant()

(1) Function
This method reports whether this JDBC driver is JDBC CompliantTM.

(2) Format
public synchronized boolean jdbcCompliant()

(3) Arguments
None.

(4) Return value
If the JDBC driver is JDBC-compliant, this method returns true; if not, the method returns false.

(5) Exceptions
None.

8.1.8 Escape clause
A part enclosed in curly brackets ({ }) in an SQL statement is called an escape clause. An escape clause consists of a
keyword and parameters. The keyword is not case sensitive. The following table lists the escape clauses.

Table 8-3: List of escape clauses

Type of escape clause Keyword

Date d

Time t

Time stamp ts

LIKE escape-character escape

Outer join oj

Scalar function fn

For details about the scalar functions that can be specified in an escape clause, see 7.8 Scalar functions that can be
specified in the escape clause.

Analysis of escape syntax
You can use the setEscapeProcessing method of the Statement class to specify whether analysis of the
escape syntax is to be enabled. When this specification is omitted, analysis of escape syntax is enabled. Analysis of
escape syntax means that the JDBC driver checks each SQL statement for escape clauses. If an SQL statement
contains an escape clause, the JDBC driver converts the SQL statement so that the statement can be executed by
HADB.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 328

You can reduce the overhead required for syntax analysis by using the setEscapeProcessing method of the
Statement object to disable analysis of escape syntax.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 329

8.2 Connection interface

This section explains the methods provided by the Connection interface.

8.2.1 List of the methods in the Connection interface

(1) Main functions of the Connection interface
The Connection interface provides the following main functions:

• Creation of the Statement and PreparedStatement class objects

• Transaction settlement (commit or rollback)

• Specification of the automatic commit mode

(2) Methods in the Connection interface that are supported by HADB
The following table lists and describes the methods in the Connection interface that are supported by HADB.

Table 8-4: Methods in the Connection interface

No. Method in the Connection interface Function

1 clearWarnings() Clears all warnings reported to the Connection object.

2 close() Closes the connection with the HADB server.

3 commit() Applies all changes made since the most recent commit or rollback.

4 createStatement() Creates a Statement object for sending an SQL statement to the
HADB server.

5 createStatement(int resultSetType, int
resultSetConcurrency)

6 createStatement(int resultSetType, int
resultSetConcurrency, int
resultSetHoldability)

7 getAutoCommit() Acquires the current automatic commit mode for this Connection
object.

8 getCatalog() Acquires the current catalog name for this Connection object.

9 getHADBConnectionID() Acquires the connection ID that is assigned to this Connection
object.

10 getHADBConnectionSerialNum() Acquires the connection sequence number that is assigned to this
Connection object.

11 getHADBOrderMode() Acquires for this Connection object the sort order for character
string data in a SELECT statement in which the ORDER BY clause is
specified.

12 getHADBSQLHashFltSize() Acquires the size of the hash filter area that is set for this
Connection object.

13 getHADBSQLHashTblSize() Acquires the size of the hash table area that is set for this
Connection object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 330

No. Method in the Connection interface Function

14 getHADBSQLMaxRthdNum() Acquires the maximum number of SQL processing real threads that
is set for this Connection object.

15 getHADBTransactionID() Acquires the transaction ID of the transaction that is being executed.

16 getHoldability() Acquires the current holdability of the ResultSet object that is
created by using this Connection object.

17 getMetaData() Creates a DatabaseMetaData object.

18 getSchema() Acquires the current schema name for this Connection object.

19 getTransactionIsolation() Acquires the current transaction isolation level for this Connection
object.

20 getTypeMap() Acquires the Map object related to this Connection object.

21 getWarnings() Acquires as an SQLWarning object a warning reported by a call
related to this Connection object.

22 isClosed() Returns a value indicating whether this Connection object is
closed.

23 isReadOnly() Acquires a value indicating whether this Connection object is in
read-only mode.

24 isValid(int timeout) Acquires the current connection status.

25 nativeSQL(String sql) Converts escape clauses in a specified SQL statement to a format that
can be executed by HADB.

26 prepareStatement(String sql) Creates a PreparedStatement object for sending an SQL
statement with parameters to the HADB server.

27 prepareStatement(String sql, int
resultSetType, int
resultSetConcurrency)

28 prepareStatement(String sql, int
resultSetType, int
resultSetConcurrency, int
resultSetHoldability)

29 rollback() Undoes all changes made by the transaction and releases all locks
currently held by the Connection object.

30 setAutoCommit(boolean autoCommit) Sets the automatic commit mode for this connection.

31 setCatalog(String catalog) Sets the passed catalog name and selects a database work subspace
for the Connection object.

32 setHADBAuditInfo(int pos,String
userinfo)

Sets the user-specific connection information (user-added
information).

33 setHADBOrderMode(int mode) Sets for this Connection object the sort order for character string
data in a SELECT statement in which the ORDER BY clause is
specified.

34 setHADBSQLHashFltSize(int areaSize) Sets for this Connection object the size of the hash filter area.

35 setHADBSQLHashTblSize(int areaSize) Sets for this Connection object the size of the hash table area.

36 setHADBSQLMaxRthdNum(int rthdNum) Sets for this Connection object the maximum number of SQL
processing real threads.

37 setHoldability(int holdability) Sets the holdability of the ResultSet object that is created by
using this Connection object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 331

No. Method in the Connection interface Function

38 setReadOnly(boolean readOnly) Sets this Connection object in the read-only mode. Sets the
transaction access mode.

39 setSchema(String schema) Sets the name of the schema to access.

40 setTransactionIsolation(int level) Sets the transaction isolation level for this Connection object.

Important
HADB does not support methods that are not listed in this table. If an unsupported method is executed, an
SQLException might be thrown.

(3) Required package name and class name
The package and class names required in order to use the Connection interface are as follows:

• Package name: com.hitachi.hadb.jdbc
• Class name: AdbConnection

8.2.2 clearWarnings()

(1) Function
This method clears all warnings reported to the Connection object.

Once this method has been called, the return value of the getWarnings method is null until a new warning is
reported for this Connection object.

(2) Format
public synchronized void clearWarnings() throws SQLException

(3) Arguments
None.

(4) Return value
None.

(5) Exceptions
If this Connection object is closed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 332

8.2.3 close()

(1) Function
This method closes the connection with the HADB server.

When a normal connection is in effect, this method disconnects the HADB server, disables the corresponding objects,
and releases any unneeded resources.

(2) Format
public synchronized void close() throws SQLException

(3) Arguments
None.

(4) Return value
None.

(5) Exceptions
None.

(6) Notes
• If this method is executed in a pooling environment, the physical connection is not closed. In this case, the close

method of the PooledConnection object must be used to close the physical connection.

• If execution of this method in a pooling environment results in a fatal error and connection pooling becomes
unavailable, ConnectionEventListener.connectionErrorOccurred does not occur.

• If this method is called by a Connection object that is already closed, this method does nothing.

• If an error occurred during row retrieval processing, an unsettled transaction is rolled back without being committed.
Connection to the HADB server is closed normally and resources are released.

8.2.4 commit()

(1) Function
This method applies all changes made since the most recent commit or rollback.

If this method is called while the automatic commit mode is enabled, the method performs commit processing without
throwing an exception.

(2) Format
public synchronized void commit() throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 333

(3) Arguments
None.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Connection object is closed.

• A database access error occurs.

• A row retrieval error was detected in an extension of the commit processing.

(6) Notes
• If an exception occurs due to detection of a row retrieval error, the transaction is rolled back without being committed.

• If commit processing fails, the HADB server terminates abnormally.

8.2.5 createStatement()

(1) Function
This method creates a Statement object for sending an SQL statement to the HADB server.

(2) Format
public synchronized Statement createStatement() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the Statement object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Connection object is closed.

• Creation of the Statement object resulted in an error.

• A database access error occurs.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 334

(6) Notes
The holdability of a ResultSet object generated from the Statement object created by this method is always
ResultSet.HOLD_CURSORS_OVER_COMMIT.

8.2.6 createStatement(int resultSetType, int resultSetConcurrency)

(1) Function
This method creates a Statement object for sending an SQL statement to the HADB server.

(2) Format
public synchronized Statement createStatement(int resultSetType, int resultSetConcurr
ency) throws SQLException

(3) Arguments
int resultSetType

Specifies a result set type.

int resultSetConcurrency
Specifies the concurrent processing mode.

(4) Return value
The method returns the Statement object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Connection object is closed.

• Creation of the Statement object resulted in an error.

• A value other than a ResultSet literal is specified for the result set type.

• A value other than a ResultSet literal is specified for the concurrent processing mode.

• A database access error occurs.

(6) Notes
• The holdability of a ResultSet object generated from the Statement object created by this method is always
ResultSet.HOLD_CURSORS_OVER_COMMIT.

• If ResultSet.TYPE_SCROLL_SENSITIVE is specified for the result set type, this JDBC driver changes it to
ResultSet.TYPE_SCROLL_INSENSITIVE, and then sets an SQLWarning.

• For the concurrent processing mode, the JDBC driver supports only ResultSet.CONCUR_READ_ONLY. If
ResultSet.CONCUR_UPDATABLE is specified, the JDBC driver changes it to
ResultSet.CONCUR_READ_ONLY, and then sets an SQLWarning.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 335

8.2.7 createStatement(int resultSetType, int resultSetConcurrency, int
resultSetHoldability)

(1) Function
This method creates a Statement object for sending an SQL statement to the HADB server.

(2) Format
public synchronized Statement createStatement(int resultSetType, int resultSetConcurr
ency, int resultSetHoldability) throws SQLException

(3) Arguments
int resultSetType

Specifies a result set type.

int resultSetConcurrency
Specifies the concurrent processing mode.

int resultSetHoldability
Specifies the holdability of the ResultSet object.

(4) Return value
The method returns the Statement object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Connection object is closed.

• Creation of the Statement object resulted in an error.

• A value other than a ResultSet literal is specified for the result set type.

• A value other than a ResultSet literal is specified for concurrent processing mode.

• A value other than a ResultSet literal is specified for the holdability of the ResultSet object.

• A database access error occurs.

(6) Notes
• If ResultSet.TYPE_SCROLL_SENSITIVE is specified for the result set type, this JDBC driver changes it to
ResultSet.TYPE_SCROLL_INSENSITIVE, and then sets an SQLWarning.

• For concurrent processing mode, the JDBC driver supports only ResultSet.CONCUR_READ_ONLY. If
ResultSet.CONCUR_UPDATABLE is specified, the JDBC driver changes it to
ResultSet.CONCUR_READ_ONLY, and then sets an SQLWarning.

• For the holdability of the ResultSet object, the JDBC driver supports only
ResultSet.HOLD_CURSORS_OVER_COMMIT. If ResultSet.CLOSE_CURSORS_AT_COMMIT is

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 336

specified, the JDBC driver changes it to ResultSet.HOLD_CURSORS_OVER_COMMIT, and then sets an
SQLWarning.

8.2.8 getAutoCommit()

(1) Function
This method acquires the current automatic commit mode for this Connection object.

(2) Format
public synchronized boolean getAutoCommit() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the current automatic commit mode for this Connection object.

(5) Exceptions
If this Connection object is closed, the JDBC driver throws an SQLException.

8.2.9 getCatalog()

(1) Function
This method acquires the current catalog name for this Connection object.

(2) Format
public synchronized String getCatalog() throws SQLException

(3) Arguments
None.

(4) Return value
The method always returns null.

(5) Exceptions
If this Connection object is closed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 337

8.2.10 getHADBConnectionID()

(1) Function
This method acquires the connection ID that is assigned to this Connection object.

(2) Format
public int getHADBConnectionID() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the connection ID that is assigned to this Connection object.

(5) Exceptions
If the Connection object is closed, the JDBC driver throws an SQLException.

(6) Notes
This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8.2.11 getHADBConnectionSerialNum()

(1) Function
This method acquires the connection sequence number that is assigned to this Connection object.

(2) Format
public int getHADBConnectionSerialNum() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the connection sequence number that is assigned to this Connection object.

(5) Exceptions
If the Connection object is closed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 338

(6) Notes
This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8.2.12 getHADBOrderMode()

(1) Function
This method acquires for this Connection object the current sort order for character string data in a SELECT statement
in which the ORDER BY clause is specified.

(2) Format
public int getHADBOrderMode() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the current sort order for character string data in a SELECT statement in which the ORDER BY
clause is specified. One of the following values is returned:

• AdbConnection.HADB_SQL_ORDER_MODE_BYTE
• AdbConnection.HADB_SQL_ORDER_MODE_ISO

(5) Exceptions
If this Connection object is closed, the JDBC driver throws an SQLException.

(6) Notes
This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8.2.13 getHADBSQLHashFltSize()

(1) Function
This method acquires the size of the hash filter area that is set for this Connection object.

For details about how to use this method (how to change the size of the hash filter area for each SQL statement to be
executed), see (7) Examples in 8.2.37 setHADBSQLMaxRthdNum(int rthdNum).

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 339

(2) Format
public int getHADBSQLHashFltSize() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the size of the hash filter area (in megabytes) that is set for this Connection object.

(5) Exceptions
If the Connection object is closed, the JDBC driver throws an SQLException.

(6) Notes
This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8.2.14 getHADBSQLHashTblSize()

(1) Function
This method acquires the size of the hash table area that is set for this Connection object.

For details about how to use this method (how to change the size of the hash table area for each SQL statement to be
executed), see (7) Examples in 8.2.37 setHADBSQLMaxRthdNum(int rthdNum).

(2) Format
public int getHADBSQLHashTblSize() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the size of the hash table area (in megabytes) that is set for this Connection object.

(5) Exceptions
If the Connection object is closed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 340

(6) Notes
This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8.2.15 getHADBSQLMaxRthdNum()

(1) Function
This method acquires the maximum number of SQL processing real threads that is set for this Connection object.

For details about how to use this method (how to change the maximum number of SQL processing real threads for each
SQL statement to be executed), see (7) Examples in 8.2.37 setHADBSQLMaxRthdNum(int rthdNum).

(2) Format
public int getHADBSQLMaxRthdNum() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the maximum number of SQL processing real threads that are set for this Connection object.

(5) Exceptions
If the Connection object is closed, the JDBC driver throws an SQLException.

(6) Notes
This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8.2.16 getHADBTransactionID()

(1) Function
This method acquires the transaction ID of the transaction that is being executed.

(2) Format
public long getHADBTransactionID() throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 341

(3) Arguments
None.

(4) Return value
This method returns the transaction ID of the transaction that is being executed when the getHADBTransactionID
method is issued.

Note that if the getHADBTransactionID method is issued before executing the SQL statement, this method returns
0.

(5) Exceptions
If the Connection object is closed, the JDBC driver throws an SQLException.

(6) Notes
This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8.2.17 getHoldability()

(1) Function
This method acquires the current holdability of the ResultSet object that is created by using this Connection
object.

(2) Format
public synchronized int getHoldability() throws SQLException

(3) Arguments
None.

(4) Return value
The method always returns ResultSet.HOLD_CURSORS_OVER_COMMIT.

(5) Exceptions
If this Connection object is closed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 342

8.2.18 getMetaData()

(1) Function
This method creates a DatabaseMetaData object.

(2) Format
public synchronized DatabaseMetaData getMetaData() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the DatabaseMetaData object.

(5) Exceptions
If this Connection object is closed, the JDBC driver throws an SQLException.

8.2.19 getSchema()

(1) Function
This method acquires the current schema name for this Connection object.

(2) Format
public synchronized String getSchema() throws SQLException

(3) Arguments
None.

(4) Return value
The method always returns null.

(5) Exceptions
If the Connection object is closed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 343

8.2.20 getTransactionIsolation()

(1) Function
This method acquires the current transaction isolation level for this Connection object.

(2) Format
public synchronized int getTransactionIsolation() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the current transaction isolation level, which is one of the following:

• Connection.TRANSACTION_READ_COMMITTED
This value is returned when READ COMMITTED is applied as the transaction isolation level.

• Connection.TRANSACTION_REPEATABLE_READ
This value is returned when REPEATABLE READ is applied as the transaction isolation level.

(5) Exceptions
If this Connection object is closed, the JDBC driver throws an SQLException.

8.2.21 getTypeMap()

(1) Function
This method acquires the Map object related to this Connection object.

(2) Format
public synchronized java.util.Map getTypeMap() throws SQLException

(3) Arguments
None.

(4) Return value
The method always returns an empty java.util.Map object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 344

(5) Exceptions
If this Connection object is closed, the JDBC driver throws an SQLException.

8.2.22 getWarnings()

(1) Function
This method acquires as an SQLWarning object a warning reported by a call related to this Connection object.

This method acquires the SQLWarning object held by the corresponding Connection object. By executing the
getNextWarning method of the acquired SQLWarning object, you can acquire the next warning.

(2) Format
public synchronized SQLWarning getWarnings() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the first SQLWarning object. If there is no SQLWarning object, the method returns null.

(5) Exceptions
If this Connection object is closed, the JDBC driver throws an SQLException.

8.2.23 isClosed()

(1) Function
This method returns a value indicating whether this Connection object is closed.

The HADB server connection is closed when the close method is called or when a specific fatal error has occurred.
This method is guaranteed to return true only when it is executed after a close method.

This method cannot be used to determine whether the HADB server connection is valid.

(2) Format
public synchronized boolean isClosed() throws SQLException

(3) Arguments
None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 345

(4) Return value
If this Connection object is closed, the method returns true; if not, the method returns false.

(5) Exceptions
None.

8.2.24 isReadOnly()

(1) Function
This method acquires a value indicating whether this Connection object is in read-only mode.

(2) Format
public synchronized boolean isReadOnly() throws SQLException

(3) Arguments
None.

(4) Return value
If this Connection object is in read-only mode, the method returns true; if not, the method returns false.

(5) Exceptions
If this Connection object is closed, the JDBC driver throws an SQLException.

8.2.25 isValid(int timeout)

(1) Function
This method acquires the current connection status.

(2) Format
public synchronized boolean isValid(int timeout) throws SQLException

(3) Arguments
int timeout

Specifies the wait time (in seconds), in the range from 0 to 65,535.
If zero is specified, there will be no limit to the wait time.
If 65,536 or a greater value is specified, 65,535 is assumed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 346

(4) Return value
If the method verifies that the connection is alive, it returns true. If the Connection object is closed, or if the wait
time specified in the argument has expired and a timeout has occurred, the method returns false.

(5) Exceptions
If -1 or a smaller value is specified in the argument, the JDBC driver throws an SQLException.

8.2.26 nativeSQL(String sql)

(1) Function
This method converts escape clauses in a specified SQL statement to a format that can be executed by HADB.

(2) Format
public synchronized String nativeSQL(String sql) throws SQLException

(3) Arguments
String sql

Specifies an SQL statement.

(4) Return value
The method returns an SQL statement that can be executed by HADB.

If null is specified for sql, the method returns null. If an empty string is specified for sql, the method returns an
empty string.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Connection object is closed.

• The format of an escape clause in the specified SQL statement is invalid for the following reason:

• { and a keyword are specified, but } is missing.

• The specified SQL statement exceeds 16,000,000 characters.

(6) Syntax rules for escape clause
This method converts any escape clauses in the specified SQL statement to a format that can be executed by HADB,
and then returns the SQL statement. The following are the syntax rules for an escape clause:

escape-clause ::= escape-sequence-for-date-or-time-or-time-stamp
 | escape-sequence-for-escape-character-in-LIKE-predicate
 | escape-sequence-for-outer-join
 | scalar-function-escape-sequence

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 347

escape-sequence-for-date-or-time-or-time-stamp ::= date-escape-sequence
 | time-escape-sequence
 | time-stamp-escape-sequence
date-escape-sequence ::=
 escape-start-code d default-character-string-representation-of-date-data#1 e
scape-end-code
time-escape-sequence ::=
 escape-start-code t default-character-string-representation-of-time-data#2 e
scape-end-code
time-stamp-escape-sequence ::=
 escape-start-code ts default-character-string-representation-of-time-stamp-
data#3 escape-end-code
escape-sequence-for-escape-character-in-LIKE-predicate ::=
 escape-start-code escape escape-character escape-end-code
escape-sequence-for-outer-join ::= escape-start-code oj joined-table escape-end-code
scalar-function-escape-sequence ::= escape-start-code fn scalar-function escape-end-c
ode
scalar-function ::= scalar-function-in-default-format#4
escape-start-code ::= '{'
escape-end-code ::= '}'

#1
Character string representation 'YYYY-MM-DD'

#2
Character string representation 'hh:mm:ss[.f...]'

#3
Character string representation 'YYYY-MM-DD hh:mm:ss[.f...]'

#4
For details about the scalar function in the default format, see 7.8 Scalar functions that can be specified in the escape
clause.

Note that an escape clause cannot be specified in an underlined part. Because the JDBC driver does not perform syntax
analysis on the underlined parts, they will remain the same after conversion and will be subject to syntax analysis by
the HADB server.

The following keywords can be used in escape sequences. These keywords are not case sensitive.

1. d in a date escape sequence

2. t in a time escape sequence

3. ts in a time stamp escape sequence

4. escape in an escape sequence of an escape character of a LIKE predicate

5. oj in an outer join escape sequence

6. fn in a scalar function escape sequence

The escape clause entry rules are as follows:

• The space can be used as the delimiter character in an escape clause.

• The delimiter can be inserted following an escape start code, following a keyword, and before an escape end code.

• You can specify multiple escape clauses in a single SQL statement.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 348

• The JDBC driver converts the escape clauses in an SQL statement to a format that can be executed by HADB. Note
that only the part of each escape clause that is enclosed in curly brackets is converted. The driver converts nothing
outside the escape clauses.

The following table shows the escape clause conversion rules.

Table 8-5: Escape clause conversion rules

Escape clause Before conversion After conversion

Date escape-start-code d default-character-string-representation-of-date-
data escape-end-code

default-character-string-
representation-of-date-data

Time escape-start-code t default-character-string-representation-of-time-
data escape-end-code

default-character-string-
representation-of-time-data

Time stamp escape-start-code ts default-character-string-representation-of-
time-stamp-data escape-end-code

default-character-string-
representation-of-time-stamp-data

LIKE escape-start-code escape escape-character escape-end-code escape escape-character

Outer join escape-start-code oj joined-table escape-end-code joined-table

Scalar function escape-start-code fn scalar-function escape-end-code scalar-function-in-HADB-format#

#
The JDBC driver converts a scalar function in the default format to the HADB format.
The table below shows the conversion formats of scalar functions whose default format differs from the HADB
server format.
In general, the JDBC driver does not check the number of arguments in scalar functions.

Table 8-6: Conversion formats of scalar functions whose default format differs from the HADB
server format

Scalar functions Format before conversion Format after conversion (HADB format)

Mathematical function CEILING(number) CEIL(number)

LOG(float) LN(float)

LOG10(float) LOG(10,float)

RAND([number, number]) RANDOM([number, number])

TRUNCATE(number[, places]) TRUNC(number[, places])

String function CHAR(code) CHR(code)

LCASE(string) LOWER(string)

OCTET_LENGTH(string) LENGTHB(string)

SUBSTRING(string, start[,length]) SUBSTR(string, start[,length])

UCASE(string) UPPER(string)

Time and date functions CURDATE() CURRENT_DATE

CURRENT_DATE() CURRENT_DATE

CURRENT_TIME() CURRENT_TIME

CURRENT_TIMESTAMP() CURRENT_TIMESTAMP

CURTIME() CURRENT_TIME

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 349

Scalar functions Format before conversion Format after conversion (HADB format)

NOW() CURRENT_TIMESTAMP

System function USER() CURRENT_USER

8.2.27 prepareStatement(String sql)

(1) Function
This method creates a PreparedStatement object for sending an SQL statement with parameters to the HADB
server.

(2) Format
public synchronized PreparedStatement prepareStatement(String sql) throws SQLExceptio
n

(3) Arguments
String sql

Specifies the SQL statement that is to be executed.

(4) Return value
The method returns the PreparedStatement object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Connection object is closed.

• Creation of the PreparedStatement object resulted in an error.

• A database access error occurs.

• The specified SQL statement exceeds 16,000,000 characters.

(6) Notes
The holdability of a ResultSet object generated from the PreparedStatement object created by this method
is always ResultSet.HOLD_CURSORS_OVER_COMMIT.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 350

8.2.28 prepareStatement(String sql, int resultSetType, int
resultSetConcurrency)

(1) Function
This method creates a PreparedStatement object for sending an SQL statement with parameters to the HADB
server.

(2) Format
public synchronized PreparedStatement prepareStatement(String sql, int resultSetType,
 int resultSetConcurrency) throws SQLException

(3) Arguments
String sql

Specifies the SQL statement that is to be executed.

int resultSetType
Specifies a result set type.

int resultSetConcurrency
Specifies the concurrent processing mode.

(4) Return value
The method returns the PreparedStatement object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Connection object is closed.

• Creation of the PreparedStatement object resulted in an error.

• A value other than a ResultSet literal is specified for the result set type.

• A value other than a ResultSet literal is specified for the concurrent processing mode.

• A database access error occurs.

• The specified SQL statement exceeds 16,000,000 characters.

(6) Notes
• If ResultSet.TYPE_SCROLL_SENSITIVE is specified for the result set type, this JDBC driver changes it to
ResultSet.TYPE_SCROLL_INSENSITIVE, and then sets an SQLWarning.

• For the concurrent processing mode, the JDBC driver supports only ResultSet.CONCUR_READ_ONLY. If
ResultSet.CONCUR_UPDATABLE is specified, the JDBC driver changes it to
ResultSet.CONCUR_READ_ONLY, and then sets an SQLWarning.

• The holdability of a ResultSet object generated from the PreparedStatement object created by this
method is always ResultSet.HOLD_CURSORS_OVER_COMMIT.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 351

8.2.29 prepareStatement(String sql, int resultSetType, int
resultSetConcurrency, int resultSetHoldability)

(1) Function
This method creates a PreparedStatement object for sending an SQL statement with parameters to the HADB
server.

(2) Format
public synchronized PreparedStatement prepareStatement(String sql, int resultSetType,
 int resultSetConcurrency, int resultSetHoldability) throws SQLException

(3) Arguments
String sql

Specifies the SQL statement that is to be executed.

int resultSetType
Specifies a result set type.

int resultSetConcurrency
Specifies the concurrent processing mode.

int resultSetHoldability
Specifies the holdability of the ResultSet object.

(4) Return value
The method returns the PreparedStatement object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Connection object is closed.

• Creation of the PreparedStatement object resulted in an error.

• A value other than a ResultSet literal is specified for the result set type.

• A value other than a ResultSet literal is specified for the concurrent processing mode.

• A value other than a ResultSet literal is specified for the holdability of the ResultSet object.

• A database access error occurs.

• The specified SQL statement exceeds 16,000,000 characters.

(6) Notes
• If ResultSet.TYPE_SCROLL_SENSITIVE is specified for the result set type, this JDBC driver changes it to
ResultSet.TYPE_SCROLL_INSENSITIVE, and then sets an SQLWarning.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 352

• For the concurrent processing mode, the JDBC driver supports only ResultSet.CONCUR_READ_ONLY. If
ResultSet.CONCUR_UPDATABLE is specified, the JDBC driver changes it to
ResultSet.CONCUR_READ_ONLY, and then sets an SQLWarning.

• For the holdability of the ResultSet object, the JDBC driver supports only
ResultSet.HOLD_CURSORS_OVER_COMMIT. If ResultSet.CLOSE_CURSORS_AT_COMMIT is
specified, the JDBC driver changes it to ResultSet.HOLD_CURSORS_OVER_COMMIT, and then sets an
SQLWarning.

8.2.30 rollback()

(1) Function
This method undoes all changes made by the transaction and releases all locks currently held by the Connection
object.

If you call this method while the automatic commit mode is enabled, the method performs rollback processing without
throwing an exception.

(2) Format
public synchronized void rollback() throws SQLException

(3) Arguments
None.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Connection object is closed.

• A database access error occurs.

(6) Notes
• If rollback processing is successful, the ResultSet object is invalidated.

• If rollback processing fails, the HADB server terminates abnormally.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 353

8.2.31 setAutoCommit(boolean autoCommit)

(1) Function
This method sets the automatic commit mode for this connection.

(2) Format
public synchronized void setAutoCommit(boolean autoCommit) throws SQLException

(3) Arguments
boolean autoCommit

Specifies true to enable the automatic commit mode or false to disable it.

(4) Return value
None.

(5) Exceptions
If this Connection object is closed, the JDBC driver throws an SQLException.

(6) Notes
• When the automatic commit mode is enabled, an SQL statement is committed automatically when its processing is

completed. Therefore, each SQL statement is treated as one transaction. When the automatic commit mode is
disabled, an SQL statement is not completed until the commit or rollback method is executed. By default, the
automatic commit mode is enabled.

• Automatic commit is performed upon completion of an SQL statement. If the SQL statement returns a ResultSet
object, the SQL statement is completed when the ResultSet object is closed.

• A transaction that is executing when this method is called will not be committed.

8.2.32 setCatalog(String catalog)

(1) Function
This method sets the name of the catalog that is to be passed and selects a database work subspace for the Connection
object.

(2) Format
public synchronized void setCatalog(String catalog) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 354

(3) Arguments
String catalog

This argument is ignored, if specified.

(4) Return value
None.

(5) Exceptions
If this Connection object is closed, the JDBC driver throws an SQLException.

8.2.33 setHADBAuditInfo(int pos,String userinfo)

(1) Function
This method sets user-added information, such as the account information of applications that access the HADB server.
The user-added information that is set has effect until it is revoked.

The user-added information set by using this function is output as an audit trail at the following times:

• When an SQL statement that includes a Statement object generated by using the Connection object is executed

• When an SQL statement that includes a PreparedStatement object generated by using the Connection
object is executed

• When the Connection object is closed

(2) Format
public synchronized void setHADBAuditInfo(int pos,String userinfo) throws SQLExceptio
n

(3) Arguments
int pos

Specifies which column in the audit trail the user-added information specified by userinfo is to be output to.
Specify one of the following values:
1: Specify this value to output the user-added information specified by userinfo to user-added information 1 in
the audit trail.
2: Specify this value to output the user-added information specified by userinfo to user-added information 2 in
the audit trail.
3: Specify this value to output the user-added information specified by userinfo to user-added information 3 in
the audit trail.

String userinfo
Specifies user-added information.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 355

The user-added information specified here is converted in the character encoding that is used on the HADB server.
Make sure that the size of the specified user-added information does not exceed 100 bytes after the character encoding
is converted.
Note that a null character (0x00) cannot be used.
To revoke the specification of the user-added information, specify null.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Connection object is closed.

• The value specified in pos is not a value in the range from 1 to 3.

• Character encoding conversion of the user-added information fails.

• The size of the user-added information exceeds 100 bytes after the character encoding is converted.

• The user-added information includes a null character (0x00).

• A transaction has already started.

(6) Notes
• This is an HADB-specific method provided by the AdbConnection interface. For details about the execution

method, see 12.2 Wrapper interface.

• If the Connection object is pooled and then reused, the user-added information that was set by using the
setHADBAuditInfo method is not reused. In such a case, the status changes to the status that existed before the
setHADBAuditInfo method was executed.

8.2.34 setHADBOrderMode(int mode)

(1) Function
This method sets for this Connection object the sort order for character string data in a SELECT statement in which
the ORDER BY clause is specified.

The information set in this method corresponds to the adb_clt_sql_order_mode operand in the client definition.

(2) Format
public void setHADBOrderMode(int mode) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 356

(3) Arguments
int mode

Specifies the sort order for character string data in a SELECT statement in which the ORDER BY clause is specified.
Specify one of the following values:

• AdbConnection.HADB_SQL_ORDER_MODE_BYTE
Sort character string data by bytecode.

• AdbConnection.HADB_SQL_ORDER_MODE_ISO
Sort character string data by sort code (ISO/IEC 14651:2011 compliance).

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Connection object is closed.

• A transaction has already started.

• The specified sort order is not one of the following:
• AdbConnection.HADB_SQL_ORDER_MODE_BYTE
• AdbConnection.HADB_SQL_ORDER_MODE_ISO

(6) Notes
• The sort order for character string data in a SELECT statement in which the ORDER BY clause is specified is

determined in the priority order shown below (the smaller the number, the higher the priority). For example, if 1
and 2 are both specified, 1 takes effect.

1. Sort order specified with the setHADBOrderMode method

2. Sort order specified with the adb_clt_sql_order_mode system property

3. Value of the adb_clt_sql_order_mode property specified in the info argument of the
getConnection method of the DriverManager class

4. Value of adb_clt_sql_order_mode property specified in the url argument of the getConnection
method of the DriverManager class

5. Sort order specified with the adb_sql_order_mode server definition operand

• When the setHADBOrderMode method is used to specify the sort order for character string data in a SELECT
statement in which the ORDER BY clause is specified, that sort order setting is not inherited when the Connection
object has been pooled and then reused. In such a case, the sort order remains the same as it was before the
setHADBOrderMode method was executed.

• This is an HADB-specific method provided by the AdbConnection interface. For details about the execution
method, see 12.2 Wrapper interface.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 357

8.2.35 setHADBSQLHashFltSize(int areaSize)

(1) Function
This method sets for this Connection object the size of the hash filter area.

The value set by this method is compatible with the adb_sql_exe_hashflt_area_size operand in the client
definition.

Important
For the Statement or PreparedStatement object generated from the Connection object for
which this method is specified, the size of the hash filter area that is set by this method is applied until the
Connection object is closed.

For details about how to use this method (how to change the size of the hash filter area for each SQL statement to be
executed), see (7) Examples in 8.2.37 setHADBSQLMaxRthdNum(int rthdNum).

(2) Format
public void setHADBSQLHashFltSize(int areaSize) throws SQLException

(3) Arguments
int areaSize

Specifies in megabytes the size of the hash filter area to be set.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Connection object is closed.

• An invalid value is specified in areaSize.

(6) Notes
• This is an HADB-specific method provided by the AdbConnection interface. For details about the execution

method, see 12.2 Wrapper interface.

• For the size of the hash filter area specified by using the setHADBSQLHashFltSize method, the previously set
value is not inherited if the Connection object is pooled and then reused. This is the same case as when the
setHADBSQLHashFltSize method has not been executed.

• Even if the setHADBSQLHashFltSize method is used to set the size of the hash filter area again, the new setting
is not applied to the Statement or PreparedStatement object that has already been generated.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 358

• For details about how the size of the hash filter area is determined, see the explanation of the operand
adb_sql_exe_hashflt_area_size in 2.2.3 Operands related to performance.

8.2.36 setHADBSQLHashTblSize(int areaSize)

(1) Function
This method sets for this Connection object the size of the hash table area.

The value set by this method is compatible with the adb_sql_exe_hashtbl_area_size operand in the client
definition.

Important
For the Statement or PreparedStatement object generated from the Connection object for
which this method is specified, the size of the hash table area that is set by this method is applied until the
Connection object is closed.

For details about how to use this method (how to change the size of the hash table area for each SQL statement to be
executed), see (7) Examples in 8.2.37 setHADBSQLMaxRthdNum(int rthdNum).

(2) Format
public void setHADBSQLHashTblSize(int areaSize) throws SQLException

(3) Arguments
int areaSize

Specifies in megabytes the size of the hash table area to be set.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Connection object is closed.

• An invalid value is specified in areaSize.

(6) Notes
• This is an HADB-specific method provided by the AdbConnection interface. For details about the execution

method, see 12.2 Wrapper interface.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 359

• For the size of the hash table area specified by using the setHADBSQLHashTblSize method, the previously set
value is not inherited if the Connection object is pooled and then reused. This is the same case as when the
setHADBSQLHashTblSize method has not been executed.

• Even if the setHADBSQLHashTblSize method is used to set the size of the hash table area again, the new setting
is not applied to the Statement or PreparedStatement object that has already been generated.

• For details about how the size of the hash table area is determined, see the explanation of the
adb_sql_exe_hashtbl_area_size operand in 2.2.3 Operands related to performance.

8.2.37 setHADBSQLMaxRthdNum(int rthdNum)

(1) Function
This method sets for this Connection object the maximum number of SQL processing real threads.

The value set by this method is compatible with the adb_sql_exe_max_rthd_num operand in the client definition.

Important
For the Statement or PreparedStatement object generated from the Connection object for
which this method is specified, the maximum number of SQL processing real threads that is set by this
method is applied until the Connection object is closed.

(2) Format
public void setHADBSQLMaxRthdNum(int rthdNum) throws SQLException

(3) Arguments
int rthdNum

Specifies the maximum number of SQL processing real threads to be set.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Connection object is closed.

• An invalid value is specified in rthdNum.

(6) Notes
• This is an HADB-specific method provided by the AdbConnection interface. For details about the execution

method, see 12.2 Wrapper interface.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 360

• For the maximum number of SQL processing real threads specified by using the setHADBSQLMaxRthdNum
method, the previously set value is not inherited if the Connection object is pooled and then reused. This is the
same case as when the setHADBSQLMaxRthdNum method has not been executed.

• Even if the setHADBSQLMaxRthdNum method is used to set the maximum number of SQL processing real threads
again, the new setting is not applied to the Statement or PreparedStatement object that has already been
generated.

• For details about how the maximum number of SQL processing real threads is determined, see the explanation of
the adb_sql_exe_max_rthd_num operand in 2.2.3 Operands related to performance.

(7) Examples
In the following example, the setHADBSQLMaxRthdNum and getHADBSQLMaxRthdNum methods are used to
change the maximum number of SQL processing real threads for each SQL statement to be executed.

Example 1:

 :
 :
Connection cnct = ds.getConnection();
AdbConnection con = cnct.unwrap(com.hitachi.hadb.jdbc.AdbConnection.class);

// Back up the default of the maximum number of SQL processing real threads.
int default_sql_exe_rthd_num = con.getHADBSQLMaxRthdNum();

// Change the maximum number of SQL processing real threads to 0.
con.setHADBSQLMaxRthdNum(0);

// Generate a PreparedStatement object.
// All SQL statements executed with this PreparedStatement object operate under
// the condition where the maximum number of SQL processing real threads is 0.
PreparedStatement pstmt = con.prepareStatement("SELECT * FROM MASTER.SQL_USERS WHE
RE USER_NAME=?");

// Reset the maximum number of SQL processing real threads to the default.
con.setHADBSQLMaxRthdNum(default_sql_exe_rthd_num);
// This operation does not affect the preceding pstmt.

pstmt.setString(1, "FOO");
ResultSet rs = pstmt.executeQuery(); // Execute an SQL statement under the
// condition where the maximum number of SQL processing real threads is 0.
while (rs.next()) {
 :
 :
}
rs.close();
pstmt.close();
 :
 :

Example 2:
In the following example, each SQL statement is executed with a different maximum number of SQL processing
real threads.

 :
 :
Connection cnct = ds.getConnection();
AdbConnection con = cnct.unwrap(com.hitachi.hadb.jdbc.AdbConnection.class);

// Back up the default of the maximum number of SQL processing real threads.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 361

int default_sql_exe_rthd_num = con.getHADBSQLMaxRthdNum();

// Change the maximum number of SQL processing real threads to 0.
con.setHADBSQLMaxRthdNum(0);

// Generate a PreparedStatement object.
// All SQL statements executed with pstmt1 operate under the condition
// where the maximum number of SQL processing real threads is 0.
PreparedStatement pstmt1 = con.prepareStatement("SELECT * FROM MASTER.SQL_USERS WH
ERE USER_NAME=?");

// Change the maximum number of SQL processing real threads to 4.
con.setHADBSQLMaxRthdNum(4); // This operation does not affect
// the preceding pstmt1.

// Generate a PreparedStatement object.
// All SQL statements executed with pstmt2 operate under the condition
// where the maximum number of SQL processing real threads is 4.
PreparedStatement pstmt2 = con.prepareStatement("SELECT * FROM MASTER.SQL_TABLE_PR
IVILEGES WHERE GRANTOR=?");

// Reset the maximum number of SQL processing real threads to the default.
con.setHADBSQLMaxRthdNum(default_sql_exe_rthd_num);
// This operation does not affect the preceding pstmt1 and pstmt2.

pstmt1.setString(1, "HOGE");
ResultSet rs1 = pstmt1.executeQuery(); // Execute an SQL statement under the
// condition where the maximum number of SQL processing real threads is 0.
while (rs1.next()) {
 :
 :
}
rs1.close();
pstmt1.close();

pstmt2.setString(1, "FOO");
ResultSet rs2 = pstmt2.executeQuery(); // Execute an SQL statement under the
// condition where the maximum number of SQL processing real threads is 4.
while (rs2.next()) {
 :
 :
}
rs2.close();
pstmt2.close();
 :
 :

Note
• In the preceding examples, the processing to handle exceptions and other errors is omitted.

• The preceding examples will also be useful for reference purposes when you change the size of the hash
table area for each SQL statement to be executed by using the setHADBSQLHashTblSize and
getHADBSQLHashTblSize methods.

• The preceding examples will also be useful for reference purposes when you change the size of the hash
filter area for each SQL statement to be executed by using the setHADBSQLHashFltSize and
getHADBSQLHashFltSize methods.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 362

8.2.38 setHoldability(int holdability)

(1) Function
This method sets the holdability of the ResultSet object that is created by using this Connection object.

(2) Format
public synchronized void setHoldability(int holdability) throws SQLException

(3) Arguments
int holdability

This argument is ignored, if specified. The JDBC driver always assumes that
ResultSet.HOLD_CURSORS_OVER_COMMIT is specified.

(4) Return value
None.

(5) Exceptions
If this Connection object is closed, the JDBC driver throws an SQLException.

8.2.39 setReadOnly(boolean readOnly)

(1) Function
This method sets this Connection object in the read-only mode. The method sets the transaction access mode.

(2) Format
public synchronized void setReadOnly(boolean readOnly) throws SQLException

(3) Arguments
boolean readOnly

Specify true to set the Connection object in the read-only mode; otherwise, specify false.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 363

• The Connection object is closed.

• A transaction has already started.

• A ResultSet object created by this Connection object with HOLD_CURSORS_OVER_COMMIT specified for
holdability has not been closed.

(6) Notes
• The transaction access mode is determined in the priority order described below. A smaller number represents a

higher priority (for example, 1 has a higher priority than 2).

1. Transaction access mode specified with the setReadOnly method

2. Transaction access mode specified with the adb_clt_trn_access_mode system property

3. adb_clt_trn_access_mode property value specified in the info argument of the getConnection
method of the DriverManager class

4. Value of adb_clt_trn_access_mode specified in the url argument of the getConnection method
of the DriverManager class

• In the case of the transaction access mode specified with the setReadOnly method, if the Connection object
is pooled and then is reused, the previous transaction access mode is not inherited. This is the same status as when
the setReadOnly method has not been executed.

8.2.40 setSchema(String schema)

(1) Function
This method sets the name of the schema to access. This method does not set a schema name. The value specified in
the argument of this method is ignored.

(2) Format
public synchronized void setSchema(String schema) throws SQLException

(3) Arguments
String schema

Specifies the schema name. However, any value you specify is ignored.

(4) Return value
None.

(5) Exceptions
If the Connection object is closed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 364

8.2.41 setTransactionIsolation(int level)

(1) Function
This method sets the transaction isolation level for this Connection object.

(2) Format
public synchronized void setTransactionIsolation(int level) throws SQLException

(3) Arguments
int level

Specifies the transaction isolation level to be applied. Specify one of the following values:

• Connection.TRANSACTION_READ_COMMITTED
Specifies that READ COMMITTED is to be applied as the transaction isolation level.

• Connection.TRANSACTION_REPEATABLE_READ
Specifies that REPEATABLE READ is to be applied as the transaction isolation level.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Connection object is closed.

• A transaction has already started.

• A ResultSet object created by this Connection object with HOLD_CURSORS_OVER_COMMIT specified for
holdability has not been closed.

• The value specified for the transaction isolation level is neither of the following:

• Connection.TRANSACTION_READ_COMMITTED
• Connection.TRANSACTION_REPEATABLE_READ

(6) Notes
• The transaction isolation level is determined in the priority order described below. A smaller number represents a

higher priority (for example, 1 has a higher priority than 2).

1. Transaction isolation level specified with the setTransactionIsolation method

2. Transaction isolation level specified in the adb_clt_trn_iso_lv system property

3. adb_clt_trn_iso_lv property value specified in the info argument of the getConnection method
of the DriverManager class

4. Value of adb_clt_trn_iso_lv specified in the url argument of the getConnection method of the
DriverManager class

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 365

5. Transaction isolation level specified in the adb_sys_trn_iso_lv server definition operand

• The transaction isolation level specified with the setTransactionIsolation method is not inherited when
the Connection object has been pooled and then reused. In such a case, it remains the same as it was before the
setTransactionIsolation method was executed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 366

8.3 Statement interface

This section explains the methods provided by the Statement interface.

8.3.1 List of the methods in the Statement interface

(1) Main functions of the Statement interface
The Statement interface provides the following main functions:

• Execution of SQL statements

• Creation of a result set (ResultSet object) for retrieval results

• Return of the number of updated rows as the result of updating

• Specification of the maximum number of rows to be retrieved

• Specification of a retrieval limit time

(2) Methods in the Statement interface that are supported by HADB
The following table lists and describes the methods in the Statement interface that are supported by HADB.

Table 8-7: Methods in the Statement interface

No. Method in the Statement interface Function

1 addBatch(String sql) Adds SQL statements to the Statement object's batch.

2 cancel() Cancels the SQL statements executing in the corresponding object and in objects
using the same connection as that object.

3 clearBatch() Clears all SQL statements registered in this Statement object's batch.

4 clearWarnings() Clears all warnings that have been reported for this Statement object.

5 close() Closes the Statement object and any ResultSet object created from this
Statement object.

6 closeOnCompletion() Closes this Statement object when all result sets that depend on the
Statement object are closed.

7 execute(String sql) Executes an SQL statement.

8 executeBatch() Executes the SQL statements registered in a batch and returns the number of
updated rows as int data in an array.

9 executeLargeBatch() Executes the SQL statements registered in a batch and returns the number of
updated rows as long data in an array.

10 executeLargeUpdate(String sql) Executes an SQL statement (other than a retrieval SQL statement) and returns
the number of updated rows as long data.

11 executeQuery(String sql) Executes a retrieval SQL statement and returns a ResultSet object containing
the retrieval result.

12 executeUpdate(String sql) Executes an SQL statement (other than a retrieval SQL statement) and returns
the number of updated rows as int data.

13 getConnection() Returns the Connection object that created the Statement object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 367

No. Method in the Statement interface Function

14 getFetchDirection() Acquires the default fetch direction for a result set that is created from this
Statement object.

15 getFetchSize() Acquires the default fetch size (number of retrieval result rows to be transferred
from the HADB server to the HADB client in the batch mode) for a ResultSet
object that is created from the Statement object.

16 getHADBSQLSerialNum() Acquires the SQL statement sequence number that is assigned to this
Statement object.

17 getHADBStatementHandle() Acquires the statement handle that is assigned to this Statement object.

18 getLargeMaxRows() Acquires the maximum number of rows that can be stored in a ResultSet
object created from this Statement object as long data.

19 getLargeUpdateCount() Returns the number of updated rows as long data.

20 getMaxFieldSize() Acquires the maximum number of bytes for a CHAR or VARCHAR column of a
ResultSet object that is created by this Statement object.

21 getMaxRows() Acquires the maximum number of rows that can be stored in a ResultSet
object created from this Statement object as int data.

22 getMoreResults() Moves to the next result set.

23 getQueryTimeout() Acquires the timeout time set for SQL processing in the setQueryTimeout
method.

24 getResultSet() Acquires retrieval results as a ResultSet object.

25 getResultSetConcurrency() Acquires the concurrent processing mode for a ResultSet object that is
created from this Statement object.

26 getResultSetHoldability() Acquires the holdability of the ResultSet object that is created from this
Statement object.

27 getResultSetType() Acquires the result set type of a ResultSet object that is created from this
Statement object.

28 getUpdateCount() Returns the number of updated rows as int data.

29 getWarnings() Acquires the first warning that is reported by a call related to this Statement
object.

30 isClosed() Acquires a value indicating whether this Statement object is closed.

31 isCloseOnCompletion() Acquires a value that indicates whether this Statement object is closed when
all result sets that depend on the object are closed.

32 isPoolable() Acquires a value indicating whether this Statement object can be pooled.

33 setCursorName(String name) Specifies the SQL cursor name to be used by the execute method of the next
Statement object.

34 setEscapeProcessing(boolean
enable)

Specifies whether escape syntax analysis by this Statement object is to be
enabled or disabled.

35 setFetchDirection(int direction) Specifies the fetch direction for a result set that is created from this Statement
object.

36 setFetchSize(int rows) Specifies the default fetch size (number of retrieval result rows to be transferred
from the HADB server to the HADB client in the batch mode) for a ResultSet
object that is created from this Statement object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 368

No. Method in the Statement interface Function

37 setLargeMaxRows(long max) Sets the maximum number of rows that can be stored in a ResultSet object
created from this Statement object, as long data.

38 setMaxFieldSize(int max) Specifies the maximum number of bytes for a CHAR or VARCHAR column in a
ResultSet object that is created from this Statement object.

39 setMaxRows(int max) Sets the maximum number of rows that can be stored in a ResultSet object
created from this Statement object, as int data.

40 setQueryTimeout(int seconds) Specifies the SQL processing timeout value.

Important
HADB does not support methods that are not listed in this table. If an unsupported method is executed, an
SQLException might be thrown.

(3) Required package name and class name
The package and class names required in order to use the Statement interface are as follows:

• Package name: com.hitachi.hadb.jdbc
• Class name: AdbStatement

8.3.2 addBatch(String sql)

(1) Function
This method adds SQL statements to the Statement object's batch. You can add a maximum of 2,147,483,647 SQL
statements.

(2) Format
public synchronized void addBatch(String sql) throws SQLException

(3) Arguments
String sql

Specifies the SQL statements to be added.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 369

• The Connection object that created the Statement object is closed.

• An attempt was made to add more than 2,147,483,647 SQL statements.

• null or a character string with a length of zero is specified as the SQL statements.

• A specified SQL statement exceeds 16,000,000 characters.

8.3.3 cancel()

(1) Function
This method cancels the SQL statements executing in the corresponding object and in objects using the same connection
as that object.

You can use this method to cancel executing SQL statements asynchronously.

(2) Format
public void cancel() throws SQLException

(3) Arguments
None.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

(6) Notes
• If the corresponding Statement object is not executing any SQL statements, but another object is executing SQL

statements on the same connection object, this method performs asynchronous cancellation.

• If the corresponding Statement object is not executing any SQL statements and no other object is executing SQL
statements on the same connection object, this method does not perform cancellation processing.

• If asynchronous cancellation of SQL statements is successful, the transaction is rolled back.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 370

8.3.4 clearBatch()

(1) Function
This method clears all SQL statements registered in this Statement object's batch.

(2) Format
public synchronized void clearBatch() throws SQLException

(3) Arguments
None.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8.3.5 clearWarnings()

(1) Function
This method clears all warnings that have been reported for this Statement object.

(2) Format
public synchronized void clearWarnings() throws SQLException

(3) Arguments
None.

(4) Return value
None.

(5) Exceptions
None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 371

8.3.6 close()

(1) Function
This method closes the Statement object and any ResultSet object created from this Statement object.

(2) Format
public synchronized void close() throws SQLException

(3) Arguments
None.

(4) Return value
None.

(5) Exceptions
If a database access error occurs, the JDBC driver throws an SQLException.

8.3.7 closeOnCompletion()

(1) Function
This method closes the Statement object when all result sets that depend on the Statement object have been
closed. This method is invalid when running the Statement object does not generate a result set.

The effect on the Statement object is the same regardless of how many times this method is called.

Calling this method affects subsequent executions of Statement objects, and any Statement objects with
dependent result sets that are currently open.

(2) Format
public synchronized void closeOnCompletion() throws SQLException

(3) Arguments
None.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 372

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8.3.8 execute(String sql)

(1) Function
This method executes an SQL statement. You can use the getResultSet and getUpdateCount methods (or the
getLargeUpdateCount method) to acquire the ResultSet object and the number of updated rows.

The following table shows the return values of the getResultSet and getUpdateCount methods (or the
getLargeUpdateCount method) depending on the type of the SQL statement that was executed.

Table 8-8: Return values of the getResultSet and getUpdateCount methods (or the
getLargeUpdateCount method) depending on the type of the SQL statement that was
executed

Type of the SQL statement that
was executed

Return value of the getResultSet method Return value of the getUpdateCount
method or getLargeUpdateCount
method

Retrieval SQL statement ResultSet object obtained as the execution
result

-1

Non-retrieval SQL statement null 0 or a greater value#

SQL execution resulting in an error null -1

#
If the number of updated rows might exceed Integer.MAX_VALUE, use the getLargeUpdateCount method
instead of the getUpdateCount method. If you use the getUpdateCount method, it will return 0 if the number
of updated rows exceeds Integer.MAX_VALUE.

Note
A retrieval SQL statement means a SELECT statement. Non-retrieval SQL statements include update SQL
statements (such as the UPDATE statement) and definition SQL statements (such as CREATE TABLE).

An update SQL statement means INSERT, UPDATE, DELETE, PURGE CHUNK, and TRUNCATE TABLE
statements.

(2) Format
public synchronized boolean execute(String sql) throws SQLException

(3) Arguments
String sql

Specifies the SQL statement that is to be executed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 373

(4) Return value
If a retrieval SQL statement was executed, this method returns true; if not, the method returns false.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

• null or a character string with a length of zero was specified in the sql argument.

• A database access error occurs.

• The specified SQL statement exceeds 16,000,000 characters.

8.3.9 executeBatch()

(1) Function
This method executes the SQL statements registered in a batch and returns the number of updated rows as int data in
an array.

The method clears all the SQL statements registered in the batch after executing all of them. If an error occurs during
processing, the method still clears all the SQL statements registered in the batch.

If the number of updated rows might exceed Integer.MAX_VALUE, use the executeLargeBatch method
instead of the executeBatch method. If you use the executeBatch method, it will return 0 if the number of
updated rows exceeds Integer.MAX_VALUE.

(2) Format
public synchronized int[] executeBatch() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the number of updated rows for each SQL statement that was executed, as int data in an array.
The elements of the array are in the order the SQL statements were registered into the batch. If no SQL statements are
registered in the batch, or if the first SQL statement in the batch resulted in an error, the method returns an array containing
no elements.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 374

• The Connection object that created the Statement object is closed.

The method throws a BatchUpdateException (subclass of SQLException) in the following cases:

• A retrieval SQL statement was executed in the batch.

• A database access error occurs.

8.3.10 executeLargeBatch()

(1) Function
This method executes the SQL statements registered in a batch and returns an array of update counts in long format.

This method clears the SQL statements in the batch after executing all of them. All SQL statements will be cleared even
if an error occurs during processing.

If there is a possibility that the update count might exceed Integer.MAX_VALUE, use the executeLargeBatch
method instead of executeBatch. If you use the executeBatch method, it will return 0 if the update count exceeds
Integer.MAX_VALUE.

(2) Format
public synchronized long[] executeLargeBatch() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns a long array of the numbers of updated rows for each of the executed SQL statements. The elements
of the array are in the order in which the SQL statements are registered in the batch. If there are no SQL statements
registered in the batch or the first SQL statement in the batch results in an error, the method returns an array containing
zero elements.

(5) Exceptions
For details about exceptions, see (5) Exceptions in 8.3.9 executeBatch().

8.3.11 executeLargeUpdate(String sql)

(1) Function
This method executes an SQL statement (other than a retrieval SQL statement) and returns the number of updated rows
as a long value.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 375

If it is possible that the number of updated rows might exceed Integer.MAX_VALUE, use the
executeLargeUpdate(String sql) method instead of executeUpdate(String sql). If you use the
executeUpdate(String sql) method, it will return 0 if the update count exceeds Integer.MAX_VALUE.

(2) Format
public synchronized long executeLargeUpdate(String sql) throws SQLException

(3) Arguments
String sql

Specifies the SQL statement (other than a retrieval SQL statement) to be executed.

(4) Return value
If an INSERT, UPDATE, or DELETE statement was executed, the method returns the number of updated rows as long
data. If any other SQL statement was executed, the method returns 0.

(5) Exceptions
For details about exceptions, see (5) Exceptions in 8.3.13 executeUpdate(String sql).

8.3.12 executeQuery(String sql)

(1) Function
This method executes a retrieval SQL statement and returns a ResultSet object containing the retrieval result.

(2) Format
public synchronized ResultSet executeQuery(String sql) throws SQLException

(3) Arguments
String sql

Specifies the SQL statement (retrieval SQL statement) that is to be executed.

(4) Return value
The method returns a ResultSet object containing the retrieval result.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 376

• A non-retrieval SQL statement (such as the INSERT statement) was executed.

• null or a character string with a length of zero was specified in the sql argument.

• A database access error occurs.

• The specified SQL statement exceeds 16,000,000 characters.

8.3.13 executeUpdate(String sql)

(1) Function
This method executes a SQL statement (other than a retrieval SQL statement), and returns the number of updated rows
as int data. If the number of updated rows might exceed Integer.MAX_VALUE, use the
executeLargeUpdate(String sql) method instead of the executeUpdate(String sql) method. If you
use the executeUpdate(String sql) method, it will return 0 if the number of updated rows exceeds
Integer.MAX_VALUE.

(2) Format
public synchronized int executeUpdate(String sql) throws SQLException

(3) Arguments
String sql

Specifies the SQL statement (non-retrieval SQL statement) that is to be executed.

(4) Return value
If an INSERT, UPDATE, or DELETE statement was executed, this method returns the number of updated rows as int
data. If any other SQL statement was executed, the method returns 0.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

• A retrieval SQL statement (SELECT statement) was executed.

• null or a character string with a length of zero was specified in the sql argument.

• A database access error occurs.

• The specified SQL statement exceeds 16,000,000 characters.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 377

8.3.14 getConnection()

(1) Function
This method returns the Connection object that created the Statement object.

(2) Format
public synchronized Connection getConnection() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns a Connection object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8.3.15 getFetchDirection()

(1) Function
This method acquires the default fetch direction for a result set that is created from this Statement object.

(2) Format
public synchronized int getFetchDirection() throws SQLException

(3) Arguments
None.

(4) Return value
The method always returns ResultSet.FETCH_FORWARD.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 378

• The Connection object that created the Statement object is closed.

8.3.16 getFetchSize()

(1) Function
This method acquires the default fetch size (number of retrieval result rows to be transferred from the HADB server to
the HADB client in the batch mode) for a ResultSet object that is created from the Statement object.

(2) Format
public synchronized int getFetchSize() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the default fetch size (number of retrieval result rows to be transferred from the HADB server to
the HADB client in the batch mode) for a ResultSet object that is created from this Statement object.

If 0 is specified in the setFetchSize method, the value of adb_clt_fetch_size in the system properties, user
properties, or URL connection properties is applied as the fetch size, but the return value is 0. The following table shows
the relationship between the fetch size and the return value.

Table 8-9: Relationship between the fetch size and the return value

Setting by the setFetchSize method (m) Return value

0 0

1 ≤ m ≤ 65,535 m

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8.3.17 getHADBSQLSerialNum()

(1) Function
This method acquires the SQL statement sequence number that is assigned to this Statement object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 379

(2) Format
public long getHADBSQLSerialNum() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the SQL statement sequence number that is assigned to this Statement object.

This method returns 0 if executed before an SQL statement is executed.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

(6) Notes
This is an HADB-specific method provided by the AdbStatement interface. For details about the execution
method, see 12.2 Wrapper interface.

8.3.18 getHADBStatementHandle()

(1) Function
This method acquires the statement handle that is assigned to this Statement object.

(2) Format
public int getHADBStatementHandle() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the statement handle that is assigned to this Statement object.

This method returns 0 if executed before an SQL statement is executed.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 380

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

(6) Notes
This is an HADB-specific method provided by the AdbStatement interface. For details about the execution
method, see 12.2 Wrapper interface.

8.3.19 getLargeMaxRows()

(1) Function
This method specifies the maximum number of rows that can be stored in a ResultSet object created from this
Statement object, as a long value. Any rows in excess of this value are not stored in the ResultSet object. You
will not be notified that these rows have not been stored.

If you specify a value in the setLargeMaxRows method that exceeds Integer.MAX_VALUE, use the
getLargeMaxRows method instead of getMaxRows. When you use the getMaxRows method, if the value of
Integer.MAX_VALUE is exceeded, 0 is returned.

(2) Format
public synchronized long getLargeMaxRows() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the maximum number of rows that can be stored in a ResultSet object created from this
Statement object, as a long value. The value it returns is the value set by the setMaxRows or the
setLargeMaxRows method. A return value of 0 means that a maximum number of rows has not been set.

(5) Exceptions
For details about exceptions, see (5) Exceptions in 8.3.22 getMaxRows().

8.3.20 getLargeUpdateCount()

(1) Function
This method returns the number of updated rows as a long value.

If the number of updated rows might exceed Integer.MAX_VALUE, use the getLargeUpdateCount method
instead of getUpdateCount. If you use the getUpdateCount method, it will return 0 if the number of updated
rows exceeds Integer.MAX_VALUE.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 381

(2) Format
public synchronized long getLargeUpdateCount() throws SQLException

(3) Arguments
None.

(4) Return value
For details about return values, see (4) Return value in 8.3.29 getUpdateCount().

(5) Exceptions
For details about exceptions, see (5) Exceptions in 8.3.29 getUpdateCount().

8.3.21 getMaxFieldSize()

(1) Function
This method acquires the maximum number of bytes for a CHAR or VARCHAR column of a ResultSet object that is
created by this Statement object. Any bytes in excess of this value are discarded.

(2) Format
public synchronized int getMaxFieldSize() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the maximum number of bytes for a CHAR or VARCHAR column. The method returns the value set
by the setMaxFieldSize method. A value of 0 means that no maximum number of bytes has been set.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 382

8.3.22 getMaxRows()

(1) Function
This method acquires the maximum number of rows that can be stored in a ResultSet object created from this
Statement object, as int data. Any rows in excess of this value are not stored in the ResultSet object (and without
notification).

If the value specified in the setLargeMaxRows method exceeds Integer.MAX_VALUE, use the
getLargeMaxRows method instead of the getMaxRows method. If you use the getMaxRows method, it will return
0 if the number of rows exceeds Integer.MAX_VALUE.

(2) Format
public synchronized int getMaxRows() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the maximum number of rows that can be stored in a ResultSet object created from this
Statement object, as int data. The value set in the setMaxRows or setLargeMaxRows method is returned. A
value of 0 means that no maximum number of rows has been set.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8.3.23 getMoreResults()

(1) Function
This method moves to the next result set.

(2) Format
public synchronized boolean getMoreResults() throws SQLException

(3) Arguments
None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 383

(4) Return value
If there is another result set, the method returns true; if not, the method returns false.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8.3.24 getQueryTimeout()

(1) Function
This method acquires the timeout time set for SQL processing in the setQueryTimeout method.

(2) Format
public synchronized int getQueryTimeout() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the timeout value (in seconds) that was set by the setQueryTimeout method. If the
setQueryTimeout method has not been executed, the method returns 0.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8.3.25 getResultSet()

(1) Function
This method acquires retrieval results as a ResultSet object.

(2) Format
public synchronized ResultSet getResultSet() throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 384

(3) Arguments
None.

(4) Return value
This method returns the ResultSet object held by the Statement object. If there are no retrieval results in the
ResultSet object, the method returns null.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8.3.26 getResultSetConcurrency()

(1) Function
This method acquires the concurrent processing mode for a ResultSet object that is created from this Statement
object.

(2) Format
public synchronized int getResultSetConcurrency() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns ResultSet.CONCUR_READ_ONLY.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8.3.27 getResultSetHoldability()

(1) Function
This method acquires the holdability of the ResultSet object that is created from this Statement object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 385

(2) Format
public synchronized int getResultSetHoldability() throws SQLException

(3) Arguments
None.

(4) Return value
The method always returns ResultSet.HOLD_CURSORS_OVER_COMMIT.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8.3.28 getResultSetType()

(1) Function
This method acquires the result set type of a ResultSet object that is created from this Statement object.

(2) Format
public synchronized int getResultSetType() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns ResultSet.TYPE_FORWARD_ONLY or ResultSet.TYPE_SCROLL_INSENSITIVE.

ResultSet.TYPE_FORWARD_ONLY
The only direction the cursor can move is forward.

ResultSet.TYPE_SCROLL_INSENSITIVE
The cursor can be scrolled, but changes to the underlying values are not reflected in the result set.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 386

• The Connection object that created the Statement object is closed.

8.3.29 getUpdateCount()

(1) Function
This method returns the number of updated rows as int data.

If the number of updated rows might exceed Integer.MAX_VALUE, use the getLargeUpdateCount method
instead of the getUpdateCountmethod. If you use the getUpdateCount method, 0 is returned if
Integer.MAX_VALUE is exceeded.

(2) Format
public synchronized int getUpdateCount() throws SQLException

(3) Arguments
None.

(4) Return value
The following table describes the details of the return value.

Table 8-10: Details of the return values of getUpdateCount and getLargeUpdateCount methods

Statement object's method execution status Return value of
getUpdateCou
nt or
getLargeUpdat
eCount method

No executeXXX method has been executed. -1

An executeXXX
method has been
executed.

A getMoreResults method was executed after the last executeXXX method was
executed.

-1

The last executeXXX method executed resulted in an error. -1

The last method to be executed was an executeBatch or executeLargeBatch
method

-1

The last method to be
executed was an
executeXXX method other
than an executeBatch
method or
executeLargeBatch
method

A retrieval SQL statement was executed at the end. -1

A non-retrieval SQL
statement was executed at the
end.

INSERT, UPDATE,
DELETE

Number of
updated rows#

Other 0

#
If the number of updated rows might exceed Integer.MAX_VALUE, use the getLargeUpdateCount method
instead of the getUpdateCount method. If you use the getUpdateCount method, it returns 0 if
Integer.MAX_VALUE is exceeded.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 387

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8.3.30 getWarnings()

(1) Function
This method acquires the first warning reported by a call related to this Statement object. If there is more than one
warning, the subsequent warnings are chained to the first warning and can be acquired by calling the
getNextWarning method of the SQLWarning object for the immediately preceding warning that was acquired.

(2) Format
public synchronized SQLWarning getWarnings() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the first SQLWarning object. If there is no SQLWarning object, the method returns null.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8.3.31 isClosed()

(1) Function
This method acquires a value indicating whether this Statement object is closed.

(2) Format
public synchronized boolean isClosed() throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 388

(3) Arguments
None.

(4) Return value
If this Statement object is closed, the method returns true; if it is not closed, the method returns false.

(5) Exceptions
None.

8.3.32 isCloseOnCompletion()

(1) Function
This method acquires a value that indicates whether the Statement object will be closed when all result sets that
depend on the Statement have been closed.

(2) Format
public synchronized boolean isCloseOnCompletion() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns true when the Statement object is closed after all result sets that depend on the Statement
object have been closed. It returns false if the object is not closed.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8.3.33 isPoolable()

(1) Function
This method acquires a value indicating whether this Statement object can be pooled.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 389

(2) Format
public synchronized boolean isPoolable() throws SQLException

(3) Arguments
None.

(4) Return value
The method always returns false.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8.3.34 setCursorName(String name)

(1) Function
This method specifies the SQL cursor name to be used by the execute method of the next Statement object.

(2) Format
public synchronized void setCursorName(String name) throws SQLException

(3) Arguments
String name

Specifies an SQL cursor name.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 390

8.3.35 setEscapeProcessing(boolean enable)

(1) Function
This method specifies whether escape syntax analysis by this Statement object is to be enabled or disabled.

(2) Format
public synchronized void setEscapeProcessing(boolean enable) throws SQLException

(3) Arguments
boolean enable

Specifies true to enable escape syntax analysis and false to disable it.
If this method is not executed, true is assumed.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

8.3.36 setFetchDirection(int direction)

(1) Function
This method specifies the fetch direction for a result set that is created from this Statement object.

(2) Format
public synchronized void setFetchDirection(int direction) throws SQLException

(3) Arguments
int direction

Specifies the fetch direction. Only ResultSet.FETCH_FORWARD can be specified.

(4) Return value
None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 391

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

• A value other than ResultSet.FETCH_FORWARD was specified for direction.

8.3.37 setFetchSize(int rows)

(1) Function
This method specifies the default fetch size (number of retrieval result rows to be transferred from the HADB server to
the HADB client in the batch mode) for a ResultSet object that is created from this Statement object.

(2) Format
public synchronized void setFetchSize(int rows) throws SQLException

(3) Arguments
int rows

Specifies the number of rows to be transferred in the batch mode, in the range from 0 to 65,535.
If the specified value is 1 or greater, the JDBC driver transfers the specified number of rows of data from the HADB
server to the HADB client in the batch mode.
If 0 is specified or this method is not executed, the value of adb_clt_fetch_size in the system properties,
user properties, or URL connection properties is applied.
The following table shows the relationship between the setFetchSize method setting and the
adb_clt_fetch_size property setting.

Table 8-11: Relationship between the setFetchSize method setting and the adb_clt_fetch_size
property setting

setFetchSize method setting (m) adb_clt_fetch_size property setting (n) Number of rows to be transferred
in the batch mode

0 1 ≤ n ≤ 65,535 n

Not specified 1

1 ≤ m ≤ 65,535 1 ≤ n ≤ 65,535 m

Not specified m

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 392

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

• A value outside the range from 0 to 65,535 was specified in rows.

• The value specified in rows is greater than the maximum number of rows that can be stored (setMaxRows method
setting).

• The value specified in rows is greater than the maximum number of rows that can be stored (setLargeMaxRows
method setting).

(6) Notes
The following table shows the priority order for determining the number of rows that the JDBC driver requests the
HADB server to transfer in a single transmission.

Table 8-12: Priorities for number of rows that the JDBC driver requests the HADB server to transfer
in one transmission

Priority Number of rows that the JDBC driver requests the HADB server to transfer in one transmission

1 Value specified in the argument of the setFetchSize method of the ResultSet class

2 Value specified in the argument of the setFetchSize method of the Statement class

3 Value specified in the adb_clt_fetch_size system property

4 adb_clt_fetch_size property value specified in the info argument of the getConnection method of
the DriverManager class

5 Value of adb_clt_fetch_size specified in the url argument of the getConnection method of the
DriverManager class

If the retrieval result is larger than the number of transfer rows shown in the table above, the JDBC driver requests
transfer to the HADB server as many times as necessary until retrieval is completed (or until all retrieval requests from
the application program have been processed).

8.3.38 setLargeMaxRows(long max)

(1) Function
This method sets the maximum number of rows that can be stored in a ResultSet object created from this
Statement object, as a long value. Any rows in excess of this value are not stored in the ResultSet object. You
will not be notified that these rows have not been stored.

The setting you specify in this method does not apply to ResultSet objects that have already been created.

(2) Format
public synchronized void setLargeMaxRows(long max) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 393

(3) Arguments
long max

Specifies the maximum number of rows that can be stored.
If you specify 0, no maximum is set. If the result set type is ResultSet.TYPE_SCROLL_INSENSITIVE, the
maximum number of rows that can be stored is set to Integer.MAX_VALUE if you specify 0.
If you do not execute this method, HADB operates as if 0 were specified (no maximum is set).

(4) Return value
None.

(5) Exceptions
For details about exceptions, see (5) Exceptions in 8.3.40 setMaxRows(int max).

8.3.39 setMaxFieldSize(int max)

(1) Function
This method specifies the maximum number of bytes for a CHAR or VARCHAR column in a ResultSet object that is
created from this Statement object. Any bytes in excess of this value are discarded.

The setting specified by this method is not applied to ResultSet objects that have already been created.

(2) Format
public synchronized void setMaxFieldSize(int max) throws SQLException

(3) Arguments
int max

Specifies the maximum number of bytes to be applied to each CHAR and VARCHAR column.
If 0 is specified, no maximum number of bytes is set.
If this method is not executed, 0 (no maximum number of bytes is set) is assumed.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

• A value less than 0 is specified for max.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 394

8.3.40 setMaxRows(int max)

(1) Function
This method sets the maximum number of rows that can be stored in a ResultSet object created from this
Statement object, as int data. Any rows in excess of this value are not stored in the ResultSet object (and without
notification).

The setting specified by this method is not applied to ResultSet objects that have already been created.

(2) Format
public synchronized void setMaxRows(int max) throws SQLException

(3) Arguments
int max

Specifies the maximum number of rows that can be stored.
If 0 is specified, no maximum number of rows that can be stored is set. If the result set type is
ResultSet.TYPE_SCROLL_INSENSITIVE, the maximum number of rows that can be stored is set to
Integer.MAX_VALUE even if 0 is specified here.
If this method is not executed, 0 (no maximum number of rows that can be stored is set) is assumed.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

• A value less than 0 is specified for max.

8.3.41 setQueryTimeout(int seconds)

(1) Function
This method specifies the SQL processing timeout value.

(2) Format
public synchronized void setQueryTimeout(int seconds) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 395

(3) Arguments
int seconds

Specifies an SQL processing timeout value (in seconds), in the range from 0 to 65,535.
If 0 is specified or this method is not executed, the value of adb_clt_rpc_sql_wait_time in the system
properties, user properties, or URL connection properties takes effect.
If this method is executed, HADB monitors the following wait times:

• How long the HADB client waits for the HADB server to respond to a processing request
If this wait time is exceeded, a timeout error whose SQLCODE is -732 (KFAA30732-E) is returned to the
application. When this occurs, processing of the SQL statement is canceled, and the transaction is rolled back.
Then, the application is disconnected from the HADB server.

• How long to wait to secure processing real threads if a shortage occurs when multiple SELECT statements are
executed concurrently in the same connection
If this wait time is exceeded, HADB returns a timeout error whose SQLCODE is -1071570 (KFAA71570-
E) to the application. When this happens, processing of the SQL statement is canceled but the transaction is not
rolled back. Nor is the application disconnected from the HADB server.

For details about the purpose of monitoring wait times using this method, see (4) Note about executing multiple
SELECT statements concurrently in the same connection in 7.4.1 How to retrieve data.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Statement object is closed.

• The Connection object that created the Statement object is closed.

• A value less than 0 is specified for seconds.

(6) Notes
If 65,536 (maximum value of adb_clt_rpc_sql_wait_time property) or a greater value is specified for
seconds, the specification of this method is ignored.

8.3.42 Notes about the Statement interface

(1) Notes about executing executeXXX methods
If you execute an executeXXX method before the ResultSet object created by the corresponding Statement
object has been closed, the JDBC driver closes the previous ResultSet object that was created. If an attempt is made
to use the previously created ResultSet object to acquire retrieval results after the executeXXX method has been
executed, the JDBC driver will throw an SQLException. The following shows an example that results in an
SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 396

■ Example that results in an SQLException
 Statement st = con.createStatement();
 ResultSet rs1 = st.executeQuery("select * from tb1");
 ResultSet rs2 = st.executeQuery("select * from tb2");
 rs1.next(); // SQLException is thrown.
 rs2.next();

(2) Closing the Statement object
After you have used a Statement object, make sure that you close the Statement object explicitly with the close
method. When a Statement object is closed explicitly, the corresponding statement handle in HADB is released. If
you do not close Statement objects, a shortage of statement handles might occur.

The statement handle is also released when a transaction is settled by issuing COMMIT or ROLLBACK. Therefore, if you
settle transactions at appropriate intervals, you can prevent a shortage of statement handles.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 397

8.4 PreparedStatement interface

This section explains the methods provided by the PreparedStatement interface.

8.4.1 List of the methods in the PreparedStatement interface

(1) Main functions of the PreparedStatement interface
The PreparedStatement interface provides the following main functions:

• Execution of SQL statements in which dynamic parameters are specified

• Specification of dynamic parameters

• Generation and return of a ResultSet object as a retrieval result

• Return of the number of updated rows as an updating result

Because the PreparedStatement interface is a subinterface of the Statement interface, it inherits all of the
Statement interface functions.

(2) Methods in the PreparedStatement interface that are supported by
HADB

The following table lists and describes the methods in the PreparedStatement interface that are supported by
HADB.

Table 8-13: Methods in the PreparedStatement interface

No. Method in the PreparedStatement interface Function

1 addBatch() Adds the current parameter set to this PreparedStatement
object's batch.

2 clearParameters() Clears all values from the current parameter set that is specified.

3 execute() Executes the preprocessed SQL statement.

4 executeLargeUpdate() Executes a preprocessed SQL statement (other than a retrieval SQL
statement) and returns the number of updated rows as long data.

5 executeQuery() Executes a preprocessed retrieval SQL statement and returns the
ResultSet object that contains the execution results.

6 executeUpdate() Executes a preprocessed SQL statement (other than a retrieval SQL
statement) and returns the number of updated rows as int data.

7 getHADBSQLSerialNum() Acquires the SQL statement sequence number that is assigned to this
PreparedStatement object.

8 getHADBStatementHandle() Acquires the statement handle that is assigned to this
PreparedStatement object.

9 getMetaData() Returns the ResultSetMetaData object that stores information
about the columns in the ResultSet object that is returned when
this PreparedStatement object is executed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 398

No. Method in the PreparedStatement interface Function

10 getParameterMetaData() Returns the ParameterMetaData object that contains meta
information for the parameters in this PreparedStatement
object.

11 setAsciiStream(int parameterIndex,
InputStream x, int length)

Sets the value of a specified InputStream object as a dynamic
parameter value.

12 setBigDecimal(int parameterIndex,
BigDecimal x)

Sets a specified BigDecimal object as a dynamic parameter value.

13 setBinaryStream(int parameterIndex,
InputStream x, int length)

Sets the value of a specified InputStream object as a dynamic
parameter value.

14 setBoolean(int parameterIndex, boolean
x)

Sets a specified boolean value as a dynamic parameter value.

15 setByte(int parameterIndex, byte x) Sets a specified byte value as a dynamic parameter value.

16 setBytes(int parameterIndex, byte[] x) Sets a specified byte array as a dynamic parameter value.

17 setCharacterStream(int parameterIndex,
Reader reader, int length)

Sets a specified Reader object as a dynamic parameter value.

18 setDate(int parameterIndex, Date x) Sets a specified java.sql.Date object as a dynamic parameter
value.

19 setDate(int parameterIndex, Date x,
Calendar cal)

Converts a java.sql.Date object specified in local time to the
equivalent value in a specified calendar's time zone, and then sets the
resulting value as a dynamic parameter value.

20 setDouble(int parameterIndex, double x) Sets a specified double value as a dynamic parameter value.

21 setFloat(int parameterIndex, float x) Sets a specified float value as a dynamic parameter value.

22 setInt(int parameterIndex, int x) Sets a specified int value as a dynamic parameter value.

23 setLong(int parameterIndex, long x) Sets a specified long value as a dynamic parameter value.

24 setNull(int parameterIndex,int sqlType) Sets the null value in a specified dynamic parameter.

25 setObject(int parameterIndex, Object x) Sets the value of a specified object as a dynamic parameter value.

26 setObject(int parameterIndex, Object x,
int targetSqlType)

27 setObject(int parameterIndex, Object x,
int targetSqlType, int scale)

28 setShort(int parameterIndex, short x) Sets a specified short value as a dynamic parameter value.

29 setString(int parameterIndex, String x) Sets a specified String object as a dynamic parameter value.

30 setTime(int parameterIndex, Time x) Sets a specified java.sql.Time object as a dynamic parameter
value.

31 setTime(int parameterIndex, Time x,
Calendar cal)

Converts a java.sql.Time object specified in local time to the
equivalent value in a specified calendar's time zone, and then sets the
resulting value as a dynamic parameter value.

32 setTimestamp(int parameterIndex,
Timestamp x)

Sets a specified java.sql.Timestamp object as a dynamic
parameter value.

33 setTimestamp(int parameterIndex,
Timestamp x, Calendar cal)

Converts a java.sql.Timestamp object specified in local time
to the equivalent value in a specified calendar's time zone, and then
sets the resulting value as a dynamic parameter value.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 399

Important
HADB does not support methods that are not listed in this table. If an unsupported method is executed, an
SQLException is thrown.

(3) Required package name and class name
The package and class names required in order to use the PreparedStatement interface are as follows:

• Package name: com.hitachi.hadb.jdbc
• Class name: AdbPreparedStatement

8.4.2 addBatch()

(1) Function
This method adds the current parameter set to this PreparedStatement object's batch. You can add a maximum of
2,147,483,647 parameter sets.

(2) Format
public synchronized void addBatch() throws SQLException

(3) Arguments
None.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• No value is set for at least one dynamic parameter.

• More than 2,147,483,647 items have been registered in the batch.

8.4.3 clearParameters()

(1) Function
This method clears all values from the current parameter set that is specified.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 400

(2) Format
public synchronized void clearParameters() throws SQLException

(3) Arguments
None.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

8.4.4 execute()

(1) Function
This method executes the preprocessed SQL statement.

You can use the getResultSet and getUpdateCount methods (or the getLargeUpdateCount method) of
the PreparedStatement object to obtain the ResultSet object and the number of updated rows as execution
results.

For the return values of the getResultSet method and getUpdateCount method (or getLargeUpdateCount
method) after execution of the execute method, see Table 8-8: Return values of the getResultSet and getUpdateCount
methods (or the getLargeUpdateCount method) depending on the type of the SQL statement that was executed.

(2) Format
public synchronized boolean execute() throws SQLException

(3) Arguments
None.

(4) Return value
If a retrieval SQL statement was executed, this method returns true; if not, the method returns false.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 401

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• No value is set in at least one dynamic parameter.

• A database access error occurs.

8.4.5 executeLargeUpdate()

(1) Function
This method executes an SQL statement (other than a retrieval SQL statement) that has undergone preprocessing, and
returns the number of updated rows as a long value.

If the number of updated rows might exceed Integer.MAX_VALUE, use the executeLargeUpdate() method
instead of executeUpdate(). If you use the executeUpdate() method, it will return 0 if the number of updated
rows exceeds Integer.MAX_VALUE.

(2) Format
public synchronized long executeLargeUpdate() throws SQLException

(3) Arguments
None.

(4) Return value
If an INSERT, UPDATE, or DELETE statement was executed, the method returns the number of updated rows as long
data. If any other SQL statement was executed, the method returns 0.

(5) Exceptions
For details about exceptions, see (5) Exceptions in 8.4.7 executeUpdate().

8.4.6 executeQuery()

(1) Function
This method executes the preprocessed retrieval SQL statement and returns the ResultSet object that contains the
execution results.

(2) Format
public synchronized ResultSet executeQuery() throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 402

(3) Arguments
None.

(4) Return value
This method returns the ResultSet object that contains the execution results.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A non-retrieval SQL statement (such as an INSERT statement) was executed.

• No value is set in at least one dynamic parameter.

• A database access error occurs.

8.4.7 executeUpdate()

(1) Function
This method executes a preprocessed SQL statement (other than a retrieval SQL statement) and returns the number of
updated rows as int data.

If the number of updated rows might exceed Integer.MAX_VALUE, use the executeLargeUpdate() method
instead of the executeUpdate() method. If you use the executeUpdate() method, it will return 0 if the number
of updated rows exceeds Integer.MAX_VALUE.

(2) Format
public synchronized int executeUpdate() throws SQLException

(3) Arguments
None.

(4) Return value
If an INSERT, UPDATE, or DELETE statement was executed, the method returns the number of updated rows as int
data. If any other SQL statement was executed, the method returns 0.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 403

• A retrieval SQL statement was executed.

• No value is set in at least one dynamic parameter.

• A database access error occurs.

8.4.8 getHADBSQLSerialNum()

(1) Function
This method acquires the SQL statement sequence number that is assigned to this PreparedStatement object.

(2) Format
public long getHADBSQLSerialNum() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the SQL statement sequence number that is assigned to this PreparedStatement object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

(6) Notes
This is an HADB-specific method provided by the AdbPreparedStatement interface. For details about the
execution method, see 12.2 Wrapper interface.

8.4.9 getHADBStatementHandle()

(1) Function
This method acquires the statement handle that is assigned to this PreparedStatement object.

(2) Format
public int getHADBStatementHandle() throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 404

(3) Arguments
None.

(4) Return value
This method returns the statement handle that is assigned to this PreparedStatement object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

(6) Notes
This is an HADB-specific method provided by the AdbPreparedStatement interface. For details about the
execution method, see 12.2 Wrapper interface.

8.4.10 getMetaData()

(1) Function
This method returns the ResultSetMetaData object that stores information about the columns in the ResultSet
object that is returned when this PreparedStatement object is executed.

(2) Format
public synchronized ResultSetMetaData getMetaData() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns meta information for this PreparedStatement object as a ResultSetMetaData object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 405

8.4.11 getParameterMetaData()

(1) Function
This method returns the ParameterMetaData object that contains meta information for the parameters in this
PreparedStatement object. The returned ParameterMetaData object is meta information for parameters
acquired from the server when the Connection.prepareStatement() method is executed.

(2) Format
public synchronized ParameterMetaData getParameterMetaData() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns meta information for this PreparedStatement object as a ParametertMetaData object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

8.4.12 setAsciiStream(int parameterIndex, InputStream x, int length)

(1) Function
This method sets the value of a specified InputStream object as a dynamic parameter value.

(2) Format
public synchronized void setAsciiStream(int parameterIndex, InputStream x, int length
) throws SQLException

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

InputStream x
Specifies the java.io.InputStream object that contains the value to be set in the specified dynamic parameter.

int length
Specifies the number of bytes to be set.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 406

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A value less than 0 was specified for length.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

(6) Notes
The setAsciiStream method does not execute the close method on x, even after input from x has been completed.

8.4.13 setBigDecimal(int parameterIndex, BigDecimal x)

(1) Function
This method sets a specified BigDecimal object as a dynamic parameter value.

(2) Format
public synchronized void setBigDecimal(int parameterIndex, BigDecimal x) throws SQLEx
ception

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

BigDecimal x
Specifies the java.math.BigDecimal object that is to be set in the specified dynamic parameter.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 407

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

8.4.14 setBinaryStream(int parameterIndex, InputStream x, int length)

(1) Function
Sets the value of a specified InputStream object as a dynamic parameter value.

(2) Format
public synchronized void setBinaryStream(int parameterIndex, InputStream x, int lengt
h) throws SQLException

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

InputStream x
Specifies the java.io.InputStream object that contains the value to be set in the specified dynamic parameter.

int length
Specifies the number of bytes to be set.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A value less than 0 was specified for length.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

(6) Notes
The setBinaryStream method does not execute the close method on x, even after input from x has been completed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 408

8.4.15 setBoolean(int parameterIndex, boolean x)

(1) Function
This method sets a specified boolean value as a dynamic parameter value.

(2) Format
public synchronized void setBoolean(int parameterIndex, boolean x) throws SQLExceptio
n

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

boolean x
Specifies the value to be set in the specified dynamic parameter.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

8.4.16 setByte(int parameterIndex, byte x)

(1) Function
This method sets a specified byte value as a dynamic parameter value.

(2) Format
public synchronized void setByte(int parameterIndex, byte x) throws SQLException

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 409

byte x
Specifies the value to be set in the specified dynamic parameter.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

8.4.17 setBytes(int parameterIndex, byte[] x)

(1) Function
This method sets a specified byte array as a dynamic parameter value.

(2) Format
public synchronized void setBytes(int parameterIndex, byte[] x) throws SQLException

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

byte[] x
Specifies the value to be set in the specified dynamic parameter.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 410

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

8.4.18 setCharacterStream(int parameterIndex, Reader reader, int length)

(1) Function
This method sets a specified Reader object as a dynamic parameter value.

(2) Format
public synchronized void setCharacterStream(int parameterIndex, Reader reader, int le
ngth) throws SQLException

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

Reader reader
Specifies the java.io.Reader object that contains the value to be set in the specified dynamic parameter.

int length
Specifies the number of characters.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A value less than 0 was specified for length.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

• Encoding failed.

8.4.19 setDate(int parameterIndex, Date x)

(1) Function
This method sets a specified java.sql.Date object as a dynamic parameter value.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 411

(2) Format
public synchronized void setDate(int parameterIndex, Date x) throws SQLException

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

Date x
Specifies the java.sql.Date object that contains the value to be set in the specified dynamic parameter.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

8.4.20 setDate(int parameterIndex, Date x, Calendar cal)

(1) Function
This method converts a java.sql.Date object specified in local time to the equivalent value in a specified calendar's
time zone, and then sets the resulting value as a dynamic parameter value.

(2) Format
public synchronized void setDate(int parameterIndex, Date x, Calendar cal) throws SQL
Exception

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

Date x
Specifies the java.sql.Date object that contains the value to be set in the specified dynamic parameter.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 412

Calendar cal
Specifies the calendar in which has been set the time zone for the value to be stored in the database. If null is
specified, the Java Virtual Machine's (JVM) default time zone's calendar is applied.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

8.4.21 setDouble(int parameterIndex, double x)

(1) Function
This method sets a specified double value as a dynamic parameter value.

(2) Format
public synchronized void setDouble(int parameterIndex, double x) throws SQLException

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

double x
Specifies the value to be set in the specified dynamic parameter.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 413

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

8.4.22 setFloat(int parameterIndex, float x)

(1) Function
This method sets a specified float value as a dynamic parameter value.

(2) Format
public synchronized void setFloat(int parameterIndex, float x) throws SQLException

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

float x
Specifies the value to be set in the specified dynamic parameter.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

8.4.23 setInt(int parameterIndex, int x)

(1) Function
This method sets a specified int value as a dynamic parameter value.

(2) Format
public synchronized void setInt(int parameterIndex, int x) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 414

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

int x
Specifies the value to be set in the specified dynamic parameter.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

8.4.24 setLong(int parameterIndex, long x)

(1) Function
This method sets a specified long value as a dynamic parameter value.

(2) Format
public synchronized void setLong(int parameterIndex, long x) throws SQLException

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

long x
Specifies the value to be set in the specified dynamic parameter.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 415

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

8.4.25 setNull(int parameterIndex,int sqlType)

(1) Function
This method sets the null value in a specified dynamic parameter.

(2) Format
public synchronized void setNull(int parameterIndex,int sqlType) throws SQLException

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

int sqlType
Specifies JDBC's SQL data type.
This argument is ignored, if specified.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

8.4.26 setObject(int parameterIndex, Object x)

(1) Function
This method sets the value of a specified object as a dynamic parameter value.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 416

(2) Format
public synchronized void setObject(int parameterIndex, Object x) throws SQLException

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

Object x
Specifies the object that contains the value to be set in the specified dynamic parameter.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

8.4.27 setObject(int parameterIndex, Object x, int targetSqlType)

(1) Function
This method sets the value of a specified object as a dynamic parameter value.

(2) Format
public synchronized void setObject(int parameterIndex, Object x, int targetSqlType) t
hrows SQLException

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

Object x
Specifies the object that contains the value to be set in the specified dynamic parameter.

int targetSqlType
Specifies JDBC's SQL data type.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 417

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

• One of the following was set for targetSqlType:
Types.ARRAY, Types.BLOB, Types.CLOB, Types.JAVA_OBJECT, Types.REF, or Types.STRUCT

8.4.28 setObject(int parameterIndex, Object x, int targetSqlType, int scale)

(1) Function
This method sets the value of a specified object as a dynamic parameter value.

(2) Format
public synchronized void setObject(int parameterIndex, Object x, int targetSqlType, i
nt scale) throws SQLException

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

Object x
Specifies the object that contains the value to be set in the specified dynamic parameter.

int targetSqlType
Specifies JDBC's SQL data type.

int scale
Specifies scaling. This argument is ignored, if specified.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 418

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

• One of the following was set for targetSqlType:
Types.ARRAY, Types.BLOB, Types.CLOB, Types.JAVA_OBJECT, Types.REF, or Types.STRUCT

8.4.29 setShort(int parameterIndex, short x)

(1) Function
This method sets a specified short value as a dynamic parameter value.

(2) Format
public synchronized void setShort(int parameterIndex, short x) throws SQLException

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

short x
Specifies the value to be set in the specified dynamic parameter.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 419

8.4.30 setString(int parameterIndex, String x)

(1) Function
This method sets a specified String object as a dynamic parameter value.

(2) Format
public synchronized void setString(int parameterIndex, String x) throws SQLException

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

String x
Specifies the String object that contains the value to be set in the specified dynamic parameter.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

• Encoding failed.

8.4.31 setTime(int parameterIndex, Time x)

(1) Function
This method sets a specified java.sql.Time object as a dynamic parameter value.

(2) Format
public synchronized void setTime(int parameterIndex, Time x) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 420

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

Time x
Specifies the java.sql.Time object that contains the value to be set in the specified dynamic parameter.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

8.4.32 setTime(int parameterIndex, Time x, Calendar cal)

(1) Function
This method converts a java.sql.Time object specified in local time to the equivalent value in a specified calendar's
time zone, and then sets the resulting value as a dynamic parameter value.

(2) Format
public synchronized void setTime(int parameterIndex, Time x, Calendar cal) throws SQL
Exception

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

Time x
Specifies the java.sql.Time object that contains the value to be set in the specified dynamic parameter.

Calendar cal
Specifies the calendar in which has been set the time zone for the value to be stored in the database. If null is
specified, the Java Virtual Machine's (JVM) default time zone's calendar is applied.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 421

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

8.4.33 setTimestamp(int parameterIndex, Timestamp x)

(1) Function
This method sets a specified java.sql.Timestamp object as a dynamic parameter value.

(2) Format
public synchronized void setTimestamp(int parameterIndex, Timestamp x) throws SQLExce
ption

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

Timestamp x
Specifies the java.sql.Timestamp object that contains the value to be set in the specified dynamic parameter.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 422

8.4.34 setTimestamp(int parameterIndex, Timestamp x, Calendar cal)

(1) Function
This method converts a java.sql.Timestamp object specified in local time to the equivalent value in a specified
calendar's time zone, and then sets the resulting value as a dynamic parameter value.

(2) Format
public synchronized void setTimestamp(int parameterIndex, Timestamp x, Calendar cal)
throws SQLException

(3) Arguments
int parameterIndex

Specifies the number of a dynamic parameter.

Timestamp x
Specifies the java.sql.Timestamp object that contains the value to be set in the specified dynamic parameter.

Calendar cal
Specifies the calendar in which has been set the time zone for the value to be stored in the database. If null is
specified, the Java Virtual Machine's (JVM) default time zone's calendar is applied.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The PreparedStatement object is closed.

• The Connection object that created this PreparedStatement object is closed.

• A nonexistent dynamic parameter number was specified.

• This method does not support the HADB data type specified in the dynamic parameter.

• The specified value is outside the range of data types for the column or in a format that cannot be converted.

8.4.35 Notes about the PreparedStatement interface
The PreparedStatement interface is a subinterface of the Statement interface. For this reason, the notes for the
Statement interface also apply to the PreparedStatement interface.

This section describes additional notes that apply to the PreparedStatement interface.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 423

(1) Dynamic parameter setup
• For details about whether mapping is possible with a setXXX method, see (3) Mapping when a dynamic parameter

is specified in 7.6.1 Mapping data types.

• If the column number specified in a setXXX method does not exist, the JDBC driver throws an SQLException.

• Overflow occurs when the value specified in a setXXX method exceeds the value range that can be represented by
the data type of the corresponding dynamic parameter, resulting in an SQLException. For the combinations of a
setXXX method and HADB data type that can cause overflow to occur, see 7.6.3 Overflow handling.

• The values specified by a setXXX method remain effective until one of the following operations is executed:

• The clearParameters method is executed for the target PreparedStatement object.

• A setXXX method is executed for the target PreparedStatement object, and the dynamic parameters to
be specified are the same.

• The close method is executed for the target PreparedStatement object.

(2) Value specifications for dynamic parameters of HADB's DECIMAL type
This subsection describes the operations that are executed when a setXXX method is used to specify a value for a
dynamic parameter of HADB's DECIMAL type, and when the precision and scaling of the dynamic parameter do not
match the precision and scaling of the specified value.

• When the precision of the specified value is greater than the actual precision: the JDBC driver throws an
SQLException.

• When the precision of the specified value is smaller than the actual precision: the JDBC driver increases the precision
of the specified value.

• When the scaling of the specified value is greater than the actual scaling: the JDBC driver truncates the specified
scaling.

• When the scaling of the specified value is smaller than the actual scaling: the JDBC driver increases the specified
scaling by adding zeros.

(3) Value specifications for dynamic parameters of HADB's TIME and
TIMESTAMP types

If a data type with a high fractional second precision is specified for a data type with a low fractional second precision,
the differential fractional second precision is discarded. On the other hand, if a data type with a low fractional second
precision is specified for a data type with a high fractional second precision, the resulting value is extended with zeros
padded for the differential fractional second precision.

(4) Value specifications for dynamic parameters of HADB's CHAR and
VARCHAR types

When a setXXX method is used to specify a value for a dynamic parameter of HADB's CHAR or VARCHAR type, and
when the length of the value after conversion to a character string representation is greater than the defined length of
the dynamic parameter, the JDBC driver throws an SQLException.

(5) Objects that can be specified with setObject
Objects of the following types can be specified for the x argument of the setObject method:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 424

• byte[]
• java.lang.Byte
• java.lang.Double
• java.lang.Float
• java.lang.Integer
• java.lang.Long
• java.lang.Short
• java.lang.String
• java.math.BigDecimal
• java.sql.Boolean
• java.sql.Date
• java.sql.Time
• java.sql.Timestamp

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 425

8.5 ResultSet interface

This section explains the methods provided by the ResultSet interface.

8.5.1 List of the methods in the ResultSet interface

(1) Main functions of the ResultSet interface
The ResultSet interface provides the following main functions:

• Movement of the cursor within a result set in units of rows

• Return of results data

• Notification of whether the retrieval result is the null value

(2) Methods in the ResultSet interface that are supported by HADB
The following table lists and describes the methods in the ResultSet interface that are supported by HADB.

Table 8-14: Methods in the ResultSet interface

No. Method in the ResultSet interface Function

1 absolute(int row) Moves the cursor to a specified row in the ResultSet object.

2 afterLast() Moves the cursor to the location immediately following the last row
in the ResultSet object.

3 beforeFirst() Moves the cursor to the location immediately preceding the first row
in the ResultSet object.

4 clearWarnings() Clears all warnings concerning this ResultSet object that have
been reported.

5 close() Closes the cursor that has been opened for the ResultSet object
and releases JDBC resources.

6 findColumn(String columnName) Returns the column number corresponding to a specified column
name.

7 first() Moves the cursor to the first row in the ResultSet object.

8 getAsciiStream(int columnIndex) Acquires in a java.io.InputStream object the value in a
specified column in the current row of the ResultSet object.

9 getAsciiStream(String columnName)

10 getBigDecimal(int columnIndex) Acquires in a java.math.BigDecimal object the value in a
specified column in the current row of the ResultSet object.

11 getBigDecimal(String columnName)

12 getBinaryStream(int columnIndex) Acquires in a java.io.InputStream object the value in a
specified column in the current row of the ResultSet object.

13 getBinaryStream(String columnName)

14 getBoolean(int columnIndex) Acquires as boolean in the Java programming language the value
in a specified column in the current row of the ResultSet object.

15 getBoolean(String columnName)

16 getByte(int columnIndex) Acquires as byte in the Java programming language the value in a
specified column in the current row of the ResultSet object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 426

No. Method in the ResultSet interface Function

17 getByte(String columnName)

18 getBytes(int columnIndex) Acquires as a byte array in the Java programming language the value
in a specified column in the current row of the ResultSet object.

19 getBytes(String columnName)

20 getCharacterStream(int columnIndex) Acquires in a java.io.Reader object the value in a specified
column in the current row of the ResultSet object.

21 getCharacterStream(String columnName)

22 getConcurrency() Acquires this ResultSet object's concurrent processing mode.

23 getCursorName() Acquires the name of the SQL cursor used by this ResultSet object.

24 getDate(int columnIndex) Acquires in a java.sql.Date object the value in a specified
column in the current row of the ResultSet object.

25 getDate(int columnIndex, Calendar cal)

26 getDate(String columnName)

27 getDate(String columnName, Calendar cal)

28 getDouble(int columnIndex) Acquires as double in the Java programming language the value in
a specified column in the current row of the ResultSet object.

29 getDouble(String columnName)

30 getFetchDirection() Acquires this ResultSet object's fetch direction.

31 getFetchSize() Acquires this ResultSet object's fetch size.

32 getFloat(int columnIndex) Acquires as float in the Java programming language the value in a
specified column in the current row of the ResultSet object.

33 getFloat(String columnName)

34 getHoldability() Acquires a value indicating the status of the holding functionality
for this ResultSet object.

35 getInt(int columnIndex) Acquires as int in the Java programming language the value in a
specified column in the current row of the ResultSet object.

36 getInt(String columnName)

37 getLong(int columnIndex) Acquires as long in the Java programming language the value in a
specified column in the current row of the ResultSet object.

38 getLong(String columnName)

39 getMetaData() Acquires this ResultSet object's meta information.

40 getObject(int columnIndex) Acquires as Object in the Java programming language the value in
a specified column in the current row of the ResultSet object.

41 getObject(String columnName)

42 getObject(int columnIndex,Class<T>
type)

Acquires the value for a specified column in the current row of the
ResultSet object, and converts it to a Java data type.

43 getObject(String columnLabel,Class<T>
type)

44 getRow() Acquires the current row number.

45 getShort(int columnIndex) Acquires as short in the Java programming language the value in a
specified column in the current row of the ResultSet object.

46 getShort(String columnName)

47 getStatement() Acquires the Statement object that created this ResultSet
object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 427

No. Method in the ResultSet interface Function

48 getString(int columnIndex) Acquires as String in the Java programming language the value in
a specified column in the current row of the ResultSet object.

49 getString(String columnName)

50 getTime(int columnIndex) Acquires in a java.sql.Time object the value in a specified
column in the current row of the ResultSet object.

51 getTime(int columnIndex, Calendar cal)

52 getTime(String columnName)

53 getTime(String columnName, Calendar cal)

54 getTimestamp(int columnIndex) Acquires in a java.sql.Timestamp object the value in a
specified column in the current row of the ResultSet object.

55 getTimestamp(int columnIndex, Calendar
cal)

56 getTimestamp(String columnName)

57 getTimestamp(String columnName,
Calendar cal)

58 getType() Returns the ResultSet object's type.

59 getWarnings() Acquires the first warning reported by a call related to this
ResultSet object.

60 isAfterLast() Acquires a value indicating whether the cursor is located after the last
row in the ResultSet object.

61 isBeforeFirst() Acquires a value indicating whether the cursor is located before the
first row in the ResultSet object.

62 isClosed() Acquires a value indicating whether this ResultSet object is
closed.

63 isFirst() Acquires a value indicating whether the cursor is located on the first
row in the ResultSet object.

64 isLast() Acquires a value indicating whether the cursor is located on the last
row in the ResultSet object.

65 last() Moves the cursor to the last row of the ResultSet object.

66 next() Moves the cursor to the next row.

67 previous() Moves the cursor to the immediately preceding row.

68 relative(int rows) Moves the cursor.

69 setFetchDirection(int direction) Specifies the fetch direction for the ResultSet object.

70 setFetchSize(int rows) Specifies the fetch size (number of rows to be fetched) when the
ResultSet object is retrieved.

71 wasNull() Returns a value indicating whether the last column value acquired is
the null value.

Important
HADB does not support methods that are not listed in this table. If an unsupported method is executed, an
SQLException might be thrown.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 428

(3) Required package name and class name
The package and class names required in order to use the ResultSet interface are as follows:

• Package name: com.hitachi.hadb.jdbc
• Class name: AdbResultSet

8.5.2 absolute(int row)

(1) Function
This method moves the cursor to a specified row in the ResultSet object.

(2) Format
public synchronized boolean absolute(int row) throws SQLException

(3) Arguments
int row

Specifies the number of the row to which the cursor is to be moved. A positive number indicates that the row numbers
in the result set are to be counted from the beginning, and a negative number indicates that the row numbers are to
be counted from the end of the result set.

(4) Return value
If the cursor position resulting from the absolute method call is before the first row or after the last row, the method
returns false; otherwise, the method returns true.

The following table shows the destination of the cursor and the return value when the absolute method is executed.

Table 8-15: Location to which the cursor is moved and return value when the absolute method is
executed

Number of rows in
result set#

Specified row value Destination of cursor Return value

0 Non-zero value Remains before the first row false

n n < row After the last row false

1 ≤ row ≤ n row true

-n ≤ row ≤ -1 (n + 1) + row true

row < -n Before the first row false

#
If the actual number of rows is greater than the setMaxRows value, the setMaxRows value takes effect.
If the actual number of rows is greater than the setLargeMaxRows value, the setLargeMaxRows value
takes effect.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 429

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The type of this ResultSet object is ResultSet.TYPE_FORWARD_ONLY.

• A value of 0 was specified for row.

• The ResultSet object has become invalid due to transaction settlement.

• A database access error occurs.

8.5.3 afterLast()

(1) Function
This method moves the cursor to the location immediately following the last row in the ResultSet object. The
following table shows the location to which the cursor is moved when this method is executed.

Table 8-16: Location to which the cursor is moved when the afterLast method is executed

Number of rows in result set# Current cursor position Destination of cursor

0 Before the first row Remains before the first row.

n Before the first row After the last row

1 ≤ current row ≤ n After the last row

After the last row Remains after the last row.

#
If the actual number of rows is greater than the setMaxRows value, the setMaxRows value takes effect.
If the actual number of rows is greater than the setLargeMaxRows value, the setLargeMaxRows value
takes effect.

(2) Format
public synchronized void afterLast() throws SQLException

(3) Arguments
None.

(4) Return value
None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 430

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The type of this ResultSet object is ResultSet.TYPE_FORWARD_ONLY.

• The ResultSet object has become invalid due to transaction settlement.

• A database access error occurs.

8.5.4 beforeFirst()

(1) Function
This method moves the cursor to the location immediately preceding the first row in the ResultSet object. The
following table shows the location to which the cursor is moved when this method is executed.

Table 8-17: Location to which the cursor is moved when the beforeFirst method is executed

Number of rows in result set# Current cursor position Destination of cursor

0 Before the first row Remains before the first row.

n Before the first row Remains before the first row.

1 ≤ current row ≤ n Before the first row

After the last row Before the first row

#
If the actual number of rows is greater than the setMaxRows value, the setMaxRows value takes effect.
If the actual number of rows is greater than the setLargeMaxRows value, the setLargeMaxRows value
takes effect.

(2) Format
public synchronized void beforeFirst() throws SQLException

(3) Arguments
None.

(4) Return value
None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 431

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The type of this ResultSet object is ResultSet.TYPE_FORWARD_ONLY.

• The ResultSet object has become invalid due to transaction settlement.

• A database access error occurs.

8.5.5 clearWarnings()

(1) Function
This method clears all warnings concerning this ResultSet object that have been reported.

(2) Format
public synchronized void clearWarnings() throws SQLException

(3) Arguments
None.

(4) Return value
None.

(5) Exceptions
If the ResultSet object has become invalid due to transaction settlement, the JDBC driver throws an
SQLException.

8.5.6 close()

(1) Function
This method closes the cursor that has been opened for the ResultSet object and releases JDBC resources.

(2) Format
public synchronized void close() throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 432

(3) Arguments
None.

(4) Return value
None.

(5) Exceptions
If a database access error occurs, the method throws an SQLException.

8.5.7 findColumn(String columnName)

(1) Function
This method returns the column number corresponding to a specified column name.

(2) Format
public synchronized int findColumn(String columnName) throws SQLException

(3) Arguments
String columnName

Specifies a column name. The column number corresponding to this column name is returned.
The following notes apply to specifying a column name:

• Column names are not case sensitive.

• Because the entire character string that is specified is assumed to be the column name, any double quotation
mark (") specified in the character string is assumed to be part of the column name.

• If more than one column has the specified column name, the smallest column number corresponding to that
column name is returned.

(4) Return value
This method returns the column number corresponding to the specified column name.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object was invalidated by transaction settlement.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 433

• A nonexistent column name was specified.

• null or a character string with a length of zero was specified for columnName.

8.5.8 first()

(1) Function
This method moves the cursor to the first row in the ResultSet object.

(2) Format
public synchronized boolean first() throws SQLException

(3) Arguments
None.

(4) Return value
If the number of rows in the result set is 0, the method returns true; if not, the method returns false.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The type of this ResultSet object is ResultSet.TYPE_FORWARD_ONLY.

• The ResultSet object has become invalid due to transaction settlement.

• A database access error occurs.

8.5.9 getAsciiStream(int columnIndex)

(1) Function
This method acquires in a java.io.InputStream object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

The method does not convert the value to ASCII characters.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 434

(2) Format
public synchronized InputStream getAsciiStream(int columnIndex) throws SQLException

(3) Arguments
int columnIndex

Specifies a column number.

(4) Return value
This method returns a java.io.InputStream object that contains the retrieval result. The following table shows
the relationship between the retrieval result and the return value.

Table 8-18: Relationship between the retrieval result and the return value (getAsciiStream method)

HADB data type Retrieval result Return value

CHAR
VARCHAR
BINARY
VARBINARY

Null value null

Other than the above java.io.InputStream object containing the retrieval
result

Other Not applicable SQLException is thrown.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

8.5.10 getAsciiStream(String columnName)

(1) Function
This method acquires in a java.io.InputStream object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

The method does not convert the value to ASCII characters.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 435

(2) Format
public synchronized InputStream getAsciiStream(String columnName) throws SQLException

(3) Arguments
String columnName

Specifies a column name.

(4) Return value
This method returns a java.io.InputStream object that contains the retrieval result. For details about the
relationship between the retrieval result and the return value, see Table 8-18: Relationship between the retrieval result
and the return value (getAsciiStream method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

8.5.11 getBigDecimal(int columnIndex)

(1) Function
This method acquires in a java.math.BigDecimal object the value in a specified column in the current row of
the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized BigDecimal getBigDecimal(int columnIndex) throws SQLException

(3) Arguments
int columnIndex

Specifies a column number.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 436

(4) Return value
This method returns the column value that corresponds to the specified column number in the current row. The following
table shows the relationship between the retrieval result and the return value.

Table 8-19: Relationship between the retrieval result and the return value (getBigDecimal method)

HADB data type Retrieval result Return value

CHAR
VARCHAR

Null value null

[space]integer-in-character-string-
representation, decimal-number-in-
character-string-representation, or
floating-point-number-in-character-
string-representation [space]

java.math.BigDecimal object containing the retrieval
result (the value without the spaces at the beginning and end of
the character string is used as the java.math.BigDecimal
object)

Other than the above SQLException is thrown.

SMALLINT Null value null

Other than the above java.math.BigDecimal object containing the retrieval
result

INTEGER Null value null

Other than the above java.math.BigDecimal object containing the retrieval
result

DECIMAL Null value null

Other than the above java.math.BigDecimal object containing the retrieval
result

DOUBLE PRECISION Null value null

Other than the above java.math.BigDecimal object containing the retrieval
result

BOOLEAN# Null value null

true java.math.BigDecimal object obtained based on
BigDecimal(1)

false java.math.BigDecimal object obtained based on
BigDecimal(0)

Other Not applicable SQLException is thrown.

#
BOOLEAN-type data exists when the ResultSet object was created from DatabaseMetadata.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 437

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as BigDecimal.

• An error occurred in the JDBC driver.

8.5.12 getBigDecimal(String columnName)

(1) Function
This method acquires in a java.math.BigDecimal object the value in a specified column in the current row of
the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized BigDecimal getBigDecimal(String columnName) throws SQLException

(3) Arguments
String columnName

Specifies a column name.

(4) Return value
This method returns the column value that corresponds to the specified column name in the current row.

For details about the relationship between the retrieval result and the return value, see Table 8-19: Relationship between
the retrieval result and the return value (getBigDecimal method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as BigDecimal.

• An error occurred in the JDBC driver.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 438

8.5.13 getBinaryStream(int columnIndex)

(1) Function
This method acquires in a java.io.InputStream object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized InputStream getBinaryStream(int columnIndex) throws SQLException

(3) Arguments
int columnIndex

Specifies a column number.

(4) Return value
The method returns a java.io.InputStream object containing the retrieval result. The following table shows the
relationship between the retrieval result and the return value.

Table 8-20: Relationship between the retrieval result and the return value (getBinaryStream
method)

HADB data type Retrieval result Return value

BINARY
VARBINARY

Null value null

Other than the above java.io.InputStream object containing the retrieval result

Other Not applicable SQLException is thrown.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 439

8.5.14 getBinaryStream(String columnName)

(1) Function
This method acquires in a java.io.InputStream object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized InputStream getBinaryStream(String columnName) throws SQLExceptio
n

(3) Arguments
String columnName

Specifies a column name.

