
For UNIX Systems
Nonstop Database

HiRDB Version 9
Installation and Design Guide

3000-6-452-50(E)

■ Relevant program products
List of program products:

For Red Hat Enterprise Linux 6 (64-bit x86_64) operating systems:

P-9W62-4592 HiRDB Server Version 9 09-50

P-9W62-2D92 HiRDB/Run Time Version 9(64) 09-50

P-9S62-2B92 HiRDB/Run Time Version 9 09-50

P-F9W62-11925 HiRDB Non Recover Front End Server Version 9 09-00

P-F9W62-11926 HiRDB Advanced High Availability Version 9 09-00

This manual can be used for products other than the products shown above. For details, see the Release Notes.

■ Trademarks
HITACHI, JP1, uCosminexus, HiRDB, DocumentBroker, HA Monitor are either trademarks or registered trademarks of Hitachi, Ltd. in Japan
and other countries.

ActiveX is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

AMD is a trademark of Advanced Micro Devices, Inc.

IBM, AIX are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide.

IBM, AIX 5L are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide.

IBM, DataStage, MetaBroker, MetaStage and QualityStage are trademarks of International Business Machines Corporation, registered in
many jurisdictions worldwide.

IBM, DB2 are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide.

IBM, HACMP are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide.

IBM, OS/390 are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide.

IBM, PowerHA are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide.

Itanium is a trademark of Intel Corporation in the United States and other countries.

Microsoft and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

Microsoft Access is a registered trademark of Microsoft Corporation in the U.S. and other countries.

Microsoft Office and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

Motif is a registered trademark of the Open Software Foundation, Inc.

MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

ODBC is Microsoft's strategic interface for accessing databases.

OLE is the name of a software product developed by Microsoft Corporation and the acronym for Object Linking and Embedding.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

VERITAS is a trademark or registered trademark of Symantec Corporation in the U.S. and other countries.

Visual Basic is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Visual C++ is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Windows NT is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Windows Server is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Windows Vista is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this document
Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used by the manufacturer,
or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use of a trademark in this
document should not be regarded as affecting the validity of the trademark.

■ Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The software
described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of the terms and

conditions governing your use of the software and documentation, including all warranty rights, limitations of liability, and disclaimers of
warranty.

Material contained in this document may describe Hitachi products not available or features not available in your country.

No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.

Printed in Japan.

■ Issued
Oct. 2015: 3000-6-452-50(E)

■ Copyright
All Rights Reserved. Copyright (C) 2012, 2015, Hitachi, Ltd.

Preface
This manual describes the system definitions for HiRDB Version 9, a nonstop database server program product. For details
about prerequisite information that is not provided here, see the manual HiRDB Version 9 Description (3020-6-450).

■ Intended readers
This manual is intended for users who will build and/or operate a relational database system using HiRDB Version 9
(hereafter referred to as HiRDB).

Readers of this manual must have:

• A basic knowledge of managing UNIX or Linux systems

• A basic knowledge of SQL

Please read the HiRDB Version 9 Description manual before reading this manual.

■ Conventions: Diagrams
This manual uses the following conventions in diagrams:

■ Conventions: Fonts and symbols
The following table explains the text formatting conventions used in this manual:

Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes menus, menu
options, buttons, radio box options, or explanatory labels. For example:

• From the File menu, choose Open.

• Click the Cancel button.

• In the Enter name entry box, type your name.

I

Font Convention

Italics Italics are used to indicate a placeholder for some actual text to be provided by the user or system. For
example:

• Write the command as follows:
copy source-file target-file

• The following message appears:
A file was not found. (file = file-name)

Italics are also used for emphasis. For example:

• Do not delete the configuration file.

Code font A code font indicates text that the user enters without change, or text (such as messages) output by the
system. For example:

• At the prompt, enter dir.

• Use the send command to send mail.

• The following message is displayed:
The password is incorrect.

The following table explains the symbols used in this manual:

Symbol Convention

| In syntax explanations, a vertical bar separates multiple items, and has the meaning of OR. For
example:

A|B|C means A, or B, or C.

[] In syntax explanations, square brackets indicate that the enclosed item or items are optional. For
example:

[A] means that you can specify A or nothing.

[B|C] means that you can specify B, or C, or nothing.

... In coding, an ellipsis (...) indicates that one or more lines of coding are not shown for purposes of
brevity.

In syntax explanations, an ellipsis indicates that the immediately preceding item can be repeated as
many times as necessary. For example:

A, B, B, ... means that, after you specify A, B, you can specify B as many times as necessary.

() Parentheses indicate the range of items to which the vertical bar (|) or ellipsis (...) is applicable.

■ Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of two digits each, separated by a hyphen.
For example:

• Version 1.00 (or 1.0) is written as 01-00.

• Version 2.05 is written as 02-05.

• Version 2.50 (or 2.5) is written as 02-50.

• Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same version number would be written in
the program as 02-00.