(4) Return value
The method returns a java.io.InputStream object containing the retrieval result. For details about the relationship between
the retrieval result and the return value, see Table 8-20: Relationship between the retrieval result and the return value
(getBinaryStream method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

8.5.15 getBoolean(int columnIndex)

(1) Function
This method acquires as boolean in the Java programming language the value in a specified column in the current
row of the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized boolean getBoolean(int columnIndex) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 440

(3) Arguments
int columnIndex

Specifies a column number.

(4) Return value
This method returns true or false. The following table shows the relationship between the retrieval result and the
return value.

Table 8-21: Relationship between the retrieval result and the return value (getBoolean method)

HADB data type Retrieval result Return value

CHAR
VARCHAR

Null value false

[space]1[space] true

Other than the above false

SMALLINT Null value false

0 false

Other than the above true

INTEGER Null value false

0 false

Other than the above true

DECIMAL Null value false

0[.00...0] false

Other than the above true

DOUBLE PRECISION Null value false

0.0 or -0.0 false

Other than the above true

BOOLEAN# Null value false

Non-null value retrieval-result

Other Not applicable SQLException is thrown.

#
BOOLEAN-type data exists when the ResultSet object was created from DatabaseMetadata.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 441

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

8.5.16 getBoolean(String columnName)

(1) Function
This method acquires as boolean in the Java programming language the value in a specified column in the current
row of the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized boolean getBoolean(String columnName) throws SQLException

(3) Arguments
String columnName

Specifies a column name.

(4) Return value
This method returns true or false. For details about the relationship between the retrieval result and the return
value, see Table 8-21: Relationship between the retrieval result and the return value (getBoolean method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 442

8.5.17 getByte(int columnIndex)

(1) Function
This method acquires as byte in the Java programming language the value in a specified column in the current row of
the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized byte getByte(int columnIndex) throws SQLException

(3) Arguments
int columnIndex

Specifies a column number.

(4) Return value
This method returns the column value. The following table shows the relationship between the retrieval result and the
return value.

Table 8-22: Relationship between the retrieval result and the return value (getByte method)

HADB data type Retrieval result Return value

CHAR
VARCHAR

Null value 0

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and
Byte.MIN_VALUE or greater, and Byte.MAX_VALUE or
less

Retrieval result converted to a byte
value

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and
greater than Byte.MAX_VALUE or less than
Byte.MIN_VALUE

SQLException is thrown.

[space][+]Infinity[space]

[space]-Infinity[space]

[space][+|-]NaN[space]

Other than the above

SMALLINT Null value 0

Byte.MIN_VALUE or greater and Byte.MAX_VALUE or
less

Retrieval result converted to a byte
value

Other than the above SQLException is thrown.

INTEGER Null value 0

Byte.MIN_VALUE or greater and Byte.MAX_VALUE or
less

Retrieval result converted to a byte
value

Other than the above SQLException is thrown.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 443

HADB data type Retrieval result Return value

DECIMAL Null value 0

Byte.MIN_VALUE or greater and Byte.MAX_VALUE or
less

Integer part of the retrieval result
converted to a byte value

Other than the above SQLException is thrown.

DOUBLE PRECISION Null value 0

Byte.MIN_VALUE or greater and Byte.MAX_VALUE or
less

Integer part of the retrieval result
converted to a byte value

Other than the above SQLException is thrown.

BOOLEAN# Null value 0

true 1

false 0

Other Not applicable SQLException is thrown.

#
BOOLEAN-type data exists when the ResultSet object was created from DatabaseMetadata.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as byte.

• An error occurred in the JDBC driver.

8.5.18 getByte(String columnName)

(1) Function
This method acquires as byte in the Java programming language the value in a specified column in the current row of
the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized byte getByte(String columnName) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 444

(3) Arguments
String columnName

Specifies a column name.

(4) Return value
This method returns the column value. For details about the relationship between the retrieval result and the return
value, see Table 8-22: Relationship between the retrieval result and the return value (getByte method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as byte.

• An error occurred in the JDBC driver.

8.5.19 getBytes(int columnIndex)

(1) Function
This method acquires as a byte array in the Java programming language the value in a specified column in the current
row of the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized byte[] getBytes(int columnIndex) throws SQLException

(3) Arguments
int columnIndex

Specifies a column number.

(4) Return value
This method returns the column value. The following table shows the relationship between the retrieval result and the
return value.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 445

Table 8-23: Relationship between the retrieval result and the return value (getBytes method)

HADB data type Retrieval result Return value

BINARY
VARBINARY

Null value null

Other than the above Retrieval result converted to a byte value

ROW The retrieval result will never be the null
value.

Retrieval result converted to a byte value

Other Not applicable SQLException is thrown.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

8.5.20 getBytes(String columnName)

(1) Function
This method acquires as a byte array in the Java programming language the value in a specified column in the current
row of the ResultSet object. The column whose value is to be acquired is specified in the argument.

The byte value indicates the row value returned by the JDBC driver.

(2) Format
public synchronized byte[] getBytes(String columnName) throws SQLException

(3) Arguments
String columnName

Specifies a column name.

(4) Return value
This method returns the column value. For details about the relationship between the retrieval result and the return
value, see Table 8-23: Relationship between the retrieval result and the return value (getBytes method).

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 446

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

8.5.21 getCharacterStream(int columnIndex)

(1) Function
This method acquires in a java.io.Reader object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized Reader getCharacterStream(int columnIndex) throws SQLException

(3) Arguments
int columnIndex

Specifies a column number.

(4) Return value
This method returns a java.io.Reader object containing the column value. The following table shows the
relationship between the retrieval result and the return value.

Table 8-24: Relationship between the retrieval result and the return value (getCharacterStream
method)

HADB data type Retrieval result Return value

CHAR
VARCHAR
BINARY
VARBINARY

Null value null

Other than the above java.io.Reader object containing the retrieval result

Other Not applicable SQLException is thrown.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 447

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• Encoding failed.

• An error occurred in the JDBC driver.

8.5.22 getCharacterStream(String columnName)

(1) Function
This method acquires in a java.io.Reader object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized Reader getCharacterStream(String columnName) throws SQLException

(3) Arguments
String columnName

Specifies a column name.

(4) Return value
This method returns a java.io.Reader object containing the column value. For details about the relationship
between the retrieval result and the return value, see Table 8-24: Relationship between the retrieval result and the return
value (getCharacterStream method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 448

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• Encoding failed.

• An error occurred in the JDBC driver.

8.5.23 getConcurrency()

(1) Function
This method acquires this ResultSet object's concurrent processing mode.

(2) Format
public synchronized int getConcurrency() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns ResultSet.CONCUR_READ_ONLY.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

8.5.24 getCursorName()

(1) Function
This method acquires the name of the SQL cursor used by this ResultSet object.

(2) Format
public synchronized String getCursorName() throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 449

(3) Arguments
None.

(4) Return value
This method always returns a null character string.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

8.5.25 getDate(int columnIndex)

(1) Function
This method acquires in a java.sql.Date object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized java.sql.Date getDate(int columnIndex) throws SQLException

(3) Arguments
int columnIndex

Specifies a column number.

(4) Return value
This method returns a java.sql.Date object containing the column value. The following table shows the
relationship between the retrieval result and the return value.

For details about the conversion for DATE, TIME, TIMESTAMP, or character string type (CHAR or VARCHAR), see (2) 
Data conversion process during execution of a getXXX method (for DATE, TIME, TIMESTAMP, or character string
type) in 7.6.2 Data conversion process.

Table 8-25: Relationship between the retrieval result and the return value (getDate method)

HADB data type Retrieval result Return value

CHAR
VARCHAR

Null value null

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 450

HADB data type Retrieval result Return value

[space]formatted-date#[space] Retrieval result converted to a java.sql.Date object
without the spaces at the beginning and end of the
retrieval result

Other than the above SQLException is thrown.

DATE Null value null

Other than the above Retrieval result converted to a java.sql.Date object

TIME Null value null

Other than the above Retrieval result converted to a java.sql.Date object

TIMESTAMP Null value null

Other than the above Retrieval result converted to a java.sql.Date object

Other Not applicable SQLException is thrown.

#
formatted-date means a character string in the date format YYYY-MM-DD.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Date.

• An error occurred in the JDBC driver.

8.5.26 getDate(int columnIndex, Calendar cal)

(1) Function
This method acquires in a java.sql.Date object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

This method uses a specified calendar to create the appropriate date as a millisecond value.

(2) Format
public synchronized java.sql.Date getDate(int columnIndex, Calendar cal) throws SQLEx
ception

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 451

(3) Arguments
int columnIndex

Specifies a column number.

Calendar cal
Specifies the calendar in which the time zone for the values stored in the database has been set.

(4) Return value
This method returns a java.sql.Date object containing the column value. For details about the relationship between
the retrieval result and the return value, see Table 8-25: Relationship between the retrieval result and the return value
(getDate method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Date.

• An error occurred in the JDBC driver.

8.5.27 getDate(String columnName)

(1) Function
This method acquires in a java.sql.Date object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized java.sql.Date getDate(String columnName) throws SQLException

(3) Arguments
String columnName

Specifies a column name.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 452

(4) Return value
This method returns a java.sql.Date object containing the column value. For details about the relationship between
the retrieval result and the return value, see Table 8-25: Relationship between the retrieval result and the return value
(getDate method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Date.

• An error occurred in the JDBC driver.

8.5.28 getDate(String columnName, Calendar cal)

(1) Function
This method acquires in a java.sql.Date object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

This method uses a specified calendar to create the appropriate date as a millisecond value.

(2) Format
public synchronized java.sql.Date getDate(String columnName, Calendar cal) throws SQL
Exception

(3) Arguments
String columnName

Specifies a column name.

Calendar cal
Specifies the calendar in which the time zone for the values stored in the database has been set.

(4) Return value
This method returns a java.sql.Date object containing the column value. For details about the relationship between
the retrieval result and the return value, see Table 8-25: Relationship between the retrieval result and the return value
(getDate method).

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 453

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Date.

• An error occurred in the JDBC driver.

8.5.29 getDouble(int columnIndex)

(1) Function
This method acquires as double in the Java programming language the value in a specified column in the current row
of the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized double getDouble(int columnIndex) throws SQLException

(3) Arguments
int columnIndex

Specifies a column number.

(4) Return value
This method returns the column value. The following table shows the relationship between the retrieval result and the
return value.

Table 8-26: Relationship between the retrieval result and the return value (getDouble method)

HADB data type Retrieval result Return value

CHAR
VARCHAR

Null value 0.0

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and -
Double.MAX_VALUE or greater, and Double.MIN_VALUE or
less, and Double.MIN_VALUE or greater, and
Double.MAX_VALUE or less

Retrieval result converted to a double
value

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 454

HADB data type Retrieval result Return value

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and greater than
Double.MAX_VALUE

Infinity

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and less than -
Double.MAX_VALUE

-Infinity

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and less than
Double.MIN_VALUE, and greater than 0

0.0

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and greater than
-Double.MIN_VALUE, and less than 0

-0.0

[space]-Infinity[space] -Infinity

[space][+]Infinity[space] Infinity

[space][+|-]NaN[space] NaN

Other than the above (cannot be converted to a double value) SQLException is thrown.

SMALLINT Null value 0.0

Other than the above Retrieval result converted to a double
value

INTEGER Null value 0.0

Other than the above Retrieval result converted to a double
value

DECIMAL Null value 0.0

Other than the above Retrieval result converted to a double
value

DOUBLE PRECISION Null value 0.0

Other than the above Retrieval result converted to a double
value

BOOLEAN# Null value 0.0

true 1.0

false 0.0

Other Not applicable SQLException is thrown.

#
BOOLEAN-type data exists when the ResultSet object was created from DatabaseMetadata.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 455

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as double.

• An error occurred in the JDBC driver.

8.5.30 getDouble(String columnName)

(1) Function
This method acquires as double in the Java programming language the value in a specified column in the current row
of the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized double getDouble(String columnName) throws SQLException

(3) Arguments
String columnName

Specifies a column name.

(4) Return value
This method returns the column value.

For details about the relationship between the retrieval result and the return value, see Table 8-26: Relationship between
the retrieval result and the return value (getDouble method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 456

• The column value cannot be acquired as double.

• An error occurred in the JDBC driver.

8.5.31 getFetchDirection()

(1) Function
This method acquires this ResultSet object's fetch direction.

(2) Format
public synchronized int getFetchDirection() throws SQLException

(3) Arguments
None.

(4) Return value
The method always returns ResultSet.FETCH_FORWARD.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

8.5.32 getFetchSize()

(1) Function
This method acquires this ResultSet object's fetch size.

(2) Format
public synchronized int getFetchSize() throws SQLException

(3) Arguments
None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 457

(4) Return value
This method returns the current fetch size of this ResultSet object. The method returns the value set by the
setFetchSize method. If no value has been set by the setFetchSize method, the method returns 0.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

8.5.33 getFloat(int columnIndex)

(1) Function
This method acquires as float in the Java programming language the value in a specified column in the current row
of the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized float getFloat(int columnIndex) throws SQLException

(3) Arguments
int columnIndex

Specifies a column number.

(4) Return value
This method returns the column value. The following table shows the relationship between the retrieval result and the
return value.

Table 8-27: Relationship between the retrieval result and the return value (getFloat method)

HADB data type Retrieval result Return value

CHAR
VARCHAR

Null value 0.0

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and one of the
following:
• -Float.MAX_VALUE or greater and -Float.MIN_VALUE

or less
• Float.MIN_VALUE or greater and Float.MAX_VALUE or

less

Retrieval result converted to a float
value

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 458

HADB data type Retrieval result Return value

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and greater than
Float.MAX_VALUE

Infinity

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and less than -
Float.MAX_VALUE

-Infinity

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and less than
Float.MIN_VALUE, and greater than 0

0.0

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and greater than
-Float.MIN_VALUE, and less than 0

-0.0

[space]-Infinity[space] -Infinity

[space][+]Infinity[space] Infinity

[space][+|-]NaN[space] NaN

Other than the above (cannot be converted to a float value) SQLException is thrown.

SMALLINT Null value 0.0

Other than the above Retrieval result converted to a float
value

INTEGER Null value 0.0

Other than the above Retrieval result converted to a float
value

DECIMAL Null value 0.0

Other than the above Retrieval result converted to a float
value

DOUBLE PRECISION Null value 0.0

One of the following:
• -Float.MAX_VALUE or greater and -Float.MIN_VALUE

or less
• Float.MIN_VALUE or greater and Float.MAX_VALUE or

less

Retrieval result converted to a float
value

Greater than Float.MAX_VALUE Infinity

Less than -Float.MAX_VALUE -Infinity

Less than Float.MIN_VALUE and greater than 0 0.0

Greater than -Float.MIN_VALUE and less than 0 -0.0

BOOLEAN# Null value 0.0

true 1.0

false 0.0

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 459

HADB data type Retrieval result Return value

Other Not applicable SQLException is thrown.

#
BOOLEAN-type data exists when the ResultSet object was created from DatabaseMetadata.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as float.

• An error occurred in the JDBC driver.

8.5.34 getFloat(String columnName)

(1) Function
This method acquires as float in the Java programming language the value in a specified column in the current row
of the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized float getFloat(String columnName) throws SQLException

(3) Arguments
String columnName

Specifies a column name.

(4) Return value
This method returns the column value.

For details about the relationship between the retrieval result and the return value, see Table 8-27: Relationship between
the retrieval result and the return value (getFloat method).

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 460

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as float.

• An error occurred in the JDBC driver.

8.5.35 getHoldability()

(1) Function
This method acquires a value indicating the status of the holding functionality for this ResultSet object.

(2) Format
public synchronized int getHoldability() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns ResultSet.HOLD_CURSORS_OVER_COMMIT.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.

• The Statement object that created this ResultSet object is closed.

• The Connection object that created the Statement object that created this ResultSet object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 461

8.5.36 getInt(int columnIndex)

(1) Function
This method acquires as int in the Java programming language the value in a specified column in the current row of
the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized int getInt(int columnIndex) throws SQLException

(3) Arguments
int columnIndex

Specifies a column number.

(4) Return value
This method returns the column value. The following table shows the relationship between the retrieval result and the
return value.

Table 8-28: Relationship between the retrieval result and the return value (getInt method)

HADB data type Retrieval result Return value

CHAR
VARCHAR

Null value 0

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and
Integer.MIN_VALUE or greater, and Integer.MAX_VALUE
or less

Integer part of the retrieval result
converted to an int value

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and greater than
Integer.MAX_VALUE or less than Integer.MIN_VALUE or
less

SQLException is thrown.

[space]-Infinity[space]

[space][+]Infinity[space]

[space][+|-]NaN[space]

Other than the above (cannot be converted to a double value)

SMALLINT Null value 0

Other than the above Retrieval result converted to an int
value

INTEGER Null value 0

Integer.MIN_VALUE or greater and Integer.MAX_VALUE
or less

Retrieval result converted to an int
value

Other than the above SQLException is thrown.

DECIMAL Null value 0

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 462

HADB data type Retrieval result Return value

Integer.MIN_VALUE or greater and Integer.MAX_VALUE
or less

Integer part of the retrieval result
converted to an int value

Other than the above SQLException is thrown.

DOUBLE PRECISION Null value 0

Integer.MIN_VALUE or greater and Integer.MAX_VALUE
or less

Integer part of the retrieval result
converted to an int value

Other than the above SQLException is thrown.

BOOLEAN# Null value 0

true 1

false 0

Other Not applicable SQLException is thrown.

#
BOOLEAN-type data exists when the ResultSet object was created from DatabaseMetadata.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as int.

• An error occurred in the JDBC driver.

8.5.37 getInt(String columnName)

(1) Function
This method acquires as int in the Java programming language the value in a specified column in the current row of
the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized int getInt(String columnName) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 463

(3) Arguments
String columnName

Specifies a column name.

(4) Return value
This method returns the column value.

For details about the relationship between the retrieval result and the return value, see Table 8-28: Relationship between
the retrieval result and the return value (getInt method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as int.

• An error occurred in the JDBC driver.

8.5.38 getLong(int columnIndex)

(1) Function
This method acquires as long in the Java programming language the value in a specified column in the current row of
the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized long getLong(int columnIndex) throws SQLException

(3) Arguments
int columnIndex

Specifies a column number.

(4) Return value
This method returns the column value. The following table shows the relationship between the retrieval result and the
return value.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 464

Table 8-29: Relationship between the retrieval result and the return value (getLong method)

HADB data type Retrieval result Return value

CHAR
VARCHAR

Null value 0

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and
Long.MIN_VALUE or greater, and Long.MAX_VALUE or less

Integer part of the retrieval result
converted to a long value

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and greater than
Long.MAX_VALUE or less than Long.MIN_VALUE

SQLException is thrown.

[space]-Infinity[space]

[space][+]Infinity[space]

[space][+|-]NaN[space]

Other than the above (cannot be converted to a double value or
BigDecimal object)

SMALLINT Null value 0

Other than the above Retrieval result converted to a long
value

INTEGER Null value 0

Other than the above Retrieval result converted to a long
value

DECIMAL Null value 0

Long.MIN_VALUE or greater and Long.MAX_VALUE or less Integer part of the retrieval result
converted to a long value

DOUBLE PRECISION Null value 0

Long.MIN_VALUE or greater and Long.MAX_VALUE or less Integer part of the retrieval result
converted to a long value

Other than the above SQLException is thrown.

BOOLEAN# Null value 0

true 1

false 0

Other Not applicable SQLException is thrown.

#
BOOLEAN-type data exists when the ResultSet object was created from DatabaseMetadata.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 465

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as long.

• An error occurred in the JDBC driver.

8.5.39 getLong(String columnName)

(1) Function
This method acquires as long in the Java programming language the value in a specified column in the current row of
the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized long getLong(String columnName) throws SQLException

(3) Arguments
String columnName

Specifies a column name.

(4) Return value
This method returns the column value.

For details about the relationship between the retrieval result and the return value, see Table 8-29: Relationship between
the retrieval result and the return value (getLong method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as long.

• An error occurred in the JDBC driver.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 466

8.5.40 getMetaData()

(1) Function
This method acquires this ResultSet object's meta information.

(2) Format
public synchronized ResultSetMetaData getMetaData() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns meta information for this ResultSet object as a ResultSetMetaData object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

8.5.41 getObject(int columnIndex)

(1) Function
This method acquires as Object in the Java programming language the value in a specified column in the current row
of the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized Object getObject(int columnIndex) throws SQLException

(3) Arguments
int columnIndex

Specifies a column number.

(4) Return value
This method returns the column value as a Java object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 467

This Java object has the default Java object type that corresponds to the column's SQL type based on the mapping of
built-in types specified in the JDBC specifications.

The following table shows the relationship between the retrieval result and the return value.

Table 8-30: Relationship between the retrieval result and the return value (getObject method)

HADB data type Retrieval result Return value

CHAR
VARCHAR

Null value null

Other than the above retrieval-result

SMALLINT Null value null

Other than the above Integer object created by using the retrieval result

INTEGER Null value null

Other than the above Long object created by using the retrieval result

DECIMAL Null value null

Other than the above retrieval-result

DOUBLE PRECISION Null value null

Other than the above Double object created by using the retrieval result

DATE Null value null

Other than the above java.sql.Date object created by using the retrieval result

TIME Null value null

Other than the above java.sql.Time object created by using the retrieval result

TIMESTAMP Null value null

Other than the above java.sql.Timestamp object created by using the retrieval result

BINARY
VARBINARY

Null value null

Other than the above retrieval-result

ROW Non-null value#1 retrieval-result

BOOLEAN#2 Null value null

Non-null value Boolean object created by using the retrieval result

#1
The retrieval result will never be the null value.

#2
BOOLEAN-type data exists when the ResultSet object was created from DatabaseMetadata.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 468

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• An error occurred in the JDBC driver.

8.5.42 getObject(String columnName)

(1) Function
This method acquires as Object in the Java programming language the value in a specified column in the current row
of the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized Object getObject(String columnName) throws SQLException

(3) Arguments
String columnName

Specifies a column name.

(4) Return value
This method returns the column value as a Java object. For details about the relationship between the retrieval result
and the return value, see Table 8-30: Relationship between the retrieval result and the return value (getObject method).

This Java object has the default Java object type that corresponds to the column's SQL type based on the mapping of
built-in types specified in the JDBC specifications.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• An error occurred in the JDBC driver.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 469

8.5.43 getObject(int columnIndex,Class<T> type)

(1) Function
This method acquires the value in a specified column of the current row of a ResultSet object, and converts it to the
Java data type of the specified class. The column whose value is to be acquired is specified in the argument of the
method.

(2) Format
public synchronized <T> T getObject(int columnIndex,Class<T> type) throws SQLExceptio
n

(3) Arguments
int columnIndex:

Specifies the column number.

Class<T> type:
Specifies the class that represents the Java data type after conversion. The value of the column specified by
columnIndex is converted to the Java data type of the specified class.
The following table lists the conversions that are possible between data types. If you specify a combination that is
not listed in the table, an error occurs.

Table 8-31: Combinations of HADB data types and Java data types

HADB data type Java data type (value specified for <T>)

CHAR String

VARCHAR

SMALLINT Integer

INTEGER Long

DECIMAL java.math.BigDecimal

DOUBLE PRECISION Double

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

BINARY byte[]

VARBINARY

ROW

BOOLEAN# Boolean

#
BOOLEAN type data will exist if the Resultset object was created from DatabaseMetadata.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 470

(4) Return value
The value in the column is returned as an object of the specified class. The following table lists the relationship between
retrieval results and return values.

Table 8-32: Relationship between retrieval results and return values (getObject method)

HADB data type Retrieval result Return value

CHAR
VARCHAR

Null value null

Other String object created from retrieval result

SMALLINT Null value null

Other Integer object created from retrieval result

INTEGER Null value null

Other Long object created from retrieval result

DECIMAL Null value null

Other java.math.BigDecimal object created from retrieval result

DOUBLE PRECISION Null value null

Other Double object created from retrieval result

DATE Null value null

Other java.sql.Date object created from retrieval result

TIME Null value null

Other java.sql.Time object created from retrieval result

TIMESTAMP Null value null

Other java.sql.Timestamp object created from retrieval result

BINARY
VARBINARY

Null value null

Other Retrieval result

ROW Non-null value#1 Retrieval result

BOOLEAN#2 Null value null

Other Boolean object created from retrieval result

#1
A retrieval result cannot be a null value.

#2
BOOLEAN type data will exist if the Resultset object was created from DatabaseMetadata.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The ResultSet object is closed.
This includes situations in which the ResultSet object is closed because the Statement object that created the
ResultSet object is closed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 471

• The Connection object that created the Statement object that created the ResultSet object is closed.

• The ResultSet object was invalidated by transaction settlement.

• A nonexistent column number was specified.

• An error occurred in the JDBC driver.

• null was specified for type.

• The value specified for type is not one of the permitted combinations.

8.5.44 getObject(String columnLabel,Class<T> type)

(1) Function
This method acquires the value in a specified column of the current row of a ResultSet object, and converts it to the
Java data type of the specified class. The column whose value is to be acquired is specified in the argument of the
method.

(2) Format
public synchronized <T> T getObject(String columnLabel,Class<T> type) throws SQLExcep
tion

(3) Arguments
String columnLabel

Specifies the column name.

Class<T> type
Specifies the class that represents the Java data type after conversion. The value of the column specified by
columnLabel is converted to the Java data type of the specified class.
Table 8-31: Combinations of HADB data types and Java data types lists the conversions that are possible between
data types. If you specify a combination that is not listed in Table 8-31: Combinations of HADB data types and
Java data types, an error occurs.

(4) Return value
The value in the column is returned as an object of the specified class. For details about the relationship between the
retrieval result and the return value, see Table 8-32: Relationship between retrieval results and return values (getObject
method).

(5) Exceptions
For details about exceptions, see (5) Exceptions in 8.5.43 getObject(int columnIndex,Class<T> type).

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 472

8.5.45 getRow()

(1) Function
This method acquires the current row number, such as 1 for the first row, 2 for the second row, and so on. If the row is
before the first row or after the last row, the number that is acquired is 0.

(2) Format
public synchronized int getRow() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the current row number. If the current row number is greater than Integer.MAX_VALUE, the
method returns Integer.MAX_VALUE.

If the maximum number of retrieved rows exceeds 2,147,483,647, the method returns 2147483647.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

8.5.46 getShort(int columnIndex)

(1) Function
This method acquires as short in the Java programming language the value in a specified column in the current row
of the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized short getShort(int columnIndex) throws SQLException

(3) Arguments
int columnIndex

Specifies a column number.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 473

(4) Return value
This method returns the column value. The following table shows the relationship between the retrieval result and the
return value.

Table 8-33: Relationship between the retrieval result and the return value (getShort method)

HADB data type Retrieval result Return value

CHAR
VARCHAR

Null value 0

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and
Short.MIN_VALUE or greater, and Short.MAX_VALUE or less

Integer part of the retrieval result
converted to a short value

[space]integer-in-character-string-representation, decimal-
number-in-character-string-representation, or floating-point-
number-in-character-string-representation[space], and greater than
Short.MAX_VALUE or less than Short.MIN_VALUE

SQLException is thrown.

[space]-Infinity[space]

[space][+]Infinity[space]

[space][+|-]NaN[space]

Other than the above (cannot be converted to a double value)

SMALLINT Null value 0

Short.MIN_VALUE or greater and Short.MAX_VALUE or less Retrieval result converted to a short
value

Other than the above SQLException is thrown.

INTEGER Null value 0

Short.MIN_VALUE or greater and Short.MAX_VALUE or less Retrieval result converted to a short
value

Other than the above SQLException is thrown.

DECIMAL Null value 0

Short.MIN_VALUE or greater and Short.MAX_VALUE or less Integer part of the retrieval result
converted to a short value

Other than the above SQLException is thrown.

DOUBLE PRECISION Null value 0

Short.MIN_VALUE or greater and Short.MAX_VALUE or less Integer part of the retrieval result
converted to a short value

Other than the above SQLException is thrown.

BOOLEAN# Null value 0

true 1

false 0

Other Not applicable SQLException is thrown.

#
BOOLEAN-type data exists when the ResultSet object was created from DatabaseMetadata.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 474

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as short.

• An error occurred in the JDBC driver.

8.5.47 getShort(String columnName)

(1) Function
This method acquires as short in the Java programming language the value in a specified column in the current row
of the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized short getShort(String columnName) throws SQLException

(3) Arguments
String columnName

Specifies a column name.

(4) Return value
This method returns the column value. For details about the relationship between the retrieval result and the return
value, see Table 8-33: Relationship between the retrieval result and the return value (getShort method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 475

• The data type cannot be acquired by this method.

• The column value cannot be acquired as short.

• An error occurred in the JDBC driver.

8.5.48 getStatement()

(1) Function
This method acquires the Statement object that created this ResultSet object.

(2) Format
public synchronized Statement getStatement() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the Statement object that created the ResultSet object. If the result set was created by a
method in DatabaseMetaData, this method returns null.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

8.5.49 getString(int columnIndex)

(1) Function
This method acquires as String in the Java programming language the value in a specified column in the current row
of the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized String getString(int columnIndex) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 476

(3) Arguments
int columnIndex

Specifies a column number.

(4) Return value
This method returns the column value. The following table shows the relationship between the retrieval result and the
return value.

Table 8-34: Relationship between the retrieval result and the return value (getString method)

HADB data type Retrieval result Return value

CHAR
VARCHAR

Null value null

Other than the above retrieval-result

SMALLINT Null value null

Other than the above String object containing the retrieval result in character string representation

INTEGER Null value null

Other than the above String object containing the retrieval result in character string representation

DECIMAL Null value null

Other than the above String object containing the retrieval result in character string representation

DOUBLE PRECISION Null value null

Other than the above String object containing the retrieval result in character string representation

DATE Null value null

Other than the above String object of a character string in YYYY-MM-DD format

TIME Null value null

Other than the above String object of a character string in hh:mm:ss[.f...] format

TIMESTAMP Null value null

Other than the above String object of a character string in YYYY-MM-DDΔhh:mm:ss[.f...]
format (Δ indicates a space)

BINARY
VARBINARY

Null value null

Other than the above retrieval-result

BOOLEAN# Null value null

true String object of the character string "true"

false String object of the character string "false"

#
BOOLEAN-type data exists when the ResultSet object was created from DatabaseMetadata.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 477

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• Encoding failed.

• The data type cannot be acquired by this method.

• An error occurred in the JDBC driver.

8.5.50 getString(String columnName)

(1) Function
This method acquires as String in the Java programming language the value in a specified column in the current row
of the ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized String getString(String columnName) throws SQLException

(3) Arguments
String columnName

Specifies a column name.

(4) Return value
This method returns the column value. For details about the relationship between the retrieval result and the return
value, see Table 8-34: Relationship between the retrieval result and the return value (getString method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• Encoding failed.

• The data type cannot be acquired by this method.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 478

• An error occurred in the JDBC driver.

8.5.51 getTime(int columnIndex)

(1) Function
This method acquires in a java.sql.Time object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized java.sql.Time getTime(int columnIndex) throws SQLException

(3) Arguments
int columnIndex

Specifies a column number.

(4) Return value
This method returns the column value. The following table shows the relationship between the retrieval result and the
return value.

For details about the conversion for DATE, TIME, TIMESTAMP, or character string type (CHAR or VARCHAR), see (2) 
Data conversion process during execution of a getXXX method (for DATE, TIME, TIMESTAMP, or character string
type) in 7.6.2 Data conversion process.

Table 8-35: Relationship between the retrieval result and the return value (getTime method)

HADB data type Retrieval result Return value

CHAR
VARCHAR

Null value null

[space] formatted-time#[space] Retrieval result converted to a java.sql.Time object without the
spaces at the beginning and end of the retrieval result

Other than the above SQLException is thrown.

TIME Null value null

Other than the above Retrieval result converted to a java.sql.Time object

TIMESTAMP Null value null

Other than the above Retrieval result converted to a java.sql.Time object

Other Not applicable SQLException is thrown.

#
formatted-time is a character string in the time format 'hh:mm:ss[.f...]'.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 479

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Time.

• An error occurred in the JDBC driver.

8.5.52 getTime(int columnIndex, Calendar cal)

(1) Function
This method acquires in a java.sql.Time object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

This method uses a specified calendar to create the appropriate time as a millisecond value.

(2) Format
public synchronized java.sql.Time getTime(int columnIndex, Calendar cal) throws SQLEx
ception

(3) Arguments
int columnIndex

Specifies a column number.

Calendar cal
Specifies the calendar in which the time zone for the values stored in the database has been set.

(4) Return value
This method returns the column value. For details about the relationship between the retrieval result and the return
value, see Table 8-35: Relationship between the retrieval result and the return value (getTime method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 480

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Time.

• An error occurred in the JDBC driver.

8.5.53 getTime(String columnName)

(1) Function
This method acquires in a java.sql.Time object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized java.sql.Time getTime(String columnName) throws SQLException

(3) Arguments
String columnName

Specifies a column name.

(4) Return value
This method returns the column value. For details about the relationship between the retrieval result and the return
value, see Table 8-35: Relationship between the retrieval result and the return value (getTime method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Time.

• An error occurred in the JDBC driver.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 481

8.5.54 getTime(String columnName, Calendar cal)

(1) Function
This method acquires in a java.sql.Time object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

This method uses a specified calendar to create the appropriate time as a millisecond value.

(2) Format
public synchronized java.sql.Time getTime(String columnName, Calendar cal) throws SQL
Exception

(3) Arguments
String columnName

Specifies a column name.

Calendar cal
Specifies the calendar in which the time zone for the values stored in the database has been set.

(4) Return value
This method returns the column value. For details about the relationship between the retrieval result and the return
value, see Table 8-35: Relationship between the retrieval result and the return value (getTime method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Time.

• An error occurred in the JDBC driver.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 482

8.5.55 getTimestamp(int columnIndex)

(1) Function
This method acquires in a java.sql.Timestamp object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized java.sql.Timestamp getTimestamp(int columnIndex) throws SQLExcept
ion

(3) Arguments
int columnIndex

Specifies a column number.

(4) Return value
This method returns the column value. The following table shows the relationship between the retrieval result and the
return value.

For details about the conversion for DATE, TIME, TIMESTAMP, or character string type (CHAR or VARCHAR), see (2) 
Data conversion process during execution of a getXXX method (for DATE, TIME, TIMESTAMP, or character string
type) in 7.6.2 Data conversion process.

Table 8-36: Relationship between the retrieval result and the return value (getTimestamp method)

HADB data type Retrieval result Return value

CHAR
VARCHAR

Null value null

[space]formatted-time-
stamp#[space]

Retrieval result converted to a java.sql.Timestamp object
without the spaces at the beginning and end of the retrieval result

Other than the above SQLException is thrown.

DATE Null value null

Other than the above Retrieval result converted to a java.sql.Timestamp object

TIME Null value null

Other than the above Retrieval result converted to a java.sql.Timestamp object

TIMESTAMP Null value null

Other than the above Retrieval result converted to a java.sql.Timestamp object

Other Not applicable SQLException is thrown.

#
formatted-time-stamp is a character string in the time stamp format 'YYYY-MM-DD hh:mm:ss[.f...]'.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 483

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Timestamp.

• An error occurred in the JDBC driver.

8.5.56 getTimestamp(int columnIndex, Calendar cal)

(1) Function
This method acquires in a java.sql.Timestamp object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

This method uses a specified calendar to create the appropriate time stamp as a millisecond value.

(2) Format
public synchronized java.sql.Timestamp getTimestamp(int columnIndex, Calendar cal) th
rows SQLException

(3) Arguments
int columnIndex

Specifies a column number.

Calendar cal
Specifies the calendar in which the time zone for the values stored in the database has been set.

(4) Return value
This method returns the column value. For details about the relationship between the retrieval result and the return
value, see Table 8-36: Relationship between the retrieval result and the return value (getTimestamp method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 484

• A nonexistent column number was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Timestamp.

• An error occurred in the JDBC driver.

8.5.57 getTimestamp(String columnName)

(1) Function
This method acquires in a java.sql.Timestamp object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

(2) Format
public synchronized java.sql.Timestamp getTimestamp(String columnName) throws SQLExce
ption

(3) Arguments
String columnName

Specifies a column name.

(4) Return value
This method returns the column value. For details about the relationship between the retrieval result and the return
value, see Table 8-36: Relationship between the retrieval result and the return value (getTimestamp method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Timestamp.

• An error occurred in the JDBC driver.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 485

8.5.58 getTimestamp(String columnName, Calendar cal)

(1) Function
This method acquires in a java.sql.Timestamp object the value in a specified column in the current row of the
ResultSet object. The column whose value is to be acquired is specified in the argument.

This method uses a specified calendar to create the appropriate time stamp as a millisecond value.

(2) Format
public synchronized java.sql.Timestamp getTimestamp(String columnName, Calendar cal)
throws SQLException

(3) Arguments
String columnName

Specifies a column name.

Calendar cal
Specifies the calendar in which the time zone for the values stored in the database has been set.

(4) Return value
This method returns the column value. For details about the relationship between the retrieval result and the return
value, see Table 8-36: Relationship between the retrieval result and the return value (getTimestamp method).

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A nonexistent column name was specified.

• The data type cannot be acquired by this method.

• The column value cannot be acquired as java.sql.Timestamp.

• An error occurred in the JDBC driver.

8.5.59 getType()

(1) Function
This method returns the ResultSet object's type.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 486

(2) Format
public synchronized int getType() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns one of the following values:

ResultSet.TYPE_FORWARD_ONLY
The only direction the cursor can move is forward.

ResultSet.TYPE_SCROLL_INSENSITIVE
The cursor can be scrolled, but changes to the underlying values are not reflected in the result set.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

8.5.60 getWarnings()

(1) Function
This method acquires the first warning reported by a call related to this ResultSet object. If there is more than one
warning, the subsequent warnings are chained to the first warning and can be acquired by calling the
getNextWarning method of the SQLWarning object for the immediately preceding warning that was acquired.

(2) Format
public synchronized SQLWarning getWarnings() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the first SQLWarning object. If there is no SQLWarning object, the method returns null.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 487

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

8.5.61 isAfterLast()

(1) Function
This method acquires a value indicating whether the cursor is located after the last row in the ResultSet object.

(2) Format
public synchronized boolean isAfterLast() throws SQLException

(3) Arguments
None.

(4) Return value
If the cursor is located after the last row, the method returns true; if not, or the result set contains no rows, the method
returns false.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A database access error occurs.

8.5.62 isBeforeFirst()

(1) Function
This method acquires a value indicating whether the cursor is located before the first row in the ResultSet object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 488

(2) Format
public synchronized boolean isBeforeFirst() throws SQLException

(3) Arguments
None.

(4) Return value
If the cursor is located before the first row, the method returns true; if not, or the result set contains no rows, the method
returns false.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A database access error occurs.

8.5.63 isClosed()

(1) Function
This method acquires a value indicating whether this ResultSet object is closed.

This method is guaranteed to return true only when it is executed after the close method has been executed.

(2) Format
public synchronized boolean isClosed() throws SQLException

(3) Arguments
None.

(4) Return value
If this ResultSet object is closed, the method returns true; if it is not closed, the method returns false.

(5) Exceptions
None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 489

8.5.64 isFirst()

(1) Function
This method acquires a value indicating whether the cursor is located on the first row in the ResultSet object.

(2) Format
public synchronized boolean isFirst() throws SQLException

(3) Arguments
None.

(4) Return value
If the cursor is located on the first row, the method returns true; if not, the method returns false.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

8.5.65 isLast()

(1) Function
This method acquires a value indicating whether the cursor is located on the last row in the ResultSet object.

(2) Format
public synchronized boolean isLast() throws SQLException

(3) Arguments
None.

(4) Return value
If the cursor is located on the last row, the method returns true; if not, the method returns false.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 490

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A database access error occurs.

8.5.66 last()

(1) Function
This method moves the cursor to the last row of the ResultSet object.

(2) Format
public synchronized boolean last() throws SQLException

(3) Arguments
None.

(4) Return value
If the cursor is moved to the last row, the method returns true; if the result set contains no rows, the method returns
false.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The type of this ResultSet object is ResultSet.TYPE_FORWARD_ONLY.

• The ResultSet object has become invalid due to transaction settlement.

• A database access error occurs.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 491

8.5.67 next()

(1) Function
This method moves the cursor to the next row. If the current cursor position is before the first row, the method moves
the cursor to the first row; if it is on the last row, the method moves the cursor to the location after the last row.

(2) Format
public synchronized boolean next() throws SQLException

(3) Arguments
None.

(4) Return value
If the cursor position resulting from execution of this method is before the first row or after the last row, the method
returns false; otherwise, the method returns true.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A database access error occurs.

8.5.68 previous()

(1) Function
This method moves the cursor to the immediately preceding row.

(2) Format
public synchronized boolean previous() throws SQLException

(3) Arguments
None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 492

(4) Return value
If the cursor position resulting from execution of this method is before the first row, the method returns false;
otherwise, the method returns true.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The type of this ResultSet object is ResultSet.TYPE_FORWARD_ONLY.

• The ResultSet object has become invalid due to transaction settlement.

8.5.69 relative(int rows)

(1) Function
This method moves the cursor.

(2) Format
public synchronized boolean relative(int rows) throws SQLException

(3) Arguments
int rows

Specifies the number of rows (from the current row) by which the cursor is to be moved.
If a positive value is specified, the cursor moves forward. If a negative value is specified, the cursor moves backwards.

(4) Return value
If the cursor position resulting from execution of this method is before the first row or after the last row, the method
returns false; otherwise, the method returns true.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The type of this ResultSet object is ResultSet.TYPE_FORWARD_ONLY.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 493

• The current position cannot be acquired.

• The cursor's current position is not on a valid row.

• The ResultSet object has become invalid due to transaction settlement.

• A database access error occurs.

8.5.70 setFetchDirection(int direction)

(1) Function
This method specifies the fetch direction for the ResultSet object.

(2) Format
public synchronized void setFetchDirection(int direction) throws SQLException

(3) Arguments
int direction

Specifies the fetch direction.
Only ResultSet.FETCH_FORWARD can be specified.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• The value specified for direction is not ResultSet.FETCH_FORWARD.

8.5.71 setFetchSize(int rows)

(1) Function
This method specifies the fetch size (number of rows to be fetched) when the ResultSet object is retrieved.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 494

(2) Format
public synchronized void setFetchSize(int rows) throws SQLException

(3) Arguments
int rows

Specifies the number of rows to be fetched, in the range from 0 to 65,535.
If 0 is specified, retrieval is performed based on the value of adb_clt_fetch_size in the system properties,
user properties, or URL connection properties.
If this method is omitted, the JDBC driver uses the number of rows specified in the Statement object for retrieval.
If no number of rows is specified in the Statement object, or this ResultSet object has not been created from
a Statement object, the JDBC driver uses the value of the adb_clt_fetch_size property for retrieval.

(4) Return value
None.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

• A value outside the range from 0 to 65,535 was specified in rows.

• The value specified in rows is greater than the maximum number of rows that can be stored (the value set by the
setMaxRows method of the Statement object that created this ResultSet object).

• The value specified in rows is greater than the number of rows that can be stored (the value set by the
setMaxLargeRows method of the Statement object that created this ResultSet object).

(6) Notes
For notes, see (6) Notes in 8.3.37 setFetchSize(int rows).

8.5.72 wasNull()

(1) Function
This method returns a value indicating whether the last column value acquired is the null value.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 495

(2) Format
public synchronized boolean wasNull() throws SQLException

(3) Arguments
None.

(4) Return value
If the last column value acquired is NULL, the method returns true; otherwise, the method returns false.

This method returns false before any column value has been acquired by a getXXX method.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• This ResultSet object is closed.
This includes the case where the ResultSet object was closed because the Statement object that created this
ResultSet object was closed.

• The Connection used to create the Statement object that created this ResultSet object has been closed.

• The ResultSet object has become invalid due to transaction settlement.

8.5.73 Fields supported by the ResultSet interface
The following table lists the fields supported by the ResultSet interface.

Table 8-37: Fields supported by the ResultSet interface

Field Remarks

public static final int FETCH_FORWARD --

public static final int FETCH_REVERSE --

public static final int FETCH_UNKNOWN --

public static final int TYPE_FORWARD_ONLY --

public static final int TYPE_SCROLL_INSENSITIVE --

public static final int TYPE_SCROLL_SENSITIVE When this value is specified, the JDBC driver assumes that
TYPE_SCROLL_INSENSITIVE was specified.

public static final int CONCUR_READ_ONLY --

public static final int CONCUR_UPDATABLE When this value is specified, the JDBC driver assumes that
CONCUR_READ_ONLY was specified.

public static final int HOLD_CURSORS_OVER_COMMIT Even if this value is specified, the ResultSet object might become
invalid after the transaction is settled.

public static final int CLOSE_CURSORS_AT_COMMIT When this value is specified, the JDBC driver assumes that
HOLD_CURSORS_OVER_COMMIT was specified.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 496

Legend:
--: None.

8.5.74 Notes about the ResultSet interface

(1) Value acquisition using a getXXX method
• For details about whether mapping is possible with a getXXX method, see (2) Mapping during retrieval data

acquisition in 7.6.1 Mapping data types.

• If a nonexistent column number or column name is specified in a getXXX method, the JDBC driver throws an
SQLException.

• If a value specified in a getXXX method cannot represent the actual value (for example, if getShort is used to
acquire the INTEGER-type value 40,000), overflow occurs and an SQLException results. For the
combinations of a getXXX method and HADB data type that can cause overflow to occur, see 7.6.3 Overflow
handling.

(2) Data mapping (conversion)
For details about whether mapping is possible with a getXXX method that is to be used for retrieval data acquisition,
see (2) Mapping during retrieval data acquisition in 7.6.1 Mapping data types. If a getXXX method is called for a
JDBC SQL data type that cannot be mapped, the JDBC driver throws an SQLException.

(3) Memory size used when the result set type is
ResultSet.TYPE_SCROLL_INSENSITIVE or
ResultSet.TYPE_SCROLL_SENSITIVE

If the result set type is ResultSet.TYPE_SCROLL_INSENSITIVE or
ResultSet.TYPE_SCROLL_SENSITIVE when the following methods in the ResultSet interface are executed,
the JDBC driver allocates memory for accumulating the retrieval results:

• ResultSet.next method

• ResultSet.last method

• ResultSet.absolute method

• ResultSet.relative method

• ResultSet.afterLast method

The JDBC driver assigns and accumulates memory objects to all values in the retrieval results. If a value is variable
length, the memory object is set to the actual size of the retrieved data.

(4) next, absolute, relative, last, and afterLast methods
When the next method is executed, the JDBC driver retrieves and accumulates data from the database as described in
the following table.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 497

Table 8-38: Data retrieved and accumulated from the database during execution of the next method

Condition Result set type

ResultSet.TYPE_FORWARD_ONLY ResultSet.TYPE_SCROLL_INSENSITIVE
or ResultSet.TYPE_SCROLL_SENSITIVE

The data on the current row, which was
moved by the next method, has not
been read into the JDBC driver.

The JDBC driver acquires the moved current
row from the connected database.

The JDBC driver acquires the moved current row
from the connected database, then reads and
accumulates the row in its memory.

The data on the current row, which was
moved by the next method, has been
read into the JDBC driver.

The JDBC driver does not retrieve data from the
connected database.

When the absolute, relative, last, or afterLast method is executed, the JDBC driver retrieves and
accumulates data from the database as described in the following table.

Table 8-39: Data retrieved and accumulated from the database during execution of the absolute,
relative, last, or afterLast method

Condition Result set type is
ResultSet.TYPE_SCROLL_INSENSITIVE
or ResultSet.TYPE_SCROLL_SENSITIVE

Between the first row and the specified row# of the retrieval
results there is data that the JDBC driver has not read.

The JDBC driver retrieves the rows that were not read from the database and
accumulates them in its memory.

The JDBC driver has read all the data contained on the first
row through the specified row# of the retrieval results.

The JDBC driver does not retrieve data from the database.

Note
If the result set type is ResultSet.TYPE_FORWARD_ONLY, the JDBC driver throws an SQLException.

#
If the last or afterLast method is used, the range is from the first row to the last row.

(5) Notes about the getAsciiStream and getCharacterStream methods
The JDBC driver does not implicitly close objects returned by the getAsciiStream and getCharacterStream
methods. The program that called these methods must execute the close method.

(6) Maximum number of retrieved rows
The following table shows the number of rows that a ResultSet object can retrieve from the HADB server. The
JDBC driver discards retrieval results in excess of the applicable number of rows shown in the following table.

Table 8-40: Number of rows that a ResultSet object can retrieve from the HADB server

ResultSet object Result set type

ResultSet.TYPE_SCROLL_INSENSITIVE or
ResultSet.TYPE_SCROLL_SENSITIVE

Other type

ResultSet object created from a
Statement object that executed one of
the following methods:
• setMaxRows
• setLargeMaxRows

The number of retrieved rows is the number of rows specified
by the following methods:
• setMaxRows
• setLargeMaxRows

The number of retrieved rows is
the number of rows specified in
the following methods:
• setMaxRows
• setLargeMaxRows

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 498

ResultSet object Result set type

ResultSet.TYPE_SCROLL_INSENSITIVE or
ResultSet.TYPE_SCROLL_SENSITIVE

Other type

If a value is specified in the setLargeMaxRows method that
exceeds Integer.MAX_VALUE, the maximum value will be
Integer.MAX_VALUE.

Other ResultSet object The maximum value is Integer.MAX_VALUE. There is no limit.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 499

8.6 DatabaseMetaData interface

This section explains the methods provided by the DatabaseMetaData interface.

8.6.1 List of the methods in the DatabaseMetaData interface

(1) Main functions of the DatabaseMetaData Interface
The DatabaseMetaData interface provides the following main functions:

• Return of various information about the connected database

• Return of list information, such as lists of tables or columns (the information is stored in a ResultSet)

(2) Methods in the DatabaseMetaData interface that are supported by
HADB

The following table lists and describes the methods in the DatabaseMetaData interface that are supported by HADB.

Table 8-41: Methods in the DatabaseMetaData interface

No. Method in the DatabaseMetaData interface Function

1 allProceduresAreCallable() Acquires a value indicating whether all the procedures returned by the
getProcedures method can be called by the current HADB user.

2 allTablesAreSelectable() Acquires a value indicating whether all the tables returned by the
getTables method can be used by the current HADB user.

3 autoCommitFailureClosesAllResultSets() Returns a value indicating whether all open ResultSet objects are
to be closed if an SQLException occurs while the automatic
commit mode is enabled.

4 dataDefinitionCausesTransactionCommit(
)

Acquires a value indicating whether a data definition statement in a
transaction is to forcibly commit the transaction.

5 dataDefinitionIgnoredInTransactions() Acquires a value indicating whether data definition statements are
ignored in transactions.

6 deletesAreDetected(int type) Acquires a value indicating whether deletions of visible rows can be
detected by calling the rowDeleted method of the ResultSet
class.

7 doesMaxRowSizeIncludeBlobs() Acquires a value indicating whether the getMaxRowSize method's
return value contains the LONGVARCHAR or LONGVARBINARY
SQL data type.

8 generatedKeyAlwaysReturned() Acquires a value indicating whether a generated key will always be
returned if the column names or indexes specified for the auto-
generated key columns are valid and the statement succeeds.

9 getAttributes(String catalog, String
schemaPattern, String typeNamePattern,
String attributeNamePattern)

Acquires information related to a specified attribute of a specified type
for user-defined types (UDTs) that can be used in specified schemas
and catalogs.

10 getBestRowIdentifier(String catalog,
String schema, String table, int scope,
boolean nullable)

Acquires information about the optimum column set for a table in
which rows are identified uniquely.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 500

No. Method in the DatabaseMetaData interface Function

11 getCatalogs() Acquires a catalog name.

12 getCatalogSeparator() Acquires the separator between the catalog name and the table name.

13 getCatalogTerm() Acquires a word recommended for catalog.

14 getClientInfoProperties() Returns a list of the client information properties supported by the
driver.

15 getColumnPrivileges(String catalog,
String schema, String table, String
columnNamePattern)

Acquires information about table column access permissions.

16 getColumns(String catalog, String
schemaPattern, String tableNamePattern,
String columnNamePattern)

Acquires information about table columns.

17 getConnection() Acquires the Connection instance that created this
DatabaseMetaData instance.

18 getCrossReference(String
parentCatalog, String parentSchema,
String parentTable, String
foreignCatalog, String foreignSchema,
String foreignTable)

Acquires cross-reference information between a specified referencing
table and a specified referenced table.

19 getDatabaseMajorVersion() Acquires the major version of the database (HADB server).

20 getDatabaseMinorVersion() Acquires the minor version of the database (HADB server).

21 getDatabaseProductName() Acquires the product name of the connected database (HADB server).

22 getDatabaseProductVersion() Acquires the version of the connected database (HADB server).

23 getDefaultTransactionIsolation() Acquires the default transaction isolation level for this database.

24 getDriverMajorVersion() Acquires the JDBC driver's major version.

25 getDriverMinorVersion() Acquires the JDBC driver's minor version.

26 getDriverName() Acquires the JDBC driver's name.

27 getDriverVersion() Acquires the JDBC driver's version.

28 getExportedKeys(String catalog, String
schema, String table)

Acquires information about a referencing table's foreign keys.

29 getExtraNameCharacters() Acquires all the special characters that can be used in an ID name that
is not enclosed in double quotation marks (").

30 getFunctionColumns(String catalog,
String schemaPattern, String
functionNamePattern, String
columnNamePattern)

Returns information about the function's parameters and the types that
are returned.

31 getFunctions(String catalog, String
schemaPattern, String
functionNamePattern)

Returns information about the function.

32 getIdentifierQuoteString() Acquires the character string used to enclose SQL identifiers.

33 getImportedKeys(String catalog, String
schema, String table)

Acquires information about a referenced table's primary key.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 501

No. Method in the DatabaseMetaData interface Function

34 getIndexInfo(String catalog, String
schema, String table, boolean unique,
boolean approximate)

Acquires information about indexes.

35 getJDBCMajorVersion() Acquires the driver's JDBC major version.

36 getJDBCMinorVersion() Acquires the driver's JDBC minor version.

37 getMaxBinaryLiteralLength() Acquires the maximum number of hexadecimal characters that can be
used in a binary literal.

38 getMaxCatalogNameLength() Acquires the maximum length of a catalog name (number of
characters).

39 getMaxCharLiteralLength() Acquires the maximum length of an item of character string data
(number of characters).

40 getMaxColumnNameLength() Acquires the maximum length of a column name (number of
characters).

41 getMaxColumnsInGroupBy() Acquires the maximum number of grouping columns that can be
specified in the GROUP BY clause.

42 getMaxColumnsInIndex() Acquires the maximum number of columns that can comprise an
index.

43 getMaxColumnsInOrderBy() Acquires the maximum number of columns that can be specified in an
ORDER BY clause.

44 getMaxColumnsInSelect() Acquires the maximum number of selection expressions that can be
specified in a selection list.

45 getMaxColumnsInTable() Acquires the maximum number of columns that can be defined in a
table.

46 getMaxConnections() Acquires the maximum number of HADB clients that can connect
concurrently to the HADB server.

47 getMaxCursorNameLength() Acquires the maximum length of a cursor name (number of
characters).

48 getMaxIndexLength() Acquires the maximum length of an index key.

49 getMaxLogicalLobSize() Acquires the maximum number of bytes this database allows as the
logical size for a LOB.

50 getMaxProcedureNameLength() Acquires the maximum length of a procedure name (number of
characters).

51 getMaxRowSize() Acquires the maximum length of a row (in bytes).

52 getMaxSchemaNameLength() Acquires the maximum length of a schema name (number of
characters).

53 getMaxStatementLength() Acquires the maximum length of a character string that can be
specified as an SQL statement.

54 getMaxStatements() Acquires the maximum number of SQL statements that can be
executed concurrently.

55 getMaxTableNameLength() Acquires the maximum length of a table name (number of characters).

56 getMaxTablesInSelect() Acquires the maximum number of tables that can be specified in a
SELECT statement.

57 getMaxUserNameLength() Acquires the maximum length of an authorization identifier (number
of characters).

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 502

No. Method in the DatabaseMetaData interface Function

58 getNumericFunctions() Acquires a list of the available mathematical functions (delimited by
the comma).

59 getPrimaryKeys(String catalog, String
schema, String table)

Acquires information about a specified table's primary key columns.

60 getProcedureColumns(String catalog,
String schemaPattern, String
procedureNamePattern, String
columnNamePattern)

Acquires information about stored procedure parameters.

61 getProcedures(String catalog, String
schemaPattern, String
procedureNamePattern)

Acquires information about stored procedures.

62 getProcedureTerm() Acquires a word recommended for procedure.

63 getPseudoColumns(String catalog,String
schemaPattern,String
tableNamePattern,String
columnNamePattern)

Acquires a description of the pseudo or hidden columns in a particular
table within the specified catalog and schema.

64 getResultSetHoldability() Acquires the holdability of the ResultSet object.

65 getRowIdLifetime() Indicates whether the RowId type is supported. If the RowId type is
supported, the method also indicates the period during which the
RowId object is valid.

66 getSchemas() Acquires schema names.

67 getSchemas(String catalog, String
schemaPattern)

Acquires schema names.

68 getSchemaTerm() Acquires a word recommended for schema.

69 getSearchStringEscape() Acquires the character string used as the escape sequence for wildcard
characters.

70 getSQLKeywords() Acquires a list (delimited by the comma) of all database-specific SQL
keywords that are not SQL:2003 keywords.

71 getSQLStateType() Acquires a value indicating whether SQLSTATE returned by the
getSQLState method of the SQLException class is an X/Open
(currently Open Group) SQL CLI or SQL:2003.

72 getStringFunctions() Acquires a list of string functions (delimited by the comma).

73 getSuperTables(String catalog, String
schemaPattern, String tableNamePattern)

Acquires information about table hierarchies defined in a specified
schema.

74 getSuperTypes(String catalog, String
schemaPattern, String typeNamePattern)

Acquires information about the hierarchy of the user-defined types
(UDT) that are defined in a specific schema.

75 getSystemFunctions() Acquires the available system functions (delimited by the comma).

76 getTablePrivileges(String catalog,
String schemaPattern, String
tableNamePattern)

Acquires information about access privileges for a table.

77 getTables(String catalog, String
schemaPattern, String tableNamePattern,
String[] types)

Acquires information about tables.

78 getTableTypes() Acquires the table types.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 503

No. Method in the DatabaseMetaData interface Function

79 getTimeDateFunctions() Acquires a list of the available time and date functions (delimited by
the comma).

80 getTypeInfo() Acquires information about the default SQL types.

81 getUDTs(String catalog, String
schemaPattern, String typeNamePattern,
int[] types)

Acquires information about the user-defined types (UDTs).

82 getURL() Acquires the URL that specifies information about the HADB server
at the connection destination.

83 getUserName() Acquires the authorization identifier used to connect to the HADB
server.

84 getVersionColumns(String catalog,
String schema, String table)

Acquires information about the table columns that are updated
automatically when rows in the table are modified.

85 insertsAreDetected(int type) Acquires a value indicating whether insertion of a visible row can be
detected by calling the rowInserted method of the ResultSet
class.

86 isCatalogAtStart() Acquires a value indicating whether a catalog appears as the leading
(or trailing) part of a fully qualified table name.

87 isReadOnly() Acquires a value indicating whether the database is in the read-only
mode.

88 locatorsUpdateCopy() Acquires a value indicating whether a change was made to a copy of
a LOB or directly to the LOB.

89 nullPlusNonNullIsNull() Acquires a value indicating whether a join of a null value and a non-
null value is treated as being a null value.

90 nullsAreSortedAtEnd() Acquires a value indicating whether null values are sorted at the end
regardless of the sort order.

91 nullsAreSortedAtStart() Acquires a value indicating whether null values are sorted at the start
regardless of the sort order.

92 nullsAreSortedHigh() Acquires a value indicating whether null values are sorted in ascending
order.

93 nullsAreSortedLow() Acquires a value indicating whether null values are sorted low.

94 othersDeletesAreVisible(int type) Acquires a value indicating whether a deletion performed externally
is visible.

95 othersInsertsAreVisible(int type) Acquires a value indicating whether an insertion performed externally
is visible.

96 othersUpdatesAreVisible(int type) Acquires a value indicating whether an updating performed externally
is visible.

97 ownDeletesAreVisible(int type) Acquires a value indicating whether a deletion of a result set itself is
visible.

98 ownInsertsAreVisible(int type) Acquires a value indicating whether an insertion of a result set itself
is visible.

99 ownUpdatesAreVisible(int type) Acquires a value indicating whether an updating of a result set itself
is visible.

100 storesLowerCaseIdentifiers() Acquires a value indicating whether an SQL identifier containing
uppercase and lowercase letters that is not enclosed in double
quotation marks is processed as being not case sensitive, and then the
results are stored in all lowercase letters.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 504

No. Method in the DatabaseMetaData interface Function

101 storesLowerCaseQuotedIdentifiers() Acquires a value indicating whether an SQL identifier containing
uppercase and lowercase letters that is enclosed in double quotation
marks is processed as being not case sensitive, and then the results are
stored in all lowercase letters.

102 storesMixedCaseIdentifiers() Acquires a value indicating whether an SQL identifier containing
uppercase and lowercase letters that is not enclosed in double
quotation marks is processed as being not case sensitive, and then the
results are stored in uppercase and lowercase letters.

103 storesMixedCaseQuotedIdentifiers() Acquires a value indicating whether an SQL identifier containing
uppercase and lowercase letters that is enclosed in double quotation
marks is processed as being not case sensitive, and then the results are
stored in uppercase and lowercase letters.

104 storesUpperCaseIdentifiers() Acquires a value indicating whether an SQL identifier containing
uppercase and lowercase letters that is not enclosed in double
quotation marks is processed as being not case sensitive, and then the
results are stored in all uppercase letters.

105 storesUpperCaseQuotedIdentifiers() Acquires a value indicating whether an SQL identifier containing
uppercase and lowercase letters that is enclosed in double quotation
marks is processed as being not case sensitive, and then the results are
stored in all uppercase letters.

106 supportsAlterTableWithAddColumn() Acquires a value indicating whether ALTER TABLE with added
columns is supported.

107 supportsAlterTableWithDropColumn() Acquires a value indicating whether ALTER TABLE with dropped
columns is supported.

108 supportsANSI92EntryLevelSQL() Acquires a value indicating whether the ANSI92 entry-level SQL
grammar is supported.

109 supportsANSI92FullSQL() Acquires a value indicating whether the ANSI92 full-level SQL
grammar is supported.

110 supportsANSI92IntermediateSQL() Acquires a value indicating whether the ANSI92 intermediate-level
SQL grammar is supported.

111 supportsBatchUpdates() Acquires a value indicating whether batch updating is supported.

112 supportsCatalogsInDataManipulation() Acquires a value indicating whether catalog names can be used in data
manipulation statements.

113 supportsCatalogsInIndexDefinitions() Acquires a value indicating whether catalog names can be used in
index definition statements.

114 supportsCatalogsInPrivilegeDefinition
s()

Acquires a value indicating whether catalog names can be used in
definition statements for granting privileges (GRANT statement) or
revoking privileges (REVOKE statement).

115 supportsCatalogsInProcedureCalls() Acquires a value indicating whether catalog names can be used in
procedure call statements.

116 supportsCatalogsInTableDefinitions() Acquires a value indicating whether catalog names can be used in table
definition statements.

117 supportsColumnAliasing() Acquires a value indicating whether aliases are supported for columns.

118 supportsConvert() Acquires a value indicating whether the CONVERT function is
supported for SQL types.

119 supportsConvert(int fromType, int
toType)

Acquires a value indicating whether the CONVERT function is
supported for specified SQL types.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 505

No. Method in the DatabaseMetaData interface Function

120 supportsCoreSQLGrammar() Acquires a value indicating whether the ODBC Core SQL grammar
is supported.

121 supportsCorrelatedSubqueries() Acquires a value indicating whether subqueries that contain external
reference columns are supported.

122 supportsDataDefinitionAndDataManipulat
ionTransactions()

Acquires a value indicating whether data definition statements and
data manipulation statements are both supported in transactions.

123 supportsDataManipulationTransactionsOn
ly()

Acquires a value indicating whether only data manipulation
statements are supported in transactions.

124 supportsDifferentTableCorrelationName
s()

Acquires a value indicating whether the table names must be different
from the correlation names when table correlation names are
supported.

125 supportsExpressionsInOrderBy() Acquires a value indicating whether value expressions are supported
in an ORDER BY list.

126 supportsExtendedSQLGrammar() Acquires a value indicating whether the ODBC Extended SQL
grammar is supported.

127 supportsFullOuterJoins() Acquires a value indicating whether nested full outer joins are
supported.

128 supportsGetGeneratedKeys() Acquires a value indicating whether automatic generation keys can be
acquired after statements have executed.

129 supportsGroupBy() Acquires a value indicating whether the GROUP BY clause form is
supported.

130 supportsGroupByBeyondSelect() Acquires a value indicating whether a column that is not in the
SELECT statement can be used in the GROUP BY clause, provided that
all columns in the SELECT statement are included in the GROUP BY
clause.

131 supportsGroupByUnrelated() Acquires a value indicating whether a column that is not in the
SELECT statement can be used in the GROUP BY clause.

132 supportsIntegrityEnhancementFacility() Acquires a value indicating whether the SQL Integrity Enhancement
Facility is supported.

133 supportsLikeEscapeClause() Acquires a value indicating whether the escape clause is supported
in the LIKE clause.

134 supportsLimitedOuterJoins() Acquires a value indicating whether limited support is provided for
outer joins.

135 supportsMinimumSQLGrammar() Acquires a value indicating whether the ODBC Minimum SQL
grammar is supported.

136 supportsMixedCaseIdentifiers() Acquires a value indicating whether an SQL identifier containing
uppercase and lowercase letters that is not enclosed in double
quotation marks is processed as being case sensitive, and then the
results are stored in uppercase and lowercase letters.

137 supportsMixedCaseQuotedIdentifiers() Acquires a value indicating whether an SQL identifier containing
uppercase and lowercase letters that is enclosed in double quotation
marks is processed as being case sensitive, and then the results are
stored in uppercase and lowercase letters.

138 supportsMultipleOpenResults() Acquires a value indicating whether it is possible to have multiple
ResultSet objects that have been returned by a
CallableStatement object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 506

No. Method in the DatabaseMetaData interface Function

139 supportsMultipleResultSets() Acquires a value indicating whether multiple ResultSet objects
can be acquired from a single call of the execute method.

140 supportsMultipleTransactions() Acquires a value indicating whether multiple transactions can be open
at the same time (for different connections).

141 supportsNamedParameters() Acquires a value indicating whether named parameters are supported
for the CALL statement.

142 supportsNonNullableColumns() Acquires a value indicating whether columns can be defined as non-
null columns.

143 supportsOpenCursorsAcrossCommit() Acquires a value indicating whether the cursor can remain open
between commit operations.

144 supportsOpenCursorsAcrossRollback() Acquires a value indicating whether the cursor can remain open
between rollback operations.

145 supportsOpenStatementsAcrossCommit() Acquires a value indicating whether the statement handle can remain
open between commit operations.

146 supportsOpenStatementsAcrossRollback() Acquires a value indicating whether the statement handle can remain
open between rollback operations.

147 supportsOrderByUnrelated() Acquires a value indicating whether a column that is not in the
SELECT statement can be used in the ORDER BY clause.

148 supportsOuterJoins() Acquires a value indicating whether some form of outer join is
supported.

149 supportsPositionedDelete() Acquires a value indicating whether positioned DELETE statements
are supported.

150 supportsPositionedUpdate() Acquires a value indicating whether positioned UPDATE statements
are supported.

151 supportsRefCursors() Acquires a value indicating whether the database supports REF
CURSOR.

152 supportsResultSetConcurrency(int type,
int concurrency)

Acquires a value indicating whether the combination of a specified
result set type and a specified concurrent processing type is supported.

153 supportsResultSetHoldability(int
holdability)

Acquires a value indicating whether holdability is supported for the
specified ResultSet object.

154 supportsResultSetType(int type) Acquires a value indicating whether a specified result set type is
supported.

155 supportsSavepoints() Acquires a value indicating whether save points are supported.

156 supportsSchemasInDataManipulation() Acquires a value indicating whether schema names can be used in data
manipulation statements.

157 supportsSchemasInIndexDefinitions() Acquires a value indicating whether schema names can be used in
index definition statements.

158 supportsSchemasInPrivilegeDefinitions(
)

Acquires a value indicating whether schema names can be used in
definition statements for granting privileges (GRANT statement) or
revoking privileges (REVOKE statement).

159 supportsSchemasInProcedureCalls() Acquires a value indicating whether schema names can be used in
procedure call statements.

160 supportsSchemasInTableDefinitions() Acquires a value indicating whether schema names can be used in
table definition statements.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 507

No. Method in the DatabaseMetaData interface Function

161 supportsSelectForUpdate() Acquires a value indicating whether SELECT FOR UPDATE
statements are supported.

162 supportsStatementPooling() Acquires a value indicating whether pooling of statement handles is
supported.

163 supportsStoredFunctionsUsingCallSynta
x()

Acquires a value indicating whether user-defined functions or vendor
functions that use a stored procedure escape syntax are supported.

164 supportsStoredProcedures() Acquires a value indicating whether stored procedure calls that use a
stored procedure escape syntax are supported.

165 supportsSubqueriesInComparisons() Acquires a value indicating whether subqueries are supported in
comparison predicates.

166 supportsSubqueriesInExists() Acquires a value indicating whether subqueries are supported in
EXISTS predicates.

167 supportsSubqueriesInIns() Acquires a value indicating whether subqueries are supported in IN
predicates.

168 supportsSubqueriesInQuantifieds() Acquires a value indicating whether subqueries are supported in
quantified predicates.

169 supportsTableCorrelationNames() Acquires a value indicating whether subqueries are supported in
quantified predicates.

170 supportsTransactionIsolationLevel(int
level)

Returns a value indicating whether a specified transaction isolation
level is supported.

171 supportsTransactions() Acquires a value indicating whether transactions are supported.

172 supportsUnion() Acquires a value indicating whether SQL UNION is supported.

173 supportsUnionAll() Acquires a value indicating whether SQL UNION ALL is supported.

174 updatesAreDetected(int type) Acquires a value indicating whether updating performed on visible
rows can be detected by calling the rowUpdated method of the
ResultSet class.

175 usesLocalFilePerTable() Acquires a value indicating whether a file is to be used for each table.

176 usesLocalFiles() Acquires a value indicating whether tables are to be stored in local
files.

Important
HADB does not support methods that are not listed in this table. If an unsupported method is executed, an
SQLException might be thrown.

(3) Required package name and class name
The package and class names required in order to use the DatabaseMetaData interface are as follows:

• Package name: com.hitachi.hadb.jdbc
• Class name: AdbDatabaseMetaData

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 508

(4) Special characters that can be specified in pattern character strings
Some methods in the DatabaseMetaData class use a String pattern character string as an argument. The following
table shows the special characters that can be specified in such a pattern character string.

Table 8-42: Special characters that can be specified in pattern character strings

Special character that can be specified Description

_ (underscore) Any single character

% A character string of any length, including no characters.

\ An escape character. Special characters that immediately follow the escape character
in a pattern character string are treated as normal characters.
The character \ is represented by the Shift-JIS code 0x5c (0x5c00 in UTF-16LE).
In UTF-8, specify the character that appears as a backslash \.

8.6.2 allProceduresAreCallable()

(1) Function
This method acquires a value indicating whether all the procedures returned by the getProcedures method can be
called by the current HADB user.

(2) Format
public synchronized boolean allProceduresAreCallable() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.3 allTablesAreSelectable()

(1) Function
This method acquires a value indicating whether all the tables returned by the getTables method can be used by the
current HADB user.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 509

(2) Format
public synchronized boolean allTablesAreSelectable() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.4 autoCommitFailureClosesAllResultSets()

(1) Function
This method returns a value indicating whether all open ResultSet objects are to be closed if an SQLException
occurs while the automatic commit mode is enabled.

(2) Format
public synchronized boolean autoCommitFailureClosesAllResultSets() throws SQLExceptio
n

(3) Arguments
None.

(4) Return value
The method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.5 dataDefinitionCausesTransactionCommit()

(1) Function
This method acquires a value indicating whether a data definition statement in a transaction is to forcibly commit the
transaction.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 510

(2) Format
public synchronized boolean dataDefinitionCausesTransactionCommit() throws SQLExcepti
on

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.6 dataDefinitionIgnoredInTransactions()

(1) Function
This method acquires a value indicating whether data definition statements are ignored in transactions.

(2) Format
public synchronized boolean dataDefinitionIgnoredInTransactions() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.7 deletesAreDetected(int type)

(1) Function
This method acquires a value indicating whether deletions of visible rows can be detected by calling the rowDeleted
method of the ResultSet class.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 511

(2) Format
public synchronized boolean deletesAreDetected(int type) throws SQLException

(3) Arguments
int type

Specifies one of the following result set types:

• ResultSet.TYPE_FORWARD_ONLY
• ResultSet.TYPE_SCROLL_INSENSITIVE
• ResultSet.TYPE_SCROLL_SENSITIVE

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.8 doesMaxRowSizeIncludeBlobs()

(1) Function
This method acquires a value indicating whether the getMaxRowSize method's return value contains the
LONGVARCHAR or LONGVARBINARY SQL data type.

(2) Format
public synchronized boolean doesMaxRowSizeIncludeBlobs() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 512

8.6.9 generatedKeyAlwaysReturned()

(1) Function
This method acquires a value indicating whether a generated key will always be returned if the column names or indexes
specified for the auto-generated key columns are valid and the statement succeeds.

(2) Format
public synchronized boolean generatedKeyAlwaysReturned() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If the Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.10 getAttributes(String catalog, String schemaPattern, String
typeNamePattern, String attributeNamePattern)

(1) Function
This method acquires information related to a specified attribute of a specified type for user-defined types (UDTs) that
can be used in specified schemas and catalogs.

(2) Format
public synchronized ResultSet getAttributes(String catalog, String schemaPattern, Str
ing typeNamePattern, String attributeNamePattern) throws SQLException

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schemaPattern
Specifies a schema name pattern. This argument is ignored, if specified.

String typeNamePattern
Specifies a type name pattern. This argument is ignored, if specified.

String attributeNamePattern
Specifies an attribute name pattern. This argument is ignored, if specified.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 513

(4) Return value
This method always returns a ResultSet object that contains no retrieval result rows. The following table shows the
format of the ResultSet object that is returned.

Table 8-43: Format of the ResultSet object that is returned (getAttributes method)

Column No. Type Column name Description

1 String TYPE_CAT Catalog name

2 String TYPE_SCHEM Schema name

3 String TYPE_NAME Type name

4 String ATTR_NAME Attribute name

5 int DATA_TYPE Attribute type of SQL type

6 String ATTR_TYPE_NAME Type name

7 int ATTR_SIZE Column size

8 int DECIMAL_DIGITS Decimal places

9 int NUM_PREC_RADIX Radix

10 int NULLABLE Whether the NULL value is permitted

11 String REMARKS Comment column

12 String ATTR_DEF Default value

13 int SQL_DATA_TYPE Not used

14 int SQL_DATETIME_SUB Not used

15 int CHAR_OCTET_LENGTH Maximum length (in bytes) of a CHAR-type column

16 int ORDINAL_POSITION Column number

17 String IS_NULLABLE Whether the NULL value is permitted

18 String SCOPE_CATALOG Catalog name for a table in the scope of reference attribute

19 String SCOPE_SCHEMA Schema name for a table in the scope of reference attribute

20 String SCOPE_TABLE Name for a table in the scope of reference attribute

21 short SOURCE_DATA_TYPE Source data type for individual types, user-defined Ref
type, or java.sql.Types SQL type

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.11 getBestRowIdentifier(String catalog, String schema, String table,
int scope, boolean nullable)

(1) Function
This method acquires information about the optimum column set for a table in which rows are identified uniquely.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 514

(2) Format
public synchronized ResultSet getBestRowIdentifier(String catalog, String schema, Str
ing table, int scope, boolean nullable) throws SQLException

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schema
Specifies a schema name. This argument is ignored, if specified.

String table
Specifies a table name. This argument is ignored, if specified.

int scope
Specifies a target scale. This argument is ignored, if specified.

boolean nullable
Specifies whether a column in which the null value can be specified is included. This argument is ignored, if specified.

(4) Return value
This method always returns a ResultSet object that contains no retrieval result rows. The following table shows the
format of the ResultSet object that is returned.

Table 8-44: Format of the ResultSet object that is returned (getBestRowIdentifier method)

Column No. Type Column name Description

1 short SCOPE Actual scale of the result

2 String COLUMN_NAME Column name

3 int DATA_TYPE SQL type

4 String TYPE_NAME Type name

5 int COLUMN_SIZE Precision

6 int BUFFER_LENGTH Not used

7 short DECIMAL_DIGITS Decimal places

8 short PSEUDO_COLUMN Whether this is a pseudo column

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 515

8.6.12 getCatalogs()

(1) Function
This method acquires a catalog name.

(2) Format
public synchronized ResultSet getCatalogs() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns a ResultSet object that contains no retrieval result rows. The following table shows the
format of the ResultSet object that is returned.

Table 8-45: Format of the ResultSet object that is returned (getCatalogs method)

Column No. Type Column name Description

1 String TABLE_CAT Catalog name

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.13 getCatalogSeparator()

(1) Function
This method acquires the separator between the catalog name and the table name.

(2) Format
public synchronized String getCatalogSeparator() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns a null character string.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 516

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.14 getCatalogTerm()

(1) Function
This method acquires a word recommended for catalog.

(2) Format
public synchronized String getCatalogTerm() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns a null character string.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.15 getClientInfoProperties()

(1) Function
This method returns a list of the client information properties supported by the driver.

(2) Format
public synchronized ResultSet getClientInfoProperties() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns a ResultSet object that contains no rows of retrieval results. The following table shows
the format of the ResultSet object that is returned.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 517

Table 8-46: Format of the ResultSet object that is returned

Column No. Type Column name Description

1 String NAME Name of the client information property

2 int MAX_LEN Maximum length of the property's value

3 String DEFAULT_VALUE Property's default value

4 String DESCRIPTION Description of the property

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.16 getColumnPrivileges(String catalog, String schema, String table,
String columnNamePattern)

(1) Function
This method acquires information about table column access permissions.

(2) Format
public synchronized ResultSet getColumnPrivileges(String catalog, String schema, Stri
ng table, String columnNamePattern) throws SQLException

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schema
Specifies a schema name. This argument is ignored, if specified.

String table
Specifies a table name. This argument is ignored, if specified.

String columnNamePattern
Specifies a column name pattern. This argument is ignored, if specified.

(4) Return value
This method always returns a ResultSet object that contains no retrieval result rows. The following table shows the
format of the ResultSet object that is returned.

Table 8-47: Format of the ResultSet object that is returned (getColumnPrivileges method)

Column No. Type Column name Description

1 String TABLE_CAT Catalog name

2 String TABLE_SCHEM Schema name

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 518

Column No. Type Column name Description

3 String TABLE_NAME Table name

4 String COLUMN_NAME Column name

5 String GRANTOR User who grants access privilege

6 String GRANTEE User who receives access privilege

7 String PRIVILEGE Name of access privilege

8 String IS_GRANTABLE Whether a user who has received an access privilege can
grant access privileges to other HADB users

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.17 getColumns(String catalog, String schemaPattern, String
tableNamePattern, String columnNamePattern)

(1) Function
This method acquires information about table columns.

The information about table columns that can be acquired depends on the privileges of the HADB user who executes
this method. For details about the privileges and the table column information that can be acquired, see the topic Scope
of information in dictionary tables and system tables that can be referenced by HADB users in the HADB Setup and
Operation Guide.

(2) Format
public synchronized ResultSet getColumns(String catalog, String schemaPattern, String
 tableNamePattern, String columnNamePattern) throws SQLException

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schemaPattern
Specifies a schema name pattern#. This value is case sensitive.

String tableNamePattern
Specifies a table name pattern#. This value is case sensitive.

String columnNamePattern
Specifies a column name pattern#. This value is case sensitive.

#
For details about the special characters that can be specified in each pattern, see (4) Special characters that can be
specified in pattern character strings in 8.6.1 List of the methods in the DatabaseMetaData interface.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 519

(4) Return value
The method returns a ResultSet object. The following table shows the format of the ResultSet object that is
returned.

Table 8-48: Format of the ResultSet object that is returned (getColumns method)

Column No. Type Column name Description

1 String TABLE_CAT The method always returns a null character string.

2 String TABLE_SCHEM Schema name

3 String TABLE_NAME Table name

4 String COLUMN_NAME Column name

5 int DATA_TYPE SQL type

6 String TYPE_NAME Type name

7 int COLUMN_SIZE Column size

8 int BUFFER_LENGTH The null value is always returned.

9 int DECIMAL_DIGITS Decimal places

10 int NUM_PREC_RADIX Radix
• Approximate value: 2
• Exact numeric value: 10
• Non-numeric value: 0

11 int NULLABLE Value indicating whether the NULL value is permitted:
• columnNoNulls: The null value might not be

permitted.
• columnNullable: The null value can be used.

12 String REMARKS Comment column
The method always returns a null character string.

13 String COLUMN_DEF The default value of the column is returned.
• If the returned value is enclosed by single quotation

marks ('), it means that the default value is a character
string.

• If NULL is specified as the default value of the column,
the character string NULL is returned without single
quotation marks (').

• If no default value is specified for the column, a null
value is returned.

• For details about other return values, see the description
of the DEFAULT_VALUE column in the table Content
of SQL_COLUMNS in the HADB Setup and Operation
Guide.

14 int SQL_DATA_TYPE The null value is always returned.

15 int SQL_DATETIME_SUB The null value is always returned.

16 int CHAR_OCTET_LENGTH Maximum length (in bytes) of a CHAR-type column

17 int ORDINAL_POSITION Column number (beginning at 1)

18 String IS_NULLABLE Value indicating whether the NULL value is permitted:
• "NO": The null value cannot be used.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 520

Column No. Type Column name Description

• "YES": The null value might be permitted.

19 String SCOPE_CATALOG The method always returns a null character string.

20 String SCOPE_SCHEMA The method always returns a null character string.

21 String SCOPE_TABLE The method always returns a null character string.

22 short SOURCE_DATA_TYPE The null value is always returned.

23 String IS_AUTOINCREMENT Whether columns are incremented automatically:
• NO: Columns are not incremented automatically.
NO is always returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

(6) Notes
The value acquired as column information of the viewed table might differ between the following two methods:

1. The DECIMAL_DIGITS value of the ResultSet object acquired by this method

2. The value acquired by the getScale method of the ResultSetMetaData interface

The first of these methods acquires the scaling value that was in effect when the viewed table was defined. The second
of these methods acquires the scaling value that was in effect when the viewed table was retrieved. These two values
will differ if the value specified for the adb_sql_prep_dec_div_rs_prior operand in the server definition or
the client definition when the table was defined differs from the value specified in this operand when the table was
retrieved.

8.6.18 getConnection()

(1) Function
This method acquires the Connection instance that created this DatabaseMetaData instance.

(2) Format
public synchronized Connection getConnection() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns a Connection object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 521

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.19 getCrossReference(String parentCatalog, String parentSchema,
String parentTable, String foreignCatalog, String foreignSchema,
String foreignTable)

(1) Function
This method acquires cross-reference information between a specified referencing table and a specified referenced table.

The cross-reference information that can be acquired depends on the privileges of the HADB user who executes this
method. For details about the relationship between privileges and the information that can be acquired, see the topic
Scope of information in dictionary tables and system tables that can be referenced by HADB users in the HADB Setup
and Operation Guide.

(2) Format
public synchronized ResultSet getCrossReference
 (String parentCatalog,String parentSchema, String parentTable,
 String foreignCatalog, String foreignSchema, String foreignTable)
 throws SQLException

(3) Arguments
String parentCatalog

Specifies the catalog name of the referenced table. This argument is ignored, if specified.

String parentSchema
Specifies the schema name pattern# of the referenced table.

String parentTable
Specifies the table name pattern# of the referenced table.

String foreignCatalog
Specifies the catalog name of the referencing table. This argument is ignored, if specified.

String foreignSchema
Specifies the schema name pattern# of the referencing table.

String foreignTable
Specifies the table name pattern# of the referencing table.

#
For details about the special characters that can be specified in each pattern, see (4) Special characters that can be
specified in pattern character strings in 8.6.1 List of the methods in the DatabaseMetaData interface.

(4) Return value
The following table shows the format of the ResultSet object that is returned.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 522

Table 8-49: Format of the ResultSet object that is returned (getCrossReference method)

Column No. Type Column name Description

1 String PKTABLE_CAT Catalog name of the referenced table
The method always returns a null character string.

2 String PKTABLE_SCHEM Schema name of the referenced table

3 String PKTABLE_NAME Table name of the referenced table

4 String PKCOLUMN_NAME Column name of primary key

5 String FKTABLE_CAT Catalog name of the referencing table
The method always returns a null character string.

6 String FKTABLE_SCHEM Schema name of the referencing table

7 String FKTABLE_NAME Table name of the referencing table

8 String FKCOLUMN_NAME Column name of foreign key

9 short KEY_SEQ Sequence number of foreign key

10 short UPDATE_RULE Operation that is applied to foreign keys when the primary
key is updated
• importedKeyNoAction: The primary key cannot

be updated. However, if referential constraint check
suppression (DISABLE) is specified in the referential
constraint definition in the CREATE TABLE statement,
the primary key can be updated.

11 short DELETE_RULE Operation that is applied to foreign keys when the primary
key is deleted
• importedKeyNoAction: The primary key cannot

be deleted. However, if referential constraint check
suppression (DISABLE) is specified in the referential
constraint definition in the CREATE TABLE statement,
the primary key can be deleted.

12 String FK_NAME Constraint name of referential constraints

13 String PK_NAME Index name of the primary key

14 short DEFERRABILITY Whether evaluation of constraints on the foreign key can be
postponed until the transaction is committed
• importedKeyNotDeferrable: Cannot be

postponed.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.20 getDatabaseMajorVersion()

(1) Function
This method acquires the major version of the database (HADB server).

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 523

(2) Format
public synchronized int getDatabaseMajorVersion() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the HADB server's major version.

For example, if the HADB server's version is 01-00, the method returns 1 of the int type.

This return value is the same as the server's major version displayed in the header of SQL traces output by the JDBC
driver.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.21 getDatabaseMinorVersion()

(1) Function
This method acquires the minor version of the database (HADB server).

(2) Format
public synchronized int getDatabaseMinorVersion() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the HADB server's minor version.

For example, if the HADB server's version is 01-00, the method returns 0 of the int type.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 524

8.6.22 getDatabaseProductName()

(1) Function
This method acquires the product name of the connected database (HADB server).

(2) Format
public synchronized String getDatabaseProductName() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns a String object.

The method returns "Hitachi Advanced Data Binder".

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.23 getDatabaseProductVersion()

(1) Function
This method acquires the version of the connected database (HADB server).

(2) Format
public synchronized String getDatabaseProductVersion() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns a String object.

The method returns the HADB server's version in the format "vv-rr" (example: "01-00").

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 525

8.6.24 getDefaultTransactionIsolation()

(1) Function
This method acquires the default transaction isolation level for this database.

(2) Format
public synchronized int getDefaultTransactionIsolation() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns Connection.TRANSACTION_READ_COMMITTED (the default transaction isolation
level is READ COMMITTED).

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.25 getDriverMajorVersion()

(1) Function
This method acquires the JDBC driver's major version.

(2) Format
public synchronized int getDriverMajorVersion()

(3) Arguments
None.

(4) Return value
The method returns the JDBC driver's major version.

For example, if the JDBC driver's version is 01-00, the method returns 1.

(5) Exceptions
None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 526

8.6.26 getDriverMinorVersion()

(1) Function
This method acquires the JDBC driver's minor version.

(2) Format
public synchronized int getDriverMinorVersion()

(3) Arguments
None.

(4) Return value
The method returns the JDBC driver's minor version.

For example, if the JDBC driver's version is 01-00, the method returns 0.

(5) Exceptions
None.

8.6.27 getDriverName()

(1) Function
This method acquires the JDBC driver's name.

(2) Format
public synchronized String getDriverName() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns a String object.

The method returns "Hitachi Advanced Data Binder JDBC Driver".

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 527

8.6.28 getDriverVersion()

(1) Function
This method acquires the JDBC driver's version.

(2) Format
public synchronized String getDriverVersion() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns a String object.

The method returns the JDBC driver's version in the format "vv-rr" (example: "01-00").

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.29 getExportedKeys(String catalog, String schema, String table)

(1) Function
This method acquires information about a referencing table's foreign keys.

The information about foreign keys that can be acquired depends on the privileges of the HADB user who executes this
method. For details about the relationship between privileges and the information that can be acquired, see the topic
Scope of information in dictionary tables and system tables that can be referenced by HADB users in the HADB Setup
and Operation Guide.

(2) Format
public synchronized ResultSet getExportedKeys(String catalog, String schema, String t
able) throws SQLException

(3) Arguments
String catalog

Specifies the catalog name of the referenced table. This argument is ignored, if specified.

String schema
Specifies the schema name pattern# of the referenced table.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 528

String table
Specifies the table name pattern# of the referenced table.

#
For details about the special characters that can be specified in each pattern, see (4) Special characters that can be
specified in pattern character strings in 8.6.1 List of the methods in the DatabaseMetaData interface.

(4) Return value
The following table shows the format of the ResultSet object that is returned.

Table 8-50: Format of the ResultSet object that is returned (getExportedKeys method)

Column No. Type Column name Description

1 String PKTABLE_CAT Catalog name of the referenced table.
The method always returns a null character string.

2 String PKTABLE_SCHEM Schema name of the referenced table

3 String PKTABLE_NAME Table name of the referenced table

4 String PKCOLUMN_NAME Column name of primary key

5 String FKTABLE_CAT Catalog name of the referencing table.
The method always returns a null character string.

6 String FKTABLE_SCHEM Schema name of the referencing table

7 String FKTABLE_NAME Table name of the referencing table

8 String FKCOLUMN_NAME Column name of foreign key

9 short KEY_SEQ Sequence number of foreign key

10 short UPDATE_RULE Operation that is applied to foreign keys when the primary
key is updated
• importedKeyNoAction: The primary key cannot

be updated. However, if referential constraint check
suppression (DISABLE) is specified in the referential
constraint definition in the CREATE TABLE statement,
the primary key can be updated.

11 short DELETE_RULE Operation that is applied to foreign keys when the primary
key is deleted
• importedKeyNoAction: The primary key cannot

be deleted. However, if referential constraint check
suppression (DISABLE) is specified in the referential
constraint definition in the CREATE TABLE statement,
the primary key can be deleted.

12 String FK_NAME Constraint name of referential constraints

13 String PK_NAME Index name of the primary key

14 short DEFERRABILITY Whether evaluation of constraints on the foreign key can be
postponed until the transaction is committed
• importedKeyNotDeferrable: Cannot be

postponed.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 529

8.6.30 getExtraNameCharacters()

(1) Function
This method acquires all the special characters that can be used in an ID name that is not enclosed in double quotation
marks (").

(2) Format
public synchronized String getExtraNameCharacters() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns a String object.

The method returns "\@#".

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.31 getFunctionColumns(String catalog, String schemaPattern, String
functionNamePattern, String columnNamePattern)

(1) Function
This method returns information about the function's parameters and the types that are returned.

(2) Format
public synchronized ResultSet getFunctionColumns(String catalog, String schemaPattern
, String functionNamePattern, String columnNamePattern) throws SQLException

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schemaPattern
Specifies a schema name pattern. This argument is case sensitive.

String functionNamePattern
Specifies a function name pattern. This argument is case sensitive.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 530

String columnNamePattern
Specifies a parameter name pattern. This argument is case sensitive.

(4) Return value
This method always returns a ResultSet object that contains no rows of retrieval results. The following table shows
the format of the ResultSet object that is returned.

Table 8-51: Format of the ResultSet object that is returned

Column No. Type Column name Description

1 String FUNCTION_CAT Catalog name

2 String FUNCTION_SCHEM Authorization identifier name

3 String FUNCTION_NAME Function name

4 String COLUMN_NAME Column or parameter name

5 short COLUMN_TYPE Column type or parameter

6 int DATA_TYPE Parameter's SQL type

7 String TYPE_NAME Parameter's SQL type name

8 int PRECISION Parameter's precision

9 int LENGTH Parameter size

10 short SCALE Parameter scaling (number of decimal places)

11 short RADIX Radix of parameter

12 short NULLABLE Whether the null value can be used

13 String REMARKS Comment related to the parameter

14 int CHAR_OCTET_LENGTH Maximum length of a binary or character-based parameter
or column

15 int ORDINAL_POSITION Order of input and output parameters (beginning with 1)
• For a function's return value, 0 is returned.

16 String IS_NULLABLE Whether the null value is permitted in the parameter or
column

17 String SPECIFIC_NAME Name that uniquely identifies this function within the
schema

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.32 getFunctions(String catalog, String schemaPattern, String
functionNamePattern)

(1) Function
This method returns information about the function.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 531

(2) Format
public synchronized ResultSet getFunctions(String catalog, String schemaPattern, Stri
ng functionNamePattern) throws SQLException

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schemaPattern
Specifies a schema name pattern. This argument is case sensitive.

String functionNamePattern
Specifies a function name pattern. This argument is case sensitive.

(4) Return value
This method always returns a ResultSet object that contains no rows of retrieval results The following table shows
the format of the ResultSet object that is returned.

Table 8-52: Format of the ResultSet object that is returned

Column No. Type Column name Description

1 String FUNCTION_CAT Catalog name

2 String FUNCTION_SCHEM Authorization identifier name

3 String FUNCTION_NAME Function name

4 String REMARKS Description of function

5 short FUNCTION_TYPE Function type

6 String SPECIFIC_NAME Name that uniquely identifies this function within the
schema

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.33 getIdentifierQuoteString()

(1) Function
This method acquires the character string used to enclose SQL identifiers.

(2) Format
public synchronized String getIdentifierQuoteString() throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 532

(3) Arguments
None.

(4) Return value
The method returns a String object.

The method returns double quotation marks (").

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.34 getImportedKeys(String catalog, String schema, String table)

(1) Function
This method acquires information about a referenced table's primary key.

The information about primary keys that can be acquired depends on the privileges of the HADB user who executes
this method. For details about the relationship between privileges and the information that can be acquired, see the topic
Scope of information in dictionary tables and system tables that can be referenced by HADB users in the HADB Setup
and Operation Guide.

(2) Format
public synchronized ResultSet getImportedKeys(String catalog, String schema, String t
able) throws SQLException

(3) Arguments
String catalog

Specifies the catalog name of the referencing table. This argument is ignored, if specified.

String schema
Specifies the schema name pattern# of the referencing table.

String table
Specifies the table name pattern# of the referencing table.

#
For details about the special characters that can be specified in each pattern, see (4) Special characters that can be
specified in pattern character strings in 8.6.1 List of the methods in the DatabaseMetaData interface.

(4) Return value
The following table shows the format of the ResultSet object that is returned.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 533

Table 8-53: Format of the ResultSet object that is returned (getImportedKeys method)

Column No. Type Column name Description

1 String PKTABLE_CAT Catalog name of the referenced table.
The method always returns a null character string.

2 String PKTABLE_SCHEM Schema name of the referenced table

3 String PKTABLE_NAME Table name of the referenced table

4 String PKCOLUMN_NAME Column name of primary key

5 String FKTABLE_CAT Catalog name of the referencing table.
The method always returns a null character string.

6 String FKTABLE_SCHEM Schema name of the referencing table

7 String FKTABLE_NAME Table name of the referencing table

8 String FKCOLUMN_NAME Column name of foreign key

9 short KEY_SEQ Sequence number of foreign key

10 short UPDATE_RULE Operation that is applied to foreign keys when the primary
key is updated
• importedKeyNoAction: The primary key cannot

be updated. However, if referential constraint check
suppression (DISABLE) is specified in the referential
constraint definition in the CREATE TABLE statement,
the primary key can be updated.

11 short DELETE_RULE Operation that is applied to foreign keys when the primary
key is deleted
• importedKeyNoAction: The primary key cannot

be deleted. However, if referential constraint check
suppression (DISABLE) is specified in the referential
constraint definition in the CREATE TABLE statement,
the primary key can be deleted.

12 String FK_NAME Constraint name of referential constraints

13 String PK_NAME Index name of the primary key

14 short DEFERRABILITY Whether evaluation of constraints on the foreign key can be
postponed until the transaction is committed
• importedKeyNotDeferrable: Cannot be

postponed.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.35 getIndexInfo(String catalog, String schema, String table, boolean
unique, boolean approximate)

(1) Function
This method acquires information about indexes.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 534

The information about indexes that can be acquired depends on the privileges of the HADB user who executes this
method. For details about the privileges and the index information that can be acquired, see the topic Scope of information
in dictionary tables and system tables that can be referenced by HADB users in the HADB Setup and Operation Guide.

(2) Format
public synchronized ResultSet getIndexInfo(String catalog, String schema, String tabl
e, boolean unique, boolean approximate) throws SQLException

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schema
Specifies a schema name pattern#. This value is case sensitive.

String table
Specifies a table name pattern#. This value is case sensitive.

boolean unique
Specifies the unique attribute. Specify one of the following values:
true: Acquires information for unique indexes only.
false: Acquires all index information.

boolean approximate
You do not need to specify this value. If specified, the specification is ignored.

#
For details about the special characters that can be specified in each pattern, see (4) Special characters that can be
specified in pattern character strings in 8.6.1 List of the methods in the DatabaseMetaData interface.

(4) Return value
The method returns a ResultSet object.

The following table shows the format of the ResultSet object that is returned.

Table 8-54: Format of the ResultSet object that is returned (getIndexInfo method)

Column No. Type Column name Description

1 String TABLE_CAT Catalog name.
The method always returns a null character string.

2 String TABLE_SCHEM Schema name

3 String TABLE_NAME Table name

4 boolean NON_UNIQUE If the key values for which the index is defined (total value
of one or multiple columns defined as the index) are
different in every row, the method returns false;
otherwise, the method returns true.

5 String INDEX_QUALIFIER Index's catalog name.
The method always returns a null character string.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 535

Column No. Type Column name Description

6 String INDEX_NAME Index identifier

7 short TYPE Index type.
The method always returns
DatabaseMetaData.tableIndexOther.

8 short ORDINAL_POSITION The null value is always returned.

9 String COLUMN_NAME The method always returns a null character string.

10 String ASC_OR_DESC The method always returns a null character string.

11 int CARDINALITY Number of unique values in the index.
The null value is always returned.

12 int PAGES Number of pages used for the index.
The null value is always returned.

13 String FILTER_CONDITION Filter condition.
The method always returns a null character string.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.36 getJDBCMajorVersion()

(1) Function
This method acquires the driver's JDBC major version.

(2) Format
public synchronized int getJDBCMajorVersion() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the JDBC major version. A value of 4 is returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 536

8.6.37 getJDBCMinorVersion()

(1) Function
This method acquires the driver's JDBC minor version.

(2) Format
public synchronized int getJDBCMinorVersion() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the JDBC minor version.

If the JDBC driver is for JRE 8, 2 is returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.38 getMaxBinaryLiteralLength()

(1) Function
This method acquires the maximum number of hexadecimal characters that can be used in a binary literal.

(2) Format
public synchronized int getMaxBinaryLiteralLength() throws SQLException

(3) Arguments
None.

(4) Return value
The method always returns 64000.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 537

8.6.39 getMaxCatalogNameLength()

(1) Function
This method acquires the maximum length of a catalog name (number of characters).

(2) Format
public synchronized int getMaxCatalogNameLength() throws SQLException

(3) Arguments
None.

(4) Return value
The method always returns 0.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.40 getMaxCharLiteralLength()

(1) Function
This method acquires the maximum length of an item of character string data (number of characters).

(2) Format
public synchronized int getMaxCharLiteralLength() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum number of characters permitted for character string data. A value of 32000 is always
returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 538

8.6.41 getMaxColumnNameLength()

(1) Function
This method acquires the maximum length of a column name (number of characters).

(2) Format
public synchronized int getMaxColumnNameLength() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum number of characters permitted for a column name. A value of 100 is always returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.42 getMaxColumnsInGroupBy()

(1) Function
This method acquires the maximum number of grouping columns that can be specified in the GROUP BY clause.

(2) Format
public synchronized int getMaxColumnsInGroupBy() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum number of grouping columns that can be specified in the GROUP BY clause. A value
of 64 is always returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 539

8.6.43 getMaxColumnsInIndex()

(1) Function
This method acquires the maximum number of columns that can comprise an index.

(2) Format
public synchronized int getMaxColumnsInIndex() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum number of columns that can comprise an index. A value of 16 is always returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.44 getMaxColumnsInOrderBy()

(1) Function
This method acquires the maximum number of columns that can be specified in an ORDER BY clause.

(2) Format
public synchronized int getMaxColumnsInOrderBy() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum number of columns permitted in an ORDER BY clause. A value of 16 is always
returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 540

8.6.45 getMaxColumnsInSelect()

(1) Function
This method acquires the maximum number of selection expressions that can be specified in a selection list.

(2) Format
public synchronized int getMaxColumnsInSelect() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum number of selection expressions permitted in a selection list. A value of 1000 is
always returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.46 getMaxColumnsInTable()

(1) Function
This method acquires the maximum number of columns that can be defined in a table.

(2) Format
public synchronized int getMaxColumnsInTable() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum number of columns that can be defined for a table. A value of 1000 is always returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 541

8.6.47 getMaxConnections()

(1) Function
This method acquires the maximum number of HADB clients that can connect concurrently to the HADB server.

(2) Format
public synchronized int getMaxConnections() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum number of HADB users that can connect concurrently to the HADB server.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.48 getMaxCursorNameLength()

(1) Function
This method acquires the maximum length of a cursor name (number of characters).

(2) Format
public synchronized int getMaxCursorNameLength() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum number of characters permitted for a cursor name. The method always returns 0.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 542

8.6.49 getMaxIndexLength()

(1) Function
This method acquires the maximum length of an index key.

(2) Format
public synchronized int getMaxIndexLength() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum length of an index key. A value of 4036 is always returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.50 getMaxLogicalLobSize()

(1) Function
This method acquires the maximum number of bytes this database allows as the logical size for a LOB.

(2) Format
public synchronized long getMaxLogicalLobSize() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns 0.

(5) Exceptions
If the Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 543

8.6.51 getMaxProcedureNameLength()

(1) Function
This method acquires the maximum length of a procedure name (number of characters).

(2) Format
public synchronized int getMaxProcedureNameLength() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum number of characters permitted for a procedure name. The method always returns 0.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.52 getMaxRowSize()

(1) Function
This method acquires the maximum length of a row (in bytes).

(2) Format
public synchronized int getMaxRowSize() throws SQLException

(3) Arguments
None.

(4) Return value
The method always returns 0.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 544

8.6.53 getMaxSchemaNameLength()

(1) Function
This method acquires the maximum length of a schema name (number of characters).

(2) Format
public synchronized int getMaxSchemaNameLength() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum number of characters permitted for a schema name. A value of 100 is always returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.54 getMaxStatementLength()

(1) Function
This method acquires the maximum length of a character string that can be specified as an SQL statement.

(2) Format
public synchronized int getMaxStatementLength() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum length of a character string that can be specified as an SQL statement. A value of
16000000 (in characters) is always returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 545

8.6.55 getMaxStatements()

(1) Function
This method acquires the maximum number of SQL statements that can be executed concurrently.

The method acquires the maximum number of Statement objects that can be created by a single Connection
object.

(2) Format
public synchronized int getMaxStatements() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum number of SQL statements that can be executed concurrently. A value of 4095 is
always returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.56 getMaxTableNameLength()

(1) Function
This method acquires the maximum length of a table name (number of characters).

(2) Format
public synchronized int getMaxTableNameLength() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum number of characters permitted for a table name. A value of 100 is always returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 546

8.6.57 getMaxTablesInSelect()

(1) Function
This method acquires the maximum number of tables that can be specified in a SELECT statement.

(2) Format
public synchronized int getMaxTablesInSelect() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum number of tables that can be specified in a SELECT statement. A value of 64 is
always returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.58 getMaxUserNameLength()

(1) Function
This method acquires the maximum length of an authorization identifier (number of characters).

(2) Format
public synchronized int getMaxUserNameLength() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the maximum number of characters permitted for an authorization identifier. A value of 100 is
always returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 547

8.6.59 getNumericFunctions()

(1) Function
This method acquires a list of the available mathematical functions (delimited by the comma).

(2) Format
public synchronized String getNumericFunctions() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns a String object.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.60 getPrimaryKeys(String catalog, String schema, String table)

(1) Function
This method acquires information about a specified table's primary key columns.

The information about primary keys that can be acquired depends on the privileges of the HADB user who executes
this method. For details about the privileges and the primary key information that can be acquired, see the topic Scope
of information in dictionary tables and system tables that can be referenced by HADB users in the HADB Setup and
Operation Guide.

(2) Format
public synchronized ResultSet getPrimaryKeys(String catalog, String schema, String ta
ble) throws SQLException

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schema
Specifies a schema name pattern#.

String table
Specifies a table name pattern#.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 548

#
For details about the special characters that can be specified in each pattern, see (4) Special characters that can be
specified in pattern character strings in 8.6.1 List of the methods in the DatabaseMetaData interface.

(4) Return value
This method returns a ResultSet object. The following table shows the format of the ResultSet object that is
returned.

Table 8-55: Format of the ResultSet object that is returned (getPrimaryKeys method)

Column No. Type Column name Description

1 String TABLE_CAT Catalog name
The method always returns a null character string.

2 String TABLE_SCHEM Schema name

3 String TABLE_NAME Table name

4 String COLUMN_NAME Column name

5 short KEY_SEQ Column's order number within the primary key

6 String PK_NAME Primary key name

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.61 getProcedureColumns(String catalog, String schemaPattern,
String procedureNamePattern, String columnNamePattern)

(1) Function
This method acquires information about stored procedure parameters.

(2) Format
public synchronized ResultSet getProcedureColumns(String catalog, String schemaPatter
n, String procedureNamePattern, String columnNamePattern) throws SQLException

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schemaPattern
Specifies a schema name pattern. This argument is ignored, if specified.

String procedureNamePattern
Specifies a procedure name pattern. This argument is ignored, if specified.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 549

String columnNamePattern
Specifies a parameter name pattern. This argument is ignored, if specified.

(4) Return value
This method always returns a ResultSet object that contains no retrieval result rows. The following table shows the
format of the ResultSet object that is returned.

Table 8-56: Format of the ResultSet object that is returned (getProcedureColumns method)

Column No. Type Column name Description

1 String PROCEDURE_CAT Catalog name

2 String PROCEDURE_SCHEM Schema name

3 String PROCEDURE_NAME Procedure name

4 String COLUMN_NAME Parameter name

5 short COLUMN_TYPE Parameter type

6 int DATA_TYPE Parameter's SQL type

7 String TYPE_NAME Parameter's SQL type name

8 int PRECISION Parameter's precision

9 int LENGTH Parameter size

10 short SCALE Parameter scaling

11 short RADIX Radix of parameter

12 short NULLABLE Whether the null value can be used

13 String REMARKS Comment related to the parameter

14 String COLUMN_DEF Column's default value

15 int SQL_DATA_TYPE Reserved for future use

16 int SQL_DATETIME_SUB Reserved for future use

17 int CHAR_OCTET_LENGTH Maximum length of a binary or character-based parameter
or column

18 int ORDINAL_POSITION Order of input and output parameters (beginning with 1)

19 String IS_NULLABLE Whether the null value is permitted in the parameter or
column

20 String SPECIFIC_NAME Name that uniquely identifies this procedure

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 550

8.6.62 getProcedures(String catalog, String schemaPattern, String
procedureNamePattern)

(1) Function
This method acquires information about stored procedures.

(2) Format
public synchronized ResultSet getProcedures(String catalog, String schemaPattern, Str
ing procedureNamePattern) throws SQLException

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schemaPattern
Specifies a schema name pattern. This argument is ignored, if specified.

String procedureNamePattern
Specifies a procedure name pattern. This argument is ignored, if specified.

(4) Return value
This method always returns a ResultSet object that contains no retrieval result rows. The following table shows the
format of the ResultSet object that is returned.

Table 8-57: Format of the ResultSet object that is returned (getProcedures method)

Column No. Type Column name Description

1 String PROCEDURE_CAT Catalog name

2 String PROCEDURE_SCHEM Schema name

3 String PROCEDURE_NAME Procedure name

4 String RESERVE1 Reserved for future use

5 String RESERVE2 Reserved for future use

6 String RESERVE3 Reserved for future use

7 String REMARKS Description of procedure

8 short PROCEDURE_TYPE Procedure type

9 String SPECIFIC_NAME Name that uniquely identifies this procedure

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 551

8.6.63 getProcedureTerm()

(1) Function
This method acquires a word recommended for procedure.

(2) Format
public synchronized String getProcedureTerm() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns a null character string.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.64 getPseudoColumns(String catalog,String schemaPattern,String
tableNamePattern,String columnNamePattern)

(1) Function
This method acquires a description of the pseudo or hidden columns in a particular table within the specified catalog
and schema. This method ignores all arguments and always returns an empty result set.

(2) Format
public synchronized ResultSet getPseudoColumns(String catalog,String schemaPattern,St
ring tableNamePattern,String columnNamePattern) throws SQLException

(3) Arguments
String catalog:

Specifies the catalog name. However, any value you specify is ignored.

String schemaPattern:
Specifies a schema name pattern. However, any value you specify is ignored.

String tableNamePattern:
Specifies a table name pattern. However, any value you specify is ignored.

String columnNamePattern:
Specifies a column name pattern. However, any value you specify is ignored.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 552

(4) Return value
This method always returns a ResultSet object that contains no retrieval result rows. The following table lists the
format of the returned ResultSet object.

Table 8-58: Format of returned ResultSet object (getPseudoColumns method)

Column No. Data type Column name Description

1 String TABLE_CAT Catalog name

2 String TABLE_SCHEM Schema name

3 String TABLE_NAME Table name

4 String COLUMN_NAME Column name

5 int DATA_TYPE SQL type from java.sql.Types

6 int COLUMN_SIZE Column size

7 int DECIMAL_DIGITS Number of decimal places

8 int NUM_PREC_RADIX Radix value

9 String COLUMN_USAGE Usage permitted for the column

10 String REMARKS Comment column

11 int CHAR_OCTET_LENGTH Maximum length (in bytes) of char type column

12 String IS_NULLABLE Whether a null value can be used

(5) Exceptions
If the Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.65 getResultSetHoldability()

(1) Function
This method acquires the holdability of the ResultSet object.

(2) Format
public synchronized int getResultSetHoldability() throws SQLException

(3) Arguments
None.

(4) Return value
The method always returns ResultSet.HOLD_CURSORS_OVER_COMMIT.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 553

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.66 getRowIdLifetime()

(1) Function
This method indicates whether the RowId type is supported. If the RowId type is supported, the method also indicates
the period during which the RowId object is valid.

(2) Format
public synchronized RowIdLifetime getRowIdLifetime() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns RowIdLifetime. ROWID_UNSUPPORTED.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.67 getSchemas()

(1) Function
This method acquires schema names.

The information about schemas that can be acquired depends on the privileges of the HADB user who executes this
method. For details about the privileges and the schema information that can be acquired, see the topic Scope of
information in dictionary tables and system tables that can be referenced by HADB users in the HADB Setup and
Operation Guide.

(2) Format
public synchronized ResultSet getSchemas() throws SQLException

(3) Arguments
None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 554

(4) Return value
The method returns a ResultSet object. The following table shows the format of the ResultSet object that is
returned.

Table 8-59: Format of the ResultSet object that is returned (getSchemas method)

Column No. Type Column name Description

1 String TABLE_SCHEM Schema name

2 String TABLE_CATALOG The method always returns a null character string.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.68 getSchemas(String catalog, String schemaPattern)

(1) Function
This method acquires schema names.

The information about schemas that can be acquired depends on the privileges of the HADB user who executes this
method. For details about the privileges and the schema information that can be acquired, see the topic Scope of
information in dictionary tables and system tables that can be referenced by HADB users in the HADB Setup and
Operation Guide.

(2) Format
public synchronized ResultSet getSchemas(String catalog, String schemaPattern) throws
 SQLException

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schemaPattern
Specifies a schema name pattern. This argument is case sensitive.
For details about the special characters that can be specified in the pattern, see (4) Special characters that can be
specified in pattern character strings in 8.6.1 List of the methods in the DatabaseMetaData interface.

(4) Return value
This method returns a ResultSet object.

The following table shows the format of the ResultSet object that is returned.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 555

Table 8-60: Format of the ResultSet object that is returned

Column No. Type Column name Description

1 String TABLE_SCHEM Schema name

2 String TABLE_CATALOG The method always returns a null character string.

8.6.69 getSchemaTerm()

(1) Function
This method acquires a word recommended for schema.

(2) Format
public synchronized String getSchemaTerm() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns a String object.

"schema" is returned.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.70 getSearchStringEscape()

(1) Function
This method acquires the character string used as the escape sequence for wildcard characters.

Execute this method to acquire the character string used to escape wildcard characters specified in arguments that specify
pattern character strings in methods of the DatabaseMetaData interface that acquire list information such as table
and column lists.

(2) Format
public synchronized String getSearchStringEscape() throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 556

(3) Arguments
None.

(4) Return value
This method always returns \.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.71 getSQLKeywords()

(1) Function
This method acquires a list (delimited by the comma) of all database-specific SQL keywords that are not SQL:2003
keywords.

(2) Format
public synchronized String getSQLKeywords() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns a String object.

For details about the reserved words, see the topic Reserved words in the manual HADB SQL Reference.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

(6) Notes
The reserved words returned by this method include reserved words that have been unregistered.

8.6.72 getSQLStateType()

(1) Function
This method acquires a value indicating whether SQLSTATE returned by the getSQLState method of the
SQLException class is an X/Open (currently Open Group) SQL CLI or SQL:2003.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 557

(2) Format
public synchronized int getSQLStateType() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns sqlStateSQL.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.73 getStringFunctions()

(1) Function
This method acquires a list of string functions (delimited by the comma).

(2) Format
public synchronized String getStringFunctions() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns a String object.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.74 getSuperTables(String catalog, String schemaPattern, String
tableNamePattern)

(1) Function
This method acquires information about table hierarchies defined in a specific schema.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 558

(2) Format
public synchronized ResultSet getSuperTables(String catalog, String schemaPattern, St
ring tableNamePattern) throws SQLException

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schemaPattern
Specifies a schema name pattern. This argument is ignored, if specified.

String tableNamePattern
Specifies a table name pattern. This argument is ignored, if specified.

(4) Return value
This method always returns a ResultSet object that contains no retrieval result rows. The following table shows the
format of the ResultSet object that is returned.

Table 8-61: Format of the ResultSet object that is returned (getSuperTables method)

Column No. Type Column name Description

1 String TABLE_CAT Catalog name

2 String TABLE_SCHEM Schema name

3 String TABLE_NAME Type name

4 String SUPERTABLE_NAME Super type name

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.75 getSuperTypes(String catalog, String schemaPattern, String
typeNamePattern)

(1) Function
This method acquires information about the hierarchy of the user-defined types (UDTs) that are defined in a specific
schema.

(2) Format
public synchronized ResultSet getSuperTypes(String catalog, String schemaPattern, Str
ing typeNamePattern) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 559

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schemaPattern
Specifies a schema name pattern. This argument is ignored, if specified.

String typeNamePattern
Specifies a UDT (user-defined-type) name pattern. This argument is ignored, if specified.

(4) Return value
This method always returns a ResultSet object that contains no retrieval result rows. The following table shows the
format of the ResultSet object that is returned.

Table 8-62: Format of the ResultSet object that is returned (getSuperTypes method)

Column No. Type Column name Description

1 String TABLE_CAT UDT's catalog name

2 String TABLE_SCHEM UDT's schema name

3 String TABLE_NAME UDT's type name

4 String SUPERTYPE_CAT Catalog name of the direct super type

5 String SUPERTYPE_SCHEM Schema name of the direct super type

6 String SUPERTYPE_NAME Super type name of the direct super type

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.76 getSystemFunctions()

(1) Function
This method acquires the available system functions (delimited by the comma).

(2) Format
public synchronized String getSystemFunctions() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns a String object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 560

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.77 getTablePrivileges(String catalog, String schemaPattern, String
tableNamePattern)

(1) Function
This method acquires information about access privileges for a table.

The information about access privileges that can be acquired depends on the privileges of the HADB user who executes
this method. For details about the relationship between the privileges and the table information that can be acquired,
see the topic Scope of information in dictionary tables and system tables that can be referenced by HADB users in the
HADB Setup and Operation Guide.

(2) Format
public synchronized ResultSet getTablePrivileges(String catalog, String schemaPattern
, String tableNamePattern) throws SQLException

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schemaPattern
Specifies a schema name pattern#.

String tableNamePattern
Specifies a table name pattern#.

#
For details about the special characters that can be specified in each pattern, see (4) Special characters that can be
specified in pattern character strings in 8.6.1 List of the methods in the DatabaseMetaData interface.

(4) Return value
The following table shows the format of the ResultSet object that is returned.

Table 8-63: Format of the ResultSet object that is returned (getTablePrivileges method)

Column No. Type Column name Description

1 String TABLE_CAT Catalog name.
The method always returns a null character string.

2 String TABLE_SCHEM Schema name

3 String TABLE_NAME Table name

4 String GRANTOR User who grants access privilege

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 561

Column No. Type Column name Description

5 String GRANTEE User who receives access privilege

6 String PRIVILEGE Permitted access privilege name:
• "SELECT": SELECT privilege
• "INSERT": INSERT privilege
• "UPDATE": UPDATE privilege
• "DELETE": DELETE privilege
• "TRUNCATE": TRUNCATE privilege
• "REFERENCES": REFERENCES privilege
• "IMPORT TABLE": IMPORT TABLE privilege
• "REBUILD INDEX": REBUILD INDEX privilege
• "GET COSTINFO": GET COSTINFO privilege
• "EXPORT TABLE": EXPORT TABLE privilege
• "MERGE CHUNK": MERGE CHUNK privilege
• "CHANGE CHUNK COMMENT": CHANGE CHUNK
COMMENT privilege

• "CHANGE CHUNK STATUS": CHANGE CHUNK
STATUS privilege

• "ARCHIVE CHUNK": ARCHIVE CHUNK privilege
• "UNARCHIVE CHUNK": UNARCHIVE CHUNK

privilege

7 String IS_GRANTABLE Whether a user who has received an access privilege can
grant access privileges to other HADB users
• YES: Access privileges can be granted to other HADB

users.
• NO: Access privileges cannot be granted to other HADB

users.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.78 getTables(String catalog, String schemaPattern, String
tableNamePattern, String[] types)

(1) Function
This method acquires information about tables.

The information about tables that can be acquired depends on the privileges of the HADB user who executes this method.
For details about the privileges and the table information that can be acquired, see the topic Scope of information in
dictionary tables and system tables that can be referenced by HADB users in the HADB Setup and Operation Guide.

(2) Format
public synchronized ResultSet getTables(String catalog, String schemaPattern, String
tableNamePattern, String[] types) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 562

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schemaPattern
Specifies a schema name pattern#. This value is case sensitive.

String tableNamePattern
Specifies a table name pattern#. This value is case sensitive.

String[] types
Specifies a list of table types. Specify table types returned by the getTableTypes method. This value is case
sensitive.
If null is specified, the method assumes that the types of all tables were specified.

#
For details about the special characters that can be specified in each pattern, see (4) Special characters that can be
specified in pattern character strings in 8.6.1 List of the methods in the DatabaseMetaData interface.

(4) Return value
The method returns a ResultSet object. The following table shows the format of the ResultSet object that is
returned.

Table 8-64: Format of the ResultSet object that is returned (getTables method)

Column No. Type Column name Description

1 String TABLE_CAT The method always returns a null character string.

2 String TABLE_SCHEM Schema name

3 String TABLE_NAME Table name

4 String TABLE_TYPE Table type:
• TABLE: Base table
• VIEW: Viewed table
• SYSTEM TABLE: Dictionary table or system table

5 String REMARKS The method always returns a null character string.

6 String TYPE_CAT The method always returns a null character string..

7 String TYPE_SCHEM The method always returns a null character string..

8 String TYPE_NAME The method always returns a null character string..

9 String SELF_REFERENCING_COL_NAM
E

The method always returns a null character string..

10 String REF_GENERATION The method always returns a null character string..

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• The Connection object is closed before this method is executed.

• At least one element in the String[] types argument is null.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 563

• At least one element in the String[] types argument is not one of the following character strings:
"TABLE","VIEW", "SYSTEM TABLE"

8.6.79 getTableTypes()

(1) Function
This method acquires the table types.

(2) Format
public synchronized ResultSet getTableTypes() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns a ResultSet object. The following table shows the format of the ResultSet object that is
returned.

Table 8-65: Format of the ResultSet object that is returned (getTableTypes method)

Column No. Type Column name Description

1 String TABLE_TYPE Table type:
• TABLE: Base table
• VIEW: Viewed table
• SYSTEM TABLE: Dictionary table or system table

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.80 getTimeDateFunctions()

(1) Function
This method acquires a list of the available time and date functions (delimited by the comma).

(2) Format
public synchronized String getTimeDateFunctions() throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 564

(3) Arguments
None.

(4) Return value
The method returns a String object.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.81 getTypeInfo()

(1) Function
This method acquires information about the default SQL types.

(2) Format
public synchronized ResultSet getTypeInfo() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns a ResultSet object. The following table shows the format of the ResultSet object that is
returned.

Table 8-66: Format of the ResultSet object that is returned (getTypeInfo method)

Column No. Type Column name Description

1 String TYPE_NAME Type name

2 short DATA_TYPE SQL data type of java.sql.Types

3 int PRECISION Maximum precision

4 String LITERAL_PREFIX Prefix used to quote literals

5 String LITERAL_SUFFIX Suffix used to quote literals

6 String CREATE_PARAMS Parameter used to create types

7 short NULLABLE Whether the null value is permitted for this type.
The method always returns typeNullableUnknown.

8 boolean CASE_SENSITIVE Whether the value is case sensitive:
• true: Character string data types
• false: Other data types

9 short SEARCHABLE Whether WHERE can be used for this type.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 565

Column No. Type Column name Description

The method always returns typeSearchable.

10 boolean UNSIGNED_ATTRIBUTE Whether the attribute is unsigned.
The method returns false for numeric data (because it is
signed) and true for other data types (because they are
unsigned).

11 boolean FIXED_PREC_SCALE Whether this can be a currency value.
The method always returns false.

12 boolean AUTO_INCREMENT Whether this can be used as an automatic increment value.
The method always returns false.

13 String LOCAL_TYPE_NAME The type name's localized version.
The method returns the same value as the type name.

14 short MINIMUM_SCALE Supported minimum scale

15 short MAXIMUM_SCALE Supported maximum scale

16 int SQL_DATA_TYPE The null value is always returned.

17 int SQL_DATETIME_SUB The null value is always returned.

18 int NUM_PREC_RADIX 10 for numeric data, 0 for all other data.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.82 getUDTs(String catalog, String schemaPattern, String
typeNamePattern, int[] types)

(1) Function
This method acquires information about the user-defined types (UDTs).

(2) Format
public synchronized ResultSet getUDTs(String catalog, String schemaPattern, String ty
peNamePattern, int[] types) throws SQLException

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schemaPattern
Specifies a schema name pattern. This value is case sensitive.

String tableNamePattern
Specifies a table name pattern. This value is case sensitive.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 566

int[] types
Specifies a list of the user-defined types. This value is case sensitive.

(4) Return value
This method always returns a ResultSet object that contains no retrieval result rows. The following table shows the
format of the ResultSet object that is returned.

Table 8-67: Format of the ResultSet object that is returned (getUDTs method)

Column No. Type Column name Description

1 String TYPE_CAT Catalog name

2 String TYPE_SCHEM Schema name

3 String TYPE_NAME Type name

4 String CLASS_NAME Java class name

5 int DATA_TYPE Type value defined by java.sql.Types

6 String REMARKS Description of the type

7 short BASE_TYPE Type code of DISTINCT-type source or type code of an
implementation of the SELF_REFERENCING_COLUMN
user-defined reference type of a structure type defined by
java.sql.Types

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.83 getURL()

(1) Function
This method acquires the URL that specifies information about the HADB server at the connection destination.

(2) Format
public synchronized String getURL() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns a String object.

If there is no URL that specifies information about the connection destination, the method returns null.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 567

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.84 getUserName()

(1) Function
This method acquires the authorization identifier used to connect to the HADB server.

(2) Format
public synchronized String getUserName() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns a String object.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.85 getVersionColumns(String catalog, String schema, String table)

(1) Function
This method acquires information about the table columns that are updated automatically when rows in the table are
modified.

(2) Format
public synchronized ResultSet getVersionColumns(String catalog, String schema, String
 table) throws SQLException

(3) Arguments
String catalog

Specifies a catalog name. This argument is ignored, if specified.

String schema
Specifies a schema name. This value is case sensitive.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 568

String table
Specifies a table name. This value is case sensitive.

(4) Return value
This method always returns a ResultSet object that contains no retrieval result rows. The following table shows the
format of the ResultSet object that is returned.

Table 8-68: Format of the ResultSet object that is returned (getVersionColumns method)

Column No. Type Column name Description

1 short SCOPE Not used

2 String COLUMN_NAME Column name

3 int DATA_TYPE SQL type

4 String TYPE_NAME Type name

5 int COLUMN_SIZE Precision

6 int BUFFER_LENGTH Length of column value (in bytes)

7 short DECIMAL_DIGITS Decimal places

8 short PSEUDO_COLUMN Whether this is a pseudo column

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.86 insertsAreDetected(int type)

(1) Function
This method acquires a value indicating whether insertion of a visible row can be detected by calling the rowInserted
method of the ResultSet class.

(2) Format
public synchronized boolean insertsAreDetected(int type) throws SQLException

(3) Arguments
int type

Specifies one of the following result set types:

• ResultSet.TYPE_FORWARD_ONLY
• ResultSet.TYPE_SCROLL_INSENSITIVE
• ResultSet.TYPE_SCROLL_SENSITIVE

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 569

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.87 isCatalogAtStart()

(1) Function
This method acquires a value indicating whether a catalog appears as the leading (or trailing) part of a fully qualified
table name.

(2) Format
public synchronized boolean isCatalogAtStart() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.88 isReadOnly()

(1) Function
This method acquires a value indicating whether the database is in the read-only mode.

(2) Format
public synchronized boolean isReadOnly() throws SQLException

(3) Arguments
None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 570

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.89 locatorsUpdateCopy()

(1) Function
This method acquires a value indicating whether a change was made to a copy of a LOB or directly to the LOB.

(2) Format
public synchronized boolean locatorsUpdateCopy() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.90 nullPlusNonNullIsNull()

(1) Function
This method acquires a value indicating whether a join of a null value and a non-null value is treated as being a null
value.

(2) Format
public synchronized boolean nullPlusNonNullIsNull() throws SQLException

(3) Arguments
None.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 571

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.91 nullsAreSortedAtEnd()

(1) Function
This method acquires a value indicating whether null values are sorted at the end regardless of the sort order.

(2) Format
public synchronized boolean nullsAreSortedAtEnd() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.92 nullsAreSortedAtStart()

(1) Function
This method acquires a value indicating whether null values are sorted at the start regardless of the sort order.

(2) Format
public synchronized boolean nullsAreSortedAtStart() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 572

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.93 nullsAreSortedHigh()

(1) Function
This method acquires a value indicating whether null values are sorted high.

(2) Format
public synchronized boolean nullsAreSortedHigh() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.94 nullsAreSortedLow()

(1) Function
This method acquires a value indicating whether null values are sorted in descending order.

(2) Format
public synchronized boolean nullsAreSortedLow() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 573

8.6.95 othersDeletesAreVisible(int type)

(1) Function
This method acquires a value indicating whether a deletion performed externally is visible.

(2) Format
public synchronized boolean othersDeletesAreVisible(int type) throws SQLException

(3) Arguments
int type

Specifies one of the following result set types:

• ResultSet.TYPE_FORWARD_ONLY
• ResultSet.TYPE_SCROLL_INSENSITIVE
• ResultSet.TYPE_SCROLL_SENSITIVE

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.96 othersInsertsAreVisible(int type)

(1) Function
This method acquires a value indicating whether an insertion performed externally is visible.

(2) Format
public synchronized boolean othersInsertsAreVisible(int type) throws SQLException

(3) Arguments
int type

Specifies one of the following result set types:

• ResultSet.TYPE_FORWARD_ONLY
• ResultSet.TYPE_SCROLL_INSENSITIVE
• ResultSet.TYPE_SCROLL_SENSITIVE

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 574

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.97 othersUpdatesAreVisible(int type)

(1) Function
This method acquires a value indicating whether an updating performed externally is visible.

(2) Format
public synchronized boolean othersUpdatesAreVisible(int type) throws SQLException

(3) Arguments
int type

Specifies one of the following result set types:

• ResultSet.TYPE_FORWARD_ONLY
• ResultSet.TYPE_SCROLL_INSENSITIVE
• ResultSet.TYPE_SCROLL_SENSITIVE

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.98 ownDeletesAreVisible(int type)

(1) Function
This method acquires a value indicating whether a deletion of a result set itself is visible.

(2) Format
public synchronized boolean ownDeletesAreVisible(int type) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 575

(3) Arguments
int type

Specifies one of the following result set types:

• ResultSet.TYPE_FORWARD_ONLY
• ResultSet.TYPE_SCROLL_INSENSITIVE
• ResultSet.TYPE_SCROLL_SENSITIVE

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.99 ownInsertsAreVisible(int type)

(1) Function
This method acquires a value indicating whether an insertion of a result set itself is visible.

(2) Format
public synchronized boolean ownInsertsAreVisible(int type) throws SQLException

(3) Arguments
int type

Specifies one of the following result set types:

• ResultSet.TYPE_FORWARD_ONLY
• ResultSet.TYPE_SCROLL_INSENSITIVE
• ResultSet.TYPE_SCROLL_SENSITIVE

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 576

8.6.100 ownUpdatesAreVisible(int type)

(1) Function
This method acquires a value indicating whether an updating of a result set itself is visible.

(2) Format
public synchronized boolean ownUpdatesAreVisible(int type) throws SQLException

(3) Arguments
int type

Specifies one of the following result set types:

• ResultSet.TYPE_FORWARD_ONLY
• ResultSet.TYPE_SCROLL_INSENSITIVE
• ResultSet.TYPE_SCROLL_SENSITIVE

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.101 storesLowerCaseIdentifiers()

(1) Function
This method acquires a value indicating whether an SQL identifier containing uppercase and lowercase letters that is
not enclosed in double quotation marks is processed as being not case sensitive, and then the results are stored in all
lowercase letters.

(2) Format
public synchronized boolean storesLowerCaseIdentifiers() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 577

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.102 storesLowerCaseQuotedIdentifiers()

(1) Function
This method acquires a value indicating whether an SQL identifier containing uppercase and lowercase letters that is
enclosed in double quotation marks is processed as being not case sensitive, and then the results are stored in all lowercase
letters.

(2) Format
public synchronized boolean storesLowerCaseQuotedIdentifiers() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.103 storesMixedCaseIdentifiers()

(1) Function
This method acquires a value indicating whether an SQL identifier containing uppercase and lowercase letters that is
not enclosed in double quotation marks is processed as being not case sensitive, and then the results are stored in
uppercase and lowercase letters.

(2) Format
public synchronized boolean storesMixedCaseIdentifiers() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 578

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.104 storesMixedCaseQuotedIdentifiers()

(1) Function
This method acquires a value indicating whether an SQL identifier containing uppercase and lowercase letters that is
enclosed in double quotation marks is processed as being not case sensitive, and then the results are stored in uppercase
and lowercase letters.

(2) Format
public synchronized boolean storesMixedCaseQuotedIdentifiers() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.105 storesUpperCaseIdentifiers()

(1) Function
This method acquires a value indicating whether an SQL identifier containing uppercase and lowercase letters that is
not enclosed in double quotation marks is processed as being not case sensitive, and then the results are stored in all
uppercase letters.

(2) Format
public synchronized boolean storesUpperCaseIdentifiers() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 579

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.106 storesUpperCaseQuotedIdentifiers()

(1) Function
This method acquires a value indicating whether an SQL identifier containing uppercase and lowercase letters that is
enclosed in double quotation marks is processed as being not case sensitive, and then the results are stored in all uppercase
letters.

(2) Format
public synchronized boolean storesUpperCaseQuotedIdentifiers() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.107 supportsAlterTableWithAddColumn()

(1) Function
This method acquires a value indicating whether ALTER TABLE with added columns is supported.

(2) Format
public synchronized boolean supportsAlterTableWithAddColumn() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 580

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.108 supportsAlterTableWithDropColumn()

(1) Function
This method acquires a value indicating whether ALTER TABLE with dropped columns is supported.

(2) Format
public synchronized boolean supportsAlterTableWithDropColumn() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.109 supportsANSI92EntryLevelSQL()

(1) Function
This method acquires a value indicating whether the ANSI92 entry-level SQL grammar is supported.

(2) Format
public synchronized boolean supportsANSI92EntryLevelSQL() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 581

8.6.110 supportsANSI92FullSQL()

(1) Function
This method acquires a value indicating whether the ANSI92 full-level SQL grammar is supported.

(2) Format
public synchronized boolean supportsANSI92FullSQL() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.111 supportsANSI92IntermediateSQL()

(1) Function
This method acquires a value indicating whether the ANSI92 intermediate-level SQL grammar is supported.

(2) Format
public synchronized boolean supportsANSI92IntermediateSQL() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 582

8.6.112 supportsBatchUpdates()

(1) Function
This method acquires a value indicating whether batch updating is supported.

(2) Format
public synchronized boolean supportsBatchUpdates() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.113 supportsCatalogsInDataManipulation()

(1) Function
This method acquires a value indicating whether catalog names can be used in data manipulation statements.

(2) Format
public synchronized boolean supportsCatalogsInDataManipulation() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 583

8.6.114 supportsCatalogsInIndexDefinitions()

(1) Function
This method acquires a value indicating whether catalog names can be used in index definition statements.

(2) Format
public synchronized boolean supportsCatalogsInIndexDefinitions() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.115 supportsCatalogsInPrivilegeDefinitions()

(1) Function
This method acquires a value indicating whether catalog names can be used in definition statements for granting
privileges (GRANT statement) or revoking privileges (REVOKE statement).

(2) Format
public synchronized boolean supportsCatalogsInPrivilegeDefinitions() throws SQLExcept
ion

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 584

8.6.116 supportsCatalogsInProcedureCalls()

(1) Function
This method acquires a value indicating whether catalog names can be used in procedure call statements.

(2) Format
public synchronized boolean supportsCatalogsInProcedureCalls() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.117 supportsCatalogsInTableDefinitions()

(1) Function
This method acquires a value indicating whether catalog names can be used in table definition statements.

(2) Format
public synchronized boolean supportsCatalogsInTableDefinitions() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 585

8.6.118 supportsColumnAliasing()

(1) Function
This method acquires a value indicating whether aliases are supported for columns.

(2) Format
public synchronized boolean supportsColumnAliasing() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.119 supportsConvert()

(1) Function
This method acquires a value indicating whether the CONVERT function is supported for SQL types.

(2) Format
public synchronized boolean supportsConvert() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 586

8.6.120 supportsConvert(int fromType, int toType)

(1) Function
This method acquires a value indicating whether the CONVERT function is supported for specified SQL types.

(2) Format
public synchronized boolean supportsConvert(int fromType, int toType) throws SQLExcep
tion

(3) Arguments
int fromType

SQL type of the conversion source (an SQL type of java.sql.Types)

int toType
SQL type of the conversion target (an SQL type of java.sql.Types)

(4) Return value
The method returns one of the following values:

• true: Supported

• false: Not supported

The following table lists the return values depending on the combination of conversion source and target types.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 587

Table 8-69: Return values depending on the combination of conversion source and target types

Legend:
Y: Return value is true (supported).
J: Return value is true (supported as Julian date conversion).
--: Return value is false (not supported).

#1
There is no corresponding data type in HADB servers.

#2
For details about the corresponding data type on HADB servers, see (1) Correspondence between HADB's data
types and JDBC's SQL data types in 7.6.1 Mapping data types.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.121 supportsCoreSQLGrammar()

(1) Function
This method acquires a value indicating whether the ODBC Core SQL grammar is supported.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 588

(2) Format
public synchronized boolean supportsCoreSQLGrammar() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.122 supportsCorrelatedSubqueries()

(1) Function
This method acquires a value indicating whether subqueries that contain external reference columns are supported.

(2) Format
public synchronized boolean supportsCorrelatedSubqueries() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.123 supportsDataDefinitionAndDataManipulationTransactions()

(1) Function
This method acquires a value indicating whether data definition statements and data manipulation statements are both
supported in transactions.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 589

(2) Format
public synchronized boolean supportsDataDefinitionAndDataManipulationTransactions() t
hrows SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.124 supportsDataManipulationTransactionsOnly()

(1) Function
This method acquires a value indicating whether only data manipulation statements are supported in transactions.

(2) Format
public synchronized boolean supportsDataManipulationTransactionsOnly() throws SQLExce
ption

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.125 supportsDifferentTableCorrelationNames()

(1) Function
This method acquires a value indicating whether the table names must be different from the correlation names when
table correlation names are supported.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 590

(2) Format
public synchronized boolean supportsDifferentTableCorrelationNames() throws SQLExcept
ion

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.126 supportsExpressionsInOrderBy()

(1) Function
This method acquires a value indicating whether value expressions are supported in an ORDER BY list.

(2) Format
public synchronized boolean supportsExpressionsInOrderBy() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.127 supportsExtendedSQLGrammar()

(1) Function
This method acquires a value indicating whether the ODBC Extended SQL grammar is supported.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 591

(2) Format
public synchronized boolean supportsExtendedSQLGrammar() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.128 supportsFullOuterJoins()

(1) Function
This method acquires a value indicating whether nested full outer joins are supported.

(2) Format
public synchronized boolean supportsFullOuterJoins() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.129 supportsGetGeneratedKeys()

(1) Function
This method acquires a value indicating whether automatic generation keys can be acquired after statements have
executed.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 592

(2) Format
public synchronized boolean supportsGetGeneratedKeys() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.130 supportsGroupBy()

(1) Function
This method acquires a value indicating whether the GROUP BY clause form is supported.

(2) Format
public synchronized boolean supportsGroupBy() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.131 supportsGroupByBeyondSelect()

(1) Function
This method acquires a value indicating whether a column that is not in the SELECT statement can be used in the GROUP
BY clause, provided that all columns in the SELECT statement are included in the GROUP BY clause.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 593

(2) Format
public synchronized boolean supportsGroupByBeyondSelect() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.132 supportsGroupByUnrelated()

(1) Function
This method acquires a value indicating whether a column that is not in the SELECT statement can be used in the GROUP
BY clause.

(2) Format
public synchronized boolean supportsGroupByUnrelated() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.133 supportsIntegrityEnhancementFacility()

(1) Function
This method acquires a value indicating whether the SQL Integrity Enhancement Facility is supported.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 594

(2) Format
public synchronized boolean supportsIntegrityEnhancementFacility() throws SQLExceptio
n

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.134 supportsLikeEscapeClause()

(1) Function
This method acquires a value indicating whether the escape clause is supported in the LIKE predicate.

(2) Format
public synchronized boolean supportsLikeEscapeClause() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.135 supportsLimitedOuterJoins()

(1) Function
This method acquires a value indicating whether limited support is provided for outer joins.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 595

(2) Format
public synchronized boolean supportsLimitedOuterJoins() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.136 supportsMinimumSQLGrammar()

(1) Function
This method acquires a value indicating whether the ODBC Minimum SQL grammar is supported.

(2) Format
public synchronized boolean supportsMinimumSQLGrammar() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.137 supportsMixedCaseIdentifiers()

(1) Function
This method acquires a value indicating whether an SQL identifier containing uppercase and lowercase letters that is
not enclosed in double quotation marks is processed as being case sensitive, and then the results are stored in uppercase
and lowercase letters.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 596

(2) Format
public synchronized boolean supportsMixedCaseIdentifiers() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.138 supportsMixedCaseQuotedIdentifiers()

(1) Function
This method acquires a value indicating whether an SQL identifier containing uppercase and lowercase letters that is
enclosed in double quotation marks is processed as being case sensitive, and then the results are stored in uppercase and
lowercase letters.

(2) Format
public synchronized boolean supportsMixedCaseQuotedIdentifiers() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.139 supportsMultipleOpenResults()

(1) Function
This method acquires a value indicating whether it is possible to have multiple ResultSet objects that have been
returned by a CallableStatement object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 597

(2) Format
public synchronized boolean supportsMultipleOpenResults() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.140 supportsMultipleResultSets()

(1) Function
This method acquires a value indicating whether multiple ResultSet objects can be acquired from a single call of
the execute method.

(2) Format
public synchronized boolean supportsMultipleResultSets() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.141 supportsMultipleTransactions()

(1) Function
This method acquires a value indicating whether multiple transactions can be open at the same time (for different
connections).

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 598

(2) Format
public synchronized boolean supportsMultipleTransactions() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.142 supportsNamedParameters()

(1) Function
This method acquires a value indicating whether named parameters are supported for the CALL statement.

(2) Format
public synchronized boolean supportsNamedParameters() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.143 supportsNonNullableColumns()

(1) Function
This method acquires a value indicating whether columns can be defined as non-null columns.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 599

(2) Format
public synchronized boolean supportsNonNullableColumns() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.144 supportsOpenCursorsAcrossCommit()

(1) Function
This method acquires a value indicating whether the cursor can remain open between commit operations.

(2) Format
public synchronized boolean supportsOpenCursorsAcrossCommit() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.145 supportsOpenCursorsAcrossRollback()

(1) Function
This method acquires a value indicating whether the cursor can remain open between rollback operations.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 600

(2) Format
public synchronized boolean supportsOpenCursorsAcrossRollback() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.146 supportsOpenStatementsAcrossCommit()

(1) Function
This method acquires a value indicating whether the statement handle can remain open between commit operations.

(2) Format
public synchronized boolean supportsOpenStatementsAcrossCommit() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.147 supportsOpenStatementsAcrossRollback()

(1) Function
This method acquires a value indicating whether the statement handle can remain open between rollback operations.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 601

(2) Format
public synchronized boolean supportsOpenStatementsAcrossRollback() throws SQLExceptio
n

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.148 supportsOrderByUnrelated()

(1) Function
This method acquires a value indicating whether a column that is not in the SELECT statement can be used in the ORDER
BY clause.

(2) Format
public synchronized boolean supportsOrderByUnrelated() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.149 supportsOuterJoins()

(1) Function
This method acquires a value indicating whether some form of outer join is supported.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 602

(2) Format
public synchronized boolean supportsOuterJoins() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.150 supportsPositionedDelete()

(1) Function
This method acquires a value indicating whether positioned DELETE statements are supported.

(2) Format
public synchronized boolean supportsPositionedDelete() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.151 supportsPositionedUpdate()

(1) Function
This method acquires a value indicating whether positioned UPDATE statements are supported.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 603

(2) Format
public synchronized boolean supportsPositionedUpdate() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.152 supportsRefCursors()

(1) Function
This method acquires a value that indicates whether the database supports REF CURSOR.

(2) Format
public synchronized boolean supportsRefCursors() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If the Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.153 supportsResultSetConcurrency(int type, int concurrency)

(1) Function
This method acquires a value indicating whether the combination of a specified result set type and a specified concurrent
processing type is supported.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 604

(2) Format
public synchronized boolean supportsResultSetConcurrency(int type, int concurrency) t
hrows SQLException

(3) Arguments
int type

Specifies a result set type.

int concurrency
Specifies a concurrent processing type.

(4) Return value
boolean type:

The method returns one of the following values:
true: Supported
false: Not supported
If type is ResultSet.TYPE_FORWARD_ONLY or ResultSet.TYPE_SCROLL_INSENSITIVE and
concurrency is ResultSet.CONCUR_READ_ONLY, the method returns true; otherwise, the method returns
false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.154 supportsResultSetHoldability(int holdability)

(1) Function
This method acquires a value indicating whether holdability is supported for the specified ResultSet object.

(2) Format
public synchronized boolean supportsResultSetHoldability(int holdability) throws SQLE
xception

(3) Arguments
int holdability

Specifies one of the following values:

• ResultSet.HOLD_CURSORS_OVER_COMMIT
The ResultSet object is not closed when the Connection.commit method is called.

• ResultSet.CLOSE_CURSORS_AT_COMMIT
The ResultSet object is closed when the Connection.commit method is called.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 605

(4) Return value
boolean type:

true: Supported
false: Not supported
If ResultSet.HOLD_CURSORS_OVER_COMMIT is specified for holdability, the method returns true;
otherwise, the method returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.155 supportsResultSetType(int type)

(1) Function
This method acquires a value indicating whether a specified result set type is supported.

(2) Format
public synchronized boolean supportsResultSetType(int type) throws SQLException

(3) Arguments
int type

Specifies a result set type.

(4) Return value
boolean type:

The method returns one of the following values:
true: Supported
false: Not supported
If ResultSet.TYPE_FORWARD_ONLY or ResultSet.TYPE_SCROLL_INSENSITIVE is specified for
type, the method returns true; otherwise, the method returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.156 supportsSavepoints()

(1) Function
This method acquires a value indicating whether save points are supported.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 606

(2) Format
public synchronized boolean supportsSavepoints() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.157 supportsSchemasInDataManipulation()

(1) Function
This method acquires a value indicating whether schema names can be used in data manipulation statements.

(2) Format
public synchronized boolean supportsSchemasInDataManipulation() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.158 supportsSchemasInIndexDefinitions()

(1) Function
This method acquires a value indicating whether schema names can be used in index definition statements.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 607

(2) Format
public synchronized boolean supportsSchemasInIndexDefinitions() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.159 supportsSchemasInPrivilegeDefinitions()

(1) Function
This method acquires a value indicating whether schema names can be used in definition statements for granting
privileges (GRANT statement) or revoking privileges (REVOKE statement).

(2) Format
public synchronized boolean supportsSchemasInPrivilegeDefinitions() throws SQLExcepti
on

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.160 supportsSchemasInProcedureCalls()

(1) Function
This method acquires a value indicating whether schema names can be used in procedure call statements.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 608

(2) Format
public synchronized boolean supportsSchemasInProcedureCalls() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.161 supportsSchemasInTableDefinitions()

(1) Function
This method acquires a value indicating whether schema names can be used in table definition statements.

(2) Format
public synchronized boolean supportsSchemasInTableDefinitions() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.162 supportsSelectForUpdate()

(1) Function
This method acquires a value indicating whether SELECT FOR UPDATE statements are supported.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 609

(2) Format
public synchronized boolean supportsSelectForUpdate() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.163 supportsStatementPooling()

(1) Function
This method acquires a value indicating whether pooling of statement handles is supported.

(2) Format
public synchronized boolean supportsStatementPooling() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.164 supportsStoredFunctionsUsingCallSyntax()

(1) Function
This method acquires a value indicating whether user-defined functions or vendor functions that use a stored procedure
escape syntax are supported.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 610

(2) Format
public synchronized boolean supportsStoredFunctionsUsingCallSyntax() throws SQLExcept
ion

(3) Arguments
None.

(4) Return value
The method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.165 supportsStoredProcedures()

(1) Function
This method acquires a value indicating whether stored procedure calls that use a stored procedure escape syntax are
supported.

(2) Format
public synchronized boolean supportsStoredProcedures() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.166 supportsSubqueriesInComparisons()

(1) Function
This method acquires a value indicating whether subqueries are supported in comparison predicates.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 611

(2) Format
public synchronized boolean supportsSubqueriesInComparisons() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.167 supportsSubqueriesInExists()

(1) Function
This method acquires a value indicating whether subqueries are supported in EXISTS predicates.

(2) Format
public synchronized boolean supportsSubqueriesInExists() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.168 supportsSubqueriesInIns()

(1) Function
This method acquires a value indicating whether subqueries are supported in IN predicates.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 612

(2) Format
public synchronized boolean supportsSubqueriesInIns() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.169 supportsSubqueriesInQuantifieds()

(1) Function
This method acquires a value indicating whether subqueries are supported in quantified predicates.

(2) Format
public synchronized boolean supportsSubqueriesInQuantifieds() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.170 supportsTableCorrelationNames()

(1) Function
This method acquires a value indicating whether table correlation names are supported.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 613

(2) Format
public synchronized boolean supportsTableCorrelationNames() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.171 supportsTransactionIsolationLevel(int level)

(1) Function
This method returns a value indicating whether a specified transaction isolation level is supported.

(2) Format
public synchronized boolean supportsTransactionIsolationLevel(int level) throws SQLEx
ception

(3) Arguments
int level

Specifies a transaction isolation level.

(4) Return value
boolean type:

true: Supported
false: Not supported
If Connection.TRANSACTION_READ_COMMITTED or
Connection.TRANSACTION_REPEATABLE_READ is specified in level, the method returns true;
otherwise, the method returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 614

8.6.172 supportsTransactions()

(1) Function
This method acquires a value indicating whether transactions are supported.

(2) Format
public synchronized boolean supportsTransactions() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.173 supportsUnion()

(1) Function
This method acquires a value indicating whether SQL UNION is supported.

(2) Format
public synchronized boolean supportsUnion() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 615

8.6.174 supportsUnionAll()

(1) Function
This method acquires a value indicating whether SQL UNION ALL is supported.

(2) Format
public synchronized boolean supportsUnionAll() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns true.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.175 updatesAreDetected(int type)

(1) Function
This method acquires a value indicating whether updating performed on visible rows can be detected by calling the
rowUpdated method of the ResultSet class.

(2) Format
public synchronized boolean updatesAreDetected(int type) throws SQLException

(3) Arguments
int type

Specifies one of the following result set types:

• ResultSet.TYPE_FORWARD_ONLY
• ResultSet.TYPE_SCROLL_INSENSITIVE
• ResultSet.TYPE_SCROLL_SENSITIVE

(4) Return value
This method always returns false.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 616

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.176 usesLocalFilePerTable()

(1) Function
This method acquires a value indicating whether a file is to be used for each table.

(2) Format
public synchronized boolean usesLocalFilePerTable() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8.6.177 usesLocalFiles()

(1) Function
This method acquires a value indicating whether tables are to be stored in local files.

(2) Format
public synchronized boolean usesLocalFiles() throws SQLException

(3) Arguments
None.

(4) Return value
This method always returns false.

(5) Exceptions
If this Connection object is closed before this method is executed, the JDBC driver throws an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 617

8.7 ResultSetMetaData interface

This section explains the methods provided by the ResultSetMetaData interface.

8.7.1 List of the methods in the ResultSetMetaData interface

(1) Main functions of the ResultSetMetaData interface
The ResultSetMetaData interface provides the following main function:

• Return of meta information, such as the data type and the data length, for each column in a ResultSet

(2) Methods in the ResultSetMetaData interface that are supported by
HADB

The following table lists and describes the methods in the ResultSetMetaData interface that are supported by
HADB.

Table 8-70: Methods in the ResultSetMetaData interface

No. Method in the ResultSetMetaData interface Function

1 getCatalogName(int column) Acquires the catalog name for a specified column in a table.

2 getColumnClassName(int column) Acquires the fully specified Java class name for the data type of a
column.

3 getColumnCount() Acquires the number of columns in the ResultSet object.

4 getColumnDisplaySize(int column) Acquires a specified column's maximum width (in characters).

5 getColumnLabel(int column) Acquires a recommended print or display title for a specified column.

6 getColumnName(int column) Acquires a specified column's column name.

7 getColumnType(int column) Acquires a specified column's SQL data type.

8 getColumnTypeName(int column) Acquires a specified column's data type.

9 getPrecision(int column) Acquires a specified column's length (in digits).

10 getScale(int column) Acquires the number of decimal places in a specified column.

11 getSchemaName(int column) Acquires a specified column's schema name.

12 getTableName(int column) Acquires the name of a specified column's table.

13 isAutoIncrement(int column) Returns a value indicating whether a specified column is both
numbered automatically and treated as being read-only.

14 isCaseSensitive(int column) Returns a value indicating whether a specified column is case
sensitive.

15 isCurrency(int column) Returns a value indicating whether a specified column is for currency
values.

16 isDefinitelyWritable(int column) Returns a value indicating whether write operations on a specified
column will be successful.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 618

No. Method in the ResultSetMetaData interface Function

17 isNullable(int column) Returns a value indicating whether the null value can be set in a
specified column.

18 isReadOnly(int column) Returns a value indicating whether a specified column's values are
read-only.

19 isSearchable(int column) Returns a value indicating whether a specified column can be specified
in a where clause.

20 isSigned(int column) Returns a value indicating whether a specified column is for signed
numeric values.

21 isWritable(int column) Returns a value indicating whether write operations on a specified
column can be successful.

Important
HADB does not support methods that are not listed in this table. If an unsupported method is executed, an
SQLException might be thrown.

(3) Required package name and class name
The package and class names required in order to use the ResultSetMetaData interface are as follows:

• Package name: com.hitachi.hadb.jdbc
• Class name: AdbResultSetMetaData

8.7.2 getCatalogName(int column)

(1) Function
This method acquires the catalog name for a specified column in a table.

(2) Format
public synchronized String getCatalogName(int column) throws SQLException

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
The method returns a String object.

This method always returns a null character string.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 619

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8.7.3 getColumnClassName(int column)

(1) Function
This method acquires the fully specified Java class name for the data type of a column.

(2) Format
public synchronized String getColumnClassName(int column) throws SQLException

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
The method returns a String object.

This method returns the result of executing the getObject method of the ResultSet object on a column as the
String Java class type. The following table shows the column data types and corresponding return values.

Table 8-71: Character strings returned when the getColumnClassName method is executed

Column's data type (HADB data type) Character string returned

INTEGER "java.lang.Long"

SMALLINT "java.lang.Integer"

"java.lang.Short"#

DOUBLE PRECISION "java.lang.Double"

DECIMAL "java.math.BigDecimal"

CHAR "java.lang.String"

VARCHAR "java.lang.String"

DATE "java.sql.Date"

TIME "java.sql.Time"

TIMESTAMP "java.sql.Timestamp"

BINARY "java.lang.Object"

VARBINARY "java.lang.Object"

ROW "java.lang.Object"

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 620

Column's data type (HADB data type) Character string returned

BOOLEAN (column found only in a ResultSet created from DatabaseMetaData) "java.lang.Boolean"

#
This column is found only in a ResultSet created from DatabaseMetaData. If the column's data type is
defined as short, this value is returned.

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8.7.4 getColumnCount()

(1) Function
This method acquires the number of columns in the ResultSet object.

(2) Format
public synchronized int getColumnCount() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the number of columns in the ResultSet object.

(5) Exceptions
None.

8.7.5 getColumnDisplaySize(int column)

(1) Function
This method acquires a specified column's maximum width (in characters).

(2) Format
public synchronized int getColumnDisplaySize(int column) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 621

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
The method returns the maximum width in characters. The following table shows the return values of the
getColumnDisplaySize method.

Table 8-72: Return values of the getColumnDisplaySize method

Column's data type (HADB data type) Return value (maximum number
of characters)

INTEGER 20

SMALLINT 11

6#1

DOUBLE PRECISION 23

DECIMAL(m,n) m + 2

CHAR(n)
VARCHAR(n)

n

DATE 10

TIME(p) p = 0: 8
p > 0: 8 + (n + 1)

TIMESTAMP(p) p = 0: 19
p > 0: 19 + (n + 1)

BINARY(n)
VARBINARY(n)

n × 2

ROW row-length#2

BOOLEAN (column found only in a ResultSet created from DatabaseMetaData) 5

#1
This column is found only in a ResultSet created from DatabaseMetaData. If the column's data type is
defined as short, this value is returned.

#2
Sum of the data lengths of all columns. For details about how to obtain a column's data length, see the topic List of
data types in the manual HADB SQL Reference.

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 622

8.7.6 getColumnLabel(int column)

(1) Function
This method acquires a recommended print or display title for a specified column.

(2) Format
public synchronized String getColumnLabel(int column) throws SQLException

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
The method returns a String object.

This method returns the column name, which is the same value returned by getColumnName of the
ResultSetMetaData object.

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8.7.7 getColumnName(int column)

(1) Function
This method acquires a specified column's column name.

(2) Format
public synchronized String getColumnName(int column) throws SQLException

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
The method returns a String object.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 623

This method returns the name of a retrieval result column from the column name information sent from the HADB
server. For details about the names of retrieval result columns, see Rules in Specification format and rules for the SELECT
statement in the manual HADB SQL Reference.

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8.7.8 getColumnType(int column)

(1) Function
This method acquires a specified column's SQL data type.

(2) Format
public synchronized int getColumnType(int column) throws SQLException

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
The method returns the SQL type from java.sql.Types.

For details about the correspondence between data types and return values of columns, see (1) Correspondence between
HADB's data types and JDBC's SQL data types in 7.6.1 Mapping data types.

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8.7.9 getColumnTypeName(int column)

(1) Function
This method acquires a specified column's data type.

(2) Format
public synchronized String getColumnTypeName(int column) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 624

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
The method returns a String object. The following table shows the return values of the getColumnTypeName
method.

Table 8-73: Return values of the getColumnTypeName method

Column's data type (HADB data type) Return value (character string
returned)

INTEGER "INTEGER"

SMALLINT "SMALLINT"#

DECIMAL "DECIMAL"

CHAR "CHAR"

DOUBLE PRECISION "DOUBLE PRECISION"

VARCHAR "VARCHAR"

DATE "DATE"

TIME "TIME"

TIMESTAMP "TIMESTAMP"

BINARY "BINARY"

VARBINARY "VARBINARY"

ROW "ROW"

BOOLEAN (column found only in a ResultSet created from DatabaseMetaData) "BOOLEAN"

#
This column is found only in a ResultSet created from DatabaseMetaData. If the column's data type is
defined as short, this value is returned.

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8.7.10 getPrecision(int column)

(1) Function
This method acquires a specified column's length (in digits).

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 625

(2) Format
public synchronized int getPrecision(int column) throws SQLException

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
The method returns the specified column's length in decimal digits. If the specified column has a numeric data type, the
method returns the number of digits. If it does not have a numeric data type, the method returns the column length in
bytes. The following table shows the return values of the getPrecision method.

Table 8-74: Return values of the getPrecision method

Column's data type (HADB data type) Return value (column length in
digits)

INTEGER 19

SMALLINT 10

5#1

DOUBLE PRECISION 17

DECIMAL(m,n) m

CHAR(n)
VARCHAR(n)

n

DATE 10

TIME(p) p = 0: 8
p > 0: 8 + (n + 1)

TIMESTAMP(p) p = 0: 19
p > 0: 19 + (n + 1)

BINARY(n)
VARBINARY(n)

n

ROW row-length#2

BOOLEAN (column found only in a ResultSet created from DatabaseMetaData) 1

#1
This column is found only in a ResultSet created from DatabaseMetaData. If the column's data type is
defined as short, this value is returned.

#2
Sum of the data lengths of all columns. For details about how to obtain the data length of a column, see the topic
List of data types in the manual HADB SQL Reference.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 626

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8.7.11 getScale(int column)

(1) Function
This method acquires the number of decimal places in a specified column.

(2) Format
public synchronized int getScale(int column) throws SQLException

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
The method returns a decimal number indicating the number of decimal places. The following table shows the return
values of the getScale method.

Table 8-75: Return values of the getScale method

Column's data type (HADB data type) Return value (number of decimal places)

DECIMAL(m,n) n

TIME(p)
TIMESTAMP(p)

p

Other than the above 0

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8.7.12 getSchemaName(int column)

(1) Function
This method acquires a specified column's schema name.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 627

(2) Format
public synchronized String getSchemaName(int column) throws SQLException

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
The method returns a String object.

This method always returns a null character string.

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8.7.13 getTableName(int column)

(1) Function
This method acquires the name of a specified column's table.

(2) Format
public synchronized String getTableName(int column) throws SQLException

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
The method returns a String object.

This method always returns a null character string.

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 628

8.7.14 isAutoIncrement(int column)

(1) Function
This method returns a value indicating whether a specified column is both numbered automatically and treated as being
read-only.

(2) Format
public synchronized boolean isAutoIncrement(int column) throws SQLException

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
This method always returns false.

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8.7.15 isCaseSensitive(int column)

(1) Function
This method returns a value indicating whether a specified column is case sensitive.

(2) Format
public synchronized boolean isCaseSensitive(int column) throws SQLException

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
This method always returns false.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 629

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8.7.16 isCurrency(int column)

(1) Function
This method returns a value indicating whether a specified column is for currency values.

(2) Format
public synchronized boolean isCurrency(int column) throws SQLException

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
This method always returns false.

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8.7.17 isDefinitelyWritable(int column)

(1) Function
This method returns a value indicating whether write operations on a specified column will be successful.

(2) Format
public synchronized boolean isDefinitelyWritable(int column) throws SQLException

(3) Arguments
int column

Specifies a column number (where the first column is 1).

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 630

(4) Return value
This method always returns false.

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8.7.18 isNullable(int column)

(1) Function
This method returns a value indicating whether the null value can be set in a specified column.

(2) Format
public synchronized int isNullable(int column) throws SQLException

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
The method returns one of the following values:

• ResultSetMetaData.columnNoNulls: The null value cannot be set.

• ResultSetMetaData.columnNullable: The null value can be set.

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8.7.19 isReadOnly(int column)

(1) Function
This method returns a value indicating whether a specified column's values are read-only.

(2) Format
public synchronized boolean isReadOnly(int column) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 631

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
This method always returns false.

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8.7.20 isSearchable(int column)

(1) Function
This method returns a value indicating whether a specified column can be specified in a where clause.

(2) Format
public synchronized boolean isSearchable(int column) throws SQLException

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
The method returns one of the following values:

true
The column can be specified in a where clause.

false
The column cannot be specified in a where clause.

If the ResultSet object was created by the DatabaseMetaData interface, the method returns false; otherwise,
the method returns true.

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 632

8.7.21 isSigned(int column)

(1) Function
This method returns a value indicating whether a specified column is for signed numeric values.

(2) Format
public synchronized boolean isSigned(int column) throws SQLException

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
The method returns one of the following values:

true
The column is for signed numeric values.

false
The column is not for signed numeric values.

The following table shows the return value depending on the parameter's data type.

Table 8-76: Return value depending on the parameter's data type

Parameter's data type Return value

INTEGER, SMALLINT, DOUBLE PRECISION, DECIMAL true

Other false

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8.7.22 isWritable(int column)

(1) Function
This method returns a value indicating whether write operations on a specified column can be successful.

(2) Format
public synchronized boolean isWritable(int column) throws SQLException

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 633

(3) Arguments
int column

Specifies a column number (where the first column is 1).

(4) Return value
This method always returns false.

(5) Exceptions
If the specified column value is 0 or less, or is greater than the number of columns in the table, the JDBC driver throws
an SQLException.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 634

8.8 SQLException interface

The SQLException interface uses the SQLException class of the java.sql package directly. For details and
usage information about the methods provided by the SQLException interface, refer to the JDBC documentation
provided by JavaSoft.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 635

8.9 SQLWarning interface

The SQLWarning interface provides information related to database access warnings.

SQLWarning objects are accumulated in a method's object that triggers warning reports without an exception
notification.

8.9.1 Creating an SQLWarning object
If settings are specified in such a manner that warnings that occur during execution of SQL statements are to be retained
in the JDBC driver, the JDBC driver generates SQLWarning objects and retains warning information.

You can specify warning retention with sqlwarningkeep in the URL or user property or with the
setSQLWarningKeep method.

8.9.2 Releasing SQLWarning objects
SQLWarning objects are accumulated as a chain linked to the method's object (Connection, Statement,
PreparedStatement, and ResultSet) that triggers the warning reports.

To release accumulated SQLWarning objects explicitly, execute the clearWarnings method for the method's object
that triggered the warnings.

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 636

8.10 Unsupported interfaces

HADB does not support the following interfaces:

• Array
• Blob
• CallableStatement
• Clob
• Savepoint
• SQLData
• SQLInput
• SQLOutput

8. The JDBC 1.2 API

Hitachi Advanced Database Application Development Guide 637

This chapter explains HADB's scope of support for the functions added in the JDBC 2.1 Core API.

9 The JDBC 2.1 Core API

Hitachi Advanced Database Application Development Guide 638

9.1 Scope of support for the result set extended functions

The following table shows HADB's scope of support for the result set extended functions (ResultSet class) of the
JDBC 2.1 Core API.

Table 9-1: HADB's scope of support for the result set extended functions (ResultSet class) of the
JDBC 2.1 Core API

Result set extended function (ResultSet class) HADB's scope of support

Scrolling type Forward-only scrolling Y

Scroll-insensitive scrolling Y

Scroll-sensitive scrolling N

Concurrent processing type Read-only processing Y

Updatable N

Legend:
Y: Supported by HADB
N: Not supported by HADB

Important
• No error results if an unsupported scrolling type or concurrent processing type is specified. The JDBC

2.1 Core API assumes the result set that is closest to the specified scrolling type or concurrent processing
type, and creates an instance of the Statement class or that subclass. In this case, the API generates
a warning (SQLWarning object) and associates it with an instance of the Connection class.

• In the case of a scrolling-type result set, all retrieved data is cached in the JDBC driver. This means that
a large amount of data increases the possibility of a memory shortage or deterioration in performance.
When you use a scrolling-type result set, take steps in advance to minimize the volume of retrieved data
by, for example, adding appropriate conditions to the SQL statements.

9. The JDBC 2.1 Core API

Hitachi Advanced Database Application Development Guide 639

9.2 Scope of support for batch update functionality

This section explains HADB's scope of support for the batch update functionality with the Statement and
PreparedStatement classes.

9.2.1 SQL statements that can use the batch update functionality
The following SQL statements can use the batch update functionality:

• Definition SQL statements

• DELETE
• INSERT
• PURGE CHUNK
• TRUNCATE TABLE
• UPDATE

Note that if you execute the following SQL statements, BatchUpdateException is thrown when a
executeBatch or executeLargeBatch method is executed.

• SELECT
• PURGE CHUNK statement that specifies a dynamic parameter

9.2.2 Batch update functionality with the Statement class
The following notes apply to the batch update functionality with the Statement class.

• Use the addBatch method to register multiple SQL statements.

• Use the executeBatch method or the executeLargeBatch method to execute the registered SQL statements
as a batch.

• An array of the numbers of rows updated by the individual SQL statements is returned as the batch execution results.

• If an error occurs during batch execution, the batch update functionality throws a BatchUpdateException.

9.2.3 Batch update functionality with the PreparedStatement class
The following notes apply to the batch update functionality with the PreparedStatement class.

• Use the normal procedure (setXXX method) to specify dynamic parameters for SQL statements specified when a
PreparedStatement instance was created.

• Use the addBatch method to register the dynamic parameter sets.

• Use the executeBatch method or the executeLargeBatch method to execute the multiple registered
dynamic parameter sets as a batch.

9. The JDBC 2.1 Core API

Hitachi Advanced Database Application Development Guide 640

• An array of the numbers of rows updated by the individual dynamic parameter sets is returned as the batch execution
results.

• If an error occurs during batch execution, the batch update functionality throws a BatchUpdateException.

9.2.4 Notes

(1) Executing implicit commit processing
If the SQL statements registered with addBatch contain any of the SQL statements shown below, you must exercise
caution in using the batch update functionality for the SQL statements because the HADB server performs commit
processing implicitly when such an SQL statement is executed:

• Definition SQL statements

• PURGE CHUNK statement

• TRUNCATE TABLE statement

(2) Processing by the batch update functionality when addBatch
specifications for parameters and SQL statements are combined

When addBatch lines specifying parameters are mixed in with addBatch lines for SQL statements, the batch update
functionality executes the addBatch statements sequentially, instead of in a single batch update. An example is shown
below:

PreparedStatement pstmt = con.prepareStatement("UPDATE T1 SET C1=? WHERE C2=?");
pstmt.setInt(1, 1);
pstmt.setInt(2, 1);
pstmt.addBatch();
pstmt.setInt(1, 2);
pstmt.setInt(2, 2);
pstmt.addBatch();
pstmt.addBatch("INSERT INTO T2 VALUES(1,2,3)");
pstmt.setInt(1, 3);
pstmt.setInt(2, 4);
pstmt.addBatch();
pstmt.setInt(1, 4);
pstmt.setInt(2, 4);
pstmt.addBatch();
pstmt.executeBatch();

When this application program is executed, an SQL statement is executed at each addBatch line, because an
addBatch line specifying parameters is mixed in with addBatch lines for the SQL statements. Therefore, executing
this application program produces the same results as executing the following application program:

PreparedStatement pstmt = con.prepareStatement("UPDATE T1 SET C1=? WHERE C2=?");
pstmt.setInt(1, 1);
pstmt.setInt(2, 1);
pstmt.executeUpdate();
pstmt.setInt(1, 2);
pstmt.setInt(2, 2);
pstmt.executeUpdate();
pstmt.executeUpdate("INSERT INTO T2 VALUES(1,2,3)");
pstmt.setInt(1, 3);
pstmt.setInt(2, 4);

9. The JDBC 2.1 Core API

Hitachi Advanced Database Application Development Guide 641

pstmt.executeUpdate();
pstmt.setInt(1, 4);
pstmt.setInt(2, 4);
pstmt.executeUpdate();

If you use the batch update functionality in code that contains a mix of addBatch lines specifying parameters and
addBatch lines for SQL statements, we recommend that you disable the automatic commit mode for the
Connection class.

Note
For code that contains a mix of addBatch parameters and SQL statements, individual lines are executed
sequentially. However, if the automatic commit mode is enabled, commit processing is performed implicitly
for each execution unit. If an error occurs during batch update processing, only the portion of the processing
up to the error is committed, making it impossible to identify the point at which commit processing occurred.
Therefore, we recommend that you disable the automatic commit mode.

(3) Registering many parameters with the addBatch method
The JDBC driver retains all the parameters registered with the addBatch method until the executeBatch method
or the executeLargeBatch method is executed. Be aware of the amount of memory that will be used when you
register many parameters.

(4) Update count reported by BatchUpdateException
The following shows the update count that is reported in the return value of the getUpdateCounts method of the
BatchUpdateException that occurs during batch update processing:

• The array that is returned contains as many elements as the number of SQL statements that executed.

• The number of updated rows is set in each array element.

If the processing is rolled back internally because of an exception, an array containing no elements is returned.

The following shows an example of an update count.

■ Example program of consecutive execution using a JDBC driver

Statement stmt = con.createStatement();
stmt.addBatch("INSERT INTO T1 VALUES(1,'aaaa')");
stmt.addBatch("INSERT INTO T1 VALUES(2,'bbbbbbbb')");...[A]
stmt.addBatch("INSERT INTO T1 VALUES(3,'cccc')");
stmt.executeBatch();

The following shows the update count that is returned by the getUpdateCounts method when this example program
is executed and the parameter or SQL statement registered in [A] results in an error:

• Array containing one element

• Value of element 0: Number of updated rows

If the number of updated rows might exceed Integer.MAX_VALUE, use the executeLargeBatch method
instead of the executeBatch method. Similarly, use the getLargeUpdateCounts method instead of the
getUpdateCounts method.

9. The JDBC 2.1 Core API

Hitachi Advanced Database Application Development Guide 642

9.3 Added data types

Several new JDBC SQL types have been added to the JDBC 2.1 Core API. Although the following JDBC SQL types
have been added, the JDBC driver cannot use them:

• BLOB
• CLOB
• ARRAY
• REF
• DISTINCT
• STRUCT
• JAVA OBJECT

9. The JDBC 2.1 Core API

Hitachi Advanced Database Application Development Guide 643

9.4 Unsupported interfaces

HADB does not support the following interfaces:

• Array
• Blob
• Clob
• Ref
• SQLData
• SQLInput
• SQLOutput
• Struct

9. The JDBC 2.1 Core API

Hitachi Advanced Database Application Development Guide 644

This chapter explains the interfaces and methods in the JDBC 2.0 Optional Package.

10 The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 645

10.1 HADB's scope of support for the functions added in the JDBC 2.0
Optional Package

The following table shows HADB's scope of support for the functions added in the JDBC 2.0 Optional Package.

Table 10-1: HADB's scope of support for the functions added in the JDBC 2.0 Optional Package

Function added in the JDBC 2.0 Optional Package Corresponding interface HADB's scope of
support

JNDI support DataSource Y

Connection pool ConnectionPoolDataSource Y

PooledConnection Y

RowSets RowSet N

RowSetInternal N

RowSetListner N

RowSetMetaData N

RowSetReader N

Legend:
Y: Supported by HADB
N: Not supported by HADB

In addition to the interfaces listed above, there also are methods related to specification and acquisition of HADB-
specific connection information. For details, see 10.5 Connection information setup and acquisition interface.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 646

10.2 DataSource interface

This section explains the methods provided by the DataSource interface.

10.2.1 List of the methods in the DataSource interface
The following table lists and describes the methods in the DataSource interface that are supported by HADB.

Table 10-2: Methods in the DataSource interface

No. Method of the DataSource interface Function

1 getConnection() Connects to the HADB server.

2 getConnection(String username, String
password)

3 getLoginTimeout() Acquires the value set by the setLoginTimeout method (the timeout
time for connections to the HADB server).

4 getLogWriter() Acquires the DataSource object's log writer.

5 setLoginTimeout(int seconds) Specifies a timeout value (in seconds) for HADB server connection
processing.

6 setLogWriter(PrintWriter out) Sets a log writer for the DataSource object.

The package and class names required in order to use the DataSource interface are as follows:

• Package name: com.hitachi.hadb.jdbc
• Class name: AdbDataSource

10.2.2 getConnection()

(1) Function
This method connects to the HADB server.

The connection is performed according to the HADB server connection information specified in the DataSource
object, and then a Connection object is returned.

Specification priorities apply to the HADB server connection information. For details about the priorities, see 7.3.3 
Connection information priorities.

Note that you must have the CONNECT privilege to execute the getConnection method.

(2) Format
public synchronized Connection getConnection() throws SQLException

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 647

(3) Arguments
None.

(4) Return value
This method returns a Connection object.

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• A database access error occurs.

• Specified HADB server connection information is invalid.

10.2.3 getConnection(String username, String password)

(1) Function
This method connects to the HADB server.

The connection is performed according to the HADB server connection information specified in the DataSource
object and the connection information specified in the arguments, and then a Connection object is returned.

Specification priorities apply to the HADB server connection information. For details about the priorities, see 7.3.3 
Connection information priorities.

Note that you must have the CONNECT privilege to execute the getConnection method.

(2) Format
public synchronized Connection getConnection(String username, String password) throws
 SQLException

(3) Arguments
String username

Specifies the authorization identifier that is to be used to connect to the HADB server.

String password
Specifies a password for the authorization identifier that is to be used to connect to the HADB server.

If null is specified for username or password, the JDBC driver assumes that no authorization identifier or
password, respectively, is specified. If a character string with a length of zero is specified for password, the JDBC
driver also assumes that no password is specified.

(4) Return value
This method returns a Connection object.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 648

(5) Exceptions
The JDBC driver throws an SQLException in the following cases:

• A database access error occurs.

• Specified HADB server connection information is invalid.

• The authorization identifier specified for username is a character string with a length of zero.

10.2.4 getLoginTimeout()

(1) Function
This method acquires the value set by the setLoginTimeout method (the timeout time for connections to the HADB
server).

(2) Format
public synchronized int getLoginTimeout()

(3) Arguments
None.

(4) Return value
This method returns the value set by the setLoginTimeout method (the timeout time for connections to the HADB
server). If no timeout value has been specified by the setLoginTimeout method, the method returns 0.

(5) Exceptions
None.

10.2.5 getLogWriter()

(1) Function
This method acquires the DataSource object's log writer.

(2) Format
public synchronized PrintWriter getLogWriter() throws SQLException

(3) Arguments
None.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 649

(4) Return value
This method returns the DataSource object's log writer. If no log writer has been set, the method returns null.

(5) Exceptions
None.

10.2.6 setLoginTimeout(int seconds)

(1) Function
This method specifies a timeout value (in seconds) for HADB server connection processing.

This timeout value is applied when the getConnection method is used to connect to the HADB server.

(2) Format
public synchronized void setLoginTimeout(int seconds) throws SQLException

(3) Arguments
int seconds

Specifies a timeout value in the range from 0 to 300 (seconds) for HADB server connection processing.
If 0 is specified, the value specified for adb_clt_rpc_con_wait_time in the system properties, user
properties, or connection URL properties is assumed. If adb_clt_rpc_con_wait_time is not specified, the
default value of adb_clt_rpc_con_wait_time is assumed.

(4) Return value
None.

(5) Exceptions
If an invalid value (a value less than 1 or greater than 300) is specified for seconds, the JDBC driver throws an
SQLException.

(6) Notes
You can set timeout times for connections with the HADB server in a number of locations, such as in various properties
and methods. For information about the relative priorities that determine which timeout time applies to connections
with the HADB server, see (1) Connection information needed when a connection to the HADB server is established
in 7.3.3 Connection information priorities.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 650

10.2.7 setLogWriter(PrintWriter out)

(1) Function
This method sets a log writer for the DataSource object.

(2) Format
public synchronized void setLogWriter(PrintWriter out) throws SQLException

(3) Arguments
PrintWriter out

Specifies a log writer.

(4) Return value
None.

(5) Exceptions
None.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 651

10.3 ConnectionPoolDataSource interface

This section explains the methods provided by the ConnectionPoolDataSource interface.

10.3.1 List of the methods in the ConnectionPoolDataSource interface
The following table lists and describes the methods in the ConnectionPoolDataSource interface that are
supported by HADB.

Table 10-3: Methods in the ConnectionPoolDataSource interface

No. Method of the ConnectionPoolDataSource interface Function

1 getLoginTimeout() Acquires the value set by the setLoginTimeout method (the
timeout time for connections to the HADB server).

2 getLogWriter() Acquires the ConnectionPoolDataSource object's log
writer.

3 getPooledConnection() Creates a PooledConnection object from the connection
information specified in the DataSource object.

4 getPooledConnection(String user, String
password)

Creates a PooledConnection object from the connection
information specified in the arguments and the connection
information contained in the DataSource object.

5 setLoginTimeout(int seconds) Specifies a timeout value (in seconds) for HADB server
connection processing.

6 setLogWriter(PrintWriter out) Sets a log writer for the ConnectionPoolDataSource
object.

The package and class names required in order to use the ConnectionPoolDataSource interface are as follows:

• Package name: com.hitachi.hadb.jdbc
• Class name: AdbConnectionPoolDataSource

10.3.2 getLoginTimeout()

(1) Function
This method acquires the value set by the setLoginTimeout method (the timeout time for connections to the HADB
server).

(2) Format
public synchronized int getLoginTimeout() throws SQLException

(3) Arguments
None.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 652

(4) Return value
This method returns the value set by the setLoginTimeout method (the timeout time for connections to the HADB
server). If no timeout value has been specified by the setLoginTimeout method, the method returns 0.

(5) Exceptions
None.

10.3.3 getLogWriter()

(1) Function
This method acquires the ConnectionPoolDataSource object's log writer.

(2) Format
public synchronized PrintWriter getLogWriter() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the ConnectionPoolDataSource object's log writer. If no log writer has been set, the method
returns null.

(5) Exceptions
None.

10.3.4 getPooledConnection()

(1) Function
This method creates a PooledConnection object from the connection information specified in the DataSource
object.

Specification priorities apply to the authorization identifier and password. For details about the priorities, see 7.3.3 
Connection information priorities.

Note that you must have the CONNECT privilege to execute the getPooledConnection method.

(2) Format
public synchronized PooledConnection getPooledConnection() throws SQLException

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 653

(3) Arguments
None.

(4) Return value
This method returns a PooledConnection object.

(5) Exceptions
None.

10.3.5 getPooledConnection(String user, String password)

(1) Function
This method creates a PooledConnection object from the connection information specified in the arguments and
the connection information contained in the DataSource object.

Specification priorities apply to the authorization identifier and password. For details about the priorities, see 7.3.3 
Connection information priorities.

Note that you must have the CONNECT privilege to execute the getPooledConnection method.

(2) Format
public synchronized PooledConnection getPooledConnection(String user, String password
) throws SQLException

(3) Arguments
String user

Specifies the authorization identifier that is to be used to connect to the HADB server.

String password
Specifies a password for the authorization identifier that is to be used to connect to the HADB server.

If null is specified for user or password, the JDBC driver assumes that no authorization identifier or password,
respectively, is specified. If a character string with a length of zero is specified for password, the JDBC driver also
assumes that no password is specified.

The authorization identifier specified for user takes precedence over the authorization identifier specified by the
setUser method. Similarly, the password specified for password takes precedence over the password specified
by the setPassword method.

(4) Return value
This method returns a PooledConnection object.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 654

(5) Exceptions
The JDBC driver throws an SQLException in the following case:

• The authorization identifier specified for user is a character string with a length of zero.

10.3.6 setLoginTimeout(int seconds)

(1) Function
This method specifies a timeout value (in seconds) for HADB server connection processing.

This timeout value is applied when the getConnection method is used to connect to the HADB server.

(2) Format
public synchronized void setLoginTimeout(int seconds) throws SQLException

(3) Arguments
int seconds

Specifies a timeout value in the range from 0 to 300 (seconds) for HADB server connection processing.
If 0 is specified, the value of adb_clt_rpc_con_wait_time in the system properties, user properties, or
connection URL properties is assumed. If adb_clt_rpc_con_wait_time is not specified, the default value
of adb_clt_rpc_con_wait_time is assumed.

(4) Return value
None.

(5) Exceptions
If an invalid value (a value less than 1 or greater than 300) is specified for seconds, the JDBC driver throws an
SQLException.

(6) Notes
You can set timeout times for connections with the HADB server in a number of locations, such as in various properties
and methods. For information about the relative priorities that determine which timeout time applies to connections
with the HADB server, see (1) Connection information needed when a connection to the HADB server is established
in 7.3.3 Connection information priorities.

10.3.7 setLogWriter(PrintWriter out)

(1) Function
This method sets a log writer for the ConnectionPoolDataSource object.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 655

(2) Format
public synchronized void setLogWriter(PrintWriter out)

(3) Arguments
PrintWriter out

Specifies a log writer.

(4) Return value
None.

(5) Exceptions
None.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 656

10.4 PooledConnection interface

This section explains the methods provided by the PooledConnection interface.

10.4.1 List of the methods in the PooledConnection interface
The following table lists and describes the methods in the PooledConnection interface that are supported by HADB.

Table 10-4: Methods in the PooledConnection interface

No. Method of the PooledConnection interface Function

1 addConnectionEventListener(Connectio
nEventListener listener)

Registers an event listener so that events that occur in this
PooledConnection object will be reported.

2 close() Closes the physical connection with the HADB server. This method
closes all physical connections pooled in the connection pool.

3 getConnection() Connects to the HADB server by using a connection pooled in the
connection pool.

4 removeConnectionEventListener(Connec
tionEventListener listener)

Deletes a specified event listener from the component list that is reported
when events occur in this PooledConnection object.

The package and class names required in order to use the PooledConnection interface are as follows:

• Package name: com.hitachi.hadb.jdbc
• Class name: AdbPooledConnection

10.4.2 addConnectionEventListener(ConnectionEventListener listener)

(1) Function
This method registers an event listener so that events that occur in this PooledConnection object will be reported.

No other methods can be called from the event listener that is registered by this method. Deadlock might result if an
attempt is made to call another method, resulting in a loss of response.

(2) Format
public synchronized void addConnectionEventListener(ConnectionEventListener listener)

(3) Arguments
ConnectionEventListener listener

Specifies a component that implements the ConnectionEventListener interface, so that if the connection is
closed or an error occurs, that event will be reported. Normally, this is a connection pool management program.
If null is specified, nothing is registered.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 657

(4) Return value
None.

(5) Exceptions
None.

10.4.3 close()

(1) Function
This method closes the physical connection with the HADB server. The method closes all physical connections pooled
in the connection pool. This method closes the connection even if the database is being accessed.

(2) Format
public synchronized void close()

(3) Arguments
None.

(4) Return value
None.

(5) Exceptions
None.

10.4.4 getConnection()

(1) Function
This method connects to the HADB server by using a connection pooled in the connection pool. If all connections pooled
in the connection pool are in use, this method establishes a new physical connection with the HADB server to connect
to the HADB server.

Note that you must have the CONNECT privilege to execute the getConnection method.

Note
• A physical connection with the HADB server is not closed until this class object is closed. The physical

connection with the HADB server is maintained even if the close method is executed on the
Connection object (this class object maintains the physical connection). This connection is used
again the next time the getConnection method is executed.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 658

• When a connection pooled in the connection pool is used to connect to the HADB server, the timeout
value for HADB server connection processing that was specified by the setLoginTimeout method
is not applied. Normally, the timeout value specified by the setLoginTimeout method is used to
monitor the time required for communication processing when a physical connection is established with
the HADB server. This timeout value is not applied when a connection pooled in the connection pool
is used to connect to the HADB server because no physical connection occurs (no time is required for
communication processing).

(2) Format
public synchronized Connection getConnection() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns a Connection object.

(5) Exceptions
The JDBC driver throws an SQLException if a database access error occurs.

10.4.5 removeConnectionEventListener(ConnectionEventListener
listener)

(1) Function
This method deletes a specified event listener from the component list that is reported when events occur in this
PooledConnection object.

(2) Format
public synchronized void removeConnectionEventListener(ConnectionEventListener listen
er)

(3) Arguments
ConnectionEventListener listener

Specifies a component that implements the ConnectionEventListener interface and has been registered as
an event listener. Normally, this is a connection pool management program.

(4) Return value
None.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 659

(5) Exceptions
None.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 660

10.5 Connection information setup and acquisition interface

This section explains the methods provided by the connection information setup and acquisition interface.

10.5.1 List of the methods in the connection information setup and
acquisition interface

The DataSource and ConnectionPoolDataSource classes provide the HADB-specific methods described in
the table below, in addition to the methods that are standardized for the JDBC 2.0 Optional Package.

Table 10-5: Methods in the connection information setup and acquisition interface

No. Method Function

1 getApName() Acquires the application identifier that was specified by the setApName method.

2 getEncodeLang() Acquires the name of the conversion character set that was specified in the
setEncodeLang method.

3 getInterfaceMethodTrace() Acquires the status of acquisition of JDBC interface method traces that was specified
by the setInterfaceMethodTrace method.

4 getNotErrorOccurred() Acquires the setting as to whether generation of
ConnectionEventListener.connectionErrorOccurred is to be
suppressed.

5 getPassword() Acquires the password that was specified by the setPassword method.

6 getSQLWarningKeep() Acquires the setting as to whether warning information generated during execution
of SQL statements is to be retained.

7 getTraceNumber() Acquires the number of entries for a JDBC interface method trace that was specified
by the setTraceNumber method.

8 getUser() Acquires the authorization identifier that was specified by the setUser method.

9 getHostName() Acquires the host name of the HADB server that was specified by the
setHostName method.

10 getPort() Acquires the port number of the HADB server that was specified by the setPort
method.

11 setApName(String name) Specifies the application identifier for connecting to the HADB server.

12 setEncodeLang(String lang) Specifies the name of the conversion character set to be used when conversion of
character encoding is performed.

13 setInterfaceMethodTrace(bool
ean flag)

Specifies whether JDBC interface method traces are to be acquired.

14 setNotErrorOccurred(boolean
mode)

Specifies the setting as to whether generation of
ConnectionEventListener.connectionErrorOccurred is to be
suppressed.

15 setPassword(String password) Specifies a password for the authorization identifier that is used to connect to the
HADB server.

16 setSQLWarningKeep(boolean
mode)

Specifies the setting as to whether warning information generated during execution
of SQL statements is to be retained.

17 setTraceNumber(int num) Specifies the number of entries for a JDBC interface method trace.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 661

No. Method Function

18 setUser(String user) Specifies the authorization identifier to be used to connect to the HADB server.

19 setHostName(String name) Specifies the host name of the HADB server at the connection destination.

20 setPort(int port) Specifies the port number of the HADB server at the connection destination.

10.5.2 getApName()

(1) Function
This method acquires the application identifier that was specified by the setApName method.

(2) Format
public synchronized String getApName() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the application identifier. If the setApName method has not been executed, the method returns
"********".

(5) Exceptions
None.

10.5.3 getEncodeLang()

(1) Function
This method acquires the name of the conversion character set that was specified in the setEncodeLang method.

(2) Format
public synchronized String getEncodeLang() throws SQLException

(3) Arguments
None.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 662

(4) Return value
This method returns the name of the conversion character set. If the setEncodeLang method has not been executed,
the method returns null.

(5) Exceptions
None.

10.5.4 getInterfaceMethodTrace()

(1) Function
This method acquires the status of acquisition of JDBC interface method traces that was specified by the
setInterfaceMethodTrace method. For details about the JDBC interface method traces, see 7.7.1 JDBC
interface method traces.

(2) Format
public boolean getInterfaceMethodTrace() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the status of acquisition of JDBC interface method traces:

• true: JDBC interface method traces are acquired.

• false: JDBC interface method traces are acquired.

(5) Exceptions
None.

10.5.5 getNotErrorOccurred()

(1) Function
This method acquires the setting as to whether generation of
ConnectionEventListener.connectionErrorOccurred is to be suppressed. The method acquires the
information that was specified by the setNotErrorOccurred method.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 663

(2) Format
public boolean getNotErrorOccurred() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the setting as to whether ConnectionEventListener.connectionErrorOccurred is
to be generated:

• true: connectionErrorOccurred is not generated (generation is suppressed).

• false: connectionErrorOccurred is generated (generation is not suppressed).

If the setNotErrorOccurred method has not been executed, the method returns false (default value).

(5) Exceptions
None.

10.5.6 getPassword()

(1) Function
This method acquires the password that was specified by the setPassword method.

(2) Format
public synchronized String getPassword() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the password that was specified by the setPassword method.

(5) Exceptions
None.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 664

10.5.7 getSQLWarningKeep()

(1) Function
This method acquires the setting as to whether warning information generated during execution of SQL statements is
to be retained. The method acquires the information that was specified by the setSQLWarningKeep method.

(2) Format
public synchronized boolean getSQLWarningKeep() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the setting as to whether warning information generated is to be retained by the Connection
class:

• true: Warning information is to be retained.

• false: Warning information is to be not retained.

If the setSQLWarningKeep method has not been executed, the method returns true (default value).

(5) Exceptions
None.

10.5.8 getTraceNumber()

(1) Function
This method acquires the number of entries for a JDBC interface method trace that was specified by the
setTraceNumber method.

(2) Format
public synchronized int getTraceNumber() throws SQLException

(3) Arguments
None.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 665

(4) Return value
This method returns the number of entries for a JDBC interface method trace that was specified by the
setTraceNumber method. If the setTraceNumber method has not been executed, the method returns 500
(default value).

(5) Exceptions
None.

10.5.9 getUser()

(1) Function
This method acquires the authorization identifier that was specified by the setUser method.

(2) Format
public synchronized String getUser() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the authorization identifier that was specified by the setUser method. If the setUser method
has not been executed, the method returns null.

(5) Exceptions
None.

10.5.10 getHostName()

(1) Function
This method acquires the host name of the HADB server that was specified by the setHostName method.

(2) Format
public synchronized String getHostName() throws SQLException

(3) Arguments
None.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 666

(4) Return value
This method returns the host name of the HADB server that was specified by the setHostName method. If the
setHostName method has not been executed, the method returns null.

(5) Exceptions
None.

10.5.11 getPort()

(1) Function
This method acquires the port number of the HADB server that was specified by the setPort method.

(2) Format
public synchronized int getPort() throws SQLException

(3) Arguments
None.

(4) Return value
This method returns the port number of the HADB server that was specified by the setPort method. If the setPort
method has not been executed, the method returns -1.

(5) Exceptions
None.

10.5.12 setApName(String name)

(1) Function
This method specifies the application identifier for connecting to the HADB server.

(2) Format
public synchronized void setApName(String name) throws SQLException

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 667

(3) Arguments
String name

Specifies an application identifier as a character string with a length of 1 to 30 bytes. If a space, a character string
with a length of zero, or null is specified, the JDBC driver assumes that no application identifier is specified by
this method.
If an application program is connected to the HADB server without its application identifier being specified
anywhere, "********" is set for the application identifier.

(4) Return value
None.

(5) Exceptions
If the value specified for name is invalid (such as a character string of more than 30 bytes), the JDBC driver throws an
SQLException.

(6) Notes
The application identifier specified by this method is converted in accordance with the Java Virtual Machine's (JVM)
default conversion character set. Therefore, we recommend that you specify an application identifier consisting
exclusively of alphanumeric characters that do not depend on the conversion character set.

10.5.13 setEncodeLang(String lang)

(1) Function
This method specifies the name of the conversion character set to be used when conversion of character encoding is
performed.

(2) Format
public synchronized void setEncodeLang(String lang) throws SQLException

(3) Arguments
String lang

Specifies a conversion character set. Select a supported conversion character set from the list of Supported encodings
in Internationalization support in the JavaTM Platform, Standard Edition JDK document.

(4) Return value
None.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 668

(5) Exceptions
If the specified conversion character set is not supported by the Java Virtual Machine (JVM), the JDBC driver throws
an SQLException.

(6) Notes
Specify this method only when you want to use a character set other than the supported conversion character set shown
in Table 7-15: Names of the character sets supported for the HADB server's character encoding. If you use the supported
conversion character set indicated in Table 7-15: Names of the character sets supported for the HADB server's character
encoding for conversion, you do not need to specify this method.

10.5.14 setInterfaceMethodTrace(boolean flag)

(1) Function
This method specifies whether JDBC interface method traces are to be acquired. For details about the JDBC interface
method traces, see 7.7.1 JDBC interface method traces.

If you acquire JDBC interface method traces, you must specify an output destination with the setLogWriter method.

(2) Format
public synchronized void setInterfaceMethodTrace(boolean flag) throws SQLException

(3) Arguments
boolean flag

Specifies whether JDBC interface method traces are to be acquired:

• true: Acquire JDBC interface method traces.

• false: Do not acquire JDBC interface method traces.

If this method is not executed, the JDBC driver assumes false.

(4) Return value
None.

(5) Exceptions
None.

(6) Notes
Whether JDBC interface method traces are to be acquired cannot be specified for each instance individually. The setting
specified by this method applies to all DataSource and ConnectionPoolDataSource instances that exist at
the time this setting is specified and thereafter.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 669

10.5.15 setNotErrorOccurred(boolean mode)

(1) Function
This method specifies the setting as to whether generation of
ConnectionEventListener.connectionErrorOccurred is to be suppressed.

(2) Format
public synchronized void setNotErrorOccurred(boolean mode) throws SQLException

(3) Arguments
boolean mode

Specifies whether generation of ConnectionEventListener.connectionErrorOccurred is to be
suppressed.
The permitted value is as follows:

• true: Suppress generation of connectionErrorOccurred.

• false: Do not suppress generation of connectionErrorOccurred.

If this method is not executed, the JDBC driver assumes false.
If ConnectionPoolDataSource is used, this argument specifies the setting that suppresses calling of
ConnectionEventListener.connectionErrorOccurred, which is called if a fatal connection error
occurs. Normally, this argument is not specified or is set to false.

(4) Return value
None.

(5) Exceptions
None.

10.5.16 setPassword(String password)

(1) Function
This method specifies a password for the authorization identifier that is used to connect to the HADB server.

When the methods listed below are executed, the authorization identifier and password specified by setUser and
setPassword, respectively, are used to connect to the HADB server.

• getConnection method of the DataSource interface (with no argument specified)

• getPooledConnection method of the ConnectionPoolDataSource interface

Specification priorities apply to the password. For details, see 7.3.3 Connection information priorities.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 670

(2) Format
public synchronized void setPassword(String password) throws SQLException

(3) Arguments
String password

Specifies a password for the authorization identifier that is to be used to connect to the HADB server. If null is
specified, the JDBC driver assumes that no password is specified by this method.

(4) Return value
None.

(5) Exceptions
None.

10.5.17 setSQLWarningKeep(boolean mode)

(1) Function
This method specifies the setting as to whether warning information generated during execution of SQL statements is
to be retained.

(2) Format
public synchronized void setSQLWarningKeep(boolean mode) throws SQLException

(3) Arguments
boolean mode

Specifies one of the following values indicating whether warning information is to be retained:

• true: Retain warning information.

• false: Do not retain warning information.

If this method is not executed, the JDBC driver assumes true.

(4) Return value
None.

(5) Exceptions
None.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 671

10.5.18 setTraceNumber(int num)

(1) Function
This method specifies the number of entries for a JDBC interface method trace.

(2) Format
public synchronized void setTraceNumber(int num) throws SQLException

(3) Arguments
int num

Specifies the number of entries for a JDBC interface method trace, in the range from 10 to 1,000. If this method is
not executed, the number of entries is set to 500.

(4) Return value
None.

(5) Exceptions
If the value specified for the number of entries is outside the range from 10 to 1,000, the JDBC driver throws an
SQLException.

10.5.19 setUser(String user)

(1) Function
This method specifies the authorization identifier to be used to connect to the HADB server.

When the methods listed below are executed, the authorization identifier and password specified by setUser and
setPassword, respectively, are used to connect to the HADB server.

• getConnection method of the DataSource interface (with no argument specified)

• getPooledConnection method of the ConnectionPoolDataSource interface

Specification priorities apply to the authorization identifier. For details, see 7.3.3 Connection information priorities.

(2) Format
public synchronized void setUser(String user) throws SQLException

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 672

(3) Arguments
String user

Specifies the authorization identifier that is to be used to connect to the HADB server. If null is specified, the
JDBC driver assumes that no authorization identifier is specified by this method.

(4) Return value
None.

(5) Exceptions
If the length of the character string specified for user is zero, the JDBC driver throws an SQLException.

10.5.20 setHostName(String name)

(1) Function
This method specifies the host name of the HADB server at the connection destination.

Specification priorities apply to the host name of the HADB server. For details, see 7.3.3 Connection information
priorities.

(2) Format
public synchronized void setHostName(String name) throws SQLException

(3) Arguments
String name

Specifies the host name of the HADB server at the connection destination. If null is specified, the JDBC driver
assumes that no host name is specified by this method.

(4) Return value
None.

(5) Exceptions
If the value specified for name is invalid (such as a character string with a length of 0 bytes or less or 256 bytes or
greater), the JDBC driver throws an SQLException.

10.5.21 setPort(int port)

(1) Function
This method specifies the port number of the HADB server at the connection destination.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 673

Specification priorities apply to the port number of the HADB server. For details, see 7.3.3 Connection information
priorities.

(2) Format
public synchronized void setPort(int port) throws SQLException

(3) Arguments
int port

Specifies the port number of the HADB server at the connection destination, in the range from 5001 to 65535.

(4) Return value
None.

(5) Exceptions
If the specified port argument value is outside the range from 5001 to 65535, the JDBC driver throws an
SQLException.

10. The JDBC 2.0 Optional Package

Hitachi Advanced Database Application Development Guide 674

This chapter describes the interfaces and methods in the JDBC 3.0 API.

11 The JDBC 3.0 API

Hitachi Advanced Database Application Development Guide 675

11.1 HADB's scope of support for the functions added in the JDBC 3.0 API

The following table shows HADB's scope of support for the functions added in the JDBC 3.0 API.

Table 11-1: HADB's scope of support for the functions added in the JDBC 3.0 API

Added function Corresponding interface HADB's scope of support

Save point Connection N

Savepoint N

Enhancement of the connection pool function PreparedStatement N

Parameter metadata ParameterMetaData Y

PreparedStatement Y

Automatic generation key Connection N

DatabaseMetaData N

Statement N

Holdable cursor Connection Y

DatabaseMetaData Y

Statement Y

ResultSet Y

API for adding database metadata DatabaseMetaData Y

Legend:
Y: Supported by HADB.
N: Not supported by HADB.

11. The JDBC 3.0 API

Hitachi Advanced Database Application Development Guide 676

11.2 ParameterMetaData interface

This section explains the methods provided by the ParameterMetaData interface.

11.2.1 List of the methods in the ParameterMetaData interface

(1) Main functions of the ParameterMetaData interface
The ParameterMetaData interface provides the following main function:

• Return of meta information, such as the data types and data lengths of parameters in the PreparedStatement
object

(2) Methods in the ParameterMetaData interface that are supported by
HADB

The following table lists and describes the methods in the ParameterMetaData interface that are supported by
HADB.

Table 11-2: Methods in the ParameterMetaData interface

No. Method of the ParameterMetaData interface Function

1 getParameterClassName(int param) Acquires the fully specified Java class name for the data type of a
parameter.

2 getParameterCount() Acquires the number of parameters in the PreparedStatement
object.

3 getParameterMode(int param) Acquires a specified parameter's mode.

4 getParameterType(int param) Acquires a specified parameter's SQL data type.

5 getParameterTypeName(int param) Acquires a specified parameter's data type.

6 getPrecision(int param) Acquires the number of digits in a specified parameter.

7 getScale(int param) Acquires the number of decimal places in a specified parameter.

8 isNullable(int param) Returns a value indicating whether the null value can be set in a
specified parameter.

9 isSigned(int param) Returns a value indicating whether a specified parameter is for signed
numeric values.

Important
HADB does not support methods that are not listed in this table. If an unsupported method is executed, an
SQLException might be thrown.

(3) Required parameter name and class name
The package and class names required to use the ParameterMetaData interface are as follows:

11. The JDBC 3.0 API

Hitachi Advanced Database Application Development Guide 677

• Package name: com.hitachi.hadb.jdbc
• Class name: AdbParameterMetaData

11.2.2 getParameterClassName(int param)

(1) Function
This method acquires the fully specified Java class name for the data type of a parameter.

(2) Format
public synchronized String getParameterClassName(int param) throws SQLException

(3) Arguments
int param

Specifies a parameter number (beginning with 1).

(4) Return value
The method returns a String object.

This method returns the String Java class type that is used by the setObject method of the
PreparedStatement object for the parameter. The following table shows the parameter data types and
corresponding return values.

Table 11-3: Character strings returned when the getParameterClassName method is executed

Parameter's data type (HADB data type) Character string returned

INTEGER "java.lang.Long"

SMALLINT "java.lang.Integer"

DOUBLE PRECISION "java.lang.Double"

DECIMAL "java.math.BigDecimal"

CHAR "java.lang.String"

VARCHAR "java.lang.String"

DATE "java.sql.Date"

TIME "java.sql.Time"

TIMESTAMP "java.sql.Timestamp"

BINARY "java.lang.Object"

VARBINARY "java.lang.Object"

ROW "java.sql.Object"

11. The JDBC 3.0 API

Hitachi Advanced Database Application Development Guide 678

(5) Exceptions
If the specified param value is 0 or less, or is greater than the number of parameters, the JDBC driver throws an
SQLException.

11.2.3 getParameterCount()

(1) Function
This method acquires the number of parameters in the PreparedStatement object.

(2) Format
public synchronized int getParameterCount() throws SQLException

(3) Arguments
None.

(4) Return value
The method returns the number of parameters in the PreparedStatement object.

(5) Exceptions
None.

11.2.4 getParameterMode(int param)

(1) Function
This method acquires a specified parameter's mode.

(2) Format
public synchronized int getParameterMode(int param) throws SQLException

(3) Arguments
int param

Specifies a parameter number (beginning with 1).

(4) Return value
The method always returns ParameterMetaData.parameterModeIn.

11. The JDBC 3.0 API

Hitachi Advanced Database Application Development Guide 679

(5) Exceptions
If the specified param value is 0 or less, or is greater than the number of parameters, the JDBC driver throws an
SQLException.

11.2.5 getParameterType(int param)

(1) Function
This method acquires a specified parameter's SQL data type.

(2) Format
public synchronized int getParameterType(int param) throws SQLException

(3) Arguments
int param

Specifies a parameter number (beginning with 1).

(4) Return value
The method returns the SQL type obtained from java.sql.Types.

For details about the correspondence between data types and return values of columns, see (1) Correspondence between
HADB's data types and JDBC's SQL data types in 7.6.1 Mapping data types.

(5) Exceptions
If the specified param value is 0 or less, or is greater than the number of parameters, the JDBC driver throws an
SQLException.

11.2.6 getParameterTypeName(int param)

(1) Function
This method acquires a specified parameter's data type.

(2) Format
public synchronized String getParameterTypeName(int param) throws SQLException

(3) Arguments
int param

Specifies a parameter number (beginning with 1).

11. The JDBC 3.0 API

Hitachi Advanced Database Application Development Guide 680

(4) Return value
The method returns a String object. The following table shows the return values of the getParameterTypeName
method.

Table 11-4: Return values of the getParameterTypeName method

Parameter's data type (HADB data type) Return value (character string returned)

INTEGER "INTEGER"

SMALLINT "SMALLINT"

DECIMAL "DECIMAL"

DOUBLE PRECISION "DOUBLE PRECISION"

CHAR "CHAR"

VARCHAR "VARCHAR"

DATE "DATE"

TIME "TIME"

TIMESTAMP "TIMESTAMP"

BINARY "BINARY"

VARBINARY "VARBINARY"

ROW "ROW"

(5) Exceptions
If the specified param value is 0 or less, or is greater than the number of parameters, the JDBC driver throws an
SQLException.

11.2.7 getPrecision(int param)

(1) Function
This method acquires the number of digits in a specified parameter.

(2) Format
public synchronized int getPrecision(int param) throws SQLException

(3) Arguments
int param

Specifies a parameter number (beginning with 1).

(4) Return value
The method returns a decimal number indicating the number of digits in the specified parameter.

11. The JDBC 3.0 API

Hitachi Advanced Database Application Development Guide 681

If the specified parameter is the numeric data type, the method returns the number of digits. If it is not the numeric data
type, the method returns the parameter length in bytes. The following table shows the return values of the
getPrecision method.

Table 11-5: Return values of the getPrecision method

Parameter's data type (HADB data type) Return value (column length in digits)

INTEGER 19

SMALLINT 10

DOUBLE PRECISION 17

DECIMAL(m,n) m

CHAR(n)
VARCHAR(n)

n

DATE 10

TIME(p) p = 0: 8
p > 0: 8 + (p + 1)

TIMESTAMP(p) p = 0: 19
p > 0: 19 + (p + 1)

BINARY(n)
VARBINARY(n)

n

ROW row-length#

#
Sum of the data lengths of all columns. For details about how to obtain the data length of a column, see Length of
data storage in the topic List of data types in the manual HADB SQL Reference.

(5) Exceptions
If the specified param value is 0 or less, or is greater than the number of parameters, the JDBC driver throws an
SQLException.

11.2.8 getScale(int param)

(1) Function
This method acquires the number of decimal places in a specified parameter.

(2) Format
public synchronized int getScale(int param) throws SQLException

(3) Arguments
int param

Specifies a parameter number (beginning with 1).

11. The JDBC 3.0 API

Hitachi Advanced Database Application Development Guide 682

(4) Return value
The method returns a decimal number indicating the number of decimal places in the specified column. The following
table shows the return values of the getScale method.

Table 11-6: Return values of the getScale method

Parameter's data type (HADB data type) Return value (number of decimal places)

DECIMAL(m,n) n

TIME(p)
TIMESTAMP(p)

p

Other than the above 0

(5) Exceptions
If the specified param value is 0 or less, or is greater than the number of parameters, the JDBC driver throws an
SQLException.

11.2.9 isNullable(int param)

(1) Function
This method returns a value indicating whether the null value can be set in a specified parameter.

(2) Format
public synchronized int isNullable(int param) throws SQLException

(3) Arguments
int param

Specifies a parameter number (beginning with 1).

(4) Return value
The method returns one of the following values:

• ParameterMetaData.parameterNoNulls: The null value cannot be set.

• ParameterMetaData.parameterNullable: The null value can be set.

(5) Exceptions
If the specified param value is 0 or less, or is greater than the number of parameters, the JDBC driver throws an
SQLException.

11. The JDBC 3.0 API

Hitachi Advanced Database Application Development Guide 683

11.2.10 isSigned(int param)

(1) Function
This method returns a value indicating whether a specified parameter is for signed numeric values.

(2) Format
public synchronized boolean isSigned(int param) throws SQLException

(3) Arguments
int param

Specifies a parameter number (beginning with 1).

(4) Return value
The method returns one of the following values:

• true: The parameter is for signed numeric values.

• false: The parameter is not for signed numeric values.

The following table shows the relationship between the parameter's data type and the return value.

Table 11-7: Relationship between the parameter's data type and the return value

Parameter's data type Return value

INTEGER, SMALLINT, DOUBLE PRECISION, DECIMAL true

Other than the above false

(5) Exceptions
If the specified param value is 0 or less, or is greater than the number of parameters, the JDBC driver throws an
SQLException.

11. The JDBC 3.0 API

Hitachi Advanced Database Application Development Guide 684

11.3 Unsupported interfaces

HADB does not support the following interface:

• Savepoint

11. The JDBC 3.0 API

Hitachi Advanced Database Application Development Guide 685

This chapter describes the interfaces and methods in the JDBC 4.0 API.

12 The JDBC 4.0 API

Hitachi Advanced Database Application Development Guide 686

12.1 HADB's scope of support for the functions added in the JDBC 4.0 API

The following table shows HADB's scope of support for the functions added in the JDBC 4.0 API.

Table 12-1: HADB's scope of support for the functions added in the JDBC 4.0 API

Added function Corresponding interface HADB's scope of support

Automatic loading of java.sql.Driver -- Y

ROWID data type CallableStatement N

PreparedStatement N

RowId N

DatabaseMetaData N

National character data type PreparedStatement N

ResultSet N

XML support SQLXML N

Wrapper pattern Connection Y

DatabaseMetaData Y

DataSource Y

ResultSet Y

ResultSetMetaData Y

Statement Y

PreparedStatement Y

ParameterMetaData Y

SQL exception extension All interfaces Y

Connection management Connection Y

Statement Y

Added scalar functions Connection Y

DatabaseMetaData Y

Legend:
--: There is no corresponding interface.
Y: Supported by HADB.
N: Not supported by HADB.

12.1.1 Automatic loading of java.sql.Driver
In JDBC 4.0 API, there is no need to register the Driver class. However, processing that explicitly registers the
Driver class causes no problem.

12. The JDBC 4.0 API

Hitachi Advanced Database Application Development Guide 687

12.1.2 Wrapper pattern
In the JDBC 4.0 API, the following interfaces inherit the Wrapper interface:

• Connection
• DatabaseMetaData
• DataSource
• ResultSet
• ResultSetMetaData
• Statement
• PreparedStatement
• ParameterMetaData

12.1.3 SQL exception extension
Multiple exception classes have been added as subclasses of SQLException. The following table lists the added
exception classes and whether each is supported by HADB.

Table 12-2: Added exception classes and whether each is supported by HADB

No. Exception class name HADB's scope of support

1 SQLNonTransientException Y

2 SQLFeatureNotSupportedException Y

3 SQLNonTransientConnectionException Y

4 SQLDataException Y

5 SQLIntegrityConstraintViolationException Y

6 SQLInvalidAuthorizationSpecException Y

7 SQLSyntaxErrorException Y

8 SQLTransientException Y

9 SQLTransientConnectionException Y

10 SQLTransactionRollbackException Y

11 SQLTimeoutException Y

12 SQLRecoverableException Y

13 SQLClientInfoException Y

Legend:
Y: Supported by HADB.

For details about SQL exception extension, see 12.3 SQL exception extension function.

12. The JDBC 4.0 API

Hitachi Advanced Database Application Development Guide 688

12.1.4 Connection management
This driver supports the following interface methods:

• isValid method of the Connection interface

• isPoolable method of the Statement interface

12.1.5 Added scalar functions
The following table shows HADB's scope of support for the scalar functions added in the JDBC 4.0 API.

Table 12-3: Scalar functions supported by HADB

No. Scalar function HADB's scope of support

1 CHAR_LENGTH N

2 CHARACTER_LENGTH N

3 CURRENT_DATE Y

4 CURRENT_TIME Y

5 CURRENT_TIMESTAMP Y

6 EXTRACT Y

7 OCTET_LENGTH N

8 POSITION N

Legend:
Y: Supported by HADB.
N: Not supported by HADB.

12. The JDBC 4.0 API

Hitachi Advanced Database Application Development Guide 689

12.2 Wrapper interface

This section explains the methods provided by the Wrapper interface.

12.2.1 List of the methods in the Wrapper interface

(1) Main functions of the Wrapper interface
The Wrapper interface provides a standardized approach for calling methods that are not JDBC-compliant.

(2) Methods in the Wrapper interface that are supported by HADB
The following table lists and describes the methods in the Wrapper interface that are supported by HADB.

Table 12-4: Methods in the Wrapper interface

No. Method of the Wrapper interface Function

1 isWrapperFor(Class<?> iface) Returns a value indicating whether a specified class's object can be
returned by the unwrap method.

2 unwrap(Class<T> iface) Returns a specified class's object.

(3) Classes that can be specified
The following table lists the classes that can be specified in unwrap for an interface that has inherited Wrapper.

Table 12-5: Classes that can be specified in unwrap

No. Interface Class that can be specified in unwrap

1 java.sql.Connection AdbConnection

2 java.sql.DatabaseMetaData AdbDatabaseMetaData

3 javax.sql.DataSource AdbDataSource

4 java.sql.ResultSet AdbResultSet

5 java.sql.ResultSetMetaData AdbResultSetMetaData

6 java.sql.Statement AdbStatement

7 java.sql.PreparedStatement AdbPreparedStatement

8 java.sql.ParameterMetaData AdbParameterMetaData

(4) Example coding
The following shows an example of Wrapper interface coding:

Connection con = DriverManager.getConnection(url,info);
Class<?> clazz = Class.forName("com.hitachi.hadb.jdbc.AdbConnection");
if(con.isWrapperFor(clazz)){
 AdbConnection acon = (AdbConnection)con.unwrap(clazz);

12. The JDBC 4.0 API

Hitachi Advanced Database Application Development Guide 690

 acon.xxxx();
}

12.2.2 isWrapperFor(Class<?> iface)

(1) Function
This method returns a value indicating whether a specified class's object can be returned by the unwrap method.

(2) Format
public synchronized boolean isWrapperFor(Class<?> iface) throws SQLException

(3) Arguments
Class<?> iface

Specifies a class to be checked.

(4) Return value
If the specified class's object can be returned by the unwrap method, the method returns true; otherwise, the method
returns false.

(5) Exceptions
None.

12.2.3 unwrap(Class<T> iface)

(1) Function
This method returns a specified class's object.

(2) Format
public synchronized <T> T unwrap(Class<T> iface) throws SQLException

(3) Arguments
Class<T> iface

Specifies a class to be checked.

(4) Return value
The method returns the specified class's object.

12. The JDBC 4.0 API

Hitachi Advanced Database Application Development Guide 691

(5) Exceptions
If the specified class's object cannot be returned, the JDBC driver throws an SQLException.

12. The JDBC 4.0 API

Hitachi Advanced Database Application Development Guide 692

12.3 SQL exception extension function

Multiple exception classes have been added as subclasses of SQLException. The following table lists the exception
classes that are returned by JDBC 4.0 API and describes each class.

Table 12-6: List of exception classes returned by JDBC 4.0 API and description of the classes

No. Exception class name Description Connection
status if an
error occurs
while
connected

1 SQLNonTransientException Indicates an error that is not transient. This exception
is thrown when the SQL statement resulting in an
error cannot be re-executed successfully.

Valid

2 SQLFeatureNotSupportedException Thrown when the class value of SQLSTATE is 0A
(unsupported function).

Valid

3 SQLNonTransientConnectionException Thrown when the class value of SQLSTATE is 08
(connection violation).

--

4 SQLDataException Thrown when the class value of SQLSTATE is 22
(data exception).

Valid

5 SQLIntegrityConstraintViolationExcep
tion

Thrown when the class value of SQLSTATE is 23
(integrity constraint violation).

Valid

6 SQLInvalidAuthorizationSpecException Thrown when the class value of SQLSTATE is 28
(specified authorization identifier is invalid).

--

7 SQLSyntaxErrorException Thrown when the class value of SQLSTATE is 42
(syntax error or access rule violation).

Valid

8 SQLTransientException Indicates a transient error. This exception is thrown
when the SQL statement resulting in an error might
be re-executed successfully.

Valid

9 SQLTransientConnectionException Thrown when the class value of SQLSTATE is 08
(connection violation). This applies, for example,
when the HADB server is starting or terminating.

--

10 SQLTransactionRollbackException Thrown when the class value of SQLSTATE is 40
(transaction rolled back).

Valid

11 SQLTimeoutException Thrown when a timeout occurs. Valid

12 SQLRecoverableException Thrown when the transaction resulting in an error
might be re-executed successfully after a connection
is re-established.

Invalid

13 SQLClientInfoException Thrown by the Connection.setClientInfo
method when there is one or more client properties
that cannot be set.

--

Legend:
--: Not applicable.

Note
For details about the class values of SQLSTATE, see the topic SQLSTATE output format in the manual HADB
Messages.

The following shows the inheritance relationships of the exception classes that have been added in JDBC 4.0 API.

12. The JDBC 4.0 API

Hitachi Advanced Database Application Development Guide 693

java.sql.SQLException

 java.sql.SQLNonTransientException
 java.sql.SQLFeatureNotSupportedException
 java.sql.SQLNonTransientConnectionException
 java.sql.SQLDataException
 java.sql.SQLIntegrityConstraintViolationException
 java.sql.SQLInvalidAuthorizationSpecException
 java.sql.SQLSyntaxErrorException

 java.sql.SQLTransientException
 java.sql.SQLTransientConnectionException
 java.sql.SQLTransactionRollbackException
 java.sql.SQLTimeoutException

 java.sql.SQLRecoverableException
 java.sql.SQLClientInfoException

Each exception class directly uses the classes of the java.sql package. For details about and usage of individual
methods provided by the exception classes, see the related JDBC standard documentation.

Important
If a method such as executeQuery that executes SQL statements times out by exceeding the time
specified in the setQueryTimeout method or adb_clt_rpc_sql_wait_time, the JDBC standard
dictates that SQLTimeoutException is thrown. However, because the connection with the HADB
server is always lost if a timeout occurs when a HADB client is waiting for the HADB server to respond
to a processing request, SQLRecoverableException is thrown instead.

12. The JDBC 4.0 API

Hitachi Advanced Database Application Development Guide 694

12.4 Unsupported interfaces

HADB does not support the following interfaces:

• NClob
• RowId
• SQLXML

12. The JDBC 4.0 API

Hitachi Advanced Database Application Development Guide 695

This chapter describes the scope of support in HADB for the functions added in the JDBC 4.1 API.

13 The JDBC 4.1 API

Hitachi Advanced Database Application Development Guide 696

13.1 HADB's scope of support for the functions added in the JDBC 4.1 API

The following table lists HADB's scope of support for the functions added in the JDBC 4.1 API.

Table 13-1: HADB's scope of support for the functions added in the JDBC 4.1 API

Added function Corresponding interface Supported in HADB

try-with-resources statement Connection Y

ResultSet

Statement

Specification of Java data type as the
conversion destination for a getObject
method

CallableStatement Y#

ResultSet

Acquisition of parent Logger Driver N

DataSource

ConnectionPoolDataSource

Schema specification Connection N

Stop and time out physical connections Connection N

Closing Statement objects when their
dependent objects close

Statement Y

API that adds database metadata DatabaseMetaData Y

Legend:
Y: Supported by HADB.
N: Not supported by HADB.

#
The getObject method of the ResultSet interface Only some conversions to the Java data type are supported.
For details, see 8.5.43 getObject(int columnIndex,Class<T> type).

13.1.1 try-with-resources statement
This statement is a try statement that declares resources. By using a try-with-resources statement, you can
ensure that each resource is closed at the end of the statement.

You can use a try-with-resources statement in a Connection interface, ResultSet interface, or
Statement interface. For details about how to use this statement, see the related documentation about the JDBC
specification.

13.1.2 Closing Statement objects when their dependent objects close
HADB supports the closeOnCompletion and isCloseOnCompletion methods in the Statement interface.

13. The JDBC 4.1 API

Hitachi Advanced Database Application Development Guide 697

This chapter describes the scope of support in HADB for the functions added in the JDBC 4.2 API.

14 The JDBC 4.2 API

Hitachi Advanced Database Application Development Guide 698

14.1 HADB's scope of support for the functions added in the JDBC 4.2 API

The following table lists HADB's scope of support for the functions added in the JDBC 4.2 API.

Table 14-1: HADB's scope of support for the functions added in the JDBC 4.2 API

Added function Corresponding interface Supported in HADB

REF CURSOR CallableStatement N

SQLType interface SQLType N

CallableStatement

PreparedStatement

ResultSet

SQLOutput

JDBCType Enum SQLType N

Large update counts PreparedStatement Y

Statement

API that adds database metadata DatabaseMetaData Y

Legend:
Y: Supported by HADB.
N: Not supported by HADB.

14.1.1 Large update counts
HADB supports the following methods that handle the updated row count of update SQL statements as long values.

PreparedStatement interface
• executeLargeUpdate

Statement interface
• getLargeUpdateCount
• setLargeMaxRows
• getLargeMaxRows
• executeLargeBatch
• executeLargeUpdate

Use these methods when executing the following SQL statements if the number of updated rows might exceed
Integer.MAX_VALUE:

• UPDATE
• INSERT
• DELETE

14. The JDBC 4.2 API

Hitachi Advanced Database Application Development Guide 699

This chapter explains the environment setup for an HADB ODBC driver and points to be taken into
consideration during the creation of application programs that support ODBC.

Part 4: Application Program Creation (ODBC)

15 Creating Application Programs

Hitachi Advanced Database Application Development Guide 700

15.1 ODBC driver provided by HADB

You can use the ODBC driver provided by HADB (referred to hereafter as the HADB ODBC driver) to access the HADB
database. This chapter explains the scope of the ODBC driver with which the HADB ODBC driver is compliant and
the system configuration for the HADB ODBC driver.

15.1.1 ODBC driver version with which the HADB ODBC driver is
compliant

The HADB ODBC driver complies with ODBC 3.5. The HADB ODBC driver enables you to use the ODBC interfaces
to access the HADB database and link with the BI tools.

15.1.2 System configuration

(1) Prerequisite programs
The HADB ODBC driver requires the following programs.

■ HADB ODBC driver (64-bit mode)
Supported operating systems:

• Windows Server 2008 R2

• Windows Server 2012

• Windows Server 2012 R2

• Windows Server 2016

• Windows 7 (x64)

• Windows 8.1 (x64)

• Windows 10 (x64)

Required software:

• Microsoft Data Access Components

• HADB client

■ HADB ODBC driver (32-bit mode)
Supported operating systems:

• Windows 7

• Windows 7 (x64)

• Windows 8.1

• Windows 8.1 (x64)

• Windows 10

• Windows 10 (x64)

Required software:

• Microsoft Data Access Components

15. Creating Application Programs

Hitachi Advanced Database Application Development Guide 701

• HADB client

(2) Device configuration
The following figure shows the system configuration for using the HADB ODBC driver.

Figure 15-1: System configuration for using the HADB ODBC driver

15.1.3 About conversion of character encoding

(1) Character encoding conversion processing
The ODBC driver provided by HADB supports ODBC 3.5 that includes the MS-Unicode interfaces.

When an SQLxxxW function, which is an MS-Unicode interface, is used, the ODBC driver performs conversion between
the MS-Unicode character string data and the character encodings supported by HADB.

The following figure shows how the ODBC driver performs conversion between MS-Unicode character string data and
the character encodings supported by HADB.

15. Creating Application Programs

Hitachi Advanced Database Application Development Guide 702

Figure 15-2: Conversion between MS-Unicode character string data and the character encodings
supported by HADB

Explanation:

1. When the character encoding is converted from an application program to the HADB server for processing, the
ODBC driver uses an SQLxxxW function to convert MS-Unicode character string data to an HADB-supported
character encoding, and then passes the processing to the HADB server.

2. When the character encoding is converted from the HADB server to an application program for processing, the
ODBC driver uses an SQLxxxW function to convert the HADB-supported character encoding to MS-Unicode
character string data, and then outputs the results to the application program.

HADB supports the following character encodings:

• Unicode (UTF-8)

• Shift-JIS

(2) Notes
• Characters with a diacritical mark

If a character with a diacritical mark, such as an umlaut () or a dieresis (), is compared, assigned
to a variable, or retrieved, the character might be treated as not having the diacritical mark.
This is because diacritical marks are lost when the character encoding is converted by using an SQLxxxW function.