■ Important notes on this manual
The following facilities are explained, but they are not supported:

Preface

II

• Distributed database facility

• Standby-less system switchover (1:1) facility

• Standby-less system switchover (effects distributed) facility

• HiRDB External Data Access facility

• Inner replica facility

• Updatable online reorganization

• Sun Java System Directory Server linkage facility

• Simple setup tool

• Extended syslog facility

• Rapid batch facility

• Memory database facility

• Linkage with JP1/NETM/Audit

The following products and option program products are explained, but they are not supported:

• HiRDB Disaster Recovery Light Edition

• uCosminexus Grid Processing Server

• HiRDB Text Search Plug-in

• HiRDB XML Extension

• TP1/Server Base

• JP1/PFM-Agent Option for HiRDB

• JP1/VERITAS NetBackup Agent for HiRDB License

• HiRDB Dataextractor

• XDM/RD

• HiRDB SQL Tuning Advisor

• COBOL2002

• HiRDB Control Manager - Console

• HiRDB Control Manager - Server

Preface

III

Contents

1 Overview of HiRDB System Construction 1

1.1 Overview of behavior when operands are omitted 2

1.2 System construction procedures 3

1.2.1 System construction procedure for installing a new HiRDB 3

1.2.2 Setting up a HiRDB environment 3

1.2.3 Environment setup for linking to other products 4

1.3 Organization of HiRDB directories and files 6

1.3.1 Initial files that are created 6

1.3.2 Files that consistently increase in size 10

1.4 Upgrading HiRDB 30

1.4.1 Before upgrading 30

1.4.2 Replacing an existing version with the new version 35

1.4.3 Installing a new version while retaining the old version 37

1.4.4 Upgrading the HiRDB plug-ins 37

1.4.5 Using Java stored procedures and functions 37

1.4.6 In the event of an upgrading error 38

1.4.7 Restoring an earlier version of HiRDB 40

1.5 Updating to HiRDB update version 42

1.5.1 Updating HiRDB 42

1.5.2 Prerequisites 43

1.5.3 Update procedure 43

1.5.4 Update procedure when the system switchover facility is used 44

1.5.5 Cautions 45

1.5.6 Operation considerations 45

1.5.7 Related product limitations and considerations 46

1.5.8 Operation when an error occurs during installation 46

1.6 Using JP1/Software Distribution to execute online distribution of HiRDB 48

1.6.1 Online distribution procedure 48

1.6.2 Preparations on JP1/Software Distribution Workstation 49

1.6.3 Notes about online distribution 52

1.7 Migrating to 64-bit mode HiRDB 53

1.7.1 Considerations when migrating to 64-bit mode 53

1.7.2 How to migrate to 64-bit mode 53

1.7.3 In the event of an SQL object migration error 55

1.7.4 In the event of a 64-bit-mode migration error (restoring the old version) 56

2 Installation 57

2.1 Pre-installation procedure 58

i

2.1.1 Checking and modifying OS parameters 58

2.1.2 Registering the HiRDB administrator 58

2.1.3 Setting up a HiRDB group 59

2.1.4 Creating the installation directory 59

2.1.5 Registering host names 59

2.2 HiRDB installation procedure 61

2.2.1 Installing HiRDB 61

2.2.2 Installing option program product 61

2.2.3 Installing plug-ins 62

2.3 Post-installation procedures 63

2.3.1 Creating the HiRDB directory 63

2.3.2 Creating a work file output directory 65

2.3.3 Registering HiRDB and option program products in the operating system 66

2.3.4 Setting environment variables 68

2.3.5 Setting a remote shell execution environment 70

2.3.6 Notes about background execution of HiRDB operation commands 70

2.3.7 Preparing to create the HiRDB file system area 70

2.4 Uninstallation of HiRDB 75

3 Setting Up an Environment Using the Simple Setup Tool 77

3.1 Overview of the simple setup tool 78

4 Setting Up an Environment Using Commands 79

4.1 Overview of environment setup using commands 80

4.2 Creating the HiRDB system definitions 82

4.2.1 Creating HiRDB system definitions (HiRDB single server configuration) 82

4.2.2 Creating HiRDB system definitions (HiRDB parallel server configuration) 84

4.2.3 Sharing HiRDB system definition files (HiRDB parallel server configuration) 87

4.2.4 Modifying HiRDB system definitions (excluding UAP environment definitions) 89

4.2.5 Modifying a UAP environment definition 90

4.3 Creating HiRDB file system areas 92

4.3.1 Types of HiRDB file system areas 92

4.3.2 Using character special files 92

4.3.3 Creating a large file 93

4.3.4 Example 1 (creating a HiRDB file system area for RDAREAs) 93

4.3.5 Example 2 (creating a HiRDB file system area for system files) 93

4.3.6 Example 3 (creating a HiRDB file system area for work table files) 94

4.3.7 Example 4 (creating a HiRDB file system area for utilities) 94

4.3.8 Example 5 (creating a HiRDB file system area for list RDAREAs) 95

4.4 Creating system files 96

4.4.1 Creating system log files 96

Contents

ii

4.4.2 Creating synchronization point dump files 96

4.4.3 Creating status files 97

4.4.4 Example of system file creation (HiRDB single server configuration) 97

4.4.5 Example of system file creation (HiRDB parallel server configuration) 100

4.5 Creating system RDAREAs 107

4.5.1 Basics 107