• Characters such as surrogate pairs that do not support conversion of character encoding
When you use a SQLxxxW function of the ODBC 3.5 interface, character encoding will be converted. An error occurs
if a character such as a surrogate pair whose character encoding cannot be converted is compared or undergoes
storage assignment. Characters of this nature might be replaced with # during retrieval, and characters that appear
after this # in the retrieval results might become garbled.

15. Creating Application Programs

Hitachi Advanced Database Application Development Guide 703

15.1.4 About using the ODBC cursor library
Use of the ODBC cursor library provided by Microsoft makes the following functionality available in HADB.

(1) Scrollable cursors
By specifying SQL_SCROLLABLE in the SQL_ATTR_CURSOR_SCROLLABLE attribute, you can:

• Use SQLFetchScroll to fetch rowset data

• Use SQLSetPos to position the cursor at a certain row in the rowset

However, you cannot use SQLSetPos to update the rowset data to the latest state. You also cannot use SQLSetPos
to update or delete data in result sets.

(2) Bookmark functionality
You can use the following procedure to acquire a bookmark for the row where the cursor is positioned:

1. Set the SQL_ATTR_USE_BOOKMARKS attribute to SQL_UB_VARIABLE.

2. Use SQLSetPos to position the cursor at the desired row in the rowset.

3. Acquire data from column 0.

Also, by specifying a bookmark in the SQL_ATTR_FETCH_BOOKMARK_PTR attribute, you can specify the bookmark
in the first row when executing SQLFetchScroll.

15. Creating Application Programs

Hitachi Advanced Database Application Development Guide 704

15.2 HADB ODBC driver environment setup

This section explains the HADB ODBC driver environment setup. The tasks explained here are performed by an OS
user with the administrator permissions.

15.2.1 Specifying data sources
The following explains how to specify a data source.

To specify a data source:
1. Run ODBC Data Source Administrator (odbcad32.exe).

The ODBC Data Source Administrator to be run depends on the OS and on the BI tool's operating mode on the
client machine on which the HADB client is installed. The following table shows the folder in which the ODBC
Data Source Administrator is stored.

Table 15-1: Folder in which ODBC Data Source Administrator is stored

No. OS on the client
machine

BI tool's operating
mode

HADB ODBC driver
type

Folder in which ODBC Data Source
Administrator is stored

1 32-bit 32-bit 32-bit %windir%
\system32\odbcad32.exe

2 64-bit 64-bit 64-bit

3 32-bit (WOW64) 32-bit %windir%
\SysWOW64\odbcad32.exe

4 64-bit --

Legend:
--: This combination is not supported.

2. From the tab items, select the type of data source to be registered or modified, and then click the Add button.

3. The Create New Data Source dialog box is displayed. Select Hitachi Advanced Data Binder ODBC Driver.

4. The Hitachi Advanced Data Binder ODBC Driver Setup dialog is displayed. Specify all items, and then click
the OK.

Specify a data source name as a string of no more than 32 bytes. If you are entering double-byte characters, note
that each displayed character is not equal to one byte.
Specify a client definition file path as a string of no more than 255 bytes.

15. Creating Application Programs

Hitachi Advanced Database Application Development Guide 705

Note
• If you intend to output HADB ODBC driver trace information, click Options>>. For details

about the specification method, see 17.3.1 Configuration in ODBC Data Source Administrator.

• To cancel a data source specification, click the CANCEL.

5. The registered data source is displayed. Check the registered information.

15.2.2 Registering the registry key
When you set up the HADB client environment, use the registry registration command to check if the registry key has
been registered. For details about how to register a registry key, see (1) Installing an HADB client in 4.2.1 HADB
client for Windows.

15.2.3 Deleting data sources
The following explains how to delete a data source.

To delete a data source:
1. Run ODBC Data Source Administrator (odbcad32.exe).

The ODBC Data Source Administrator to be run depends on the OS and on the BI tool's operating mode on the
client machine on which the HADB client is installed. The following table shows the folder in which the ODBC
Data Source Administrator is stored.

Table 15-2: Folder in which ODBC Data Source Administrator is stored

No. OS on the client
machine

BI tool's operating
mode

HADB ODBC driver
type

Folder in which ODBC Data Source
Administrator is stored

1 32-bit 32-bit 32-bit %windir%
\system32\odbcad32.exe

2 64-bit 64-bit 64-bit

3 32-bit (WOW64) 32-bit %windir%
\SysWOW64\odbcad32.exe

4 64-bit --

Legend:
--: This combination is not supported.

2. From the tab items, select the type of data source to be deleted, and then select the data source name to be deleted.

3. Click the Remove button.

15. Creating Application Programs

Hitachi Advanced Database Application Development Guide 706

15.3 Correspondence between data types

This section explains the correspondence between data types.

15.3.1 Correspondence between ODBC's SQL data types and HADB's
data types

The following table shows the correspondence between ODBC's SQL data types and HADB's data types.

Table 15-3: Correspondence between ODBC's SQL data types and HADB's data types

Classification ODBC's SQL data type HADB's
correspondin
g data type

Description Supported

Character string
data

SQL_CHAR CHARACTER Fixed-length character string Y

SQL_VARCHAR VARCHAR Variable-length character string Y

SQL_LONGVARCHAR -- Variable-length character string N

SQL_WCHAR -- Fixed-length character string (for
Unicode)

N

SQL_WVARCHAR -- Variable-length character string
(for Unicode)

N

SQL_WLONGVARCHAR -- Variable-length character string
(for Unicode)

N

Numeric data SQL_DECIMAL DECIMAL Fixed-point number Y

SQL_NUMERIC -- Fixed-point number N

SQL_TINYINT -- 1-byte integer N

SQL_SMALLINT -- 2-byte integer Y#1

SQL_INTEGER SMALLINT 4-byte integer Y

SQL_BIGINT INTEGER 8-byte integer Y

SQL_REAL -- Single-precision floating point
number

N

SQL_FLOAT -- Double-precision floating-point
number

N

SQL_DOUBLE DOUBLE
PRECISION

Double-precision floating-point
number

Y

SQL_BIT -- Bit N

SQL_BINARY BINARY Fixed-length binary data Y

SQL_VARBINARY VARBINARY Variable-length binary data Y

SQL_LONGVARBINARY -- Variable-length binary data N

Date and time
data

SQL_TYPE_DATE(, SQL_DATE)#2 DATE Date Y

SQL_TYPE_TIME(, SQL_TIME)#2 TIME Time Y

15. Creating Application Programs

Hitachi Advanced Database Application Development Guide 707

Classification ODBC's SQL data type HADB's
correspondin
g data type

Description Supported

SQL_TYPE_TIMESTAMP(,
SQL_TIMESTAMP)#2

TIMESTAMP Time stamp Y

SQL_INTERVAL_MONTH -- Interval in months N

SQL_INTERVAL_YEAR -- Interval in years N

SQL_INTERVAL_YEAR_TO_MONTH -- -- N

SQL_INTERVAL_DAY -- Interval in days N

SQL_INTERVAL_HOUR -- Interval in hours N

SQL_INTERVAL_MINUTE -- Interval in minutes N

SQL_INTERVAL_SECOND -- Interval in seconds N

SQL_INTERVAL_DAY_TO_HOUR -- -- N

SQL_INTERVAL_DAY_TO_MINUTE -- -- N

SQL_INTERVAL_DAY_TO_SECOND -- -- N

SQL_INTERVAL_HOUR_TO_MINUTE -- -- N

SQL_INTERVAL_HOUR_TO_SECOND -- -- N

SQL_INTERVAL_MINUTE_TO_SECOND -- -- N

Other SQL_GUID -- -- N

Legend:
--: There is no corresponding data type.
Y: The data type can be used.
N: The data type cannot be used.

#1
Because HADB does not have a data type that corresponds to SQL_SMALLINT, you cannot use SQL_SMALLINT
to access the HADB database. SQL_SMALLINT can be used as an interface for some of the catalog functions
provided by the HADB ODBC driver. For example, SQL_SMALLINT can be used in the value of SQL_DATA_TYPE
in the result set column of SQLColumns.

#2
SQL_TYPE_DATE, SQL_TYPE_TIME, and SQL_TYPE_TIMESTAMP are the datetime data types used in ODBC
3.0. Use these data types unless you have a reason not to.
The data types in parentheses are the datetime data types for ODBC 2.0. They are handled in the same way as those
for ODBC 3.0. Depending on the value specified for the ADBODBAPMODE environment variable, the identifier in
parentheses might be returned in metadata.

15.3.2 Correspondence between ODBC's SQL data types and C data types
The following tables show the correspondence between ODBC's SQL data types and C data types in terms of the
combinations of data types that can be compared and stored or assigned, and the combinations of data types that can be
retrieved.

15. Creating Application Programs

Hitachi Advanced Database Application Development Guide 708

Table 15-4: Combinations of data types that can be compared and stored or assigned (conversion
from C data types to ODBC's SQL data types)

Legend:
D: Default conversion or recommended combination.
Y: Can be converted. However, data truncation or precision loss might occur during conversion.
--: Cannot be converted.

15. Creating Application Programs

Hitachi Advanced Database Application Development Guide 709

Table 15-5: Combinations of data types that can be retrieved (conversion from ODBC's SQL data
types to C data types)

Legend:
D: Default conversion or recommended combination.
Y: Can be converted. However, data truncation or precision loss might occur during conversion.
--: Cannot be converted.

#
If ACCESS is specified in the ADBODBAPMODE environment variable, the default conversion will be SQL_C_CHAR.

15.3.3 Notes about data type conversion

(1) Notes about the BINARY and VARBINARY types
■ Rules for comparing and storing or assigning

• The following rules apply to entering data to HADB's BINARY or VARBINARY type:

• If the input data is SQL_C_WCHAR, after conversion to CHAR data, processing equivalent to conversion from
SQL_C_CHAR to binary is performed.

• If the input data is character string data, every 2 bytes of data is converted to 1 byte (8 bits) of binary data. If the
input data is SQL_C_WCHAR, this processing is applied after the data is converted to SQL_C_CHAR. Two bytes
of character string data represents one hexadecimal number. For example, 01 is converted to the binary
00000001, and FF is converted to the binary 11111111. Accordingly, an error occurs when half the byte
length of the input data exceeds the definition length of the input destination.

• The following rules apply to entering SQL_C_BINARY type data to an HADB data type:

15. Creating Application Programs

Hitachi Advanced Database Application Development Guide 710

• When the input destination is a data type that expects character string data (such as SQL_CHAR), an error occurs
when the actual length of the input data exceeds the definition length of the target data.

■ Rules for retrieval

• The following rule applies when data is output from HADB's BINARY or VARBINARY type:

• When receiving the data as character string data, each byte (8 bits) of the source data is represented by two ASCII
characters. These characters are an ASCII representation of a hexadecimal number. For example, the binary
00000001 is converted to 01, and the binary 11111111 is converted to FF. If BuffeLength is less than
twice the byte length of the source data (further doubled when the data is SQL_C_WCHAR), then the data is
truncated and a warning output to that effect.

(2) Notes about the DATE, TIME, and TIMESTAMP types
• If date data of the DATE or CHAR type is converted to time stamp data of the TIMESTAMP type, zeros are set in the

time part of the time stamp data.

• If time data of the TIME type or date data of the CHAR type is converted to time stamp data of the TIMESTAMP
type, the current date is set in the date part of the time stamp data.

• If time data of the TIME or CHAR type is converted to time data of the TIME type or time stamp data of the
TIMESTAMP type and the fractional seconds precision of the data before conversion exceeds that of the data after
conversion, the excess part is discarded. In such a case, the return value is SQL_SUCCESS.

• If time stamp data of the TIMESTAMP or CHAR type is converted to date data of the DATE type, only the date part
of the time stamp data is converted. In such a case, the return value is SQL_SUCCESS.

• If time stamp data of the TIMESTAMP or CHAR type is converted to time data of the TIME type, only the time part
of the time stamp data is converted. In such a case, the return value is SQL_SUCCESS.

• If time stamp data of the TIMESTAMP or CHAR type is converted to time data of the TIME type or time stamp data
of the TIMESTAMP type and the fractional seconds precision of the data before conversion exceeds that of the data
after conversion, the excess part is discarded. In such a case, the return value is SQL_SUCCESS.

• The VARCHAR type is handled in the same manner as the CHAR type.

(3) Notes about the SQL_DECIMAL type
If a fractional value less than 1, whose precision value is equal to its scaling value, is converted to the SQL_DECIMAL
type, and a zero is entered to the left of the decimal point, an error will occur. This is because the zero is also counted
as one digit. You can convert data successfully by specifying the data that begins at the decimal point.

Example:
Retrieving or comparing and assigning a value whose data type defined in the table is DECIMAL(3,3):

• 0.123: An error occurs.

• .123: The data is converted successfully.

(4) Notes about the SQL_C_NUMERIC type
• The maximum precision supported for HADB's SQL_C_NUMERIC type is 38.

• When data is converted from the SQL_DOUBLE type to the SQL_C_NUMERIC type, or when a numeric character
string of the SQL_CHAR type or the SQL_VARCHAR type is converted to data of the SQL_C_NUMERIC type and
the source data is in floating-point number format, the data is first converted to the fixed-point number format and
then is converted to the SQL_C_NUMERIC type.

15. Creating Application Programs

Hitachi Advanced Database Application Development Guide 711

• The following rules apply when floating-point numbers are converted to fixed-point numbers or fixed-point numbers
are converted to the SQL_C_NUMERIC type:

• The format for floating-point numbers must comply with the format for floating-point numeric constants. A
maximum of 38 digits are supported for the mantissa part and a maximum of three digits are supported for the
exponent part. For details about the format for floating-point numeric constants, see the topic Description format
of literals in the manual HADB SQL Reference.

• The maximum and minimum values supported for the exponent are 38 and -38, respectively.

• If the exponent is a positive value and the sum of the number of integer digits in the mantissa part and the value
of the exponent exceeds 38, SQL_ERROR is returned because the integer is truncated when the data is converted
to the fixed-point number format.

• If the exponent is a negative value and the sum of the number of digits to the right of the decimal point in the
mantissa part and the absolute value of the exponent exceeds 38, digit overflow occurs in the fractional part
when data is converted to a fixed-point number. If the digits resulting in the overflow include a nonzero number,
SQL_SUCCESS_WITH_INFO is returned; otherwise, SQL_SUCCESS is returned.

15. Creating Application Programs

Hitachi Advanced Database Application Development Guide 712

15.4 Information that is returned in the event of an error

This section explains the information that is returned if an error occurs in the HADB ODBC driver or in HADB (HADB
server or HADB client).

How to obtain error information
In the event of an error, obtain error information by specifying the last handle used in SQLGetDiagField and
SQLGetDiagRec or in SQLGetDiagFieldW and SQLGetDiagRecW.
The error information that can be obtained with SQLGetDiagField and SQLGetDiagRec or in
SQLGetDiagFieldW and SQLGetDiagRecW depends on the location of the error.

■ HADB ODBC driver errors

• The SQLSTATE is set for each error according to the ODBC conventions. For details about SQLSTATE
values, see the ODBC Programmer's Reference in the MSDN library and the topic SQLSTATE Values in the
manual HADB Messages.

• For NativeCode, 0 is always returned.

• For the message text, a message beginning with KFAA72 is set after the following character string:
[Hitachi Advanced Data Binder][ODBC Driver]

■ HADB errors

• For SQLSTATE, the SQLSTATE that corresponds to the error that occurred in HADB is set. For details about
SQLSTATE, see List of SQLSTATE values in the manual HADB Messages.

• For NativeCode, SQLCODE is set.

• For the message text, the message returned from HADB is set following the following character string:
[Hitachi Advanced Data Binder][ODBC Driver]
If detailed information cannot be obtained from an HADB client, only the above character string is set.

15. Creating Application Programs

Hitachi Advanced Database Application Development Guide 713

15.5 Limitations

This section explains the limitations when HADB is accessed via the ODBC driver.

15.5.1 ROW specification
Queries with the ROW specification cannot be executed. UPDATE and INSERT statements with ROW specified can also
not be executed.

15.5.2 AUTOCOMMIT specifications
If AUTOCOMMIT is ON, a commit is executed. Information about preprocessing that has already been performed
(information from execution of SQLPrepare) is not deleted by a commit that is issued automatically after
SQLExecute, SQLExecDirect, SQLExecDirectW, or SQLCloseCursor has been executed.

Example:

1. SQLPrepare is executed in statement A.

2. SQLPrepare is executed in statement B.

3. SQLExecute is executed in statement A (commit is issued automatically).

4. SQLExecute is executed in statement B (commit is executed; preprocessing information in 3 is not deleted).

15.5.3 Notes about the maximum number SQL processing real threads
If you attempt to use multiple statement handles allocated by the same connection handle to execute SQL statements
concurrently, but the number of processing real threads available does not match the maximum number of SQL
processing real threads, SQL statement execution requests will result in an error (the requests will not be placed in wait
status).

The maximum number of SQL processing real threads is specified in the following operands:

• adb_sql_exe_max_rthd_num in the server definition

• adb_sql_exe_max_rthd_num in the client definition

15. Creating Application Programs

Hitachi Advanced Database Application Development Guide 714

15.6 Notes

15.6.1 Effects of update operations on a retrieval using a cursor
If an update operation is performed during a retrieval using a cursor, the results of the update operation might be applied
to the retrieval results, depending on the timing. To prevent the results of update operations from being applied to retrieval
results, do the following:

• Close the cursor before adding or updating rows.

• Specify data and search conditions in such a manner that the rows to be added or updated are not included in the
retrieval results.

15.6.2 Notes on using the HADB ODBC driver in ODBC 2.x applications
If SQL_OV_ODBC2 is specified in the SQL_ATTR_ODBC_VERSION attribute of the environment handle, the HADB
ODBC driver operates according to the ODBC 2.x specification in relation to the items explained in this subsection.

(1) About SQLSTATE
Pursuant to changes in Open Group and ISO specifications, a number of SQLSTATE values have changed in ODBC
3.x. The HADB ODBC driver returns ODBC 2.x SQLSTATE values mapped according to the following table. For
details about SQLSTATE, see List of SQLSTATE values in the manual HADB Messages.

Table 15-6: Table of SQLSTATE value mapping

No. ODBC3.x ODBC2.x

1 07005 24000

2 07009# S1002

3 S1093

4 22007 22008

5 22018 22005

6 HY001 S1001

7 HY003 S1003

8 HY004 S1004

9 HY007 S1010

10 HY009 S1009

11 HY010 S1010

12 HY011 S1011

13 HY024 S1009

14 HY090 S1090

15 HY091 S1091

16 HY092 S1092

15. Creating Application Programs

Hitachi Advanced Database Application Development Guide 715

No. ODBC3.x ODBC2.x

17 HY096 S1096

18 HY100 S1100

19 HY104 S1104

20 HY105 S1105

21 HYC00 S1C00

#
When SQLSTATE is 07009, mapping does not occur on a one-to-one basis. In this scenario, mapping takes place
as shown in the following table.

Table 15-7: Mapping when SQLSTATE is 07009

No. Function that returns SQLSTATE 07009 SQLSTATE value to which SQLSTATE 07009 is
mapped when SQL_OV_ODBC2 is specified

1 SQLBindParameter S1093

2 SQLColAttribute S1002

3 SQLDescribeCol 07009

4 SQLDescribeParam S1093

5 SQLFetch S1002

6 SQLGetData S1002

7 SQLGetDescField 07009

8 SQLGetDescRec 07009

9 SQLSetDescRec 07009

10 SQLSetDescField 07009

(2) Return value of SQL_NO_DATA
When an application calls one of the following ODBC functions that executes a DELETE or UPDATE statement that
does not affect any rows, the driver returns SQL_SUCCESS. It does not return SQL_NO_DATA.

• SQLExecDirect
• SQLExecute
• SQLParamData

(3) Return value of SQLGetInfo
The value specified for SQL_ATTR_ODBC_VERSION of the environment handle affects the value returned to
SQL_ALTER_TABLE in the following ways:

• When SQL_OV_ODBC3 is specified for SQL_ATTR_ODBC_VERSION
SQL_AT_ADD_COLUMN_SINGLE is returned to SQL_ALTER_TABLE.

• When SQL_OV_ODBC2 is specified for SQL_ATTR_ODBC_VERSION
SQL_AT_ADD_COLUMN is returned to SQL_ALTER_TABLE.

15. Creating Application Programs

Hitachi Advanced Database Application Development Guide 716

This chapter explains the ODBC functions provided by HADB.

16 ODBC Functions

Hitachi Advanced Database Application Development Guide 717

16.1 List of ODBC functions

The following table lists the ODBC functions.

Table 16-1: List of ODBC functions

No. Classification API name ODBC 3.0 ODBC 3.5 Remarks

1 Connecting to the
data source

SQLAllocHandle Y Y --

2 SQLConnect Y Y

3 SQLConnectW# N Y

4 SQLDriverConnect Y Y

5 SQLDriverConnectW# N Y

6 SQLBrowseConnect Y Y

7 SQLBrowseConnectW# N Y

8 Acquiring driver
and data source
information

SQLDataSources DM DM

9 SQLDataSourcesW# N DM

10 SQLDrivers DM DM

11 SQLDriversW# N DM

12 SQLGetInfo Y Y

13 SQLGetInfoW# N Y

14 SQLGetFunctions Y Y

15 SQLGetTypeInfo Y Y

16 SQLGetTypeInfoW# N Y

17 Specifying and
obtaining driver
options

SQLSetConnectAttr Y Y

18 SQLSetConnectAttrW# N Y

19 SQLGetConnectAttr Y Y

20 SQLGetConnectAttrW# N Y

21 SQLSetEnvAttr Y Y

22 SQLGetEnvAttr Y Y

23 SQLSetStmtAttr Y Y

24 SQLSetStmtAttrW# N Y

25 SQLGetStmtAttr Y Y

26 SQLGetStmtAttrW# N Y

27 Specifying
descriptor values

SQLGetDescField Y Y

28 SQLGetDescFieldW# N Y

29 SQLGetDescRec Y Y

30 SQLGetDescRecW# N Y

31 SQLSetDescField Y Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 718

No. Classification API name ODBC 3.0 ODBC 3.5 Remarks

32 SQLSetDescFieldW# N Y

33 SQLSetDescRec Y Y

34 SQLCopyDesc Y Y

35 Creating SQL
requests

SQLPrepare Y Y

36 SQLPrepareW# N Y

37 SQLBindParameter Y Y

38 SQLGetCursorName Y Y

39 SQLGetCursorNameW# N Y

40 SQLSetCursorName Y Y

41 SQLSetCursorNameW# N Y

42 SQLDescribeParam Y Y

43 SQLNumParams Y Y

44 Executing SQL
statements

SQLExecute Y Y

45 SQLExecDirect Y Y

46 SQLExecDirectW# N Y

47 SQLNativeSql Y Y

48 SQLNativeSqlW# N Y

49 SQLParamData Y Y

50 SQLPutData Y Y

51 Acquiring
execution results
and execution
result information

SQLRowCount Y Y

52 SQLNumResultCols Y Y

53 SQLDescribeCol Y Y

54 SQLDescribeColW# N Y

55 SQLColAttribute Y Y

56 SQLColAttributeW# N Y

57 SQLBindCol Y Y

58 SQLFetch Y Y

59 SQLFetchScroll N N This function always results
in an error because HADB
does not support the
functionality for cursor
positioning in the reverse
direction. However, this
function is supported when
the cursor library provided
by Microsoft is used.
For details, see 15.1.4 
About using the ODBC
cursor library.

60 SQLGetData Y Y --

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 719

No. Classification API name ODBC 3.0 ODBC 3.5 Remarks

61 SQLSetPos N N This function always results
in an error. However, this
function is supported when
the cursor library provided
by Microsoft is used.
For details, see 15.1.4 
About using the ODBC
cursor library.

62 SQLBulkOperations N N This function always results
in an error because HADB
does not support bookmarks.

63 SQLMoreResults Y Y This function always returns
SQL_NO_DATA.

64 SQLGetDiagField Y Y --

65 SQLGetDiagFieldW# N Y

66 SQLGetDiagRec Y Y

67 SQLGetDiagRecW# N Y

68 Acquiring system
information for
the data source

SQLColumnPrivileges Y Y The number of rows in the
retrieval result set is always
zero.69 SQLColumnPrivilegesW# N Y

70 SQLColumns Y Y --

71 SQLColumnsW# N Y

72 SQLForeignKeys Y Y

73 SQLForeignKeysW# N Y

74 SQLPrimaryKeys Y Y

75 SQLPrimaryKeysW# N Y

76 SQLProcedureColumns Y Y The number of rows in the
retrieval result set is always
zero.77 SQLProcedureColumnsW# N Y

78 SQLProcedures Y Y

79 SQLProceduresW# N Y

80 SQLSpecialColumns Y Y

81 SQLSpecialColumnsW# N Y

82 SQLStatistics Y Y --

83 SQLStatisticsW# N Y

84 SQLTablePrivileges Y Y

85 SQLTablePrivilegesW# N Y

86 SQLTables Y Y

87 SQLTablesW# N Y

88 Terminating
execution of SQL
statements

SQLFreeStmt Y Y

89 SQLCloseCursor Y Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 720

No. Classification API name ODBC 3.0 ODBC 3.5 Remarks

90 SQLCancel Y Y

91 SQLEndTran Y Y

92 Disconnecting
from the data
source

SQLDisconnect Y Y

93 SQLFreeHandle Y Y

Legend:
Y: Supported.
N: Not supported.
DM: Provided by the driver manager.
--: None

#
The SQLxxxW functions are used to perform conversion between the MS-Unicode character string data and the
character encodings supported by HADB. For details about the processing of conversion between character
encodings, see 15.1.3 About conversion of character encoding.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 721

16.2 Notes about SQLxxx and SQLxxxW functions

This section provides notes about the following functions that are described in this chapter:

• SQLxxx functions used in ODBC 3.0

• SQLxxxW functions used in ODBC 3.5

Arguments that use an SQLxxx function to define the SQLCHAR type in ODBC 3.0 use an SQLxxxW function to define
the SQLWCHAR type in ODBC 3.5.

The units for parameters that specify lengths are as follows:

• SQLxxx functions in ODBC 3.0: Lengths are in bytes

• SQLxxxW functions in ODBC 3.5

• For a parameter of the SQLPOINTER type: Lengths are in bytes

• For a parameter of the SQLWCHAR type: Lengths are in characters

For those functions whose names differ between ODBC 3.0 and ODBC 3.5, the SQLxxx function used in ODBC 3.0 is
explained first, and then the SQLxxxW function used in ODBC 3.5 is explained.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 722

16.3 Connecting to the data source

This section explains the ODBC functions that are used for connecting to the data source.

16.3.1 SQLAllocHandle

(1) Function
This ODBC function allocates environment, connection, statement, and descriptor handles.

(2) Format
 SQLRETURN SQLAllocHandle
 (
 SQLSMALLINT HandleType, /* In */
 SQLHANDLE InputHandle, /* In */
 SQLHANDLE * OutputHandlePtr /* In/Out */
)

(3) Arguments
HandleType

Specifies one of the following handle types:

• SQL_HANDLE_ENV: Environment handle

• SQL_HANDLE_DBC: Connection handle

• SQL_HANDLE_STMT: Statement handle

• SQL_HANDLE_DESC: Descriptor handle

InputHandle
Specifies one of the following input handles, depending on the value of the HandleType parameter:

HandleType Value that is set for InputHandle

SQL_HANDLE_ENV SQL_NULL_HANDLE

SQL_HANDLE_DBC Environment handle

SQL_HANDLE_STMT Connection handle

SQL_HANDLE_DESC Connection handle

OutputHandlePtr
Specifies a pointer to the buffer used to return the new handle that was allocated.
If the return value is SQL_SUCCESS, the value of the handle has been set. If it is SQL_ERROR, the following value
is set:

HandleType Value specified for OutputHandlePtr

SQL_HANDLE_ENV NULL

SQL_HANDLE_DBC SQL_NULL_HDBC

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 723

HandleType Value specified for OutputHandlePtr

SQL_HANDLE_STMT SQL_NULL_HSTMT

SQL_HANDLE_DESC SQL_NULL_HDESC

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

08003 Connection does not exist Connection establishment has not been
completed.

Y

HY000 General error -- N

HY001 Memory allocation error Y

HY009 Invalid use of null pointer Y

HY010 Function sequence error The ODBC version has not been set prior to the
acquisition of a connection handle.

Y

HY013 Memory management error HandleType is SQL_HANDLE_DBC,
SQL_HANDLE_STMT, or
SQL_HANDLE_DESC, but the memory object
cannot be accessed (memory shortage).

N

HY014 Limit on the number of handles exceeded -- N

HY092 Invalid attribute or option identifier An invalid value was specified for
HandleType.

Y

HYC00 Optional feature not implemented -- N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.3.2 SQLConnect, SQLConnectW

(1) Function
This ODBC function establishes a connection between the HADB ODBC driver and the data source (HADB server).

Note that you must have the CONNECT privilege to execute SQLConnect and SQLConnectW.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 724

(2) Format
• For SQLConnect

SQLRETURN SQLConnect
(
 SQLHDBC ConnectionHandle, /* In */
 SQLCHAR * ServerName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLCHAR * UserName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLCHAR * Authentication, /* In */
 SQLSMALLINT NameLength3 /* In */
)

• For SQLConnectW
SQLRETURN SQLConnectW
(
 SQLHDBC ConnectionHandle, /* In */
 SQLWCHAR * ServerName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLWCHAR * UserName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLWCHAR * Authentication, /* In */
 SQLSMALLINT NameLength3 /* In */
)

(3) Arguments
ConnectionHandle

Specifies the connection handle.

ServerName
Specifies the name of the data source.

NameLength1
Specifies the length# of the data source name.
If the data source name ends with the null terminating character, specify SQL_NTS.
If zero or a negative value is specified, an error results.

UserName
Specifies the user ID (authorization identifier) for connecting to the HADB server.

NameLength2
Specifies the length# of the user ID.
If the user ID ends with the null terminating character, specify SQL_NTS.
If zero or a negative value is specified, an error results.

Authentication
Specifies the password for the authorization identifier being used to connect to the HADB server. If NULL is
specified, an error results.
Because of ODBC implementation conventions, we recommend that you do not use any of the following 13
characters in passwords: [,], {, }, (,), ,, ;, ?, *, =, !, and @. For details about the passwords supported by
HADB, see Password specification rules in the HADB Setup and Operation Guide.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 725

NameLength3
Specifies the length# of the password.
If the password ends with the null terminating character, specify SQL_NTS.
If a negative value or a value 256 or greater is specified, an error results.
Note also that if a character string whose length is 256 characters or more is specified in Authentication and
SQL_NTS is specified in this argument, an error results.

#
The length must be in bytes for SQLConnect and in characters for SQLConnectW.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01S02 Option value changed N

08001 Client unable to establish a connection N

08002 Connection name in use Y

08004 Server rejected the connection N

08S01 Communication link failure N

28000 Invalid authorization specification Y

5C002 Character encoding conversion error A character encoding that cannot be converted
was detected.

Y

5C052 Version mismatch error The versions of the ODBC driver and HADB
client are different.

Y

5D001 HADB-specific error An error occurred on HADB, but a specific
SQLSTATE or error message cannot be
obtained.

Y

HY000 General error -- N

HY001 Memory allocation error N

HY010 Function sequence error Y

HY013 Memory management error N

HY090 Invalid string or buffer length Y

HYT00 Timeout expired N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM002 No data source is found
and
Default driver is not specified

N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 726

SQLSTATE Description Remarks Returned

IM003 Specified driver could not be loaded N

IM004 Driver's SQLAllocHandle on
SQL_HANDLE_ENV failed

N

IM005 Driver's SQLAllocHandle on
SQL_HANDLE_DBC failed

N

IM006 Driver's SQLSetConnectAttr or Driver's
SQLSetConnectAttrW failed

N

IM009 Unable to load translation DLL N

IM010 Data source name too long N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.3.3 SQLDriverConnect, SQLDriverConnectW

(1) Function
This ODBC function establishes a connection with the data source (HADB server) by using one of the following
connection attributes:

• The ODBC function establishes a connection by using a connection character string containing the data source name,
at least one authorization identifier, at least one password, and other information required for establishing a
connection with the data source.

• The ODBC function establishes a connection without using a partial connection character string or additional
information. In this case, the driver manager and the HADB ODBC driver will request connection information from
the application program.

• The ODBC function establishes a connection with a data source that is not defined in the system definition. If an
application provides a partial connection character string, the HADB ODBC driver will request connection
information from the user.

• The ODBC function establishes a connection with the data source by using the connection character string created
from the information in a .dsn file.

When a connection is established, SQLDriverConnect or SQLDriverConnectW returns a complete connection
character string.

Note that you must have the CONNECT privilege to execute SQLDriverConnect and SQLDriverConnectW.

(2) Format
• For SQLDriverConnect

SQLRETURN SQLDriverConnect
(
 SQLHDBC ConnectionHandle, /* In */

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 727

 SQLHWND WindowHandle, /* In */
 SQLCHAR * InConnectionString, /* In */
 SQLSMALLINT StringLength1, /* In */
 SQLCHAR * OutConnectionString, /* Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * StringLength2Ptr, /* Out */
 SQLUSMALLINT DriverCompletion /* In */
)

• For SQLDriverConnectW
SQLRETURN SQLDriverConnectW
(
 SQLHDBC ConnectionHandle, /* In */
 SQLHWND WindowHandle, /* In */
 SQLWCHAR * InConnectionString, /* In */
 SQLSMALLINT StringLength1, /* In */
 SQLWCHAR * OutConnectionString, /* Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * StringLength2Ptr, /* Out */
 SQLUSMALLINT DriverCompletion /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

WindowHandle
Specifies the handle of the parent window.
If windows cannot be applied or dialog boxes will not be displayed, specify a null pointer.

InConnectionString
Specifies a connection character string.
The connection attributes permitted in the connection character string are as follows:

Connection attribute Description

DSN Data source name

DRIVER ODBC driver name: Hitachi Advanced Data Binder ODBC Driver

UID Authorization identifier

PWD Password

CLTPATH Absolute path of a client definition file

StringLength1
Specifies the length# of the connection character string specified for InConnectionString.
If the connection character string specified for InConnectionString ends with the null terminating character,
specify SQL_NTS.
If zero or a negative value is specified, an error results.

OutConnectionString
Specifies a pointer to the buffer that stores the complete connection character string.
If the connection to the HADB server is successful, the function returns the complete connection character string.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 728

BufferLength
Specifies the length# of the buffer that stores OutConnectionString.
This length includes the null terminating character. SQL_NTS cannot be specified.

StringLength2Ptr
Specifies a pointer to the buffer that stores the valid length# of the complete connection character string. This length
does not include the null terminating character.

Important
If the length# of the connection character string stored here is greater than the value of BufferLength
without the length# of the null terminating character, the character string stored in
OutConnectionString is truncated to the length# equivalent to BufferLength without the null
terminating character, and then the null terminating character is added at the end.

DriverCompletion
Specifies a flag indicating whether the driver manager or the HADB ODBC driver requires more connection
information. You can specify the following flags:

• SQL_DRIVER_PROMPT
• SQL_DRIVER_COMPLETE
• SQL_DRIVER_COMPLETE_REQUIRED
• SQL_DRIVER_NOPROMPT

#
The length must be in bytes for SQLDriverConnect and in characters for SQLDriverConnectW.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_NO_DATA,
SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated The complete connection character string could
not be stored because the
*OutConnectionString buffer was too
small (the information was truncated). The
length of the untruncated complete connection
character string is stored in the
*StringLength2Ptr buffer. The function
returns SQL_SUCCESS_WITH_INFO.

Y

01S00 Invalid connection string attribute The connection character string
(InConnectionString) contains an
invalid attribute keyword. The function returns
SQL_SUCCESS_WITH_INFO.

Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 729

SQLSTATE Description Remarks Returned

01S02 Option value changed The option value was replaced with a similar
value because the HADB ODBC driver does not
support the value specified for ValuePtr in
SQLSetConnectAttr or
SQLSetConnectAttrW. The function
returns SQL_SUCCESS_WITH_INFO.

N

01S08 Error saving file DSN The connection character string for
*InConnectionString contains the
FILEDSN keyword, but the .dsn file was not
saved. The function returns
SQL_SUCCESS_WITH_INFO.

N

01S09 Invalid keyword -- N

01S51 Code replacement occurred during conversion
of character encoding

A character code that cannot be converted was
detected and then replaced with the specified
character. The function returns
SQL_SUCCESS_WITH_INFO.

Y

08001 Client unable to establish a connection • The HADB ODBC driver cannot connect to
the data source.

• SQL_DRIVER_NOPROMPT is specified in
DriverCompletion, but the attribute
character string required for the connection
was not specified in
InConnectionString.

Y

08002 Connection name in use -- N

08004 Server rejected the connection The data source rejected the connection for the
reason defined during implementation.

N

08S01 Communication link failure -- N

28000 Invalid authorization specification The authorization identifier or password
specified in the connection character string
violates the limitations on data source
definitions.

Y

5C002 Character encoding conversion error A character code that cannot be converted was
detected.

Y

5C052 Version mismatch error The versions of the ODBC driver and HADB
client are different.

Y

5D001 HADB-specific error An error occurred on HADB, but a specific
SQLSTATE or error message cannot be
obtained.

Y

HY000 General error -- N

HY001 Memory allocation error N

HY013 Memory management error The function call could not be processed because
the memory object could not be accessed.

N

HY090 Invalid string or buffer length • The length of a connection attribute value
specified in InConnectionString is
invalid.

• An invalid value (SQL_NTS) was specified
in BufferLength.

Y

HY092 Invalid attribute or option identifier -- N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 730

SQLSTATE Description Remarks Returned

HY110 Option identifier whose
DriverCompletion is invalid

N

HYC00 Optional feature not implemented The HADB ODBC driver does not support the
ODBC processing requested by the application.

N

HYT00 Timeout expired A login timeout occurred before a connection
with the data source was completed. The login
timeout value can be specified by using
SQL_ATTR_LOGIN_TIMEOUT in
SQLSetConnectAttr or
SQLSetConnectAttrW.

N

HYT01 Connection timeout expired A connection timeout occurred before the data
source responded to the request. The connection
timeout value can be specified by using
SQL_ATTR_CONNECTION_TIMEOUT in
SQLSetConnectAttr or
SQLSetConnectAttrW.

N

IM001 Driver does not support this function -- N

IM002 No data source is found
and
Default driver is not specified

N

IM003 Specified driver could not be loaded N

IM004 Driver's SQLAllocHandle on
SQL_HANDLE_ENV failed

N

IM005 Driver's SQLAllocHandle on
SQL_HANDLE_DBC failed

N

IM006 Driver's SQLSetConnectAttr or Driver's
SQLSetConnectAttrW failed

N

IM007 Data source or driver is not specified
and
Dialog prohibited

Neither a data source name nor a driver name is
specified in the connection character string, but
SQL_DRIVER_NOPROMPT is specified in
DriverCompletion.

N

IM008 Dialog failed The driver's attempt to display the login dialog
box failed.
A null pointer is specified in
WindowHandle, but
SQL_DRIVER_NOPROMPT is not specified in
DriverCompletion.

N

IM009 Unable to load translation DLL -- N

IM010 Data source name too long N

IM011 Driver name too long N

IM012 DRIVER keyword syntax error N

IM014 Invalid name of file DSN N

IM015 Corrupt file data source N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 731

N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
• The following table lists and describes the connection attributes that are specified in the connection character string.

Table 16-2: Connection attributes that are specified in the connection character string

No. Connection
attribute

Connection attribute value Whether specification is required

DSN connection DRIVER connection

1 DSN Specify a data source name. Y --

2 DRIVER Specify an ODBC driver name. The
ODBC driver name is Hitachi
Advanced Data Binder ODBC
Driver.

-- Y

3 UID Specify an authorization identifier. Y Y

4 PWD Specify a password.
Specify a character string consisting of
255 bytes or less.

Y Y

5 CLTPATH Specify the absolute path of the client
definition file. Express the absolute
path of the client definition file as a
maximum of 255 bytes of character
string. If this attribute is omitted, the
file under the folder specified in the
ADBCLTDIR environment definition
is used.

-- O

Legend:
Y: Mandatory connection attribute
O: Optional connection attribute
--: Connection attribute whose specification is not needed

• The following shows examples of connection character string specifications:

• "DSN=XXXXX;UID=YYYYY;PWD=ZZZZZ"
• "DRIVER=Hitachi Advanced Data BinderODBC
Driver;CLTPATH=XXXXX;UID=YYYYY;PWD=ZZZZZ"

• If the DSN and DRIVER connection attributes are both specified in the connection character string, the first
connection attribute specified takes effect.

• If the same connection attribute is specified more than once in the connection character string, the value of the last
connection attribute specified takes effect.

• The connection attributes can be specified in any order in the connection character string. However, if neither
DSN=XXXXX nor DRIVER=Hitachi Advanced Data Binder ODBC Driver is specified in the first request,
the ODBC driver manager detects an error. This does not apply to the FILEDSN specification.

• The connection attributes are not case-sensitive.

• The connection attribute values are case sensitive.

• A semicolon (;) is treated as a delimiter. For this reason, the semicolon must not be included in a password character
string in the connection attributes. Because of ODBC implementation conventions, we recommend that you do not

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 732

use any of the following 12 characters in passwords: [,], {, }, (,), ,, ?, *, =, !, and @. For details about the
passwords supported by HADB, see Password specification rules in the HADB Setup and Operation Guide.

16.3.4 SQLBrowseConnect, SQLBrowseConnectW

(1) Function
This ODBC function supports a method of referencing attributes and attribute values one at time that are required to
establish a connection with the data source (HADB server). Each call to SQLBrowseConnect or
SQLBrowseConnectW returns successive levels of attributes and attribute values. When all levels of attributes are
specified, a connection to the data source is completed and a complete connection character string is returned by
SQLBrowseConnect or SQLBrowseConnectW.

Note that you must have the CONNECT privilege to execute SQLBrowseConnect and SQLBrowseConnectW.

(2) Format
• For SQLBrowseConnect

SQLRETURN SQLBrowseConnect
(
 SQLHDBC ConnectionHandle, /* In */
 SQLCHAR * InConnectionString, /* In */
 SQLSMALLINT StringLength1, /* In */
 SQLCHAR * OutConnectionString, /* Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * StringLength2Ptr /* Out */
)

• For SQLBrowseConnectW
SQLRETURN SQLBrowseConnectW
(
 SQLHDBC ConnectionHandle, /* In */
 SQLWCHAR * InConnectionString, /* In */
 SQLSMALLINT StringLength1, /* In */
 SQLWCHAR * OutConnectionString, /* Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * StringLength2Ptr /* Out */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

InConnectionString
Specifies a browse request connection character string.
The following table lists and describes the connection attributes that can be specified in the browse request connection
character string.

Connection attribute Description

DSN Data source name

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 733

Connection attribute Description

DRIVER ODBC driver name: Hitachi Advanced Data Binder ODBC Driver

UID Authorization identifier

PWD Password

CLTPATH Absolute path of a client definition file

StringLength1
Specifies the length# of the browse request connection character string specified for InConnectionString.
If the browse request connection character string specified for InConnectionString ends with the null
terminating character, specify SQL_NTS.
If zero or a negative value is specified, an error results.

OutConnectionString
Specifies a pointer to the buffer that stores the browse result connection character string.
If the connection to the HADB server is successful, the function returns the complete connection character string.
If the function returns SQL_NEED_DATA, it returns the connection attributes that were lacking when connection
with the HADB server was attempted.

BufferLength
Specifies the length# of the buffer that stores OutConnectionString.
This length includes the null terminating character. SQL_NTS cannot be specified.

StringLength2Ptr
Specifies a pointer to the buffer that stores the valid length# of the browse result connection character string. This
length does not include the null terminating character.
This is the valid length# of the character string that is returned to OutConnectionString.

Important
If the length# of the connection character string stored here is greater than the value of BufferLength
without the length# of the null terminating character, the character string stored in
OutConnectionString is truncated to the length# equivalent to BufferLength without the null
terminating character, and then the null terminating character is added at the end.

#
The length must be in bytes for SQLBrowseConnect and in characters for SQLBrowseConnectW.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_ERROR, or
SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 734

SQLSTATE Description Remarks Returned

01004 Character string data was right-truncated The browse result connection character string
could not be stored because the
*OutConnectionString buffer was too
small (the information was truncated). The
length of the untruncated browse result
connection character string is stored in the
*StringLength2Ptr buffer. The function
returns SQL_NEED_DATA.

Y

01S00 Invalid connection string attribute The browse request connection character string
(InConnectionString) contains an
invalid attribute keyword. The function returns
SQL_NEED_DATA.
The attribute keyword specified in the browse
request connection character string
(InConnectionString) does not apply to
the current connection level. The function
returns SQL_NEED_DATA.

Y

01S02 Option value changed The option value was replaced with a similar
value because the HADB ODBC driver does not
support the value specified for ValuePtr in
SQLSetConnectAttr or
SQLSetConnectAttrW. The function
returns SQL_SUCCESS_WITH_INFO.

N

01S51 Code replacement occurred during conversion
of character encoding

A character code that cannot be converted was
detected and then replaced with the specified
character. The function returns
SQL_SUCCESS_WITH_INFO.

Y

08001 Client unable to establish a connection The HADB ODBC driver cannot connect to the
data source.

N

08002 Connection name in use -- N

08S01 Communication link failure N

28000 Invalid authorization specification The authorization identifier or password
specified in the browse request connection
character string violates the data source
limitations.

Y

5C002 Character encoding conversion error A character code that cannot be converted was
detected.

Y

5C052 Version mismatch error The versions of the ODBC driver and HADB
client are different.

Y

5D001 HADB-specific error An error occurred on HADB, but a specific
SQLSTATE or error message cannot be
obtained.

Y

HY000 General error -- N

HY001 Memory allocation error N

HY013 Memory management error The function call could not be processed because
the memory object could not be accessed.

N

HY090 Invalid string or buffer length • The length of a connection attribute value
specified in InConnectionString is
invalid.

Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 735

SQLSTATE Description Remarks Returned

• An invalid value (SQL_NTS) was specified
in BufferLength.

HYT00 Timeout expired A login timeout occurred before connection
with the data source was completed. The login
timeout value can be specified by using
SQL_ATTR_LOGIN_TIMEOUT in
SQLSetConnectAttr or
SQLSetConnectAttrW.

N

HYT01 Connection timeout expired A connection timeout occurred before the data
source responded to the request. The connection
timeout value can be specified by using
SQL_ATTR_CONNECTION_TIMEOUT in
SQLSetConnectAttr or
SQLSetConnectAttrW.

N

IM001 Driver does not support this function -- N

IM002 No data source is found
and
Default driver is not specified

N

IM003 Specified driver could not be loaded N

IM004 Driver's SQLAllocHandle on
SQL_HANDLE_ENV failed

N

IM005 Driver's SQLAllocHandle on
SQL_HANDLE_DBC failed

N

IM006 Driver's SQLSetConnectAttr or
SQLSetConnectAttrW failed

N

IM009 Unable to load translation DLL N

IM010 Data source name too long N

IM011 Driver name too long N

IM012 DRIVER keyword syntax error N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
• The following table lists and describes the connection attributes that are specified in the browse request connection

character string.

Table 16-3: Connection attributes that are specified in the browse request connection character
string

No. Connection
attribute

Connection attribute value Whether specification is required

DSN connection DRIVER connection

1 DSN Specify a data source name. Y --

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 736

No. Connection
attribute

Connection attribute value Whether specification is required

DSN connection DRIVER connection

2 DRIVER Specify an ODBC driver name. The
ODBC driver name is Hitachi
Advanced Data Binder ODBC
Driver.

-- Y

3 UID Specify an authorization identifier. Y Y

4 PWD Specify a password.
Specify a character string consisting of
255 bytes or less.

Y Y

5 CLTPATH Specify the absolute path of the client
definition file. Express the absolute
path of the client property file as a
maximum of 255 bytes of character
string. If this attribute is omitted, the
file under the folder specified in the
ADBCLTDIR environment definition
is used.

-- O

Legend:
Y: Mandatory connection attribute
O: Optional connection attribute
--: Connection attribute whose specification is not needed

• The following shows an example specification of the browse request connection character string:

• "DSN=XXXXX;UID=YYYYY;PWD=ZZZZZ"
• "DRIVER=Hitachi Advanced Data Binder ODBC
Driver;CLTPATH=XXXXX;UID=YYYYY;PWD=ZZZZZ"

• If the DSN and DRIVER connection attributes are both specified in the browse request connection character string,
the last connection attribute specified takes effect.

• If the same connection attribute is specified more than once in the browse request connection character string, the
value of the first connection attribute specified takes effect.

• The connection attributes can be specified in any order in the browse request connection character string. However,
if neither DSN=XXXXX nor DRIVER=Hitachi Advanced Data Binder ODBC Driver is specified in the
first request, the ODBC driver manager detects an error.

• The connection attributes are not case-sensitive.

• The connection attribute values are case sensitive.

• A semicolon (;) is treated as a delimiter. For this reason, the semicolon must not be used in a password character
string in the connection attributes. Due to ODBC implementation conventions, we recommend that you do not use
any of the following 12 characters in passwords: [,], {, }, (,), ,, ?, *, =, !, and @. For details about the passwords
supported by HADB, see Password specification rules in the HADB Setup and Operation Guide.

• If SQL_NEED_DATA is returned because an invalid parameter value was specified in this function's argument, then
re-execution of the function results in SQL_ERROR due to an error such as an invalid password character string,
and then SQLFreeHandle is executed as is, the ODBC driver manager might return SQL_ERROR (SQLSTATE:
HY010) and the handle might not be freed. In such a case, re-execute the function with the correct parameter
specified, and then execute SQLFreeHandle. Alternatively, terminate the application forcibly.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 737

16.4 Acquiring driver and data source information

This section explains the ODBC functions that are used to acquire driver and data source information.

16.4.1 SQLDataSources, SQLDataSourcesW

(1) Function
This ODBC function returns the following information:

• Data source name

• Description of the driver associated with the data source

This function is implemented by the driver manager. The HADB ODBC driver provides SQLDataSources or
SQLDataSourcesW as a function that always returns SQL_SUCCESS.

(2) Format
• For SQLDataSources

SQLRETURN SQLDataSources
(
 SQLHENV EnvironmentHandle, /* In */
 SQLUSMALLINT Direction, /* In */
 SQLCHAR * ServerName, /* Out */
 SQLSMALLINT BufferLength1, /* In */
 SQLSMALLINT * NameLength1Ptr, /* Out */
 SQLCHAR * Description, /* Out */
 SQLSMALLINT BufferLength2, /* In */
 SQLSMALLINT * NameLength2Ptr /* Out */
)

• For SQLDataSourcesW
SQLRETURN SQLDataSourcesW
(
 SQLHENV EnvironmentHandle, /* In */
 SQLUSMALLINT Direction, /* In */
 SQLWCHAR * ServerName, /* Out */
 SQLSMALLINT BufferLength1, /* In */
 SQLSMALLINT * NameLength1Ptr, /* Out */
 SQLWCHAR * Description, /* Out */
 SQLSMALLINT BufferLength2, /* In */
 SQLSMALLINT * NameLength2Ptr /* Out */
)

(3) Arguments
EnvironmentHandle

Specifies an environment handle.

Direction
Specifies how the driver manager is to read the data source information. The permitted values are as follows:

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 738

• SQL_FETCH_FIRST: Fetch the data source name (hereafter called DSN) at the top of the list (both user and
system DSNs).

• SQL_FETCH_FIRST_USER: Fetch the first user DSN.

• SQL_FETCH_FIRST_SYSTEM: Fetch the first system DSN.

• SQL_FETCH_NEXT: Fetch the next DSN in the list. The target is the same type as the DSN that was fetched
by FIRST (both user and system DSN, or only user DSN, or only system DSN).

ServerName
Specifies a pointer to the buffer in which the data source name is to be returned.

BufferLength1
Specifies the length# of the *ServerName buffer. The maximum value is SQL_MAX_DSN_LENGTH plus the null
terminating character. If a larger value is specified, this maximum value is assumed. This length includes the null
terminating character.

NameLength1Ptr
Specifies a pointer to the buffer that stores the total valid length# of *ServerName. This length does not include
the null terminating character.

Important
If the length# of the data source name stored here is greater than the value of BufferLength1 without
the length# of the null terminating character, the character string stored in *ServerName is truncated
to the length# equivalent to BufferLength1 without the null terminating character, and then the null
terminating character is added at the end.

Description
Specifies a pointer to the buffer in which the description of the driver associated with the data source (such as an
HADB server) is to be returned.

BufferLength2
Specifies the length# of the *Description buffer.
This length includes the null terminating character.

NameLength2Ptr
Specifies a pointer to the buffer that stores the total valid length# to be returned to *Description. This length
does not include the null terminating character.

Important
If the length# of the driver description stored here is greater than the value of BufferLength2 without
the length# of the null terminating character, the character string stored in *Description is truncated
to the length# equivalent to BufferLength2 without the null terminating character, and then the null
terminating character is added at the end.

#
The length must be in bytes for SQLDataSources and in characters for SQLDataSourcesW.

(4) Return value
This ODBC function returns SQL_SUCCESS.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 739

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated N

HY000 General error N

HY001 Memory allocation error N

HY013 Memory management error N

HY090 Invalid string or buffer length N

HY103 Invalid retrieval code N

Legend:
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.4.2 SQLDrivers, SQLDriversW

(1) Function
This ODBC function returns a listing of driver descriptions and driver attribute keywords.

This function is implemented by the driver manager. The HADB ODBC driver provides SQLDrivers or
SQLDriversW as a function that always returns SQL_SUCCESS.

(2) Format
• For SQLDrivers

SQLRETURN SQLDrivers
(
 SQLHENV EnvironmentHandle, /* In */
 SQLUSMALLINT Direction, /* In */
 SQLCHAR * DriverDescription, /* Out */
 SQLSMALLINT BufferLength1, /* In */
 SQLSMALLINT * DescriptionLengthPtr, /* Out */
 SQLCHAR * DriverAttributes, /* Out */
 SQLSMALLINT BufferLength2, /* In */
 SQLSMALLINT * AttributesLengthPtr /* Out */
)

• For SQLDriversW
SQLRETURN SQLDriversW
(
 SQLHENV EnvironmentHandle, /* In */
 SQLUSMALLINT Direction, /* In */
 SQLWCHAR * DriverDescription, /* Out */
 SQLSMALLINT BufferLength1, /* In */
 SQLSMALLINT * DescriptionLengthPtr, /* Out */

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 740

 SQLWCHAR * DriverAttributes, /* Out */
 SQLSMALLINT BufferLength2, /* In */
 SQLSMALLINT * AttributesLengthPtr /* Out */
)

(3) Arguments
EnvironmentHandle

Specifies an environment handle.

Direction
Specifies how the driver manager is to read the data source information. The permitted values are as follows:

• SQL_FETCH_FIRST: Fetch the driver description from the top of the list (both user and system DSNs).

• SQL_FETCH_NEXT: Fetch the next driver description from the list.

DriverDescription
Specifies a pointer to the buffer in which the driver description is to be returned.

BufferLength1
Specifies the length# of the buffer in which the driver description is to be returned.

DescriptionLengthPtr
Specifies a pointer to the buffer that stores the total valid length# of *DriverDescription. This length does
not include the null terminating character.

DriverAttributes
Specifies a pointer to the buffer that stores the driver attribute values.

BufferLength2
Specifies the length# of the buffer in which the driver's attribute values are to be returned.

AttributesLengthPtr
Specifies a pointer to the buffer that stores the total valid length# of *AttributesLengthPtr. This length does
not include the null terminating character.

#
The length must be in bytes for SQLDrivers and in characters for SQLDriversW.

(4) Return value
This ODBC function returns SQL_SUCCESS.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated N

HY000 General error N

HY001 Memory allocation error N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 741

SQLSTATE Description Remarks Returned

HY013 Memory management error N

HY090 Invalid string or buffer length N

HY103 Invalid retrieval code N

Legend:
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.4.3 SQLGetInfo, SQLGetInfoW

(1) Function
This ODBC function returns general information about the driver and data source associated with a connection.

(2) Format
• For SQLGetInfo

SQLRETURN SQLGetInfo
(
 SQLHDBC ConnectionHandle, /* In */
 SQLUSMALLINT InfoType, /* In */
 SQLPOINTER InfoValuePtr, /* In/Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * StringLengthPtr /* Out */
)

• For SQLGetInfoW
SQLRETURN SQLGetInfoW
(
 SQLHDBC ConnectionHandle, /* In */
 SQLUSMALLINT InfoType, /* In */
 SQLPOINTER InfoValuePtr, /* In/Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * StringLengthPtr /* Out */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

InfoType
Specifies a type of information.
For details about the types of information that can be specified, see 16.13 Information types that can be specified
for InfoType in SQLGetInfo and SQLGetInfoW.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 742

InfoValuePtr
Specifies a pointer to the buffer in which the information is to be returned. The function returns the information for
the requested InfoType. If a specifiable information type is specified for InfoType but that information type
is not supported, the function might return the null character string or zero.

BufferLength
Specifies the length (in bytes) of the *InfoValuePtr buffer. This length includes the null terminating character.
SQL_NTS cannot be specified.
If the *InfoValuePtr value is not a character string or InfoValuePtr is a null pointer, this argument is
ignored.
If the value of InfoValuPtr is not a character string, the HADB ODBC driver assumes that the size of
*InfoValuePtr is either SQLUSMALLINT or SQLUINTEGER based on InfoType. If the buffer is too small,
operation is not guaranteed.

StringLengthPtr
Specifies a pointer to the buffer that returns the total valid length (in bytes) to be returned to *InfoValuePtr.
This length does not include the null terminating character.

Important
For character string data, if this length (in bytes) is greater than the value of BufferLength without
the length of the null terminating character, the character string stored in *InfoValuePtr is truncated
to the length (in bytes) equivalent to BufferLength without the null terminating character, and then
the null terminating character is added at the end. For any other data type, the value of BufferLength
is ignored, in which case the driver assumes that the size of *InfoValuePtr is either
SQLUSMALLINT or SQLUINTEGER based on InfoType.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated Not all of the requested information could be
stored because the *InfoValuePtr buffer
was too small (the information was truncated).
The length of the untruncated requested
information is stored in
*StringLengthPtr. The function returns
SQL_SUCCESS_WITH_INFO.

Y

01S51 Code replacement occurred during conversion
of character encoding

A character code that cannot be converted was
detected and then replaced with the specified
character. The function returns
SQL_SUCCESS_WITH_INFO.

Y

08003 Connection does not exist -- N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 743

SQLSTATE Description Remarks Returned

08S01 Communication link failure N

HY000 General error N

HY001 Memory allocation error N

HY009 Invalid use of null pointer N

HY013 Memory management error N

HY024 Invalid attribute value N

HY090 Invalid string or buffer length An invalid value (SQL_NTS) was specified in
BufferLength.

Y

HY096 Out-of-range information type The value specified in InfoType is not
supported.

Y

HY117 Connection suspended -- N

HYC00 Optional feature not implemented N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
If the information type specified for InfoType is not SQL_DRIVER_ODBC_VER, the connection must have already
been established.

16.4.4 SQLGetFunctions

(1) Function
This ODBC function returns information about whether the driver supports a specific ODBC function or returns a list
of support information for the individual ODBC functions.

(2) Format
SQLRETURN SQLGetFunctions
(
 SQLHDBC ConnectionHandle, /* In */
 SQLUSMALLINT FunctionId, /* In */
 SQLUSMALLINT * SupportedPtr /* Out */
)

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 744

(3) Arguments
ConnectionHandle

Specifies a connection handle.

FunctionId
Specifies SQL_API_ODBC3_ALL_FUNCTIONS to obtain a list of support information for all functions.
To obtain information on whether a specific function is supported, specify the #define value of the target ODBC
function.

SupportedPtr
Specifies a pointer to the buffer in which the support information for the specified function is to be returned.
If the #define value of an ODBC function is specified for FunctionId, the function returns SQL_TRUE
(supported) or SQL_FALSE (not supported).
You can also specify NULL for SupportedPtr.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

08S01 Communication link failure N

HY000 General error N

HY001 Memory allocation error N

HY010 Function sequence error Y

HY013 Memory management error N

HY095 Function type out of range Y

HYT01 Connection timeout expired N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.4.5 SQLGetTypeInfo, SQLGetTypeInfoW

(1) Function
This ODBC function returns information about the data types supported by the HADB ODBC driver as a result set for
the specified SQL statement.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 745

(2) Format
• For SQLGetTypeInfo

SQLRETURN SQLGetTypeInfo
(
 SQLHSTMT StatementHandle, /* In */
 SQLSMALLINT DataType /* In */
)

• For SQLGetTypeInfoW
SQLRETURN SQLGetTypeInfoW
(
 SQLHSTMT StatementHandle, /* In */
 SQLSMALLINT DataType /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.

DataType
Specifies an SQL data type identifier. Specify as explained below, depending on the data to be acquired:

• To acquire information about a specific data type
Specify the applicable ODBC SQL data type identifier provided in 15.3.1 Correspondence between ODBC's
SQL data types and HADB's data types.

• To acquire information about all supported data types
Specify SQL_ALL_TYPES.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

When SQLGetTypeInfo or SQLGetTypeInfoW is executed, a result set is created. The following table shows the
format of the result set that is returned.

Table 16-4: Format of the ResultSet object that is returned

Column
No.

Type Column name Description

1 Varchar TYPE_NAME HADB data type name

2 Smallint DATA_TYPE ODBC SQL data type

3 Integer COLUMN_SIZE Column size

4 Varchar LITERAL_PREFIX Prefix used to quote a literal

5 Varchar LITERAL_SUFFIX Suffix used to quote a literal

6 Varchar CREATE_PARAMS Parameters used to create types

7 Smallint NULLABLE Returns a value indicating whether the null value can
be used.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 746

Column
No.

Type Column name Description

The function always returns
SQL_NULLABLE_UNKNOWN.

8 Smallint CASE_SENSITIVE Returns a value indicating whether the data type is case-
sensitive.
• SQL_TRUE: Character string data type
• SQL_FALSE: Other data type

9 Smallint SEARCHABLE Returns a value indicating how the data type is used in
WHERE.
The function always returns SQL_SEARCHABLE.

10 Smallint UNSIGNED_ATTRIBUTE Returns a value indicating whether the data type has the
unsigned attribute.
• SQL_FALSE: Numeric data type (because the data

type is signed)
• Null value: Other data type

11 Smallint FIXED_PREC_SCALE Returns a value indicating whether the data type can be
a currency value.
The function always returns SQL_FALSE.

12 Smallint AUTO_UNIQUE_VALUE Returns a value indicating whether the data type can be
used for autoincrementing values.
The function always returns a null value.

13 Varchar LOCAL_TYPE_NAME Localized version of the type name.
The function returns the same name as the type name.

14 Smallint MINIMUM_SCALE Minimum scale supported.
If scale is not applicable, the function returns a null
value.

15 Smallint MAXIMUM_SCALE Maximum scale supported.
If scale is not applicable, the function returns a null
value.

16 Smallint SQL_DATA_TYPE ODBC SQL data type that is set in the
SQL_DESC_TYPE field.

17 Smallint SQL_DATETIME_SUB Date-time subcode.
If the data type is not datetime, the function returns a
null value.

18 Integer NUM_PREC_RADIX • 10: Numeric data type
• Null value: Other data type

19 Smallint INTERVAL_PRECISION The function always returns a null value.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01S02 Option value changed N

08S01 Communication link failure N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 747

SQLSTATE Description Remarks Returned

24000 Invalid cursor status N

40001 Serialization failure N

40003 Statement completion unknown N

HY000 General error N

HY001 Memory allocation error Y

HY004 Invalid SQL data type Y

HY008 Operation cancelled N

HY010 Function sequence error Y

HY013 Memory management error N

HY117 Connection suspended N

HYC00 Optional feature not implemented N

HYT00 Timeout expired N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 748

16.5 Specifying and obtaining driver options

This section explains the ODBC functions that are used to specify and obtain driver options.

16.5.1 SQLSetConnectAttr, SQLSetConnectAttrW

(1) Function
This ODBC function sets connection attributes.

(2) Format
• For SQLSetConnectAttr

SQLRETURN SQLSetConnectAttr
(
 SQLHDBC ConnectionHandle, /* In */
 SQLINTEGER Attribute, /* In */
 SQLPOINTER ValuePtr, /* In */
 SQLINTEGER StringLength /* In */
)

• For SQLSetConnectAttrW
SQLRETURN SQLSetConnectAttrW
(
 SQLHDBC ConnectionHandle, /* In */
 SQLINTEGER Attribute, /* In */
 SQLPOINTER ValuePtr, /* In */
 SQLINTEGER StringLength /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle for which connection attributes are to be set.

Attribute
Specifies the connection attributes to be set. For details about the attributes that can be specified, see 16.14 Attributes
that can be specified in SQLSetConnectAttr, SQLSetConnectAttrW, SQLGetConnectAttr, and
SQLGetConnectAttrW.

ValuePtr
Specifies a pointer to the values to be associated with Attribute or a 32-bit integer value. For details about the
values that can be specified, see 16.14 Attributes that can be specified in SQLSetConnectAttr,
SQLSetConnectAttrW, SQLGetConnectAttr, and SQLGetConnectAttrW.

StringLength
Specifies the length of *ValuePtr (in bytes). If ValuePtr is an integer, this argument is ignored.
If ValuePtr is a pointer to a character string, this argument specifies the length of the character string (in bytes)
or SQL_NTS.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 749

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01S02 Option value changed Y

08002 Connection name in use N

08003 Connection does not exist N

08S01 Communication link failure N

24000 Invalid cursor status N

25000 Invalid operation in local transaction N

3D000 Invalid catalog name N

HY000 General error N

HY001 Memory allocation error N

HY008 Operation cancelled N

HY009 Invalid use of null pointer N

HY010 Function sequence error N

HY011 Attribute cannot be set now Y

HY013 Memory management error N

HY024 Invalid attribute value Y

HY090 Invalid string or buffer length The following conditions are all satisfied:
• *ValuePtr is a character string.
• StringLength is less than 0.
• The value of StringLength is not
SQL_NTS.

Y

HY092 Invalid attribute or option identifier -- Y

HY114 The driver does not support asynchronous
execution at the connection level

N

HY117 Connection suspended N

HY121 Cursor library and driver-dependent connection
pooling cannot be executed concurrently

N

HYC00 Optional feature not implemented The specified Attribute is a valid argument,
but it is not supported by the driver.

Y

HYT01 Connection timeout expired -- N

IM001 Driver does not support this function N

IM009 Unable to load translation DLL N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 750

SQLSTATE Description Remarks Returned

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

S1118 The driver does not support asynchronous
notification

N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
• If you specify a value for Attribute that is specific to HADB; that is, one that does not exist in the ODBC

conventions, include adbodb.h.

• The transaction access mode specified in this function (the attribute is SQL_ATTR_ACCESS_MODE) is determined
based on the priorities shown in the following table (the smaller the priority number, the higher the priority).

Table 16-5: Priorities of transaction access mode

Priority Specification location of transaction access mode

1 SQLSetConnectAttr or SQLSetConnectAttrW

2 adb_clt_trn_access_mode operand in the client definition

16.5.2 SQLGetConnectAttr, SQLGetConnectAttrW

(1) Function
This ODBC function returns the current attribute value of a connection handle.

(2) Format
• For SQLGetConnectAttr

SQLRETURN SQLGetConnectAttr
(
 SQLHDBC ConnectionHandle, /* In */
 SQLINTEGER Attribute, /* In */
 SQLPOINTER ValuePtr, /* Out */
 SQLINTEGER BufferLength, /* In */
 SQLINTEGER * StringLengthPtr /* Out */
)

• For SQLGetConnectAttrW
SQLRETURN SQLGetConnectAttrW
(
 SQLHDBC ConnectionHandle, /* In */
 SQLINTEGER Attribute, /* In */
 SQLPOINTER ValuePtr, /* Out */
 SQLINTEGER BufferLength, /* In */

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 751

 SQLINTEGER * StringLengthPtr /* Out */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

Attribute
Specifies the attribute to be obtained. For details about the attributes that can be specified, see 16.14 Attributes that
can be specified in SQLSetConnectAttr, SQLSetConnectAttrW, SQLGetConnectAttr, and SQLGetConnectAttrW.

ValuePtr
Specifies a pointer to the buffer in which the attribute specified in Attribute is to be returned. NULL can also be
specified in ValuePtr.

BufferLength
If the type of the attribute value specified in Attribute is character string or binary, this argument specifies the
length of *ValuePtr (in bytes). If it is any other data type, this argument is ignored.

StringLengthPtr
Specifies a pointer to the buffer that stores the total valid length (in bytes) of the returned attribute value. This length
does not include the null terminating character.
If ValuePtr is NULL, no value is returned to *StringLengthPtr.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_NO_DATA, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated N

08003 Connection does not exist Y

08S01 Communication link failure N

HY000 General error N

HY001 Memory allocation error N

HY010 Function sequence error Y

HY013 Memory management error N

HY090 Invalid string or buffer length N

HY092 Invalid attribute or option identifier Y

HYC00 Optional feature not implemented Y

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 752

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
If you specify a value for Attribute that is specific to HADB; that is, one that does not exist in the ODBC conventions,
include adbodb.h.

16.5.3 SQLSetEnvAttr

(1) Function
This ODBC function sets environment attributes.

(2) Format
SQLRETURN SQLSetEnvAttr
(
 SQLHENV EnvironmentHandle, /* In */
 SQLINTEGER Attribute, /* In */
 SQLPOINTER ValuePtr, /* In */
 SQLINTEGER StringLength /* In */
)

(3) Arguments
EnvironmentHandle

Specifies an environment handle of a connection whose attributes are to be set.

Attribute
Specifies the environment attributes to be set. For details about the attributes that can be specified, see 16.15 
Attributes that can be specified in SQLSetEnvAttr and SQLGetEnvAttr.

ValuePtr
Specifies a pointer to the values associated with Attribute or a 32-bit integer value. For details about the values
that can be specified, see 16.15 Attributes that can be specified in SQLSetEnvAttr and SQLGetEnvAttr.

StringLength
If ValuePtr is a pointer to character string or binary, this argument specifies the length of *ValuePtr (in bytes).
If ValuePtr is an integer, this argument is ignored.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 753

SQLSTATE Description Remarks Returned

01000 General warning -- N

01S02 Option value changed N

HY000 General error N

HY001 Memory allocation error N

HY009 Invalid use of null pointer N

HY010 Function sequence error Y

HY011 Attribute cannot be set now A connection handle has been assigned to
EnvironmentHandle.

N

HY013 Memory management error -- N

HY024 Invalid attribute value The value specified in ValuePtr is invalid for
the value specified in Attribute.

Y

HY090 Invalid string or buffer length The value specified in StringLength is less
than 0 but is not SQL_NTS.

Y

HY092 Invalid attribute or option identifier The specified Attribute is invalid. Y

HY117 Connection suspended -- N

HYC00 Optional feature not implemented The specified Attribute is a valid argument,
but it is not supported by the driver.

Y

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.5.4 SQLGetEnvAttr

(1) Function
This ODBC function returns the current attribute value of an environment handle.

(2) Format
SQLRETURN SQLGetEnvAttr
(
 SQLHENV EnvironmentHandle, /* In */
 SQLINTEGER Attribute, /* In */
 SQLPOINTER ValuePtr, /* Out */
 SQLINTEGER BufferLength, /* In */
 SQLINTEGER * StringLengthPtr /* Out */
)

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 754

(3) Arguments
EnvironmentHandle

Specifies an environment handle.

Attribute
Specifies the attribute to be obtained. For details about the attributes that can be specified, see 16.15 Attributes that
can be specified in SQLSetEnvAttr and SQLGetEnvAttr.

ValuePtr
Specifies a pointer to the buffer in which the attribute specified in Attribute is to be returned. NULL can also be
specified in ValuePtr.

BufferLength
If the type of the attribute value specified in Attribute is character string or binary, this argument specifies the
length of *ValuePtr (in bytes). If it is any other data type, this argument is ignored.

StringLengthPtr
Specifies a pointer to the buffer that stores the total number of valid bytes in the returned attribute value. This total
number of bytes does not include the number of bytes in the null terminating character. If ValuePtr is NULL, no
value is returned to *StringLengthPtr.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated N

HY000 General error N

HY001 Memory allocation error N

HY010 Function sequence error Y

HY013 Memory management error N

HY092 Invalid attribute or option identifier Y

HYC00 Optional feature not implemented Y

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 755

16.5.5 SQLSetStmtAttr, SQLSetStmtAttrW

(1) Function
This ODBC function sets the attributes related to a statement.

(2) Format
• For SQLSetStmtAttr

SQLRETURN SQLSetStmtAttr
(
 SQLHSTMT StatementHandle, /* In */
 SQLINTEGER Attribute, /* In */
 SQLPOINTER ValuePtr, /* In */
 SQLINTEGER StringLength /* In */
)

• For SQLSetStmtAttrW
SQLRETURN SQLSetStmtAttrW
(
 SQLHSTMT StatementHandle, /* In */
 SQLINTEGER Attribute, /* In */
 SQLPOINTER ValuePtr, /* In */
 SQLINTEGER StringLength /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.

Attribute
Specifies the attribute to be set. For details about the attributes that can be specified, see 16.16 Attributes that can
be specified in SQLSetStmtAttr, SQLSetStmtAttrW, SQLGetStmtAttr, and SQLGetStmtAttrW.

ValuePtr
Specifies the value to be set for the attribute specified in Attribute. For details about the attributes that can be
specified, see 16.16 Attributes that can be specified in SQLSetStmtAttr, SQLSetStmtAttrW, SQLGetStmtAttr, and
SQLGetStmtAttrW.

StringLength
If the type of the attribute value specified in Attribute is character string or binary, this argument specifies the
length of *ValuePtr (in bytes). If it is any other data type, this argument is ignored.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 756

SQLSTATE Description Remarks Returned

01000 General warning -- N

01S02 Option value changed Y

08S01 Communication link failure N

24000 Invalid cursor status N

HY000 General error N

HY001 Memory allocation error N

HY009 Invalid use of null pointer N

HY010 Function sequence error Y

HY011 Attribute cannot be set now Y

HY013 Memory management error N

HY017 Invalid use of an automatically allocated
descriptor handle

Y

HY024 Invalid attribute value Y

HY090 Invalid string or buffer length N

HY092 Invalid attribute or option identifier Y

HYC00 Optional feature not implemented Y

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.5.6 SQLGetStmtAttr, SQLGetStmtAttrW

(1) Function
This ODBC function returns the current attribute value of a statement handle.

(2) Format
• For SQLGetStmtAttr

SQLRETURN SQLGetStmtAttr
(
 SQLHSTMT StatementHandle, /* In */
 SQLINTEGER Attribute, /* In */
 SQLPOINTER ValuePtr, /* Out */
 SQLINTEGER BufferLength, /* In */
 SQLINTEGER * StringLengthPtr /* Out */
)

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 757

• For SQLGetStmtAttrW
SQLRETURN SQLGetStmtAttrW
(
 SQLHSTMT StatementHandle, /* In */
 SQLINTEGER Attribute, /* In */
 SQLPOINTER ValuePtr, /* Out */
 SQLINTEGER BufferLength, /* In */
 SQLINTEGER * StringLengthPtr /* Out */
)

(3) Arguments
StatementHandle

Specifies a statement handle.

Attribute
Specifies the attribute to be obtained. For details about the attributes that can be specified, see 16.16 Attributes that
can be specified in SQLSetStmtAttr, SQLSetStmtAttrW, SQLGetStmtAttr, and SQLGetStmtAttrW.

ValuePtr
Specifies a pointer to the buffer in which the attribute specified in Attribute is to be returned. NULL can also be
specified in ValuePtr.

BufferLength
If the type of the attribute value specified in Attribute is character string or binary, this argument specifies the
length of *ValuePtr (in bytes). If it is any other data type, this argument is ignored.

StringLengthPtr
Specifies a pointer to the buffer in which the total number of valid bytes in the returned attribute value is to be stored.
This value does not include the length in bytes of a null terminating character. If ValuePtr is NULL, no value is
returned to *StringLengthPtr.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

24000 Invalid cursor status N

HY000 General error N

HY001 Memory allocation error N

HY010 Function sequence error Y

HY013 Memory management error N

HY090 Invalid string or buffer length N

HY092 Invalid attribute or option identifier Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 758

SQLSTATE Description Remarks Returned

HY109 Invalid cursor position N

HYC00 Optional feature not implemented Y

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 759

16.6 Specifying descriptor values

This section explains the ODBC functions that are used to specify descriptor values.

16.6.1 SQLGetDescField, SQLGetDescFieldW

(1) Function
This ODBC function returns the value of a descriptor field specified in the arguments.

(2) Format
• For SQLGetDescField

SQLRETURN SQLGetDescField
(
 SQLHDESC DescriptorHandle, /* In */
 SQLSMALLINT RecNumber, /* In */
 SQLSMALLINT FieldIdentifier, /* In */
 SQLPOINTER ValuePtr, /* Out */
 SQLINTEGER BufferLength, /* In */
 SQLINTEGER * StringLengthPtr /* Out */
)

• For SQLGetDescFieldW
SQLRETURN SQLGetDescFieldW
(
 SQLHDESC DescriptorHandle, /* In */
 SQLSMALLINT RecNumber, /* In */
 SQLSMALLINT FieldIdentifier, /* In */
 SQLPOINTER ValuePtr, /* Out */
 SQLINTEGER BufferLength, /* In */
 SQLINTEGER * StringLengthPtr /* Out */
)

(3) Arguments
DescriptorHandle

Specifies a descriptor handle.

RecNumber
Specifies a column number (ARD or IRD) or a parameter number (APD or IPD).
If FieldIdentifier indicates a header field, this argument is ignored.

FieldIdentifier
Specifies the field (header or record field) of the descriptor whose value is to be returned. For details about the
attributes that can be specified, see 16.17 Attributes that can be specified in SQLGetDescField,
SQLGetDescFieldW, SQLSetDescField, and SQLSetDescFieldW.

ValuePtr
Specifies a pointer to the buffer in which the descriptor information is to be returned. NULL can also be specified
in this argument.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 760

BufferLength
If the data type of the descriptor field specified in FieldIdentifier is character string or binary, this argument
specifies the length of *ValuePtr (in bytes). If it is any other data type, this argument is ignored. SQL_NTS cannot
be specified.

StringLengthPtr
Specifies a pointer to the buffer that stores the valid length of the value that is set in *ValuePtr.
A value is set in ValuePtr even when NULL is specified in this argument.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_NO_DATA, or
SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated The column name was truncated because the
value specified in BufferLength was
smaller than the length of the column name in
bytes. The length of the untruncated column
name is stored in *StringLengthPtr. The
function returns
SQL_SUCCESS_WITH_INFO.

Y

01S51 Code replacement occurred during conversion
of character encoding

A character code that cannot be converted was
detected and then replaced with the specified
character. The function returns
SQL_SUCCESS_WITH_INFO.

Y

07009 Invalid descriptor index The value specified in RecNumber is less than
or equal to 0.

Y

08S01 Communication link failure -- N

HY001 Memory allocation error N

HY007 Associated statement is not prepared Y

HY010 Function sequence error Before this function was executed,
SQLExecute, SQLExecDirect,
SQLExecDirectW, or SQLParamData was
called for StatementHandle associated
with DescriptorHandle and returned
SQL_NEED_DATA. Since then, the setting of
runtime data parameters or runtime data
columns has not been completed.

Y

HY013 Memory management error -- N

HY021 Inconsistent descriptor information N

HY090 Invalid string or buffer length • *ValuePtr is a character string and the
value specified in BufferLength is less
than 0.

Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 761

SQLSTATE Description Remarks Returned

• An invalid value (SQL_NTS) was specified
in BufferLength.

HY091 Invalid descriptor field identifier FieldIdentifier is not an ODBC-defined
field.

Y

HYT01 Connection timeout expired -- N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.6.2 SQLGetDescRec, SQLGetDescRecW

(1) Function
This ODBC function returns the current settings or values of multiple fields of a descriptor record specified in the
arguments. This function returns the fields that describe the name, data type, and storage of column or parameter data.

(2) Format
• For SQLGetDescRec

SQLRETURN SQLGetDescRec
(
 SQLHDESC DescriptorHandle, /* In */
 SQLSMALLINT RecNumber, /* In */
 SQLCHAR * Name, /* Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * StringLengthPtr, /* Out */
 SQLSMALLINT * TypePtr, /* Out */
 SQLSMALLINT * SubTypePtr, /* Out */
 SQLLEN * LengthPtr, /* Out */
 SQLSMALLINT * PrecisionPtr, /* Out */
 SQLSMALLINT * ScalePtr, /* Out */
 SQLSMALLINT * NullablePtr /* Out */
)

• For SQLGetDescRecW
SQLRETURN SQLGetDescRecW
(
 SQLHDESC DescriptorHandle, /* In */
 SQLSMALLINT RecNumber, /* In */
 SQLWCHAR * Name, /* Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * StringLengthPtr, /* Out */
 SQLSMALLINT * TypePtr, /* Out */
 SQLSMALLINT * SubTypePtr, /* Out */
 SQLLEN * LengthPtr, /* Out */
 SQLSMALLINT * PrecisionPtr, /* Out */
 SQLSMALLINT * ScalePtr, /* Out */

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 762

 SQLSMALLINT * NullablePtr /* Out */
)

(3) Arguments
DescriptorHandle

Specifies a descriptor handle.

RecNumber
Specifies a column number (ARD or IRD) or a parameter number (APD or IPD).

Name
Specifies a pointer to the buffer in which the SQL_DESC_NAME field value in the descriptor record is to be returned.

BufferLength
Specifies the length# of the *Name buffer.
This length includes the null terminating character. SQL_NTS cannot be specified.

StringLengthPtr
Specifies a pointer to the buffer that stores the valid length# of the data that is returned to the *Name buffer. This
length does not include the null terminating character.

Important
If the length# of *Name stored here is greater than the value of BufferLength without the length#

of the null terminating character, the character string stored in *Name is truncated to the length#

equivalent to BufferLength without the null terminating character, and then the null terminating
character is added at the end.

#
The length must be in bytes for SQLGetDescRec and in characters for SQLGetDescRecW.

TypePtr
Specifies a pointer to the buffer in which the SQL_DESC_TYPE field value in the descriptor record is to be returned.

SubTypePtr
Specifies a pointer to the buffer in which the SQL_DESC_DATETIME_INTERVAL_CODE field value in the
descriptor record is to be returned.

LengthPtr
Specifies a pointer to the buffer in which the SQL_DESC_OCTET_LENGTH field value in the descriptor record is
to be returned.

PrecisionPtr
Specifies a pointer to the buffer in which the SQL_DESC_PRECISION field value in the descriptor record is to be
returned.

ScalePtr
Specifies a pointer to the buffer in which the SQL_DESC_SCALE field value in the descriptor record is to be returned.

NullablePtr
Specifies a pointer to the buffer in which the SQL_DESC_NULLABLE field value in the descriptor record is to be
returned.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 763

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_NO_DATA, or
SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated The column name was truncated because the
value specified in BufferLength was
smaller than the length of the column name in
bytes. The length of the untruncated column
name is stored in *StringLengthPtr. The
function returns
SQL_SUCCESS_WITH_INFO.

Y

01S51 Code replacement occurred during conversion
of character encoding

A character code that cannot be converted was
detected and then replaced with the specified
character. The function returns
SQL_SUCCESS_WITH_INFO.

Y

07009 Invalid descriptor index The value specified in RecNumber is less than
or equal to 0.

Y

08S01 Communication link failure -- N

HY000 General error N

HY001 Memory allocation error N

HY007 Associated statement is not prepared Y

HY010 Function sequence error Before this function was executed,
SQLExecute, SQLExecDirect,
SQLExecDirectW, or SQLParamData was
called for StatementHandle associated
with DescriptorHandle and returned
SQL_NEED_DATA. Since then, the setting of
runtime data parameters or runtime data
columns has not been completed.

Y

HY013 Memory management error -- N

HY090 Invalid string or buffer length An invalid value (SQL_NTS) was specified in
BufferLength.

Y

HYT01 Connection timeout expired -- N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 764

16.6.3 SQLSetDescField, SQLSetDescFieldW

(1) Function
This ODBC function sets the value of a descriptor field specified in the arguments.

(2) Format
• For SQLSetDescField

SQLRETURN SQLSetDescField
(
 SQLHDESC DescriptorHandle, /* In */
 SQLSMALLINT RecNumber, /* In */
 SQLSMALLINT FieldIdentifier, /* In */
 SQLPOINTER ValuePtr, /* In */
 SQLINTEGER BufferLength /* In */
)

• For SQLSetDescFieldW
SQLRETURN SQLSetDescFieldW
(
 SQLHDESC DescriptorHandle, /* In */
 SQLSMALLINT RecNumber, /* In */
 SQLSMALLINT FieldIdentifier, /* In */
 SQLPOINTER ValuePtr, /* In */
 SQLINTEGER BufferLength /* In */
)

(3) Arguments
DescriptorHandle

Specifies a descriptor handle.

RecNumber
Specifies a column number (ARD or IRD) or a parameter number (APD or IPD).
If FieldIdentifier indicates a header field, this argument is ignored.
If there is no descriptor record with the record number specified in this argument, this function creates a descriptor
record with that record number.

FieldIdentifier
Specifies the field (header or record field) of the descriptor whose value is to be set. For details about the attributes
that can be specified, see 16.17 Attributes that can be specified in SQLGetDescField, SQLGetDescFieldW,
SQLSetDescField, and SQLSetDescFieldW.

ValuePtr
Specifies the descriptor information to be set (pointer or integer value). For details about the values that can be
specified, see 16.17 Attributes that can be specified in SQLGetDescField, SQLGetDescFieldW, SQLSetDescField,
and SQLSetDescFieldW.

BufferLength
If the data type of the descriptor field specified in FieldIdentifier is character string or binary, this argument
specifies the length of *ValuePtr (in bytes). If it is any other data type, this argument is ignored.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 765

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01S02 Option value changed N

07009 Invalid descriptor index • The value specified in RecNumber is less
than or equal to 0.

• RecNumber is greater than the maximum
number of columns or parameters supported
by the data source and
DescriptorHandle is associated with
an ARD or APD.

• FieldIdentifier is
SQL_DESC_COUNT and the value
specified in ValuePtr is less than 0.

Y

08S01 Communication link failure -- N

22001 Character string data was right-truncated N

5C002 Character encoding conversion error A character code that cannot be converted was
detected.

Y

HY001 Memory allocation error -- Y

HY010 Function sequence error Before this function was executed,
SQLExecute, SQLExecDirect,
SQLExecDirectW, or SQLParamData was
called for StatementHandle associated
with DescriptorHandle and returned
SQL_NEED_DATA. Since then, the setting of
runtime data parameters or runtime data
columns has not been completed.

Y

HY013 Memory management error -- N

HY016 Cannot modify an implementation row
descriptor

DescriptorHandle is associated with an
IRD, but FieldIdentifier is not
SQL_DESC_ARRAY_STATUS_PTR or
SQL_DESC_ROWS_PROCESSED_PTR

Y

HY021 Inconsistent descriptor information -- N

HY090 Invalid string or buffer length N

HY091 Invalid descriptor field identifier • The value specified in
FieldIdentifier is neither an ODBC-
defined field nor an implementation-defined
value.

• FieldIdentifier is invalid for
DescriptorHandle.

Y

HY092 Invalid attribute or option identifier • The value set in ValuePtr is invalid for
the value specified in
FieldIdentifier.

Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 766

SQLSTATE Description Remarks Returned

• FieldIdentifier is
SQL_DESC_UNNAMED and ValuePtr is
SQL_NAMED.

HY105 Invalid parameter type The value specified in the
SQL_DESC_PARAMETER_TYPE field is
invalid (the value is not SQL_PARAM_INPUT).

Y

HYT01 Connection timeout expired -- N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.6.4 SQLSetDescRec

(1) Function
This ODBC function sets values in multiple descriptor record fields in the same descriptor record.

(2) Format
SQLRETURN SQLSetDescRec
(
 SQLHDESC DescriptorHandle, /* In */
 SQLSMALLINT RecNumber, /* In */
 SQLSMALLINT Type, /* In */
 SQLSMALLINT SubType, /* In */
 SQLLEN Length, /* In */
 SQLSMALLINT Precision, /* In */
 SQLSMALLINT Scale, /* In */
 SQLPOINTER DataPtr, /* Deferred In */
 SQLLEN * StringLengthPtr, /* Deferred In */
 SQLLEN * IndicatorPtr /* Deferred In */
)

(3) Arguments
DescriptorHandle

Specifies a descriptor handle. This must not be an IRD handle.

RecNumber
Specifies a column number (ARD or IRD) or a parameter number (APD or IPD).
If there is no descriptor record with the record number specified in this argument, this function creates a descriptor
record with that record number.

Type
Specifies the value to be set in the SQL_DESC_TYPE field for the descriptor record.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 767

SubType
Specifies the value to be set in the SQL_DESC_DATETIME_INTERVAL_CODE field for the descriptor record.

Length
Specifies the value to be set in the SQL_DESC_OCTET_LENGTH field for the descriptor record.

Precision
Specifies the value to be set in the SQL_DESC_PRECISION field for the descriptor record.

Scale
Specifies the value to be set in the SQL_DESC_SCALE field for the descriptor record.

DataPtr
Specifies the value to be set in the SQL_DESC_DATA_PTR field for the descriptor record.

StringLengthPtr
Specifies the value to be set in the SQL_DESC_OCTET_LENGTH_PTR field for the descriptor record.

IndicatorPtr
Specifies the value to be set in the SQL_DESC_INDICATOR_PTR field for the descriptor record.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

07009 Invalid descriptor index • RecNumber is greater than the maximum
number of columns or parameters supported
by the data source and
DescriptorHandle is associated with
an ARD, APD, or IPD.

• The value specified in RecNumber is less
than or equal to 0.

Y

08S01 Communication link failure -- N

HY000 General error N

HY001 Memory allocation error Y

HY010 Function sequence error Before this function was executed,
SQLExecute, SQLExecDirect,
SQLExecDirectW, or SQLParamData was
called for StatementHandle associated
with DescriptorHandle and returned
SQL_NEED_DATA. Since then, the setting of
runtime data parameters or runtime data
columns has not been completed.

Y

HY013 Memory management error -- N

HY016 Cannot modify an implementation row
descriptor

DescriptorHandle is associated with an
IRD.

Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 768

SQLSTATE Description Remarks Returned

HY021 Inconsistent descriptor information -- Y

HY090 Invalid string or buffer length N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.6.5 SQLCopyDesc

(1) Function
This ODBC function copies descriptor information from one descriptor handle to another.

(2) Format
SQLRETURN SQLCopyDesc
(
 SQLHDESC SourceDescHandle, /* In */
 SQLHDESC TargetDescHandle /* In */
)

(3) Arguments
SourceDescHandle

Specifies a source descriptor handle.

TargetDescHandle
Specifies a target descriptor handle. For this argument, you can specify a handle to an application descriptor or an
IPD, but not a handle to an IRD.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

08S01 Communication link failure N

HY000 General error N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 769

SQLSTATE Description Remarks Returned

HY001 Memory allocation error Y

HY007 Associated statement is not prepared Y

HY010 Function sequence error Before this function was executed,
SQLExecute, SQLExecDirect,
SQLExecDirectW, or SQLParamData was
called for StatementHandle associated
with the descriptor handle of
SourceDescHandle or
TargetDescHandle and returned
SQL_NEED_DATA. Since then, the setting of
runtime data parameters or runtime data
columns has not been completed.

Y

HY013 Memory management error -- N

HY016 Cannot modify an implementation row
descriptor

TargetDescHandle was associated with
an IRD.

Y

HY021 Inconsistent descriptor information -- N

HY092 Invalid attribute or option identifier N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
If the return value is not SQL_SUCCESS, execute SQLEndTran with SQL_ROLLBACK specified for
CompletionType or execute SQLFreeHandle with SQL_HANDLE_STMT specified for HandleType.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 770

16.7 Creating SQL requests

This section explains the ODBC functions that are used to create SQL requests.

16.7.1 SQLPrepare, SQLPrepareW

(1) Function
This ODBC function sends an SQL statement to the data source and preprocesses the SQL statement.

(2) Format
• For SQLPrepare

SQLRETURN SQLPrepare
(
 SQLHSTMT StatementHandle, /* In */
 SQLCHAR * StatementText, /* In */
 SQLINTEGER TextLength /* In */
)

• For SQLPrepareW
SQLRETURN SQLPrepareW
(
 SQLHSTMT StatementHandle, /* In */
 SQLWCHAR * StatementText, /* In */
 SQLINTEGER TextLength /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.

StatementText
Specifies an SQL character string. Comments (bracketed between /* and */) are not permitted within an SQL
character string, but specifications bracketed between /*>> and <<*/ (for example, index specifications) are
permitted within an SQL character string.

TextLength
Specifies the length of *StatementText (in bytes for SQLPrepare and in characters for SQLPrepareW).
If the SQL character string specified in StatementText guarantees a null terminating character, SQL_NTS can
be specified in this argument.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 771

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01S02 Option value changed N

08S01 Communication link failure N

21S01 Insert value list does not match column list N

21S02 Degree of derived table does not match
column list

N

22018 Invalid character value for cast specification N

22019 Invalid escape character N

22025 Invalid escape sequence N

24000 Invalid cursor status N

34000 Invalid cursor name N

3D000 Invalid catalog name N

3F000 Invalid schema name N

42000 Syntax error or access violation N

42S01 Base table or view already exists N

42S02 Base table or view not found N

42S11 Index already exists N

42S12 Index not found N

42S21 Column already exists N

42S22 Column not found N

5C002 Character encoding conversion error A character code that cannot be converted was
detected.

Y

5C041 Unsupported data type error The driver does not support the specified data
type.

Y

5C051 The text character string for an SQL statement
exceeded 16,000,000 characters

Even if the text character string for an SQL
statement consists of 16,000,000 or fewer
characters, the result after character encoding
conversion by the driver manager might exceed
16,000,000 characters. SQLSTATE is also
returned in such a case.

Y

HY000 General error -- N

HY001 Memory allocation error The memory required to execute or complete the
function has not been allocated for the driver.

Y

HY008 Operation cancelled -- N

HY009 Invalid use of null pointer A null pointer is specified for
StatementText.

Y

HY010 Function sequence error -- Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 772

SQLSTATE Description Remarks Returned

HY013 Memory management error N

HY090 Invalid string or buffer length The value specified in TextLength is less
than or equal to 0, or not SQL_NTS.

Y

HY117 Connection suspended -- N

HYC00 Optional feature not implemented N

HYT00 Timeout expired N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.7.2 SQLBindParameter

(1) Function
This ODBC function binds a buffer to a dynamic parameter in an SQL statement.

(2) Format
SQLRETURN SQLBindParameter
(
 SQLHSTMT StatementHandle, /* In */
 SQLUSMALLINT ParameterNumber, /* In */
 SQLSMALLINT InputOutputType, /* In */
 SQLSMALLINT ValueType, /* In */
 SQLSMALLINT ParameterType, /* In */
 SQLULEN ColumnSize, /* In */
 SQLSMALLINT DecimalDigits, /* In */
 SQLPOINTER ParameterValuePtr, /* In */
 SQLLEN BufferLength, /* In */
 SQLLEN * StrLen_or_IndPtr /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.

ParameterNumber
Specifies a parameter number. Parameter numbers are assigned in ascending order, beginning with 1.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 773

InputOutputType
Specifies the type of the parameter:

• SQL_PARAM_INPUT
Input parameter.

• SQL_PARAM_INPUT_OUTPUT
Input/output parameter.
Note that input/output parameters are not supported. If SQL_PARAM_INPUT_OUTPUT is specified, the driver
assumes that SQL_PARAM_INPUT is specified.

ValueType
Specifies the C data type of the parameter, or specifies SQL_C_DEFAULT.
If SQL_C_DEFAULT is specified, the driver assumes the default C data type.
For details about the supported data types, see 15.3.2 Correspondence between ODBC's SQL data types and C data
types. If an unsupported C data type is specified, an error results.

ParameterType
Specifies the ODBC SQL data type of the parameter.
For details about the supported data types, see 15.3.1 Correspondence between ODBC's SQL data types and HADB's
data types. If an unsupported ODBC SQL data type is specified, an error results.

ColumnSize
Specifies in bytes the size of the data of the corresponding dynamic parameter.
If ParameterType is SQL_CHAR, SQL_VARCHAR, SQL_DECIMAL, or SQL_DOUBLE, the value of
ColumnSize is used.
For any other data type, this argument is ignored.

DecimalDigits
Specifies the number of decimal places of the column or expression of the corresponding dynamic parameter.
If ParameterType is SQL_TYPE_TIME, SQL_TYPE_TIMESTAMP, SQL_DECIMAL, or SQL_DOUBLE, the
value of DecimalDigits is used.
For any other data type, this argument is ignored.

ParameterValuePtr
Specifies a pointer to the buffer for the parameter data. The data type must be in the format specified by
ValueType. If *StrLen_or_IndPtr is SQL_NULL_DATA or SQL_DATA_AT_EXEC, a null pointer can be
specified.
If *StrLen_or_IndPtr is the result of the SQL_LEN_DATA_AT_EXEC(length) macro or
SQL_DATA_AT_EXEC, ParameterValuePtr is an application-defined 32-bit value that is associated with
the parameter.

BufferLength
For character-type C data, this argument specifies in bytes the length of the ParameterValuePtr buffer. For
any other C data, this argument is ignored.

StrLen_or_IndPtr
Specifies a pointer to the buffer that stores one of the following values:

• Length of the parameter value stored in *ParameterValuePtr
This value is not used for data other than character-type C data.

• SQL_NTS
The parameter value is a null terminating character.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 774

• SQL_NULL_DATA
The parameter value is NULL.

• Result of the SQL_LEN_DATA_AT_EXEC(length) macro
SQLPutData is used. For length, specify 0 or an integer.

• SQL_DATA_AT_EXEC
SQLPutData is used.

If StrLen_or_IndPtr is a null pointer, the driver assumes that all input parameter values are not NULL and that
character string data is null-terminated.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

07006 Restricted data type attribute violation N

07009 Invalid descriptor index Y

HY000 General error N

HY001 Memory allocation error The memory required to execute or complete the
function has not been allocated for the driver.

Y

HY003 Invalid application buffer data type -- Y

HY004 Invalid SQL data type Y

HY009 Invalid use of null pointer Y

HY010 Function sequence error Y

HY013 Memory management error N

HY021 Inconsistent descriptor information N

HY090 Invalid string or buffer length • The value specified in BufferLength is
less than 0.

• A null pointer is specified for
SQLBindParameter, but the parameter
length does not match 0, or
SQL_NULL_DATA, or
SQL_DATA_AT_EXEC, or the parameter
length is greater than
SQL_LEN_DATA_AT_EXEC_OFFSET.

Y

HY104 Invalid precision or scale value -- N

HY105 Invalid parameter type The value specified in InputOutputType is
invalid.

Y

HY117 Connection suspended -- N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 775

SQLSTATE Description Remarks Returned

HYC00 Optional feature not implemented The value of ValueType does not match the
value of ParameterType.

Y

HYT01 Connection timeout expired -- N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
• The bound values are in effect until any of the following occurs:

• SQLBindParameter with the same ParameterNumber specified is called again

• SQLFreeStmt with the SQL_RESET_PARAMS option specified is called

• SQLSetDescField is called and 0 is set in the SQL_DESC_COUNT header field of an APD

• Rebinding with offsets is not supported.

16.7.3 SQLGetCursorName, SQLGetCursorNameW

(1) Function
This ODBC function returns the cursor name associated with a specified statement handle.

(2) Format
• For SQLGetCursorName

SQLRETURN SQLGetCursorName
(
 SQLHSTMT StatementHandle, /* In */
 SQLCHAR * CursorName, /* Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * NameLengthPtr /* Out */
)

• For SQLGetCursorNameW
SQLRETURN SQLGetCursorNameW
(
 SQLHSTMT StatementHandle, /* In */
 SQLWCHAR * CursorName, /* Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * NameLengthPtr /* Out */
)

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 776

(3) Arguments
StatementHandle

Specifies a statement handle.

CursorName
Specifies a pointer to the buffer in which the cursor name is to be returned.

BufferLength
Specifies the length# of *CursorName. SQL_NTS cannot be specified.

NameLengthPtr
Specifies a pointer to the buffer that stores the total valid length# that is returned to *CursorName. This length
does not include the null terminating character.

#
The length must be in bytes for SQLGetCursorName and in characters for SQLGetCursorNameW.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated The cursor name could not be stored because the
*CursorName buffer was too small (the
cursor name was truncated). The function
returns SQL_SUCCESS_WITH_INFO.

Y

01S51 Code replacement occurred during conversion
of character encoding

A character code that cannot be converted was
detected and then replaced with the specified
character. The function returns
SQL_SUCCESS_WITH_INFO.

Y

HY000 General error -- N

HY001 Memory allocation error N

HY010 Function sequence error Y

HY013 Memory management error The function call could not be processed because
the memory object could not be accessed.

N

HY015 No cursor name available -- N

HY090 Invalid string or buffer length • The value specified in BufferLength is
less than 0.

• An invalid value (SQL_NTS) was specified
in BufferLength.

Y

HYT01 Connection timeout expired A connection timeout occurred before the data
source responded to the request. The connection
timeout value can be specified by using

N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 777

SQLSTATE Description Remarks Returned

SQL_ATTR_CONNECTION_TIMEOUT in
SQLSetConnectAttr or
SQLSetConnectAttrW.

IM001 Driver does not support this function -- N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
• If the SQLSetCursorName function or SQLSetCursorNameW function has not been used and no explicit cursor

name has been set, this function returns the cursor name that is generated automatically by the HADB ODBC driver,
which is SQL_CURXXXXX (where XXXXX is a sequential number beginning with 00001).

• Use the cursor library provided by Microsoft if you intend to use the cursor name obtained by this function. If the
cursor library provided by Microsoft is not used, the HADB ODBC driver ignores the cursor name associated with
a statement handle.

16.7.4 SQLSetCursorName, SQLSetCursorNameW

(1) Function
This ODBC function assigns a cursor name to an active statement handle. If an application does not call this function,
the HADB ODBC driver generates cursor names.

(2) Format
• For SQLSetCursorName

SQLRETURN SQLSetCursorName
(
 SQLHSTMT StatementHandle, /* In */
 SQLCHAR * CursorName, /* In */
 SQLSMALLINT NameLength /* In */
)

• For SQLSetCursorNameW
SQLRETURN SQLSetCursorName
(
 SQLHSTMT StatementHandle, /* In */
 SQLWCHAR * CursorName, /* In */
 SQLSMALLINT NameLength /* In */
)

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 778

(3) Arguments
StatementHandle

Specifies a statement handle.

CursorName
Specifies a cursor name to be associated.

NameLength
Specifies the length of *CursorName (in bytes for SQLSetCursorName and in characters for
SQLSetCursorNameW).
If the character string specified in CursorName guarantees a null terminating character, SQL_NTS can be specified
in this argument.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated N

24000 Invalid cursor status The statement associated with
StatementHandle has already executed or
is engaged in cursor positioning.

Y

34000 Invalid cursor name • The size of the cursor name is greater than
the maximum size (30 bytes) supported by
the HADB ODBC driver.

• The cursor name specified in CursorName
begins with SQL_CUR.

Y

3C000 Duplicate cursor name The cursor name specified in *CursorName
already exists.

Y

5C002 Character encoding conversion error A character code that cannot be converted was
detected.

Y

HY000 General error -- N

HY001 Memory allocation error N

HY009 Invalid use of null pointer CursorName is a null pointer. Y

HY010 Function sequence error -- Y

HY013 Memory management error The function call could not be processed because
the memory object could not be accessed.

N

HY090 Invalid string or buffer length The value specified in NameLength is less
than or equal to 0, or not SQL_NTS.

Y

HYT01 Connection timeout expired A connection timeout occurred before the data
source responded to the request. The connection
timeout value can be specified by using

N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 779

SQLSTATE Description Remarks Returned

SQL_ATTR_CONNECTION_TIMEOUT in
SQLSetConnectAttr or
SQLSetConnectAttrW.

IM001 Driver does not support this function -- N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
Use the cursor library provided by Microsoft if you intend to use the cursor name set by this function. If the cursor
library provided by Microsoft is not used, the HADB ODBC driver ignores the set cursor name.

16.7.5 SQLDescribeParam

(1) Function
This ODBC function returns information about a dynamic parameter that has been obtained by executing
SQLPrepare. This information is set in the fields of the IPD.

(2) Format
SQLRETURN SQLDescribeParam
(
 SQLHSTMT StatementHandle, /* In */
 SQLUSMALLINT ParameterNumber, /* In */
 SQLSMALLINT * DataTypePtr, /* Out */
 SQLULEN * ParameterSizePtr, /* Out */
 SQLSMALLINT * DecimalDigitsPtr, /* Out */
 SQLSMALLINT * NullablePtr /* Out */
)

(3) Arguments
StatementHandle

Specifies a statement handle.

ParameterNumber
Specifies a parameter number. Parameter numbers are assigned in ascending order, beginning with 1.

DataTypePtr
Specifies a pointer to the buffer in which the parameter's SQL data type is to be returned.

ParameterSizePtr
Specifies a pointer to the buffer in which the size of the column or expression of the corresponding parameter is
returned. The information defined by the data source is returned.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 780

DecimalDigitsPtr
Specifies a pointer to the buffer in which the number of decimal places in the column or expression of the
corresponding parameter is returned. The information defined by the data source is returned.

NullablePtr
Specifies a pointer to the buffer in which a value indicating whether the parameter accepts null values is returned.
This value is read from the SQL_DESC_NULLABLE field of the IPD. One of the following values is returned:

• SQL_NO_NULLS
The parameter does not accept null values.

• SQL_NULLABLE
The parameter accepts null values.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

07009 Invalid descriptor index Y

08S01 Communication link failure N

21S01 Insert value list does not match column list N

HY000 General error N

HY001 Memory allocation error N

HY008 Operation cancelled N

HY010 Function sequence error Y

HY013 Memory management error N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.7.6 SQLNumParams

(1) Function
This ODBC function returns the number of parameters in a prepared SQL statement.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 781

(2) Format
SQLRETURN SQLNumParams
(
 SQLHSTMT StatementHandle, /* In */
 SQLSMALLINT * ParameterCountPtr /* Out */
)

(3) Arguments
StatementHandle

Specifies a statement handle.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

ParameterCountPtr
Specifies a pointer to the buffer in which the number of parameters in the SQL statement is to be returned.
The number of parameters contained in the SQL statement passed to SQLPrepare before this function is executed
is set.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

08S01 Communication link failure N

HY000 General error N

HY001 Memory allocation error N

HY008 Operation cancelled N

HY009 Invalid use of null pointer NULL is specified in ParameterCountPtr. Y

HY010 Function sequence error -- Y

HY013 Memory management error N

HY117 Connection suspended N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM018 Incomplete asynchronous execution N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 782

16.8 Executing SQL statements

This section explains the ODBC functions that are used when SQL statements are executed.

16.8.1 SQLExecute

(1) Function
This ODBC function executes a prepared statement using the current parameter values if parameter markers exist in the
statement.

(2) Format
SQLRETURN SQLExecute
(
 SQLHSTMT StatementHandle /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_NO_DATA,
SQL_NEED_DATA, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01001 Cursor operation conflict N

01003 NULL value eliminated in set function N

01004 Character string data was right-truncated Y

01006 Privilege not revoked N

01007 Privilege not granted N

01S02 Option value changed N

01S07 Fractional truncation N

07002 COUNT field incorrect The number of parameters specified in
SQLBindParameter does not match the
number of dynamic parameters.

Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 783

SQLSTATE Description Remarks Returned

07006 Restricted data type attribute violation -- N

07007 Restricted parameter value violation N

07S01 Invalid use of default parameter N

08S01 Communication link failure N

08003 Connection does not exist Y

21S02 Degree of derived table does not match
column list

N

22001 Character string data was right-truncated Y

22002 Required indicator variable not supplied N

22003 Numeric value out of range Y

22007 Invalid datetime format Y

22008 Datetime field overflow Y

22012 Division by zero N

22015 Interval field overflow N

22018 Invalid character value for cast specification Y

22019 Invalid escape character N

22025 Invalid escape sequence N

23000 Integrity constraint violation N

24000 Invalid cursor status Y

40001 Serialization failure N

40003 Statement completion unknown N

42000 Syntax error or access violation N

44000 WITH CHECK OPTION violation N

5C002 Character encoding conversion error A character code that cannot be converted was
detected.

Y

5C036 Data conversion error The contents of the requested input data are
invalid.

Y

5C041 Unsupported data type error The driver does not support the specified data
type.

Y

HY000 General error -- N

HY001 Memory allocation error Y

HY003 Invalid C data type Y

HY004 Invalid SQL data type Y

HY008 Operation cancelled N

HY009 Invalid use of null pointer Y

HY010 Function sequence error Prepare has not been executed yet. Y

HY013 Memory management error -- Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 784

SQLSTATE Description Remarks Returned

HY014 Invalid precision or scale value Y

HY090 Invalid string or buffer length Y

HY104 Invalid precision or scale value Y

HY105 Invalid parameter type N

HY109 Invalid cursor position N

HY117 Connection suspended The Disconnect and r-only functions are
permitted.

N

HYC00 Optional feature not implemented -- Y

HYT00 Timeout expired N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
• Processing for handling Microsoft Access(R) Version 2.0 is not supported.

• The bookmark feature is not supported.

16.8.2 SQLExecDirect, SQLExecDirectW

(1) Function
This ODBC function executes a prepared SQL statement. If the SQL statement contains parameter markers, this ODBC
function uses the current values of the parameter marker variables to execute the SQL statement. SQLExecDirect
is the fastest way to issue an SQL statement for one-time execution.

(2) Format
• For SQLExecDirect

SQLRETURN SQLExecDirect
(
 SQLHSTMT StatementHandle, /* In */
 SQLCHAR * StatementText, /* In */
 SQLINTEGER TextLength /* In */
)

• For SQLExecDirectW

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 785

SQLRETURN SQLExecDirectW
(
 SQLHSTMT StatementHandle, /* In */
 SQLWCHAR * StatementText, /* In */
 SQLINTEGER TextLength /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

StatementText
Specifies the SQL character string to be executed. A null pointer cannot be specified. Specify a character string
consisting of at least one character. Comments (bracketed between /* and */) are not permitted within an SQL
character string, but specifications bracketed between /*>> and <<*/ (for example, index specifications) are
permitted within an SQL character string.

TextLength
Specifies the length of *StatementText. The handling depends on the specified value, as explained in the
following table:

Value specified in TextLength Handling of TextLength

Integer value greater than 0 The specified data length from the beginning of *StatementText takes effect
(in bytes for SQLExecDirect and in characters for SQLExecDirectW).

SQL_NTS The value of TextLength is ignored, and from the beginning of
*StatementText through NULL takes effect.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_ERROR,
SQL_NEED_DATA, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01001 Cursor operation conflict N

01003 NULL value eliminated in set function N

01004 Character string data was right-truncated Y

01006 Privilege not revoked N

01007 Privilege not granted N

01S02 Option value changed N

01S07 Fractional truncation N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 786

SQLSTATE Description Remarks Returned

07002 COUNT field incorrect The number of parameters specified in
SQLBindParameter does not match the
number of dynamic parameters.

Y

07006 Restricted data type attribute violation -- N

07S01 Invalid use of default parameter N

08003 Connection does not exist Y

08S01 Communication link failure N

21S01 Insert value list does not match column list N

21S02 Degree of derived table does not match
column list

N

22001 Character string data was right-truncated Y

22002 Required indicator variable not supplied N

22003 Numeric value out of range Y

22007 Invalid datetime format Y

22008 Datetime field overflow Y

22012 Division by zero N

22015 Interval field overflow N

22018 Invalid character value for cast specification Y

22019 Invalid escape character N

22025 Invalid escape sequence N

23000 Integrity constraint violation N

24000 Invalid cursor status Y

34000 Invalid cursor name N

3D000 Invalid catalog name N

3F000 Invalid schema name N

40001 Serialization failure N

40003 Statement completion unknown N

42000 Syntax error or access violation N

42S01 Base table or view already exists N

42S02 Base table or view not found N

42S11 Index already exists N

42S12 Index not found N

42S21 Column already exists N

42S22 Column not found N

44000 WITH CHECK OPTION violation N

5C002 Character encoding conversion error A character code that cannot be converted was
detected.

Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 787

SQLSTATE Description Remarks Returned

5C036 Data conversion error The contents of the requested input data are
invalid.

Y

5C041 Unsupported data type error The driver does not support the specified data
type.

Y

5C051 The text character string for an SQL statement
exceeded 16,000,000 characters

Even if the text character string for an SQL
statement consists of 16,000,000 or fewer
characters, the result after character encoding
conversion by the driver manager might exceed
16,000,000 characters. SQLSTATE is also
returned in such a case.

Y

HY000 General error -- N

HY001 Memory allocation error Y

HY003 Invalid C data type Y

HY004 Invalid SQL data type Y

HY008 Operation cancelled N

HY009 Invalid use of null pointer Y

HY010 Function sequence error Y

HY013 Memory management error Y

HY014 Invalid precision or scale value Y

HY090 Invalid string or buffer length Y

HY104 Invalid precision or scale value Y

HY105 Invalid parameter type N

HY109 Invalid cursor position N

HYC00 Optional feature not implemented Y

HYT00 Timeout expired N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
• Processing for handling Microsoft Access(R) Version 2.0 is not supported.

• The bookmark feature is not supported.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 788

16.8.3 SQLNativeSql, SQLNativeSqlW

(1) Function
This ODBC function returns an SQL character string as modified by the HADB ODBC driver. This function does not
execute the SQL statement.

(2) Format
• For SQLNativeSql

SQLRETURN SQLNativeSql
(
 SQLHDBC ConnectionHandle, /* In */
 SQLCHAR * InStatementText, /* In */
 SQLINTEGER TextLength1, /* In */
 SQLCHAR * OutStatementText, /* Out */
 SQLINTEGER BufferLength, /* In */
 SQLINTEGER * TextLength2Ptr /* Out */
)

• For SQLNativeSqlW
SQLRETURN SQLNativeSqlW
(
 SQLHDBC ConnectionHandle, /* In */
 SQLWCHAR * InStatementText, /* In */
 SQLINTEGER TextLength1, /* In */
 SQLWCHAR * OutStatementText, /* Out */
 SQLINTEGER BufferLength, /* In */
 SQLINTEGER * TextLength2Ptr /* Out */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

InStatementText
Specifies the source SQL character string. Comments (bracketed between /* and */) are not permitted within an
SQL character string, but specifications bracketed between /*>> and <<*/ (for example, index specifications) are
permitted within an SQL character string.

TextLength1
Specifies the length# of *InStatementText.
If the SQL character string specified in InStatementText ends with a null terminating character, you can specify
SQL_NTS.

OutStatementText
Specifies a pointer to the buffer in which the SQL character string obtained after conversion is to be returned.

BufferLength
Specifies the length# of *OutStatementText.
This length includes the length of the null terminating character. SQL_NTS cannot be specified.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 789

TextLength2Ptr
Specifies a pointer to the buffer that returns the total valid length# to be returned to *OutStatementText. The
HADB ODBC driver returns the valid length# of the SQL character string. This length does not include the null
terminating character.

Important
If the length# of the SQL character string stored here is greater than the value of BufferLength
without the length# of the null terminating character, the character string stored in
OutStatementText is truncated to the length# equivalent to BufferLength without the null
terminating character, and then the null terminating character is added at the end.

#
The length must be in bytes for SQLNativeSql and in characters for SQLNativeSqlW.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated The entire SQL character string could not be
stored because the *OutStatementText
buffer was too small (the information was
truncated). The function returns
SQL_SUCCESS_WITH_INFO.

Y

01S51 Code replacement occurred during conversion
of character encoding

A character code that cannot be converted was
detected and then replaced with the specified
character. The function returns
SQL_SUCCESS_WITH_INFO.

Y

08003 Connection does not exist ConnectionHandle is not a connection
status.

Y

08S01 Communication link failure -- N

22007 Invalid datetime format An invalid date, time, or time stamp value is
specified in the escape clause of
*InStatementText.

N

24000 Invalid cursor status The cursor specified by the statement is located
before or after the result set.

N

5C002 Character encoding conversion error A character code that cannot be converted was
detected.

Y

5C051 The text character string for an SQL statement
exceeded 16,000,000 characters

Even if the text character string for an SQL
statement consists of 16,000,000 or fewer
characters, the result after character encoding
conversion by the driver manager might exceed
16,000,000 characters. SQLSTATE is also
returned in such a case.

Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 790

SQLSTATE Description Remarks Returned

HY000 General error -- N

HY001 Memory allocation error N

HY009 Invalid use of null pointer *InStatementText is a null pointer. Y

HY010 Function sequence error -- Y

HY013 Memory management error The function call could not be processed because
the memory object could not be accessed.

N

HY090 Invalid string or buffer length • The value specified in TextLength1 is
less than 0 and not SQL_NTS.

• BufferLength is less than 0, but
OutStatementText is not a null pointer.

• An invalid value (SQL_NTS) was specified
in BufferLength.

Y

HY109 Invalid cursor position The current row of the cursor has already been
deleted or cannot be fetched.

N

HYT01 Connection timeout expired A connection timeout occurred before the data
source responded to the request. The connection
timeout value can be specified by using
SQL_ATTR_CONNECTION_TIMEOUT in
SQLSetConnectAttr or
SQLSetConnectAttrW.

N

IM001 Driver does not support this function -- N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Syntax rules for escape clause
This ODBC function converts any escape clauses in the specified SQL statement to a format that can be executed by
HADB, and then returns the SQL statement. The following are the syntax rules for an escape clause:

escape-clause ::= escape-sequence-for-date-or-time-or-time-stamp
 | escape-sequence-for-escape-character-in-LIKE-predicate
 | escape-sequence-for-outer-join
 | scalar-function-escape-sequence
escape-sequence-for-date-or-time-or-time-stamp ::= date-escape-sequence
 | time-escape-sequence
 | time-stamp-escape-sequence
date-escape-sequence ::=
 escape-start-code d predefined-character-string-representation-of-date-data
 #1 escape-end-code
time-escape-sequence ::=
 escape-start-code t predefined-character-string-representation-of-time-data
 #2 escape-end-code
time-stamp-escape-sequence ::=
 escape-start-code ts predefined-character-string-representation-of-time-sta
mp-data #3escape-end-code
escape-sequence-for-escape-character-in-LIKE-predicate ::=
 escape-start-code escape escape-character escape-end-code
escape-sequence-for-outer-join ::= escape-start-code oj joined-table escape-end-code

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 791

scalar-function-escape-sequence ::= escape-start-code fn scalar-function escape-end-c
ode
scalar-function ::= scalar-function-in-default-format #4
escape-start-code ::= '{'
escape-end-code ::= '}'

#1
Character string representation 'YYYY-MM-DD'

#2
Character string representation 'hh:mm:ss[.nn...n]' nn...n is the fractional seconds precision with a length of p
digits. n is a number from 0 to 9, and p is 0, 3, 6, 9, or 12.

#3
Character string representation 'YYYY-MM-DD hh:mm:ss[.nn...n]' nn...n is the fractional seconds precision
with a length of p digits. n is a number from 0 to 9, and p is 0, 3, 6, 9, or 12.

#4
For details about the scalar function in the default format, see Table 16-7: Conversion formats of scalar functions
whose default format differs from the HADB format.

Note that an escape clause cannot be specified in an underlined part. Because the ODBC driver does not perform syntax
analysis on the underlined parts, these parts will remain the same after conversion and will be subject to syntax analysis
by the HADB server.

The following keywords can be used in escape sequences. These keywords are not case sensitive.

1. d in a date escape sequence

2. t in a time escape sequence

3. ts in a time stamp escape sequence

4. escape in an escape sequence of an escape character of a LIKE predicate

5. oj in an outer join escape sequence

6. fn in a scalar function escape sequence

The escape clause entry rules are as follows:

• The space can be used as the delimiter character in an escape clause.

• The delimiter can be inserted following an escape start code, following a keyword, and before an escape end code.

• You can specify multiple escape clauses in a single SQL statement.

• The HADB ODBC driver converts the escape clauses in an SQL statement to a format that can be executed by
HADB. Note that only the part of each escape clause that is enclosed in curly brackets is converted. The driver
converts nothing outside the escape clauses.

The following table shows the escape clause conversion rules.

Table 16-6: Escape clause conversion rules

Escape clause Before conversion After conversion

Date escape-start-code d predefined-character-string-representation-of-
date-data escape-end-code

predefined-character-string-
representation-of-date-data

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 792

Escape clause Before conversion After conversion

Time escape-start-code t predefined-character-string-representation-of-
time-data escape-end-code

predefined-character-string-
representation-of-time-data

Time stamp escape-start-code ts predefined-character-string-representation-of-
time-stamp-data escape-end-code

predefined-character-string-
representation-of-time-stamp-data

LIKE escape-start-code escapeescape-character escape-end-code escape escape-character

Outer join escape-start-code oj joined-table escape-end-code joined-table

Scalar function escape-start-code fn scalar-function escape-end-code scalar-function-in-HADB-format#

#
The ODBC driver converts a scalar function in the default format to the HADB format.
The table below shows the conversion formats of scalar functions whose default format differs from the HADB
server format.
In general, the ODBC driver does not check the number of arguments in a scalar function.

Table 16-7: Conversion formats of scalar functions whose default format differs from the HADB
format

Scalar functions Format before conversion Format after conversion (HADB format)

Mathematical function CEILING(number) CEIL(number)

LOG(float) LN(float)

RAND([number, number]) RANDOM([number, number])

TRUNCATE(number[, places]) TRUNC(number[, places])

String function CHAR(code) CHR(code)

LCASE(string) LOWER(string)

OCTET_LENGTH(string) LENGTHB(string)

SUBSTRING(string, start[, length]) SUBSTR(string, start[, length])

UCASE(string) UPPER(string)

Time and date functions CURRENT_DATE() CURRENT_DATE

CURRENT_TIME() CURRENT_TIME

16.8.4 SQLParamData

(1) Function
Used together with SQLPutData, the SQLParamData function sends parameter data when the SQL statement is
executed or after SQLExecute, SQLExecDirect, or SQLExecDirectW has been executed.

(2) Format
SQLRETURN SQLParamData
(
 SQLHSTMT StatementHandle, /* In */

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 793

 SQLPOINTER * ValuePtrPtr /* Out */
)

(3) Arguments
StatementHandle

Specifies a statement handle.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

ValuePtrPtr
Returns a pointer to the location at which the parameter data for the SQL statement is set.
A valid value is returned only when the function's return value is SQL_NEED_DATA.
This value is the same as the ParameterValuePtr value of SQLBindParameter or the TargetValuePtr
value of SQLBindCol as well as the value specified in the SQL_DESC_DATA_PTR field of the descriptor record.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_NEED_DATA,
SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated Y

07002 COUNT field incorrect The number of parameters specified in
SQLBindParameter does not match the
number of dynamic parameters.

Y

07006 Restricted data type attribute violation -- N

08003 Connection does not exist Y

08S01 Communication link failure N

22001 Character string data was right-truncated Y

22003 Numeric value out of range Y

22007 Invalid datetime format Y

22008 Datetime field overflow Y

22018 Invalid character value for cast specification Y

22026 Character string data length mismatch N

40001 Serialization failure N

40003 Statement completion unknown N

5C002 Character encoding conversion error A character code that cannot be converted was
detected.

Y

5C036 Data conversion error The contents of the requested input data are
invalid.

Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 794

SQLSTATE Description Remarks Returned

5C041 Unsupported data type error The driver does not support the specified data
type.

Y

HY000 General error -- N

HY001 Memory allocation error Y

HY003 Invalid C data type Y

HY004 Invalid SQL data type Y

HY008 Operation cancelled N

HY009 Invalid use of null pointer NULL is specified in ParameterCountPtr. Y

HY010 Function sequence error -- Y

HY013 Memory management error Y

HY014 Invalid precision or scale value Y

HY090 Invalid string or buffer length Y

HY104 Invalid precision or scale value Y

HY117 Connection suspended N

HYC00 Optional feature not implemented Y

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.8.5 SQLPutData

(1) Function
This ODBC function sends parameter data to the HADB ODBC driver when the SQL statement is executed.

(2) Format
SQLRETURN SQLPutData
(
 SQLHSTMT StatementHandle, /* In */
 SQLPOINTER DataPtr, /* In */
 SQLLEN StrLen_or_Ind /* In */
)

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 795

(3) Arguments
StatementHandle

Specifies a statement handle.

DataPtr
Specifies a pointer to the buffer containing the actual data for the parameters. The data must be in the C data type
specified in ValueType of SQLBindParameter.

StrLen_or_Ind
• When SQL_C_CHAR or SQL_C_BINARY is specified for the C data type in SQLBindParameter

Specify the length of *DataPtr, SQL_NTS, or SQL_NULL_DATA.

• When any other C data type is specified in SQLBindParameter
Specify SQL_NULL_DATA. If any other value is specified, this argument is ignored and the HADB ODBC
driver assumes that the size of the *DataPtr buffer is the C data type specified in ValueType of
SQLBindParameter.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated N

07006 Restricted data type attribute violation N

07S01 Invalid use of default parameter N

08S01 Communication link failure N

22001 Character string data was right-truncated N

22003 Numeric value out of range N

22007 Invalid datetime format N

22008 Datetime field overflow N

22012 Division by zero N

22015 Interval field overflow N

22018 Invalid character value for cast specification N

HY000 General error N

HY001 Memory allocation error N

HY008 Operation cancelled N

HY009 Invalid use of null pointer A null pointer is specified for DataPtr, but the
value specified in StrLen_or_Ind is neither
0 nor SQL_NULL_DATA.

Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 796

SQLSTATE Description Remarks Returned

HY010 Function sequence error A data parameter required for execution has not
been obtained by SQLParamData.

Y

HY013 Memory management error -- N

HY019 Non-character or non-binary data was
segmented and sent separately

N

HY020 Attempt to concatenate a null value N

HY090 Invalid string or buffer length The following conditions are all satisfied:
• The value specified in DataPtr is not a

null pointer.
• The value specified in StrLen_or_Ind is

less than or equal to 0.
• The value specified in StrLen_or_Ind is

neither SQL_NTS nor SQL_NULL_DATA.

Y

HY117 Connection suspended -- N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
This ODBC function does not support the following functions:

• Data correspondence for columns

• Segmented transmission

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 797

16.9 Acquiring execution results and execution result information

This section explains the ODBC functions that are used to acquire execution results and execution result information.

16.9.1 SQLRowCount

(1) Function
This ODBC function returns the number of rows changed by the following processing before this function was executed:

• Various SQL statements (UPDATE, INSERT, and DELETE statements)

(2) Format
SQLRETURN SQLRowCount
(
 SQLHSTMT StatementHandle, /* In */
 SQLLEN * RowCountPtr /* Out */
)

(3) Arguments
StatementHandle

Specifies a statement handle.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

RowCountPtr
Specifies a pointer to the buffer in which the number of changed rows is to be returned.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

HY000 General error N

HY001 Memory allocation error N

HY009 Invalid use of null pointer An invalid value was set in RowCountPtr. Y

HY010 Function sequence error -- Y

HY013 Memory management error N

HY117 Connection suspended N

HYT01 Connection timeout expired N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 798

SQLSTATE Description Remarks Returned

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
If the executed SQL statement is UPDATE, INSERT, or DELETE, this function returns the number of rows changed by
the request. If the returned value is -1, the possible causes are as follows:

• Overflow occurred on any changed rows.

• The executed SQL statement was not UPDATE, INSERT, or DELETE.

16.9.2 SQLNumResultCols

(1) Function
This ODBC function returns the number of columns in a result set of a prepared SQL statement.

(2) Format
SQLRETURN SQLNumResultCols
(
 SQLHSTMT StatementHandle, /* In */
 SQLSMALLINT * ColumnCountPtr /* Out */
)

(3) Arguments
StatementHandle

Specifies a statement handle.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

ColumnCountPtr
Specifies a pointer to the buffer in which the number of columns in a result set is to be returned.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 799

SQLSTATE Description Remarks Returned

01000 General warning -- N

08S01 Communication link failure N

HY000 General error N

HY001 Memory allocation error N

HY008 Operation cancelled N

HY009 Invalid use of null pointer NULL is specified in ColumnCountPtr. Y

HY010 Function sequence error -- Y

HY013 Memory management error N

HY117 Connection suspended N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.9.3 SQLDescribeCol, SQLDescribeColW

(1) Function
This ODBC function returns information about a column in the result set that is obtained by executing SQLPrepare.
This information is also set in the fields of the IRD.

(2) Format
• For SQLDescribeCol

SQLRETURN SQLDescribeCol
(
 SQLHSTMT StatementHandle, /* In */
 SQLUSMALLINT ColumnNumber, /* In */
 SQLCHAR * ColumnName, /* Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * NameLengthPtr, /* Out */
 SQLSMALLINT * DataTypePtr, /* Out */
 SQLULEN * ColumnSizePtr, /* Out */
 SQLSMALLINT * DecimalDigitsPtr, /* Out */
 SQLSMALLINT * NullablePtr /* Out */
)

• For SQLDescribeColW

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 800

SQLRETURN SQLDescribeColW
(
 SQLHSTMT StatementHandle, /* In */
 SQLUSMALLINT ColumnNumber, /* In */
 SQLWCHAR * ColumnName, /* Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * NameLengthPtr, /* Out */
 SQLSMALLINT * DataTypePtr, /* Out */
 SQLULEN * ColumnSizePtr, /* Out */
 SQLSMALLINT * DecimalDigitsPtr, /* Out */
 SQLSMALLINT * NullablePtr /* Out */
)

(3) Arguments
StatementHandle

Specifies a statement handle.

ColumnNumber
Specifies a column number in result data.

ColumnName
Specifies a pointer to the buffer in which the column name is to be returned. For details about the names of retrieval
result columns, see Rules in Specification format and rules for the SELECT statement in the manual HADB SQL
Reference.

BufferLength
Specifies the length# of the *ColumnName buffer. This length includes the null terminating character. SQL_NTS
cannot be specified.

NameLengthPtr
Specifies a pointer to the buffer that stores the total valid length# of the value that is set in *ColumnName. This
length does not include the null terminating character.

Important
If the length# of the *ColumnName column name stored here is greater than the value of
BufferLength without the length# of the null terminating character, the character string stored in
ColumnName is truncated to the length# equivalent to BufferLength without the null terminating
character, and then the null terminating character is added at the end.

DataTypePtr
Specifies a pointer to the buffer in which the SQL data type of the column is to be returned. If the data type is
unknown, the driver returns SQL_C_DEFAULT.

ColumnSizePtr
Specifies a pointer to the buffer in which the size of the column at the data source is to be returned. If the size of the
column is unknown, the driver returns 0.

DecimalDigitsPtr
Specifies a pointer to the buffer in which the number of decimal places of the column at the data source is to be
returned. If the number of decimal places is unknown or not applicable, the driver returns 0.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 801

NullablePtr
Specifies a pointer to the buffer in which a value indicating whether the column allows NULL values is to be returned.
One of the following values is returned:

• SQL_NO_NULLS
The column allows NULL values.

• SQL_NULLABLE
The column does not allow NULL values.

#
The length must be in bytes for SQLDescribeCol and in characters for SQLDescribeColW.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated Y

01S51 Code replacement occurred during conversion
of character encoding

A character code that cannot be converted was
detected and then replaced with the specified
character. The function returns
SQL_SUCCESS_WITH_INFO.

Y

07005 Prepared statement is not a cursor-specification -- Y

07009 Invalid descriptor index Y

08S01 Communication link failure N

24000 Invalid cursor status Y

HY000 General error N

HY001 Memory allocation error N

HY008 Operation cancelled N

HY010 Function sequence error Y

HY013 Memory management error N

HY090 Invalid string or buffer length An invalid value (SQL_NTS) was specified in
BufferLength.

Y

HYT01 Connection timeout expired -- N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 802

--: None

16.9.4 SQLColAttribute, SQLColAttributeW

(1) Function
This ODBC function returns descriptor information for a column in a result set.

(2) Format
• For SQLColAttribute

SQLRETURN SQLColAttribute
(
 SQLHSTMT StatementHandle, /* In */
 SQLUSMALLINT ColumnNumber, /* In */
 SQLUSMALLINT FieldIdentifier, /* In */
 SQLPOINTER CharacterAttributePtr, /* Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * StringLengthPtr, /* Out */
 SQLLEN * NumericAttributePtr /* Out */
)

• For SQLColAttributeW
SQLRETURN SQLColAttributeW
(
 SQLHSTMT StatementHandle, /* In */
 SQLUSMALLINT ColumnNumber, /* In */
 SQLUSMALLINT FieldIdentifier, /* In */
 SQLPOINTER CharacterAttributePtr, /* Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * StringLengthPtr, /* Out */
 SQLLEN * NumericAttributePtr /* Out */
)

(3) Arguments
StatementHandle

Specifies a statement handle.

ColumnNumber
Specifies the record number in the IRD from which the field value is to be obtained. This number is assigned
sequentially in ascending order of the columns, beginning with 1. The number corresponds to the column number
of the result set.

FieldIdentifier
Specifies an identifier that corresponds to the descriptor field of the IRD that is to be obtained.
The following table lists the field identifiers that can be specified.

Table 16-8: Field identifiers that can be specified in FieldIdentifier of SQLColAttribute and
SQLColAttributeW

No. Field identifier

1 SQL_COLUMN_LENGTH

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 803

No. Field identifier

2 SQL_COLUMN_PRECISION

3 SQL_COLUMN_SCALE

4 SQL_DESC_AUTO_UNIQUE_VALUE

5 SQL_DESC_BASE_COLUMN_NAME

6 SQL_DESC_BASE_TABLE_NAME

7 SQL_DESC_CASE_SENSITIVE

8 SQL_DESC_CATALOG_NAME

9 SQL_DESC_CONCISE_TYPE

10 SQL_DESC_COUNT

11 SQL_DESC_DISPLAY_SIZE

12 SQL_DESC_FIXED_PREC_SCALE

13 SQL_DESC_LABEL

14 SQL_DESC_LENGTH

15 SQL_DESC_LITERAL_PREFIX

16 SQL_DESC_LITERAL_SUFFIX

17 SQL_DESC_LOCAL_TYPE_NAME

18 SQL_DESC_NAME

19 SQL_DESC_NULLABLE

20 SQL_DESC_NUM_PREC_RADIX

21 SQL_DESC_OCTET_LENGTH

22 SQL_DESC_PRECISION

23 SQL_DESC_SCALE

24 SQL_DESC_SCHEMA_NAME

25 SQL_DESC_SEARCHABLE

26 SQL_DESC_TABLE_NAME

27 SQL_DESC_TYPE

28 SQL_DESC_TYPE_NAME

29 SQL_DESC_UNNAMED

30 SQL_DESC_UNSIGNED

31 SQL_DESC_UPDATABLE

CharacterAttributePtr
Specifies a pointer to the buffer in which the descriptor field value of the IRD that corresponds to
FieldIdentifier is to be returned. If the descriptor field value is not a character string, this argument is not
used.

BufferLength
Specifies the length of *CharacterAttributePtr (in bytes). SQL_NTS cannot be specified.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 804

StringLengthPtr
Specifies a pointer to the buffer in which is to be returned the total number of valid bytes (excluding the null
terminating character) to be returned to *CharacterAttributePtr.

NumericAttributePtr
Specifies a pointer to the integer buffer in which the descriptor field value of the IRD that corresponds to
FieldIdentifier is to be returned. If the descriptor field value is not a numeric value, this argument is not
used.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated Not all of the character string value could be
stored because the
*CharacterAttributePtr buffer was too
small (the character string value was truncated).
The length of the untruncated character string
value is stored in *StringLengthPtr. The
function returns
SQL_SUCCESS_WITH_INFO.

Y

01S51 Code replacement occurred during conversion
of character encoding

A character code that cannot be converted was
detected and then replaced with the specified
character. The function returns
SQL_SUCCESS_WITH_INFO.

Y

07005 Prepared statement is not a cursor-specification. The statement associated with
StatementHandle did not return a result set.

Y

07009 Invalid descriptor index • The value specified in ColumnNumber is
0.

• The value specified in ColumnNumber is
greater than the number of columns in the
result set.

Y

24000 Invalid cursor status -- Y

HY000 General error N

HY001 Memory allocation error N

HY008 Operation cancelled N

HY010 Function sequence error N

HY013 Memory management error The function call could not be processed because
the memory object could not be accessed.

N

HY090 Invalid string or buffer length • A character string pointer is specified in
CharacterAttributePtr and the
value specified in BufferLength is less
than or equal to 0.

Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 805

SQLSTATE Description Remarks Returned

• An invalid value is specified in
BufferLength (SQL_NTS).

HY091 Invalid descriptor field identifier The value specified in FieldIdentifier is
neither a defined value nor an implementation-
defined value.

Y

HYC00 Optional feature not implemented The value specified in FieldIdentifier is
not supported.

Y

HYT01 Connection timeout expired A connection timeout occurred before the data
source responded to the request. The connection
timeout value can be specified by using
SQL_ATTR_CONNECTION_TIMEOUT in
SQLSetConnectAttr or
SQLSetConnectAttrW.

N

IM001 Driver does not support this function -- N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.9.5 SQLBindCol

(1) Function
This ODBC function associates an application data area with a column in the result set.

(2) Format
SQLRETURN SQLBindCol
(
 SQLHSTMT StatementHandle, /* In */
 SQLUSMALLINT ColumnNumber, /* In */
 SQLSMALLINT TargetType, /* In */
 SQLPOINTER TargetValuePtr, /* Out */
 SQLLEN BufferLength, /* In */
 SQLLEN * StrLen_or_IndPtr /* Out */
)

(3) Arguments
StatementHandle

Specifies a statement handle.

ColumnNumber
Specifies the number of the result set column to be associated.
The column numbering begins with 1 because HADB does not support bookmarks.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 806

TargetType
Specifies the C data type identifier of the area pointed to by TargetValuePtr or specifies SQL_C_DEFAULT.
If SQL_C_DEFAULT is specified, the driver assumes the default C data type.

TargetValuePtr
Specifies a pointer to the area that is associated with the result set column.
To release the association, specify a null pointer.

BufferLength
Specifies the length (in bytes) of the area pointed to by TargetValuePtr.

StrLen_or_IndPtr
Specifies a pointer to the area in which the data length or indicator is returned by the HADB ODBC driver.
If the executed SQLFetch function returns SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the HADB ODBC
driver returns the data length or indicator.
If the column data is a null value, the return value is SQL_NULL_DATA.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

07006 Restricted data type attribute violation The value specified in ColumnNumber is 0,
but the value specified in TargetType is
neither SQL_C_BOOKMARK nor
SQL_C_VARBOOKMARK.

N

07009 Invalid descriptor index The value specified in ColumnNumber is
greater than the maximum number of columns
in the result set.

N

HY000 General error -- N

HY001 Memory allocation error Y

HY003 Invalid application buffer data type The value specified in TargetType is neither
a valid data type nor SQL_C_DEFAULT.

N

HY010 Function sequence error The asynchronously executing function that was
called for StatementHandle was still
executing when this function was called.

N

HY013 Memory management error The function call could not be processed because
the memory object could not be accessed.

N

HY090 Invalid string or buffer length The following conditions are both satisfied:
• The value specified in TargetValuePtr

is not a null pointer.
• The value specified in BufferLength is

less than 0.

Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 807

SQLSTATE Description Remarks Returned

HYC00 Optional feature not implemented Zero was specified in ColumnNumber, but the
driver does not support bookmarks.

Y

HYT01 Connection timeout expired A connection timeout occurred before the data
source responded to the request. The connection
timeout value can be specified by using
SQL_ATTR_CONNECTION_TIMEOUT in
SQLSetConnectAttr or
SQLSetConnectAttrW.

N

IM001 Driver does not support this function -- N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
This ODBC function does not support the following functions:

• Binding offsets

• Binding arrays

• Row-wise binding

16.9.6 SQLFetch

(1) Function
This ODBC function fetches the next row set of data from the result set and returns data for all columns associated by
SQLBindCol.

(2) Format
SQLRETURN SQLFetch
(
 SQLHSTMT StatementHandle /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_ERROR, or
SQL_INVALID_HANDLE.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 808

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated Character string data other than spaces or binary
data other than NULL was truncated from the
character string or binary data returned to a
column. If it was a character string value, it was
right-truncated.

Y

01S01 Error in row An error occurred while fetching one or more
rows.

N

01S07 Fractional truncation The fractional part of the numeric value was
truncated. For time, time stamp, and interval
data types that contain a time component, the
fractional part of the time was truncated. The
function returns
SQL_SUCCESS_WITH_INFO.

Y

01S51 Code replacement occurred during conversion
of character encoding

A character code that cannot be converted was
detected and then replaced with the specified
character. The function returns
SQL_SUCCESS_WITH_INFO.

Y

07006 Restricted data type attribute violation The data value of a column in the result set
cannot be converted to the data type specified by
TargetType in SQLBindCol.

Y

07009 Invalid descriptor index -- Y

08S01 Communication link failure N

22001 Character string data was right-truncated N

22002 Required indicator variable not supplied NULL data was fetched into a column that has a
null pointer for one of the following:
• StrLen_or_IndPtr set by
SQLBindCol

• SQL_DESC_INDICATOR_PTR set by
SQLSetDescField,
SQLSetDescFieldW,
SQLSetDescRec, or
SQLSetDescRecW

Y

22003 Numeric value out of range The integer part of the numeric value (numeric
value or character string) was deleted.

Y

22007 Invalid datetime format A character column was bound to a date, time,
or time stamp C structure, but the value in the
column is an invalid date, time, or time stamp.

Y

22012 Division by zero A value obtained from an arithmetic expression
resulting in division by zero was returned.

N

22015 Interval field overflow -- N

22018 Invalid character value for cast specification Y

24000 Invalid cursor status StatementHandle is in executed status, but
no result set is associated.

Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 809

SQLSTATE Description Remarks Returned

40001 Serialization failure -- N

40003 Statement completion unknown N

5C002 Character encoding conversion error Y

5C037 Data format error Y

5C038 Data conversion error There is an error in the acquired result data or in
the specification of the receiving area.

Y

HY000 General error -- N

HY001 Memory allocation error The memory required to execute or complete the
function has not been allocated for the HADB
ODBC driver.

N

HY003 Invalid application buffer data type The C data type set by SQLBindCol is an
invalid data type.

Y

HY008 Operation cancelled -- N

HY009 Invalid use of null pointer Y

HY010 Function sequence error Y

HY013 Memory management error Y

HY090 Invalid string or buffer length Y

HY104 Invalid precision or scale value Y

HY107 Row value out of range N

HYC00 Optional feature not implemented The HADB ODBC driver or the HADB server
does not support the conversion specified by the
combination of TargetType in
SQLBindCol and the SQL data type of the
corresponding column.

Y

HYT01 Connection timeout expired -- N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
The driver does not support the functionality to return row statuses to a row status array.

16.9.7 SQLFetchScroll

(1) Function
This ODBC function fetches a specified row set of data from the result set and returns data for all bound columns.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 810

Note that HADB returns SQL_ERROR when SQLSTATE is HYC00.

(2) Format
SQLRETURN SQLFetchScroll
(
 SQLHSTMT StatementHandle, /* In */
 SQLSMALLINT FetchOrientation, /* In */
 SQLLEN FetchOffset /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.

FetchOrientation
This argument is ignored, if specified.

FetchOffset
This argument is ignored, if specified.

(4) Return value
This ODBC function returns SQL_ERROR or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated N

01S01 Error in row N

01S06 An attempt was made to fetch before the result
set returned the first row set

N

01S07 Fractional truncation N

07006 Restricted data type attribute violation N

07009 Invalid descriptor index N

08S01 Communication link failure N

22001 Character string data was right-truncated N

22002 Required indicator variable not supplied N

22003 Numeric value out of range N

22007 Invalid datetime format N

22012 Division by zero N

22015 Interval field overflow N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 811

SQLSTATE Description Remarks Returned

22018 Invalid character value for cast specification N

24000 Invalid cursor status N

40001 Serialization failure N

40003 Statement completion unknown N

HY000 General error N

HY001 Memory allocation error N

HY008 Operation cancelled N

HY010 Function sequence error N

HY013 Memory management error N

HY090 Invalid string or buffer length N

HY106 Fetch type out of range N

HY107 Row value out of range N

HY111 Invalid bookmark value N

HYC00 Optional feature not implemented The driver returns SQL_ERROR. Y

HYT01 Connection timeout expired -- N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.9.8 SQLGetData

(1) Function
This ODBC function acquires data for a single column in the result set.

(2) Format
SQLRETURN SQLGetData
(
 SQLHSTMT StatementHandle, /* In */
 SQLUSMALLINT ColumnNumber, /* In */
 SQLSMALLINT TargetType, /* In */
 SQLPOINTER TargetValuePtr, /* Out */
 SQLLEN BufferLength, /* In */
 SQLLEN * StrLen_or_IndPtr /* Out */
)

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 812

(3) Arguments
StatementHandle

Specifies a statement handle.

ColumnNumber
Specifies the number of the column whose data is to be acquired.
The column numbering begins with 1 because HADB does not support bookmarks.

TargetType
Specifies the C data type identifier of the area pointed to by TargetValuePtr or specifies SQL_C_DEFAULT.
If SQL_C_DEFAULT is specified, the driver assumes the default C data type.

TargetValuePtr
Specifies a pointer to the area that is to receive the column's data.

BufferLength
Specifies the length (in bytes) of the area pointed to by TargetValuePtr.

StrLen_or_IndPtr
Specifies a pointer to the area in which the data length or indicator is returned by the HADB ODBC driver.
The HADB ODBC driver returns the data length of the indicator.
If the column data is a null value, the return value is SQL_NULL_DATA.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_ERROR, or
SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated The buffer pointed to by the
TargetValuePtr buffer is not large enough
to store the data for the column specified by
ColumnNumber. The function returns
SQL_SUCCESS_WITH_INFO.

Y

01S07 Fractional truncation The fractional part of the numeric value was
truncated. For time, time stamp, and interval
data types that contain a time component, the
fractional part of the time was truncated. The
function returns
SQL_SUCCESS_WITH_INFO.

Y

01S51 Code replacement occurred during conversion
of character encoding

A character code that cannot be converted was
detected and then replaced with the specified
character. The function returns
SQL_SUCCESS_WITH_INFO.

Y

07006 Restricted data type attribute violation A data value in the column in the result set
cannot be converted to the C data type
specified by TargetType.

Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 813

SQLSTATE Description Remarks Returned

07009 Invalid descriptor index The column number specified in
ColumnNumber does not exist.

Y

08S01 Communication link failure -- N

22002 Required indicator variable not supplied StrLen_or_IndPtr is a null pointer and
NULL data was acquired.

Y

22003 Numeric value out of range The integer part of the numeric value (numeric
value or character string) was deleted.

N

22007 Invalid datetime format A character column was bound to a date, time,
or time stamp C structure, but the value in the
column is an invalid date, time, or time stamp.

Y

22012 Division by zero A value obtained from an arithmetic expression
resulting in division by zero was returned.

N

22015 Interval field overflow -- N

22018 Invalid character value for cast specification Y

24000 Invalid cursor status A cursor was open on StatementHandle
and SQLFetch was called, but the cursor was
positioned before the beginning of the result set
or after the end of the result set.

Y

5C002 Character encoding conversion error -- Y

5C037 Data format error Y

5C038 Data conversion error There is an error in the acquired result data or in
the specification of the receiving area.

Y

HY000 General error -- N

HY001 Memory allocation error The memory required to execute or complete the
function has not been allocated for the HADB
ODBC driver.

Y

HY003 Invalid application buffer data type -- Y

HY008 Operation cancelled N

HY009 Invalid use of null pointer Null pointers were specified for both
TargetValuePtr and
StrLen_or_IndPtr.

Y

HY010 Function sequence error -- Y

HY013 Memory management error Y

HY090 Invalid string or buffer length The following conditions are both satisfied:
• The value specified in TargetValuePtr

is not a null pointer.
• The value specified in BufferLength is

less than 0.

Y

HY104 Invalid precision or scale value -- Y

HY109 Invalid cursor position -- N

HYC00 Optional feature not implemented The driver does not support the conversion
specified by the combination of TargetType
and the SQL data type of the corresponding
column.

Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 814

SQLSTATE Description Remarks Returned

HYT00 Timeout expired -- N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
This ODBC function does not support the following functions:

• Acquiring variable-length data in segments

• Limitations on the maximum length of data that can be returned

16.9.9 SQLSetPos

(1) Function
This ODBC function sets the cursor position in a row set.

Note that HADB returns SQL_ERROR when SQLSTATE is HYC00.

(2) Format
SQLRETURN SQLSetPos
(
 SQLHSTMT StatementHandle, /* In */
 SQLSETPOSIROW RowNumber, /* In */
 SQLUSMALLINT Operation, /* In */
 SQLUSMALLINT LockType /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.

RowNumber
This argument is ignored, if specified.

Operation
This argument is ignored, if specified.

LockType
This argument is ignored, if specified.

(4) Return value
This ODBC function returns SQL_ERROR or SQL_INVALID_HANDLE.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 815

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01001 Cursor operation conflict N

01004 Character string data was right-truncated N

01S01 Error in row N

01S07 Fractional truncation N

07006 Restricted data type attribute violation N

07009 Invalid descriptor index N

21S02 Degree of derived table does not match
column list

N

22001 Character string data was right-truncated N

22003 Numeric value out of range N

22007 Invalid datetime format N

22008 Datetime field overflow N

22015 Interval field overflow N

22018 Invalid character value for cast specification N

23000 Integrity constraint violation N

24000 Invalid cursor status N

40001 Serialization failure N

40003 Statement completion unknown N

42000 Syntax error or access violation N

44000 WITH CHECK OPTION violation N

HY000 General error N

HY001 Memory allocation error N

HY008 Operation cancelled N

HY010 Function sequence error N

HY011 Attribute cannot be set now N

HY013 Memory management error N

HY090 Invalid string or buffer length N

HY092 Invalid attribute or option identifier N

HY107 Row value out of range N

HY109 Invalid cursor position N

HYC00 Optional feature not implemented The driver returns SQL_ERROR. Y

HYT00 Timeout expired -- N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 816

SQLSTATE Description Remarks Returned

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.9.10 SQLBulkOperations

(1) Function
This ODBC function performs batch insertions and batch bookmark operations using bookmarks. The batch bookmark
processing includes update, delete, and fetch operations.

Note that HADB returns SQL_ERROR when SQLSTATE is HYC00.

(2) Format
SQLRETURN SQLBulkOperations
(
 SQLHSTMT StatementHandle, /* In */
 SQLSMALLINT Operation /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.

Operation
This argument is ignored, if specified.

(4) Return value
This ODBC function returns SQL_ERROR or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01004 Character string data was right-truncated N

01S01 Error in row N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 817

SQLSTATE Description Remarks Returned

01S07 Fractional truncation N

07006 Restricted data type attribute violation N

07009 Invalid descriptor index N

21S02 Degree of derived table does not match
column list

N

22001 Character string data was right-truncated N

22003 Numeric value out of range N

22007 Invalid datetime format N

22008 Datetime field overflow N

22015 Interval field overflow N

22018 Invalid character value for cast specification N

23000 Integrity constraint violation N

24000 Invalid cursor status N

40001 Serialization failure N

40003 Statement completion unknown N

42000 Syntax error or access violation N

44000 WITH CHECK OPTION violation N

HY000 General error N

HY001 Memory allocation error N

HY008 Operation cancelled N

HY010 Function sequence error N

HY011 Attribute cannot be set now N

HY013 Memory management error N

HY090 Invalid string or buffer length N

HY092 Invalid attribute or option identifier N

HYC00 Optional feature not implemented The driver returns SQL_ERROR. Y

HYT00 Timeout expired -- N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 818

16.9.11 SQLMoreResults

(1) Function
This ODBC function initializes results when the SELECT, UPDATE, INSERT, or DELETE statement is executed.

Note that HADB returns SQL_NO_DATA.

(2) Format
SQLRETURN SQLMoreResults
(
 SQLHSTMT StatementHandle /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.

(4) Return value
This ODBC function returns SQL_NO_DATA, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01S02 Option value changed N

08S01 Communication link failure N

40001 Serialization failure N

40003 Statement completion unknown N

HY000 General error N

HY001 Memory allocation error N

HY008 Operation cancelled N

HY010 Function sequence error Y

HY013 Memory management error N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 819

--: None

16.9.12 SQLGetDiagField, SQLGetDiagFieldW

(1) Function
This ODBC function returns the current value of a field in a diagnostic data structure that contains such information as
error, warning, and status.

(2) Format
• For SQLGetDiagField

SQLRETURN SQLGetDiagField
(
 SQLSMALLINT HandleType, /* In */
 SQLHANDLE Handle, /* In */
 SQLSMALLINT RecNumber, /* In */
 SQLSMALLINT DiagIdentifier, /* In */
 SQLPOINTER DiagInfoPtr, /* Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * StringLengthPtr /* Out */
)

• For SQLGetDiagFieldW
SQLRETURN SQLGetDiagFieldW
(
 SQLSMALLINT HandleType, /* In */
 SQLHANDLE Handle, /* In */
 SQLSMALLINT RecNumber, /* In */
 SQLSMALLINT DiagIdentifier, /* In */
 SQLPOINTER DiagInfoPtr, /* Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * StringLengthPtr /* Out */
)

(3) Arguments
HandleType

Specifies one of the following handle types:

• SQL_HANDLE_ENV: Environment handle

• SQL_HANDLE_DBC: Connection handle

• SQL_HANDLE_STMT: Statement handle

• SQL_HANDLE_DESC: Descriptor handle

Handle
Specifies a handle value.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

RecNumber
Specifies the diagnostic information (status record) number from which the application is to acquire information.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 820

If the application is to acquire the value of the diagnostic header field (the value indicating the diagnostic header
field is to be set in DiagIdentifier), this argument is ignored.
If the application is to acquire any other value, specify 1 or a greater value in this argument.

DiagIdentifier
Specifies a required diagnostic field identifier. The two principal types are header fields and record fields. For details
about the attributes that can be specified, see 16.18 Attributes that can be specified in DiagIdentifier of
SQLGetDiagField and SQLGetDiagFieldW.

DiagInfoPtr
Specifies a pointer to the buffer in which the diagnostic information is to be returned. The data type depends on the
value of DiagIdentifier.

BufferLength
Specifies the length of DiagInfoPtr.
This length includes the null terminating character.
Specify the following value depending on the type of DiagInfoPtr:

Type of DiagIdentifier value Type of DiagInfoPtr value Value to be specified in
BufferLength

Value defined in 16.18 Attributes that can be
specified in DiagIdentifier of SQLGetDiagField and
SQLGetDiagFieldW

Character string or binary Length of DiagInfoPtr (in bytes)
SQL_NTS cannot be specified.

Integer None (ignored)

StringLengthPtr
Specify this argument only when DiagInfoPtr is character string data.
Specifies a pointer to the buffer that stores the total number of valid bytes to be returned to DiagInfoPtr. This
total number of bytes does not include the number of bytes in the null terminating character.

Important
If the total length (in bytes) of the character string stored here that is to be set in DiagInfoPtr is
greater than the value of BufferLength without the length of the null terminating character, the
character string stored in DiagInfoPtr is truncated to the length equivalent to BufferLength
without the null terminating character, and then the null terminating character is added at the end.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR,
SQL_INVALID_HANDLE, or SQL_NO_DATA. This function does not set SQLSTATE but provides the following
execution results as return values:

Return value Meaning

SQL_SUCCESS The processing was successful.

SQL_SUCCESS_WITH_INFO One of the following errors occurred:
• The size of DiagInfoPtr was too small for the acquired value, resulting in truncation.

You can determine the truncated size by comparing BufferLength and
StringLengthPtr.

• A character code that cannot be converted was detected during conversion of character
encoding, and was replaced with the specified character.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 821

Return value Meaning

SQL_ERROR One of the following errors occurred:
• An invalid value was specified in DiagIdentifier.
• One of the values listed below was specified in DiagIdentifier, but Handle was

not a statement handle:
• SQL_DIAG_CURSOR_ROW_COUNT
• SQL_DIAG_DYNAMIC_FUNCTION
• SQL_DIAG_DYNAMIC_FUNCTION_CODE
• SQL_DIAG_ROW_COUNT

• A value indicating a diagnostic record field was specified in DiagIdentifier, but
the value specified in RecNumber was less than or equal to 0.

• The data type of the requested field was character string, but BufferLength satisfied
all the following conditions:
• Less than 0
• Not SQL_NTS
• Not the results of SQL_LEN_BINARY_ATTR(length) macro

• An invalid value (SQL_NTS) was specified in BufferLength.

SQL_INVALID_HANDLE The handle indicated by HandleType and Handle is not a valid handle.

SQL_NO_DATA RecNumber is greater than the number of diagnostic records in the handle specified by
Handle or there was no diagnostic record that could be read in the handle specified by
Handle.

(5) SQLSTATE
This ODBC function does not return SQLSTATE.

The function returns details of errors by using the values defined in (4) Return value.

(6) Notes
• For details about the error information, see 15.4 Information that is returned in the event of an error.

• The function does not return diagnostic information.

16.9.13 SQLGetDiagRec, SQLGetDiagRecW

(1) Function
This ODBC function returns the current values of fields in a diagnostic data structure that is associated with a handle
and includes such information as error, warning, and status.

(2) Format
• For SQLGetDiagRec

SQLRETURN SQLGetDiagRec
(
 SQLSMALLINT HandleType, /* In */
 SQLHANDLE Handle, /* In */
 SQLSMALLINT RecNumber, /* In */
 SQLCHAR * SQLState, /* Out */

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 822

 SQLINTEGER * NativeErrorPtr, /* Out */
 SQLCHAR * MessageText, /* Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * TextLengthPtr /* Out */
)

• For SQLGetDiagRecW
SQLRETURN SQLGetDiagRecW
(
 SQLSMALLINT HandleType, /* In */
 SQLHANDLE Handle, /* In */
 SQLSMALLINT RecNumber, /* In */
 SQLWCHAR * SQLState, /* Out */
 SQLINTEGER * NativeErrorPtr, /* Out */
 SQLWCHAR * MessageText, /* Out */
 SQLSMALLINT BufferLength, /* In */
 SQLSMALLINT * TextLengthPtr /* Out */
)

(3) Arguments
HandleType

Specifies one of the following handle types:

• SQL_HANDLE_ENV: Environment handle

• SQL_HANDLE_DBC: Connection handle

• SQL_HANDLE_STMT: Statement handle

• SQL_HANDLE_DESC: Descriptor handle

Handle
Specifies a handle value.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

RecNumber
Specifies the diagnostic information (status record) number from which the application is to acquire information.
Specify 1 or a greater value in this argument.

SQLState
Specifies a pointer to the buffer in which the SQLSTATE code for the diagnostic record indicated by RecNumber
is to be returned. This pointer consists of five characters consisting of 2 characters for the class + 3 characters for
the subclass.
The information stored in the SQL_DIAG_SQLSTATE diagnostic field is returned.
If NULL is specified in this parameter, the driver sets nothing.

NativeErrorPtr
Specifies a pointer to the buffer in which the native error code specific to the data source is to be returned.
The information stored in the SQL_DIAG_NATIVE diagnostic field is returned.
If NULL is specified in this parameter, the driver sets nothing.

MessageText
Specifies a pointer to the buffer in which the diagnostic message text character string is to be returned.
The information stored in the SQL_DIAG_MESSAGE_TEXT diagnostic field is returned.
If NULL is specified in this parameter, the driver sets nothing.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 823

BufferLength
Specifies the length# of the MessageText buffer.
Although there is no maximum length for a diagnostic message text, specify a value that is at least 512 bytes.
This length includes the null terminating character. SQL_NTS cannot be specified.

TextLengthPtr
Specifies a pointer to the buffer that returns the total valid length# to be returned to MessageText. This length
does not include the null terminating character.

Important
If the length# stored here is greater than the value of BufferLength without the length# of the null
terminating character, the character string stored in MessageText is truncated to the length#

equivalent to BufferLength without the null terminating character, and then the null terminating
character is added at the end.

#
The length must be in bytes for SQLGetDiagRec and in characters for SQLGetDiagRecW.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR,
SQL_INVALID_HANDLE, or SQL_NO_DATA. This function does not set SQLSTATE but provides the following
execution results as return values:

Return value Meaning

SQL_SUCCESS The processing was successful.

SQL_SUCCESS_WITH_INFO One of the following errors occurred:
• The size of MessageText was too small for the diagnostic message text,

resulting in truncation. You can determine the truncated size by comparing
BufferLength and TextLengthPtr.

• A character code that cannot be converted was detected during conversion of
character encoding, and was replaced with the specified character.

SQL_ERROR One of the following errors occurred:
• The value specified in RecNumber is less than or equal to 0.
• The value specified in BufferLength is less than 0.
• An invalid value (SQL_NTS) was specified in BufferLength.

SQL_INVALID_HANDLE The handle indicated by HandleType and Handle is not a valid handle.

SQL_NO_DATA RecNumber is greater than the number of diagnostic records in the handle
specified by Handle or there was no diagnostic record that could be read in the handle
specified by Handle.

(5) SQLSTATE
This ODBC function does not return SQLSTATE.

The function returns details of errors by using the values defined in (4) Return value.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 824

(6) Notes
• For details about the error information, see 15.4 Information that is returned in the event of an error.

• SQLCODE is set in NativeErrorPtr. For details about SQLCODE, see Interpreting SQLCODEs in the manual
HADB Messages.

• The function does not return diagnostic information.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 825

16.10 Acquiring system information for the data source

This section explains the ODBC functions that are used to acquire system information for the data source.

16.10.1 SQLColumnPrivileges, SQLColumnPrivilegesW

(1) Function
These functions return a list of privileges that are associated with the columns of the specified table. The result is output
in the form of an SQL result set.

(2) Format
• For SQLColumnPrivileges

SQLRETURN SQLColumnPrivileges
(
 SQLHSTMT StatementHandle, /* In */
 SQLCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLCHAR * TableName, /* In */
 SQLSMALLINT NameLength3, /* In */
 SQLCHAR * ColumnName, /* In */
 SQLSMALLINT NameLength4 /* In */
)

• For SQLColumnPrivilegesW
SQLRETURN SQLColumnPrivilegesW
(
 SQLHSTMT StatementHandle, /* In */
 SQLWCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLWCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLWCHAR * TableName, /* In */
 SQLSMALLINT NameLength3, /* In */
 SQLWCHAR * ColumnName, /* In */
 SQLSMALLINT NameLength4 /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

CatalogName
Specifies a catalog name for the table.
The specified information is ignored, but the specification itself is required. Therefore, when you use this function,
specify a null character string ("") or NULL.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 826

NameLength1
Specifies either the length of *CatalogName#1 or the keyword SQL_NTS.
The specified information is ignored, but specification itself is required. Therefore, to use this function, specify 0.

SchemaName
Specifies the schema name of a table. You can use a pattern character string#2 to specify the schema name.
If a NULL pointer or empty string ("") only is specified for SchemaName, the function assumes that only the pattern
character string '%' is specified for SchemaName.

NameLength2
Specifies either the length of *SchemaName#1 or the keyword SQL_NTS.
If 0 is specified for NameLength2, the function assumes that only the pattern character string '%' is specified
for SchemaName.

TableName
Specifies a table name. The table name can be specified by using a pattern character string#2.
If a NULL pointer or empty string ("") only is specified for TableName, the function assumes that only the pattern
character string '%' is specified for TableName.

NameLength3
Specifies either the length of *TableName#1 or the keyword SQL_NTS.
If 0 is specified for NameLength3, the function assumes that only the pattern character string '%' is specified
for TableName.

ColumnName
Specifies the column name. The column name can be specified by using a pattern character string#2.
If a NULL pointer or empty string ("") only is specified for ColumnName, the function assumes that the pattern
character string '%' is specified for ColumnName.

NameLength4
Specifies either the length of *ColumnName#1 or the keyword SQL_NTS.
If 0 is specified for NameLength4, the function assumes that only the pattern character string '%' is specified
for ColumnName.

#1
The length must be in bytes for SQLColumnPrivileges and in characters for SQLColumnPrivilegesW.

#2
For details about the special characters that can be specified in pattern character strings, see Table 16-10: Special
characters that can be specified in pattern character strings.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

The following table describes the format of the result set that is returned when this function is executed.

Table 16-9: Format of the result set that is returned

Column No. Data type Column name Description

1 Varchar TABLE_CAT Catalog name (A null value is always returned.)

2 Varchar TABLE_SCHEM Schema name

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 827

Column No. Data type Column name Description

3 Varchar TABLE_NAME Table name

4 Varchar COLUMN_NAME Column name

5 Varchar GRANTOR User who granted the access privilege

6 Varchar GRANTEE User whom the access privilege is granted to

7 Varchar PRIVILEGE The granted access privilege is returned.
• SELECT: SELECT privilege
• INSERT: INSERT privilege
• UPDATE: UPDATE privilege
• DELETE: DELETE privilege
• TRUNCATE: TRUNCATE privilege
• REFERENCES: REFERENCES privilege
• IMPORT TABLE: IMPORT TABLE privilege
• REBUILD INDEX: REBUILD INDEX

privilege
• GET COSTINFO: GET COSTINFO privilege
• EXPORT TABLE: EXPORT TABLE privilege
• MERGE CHUNK: MERGE CHUNK privilege
• CHANGE CHUNK COMMENT: CHANGE
CHUNK COMMENT privilege

• CHANGE CHUNK STATUS: CHANGE CHUNK
STATUS privilege

• ARCHIVE CHUNK: ARCHIVE CHUNK
privilege

• UNARCHIVE CHUNK: UNARCHIVE CHUNK
privilege

8 Varchar IS_GRANTABLE Whether the access privilege grantee (user whom the
access privilege is granted to) can grant the access
privilege to other users is returned.
• YES: The access privilege can be granted to other

users.
• NO: The access privilege cannot be granted to

other users.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

08S01 Communication link failure N

24000 Invalid cursor status The function was executed while a cursor was
open.

Y

40001 Serialization failure -- N

40003 Statement completion unknown N

HY000 General error N

HY001 Memory allocation error Y

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 828

SQLSTATE Description Remarks Returned

HY008 Operation cancelled N

HY009 Invalid use of null pointer N

HY010 Function sequence error Y

HY013 Memory management error N

HY090 Invalid string or buffer length The value of an argument that stores a name
length either exceeds the maximum length of the
corresponding name or is a negative value
other than SQL_NTS.

Y

HY117 Connection suspended -- N

HYC00 Optional feature not implemented N

HYT00 Timeout expired N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.10.2 SQLColumns, SQLColumnsW

(1) Function
This ODBC function returns a listing of column information as a result set.

(2) Format
• For SQLColumns

SQLRETURN SQLColumns
(
 SQLHSTMT StatementHandle, /* In */
 SQLCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLCHAR * TableName, /* In */
 SQLSMALLINT NameLength3, /* In */
 SQLCHAR * ColumnName, /* In */
 SQLSMALLINT NameLength4 /* In */
)

• For SQLColumnsW

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 829

SQLRETURN SQLColumnsW
(
 SQLHSTMT StatementHandle, /* In */
 SQLWCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLWCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLWCHAR * TableName, /* In */
 SQLSMALLINT NameLength3, /* In */
 SQLWCHAR * ColumnName, /* In */
 SQLSMALLINT NameLength4 /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.

CatalogName
Specifies that the specified information is to be used as a catalog name.
The specified information is ignored, but the specification itself is required. Therefore, when you use this function,
specify a null character string ("") or NULL.

NameLength1
Specifies the length of *CatalogName#1 or SQL_NTS.
The specified information is ignored, but the specification itself is required. Therefore, when you use this
function, specify 0.

SchemaName
Specifies a pattern character string#2 for schema names. If NULL is specified, the driver processing is the same as
when '%' is specified as the pattern character string.

NameLength2
Specifies the length of *SchemaName#1 or SQL_NTS.
If 0 is specified, the driver processing is the same as when '%' is specified as the pattern character string in
SchemaName.

TableName
Specifies a pattern character string#2 for table names. If NULL is specified, the driver processing is the same as when
'%' is specified as the pattern character string.

NameLength3
Specifies the length of *TableName#1 or SQL_NTS.
If 0 is specified, the driver processing is the same as when '%' is specified as the pattern character string in
TableName.

ColumnName
Specifies a pattern character string#2 for column names. If NULL is specified, the driver processing is the same as
when '%' is specified as the pattern character string.

NameLength4
Specifies the length of *ColumnName#1 or SQL_NTS.
If 0 is specified, the driver processing is the same as when '%' is specified as the pattern character string in
ColumnName.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 830

#1
The length must be in bytes for SQLColumns and in characters for SQLColumnsW.

#2
The following table lists the special characters that can be specified in pattern character strings.

Table 16-10: Special characters that can be specified in pattern character strings

Special character Meaning

_ (underscore) Any single character.

% A character string of any length, including zero characters.

\ An escape character. A special character that immediately follows an escape character in a pattern
character string is handled as a normal character.
The character \ is represented by the Shift-JIS character code 0x5c (or 0x5c00 in UTF-16LE). In UTF-8,
specify the character displayed as a backslash (\).

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

The following table shows the format of the result set that is returned after execution.

Table 16-11: Format of the result set that is returned

Column No. Type Column name Description

1 Varchar TABLE_CAT The function always returns a null value.

2 Varchar TABLE_SCHEM Schema name

3 Varchar TABLE_NAME Table name

4 Varchar COLUMN_NAME Column name

5 smallint DATA_TYPE ODBC SQL data type identifier

6 Varchar TYPE_NAME Type name

7 Integer COLUMN_SIZE Column size

8 Integer BUFFER_LENGTH Column data definition length

9 Smallint DECIMAL_DIGITS Number of decimal places

10 Smallint NUM_PREC_RADIX Cardinal number
• Exact numeric value: 10
• Nonnumeric value: Null value

11 Smallint NULLABLE Returns a value indicating whether a null value can
be used for this type.
• SQL_NO_NULLS: Null values might not be

permitted.
• SQL_NULLABLE: Null values are permitted.

12 Varchar REMARKS The function always returns a null value.

13 Varchar COLUMN_DEF The function returns the default value of a column.
• When the returned value is enclosed by single

quotation marks ('), it means the default value of
the column is a character string.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 831

Column No. Type Column name Description

• If NULL is specified as the default value of the
column, the character string NULL is returned
without single quotation marks (').

• If no default value is specified for the column,
the function returns a null value.

• For details about other return values, see the
description of the DEFAULT_VALUE column
under Content of SQL_COLUMNS in the HADB
Setup and Operation Guide.

If no default value has been specified, the function
returns NULL.

14 Smallint SQL_DATA_TYPE ODBC SQL data type identifier

15 Smallint SQL_DATETIME_SUB Subcode of ODBC SQL data type identifier

16 Integer CHAR_OCTET_LENGTH Maximum length (in bytes) of a column whose data
type is character string data

17 Integer ORDINAL_POSITION Column number
• Begins with 1.

18 Varchar IS_NULLABLE Returns a value indicating whether a null value can
be used for this type:
• YES: Null values might be permitted.
• NO: Null values are not permitted.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

08S01 Communication link failure N

24000 Invalid cursor status N

40001 Serialization failure N

40003 Statement completion unknown N

5C002 Character encoding conversion error A character code that cannot be converted was
detected.

Y

5C041 Unsupported data type error The driver does not support the specified data
type.

N

HY000 General error -- N

HY001 Memory allocation error Y

HY008 Operation cancelled N

HY009 Invalid use of null pointer N

HY010 Function sequence error Y

HY013 Memory management error N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 832

SQLSTATE Description Remarks Returned

HY090 Invalid string or buffer length One of the arguments that stores a name length
exceeded the maximum length for the
corresponding name.

Y

HY117 Connection suspended -- N

HYC00 Optional feature not implemented N

HYT00 Timeout expired N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
The column information that can be acquired depends on the privileges of the HADB user who executes this function.
For details about the privileges and the column information that can be acquired, see the topic Scope of information in
dictionary tables and system tables that can be referenced by HADB users in the HADB Setup and Operation Guide.

16.10.3 SQLForeignKeys, SQLForeignKeysW

(1) Function
This ODBC function returns column information for the following foreign keys as an SQL result set:

• List of foreign keys in the specified table (columns in the specified table that refer to primary keys in other tables)

• List of foreign keys in other tables that refer to the primary key in the specified table

(2) Format
• For SQLForeignKeys

SQLRETURN SQLForeignKeys
(
 SQLHSTMT StatementHandle, /* In */
 SQLCHAR * PKCatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLCHAR * PKSchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLCHAR * PKTableName, /* In */
 SQLSMALLINT NameLength3, /* In */
 SQLCHAR * FKCatalogName, /* In */
 SQLSMALLINT NameLength4, /* In */
 SQLCHAR * FKSchemaName, /* In */
 SQLSMALLINT NameLength5, /* In */

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 833

 SQLCHAR * FKTableName, /* In */
 SQLSMALLINT NameLength6 /* In */
)

• For SQLForeignKeysW
SQLRETURN SQLForeignKeysW
(
 SQLHSTMT StatementHandle, /* In */
 SQLWCHAR * PKCatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLWCHAR * PKSchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLWCHAR * PKTableName, /* In */
 SQLSMALLINT NameLength3, /* In */
 SQLWCHAR * FKCatalogName, /* In */
 SQLSMALLINT NameLength4, /* In */
 SQLWCHAR * FKSchemaName, /* In */
 SQLSMALLINT NameLength5, /* In */
 SQLWCHAR * FKTableName, /* In */
 SQLSMALLINT NameLength6 /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.
When you use this function, specify a value that was output by *OutputHandlePtr of SQLAllocHandle
before this function is executed.

PKCatalogName
Specifies a primary key table catalog name. This argument is ignored, if specified. When you use this function,
specify a null character string ("") or NULL.

NameLength1
Specifies the length of *PKCatalogName# or SQL_NTS. This argument is ignored, if specified. When you use
this function, specify 0.

PKSchemaName
Specifies a primary key table schema name. If NULL is specified, all schema names are processed.

NameLength2
Specifies the length of *PKSchemaName# or SQL_NTS. If 0 is specified, all schema names are processed.

PKTableName
Specifies a primary key table name. For details about the value to be specified, see Table 16-12: Combinations of
PKTableName and FKTableName values and the result set that is returned based on the combination. If a null
character string is specified, the number of rows in the result set will be zero.

NameLength3
Specifies the length of *PKTableName# or SQL_NTS. If NULL is specified for PKTableName, this argument is
ignored. If a non-null value is specified for PKTableName and 0 is specified for this argument, the result will be
the same as when a null character string is specified for PKTableName.

FKCatalogName
Specifies a foreign key table catalog name. This argument is ignored, if specified. When you use this function,
specify a null character string ("") or NULL.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 834

NameLength4
Specifies the length of *FKCatalogName# or SQL_NTS. This argument is ignored, if specified. When you use
this function, specify 0.

FKSchemaName
Specifies a foreign key table schema name. If NULL is specified, all schema names are processed.

NameLength5
Specifies the length of *FKSchemaName# or SQL_NTS. If 0 is specified, all schema names are processed.

FKTableName
Specifies a foreign key table name. For details about the value to be specified, see Table 16-12: Combinations of
PKTableName and FKTableName values and the result set that is returned based on the combination. If a null
character string is specified, the number of rows in the result set will be zero.

NameLength6
Specifies the length of *FKTableName# or SQL_NTS. If NULL is specified for PKTableName, this argument is
ignored. If a value other than NULL is specified for PKTableName and 0 is specified for this argument, the result
will be the same as when an empty string is specified for PKTableName.

#
The length must be in bytes for SQLForeignKeys and in characters for SQLForeignKeysW.

The following table shows the combinations of PKTableName and FKTableName values and the result set that is
returned based on the combination.

Table 16-12: Combinations of PKTableName and FKTableName values and the result set that is
returned based on the combination

PKTableName FKTableName Result set that is returned

NULL NULL -- (error)

Not NULL NULL Returns information about the primary key of the table specified for PKTableName
and the foreign keys of other tables that reference that primary key.
The ODBC function does not return information about the foreign keys of other tables
that reference keys only for the unique constraint in the table specified for
PKTableName.

NULL Not NULL Returns information about the foreign key of the table specified for FKTableName
and the primary keys of other tables that the foreign key references.
The ODBC function does not return information about the foreign key of the table
specified for FKTableName that references keys only for the unique constraint in
other tables.

Not NULL Not NULL Returns information about the foreign key of the table specified for FKTableName
and the primary key of the table that the foreign key references. This foreign key
references only the primary key of the table specified for PKTableName.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

A result set is created when SQLForeignKeys or SQLForeignKeysW is executed. The following table shows the
format of the result set that is returned.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 835

Table 16-13: Format of the result set that is returned

Column
No.

Type Column name Description

1 Varchar PKTABLE_CAT The null value is always returned.

2 Varchar PKTABLE_SCHEM Schema name of the primary key. If there is no schema
name, a null character string is returned.

3 Varchar PKTABLE_NAME Table name of the primary key.

4 Varchar PKCOLUMN_NAME Column name of the primary key. If there is no column
name, a null character string is returned.

5 Varchar FKTABLE_CAT The null value is always returned.

6 Varchar FKTABLE_SCHEM Schema name of the foreign key. If there is no schema
name, a null character string is returned.

7 Varchar FKTABLE_NAME Table name of the foreign key.

8 Varchar FKCOLUMN_NAME Column name of the foreign key. If there is no column
name, a null character string is returned.

9 Smallint KEY_SEQ Sequence number of the foreign key columns beginning
at 1.

10 Smallint UPDATE_RULE Action to be applied to the foreign key when an SQL
statement that performs update processing is requested.
• SQL_NO_ACTION

If no primary key value corresponds to the foreign
key value because the primary key value or the
foreign key value was updated, the key value cannot
be updated. However, if referential constraint check
suppression (DISABLE) is specified in the
referential constraint definition in the CREATE
TABLE statement, the primary key value or the
foreign key value can be updated.

11 Smallint DELETE_RULE Action to be applied to the foreign key when an SQL
statement that performs deletion processing is
requested.
• SQL_NO_ACTION

If no primary key value corresponds to the foreign
key value because rows were deleted from the table
to be referenced, rows cannot be deleted. However,
if referential constraint check suppression
(DISABLE) is specified in the referential constraint
definition in the CREATE TABLE statement, rows
can be deleted.

12 Varchar FK_NAME Foreign key name.

13 Varchar PK_NAME Primary key name.

14 Smallint DEFERRABILITY Value indicating whether constraint checking on the
foreign key is to be delayed.
• SQL_NOT_DEFERRABLE

A constraint check is to be performed each time an
SQL statement is executed. Nothing can be done to
delay this constraint checking.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 836

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

08S01 Communication link failure N

24000 Invalid cursor status The function was executed while a cursor was
open.

Y

40001 Serialization failure -- N

40003 Statement completion unknown N

5C002 Character encoding conversion error A character code that cannot be converted was
detected.

Y

HY000 General error -- N

HY001 Memory allocation error Y

HY008 Operation cancelled N

HY009 Invalid use of null pointer PKTableName and FKTableName are both
NULL.

Y

HY010 Function sequence error -- Y

HY013 Memory management error N

HY090 Invalid string or buffer length One of the arguments that stores a name length
exceeded the maximum length for the
corresponding name.

Y

HY117 Connection suspended -- N

HYC00 Optional feature not implemented N

HYT00 Timeout expired N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
The information about foreign keys that can be acquired depends on the privileges of the HADB user who executes this
method. For details about the relationship between privileges and the information that can be acquired, see the topic
Scope of information in dictionary tables and system tables that can be referenced by HADB users in the HADB Setup
and Operation Guide.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 837

16.10.4 SQLPrimaryKeys, SQLPrimaryKeysW

(1) Function
This ODBC function returns the column names that make up the primary key for a table. The driver returns the
information as a result set for the specified SQL statement.

This function does not support returning primary keys from multiple tables in a single call.

(2) Format
• For SQLPrimaryKeys

SQLRETURN SQLPrimaryKeys
(
 SQLHSTMT StatementHandle, /* In */
 SQLCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLCHAR * TableName, /* In */
 SQLSMALLINT NameLength3 /* In */
)

• For SQLPrimaryKeysW
SQLRETURN SQLPrimaryKeysW
(
 SQLHSTMT StatementHandle, /* In */
 SQLWCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLWCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLWCHAR * TableName, /* In */
 SQLSMALLINT NameLength3 /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

CatalogName
Specifies that the specified information is to be used as a catalog name.
The specified information is ignored, but the specification itself is required. Therefore, when you use this function,
specify a null character string ("") or NULL.

NameLength1
Specifies the length of *CatalogName# or SQL_NTS.
The specified information is ignored, but the specification itself is required. Therefore, when you use this
function, specify 0.

SchemaName
Specifies a schema name. If NULL is specified, all schema names are processed.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 838

NameLength2
Specifies the length of *SchemaName# or SQL_NTS.
If 0 is specified, SchemaName is not used for filtering.

TableName
Specifies a table name. If NULL is specified, all table names are processed.

NameLength3
Specifies the length of *TableName# or SQL_NTS.
If 0 is specified, the function assumes that NULL is specified for TableName.

#
The length must be in bytes for SQLPrimaryKeys and in characters for SQLPrimaryKeysW.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

A result set is created when SQLPrimaryKeys or SQLPrimaryKeysW is executed. The following table shows the
format of the result set that is returned.

Table 16-14: Format of the result set that is returned

Column
No.

Type Column name Description

1 Varchar TABLE_CAT The null value is always returned.

2 Varchar TABLE_SCHEM Schema name

3 Varchar TABLE_NAME Table name

4 Varchar COLUMN_NAME Column name

5 Smallint KEY_SEQ Column's order number within the primary key

6 Varchar PK_NAME Primary key name

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

08S01 Communication link failure N

24000 Invalid cursor status The function was executed while a cursor was
open.

Y

40001 Serialization failure -- N

40003 Statement completion unknown N

HY000 General error N

HY001 Memory allocation error Y

HY008 Operation cancelled N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 839

SQLSTATE Description Remarks Returned

HY009 Invalid use of null pointer TableName is a null pointer. Y

HY010 Function sequence error -- Y

HY013 Memory management error N

HY090 Invalid string or buffer length One of the arguments that stores a name length
exceeded the maximum length for the
corresponding name.

Y

HY117 Connection suspended -- N

HYC00 Optional feature not implemented N

HYT00 Timeout expired N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
The primary key information that can be acquired depends on the privileges of the HADB user who executes this
function. For details about the privileges and the primary key information that can be acquired, see the topic Scope of
information in dictionary tables and system tables that can be referenced by HADB users in the HADB Setup and
Operation Guide.

16.10.5 SQLProcedureColumns, SQLProcedureColumnsW

(1) Function
This ODBC function returns a list of input and output parameters and a list of columns that make up the result set for
a specified procedure. The driver returns the information as a result set for the specified SQL statement.

Note that the number of rows in the retrieval result set is always 0 because the driver does not support procedures.

(2) Format
• For SQLProcedureColumns

SQLRETURN SQLProcedureColumns
(
 SQLHSTMT StatementHandle, /* In */
 SQLCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 840

 SQLCHAR * ProcName, /* In */
 SQLSMALLINT NameLength3, /* In */
 SQLCHAR * ColumnName, /* In */
 SQLSMALLINT NameLength4 /* In */
)

• For SQLProcedureColumnsW
SQLRETURN SQLProcedureColumnsW
(
 SQLHSTMT StatementHandle, /* In */
 SQLWCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLWCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLWCHAR * ProcName, /* In */
 SQLSMALLINT NameLength3, /* In */
 SQLWCHAR * ColumnName, /* In */
 SQLSMALLINT NameLength4 /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

CatalogName
Specifies a procedure catalog name.

NameLength1
Specifies the length# of *CatalogName.

SchemaName
Specifies a pattern character string for procedure schema names.

NameLength2
Specifies the length# of *SchemaName.

ProcName
Specifies a pattern character string for procedure names.

NameLength3
Specifies the length# of *ProcName.

ColumnName
Specifies a pattern character string for column names.

NameLength4
Specifies the length# of *ColumnName.

#
The length must be in bytes for SQLProcedureColumns and in characters for SQLProcedureColumnsW.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 841

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

08S01 Communication link failure N

24000 Invalid cursor status The function was executed while a cursor was
open.

Y

40001 Serialization failure -- N

40003 Statement completion unknown N

HY000 General error N

HY001 Memory allocation error Y

HY008 Operation cancelled N

HY009 Invalid use of null pointer N

HY010 Function sequence error Y

HY090 Invalid string or buffer length N

HY117 Connection suspended N

HYC00 Optional feature not implemented N

HYT00 Timeout expired N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.10.6 SQLProcedures, SQLProceduresW

(1) Function
This ODBC function returns a list of procedures stored at the data source. The driver returns the information as a result
set for the specified SQL statement.

Note that the number of rows in the retrieval result set is always 0 because the driver does not support procedures.

(2) Format
• For SQLProcedures

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 842

SQLRETURN SQLProcedures
(
 SQLHSTMT StatementHandle, /* In */
 SQLCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLCHAR * ProcName, /* In */
 SQLSMALLINT NameLength3 /* In */
)

• For SQLProceduresW
SQLRETURN SQLProceduresW
(
 SQLHSTMT StatementHandle, /* In */
 SQLWCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLWCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLWCHAR * ProcName, /* In */
 SQLSMALLINT NameLength3 /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

CatalogName
Specifies a procedure catalog name.

NameLength1
Specifies the length# of *CatalogName.

SchemaName
Specifies a pattern character string for procedure schema names.

NameLength2
Specifies the length# of *SchemaName.

ProcName
Specifies a pattern character string for procedure names.

NameLength3
Specifies the length# of *ProcName.

#
The length must be in bytes for SQLProcedures and in characters for SQLProceduresW.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 843

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

08S01 Communication link failure N

24000 Invalid cursor status The function was executed while a cursor was
open.

Y

40001 Serialization failure -- N

40003 Statement completion unknown N

HY000 General error N

HY001 Memory allocation error Y

HY008 Operation cancelled N

HY009 Invalid use of null pointer N

HY010 Function sequence error Y

HY013 Memory management error N

HY090 Invalid string or buffer length N

HY117 Connection suspended N

HYC00 Optional feature not implemented N

HYT00 Timeout expired N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.10.7 SQLSpecialColumns, SQLSpecialColumnsW

(1) Function
This ODBC function acquires one of the following types of information about columns in a specified table:

• Optimal set of columns that uniquely identifies a row in the table

• Columns that are updated automatically when a value in the row is updated by a transaction

The driver returns the information as a result set for the specified SQL statement.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 844

Note that the number of rows in the retrieval result set is always 0 because the driver does not support the function that
updates columns automatically.

(2) Format
• For SQLSpecialColumns

SQLRETURN SQLSpecialColumns
(
 SQLHSTMT StatementHandle, /* In */
 SQLUSMALLINT IdentifierType, /* In */
 SQLCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLCHAR * TableName, /* In */
 SQLSMALLINT NameLength3, /* In */
 SQLUSMALLINT Scope, /* In */
 SQLUSMALLINT Nullable /* In */
)

• For SQLSpecialColumnsW
SQLRETURN SQLSpecialColumnsW
(
 SQLHSTMT StatementHandle, /* In */
 SQLUSMALLINT IdentifierType, /* In */
 SQLWCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLWCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLWCHAR * TableName, /* In */
 SQLSMALLINT NameLength3, /* In */
 SQLUSMALLINT Scope, /* In */
 SQLUSMALLINT Nullable /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

IdentifierType
Specifies one of the following values as the type of column to be returned:

IdentifierType Description

SQL_BEST_ROWID Returns the optimal column or set of columns that enables a row in the specified table to
be uniquely identified by acquiring values from the columns.
If the table contains an indexed column that enables a row to be uniquely identified, the
driver returns that column. If the table does not contain such a column, the driver returns
a temporary pseudo-column designed to identify rows.

SQL_ROWVER Returns a column in the specified table, if any, that is automatically updated by the data
source when a value in the row is updated by a transaction.

CatalogName
Specifies a catalog name for the table.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 845

NameLength1
Specifies the length# of *CatalogName.

SchemaName
Specifies a schema name for the table.

NameLength2
Specifies the length# of *SchemaName.

TableName
Specifies a table name.

NameLength3
Specifies the length# of *TableName.

Scope
Specifies one of the following values as the minimum required scope of the row ID:

Scope Description

SQL_SCOPE_CURROW The row ID is valid only while it is positioned on that row.

SQL_SCOPE_TRANSACTION The row ID is valid only for the duration of the current transaction.

SQL_SCOPE_SESSION The row ID is valid for the duration of the session (across transaction boundaries).

Nullable
Specifies whether special columns that store null values are to be returned.
Specify one of the following values:

Nullable Description

SQL_NO_NULLS Excludes special columns that can store null values. Some drivers cannot support
SQL_NO_NULLS; these drivers return an empty result set if SQL_NO_NULLS is
specified. We recommend that applications take this into account and specify
SQL_NO_NULLS only if it is required.

SQL_NULLABLE Returns special columns even if they store null values.

#
The length must be in bytes for SQLSpecialColumns and in characters for SQLSpecialColumnsW.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

08S01 Communication link failure N

24000 Invalid cursor status The function was executed while a cursor was
open.

Y

40001 Serialization failure -- N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 846

SQLSTATE Description Remarks Returned

40003 Statement completion unknown N

HY000 General error N

HY001 Memory allocation error Y

HY008 Operation cancelled N

HY009 Invalid use of null pointer N

HY010 Function sequence error Y

HY013 Memory management error N

HY090 Invalid string or buffer length N

HY097 Invalid value specified in IdentifierType N

HY098 Invalid value specified in Scope N

HY099 Invalid value specified in Nullable N

HY117 Connection suspended N

HYC00 Optional feature not implemented N

HYT00 Timeout expired N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.10.8 SQLStatistics, SQLStatisticsW

(1) Function
This ODBC function returns as a result set for the specified SQL statement a listing of index information associated
with a table.

(2) Format
• For SQLStatistics

SQLRETURN SQLStatistics
(
 SQLHSTMT StatementHandle, /* In */
 SQLCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 847

 SQLCHAR * TableName, /* In */
 SQLSMALLINT NameLength3, /* In */
 SQLUSMALLINT Unique, /* In */
 SQLUSMALLINT Reserved /* In */
)

• For SQLStatisticsW
SQLRETURN SQLStatisticsW
(
 SQLHSTMT StatementHandle, /* In */
 SQLWCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLWCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLWCHAR * TableName, /* In */
 SQLSMALLINT NameLength3, /* In */
 SQLUSMALLINT Unique, /* In */
 SQLUSMALLINT Reserved /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.

CatalogName
Specifies that the specified information is to be used as a catalog name.
The specified information is ignored, but the specification itself is required. Therefore, when you use this function,
specify a null character string ("") or NULL.

NameLength1
Specifies the length of *CatalogName# or SQL_NTS. The specified information is ignored, but the specification
itself is required.
Therefore, when you use this function, specify 0.

SchemaName
Specifies a schema name. If NULL is specified, all schema names are processed.

NameLength2
Specifies the length of *SchemaName# or SQL_NTS.
If 0 is specified, SchemaName is not used for filtering.

TableName
Specifies a table name.
If NULL is specified, all table names are processed.

NameLength3
Specifies the length of *TableName# or SQL_NTS.
If 0 is specified, the driver assumes that NULL is specified for TableName.

Unique
Specifies the type of indexes:

• SQL_INDEX_UNIQUE
Specifies that information about unique indexes only is to be acquired.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 848

• SQL_INDEX_ALL
Specifies that information about all indexes is to be acquired.

Reserved
Specifies that the specified information is to be used as the option that indicates the importance of the
CARDINALITY and PAGES columns in the result set. Note that this argument is ignored, if specified.

#
The length must be in bytes for SQLStatistics and in characters for SQLStatisticsW.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

The following table describes the format of result set that is returned.

Table 16-15: Format of result set that is returned

Column No. Type Column name Description

1 Varchar TABLE_CAT The function always returns a null value.

2 Varchar TABLE_SCHEM Schema name

3 Varchar TABLE_NAME Table name

4 Smallint NON_UNIQUE If the key value defining the index (value of one
column or a set of multiple columns that are defined
as the index) can be nonunique, the driver returns
SQL_TRUE; otherwise, the driver returns
SQL_FALSE.

5 Varchar INDEX_QUALIFIER The function always returns a null value.

6 Varchar INDEX_NAME Index identifier

7 Smallint TYPE Index type.
The driver always returns SQL_INDEX_OTHER.

8 Smallint ORDINAL_POSITION • For a single-column index, the function returns
1.

• For a multiple-column index, the function
returns the number indicating the order of the
column in the index (integer beginning with 1
that identifies the order of the column names
constituting the index).

9 Varchar COLUMN_NAME Column name

10 Char(1) ASC_OR_DESC • If the B-tree index is defined in ascending order,
the function returns A.

• If the B-tree index is defined in descending
order, the function returns D.

• For a text index or range index, the function
returns a null value.

11 Integer CARDINALITY The function always returns 0.

12 Integer PAGES

13 Varchar FILTER_CONDITION The function always returns a null value.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 849

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

08S01 Communication link failure N

24000 Invalid cursor status The function was executed while a cursor was
open.

N

40001 Serialization failure -- N

40003 Statement completion unknown N

5C002 Character encoding conversion error A character code that cannot be converted was
detected.

Y

5C041 Unsupported data type error The driver does not support the specified data
type.

N

HY000 General error -- N

HY001 Memory allocation error Y

HY008 Operation cancelled N

HY009 Invalid use of null pointer A null pointer is specified in TableName, or 0
is specified in NameLength3.

Y

HY010 Function sequence error -- Y

HY013 Memory management error N

HY090 Invalid string or buffer length One of the arguments that stores a name length
exceeded the maximum length for the
corresponding name.

Y

HY100 Uniqueness option out of range The value specified in Unique is invalid. Y

HY101 Precision option out of range -- N

HY117 Connection suspended N

HYC00 Optional feature not implemented N

HYT00 Timeout expired N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 850

(6) Notes
The information about indexes that can be acquired depends on the privileges of the HADB user who executes this
method. For details about the privileges and the index information that can be acquired, see the topic Scope of information
in dictionary tables and system tables that can be referenced by HADB users in the HADB Setup and Operation Guide.

16.10.9 SQLTablePrivileges, SQLTablePrivilegesW

(1) Function
This ODBC function returns a list of tables and a list of access privileges associated with each table. The driver returns
the information as a result set for the specified SQL statement.

(2) Format
• For SQLTablePrivileges

SQLRETURN SQLTablePrivileges
(
 SQLHSTMT StatementHandle, /* In */
 SQLCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLCHAR * TableName, /* In */
 SQLSMALLINT NameLength3 /* In */
)

• For SQLTablePrivilegesW
SQLRETURN SQLTablePrivilegesW
(
 SQLHSTMT StatementHandle, /* In */
 SQLWCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLWCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLWCHAR * TableName, /* In */
 SQLSMALLINT NameLength3 /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

CatalogName
Specifies a catalog name of the table.
This argument is ignored, if specified. When you use this function, specify a null character string ("") or NULL.

NameLength1
Specifies the length of *CatalogName#1 or SQL_NTS.
This argument is ignored, if specified. When you use this function, specify 0.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 851

SchemaName
Specifies a pattern character string#2 for schema names of the table. If NULL is specified, all schema names are
processed.

NameLength2
Specifies the length of *SchemaName#1 or SQL_NTS. If 0 is specified, the search is not narrowed by the
specification of SchemaName.

TableName
Specifies a pattern character string#2 for table names. If NULL is specified, all table names are processed.

NameLength3
Specifies the length of *TableName#1 or SQL_NTS. If 0 is specified, the search is not narrowed by the
specification of TableName.

#1
The length must be in bytes for SQLTablePrivileges and in characters for SQLTablePrivilegesW.

#2
For details about the special characters that can be specified in pattern character strings, see Table 16-10: Special
characters that can be specified in pattern character strings.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

When SQLTablePrivileges or SQLTablePrivilegesW is executed, a result set is created. The following table
shows the format of the result set that is returned.

Table 16-16: Format of the result set that is returned.

Column
No.

Type Column name Description

1 Varchar TABLE_CAT Catalog name
The function always returns a null value.

2 Varchar TABLE_SCHEM Schema name

3 Varchar TABLE_NAME Table name

4 Varchar GRANTOR User who grants access privileges

5 Varchar GRANTEE User who receives access privileges

6 Varchar PRIVILEGE Granted access privileges:
• "SELECT": SELECT privilege
• "INSERT": INSERT privilege
• "UPDATE": UPDATE privilege
• "DELETE": DELETE privilege
• "TRUNCATE": TRUNCATE privilege
• "REFERENCES": REFERENCES privilege
• "IMPORT TABLE": IMPORT TABLE privilege
• "REBUILD INDEX": REBUILD INDEX privilege
• "GET COSTINFO": GET COSTINFO privilege
• "EXPORT TABLE": EXPORT TABLE privilege

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 852

Column
No.

Type Column name Description

• "MERGE CHUNK": MERGE CHUNK privilege
• "CHANGE CHUNK COMMENT": CHANGE CHUNK
COMMENT privilege

• "CHANGE CHUNK STATUS": CHANGE CHUNK
STATUS privilege

• "ARCHIVE CHUNK": ARCHIVE CHUNK privilege
• "UNARCHIVE CHUNK": UNARCHIVE CHUNK

privilege

7 Varchar IS_GRANTABLE Whether a user who has received an access privilege
can grant the access privilege to other HADB users
• "YES": The user can grant the access privilege to

other HADB users.
• "NO": The user cannot grant the access privilege to

other HADB users.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

08S01 Communication link failure N

24000 Invalid cursor status The function was executed while a cursor was
open.

Y

40001 Serialization failure -- N

40003 Statement completion unknown N

HY000 General error N

HY001 Memory allocation error Y

HY008 Operation cancelled N

HY009 Invalid use of null pointer N

HY010 Function sequence error Y

HY013 Memory management error N

HY090 Invalid string or buffer length One of the arguments that stores a name length
exceeded the maximum length for the
corresponding name.

Y

HY117 Connection suspended -- N

HYC00 Optional feature not implemented N

HYT00 Timeout expired N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 853

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
The information that can be acquired depends on the privileges of the HADB user who executes this method. For details
about the relationship between privileges and the information that can be acquired, see the topic Scope of information
in dictionary tables and system tables that can be referenced by HADB users in the HADB Setup and Operation Guide.

16.10.10 SQLTables, SQLTablesW

(1) Function
This ODBC function returns a list of the table names, schema names, and table types stored at the HADB server.

The driver returns the information as a result set for the specified SQL statement.

(2) Format
• For SQLTables

SQLRETURN SQLTables
(
 SQLHSTMT StatementHandle, /* In */
 SQLCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLCHAR * TableName, /* In */
 SQLSMALLINT NameLength3, /* In */
 SQLCHAR * TableType, /* In */
 SQLSMALLINT NameLength4 /* In */
)

• For SQLTablesW
SQLRETURN SQLTablesW
(
 SQLHSTMT StatementHandle, /* In */
 SQLWCHAR * CatalogName, /* In */
 SQLSMALLINT NameLength1, /* In */
 SQLWCHAR * SchemaName, /* In */
 SQLSMALLINT NameLength2, /* In */
 SQLWCHAR * TableName, /* In */
 SQLSMALLINT NameLength3, /* In */
 SQLWCHAR * TableType, /* In */
 SQLSMALLINT NameLength4 /* In */
)

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 854

(3) Arguments
StatementHandle

Specifies a statement handle.

CatalogName
Specifies that the specified information is to be used as a catalog name.
The specified information is ignored, but the specification itself is required. Therefore, when you use this function,
specify a null character string ("") or NULL.

NameLength1
Specifies the length of *CatalogName#1 or SQL_NTS. The specified information is ignored, but the specification
itself is required.
Therefore, when you use this function, specify 0.

SchemaName
Specifies an authorization identifier or a pattern character string#2 for authorization identifiers. If a null pointer or
a null character string ("") is specified, the driver assumes that '%' is specified as the pattern character string.

NameLength2
Specifies the length of *SchemaName#1 or SQL_NTS.
If 0 is specified, the processing is the same as when '%' is specified as the pattern character string in SchemaName.

TableName
Specifies a table identifier or a pattern character string#2 for table identifiers. If a null pointer or a null character
string ("") is specified, the driver assumes that '%' is specified as the pattern character string.

NameLength3
Specifies the length of *TableName#1 or SQL_NTS.
If 0 is specified, the processing is the same as when '%' is specified as the pattern character string in TableName.

TableType
Specifies a pointer to the character string that indicates the matching table type. The HADB ODBC driver recognizes
the following character strings as table types:

• SYSTEM TABLE
• TABLE
• VIEW

When you specify this argument, optionally enclose each character string in single quotation marks ('). To acquire
the results of multiple table types, delimit the values with the comma (,).
Examples:

• To acquire dictionary tables and system tables
Specify SYSTEM TABLE or 'SYSTEM TABLE'.

• To acquire base and viewed tables
Specify TABLE,VIEW or 'TABLE','VIEW'.

If a null pointer, a null character string (""), or SQL_ALL_TABLE_TYPES is specified in this argument, 'SYSTEM
TABLE','TABLE','VIEW' is assumed as the table types.
If the specified value contains a character string that is not recognized as a table type by the HADB ODBC driver,
only any character strings recognized by the HADB ODBC driver take effect, and any others are ignored. If the
specified value contains only invalid character strings, the HADB ODBC driver assumes that 'SYSTEM

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 855

TABLE','TABLE','VIEW' is specified, in the same manner as when a null pointer or a null character string ("")
is specified.

NameLength4
Specifies the length of *TableType#1 or SQL_NTS.
If 0 is specified, 'SYSTEM TABLE','TABLE','VIEW' is assumed for TableType.

#1
The length must be in bytes for SQLTables and in characters for SQLTablesW.

#2
For details about the special characters that can be specified in pattern character strings, see Table 16-10: Special
characters that can be specified in pattern character strings.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

The following table describes the format of the result set that is returned.

Table 16-17: Format of result set that is returned

Column No. Type Column name Description

1 Varchar TABLE_CAT The function always returns a null value.

2 Varchar TABLE_SCHEM Schema name

3 Varchar TABLE_NAME Table name

4 Varchar TABLE_TYPE Table type:
• TABLE: Base table
• VIEW: Viewed table
• SYSTEM TABLE: Dictionary table or system

table

5 Varchar REMARKS The function always returns a null value.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

08S01 Communication link failure N

24000 Invalid cursor status N

40001 Serialization failure N

40003 Statement completion unknown N

5C002 Character encoding conversion error A character code that cannot be converted was
detected.

Y

5C041 Unsupported data type error The driver does not support the specified data
type.

N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 856

SQLSTATE Description Remarks Returned

HY000 General error -- N

HY001 Memory allocation error The memory required to execute or complete the
function has not been allocated for the HADB
ODBC driver.

Y

HY008 Operation cancelled -- N

HY009 Invalid use of null pointer N

HY010 Function sequence error Y

HY013 Memory management error N

HY090 Invalid string or buffer length One of the arguments that stores a name length
exceeded the maximum length for the
corresponding name.

Y

HYC00 Optional feature not implemented -- N

HYT00 Timeout expired N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
The table information that can be acquired depends on the privileges of the HADB user who executes this function. For
details about the privileges and the table information that can be acquired, see the topic Scope of information in dictionary
tables and system tables that can be referenced by HADB users in the HADB Setup and Operation Guide.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 857

16.11 Terminating execution of SQL statements

This section explains the ODBC functions that are used when execution of SQL statements is terminated.

16.11.1 SQLFreeStmt

(1) Function
This ODBC function performs on the specified statement the processing specified by an option. It stops the processing
associated with the statement, closes cursors, discards unprocessed results, and releases all resources associated with
the statement handle.

(2) Format
SQLRETURN SQLFreeStmt
(
 SQLHSTMT StatementHandle, /* In */
 SQLUSMALLINT Option /* In */
)

(3) Arguments
StatementHandle

Specifies a statement handle.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

Option
Specifies one of the following options:

Option Description

SQL_CLOSE Closes the cursor managed by StatementHandle. The processing is the same as is
performed by SQLCloseCursor, but with this function no error occurs if no cursor is
open. The function terminates with SQL_SUCCESS.

SQL_UNBIND Sets the SQL_DESC_COUNT field of the ARD to 0 and releases all columns bound by
SQLBindCol for StatementHandle.

SQL_RESET_PARAMS Sets the SQL_DESC_COUNT field of the APD to 0 and releases all parameters bound by
SQLBindParameter for StatementHandle.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 858

SQLSTATE Description Remarks Returned

01000 General warning -- N

24000 Invalid cursor status Y

HY000 General error N

HY001 Memory allocation error N

HY010 Function sequence error Before this function was executed,
SQLExecute, SQLExecDirect,
SQLExecDirectW, or SQLParamData was
called for StatementHandle and returned
SQL_NEED_DATA. Since then, the setting of
runtime data parameters or runtime data
columns has not been completed.

Y

HY013 Memory management error -- N

HY092 Invalid attribute or option identifier SQL_DROP or an invalid identifier was
specified in Option.

Y

HYT01 Connection timeout expired -- N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
This function does not support SQL_DROP in Option. Use SQLFreeHandle to release the statement handle.

SQL_UNBIND and SQL_RESET_PARAMS in Option only perform unbind operations; they do not release memory.
Therefore, use the application program to release the memory area for data that was passed to the HADB ODBC driver
by SQLBindCol and SQLBindParameter.

16.11.2 SQLCloseCursor

(1) Function
This ODBC function closes a cursor that has been opened by a specified statement handle and discards unprocessed
results.

(2) Format
SQLRETURN SQLCloseCursor
(
 SQLHSTMT StatementHandle /* In */
)

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 859

(3) Arguments
StatementHandle

Specifies a statement handle.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

24000 Invalid cursor status No cursor has been opened by
StatementHandle.

Y

HY000 General error -- N

HY001 Memory allocation error The memory required to execute or complete the
function has not been allocated for the HADB
ODBC driver.

N

HY010 Function sequence error -- N

HY013 Memory management error N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.11.3 SQLCancel

(1) Function
This ODBC function cancels the SQL statement processing that is underway.

(2) Format
SQLRETURN SQLCancel
(
 SQLHSTMT StatementHandle /* In */
)

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 860

(3) Arguments
StatementHandle

Specifies a statement handle.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function does not return SQLSTATE.

16.11.4 SQLEndTran

(1) Function
This ODBC function requests commit or rollback processing for all active operations on all statements associated with
a connection.

(2) Format
SQLRETURN SQLEndTran
(
 SQLSMALLINT HandleType, /* In */
 SQLHANDLE Handle, /* In */
 SQLSMALLINT CompletionType /* In */
)

(3) Arguments
HandleType

Specifies the following handle type:

• SQL_HANDLE_DBC: Connection handle

Handle
Specifies a connection handle.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

CompletionType
Specifies one of the following processing:

• SQL_COMMIT
Commit processing

• SQL_ROLLBACK
Rollback processing

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 861

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

08003 Connection does not exist Y

08007 Connection failure during transaction N

25S01 Transaction status unknown N

25S02 Transaction is still active N

25S03 Transaction is rolled back N

40001 Serialization failure N

40002 Integrity mismatch N

HY000 General error N

HY001 Memory allocation error N

HY008 Operation cancelled N

HY010 Function sequence error Y

HY012 Invalid transaction processing code N

HY013 Memory management error N

HY092 Invalid attribute or option identifier HandleType or CompletionType was set
to an invalid value.

Y

HY115 Environment that contains a connection under
asynchronous execution was specified

-- N

HYC00 Optional feature not implemented N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

IM017 Invalid asynchronous polling N

IM018 Incomplete asynchronous execution N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

(6) Notes
This ODBC function does not support the following handle type:

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 862

• SQL_HANDLE_ENV: Environment handle

If either of the following handle types is specified, the driver might return SQL_INVALID_HANDLE:

• SQL_HANDLE_STMT: Statement handle

• SQL_HANDLE_DESC: Descriptor handle

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 863

16.12 Disconnecting from the data source

This section explains the ODBC functions that are used to disconnect the HADB ODBC driver from the data source.

16.12.1 SQLDisconnect

(1) Function
This ODBC function closes the connection associated with a specific connection handle.

(2) Format
SQLRETURN SQLDisconnect
(
 SQLHDBC ConnectionHandle /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or
SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Returned

01000 General warning -- N

01002 Disconnection error N

08003 Connection does not exist Y

25000 Invalid transaction status Y

HY000 General error N

HY001 Memory allocation error N

HY010 Function sequence error Y

HY013 Memory management error N

HYT01 Connection timeout expired N

IM001 Driver does not support this function N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 864

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16.12.2 SQLFreeHandle

(1) Function
This ODBC function releases resources associated with a specific environment, connection, statement, or descriptor
handle.

(2) Format
SQLRETURN SQLFreeHandle
(
 SQLSMALLINT HandleType, /* In */
 SQLHANDLE Handle /* In */
)

(3) Arguments
HandleType

Specifies one of the following handle types:

• SQL_HANDLE_ENV: Environment handle

• SQL_HANDLE_DBC: Connection handle

• SQL_HANDLE_STMT: Statement handle

• SQL_HANDLE_DESC: Descriptor handle

Handle
Specifies the handle to be released.
Specify a value that was output by *OutputHandlePtr of SQLAllocHandle before this function is executed.

(4) Return value
This ODBC function returns SQL_SUCCESS, SQL_ERROR, or SQL_INVALID_HANDLE.

(5) SQLSTATE
This ODBC function returns one of the following SQLSTATE values:

SQLSTATE Description Remarks Return

01000 General warning -- N

HY001 Memory allocation error N

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 865

SQLSTATE Description Remarks Return

HY010 Function sequence error • Not all subsidiary handles and other
resources, including connections, have been
released yet.

• HandleType is SQL_HANDLE_STMT,
but the asynchronous execution function for
that statement handle has not terminated.

Y

HY013 Memory management error -- N

HY017 Invalid use of an automatically allocated
descriptor handle

N

HY092 Invalid attribute or option identifier An invalid value was specified for
HandleType.

Y

HYT01 Connection timeout expired -- N

IM001 Driver does not support this function N

Legend:
Y: This SQLSTATE might be returned by the HADB ODBC driver.
N: This SQLSTATE is not returned by the HADB ODBC driver.
--: None

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 866

16.13 Information types that can be specified for InfoType in SQLGetInfo
and SQLGetInfoW

The following table lists and describes the information types that can be specified for InfoType.

Table 16-18: Information types that can be specified for InfoType

No. Information type (InfoType) Description (convention) Return value Data type

1 SQL_ACCESSIBLE_PROCED
URES

One of the following values:

Y
SQLProcedures can
execute all procedures.

N
There is at least one
procedure that
SQLProcedures cannot
execute.

Returns N. • SQLCHAR *
• SQLWCHAR *

2 SQL_ACCESSIBLE_TABLES One of the following values:

Y
The SELECT privileges are
guaranteed to all tables
returned by SQLTables.

N
There is at least one table
returned by SQLTables
that the application program
cannot access.

Returns Y. • SQLCHAR *
• SQLWCHAR *

3 SQL_ACTIVE_ENVIRONMEN
TS

Maximum number of active
environments that the driver
supports. If no limit is specified
or the limit is unknown, 0 is
returned.

Returns 0. SQLUSMALLINT

4 SQL_AGGREGATE_FUNCTIO
NS

Support status for aggregation
functions.

Returns the following bit
strings:
• SQL_AF_ALL
• SQL_AF_AVG
• SQL_AF_COUNT
• SQL_AF_DISTINCT
• SQL_AF_MAX
• SQL_AF_MIN
• SQL_AF_SUM

SQLUINTEGER

5 SQL_ALTER_DOMAIN The clauses in the ALTER
DOMAIN statement that are
supported by the data source.
A return value of 0 means that the
ALTER DOMAIN statement is not
supported.

Returns 0. SQLUINTEGER

6 SQL_ALTER_TABLE The clauses in the ALTER
TABLE statement that are
supported by the data source.

Returns the following bit
string according to the value
specified for the
SQL_ATTR_ODBC_VERS
ION environment handle:

SQLUINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 867

No. Information type (InfoType) Description (convention) Return value Data type

For SQL_OV_ODBC2
SQL_AT_ADD_COLUM
N

For SQL_OV_ODBC3
SQL_AT_ADD_COLUM
N_SINGLE

7 SQL_ASYNC_MODE The driver's asynchronous
support level.

Returns SQL_AM_NONE. SQLUINTEGER

8 SQL_BATCH_ROW_COUNT The driver's behavior on
available row counts.

Returns 0. SQLUINTEGER

9 SQL_BATCH_SUPPORT The driver's support for batches. Returns 0. SQLUINTEGER

10 SQL_BOOKMARK_PERSISTE
NCE

Processing for which bookmarks
are enabled.

Returns 0. SQLUINTEGER

11 SQL_CATALOG_LOCATION A value indicating the position of
the catalog in a qualified table
name.

Returns 0. SQLUSMALLINT

12 SQL_CATALOG_NAME One of the following values:

Y
The server supports catalog
names.

N
The server does not support
catalog names.

Returns N. • SQLCHAR *
• SQLWCHAR *

13 SQL_CATALOG_NAME_SEPA
RATOR

A string of one or more characters
that is defined as a separator. This
separator is placed between a
catalog name and the element
that follows or precedes it. If the
data source does not support
catalogs, a null character string is
returned.

Returns a null character
string.

• SQLCHAR *
• SQLWCHAR *

14 SQL_CATALOG_TERM The data source vendor's name as
a catalog. If the data source does
not support catalogs, a null
character string is returned.

Returns a null character
string.

• SQLCHAR *
• SQLWCHAR *

15 SQL_CATALOG_USAGE The statements in which catalogs
can be used.
If the data source does not
support catalogs, 0 is returned.

Returns 0. SQLUINTEGER

16 SQL_COLLATION_SEQ The name of the collation
sequence (default collation for
the server's default character set).
If the name is unknown, a null
character string is returned.

Returns a null character
string.

• SQLCHAR *
• SQLWCHAR *

17 SQL_COLUMN_ALIAS One of the following values:

Y
The data source supports
column aliases.

Returns Y. • SQLCHAR *
• SQLWCHAR *

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 868

No. Information type (InfoType) Description (convention) Return value Data type

N
The data source does not
support column aliases.

18 SQL_CONCAT_NULL_BEHAV
IOR

How the data source
concatenates NULL-valued
character string data type
columns with non-NULL-valued
character string data type
columns.

Returns SQL_CB_NULL. SQLUSMALLINT

19 SQL_CONVERT_BIGINT Conversions by the CONVERT
scalar function that are supported
by the data source.

Returns the following bit
strings:
• SQL_CVT_BIGINT
• SQL_CVT_CHAR
• SQL_CVT_DATE
• SQL_CVT_DECIMAL
• SQL_CVT_DOUBLE
• SQL_CVT_INTEGER
• SQL_CVT_TIMESTAM
P

• SQL_CVT_VARCHAR

SQLUINTEGER

20 SQL_CONVERT_BINARY Returns the following bit
strings:
• SQL_CVT_BINARY
• SQL_CVT_CHAR
• SQL_CVT_VARBINAR
Y

• SQL_CVT_VARCHAR

SQLUINTEGER

21 SQL_CONVERT_BIT Returns 0. SQLUINTEGER

22 SQL_CONVERT_CHAR Returns the following bit
strings:
• SQL_CVT_BIGINT
• SQL_CVT_BINARY
• SQL_CVT_CHAR
• SQL_CVT_DATE
• SQL_CVT_DECIMAL
• SQL_CVT_DOUBLE
• SQL_CVT_INTEGER
• SQL_CVT_TIME
• SQL_CVT_TIMESTAM
P

• SQL_CVT_VARBINAR
Y

• SQL_CVT_VARCHAR

SQLUINTEGER

23 SQL_CONVERT_DATE Returns the following bit
strings:
• SQL_CVT_BIGINT
• SQL_CVT_CHAR
• SQL_CVT_DATE
• SQL_CVT_INTEGER

SQLUINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 869

No. Information type (InfoType) Description (convention) Return value Data type

• SQL_CVT_TIMESTAM
P

• SQL_CVT_VARCHAR

24 SQL_CONVERT_DECIMAL Returns the following bit
strings:
• SQL_CVT_BIGINT
• SQL_CVT_CHAR
• SQL_CVT_DECIMAL
• SQL_CVT_DOUBLE
• SQL_CVT_INTEGER
• SQL_CVT_VARCHAR

SQLUINTEGER

25 SQL_CONVERT_DOUBLE Returns the following bit
strings:
• SQL_CVT_BIGINT
• SQL_CVT_CHAR
• SQL_CVT_DECIMAL
• SQL_CVT_DOUBLE
• SQL_CVT_INTEGER
• SQL_CVT_VARCHAR

SQLUINTEGER

26 SQL_CONVERT_FLOAT Returns 0. SQLUINTEGER

27 SQL_CONVERT_INTEGER Returns the following bit
strings:
• SQL_CVT_BIGINT
• SQL_CVT_CHAR
• SQL_CVT_DATE
• SQL_CVT_DECIMAL
• SQL_CVT_DOUBLE
• SQL_CVT_INTEGER
• SQL_CVT_TIMESTAM
P

• SQL_CVT_VARCHAR

SQLUINTEGER

28 SQL_CONVERT_INTERVAL_
YEAR_MONTH

Returns 0. SQLUINTEGER

29 SQL_CONVERT_INTERVAL_
DAY_TIME

Returns 0. SQLUINTEGER

30 SQL_CONVERT_LONGVARBI
NARY

Returns 0. SQLUINTEGER

31 SQL_CONVERT_LONGVARCH
AR

Returns 0. SQLUINTEGER

32 SQL_CONVERT_NUMERIC Returns 0. SQLUINTEGER

33 SQL_CONVERT_REAL Returns 0. SQLUINTEGER

34 SQL_CONVERT_SMALLINT Returns 0. SQLUINTEGER

35 SQL_CONVERT_TIME Returns the following bit
strings:
• SQL_CVT_CHAR
• SQL_CVT_TIME

SQLUINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 870

No. Information type (InfoType) Description (convention) Return value Data type

• SQL_CVT_VARCHAR

36 SQL_CONVERT_TIMESTAMP Returns the following bit
strings:
• SQL_CVT_BIGINT
• SQL_CVT_CHAR
• SQL_CVT_DATE
• SQL_CVT_INTEGER
• SQL_CVT_TIMESTAM
P

• SQL_CVT_VARCHAR

SQLUINTEGER

37 SQL_CONVERT_TINYINT Returns 0. SQLUINTEGER

38 SQL_CONVERT_VARBINARY Returns the following bit
strings:
• SQL_CVT_BINARY
• SQL_CVT_CHAR
• SQL_CVT_VARBINAR
Y

• SQL_CVT_VARCHAR

SQLUINTEGER

39 SQL_CONVERT_VARCHAR Returns the following bit
strings:
• SQL_CVT_BIGINT
• SQL_CVT_BINARY
• SQL_CVT_CHAR
• SQL_CVT_DATE
• SQL_CVT_DECIMAL
• SQL_CVT_DOUBLE
• SQL_CVT_INTEGER
• SQL_CVT_TIME
• SQL_CVT_TIMESTAM
P

• SQL_CVT_VARBINAR
Y

• SQL_CVT_VARCHAR

SQLUINTEGER

40 SQL_CONVERT_FUNCTIONS The scalar conversion functions
that are supported by the driver
and associated data source.

Returns the following bit
strings:
• SQL_FN_CVT_CAST
• SQL_FN_CVT_CONVE
RT

SQLUINTEGER

41 SQL_CORRELATION_NAME Whether table correlation names
are supported.

Returns SQL_CN_ANY. SQLUSMALLINT

42 SQL_CREATE_ASSERTION The clauses in the CREATE
ASSERTION statement that are
supported by the data source.
A return value of 0 means that the
CREATE ASSERTION
statement is not supported.

Returns 0. SQLUINTEGER

43 SQL_CREATE_CHARACTER_
SET

The clauses in the CREATE
CHARACTER SET statement that
are supported by the data source.

Returns 0. SQLUINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 871

No. Information type (InfoType) Description (convention) Return value Data type

A return value of 0 means that the
CREATE CHARACTER SET
statement is not supported.

44 SQL_CREATE_COLLATION The clauses in the CREATE
COLLATION statement that are
supported by the data source.
A return value of 0 means that the
CREATE COLLATION
statement is not supported.

Returns 0. SQLUINTEGER

45 SQL_CREATE_DOMAIN The clauses in the CREATE
DOMAIN statement that are
supported by the data source.
A return value of 0 means that the
CREATE DOMAIN statement is
not supported.

Returns 0. SQLUINTEGER

46 SQL_CREATE_SCHEMA The clauses in the CREATE
SCHEMA statement that are
supported by the data source.
A return value of 0 means that the
CREATE SCHEMA statement is
not supported.

Returns
SQL_CS_CREATE_SCHE
MA.

SQLUINTEGER

47 SQL_CREATE_TABLE The clauses in the CREATE
TABLE statement that are
supported by the data source.
A return value of 0 means that the
CREATE TABLE statement is not
supported.

Returns the following bit
strings:
• SQL_CT_CREATE_TA
BLE

• SQL_CT_TABLE_CON
STRAINT

• SQL_CT_CONSTRAIN
T_NAME_DEFINITIO
N

• SQL_CT_COLUMN_DE
FAULT

SQLUINTEGER

48 SQL_CREATE_TRANSLATIO
N

The clauses in the CREATE
TRANSLATION statement that
are supported by the data source.
A return value of 0 means that the
CREATE TRANSLATION
statement is not supported.

Returns 0. SQLUINTEGER

49 SQL_CREATE_VIEW The clauses in the CREATE
VIEW statement that are
supported by the data source.
A return value of 0 means that the
CREATE VIEW statement is not
supported.

Returns
SQL_CV_CREATE_VIEW.

SQLUINTEGER

50 SQL_CURSOR_COMMIT_BEH
AVIOR

The effects of COMMIT
processing on cursors and
prepared statements in the data
source.

Returns SQL_CB_CLOSE. SQLUSMALLINT

51 SQL_CURSOR_ROLLBACK_B
EHAVIOR

The effects of ROLLBACK
processing on cursors and
prepared statements in the data
source.

Returns SQL_CB_CLOSE. SQLUSMALLINT

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 872

No. Information type (InfoType) Description (convention) Return value Data type

52 SQL_CURSOR_SENSITIVIT
Y

Support for cursor sensitivity. Returns
SQL_UNSPECIFIED.

SQLUINTEGER

53 SQL_DATA_SOURCE_NAME The data source name character
string that is used during
connection.

Returns an empty string or
the data source name that
was used during connection.

• SQLCHAR *
• SQLWCHAR *

54 SQL_DATA_SOURCE_READ_
ONLY

One of the following values:

Y
The data source's mode is
READ ONLY.

N
The data source's mode is not
READ ONLY.

Returns N. • SQLCHAR *
• SQLWCHAR *

55 SQL_DATABASE_NAME A character string with the name
of the database in use, if the data
source defines a named object
called "database".

Returns a null character
string.

• SQLCHAR *
• SQLWCHAR *

56 SQL_DATETIME_LITERALS The SQL-92 datetime literals that
are supported by the data source.

Returns the following bit
strings:
• SQL_DL_SQL92_DAT
E

• SQL_DL_SQL92_TIM
E

• SQL_DL_SQL92_TIM
ESTAMP

SQLUINTEGER

57 SQL_DBMS_NAME A character string that indicates
the name of the DBMS product
accessed by the driver.

Returns "Hitachi
Advanced Data
Binder".

• SQLCHAR *
• SQLWCHAR *

58 SQL_DBMS_VER A character string that indicates
the version of the DBMS product
accessed by the driver.
The version is displayed in the
format ##.##.####.

Returns the DBMS product
version.

• SQLCHAR *
• SQLWCHAR *

59 SQL_DDL_INDEX Support for creation and
dropping of indexes.

Returns the following bit
strings:
• SQL_DI_CREATE_IN
DEX

• SQL_DI_DROP_INDE
X

SQLUINTEGER

60 SQL_DEFAULT_TXN_ISOLA
TION

The default transaction isolation
level supported by the driver or
data source.