4.5.2 Example 1 (HiRDB single server configuration) 107

4.5.3 Example 2 (HiRDB parallel server configuration) 108

4.6 Starting HiRDB for the first time 110

4.7 Creating user RDAREAs 111

4.7.1 Basics 111

4.7.2 Example 1 (HiRDB single server configuration) 111

4.7.3 Example 2 (HiRDB parallel server configuration) 112

4.8 Creating user LOB RDAREAs 114

4.8.1 Basics 114

4.8.2 Example 1 (HiRDB single server configuration) 114

4.8.3 Example 2 (HiRDB parallel server configuration) 115

4.9 Creating data dictionary LOB RDAREAs 117

4.9.1 Basics 117

4.9.2 Example 1 (HiRDB single server configuration) 117

4.9.3 Example 2 (HiRDB parallel server configuration) 118

4.10 Creating list RDAREAs 120

4.10.1 Basics 120

4.10.2 Example 1 (HiRDB single server configuration) 120

4.10.3 Example 2 (HiRDB parallel server configuration) 121

5 Setting Up the Plug-in Environment 123

5.1 Overview of plug-in environment setup 124

5.1.1 Environment setup procedure 124

5.1.2 Notes on using plug-ins 128

5.2 Upgrading plug-ins 130

5.3 Deleting plug-ins 132

6 Creating Databases 135

6.1 Overview of database creation 136

6.1.1 Preparing for database creation 136

6.1.2 Database creation procedure 137

6.1.3 Database update log acquisition mode 137

6.1.4 Notes on data storage for a table for which an index with the unique attribute has been defined 140

6.1.5 Loading a large amount of data (data loading with the synchronization point specification) 140

6.1.6 Loading data into a row-partitioned table (using the parallel loading facility) 141

Contents

iii

6.1.7 Loading data into a row-partitioned table (Creating divided-input data files) 150

6.1.8 Data loads that use the automatic numbering facility 151

6.1.9 Input data file UOC 152

6.1.10 Deleting unneeded RDAREAs 152

6.2 Creating a row-partitioned table 153

6.3 Creating a table with a LOB column 156

6.4 Creating a table containing a plug-in-provided abstract data type 159

6.4.1 The SGMLTEXT type 159

6.4.2 The XML type 162

6.5 Creating a table containing a user-defined abstract data type 176

6.5.1 Defining an abstract data type 176

6.5.2 Defining a table 179

6.5.3 Defining an index 180

6.5.4 Storing data in a table 180

6.5.5 Database update log acquisition methods 181

6.5.6 Checking the data storage status 182

6.6 Handling errors during batch index creation 183

6.6.1 When data was loaded in log acquisition mode or pre-update log acquisition mode 183

6.6.2 When data was loaded in no-log mode 185

6.7 Handling utility abnormal termination errors during data loading with the synchronization point
specification 188

6.7.1 Overview of error handling procedure 188

6.7.2 Example 189

7 Linking to Other Products 191

7.1 Linking to the replication facility 192

7.1.1 Linking to HiRDB Datareplicator 192

7.1.2 Linking to HiRDB Dataextractor 192

7.2 Linking with an OLTP system 193

7.2.1 OLTP products supported for linking 193

7.2.2 HiRDB XA library 193

7.2.3 Example of HiRDB system configuration with OLTP linkage 195

7.2.4 Transaction transfer 197

7.2.5 Registering HiRDB in the transaction manager 198

7.2.6 Information to be registered in the transaction manager 200

7.2.7 Example of registering in the transaction manager 204

7.2.8 Modifying the registration information in the transaction manager 206

7.2.9 Methods for re-establishing connection between the transaction manager and HiRDB 207

7.2.10 Monitoring HiRDB using the TP1/Resource Manager Monitor facility 208

7.2.11 Notes 209

7.3 Linking to the inner replica facility 211

Contents

iv

7.4 Linking to JP1 212

7.4.1 Reporting events to JP1/Base 212

7.4.2 Managing events by JP1/IM 214

7.4.3 Automatic job execution using JP1/AJS3 linkage 215

8 Designing a HiRDB single server configuration 217

8.1 System design for a HiRDB single server configuration 218

8.1.1 System design 218

8.1.2 System configuration 220

8.2 Designing HiRDB file system areas 221

8.2.1 Designing HiRDB file system areas for RDAREAs 221

8.2.2 Designing HiRDB file system areas for system files 222

8.2.3 Designing HiRDB file system areas for work table files 223

8.2.4 Designing HiRDB file system areas for utilities 223

8.2.5 Designing HiRDB file system areas for list RDAREAs 224

8.2.6 Maximum sizes of HiRDB file system areas 225

8.3 Designing system files 226

8.3.1 Designing system log files 226

8.3.2 Designing synchronization point dump files 230

8.3.3 Designing status files 232

8.4 Placing RDAREAs 236

8.4.1 Placing system RDAREAs 236

8.4.2 Placing data dictionary LOB RDAREAs 236

8.4.3 Placing user RDAREAs 237

8.4.4 Placing user LOB RDAREAs 237

8.4.5 Placing list RDAREAs 238

9 Designing a HiRDB parallel server configuration 239

9.1 System design for a HiRDB parallel server configuration 240

9.1.1 System design 240

9.1.2 System configuration of a HiRDB parallel server configuration 242

9.1.3 Setting up multiple front-end servers 243

9.1.4 Recovery-unnecessary front-end server 246

9.2 Designing HiRDB file system areas 250

9.2.1 Designing HiRDB file system areas for RDAREAs 250

9.2.2 Designing HiRDB file system areas for system files 251

9.2.3 Designing HiRDB file system areas for work table files 252

9.2.4 Designing HiRDB file system areas for utilities 252

9.2.5 Designing HiRDB file system areas for list RDAREAs 253

9.2.6 Maximum sizes of HiRDB file system areas 254

9.3 Designing system files 255

Contents

v

9.3.1 Designing system log files 255

9.3.2 Designing synchronization point dump files 259

9.3.3 Designing status files 261

9.4 Placing RDAREAs 265

9.4.1 Placing system RDAREAs 265

9.4.2 Placing data dictionary LOB RDAREAs 266

9.4.3 Placing user RDAREAs 266

9.4.4 Placing user LOB RDAREAs 267

9.4.5 Placing list RDAREAs 267

9.5 Considerations that apply to building a system with many units or servers 269

9.5.1 Considerations that apply to configuring systems 269

9.5.2 Considerations for system operation 270

9.5.3 Corrective actions to take in response to errors that occur when commands are executed 273

10 Designing a Multi-HiRDB 275

10.1 System design for a multi-HiRDB 276

10.1.1 Installing a multi-HiRDB 276

10.1.2 Setting the environment for a multi-HiRDB 276

10.2 Notes about upgrading 279

11 Designing Global Buffers and Local Buffers 281

11.1 Allocating global buffers 282

11.1.1 Allocating index global buffers 282

11.1.2 Allocating data global buffers 282

11.1.3 Allocating LOB global buffers 284

11.1.4 Global buffer allocation procedures 284

11.2 Setting the number of global buffer sectors 287

11.3 Specifying the prefetch facility 288

11.4 Specifying the asynchronous READ facility 289

11.5 Specifying deferred write processing 290

11.6 Specifying the facility for parallel writes in deferred write processing 291

11.7 Setting the commit-time reflection processing 292

11.8 Global buffer LRU management 293

11.8.1 LRU management methods 293

11.8.2 LRU management suppression settings for a UAP 294

11.8.3 Setting suppression of LRU management of binary data accessed by UAPs 295

11.9 Page access using the snapshot method 297

11.10 Global buffer pre-writing 299

11.11 Local buffers 300

11.11.1 Allocating index local buffers 300

11.11.2 Allocating data local buffers 300

Contents

vi

11.11.3 Allocating local buffers 301

11.11.4 Considerations about local buffers 301

12 Designing Tables 303

12.1 Items to be examined during table design 304

12.2 Normalizing a table 308

12.3 Table row partitioning 312

12.3.1 Table row partitioning 312

12.3.2 Types of table row partitioning 312

12.3.3 Forms of table row partitioning 319

12.3.4 Effects of table row partitioning 320

12.3.5 Design considerations 321

12.3.6 Notes on table row partitioning 326

12.4 Table matrix partitioning 327

12.5 Defining a trigger 332

12.5.1 Application standards 332

12.5.2 Defining a trigger 333

12.5.3 Trigger considerations 336

12.5.4 Trigger management 336

12.5.5 Error recovery 339

12.6 Creating a view table 340

12.7 Specifying the FIX attribute 342

12.8 Specifying a primary key 344

12.9 Specifying a cluster key 345

12.10 Specifying the suppress option 347

12.11 Specifying the no-split option 348

12.12 Specifying a binary data column 350

12.12.1 BLOB type 351

12.12.2 BINARY type 351

12.12.3 BLOB type and BINARY type usage 352

12.13 Specifying a character set 353

12.14 Specifying the WITHOUT ROLLBACK option 354

12.15 Specifying the falsification prevention facility 356

12.15.1 Specification 356

12.15.2 Restrictions 357

12.15.3 Changing a falsification-unprevented table to a falsification prevented table 360

12.15.4 Error operation 362

12.16 Table containing a repetition column 363

12.17 Table containing an abstract data type 365

12.18 Shared tables 369

12.18.1 Effects and criteria 370

Contents

vii

12.18.2 Definition method 371

12.18.3 Manipulating shared tables 371

12.18.4 Limitations on shared tables 372

12.18.5 Rules used to allocate back-end servers that search shared tables 372

12.18.6 Notes about execution of definition SQL statements, utilities, and operation commands 382

12.18.7 Using shared tables with a HiRDB single server configuration 383

12.19 Referential constraints 385

12.19.1 About referential constraints 385

12.19.2 Defining referential constraints 385

12.19.3 Check pending status 394

12.19.4 Data manipulation and integrity 400

12.19.5 Procedure for checking table integrity 403

12.19.6 Referential constraints and triggers 408

12.19.7 Notes about linkage with related products 410

12.20 Check constraints 412

12.20.1 About check constraints 412

12.20.2 Defining check constraints 412

12.20.3 Check pending status 413

12.20.4 Data manipulation and integrity 414

12.20.5 Procedure for checking table integrity 415

12.20.6 Notes about linkage with related products 418

12.20.7 Migrating check constraint tables to 64-bit mode 419

12.21 Compressed tables 422

12.21.1 Data compression facility 422

12.21.2 How data is compressed 423

12.21.3 How to define a compressed table 424

12.21.4 How to convert an existing table to a compressed table 424

12.21.5 How to change the definition of a compressed column (removing the compression specification for
a column) 425

12.21.6 Notes about using compressed tables 426