Returns
SQL_TXN_READ_COMMI
TTED.

SQLUINTEGER

61 SQL_DESCRIBE_PARAMETE
R

One of the following values:

Y
Parameters can be described.

N
Parameters cannot be
described.

Returns Y. • SQLCHAR *
• SQLWCHAR *

62 SQL_DM_VER A character string for the version
of the driver manager. The
version is represented in the

Returns the value that is set
by the driver manager.

• SQLCHAR *
• SQLWCHAR *

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 873

No. Information type (InfoType) Description (convention) Return value Data type

format ##.##.####.####. This
information type is implemented
by the driver manager.

63 SQL_DRIVER_HDBC The driver's connection handle,
which can be determined by
InfoType. This information
type is implemented by the driver
manager.

Returns the value that is set
by the driver manager.

SQLUINTEGER

64 SQL_DRIVER_HDESC The driver's descriptor handle
that is determined by the
descriptor handle of the driver
manager. This information must
be set in *InfoValuePtr and
passed by the application. This
information type is implemented
by the driver manager.

Returns the value that is set
by the driver manager.

SQLUINTEGER

65 SQL_DRIVER_HENV The driver's environment handle,
which can be determined by
InfoType. This information
type is implemented by the driver
manager.

Returns the value that is set
by the driver manager.

SQLUINTEGER

66 SQL_DRIVER_HLIB The hinst that is returned from
the load library to the driver
manager when the driver DLL or
its equivalent is loaded. This
information type is implemented
by the driver manager.

Returns the value that is set
by the driver manager.

SQLUINTEGER

67 SQL_DRIVER_HSTMT The driver's statement handle that
is determined by the driver
manager's statement handle. This
information must be set in
*InfoValuePtr and passed
by the application. This
information type is implemented
by the driver manager.

Returns the value that is set
by the driver manager.

SQLUINTEGER

68 SQL_DRIVER_NAME A character string that indicates
the driver's file name used to
access the data source.

Returns the driver's file
name.

• SQLCHAR *
• SQLWCHAR *

69 SQL_DRIVER_ODBC_VER A character string that indicates
the ODBC version supported by
the driver. The version is
represented in the format ##.##.

Returns the ODBC version
supported by the driver.

• SQLCHAR *
• SQLWCHAR *

70 SQL_DRIVER_VER A character string that indicates
the driver's version. Normally the
driver returns this value. The
minimum value for the version is
represented in the format
##.##.####.

Returns the driver's version. • SQLCHAR *
• SQLWCHAR *

71 SQL_DROP_ASSERTION The clauses in the DROP
ASSERTION statement (defined
in SQL-92) that are supported by
the data source.

Returns 0. SQLUINTEGER

72 SQL_DROP_CHARACTER_SE
T

The clauses in the DROP
CHARACTER SET statement

Returns 0. SQLUINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 874

No. Information type (InfoType) Description (convention) Return value Data type

(defined in SQL-92) that are
supported by the data source.

73 SQL_DROP_COLLATION The clauses in the DROP
COLLATION statement (defined
in SQL-92) that are supported by
the data source.

Returns 0. SQLUINTEGER

74 SQL_DROP_DOMAIN The clauses in the DROP
DOMAIN statement (defined in
SQL-92) that are supported by
the data source.

Returns 0. SQLUINTEGER

75 SQL_DROP_SCHEMA The clauses in the DROP
SCHEMA statement (defined in
SQL-92) that are supported by
the data source.

Returns the following bit
strings:
• SQL_DS_DROP_SCHE
MA

• SQL_DS_CASCADE
• SQL_DS_RESTRICT

SQLUINTEGER

76 SQL_DROP_TABLE The clauses in the DROP TABLE
statement (defined in SQL-92)
that are supported by the data
source.

Returns the following bit
strings:
• SQL_DT_DROP_TABL
E

• SQL_DT_CASCADE
• SQL_DT_RESTRICT

SQLUINTEGER

77 SQL_DROP_TRANSLATION The clauses in the DROP
TRANSLATION statement that
are supported by the data source.

Returns 0. SQLUINTEGER

78 SQL_DROP_VIEW The clauses in the DROP VIEW
statement that are supported by
the data source.

Returns
SQL_DV_DROP_VIEW.

SQLUINTEGER

79 SQL_DYNAMIC_CURSOR_AT
TRIBUTES1

Attributes of a dynamic cursor
that is supported by the driver.
This bitmask contains the first
subset of attributes.

Returns 0. SQLUINTEGER

80 SQL_DYNAMIC_CURSOR_AT
TRIBUTES2

Attributes of a dynamic cursor
that is supported by the driver.
This bitmask contains the second
subset of attributes.

Returns 0. SQLUINTEGER

81 SQL_EXPRESSIONS_IN_OR
DERBY

One of the following values:

Y
The data source supports
expressions in the ORDER BY
list.

N
The data source does not
support expressions in the
ORDER BY list.

Returns Y. • SQLCHAR *
• SQLWCHAR *

82 SQL_FILE_USAGE How the single-tier driver
directly handles files in a data
source.

Returns
SQL_FILE_NOT_SUPPO
RTED.

SQLUSMALLINT

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 875

No. Information type (InfoType) Description (convention) Return value Data type

83 SQL_FORWARD_ONLY_CURS
OR_ATTRIBUTES1

Attributes of a forward-only
cursor that is supported by the
driver.
This bitmask contains the first
subset of attributes.

Returns 0. SQLUINTEGER

84 SQL_FORWARD_ONLY_CURS
OR_ATTRIBUTES2

Attributes of a forward-only
cursor that is supported by the
driver. This bitmask contains the
second subset of attributes.

Returns 0. SQLUINTEGER

85 SQL_GETDATA_EXTENSION
S

Extensions to SQLGetData. Returns the following
values:
• SQL_GD_ANY_COLUM
N

• SQL_GD_ANY_ORDER

SQLUINTEGER

86 SQL_GROUP_BY The relationship between the
columns in the GROUP BY clause
and the columns in the selection
list to which a set function has not
been applied.

Returns
SQL_GB_GROUP_BY_CO
NTAINS_SELECT.

SQLUSMALLINT

87 SQL_IDENTIFIER_CASE Information about identifiers in
SQL statements.

Returns SQL_IC_UPPER. SQLUSMALLINT

88 SQL_IDENTIFIER_QUOTE_
CHAR

The character string that is used
as the starting and ending
delimiter of a quoted identifier in
SQL statements. If the data
source does not support quoted
identifiers, a blank is returned.

Returns a double quotation
mark (").

• SQLCHAR *
• SQLWCHAR *

89 SQL_INDEX_KEYWORDS Keywords in the CREATE
INDEX statement that are
supported by the driver.

Returns the following bit
strings:
• SQL_IK_ASC
• SQL_IK_DESC

SQLUINTEGER

90 SQL_INFO_SCHEMA_VIEWS The views in
INFORMATION_SCHEMA that
are supported by the driver.

Returns 0. SQLUINTEGER

91 SQL_INSERT_STATEMENT Support for INSERT statements. Returns the following bit
strings:
• SQL_IS_INSERT_LI
TERALS

• SQL_IS_INSERT_SE
ARCHED

SQLUINTEGER

92 SQL_INTEGRITY One of the following values:

Y
The data source supports IEF.

N
The data source does not
support IEF.

Returns N. • SQLCHAR *
• SQLWCHAR *

93 SQL_KEYSET_CURSOR_ATT
RIBUTES1

Attributes of a keyset cursor that
is supported by the driver. This
bitmask contains the first subset
of attributes.

Returns 0. SQLUINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 876

No. Information type (InfoType) Description (convention) Return value Data type

94 SQL_KEYSET_CURSOR_ATT
RIBUTES2

Attributes of a keyset cursor that
is supported by the driver. This
bitmask contains the second
subset of attributes.

Returns 0. SQLUINTEGER

95 SQL_KEYWORDS A character string that contains a
comma-separated list of all
keywords specific to the data
source. This list does not contain
keywords specific to ODBC or
keywords used by both the data
source and ODBC. This list
represents all the reserved
keywords.

Returns HADB's reserved
words without the ODBC-
specific keywords.

• SQLCHAR *
• SQLWCHAR *

96 SQL_LIKE_ESCAPE_CLAUS
E

One of the following values:

Y
The following conditions are
both satisfied:
• The data source supports

an escape character for
the percent sign (%) and
underscore (_) in a LIKE
predicate.

• The driver supports the
ODBC syntax for
defining a LIKE
predicate escape
character.

N
Other.

Returns Y. • SQLCHAR *
• SQLWCHAR *

97 SQL_MAX_ASYNC_CONCURR
ENT_STATEMENTS

Maximum number of active
concurrent statements in
asynchronous mode that the
driver can support on a specified
connection. If there is no specific
limit or the limit is unknown, 0 is
returned.

Returns 0. SQLUINTEGER

98 SQL_MAX_BINARY_LITERA
L_LEN

Maximum length of a binary
literal in an SQL statement. If
there is no maximum length or
the length is unknown, 0 is
returned.

Returns 64000. SQLUINTEGER

99 SQL_MAX_CATALOG_NAME_
LEN

Maximum length of a catalog
name. If there is no maximum
length or the length is unknown,
0 is returned.

Returns 0. SQLUSMALLINT

100 SQL_MAX_CHAR_LITERAL_
LEN

Maximum length of a character
literal in an SQL statement. If
there is no maximum length or
the length is unknown, 0 is
returned.

Returns 32000. SQLUINTEGER

101 SQL_MAX_COLUMN_NAME_L
EN

Maximum length of a column
name in the data source. If there
is no maximum length or the
length is unknown, 0 is returned.

Returns 100. SQLUSMALLINT

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 877

No. Information type (InfoType) Description (convention) Return value Data type

102 SQL_MAX_COLUMNS_IN_GR
OUP_BY

Maximum number of grouping
columns permitted in a GROUP
BY clause. If there is no specified
limit or the limit is unknown, 0 is
returned.

Returns 64. SQLUSMALLINT

103 SQL_MAX_COLUMNS_IN_IN
DEX

Maximum number of columns
permitted in an index. If there is
no specified limit or the limit is
unknown, 0 is returned.

Returns 16. SQLUSMALLINT

104 SQL_MAX_COLUMNS_IN_OR
DER_BY

Maximum number of columns
permitted in an ORDER BY
clause. If there is no specified
limit or the limit is unknown, 0 is
returned.

Returns 16. SQLUSMALLINT

105 SQL_MAX_COLUMNS_IN_SE
LECT

Maximum number of columns
permitted in a selection list. If
there is no specified limit or the
limit is unknown, 0 is returned.

Returns 1000. SQLUSMALLINT

106 SQL_MAX_COLUMNS_IN_TA
BLE

Maximum number of columns
permitted in a table. If there is no
specified limit or the limit is
unknown, 0 is returned.

Returns 1000. SQLUSMALLINT

107 SQL_MAX_CONCURRENT_AC
TIVITIES

Maximum number of active
statements that the driver
supports for a connection. If there
is no specified limit or the limit is
unknown, 0 is returned.

Returns 0. SQLUSMALLINT

108 SQL_MAX_CURSOR_NAME_L
EN

Maximum length of a cursor
name in the data source. If there
is no maximum length or the
length is unknown, 0 is returned.

Returns 0. SQLUSMALLINT

109 SQL_MAX_DRIVER_CONNEC
TIONS

Maximum number of active
connections that the driver
supports for an environment. If
there is no specified limit or the
limit is unknown, 0 is returned.

Returns 0. SQLUSMALLINT

110 SQL_MAX_IDENTIFIER_LE
N

Maximum length of a character
string that the data source
supports for user-defined names.

Returns 100. SQLUSMALLINT

111 SQL_MAX_INDEX_SIZE Maximum length (in bytes)
permitted for the combined fields
of an index. If there is no
specified limit or the limit is
unknown, 0 is returned.

Returns 4036. SQLUINTEGER

112 SQL_MAX_PROCEDURE_NAM
E_LEN

Maximum length of a procedure
name in the data source. If there
is no maximum length or the
length is unknown, 0 is returned.

Returns 0. SQLUSMALLINT

113 SQL_MAX_ROW_SIZE Maximum length of a row
permitted in a table. If there is no
specified limit or the limit is
unknown, 0 is returned.

Returns 0. SQLUINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 878

No. Information type (InfoType) Description (convention) Return value Data type

114 SQL_MAX_ROW_SIZE_INCL
UDES_LONG

One of the following values:

Y
The maximum row size
returned for the
SQL_MAX_ROW_SIZE
information type includes the
length of all columns of the
SQL_LONGVARCHAR and
SQL_LONGVARBINARY
types.

N
Other

Returns N. • SQLCHAR *
• SQLWCHAR *

115 SQL_MAX_SCHEMA_NAME_L
EN

Maximum length of a schema
name in the data source. If there
is no maximum length or the
length is unknown, 0 is returned.

Returns 100. SQLUSMALLINT

116 SQL_MAX_STATEMENT_LEN Maximum length (in characters)
of an SQL statement. If there is
no maximum length or the length
is unknown, 0 is returned.

Returns 16000000. SQLUINTEGER

117 SQL_MAX_TABLE_NAME_LE
N

Maximum length of a data source
table name. If there is no
maximum length or the length is
unknown, 0 is returned.

Returns 100. SQLUSMALLINT

118 SQL_MAX_TABLES_IN_SEL
ECT

Maximum number of tables
permitted in the FROM clause of
a SELECT statement. If there is
no specified limit or the limit is
unknown, 0 is returned.

Returns 64. SQLUSMALLINT

119 SQL_MAX_USER_NAME_LEN Maximum length of a user name
in the data source. If there is no
maximum length or the length is
unknown, 0 is returned.

Returns 100. SQLUSMALLINT

120 SQL_MULT_RESULT_SETS One of the following values:

Y
The data source supports
multiple result sets.

N
The data source does not
support multiple result sets.

Returns N. • SQLCHAR *
• SQLWCHAR *

121 SQL_MULTIPLE_ACTIVE_T
XN

One of the following values:

Y
The driver supports
concurrent execution of
multiple active transactions.

N
The driver supports
execution of only one active
transaction at a time.

Returns Y. • SQLCHAR *
• SQLWCHAR *

122 SQL_NEED_LONG_DATA_LE
N

One of the following values: Returns Y. • SQLCHAR *
• SQLWCHAR *

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 879

No. Information type (InfoType) Description (convention) Return value Data type

Y
The data source needs the
length of a long data value
before that value is sent.

N
The data source does not need
the length of a long data value
before that value is sent.

123 SQL_NON_NULLABLE_COLU
MNS

Whether NOT NULL columns in
the data source are supported.

Returns
SQL_NNC_NON_NULL.

SQLUSMALLINT

124 SQL_NULL_COLLATION Where NULL is sorted in a result
set.

Returns SQL_NC_HIGH. SQLUSMALLINT

125 SQL_NUMERIC_FUNCTIONS The numeric functions supported
by the driver and data source.

Returns the following bit
strings:
• SQL_FN_NUM_ABS
• SQL_FN_NUM_ACOS
• SQL_FN_NUM_ASIN
• SQL_FN_NUM_ATAN
• SQL_FN_NUM_ATAN2
• SQL_FN_NUM_CEILI
NG

• SQL_FN_NUM_COS
• SQL_FN_NUM_DEGRE
ES

• SQL_FN_NUM_EXP
• SQL_FN_NUM_FLOOR
• SQL_FN_NUM_LOG
• SQL_FN_NUM_MOD
• SQL_FN_NUM_PI
• SQL_FN_NUM_POWER
• SQL_FN_NUM_RADIA
NS

• SQL_FN_NUM_RAND
• SQL_FN_NUM_ROUND
• SQL_FN_NUM_SIGN
• SQL_FN_NUM_SIN
• SQL_FN_NUM_SQRT
• SQL_FN_NUM_TAN
• SQL_FN_NUM_TRUNC
ATE

SQLUINTEGER

126 SQL_ODBC_INTERFACE_CO
NFORMANCE

Level of the ODBC 3.x interface
that the driver complies with.

Returns SQL_OIC_CORE. SQLUINTEGER

127 SQL_ODBC_VER A character string containing the
version of ODBC with which the
driver manager conforms. The
version is represented in the
format ##.##.0000. This
information type is implemented
by the driver manager.

Returns the value that is set
by the driver manager.

• SQLCHAR *
• SQLWCHAR *

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 880

No. Information type (InfoType) Description (convention) Return value Data type

128 SQL_OJ_CAPABILITIES The types of outer joins
supported by the driver and data
source.

Returns the following bit
strings:
• SQL_OJ_ALL_COMPA
RISON_OPS

• SQL_OJ_FULL
• SQL_OJ_INNER
• SQL_OJ_LEFT
• SQL_OJ_NESTED
• SQL_OJ_RIGHT

SQLUINTEGER

129 SQL_ORDER_BY_COLUMNS_
IN_SELECT

One of the following values:

Y
The columns in the ORDER
BY clause are in the selection
list.

N
The columns in the ORDER
BY clause are not in the
selection list.

Returns N. • SQLCHAR *
• SQLWCHAR *

130 SQL_PARAM_ARRAY_ROW_C
OUNTS

The driver's properties regarding
the availability of row counts in a
parameterized execution.

Returns 0. SQLUINTEGER

131 SQL_PARAM_ARRAY_SELEC
TS

The driver's properties regarding
the availability of result sets in a
parameterized execution.

Returns
SQL_PAS_NO_SELECT.

SQLUINTEGER

132 SQL_PROCEDURE_TERM A character string containing the
data source vendor's name for a
procedure.

Returns a null character
string.

• SQLCHAR *
• SQLWCHAR *

133 SQL_PROCEDURES One of the following values:

Y
The following conditions are
both satisfied:
The data source supports
procedures.
The driver supports the
ODBC procedure invocation
syntax.

N
Other.

Returns N. • SQLCHAR *
• SQLWCHAR *

134 SQL_QUOTED_IDENTIFIER
_CASE

Information about quoted
identifiers in SQL statements.

Returns
SQL_IC_SENSITIVE.

SQLUSMALLINT

135 SQL_ROW_UPDATES One of the following values:

Y
A keyset or mixed cursor
retains row versions or values
for all fetched rows and can
detect any updates made to a
row by any application
program since the row was
last fetched.

Returns N. • SQLCHAR *
• SQLWCHAR *

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 881

No. Information type (InfoType) Description (convention) Return value Data type

N
Other.

136 SQL_SCHEMA_TERM A character string containing the
data source vendor's name for a
schema.

Returns "schema". • SQLCHAR *
• SQLWCHAR *

137 SQL_SCHEMA_USAGE The statements in which schemas
can be used.

Returns the following bit
strings:
• SQL_SU_DML_STATE
MENTS

• SQL_SU_INDEX_DEF
INITION

• SQL_SU_TABLE_DEF
INITION

• SQL_SU_PRIVILEGE
_DEFINITION

SQLUINTEGER

138 SQL_SCROLL_OPTIONS Scroll options supported for
scrollable cursors.

Returns
SQL_SO_FORWARD_ONL
Y.

SQLUINTEGER

139 SQL_SEARCH_PATTERN_ES
CAPE

A character string indicating that
the driver supports an escape
character that uses the pattern
search metacharacters
underscore (_) and percent sign
(%) as valid characters in search
patterns.
This indicates an escape
character that handles
metacharacters underscore (_)
and percent sign (%) for pattern
search as valid search characters.
This escape character applies
only to the arguments of catalog
functions that support search
character strings. If a null
character string is specified, the
driver cannot handle underscore
(_) and percent sign (%) as a part
of search pattern character
strings.

Returns "\". • SQLCHAR *
• SQLWCHAR *

140 SQL_SERVER_NAME A character string containing the
actual data source-specific server
name.

Returns "Hitachi
Advanced Data
Binder".

• SQLCHAR *
• SQLWCHAR *

141 SQL_SPECIAL_CHARACTER
S

A character string that contains
all special characters that can be
used in an identifier name (such
as a table name, column name, or
index name) in the data source.

Returns a null character
string.

• SQLCHAR *
• SQLWCHAR *

142 SQL_SQL_CONFORMANCE The level of SQL-92 supported
by the driver.

Returns
SQL_SC_SQL92_ENTRY.

SQLUINTEGER

143 SQL_SQL92_DATETIME_FU
NCTIONS

The datetime scalar functions
that are supported by the driver
and the associated data source.

Returns the following bit
strings:
• SQL_SDF_CURRENT_
DATE

SQLUINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 882

No. Information type (InfoType) Description (convention) Return value Data type

• SQL_SDF_CURRENT_
TIME

• SQL_SDF_CURRENT_
TIMESTAMP

144 SQL_SQL92_FOREIGN_KEY
_DELETE_RULE

The rules supported for a foreign
key in a DELETE statement.

Returns 0. SQLUINTEGER

145 SQL_SQL92_FOREIGN_KEY
_UPDATE_RULE

The rules supported for a foreign
key in an UPDATE statement.

Returns 0. SQLUINTEGER

146 SQL_SQL92_GRANT The clauses supported in a
GRANT statement.

Returns the following bit
strings:
• SQL_SG_DELETE_TA
BLE

• SQL_SG_INSERT_TA
BLE

• SQL_SG_REFERENCE
S_TABLE

• SQL_SG_SELECT_TA
BLE

• SQL_SG_UPDATE_TA
BLE

SQLUINTEGER

147 SQL_SQL92_NUMERIC_VAL
UE_FUNCTIONS

The numeric scalar functions
supported by the driver and
associated data source.

Returns the following bit
string:
• SQL_SNVF_EXTRACT

SQLUINTEGER

148 SQL_SQL92_PREDICATES The predicates supported in a
SELECT statement.

Returns the following bit
strings:
• SQL_SP_BETWEEN
• SQL_SP_COMPARISO
N

• SQL_SP_EXISTS
• SQL_SP_IN
• SQL_SP_ISNOTNULL
• SQL_SP_ISNULL
• SQL_SP_LIKE
• SQL_SP_QUANTIFIE
D_COMPARISON

SQLUINTEGER

149 SQL_SQL92_RELATIONAL_
JOIN_OPERATORS

The relational join operators
supported in a SELECT
statement.

Returns the following bit
strings:
• SQL_SRJO_CROSS_J
OIN

• SQL_SRJO_FULL_OU
TER_JOIN

• SQL_SRJO_INNER_J
OIN

• SQL_SRJO_LEFT_OU
TER_JOIN

• SQL_SRJO_RIGHT_O
UTER_JOIN

SQLUINTEGER

150 SQL_SQL92_REVOKE The clauses supported in a
REVOKE statement that is
supported by the data source.

Returns the following bit
strings:
• SQL_SR_CASCADE

SQLUINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 883

No. Information type (InfoType) Description (convention) Return value Data type

• SQL_SR_DELETE_TA
BLE

• SQL_SR_INSERT_TA
BLE

• SQL_SR_REFERENCE
S_TABLE

• SQL_SR_RESTRICT
• SQL_SR_SELECT_TA
BLE

• SQL_SR_UPDATE_TA
BLE

151 SQL_SQL92_ROW_VALUE_C
ONSTRUCTOR

The row value constructor
expressions supported in a
SELECT statement.

Returns 0. SQLUINTEGER

152 SQL_SQL92_STRING_FUNC
TIONS

The string scalar functions
supported by the driver and
associated data source.

Returns the following bit
strings:
• SQL_SSF_CONVERT
• SQL_SSF_LOWER
• SQL_SSF_SUBSTRIN
G

• SQL_SSF_TRIM_BOT
H

• SQL_SSF_TRIM_LEA
DING

• SQL_SSF_TRIM_TRA
ILING

• SQL_SSF_UPPER

SQLUINTEGER

153 SQL_SQL92_VALUE_EXPRE
SSIONS

Supported value expressions. Returns the following bit
strings:
• SQL_SVE_CASE
• SQL_SVE_CAST
• SQL_SVE_COALESCE
• SQL_SVE_NULLIF

SQLUINTEGER

154 SQL_STANDARD_CLI_CONF
ORMANCE

The CLI standard with which the
driver conforms.

Returns
SQL_SCC_ISO92_CLI.

SQLUINTEGER

155 SQL_STATIC_CURSOR_ATT
RIBUTES1

Attributes of a static cursor that is
supported by the driver. This
bitmask contains the first subset
of attributes.

Returns 0. SQLUINTEGER

156 SQL_STATIC_CURSOR_ATT
RIBUTES2

Attributes of a static cursor that is
supported by the driver. This
bitmask contains the second
subset of attributes.

Returns 0. SQLUINTEGER

157 SQL_STRING_FUNCTIONS The string scalar functions
supported by the data source.

Returns the following bit
strings:
• SQL_FN_STR_ASCII
• SQL_FN_STR_CONCA
T

• SQL_FN_STR_LCASE
• SQL_FN_STR_LEFT

SQLUINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 884

No. Information type (InfoType) Description (convention) Return value Data type

• SQL_FN_STR_LENGT
H

• SQL_FN_STR_LTRIM
• SQL_FN_STR_REPLA
CE

• SQL_FN_STR_RIGHT
• SQL_FN_STR_RTRIM
• SQL_FN_STR_SUBST
RING

• SQL_FN_STR_UCASE

158 SQL_SUBQUERIES The predicates that support
subqueries.

Returns the following bit
strings:
• SQL_SQ_COMPARISO
N

• SQL_SQ_CORRELATE
D_SUBQUERIES

• SQL_SQ_EXISTS
• SQL_SQ_IN
• SQL_SQ_QUANTIFIE
D

SQLUINTEGER

159 SQL_SYSTEM_FUNCTIONS The system scalar functions
supported by the driver and
associated data source.

Returns 0. SQLUINTEGER

160 SQL_TABLE_TERM A character string containing the
data source vendor's name for a
table.

Returns "table". • SQLCHAR *
• SQLWCHAR *

161 SQL_TIMEDATE_ADD_INTE
RVALS

The time stamp interval
supported by the driver and
associated data source for the
TIMESTAMPADD scalar
function.

Returns 0. SQLUINTEGER

162 SQL_TIMEDATE_DIFF_INT
ERVALS

The time stamp interval
supported by the driver and
associated data source for the
TIMESTAMPDIFF scalar
function.

Returns 0. SQLUINTEGER

163 SQL_TIMEDATE_FUNCTION
S

The date and time scalar
functions supported by the driver
and associated data source.

Returns the following bit
strings:
• SQL_FN_TD_CURREN
T_DATE

• SQL_FN_TD_CURREN
T_TIME

• SQL_FN_TD_CURREN
T_TIMESTAMP

• SQL_FN_TD_DAYOFW
EEK

• SQL_FN_TD_DAYOFY
EAR

• SQL_FN_TD_EXTRAC
T

SQLUINTEGER

164 SQL_TXN_CAPABLE The transactions supported by the
driver or data source.

Returns
SQL_TC_DDL_COMMIT.

SQLUSMALLINT

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 885

No. Information type (InfoType) Description (convention) Return value Data type

165 SQL_TXN_ISOLATION_OPT
ION

The transaction isolation levels
available from the driver or data
source.

Returns the following bit
strings:
• SQL_TXN_READ_COM
MITTED

• SQL_TXN_REPEATAB
LE_READ

SQLUINTEGER

166 SQL_UNION Support for the UNION clause. Returns the following bit
strings:
• SQL_U_UNION
• SQL_U_UNION_ALL

SQLUINTEGER

167 SQL_USER_NAME A character string containing the
name that is used in a specific
database.
This might be different from the
login name.

Returns the user name that
was used for connection.

• SQLCHAR *
• SQLWCHAR *

168 SQL_XOPEN_CLI_YEAR A character string that indicates
the year of publication of the X/
Open specification with which
the version of the ODBC driver
manager fully compiles.

Returns the value that is set
by the driver manager.

• SQLCHAR *
• SQLWCHAR *

169 SQL_ODBC_API_CONFORMA
NCE

Value of SQLSMALLINT that
indicates the ODBC
conformance level.

Returns
SQL_OAC_LEVEL1.

SQLUSMALLINT

170 SQL_FETCH_DIRECTION The supported fetch direction
options.

Returns
SQL_FD_FETCH_NEXT.

SQLUINTEGER

171 SQL_LOCK_TYPES The lock types that can be
specified in the fLock argument
of SQLSetPos.

Returns 0. SQLUINTEGER

172 SQL_ODBC_SAG_CLI_CONF
ORMANCE

The compliance level to
functions of the SAG
specification.

Returns
SQL_OSCC_COMPLIANT.

SQLUSMALLINT

173 SQL_ODBC_SQL_CONFORMA
NCE

The SQL grammar supported by
the driver.

Returns SQL_OSC_CORE. SQLUSMALLINT

174 SQL_OUTER_JOINS Support status for outer joins of
data sources.

Returns F. • SQLCHAR *
• SQLWCHAR *

175 SQL_POS_OPERATIONS The operations supported by
SQLSetPos.

Returns 0. SQLUINTEGER

176 SQL_POSITIONED_STATEM
ENTS

The positioned SQL statements
supported by the data source.

Returns 0. SQLUINTEGER

177 SQL_SCROLL_CONCURRENC
Y

The concurrency control options
supported for scrollable cursors.

Returns
SQL_SCCO_READ_ONLY.

SQLUINTEGER

178 SQL_STATIC_SENSITIVIT
Y

Whether an application can
detect changes made to a static or
keyset-driven cursor through the
following:
• SQLSetPos function
• Positioned update or delete

statements

Returns 0. SQLUINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 886

16.14 Attributes that can be specified in SQLSetConnectAttr,
SQLSetConnectAttrW, SQLGetConnectAttr, and
SQLGetConnectAttrW

The following table lists and describes the attributes that can be specified in SQLSetConnectAttr,
SQLSetConnectAttrW, SQLGetConnectAttr, and SQLGetConnectAttrW.

Table 16-19: Attributes that can be specified in SQLSetConnectAttr, SQLSetConnectAttrW,
SQLGetConnectAttr, and SQLGetConnectAttrW

No. Attribute Description (convention) Support status Data type

1 SQL_ATTR_ACCESS_MODE Whether the SQL statements that
perform update operations are
supported.

SQL_MODE_READ_ONLY
SQL statements that perform
update operations are not
supported.

SQL_MODE_READ_WRITE
SQL statements that perform
update operations are
supported.

Supports the following
value:
• SQL_MODE_READ_ON
LY

• SQL_MODE_READ_WR
ITE

SQLUINTEGER

2 SQL_ATTR_ANSI_APP Switching between Unicode
and ANSI functions.

SQL_AA_TRUE
Uses the ANSI function.

SQL_AA_FALSE
Uses the Unicode function.

Supports the following
value:
• SQL_AA_TRUE
• SQL_AA_FALSE

This attribute is used for the
driver manager. This
attribute cannot be used for
applications.
If this attribute is used in
SQLGetConnectAttr or
SQLGetConnectAttrW,
an unsupported attribute
error is returned.

SQLUINTEGER

3 SQL_ATTR_ASYNC_ENABLE Whether a function called with a
statement on the specified
connection is executed
asynchronously.

SQL_ASYNC_ENABLE_OFF
Disables asynchronous
execution.

Supports the following
value:
• SQL_ASYNC_ENABLE
_OFF

SQLUINTEGER

4 SQL_ATTR_AUTO_IPD Whether automatic specification
of the IPD after a call to
SQLPrepare is supported.

This attribute is not
supported.

--

5 SQL_ATTR_AUTOCOMMIT Whether the automatic commit
mode is to be used.

SQL_AUTOCOMMIT_OFF
The driver uses the manual
commit mode. The
application must explicitly
commit or roll back

Supports the following
values:
• SQL_AUTOCOMMIT_O
FF

• SQL_AUTOCOMMIT_O
N

SQLUINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 887

No. Attribute Description (convention) Support status Data type

transactions with
SQLEndTran.

SQL_AUTOCOMMIT_ON
The driver uses the automatic
commit mode. Each
statement is committed
immediately after it is
executed.

6 SQL_ATTR_CONNECTION_D
EAD

Value indicating the connection
status.
This attribute can be set in
SQLGetConnectAttr or
SQLGetConnectAttrW. This
attribute cannot be set in
SQLSetConnectAttr or
SQLSetConnectAttrW.

This attribute is not
supported.
This attribute is not
supported in
SQLSetConnectAttr or
SQLSetConnectAttrW.
If this attribute is used in
SQLGetConnectAttr or
SQLGetConnectAttrW,
an unsupported attribute
error is returned.

SQLUINTEGER

7 SQL_ATTR_CONNECTION_T
IMEOUT

The amount of time (in seconds)
the application is to wait for a
response to a connection request.

0
The ODBC driver does not
detect a timeout. The value to
be specified depends on the
timeout control of the client
library.

Supports the following
values:
• 0

SQLUINTEGER

8 SQL_ATTR_CURRENT_CATA
LOG

Catalog name used by the data
source.

This attribute is not
supported.

--

9 SQL_ATTR_ENLIST_IN_DT
C

Whether Microsoft Component
Services use the ODBC driver for
distributed transactions.

This attribute is not
supported.

--

10 SQL_ATTR_LOGIN_TIMEOU
T

The amount of time (in seconds)
the application is to wait for a
response to a login request.

0
The ODBC driver does not
detect a timeout. The value to
be specified depends on the
timeout control of the client
library.

Supports the following
values:
• 0

If a value other than 0 is set,
the HADB ODBC driver
rewrites the value to 0, and
then returns
SQL_SUCCESS_WITH_I
NFO.

SQLUINTEGER

11 SQL_ATTR_METADATA_ID How to handle character string
arguments in catalog functions.

SQL_FALSE
The character string
arguments in catalog
functions are not assumed as
identifiers. The character
string arguments are case
sensitive. Some arguments
include a character string
search pattern, and other
arguments do not.

Supports the following
value:
• SQL_FALSE

If this attribute is used in
SQLSetConnectAttr,
an unsupported attribute
error is returned.

--

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 888

No. Attribute Description (convention) Support status Data type

12 SQL_ATTR_ODBC_CURSORS How the driver manager uses the
ODBC cursor library.

SQL_CUR_USE_IF_NEEDED
The driver manager uses the
ODBC cursor library as
needed.

SQL_CUR_USE_ODBC
The driver manager always
uses the ODBC cursor
library.

Supports the following
values:
• SQL_CUR_USE_IF_N
EEDED

• SQL_CUR_USE_ODBC

SQLINTEGER

13 SQL_ATTR_PACKET_SIZE Network packet size (in bytes). This attribute is not
supported.

--

14 SQL_ATTR_QUIET_MODE 32-bit window handle. This attribute is not
supported.

--

15 SQL_ATTR_TRACE Tracing notifications to the driver
manager.

SQL_OPT_TRACE_OFF
Disables traces.

Supports the following
values:
• SQL_OPT_TRACE_OF
F

SQLUINTEGER

16 SQL_ATTR_TRACEFILE Trace file name. This attribute is not
supported.

--

17 SQL_ATTR_TRANSLATE_LI
B

Library name. This attribute is not
supported.

--

18 SQL_ATTR_TRANSLATE_OP
TION

A 32-bit flag value that is passed
to the translator DLL.

This attribute is not
supported.

--

19 SQL_ATTR_TXN_ISOLATIO
N

The transaction isolation level for
the current connection.
Before calling this function, the
application must call
SQLEndTran to commit or roll
back all open transactions on a
connection.

SQL_TXN_READ_COMMITTE
D

Sets the transaction isolation
level in
READ_COMMITTED.

SQL_TXN_REPEATABLE_RE
AD

Sets the transaction isolation
level in
REPEATABLE_READ.

Supports the following
values:
• SQL_TXN_READ_COM
MITTED

• SQL_TXN_REPEATAB
LE_READ

SQLUINTEGER

20 SQL_ATTR_HADB_ORDER_M
ODE

HADB-specific attribute that is
not in the ODBC conventions.
This attribute sets for the current
connection the sort order for
character string data in a
SELECT statement in which the
ORDER BY clause is specified.

Supports the following
values:
• SQL_HADB_ORDER_M
ODE_BYTE

• SQL_HADB_ORDER_M
ODE_ISO

SQLUINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 889

No. Attribute Description (convention) Support status Data type

SQL_HADB_ORDER_MODE_B
YTE

Sort character string data by
bytecode.

SQL_HADB_ORDER_MODE_I
SO

Sort character string data by
sort code (ISO/IEC
14651:2011 compliance).

Legend: --: Not applicable.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 890

16.15 Attributes that can be specified in SQLSetEnvAttr and
SQLGetEnvAttr

The following table lists and describes the attributes that can be specified in SQLSetEnvAttr and SQLGetEnvAttr.

Table 16-20: Attributes that can be specified in SQLSetEnvAttr and SQLGetEnvAttr

No. Attribute Description (convention) Support status Data type

1 SQL_ATTR_CONNECTION_P
OOLING

Connection pool settings at an
environment level.

This attribute is not
supported.

--

2 SQL_ATTR_CP_MATCH How to select a connection from
a connection pool.

This attribute is not
supported.

--

3 SQL_ATTR_ODBC_VERSION The ODBC version that the
driver complies with.

SQL_OV_ODBC3
The driver manager and
driver have ODBC 3.0
behaviors as follows:
• The driver returns ODBC

3.0 codes for date, time,
and time stamp and
assumes ODBC 3.0
codes.

• When
SQLGetDiagField or
SQLGetDiagRec is
called, the driver returns
ODBC 3.0 SQLSTATE
code.

SQL_OV_ODBC2
The driver manager and
driver have ODBC 2.x
behaviors as follows:
• The driver returns ODBC

2.x codes for dates, times,
and time stamps, and
assumes ODBC 2.x
codes.

• When
SQLGetDiagField or
SQLGetDiagRec is
called, the driver returns
ODBC 2.x SQLSTATE
codes.

An application must set this
environment attribute before
calling a function that specifies
an argument of type SQLHENV.

Supports the following
value:
• SQL_OV_ODBC3
• SQL_OV_ODBC2

SQLUINTEGER

4 SQL_ATTR_OUTPUT_NTS How the driver returns character
string data.

SQL_TRUE
The driver returns null
terminating character string
data.

Supports the following
value:
• SQL_TRUE

SQLUINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 891

Legend:
--: Not applicable.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 892

16.16 Attributes that can be specified in SQLSetStmtAttr,
SQLSetStmtAttrW, SQLGetStmtAttr, and SQLGetStmtAttrW

The following table lists and describes the attributes that can be specified in SQLSetStmtAttr,
SQLSetStmtAttrW, SQLGetStmtAttr, and SQLGetStmtAttrW.

Table 16-21: Attributes that can be specified in SQLSetStmtAttr, SQLSetStmtAttrW,
SQLGetStmtAttr, and SQLGetStmtAttrW

No. Attribute Description (convention) Support status Data type

1 SQL_ATTR_APP_PARAM_DE
SC

The handle to the APD that can be
used for the next call to
SQLExecute,
SQLExecDirect, or
SQLExecDirectW.
The value is one of the following:
• Explicitly allocated APD
• SQL_NULL_HDESC

Forces automatic allocation of
the APD.

• Automatically allocated APD

Supports the following
values:
• Explicitly allocated

APD.
• SQL_NULL_HDESC
• Automatically allocated

APD

SQLHDESC

2 SQL_ATTR_APP_ROW_DESC The handle to the ARD that can be
used for the next fetch.
The value is one of the following:
• Explicitly allocated ARD
• SQL_NULL_HDESC

Forces automatic allocation of
the ARD.

• Automatically allocated ARD

Supports the following
values:
• Explicitly allocated

ARD.
• SQL_NULL_HDESC
• Automatically allocated

ARD

SQLHDESC

3 SQL_ATTR_ASYNC_ENABLE Whether a function called with the
statement handle specified in
StatementHandle of this
function as an argument is to be
executed asynchronously.

SQL_ASYNC_ENABLE_OFF
Does not execute the function
asynchronously.

Supports the following
value:
• SQL_ASYNC_ENABLE
_OFF

SQLULEN

4 SQL_ATTR_CONCURRENCY Specification on cursor
concurrency.

SQL_CONCUR_READ_ONLY
The cursor is read-only. No
updates are allowed.

Supports the following
value:
• SQL_CONCUR_READ_
ONLY

If a value other than
SQL_CONCUR_READ_ONL
Y is set, the HADB ODBC
driver rewrites the value to
SQL_CONCUR_READ_ONL
Y, and then returns
SQL_SUCCESS_WITH_IN
FO.

SQLULEN

5 SQL_ATTR_CURSOR_SCROL
LABLE

The level of support that the
application requires.

Supports the following
value:
• SQL_NONSCROLLABL
E

SQLULEN

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 893

No. Attribute Description (convention) Support status Data type

SQL_NONSCROLLABLE
Scrollable cursors are not
required on the statement
handle.

If a value other than
SQL_NONSCROLLABLE is
set, the HADB ODBC driver
rewrites the value to
SQL_NONSCROLLABLE,
and then returns
SQL_SUCCESS_WITH_IN
FO.

6 SQL_ATTR_CURSOR_SENSI
TIVITY

Whether cursors on the statement
handle detect changes made to a
result set by another cursor.

SQL_UNSPECIFIED
It is not specified what the cursor
type is and whether cursors on
the statement handle detect
changes made to a result set by
another cursor.

Supports the following
value:
• SQL_UNSPECIFIED

If a value other than
SQL_UNSPECIFIED is set,
the HADB ODBC driver
rewrites the value to
SQL_UNSPECIFIED, and
then returns
SQL_SUCCESS_WITH_IN
FO.

SQLULEN

7 SQL_ATTR_CURSOR_TYPE Cursor type.

SQL_CURSOR_FORWARD_ONLY
The cursor scrolls only forward.

Supports the following
value:
• SQL_CURSOR_FORWA
RD_ONLY

If a value other than
SQL_CURSOR_FORWARD_
ONLY is set, the HADB
ODBC driver rewrites the
value to
SQL_CURSOR_FORWARD_
ONLY, and then returns
SQL_SUCCESS_WITH_IN
FO.

SQLULEN

8 SQL_ATTR_ENABLE_AUTO_
IPD

Whether the IPD value is set
automatically.

This attribute is not
supported.

--

9 SQL_ATTR_FETCH_BOOKMA
RK_PTR

Pointer to a binary bookmark value. This attribute is not
supported.

--

10 SQL_ATTR_IMP_PARAM_DE
SC

Handle to the IPD that is allocated
the first time the statement handle is
allocated.

Supports the following
value:
• Automatically allocated

IPD.

SQLHDESC

11 SQL_ATTR_IMP_ROW_DESC Handle to the IRD that is allocated
the first time the statement handle is
allocated.

Supports the following
value:
• Automatically allocated

IRD.

SQLHDESC

12 SQL_ATTR_KEYSET_SIZE Number of rows in the keyset for a
keyset cursor.

This attribute is not
supported.

--

13 SQL_ATTR_MAX_LENGTH Maximum size of data for a
character string column or binary
column during communication
between data sources (between
server and host).

Supports the following
value:
• 0

SQLULEN

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 894

No. Attribute Description (convention) Support status Data type

0
The data source returns all valid
data.

14 SQL_ATTR_MAX_ROWS Maximum number of rows that is
returned to a SELECT statement
during communication between
data sources (between server and
host).

0
The data source returns all rows.

Supports the following
value:
• 0

SQLULEN

15 SQL_ATTR_METADATA_ID How to handle character string
arguments of catalog functions.

SQL_FALSE
The case is significant and the
character string arguments of
catalog functions are not treated
as identifiers.

Supports the following
value:
• SQL_FALSE

SQLULEN

16 SQL_ATTR_NOSCAN Whether the driver performs syntax
analysis on escape sequences and
converts them to a DBMS-specific
syntax.

SQL_NOSCAN_OFF
The driver converts escape
sequences to a DBMS-specific
syntax.

SQL_NOSCAN_ON
The driver does not convert
escape sequences to a DBMS-
specific syntax.

Supports the following
value:
• SQL_NOSCAN_OFF
• SQL_NOSCAN_ON

SQLULEN

17 SQL_ATTR_PARAM_BIND_O
FFSET_PTR

A pointer to the offset that is added
to the pointer used when dynamic
parameters are bound.

NULL
The driver does not add the
value.

Supports the following
value:
• NULL

SQLULEN *

18 SQL_ATTR_PARAM_BIND_T
YPE

Binding orientation to be used for
dynamic parameters.

SQL_PARAM_BIND_BY_COLUM
N

Specifies column-wise binding.

Supports the following
value:
• SQL_PARAM_BIND_B
Y_COLUMN

SQLULEN

19 SQL_ATTR_PARAM_OPERAT
ION_PTR

An array used to ignore parameters
during execution of an SQL
statement.

NULL
The driver does not return
parameter status values.

Supports the following
value:
• NULL

SQLUSMALLINT *

20 SQL_ATTR_PARAM_STATUS
_PTR

An array that stores status
information for each row of
parameter values after a call to
SQLExecute,
SQLExecDirect, or
SQLExecDirectW.

Supports the following
value:
• NULL

SQLUSMALLINT *

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 895

No. Attribute Description (convention) Support status Data type

NULL
SQLUSMALLINT pointer
The driver does not return parameter
status values.

• SQLUSMALLINT
pointer (other than
NULL)

21 SQL_ATTR_PARAMS_PROCE
SSED_PTR

Address of the variable to which the
driver returns the number of sets of
parameters that have been processed
(including error sets).
NULL
SQLULEN pointer
The number of parameter sets is not
returned.

Supports the following
value:
• NULL
• SQLULEN pointer (other

than NULL)

SQLULEN *

22 SQL_ATTR_PARAMSET_SIZ
E

Number of values for each
parameter set.

Supports the following
value:
• 1

If a value other than 1 is set,
the HADB ODBC driver
rewrites the value to 1, and
then returns
SQL_SUCCESS_WITH_IN
FO.

SQLULEN

23 SQL_ATTR_QUERY_TIMEOU
T

The amount of time (in seconds) the
application is to wait for an SQL
statement to execute.

This attribute is not
supported.

--

24 SQL_ATTR_RETRIEVE_DAT
A

Whether SQLFetch is to acquire
data after it has positioned the cursor
to the specified location.

SQL_RD_ON
SQLFetch acquires data after
it has positioned the cursor to the
specified location.

Supports the following
value:
• SQL_RD_ON

SQLULEN

25 SQL_ATTR_ROW_ARRAY_SI
ZE

Number of rows returned by
SQLFetch or
SQLFetchScroll

Supports the following
value:
• 1

SQLULEN

26 SQL_ATTR_ROW_BIND_OFF
SET_PTR

A pointer to the offset that is added
to the pointer used to change the
binding of column data.

NULL
The driver does not add the
value.

Supports the following
value:
• NULL

SQLULEN *

27 SQL_ATTR_ROW_BIND_TYP
E

Binding orientation to be used when
SQLFetch or
SQLFetchScroll is called on
the associated statement.

SQL_BIND_BY_COLUMN
Specifies column-wise binding.

Supports the following
value:
• SQL_BIND_BY_COLU
MN

SQLULEN

28 SQL_ATTR_ROW_NUMBER Current row number in the result set. This attribute is not
supported.

--

29 SQL_ATTR_ROW_OPERATIO
N_PTR

An array used to ignore rows during
a batch operation using
SQLSetPos.

Supports the following
value:
• NULL

SQLUSMALLINT *

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 896

No. Attribute Description (convention) Support status Data type

NULL
The driver does not ignore rows.

30 SQL_ATTR_ROW_STATUS_P
TR

A pointer to an array used to store
row status values after a call to
SQLFetch or
SQLFetchScroll.

NULL
The driver does not return row
status values.

Supports the following
value:
• NULL
• SQLUSMALLINT

pointer (other than
NULL)

SQLUSMALLINT *

31 SQL_ATTR_ROWS_FETCHED
_PTR

A pointer to the buffer that stores the
number of fetched rows after a call
to SQLFetch or
SQLFetchScroll.

NULL
The driver does not return the
number of fetched rows.

Supports the following
value:
• NULL
• SQLULEN pointer (other

than NULL)

SQLULEN *

32 SQL_ATTR_SIMULATE_CUR
SOR

Whether a driver that simulates
positioned update and delete
statements guarantees that such
statements change only a single row.

This attribute is not
supported.

--

33 SQL_ATTR_USE_BOOKMARK
S

Whether an application uses
bookmarks with a cursor.

This attribute is not
supported.

--

Legend: --: Not applicable.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 897

16.17 Attributes that can be specified in SQLGetDescField,
SQLGetDescFieldW, SQLSetDescField, and SQLSetDescFieldW

The following table lists and describes the attributes that can be specified in SQLGetDescField,
SQLGetDescFieldW, SQLSetDescField, and SQLSetDescFieldW.

Table 16-22: Values of header fields in a descriptor

No. Attribute Description (convention) Support status Data type

1 SQL_DESC_ALLOC_TYPE Whether the descriptor was
allocated automatically or
explicitly.

SQL_DESC_ALLOC_AUTO
The descriptor was allocated
automatically by the driver.

SQL_DESC_ALLOC_USER
The descriptor was allocated
explicitly by the application.

Supports the following
values:
• SQL_DESC_ALLOC_A
UTO

• SQL_DESC_ALLOC_U
SER

SQLSMALLINT

2 SQL_DESC_ARRAY_SIZE ARD
Number of rows in the row set
(value returned by
SQLFetch).

APD
Number of values for each
parameter.

Supports the following
value:
• 1

SQLULEN

3 SQL_DESC_ARRAY_STATUS
_PTR

IRD
Pointer to a row status array
containing status values after
an execution of SQLFetch.

IPD
Pointer to a parameter status
array containing status
information for each set of
parameter values after an
execution of SQLExecute,
SQLExecDirect, or
SQLExecDirectW.

ARD
Pointer to an operation array
in which the application can
set a value to specify that
rows are to be ignored for
SQLSetPos processing.

APD
Pointer to a parameter
operation array in which the
application can set a value to
specify that parameter sets
are to be ignored during an
execution of SQLExecute,
SQLExecDirect, or
SQLExecDirectW.

Supports the following
value:
• NULL

SQLUSMALLINT *

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 898

No. Attribute Description (convention) Support status Data type

NULL
The driver does not store
status values or status
information, nor does it
ignore rows or parameter
sets.

4 SQL_DESC_BIND_OFFSET_
PTR

Binding offset specified by the
application program.
This value is added to the delay
field during a fetch operation.

NULL
The driver does not add the
value.

Supports the following
value:
• NULL

SQLLEN *

5 SQL_DESC_BIND_TYPE Binding orientation for columns
or parameters.

ARD
Binding orientation during an
execution of SQLFetch.

APD
Binding orientation for
dynamic parameters.

SQL_BIND_BY_COLUMN
Specifies column-wise
binding.

Supports the following
value:
• SQL_BIND_BY_COLU
MN

SQLINTEGER

6 SQL_DESC_COUNT Highest number of the record that
stores data.
The permitted value is 1 or
greater.

Supports the following
values:
• Integer value of 0 or

greater

SQLSMALLINT

7 SQL_DESC_ROWS_PROCESS
ED_PTR

IRD
Pointer to the buffer that
stores the number of fetched
rows after an execution of
SQLFetch.

IPD
Pointer to the buffer that
stores the number of
parameter sets processed
during an execution of
SQLExecute,
SQLExecDirect, or
SQLExecDirectW.

NULL
The driver does not store the
number of fetched rows or the
number of parameter sets.

Supports the following
value:
• NULL

SQLULEN *

Table 16-23: Values of record fields in a descriptor

No. Attribute Description (convention) Support status Data type

1 SQL_DESC_AUTO_UNIQUE_
VALUE

Whether columns are
incremented automatically.

Supports the following
value:
• SQL_FALSE

SQLINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 899

No. Attribute Description (convention) Support status Data type

SQL_FALSE
Columns are not incremented
automatically.

2 SQL_DESC_BASE_COLUMN_
NAME

Base column name for the result
set column.

Supports the following
values:
• Column name.
• "EXPnnnn_NO_NAME"

(nnnn: Unsigned integer
in the range from 0001
to 1000)
The retrieval item
column is not a column
specification.

• SQLCHAR *
• SQLWCHAR *

3 SQL_DESC_BASE_TABLE_N
AME

Base table name for the result set
column.

Supports the following
value:
• Null character string

• SQLCHAR *
• SQLWCHAR *

4 SQL_DESC_CASE_SENSITI
VE

Whether the column or parameter
is treated as being case-sensitive
during collations or comparisons.

SQL_TRUE
The column or parameter is
treated as being case-
sensitive during collations or
comparisons.

SQL_FALSE
One of the following:
The column or parameter is
not treated as being case-
sensitive.
It is a noncharacter column.

Supports the following
values:
• SQL_TRUE
• SQL_FALSE

SQLINTEGER

5 SQL_DESC_CATALOG_NAME Catalog name for the base table
that contains the column.

Supports the following
value:
• Null character string

• SQLCHAR *
• SQLWCHAR *

6 SQL_DESC_CONCISE_TYPE Concise data type for all data
types.

Supports the following
value:
• The data types supported

by this driver.

SQLSMALLINT

7 SQL_DESC_DATA_PTR Pointer to the buffer that stores
the parameter value (APD) or
column value (ARD).

Supports the following
values:
• NULL
• Pointer to the buffer

SQLPOINTER

8 SQL_DESC_DATETIME_INT
ERVAL_CODE

Subcode for the specific datetime
or interval data type when the
SQL_DESC_TYPE field value is
SQL_DATETIME or
SQL_INTERVAL.
Otherwise, this field is 0.

Supports the following
values:
• Subcode for the specific

datetime or interval data
type.

• 0

SQLSMALLINT

9 SQL_DESC_DATETIME_INT
ERVAL_PRECISION

Interval leading precision when
the SQL_DESC_TYPE field is
SQL_INTERVAL.
Otherwise, this field is 0.

Supports the following
value:
• 0

SQLINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 900

No. Attribute Description (convention) Support status Data type

10 SQL_DESC_DISPLAY_SIZE Maximum number of characters
required to display the data from
the column.

Supports the following
values according to the data
type:
• SQL_CHAR,
SQL_VARCHAR
Definition length (in
bytes).

• SQL_BIGINT,
SQL_INTEGER
Number of digits.

• SQL_DECIMAL
Precision (total number
of digits) + 2

• SQL_TYPE_DATE,
SQL_DATE
10.

• SQL_TYPE_TIME,
SQL_TIME
8 + (p + 1)#.

• SQL_TYPE_TIMESTA
MP, SQL_TIMESTAMP
19 + (p + 1)#.

• SQL_DOUBLE
24.

• SQL_BINARY,
SQL_VARBINARY
Definition length (in
bytes) × 2.

SQLLEN

11 SQL_DESC_FIXED_PREC_S
CALE

Whether the column is an exact
numeric column.

SQL_FALSE
The column is not an exact
numeric column with a fixed
precision and scale set.

Supports the following
value:
• SQL_FALSE

SQLSMALLINT

12 SQL_DESC_INDICATOR_PT
R

Whether the column or parameter
value is NULL.

Supports the following
values:
• NULL
• Pointer to the buffer

SQLLEN *

13 SQL_DESC_LABEL Column label or title. Supports the following
values:
• Column name.
• "EXPnnnn_NO_NAME"

(nnnn: Unsigned integer
in the range from 0001
to 1000)
The retrieval item
column is not a column
specification.

• SQLCHAR *
• SQLWCHAR *

14 SQL_DESC_LENGTH Maximum or actual length of a
character string or a binary data
type.

Supports the following
value:
• Definition length of each

data type (in bytes).

SQLULEN

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 901

No. Attribute Description (convention) Support status Data type

15 SQL_DESC_LITERAL_PREF
IX

The character or characters that
the driver recognizes as a prefix
for a data-type literal.

Supports the following
value:
• Null character string.

• SQLCHAR *
• SQLWCHAR *

16 SQL_DESC_LITERAL_SUFF
IX

The character or characters that
the driver recognizes as a suffix
for a data-type literal.

Supports the following
value:
• Null character string.

• SQLCHAR *
• SQLWCHAR *

17 SQL_DESC_LOCAL_TYPE_N
AME

Localized name for the data type
that differs from the regular name
of the data type.

Supports the following
value:
• Null character string.

• SQLCHAR *
• SQLWCHAR *

18 SQL_DESC_NAME Column alias. If the column alias
does not apply, this is the column
name.

Supports the following
values:
• Column name.
• "EXPnnnn_NO_NAME"

(nnnn: Unsigned integer
in the range from 0001
to 1000)
The retrieval item
column is not a column
specification.

• SQLCHAR *
• SQLWCHAR *

19 SQL_DESC_NULLABLE Whether NULL can be specified
for the column.

SQL_NULLABLE
NULL values can be specified
for the column.

SQL_NO_NULLS
NULL values cannot be
specified for the column.

Supports the following
values:
• SQL_NULLABLE
• SQL_NO_NULLS

SQLSMALLINT

20 SQL_DESC_NUM_PREC_RAD
IX

Whether the data type of the
SQL_DESC_TYPE field is an
approximate value data type or an
exact numeric value data type.

10
Exact numeric value data
type.

0
Nonnumeric data type.

Supports the following
values:
• 10
• 0

SQLINTEGER

21 SQL_DESC_OCTET_LENGTH Length in bytes of a character
string or binary data type.

Supports the following
value:
• Definition length of each

data type (in bytes).

SQLLEN

22 SQL_DESC_OCTET_LENGTH
_PTR

Variable that contains the total
length in bytes of a dynamic
argument (for parameter
descriptors) or a bound column
value (for row descriptors).

Supports the following
values:
• NULL
• Pointer to the buffer

SQLLEN *

23 SQL_DESC_PARAMETER_TY
PE

Parameter type (input, output, or
input/output).

SQL_PARAM_INPUT
Input parameter.

Supports the following
values:
• SQL_PARAM_INPUT
• SQL_PARAM_INPUT_
OUTPUT

SQLSMALLINT

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 902

No. Attribute Description (convention) Support status Data type

SQL_PARAM_INPUT_OUTPU
T

Input/output parameter.

Replaced with
SQL_PARAM_INPUT.

24 SQL_DESC_PRECISION Number of digits for an exact
numeric type and the number of
bits in the mantissa (binary
precision) for an approximate
value type.

Supports the following
values according to the data
type:
• SQL_BIGINT,
SQL_INTEGER
Number of digits.

• SQL_DECIMAL
Precision (total number
of digits).

• SQL_TYPE_TIME,
SQL_TYPE_TIMESTA
MP, SQL_TIME,
SQL_TIMESTAMP
Fractional seconds
precision.

• SQL_DOUBLE
15.

• Other data type
0.

SQLSMALLINT

25 SQL_DESC_SCALE Defined scale for decimal and
numeric data types.
Defined scale.

Supports the following
values:
• Defined scale.
• 0

Nonnumeric data type.

SQLSMALLINT

26 SQL_DESC_SCHEMA_NAME Schema name of the base table
that stores the column.

Supports the following
value:
• Null character string.

• SQLCHAR *
• SQLWCHAR *

27 SQL_DESC_SEARCHABLE Whether the column can be used
in a WHERE clause.

SQL_PRED_SEARCHABLE
The column can be used in
any comparison operator in a
WHERE clause.

Supports the following
value:
• SQL_PRED_SEARCHA
BLE

SQLSMALLINT

28 SQL_DESC_TABLE_NAME Name of the base table that stores
the column.

Supports the following
value:
• Null character string.

• SQLCHAR *
• SQLWCHAR *

29 SQL_DESC_TYPE • All data types except
datetime and interval.
Concise SQL data type or
concise C data type.

• Datetime and interval data
types.
Redundant data type
(SQL_DATETIME or
SQL_INTERVAL).

Supports the following
values:
• Concise SQL data type.
• Concise C data type.
• Redundant data type.

SQLSMALLINT

30 SQL_DESC_TYPE_NAME Data type name that depends on
the data source.

Supports the following
values:

• SQLCHAR *
• SQLWCHAR *

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 903

No. Attribute Description (convention) Support status Data type

If the data type is unknown, a null
character string is specified.

• Data type name that
depends on the data
source.

• Null character string.

31 SQL_DESC_UNNAMED Whether a column name or a
column alias was specified in the
SQL_DESC_NAME field.

SQL_NAMED
A column name or a column
alias was specified in the
SQL_DESC_NAME field.

SQL_UNNAMED
A column name or a column
alias was not specified in the
SQL_DESC_NAME field.

Supports the following
values:
• SQL_NAMED
• SQL_UNNAMED

SQLSMALLINT

32 SQL_DESC_UNSIGNED Whether the column's data type is
signed or unsigned.

SQL_TRUE
The column's data type is
unsigned or nonnumeric.

SQL_FALSE
The column's data type is
signed.

Supports the following
values:
• SQL_TRUE
• SQL_FALSE

SQLSMALLINT

33 SQL_DESC_UPDATABLE Whether the column in the result
set can be updated.

SQL_ATTR_READWRITE_UN
KNOWN

Whether the column in the
result set can be updated is
unknown.

Supports the following
value:
• SQL_ATTR_READWRI
TE_UNKNOWN

SQLSMALLINT

34 SQL_COLUMN_LENGTH A field defined in ODBC 2.0. Supports the following
values according to the data
type:
• SQL_CHAR,
SQL_VARCHAR,
SQL_BINARY,
SQL_VARBINARY
Definition length (in
bytes).

• SQL_BIGINT,
SQL_INTEGER
Number of digits.

• SQL_DECIMAL
Precision (total number
of digits) + 2

• SQL_TYPE_DATE
10.

• SQL_TYPE_TIME,
SQL_TIME
8 + (p + 1)#.

• SQL_TYPE_TIMESTA
MP, SQL_TIMESTAMP

SQLLEN

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 904

No. Attribute Description (convention) Support status Data type

19 + (p + 1)#.
• SQL_DOUBLE
24.

35 SQL_COLUMN_PRECISION A field defined in ODBC 2.0. Supports the following
values:
• Same values as for
SQL_DESC_PRECISI
ON.

SQLSMALLINT

36 SQL_COLUMN_SCALE A field defined in ODBC 2.0. Supports the following
values:
• Same values as for
SQL_DESC_SCALE.

SQLSMALLINT

#
p indicates the fractional seconds precision with a maximum length of 12 digits.
If there is a fractional second, add the value in parentheses.

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 905

16.18 Attributes that can be specified in DiagIdentifier of
SQLGetDiagField and SQLGetDiagFieldW

The following table lists and describes the attributes that can be specified for DiagIdentifier.

Table 16-24: Attributes that can be specified for DiagIdentifier (for header fields)

No. Diagnostic field identifier
(DiagIdentifier)

Description (convention) Return value Data type

1 SQL_DIAG_CURSOR_ROW_C
OUNT

Returns the row count in the
cursor.
This applies only to statement
handles. If any other handle is
specified, SQL_ERROR is
returned.

Always returns 0. SQLLEN

2 SQL_DIAG_DYNAMIC_FUNC
TION

Returns the SQL statement
executed by the function.
This applies only to statement
handles. If any other handle is
specified, SQL_ERROR is
returned.
You can acquire this value
immediately after
SQLExecute,
SQLExecDirect, or
SQLExecDirectW.

Returns the following
values:
• "ALTER TABLE"
• "ALTER USER"
• "ALTER VIEW"
• "CREATE AUDIT"
• "CREATE INDEX"
• "CREATE SCHEMA"
• "CREATE TABLE"
• "CREATE USER"
• "CREATE VIEW"
• "DELETE"
• "DROP AUDIT"
• "DROP INDEX"
• "DROP SCHEMA"
• "DROP TABLE"
• "DROP USER"
• "DROP VIEW"
• "GRANT"
• "INSERT"
• "PURGE CHUNK"
• "REVOKE"
• "SELECT CURSOR"
• "TRUNCATE TABLE"
• "UPDATE"
• ""

The function always returns
"" unless it is executed
immediately after
SQLExecute,
SQLExecDirect, or
SQLExecDirectW.

• SQLCHAR *
• SQLWCHAR *

3 SQL_DIAG_DYNAMIC_FUNC
TION_CODE

Returns a value indicating the
SQL statement executed by the
function.
This applies only to statement
handles. If any other handle is

Returns the following
values:
• SQL_DIAG_INSERT
• SQL_DIAG_CREATE_
TABLE

SQLINTEGER

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 906

No. Diagnostic field identifier
(DiagIdentifier)

Description (convention) Return value Data type

specified, SQL_ERROR is
returned.
You can acquire this value
immediately after
SQLExecute,
SQLExecDirect, or
SQLExecDirectW.

• SQL_DIAG_ALTER_T
ABLE

• SQL_DIAG_DROP_TA
BLE

• SQL_DIAG_CREATE_
INDEX

• SQL_DIAG_DROP_IN
DEX

• SQL_DIAG_CREATE_
SCHEMA

• SQL_DIAG_DROP_SC
HEMA

• SQL_DIAG_CREATE_
VIEW

• SQL_DIAG_DROP_VI
EW

• SQL_DIAG_UNKNOWN
_STATEMENT

• SQL_DIAG_SELECT_
CURSOR

• SQL_DIAG_UPDATE_
WHERE

• SQL_DIAG_DELETE_
WHERE

• SQL_DIAG_GRANT
• SQL_DIAG_REVOKE

The function always returns
SQL_DIAG_UNKNOWN_S
TATEMENT unless it is
executed immediately after
SQLExecute,
SQLExecDirect, or
SQLExecDirectW.

4 SQL_DIAG_NUMBER Returns the number of available
status records.

Returns 0 or 1. SQLINTEGER

5 SQL_DIAG_RETURNCODE Returns the return code returned
by the ODBC function that was
executed immediately before
SQLGetDiagField,
SQLGetDiagFieldW,
SQLGetDiagRec, or
SQLGetDiagRecW.

Always returns
SQL_SUCCESS.

SQLRETURN

6 SQL_DIAG_ROW_COUNT Returns the number of rows
affected by insert, delete, or
update processing.
This applies only to statement
handles. If any other handle is
specified, SQL_ERROR is
returned.

Always returns 0. SQLLEN

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 907

Table 16-25: Attributes that can be specified for DiagIdentifier (for record fields)

No. Diagnostic field identifier
(DiagIdentifier)

Description (convention) Return value Data type

1 SQL_DIAG_CLASS_ORIGIN Returns a character string
indicating the document that
defines the class portion of
SQLSTATE.

Returns the following
values:
• "ODBC 3.0"
• "ISO 9075"

• SQLCHAR *
• SQLWCHAR *

2 SQL_DIAG_COLUMN_NUMBE
R

Returns a value indicating a
column number in the result set
or a parameter number in the
parameter set.
This applies only to statement
handles.

Always returns 0. SQLINTEGER

3 SQL_DIAG_CONNECTION_N
AME

Returns the name of the
connection.

Always returns "". • SQLCHAR *
• SQLWCHAR *

4 SQL_DIAG_MESSAGE_TEXT Returns a message about an error
or warning.

A character string
beginning with
"[Hitachi Advanced
Data Binder ODBC
Driver]..." is returned.
Some information might be
added.

• SQLCHAR *
• SQLWCHAR *

5 SQL_DIAG_NATIVE Returns an ODBC driver-specific
or data source-specific native
error code.
If there is no such error code, 0 is
returned.

Returns 0 or the value of
SQLCODE.
For details about
SQLCODE, see Interpreting
SQLCODEs in the manual
HADB Messages.

SQLINTEGER

6 SQL_DIAG_ROW_NUMBER Returns a value indicating the
column number in the row set or
the parameter number in the
parameter set.
This applies only to statement
handles.

Always returns 0. SQLLEN

7 SQL_DIAG_SERVER_NAME Returns the server name. Always returns "". • SQLCHAR *
• SQLWCHAR *

8 SQL_DIAG_SQLSTATE Returns an SQLSTATE
diagnostic code consisting of 5
characters.

Returns a 5-character
SQLSTATE diagnostic code
stipulated by the ODBC
conventions.

• SQLCHAR *
• SQLWCHAR *

9 SQL_DIAG_SUBCLASS_ORI
GIN

Returns a character string that
contains a valid value in the same
format as for
SQL_DIAG_CLASS_ORIGIN.
This value identifies the
definition of the subclass
portion of SQLSTATE.

Returns the following
values:
• "ODBC 3.0"
• "ISO 9075"

• SQLCHAR *
• SQLWCHAR *

16. ODBC Functions

Hitachi Advanced Database Application Development Guide 908

This chapter explains how to troubleshoot use of the ODBC interfaces.

17 Troubleshooting

Hitachi Advanced Database Application Development Guide 909

17.1 Information used for troubleshooting

This section describes the information used for troubleshooting when using the ODBC interface (such as BI tools and
ODBC modules).

17.1.1 Messages output by BI tools and ODBC modules
If an error occurs when a BI tool or ODBC module (such as Microsoft(R) Excel) accesses the HADB server, the tool
or module will output an error message. The output destination might be a dialog box, the status window or message
area of the BI tool, or a log file.

The format in which the message is output depends on the specification of the BI tool or ODBC module. It is typical
for a message from the error source to be output after the message output by the BI tool or ODBC module. If the output
message contains a string like Hitachi or KFAA, HADB might be the cause of the error.

Important
When an error messages is output to a dialog box or to the message area of a BI tool, you might not be able
to retrieve the message for later review. We recommend that you preserve it for troubleshooting purposes
by taking a screenshot.

17.1.2 ODBC traces
The driver manager can output information about I/O activity between the application and driver manager to the trace
log. This information is called an ODBC trace.

Information is written to an ODBC trace file each time the driver manager receives a request from an application. This
makes the data in an ODBC trace useful when debugging applications and investigating the cause of errors.

▪ Acquiring an ODBC trace
To acquire an ODBC trace, on the Tracing tab of the ODBC Data Source Administrator, click Start Tracing Now.
The ODBC trace is output to the path specified in Log File Path. For details about how to acquire an ODBC trace,
see ODBC Data Source Administrator in the MSDN Library.

Important
Because the I/O activity of trace log information to a file takes place for each request the driver manager
receives from an application, processing performance will decrease when this functionality is in use. For
this reason, we recommend that you do not leave ODBC trace output permanently enabled.

17.1.3 HADB ODBC driver trace information
HADB ODBC driver trace information is output by the trace output functionality (HADB ODBC driver trace) inherent
to the HADB ODBC driver. This functionality outputs information about I/O activity between the driver manager and
the HADB ODBC driver.

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 910

For details about how to acquire HADB ODBC driver trace information, see 17.3 Settings for outputting HADB ODBC
driver trace information. For details about the information that is output, see 17.4 Information output as HADB ODBC
driver trace information.

▪ Output destination of HADB ODBC driver trace information
HADB ODBC driver trace information is output to one of the following folders:

• The folder specified in Trace Directory Path in the Trace Setup dialog box of the ODBC Data Source
Administrator

• The folder specified in the ADBODBTRCPATH environment variable

The file name of an HADB ODBC driver trace file is as follows:

• adbodbtrace_PID_TID_01.log
• adbodbtrace_PID_TID_02.log
PID is the process ID of the application or BI tool that uses the HADB ODBC driver expressed as a hexadecimal.
TID is the thread ID of the thread started by the process of the application or BI tool that uses the HADB ODBC
driver expressed as a hexadecimal.
An HADB ODBC driver trace file is output for each thread of each process that uses the HADB ODBC driver. This
means that the number of output files increases in proportion to the number of processes and threads of the
applications and BI tools that use the HADB ODBC driver.
The output destination for the trace information switches between adbodbtrace_PID_TID_01.log and
adbodbtrace_PID_TID_02.log as each HADB ODBC driver trace file reaches its maximum size. When
switching the output destination from one file to the other, if the new destination file has reached its maximum size,
the entire contents of the file are deleted before the output of HADB ODBC driver trace information resumes.

Important
HADB opens and closes the HADB ODBC driver trace file each time it outputs HADB ODBC driver trace
information. This is likely to significantly impact processing performance. For this reason, we recommend
that you do not leave the output of HADB ODBC driver trace information permanently enabled.

17.1.4 Messages output by the HADB server and HADB client
The messages output by the HADB server and HADB client include information about connections from clients and
information about executed SQL statements.

17.1.5 SQL trace information
SQL trace information is trace information for SQL statements the HADB server accepts from applications. For details
about SQL trace information, see Running SQL tracing in the HADB Setup and Operation Guide.

In environments that use the ODBC interface, you can use this information to view the requests made from the HADB
ODBC driver to the HADB client, and the information returned by the HADB client to the HADB ODBC driver.

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 911

17.2 Troubleshooting procedure

This section describes how to troubleshoot issues that arise when using the ODBC interface.

17.2.1 Handling errors
In the first part of the troubleshooting process, you identify the source of the error. After identifying the source, you
then take the appropriate action to resolve the error. The following figure explains the process of identifying the source
of an error.

Figure 17-1: Identifying the source of an error

After identifying the source of the error based on this flow chart, use the following table to find out what action to take.

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 912

Table 17-1: Handling errors

No. State Handling procedure

1 State A
An error occurred in an application or
the driver manager.

Perform the following steps:
• Check the configuration of the application or program.
• Make sure that the HADB client was installed correctly.
• Make sure that the data sources are registered correctly, and that the connection

information is specified correctly.
• Check the value output for SQLSTATE. Review SQLSTATE and message contents

based on resources such as ODBC Programmer's Reference in the MSDN Library.
• If the error is reproducible, acquire an ODBC trace and use it to identify the ODBC

function that caused the error.

2 State B
An error occurred in the driver manager.

Same as the handling procedure for No.1.

3 State C
An error or warning occurred in the
ODBC driver.

Perform the following steps:
• Check the value output for SQLSTATE. For details about SQLSTATE, see the ODBC

Programmer's Reference in the MSDN Library, and the description of SQLSTATE for
each ODBC function in 16. ODBC Functions. This error is output according to the
ODBC implementation conventions.

• If the error is reproducible, acquire HADB ODBC driver trace information and use it
to investigate the nature of the error. Your investigation might focus on the sequence
in which ODBC functions were executed, or what kind of error occurred in which
ODBC function.

4 State D
An error or warning occurred in the
ODBC driver.

Perform the following steps:
• Check the output message, and investigate the cause of the error or warning with

reference to the manual HADB Messages.
• If the error or warning is reproducible, acquire HADB ODBC driver trace information

and use it to identify the sequence in which ODBC functions were executed and the
ODBC function that caused the error.

• This state is often caused by a error related to data conversion or character code
conversion. Review the configuration of the BI tool or ODBC module, the display
method for retrieval data, and other potential causes.

• The ODBC driver might be attempting to access attribute information it does not
support. For the support status, see 16.13 Information types that can be specified for
InfoType in SQLGetInfo and SQLGetInfoW to 16.18 Attributes that can be specified
in DiagIdentifier of SQLGetDiagField and SQLGetDiagFieldW.

5 State E
The connection with the HADB server
has not been established.

The HADB server might not be accessible. You need to identify the part of the access route
where access fails.
First, perform the following steps:
• Make sure that the access privileges for the output destination folder for message log

files and for the message log files themselves are assigned correctly.
• Make sure that environment variables are set correctly.
• Make sure that the HADB client was installed correctly.

If the error still occurs despite all these settings being correct, enable the output of ODBC
traces, HADB ODBC driver trace information, and SQL trace information. Then, reproduce
the error and analyze the information output in each trace.
If there is no error message and nothing is output in the BI tool or ODBC module, the issue
might be with the BI tool or ODBC module.

6 State F
An error occurred in the HADB client.

Check the error cause code and investigate the cause of the error. For details about the error
cause code, see 19.8 Return values of the CLI functions.
Potential causes include a path being specified incorrectly in an environment variable or
the client definition, or not having the required privileges.

7 State G Check the message output by HADB, and investigate the cause of the error or warning.

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 913

No. State Handling procedure

An error or warning occurred in the
HADB server or HADB client.

8 State H
The connection with the HADB server
has been established.

The HADB server is accessible.
Perform troubleshooting by analyzing the SQL statements and the messages output to the
message log file.
If you want to acquire detailed information, enable the output of ODBC traces, HADB
ODBC driver trace information, and SQL trace information. Then, reproduce the error and
analyze the information output in each trace.
If there is no error message and nothing is output in the BI tool or ODBC module, the issue
might be with the BI tool or ODBC module.

The following figure shows the flow of processing when using the HADB ODBC driver to access the HADB server
from a BI tool or ODBC module.

Figure 17-2: Flow of processing when using HADB ODBC driver to access HADB server

If you resolve the error and a different error then occurs, begin the troubleshooting process again starting from
identification of the source.

17.2.2 Troubleshooting tips

(1) Tips about viewing ODBC trace information
By viewing ODBC trace information, you can see the requests the driver manager has received from sources such as
applications, BI tools, and the ODBC module, and the data that was returned in response to those requests.

An application, BI tool, ODBC module, or other entity to which the driver manager returns an error typically issues the
ODBC functions SQLGetDiagField and SQLGetDiagRec to acquire detailed information about the error. The
SQLSTATE, NativeError, and MessageText obtained by SQLGetDiagRec is particularly useful information
for troubleshooting.

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 914

Note
An ODBC trace does not provide information about requests from the HADB ODBC driver, or the responses
to those requests.

(2) Tips for identifying the source of an error from message text
When message text is output in relation to an error, you can use the message text to identify the source of the error. This
subsection provides tips about this process.

1. Check whether the message text contains a message ID starting with KFAA. Check whether the message text includes
the tag [Hitachi Advanced Data Binder] [ODBC Driver].
If either of these conditions is met, the error or warning was generated by HADB (or the HADB ODBC driver).

• If the message starting with KFAA is in the KFAA72000 range, the error occurred in the HADB ODBC driver.

• For all other message IDs, the error occurred in the HADB server or HADB client.

• If the message ID or tag is only partially output, the HADB server or HADB client might have been involved
in processing where the error occurred. In this case, acquire the full message from the relevant trace or log file.

2. Check whether the message text includes the tag [Microsoft] [ODBC Driver Manager]. If the message
text contains this tag, the error or warning was generated by the driver manager.
In this case, it is likely that HADB (including the HADB ODBC driver) was not processing where the error occurred.
Errors with this tag are often critical errors such as sequence errors. If these errors occur, you need to take action
such as debugging the application or reviewing the settings of the BI tool or ODBC module.

3. If the message text does not contain any of the keywords in 1. or 2., it is likely that the driver manager and HADB
(including the HADB ODBC driver) were not involved in processing where the error occurred. Check the settings
of the BI tool or ODBC module for errors in interface or DBMS specification, and review the settings as needed.

(3) Tips about SQLSTATE values
After identifying the source of the error, identify the cause by checking the value of SQLSTATE.

• If the driver manager is the error source
The SQLSTATE value returned by the driver manager is based on the ODBC implementation conventions. A list
of SQLSTATE values can be found in the table of ODBC Error Codes in the ODBC Programmer's Reference in the
MSDN Library. There you can find a simple explanation of the cause of the error, and the ODBC function that
returned the SQLSTATE value. For detailed information, look up the ODBC API Reference based on the SQLSTATE
value and ODBC function you identified.

• If the HADB ODBC driver is the error source
Identify the cause of the error by checking the SQLSTATE value returned by the ODBC function.

Note
Like the SQLSTATE value returned by the driver manager, the SQLSTATE value returned by the HADB
ODBC driver is based on the ODBC implementation conventions. If the cause of the error can be
identified in greater detail, HADB returns its own SQLSTATE value.

• If the HADB server or HADB client is the error source

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 915

The SQLSTATE values returned by the HADB server and HADB client correspond to HADB messages. For details
about the correspondence between SQLSTATE values and HADB messages, see List of SQLSTATE values in the
manual HADB Messages.
Identify the cause of the error by checking the content of the corresponding message.

(4) Acquiring SQLSTATE values and message text
Use the following ODBC functions to acquire SQLSTATE values and message text:

• SQLGetDiagField
• SQLGetDiagFieldW
• SQLGetDiagRec
• SQLGetDiagRecW

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 916

17.3 Settings for outputting HADB ODBC driver trace information

There are two ways to configure HADB to output HADB ODBC driver trace information:

• Configuration in ODBC Data Source Administrator

• Configuration using environment variables

The following table describes guidelines for selecting the method that is appropriate for your situation.

Table 17-2: Guidelines for selecting configuration method

Usage conditions Recommended
configuration method

Is a data source used when
connecting to the HADB
server?

What type of data source is
used when connecting to
the HADB server?

Do you need the ability to
dynamically output or stop
output of trace information?

Yes User DSN Yes Configuration in ODBC Data
Source Administrator

No Either method can be used

System DSN Yes Configuration in ODBC Data
Source Administrator

No Either method can be used

File DSN Yes None

No Configuration using
environment variables

No Not applicable Yes None

No Configuration using
environment variables

Each method is described in the following subsections.

17.3.1 Configuration in ODBC Data Source Administrator
This subsection describes how to configure the output of HADB ODBC driver trace information using ODBC Data
Source Administrator.

(1) When outputting HADB ODBC driver trace information
To configure output of HADB ODBC driver trace information:

Procedure

1. Display the Hitachi Advanced Data Binder ODBC Driver Setup dialog box.
On the User DSN tab of ODBC Data Source Administrator, select the data source that uses the HADB ODBC driver,
and then click Configure....

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 917

Note
You can also display the Hitachi Advanced Data Binder ODBC Driver Setup dialog box by
performing the same operation on the System DSN tab of ODBC Data Source Administrator.

2. In the Hitachi Advanced Data Binder ODBC Driver Setup dialog box, click Options>>.

3. Click Trace Setup....

4. In the Trace Setup dialog box, enter the settings that relate to output of HADB ODBC driver trace information.

Specify the following settings:

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 918

• Trace Level
Select a trace level. For details about trace levels, see 17.4.1 About trace levels.

• Trace Size
Specify the maximum size (in MB) of each HADB ODBC driver trace file. You can specify a value in the
range from 32 to 1,024.
If you specify no value or an invalid value, 256 is assumed.

• Trace Directory Path
Specify the absolute path of the folder in which to store HADB ODBC driver trace files.
Click the ... button and select a folder in the dialog box that appears.
You must specify a folder for which the execution user has access privileges.
The path name you specify cannot be more than 210 bytes in length.

Important
HADB ODBC driver trace information will not be output in the following circumstances:

• No path is specified in Trace Directory Path.

• An invalid path is specified in Trace Directory Path.

• A path that is 211 bytes or longer is specified in Trace Directory Path.

5. Click Apply & Trace Start.

The output of HADB ODBC driver trace information starts.

Note
• The Apply & Trace Start button becomes available when you complete step 4.

• If you decide not to apply these settings, click CANCEL instead of the Apply & Trace Start button.

6. Click OK.

7. In the Hitachi Advanced Data Binder ODBC Driver Setup dialog box, click OK.

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 919

(2) When stopping output of HADB ODBC driver trace information
1. Display the Hitachi Advanced Data Binder ODBC Driver Setup dialog box.

On the User DSN tab of ODBC Data Source Administrator, select the data source that uses the HADB ODBC driver,
and then click Configure....

Note
You can also display the Hitachi Advanced Data Binder ODBC Driver Setup dialog box by
performing the same operation on the System DSN tab of ODBC Data Source Administrator.

2. In the Hitachi Advanced Data Binder ODBC Driver Setup dialog box, click Options>>.

3. Click Trace Setup....

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 920

4. Click Apply & Trace Stop.

The output of HADB ODBC driver trace information stops.

5. Click OK.

6. In the Hitachi Advanced Data Binder ODBC Driver Setup dialog box, click OK.

17.3.2 Configuration using environment variables
In the following circumstances, configure the output of HADB ODBC driver trace information by using environment
variables:

• You use the SQLDriverConnect, SQLDriverConnectW, SQLBrowseConnect, or
SQLBrowseConnectW function to connect using an ODBC driver name (specifying DRIVER as a connection
attribute) without using a data source.

• You use a file DSN in a connection function such as SQLConnect or SQLConnectW.

Specify the following environment variables:

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 921

• ADBODBTRC
Specify whether to output HADB ODBC driver trace information.

• ADBODBTRCSIZE
Specify the maximum size of each HADB ODBC driver trace file.

• ADBODBTRCPATH
Specify the folder in which to store the HADB ODBC driver trace files.
You must specify a folder for which the execution user has access privileges.

• ADBODBTRCLV
Specify the trace level of the HADB ODBC driver trace.

For details about how to specify each environment variable, see 4.3.1 HADB client for Windows.

Note that the value of an environment variable will be invalid if you specify it in the following way. In this case, the
default value of the environment variable applies.

export ADBODBTRCSIZE=

Important
If you change the value of these environment variables while an application is accessing the HADB server
using the ODBC driver, the new value will not apply to that application process.

17.3.3 Relative priority of configuration in ODBC Data Source
Administrator and environment variables

If you configure the output of HADB ODBC driver trace information in ODBC Data Source Administrator and in
environment variables, the settings in ODBC Data Source Administrator generally have priority. However, in the
following scenario, the settings in ODBC Data Source Administrator will not apply:

• With YES specified in the ADBODBTRC environment variable, you stop the output of HADB ODBC driver trace
information in ODBC Data Source Administrator by clicking Apply & Trace Stop

In this case, the setting in the ADBODBTRC environment variable takes effect, and output of HADB ODBC driver trace
information will continue.

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 922

17.4 Information output as HADB ODBC driver trace information

This section describes the information output as HADB ODBC driver trace information.

The trace level you select determines how much information is output.

17.4.1 About trace levels
You can select which information is output as HADB ODBC driver trace information by specifying a trace level. There
are two trace levels. Trace level 1 outputs simple trace information, and trace level 2 outputs information that is more
detailed. The following table lists the relationship between trace levels and the information output as HADB ODBC
driver trace information.

Table 17-3: Relationship between trace levels and output information

Output information Trace level

Trace level 1 Trace level 2

Access type N Y

Function name Y Y

Arguments N Y

Handle Y Y

Time Y Y

Execution result Y Y

SQLSTATE Y Y

Error message Y Y

Executed SQL Y Y

Additional information Y Y

Legend:
Y: Output.
N: Not output.

When the trace level is 1, a maximum of 256 bytes of information is output per line. When the trace level is 2, all the
information is output. Selecting trace level 2 can impact performance due to the greater amount of information that is
output.

The timing with which HADB ODBC driver trace information is output differs for each trace level, as follows:

• Trace level 1
Information is output immediately before the ODBC function terminates.

• Trace level 2
Information is output when the ODBC function starts and immediately before it terminates.

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 923

Note
To output detailed troubleshooting information, you must select trace level 2. However, be aware of the
impact this will have on performance.

17.4.2 Information output when trace level is 1
The following is an example of the information output when 1 is selected as the trace level.

▪ Output example (trace level 1)

When using trace level 1, each line of characters can contain a maximum of 256 bytes. This restriction does not apply
to the SQL statement whose execution was requested and any diagnostic messages, which are always output in full.

The following table explains each item of information output at trace level 1.

Table 17-4: Information output as HADB ODBC driver trace information (trace level 1)

No. Output item Description

1 [Trace Start Time] The date and time at which output of the HADB ODBC driver trace information started.
If HADB could not acquire the time, 0 is output in all date and time fields.

2 [Process ID] The process ID

3 [Module Name] The name of the module that uses the HADB ODBC driver. If HADB cannot identify the
module name, unknown is output.

4 [Platform] The platform on which the HADB ODBC driver is operating

5 [ODBC environment
variables]

The values of the environment variables used by the HADB ODBC driver. The values
output here are not necessarily the values specified in the environment variables. They are
the values actually being used by the HADB ODBC driver, which might be the default
values or a value explicitly specified in ODBC Data Source Administrator.

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 924

No. Output item Description

• ADBCLTLANG
The character encoding used by the HADB client

• ADBODBTRC
Whether HADB ODBC driver trace information is to be output.

• ADBODBTRCSIZE
The maximum size of each HADB ODBC driver trace file

• ADBODBTRCPATH
The absolute path of the folder in which HADB ODBC driver trace files are stored

• ADBODBTRCLV
The specification of the trace level

• ADBODBAPMODE
The application mode of the HADB ODBC driver

For details about the preceding environment variables, see 4.3.1 HADB client for
Windows.

6 [RETURN Value] An explanation of the return values of the ODBC function.
This information provides definitions that correspond to the integer values of the
SQLRETURN data type output for RETURN (No. 11).

7 FUNCTION The name of the ODBC function

8 HANDLE The value of the handle passed as an argument to the ODBC function

9 START-TIME The time at which the ODBC function started executing.
If HADB could not acquire the time, 0 is output in all date and time fields.

10 END-TIME The time at which the ODBC function finished executing.
If HADB could not acquire the time, 0 is output in all date and time fields.

11 RETURN The SQLRETURN value that is the execution result of the ODBC function.
For details about the meaning of each value, see the [RETURN Value] section that
precedes it in the trace information.

12 SQLSTATE The value of SQLSTATE.
This information is only output if executing the ODBC function results in output of a
SQLSTATE value.

13 CON_ID The connection number.
This is the same as the connection number output in SQL trace information.
If the ODBC function had not yet connected to the HADB server, * is output.

14 CON_NUM The connection sequence number.
This is the same as the connection sequence number output in SQL trace information.
If the ODBC function had not yet connected to the HADB server, * is output.

15 OPTION Optional information. For details, see Table 17-5: Optional information output for
OPTION.
The information output as optional information differs between ODBC functions.
If the ODBC function does not have optional information, * is output.
If HADB cannot identify the value for information output as a symbol name, unknown is
output instead of the symbol value.

16 Connect Info The information output when the connection with the HADB server was established.

17 [DataSourceName] The name of the data source to which the HADB ODBC is connected.
If the driver is not using a data source or is using a file DSN, * is output.

18 [Client Definition File
Path]

The path of the client definition file

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 925

No. Output item Description

19 [Hitachi Advanced Data
Binder ODBC Driver
Version]

The version of the HADB ODBC driver

20 [ProcessID] The process ID of the HADB client

21 <SQL> The SQL statement whose execution was requested.
If the following ODBC functions were executed, <SQL> shows the SQL statement passed
as an argument of the ODBC function.
• SQLPrepare
• SQLExecDirect

22 <Message> A message that provides diagnostic information.
A message is output when the execution result of the ODBC function is one of the following:
• SQL_ERROR
• SQL_SUCCESS_WITH_INFO
• SQL_NEED_DATA (when the function is SQLBrowseConnect)

The following table lists the optional information output for OPTION in the preceding table.

Table 17-5: Optional information output for OPTION

No. Type ODBC function Optional information output for OPTION

1 Connections with data
sources

SQLAllocHandle • HandleType (symbol value)
• Address: The address value returned to the OutputHandlePtr

parameter

2 SQLConnect(W) • ServerName
• UserName

3 SQLDriverConnect(W
)

InConnectionString
A single asterisk * is output in place of the password.

4 SQLBrowseConnect(W
)

5 Acquisition of driver
and data source
information

SQLDataSources(W) None

6 SQLDrivers(W)

7 SQLGetInfo(W) InfoType

8 SQLGetFunctions FunctionID

9 SQLGetTypeInfo(W) DataType

10 Setting and acquiring
driver options

SQLSetConnectAttr(
W)

Attribute

11 SQLGetConnectAttr(
W)

12 SQLSetEnvAttr

13 SQLGetEnvAttr

14 SQLSetStmtAttr(W)

15 SQLGetStmtAttr(W)

16 Setting descriptor
values

SQLGetDescField(W) • RecNumber
• FieldIdentifier (symbol value)

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 926

No. Type ODBC function Optional information output for OPTION

17 SQLGetDescRec(W) • RecNumber
• *Name

18 SQLSetDescField(W) • RecNumber
• FieldIdentifier

19 SQLSetDescRec • RecNumber
• Type
• SubType

20 SQLCopyDesc • Source: Value of SourceDescHandle
• Target: Value of TargetDescHandle

21 Creating SQL requests SQLPrepare(W) • tran_id: Transaction ID
• stmt_hdl: Statement handle ID
• sql_serial_num: SQL statement sequence number

22 SQLBindParameter • ParameterNumber
• ValueType
• ParameterType

23 SQLGetCursorName(W
)

None

24 SQLSetCursorName(W
)

25 SQLDescribeParam ParameterNumber

26 SQLNumParams *ParameterCountPtr

27 SQL execution SQLExecute • tran_id: Transaction ID
• stmt_hdl: Statement handle ID
• sql_serial_num: SQL statement sequence number

28 SQLExecDirect(W)

29 SQLNativeSql(W) OutStatementText

30 SQLParamData None

31 SQLPutData StrLen or Ind

32 Acquiring execution
results and execution
result information

SQLRowCount *RowCountPtr

33 SQLNumResultCols *ColumnCountPtr

34 SQLDescribeCol(W) ColumnNumber

35 SQLColAttribute(W) • ColumnNumber
• FieldIdentifier (symbol value)

36 SQLBindCol • ColumnNumber
• TargetType (symbol value)

37 SQLFetch None

38 SQLFetchScroll

39 SQLGetData • ColumnNumber
• TargetType (symbol value)

40 SQLSetPos None

41 SQLBulkOperations

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 927

No. Type ODBC function Optional information output for OPTION

42 SQLMoreResults

43 SQLGetDiagField(W) DiagIdentifier

44 SQLGetDiagRec(W) None

45 Acquiring system
information for data
sources

SQLColumnPrivilege
s(W)

None

46 SQLColumns(W)

47 SQLForeignKeys(W)

48 SQLPrimaryKeys(W)

49 SQLProcedureColumn
s(W)

50 SQLProcedures(W)

51 SQLSpecialColumns(
W)

52 SQLStatistics(W)

53 SQLTablePrivilege
s(W)

54 SQLTables(W)

55 Terminating SQL
execution

SQLFreeStmt Option
When Option=SQL_CLOSE is specified, the following information is also
output:
• tran_id: Transaction ID
• stmt_hdl: Statement handle ID
• sql_serial_num: SQL statement sequence number

56 SQLCloseCursor • tran_id: Transaction ID
• stmt_hdl: Statement handle ID
• sql_serial_num: SQL statement sequence number

57 SQLCancel None

58 SQLEndTran • CompletionType
• tran_id: Transaction ID

59 Disconnecting from
data sources

SQLDisconnect None

60 SQLFreeHandle

Notes:

• For variables whose names are prefixed with *, HADB outputs the output value. For all other variables, the input
value is output.

• (symbol value) means that the symbol value is output as a character string. In all other cases, a numeric value is
output. If the value is unknown, unknown is output.

• In some circumstances, such as when the transaction has been settled, HADB might be unable to acquire tran_id,
stmt_htdl, and sql_serial_num. In this case, * is output for each value.

• When outputting two or more pieces of optional information, each piece of information is separated by a comma.

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 928

17.4.3 Information output when trace level is 2
The following is an example of the information output when 2 is selected as the trace level.

▪ Output example (trace level 2)

The following table explains each item of information output at trace level 2.

Table 17-6: Information output as HADB ODBC driver trace information (trace level 2)

No. Output item Description

1 [Trace Start Time] The date and time at which output of the HADB ODBC driver trace information started.
If HADB could not acquire the time, 0 is output in all date and time fields.

2 [Process ID] The process ID

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 929

No. Output item Description

3 [Module Name] The name of the module that uses the HADB ODBC driver. If HADB cannot identify the
module name, unknown is output.

4 [Platform] The platform on which the HADB ODBC driver is operating

5 [ODBC environment
variables]

The values of the environment variables used by the HADB ODBC driver. The values
output here are not necessarily the values specified in the environment variables. They are
the values actually being used by the HADB ODBC driver, which might be the default
values or a value explicitly specified in ODBC Data Source Administrator.
• ADBCLTLANG

The character encoding used by the HADB client
• ADBODBTRC

Whether HADB ODBC driver trace information is to be output.
• ADBODBTRCSIZE

The maximum size of each HADB ODBC driver trace file
• ADBODBTRCPATH

The absolute path of the folder in which HADB ODBC driver trace files are stored
• ADBODBTRCLV

The specification of the trace level
• ADBODBAPMODE

The application mode of the HADB ODBC driver

For details about the preceding environment variables, see 4.3.1 HADB client for
Windows.

6 ACCESS The access type
• [E]: Called by the function.
• [R]: Returned from the function.

7 FUNCTION The name of the ODBC function

8 HANDLE The value of the handle passed as an argument to the ODBC function.
In 32-bit environments, the handle will be output a string of eight characters prefixed with
the two characters 0x.
In 64-bit environments, the handle is a 16-character hexadecimal value.

9 START-TIME The time at which the ODBC function started executing.
If HADB could not acquire the time, 0 is output in all date and time fields.

10 END-TIME The time at which the ODBC function finished executing.
If HADB could not acquire the time, 0 is output in all date and time fields.
When the access type is [E], * is output.

11 RETURN The symbol name that represents the value of the SQLRETURN data type that is the
execution result of the ODBC function. If the value is unknown, unknown is output instead
of the symbol name.
When the access type is [E], * is output.

12 SQLSTATE The value of SQLSTATE.
This information is only output if executing the ODBC function results in output of a
SQLSTATE value.
When the access type is [E], * is output.

13 CON_ID The connection number.
This is the same as the connection number output in SQL trace information.
If the ODBC function had not yet connected to the HADB server, * is output.

14 CON_NUM The connection sequence number.
This is the same as the connection sequence number output in SQL trace information.

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 930

No. Output item Description

If the ODBC function had not yet connected to the HADB server, * is output.

15 [Input] The input parameters. Input parameters are output in the following format:
• variable-name (data-type-name) = value (symbol-name-or-referenced-data)

Parenthesized information is omitted in some cases.
If the value is unknown, unknown is output instead of the symbol name.

16 [Output] The output parameters. Output parameters are output in the following format:
• variable-name (data-type-name) = value (symbol-name-or-referenced-data)

Parenthesized information is omitted in some cases.
If the value is unknown, unknown is output instead of the symbol name.
This information is not output if the ODBC function does not have output parameters.

17 Connection user name and password The user name and password used to establish the connection.
A single asterisk * is output in place of the password.

18 Connect Info The information output when the connection with the HADB server was established

19 [DataSourceName] The name of the data source to which the HADB ODBC is connected.
If the driver is not using a data source or is using a file DSN, * is output.

20 [Client Definition File
Path]

The path of the client definition file

21 [Hitachi Advanced Data
Binder ODBC Driver
Version]

The version of the HADB ODBC driver.

22 [ProcessID] The process ID of the HADB client

23 [SYSTEM] Information specific to HADB.
For details, see Table 17-7: Information output in [SYSTEM].
The information output for SYSTEM differs between ODBC functions.

24 <Message> A message that provides diagnostic information.
A message is output when the execution result of the ODBC function is one of the following:
• SQL_ERROR
• SQL_SUCCESS_WITH_INFO
• SQL_NEED_DATA (when the function is SQLBrowseConnect)

The following table lists the information output for [SYSTEM] in the preceding table.

Table 17-7: Information output in [SYSTEM]

No. Type ODBC function name Information output in [SYSTEM]

1 Connections with data
sources

SQLAllocHandle None

2 SQLConnect(W)

3 SQLDriverConnect(W)

4 SQLBrowseConnect(W)

5 Acquisition of driver and
data source information

SQLDataSources(W) None

6 SQLDrivers(W)

7 SQLGetInfo(W)

8 SQLGetFunctions

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 931

No. Type ODBC function name Information output in [SYSTEM]

9 SQLGetTypeInfo(W)

10 Setting and acquiring
driver options

SQLSetConnectAttr(W) None

11 SQLGetConnectAttr(W)

12 SQLSetEnvAttr

13 SQLGetEnvAttr

14 SQLSetStmtAttr(W)

15 SQLGetStmtAttr(W)

16 Setting descriptor values SQLGetDescField(W) None

17 SQLGetDescRec(W)

18 SQLSetDescField(W)

19 SQLSetDescRec

20 SQLCopyDesc

21 Creating SQL requests SQLPrepare(W) • tran_id: Transaction ID
• stmt_hdl: Statement handle ID
• sql_serial_num: SQL statement sequence number

22 SQLBindParameter None

23 SQLGetCursorName(W)

24 SQLSetCursorName(W)

25 SQLDescribeParam

26 SQLNumParams

27 SQL execution SQLExecute • tran_id: Transaction ID
• stmt_hdl: Statement handle ID
• sql_serial_num: SQL statement sequence number

28 SQLExecDirect(W)

29 SQLNativeSql(W) None

30 SQLParamData

31 SQLPutData

32 Acquiring execution
results and execution
result information

SQLRowCount None

33 SQLNumResultCols

34 SQLDescribeCol(W)

35 SQLColAttribute(W)

36 SQLBindCol

37 SQLFetch

38 SQLFetchScroll

39 SQLGetData

40 SQLSetPos

41 SQLBulkOperations

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 932

No. Type ODBC function name Information output in [SYSTEM]

42 SQLMoreResults

43 SQLGetDiagField(W)

44 SQLGetDiagRec(W)

45 Acquiring system
information for data
sources

SQLColumnPrivileges(W
)

None

46 SQLColumns(W)

47 SQLForeignKeys(W)

48 SQLPrimaryKeys(W)

49 SQLProcedureColumns(W
)

50 SQLProcedures(W)

51 SQLSpecialColumns(W)

52 SQLStatistics(W)

53 SQLTablePrivileges(W)

54 SQLTables(W)

55 Terminating SQL
execution

SQLFreeStmt When Option=SQL_CLOSE, the following information is output:
• tran_id: Transaction ID
• stmt_hdl: Statement handle ID
• sql_serial_num: SQL statement sequence number

56 SQLCloseCursor • tran_id: Transaction ID
• stmt_hdl: Statement handle ID
• sql_serial_num: SQL statement sequence number

57 SQLCancel None

58 SQLEndTran tran_id: Transaction ID

59 Disconnecting from data
sources

SQLDisconnect None

60 SQLFreeHandle

Note:
In some circumstances, such as when the transaction has been settled, HADB might be unable to acquire tran_id,
stmt_htdl, and sql_serial_num. In this case, * is output for each value.

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 933

17.5 Notes about HADB ODBC driver trace information

• If an error or warning occurs that is caused the HADB ODBC driver trace itself, the output of HADB ODBC driver
trace information might stop. This will not affect the execution of ODBC functions.

• In environments where HADB ODBC driver trace information is being output, its output affects all applications
that use the ODBC interface. Keep this in mind when deciding whether to output HADB ODBC driver trace
information.

• The size of the HADB ODBC driver trace file increases each time HADB ODBC driver trace information is output.
For this reason, insufficient space at the output destination might prevent further HADB ODBC driver trace
information from being output.

17. Troubleshooting

Hitachi Advanced Database Application Development Guide 934

This chapter describes the basic considerations involved in designing and creating application
programs in C and C++.

Part 5: Application Program Creation (CLI Functions)

18 Creating Application Programs

Hitachi Advanced Database Application Development Guide 935

18.1 Designing application programs

This section describes the basic considerations involved in designing application programs.

18.1.1 Flow of application program processing
The following figure shows the flow of application program processing for manipulating a database.

Figure 18-1: Flow of application program processing for manipulating a database

Connecting to the HADB server
To manipulate a database from an application program, you must connect the application program to the HADB
server. You do this by first allocating a connection handle for uniquely identifying the connection to the application
program. Next, you use this connection handle to establish the connection. The application program is then connected
to the HADB server.
You can also establish multiple connections from the same application program. The maximum number of
connections that can be established concurrently is fixed.
Note that you must start an HADB server before you connect an application program to it.
Once an application program is connected to the HADB server, it can use SQL statements to manipulate the database.

Disconnecting from the HADB server
Before you terminate the application program, make sure that you disconnect it from the HADB server. First, close
the connection and then release the connection handle. The application program is then disconnected from the HADB
server, so that you can terminate the application program.

18.1.2 Transaction control
This subsection explains transaction start and termination and transaction control (commit and rollback processing).

(1) Relationship between a connection and a transaction
Before starting a transaction, make sure that you establish a connection with the HADB server. No transaction can be
started if a connection has not been established. You use the a_rdb_SQLConnect() CLI function to establish a
connection.

When a connection that has been established is closed, the transaction is committed (the transaction terminates normally
when the connection is closed without having to explicitly issue COMMIT from within the application program). You
use the a_rdb_SQLDisconnect() CLI function to close the connection.

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 936

(2) Starting and terminating a transaction
A transaction starts when the application program acquires a statement handle. The transaction is terminated when
COMMIT or ROLLBACK is executed. The following figure shows an example of transaction start and termination.

Figure 18-2: Example of transaction start and termination

COMMIT and ROLLBACK for transactions are executed by using the a_rdb_SQLEndTran() CLI function.

When a definition SQL statement is executed, COMMIT processing is performed automatically.

18.1.3 Flow of processing using dynamic parameters
When you execute a data manipulation SQL statement multiple times using different input values, the use of dynamic
parameters can improve processing efficiency as compared to when you use the application program to create separate
SQL statements, because repeated preprocessing of the SQL statements is eliminated.

You designate the use of a dynamic parameter by specifying ? at the location in the SQL statement where a value is to
be passed from the application program. You use the a_rdb_SQLPrepare() CLI function to perform preprocessing.
After that, you use the a_rdb_SQLBindParams() CLI function to set the dynamic parameter so that you can execute
the SQL statement with the appropriate dynamic parameter value specified.

The following figure shows the flow of processing using dynamic parameters.

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 937

Figure 18-3: Flow of processing using dynamic parameters

For details about dynamic parameters, see Variables (dynamic parameters) in the manual HADB SQL Reference.

18.1.4 Effects of update operations on a retrieval using a cursor
When an update operation is performed during a retrieval using a cursor, the results of the update operation might be
applied to the retrieval results, depending on the timing. To prevent the results of update operations from being applied
to retrieval results, do the following:

• Close the cursor before adding or updating rows.

• Specify data and search conditions in such a manner that rows to be added or updated are not included in the retrieval
results.

The following example performs updating while a retrieval processing using a cursor is underway:

char *selSql = "SELECT * FROM T1 WHERE C1 BETWEEN 10 AND 20";
char *updSql = "UPDATE T1 SET C1=30 WHERE C1=20";

/* preprocessing for the SELECT statement */
rtnc = a_rdb_SQLPrepare(cnctContext, hStmt1,selSql);
 :

/* retrieve rows */
rtnc = a_rdb_SQLFetch(cnctContext, hStmt1); ...1

/* preprocessing for UPDATE */
rtnc = a_rdb_SQLPrepare(cnctContext, hStmt2, updSql);

/* update rows */
rtnc = a_rdb_SQLExecute(cnctContext, hStmt2); ...2

/* retrieve rows */
rtnc = a_rdb_SQLFetch(cnctContext, hStmt1); ...3
 :

Explanation:
If rows whose C1 column is 20 are updated in 2, the HADB server is already performing retrieval processing
asynchronously with the application program due to execution of the first FETCH in 1. Depending on the timing,

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 938

the application program might not be able at 3 to retrieve rows whose C1 column is 20. If retrieval of rows whose
C1 column is 20 has already been completed, the application program can retrieve rows.

18.1.5 Evaluation and handling of SQL statement errors
You must determine whether the SQL statements executed by the application program have executed successfully. This
subsection explains how to determine whether the SQL statements have been executed successfully and the error
handling procedure.

(1) How to evaluate SQL statement errors
When an SQL statement is executed, SQLCODE is returned from the CLI function. You use the SQLCODE value to
determine whether the SQL statement executed successfully. The following table lists and describes the SQLCODE
values.

Table 18-1: SQLCODE values

No. SQLCODE value Meaning

1 100 There are no more rows to be retrieved. This is useful especially when the following is to be determined:
• Whether all rows have been fetched by a FETCH statement
• Whether there is any row that is to be updated by an INSERT, DELETE, or UPDATE statement

2 1 The SQL statement's processing terminated, but a warning occurred in an extension of the processing.
Possible causes of warnings are as follows:
• The disk at the HADB server that stores the server message log files has become full.
• The disk that stores client message log files has become full.
• A memory shortage was detected when outputting SQL trace information on the HADB server.
• ROLLBACK processing was performed and then the connection was closed because COMMIT

processing failed in an extension of the connection close processing.

3 Negative value An SQL error occurred.

4 Other The SQL statement executed successfully.

For details about the return values of the CLI function, see 19.8 Return values of the CLI functions.

(2) Error handling procedure
You use the procedure described below to handle errors that are detected. This subsection presents an example using a
CLI function.

(a) Output of return value
The CLI function's return value is output or displayed.

(b) Error handling
If data manipulation by an SQL statement results in an error, take the action described below.

To handle the error:

1. Check the value of the isInConnect member in the SQL results information. The action to be taken depends on
the value of isInConnect:

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 939

• If the value of isInConnect is a_rdb_SQL_IS_IN_CONNECT
Go to step 2.

• If the value of isInConnect is a_rdb_SQL_IS_NOT_IN_CONNECT
The application program has disconnected from the HADB server due to a fatal error. Check the message output
to the client message log file. If the HADB server terminated abnormally, contact the HADB administrator.

2. Check the value of the EndTran member in the SQL results information. The action to be taken depends on the
EndTran value, as shown in the following table:

No. Value of EndTran Action

1 a_rdb_SQL_ROLLBACKED Because internal rollback was executed, disconnect the application program
from the HADB server and terminate the application program. Then take
appropriate action based on the return value.

2 a_rdb_SQL_TRAN_NOT_ENDED Execute ROLLBACK to cancel the transaction, disconnect the application
program from the HADB server, and terminate the application program. Then
take appropriate action based on the return value.

3 Other Disconnect the application program from the HADB server and terminate the
application program. Then take appropriate action based on the return value.

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 940

18.2 How to use the CLI functions

You use the CLI functions to create application programs in C or C++. This section explains the basic usage of CLI
functions.

18.2.1 Connecting to and disconnecting from the HADB server
This subsection explains the procedure for using CLI functions to connect to and disconnect from the HADB server.

The following figure shows the procedure from connection through disconnection from the HADB server.

Figure 18-4: Procedure from connection through disconnection from the HADB server

#
For details about using SQL statements to manipulate data, see 18.2.2 Referencing data and its subsections.

(1) Connecting to the HADB server
You use the following CLI functions to connect to the HADB server:

• a_rdb_SQLAllocConnect() (allocate a connection handle)

• a_rdb_SQLConnect() (establish a connection)

(a) Allocating a connection handle
Before you establish a connection, you must allocate a connection handle. You use a_rdb_SQLAllocConnect()
to allocate a connection handle. When a connection handle has been allocated successfully, the value
a_rdb_RC_SQL_SUCCESS is returned. The following shows an example of calling
a_rdb_SQLAllocConnect().

Example of calling a_rdb_SQLAllocConnect()

signed short rtnc ; /* Return value */
void *hCnct ; /* Connection handle address */

/* Allocate a connection handle */

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 941

rtnc = a_rdb_SQLAllocConnect(&hCnct,
 "/hadb/client.def", /* Client definition file path */
 NULL) ;

You can use a different client definition for each connection by specifying the absolute path of the appropriate client
definition file in the second argument of a_rdb_SQLAllocConnect(). For details about a client definition, see
4.4 Creating a client definition.

For details about a_rdb_SQLAllocConnect(), see 19.2.1 a_rdb_SQLAllocConnect() (allocate a connection
handle).

(b) Establishing a connection
You use a_rdb_SQLConnect() to establish a connection. When a connection has been established, the value
a_rdb_RC_SQL_SUCCESS is returned.

The following shows an example of calling a_rdb_SQLConnect().

Example of calling a_rdb_SQLConnect()

a_rdb_SQLResultInfo_t rsltInfo ; /* SQL results information */

/* Establish a connection */
rtnc = a_rdb_SQLConnect(hCnct, /* Connection handle */
 "ADBUSER01", /* Authorization identifier */
 "password01", /* Password */
 &rsltInfo,
 NULL) ;

You can acquire SQL results information for each CLI function call by specifying the corresponding address of the SQL
results information in the fourth argument of a_rdb_SQLConnect(). For details about SQL results information, see
19.7.6 a_rdb_SQLResultInfo_t structure (SQL results information).

For details about a_rdb_SQLConnect(), see 19.2.2 a_rdb_SQLConnect() (establish a connection).

(2) Disconnecting from the HADB server
You use the following CLI functions to disconnect from the HADB server:

• a_rdb_SQLDisconnect() (close a connection)

• a_rdb_SQLFreeConnect() (release the connection handle)

(a) Closing the connection
You use a_rdb_SQLDisconnect() to close the connection. The following shows an example of calling
a_rdb_SQLDisconnect().

Example of calling a_rdb_SQLDisconnect()

/* Close the connection */
rtnc = a_rdb_SQLDisconnect(hCnct, NULL) ;

For details about a_rdb_SQLDisconnect(), see 19.2.4 a_rdb_SQLDisconnect() (close a connection).