12.21.7 How to measure the data compression rate 426

12.22 Temporary tables 428

12.22.1 Valid period of data in temporary tables 429

12.22.2 How to define temporary tables and temporary table indexes 430

12.22.3 Rules for choosing an RDAREA for storage 431

12.22.4 Processing when there are no available temporary table RDAREAs 432

12.22.5 Locking for temporary tables 434

12.22.6 Limitations on the use of temporary tables 435

13 Designing Indexes 437

13.1 Items to be examined during index design 438

Contents

viii

13.2 Index 439

13.2.1 Creating an index 439

13.2.2 Index creation taking into account optimizing based on cost 440

13.2.3 Single-column index vs. multicolumn index 443

13.2.4 Using multiple indexes 444

13.2.5 Using an index with an exceptional key value set 444

13.2.6 Effects on performance of the number of indexes 445

13.3 Index row partitioning 446

13.4 Plug-in index 451

13.5 Plug-in index row partitioning 452

14 Designing RDAREAs 457

14.1 Items to be examined during RDAREA design 458

14.2 Segments 461

14.2.1 Determining the segment size 461

14.2.2 Setting the percentage of free pages in a segment 462

14.2.3 Allocating and releasing segments 463

14.3 Pages 464

14.3.1 Determining the page length 464

14.3.2 Setting the percentage of unused space in a page 465

14.3.3 Allocating and releasing pages 466

14.4 Designing list RDAREAs 468

14.5 Free space reusage facility 470

14.5.1 Data storage search modes 470

14.5.2 Free space reusage facility 470

14.5.3 Effects and applicability 472

14.5.4 Considerations 473

14.5.5 Environment settings 473

14.5.6 Checking execution status 475

14.5.7 Notes 475

14.6 Shared RDAREAs (HiRDB parallel server configuration only) 477

14.7 Temporary table RDAREAs 480

15 Storage Requirements for HiRDB 483

15.1 Estimating the memory size required for a HiRDB single server configuration 484

15.1.1 Memory allocation 484

15.1.2 Calculation of required memory 487

15.1.3 Formulas for shared memory used by a unit controller 494

15.1.4 Formulas for shared memory used by a single server 503

15.1.5 Formula for size of shared memory used by global buffers 507

15.1.6 Formulas for size of memory required during SQL execution 508

Contents

ix

15.1.7 Formula for size of memory required during SQL preprocessing 514

15.1.8 Formula for size of memory required during BLOB data retrieval or updating (HiRDB single server
configuration) 515

15.1.9 Formula for size of memory required during block transfer or array FETCH 516

15.1.10 Memory required by in-memory data processing 517

15.2 Estimating the memory size required for a HiRDB parallel server configuration 518

15.2.1 Memory allocation 518

15.2.2 Calculation of required memory 521

15.2.3 Formulas for shared memory used by a unit controller 529

15.2.4 Formulas for shared memory used by each server 552

15.2.5 Formula for size of shared memory used by global buffers 559

15.2.6 Formulas for size of memory required during SQL execution 562

15.2.7 Formula for size of memory required during SQL preprocessing 568

15.2.8 Formula for size of memory required during BLOB data retrieval or updating (front-end server) 569

15.2.9 Formula for size of memory required during BLOB data retrieval or updating (back-end server or
dictionary server) 570

15.2.10 Formula for size of memory required during block transfer or array FETCH (front-end server) 571

15.2.11 Memory required by in-memory data processing 571

16 Determining RDAREA Size 573

16.1 Determining the size of a user RDAREA 574

16.1.1 Calculating the size of a user RDAREA 574

16.1.2 Calculating the number of table storage pages 575

16.1.3 Calculating the number of index storage pages 585

16.2 Determining the size of a data dictionary RDAREA 594

16.2.1 Determining the size of a normal data dictionary RDAREA 594

16.2.2 Determining the size of a data dictionary RDAREA for storing database state analyzed tables and
database management tables 617

16.3 Determining the size of the master directory RDAREA 619

16.4 Determining the size of the data directory RDAREA 620

16.5 Determining the size of a data dictionary LOB RDAREA 621

16.6 Determining the size of a user LOB RDAREA 627

16.7 Determining the size of the registry RDAREA 628

16.8 Determining the size of the registry LOB RDAREA 630

16.9 Determining the size of the list RDAREA 631

17 Determining the Size of System Files and Audit Trail Files 633

17.1 Determining the size of system log files 634

17.1.1 Total size of system log files 634

17.1.2 Amount of system log information output during table definition 636

17.1.3 Amount of system log information output during index definition 637

17.1.4 Amount of system log information output during table data updating 639

Contents

x

17.1.5 Amount of system log information output during database creation by a utility 649

17.1.6 Amount of system log information that is output depending on the SQL manipulation 652

17.1.7 Amount of system log information that is output during the definition of extended system-defined
scalar functions 652

17.1.8 Amount of system log information that is output during the execution of the RDAREA automatic
extension facility 652

17.1.9 Amount of system log information output when the PURGE TABLE statement is executed 653

17.1.10 Amount of system log information output when the free page release utility (pdreclaim) is executed 653

17.1.11 Amount of system log information that is output during execution of the facility for predicting
reorganization time 654

17.1.12 Amount of system log information output during an updatable backup hold 655

17.2 Determining the size of synchronization point dump files 657

17.3 Determining the size of status files 658

17.4 Determining audit trail file capacity 664

18 Determining Work Table File Size 665

18.1 Overview of work table files 666

18.2 Determining the size of a HiRDB file system area (pdfmkfs -n command) 668

18.2.1 Size of a work table file used by an SQL statement 668

18.2.2 Size of a work table file used by a utility 673

18.3 Determining the maximum number of files (pdfmkfs -l command) 675

18.4 Determining the maximum number of extensions (pdfmkfs -e command) 676

19 Storage Requirements for Utility Execution 677

19.1 Determining the file sizes required for utility execution 678

19.1.1 File sizes required for the execution of the database load utility (pdload) 678

19.1.2 File sizes required for the execution of the database reorganization utility (pdrorg) 680

19.1.3 File sizes required for the execution of the statistics analysis utility (pdstedit) 685

19.1.4 File sizes required for the execution of the database condition analysis utility (pddbst) 688

19.1.5 File sizes required for the execution of the database copy utility (pdcopy) 688

19.1.6 File sizes required for the execution of the dictionary import/export utility (pdexp) 691

19.1.7 File sizes required for the execution of the optimizing information collection utility (pdgetcst) 692

19.1.8 File sizes required for the execution of the access path display utility (pdvwopt) 692

19.1.9 File sizes required for execution of the rebalancing utility (pdrbal) 693

19.1.10 File sizes required for execution of the integrity check utility (pdconstck) 694

19.1.11 File sizes required for execution of parallel loading (pdparaload) 695

19.1.12 Buffer size used to determine the size of the work file for sorting 695

19.2 Determining the memory size required for utility execution 697

19.2.1 Memory size required for the execution of the database initialization utility (pdinit) 697

19.2.2 Memory size required for the execution of the database definition utility (pddef) 698

19.2.3 Memory size required for the execution of the database load utility (pdload) 698

19.2.4 Memory size required for the execution of the database reorganization utility (pdrorg) 701

Contents

xi

19.2.5 Memory size required for the execution of the database structure modification utility (pdmod) 703

19.2.6 Memory size required for the execution of the statistics analysis utility (pdstedit) 704

19.2.7 Memory size required for the execution of the database condition analysis utility (pddbst) 705

19.2.8 Memory size required for the execution of optimizing the information collection utility (pdgetcst) 705

19.2.9 Memory size required for the execution of the database copy utility (pdcopy) 706

19.2.10 Memory size required for the execution of the database recovery utility (pdrstr) 707

19.2.11 Memory size required for the execution of the dictionary import/export utility (pdexp) 710

19.2.12 Memory size required for the execution of the access path display utility (pdvwopt) 711

19.2.13 Memory size required for the execution of the rebalancing utility (pdrbal) 711

19.2.14 Memory size required for execution of the free page release utility (pdreclaim) and global buffer
residence utility (pdpgbfon) 715