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 942

(b) Releasing the connection handle
After you have closed the connection, you must release the connection handle. You use a_rdb_SQLFreeConnect()
to release a connection handle. The following shows an example of calling a_rdb_SQLFreeConnect().

Example of calling a_rdb_SQLFreeConnect()

/* Release the connection handle */
rtnc = a_rdb_SQLFreeConnect(hCnct, NULL) ;

For details about a_rdb_SQLFreeConnect(), see 19.2.5 a_rdb_SQLFreeConnect() (release a connection handle).

18.2.2 Referencing data
This subsection explains how to reference data by way of an example. The example provided here uses a cursor to
retrieve rows. The following figure shows how to retrieve rows using a cursor.

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 943

Figure 18-5: How to retrieve rows using a cursor

The processing steps are explained below.

(1) Allocating a statement handle
Before you execute an SQL statement, you must use a_rdb_SQLAllocStmt() to allocate a statement handle. When
a statement handle is allocated successfully, a_rdb_RC_SQL_SUCCESS is returned. The following shows an example
of statement handle allocation.

Example of statement handle allocation

void *hStmt ; /* Statement handle address */

/* Allocate a statement handle */
rtnc = a_rdb_SQLAllocStmt(hCnct,
 &hStmt,
 NULL) ;

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 944

For details about a_rdb_SQLAllocStmt(), see 19.4.1 a_rdb_SQLAllocStmt() (allocate a statement handle).

(2) Preprocessing an SQL statement
Next, you allocate the statement handle acquired in (1) Allocating a statement handle to an SQL statement. To do this,
you use a_rdb_SQLPrepare() to preprocess the SQL statement. The following shows an example of
preprocessing a SELECT statement.

Example of preprocessing a SELECT statement

/* Preprocess a SELECT statement */
rtnc = a_rdb_SQLPrepare(hCnct,
 hStmt,
 "SELECT C1,C2,C3 FROM T1",
 NULL) ;

For details about a_rdb_SQLPrepare(), see 19.4.14 a_rdb_SQLPrepare() (preprocess an SQL statement).

(3) Acquiring the number of retrieval result columns
If the number of retrieval result columns (the number of columns that are output as the retrieval results) is not known
at the time of application program creation, such as when SQL statements will be executed dynamically, you use
a_rdb_SQLNumResultCols() to acquire the number of retrieval result columns. The following shows an example
of acquiring the number of retrieval result columns.

Example of acquiring the number of retrieval result columns

/* Acquire the number of retrieval result columns */
rtnc = a_rdb_SQLNumResultCols(hCnct,
 hStmt,
 &colCount, /* Number of columns */
 NULL) ;

For details about a_rdb_SQLNumResultCols(), see 19.4.13 a_rdb_SQLNumResultCols() (acquire the number
of retrieval result columns).

(4) Acquiring information about the retrieval result columns
If column information, such as the column names, data types, and data lengths, is not known at the time of application
program creation, such as when SQL statements will be executed dynamically, you use
a_rdb_SQLDescribeCols() to acquire information about the retrieval result columns. You can acquire the
following information by using a_rdb_SQLDescribeCols():

• Column names of the retrieval result columns

• Data types of the retrieval result columns

• Maximum numbers of elements in the retrieval result columns

• Data lengths of the retrieval result columns

The following shows an example of acquiring information about the retrieval result columns.

Example of acquiring information about the retrieval result columns

/* Acquire information about the retrieval result columns */
rtnc = a_rdb_SQLDescribeCols(hCnct,
 hStmt,

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 945

 colCount, /* Number of retrieval result columns
 */
 &(colInf[0]), /* Information return area for all re
trieval result columns */
 NULL) ;

For details about a_rdb_SQLDescribeCols(), see 19.4.6 a_rdb_SQLDescribeCols() (acquire information about
the retrieval result columns).

(5) Associating the retrieval result columns
You must associate the retrieval result columns with the area for storing values retrieved from the retrieval result columns.
When you use a_rdb_SQLFetch() to manipulate the cursor, the values in the retrieval result columns are stored
automatically in the associated area.

You use a_rdb_SQLBindCols() to associate retrieval result columns. The following shows an example of
associating retrieval result columns.

Example of associating retrieval result columns

/* Associate retrieval result columns */
rtnc = a_rdb_SQLBindCols(hCnct,
 hStmt,
 colCount, /* Number of retrieval result columns
 */
 &(colInf[0]), /* Assigned storage area for all colu
mns */
 NULL) ;

For details about a_rdb_SQLBindCols(), see 19.4.3 a_rdb_SQLBindCols() (associate retrieval result columns).

(6) Executing the SQL statement (opens a cursor)
You use a_rdb_SQLExecute() to execute the preprocessed SQL statements. Specify in the argument of
a_rdb_SQLExecute() the statement handle for the SQL statement that is to be executed. If the SQL statement
executes successfully, the value a_rdb_RC_SQL_SUCCESS is returned and a cursor opens. The following shows an
example of executing an SQL statement.

Example of executing an SQL statement

/* Execute an SQL statement */
rtnc = a_rdb_SQLExecute(hCnct,
 hStmt,
 NULL) ;

For details about a_rdb_SQLExecute(), see 19.4.9 a_rdb_SQLExecute() (execute a preprocessed SQL statement).

(7) Using the cursor to retrieve rows
You use a_rdb_SQLFetch() to retrieve rows by using the cursor that has been opened by executing the SQL
statement. If row retrieval is successful, the value a_rdb_RC_SQL_SUCCESS is returned. The following shows an
example of using a cursor to retrieve rows.

Example of using a cursor to retrieve rows

/* Using cursor to retrieve rows */
rtnc = a_rdb_SQLFetch(hCnct,

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 946

 hStmt,
 NULL) ;

For details about a_rdb_SQLFetch(), see 19.4.10 a_rdb_SQLFetch() (fetch a row).

(8) Converting the retrieved data
If the fetched data's SQL data type is DECIMAL, BINARY, VARBINARY, DATE, TIME, or TIMESTAMP, you can use
a CLI function to convert it to character string data supported by C or C++. The following shows an example of converting
DECIMAL-type data.

Example of data conversion

#define PRECISION 6
#define SCALE 3

unsigned char data_decimal[4];
char data_char[PRECISION+4];

/* Convert DECIMAL-type data */
rtnc = a_rdb_CNV_DECIMALchar(data_decimal, /* Start address of output data */
 PRECISION, /* Precision of output data */
 SCALE, /* Scaling of output data */
 data_char, /* Address of area for storing convert
ed data */
 (PRECISION+4), /* Length of area for storing converte
d data */
 NULL);

• To convert DECIMAL-type data, you use a_rdb_CNV_DECIMALchar(). For details about
a_rdb_CNV_DECIMALchar(), see 19.5.9 a_rdb_CNV_DECIMALchar() (convert DECIMAL-type data).

• To convert BINARY-type data, you use a_rdb_CNV_BINARYchar(). For details about
a_rdb_CNV_BINARYchar(), see 19.5.7 a_rdb_CNV_BINARYchar() (convert BINARY-type data).

• To convert VARBINARY-type data, you use a_rdb_CNV_VARBINARYchar(). For details about
a_rdb_CNV_VARBINARYchar(), see 19.5.12 a_rdb_CNV_VARBINARYchar() (convert VARBINARY-type
data).

• To convert DATE-type data, you use a_rdb_CNV_DATEchar(). For details about
a_rdb_CNV_DATEchar(), see 19.5.8 a_rdb_CNV_DATEchar() (convert DATE-type data).

• To convert TIME-type data, you use a_rdb_CNV_TIMEchar(). For details about
a_rdb_CNV_TIMEchar(), see 19.5.10 a_rdb_CNV_TIMEchar() (convert TIME-type data).

• To convert TIMESTAMP-type data, you use a_rdb_CNV_TIMESTAMPchar(). For details about
a_rdb_CNV_TIMESTAMPchar(), see 19.5.11 a_rdb_CNV_TIMESTAMPchar() (convert TIMESTAMP-type
data).

(9) Closing the cursor
You use a_rdb_SQLCloseCursor() to close the cursor. The following shows an example of closing the cursor.

Example of closing the cursor

/* Close the cursor */
rtnc = a_rdb_SQLCloseCursor(hCnct,
 hStmt,
 NULL) ;

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 947

For details about a_rdb_SQLCloseCursor(), see 19.4.5 a_rdb_SQLCloseCursor() (close the cursor).

(10) Releasing the statement handle
You use a_rdb_SQLFreeStmt() to release the allocated statement handle. The following shows an example of
releasing the statement handle.

Example of releasing the statement handle

/* Release the statement handle */
rtnc = a_rdb_SQLFreeStmt(hCnct,
 hStmt,
 NULL) ;

Important
The statement handle is released any time COMMIT or ROLLBACK is executed. In such a case, do not
execute a_rdb_SQLFreeStmt().

For details about a_rdb_SQLFreeStmt(), see 19.4.11 a_rdb_SQLFreeStmt() (release a statement handle).

18.2.3 Using dynamic parameters
Executing an SQL statement with dynamic parameters involves allocation of a statement handle, preprocessing of the
SQL statement, specifying the dynamic parameters, and execution of the SQL statement. The following figure shows
the procedure for executing an SQL statement with dynamic parameters specified.

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 948

Figure 18-6: Procedure for executing an SQL statement with dynamic parameters specified

The methods for allocating the statement handle and preprocessing and executing the SQL statement are the same as
explained in 18.2.2 Referencing data. This subsection explains how to acquire the number of dynamic parameters and
dynamic parameter information, convert input data to SQL data types, and specify dynamic parameters.

(1) Acquiring the number of dynamic parameters
If the number of dynamic parameters is not known at the time of application program creation, such as when SQL
statements will be executed dynamically, you use a_rdb_SQLNumParams() to acquire the number of dynamic
parameters. The following shows an example of acquiring the number of dynamic parameters.

Example of acquiring the number of dynamic parameters

/* Acquire the number of dynamic parameters */
rtnc = a_rdb_SQLNumParams(hCnct,
 hStmt,
 ¶mCount, /* Number of dynamic parameters */
 NULL) ;

For details about a_rdb_SQLNumParams(), see 19.4.12 a_rdb_SQLNumParams() (acquire the number of dynamic
parameters).

(2) Acquiring dynamic parameter information
If the dynamic parameter information, such as the data types and data lengths, is not known at the time of application
program creation, such as when SQL statements will be executed dynamically, you use

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 949

a_rdb_SQLDescribeParams() to acquire the dynamic parameter information. You can acquire the following
information by using a_rdb_SQLDescribeParams():

• Data types of the dynamic parameters

• Maximum numbers of elements of the dynamic parameters

• Data lengths of the dynamic parameters

The following shows an example of acquiring dynamic parameter information.

Example of acquiring dynamic parameter information

/* Acquire dynamic parameter information */
rtnc = a_rdb_SQLDescribeParams(hCnct,
 hStmt,
 paramCount, /* Number of dynamic parameters *
/
 &(paramInfo[0]), /* Area for returning all dynamic
 parameter information */
 NULL) ;

For details about a_rdb_SQLDescribeParams(), see 19.4.7 a_rdb_SQLDescribeParams() (acquire dynamic
parameter information).

(3) Converting input data to SQL data types
If the SQL data type of the input data for dynamic parameters is DECIMAL, BINARY, VARBINARY, DATE, TIME, or
TIMESTAMP, you can use a CLI function to convert the character string data supported by C or C++ to the corresponding
data type. The following shows an example of converting character string data in C or C++ to DECIMAL-type data.

Example of data conversion

#define PRECISION 6
#define SCALE 3

char data_char[]="-123.567";
unsigned char data_decimal[4];

/* Convert to DECIMAL-type data */
rtnc = a_rdb_CNV_charDECIMAL(data_char, /* Start address of data to be co
nverted */
 (unsigned short)strlen(data_char), /* Length of data t
o be converted */
 PRECISION, /* Precision of input data */
 SCALE, /* Scaling of input data */
 data_decimal, /* Address of input data storage
area */
 4, /* Length of input data storage a
rea */
 NULL);

• To convert input data to DECIMAL-type data, you use a_rdb_CNV_charDECIMAL(). For details about
a_rdb_CNV_charDECIMAL(), see 19.5.3 a_rdb_CNV_charDECIMAL() (convert to DECIMAL-type data).

• To convert input data to BINARY-type data, you use a_rdb_CNV_charBINARY(). For details about
a_rdb_CNV_charBINARY(), see 19.5.1 a_rdb_CNV_charBINARY() (convert to BINARY-type data).

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 950

• To convert input data to VARBINARY-type data, you use a_rdb_CNV_charVARBINARY(). For details about
a_rdb_CNV_charVARBINARY(), see 19.5.6 a_rdb_CNV_charVARBINARY() (convert to VARBINARY-type
data).

• To convert input data to DATE-type data, you use a_rdb_CNV_charDATE(). For details about
a_rdb_CNV_charDATE(), see 19.5.2 a_rdb_CNV_charDATE() (convert to DATE-type data).

• To convert input data to TIME-type data, you use a_rdb_CNV_charTIME(). For details about
a_rdb_CNV_charTIME(), see 19.5.4 a_rdb_CNV_charTIME() (convert to TIME-type data).

• To convert input data to TIMESTAMP-type data, you use a_rdb_CNV_charTIMESTAMP(). For details about
a_rdb_CNV_charTIMESTAMP(), see 19.5.5 a_rdb_CNV_charTIMESTAMP() (convert to TIMESTAMP-type
data).

(4) Specifying the dynamic parameters
You use a_rdb_SQLBindParams() to specify the dynamic parameters. When the dynamic parameters are specified
successfully, the return value a_rdb_RC_SQL_SUCCESS is returned. The following shows an example of specifying
dynamic parameters.

Example of dynamic parameter specification

/* Specify dynamic parameters */
rtnc = a_rdb_SQLBindParams(hCnct,
 hStmt,
 paramCount, /* Number of dynamic parameters */
 &(paramInfo[0]), /* Area for specifying all dynamic pa
rameters */
 NULL) ;

For details about a_rdb_SQLBindParams(), see 19.4.4 a_rdb_SQLBindParams() (associate dynamic parameters).

18.2.4 Adding, updating, or deleting data
To use an update SQL statement to add, update, or delete data, you allocate a statement handle, preprocess the SQL
statement, and then use a_rdb_SQLExecute()to execute the SQL statement, in the same manner as for a SELECT
statement.

The following figure shows the procedure for data update and deletion processing.

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 951

Figure 18-7: Procedure for data update and deletion processing

Note
You can also use a_rdb_SQLExecDirect() to both preprocess and execute an SQL statement without
preprocessing the SQL statement in advance with a_rdb_SQLPrepare().

Note that using dynamic parameters requires a process of binding (association), which can be performed by using
a_rdb_SQLBindParams() or a_rdb_SQLBindArrayParams(). For details about
a_rdb_SQLBindParams(), see 19.4.4 a_rdb_SQLBindParams() (associate dynamic parameters). For details about
a_rdb_SQLBindArrayParams(), see 19.4.2 a_rdb_SQLBindArrayParams() (bind dynamic parameters in batch
mode).

The following shows an example of updating and deleting data.

Example of updating and deleting data

/* Allocate a statement handle */
rtnc = a_rdb_SQLAllocStmt(hCnct, &hStmt, NULL) ;
/* Prepare the INSERT statement */
rtnc = a_rdb_SQLPrepare(hCnct,
 hStmt,
 "INSERT INTO TABLE1 VALUES ('A','B','C')",
 NULL) ;
/* Execute the SQL statement */
rtnc = a_rdb_SQLExecute(hCnct, hStmt, NULL) ;
/* Execute DELETE */
rtnc = a_rdb_SQLExecDirect(hCnct,
 hStmt,
 "DELETE FROM TABLE1",
 NULL) ;

For details about a_rdb_SQLExecDirect(), see 19.4.8 a_rdb_SQLExecDirect() (preprocess and execute an SQL
statement).

18.2.5 Canceling SQL processing that is executing
You can use a_rdb_SQLCancel() to cancel SQL processing that is executing. The following SQL statements (CLI
functions) can be canceled:

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 952

• a_rdb_SQLCloseCursor()
• a_rdb_SQLExecDirect()
• a_rdb_SQLExecute()
• a_rdb_SQLFetch()
• a_rdb_SQLPrepare()

You must execute a_rdb_SQLCancel() in a separate thread from the thread being used for the SQL processing.
The following shows an example of canceling SQL processing.

SQL execution thread

rtnc = a_rdb_SQLAllocStmt(hCnct, &hStmt, NULL) ;
/* Execute the DELETE statement */
rtnc = a_rdb_SQLExecDirect(hCnct,
 hStmt,
 "DELETE FROM TABLE1",
 NULL) ;
/* Check whether SQL processing was canceled */
if (rtnc == -955)
{
 /* Processing after cancellation */
}
else ;

Example of canceling an SQL statement (executing in a separate thread)

/* Execute the SQL cancel function */
rtnc = a_rdb_SQLCancel(hCnct, NULL) ;
 /* Specify the connection handle being used for the */
 /* SQL processing that is to be canceled */

When cancellation of SQL processing is successful, the SQL processing is canceled, the transaction is rolled back, and
SQLCODE is returned.

For details about a_rdb_SQLCancel(), see 19.3.1 a_rdb_SQLCancel() (cancel SQL processing).

Note that normal termination of a_rdb_SQLCancel() does not mean that the cancellation processing was successful
because the cancellation processing is performed asynchronously with a_rdb_SQLCancel().

18.2.6 Notes about using the CLI functions
This section describes the valid address period and boundary alignment that are specified in the arguments of CLI
functions.

(1) Valid period of area
Operations cannot be guaranteed if an address specified in a CLI function argument is no longer valid because the area
indicated by the address has been released.

You must ensure that the arguments listed below that specify an address to a CLI function are valid throughout the
processing (from the beginning to the end of the processing):

• Arguments that must be valid from the time the application program is connected to the HADB server until it is
disconnected from the HADB server:

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 953

• ConnectionHandle of each CLI function

• ResultInfo of a_rdb_SQLConnect() (if SQL results information is acquired)

• Arguments that must be valid from the time a cursor is opened until it is closed:

• TargetValue and StrLen_or_Ind members of the ColumnInfo structure of
a_rdb_SQLBindCols()

• ParameterValue and Ind members of the ParameterInfo structure of a_rdb_SQLBindParams()
and a_rdb_SQLBindArrayParams()
For the arguments of a_rdb_SQLBindParams() and a_rdb_SQLBindArrayParams(), you must
ensure that the area is valid until a_rdb_SQLExecute() is executed, even when an SQL statement that does
not use a cursor is preprocessed.

There are no arguments that are required to be valid from transaction startup to transaction termination.

(2) Boundary alignment
For each SQL data type, you must apply boundary alignment to the start address of the area for storing information,
such as data for retrieval results and input values of dynamic parameters, according to the following table.

Table 18-2: Boundary alignment

No. SQL data type Boundary alignment

1 VARCHAR type
VARBINARY type

2-byte boundary

2 SMALLINT type 4-byte boundary

3 INTEGER type 8-byte boundary

4 DOUBLE PRECISION type

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 954

18.3 Compiling and linking application programs

You must use a compiler designed for the programming language in which the application was coded to compile and
link the source program. For details about how to compile and link, see the compiler documentation for the applicable
language. Also see the Readme file for the applicable OS.

When you compile and link an application program, specify the library provided by the HADB client that is appropriate
to your development environment, as shown in the following table.

Table 18-3: Library to be specified when application programs are compiled and linked

No. Development environment (OS) Library to be specified

1 Windows • adbclt.lib (for 64-bit edition of Windows)
• adbclt32.lib (for 32-bit edition of Windows)

2 Linux libadbclt.so

18. Creating Application Programs

Hitachi Advanced Database Application Development Guide 955

This chapter explains the capabilities and syntax of the CLI functions provided by HADB.

19 CLI Functions

Hitachi Advanced Database Application Development Guide 956

19.1 List of CLI functions and common rules

This section presents a list of the CLI functions and explains their common rules.

19.1.1 List of CLI functions
HADB provides the CLI functions listed in the table below.

Table 19-1: List of CLI functions

No. Classification CLI function Function

1 CLI functions for connecting to and
disconnecting from the HADB server

a_rdb_SQLAllocConnect() Allocates a connection handle.

2 a_rdb_SQLConnect() Establishes a connection with the
HADB server.

3 a_rdb_SQLSetConnectAttr() Sets connection attributes.

4 a_rdb_SQLDisconnect() Closes a connection.

5 a_rdb_SQLFreeConnect() Releases a connection handle.

6 CLI functions for controlling transactions a_rdb_SQLCancel() Cancels the current SQL
processing.

7 a_rdb_SQLEndTran() Terminates the transaction.

8 CLI functions for
execution of SQL
statements

Allocating and
releasing a statement
handle

a_rdb_SQLAllocStmt() Allocates a statement handle.

9 a_rdb_SQLFreeStmt() Releases a statement handle.

10 Preprocessing and
executing an SQL
statement,
manipulating a
cursor, and fetching
rows

a_rdb_SQLPrepare() Preprocesses an SQL statement.

11 a_rdb_SQLExecute() Executes a preprocessed SQL
statement.

12 a_rdb_SQLExecDirect() Preprocesses and executes an SQL
statement.

13 a_rdb_SQLFetch() Advances to the next row the cursor
that points to the next row to be
fetched, and then reads the column
values in that row into the fetch
target specified in the fetch target
list.

14 a_rdb_SQLCloseCursor() Closes the cursor.

15 Retrieval result
columns

a_rdb_SQLNumResultCols() Acquires the number of retrieval
result columns.

16 a_rdb_SQLDescribeCols() Acquires information about the
retrieval result columns.

17 a_rdb_SQLBindCols() Binds (associates) the retrieval
result columns with an area for
storing the values fetched from
those columns.

18 Dynamic parameters a_rdb_SQLNumParams() Acquires the number of dynamic
parameters in an SQL statement.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 957

No. Classification CLI function Function

19 a_rdb_SQLDescribeParams() Acquires an SQL statement's
dynamic parameter information.

20 a_rdb_SQLBindParams() Binds (associates) the dynamic
parameters in an SQL statement
with an area for specifying their
values.

21 a_rdb_SQLBindArrayParams() Binds (associates) the dynamic
parameters in an SQL statement
with an area for specifying their
values. This CLI function binds the
values of multiple sets of dynamic
parameters in an SQL statement in
batch mode.

22 CLI functions for
data type
conversion

Converting character
string data in C or C+
+ to SQL data types

a_rdb_CNV_charBINARY() Converts character string data in C
or C++ (binary or hexadecimal) to
SQL BINARY type data.

23 a_rdb_CNV_charDATE() Converts character string data in C
or C++ to SQL DATE type data.

24 a_rdb_CNV_charDECIMAL() Converts character string data in C
or C++ to SQL DECIMAL type data.

25 a_rdb_CNV_charTIME() Converts character string data in C
or C++ to SQL TIME type data.

26 a_rdb_CNV_charTIMESTAMP() Converts character string data in C
or C++ to SQL TIMESTAMP type
data.

27 a_rdb_CNV_charVARBINARY() Converts character string data in C
or C++ (binary or hexadecimal) to
SQL VARBINARY type data.

28 Converting SQL data
types to character
string data in C or C
++

a_rdb_CNV_BINARYchar() Converts SQL BINARY-type data to
character string data in C or C++.

29 a_rdb_CNV_DATEchar() Converts SQL DATE-type data to
character string data in C or C++.

30 a_rdb_CNV_DECIMALchar() Converts SQL DECIMAL-type data
to character string data in C or C++.

31 a_rdb_CNV_TIMEchar() Converts SQL TIME-type data to
character string data in C or C++.

32 a_rdb_CNV_TIMESTAMPchar() Converts SQL TIMESTAMP-type
data to character string data in C or
C++.

33 a_rdb_CNV_VARBINARYchar() Converts SQL VARBINARY-type
data to character string data in C or
C++.

To use these CLI functions, you must load the header files and the client library provided by the HADB client into a
source program coded in C or C++. The following table lists the header files and the client library provided by the
HADB client.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 958

Table 19-2: Header files and client library provided by the HADB client

No. CLI function to be used Header file and client library to be used

Header file Client library

1 CLI functions for connecting to and
disconnecting from the HADB server

• $ADBDIR/include/adbcli.h
• $ADBDIR/include/
adbtypes.h

• 64-bit edition of Windows
%ADBCLTDIR%\client\lib
\adbclt.lib

• 32-bit edition of Windows
%ADBCLTDIR%\client\lib
\adbclt32.lib

• Linux
$ADBDIR/client/lib/
libadbclt.so

2 CLI functions for controlling transactions

3 CLI functions for execution of SQL
statements

4 CLI functions for data type conversion $ADBDIR/include/adbcnv.h

Note: The header file that is required depends on the CLI function being used.

19.1.2 Common rules
This subsection describes the rules common to all CLI functions.

(1) Connection handle
A connection handle is used to uniquely identify each connection to the HADB server. A connection handle must remain
valid from the time the connection to the HADB server is established until the connection is closed. If the connection
handle does not remain valid for this entire period, operation is not guaranteed. To keep a connection handle valid, you
must specify the connection handle allocated by a_rdb_SQLAllocConnect() in the argument of every CLI
function until the connection handle is released by a_rdb_SQLFreeConnect().

(2) SQL results information
You can acquire various types of SQL results information for each CLI function call. If you wish to acquire SQL results
information, you must not release the area that stores the SQL results information until the connection to the HADB
server is closed.

(3) Statement handle
A statement handle is used to provide a unique identification for each allocated SQL statement. When COMMIT or
ROLLBACK occurs, the statement handle is released.

If you attempt to use multiple statement handles allocated by the same connection handle to execute SQL statements
concurrently, but the number of processing real threads available does not match the maximum number of SQL
processing real threads, SQL statement execution requests will result in an error (the requests will not be placed in wait
status).

The maximum number of SQL processing real threads is specified in the following operands:

• adb_sql_exe_max_rthd_num in the server definition

• adb_sql_exe_max_rthd_num in the client definition

19. CLI Functions

Hitachi Advanced Database Application Development Guide 959

(4) Implicit cursor
Typically, table retrieval results consist of multiple rows. In order for an application program to retrieve one row of
retrieval results at a time, a pointer called a cursor is used to retain the most recent retrieval location. The cursor is used
for data retrieval.

A cursor is allocated when a SELECT statement is preprocessed and is opened when the SELECT statement is executed.
When COMMIT or ROLLBACK occurs, all open cursors are closed.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 960

19.2 CLI functions for connecting to and disconnecting from the HADB
server

This section explains the CLI functions for connecting to and disconnecting from the HADB server.

19.2.1 a_rdb_SQLAllocConnect() (allocate a connection handle)

(1) Function
This CLI function allocates a connection handle to uniquely identify a connection with the HADB server.

(2) Format
signed short a_rdb_SQLAllocConnect
(
 void **ConnectionHandle, /* Out */
 char *ClientDefPath, /* In */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies the address at which the connection handle is to be set.

ClientDefPath
Specifies the path of the client definition file, as a character string in C or C++.
When NULL is specified, the function assumes that %ADBCLTDIR%\conf\client.def is specified.#

#: The function assumes $ADBCLTDIR/conf/client.def for HADB clients using Linux.

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLAllocConnect() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If a connection handle is allocated successfully, but the disk containing the client message log files has become full,
a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
a_rdb_SQLAllocConnect() cannot be executed in the following cases:

• The path specified for the client definition file is invalid.

• The specified client definition is invalid.

• Allocation of a connection handle is not possible.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 961

19.2.2 a_rdb_SQLConnect() (establish a connection)

(1) Function
This CLI function establishes a connection with the HADB server.

(2) Format
signed short a_rdb_SQLConnect
(
 void *ConnectionHandle, /* In */
 char *UserID, /* In */
 char *Password, /* In */
 a_rdb_SQLResultInfo_t *ResultInfo, /* In */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

UserID
Specifies the authorization identifier to be used to connect to the HADB server, as a character string in C or C++.

Password
Specifies the password for the authorization identifier that was specified for UserID, in the representation of a
character string in C or C++ language.
For details about the rules for passwords, see Specification format and rules for the CREATE USER statement in
the manual HADB SQL Reference.

ResultInfo
Specifies for each CLI function the address where the SQL results information is to be stored. SQL results
information is returned to the specified area until a_rdb_SQLDisconnect() is issued.
If the specified address is NULL, SQL results information is not returned.
For details about the a_rdb_SQLResultInfo_t structure, see 19.7.6 a_rdb_SQLResultInfo_t structure (SQL
results information).

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLConnect() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If the connection is established successfully, but the disk containing server message log files or client message log
files has become full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
a_rdb_SQLConnect() cannot be executed in the following cases:

19. CLI Functions

Hitachi Advanced Database Application Development Guide 962

• An HADB user who does not have the CONNECT privilege executed this CLI function.

• Connection has already been established.

• An invalid authorization identifier is specified.

• A character encoding that differs from that for the HADB server is specified in ADBCLTLANG.

• The number of connections to the HADB server has reached the maximum number of concurrent connections.

19.2.3 a_rdb_SQLSetConnectAttr() (set connection attributes)

(1) Function
This CLI function sets the connection attributes of a specified connection handle.

(2) Format
signed short a_rdb_SQLSetConnectAttr
(
 void *ConnectionHandle, /* In */
 signed short Attribute, /* In */
 void *Value, /* In */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

Attribute
Specifies one of the following connection attributes:

• When the transaction isolation level is set:
a_rdb_SQL_ATTR_TXN_ISOLATION

• When a sort order is set for character string data in a SELECT statement in which the ORDER BY clause is
specified:
a_rdb_SQL_ATTR_ORDER_MODE

• When the transaction access mode is set:
a_rdb_SQL_ATTR_ACCESS_MODE

Value
Specifies the address at which the attribute information is stored.

• When the transaction isolation level is set
To set the transaction isolation level, specify the address of an unsigned short area that contains one of the
following values:

• For READ COMMITTED:
a_rdb_SQL_TXN_READ_COMMITTED

• For REPEATABLE READ:
a_rdb_SQL_TXN_REPEATABLE_READ

19. CLI Functions

Hitachi Advanced Database Application Development Guide 963

• If the specified value is changed into unspecified status (in which the transaction isolation level has never
been set by using this CLI function):
a_rdb_SQL_TXN_UNSPECIFIED

• When a sort order is set for character string data in a SELECT statement in which the ORDER BY clause is specified
Specify the address of the unsigned short area containing one of the following values:

• Sorting of character string data by bytecode:
a_rdb_SQL_ORDER_MODE_BYTE

• Sorting of character string data by sort code (ISO/IEC 14651:2011 compliance):
a_rdb_SQL_ORDER_MODE_ISO

• If the specified value is changed into unspecified status (in which the sort order for character string data has
never been set by using this CLI function):
a_rdb_SQL_ORDER_MODE_UNSPECIFIED

• When the transaction access mode is set:
Specify the address of an unsigned short area in which one of the following values is set:

• Read/write mode:
a_rdb_SQL_ACCESS_MODE_READ_WRITE

• Read-only mode:
a_rdb_SQL_ACCESS_MODE_READ_ONLY

• If the specified value is changed into unspecified status (in which the transaction access mode has never
been set by using this CLI function):
a_rdb_SQL_ACCESS_MODE_UNSPECIFIED

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLSetConnectAttr() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If the connection attributes have been set successfully but the disk containing client message log files has become
full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
1. a_rdb_SQLSetConnectAttr() cannot be executed in the following cases:

• Connection has not been established.

• The transaction has not been settled.

• An invalid connection attribute is specified.

• An invalid transaction isolation level is specified.

• An invalid sort order for character string data is specified.

• An invalid transaction access mode is specified.

2. The transaction isolation level is determined in the priority order described below. A smaller number represents a
higher priority (for example, 1 has a higher priority than 2).

19. CLI Functions

Hitachi Advanced Database Application Development Guide 964

1. Transaction isolation level specified by a_rdb_SQLSetConnectAttr()
2. Transaction isolation level specified in the adb_clt_trn_iso_lv client definition operand
3. Transaction isolation level specified in the adb_sys_trn_iso_lv server definition operand

3. The sort order for character string data is determined in the priority order shown below. A smaller number represents
a higher the priority (for example, 1 has a higher priority than 2):
1. Sort order specified by a_rdb_SQLSetConnectAttr()
2. Sort order specified in the adb_clt_sql_order_mode client definition operand
3. Sort order specified in the adb_sql_order_mode server definition operand

4. The transaction access mode is determined in the priority order described below. A smaller number represents a
higher priority (for example, 1 has a higher priority than 2).
1. Transaction access mode specified with a_rdb_SQLSetConnectAttr()
2. Transaction access mode specified in the adb_clt_trn_access_mode operand in the client definition

19.2.4 a_rdb_SQLDisconnect() (close a connection)

(1) Function
This CLI function closes a connection by terminating the current transaction normally, setting a synchronization point,
and generating a commitment unit. The function then disconnects the application program from the HADB server.

(2) Format
signed short a_rdb_SQLDisconnect
(
 void *ConnectionHandle, /* In */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLDisconnect() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If the connection was closed successfully, but the disk containing server message log files or client message log files
has become full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 965

(5) Notes
1. If the transaction has not terminated when a_rdb_SQLDisconnect() is executed, the HADB server

automatically executes COMMIT, and then the connection with the HADB server is closed.

2. If an internally executed COMMIT has failed, the HADB server executes ROLLBACK and cancels the transaction,
and then the connection with the HADB server is closed.

3. If the application program terminates without a_rdb_SQLDisconnect() being executed, the HADB server
executes ROLLBACK, and then the connection with the HADB server is closed.

4. a_rdb_SQLDisconnect() cannot be executed if a connection has not been established.

19.2.5 a_rdb_SQLFreeConnect() (release a connection handle)

(1) Function
This CLI function releases the connection handle for a closed connection.

(2) Format
signed short a_rdb_SQLFreeConnect
(
 void *ConnectionHandle, /* In */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLFreeConnect() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If the connection handle is released successfully, but the disk containing client message log files has become full,
a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
If a_rdb_SQLFreeConnect() is executed without a_rdb_SQLDisconnect() having been executed,
processing equivalent to a_rdb_SQLDisconnect() is performed as an extension of
a_rdb_SQLFreeConnect(), and then the connection handle is released.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 966

19.3 CLI functions for controlling transactions

This section explains the CLI functions used for controlling transactions.

19.3.1 a_rdb_SQLCancel() (cancel SQL processing)

(1) Function
This CLI function cancels the current SQL processing. The following SQL processing (CLI functions) can be canceled
by a_rdb_SQLCancel():

• a_rdb_SQLCloseCursor()
• a_rdb_SQLExecDirect()
• a_rdb_SQLExecute()
• a_rdb_SQLFetch()
• a_rdb_SQLPrepare()

If you execute a_rdb_SQLCancel() during execution of a CLI function other than the preceding ones,
a_rdb_SQLCancel() terminates normally.

(2) Format
signed short a_rdb_SQLCancel
(
 void *ConnectionHandle, /* In */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

Option
Specifies NULL.

(4) Return value
If a_rdb_SQLCancel() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

(5) Notes
1. You must execute a_rdb_SQLCancel() in a different thread from the one used for the SQL processing.

2. Execution of a_rdb_SQLCancel() does not set any SQL results information.

3. If a_rdb_SQLCancel() results in an error, no message is output to the client message log files.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 967

4. When SQL processing is canceled successfully, the canceled SQL processing is rolled back and SQLCODE is
returned.

5. Normal termination of a_rdb_SQLCancel() does not mean that cancellation has been successful, because the
cancellation processing is performed asynchronously with a_rdb_SQLCancel().

6. a_rdb_SQLCancel() cannot be executed if connection has not been established.

19.3.2 a_rdb_SQLEndTran() (terminate the transaction)

(1) Function
This CLI function terminates the transaction. When the transaction is completed, all statement handles in effect at that
point are released.

(2) Format
signed short a_rdb_SQLEndTran
(
 void *ConnectionHandle, /* In */
 unsigned short CompletionType, /* In */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

CompletionType
Specifies one of the following values:

• a_rdb_SQL_COMMIT: Specifies that COMMIT (normal termination of transaction) is to be executed.

• a_rdb_SQL_ROLLBACK: Specifies that ROLLBACK (cancellation of transaction) is to be executed.

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLEndTran() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If the transaction is terminated successfully, but the disk containing server message log files or client message log
files has become full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
1. If a row fetching error is detected during the cursor close processing that is executed as an extension of the COMMIT

processing, ROLLBACK processing is performed automatically, in which case the transaction does not terminate
normally. If COMMIT fails for any other reason, the HADB server terminates abnormally.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 968

2. If ROLLBACK fails, the HADB server terminates abnormally.

3. a_rdb_SQLEndTran() cannot be executed in the following cases:

• Connection has not been established.

• An invalid value is specified for CompletionType.

• A row fetching error is detected during the cursor close processing that is executed as an extension of the COMMIT
processing.

4. If COMMIT or ROLLBACK processing is performed on the transaction as a result of executing
a_rdb_SQLEndTran(), the following occurs:

• All open cursors are closed.

• Any preprocessed SQL statement is ignored.

• Statement handles are all released.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 969

19.4 CLI functions for execution of SQL statements

This section explains the CLI functions used for execution of SQL statements.

19.4.1 a_rdb_SQLAllocStmt() (allocate a statement handle)

(1) Function
This CLI function allocates a statement handle (handle for an SQL statement).

(2) Format
signed short a_rdb_SQLAllocStmt
(
 void *ConnectionHandle, /* In */
 void **StatementHandle, /* Out */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

StatementHandle
Specifies the address at which the statement handle is to be set.

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLAllocStmt() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If a statement handle is allocated successfully, but the disk containing server message log files or client message log
files has become full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
1. a_rdb_SQLAllocStmt() cannot be executed if connection has not been established.

2. If the transaction fails to start, the HADB server terminates abnormally.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 970

19.4.2 a_rdb_SQLBindArrayParams() (bind dynamic parameters in batch
mode)

(1) Function
This CLI function binds (associates) the dynamic parameters in an SQL statement with an area for specifying their
values.

This CLI function binds multiple sets of dynamic parameters in any of the following SQL statements in the batch mode:

• DELETE statement

• INSERT statement

• UPDATE statement

You use this CLI function to perform batch transfer of dynamic parameter values. For details about batch transfer of
dynamic parameter values, see 5.15 Batch transfer of dynamic parameter values.

(2) Format
signed short a_rdb_SQLBindArrayParams
(
 void *ConnectionHandle, /* In */
 void *StatementHandle, /* In */
 int ArrayCount, /* In */
 unsigned short ParameterCount, /* In */
 a_rdb_SQLParameterInfo_t *ParameterInfo[], /* In */
 unsigned long long RowCount[], /* Out */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

StatementHandle
Specifies a statement handle.

ArrayCount
Specifies the number of ParameterInfo and RowCount arrays.

ParameterCount
Specifies the number of dynamic parameters to which values are to be assigned.
Specify the number of dynamic parameters acquired by a_rdb_SQLNumParams().

ParameterInfo[]
Specifies an array of addresses for the parameter information area in which the addresses of the value storage areas
are to be set. Provide an area in which as many a_rdb_SQLParameterInfo_t structures as is specified for
ParameterCount can be placed consecutively for each array, and then specify the start addresses of those areas
as the values for the array.
For details about the a_rdb_SQLParameterInfo_t structure, see 19.7.5 a_rdb_SQLParameterInfo_t
structure (parameter information).

19. CLI Functions

Hitachi Advanced Database Application Development Guide 971

RowCount[]
Specifies the start addresses of the array in which the numbers of rows resulting from SQL statement processing are
stored. If NULL is specified, no numbers of results rows are acquired.
After an SQL statement has been executed by a_rdb_SQLExecute(), the number of results rows obtained by
using each set of dynamic parameter values is stored in each array.
If an error occurs during SQL statement execution, the numbers of results rows obtained up to the point of the error
are stored. However, if the processing is rolled back because of an SQL statement error, zero is set in all arrays.

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLBindArrayParams() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If the dynamic parameters have been bound successfully but the disk containing client message log files has become
full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
1. You must apply boundary alignment to the start addresses of the data storage areas of the
a_rdb_SQLParameterInfo_t structure. For details about boundary alignment, see (2) Boundary alignment
in 18.2.6 Notes about using the CLI functions.

2. When a_rdb_SQLBindArrayParams() is used to associate dynamic parameters and then
a_rdb_SQLExecute() is executed, the processing continues unless the SQL statement results in an error. Even
if a specified set of dynamic parameter values results in zero as the number of results rows during processing, the
processing still continues.

3. The total number of results rows that have been stored in the RowCount[] array is stored in RowCount of the
a_rdb_SQLResultInfo_t structure.

4. a_rdb_SQLBindArrayParams() cannot be executed in the following cases:

• Connection has not been established.

• An invalid statement handle is specified.

• A value smaller than zero is specified as the number of arrays.

• The number of dynamic parameters specified does not match the number of dynamic parameters acquired by
a_rdb_SQLNumParams().

• An attempt was made to execute a_rdb_SQLBindArrayParams() on an SQL statement that is not
DELETE, INSERT, or UPDATE.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 972

19.4.3 a_rdb_SQLBindCols() (associate retrieval result columns)

(1) Function
This CLI function binds (associates) the retrieval result columns with an area for storing the values fetched from the
retrieval result columns in the batch mode. Once a retrieval result column has been associated, the column's value is
stored when the cursor is manipulated by execution of a_rdb_SQLFetch().

You can also execute a_rdb_SQLBindCols()for retrieval results that are not columns.

(2) Format
signed short a_rdb_SQLBindCols
(
 void *ConnectionHandle, /* In */
 void *StatementHandle, /* In */
 unsigned short ColumnCount, /* In */
 a_rdb_SQLColumnInfo_t *ColumnInfo, /* In */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

StatementHandle
Specifies a statement handle.

ColumnCount
Specifies the number of columns whose values are to be fetched.
Specify the number of retrieval result columns that was acquired by a_rdb_SQLNumResultCols().

ColumnInfo
Specifies the start address of the column information area in which the addresses of the value storage areas are to
be set.
Provide an area in which as many a_rdb_SQLColumnInfo_t structures as is specified for ColumnCount can
be placed consecutively.
For details about the a_rdb_SQLColumnInfo_t structure, see 19.7.1 a_rdb_SQLColumnInfo_t structure
(column information).

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLBindCols() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If the retrieval result columns are associated successfully, but the disk containing client message log files has become
full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 973

(5) Notes
1. If the data type of obtained data is CHAR, the data storage area for the a_rdb_SQLColumnInfo_t structure

stores the obtained data followed by a null character. The null character here refers to 0x00.

2. You must apply boundary alignment to the start addresses of the data storage areas of the
a_rdb_SQLColumnInfo_t structure. For details about boundary alignment, see (2) Boundary alignment in
18.2.6 Notes about using the CLI functions.

3. The value for the area for storing either the data storage area length or the indicator value for the
a_rdb_SQLColumnInfo_t structure is set according to the acquired data, as shown in the table below. In the
table, BL means the length of the specified data storage area and DL means the size of the area required for storing
the acquired data (in bytes).

Table 19-3: Value for the area for storing the data storage area length or the indicator value

No. Stored data Data
structure

Data type Relationship
between BL and DL

Data storage area length or indicator
value

1 Null value Any Any Any a_rdb_SQL_NULL_DATA

2 Non-null value Any Any BL = DL a_rdb_SQL_NOT_NULL_DATA

3 Other -- (SQL error)#

#
This means that an SQL error occurred and the processing for setting a value in the indicator was not performed,
resulting in an undefined value.

4. a_rdb_SQLBindCols() cannot be executed in the following cases:

• Connection has not been established.

• An invalid statement handle is specified.

• The value specified for the number of retrieval result columns is not the value acquired by
a_rdb_SQLNumResultCols().

• The data storage area length in the a_rdb_SQLColumnInfo_t structure is not the length required for storing
the acquired data.

19.4.4 a_rdb_SQLBindParams() (associate dynamic parameters)

(1) Function
This CLI function binds (associates) the dynamic parameters in an SQL statement with an area for specifying their
values.

(2) Format
signed short a_rdb_SQLBindParams
(
 void *ConnectionHandle, /* In */
 void *StatementHandle, /* In */
 unsigned short ParameterCount, /* In */
 a_rdb_SQLParameterInfo_t *ParameterInfo, /* In */
 void *Option /* In */
)

19. CLI Functions

Hitachi Advanced Database Application Development Guide 974

(3) Arguments
ConnectionHandle

Specifies a connection handle.

StatementHandle
Specifies a statement handle.

ParameterCount
Specifies the number of dynamic parameters to which values are to be assigned.
Specify the number of dynamic parameters acquired by a_rdb_SQLNumParams().

ParameterInfo
Specifies the start address of the parameter information area in which the addresses of the value storage areas are
to be set.
Provide an area in which as many a_rdb_SQLParameterInfo_t structures as is specified for
ParameterCount can be placed consecutively.
For details about the a_rdb_SQLParameterInfo_t structure, see 19.7.5 a_rdb_SQLParameterInfo_t
structure (parameter information).

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLBindParams() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If the dynamic parameters are associated successfully, but the disk containing client message log files has become
full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
1. You must apply boundary alignment to the start addresses of the data storage areas of the
a_rdb_SQLParameterInfo_t structure. For details about boundary alignment, see (2) Boundary alignment
in 18.2.6 Notes about using the CLI functions.

2. a_rdb_SQLBindParams() cannot be executed in the following cases:

• Connection has not been established.

• An invalid statement handle is specified.

• The specified number of dynamic parameters is not the value acquired by a_rdb_SQLNumParams().

19.4.5 a_rdb_SQLCloseCursor() (close the cursor)

(1) Function
This CLI function closes the cursor and terminates row fetching.

If there is a processing real thread that is fetching rows, this function terminates that processing real thread.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 975

(2) Format
signed short a_rdb_SQLCloseCursor
(
 void *ConnectionHandle, /* In */
 void *StatementHandle, /* In */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

StatementHandle
Specifies a statement handle.

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLCloseCursor() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If the cursor is closed successfully, but the disk containing server message log files or client message log files has
become full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
1. a_rdb_SQLCloseCursor() cannot be executed in the following cases:

• Connection has not been established.

• An invalid statement handle is specified.

• A row fetching error is detected during the cursor close processing.

2. If the transaction is terminated, all cursors that are open at that point are closed. If database update processing is
implicitly invalidated, the cursors are also all closed, in which case the KFAA51001-E or KFAA51002-E message
is output to the server message log file and client message log file.

19.4.6 a_rdb_SQLDescribeCols() (acquire information about the retrieval
result columns)

(1) Function
This CLI function acquires information about the retrieval result columns. The information that is acquired includes the
following:

• Column names of the retrieval result columns

• Data types of the retrieval result columns

19. CLI Functions

Hitachi Advanced Database Application Development Guide 976

• Maximum numbers of elements in the retrieval result columns

• Data lengths of the retrieval result columns

(2) Format
signed short a_rdb_SQLDescribeCols
(
 void *ConnectionHandle, /* In */
 void *StatementHandle, /* In */
 unsigned short ColumnCount, /* In */
 a_rdb_SQLColumnInfo_t *ColumnInfo, /* Out */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

StatementHandle
Specifies a statement handle.

ColumnCount
Specifies the number of retrieval result columns for which information is to be acquired.
Specify the number of retrieval result columns that was acquired by a_rdb_SQLNumResultCols().

ColumnInfo
Specifies the start address of the column information area in which the addresses of the areas for acquiring retrieval
result column information is to be set.
Provide an area in which as many a_rdb_SQLColumnInfo_t structures as is specified for ColumnCount can
be placed consecutively.
For details about the a_rdb_SQLColumnInfo_t structure, see 19.7.1 a_rdb_SQLColumnInfo_t structure
(column information).

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLDescribeCols() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If information about the retrieval result columns is acquired successfully, but the disk containing client message log
files has become full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
1. The names of the retrieval result columns are acquired in the name storage area of the a_rdb_SQLNameInfo_t

structure. For details about the names of retrieval result columns, see Rules in Specification format and rules for the
SELECT statement in the manual HADB SQL Reference.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 977

2. Specify for the length of the name storage area of the a_rdb_SQLNameInfo_t structure a value that is greater
by the byte length of one null character than the actual length (null character means 0x00).

3. If the length of the name storage area of the a_rdb_SQLNameInfo_t structure is equal to or greater than the
length of the retrieval result column name (in bytes) plus the byte length of one null character, a character string to
which one null character is appended is acquired as the retrieval result column name.

4. If the length of the name storage area of the a_rdb_SQLNameInfo_t structure is less than the length of the
retrieval result column name (in bytes) plus the byte length of one null character, the trailing part of the retrieval
result column name (the portion that does not fit in the name storage area) is truncated. As much of the leading part
of the retrieval result column name as fits in the name storage area is stored with one null character appended.

5. The length of a retrieval result column name (in bytes) is acquired in the column name length storage area of the
a_rdb_SQLNameInfo_t structure.

6. A code indicating the data type (data type code) of a retrieval result column is stored in the data type code storage
area of the a_rdb_SQLDataType_t structure. For details about the data type code for each data type, see List
of data types in the manual HADB SQL Reference.

7. The maximum number of elements in a retrieval result column is stored in the maximum elements count storage
area of the a_rdb_SQLDataType_t structure. The maximum number of elements in a retrieval result column is
always 1.

8. Information about the data length of a retrieval result column is stored in the column length storage area and column
length attribute storage area of the a_rdb_SQLDataType_t structure. The value to be acquired in each area
depends on the data type of the retrieval result column, as shown in the following table.

Table 19-4: Column length and column length attribute

No. Data type Column length Column length attribute

1 INTEGER 8 0

2 SMALLINT 4 0

3 DECIMAL(m,n)#1 m n

4 DOUBLE PRECISION 8 0

5 CHAR(n) n 0

6 VARCHAR(n) n 0

7 DATE 4 0

8 TIME(p)#2 3 + ↑p ÷ 2↑ p

9 TIMESTAMP(p)#2 7 + ↑p ÷ 2↑ p

10 BINARY(n) n 0

11 VARBINARY(n) n 0

12 ROW row-length 0

Legend:
m, n, p: Positive integer

#1
If the data type is DECIMAL, the precision is set as the column length and the scaling is set as the column length
attribute.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 978

#2
If the data type is TIME or TIMESTAMP, the data length is set as the column length and the length of the fractional
seconds is set as the column length attribute.

9. a_rdb_SQLDescribeCols() cannot be executed in the following cases:

• Connection has not been established.

• An invalid statement handle is specified.

• The value specified as the number of retrieval result columns is not the value acquired by
a_rdb_SQLNumResultCols().

19.4.7 a_rdb_SQLDescribeParams() (acquire dynamic parameter
information)

(1) Function
This CLI function acquires an SQL statement's dynamic parameter information. The information that is acquired
includes the following:

• Data types of the dynamic parameters

• Maximum numbers of elements in the dynamic parameters

• Data lengths of the dynamic parameters

(2) Format
signed short a_rdb_SQLDescribeParams
(
 void *ConnectionHandle, /* In */
 void *StatementHandle, /* In */
 unsigned short ParameterCount, /* In */
 a_rdb_SQLParameterInfo_t *ParameterInfo, /* Out */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

StatementHandle
Specifies a statement handle.

ParameterCount
Specifies the number of dynamic parameters for which information is to be acquired.
Specify the number of dynamic parameters acquired by a_rdb_SQLNumParams().

ParameterInfo
Specifies the start address of the parameter information area in which the addresses of the various parameter
information acquisition areas are to be set.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 979

Provide an area in which as many a_rdb_SQLParameterInfo_t structures as is specified for
ParameterCount can be placed consecutively.
For details about the a_rdb_SQLParameterInfo_t structure, see 19.7.5 a_rdb_SQLParameterInfo_t
structure (parameter information).

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLDescribeParams() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If dynamic parameter information is acquired successfully, but the disk containing client message log files has
become full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
1. Codes assumed by HADB (data type codes) indicating the data types of the dynamic parameters are acquired in the

data type code storage area of the a_rdb_SQLDataType_t structure. For details about the data type code for
each data type, see List of data types in the manual HADB SQL Reference.

2. The maximum number of elements in a dynamic parameter is acquired in the maximum elements count storage area
of the a_rdb_SQLDataType_t structure. The maximum number of elements in a dynamic parameter is
always 1.

3. Information about the data length of a dynamic parameter is stored in the parameter length storage area and the
parameter attribute storage area of the a_rdb_SQLDataType_t structure. The value to be acquired in each area
depends on the data type of the dynamic parameter assumed by HADB, as shown in the following table.

Table 19-5: Parameter length and parameter length attribute

No. Data type Parameter length Parameter length attribute

1 INTEGER 8 0

2 SMALLINT 4 0

3 DECIMAL(m,n)#1 m n

4 DOUBLE PRECISION 8 0

5 CHAR(n) n 0

6 VARCHAR(n) n 0

7 DATE 4 0

8 TIME(p)#2 3 + ↑p ÷ 2↑ p

9 TIMESTAMP(p)#2 7 + ↑p ÷ 2↑ p

10 BINARY(n) n 0

11 VARBINARY(n) n 0

12 ROW row-length 0

Legend:
m, n, p: Positive integer

19. CLI Functions

Hitachi Advanced Database Application Development Guide 980

#1
If the data type is DECIMAL, the precision is set as the parameter length and the scaling is set as the parameter
length attribute.

#2
If the data type is TIME or TIMESTAMP, the data length is set as the column length and the length of the fractional
seconds is set as the column length attribute.

4. a_rdb_SQLDescribeParams() cannot be executed in the following cases:

• Connection has not been established.

• An invalid statement handle is specified.

• The specified number of dynamic parameters is not the value acquired by a_rdb_SQLNumParams().

19.4.8 a_rdb_SQLExecDirect() (preprocess and execute an SQL
statement)

(1) Function
This CLI function preprocesses and executes an SQL statement. The function can execute the following SQL statements:

• DELETE statement#

• INSERT statement#

• PURGE CHUNK statement#

• TRUNCATE TABLE statement

• UPDATE statement#

• Definition SQL statements

#
a_rdb_SQLExecDirect() cannot be executed if a dynamic parameter is specified.

(2) Format
signed short a_rdb_SQLExecDirect
(
 void *ConnectionHandle, /* In */
 void *StatementHandle, /* In */
 char *StatementText, /* In */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

StatementHandle
Specifies a statement handle.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 981

StatementText
Specifies the text of the SQL statement that is to be preprocessed and executed, expressed as a character string in
C or C++.

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLExecDirect() terminates normally, a_rdb_RC_SQL_SUCCESS or
a_rdb_RC_SQL_NO_DATA is returned.

2. If the SQL statement is preprocessed and executed successfully, but the disk containing server message log files or
client message log files has become full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
a_rdb_SQLExecDirect() cannot be executed in the following cases:

• Connection has not been established.

• An invalid statement handle is specified.

19.4.9 a_rdb_SQLExecute() (execute a preprocessed SQL statement)

(1) Function
This CLI function executes a preprocessed SQL statement. The function can execute the following SQL statements:

• DELETE statement

• INSERT statement

• PURGE CHUNK statement

• TRUNCATE TABLE statement

• SELECT statement

• UPDATE statement

• Definition SQL statements

When a_rdb_SQLExecute()is executed on a SELECT statement, a cursor is opened.

(2) Format
signed short a_rdb_SQLExecute
(
 void *ConnectionHandle, /* In */
 void *StatementHandle, /* In */
 void *Option /* In */
)

19. CLI Functions

Hitachi Advanced Database Application Development Guide 982

(3) Arguments
ConnectionHandle

Specifies a connection handle.

StatementHandle
Specifies a statement handle.

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLExecute() terminates normally, a_rdb_RC_SQL_SUCCESS or a_rdb_RC_SQL_NO_DATA

is returned.

2. If execution of the SQL statement is completed successfully, but the disk containing server message log files or
client message log files has become full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
1. a_rdb_SQLExecute() cannot be executed in the following cases:

• Connection has not been established.

• An invalid statement handle is specified.

2. A preprocessed SQL statement must be available for the specified statement handle.

3. To open a cursor that was opened before, you must first close it, and then re-open it.

4. To use a_rdb_SQLFetch() to a fetch row, you must first open the cursor, and then fetch the row.

5. If COMMIT or ROLLBACK (including implicit rollback) is executed, all cursors that are open at that point are closed.

19.4.10 a_rdb_SQLFetch() (fetch a row)

(1) Function
This CLI function advances the cursor to the next row. If columns are bound, the function reads the column values on
the row pointed to by the cursor into the fetch target specified in the fetch target list.

(2) Format
signed short a_rdb_SQLFetch
(
 void *ConnectionHandle, /* In */
 void *StatementHandle, /* In */
 void *Option /* In */
)

19. CLI Functions

Hitachi Advanced Database Application Development Guide 983

(3) Arguments
ConnectionHandle

Specifies a connection handle.

StatementHandle
Specifies a statement handle.

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLFetch() terminates normally, a_rdb_RC_SQL_SUCCESS or a_rdb_RC_SQL_NO_DATA is

returned.

2. If a row is fetched successfully, but the disk containing server message log files or client message log files has
become full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
1. a_rdb_SQLFetch() cannot be executed in the following cases:

• Connection has not been established.

• An invalid statement handle is specified.

2. You must first use a_rdb_SQLExecute() to open the cursor that is to be used.

19.4.11 a_rdb_SQLFreeStmt() (release a statement handle)

(1) Function
This CLI function releases a statement handle allocated by a_rdb_SQLAllocStmt().

When a statement handle is released, any open cursor is also closed.

(2) Format
signed short a_rdb_SQLFreeStmt
(
 void *ConnectionHandle, /* In */
 void *StatementHandle, /* In */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 984

StatementHandle
Specifies a statement handle.

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLFreeStmt() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If the statement handle is released successfully, but the disk containing server message log files or client message
log files has become full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
a_rdb_SQLFreeStmt() cannot be executed in the following cases:

• Connection has not been established.

• An invalid statement handle is specified.

• A row fetching error is detected during the cursor close processing that is executed as an extension of the statement
handle release processing.

19.4.12 a_rdb_SQLNumParams() (acquire the number of dynamic
parameters)

(1) Function
CLI function acquires the number of dynamic parameters in an SQL statement.

(2) Format
signed short a_rdb_SQLNumParams
(
 void *ConnectionHandle, /* In */
 void *StatementHandle, /* In */
 unsigned short *ParameterCount, /* Out */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

StatementHandle
Specifies a statement handle.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 985

ParameterCount
Specifies the address at which the number of dynamic parameters is to be stored.

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLNumParams() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If the number of dynamic parameters is acquired successfully, but the disk containing client message log files has
become full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
a_rdb_SQLNumParams() cannot be executed in the following cases:

• Connection has not been established.

• An invalid statement handle is specified.

19.4.13 a_rdb_SQLNumResultCols() (acquire the number of retrieval
result columns)

(1) Function
This CLI function acquires the number of retrieval result columns.

(2) Format
signed short a_rdb_SQLNumResultCols
(
 void *ConnectionHandle, /* In */
 void *StatementHandle, /* In */
 unsigned short *ColumnCount, /* Out */
 void *Option /* In */
)

(3) Arguments
ConnectionHandle

Specifies a connection handle.

StatementHandle
Specifies a statement handle.

ColumnCount
Specifies the address at which the number of retrieval result columns is to be stored.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 986

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLNumResultCols() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If the number of retrieval result columns is acquired successfully, but the disk containing client message log files
has become full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
1. a_rdb_SQLNumResultCols() cannot be executed in the following cases:

• Connection has not been established.

• An invalid statement handle is specified.

2. If the SQL statement allocated to the statement handle is not a SELECT statement, 0 is stored in the area for storing
the number of retrieval result columns.

19.4.14 a_rdb_SQLPrepare() (preprocess an SQL statement)

(1) Function
This CLI function preprocesses an SQL statement. The function can preprocess the following SQL statements:

• DELETE statement

• INSERT statement

• PURGE CHUNK statement

• TRUNCATE TABLE statement

• SELECT statement

• UPDATE statement

• Definition SQL statements

When a_rdb_SQLPrepare() is executed, the specified SQL statement is preprocessed so that is becomes executable
and then the SQL statement is allocated to the specified statement handle.

(2) Format
signed short a_rdb_SQLPrepare
(
 void *ConnectionHandle, /* In */
 void *StatementHandle, /* In */
 char *StatementText, /* In */
 void *Option /* In */
)

19. CLI Functions

Hitachi Advanced Database Application Development Guide 987

(3) Arguments
ConnectionHandle

Specifies a connection handle.

StatementHandle
Specifies a statement handle.

StatementText
Specifies the text of the SQL statement that is to be preprocessed, expressed as a character string in C or C++.

Option
Specifies NULL.

(4) Return value
1. If a_rdb_SQLPrepare() terminates normally, a_rdb_RC_SQL_SUCCESS is returned.

2. If the SQL statement is preprocessed successfully, but the disk containing server message log files or client message
log files has become full, a_rdb_RC_SQL_WARNING is returned.

3. If an error occurs while messages cannot be output to the client message log file, the error cause code is returned.
For details about the error cause code, see 19.8 Return values of the CLI functions.

(5) Notes
a_rdb_SQLPrepare() cannot be executed in the following cases:

• Connection has not been established.

• An invalid statement handle is specified.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 988

19.5 CLI functions for data type conversion

This section explains the CLI functions that are used for data type conversion.

19.5.1 a_rdb_CNV_charBINARY() (convert to BINARY-type data)

(1) Function
This CLI function converts character string data in C or C++ (binary or hexadecimal) to SQL BINARY type data. The
following figure shows an example of conversion from character string data to BINARY-type data.

Figure 19-1: Example of conversion from character string data to BINARY-type data

Important
The character string data before conversion must consist of the following values:

• When the character string data before conversion is in binary
0 and 1

• When the character string data before conversion is in hexadecimal
0 to 9 and A to F (or a to f)

(2) Format
#include <adbcnv.h>

signed short a_rdb_CNV_charBINARY
(
 char *char_Data, /* In */
 unsigned int char_Length, /* In */
 unsigned short char_Type, /* In */
 unsigned short BINARY_Length, /* In */
 unsigned char *BINARY_Data, /* Out */
 unsigned short BufferLength, /* In */
 void *Option /* In */
)

19. CLI Functions

Hitachi Advanced Database Application Development Guide 989

(3) Arguments
char_Data

Specifies the start address of the area where the character string data before conversion (character string data in C
or C++) is stored.

char_Length
Specifies the length (in bytes) of the character string data before conversion. Specify the following value:

• When the character string data before conversion is in binary
1 to value of BINARY_Length × 8

• When the character string data before conversion is in hexadecimal
1 to value of BINARY_Length × 2

char_Type
Specifies the format of the character string data before conversion. Specify the following value:

• When the character string data before conversion is in binary
a_rdb_CNV_CHAR_TYPE_BINARY

• When the character string data before conversion is in hexadecimal
a_rdb_CNV_CHAR_TYPE_HEX

BINARY_Length
Specifies the length (in bytes) of the BINARY-type data after conversion. The permitted values are from 1 to 32,000.

BINARY_Data
Specifies the start address of the area where the BINARY-type data after conversion is to be stored.

BufferLength
Specifies the length (in bytes) of the area for storing the BINARY-type data after conversion. Specify the same value
as for BINARY_Length.

Option
Specifies NULL. Any value that is specified is ignored.

(4) Return value
1. If a_rdb_CNV_charBINARY() terminates normally, a_rdb_RC_CNV_SUCCESS is returned.

2. If an error occurs, the error code is returned as the return value. For details about the error code, see 19.8 Return
values of the CLI functions.

(5) Notes
1. You must ensure that there is no overlap between the area for storing the data before conversion (char_Data) and

the area for storing the data after conversion (BINARY_Data).

2. The length of the character string data before conversion must satisfy one of the following conditions:

• When the character string data before conversion is in binary: Multiple of 8

• When the character string data before conversion is in hexadecimal: Multiple of 2

3. The character string data before conversion is converted to BINARY-type data, and then stored from the beginning
of the storage area. If the character string data to be converted is smaller than the following value, 0x00 is padded
to the right of the data:

19. CLI Functions

Hitachi Advanced Database Application Development Guide 990

• When the character string data before conversion is in binary: Value of BINARY_Length × 8

• When the character string data before conversion is in hexadecimal: Value of BINARY_Length × 2

19.5.2 a_rdb_CNV_charDATE() (convert to DATE-type data)

(1) Function
This CLI function converts character string data in C or C++ to SQL DATE-type data. The following figure shows an
example of conversion from character string data to DATE-type data.

Figure 19-2: Example of conversion from character string data to DATE-type data

Important
The character string data before conversion must be in a predefined input representation that represents a date. For
details about the predefined input representations for dates, see the topic Predefined character-string representations
in the manual HADB SQL Reference.

Example:
The character string data that represents September 30, 2014, must be in one of the following formats:
2014-09-30
2014/09/30

(2) Format
#include <adbcnv.h>

signed short a_rdb_CNV_charDATE
(
 char *char_Data, /* In */
 unsigned char *DATE_Data, /* Out */
 unsigned short BufferLength, /* In */
 void *Option /* In */
)

19. CLI Functions

Hitachi Advanced Database Application Development Guide 991

(3) Arguments
char_Data

Specifies the start address of the area where the character string data before conversion (character string data in C
or C++) is stored.

DATE_Data
Specifies the start address of the area where the DATE-type data after conversion is to be stored.

BufferLength
Specifies the length (in bytes) of the area where the DATE-type data after conversion is to be stored. Specify a value
of 4.

Option
Specifies NULL.

(4) Return value
1. If a_rdb_CNV_charDATE() terminates normally, a_rdb_RC_CNV_SUCCESS is returned.

2. If an error occurs, the error code is returned as the return value. For details about the error code, see 19.8 Return
values of the CLI functions.

(5) Notes
You must ensure that there is no overlap between the area for storing the data before conversion (char_Data) and the
area for storing the data after conversion (DATE_Data).

19.5.3 a_rdb_CNV_charDECIMAL() (convert to DECIMAL-type data)

(1) Function
This CLI function converts character string data in C or C++ to SQL DECIMAL-type data. The following figure shows
an example of conversion from character string data to DECIMAL-type data.

Figure 19-3: Example of conversion from character string data to DECIMAL-type data

19. CLI Functions

Hitachi Advanced Database Application Development Guide 992

Important
The character string data before conversion must be in the following format:
'[...Δ][+|-][aa....aa][.][bb....bb]'
[...Δ]: Zero or more spaces
[+|-]: Plus or minus sign (if the sign is omitted, a plus sign is assumed)
[aa....aa]: Integer part
[.]: Decimal point (if there is no fractional part, the decimal point can be omitted)
[bb....bb]: Fractional part
Please note the following:

• You can specify only an integer part [aa....aa]; if you specify a fractional part, [bb....bb], you must also specify
the decimal point [.].

• The length of the integer part [aa....aa] and the fractional part [bb....bb] must not exceed 38 places.

• If the decimal point (period) is omitted when you specify an integer part only, a decimal point is assumed at the
end of the data obtained after conversion.

(2) Format
#include <adbcnv.h>

signed short a_rdb_CNV_charDECIMAL
(
 char *char_Data, /* In */
 unsigned short char_Length, /* In */
 unsigned short DECIMAL_Precision, /* In */
 unsigned short DECIMAL_Scale, /* In */
 unsigned char *DECIMAL_Data, /* Out */
 unsigned short BufferLength, /* In */
 void *Option /* In */
)

(3) Arguments
char_Data

Specifies the start address of the area where the character string data before conversion (character string data in C
or C++) is stored.

char_Length
Specifies the length (in bytes) of the character string data before conversion. The permitted value range is from1 to
41.

DECIMAL_Precision
Specifies the precision of the DECIMAL-type data (total number of digits) after conversion. The permitted value
range is from 1 to 38.
Specify the same precision as for the dynamic parameter that is to be associated.

DECIMAL_Scale
Specifies the scaling of the DECIMAL-type data (number of decimal places) after conversion. The permitted value
range is from 0 to 38.
Specify the same scaling as for the dynamic parameter that is to be associated.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 993

DECIMAL_Data
Specifies the start address of the area where the DECIMAL-type data after conversion is to be stored.

BufferLength
Specifies the length (in bytes) of the area where the DECIMAL-type data after conversion is to be stored. Specify
the following value:

Table 19-6: Value of BufferLength

No. Value of DECIMAL_Precision Value of BufferLength

1 1 ≤ DECIMAL_Precision ≤ 4 2

2 5 ≤ DECIMAL_Precision ≤ 8 4

3 9 ≤ DECIMAL_Precision ≤ 16 8

4 17 ≤ DECIMAL_Precision ≤ 38 16

Option
Specifies NULL.

(4) Return value
1. If a_rdb_CNV_charDECIMAL() terminates normally, a_rdb_RC_CNV_SUCCESS is returned.

2. If an error occurs, the error code is returned as the return value. For details about the error code, see 19.8 Return
values of the CLI functions.

(5) Notes
1. You must ensure that there is no overlap between the area for storing the data before conversion (char_Data) and

the area for storing the data after conversion (DECIMAL_Data).

2. If the data before conversion is equivalent to "-0.", "+0." consisting of the same number of characters is assumed.
For example, if the data to be converted is "-0.0", "+0.0" is assumed; if the data before conversion is
"-0.0000", "+0.0000" is assumed.

3. The character string data before conversion is converted to DECIMAL-type data, and then stored from the beginning
of the storage area. If the integer part cannot be stored, an error results. If the fractional part cannot be stored, the
excess places are discarded.

4. You can specify character string data in which a zero has been added to the integer part only if the precision and
scaling match. In this case, for DECIMAL_Precision, specify the number of digits without the zero in the integer
part.

19.5.4 a_rdb_CNV_charTIME() (convert to TIME-type data)

(1) Function
This CLI function converts character string data in C or C++ to SQL TIME-type data. The following figure shows an
example of conversion from character string data to TIME-type data.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 994

Figure 19-4: Example of conversion from character string data to TIME-type data

Important
The character string data before conversion must be in the predefined input representation that represents time. For
details about the predefined input representation for time, see the topic Predefined character-string representations
in the manual HADB SQL Reference.

Example:
The character string data that represents 11:03:58.123 must be in the following format:
11:03:58.123

(2) Format
#include <adbcnv.h>

signed short a_rdb_CNV_charTIME
(
 char *char_Data, /* In */
 unsigned short char_Length, /* In */
 unsigned short TIME_Scale, /* In */
 unsigned char *TIME_Data, /* Out */
 unsigned short BufferLength, /* In */
 void *Option /* In */
)

(3) Arguments
char_Data

Specifies the start address of the area where the character string data before conversion (character string data in C
or C++) is stored.

char_Length
Specifies the length (in bytes) of the character string data before conversion. Specify a value in the range from 8 to
8 + TIME_Scale value + 1.

TIME_Scale
Specifies the fractional seconds precision for the TIME-type data after conversion. Specify 0, 3, 6, 9, or 12.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 995

TIME_Data
Specifies the start address of the area where the TIME-type data after conversion is to be stored.

BufferLength
Specifies the length (in bytes) of the area for storing the TIME-type data after conversion. Specify 3 + ↑value of
TIME_Scale ÷ 2↑.

Option
Specifies NULL. Any value that is specified is ignored.

(4) Return value
1. If a_rdb_CNV_charTIME() terminates normally, a_rdb_RC_CNV_SUCCESS is returned.

2. If an error occurs, the error code is returned as the return value. For details about the error code, see 19.8 Return
values of the CLI functions.

(5) Notes
1. You must ensure that there is no overlap between the area for storing the data before conversion (char_Data) and

the area for storing the data after conversion (TIME_Data).

2. The character string data before conversion is converted to TIME-type data, and then stored from the beginning of
the storage area. If the fractional seconds precision for the character string data to be converted is not 3, 6, 9, or
12, zeros are padded to the right of the data until the fractional seconds precision specified for TIME_Scale is
reached.

19.5.5 a_rdb_CNV_charTIMESTAMP() (convert to TIMESTAMP-type data)

(1) Function
This CLI function converts character string data in C or C++ to SQL TIMESTAMP-type data. The following figure
shows an example of conversion from character string data to TIMESTAMP-type data.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 996

Figure 19-5: Example of conversion from character string data to TIMESTAMP-type data

Important
The character string data before conversion must be in a predefined input representation that represents a time stamp.
For details about the predefined input representations for time stamps, see the topic Predefined character-string
representations in the manual HADB SQL Reference.

Example:
The character string data that represents 19:06:48 on September 30, 2014, must be in one of the following formats:
2014-09-30 19:06:48
2014/09/30 19:06:48

(2) Format
#include <adbcnv.h>

signed short a_rdb_CNV_charTIMESTAMP
(
 char *char_Data, /* In */
 unsigned short char_Length, /* In */
 unsigned short TIMESTAMP_Scale, /* In */
 unsigned char *TIMESTAMP_Data, /* Out */
 unsigned short BufferLength, /* In */
 void *Option /* In */
)

(3) Arguments
char_Data

Specifies the start address of the area where the character string data before conversion (character string data in C
or C++) is stored.

char_Length
Specifies the length (in bytes) of the character string data before conversion. Specify a value in the range from 19
to 19 + value of TIMESTAMP_Scale + 1.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 997

TIMESTAMP_Scale
Specifies the fractional seconds precision for the TIMESTAMP-type data after conversion. Specify 0, 3, 6, 9, or 12.

TIMESTAMP_Data
Specifies the start address of the area where the TIMESTAMP-type data after conversion is to be stored.

BufferLength
Specifies the length (in bytes) of the area where the TIMESTAMP-type data after conversion is to be stored. Specify
7 + ↑value of TIMESTAMP_Scale ÷ 2↑.

Option
Specifies NULL.

(4) Return value
1. If a_rdb_CNV_charTIMESTAMP() terminates normally, a_rdb_RC_CNV_SUCCESS is returned.

2. If an error occurs, the error code is returned as the return value. For details about the error code, see 19.8 Return
values of the CLI functions.

(5) Notes
1. You must ensure that there is no overlap between the area for storing the data before conversion (char_Data) and

the area for storing the data after conversion (TIMESTAMP_Data).

2. The character string data before conversion is converted to TIMESTAMP-type data, and then stored from the
beginning of the storage area. If the fractional seconds precision for the character string data to be converted is not
3, 6, 9, or 12, zeros are padded to the right of the data until the fractional seconds precision specified for
TIMESTAMP_Scale is reached.

19.5.6 a_rdb_CNV_charVARBINARY() (convert to VARBINARY-type data)

(1) Function
This CLI function converts character string data in C or C++ to SQL VARBINARY-type data. The following figure
shows an example of conversion from character string data to VARBINARY-type data.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 998

Figure 19-6: Example of conversion from character string data to VARBINARY-type data

Important
The character string data before conversion must consist of one of the following values:

• When the character string data before conversion is in binary
0 and 1

• When the character string data before conversion is in hexadecimal
0 to 9 and A to F (or a to f)

(2) Format
#include <adbcnv.h>

signed short a_rdb_CNV_charVARBINARY
(
 char *char_Data, /* In */
 unsigned int char_Length, /* In */
 unsigned short char_Type, /* In */
 unsigned short VARBINARY_Length, /* In */
 a_rdb_VARBINARY_t *VARBINARY_Data, /* Out */
 unsigned short BufferLength, /* In */
 void *Option /* In */
)

(3) Arguments
char_Data

Specifies the start address of the area where the character string data before conversion (character string data in C
or C++) is stored.

char_Length
Specifies the length (in bytes) of the character string data before conversion. Specify one of the following values:

• When the character string data before conversion is in binary
1 to value of VARBINARY_Length × 8

• When the character string data before conversion is in hexadecimal

19. CLI Functions

Hitachi Advanced Database Application Development Guide 999

1 to value of VARBINARY_Length × 2

char_Type
Specifies the format of the character string data before conversion. Specify one of the following values:

• When the character string data before conversion is in binary
a_rdb_CNV_CHAR_TYPE_BINARY

• When the character string data before conversion is in hexadecimal
a_rdb_CNV_CHAR_TYPE_HEX

VARBINARY_Length
Specifies the length (in bytes) of the VARBINARY-type data after conversion. The permitted values are from 1 to
32,000.

VARBINARY_Data
Specifies the start address of the area where the VARBINARY-type data after conversion is to be stored.

BufferLength
Specifies the length (in bytes) of the area for storing the VARBINARY-type data after conversion. Specify the value
of VARBINARY_Length + 2.

Option
Specifies NULL. Any value that is specified is ignored.

(4) Return value
1. If a_rdb_CNV_charVARBINARY() terminates normally, a_rdb_RC_CNV_SUCCESS is returned.

2. If an error occurs, the error code is returned as the return value. For details about the error code, see 19.8 Return
values of the CLI functions.

(5) Notes
1. You must ensure that there is no overlap between the area for storing the data before conversion (char_Data) and

the area for storing the data after conversion (VARBINARY_Data).

2. The length of the character string data before conversion must satisfy one of the following conditions:

• When the character string data before conversion is in binary: Multiple of 8

• When the character string data before conversion is in hexadecimal: Multiple of 2

3. The character string data before conversion is converted to VARBINARY-type data, and then stored from the
beginning of the storage area.

19.5.7 a_rdb_CNV_BINARYchar() (convert BINARY-type data)

(1) Function
This CLI function converts SQL BINARY-type data to character string data in C or C++. The following figure shows
an example of conversion from BINARY-type data to character string data.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1000

Figure 19-7: Example of conversion from BINARY-type data to character string data

Explanation:
This example converts BINARY-type data to the character string literal described below and then stores the result
from the beginning of the storage area. Null characters (0x00) are added at the end.

• When the format of the character string after conversion is in binary: Binary literal in binary format

• When the format of the character string after conversion is in hexadecimal: Binary literal in hexadecimal format

(2) Format
#include <adbcnv.h>

signed short a_rdb_CNV_BINARYchar
(
 unsigned char *BINARY_Data, /* In */
 unsigned short BINARY_Length, /* In */
 unsigned short char_Type, /* In */
 char *char_Data, /* Out */
 unsigned int BufferLength, /* In */
 void *Option /* In */
)

(3) Arguments
BINARY_Data

Specifies the start address of the area where the BINARY-type data before conversion is stored.

BINARY_Length
Specifies the length (in bytes) of the BINARY-type data before conversion. The permitted values are from 1 to
32,000.

char_Type
Specifies the format of the character string data after conversion. Specify one of the following values:

• When the format of the character string data after conversion is in binary
a_rdb_CNV_CHAR_TYPE_BINARY

• When the format of the character string data after conversion is in hexadecimal

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1001

a_rdb_CNV_CHAR_TYPE_HEX
char_Data

Specifies the start address of area where the character string data after conversion (character string data in C or C+
+) is to be stored.

BufferLength
Specifies the length (in bytes) of the area where the character string after conversion is to be stored. Specify following
value:

• When the format of the character string data after conversion is in binary
value of BINARY_Length × 8 + 1

• When the format of the character string data after conversion is in hexadecimal
value of BINARY_Length × 2 + 1

Option
Specifies NULL. Any value that is specified is ignored.

(4) Return value
1. If a_rdb_CNV_BINARYchar() terminates normally, a_rdb_RC_CNV_SUCCESS is returned.

2. If an error occurs, the error code is returned as the return value. For details about the error code, see 19.8 Return
values of the CLI functions.

(5) Notes
You must ensure that there is no overlap between the area for storing the data before conversion (BINARY_Data) and
the area for storing the data after conversion (char_Data).

19.5.8 a_rdb_CNV_DATEchar() (convert DATE-type data)

(1) Function
This CLI function converts SQL DATE-type data to character string data in C or C++. The following figure shows an
example of conversion from DATE-type data to character string data.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1002

Figure 19-8: Example of conversion from DATE-type data to character string data

Explanation:

• This example converts DATE-type data to character string data according to the predefined output representation
that represents a date. For details about the predefined output representation for dates, see the topic Predefined
character-string representations in the manual HADB SQL Reference.

• Null characters (0x00) are added at the end.

(2) Format
#include <adbcnv.h>

signed short a_rdb_CNV_DATEchar
(
 unsigned char *DATE_Data, /* In */
 char *char_Data, /* Out */
 unsigned short BufferLength, /* In */
 void *Option /* In */
)

(3) Arguments
DATE_Data

Specifies the start address of the area where the DATE-type data before conversion is stored.

char_Data
Specifies the start address of area where the character string data after conversion (character string data in C or C+
+) is to be stored.

BufferLength
Specifies the length (in bytes) of the area where the character string data after conversion is to be stored. Specify a
value of 11.

Option
Specifies NULL.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1003

(4) Return value
1. If a_rdb_CNV_DATEchar() terminates normally, a_rdb_RC_CNV_SUCCESS is returned.

2. If an error occurs, the error code is returned as the return value. For details about the error code, see 19.8 Return
values of the CLI functions.

(5) Notes
You must ensure that there is no overlap between the area for storing the data before conversion (DATE_Data) and the
area for storing the data after conversion (char_Data).

19.5.9 a_rdb_CNV_DECIMALchar() (convert DECIMAL-type data)

(1) Function
This CLI function converts SQL DECIMAL-type data to character string data in C or C++. The following figure shows
an example of conversion from DECIMAL-type data to character string data.

Figure 19-9: Example of conversion from DECIMAL-type data to character string data

Explanation:

• This example converts DECIMAL-type data to a character string representing an unsigned decimal literal.

• If the same values are specified for DECIMAL_Precision and DECIMAL_Scale, a zero is added before
the decimal point, and then the data is converted to a character string.

• If the value of DECIMAL_Scale is zero, the decimal point is not added.

• If the data is a negative number, a minus sign (-) is added at the beginning.

• The value is padded with trailing null characters (0x00), and then the data is stored right-aligned in the storage
area.

• If the stored character string is shorter than the value of BufferLength, the remaining area is padded with
space characters.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1004

(2) Format
#include <adbcnv.h>

signed short a_rdb_CNV_DECIMALchar
(
 unsigned char *DECIMAL_Data, /* In */
 unsigned short DECIMAL_Precision, /* In */
 unsigned short DECIMAL_Scale, /* In */
 char *char_Data, /* Out */
 unsigned short BufferLength, /* In */
 void *Option /* In */
)

(3) Arguments
DECIMAL_Data

Specifies the start address of the area where the DECIMAL-type data before conversion is stored.

DECIMAL_Precision
Specifies the precision of the DECIMAL-type data (total number of digits) before conversion. The permitted value
range is from 1 to 38.
Specify the same precision as for the data type of the fetched column's value.

DECIMAL_Scale
Specifies the scaling of the DECIMAL-type data (number of decimal places) before conversion. The permitted value
range is from 0 to 38.
Specify the same scaling as for the data type of the fetched column's value.

char_Data
Specifies the start address of the area where the character string data after conversion (character string data in C or
C++) is to be stored.

BufferLength
Specifies the length (in bytes) of the area where the character string data after conversion is to be stored. Specify
the following value:
value of DECIMAL_Precision + 4

Option
Specifies NULL.

(4) Return value
1. If a_rdb_CNV_DECIMALchar() terminates normally, a_rdb_RC_CNV_SUCCESS is returned.

2. If an error occurs, the error code is returned as the return value. For details about the error code, see 19.8 Return
values of the CLI functions.

(5) Notes
You must ensure that there is no overlap between the area for storing the data before conversion (DECIMAL_Data)
and the area for storing the data after conversion (char_Data).

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1005

19.5.10 a_rdb_CNV_TIMEchar() (convert TIME-type data)

(1) Function
CLI function converts SQL TIME-type data to character string data in C or C++. The following figure shows an example
of conversion from TIME-type data to character string data.

Figure 19-10: Example of conversion from TIME-type data to character string data

Explanation:

• This example converts TIME-type data to character string data according to the predefined output representation
that represents time. For details about the predefined output representation for time, see the topic Predefined
character-string representations in the manual HADB SQL Reference.

• Null characters (0x00) are added at the end.

(2) Format
#include <adbcnv.h>

signed short a_rdb_CNV_TIMEchar
(
 unsigned char *TIME_Data, /* In */
 unsigned short TIME_Scale, /* In */
 char *char_Data, /* Out */
 unsigned short BufferLength, /* In */
 void *Option /* In */
)

(3) Arguments
TIME_Data

Specifies the start address of the area where the TIME-type data before conversion is stored.

TIME_Scale
Specifies the fractional seconds precision for the TIME-type data before conversion. Specify 0, 3, 6, 9, or 12.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1006

char_Data
Specifies the start address of the area where the character string data after conversion (character string data in C or
C++) is to be stored.

BufferLength
Specifies the length (in bytes) of the area where the character string after conversion is to be stored. Specify one of
the following values:

• If the fractional seconds precision for the TIME-type data before conversion is 0: 9

• If the fractional seconds precision for the TIME-type data before conversion is 3, 6, 9, or 12: 9 + TIME_Scale
value + 1

Option
Specifies NULL. Any value that is specified is ignored.

(4) Return value
1. If a_rdb_CNV_TIMEchar() terminates normally, a_rdb_RC_CNV_SUCCESS is returned.

2. If an error occurs, the error code is returned as the return value. For details about the error code, see 19.8 Return
values of the CLI functions.

(5) Notes
You must ensure that there is no overlap between the area for storing the data before conversion (TIME_Data) and the
area for storing the data after conversion (char_Data).

19.5.11 a_rdb_CNV_TIMESTAMPchar() (convert TIMESTAMP-type data)

(1) Function
This CLI function converts SQL TIMESTAMP-type data to character string data in C or C++. The following figure
shows an example of conversion from TIMESTAMP-type data to character string data.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1007

Figure 19-11: Example of conversion from TIMESTAMP-type data to character string data

Explanation:

• This example converts TIMESTAMP-type data to character string data according to the predefined output
representation that represents a time stamp. For details about the predefined output representation for time
stamps, see the topic Predefined character-string representations in the manual HADB SQL Reference.

• Null characters (0x00) are added at the end.

(2) Format
#include <adbcnv.h>

signed short a_rdb_CNV_TIMESTAMPchar
(
 unsigned char *TIMESTAMP_Data, /* In */
 unsigned short TIMESTAMP_Scale, /* In */
 char *char_Data, /* Out */
 unsigned short BufferLength, /* In */
 void *Option /* In */
)

(3) Arguments
TIMESTAMP_Data

Specifies the start address of the area where the TIMESTAMP-type data before conversion is stored.

TIMESTAMP_Scale
Specifies the fractional seconds precision for the TIMESTAMP-type data before conversion. Specify 0, 3, 6, 9, or 12.

char_Data
Specifies the start address of the area where the character string data after conversion (character string data in C or
C++) is to be stored.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1008

BufferLength
Specifies the length (in bytes) of the area where the character string after conversion is to be stored. Specify one of
the following values:

• If the fractional seconds precision for the TIMESTAMP-type data to be converted is 0: 20

• If the fractional seconds precision for the TIMESTAMP-type data to be converted is 3, 6, 9, or 12: 20 +
TIMESTAMP_Scale value + 1

Option
Specifies NULL.

(4) Return value
1. If a_rdb_CNV_TIMESTAMPchar() terminates normally, a_rdb_RC_CNV_SUCCESS is returned.

2. If an error occurs, the error code is returned as the return value. For details about the error code, see 19.8 Return
values of the CLI functions.

(5) Notes
You must ensure that there is no overlap between the area for storing the data before conversion (TIMESTAMP_Data)
and the area for storing the data after conversion (char_Data).

19.5.12 a_rdb_CNV_VARBINARYchar() (convert VARBINARY-type data)

(1) Function
This CLI function converts SQL VARBINARY-type data to character string data in C or C++. The following figure
shows an example of conversion from VARBINARY-type data to character string data.

Figure 19-12: Example of conversion from VARBINARY-type data to character string data

Explanation:
This example converts VARBINARY-type data to the character string literal described below and then stores the
result from the beginning of the storage area. Null characters (0x00) are added at the end of the data.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1009

• When the format of the character string data after conversion is in binary: Binary literal in binary format

• When the format of the character string data after conversion is in hexadecimal: Binary literal in hexadecimal
format

(2) Format
#include <adbcnv.h>

signed short a_rdb_CNV_VARBINARYchar
(
 a_rdb_VARBINARY_t *VARBINARY_Data, /* In */
 unsigned short VARBINARY_Length, /* In */
 unsigned short char_Type, /* In */
 char *char_Data, /* Out */
 unsigned int BufferLength, /* In */
 void *Option /* In */
)

(3) Arguments
VARBINARY_Data

Specifies the start address of the area where the VARBINARY-type data before conversion is stored.

VARBINARY_Length
Specifies the length (in bytes) of the VARBINARY-type data before conversion. The permitted values are from 1 to
32,000.

char_Type
Specifies the format of the character string data after conversion. Specify one of the following values:

• When the format of the character string data after conversion is in binary
a_rdb_CNV_CHAR_TYPE_BINARY

• When the format of the character string data after conversion is in hexadecimal
a_rdb_CNV_CHAR_TYPE_HEX

char_Data
Specifies the start address of the area where the character string data after conversion (character string data in C or
C++) is to be stored.

BufferLength
Specifies the length (in bytes) of the area where the character string after conversion is to be stored. Specify one of
the following values:

• When the format of the character string data after conversion is in binary
value of VARBINARY_Length × 8 + 1

• When the format of the character string data after conversion is in hexadecimal
value of VARBINARY_Length × 2 + 1

Option
Specifies NULL. Any value that is specified is ignored.

(4) Return value
1. If a_rdb_CNV_VARBINARYchar() terminates normally, a_rdb_RC_CNV_SUCCESS is returned.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1010

2. If an error occurs, the error code is returned as the return value. For details about the error code, see 19.8 Return
values of the CLI functions.

(5) Notes
You must ensure that there is no overlap between the area for storing the data before conversion (VARBINARY_Data)
and the area for storing the data after conversion (char_Data).

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1011

19.6 Correspondence to the SQL data types

This section explains the SQL data types and the corresponding symbolic literals and data types.

19.6.1 Correspondences among SQL data types, symbolic literals, and
values

The following table shows the correspondences among the SQL data types, the symbolic literals, and the values.

Table 19-7: Correspondences among the SQL data types, the symbolic literals, and the values

No. SQL data type Symbolic literal Value

1 CHAR a_rdb_SQL_DT_CHAR 0xC5

2 VARCHAR a_rdb_SQL_DT_VARCHAR 0xC1

3 INTEGER a_rdb_SQL_DT_INT 0xF1

4 SMALLINT a_rdb_SQL_DT_SMALLINT 0xF5

5 DECIMAL a_rdb_SQL_DT_DEC 0xE5

6 DOUBLE PRECISION a_rdb_SQL_DT_DOUBLE 0xE1

7 DATE a_rdb_SQL_DT_DATE 0x71

8 TIME a_rdb_SQL_DT_TIME 0x79

9 TIMESTAMP a_rdb_SQL_DT_TIMESTAMP 0x7D

10 BINARY a_rdb_SQL_DT_BINARY 0x95

11 VARBINARY a_rdb_SQL_DT_VARBINARY 0x91

12 ROW a_rdb_SQL_DT_ROW 0x45

19.6.2 Correspondences between SQL data types and data descriptions
The following table shows the correspondences between the SQL data types and the data descriptions in C or C++.

Table 19-8: Correspondences between the SQL data types and the data descriptions in C or C++.

No. SQL data type Data description in C or C++ Area length (bytes)

1 CHAR(n) char variable-name [n + 1]; n + 1

2 VARCHAR(n) a_rdb_M_VARCHAR(n) variable-name; n + 4

3 INTEGER long long variable-name; 8

4 SMALLINT int variable-name; 4

5 DECIMAL(m,n) unsigned char variable-name[p#1]; p#1

6 DOUBLE PRECISION double variable-name; 8

7 DATE unsigned char variable-name[4]; 4

8 TIME(p)#2 unsigned char variable-name[3 + (p + 1) ÷ 2]; 3 + (p + 1) ÷ 2

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1012

No. SQL data type Data description in C or C++ Area length (bytes)

9 TIMESTAMP(p)#2 unsigned char variable-name[7 + (p + 1) ÷ 2]; 7 + (p + 1) ÷ 2

10 BINARY(n) unsigned char variable-name[n]; n

11 VARBINARY(n) a_rdb_M_VARBINARY(n) variable-name; n + 2

12 ROW unsigned char variable-name[row-length#3]; row-length#3

Legend:
m, n: Positive integer

#1
The value of p depends on the value of m (precision).

No. Value of m Value of p

1 1 ≤ m ≤ 4 2

2 5 ≤ m ≤ 8 4

3 9 ≤ m ≤ 16 8

4 17 ≤ m ≤ 38 16

#2
p indicates the fractional seconds precision and its value is 0, 3, 6, 9, or 12.

#3
The row length is the sum of the data lengths of all the columns. For details about determining the data length of a
column, see Length of data storage in the topic List of data types in the manual HADB SQL Reference.

Macros used in the data descriptions are expanded as shown below.

■ a_rdb_M_VARCHAR(n) variable-name;
struct
{
 unsigned int Length ; /* Data length */
 char Data[n] ; /* Character string data */
}

■ a_rdb_M_VARBINARY(n) variable-name;
struct
{
 unsigned short Length ; /* Data length */
 unsigned char Data[n] ; /* Binary data */
}

19.6.3 Correspondence to the VARCHAR type

(1) Function
a_rdb_VARCHAR_t corresponds to the SQL data type VARCHAR.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1013

(2) Format
typedef struct a_rdb_TG_VARCHAR {
 unsigned int Length ;
 char Data[1] ;
} a_rdb_VARCHAR_t ;

(3) Members
Length

Specifies the length (in bytes) of the variable-length character string.

Data
Specifies the variable-length character string.

19.6.4 VARBINARY type

(1) Function
a_rdb_VARBINARY_t corresponds to the SQL data type VARBINARY.

(2) Format
typedef struct a_rdb_TG_VARBINARY {
 unsigned short Length ;
 unsigned char Data[1] ;
} a_rdb_VARBINARY_t ;

(3) Members
Length

Specifies the length (in bytes) of the variable-length binary data.

Data
Specifies the variable-length binary data.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1014

19.7 Data types used in the CLI functions

This section explains the data types used in the CLI functions.

19.7.1 a_rdb_SQLColumnInfo_t structure (column information)

(1) Function
Information about the retrieval result columns acquired by a_rdb_SQLDescribeCols() is stored in
a_rdb_SQLColumnInfo_t structures.

These structures are also used when a_rdb_SQLBindCols() is used to associate the retrieval result columns.

For details about a_rdb_SQLDescribeCols(), see 19.4.6 a_rdb_SQLDescribeCols() (acquire information about
the retrieval result columns). For details about a_rdb_SQLBindCols(), see 19.4.3 a_rdb_SQLBindCols()
(associate retrieval result columns).

(2) Format
typedef struct a_rdb_TG_ColumnInfo {
 struct a_rdb_TG_NameInfo *NameInfo ; /* Out */
 struct a_rdb_TG_DataType *TypeInfo ; /* Out */
 unsigned short Nullable ; /* Out */
 char _ColumnInfo_rsv01[2] ;
 signed int StrLen_or_Ind ; /* Out */
 void *TargetValue ; /* Out */
 unsigned int BufferLength ; /* In */
 char _ColumnInfo_rsv02[28] ;
} a_rdb_SQLColumnInfo_t ;

(3) Members
NameInfo

Specifies the address at which information about a column name of a retrieval result column is to be stored.
Specify this member if you execute a column description. If you execute a column bind, this member is ignored, if
specified.
If a value of 0 is specified, this information is not acquired.

TypeInfo
Specifies the address at which information about the data type of a retrieval result column is to be stored.
Specify this member if you execute a column description. If you execute a column bind, this member is ignored, if
specified.
If a value of 0 is specified, this information is not acquired.

Nullable
Returns a value indicating whether the null value can be returned in the retrieval result column.

• The null value cannot be returned: a_rdb_SQL_IS_NOT_NULLABLE
• The null value can be returned: a_rdb_SQL_IS_NULLABLE

This value is set when a column description is executed.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1015

StrLen_or_Ind
Acquires either a value length or an indicator value.
This value is set when a column description is executed.

TargetValue
Specifies the address at which the value is to be stored. This value must be specified as a data description in C or C
++ that corresponds to the SQL data type.
For details about the data descriptions in C or C++ that correspond to the SQL data types, see 19.6.2 
Correspondences between SQL data types and data descriptions.
Specify this member if you execute a column bind. If you execute a column description, this member is ignored, if
specified.

BufferLength
Specifies the length of the area in which the value is to be stored.
For details about the data area length, see 19.6.2 Correspondences between SQL data types and data descriptions.
Specify this member if you execute a column bind. If you execute a column description, this member is ignored, if
specified.

(4) Notes
When you use a a_rdb_SQLColumnInfo_t structure, make sure that you first initialize the area to all zeros, and
then specify a value for each member to be used.

19.7.2 a_rdb_SQLNameInfo_t structure (name information)

(1) Function
Name information, such as the column names of the retrieval result columns acquired by
a_rdb_SQLDescribeCols(), is stored in a_rdb_SQLNameInfo_t structures. For details about
a_rdb_SQLDescribeCols(), see 19.4.6 a_rdb_SQLDescribeCols() (acquire information about the retrieval
result columns).

(2) Format
typedef struct a_rdb_TG_NameInfo {
 unsigned short NameLength ; /* Out */
 unsigned short BufferLength ; /* In * /
 char _NameInfo_rsv01[4] ;
 char *Name ; /* Out */
} a_rdb_SQLNameInfo_t ;

(3) Members
NameLength

Acquires the length of a name (in bytes).

BufferLength
Specifies the size (in bytes) of the area in which the name is to be acquired.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1016

Name
Specifies the address of the area in which the name is to be stored.

(4) Notes
When you use a a_rdb_SQLNameInfo_t structure, make sure that you first initialize the area to zeros and then
specify a value for each member to be used.

19.7.3 a_rdb_SQLDataType_t structure (data type information)

(1) Function
The following information is stored in a_rdb_SQLDataType_t structures:

• Information about the data types of the retrieval result columns acquired by a_rdb_SQLDescribeCols()
• Information about the data types of dynamic parameters acquired by a_rdb_SQLDescribeParams()

For details about a_rdb_SQLDescribeCols(), see 19.4.6 a_rdb_SQLDescribeCols() (acquire information about
the retrieval result columns). For details about a_rdb_SQLDescribeParams(), see 19.4.7 
a_rdb_SQLDescribeParams() (acquire dynamic parameter information).

(2) Format
typedef struct a_rdb_TG_DataType {
 signed int DataType ; /* Out */
 unsigned short ElementCount ; /* Out */
 char _DataType_rsv01[2] ;
 unsigned int DataLength1 ; /* Out */
 unsigned int DataLength2 ; /* Out */
 char _DataType_rsv02[16] ;
} a_rdb_SQLDataType_t ;

(3) Members
DataType

Stores a data type code.

ElementCount
Stores information about the data structure.
A value of 1 is stored.

DataLength1
If a_rdb_SQLDescribeCols() is executed, the column length is acquired. If
a_rdb_SQLDescribeParams() is executed, the parameter length is acquired.
For details about the value to be specified, see 19.4.6 a_rdb_SQLDescribeCols() (acquire information about the
retrieval result columns) or 19.4.7 a_rdb_SQLDescribeParams() (acquire dynamic parameter information).

DataLength2
If a_rdb_SQLDescribeCols() is executed, the column length attribute is acquired. If
a_rdb_SQLDescribeParams() is executed, the parameter length attribute is acquired.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1017

For details, see 19.4.6 a_rdb_SQLDescribeCols() (acquire information about the retrieval result columns) and
19.4.7 a_rdb_SQLDescribeParams() (acquire dynamic parameter information).

(4) Notes
When you use an a_rdb_SQLDataType_t structure, make sure that you first initialize the area to all zeros, and then
specify a value for each member to be used.

19.7.4 a_rdb_SQLInd_t (indicator)

(1) Function
a_rdb_SQLInd_t (indicator) indicates whether a value is the null value.

(2) Format
typedef signed char a_rdb_SQLInd_t ;

(3) Indicator value
The following table shows the symbolic literals and values for the indicator.

Table 19-9: Symbolic literals and values of the indicator

No. Description Symbolic literal Value

1 Null value a_rdb_SQL_NULL_DATA -1

2 Non-null value data a_rdb_SQL_NOT_NULL_DATA 0

19.7.5 a_rdb_SQLParameterInfo_t structure (parameter information)

(1) Function
The dynamic parameter information acquired by a_rdb_SQLDescribeParams() is stored in
a_rdb_SQLParameterInfo_t structures.

These structures are also used when an area for specifying dynamic parameter values is associated by
a_rdb_SQLBindParams() or a_rdb_SQLBindArrayParams().

For details about a_rdb_SQLDescribeParams(), see 19.4.7 a_rdb_SQLDescribeParams() (acquire dynamic
parameter information). For details about a_rdb_SQLBindParams(), see 19.4.4 a_rdb_SQLBindParams()
(associate dynamic parameters). For details about a_rdb_SQLBindArrayParams(), see 19.4.2 
a_rdb_SQLBindArrayParams() (bind dynamic parameters in batch mode).

(2) Format
typedef struct a_rdb_TG_ParameterInfo {
 struct a_rdb_TG_DataType *TypeInfo ; /* Out */

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1018

 unsigned short Nullable ; /* Out */
 char _ParameterInfo_rsv01[2] ;
 a_rdb_SQLInd_t Ind ; /* In */
 char _ParameterInfo_rsv02[3] ;
 void *ParameterValue; /* In */
 char _ParameterInfo_rsv03[24] ;
} a_rdb_SQLParameterInfo_t ;

(3) Members
TypeInfo

Specifies the address at which information about the data type of a dynamic parameter is to be stored.
Specify this member if you execute a parameter description. If you execute a parameter join, there is no need to
specify this member; if specified, this member is ignored.

Nullable
Returns a value indicating whether the null value can be specified for the dynamic parameter.

• The null value cannot be specified: a_rdb_SQL_IS_NOT_NULLABLE
• The null value can be specified: a_rdb_SQL_IS_NULLABLE

This value is set for a parameter description.

Ind
Specifies an indicator value.
Specify this member if you execute a parameter join. If you execute a parameter description, there is no need to
specify this member. If specified, this member is ignored.

ParameterValue
Specifies the address at which the value is to be stored.
This value must be specified as a data description in C or C++ that corresponds to the SQL data type. For details
about the data descriptions in C or C++ that correspond to the SQL data types, see 19.6.2 Correspondences between
SQL data types and data descriptions.
Specify this member if you execute a parameter join. If you execute a parameter description, there is no need to
specify this member. If specified, this member is ignored.

(4) Notes
When you use a a_rdb_SQLParameterInfo_t structure, make sure that you first initialize the area to all zeros,
and then specify a value for each member to be used.

19.7.6 a_rdb_SQLResultInfo_t structure (SQL results information)

(1) Function
SQL results information is stored in an a_rdb_SQLResultInfo_t structure for each CLI function call.

(2) Format
typedef struct a_rdb_TG_ResultInfo {
 unsigned long long RowCount ; /* Out */
 unsigned char isInConnect ; /* Out */

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1019

 unsigned char EndTran ; /* Out */
 unsigned char RowCountOverFlowed ; /* Out */
 unsigned char isMessageLogFull ; /* Out */
 unsigned char isClientLogFull ; /* Out */
 char _ResultInfo_rsv01[3] ;
 char SQLState[5] ; /* Out */
 char _ResultInfo_rsv02[11] ;
} a_rdb_SQLResultInfo_t ;

(3) Members
RowCount

Returns the number of results rows when the CLI function's return value is a_rdb_RC_SQL_SUCCESS or
a_rdb_RC_SQL_NO_DATA. Otherwise, RowCount returns a value 0.
The number of rows that have been processed is returned, in the range from 0 to 18,446,744,073,709,551,615.
If overflow occurs (if the returned value exceeds 18,446,744,073,709,551,615), 18,446,744,073,709,551,615 is
returned and a_rdb_SQL_OVERFLOWED is set in RowCountOverFlowed.

isInConnect
Returns a value indicating whether a connection has been established (currently connected):

• Connection has not been established: a_rdb_SQL_IS_NOT_IN_CONNECT
• Connection has been established: a_rdb_SQL_IS_IN_CONNECT

EndTran
Returns the transaction execution result:

• Transaction terminated normally: a_rdb_SQL_COMMITTED
• Transaction was canceled: a_rdb_SQL_ROLLBACKED
• Transaction is executing: a_rdb_SQL_TRAN_NOT_ENDED
• Transaction has not started yet: a_rdb_SQL_TRAN_NOT_STARTED
• Transaction was canceled because an SQL error occurred when the transaction terminated normally:
a_rdb_SQL_DETECTED_ERROR_IN_COMMIT

The following table shows the correspondences between transaction execution results and the transaction statuses.

Table 19-10: Correspondences between transaction execution results and transaction statuses

No. Transaction execution result Transaction status

1 a_rdb_SQL_COMMITTED Transaction startable#

2 a_rdb_SQL_ROLLBACKED Transaction startable#

3 a_rdb_SQL_TRAN_NOT_ENDED Transaction executing

4 a_rdb_SQL_TRAN_NOT_STARTED Transaction startable

5 a_rdb_SQL_DETECTED_ERROR_IN_COMMIT Transaction startable#

#
The transaction was completed because COMMIT or ROLLBACK was successful, and the next transaction can
now be started.

RowCountOverFlowed
Returns a value indicating whether overflow occurred on RowCount:

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1020

• Overflow has not occurred: a_rdb_SQL_NOT_OVERFLOWED
• Overflow has occurred: a_rdb_SQL_OVERFLOWED

isMessageLogFull
Returns the mode of the server message log file.

• Normal mode: a_rdb_SQL_IS_NOT_LOG_FULL
• Fall-back mode: a_rdb_SQL_IS_LOG_FULL

If the server message log file is placed in fall-back mode, contact the HADB administrator.

isClientLogFull
Returns the mode of the client message log file.

• Normal mode: a_rdb_SQL_IS_NOT_LOG_FULL
• Fall-back mode: a_rdb_SQL_IS_LOG_FULL

If the client message log file is placed in fall-back mode, secure sufficient free space on the disk that contains the
client message log file. At least twice as much free space as the size specified for the ADBMSGLOGSIZE environment
variable is required.

SQLState
Returns SQLSTATE of the CLI function execution results.
For details about SQLSTATE, see List of SQLSTATE values in the manual HADB Messages.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1021

19.8 Return values of the CLI functions

The table below shows the return values of the following types of CLI functions:

• CLI functions for connecting to and disconnecting from the HADB server

• CLI functions for controlling transactions

• CLI functions for execution of SQL statements

Table 19-11: Return values of the CLI functions

No. Event Symbolic literal Value

1 CLI function terminated normally. a_rdb_RC_SQL_SUCCESS 0

2 CLI function terminated with a warning. a_rdb_RC_SQL_WARNING +1

3 There is no data. a_rdb_RC_SQL_NO_DATA +100

4 An SQL error occurred. -- SQLCODE

5 An error occurred that disabled output of
messages to the client message log file.

-- error-cause-code#

6 Other error occurred. a_rdb_RC_SQL_ERROR -1

Legend:
--: Not applicable.

#
The following table lists and describes the error cause codes.

Table 19-12: List of error cause codes

No. Error cause code Cause of the error

1 -10000 The specified ConnectionHandle argument is invalid (NULL was specified).

2 -11000 Acquisition of the absolute path of the message catalog file of the client message log file
failed.

3 -12XXX open processing on the message catalog file of the client message log file failed. errno
(error number) is set in XXX.

4 -13000 Acquisition of the ADBMSGLOGSIZE environment variable (size of the client message log
file) failed.

5 -14000 Acquisition of the absolute path of the client message log file failed.

6 -15XXX open processing on the client message log file failed. errno (error number) is set in XXX.

7 -16XXX fstat processing on the client message log file failed. errno (error number) is set in
XXX.

8 -17XXX read processing on the client message log file failed. errno (error number) is set in XXX.

9 -18XXX lseek processing on the client message log file failed. errno (error number) is set in
XXX.

10 -19XXX write processing on the client message log file failed. errno (error number) is set in
XXX.

11 -21000 The versions of the HADB client and ODBC driver do not match.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1022

The following table lists and describes the return values of the CLI functions for data type conversion.

Table 19-13: Return values of CLI functions for data type conversion

No. Event Symbolic literal Val
ue

Action

1 The CLI function
terminated normally.

a_rdb_RC_CNV_SUCCESS 0 None

2 The address of the area
storing the data before
conversion is not valid.

a_rdb_RC_CNV_INVALID_SRC_ADDRES
S

1 Check the address of the area storing the data
before conversion.

3 The length of the data to
be converted is not valid.

a_rdb_RC_CNV_INVALID_SRC_LENGTH 2 Check the length of the data to be converted
for any error.

4 The data before
conversion contains data
that cannot be converted.

a_rdb_RC_CNV_INVALID_FORMAT 3 Check the data to be converted.

5 The data type after
conversion is not valid.

a_rdb_RC_CNV_INVALID_DEST_LENGT
H

4 For details about the SQL data types, see the
topic Data types in the manual HADB SQL
Reference.
Then check the following specification for any
error:
• DECIMAL_Precision or
DECIMAL_Scale argument in
a_rdb_CNV_charDECIMAL()

• TIME_Scale argument in
a_rdb_CNV_charTIME()

• TIMESTAMP_Scale argument in
a_rdb_CNV_charTIMESTAMP()

• BINARY_Length argument in
a_rdb_CNV_charBINARY()

• VARBINARY_Length argument in
a_rdb_CNV_charVARBINARY()

6 The address of the area
for storing the data after
conversion is not valid.

a_rdb_RC_CNV_INVALID_DEST_ADDRE
SS

5 Check the address of the area for storing the
data after conversion.

7 The length of the area for
storing the data after
conversion is not valid.

a_rdb_RC_CNV_INVALID_BUF_LENGTH 6 Check the value of the argument
(BufferLength) that specifies the length of
the area for storing the converted data.

8 The area storing the data
before conversion
overlaps the area for
storing the data after
conversion.

a_rdb_RC_CNV_OVERRAPPING_AREA 7 Check the argument values to make sure that
the specified areas do not overlap.

9 The specified character
string type is invalid.

a_rdb_RC_CNV_INVALID_CHAR_TYPE 8 Specify the correct character string type.

19. CLI Functions

Hitachi Advanced Database Application Development Guide 1023

Appendixes

Hitachi Advanced Database Application Development Guide 1024

A. Sample Application Program

HADB provides a sample application program that connects to and disconnects from the HADB server, and performs
row retrieval, addition, and deletion processing.

A.1 Overview of sample application program
The following table describes the sample application program provided by HADB.

Table A-1: Sample application program provided by HADB

No. Name of sample
application program

Programming
language of sample
application program

File name of sample
application program

Operations performed by
sample application program

1 sample1 Java Sample1.java • Table retrieval (SELECT)
• Row addition (INSERT)
• Row deletion (DELETE)

2 ODBC functions odbc_sample1.c

3 C or C++ cli_sample1.c

Note
The sample application program is located under the following directory on the HADB server:

• $ADBDIR/sample

A.2 Preparations before executing the sample application program
Before you execute the sample application program, you must perform the following preparations:

• Create a make environment for the sample application program. Specify the include files and libraries provided by
HADB and then execute make.

• An HADB client environment setup must be completed. For details about HADB client environment setup, see 4. 
Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used).

• Define the SAMPLE table that is accessed by the sample application program and then import data into the SAMPLE
table. For details, see A.3 How to create the SAMPLE table.

A.3 How to create the SAMPLE table
Before you create the SAMPLE table, you must create the data DB areas (ADBUTBL01 and ADBUIDX01) where the
SAMPLE table will be stored. The SAMPLE table cannot be created using the method explained here until you have
created ADBUTBL01 and ADBUIDX01.

To create the SAMPLE table:

Procedure

A. Sample Application Program

Hitachi Advanced Database Application Development Guide 1025

1. Create a user named ADBUSER02. Set the password for this ADBUSER02 user to #HelloHADB_02.
SQL statement to be executed:

CREATE USER "ADBUSER02" IDENTIFIED BY '#HelloHADB_02'

2. Grant the CONNECT privilege and the schema definition privilege to the ADBUSER02 user.
SQL statement to be executed:

GRANT CONNECT, SCHEMA TO "ADBUSER02"

3. To create the SAMPLE table, execute $ADBDIR/sample/create_sampledb.sh, which is a shell script that
creates the SAMPLE table.
When you execute this shell script, the SAMPLE table is defined, and then data is imported into the SAMPLE table.