19.2.15 Memory size required for execution of the integrity check utility (pdconstck) 715

19.2.16 Memory size required for the execution of parallel loading (pdparaload) 716

20 Specifying OS Parameters 719

20.1 Estimating HP-UX OS parameter values 720

20.2 Estimating Solaris OS parameter values 725

20.3 Estimating AIX OS parameter values 728

20.4 Estimating Linux kernel parameter values 732

20.5 Estimating the sizes of message queues and semaphores 736

20.6 Listen queue specified values 739

21 Sample Files 741

21.1 Overview of sample files 742

21.1.1 Names of sample files 742

21.2 System configuration and table definition information 745

21.3 Use of the sample files 749

21.3.1 Creating the configuration files 749

21.3.2 HiRDB file system area names and user-created file names used with sample database 753

22 Communication Between HiRDB Servers and HiRDB Clients 759

22.1 Connecting HiRDB clients to a HiRDB server 760

22.1.1 Connection to a HiRDB server with an FQDN specified 760

22.1.2 Using the multi-connection address facility to connect to a HiRDB server 761

22.2 Settings for a DNS server to manage IP addresses 766

22.3 Settings when a firewall and NAT are installed 768

22.3.1 When a firewall is installed on the HiRDB single server configuration side 768

22.3.2 When a firewall and NAT are installed on the HiRDB single server configuration side 769

22.3.3 When a firewall is installed on the HiRDB parallel server configuration side 770

22.3.4 When a firewall and NAT are installed on the HiRDB parallel server configuration side 771

22.4 Port numbers used by HiRDB 773

Contents

xii

22.4.1 Estimating the number of ports that a unit will use 773

22.4.2 Notes 773

22.4.3 Calculation examples 774

22.4.4 Ways to avoid a shortage of ports 774

22.5 Port numbers specified in HiRDB 776

22.5.1 List of port numbers specified in HiRDB 776

22.5.2 Specifying port numbers 776

22.5.3 Notes on port number duplication 779

22.6 HiRDB reserved port facility 781

22.6.1 Estimation of the HiRDB reserved port facility 781

Appendixes 783

A. HiRDB Maximum and Minimum Values 784

A.1 Maximum and minimum values for the system configuration 784

A.2 Maximum and minimum values for databases 785

A.3 Maximum and minimum values for HiRDB file names 787

B. Processes Started by HiRDB 788

B.1 Processes started by a HiRDB single server configuration 788

B.2 Processes started by a HiRDB parallel server configuration 792

C. Questions and Answers 799

Index 807

Contents

xiii

1 Overview of HiRDB System
Construction
This chapter provides an overview of the HiRDB system construction procedure,
HiRDB file organization, and upgrading procedure.

1

1.1 Overview of behavior when operands are omitted
With each version and revision, HiRDB revises the default values that are assumed when you omit from the HiRDB
system definition operands, utility options, and SQL options. To handle these changes to default values, HiRDB
versions 09-50 and later offer two modes for the default behavior when operands are omitted: recommended mode,
which assumes the recommended default values, and compatibility mode, which uses the default values for a specific
version of HiRDB. Normally, to build a more secure system, we suggest that you apply the recommended mode,
which greatly reduces the number of operands that must be specified.

For details about the advantages and disadvantages of changing the default values when you upgrade from a version
earlier than 09-50, see 1.4.1(8) Checking the default values of operands in the HiRDB system definition and 1.4.1(9)
Checking other default values. After checking the default values, if you decide to focus on compatibility with the
previous version, you can apply the compatibility mode to make the default values the same as in the previous version.
However, in this case all of the operands will have the previous version's default values, so we recommend specifying
the recommended values on a per-operand basis.

If you want to update to the HiRDB update version, apply the operand default behavior that is already in effect.

The behavior when operands are omitted can be selected during setup of HiRDB. The behavior can also be changed
using the command pdsetenv.

1. Overview of HiRDB System Construction

2

1.2 System construction procedures
This section discusses the system construction procedure for installing a new HiRDB.

1.2.1 System construction procedure for installing a new HiRDB
The following figure illustrates the system construction procedure for a new installation of HiRDB.

Figure 1‒1: System construction procedure for installing a new HiRDB

For recommendations and notes on using HiRDB in continuous 24-hour operation, see the HiRDB Version 9 System
Operation Guide.

1.2.2 Setting up a HiRDB environment
The HiRDB administrator uses one of the following methods to set up a HiRDB environment:

• The simple setup tool

• Commands
Tip

If you are setting up a HiRDB environment for the first time, we recommend that you use the simple setup tool.

The following table lists the advantages and disadvantages of each environment setup method.

Table 1‒1: Advantages and disadvantages of each environment setup method

Setup method Overview Advantages Disadvantages

Simple setup tool Enter the HiRDB environment
setup data according to the
displayed windows. The HiRDB
environment is set up based on the
entered data.

Easier than using other methods
to set up the HiRDB
environment. If you use the
simple setup tool to perform a
standard setup or wizard setup,
you can set up a test
environment. You can also use it

The HiRDB system
construction is limited to the
range of configurations that can
be set up using the simple setup
tool.

1. Overview of HiRDB System Construction

3

Setup method Overview Advantages Disadvantages

For details about how to use the
simple setup tool, see Chapter 3.
Setting Up an Environment Using
the Simple Setup Tool.

to change existing system
definition settings.#1

Commands#2 Use HiRDB commands to set up
the HiRDB environment.

For details about how to use
commands, see Chapter 4. Setting
Up an Environment Using
Commands.

HiRDB commands allow you to
tailor the HiRDB system
configuration to your needs.

You will require certain
knowledge to set up the HiRDB
environment. Specifically, you
need to understand the facilities
and settings described in this
manual. In addition,
environment setup using
commands is more difficult
than other methods.

#1
The values generated by the simple setup tool are based on a HiRDB test environment. When you apply values to
an actual environment, determine appropriate values and specify them instead of using the values generated by the
simple setup tool.

#2
Try a simple installation before you construct the production system. Using the sample files to execute a series of
HiRDB construction procedures on a test system makes it easier to create an actual production system.

! Important note

With the simple setup tool method, a plug-in environment cannot be set up.

1.2.3 Environment setup for linking to other products
This section discusses the environment setup using related products.

(1) Using the replication facility
To use the replication facility, you need HiRDB Datareplicator and HiRDB Dataextractor. For details about how to set
up an environment for the replication facility, see 7.1 Linking to the replication facility.

(2) Linking to OLTP
For details about the environment setup procedure to link your HiRDB to OLTP, see 7.2 Linking with an OLTP system.