The following shows the schema, table, and B-tree index definitions for the SAMPLE table that is created:

CREATE SCHEMA "ADBUSER02"

CREATE TABLE "SAMPLE"(
 "STATECODE" SMALLINT,
 "STATENAME" VARCHAR(15),
 "ZIPCODE" CHAR(15),
 "ADDRESS" VARCHAR(100),
 "AREA" DECIMAL(19))
 IN ADBUTBL01

CREATE INDEX "CODE_IDX" ON "SAMPLE"("STATECODE" ASC)
 IN ADBUIDX01 EMPTY

■ SAMPLE table format

STATEC
ODE

STATENAME ZIPCODE ADDRESS AREA

1 Alabama 36130-2751 State Capitol N-104 600 Dexter
Avenue Montgomery

135,765,000,000

2 Alaska 99811 State Capitol Juneau 1,717,854,000,000

3 Arizona 85007 State Capitol West Wing 1700 W.
Washington, 9th Fl. Phoenix

295,254,000,000

: : : : :

49 Wisconsin 53707-7863 State Capitol P.O. Box 7863 Madison 169,639,000,000

50 Wyoming 82002-0010 State Capitol Cheyenne 253,336,000,000

Explanation:
STATECODE: State code
STATENAME: State name
ZIPCODE: Zip code
ADDRESS: Address of state capitol
AREA: Area of state in square meters

The files related to the sample application program are as follows:

• $ADBDIR/sample/Sample1.java: Sample application program that uses a JDBC driver

A. Sample Application Program

Hitachi Advanced Database Application Development Guide 1026

• $ADBDIR/sample/odbc_sample1.c: Sample application program that uses an ODBC driver

• $ADBDIR/sample/cli_sample1.c: Sample application program that uses CLI functions

• $ADBDIR/sample/create_sampledb.sh: Shell script for creating the SAMPLE table

• $ADBDIR/sample/SAMPLE.txt: Data to be stored in the SAMPLE table

• $ADBDIR/sample/SAMPLE_table.sql: File containing the definition SQL statements for defining the
SAMPLE table

A.4 Sample application program execution procedure
The following explains the procedure for executing the sample application program (sample1).

To execute the sample program:

1. Start sample1's executable file.

2. The message shown below is displayed. Choose the SQL statement to be executed (1, 2, or 3). The subsections
below explain the operating method for each of these SQL statements.

 ***** HADB CLI Function Sample Program *****
 1. Search (specify search range)
 2. Add
 3. Delete
 4. Exit
 Please specify a menu item (1 - 4):

(1) SELECT statement is selected (1 is selected)
Retrieval processing specifying a US state code (STATECODE) is performed. The following SQL statement is executed:

SELECT "STATECODE","STATENAME","ZIPCODE","ADDRESS","AREA"
 FROM "SAMPLE"
 WHERE "STATECODE" BETWEEN ? AND ?

When the SELECT statement is selected, the following messages are output to the standard output:

• Please specify the minimum number of search conditions (1 - 50): (waits for an entr
y)
 ← Specify a value for the first dynamic parameter (minimum value).
• Please specify the maximum number of search conditions (1 - 50): (waits for an entr
y)
 ← Specify a value for the second dynamic parameter (maximum value).

The SELECT statement is executed based on the values you have entered.

Note
If the above two entries are both null (only the Enter key is pressed), the SELECT statement is executed
with 1 assumed for the first dynamic parameter and 50 for the second dynamic parameter.

A. Sample Application Program

Hitachi Advanced Database Application Development Guide 1027

(2) INSERT statement is selected (2 is selected)
Rows are added to the SAMPLE table. The following SQL statement is executed:

INSERT INTO "SAMPLE" VALUES (?,?,?,?,?)

When the INSERT statement is selected, the following messages are output to the standard output:

• Please specify a state code : (waits for an entry)
 ← Specify a value for the first dynamic parameter (state code).
• Please specify a state name : (waits for an entry)
 ← Specify a value for the second dynamic parameter (state name).
• Please specify a zip code : (waits for an entry)
 ← Specify a value for the third dynamic parameter (zip code).
• Please specify an address : (waits for an entry)
 ← Specify a value for the fourth dynamic parameter (state capitol).
• Please specify an area : (waits for an entry)
 ← Specify a value for the fifth dynamic parameter (area).

The INSERT statement is executed based on the values you have entered.

If an invalid value is specified, an SQL error occurs.

(3) DELETE statement is selected (3 is selected)
Rows are deleted from the SAMPLE table. The following SQL statement is executed:

DELETE FROM "SAMPLE" WHERE "STATECODE" = ?

When the DELETE statement is selected, the following message is output to the standard output:

• Please specify the state code of the row to be deleted : (waits for an entry)
 ← Specify a value for the dynamic parameter (state code of the row to be deleted)
.

The DELETE statement is executed based on the value you have entered.

If an invalid value is specified, an SQL error occurs.

A. Sample Application Program

Hitachi Advanced Database Application Development Guide 1028

B. Structure of HADB Client Directories

This appendix describes the structures of the client directories for HADB clients (at installation and during operation).

B.1 HADB clients for Windows

(1) Structure of the client directory (at installation)
The tables below describe the structure of the client directory (at installation) when a Windows edition of HADB client
is installed.

In the tables, %INSTCLTDIR% indicates the client directory (at installation).

Table B-1: Structure of the client directory (at installation) (64-bit edition of Windows)

No. Folder and file names Description

1 %INSTCLTDIR%\client Folder for storing the commands, libraries, ODBC driver, and
ODBC data source setup program used on the HADB client

2 %INSTCLTDIR%\client\bin Folder for storing the commands, ODBC driver, and ODBC data
source setup program used on the HADB client

3 %INSTCLTDIR%\client\bin\adbclt.dll HADB client

4 %INSTCLTDIR%\client\bin\adbodbc.dll ODBC driver

5 %INSTCLTDIR%\client\bin\adbodbcstp.dll ODBC data source setup program

6 %INSTCLTDIR%\client\bin\adbclt32.dll HADB client (32-bit)

7 %INSTCLTDIR%\client\bin\adbodbc32.dll ODBC driver (32-bit)

8 %INSTCLTDIR%\client\bin\adbodbstp32.dll ODBC data source setup program (32-bit)

9 %INSTCLTDIR%\client\lib Folder for storing libraries used with the HADB client

10 %INSTCLTDIR%\client\lib\adbclt.lib Client library

11 %INSTCLTDIR%\client\lib\adbclt32.lib Client library (32-bit)

12 %INSTCLTDIR%\client\lib\adbjdbc8.jar JDBC driver (JRE 8)

13 %INSTCLTDIR%\conf Folder for storing client definitions

14 %INSTCLTDIR%\include Folder for storing user-provided header files

15 %INSTCLTDIR%\include\adbcnv.h User-provided header files

16 %INSTCLTDIR%\include\adbcli.h

17 %INSTCLTDIR%\include\adbtypes.h

18 %INSTCLTDIR%\include\adbodb.h

19 %INSTCLTDIR%\lib Folder for storing libraries

20 %INSTCLTDIR%\lib\sysdef Folder for storing definition analysis information files

21 %INSTCLTDIR%\lib\sysdef\adbclt.def Definition analysis information file

22 %INSTCLTDIR%\sample Folder for storing a sample application program and model
definition files

B. Structure of HADB Client Directories

Hitachi Advanced Database Application Development Guide 1029

No. Folder and file names Description

23 %INSTCLTDIR%\sample\cli_sample1.c Sample application program

24 %INSTCLTDIR%\sample\Sample1.java Sample application program (for JDBC)

25 %INSTCLTDIR%\sample\odbc_sample1.c Sample application program (for ODBC)

26 %INSTCLTDIR%\sample\conf Folder for storing model definition files

27 %INSTCLTDIR%\sample\conf\client.def Model client definition file

28 %INSTCLTDIR%\spool Folder for storing the HADB client's execution results logs

29 %INSTCLTDIR%\vclib Folder for storing Microsoft(R) Visual Studio(R) 2008 runtime
libraries (redistribution module)

30 %INSTCLTDIR%\vclib\msvcr90.dll Microsoft(R) Visual Studio(R) 2008 C runtime libraries

31 %INSTCLTDIR%\vclib\msvcm90.dll

32 %INSTCLTDIR%\vclib\msvcp90.dll Microsoft(R) Visual Studio(R) 2008 C++ runtime libraries

33 %INSTCLTDIR%\vclib\
Microsoft.VC90.CRT.manifest

Manifest file for Microsoft(R) Visual Studio(R) 2008 runtime
libraries

34 %INSTCLTDIR%\adbreg.reg Registry registration command

35 %INSTCLTDIR%\adbunreg.reg Registry deletion command

36 %INSTCLTDIR%\readme.txt README file (Release Notes)

Note
The folders and files listed in the preceding table are created when an HADB client is installed. The folders
and files listed in the preceding table are deleted when the HADB client is uninstalled.

Table B-2: Structure of the client directory (at installation) (32-bit edition of Windows)

No. Folder and file names Description

1 %INSTCLTDIR%\client Folder for storing the commands, libraries, ODBC driver, and
ODBC data source setup program used on the HADB client

2 %INSTCLTDIR%\client\bin Folder for storing the commands, ODBC driver, and ODBC data
source setup program used on the HADB client

3 %INSTCLTDIR%\client\bin\adbclt32.dll HADB client

4 %INSTCLTDIR%\client\bin\adbodbc32.dll ODBC driver

5 %INSTCLTDIR%\client\bin\adbodbstp32.dll ODBC data source setup program

6 %INSTCLTDIR%\client\lib Folder for storing libraries used with the HADB client

7 %INSTCLTDIR%\client\lib\adbclt32.lib Client library

8 %INSTCLTDIR%\client\lib\adbjdbc8.jar JDBC driver (JRE 8)

9 %INSTCLTDIR%\conf Folder for storing client definitions

10 %INSTCLTDIR%\include Folder for storing user-provided header files

11 %INSTCLTDIR%\include\adbcnv.h User-provided header files

12 %INSTCLTDIR%\include\adbcli.h

B. Structure of HADB Client Directories

Hitachi Advanced Database Application Development Guide 1030

No. Folder and file names Description

13 %INSTCLTDIR%\include\adbtypes.h

14 %INSTCLTDIR%\include\adbodb.h

15 %INSTCLTDIR%\lib Folder for storing libraries

16 %INSTCLTDIR%\lib\sysdef Folder for storing definition analysis information files

17 %INSTCLTDIR%\lib\sysdef\adbclt.def Definition analysis information file

18 %INSTCLTDIR%\sample Folder for storing a sample application program and model
definition files

19 %INSTCLTDIR%\sample\cli_sample1.c Sample application program

20 %INSTCLTDIR%\sample\Sample1.java Sample application program (for JDBC)

21 %INSTCLTDIR%\sample\odbc_sample1.c Sample application program (for ODBC)

22 %INSTCLTDIR%\sample\conf Folder for storing model definition files

23 %INSTCLTDIR%\sample\conf\client.def Model client definition file

24 %INSTCLTDIR%\spool Folder for storing the HADB client's execution results logs

25 %INSTCLTDIR%\vclib32 Folder for storing Microsoft(R) Visual Studio(R) 2008 runtime
libraries (redistribution module)

26 %INSTCLTDIR%\vclib32\msvcr90.dll Microsoft(R) Visual Studio(R) 2008 C runtime libraries

27 %INSTCLTDIR%\vclib32\msvcm90.dll

28 %INSTCLTDIR%\vclib32\msvcp90.dll Microsoft(R) Visual Studio(R) 2008 C++ runtime libraries

29 %INSTCLTDIR%
\vclib32\Microsoft.VC90.CRT.manifest

Manifest file for Microsoft(R) Visual Studio(R) 2008 runtime
libraries

30 %INSTCLTDIR%\adbreg32.reg Registry registration command

31 %INSTCLTDIR%\adbunreg32.reg Registry deletion command

32 %INSTCLTDIR%\readme.txt README file (Release Notes)

Note
The folders and files listed in the preceding table are created when an HADB client is installed. The folders
and files listed in the preceding table are deleted when the HADB client is uninstalled.

(2) Structure of client directory (during operation)
For a Windows edition of HADB client, the client directory (at installation) is used as-is during operation.

Table B-3: Structure of the client directory (during operation) (64-bit edition of Windows)

No. Folder and file names Description Time the item is
created

Time the item is
deleted

1 %ADBCLTDIR%\client Folder for storing the commands,
libraries, ODBC driver, and ODBC data
source setup program used on the
HADB client

When the HADB
client is installed

When the HADB
client is uninstalled

B. Structure of HADB Client Directories

Hitachi Advanced Database Application Development Guide 1031

No. Folder and file names Description Time the item is
created

Time the item is
deleted

2 %ADBCLTDIR%\client\bin Folder for storing the commands, ODBC
driver, and ODBC data source setup
program used on the HADB client

3 %ADBCLTDIR%\client\bin
\adbclt.dll

HADB client

4 %ADBCLTDIR%\client\bin
\adbodbc.dll

ODBC driver

5 %ADBCLTDIR%\client\bin
\adbodbcstp.dll

ODBC data source setup program

6 %ADBCLTDIR%\client\bin
\adbclt32.dll

HADB client (32-bit)

7 %ADBCLTDIR%\client\bin
\adbodbc32.dll

ODBC driver (32-bit)

8 %ADBCLTDIR%\client\bin
\adbodbstp32.dll

ODBC data source setup program (32-
bit)

9 %ADBCLTDIR%\client\lib Folder for storing libraries used with the
HADB client

10 %ADBCLTDIR%\client\lib
\adbclt.lib

Client library

11 %ADBCLTDIR%\client\lib
\adbclt32.lib

Client library (32-bit)

12 %ADBCLTDIR%\client\lib
\adbjdbc8.jar

JDBC driver (JRE 8)

13 %ADBCLTDIR%\conf Folder for storing client definitions

14 %ADBCLTDIR%\include Folder for storing user-provided header
files

15 %ADBCLTDIR%\include
\adbcnv.h

User-provided header files

16 %ADBCLTDIR%\include
\adbcli.h

17 %ADBCLTDIR%\include
\adbtypes.h

18 %ADBCLTDIR%\include
\adbodb.h

19 %ADBCLTDIR%\lib Folder for storing libraries

20 %ADBCLTDIR%\lib\sysdef Folder for storing definition analysis
information files

21 %ADBCLTDIR%\lib\sysdef
\adbclt.def

Definition analysis information file

22 %ADBCLTDIR%\sample Folder for storing a sample application
program and model definition files

23 %ADBCLTDIR%\sample
\cli_sample1.c

Sample application program

B. Structure of HADB Client Directories

Hitachi Advanced Database Application Development Guide 1032

No. Folder and file names Description Time the item is
created

Time the item is
deleted

24 %ADBCLTDIR%\sample
\Sample1.java

Sample application program (for JDBC)

25 %ADBCLTDIR%\sample
\odbc_sample1.c

Sample application program (for
ODBC)

26 %ADBCLTDIR%\sample\conf Folder for storing model definition files

27 %ADBCLTDIR%\sample\conf
\client.def

Model client definition file

28 %ADBCLTDIR%\spool#1 Folder for storing the HADB client's
execution results logs

29 %ADBCLTDIR%\spool
\adbmessagecltXX.log

Client message log file#2 When the HADB
client connects to the
HADB server for the
first time after the
HADB client is
installed

30 %ADBCLTDIR%\spool
\.adbmessageclt

Client message log file number
management file

31 %ADBCLTDIR%\vclib Folder for storing Microsoft(R) Visual
Studio(R) 2008 runtime libraries
(redistribution module)

When the HADB
client is installed

32 %ADBCLTDIR%\vclib
\msvcr90.dll

Microsoft(R) Visual Studio(R) 2008 C
runtime libraries

33 %ADBCLTDIR%\vclib
\msvcm90.dll

34 %ADBCLTDIR%\vclib
\msvcp90.dll

Microsoft(R) Visual Studio(R) 2008 C+
+ runtime libraries

35 %ADBCLTDIR%\vclib\
Microsoft.VC90.CRT.manifes
t

Manifest file for Microsoft(R) Visual
Studio(R) 2008 runtime libraries

36 %ADBCLTDIR%\adbreg.reg Registry registration command

37 %ADBCLTDIR%\adbunreg.reg Registry deletion command

38 %ADBCLTDIR%\readme.txt README file (Release Notes)

39 %ADBODBTRCPATH%
\adbodbtrace_PID_TID_xx.log
#1

HADB ODBC driver trace file#3 When a handle is
obtained by using the
HADB ODBC driver
for the first time

The HADB client
does not delete this
file.

#1
Grant write permission for the following folders to each OS user who might use the HADB client (including the
ODBC driver):

• %ADBCLTDIR%\spool
• %ADBODBTRCPATH%

#2
A maximum of four client message log files are created. The maximum size of each file is specified by using the
ADBMSGLOGSIZE environment variable.

B. Structure of HADB Client Directories

Hitachi Advanced Database Application Development Guide 1033

#3
A maximum of two HADB ODBC driver trace files are created per process or thread. The maximum size of each
file is specified by using the ADBODBTRCSIZE environment variable.
A user needs to create the folder that is used to store HADB ODBC driver trace files. When the folder becomes no
longer necessary, a user needs to delete it. The HADB client does not create or delete the folder.

Table B-4: Structure of the client directory (during operation) (32-bit edition of Windows)

No. Folder and file names Description Time the item is
created

Time the item is
deleted

1 %ADBCLTDIR%\client Folder for storing the commands,
libraries, ODBC driver, and ODBC data
source setup program used on the
HADB client

When the HADB
client is installed

When the HADB
client is uninstalled

2 %ADBCLTDIR%\client\bin Folder for storing the commands, ODBC
driver, and ODBC data source setup
program used on the HADB client

3 %ADBCLTDIR%\client\bin
\adbclt32.dll

HADB client

4 %ADBCLTDIR%\client\bin
\adbodbc32.dll

ODBC driver

5 %ADBCLTDIR%\client\bin
\adbodbstp32.dll

ODBC data source setup program

6 %ADBCLTDIR%\client\lib Folder for storing libraries used with the
HADB client

7 %ADBCLTDIR%\client\lib
\adbclt32.lib

Client library

8 %ADBCLTDIR%\client\lib
\adbjdbc8.jar

JDBC driver (JRE 8)

9 %ADBCLTDIR%\conf Folder for storing client definitions

10 %ADBCLTDIR%\include Folder for storing user-provided header
files

11 %ADBCLTDIR%\include
\adbcnv.h

User-provided header files

12 %ADBCLTDIR%\include
\adbcli.h

13 %ADBCLTDIR%\include
\adbtypes.h

14 %ADBCLTDIR%\include
\adbodb.h

15 %ADBCLTDIR%\lib Folder for storing libraries

16 %ADBCLTDIR%\lib\sysdef Folder for storing definition analysis
information files

17 %ADBCLTDIR%\lib\sysdef
\adbclt.def

Definition analysis information file

18 %ADBCLTDIR%\sample Folder for storing a sample application
program and model definition files

B. Structure of HADB Client Directories

Hitachi Advanced Database Application Development Guide 1034

No. Folder and file names Description Time the item is
created

Time the item is
deleted

19 %ADBCLTDIR%\sample
\cli_sample1.c

Sample application program

20 %ADBCLTDIR%\sample
\Sample1.java

Sample application program (for JDBC)

21 %ADBCLTDIR%\sample
\odbc_sample1.c

Sample application program (for
ODBC)

22 %ADBCLTDIR%\sample\conf Folder for storing model definition files

23 %ADBCLTDIR%\sample\conf
\client.def

Model client definition file

24 %ADBCLTDIR%\spool#1 Folder for storing the HADB client's
execution results logs

25 %ADBCLTDIR%\spool
\adbmessagecltXX.log

Client message log file#2 When the HADB
client connects to the
HADB server for the
first time after the
HADB client is
installed

26 %ADBCLTDIR%\spool
\.adbmessageclt

Client message log file number
management file

27 %ADBCLTDIR%\vclib32 Folder for storing Microsoft(R) Visual
Studio(R) 2008 runtime libraries
(redistribution module)

When the HADB
client is installed

28 %ADBCLTDIR%
\vclib32\msvcr90.dll

Microsoft(R) Visual Studio(R) 2008 C
runtime libraries

29 %ADBCLTDIR%
\vclib32\msvcm90.dll

30 %ADBCLTDIR%
\vclib32\msvcp90.dll

Microsoft(R) Visual Studio(R) 2008 C+
+ runtime libraries

31 %ADBCLTDIR%\vclib32\
Microsoft.VC90.CRT.manifes
t

Manifest file for Microsoft(R) Visual
Studio(R) 2008 runtime libraries

32 %ADBCLTDIR%\adbreg32.reg Registry registration command

33 %ADBCLTDIR%\adbunreg32.reg Registry deletion command

34 %ADBCLTDIR%\readme.txt README file (Release Notes)

35 %ADBODBTRCPATH%
\adbodbtrace_PID_TID_xx.log
#1

HADB ODBC driver trace file#3 When a handle is
obtained by using the
HADB ODBC driver
for the first time

The HADB client
does not delete this
file.

#1
Grant write permission for the following folders to each OS user who might use the HADB client (including the
ODBC driver):

• %ADBCLTDIR%\spool
• %ADBODBTRCPATH%

#2
A maximum of four client message log files are created. The maximum size of each file is specified by using the
ADBMSGLOGSIZE environment variable.

B. Structure of HADB Client Directories

Hitachi Advanced Database Application Development Guide 1035

#3
A maximum of two HADB ODBC driver trace files are created per process or thread. The maximum size of each
file is specified by using the ADBODBTRCSIZE environment variable.
A user needs to create the folder that is used to store HADB ODBC driver trace files. When the folder becomes no
longer necessary, a user needs to delete it. The HADB client does not create or delete the folder.

B.2 HADB clients for Linux

(1) Structure of the client directory (at installation)
The table below describes the structure of the client directory (at installation) when a Linux edition of HADB client is
installed.

In the table, $INSTCLTDIR indicates the HADB client directory (at installation). The HADB client directory (at
installation) is the directory into which the adbinstall command installs HADB client.

Table B-5: Structure of the client directory structure (at installation)

No. Directory and file names Description

1 $INSTCLTDIR/client Directory for storing the commands and libraries used on the
HADB client

2 $INSTCLTDIR/client/bin Directory for storing commands used with the HADB client

3 $INSTCLTDIR/client/bin/adbsql SQL execution command

4 $INSTCLTDIR/client/lib Directory for storing libraries used with the HADB client

5 $INSTCLTDIR/client/lib/libadbclt.so Client library

6 $INSTCLTDIR/client/lib/adbjdbc8.jar JDBC driver (JRE 8)

7 $INSTCLTDIR/conf Directory for storing client definitions

8 $INSTCLTDIR/include Directory for storing user-provided header files

9 $INSTCLTDIR/include/adbcnv.h User-provided header files

10 $INSTCLTDIR/include/adbcli.h

11 $INSTCLTDIR/include/adbtypes.h

12 $INSTCLTDIR/include/adbodb.h

13 $INSTCLTDIR/lib Directory for storing libraries

14 $INSTCLTDIR/lib/adbmsg.cat Message catalog file

15 $INSTCLTDIR/lib/sysdef Directory for storing definition analysis information files

16 $INSTCLTDIR/lib/sysdef/adbclt.def Definition analysis information file

17 $INSTCLTDIR/sample Directory for storing a sample application program and model
definition files

18 $INSTCLTDIR/sample/cli_sample1.c Sample application program

19 $INSTCLTDIR/sample/Sample1.java Sample application program (for JDBC)

20 $INSTCLTDIR/sample/odbc_sample1.c Sample application program (for ODBC)

B. Structure of HADB Client Directories

Hitachi Advanced Database Application Development Guide 1036

No. Directory and file names Description

21 $INSTCLTDIR/sample/conf Directory for storing model definition files

22 $INSTCLTDIR/sample/conf/client.def Model client definition file

23 $INSTCLTDIR/spool Directory for storing the HADB client's execution results logs

Note
The directories and files listed in the preceding table are created when an HADB client is installed. The
directories and files listed in the preceding table are deleted when the HADB client is uninstalled.

(2) Structure of the client directory (during operation)
The following table describes the structure of the client directory (during operation).

Table B-6: Structure of the client directory (during operation)

No. Directory and file names Description Time the item is
created

Time the item is
deleted

1 $ADBCLTDIR/client Directory for storing the commands and
libraries used on the HADB client

When the HADB
client is installed

When the HADB
client is uninstalled

2 $ADBCLTDIR/client/bin Directory for storing commands used
with the HADB client

3 $ADBCLTDIR/client/bin/
adbsql

SQL execution command

4 $ADBCLTDIR/client/lib Directory for storing libraries used with
the HADB client

5 $ADBCLTDIR/client/lib/
libadbclt.so

Client library

6 $ADBCLTDIR/client/lib/
adbjdbc8.jar

JDBC driver (JRE 8)

7 $ADBCLTDIR/conf Directory for storing client definitions

8 $ADBCLTDIR/include Directory for storing user-provided
header files

9 $ADBCLTDIR/include/
adbcnv.h

User-provided header files

10 $ADBCLTDIR/include/
adbcli.h

11 $ADBCLTDIR/include/
adbtypes.h

12 $ADBCLTDIR/include/
adbodb.h

13 $ADBCLTDIR/lib Directory for storing libraries

14 $ADBCLTDIR/lib/adbmsg.cat Message catalog file

15 $ADBCLTDIR/lib/sysdef Directory for storing definition analysis
information files

B. Structure of HADB Client Directories

Hitachi Advanced Database Application Development Guide 1037

No. Directory and file names Description Time the item is
created

Time the item is
deleted

16 $ADBCLTDIR/lib/sysdef/
adbclt.def

Definition analysis information file

17 $ADBCLTDIR/sample Directory for storing a sample
application program and model
definition files

18 $ADBCLTDIR/sample/
cli_sample1.c

Sample application program

19 $ADBCLTDIR/sample/
Sample1.java

Sample application program (for JDBC)

20 $ADBCLTDIR/sample/
odbc_sample1.c

Sample application program (for
ODBC)

21 $ADBCLTDIR/sample/conf Directory for storing model definition
files

22 $ADBCLTDIR/sample/conf/
client.def

Model client definition file

23 $ADBCLTDIR/spool Directory for storing the HADB client's
execution results logs

24 $ADBCLTDIR/spool/
adbmessagecltXX.log

Client message log file# When the HADB
client connects to the
HADB server for the
first time after the
HADB client is
installed

25 $ADBCLTDIR/
spool/.adbmessageclt

Client message log file number
management file

#
A maximum of four client message log files are created. The maximum size of each file is specified by using the
ADBMSGLOGSIZE environment variable.

B. Structure of HADB Client Directories

Hitachi Advanced Database Application Development Guide 1038

C. Estimating the Memory Requirements for an HADB Client

This appendix explains how to estimate the memory requirements for an HADB client.

C.1 Memory required for connecting to the HADB server
The size of the memory required to connect to the HADB server is 12 kilobytes.

C.2 Memory required for communication between an HADB client and the
HADB server

Use the formula shown below to determine the size of the memory required for communication between an HADB
client and the HADB server.

Formula (kilobytes)
Memory used during communication = RPCC + SBF + 256

(1) How to obtain the value of RPCC
Use the following formula to obtain the value of RPCC (communication management information).

Formula (kilobytes)

SMSG: HADB server's transmission data size
For details about how to obtain SMSG, see the description of the SMSG variable in the following section in the
HADB Setup and Operation Guide: Determining the variable RTHD_COMMUSZ in Determining the real thread
private memory requirement (during normal operation) in Determining the memory requirement during normal
operation

max_sql_concurrent_exec_num:
Maximum number of SQL statements that can be executed concurrently in one transaction

(2) How to obtain the value of SBF
The initial allocation size for SBF (transmission buffer) is 4,096 bytes.

If transmission data that is created exceeds the initial allocation size, an additional allocation is made of the size obtained
from the following formula.

Formula (additional allocation) (kilobytes)
SBF = ↑CMSG ÷ 4,096↑ × 4

CMSG: Size of the transmission data from the HADB client
The size of the transmission data depends on the nature of the processing. The following table shows the size of the
transmission data that is allocated for each type of processing.

C. Estimating the Memory Requirements for an HADB Client

Hitachi Advanced Database Application Development Guide 1039

Table C-1: Size of transmission data that is allocated for each type of processing

No. Type of processing Formula for determining the transmission data size (bytes)

1 Preprocessing and execution CMSG = clt_base_info + clt_exec_direct + clt_sql_text

2 Cursor open processing CMSG = clt_base_info + clt_open + PARAM_DATA

3 SQL statement execution CMSG = clt_base_info + clt_exec + PARAM_DATA

4 Preprocessing CMSG = clt_base_info + clt_prepare + clt_sql_text

Legend:

clt_base_info: Basic information about transmission data
Assign 32 bytes.

clt_exec_direct: Information specific to preprocessing and execution
Assign 44 bytes.

clt_sql_text: Size of SQL text
Assign the length of the SQL statement to be executed (bytes).

clt_open: Information specific to cursor open processing
Assign 48 bytes.

clt_exec: Information specific to execution
Assign 48 bytes

clt_prepare: Information specific to preprocessing
Assign 44 bytes.

PARAM_DATA: Information about dynamic parameters
Use the following formula to obtain the value:
Formula (bytes)

param_num: Number of dynamic parameters specified in the SQL statement
param_size(i): Data size specified for each dynamic parameter
array_num: Number of sets of dynamic parameters updated in the batch mode#

#
The value depends on the application program implementation method:

• Application programs that use CLI functions
The value is the number specified in the ArrayCount argument of
a_rdb_SQLBindArrayParams(). If the parameters were bound by using
a_rdb_SQLBindParams(), the value is always 1.

• Application programs that use a JDBC driver
The value is the number of parameter lists registered by using the addBatch method. If you do not use
executeBatch or executeLargeBatch, the value is always 1.

C. Estimating the Memory Requirements for an HADB Client

Hitachi Advanced Database Application Development Guide 1040

Index

A
a_rdb_CNV_BINARYchar() 1000
a_rdb_CNV_charBINARY() 989
a_rdb_CNV_charDATE() 991
a_rdb_CNV_charDECIMAL() 992
a_rdb_CNV_charTIME() 994
a_rdb_CNV_charTIMESTAMP() 996
a_rdb_CNV_charVARBINARY() 998
a_rdb_CNV_DATEchar() 1002
a_rdb_CNV_DECIMALchar() 1004
a_rdb_CNV_TIMEchar() 1006
a_rdb_CNV_TIMESTAMPchar() 1007
a_rdb_CNV_VARBINARYchar() 1009
a_rdb_SQLAllocConnect() 961
a_rdb_SQLAllocStmt() 970
a_rdb_SQLBindArrayParams() 971
a_rdb_SQLBindCols() 973
a_rdb_SQLBindParams() 974
a_rdb_SQLCancel() 967
a_rdb_SQLCloseCursor() 975
a_rdb_SQLColumnInfo_t structure 1015
a_rdb_SQLConnect() 962
a_rdb_SQLDataType_t structure 1017
a_rdb_SQLDescribeCols() 976
a_rdb_SQLDescribeParams() 979
a_rdb_SQLDisconnect() 965
a_rdb_SQLEndTran() 968
a_rdb_SQLExecDirect() 981
a_rdb_SQLExecute() 982
a_rdb_SQLFetch() 983
a_rdb_SQLFreeConnect() 966
a_rdb_SQLFreeStmt() 984
a_rdb_SQLInd_t 1018
a_rdb_SQLNameInfo_t structure 1016
a_rdb_SQLNumParams() 985
a_rdb_SQLNumResultCols() 986
a_rdb_SQLParameterInfo_t structure 1018
a_rdb_SQLPrepare() 987
a_rdb_SQLResultInfo_t structure 1019
a_rdb_SQLSetConnectAttr() 963
abbreviations for products 10
absolute(int row) 429
acceptsURL(String url) 323

access path 224
example of 228

acquiring dynamic parameter information
a_rdb_SQLDescribeParams() 979
example of using CLI function 949

acquiring number of dynamic parameters
a_rdb_SQLNumParams() 985
example of using CLI function 949

acronyms 11
action to take when hash table area has insufficient
space 141
ADB_AUDITREAD 254
adb_clt_ap_name

client definition 47
system property 62
URL for connection 268
user property 273

adb_clt_fetch_size
client definition 48
system property 62
URL for connection 268
user property 273

adb_clt_group_name
client definition 46
system property 62
URL for connection 268
user property 273

adb_clt_rpc_con_wait_time
client definition 47
system property 62
URL for connection 268
user property 273

adb_clt_rpc_sql_wait_time
client definition 47
system property 62
URL for connection 268
user property 273

adb_clt_rpc_srv_host
client definition 46
system property 62
user property 273

adb_clt_rpc_srv_port
client definition 46
system property 62
user property 273

Hitachi Advanced Database Application Development Guide 1041

adb_clt_sql_order_mode
client definition 53
system property 62
URL for connection 268
user property 273

adb_clt_sql_text_out
client definition 53
system property 62
URL for connection 268
user property 273

adb_clt_trn_access_mode
client definition 53
system property 62
URL for connection 268
user property 273

adb_clt_trn_iso_lv
client definition 53
system property 62
URL for connection 268
user property 273

ADB_CSVREAD 254
adb_dbbuff_wrktbl_clt_blk_num

client definition 48
system property 62
URL for connection 268
user property 273

adb_jdbc_cache_info_max 310
adb_jdbc_exc_trc_out_path 310
adb_jdbc_info_max 310
adb_jdbc_trc_out_lv 310
adb_sql_exe_hashflt_area_size

client definition 48
system property 62
URL for connection 268
user property 273

adb_sql_exe_hashgrp_area_size
client definition 48
system property 62
URL for connection 268
user property 273

adb_sql_exe_hashtbl_area_size
client definition 48
system property 62
URL for connection 268
user property 273

adb_sql_exe_max_rthd_num
client definition 48

system property 62
URL for connection 268
user property 273

adb_sql_prep_dec_div_rs_prior
client definition 53
system property 62
URL for connection 268
user property 273

adb_sql_prep_delrsvd_use_srvdef
client definition 53
system property 62
URL for connection 268
user property 273

ADBCLTDIR (environment variable) 82, 83
ADBCLTLANG (environment variable) 82, 83
ADBMSGLOGSIZE (environment variable) 82, 83
ADBODBAPMODE (environment variable) 82
ADBODBTRC (environment variable) 82
ADBODBTRCLV (environment variable) 82
ADBODBTRCPATH (environment variable) 82
ADBODBTRCSIZE (environment variable) 82
ADBSQLNULLCHAR (environment variable) 83
addBatch

PreparedStatement interface 400
Statement interface 369

addConnectionEventListener 657
added scalar function 689
advancing OS time on client machine 97
afterLast() 430
allocating connection handle

example of using CLI function 941
allProceduresAreCallable() 509
allTablesAreSelectable() 509
antivirus software

reviewing scope of scans (if JDBC driver is used) 65
application identifier 47
application program

designing 936
tuning 223

archivable multi-chunk table
considerations when searching 206
equivalent exchange of SQL statement 215

AUTOCOMMIT specification 714
autoCommitFailureClosesAllResultSets() 510
automatic commit mode, setting 354
automatic loading (java.sql.Driver) 687

Hitachi Advanced Database Application Development Guide 1042

B
B-tree index

evaluation method using 131
B-tree index selection rules 112
B-tree indexes used during execution of SQL
statement 105
batch binding of dynamic parameters 971
batch transfer

dynamic parameter values 221
retrieval results 219

batch transfer of dynamic parameter values 221
batch transfer of retrieval results 219
batch update functionality, scope of support for 640
beforeFirst() 431
BINARY-type data

converting (CLI function) 1000
converting to (CLI function) 989

binding of dynamic parameters
a_rdb_SQLBindParams() 974
example of using CLI function 951

bookmark functionality 704
boundary alignment 954
BUILD COLUMN 252, 254

C
cancel() 370
changing OS time 97
changing OS time on client machine 97
character encoding conversion

ODBC 702
character string displaying null value 83
checking access paths 226
checking index used for retrieval 121
class name

Connection interface 332
DatabaseMetaData interface 508
Driver interface 322
PreparedStatement interface 400
ResultSet interface 429
ResultSetMetaData interface 619
Statement interface 369

CLASSPATH (environment variable) 61
clearBatch() 371
clearParameters() 400
clearWarnings()

Connection interface 332

ResultSet interface 432
Statement interface 371

CLI function 956
client definition, creating 85
client directory 76, 77
client directory (Linux)

structure of (at installation) 1036
structure of (during operation) 1037

client directory (Windows)
structure of (at installation) 1029
structure of (during operation) 1031

client group name 46
client library 957
close()

Connection interface 333
PooledConnection interface 658
ResultSet interface 432
Statement interface 372

closeOnCompletion() 372
closing connection

example of using CLI function 942
COLUMN 237
COLUMN STORE 242
columns of work table 172
commit() 333
compiling 955
concurrent processing type 639
connect(String url, Properties info) 323
connection

closing (a_rdb_SQLDisconnect()) 965
establishing (a_rdb_SQLConnect()) 962
establishing (CLI function, example of) 942

connection attribute, setting 963
connection handle

allocating (a_rdb_SQLAllocConnect()) 961
releasing (a_rdb_SQLFreeConnect()) 966

connection information priorities 280
Connection interface 330
connection management 689
Connection Number 256
connection pool 646
ConnectionPoolDataSource interface 652
conventions

abbreviations for products 10
acronyms 11
fonts and symbols 12
KB, MB, GB, TB, PB, and EB 15

Hitachi Advanced Database Application Development Guide 1043

version numbers 15
conversion of character encoding (JDBC) 301
CREATE FILTER 252, 254
CREATE GLOBAL WORK TABLE 234
CREATE LOCAL WORK TABLE 234
createStatement() 334
createStatement(int resultSetType, int
resultSetConcurrency, int resultSetHoldability) 336
createStatement(int resultSetType, int
resultSetConcurrency) 335
CROSS JOIN 251
cursor

closing 432
closing (a_rdb_SQLCloseCursor()) 975
closing (CLI function, example of) 947
moving 429
opening (a_rdb_SQLExecute()) 982
opening (CLI function, example of) 946
using, to retrieve rows (CLI function, example of) 946

D
data description 1012
data source

acquiring system information for 826
connecting to (ODBC) 723
disconnecting from (ODBC) 864

data source information, acquiring 738
data types

correspondence between (ODBC) 707
mapping 290

DatabaseMetaData interface 500
dataDefinitionCausesTransactionCommit() 510
dataDefinitionIgnoredInTransactions() 511
DataSource interface 647
DataSource object

generating 278
registering into JNDI 278

DATE-type data
converting (CLI function) 1002
converting to (CLI function) 991

DECIMAL-type data
converting (CLI function) 1004
converting to (CLI function) 992

DELEGATION 235
DELETE STATEMENT 230
deletesAreDetected(int type) 511
deleting data sources (ODBC) 706

DERIVED TABLE 231
descriptor value, specifying 760
designing client definition 44
details view 224

information displayed in 246
DISTINCT 240
doesMaxRowSizeIncludeBlobs() 512
downgrading (HADB client) 92
Driver class, how to register 267
driver information, acquiring 738
Driver interface 322
driver option

obtaining 749
specifying 749

DriverPropertyInfo field setting 326
dynamic parameter

designing application program 937
how to use CLI function 948

E
EB meaning 15
environment setup (JDBC driver) 59
environment variable

CLASSPATH 61
TZ (if JDBC driver is used) 61

environment variable, specifying 82
equivalent exchange

converting to IN conditions 189
converting to WHERE clause 200
equivalent exchange to derived table for which
UNION ALL set operation is specified 191
IN predicate 199
removing from OR condition 184
scalar operation 197

equivalent exchange (search conditions) 184
Equivalent exchange for a HAVING clause 200
equivalent exchange for scalar operations 197
equivalent exchange of search conditions 184
equivalent exchange related to IN predicates 199
equivalent exchange related to OR conditions

converting to IN conditions 189
equivalent exchange to derived table for which
UNION ALL set operation is specified 191
removing from OR condition 184

error
how to evaluate (SQL statement) 939
information that is returned in event of (ODBC) 713

Hitachi Advanced Database Application Development Guide 1044

escape clause 328
escape syntax analysis 391
evaluation method

range index 133
using B-tree index 131

evaluation method using range index 133
event listener, registering 657
EXCEPT ALL 253
EXCEPT DISTINCT 253
exception trace log 305
execute

PreparedStatement interface 401
Statement interface 373

executeBatch() 374
executeLargeBatch() 375
executeLargeUpdate() 402
executeLargeUpdate(String sql) 375
executeQuery

PreparedStatement interface 402
Statement interface 376

executeUpdate
PreparedStatement interface 403
Statement interface 377

execution plan (SQL statement) 224
execution result information, acquiring 798
execution result, acquiring 798

F
FILTER 230, 245
findColumn(String columnName) 433
first() 434
font conventions 12
FULL OUTER JOIN 251
function for centrally managing client definitions
(excluded operands) 58
FUNCTION NAME 254

G
GB meaning 15
generatedKeyAlwaysReturned() 513
getApName() 662
getAsciiStream(int columnIndex) 434
getAsciiStream(String columnName) 435
getAttributes 513
getAutoCommit() 337
getBestRowIdentifier 514

getBigDecimal(int columnIndex) 436
getBigDecimal(String columnName) 438
getBinaryStream(int columnIndex) 439
getBinaryStream(String columnName) 440
getBoolean(int columnIndex) 440
getBoolean(String columnName) 442
getByte(int columnIndex) 443
getByte(String columnName) 444
getBytes(int columnIndex) 445
getBytes(String columnName) 446
getCatalog() 337
getCatalogName(int column) 619
getCatalogs() 516
getCatalogSeparator() 516
getCatalogTerm() 517
getCharacterStream(int columnIndex) 447
getCharacterStream(String columnName) 448
getClientInfoProperties() 517
getColumnClassName(int column) 620
getColumnCount() 621
getColumnDisplaySize(int column) 621
getColumnLabel(int column) 623
getColumnName(int column) 623
getColumnPrivileges 518
getColumns 519
getColumnType(int column) 624
getColumnTypeName(int column) 624
getConcurrency() 449
getConnection

DatabaseMetaData interface 521
DataSource interface 647, 648
PooledConnection interface 658
Statement interface 378

getCrossReference(String parentCatalog, String
parentSchema, String parentTable, String
foreignCatalog, String foreignSchema, String
foreignTable) 522
getCursorName() 449
getDatabaseMajorVersion() 523
getDatabaseMinorVersion() 524
getDatabaseProductName() 525
getDatabaseProductVersion() 525
getDate(int columnIndex, Calendar cal) 451
getDate(int columnIndex) 450
getDate(String columnName, Calendar cal) 453
getDate(String columnName) 452
getDefaultTransactionIsolation() 526

Hitachi Advanced Database Application Development Guide 1045

getDouble(int columnIndex) 454
getDouble(String columnName) 456
getDriverMajorVersion() 526
getDriverMinorVersion() 527
getDriverName() 527
getDriverVersion() 528
getEncodeLang() 662
getExportedKeys 528
getExtraNameCharacters() 530
getFetchDirection()

ResultSet interface 457
Statement interface 378

getFetchSize()
ResultSet interface 457
Statement interface 379

getFloat(int columnIndex) 458
getFloat(String columnName) 460
getFunctionColumns(String catalog, String
schemaPattern, String functionNamePattern, String
columnNamePattern) 530
getFunctions(String catalog, String schemaPattern,
String functionNamePattern) 531
getHADBConnectionID() 338
getHADBConnectionSerialNum() 338
getHADBOrderMode() 339
getHADBSQLHashFltSize() 339
getHADBSQLHashTblSize() 340
getHADBSQLMaxRthdNum() 341
getHADBSQLSerialNum()

PreparedStatement interface 404
Statement interface 379

getHADBStatementHandle()
PreparedStatement interface 404
Statement interface 380

getHADBTransactionID() 341
getHoldability()

Connection interface 342
ResultSet interface 461

getHostName() 666
getIdentifierQuoteString() 532
getImportedKeys 533
getIndexInfo 534
getInt(int columnIndex) 462
getInt(String columnName) 463
getInterfaceMethodTrace() 663
getJDBCMajorVersion() 536
getJDBCMinorVersion() 537

getLargeMaxRows() 381
getLargeUpdateCount() 381
getLoginTimeout()

ConnectionPoolDataSource interface 652
DataSource interface 649

getLogWriter()
ConnectionPoolDataSource interface 653
DataSource interface 649

getLong(int columnIndex) 464
getLong(String columnName) 466
getMajorVersion() 324
getMaxBinaryLiteralLength() 537
getMaxCatalogNameLength() 538
getMaxCharLiteralLength() 538
getMaxColumnNameLength() 539
getMaxColumnsInGroupBy() 539
getMaxColumnsInIndex() 540
getMaxColumnsInOrderBy() 540
getMaxColumnsInSelect() 541
getMaxColumnsInTable() 541
getMaxConnections() 542
getMaxCursorNameLength() 542
getMaxFieldSize() 382
getMaxIndexLength() 543
getMaxLogicalLobSize() 543
getMaxProcedureNameLength() 544
getMaxRows() 383
getMaxRowSize() 544
getMaxSchemaNameLength() 545
getMaxStatementLength() 545
getMaxStatements() 546
getMaxTableNameLength() 546
getMaxTablesInSelect() 547
getMaxUserNameLength() 547
getMetaData()

Connection interface 343
PreparedStatement interface 405
ResultSet interface 467

getMinorVersion() 325
getMoreResults() 383
getNotErrorOccurred() 663
getNumericFunctions() 548
getObject(int columnIndex,Class<T> type) 470
getObject(int columnIndex) 467
getObject(String columnLabel,Class<T> type) 472
getObject(String columnName) 469
getParameterClassName(int param) 678

Hitachi Advanced Database Application Development Guide 1046

getParameterCount() 679
getParameterMetaData() 406
getParameterMode(int param) 679
getParameterType(int param) 680
getParameterTypeName(int param) 680
getPassword() 664
getPooledConnection() 653
getPooledConnection(String user, String password)
654
getPort() 667
getPrecision(int column) 625
getPrecision(int param) 681
getPrimaryKeys(String catalog, String schema, String
table) 548
getProcedureColumns 549
getProcedures 551
getProcedureTerm() 552
getPropertyInfo(String url, Properties info) 325
getPseudoColumns(String catalog,String
schemaPattern,String tableNamePattern,String
columnNamePattern) 552
getQueryTimeout() 384
getResultSet() 384
getResultSetConcurrency() 385
getResultSetHoldability()

DatabaseMetaData interface 553
Statement interface 385

getResultSetType() 386
getRow() 473
getRowIdLifetime() 554
getScale(int column) 627
getScale(int param) 682
getSchema() 343
getSchemaName(int column) 627
getSchemas() 554
getSchemas(String catalog, String schemaPattern)
555
getSchemaTerm() 556
getSearchStringEscape() 556
getShort(int columnIndex) 473
getShort(String columnName) 475
getSQLKeywords() 557
getSQLStateType() 557
getSQLWarningKeep() 665
getStatement() 476
getString(int columnIndex) 476
getString(String columnName) 478
getStringFunctions() 558

getSuperTables 558
getSuperTypes 559
getSystemFunctions() 560
getTableName(int column) 628
getTablePrivileges 561
getTables 562
getTableTypes() 564
getTime(int columnIndex, Calendar cal) 480
getTime(int columnIndex) 479
getTime(String columnName, Calendar cal) 482
getTime(String columnName) 481
getTimeDateFunctions() 564
getTimestamp(int columnIndex, Calendar cal) 484
getTimestamp(int columnIndex) 483
getTimestamp(String columnName, Calendar cal) 486
getTimestamp(String columnName) 485
getTraceNumber() 665
getTransactionIsolation() 344
getType() 486
getTypeInfo() 565
getTypeMap() 344
getUDTs 566
getUpdateCount() 387
getURL() 567
getUser() 666
getUserName() 568
getVersionColumns 568
getWarnings()

Connection interface 345
ResultSet interface 487
Statement interface 388

global hash grouping 160
GLOBAL HASH GROUPING 237
GLOBAL HASH UNIQUE 237
global work table 171
GROUPING 237
grouping method 159

hash grouping 159
sort grouping 161

GROUPING SET 237, 255
grouping set information 237, 255

H
HADB client

downgrading 92
estimating memory requirements for 1039
uninstalling (for Linux) 81

Hitachi Advanced Database Application Development Guide 1047

version upgrade 88
HADB client (for Linux)

installing 79
HADB client (for Windows)

installing 76
uninstalling 77

HADB ODBC driver environment setup 705
HADB ODBC driver trace information 910

output information 923
HADB server

connecting to (CLI function, example of) 941
disconnecting from (CLI function, example of) 942
how to connect to (Java) 267

handling unresponsive application programs 86
if JDBC driver is used 66

handling unresponsiveness
if JDBC driver is used 66
if ODBC driver or CLI functions are used 86

HASH 248
hash execution

method for processing SELECT DISTINCT 167
method for processing set operation 163
methods for processing subqueries that contain
external reference column 154
methods for processing subqueries that do not
contain external reference column 148

hash group area size 48
hash grouping 159

global hash grouping 160
local hash grouping 159

hash join 138
HASH JOIN 245, 250
hash retrieval information 252
hash table 138
hashing 138
HAVING 239
header file 957
host

URL for connection 268
host name, specifying 46

I
identification information view 224
implicit cursor 960
INDEX 237
INDEX COLUMN 248
INDEX NAME 248

index priority 106
index scan 101
INDEX SCAN 242, 247
index specification, using 119
INDEX TYPE 248
indicator 1018
information displayed for access path (alphabetical
order) 257
INNER JOIN 251
inner table 138
INSERT STATEMENT 230
insertsAreDetected(int type) 569
installing

Java Development Kit 60
Java Runtime Environment 60
JDBC driver 60

internal derived table, expanding 218
INTERSECT ALL 253
INTERSECT DISTINCT 253
isAfterLast() 488
isAutoIncrement(int column) 629
isBeforeFirst() 488
isCaseSensitive(int column) 629
isCatalogAtStart() 570
isClosed()

Connection interface 345
ResultSet interface 489
Statement interface 388

isCloseOnCompletion() 389
isCurrency(int column) 630
isDefinitelyWritable(int column) 630
isFirst() 490
isLast() 490
isNullable(int column) 631
isNullable(int param) 683
isPoolable() 389
isReadOnly()

Connection interface 346
DatabaseMetaData interface 570

isReadOnly(int column) 631
isSearchable(int column) 632
isSigned(int column) 633
isSigned(int param) 684
isValid(int timeout) 346
isWrapperFor(Class<?> iface) 691
isWritable(int column) 633

Hitachi Advanced Database Application Development Guide 1048

J
java.sql.Driver, automatic loading of 687
JDBC 1.2 API 321
JDBC driver

installing 60
replacing with revised version 70
uninstalling 72
upgrading 68

JDBC interface method trace 303
JDBC standards compliance, scope of 263
jdbc:hadb 268
jdbcCompliant() 328
JNDI 277
JNDI support 646
join methods 137
join type 251
JOIN TYPE 251
joined column 138

K
KB meaning 15
key 102
key condition (B-tree index) 132
key scan 102
KEY SCAN 242, 247

L
LANG (environment variable) 83
large update counts 699
last() 491
LD_LIBRARY_PATH (environment variable) 83
LEFT OUTER JOIN 251
LIMIT 241
linking 955
list of error cause codes (return values of CLI functions)

1022
local hash grouping 159
LOCAL HASH GROUPING 237
local work table 171
locatorsUpdateCopy() 571
log writer, setting

ConnectionPoolDataSource interface 655
DataSource interface 651

M
MB meaning 15

memory requirement, estimating (for HADB Client)
1039
method for processing SELECT DISTINCT 167

hash execution 167
work table execution 169

method for processing set operation 163
hash execution 163
work table execution 165

methods for searching tables 100
methodtrace

URL for connection 268
user property 273

N
nativeSQL(String sql) 347
NESTED LOOP JOIN 245, 250
nested loops row value execution 154
nested loops work table execution 153
nested-loop join 137
next() 492
non-retrieval SQL statement 373
nullPlusNonNullIsNull() 571
nullsAreSortedAtEnd() 572
nullsAreSortedAtStart() 572
nullsAreSortedHigh() 573
nullsAreSortedLow() 573
number-of-batch-transmission-rows 48

O
ODBC

troubleshooting 912
ODBC cursor library 704
ODBC driver environment setup 705
ODBC functions, list of 718
ODBC traces 910
ORDER 243
OS time, changing

notes 97
othersDeletesAreVisible(int type) 574
othersInsertsAreVisible(int type) 574
othersUpdatesAreVisible(int type) 575
outer table 138
overflow handling 296
ownDeletesAreVisible(int type) 575
ownInsertsAreVisible(int type) 576
ownUpdatesAreVisible(int type) 577

Hitachi Advanced Database Application Development Guide 1049

P
package name

Connection interface 332
DatabaseMetaData interface 508
Driver interface 322
JAR file 265
PreparedStatement interface 400
ResultSet interface 429
ResultSetMetaData interface 619
Statement interface 369

package name of JAR file 265
ParameterMetaData interface 677
password

URL for connection 268
user property 273

PATH (environment variable) 82, 83
pattern character string, special character that can be
specified in 509
PB meaning 15
PooledConnection interface 657
port

URL for connection 268
port number, specifying 46
PreparedStatement interface 398
prepareStatement(String sql, int resultSetType, int
resultSetConcurrency, int resultSetHoldability) 352
prepareStatement(String sql, int resultSetType, int
resultSetConcurrency) 351
prepareStatement(String sql) 350
preprocessing and execution of SQL statements

a_rdb_SQLExecDirect() 981
preprocessing of SQL statements

a_rdb_SQLPrepare() 987
previous() 492
priority (connection information) 280
PROBE COLUMN 252, 254
processing subqueries

that contain external reference column 152
that do not contain external reference column 146

property
URL for connection 268

PURGE CHUNK STATEMENT 230

Q
QUERY 234
QUERY SCAN 244
query tree 224

query tree number 224

R
range index condition 133

skipping chunks 133
skipping segments 133

range indexes used during execution of SQL statement
123

range search condition (B-tree index) 131
read-only mode 53
read-only transaction 53
read/write mode 53
read/write transaction 53
RECURSIVE 232
registering registry key

HADB client 76
ODBC 706

relative(int rows) 493
releasing connection handle

example of using CLI function 943
removeConnectionEventListener 659
replacing (revised version of HADB client) 95
replacing HADB client with revised version 95
replacing JAR file 68
restoring OS time on client machine 97
result set extended function, scope of support for 639
ResultSet interface 426
ResultSetMetaData interface 618
retrieval methods 100
retrieval result

acquiring 384
retrieval result column

acquiring information about
(a_rdb_SQLDescribeCols()) 976
acquiring information about (CLI function, example
of) 945
associating (a_rdb_SQLBindCols()) 973
associating (CLI function, example of) 946

retrieval result columns
acquiring number of (a_rdb_SQLNumResultCols())

986
acquiring number of (CLI function, example of) 945

retrieval SQL statement 373
return values (CLI functions) 1022
return values of CLI functions 1022
reviewing scope of scans

antivirus software (if JDBC driver is used) 65

Hitachi Advanced Database Application Development Guide 1050

RIGHT OUTER JOIN 251
rollback() 353
row ID 172
ROW specification 714
row value execution 147
row, fetching (a_rdb_SQLFetch()) 983
RowSets 646

S
sample application program 1025
sample1 1025
scalar function

added 689
that can be specified in escape clause 319

scrollable cursors 704
scrolling type 639
search condition

how to evaluate 131
SELECT STATEMENT 230
selection rules for text indexes 112
SET OPERATION 232
SET OPERATION TYPE 253
setApName(String name) 667
setAsciiStream 406
setAutoCommit(boolean autoCommit) 354
setBigDecimal(int parameterIndex, BigDecimal x) 407
setBinaryStream(int parameterIndex, InputStream x,
int length) 408
setBoolean(int parameterIndex, boolean x) 409
setByte(int parameterIndex, byte x) 409
setBytes(int parameterIndex, byte[] x) 410
setCatalog(String catalog) 354
setCharacterStream 411
setCursorName(String name) 390
setDate(int parameterIndex, Date x, Calendar cal) 412
setDate(int parameterIndex, Date x) 411
setDouble(int parameterIndex, double x) 413
setEncodeLang(String lang) 668
setEscapeProcessing(boolean enable) 391
setFetchDirection(int direction)

ResultSet interface 494
Statement interface 391

setFetchSize(int rows)
ResultSet interface 494
Statement interface 392

setFloat(int parameterIndex, float x) 414
setHADBAuditInfo(int pos,String userinfo) 355

setHADBOrderMode(int mode) 356
setHADBSQLHashFltSize(int areaSize) 358
setHADBSQLHashTblSize(int areaSize) 359
setHADBSQLMaxRthdNum(int rthdNum) 360
setHoldability(int holdability) 363
setHostName(String name) 673
setInt(int parameterIndex, int x) 414
setInterfaceMethodTrace(boolean flag) 669
setLargeMaxRows(long max) 393
setLoginTimeout(int seconds)

ConnectionPoolDataSource interface 655
DataSource interface 650

setLogWriter (DataSource interface) 651
setLogWriter(PrintWriter out)
(ConnectionPoolDataSource interface) 655
setLong(int parameterIndex, long x) 415
setMaxFieldSize(int max) 394
setMaxRows(int max) 395
setNotErrorOccurred(boolean mode) 670
setNull(int parameterIndex,int sqlType) 416
setObject(int parameterIndex, Object x, int
targetSqlType, int scale) 418
setObject(int parameterIndex, Object x, int
targetSqlType) 417
setObject(int parameterIndex, Object x) 416
setPassword(String password) 670
setPort(int port) 673
setQueryTimeout(int seconds) 395
setReadOnly(boolean readOnly) 363
setSchema(String schema) 364
setShort(int parameterIndex, short x) 419
setSQLWarningKeep(boolean mode) 671
setString(int parameterIndex, String x) 420
setTime(int parameterIndex, Time x, Calendar cal) 421
setTime(int parameterIndex, Time x) 420
setTimestamp(int parameterIndex, Timestamp x,
Calendar cal) 423
setTimestamp(int parameterIndex, Timestamp x) 422
setting system properties 62
setting up environment (HADB client) 73
setting up environment for HADB client 73
setting up environment for JDBC driver 59
settings for outputting HADB ODBC driver trace
information 917
setTraceNumber(int num) 672
setTransactionIsolation(int level) 365
setUser(String user) 672
size of hash filter area 48

Hitachi Advanced Database Application Development Guide 1051

size of hash table area 48
SKIP COND 248
sort grouping 161
SORT GROUPING 237
SORTING 239
special character 509
SPECIFIC 233, 235, 237, 240, 243, 246
SPECIFIC DISABLED 243, 246
specifying character encoding

in Linux 83
in Windows 82

specifying data sources (ODBC) 705
specifying environment variables

Linux 83
Windows 82

specifying transaction access mode
for client definition 53
system property 62
URL for connection 268
user property 273

specifying URL 268
specifying user properties 273
SQL data types, correspondence 290
SQL exception extension 688
SQL exception extension function (JDBC 4.0 API) 693
SQL processing, canceling (CLI function) 967
SQL request, creating 771
SQL Serial Number 256
SQL statement

adding to batch 369
canceling 370
executing 783
executing (a_rdb_SQLExecute()) 982
executing (CLI function, example of) 946
execution plan 224
how to evaluate error 939
preprocessing (CLI function, example of) 945
preprocessing and executing (CLI function, example
of) 951
terminating execution of 858
that creates work tables, considerations when
executing 171

SQL statement identification information 256
SQLAllocHandle 723
SQLBindCol 806
SQLBindParameter 773
SQLBrowseConnect, SQLBrowseConnectW 733

SQLBulkOperations 817
SQLCancel 860
SQLCloseCursor 859
SQLColAttribute, SQLColAttributeW 803
SQLColumnPrivileges, SQLColumnPrivilegesW 826
SQLColumns, SQLColumnsW 829
SQLConnect, SQLConnectW 724
SQLCopyDesc 769
SQLDataSources, SQLDataSourcesW 738
SQLDescribeCol, SQLDescribeColW 800
SQLDescribeParam 780
SQLDisconnect 864
SQLDriverConnect, SQLDriverConnectW 727
SQLDrivers, SQLDriversW 740
SQLEndTran 861
SQLException interface 635
SQLExecDirect, SQLExecDirectW 785
SQLExecute 783
SQLFetch 808
SQLFetchScroll 810
SQLForeignKeys, SQLForeignKeysW 833
SQLFreeHandle 865
SQLFreeStmt 858
SQLGetConnectAttr, SQLGetConnectAttrW 751
SQLGetCursorName, SQLGetCursorNameW 776
SQLGetData 812
SQLGetDescField, SQLGetDescFieldW 760
SQLGetDescRec, SQLGetDescRecW 762
SQLGetDiagField, SQLGetDiagFieldW 820
SQLGetDiagRec, SQLGetDiagRecW 822
SQLGetEnvAttr 754
SQLGetFunctions 744
SQLGetInfo, SQLGetInfoW 742
SQLGetStmtAttr, SQLGetStmtAttrW 757
SQLGetTypeInfo, SQLGetTypeInfoW 745
SQLMoreResults 819
SQLNativeSql, SQLNativeSqlW 789
SQLNumParams 781
SQLNumResultCols 799
SQLParamData 793
SQLPrepare, SQLPrepareW 771
SQLPrimaryKeys, SQLPrimaryKeysW 838
SQLProcedureColumns, SQLProcedureColumnsW
840
SQLProcedures, SQLProceduresW 842
SQLPutData 795
SQLRowCount 798

Hitachi Advanced Database Application Development Guide 1052

SQLSetConnectAttr, SQLSetConnectAttrW 749
SQLSetCursorName, SQLSetCursorNameW 778
SQLSetDescField, SQLSetDescFieldW 765
SQLSetDescRec 767
SQLSetEnvAttr 753
SQLSetPos 815
SQLSetStmtAttr, SQLSetStmtAttrW 756
SQLSpecialColumns, SQLSpecialColumnsW 844
SQLStatistics, SQLStatisticsW 847
SQLTablePrivileges, SQLTablePrivilegesW 851
SQLTables, SQLTablesW 854
SQLWarning interface 636
sqlwarningkeep

URL for connection 268
user property 273

statement handle
allocating (a_rdb_SQLAllocStmt()) 970
allocating (CLI function, example of) 944
releasing (a_rdb_SQLFreeStmt()) 984
releasing (CLI function, example of) 948

Statement interface 367
storesLowerCaseIdentifiers() 577
storesLowerCaseQuotedIdentifiers() 578
storesMixedCaseIdentifiers() 578
storesMixedCaseQuotedIdentifiers() 579
storesUpperCaseIdentifiers() 579
storesUpperCaseQuotedIdentifiers() 580
structure 1015
SUBQUERY 230
SUBQUERY HASH 230
SUBQUERY LOOP 230
subquery processing method

hash execution 148, 154
nested loops row value execution 154
nested loops work table execution 153
row value execution 147
work table execution 146
work table row value execution 148

subquery, how to process 146
supportsAlterTableWithAddColumn() 580
supportsAlterTableWithDropColumn() 581
supportsANSI92EntryLevelSQL() 581
supportsANSI92FullSQL() 582
supportsANSI92IntermediateSQL() 582
supportsBatchUpdates() 583
supportsCatalogsInDataManipulation() 583
supportsCatalogsInIndexDefinitions() 584

supportsCatalogsInPrivilegeDefinitions() 584
supportsCatalogsInProcedureCalls() 585
supportsCatalogsInTableDefinitions() 585
supportsColumnAliasing() 586
supportsConvert() 586
supportsConvert(int fromType, int toType) 587
supportsCoreSQLGrammar() 588
supportsCorrelatedSubqueries() 589
supportsDataDefinitionAndDataManipulationTransacti
ons() 589
supportsDataManipulationTransactionsOnly() 590
supportsDifferentTableCorrelationNames() 590
supportsExpressionsInOrderBy() 591
supportsExtendedSQLGrammar() 591
supportsFullOuterJoins() 592
supportsGetGeneratedKeys() 592
supportsGroupBy() 593
supportsGroupByBeyondSelect() 593
supportsGroupByUnrelated() 594
supportsIntegrityEnhancementFacility() 594
supportsLikeEscapeClause() 595
supportsLimitedOuterJoins() 595
supportsMinimumSQLGrammar() 596
supportsMixedCaseIdentifiers() 596
supportsMixedCaseQuotedIdentifiers() 597
supportsMultipleOpenResults() 597
supportsMultipleResultSets() 598
supportsMultipleTransactions() 598
supportsNamedParameters() 599
supportsNonNullableColumns() 599
supportsOpenCursorsAcrossCommit() 600
supportsOpenCursorsAcrossRollback() 600
supportsOpenStatementsAcrossCommit() 601
supportsOpenStatementsAcrossRollback() 601
supportsOrderByUnrelated() 602
supportsOuterJoins() 602
supportsPositionedDelete() 603
supportsPositionedUpdate() 603
supportsRefCursors() 604
supportsResultSetConcurrency(int type, int
concurrency) 604
supportsResultSetHoldability(int holdability) 605
supportsResultSetType(int type) 606
supportsSavepoints() 606
supportsSchemasInDataManipulation() 607
supportsSchemasInIndexDefinitions() 607
supportsSchemasInPrivilegeDefinitions() 608

Hitachi Advanced Database Application Development Guide 1053

supportsSchemasInProcedureCalls() 608
supportsSchemasInTableDefinitions() 609
supportsSelectForUpdate() 609
supportsStatementPooling() 610
supportsStoredFunctionsUsingCallSyntax() 610
supportsStoredProcedures() 611
supportsSubqueriesInComparisons() 611
supportsSubqueriesInExists() 612
supportsSubqueriesInIns() 612
supportsSubqueriesInQuantifieds() 613
supportsTableCorrelationNames() 613
supportsTransactionIsolationLevel(int level) 614
supportsTransactions() 615
supportsUnion() 615
supportsUnionAll() 616
surrogate pair 703
symbol conventions 12
symbolic literal 1012
system information for data source, acquiring 826

T
TABLE FUNCTION DERIVED TABLE 236
table joining methods 137
table scan 100
TABLE SCAN 242, 247
TABLE VALUE CONSTRUCTOR SCAN 246
TB meaning 15
text indexes used during execution of SQL statement

105
time change

machine on which JDBC driver has been installed 71
OS on client machine 97

TIME-type data
converting (CLI function) 1006
converting to (CLI function) 994

timeout
HADB server connection processing 47
HADB server processing request 47

timeout value, specifying
DataSource interface 650, 655
Statement interface 395

TIMESTAMP-type data
converting (CLI function) 1007
converting to (CLI function) 996

trace level 923
tracenum

URL for connection 268

user property 273
transaction access mode, specifying

for CLI functions 963
for JDBC driver 363
for ODBC driver 751

transaction control (designing application program)936
Transaction ID 256
transaction, terminating (CLI function) 968
tree row number 224
tree view 224

information displayed in 230
troubleshooting (ODBC) 909
try-with-resources statement 697
tuning 223
types of work tables

global work table 171
local work table 171

TZ (environment variable) 82, 83
if JDBC driver is used 61

U
UNION ALL 253
UNION DISTINCT 253
unsupported interface

JDBC 1.2 API 637
JDBC 2.1 Core API 644
JDBC 3.0 API 685
JDBC 4.0 API 695

unwrap(Class<T> iface) 691
update operation on retrieval using cursor, effect of 938
update SQL statement 640
UPDATE STATEMENT 230
updatesAreDetected(int type) 616
URL for connection 268

encodelang 268
USE FILTER 252, 254
user

URL for connection 268
user property 273

user property
encodelang 273

usesLocalFilePerTable() 617
usesLocalFiles() 617
USING CACHE 236
USING COST 243
using datetime information of archive range column to
narrow search range 208

Hitachi Advanced Database Application Development Guide 1054

V
value 1012
VARBINARY-type data

converting (CLI function) 1009
converting to (CLI function) 998

Version 256
version number conventions 15
version upgrade (HADB client) 88

W
wasNull() 495
WINDOW 241
work table execution

method for processing SELECT DISTINCT 169
method for processing set operation 165
methods for processing subqueries that do not
contain external reference column 146

work table row value execution 148
WORK TABLE SCAN 244
work tables created when SQL statements are
executed 172
Wrapper interface 690
wrapper pattern 688

Hitachi Advanced Database Application Development Guide 1055

6-6, Marunouchi 1-chome, Chiyoda-ku, Tokyo, 100-8280 Japan

	Hitachi Advanced Database Application Development Guide
	Notices
	Preface
	Contents
	Part 1: Environment Setup (Common)
	1. Overview of Application Program Development and Execution
	1.1 Procedure and prerequisites for application program development
	1.1.1 Programming languages for application programs
	1.1.2 Character encoding
	1.1.3 Application program development environment

	1.2 Application program execution modes

	2. Designing Client Definitions
	2.1 Specification formats for operands in the client definition
	2.2 Contents of operands in the client definition
	2.2.1 Operands related to system configuration
	2.2.2 Operands related to application program status monitoring
	2.2.3 Operands related to performance
	2.2.4 Operands related to SQL

	2.3 Operand specification rules
	2.4 Notes about using the function for centrally managing client definitions

	3. Setting Up an Environment for the JDBC Driver
	3.1 Environment setup procedure for the JDBC driver
	3.1.1 Installing Java Runtime Environment or Java Development Kit
	3.1.2 Installing the JDBC driver
	3.1.3 Specifying the CLASSPATH environment variable
	3.1.4 Checking the value of the TZ environment variable
	3.1.5 Granting the write permission for the trace file output destination directory
	3.1.6 Setting system properties
	3.1.7 Reviewing the scope of scans by antivirus software

	3.2 Handling unresponsive application programs
	3.3 Upgrading the JDBC driver (replacing the JAR file)
	3.4 Replacing the JDBC driver with a revised version
	3.5 Changing the time of the OS on a machine on which the JDBC driver has been installed
	3.6 Uninstalling the JDBC driver

	4. Setting Up an Environment for an HADB Client (If the ODBC Driver and CLI Functions Are Used)
	4.1 HADB client environment setup procedure
	4.1.1 HADB client for Windows
	4.1.2 HADB client for Linux

	4.2 Installing and uninstalling an HADB client
	4.2.1 HADB client for Windows
	4.2.2 HADB client for Linux

	4.3 Specifying environment variables
	4.3.1 HADB client for Windows
	4.3.2 HADB client for Linux

	4.4 Creating a client definition
	4.4.1 How to create a client definition
	4.4.2 Notes about changing a client definition
	4.4.3 Choosing a client definition

	4.5 Handling unresponsive application programs
	4.6 Upgrading an HADB client
	4.6.1 Preparations before upgrading an HADB client
	4.6.2 Notes about upgrading
	4.6.3 How to upgrade an HADB client
	4.6.4 Tasks to be performed after upgrading

	4.7 Downgrading an HADB client version (restoring the previous version)
	4.7.1 Preparations before downgrading an HADB client
	4.7.2 Notes about downgrading
	4.7.3 Downgrade procedure
	4.7.4 Tasks to be performed after downgrading

	4.8 Replacing HADB client with a revised version
	4.8.1 Procedure for replacing HADB client with a revised version

	4.9 Changing the OS time on a client machine
	4.9.1 Notes (changing the OS time)
	4.9.2 How to advance the OS time on a client machine
	4.9.3 How to restore the OS time on a client machine

	Part 2: Application Program Creation (Common)
	5. Designs Related to Improvement of Application Program Performance
	5.1 How to retrieve tables
	5.1.1 About table scans
	5.1.2 About index scans
	5.1.3 About key scans

	5.2 B-tree indexes and text indexes used during execution of SQL statements
	5.2.1 Priority and selection rules for indexes
	5.2.2 Examples of indexes that are used during retrieval of a table
	5.2.3 Examples of indexes that are used during retrieval of a table (examples of index priority)
	5.2.4 Cases where an index is not used
	5.2.5 How to check the index used during execution of an SQL statement
	5.2.6 Notes on searching using a text index

	5.3 Range indexes used during execution of SQL statements
	5.3.1 Conditions under which range indexes are used during execution of an SQL statement
	5.3.2 Examples of range indexes used during retrieval
	5.3.3 How to check the range index used during execution of an SQL statement

	5.4 How to evaluate the search conditions when indexes are used
	5.4.1 Evaluation method when B-tree indexes are used
	5.4.2 Evaluation method when range indexes are used

	5.5 Table joining methods
	5.5.1 About nested-loop join
	5.5.2 About hash join
	5.5.3 Characteristics of the joining methods

	5.6 How to process subqueries
	5.6.1 Methods for processing subqueries that do not contain an external reference column
	5.6.2 Characteristics of the methods for processing subqueries that do not contain an external reference column
	5.6.3 Methods for processing subqueries that contain an external reference column
	5.6.4 Characteristics of the methods for processing subqueries that contain an external reference column

	5.7 Grouping methods
	5.7.1 Hash grouping
	5.7.2 Sort grouping
	5.7.3 Characteristics of each type of grouping

	5.8 Methods for processing set operations
	5.8.1 Hash execution
	5.8.2 Work table execution
	5.8.3 Characteristics of the methods for processing set operations

	5.9 Method for processing SELECT DISTINCT
	5.9.1 Hash execution
	5.9.2 Work table execution
	5.9.3 Characteristics of the methods for processing SELECT DISTINCT

	5.10 Considerations when executing an SQL statement that creates work tables
	5.10.1 Types of work tables
	5.10.2 Work tables created when SQL statements are executed
	5.10.3 Number of work tables that are created

	5.11 Equivalent exchange of search conditions
	5.11.1 Equivalent exchange for OR conditions (removing from the OR conditions)
	5.11.2 Equivalent exchange for OR conditions (converting to IN conditions)
	5.11.3 Equivalent exchange for OR conditions (equivalent exchange to derived tables for which the UNION ALL set operation is specified)
	5.11.4 Equivalent exchange for scalar operations
	5.11.5 Equivalent exchange for an IN predicate
	5.11.6 Equivalent exchange for a HAVING clause (converting to the WHERE clauses)
	5.11.7 Equivalent exchange for search conditions in SQL statements that specify derived queries (transposition to the WHERE clause of a derived query)

	5.12 Considerations when searching an archivable multi-chunk table
	5.12.1 Tips for searching an archivable multi-chunk table
	5.12.2 Using the datetime information of the archive range column to narrow the search range
	5.12.3 Notes about specifying JOIN (joined table)
	5.12.4 Equivalent exchange of SQL statements that search archivable multi-chunk tables

	5.13 Expanding internal derived tables
	5.14 Improving performance by batch transfer of retrieval results
	5.15 Batch transfer of dynamic parameter values

	6. Tuning Application Programs
	6.1 How to use access paths (how to use SQL statement execution plans)
	6.1.1 About access paths
	6.1.2 How to check access paths
	6.1.3 Examples of access paths
	6.1.4 Information displayed in the tree view
	6.1.5 Information displayed in the details view
	6.1.6 Information output in identification information view (SQL statement identification information)
	6.1.7 Information displayed for an access path (alphabetical order)

	Part 3: Application Program Creation (JDBC)
	7. Creating Application Programs
	7.1 JDBC driver provided by HADB
	7.1.1 Scope of JDBC standards compliance
	7.1.2 Package name and directory structure of the JAR file

	7.2 Basic procedure for application program processing
	7.3 How to connect to the HADB server
	7.3.1 Using the getConnection method of the DriverManager class to connect to the HADB server
	7.3.2 Using the getConnection method of the DataSource class to connect to the HADB server
	7.3.3 Connection information priorities

	7.4 Retrieving data (executing the SELECT statement)
	7.4.1 How to retrieve data
	7.4.2 How to use dynamic parameters

	7.5 Adding, updating, or deleting data (executing the INSERT, UPDATE, or DELETE statement)
	7.6 Data processing
	7.6.1 Mapping data types
	7.6.2 Data conversion process
	7.6.3 Overflow handling
	7.6.4 Conversion of character encoding

	7.7 Troubleshooting
	7.7.1 JDBC interface method traces
	7.7.2 Exception trace log

	7.8 Scalar functions that can be specified in the escape clause

	8. The JDBC 1.2 API
	8.1 Driver interface
	8.1.1 List of the methods in the Driver interface
	8.1.2 acceptsURL(String url)
	8.1.3 connect(String url, Properties info)
	8.1.4 getMajorVersion()
	8.1.5 getMinorVersion()
	8.1.6 getPropertyInfo(String url, Properties info)
	8.1.7 jdbcCompliant()
	8.1.8 Escape clause

	8.2 Connection interface
	8.2.1 List of the methods in the Connection interface
	8.2.2 clearWarnings()
	8.2.3 close()
	8.2.4 commit()
	8.2.5 createStatement()
	8.2.6 createStatement(int resultSetType, int resultSetConcurrency)
	8.2.7 createStatement(int resultSetType, int resultSetConcurrency, int resultSetHoldability)
	8.2.8 getAutoCommit()
	8.2.9 getCatalog()
	8.2.10 getHADBConnectionID()
	8.2.11 getHADBConnectionSerialNum()
	8.2.12 getHADBOrderMode()
	8.2.13 getHADBSQLHashFltSize()
	8.2.14 getHADBSQLHashTblSize()
	8.2.15 getHADBSQLMaxRthdNum()
	8.2.16 getHADBTransactionID()
	8.2.17 getHoldability()
	8.2.18 getMetaData()
	8.2.19 getSchema()
	8.2.20 getTransactionIsolation()
	8.2.21 getTypeMap()
	8.2.22 getWarnings()
	8.2.23 isClosed()
	8.2.24 isReadOnly()
	8.2.25 isValid(int timeout)
	8.2.26 nativeSQL(String sql)
	8.2.27 prepareStatement(String sql)
	8.2.28 prepareStatement(String sql, int resultSetType, int resultSetConcurrency)
	8.2.29 prepareStatement(String sql, int resultSetType, int resultSetConcurrency, int resultSetHoldability)
	8.2.30 rollback()
	8.2.31 setAutoCommit(boolean autoCommit)
	8.2.32 setCatalog(String catalog)
	8.2.33 setHADBAuditInfo(int pos,String userinfo)
	8.2.34 setHADBOrderMode(int mode)
	8.2.35 setHADBSQLHashFltSize(int areaSize)
	8.2.36 setHADBSQLHashTblSize(int areaSize)
	8.2.37 setHADBSQLMaxRthdNum(int rthdNum)
	8.2.38 setHoldability(int holdability)
	8.2.39 setReadOnly(boolean readOnly)
	8.2.40 setSchema(String schema)
	8.2.41 setTransactionIsolation(int level)

	8.3 Statement interface
	8.3.1 List of the methods in the Statement interface
	8.3.2 addBatch(String sql)
	8.3.3 cancel()
	8.3.4 clearBatch()
	8.3.5 clearWarnings()
	8.3.6 close()
	8.3.7 closeOnCompletion()
	8.3.8 execute(String sql)
	8.3.9 executeBatch()
	8.3.10 executeLargeBatch()
	8.3.11 executeLargeUpdate(String sql)
	8.3.12 executeQuery(String sql)
	8.3.13 executeUpdate(String sql)
	8.3.14 getConnection()
	8.3.15 getFetchDirection()
	8.3.16 getFetchSize()
	8.3.17 getHADBSQLSerialNum()
	8.3.18 getHADBStatementHandle()
	8.3.19 getLargeMaxRows()
	8.3.20 getLargeUpdateCount()
	8.3.21 getMaxFieldSize()
	8.3.22 getMaxRows()
	8.3.23 getMoreResults()
	8.3.24 getQueryTimeout()
	8.3.25 getResultSet()
	8.3.26 getResultSetConcurrency()
	8.3.27 getResultSetHoldability()
	8.3.28 getResultSetType()
	8.3.29 getUpdateCount()
	8.3.30 getWarnings()
	8.3.31 isClosed()
	8.3.32 isCloseOnCompletion()
	8.3.33 isPoolable()
	8.3.34 setCursorName(String name)
	8.3.35 setEscapeProcessing(boolean enable)
	8.3.36 setFetchDirection(int direction)
	8.3.37 setFetchSize(int rows)
	8.3.38 setLargeMaxRows(long max)
	8.3.39 setMaxFieldSize(int max)
	8.3.40 setMaxRows(int max)
	8.3.41 setQueryTimeout(int seconds)
	8.3.42 Notes about the Statement interface

	8.4 PreparedStatement interface
	8.4.1 List of the methods in the PreparedStatement interface
	8.4.2 addBatch()
	8.4.3 clearParameters()
	8.4.4 execute()
	8.4.5 executeLargeUpdate()
	8.4.6 executeQuery()
	8.4.7 executeUpdate()
	8.4.8 getHADBSQLSerialNum()
	8.4.9 getHADBStatementHandle()
	8.4.10 getMetaData()
	8.4.11 getParameterMetaData()
	8.4.12 setAsciiStream(int parameterIndex, InputStream x, int length)
	8.4.13 setBigDecimal(int parameterIndex, BigDecimal x)
	8.4.14 setBinaryStream(int parameterIndex, InputStream x, int length)
	8.4.15 setBoolean(int parameterIndex, boolean x)
	8.4.16 setByte(int parameterIndex, byte x)
	8.4.17 setBytes(int parameterIndex, byte[] x)
	8.4.18 setCharacterStream(int parameterIndex, Reader reader, int length)
	8.4.19 setDate(int parameterIndex, Date x)
	8.4.20 setDate(int parameterIndex, Date x, Calendar cal)
	8.4.21 setDouble(int parameterIndex, double x)
	8.4.22 setFloat(int parameterIndex, float x)
	8.4.23 setInt(int parameterIndex, int x)
	8.4.24 setLong(int parameterIndex, long x)
	8.4.25 setNull(int parameterIndex,int sqlType)
	8.4.26 setObject(int parameterIndex, Object x)
	8.4.27 setObject(int parameterIndex, Object x, int targetSqlType)
	8.4.28 setObject(int parameterIndex, Object x, int targetSqlType, int scale)
	8.4.29 setShort(int parameterIndex, short x)
	8.4.30 setString(int parameterIndex, String x)
	8.4.31 setTime(int parameterIndex, Time x)
	8.4.32 setTime(int parameterIndex, Time x, Calendar cal)
	8.4.33 setTimestamp(int parameterIndex, Timestamp x)
	8.4.34 setTimestamp(int parameterIndex, Timestamp x, Calendar cal)
	8.4.35 Notes about the PreparedStatement interface

	8.5 ResultSet interface
	8.5.1 List of the methods in the ResultSet interface
	8.5.2 absolute(int row)
	8.5.3 afterLast()
	8.5.4 beforeFirst()
	8.5.5 clearWarnings()
	8.5.6 close()
	8.5.7 findColumn(String columnName)
	8.5.8 first()
	8.5.9 getAsciiStream(int columnIndex)
	8.5.10 getAsciiStream(String columnName)
	8.5.11 getBigDecimal(int columnIndex)
	8.5.12 getBigDecimal(String columnName)
	8.5.13 getBinaryStream(int columnIndex)
	8.5.14 getBinaryStream(String columnName)
	8.5.15 getBoolean(int columnIndex)
	8.5.16 getBoolean(String columnName)
	8.5.17 getByte(int columnIndex)
	8.5.18 getByte(String columnName)
	8.5.19 getBytes(int columnIndex)
	8.5.20 getBytes(String columnName)
	8.5.21 getCharacterStream(int columnIndex)
	8.5.22 getCharacterStream(String columnName)
	8.5.23 getConcurrency()
	8.5.24 getCursorName()
	8.5.25 getDate(int columnIndex)
	8.5.26 getDate(int columnIndex, Calendar cal)
	8.5.27 getDate(String columnName)
	8.5.28 getDate(String columnName, Calendar cal)
	8.5.29 getDouble(int columnIndex)
	8.5.30 getDouble(String columnName)
	8.5.31 getFetchDirection()
	8.5.32 getFetchSize()
	8.5.33 getFloat(int columnIndex)
	8.5.34 getFloat(String columnName)
	8.5.35 getHoldability()
	8.5.36 getInt(int columnIndex)
	8.5.37 getInt(String columnName)
	8.5.38 getLong(int columnIndex)
	8.5.39 getLong(String columnName)
	8.5.40 getMetaData()
	8.5.41 getObject(int columnIndex)
	8.5.42 getObject(String columnName)
	8.5.43 getObject(int columnIndex,Class<T> type)
	8.5.44 getObject(String columnLabel,Class<T> type)
	8.5.45 getRow()
	8.5.46 getShort(int columnIndex)
	8.5.47 getShort(String columnName)
	8.5.48 getStatement()
	8.5.49 getString(int columnIndex)
	8.5.50 getString(String columnName)
	8.5.51 getTime(int columnIndex)
	8.5.52 getTime(int columnIndex, Calendar cal)
	8.5.53 getTime(String columnName)
	8.5.54 getTime(String columnName, Calendar cal)
	8.5.55 getTimestamp(int columnIndex)
	8.5.56 getTimestamp(int columnIndex, Calendar cal)
	8.5.57 getTimestamp(String columnName)
	8.5.58 getTimestamp(String columnName, Calendar cal)
	8.5.59 getType()
	8.5.60 getWarnings()
	8.5.61 isAfterLast()
	8.5.62 isBeforeFirst()
	8.5.63 isClosed()
	8.5.64 isFirst()
	8.5.65 isLast()
	8.5.66 last()
	8.5.67 next()
	8.5.68 previous()
	8.5.69 relative(int rows)
	8.5.70 setFetchDirection(int direction)
	8.5.71 setFetchSize(int rows)
	8.5.72 wasNull()
	8.5.73 Fields supported by the ResultSet interface
	8.5.74 Notes about the ResultSet interface

	8.6 DatabaseMetaData interface
	8.6.1 List of the methods in the DatabaseMetaData interface
	8.6.2 allProceduresAreCallable()
	8.6.3 allTablesAreSelectable()
	8.6.4 autoCommitFailureClosesAllResultSets()
	8.6.5 dataDefinitionCausesTransactionCommit()
	8.6.6 dataDefinitionIgnoredInTransactions()
	8.6.7 deletesAreDetected(int type)
	8.6.8 doesMaxRowSizeIncludeBlobs()
	8.6.9 generatedKeyAlwaysReturned()
	8.6.10 getAttributes(String catalog, String schemaPattern, String typeNamePattern, String attributeNamePattern)
	8.6.11 getBestRowIdentifier(String catalog, String schema, String table, int scope, boolean nullable)
	8.6.12 getCatalogs()
	8.6.13 getCatalogSeparator()
	8.6.14 getCatalogTerm()
	8.6.15 getClientInfoProperties()
	8.6.16 getColumnPrivileges(String catalog, String schema, String table, String columnNamePattern)
	8.6.17 getColumns(String catalog, String schemaPattern, String tableNamePattern, String columnNamePattern)
	8.6.18 getConnection()
	8.6.19 getCrossReference(String parentCatalog, String parentSchema, String parentTable, String foreignCatalog, String foreignSchema, String foreignTable)
	8.6.20 getDatabaseMajorVersion()
	8.6.21 getDatabaseMinorVersion()
	8.6.22 getDatabaseProductName()
	8.6.23 getDatabaseProductVersion()
	8.6.24 getDefaultTransactionIsolation()
	8.6.25 getDriverMajorVersion()
	8.6.26 getDriverMinorVersion()
	8.6.27 getDriverName()
	8.6.28 getDriverVersion()
	8.6.29 getExportedKeys(String catalog, String schema, String table)
	8.6.30 getExtraNameCharacters()
	8.6.31 getFunctionColumns(String catalog, String schemaPattern, String functionNamePattern, String columnNamePattern)
	8.6.32 getFunctions(String catalog, String schemaPattern, String functionNamePattern)
	8.6.33 getIdentifierQuoteString()
	8.6.34 getImportedKeys(String catalog, String schema, String table)
	8.6.35 getIndexInfo(String catalog, String schema, String table, boolean unique, boolean approximate)
	8.6.36 getJDBCMajorVersion()
	8.6.37 getJDBCMinorVersion()
	8.6.38 getMaxBinaryLiteralLength()
	8.6.39 getMaxCatalogNameLength()
	8.6.40 getMaxCharLiteralLength()
	8.6.41 getMaxColumnNameLength()
	8.6.42 getMaxColumnsInGroupBy()
	8.6.43 getMaxColumnsInIndex()
	8.6.44 getMaxColumnsInOrderBy()
	8.6.45 getMaxColumnsInSelect()
	8.6.46 getMaxColumnsInTable()
	8.6.47 getMaxConnections()
	8.6.48 getMaxCursorNameLength()
	8.6.49 getMaxIndexLength()
	8.6.50 getMaxLogicalLobSize()
	8.6.51 getMaxProcedureNameLength()
	8.6.52 getMaxRowSize()
	8.6.53 getMaxSchemaNameLength()
	8.6.54 getMaxStatementLength()
	8.6.55 getMaxStatements()
	8.6.56 getMaxTableNameLength()
	8.6.57 getMaxTablesInSelect()
	8.6.58 getMaxUserNameLength()
	8.6.59 getNumericFunctions()
	8.6.60 getPrimaryKeys(String catalog, String schema, String table)
	8.6.61 getProcedureColumns(String catalog, String schemaPattern, String procedureNamePattern, String columnNamePattern)
	8.6.62 getProcedures(String catalog, String schemaPattern, String procedureNamePattern)
	8.6.63 getProcedureTerm()
	8.6.64 getPseudoColumns(String catalog,String schemaPattern,String tableNamePattern,String columnNamePattern)
	8.6.65 getResultSetHoldability()
	8.6.66 getRowIdLifetime()
	8.6.67 getSchemas()
	8.6.68 getSchemas(String catalog, String schemaPattern)
	8.6.69 getSchemaTerm()
	8.6.70 getSearchStringEscape()
	8.6.71 getSQLKeywords()
	8.6.72 getSQLStateType()
	8.6.73 getStringFunctions()
	8.6.74 getSuperTables(String catalog, String schemaPattern, String tableNamePattern)
	8.6.75 getSuperTypes(String catalog, String schemaPattern, String typeNamePattern)
	8.6.76 getSystemFunctions()
	8.6.77 getTablePrivileges(String catalog, String schemaPattern, String tableNamePattern)
	8.6.78 getTables(String catalog, String schemaPattern, String tableNamePattern, String[] types)
	8.6.79 getTableTypes()
	8.6.80 getTimeDateFunctions()
	8.6.81 getTypeInfo()
	8.6.82 getUDTs(String catalog, String schemaPattern, String typeNamePattern, int[] types)
	8.6.83 getURL()
	8.6.84 getUserName()
	8.6.85 getVersionColumns(String catalog, String schema, String table)
	8.6.86 insertsAreDetected(int type)
	8.6.87 isCatalogAtStart()
	8.6.88 isReadOnly()
	8.6.89 locatorsUpdateCopy()
	8.6.90 nullPlusNonNullIsNull()
	8.6.91 nullsAreSortedAtEnd()
	8.6.92 nullsAreSortedAtStart()
	8.6.93 nullsAreSortedHigh()
	8.6.94 nullsAreSortedLow()
	8.6.95 othersDeletesAreVisible(int type)
	8.6.96 othersInsertsAreVisible(int type)
	8.6.97 othersUpdatesAreVisible(int type)
	8.6.98 ownDeletesAreVisible(int type)
	8.6.99 ownInsertsAreVisible(int type)
	8.6.100 ownUpdatesAreVisible(int type)
	8.6.101 storesLowerCaseIdentifiers()
	8.6.102 storesLowerCaseQuotedIdentifiers()
	8.6.103 storesMixedCaseIdentifiers()
	8.6.104 storesMixedCaseQuotedIdentifiers()
	8.6.105 storesUpperCaseIdentifiers()
	8.6.106 storesUpperCaseQuotedIdentifiers()
	8.6.107 supportsAlterTableWithAddColumn()
	8.6.108 supportsAlterTableWithDropColumn()
	8.6.109 supportsANSI92EntryLevelSQL()
	8.6.110 supportsANSI92FullSQL()
	8.6.111 supportsANSI92IntermediateSQL()
	8.6.112 supportsBatchUpdates()
	8.6.113 supportsCatalogsInDataManipulation()
	8.6.114 supportsCatalogsInIndexDefinitions()
	8.6.115 supportsCatalogsInPrivilegeDefinitions()
	8.6.116 supportsCatalogsInProcedureCalls()
	8.6.117 supportsCatalogsInTableDefinitions()
	8.6.118 supportsColumnAliasing()
	8.6.119 supportsConvert()
	8.6.120 supportsConvert(int fromType, int toType)
	8.6.121 supportsCoreSQLGrammar()
	8.6.122 supportsCorrelatedSubqueries()
	8.6.123 supportsDataDefinitionAndDataManipulationTransactions()
	8.6.124 supportsDataManipulationTransactionsOnly()
	8.6.125 supportsDifferentTableCorrelationNames()
	8.6.126 supportsExpressionsInOrderBy()
	8.6.127 supportsExtendedSQLGrammar()
	8.6.128 supportsFullOuterJoins()
	8.6.129 supportsGetGeneratedKeys()
	8.6.130 supportsGroupBy()
	8.6.131 supportsGroupByBeyondSelect()
	8.6.132 supportsGroupByUnrelated()
	8.6.133 supportsIntegrityEnhancementFacility()
	8.6.134 supportsLikeEscapeClause()
	8.6.135 supportsLimitedOuterJoins()
	8.6.136 supportsMinimumSQLGrammar()
	8.6.137 supportsMixedCaseIdentifiers()
	8.6.138 supportsMixedCaseQuotedIdentifiers()
	8.6.139 supportsMultipleOpenResults()
	8.6.140 supportsMultipleResultSets()
	8.6.141 supportsMultipleTransactions()
	8.6.142 supportsNamedParameters()
	8.6.143 supportsNonNullableColumns()
	8.6.144 supportsOpenCursorsAcrossCommit()
	8.6.145 supportsOpenCursorsAcrossRollback()
	8.6.146 supportsOpenStatementsAcrossCommit()
	8.6.147 supportsOpenStatementsAcrossRollback()
	8.6.148 supportsOrderByUnrelated()
	8.6.149 supportsOuterJoins()
	8.6.150 supportsPositionedDelete()
	8.6.151 supportsPositionedUpdate()
	8.6.152 supportsRefCursors()
	8.6.153 supportsResultSetConcurrency(int type, int concurrency)
	8.6.154 supportsResultSetHoldability(int holdability)
	8.6.155 supportsResultSetType(int type)
	8.6.156 supportsSavepoints()
	8.6.157 supportsSchemasInDataManipulation()
	8.6.158 supportsSchemasInIndexDefinitions()
	8.6.159 supportsSchemasInPrivilegeDefinitions()
	8.6.160 supportsSchemasInProcedureCalls()
	8.6.161 supportsSchemasInTableDefinitions()
	8.6.162 supportsSelectForUpdate()
	8.6.163 supportsStatementPooling()
	8.6.164 supportsStoredFunctionsUsingCallSyntax()
	8.6.165 supportsStoredProcedures()
	8.6.166 supportsSubqueriesInComparisons()
	8.6.167 supportsSubqueriesInExists()
	8.6.168 supportsSubqueriesInIns()
	8.6.169 supportsSubqueriesInQuantifieds()
	8.6.170 supportsTableCorrelationNames()
	8.6.171 supportsTransactionIsolationLevel(int level)
	8.6.172 supportsTransactions()
	8.6.173 supportsUnion()
	8.6.174 supportsUnionAll()
	8.6.175 updatesAreDetected(int type)
	8.6.176 usesLocalFilePerTable()
	8.6.177 usesLocalFiles()

	8.7 ResultSetMetaData interface
	8.7.1 List of the methods in the ResultSetMetaData interface
	8.7.2 getCatalogName(int column)
	8.7.3 getColumnClassName(int column)
	8.7.4 getColumnCount()
	8.7.5 getColumnDisplaySize(int column)
	8.7.6 getColumnLabel(int column)
	8.7.7 getColumnName(int column)
	8.7.8 getColumnType(int column)
	8.7.9 getColumnTypeName(int column)
	8.7.10 getPrecision(int column)
	8.7.11 getScale(int column)
	8.7.12 getSchemaName(int column)
	8.7.13 getTableName(int column)
	8.7.14 isAutoIncrement(int column)
	8.7.15 isCaseSensitive(int column)
	8.7.16 isCurrency(int column)
	8.7.17 isDefinitelyWritable(int column)
	8.7.18 isNullable(int column)
	8.7.19 isReadOnly(int column)
	8.7.20 isSearchable(int column)
	8.7.21 isSigned(int column)
	8.7.22 isWritable(int column)

	8.8 SQLException interface
	8.9 SQLWarning interface
	8.9.1 Creating an SQLWarning object
	8.9.2 Releasing SQLWarning objects

	8.10 Unsupported interfaces

	9. The JDBC 2.1 Core API
	9.1 Scope of support for the result set extended functions
	9.2 Scope of support for batch update functionality
	9.2.1 SQL statements that can use the batch update functionality
	9.2.2 Batch update functionality with the Statement class
	9.2.3 Batch update functionality with the PreparedStatement class
	9.2.4 Notes

	9.3 Added data types
	9.4 Unsupported interfaces

	10. The JDBC 2.0 Optional Package
	10.1 HADB's scope of support for the functions added in the JDBC 2.0 Optional Package
	10.2 DataSource interface
	10.2.1 List of the methods in the DataSource interface
	10.2.2 getConnection()
	10.2.3 getConnection(String username, String password)
	10.2.4 getLoginTimeout()
	10.2.5 getLogWriter()
	10.2.6 setLoginTimeout(int seconds)
	10.2.7 setLogWriter(PrintWriter out)

	10.3 ConnectionPoolDataSource interface
	10.3.1 List of the methods in the ConnectionPoolDataSource interface
	10.3.2 getLoginTimeout()
	10.3.3 getLogWriter()
	10.3.4 getPooledConnection()
	10.3.5 getPooledConnection(String user, String password)
	10.3.6 setLoginTimeout(int seconds)
	10.3.7 setLogWriter(PrintWriter out)

	10.4 PooledConnection interface
	10.4.1 List of the methods in the PooledConnection interface
	10.4.2 addConnectionEventListener(ConnectionEventListener listener)
	10.4.3 close()
	10.4.4 getConnection()
	10.4.5 removeConnectionEventListener(ConnectionEventListener listener)

	10.5 Connection information setup and acquisition interface
	10.5.1 List of the methods in the connection information setup and acquisition interface
	10.5.2 getApName()
	10.5.3 getEncodeLang()
	10.5.4 getInterfaceMethodTrace()
	10.5.5 getNotErrorOccurred()
	10.5.6 getPassword()
	10.5.7 getSQLWarningKeep()
	10.5.8 getTraceNumber()
	10.5.9 getUser()
	10.5.10 getHostName()
	10.5.11 getPort()
	10.5.12 setApName(String name)
	10.5.13 setEncodeLang(String lang)
	10.5.14 setInterfaceMethodTrace(boolean flag)
	10.5.15 setNotErrorOccurred(boolean mode)
	10.5.16 setPassword(String password)
	10.5.17 setSQLWarningKeep(boolean mode)
	10.5.18 setTraceNumber(int num)
	10.5.19 setUser(String user)
	10.5.20 setHostName(String name)
	10.5.21 setPort(int port)

	11. The JDBC 3.0 API
	11.1 HADB's scope of support for the functions added in the JDBC 3.0 API
	11.2 ParameterMetaData interface
	11.2.1 List of the methods in the ParameterMetaData interface
	11.2.2 getParameterClassName(int param)
	11.2.3 getParameterCount()
	11.2.4 getParameterMode(int param)
	11.2.5 getParameterType(int param)
	11.2.6 getParameterTypeName(int param)
	11.2.7 getPrecision(int param)
	11.2.8 getScale(int param)
	11.2.9 isNullable(int param)
	11.2.10 isSigned(int param)

	11.3 Unsupported interfaces

	12. The JDBC 4.0 API
	12.1 HADB's scope of support for the functions added in the JDBC 4.0 API
	12.1.1 Automatic loading of java.sql.Driver
	12.1.2 Wrapper pattern
	12.1.3 SQL exception extension
	12.1.4 Connection management
	12.1.5 Added scalar functions

	12.2 Wrapper interface
	12.2.1 List of the methods in the Wrapper interface
	12.2.2 isWrapperFor(Class<?> iface)
	12.2.3 unwrap(Class<T> iface)

	12.3 SQL exception extension function
	12.4 Unsupported interfaces

	13. The JDBC 4.1 API
	13.1 HADB's scope of support for the functions added in the JDBC 4.1 API
	13.1.1 try-with-resources statement
	13.1.2 Closing Statement objects when their dependent objects close

	14. The JDBC 4.2 API
	14.1 HADB's scope of support for the functions added in the JDBC 4.2 API
	14.1.1 Large update counts

	Part 4: Application Program Creation (ODBC)
	15. Creating Application Programs
	15.1 ODBC driver provided by HADB
	15.1.1 ODBC driver version with which the HADB ODBC driver is compliant
	15.1.2 System configuration
	15.1.3 About conversion of character encoding
	15.1.4 About using the ODBC cursor library

	15.2 HADB ODBC driver environment setup
	15.2.1 Specifying data sources
	15.2.2 Registering the registry key
	15.2.3 Deleting data sources

	15.3 Correspondence between data types
	15.3.1 Correspondence between ODBC's SQL data types and HADB's data types
	15.3.2 Correspondence between ODBC's SQL data types and C data types
	15.3.3 Notes about data type conversion

	15.4 Information that is returned in the event of an error
	15.5 Limitations
	15.5.1 ROW specification
	15.5.2 AUTOCOMMIT specifications
	15.5.3 Notes about the maximum number SQL processing real threads

	15.6 Notes
	15.6.1 Effects of update operations on a retrieval using a cursor
	15.6.2 Notes on using the HADB ODBC driver in ODBC 2.x applications

	16. ODBC Functions
	16.1 List of ODBC functions
	16.2 Notes about SQLxxx and SQLxxxW functions
	16.3 Connecting to the data source
	16.3.1 SQLAllocHandle
	16.3.2 SQLConnect, SQLConnectW
	16.3.3 SQLDriverConnect, SQLDriverConnectW
	16.3.4 SQLBrowseConnect, SQLBrowseConnectW

	16.4 Acquiring driver and data source information
	16.4.1 SQLDataSources, SQLDataSourcesW
	16.4.2 SQLDrivers, SQLDriversW
	16.4.3 SQLGetInfo, SQLGetInfoW
	16.4.4 SQLGetFunctions
	16.4.5 SQLGetTypeInfo, SQLGetTypeInfoW

	16.5 Specifying and obtaining driver options
	16.5.1 SQLSetConnectAttr, SQLSetConnectAttrW
	16.5.2 SQLGetConnectAttr, SQLGetConnectAttrW
	16.5.3 SQLSetEnvAttr
	16.5.4 SQLGetEnvAttr
	16.5.5 SQLSetStmtAttr, SQLSetStmtAttrW
	16.5.6 SQLGetStmtAttr, SQLGetStmtAttrW

	16.6 Specifying descriptor values
	16.6.1 SQLGetDescField, SQLGetDescFieldW
	16.6.2 SQLGetDescRec, SQLGetDescRecW
	16.6.3 SQLSetDescField, SQLSetDescFieldW
	16.6.4 SQLSetDescRec
	16.6.5 SQLCopyDesc

	16.7 Creating SQL requests
	16.7.1 SQLPrepare, SQLPrepareW
	16.7.2 SQLBindParameter
	16.7.3 SQLGetCursorName, SQLGetCursorNameW
	16.7.4 SQLSetCursorName, SQLSetCursorNameW
	16.7.5 SQLDescribeParam
	16.7.6 SQLNumParams

	16.8 Executing SQL statements
	16.8.1 SQLExecute
	16.8.2 SQLExecDirect, SQLExecDirectW
	16.8.3 SQLNativeSql, SQLNativeSqlW
	16.8.4 SQLParamData
	16.8.5 SQLPutData

	16.9 Acquiring execution results and execution result information
	16.9.1 SQLRowCount
	16.9.2 SQLNumResultCols
	16.9.3 SQLDescribeCol, SQLDescribeColW
	16.9.4 SQLColAttribute, SQLColAttributeW
	16.9.5 SQLBindCol
	16.9.6 SQLFetch
	16.9.7 SQLFetchScroll
	16.9.8 SQLGetData
	16.9.9 SQLSetPos
	16.9.10 SQLBulkOperations
	16.9.11 SQLMoreResults
	16.9.12 SQLGetDiagField, SQLGetDiagFieldW
	16.9.13 SQLGetDiagRec, SQLGetDiagRecW

	16.10 Acquiring system information for the data source
	16.10.1 SQLColumnPrivileges, SQLColumnPrivilegesW
	16.10.2 SQLColumns, SQLColumnsW
	16.10.3 SQLForeignKeys, SQLForeignKeysW
	16.10.4 SQLPrimaryKeys, SQLPrimaryKeysW
	16.10.5 SQLProcedureColumns, SQLProcedureColumnsW
	16.10.6 SQLProcedures, SQLProceduresW
	16.10.7 SQLSpecialColumns, SQLSpecialColumnsW
	16.10.8 SQLStatistics, SQLStatisticsW
	16.10.9 SQLTablePrivileges, SQLTablePrivilegesW
	16.10.10 SQLTables, SQLTablesW

	16.11 Terminating execution of SQL statements
	16.11.1 SQLFreeStmt
	16.11.2 SQLCloseCursor
	16.11.3 SQLCancel
	16.11.4 SQLEndTran

	16.12 Disconnecting from the data source
	16.12.1 SQLDisconnect
	16.12.2 SQLFreeHandle

	16.13 Information types that can be specified for InfoType in SQLGetInfo and SQLGetInfoW
	16.14 Attributes that can be specified in SQLSetConnectAttr, SQLSetConnectAttrW, SQLGetConnectAttr, and SQLGetConnectAttrW
	16.15 Attributes that can be specified in SQLSetEnvAttr and SQLGetEnvAttr
	16.16 Attributes that can be specified in SQLSetStmtAttr, SQLSetStmtAttrW, SQLGetStmtAttr, and SQLGetStmtAttrW
	16.17 Attributes that can be specified in SQLGetDescField, SQLGetDescFieldW, SQLSetDescField, and SQLSetDescFieldW
	16.18 Attributes that can be specified in DiagIdentifier of SQLGetDiagField and SQLGetDiagFieldW

	17. Troubleshooting
	17.1 Information used for troubleshooting
	17.1.1 Messages output by BI tools and ODBC modules
	17.1.2 ODBC traces
	17.1.3 HADB ODBC driver trace information
	17.1.4 Messages output by the HADB server and HADB client
	17.1.5 SQL trace information

	17.2 Troubleshooting procedure
	17.2.1 Handling errors
	17.2.2 Troubleshooting tips

	17.3 Settings for outputting HADB ODBC driver trace information
	17.3.1 Configuration in ODBC Data Source Administrator
	17.3.2 Configuration using environment variables
	17.3.3 Relative priority of configuration in ODBC Data Source Administrator and environment variables

	17.4 Information output as HADB ODBC driver trace information
	17.4.1 About trace levels
	17.4.2 Information output when trace level is 1
	17.4.3 Information output when trace level is 2

	17.5 Notes about HADB ODBC driver trace information

	Part 5: Application Program Creation (CLI Functions)
	18. Creating Application Programs
	18.1 Designing application programs
	18.1.1 Flow of application program processing
	18.1.2 Transaction control
	18.1.3 Flow of processing using dynamic parameters
	18.1.4 Effects of update operations on a retrieval using a cursor
	18.1.5 Evaluation and handling of SQL statement errors

	18.2 How to use the CLI functions
	18.2.1 Connecting to and disconnecting from the HADB server
	18.2.2 Referencing data
	18.2.3 Using dynamic parameters
	18.2.4 Adding, updating, or deleting data
	18.2.5 Canceling SQL processing that is executing
	18.2.6 Notes about using the CLI functions

	18.3 Compiling and linking application programs

	19. CLI Functions
	19.1 List of CLI functions and common rules
	19.1.1 List of CLI functions
	19.1.2 Common rules

	19.2 CLI functions for connecting to and disconnecting from the HADB server
	19.2.1 a_rdb_SQLAllocConnect() (allocate a connection handle)
	19.2.2 a_rdb_SQLConnect() (establish a connection)
	19.2.3 a_rdb_SQLSetConnectAttr() (set connection attributes)
	19.2.4 a_rdb_SQLDisconnect() (close a connection)
	19.2.5 a_rdb_SQLFreeConnect() (release a connection handle)

	19.3 CLI functions for controlling transactions
	19.3.1 a_rdb_SQLCancel() (cancel SQL processing)
	19.3.2 a_rdb_SQLEndTran() (terminate the transaction)

	19.4 CLI functions for execution of SQL statements
	19.4.1 a_rdb_SQLAllocStmt() (allocate a statement handle)
	19.4.2 a_rdb_SQLBindArrayParams() (bind dynamic parameters in batch mode)
	19.4.3 a_rdb_SQLBindCols() (associate retrieval result columns)
	19.4.4 a_rdb_SQLBindParams() (associate dynamic parameters)
	19.4.5 a_rdb_SQLCloseCursor() (close the cursor)
	19.4.6 a_rdb_SQLDescribeCols() (acquire information about the retrieval result columns)
	19.4.7 a_rdb_SQLDescribeParams() (acquire dynamic parameter information)
	19.4.8 a_rdb_SQLExecDirect() (preprocess and execute an SQL statement)
	19.4.9 a_rdb_SQLExecute() (execute a preprocessed SQL statement)
	19.4.10 a_rdb_SQLFetch() (fetch a row)
	19.4.11 a_rdb_SQLFreeStmt() (release a statement handle)
	19.4.12 a_rdb_SQLNumParams() (acquire the number of dynamic parameters)
	19.4.13 a_rdb_SQLNumResultCols() (acquire the number of retrieval result columns)
	19.4.14 a_rdb_SQLPrepare() (preprocess an SQL statement)

	19.5 CLI functions for data type conversion
	19.5.1 a_rdb_CNV_charBINARY() (convert to BINARY-type data)
	19.5.2 a_rdb_CNV_charDATE() (convert to DATE-type data)
	19.5.3 a_rdb_CNV_charDECIMAL() (convert to DECIMAL-type data)
	19.5.4 a_rdb_CNV_charTIME() (convert to TIME-type data)
	19.5.5 a_rdb_CNV_charTIMESTAMP() (convert to TIMESTAMP-type data)
	19.5.6 a_rdb_CNV_charVARBINARY() (convert to VARBINARY-type data)
	19.5.7 a_rdb_CNV_BINARYchar() (convert BINARY-type data)
	19.5.8 a_rdb_CNV_DATEchar() (convert DATE-type data)
	19.5.9 a_rdb_CNV_DECIMALchar() (convert DECIMAL-type data)
	19.5.10 a_rdb_CNV_TIMEchar() (convert TIME-type data)
	19.5.11 a_rdb_CNV_TIMESTAMPchar() (convert TIMESTAMP-type data)
	19.5.12 a_rdb_CNV_VARBINARYchar() (convert VARBINARY-type data)

	19.6 Correspondence to the SQL data types
	19.6.1 Correspondences among SQL data types, symbolic literals, and values
	19.6.2 Correspondences between SQL data types and data descriptions
	19.6.3 Correspondence to the VARCHAR type
	19.6.4 VARBINARY type

	19.7 Data types used in the CLI functions
	19.7.1 a_rdb_SQLColumnInfo_t structure (column information)
	19.7.2 a_rdb_SQLNameInfo_t structure (name information)
	19.7.3 a_rdb_SQLDataType_t structure (data type information)
	19.7.4 a_rdb_SQLInd_t (indicator)
	19.7.5 a_rdb_SQLParameterInfo_t structure (parameter information)
	19.7.6 a_rdb_SQLResultInfo_t structure (SQL results information)

	19.8 Return values of the CLI functions

	Appendixes
	A. Sample Application Program
	A.1 Overview of sample application program
	A.2 Preparations before executing the sample application program
	A.3 How to create the SAMPLE table
	A.4 Sample application program execution procedure

	B. Structure of HADB Client Directories
	B.1 HADB clients for Windows
	B.2 HADB clients for Linux

	C. Estimating the Memory Requirements for an HADB Client
	C.1 Memory required for connecting to the HADB server
	C.2 Memory required for communication between an HADB client and the HADB server

	Index