(3) Using the system switchover facility
To use the system switchover facility, cluster software is required. The specific cluster software to be used depends on
the platform. For details about cluster software and the system switchover facility, see the HiRDB Version 9 System
Operation Guide.

(4) Using the inner replica facility
To use the inner replica facility, HiRDB Staticizer Option is required. For details about the environment setup
procedure, see 7.3 Linking to the inner replica facility.

(5) Using Real Time SAN Replication (disaster recovery)
To use Real Time SAN Replication with the log-only synchronous method, HiRDB Disaster Recovery Light Edition is
required.

For details about Real Time SAN Replication, see the HiRDB Version 9 Disaster Recovery System Configuration and
Operation Guide.

1. Overview of HiRDB System Construction

4

(6) When linking to JP1
You can manage HiRDB events as JP1 events by linking your system to JP1. When JP1 is linked, you can achieve
centralized management of system events and use events to start jobs automatically. For details about linkage with
JP1, see 7.4 Linking to JP1.

1. Overview of HiRDB System Construction

5

1.3 Organization of HiRDB directories and files

1.3.1 Initial files that are created

(1) Directories and files that the HiRDB administrator creates
The following table lists the directories and files that the HiRDB administrator creates.

Table 1‒2: Organization of directories and files that the HiRDB administrator creates

File or directory name Description

$PDDIR/conf/pdsys File for storing system common definitions

$PDDIR/conf/pdutsys File for storing unit control information definitions

$PDDIR/conf/pdsvrc File for storing server common definitions

$PDDIR/conf/server-name File for storing each server definition

$PDDIR/conf/pduapenv Directory for storing UAP environment definitions

$PDDIR/conf/chgconf Directory for storing system reconfiguration definition files

(2) Directories and files that HiRDB creates
The following table lists the directories and files that HiRDB creates.

Table 1‒3: Directories and files that HiRDB creates

File or directory name Description

$PDDIR/bin Directory for storing HiRDB commands and utilities

$PDDIR/lib Directory for storing HiRDB's shared libraries and message text files

$PDDIR/lib/sysconf Directory for storing a file that is used to analyze HiRDB system definitions

$PDDIR/lib/sysdef

$PD DIR/lib/sysdef_r

$PDDIR/lib/sysdef_v94

$PDDIR/lib/servers Directory for storing HiRDB server and XDS executable files and libraries

$PDDIR/lib/save Directory for storing information when the pdmemsv command is used to share the
libraries

$PDDIR/lib/jvm Directory for storing libraries that are required to execute the POSIX library HiRDB
(created for 32-bit mode and 64-bit mode HP-UX 11.0)

$PDDIR/lib/chinese Directory for storing EUC Chinese character code parser libraries

$PDDIR/lib/chinese-gb18030 Directory for storing Chinese character code parser libraries

$PDDIR/lib/lang-c Directory for storing single-byte character code parser libraries

$PDDIR/lib/sjis Directory for storing Shift-JIS kanji code parser libraries

$PDDIR/lib/ujis Directory for storing EUC Japanese kanji code parser libraries

$PDDIR/lib/utf-8 Directory for storing Unicode (UTF-8) parser libraries

$PDDIR/lib/utf-8_ivs Directory for storing Unicode (IVS-supported UTF-8) parser libraries

1. Overview of HiRDB System Construction

6

File or directory name Description

$PDDIR/client/lib Directory for storing HiRDB client's libraries

$PDDIR/client/lib10_20 Directory for storing HP-UX 10.20 HiRDB client's libraries

$PDDIR/client/utl Directory for storing HiRDB client's commands and utilities

$PDDIR/include Directory for storing the header information that is used during UAP creation

$PDDIR/spool Directory for storing HiRDB work files

$PDDIR/spool/save#1 Directory for storing saved core files and server process abnormal termination
information file

$PDDIR/spool/pdshmdump#1 Directory for storing shared memory dump files

$PDDIR/spool/pdlckinf#1 Directory for storing deadlock time-out information files

$PDDIR/spool/pdsysdump#1 Directory for storing simple dump files common to the system

$PDDIR/spool/pdsdsdump#1 Directory for storing simple dump files for a single server

$PDDIR/spool/pdfesdump#1 Directory for storing simple dump files for a front-end server

$PDDIR/spool/pddicdump#1 Directory for storing simple dump files for a dictionary server

$PDDIR/spool/pdbesdump#1 Directory for storing simple dump files for a back-end server

$PDDIR/spool/pdstj1, pdstj2 Statistics log files

$PDDIR/spool/pdlog1, pdlog2 Message log files

$PDDIR/spool/pdjnlinf Directory for storing system log information output files

$PDDIR/spool/pdjnlinf/errinf Directory for storing system log error information output files

$PDDIR/spool/pdscdqi1, pdscdqi2 Files for storing HiRDB's internal schedule queue information

$PDDIR/spool/oslmqid File for storing message queue IDs

$PDDIR/spool/oslsmid File for storing semaphore IDs

$PDDIR/spool/pdprcsts prc status file

$PDDIR/spool/.pdatmode Status files for startup and termination

$PDDIR/spool/.pdipcid Files used for managing semaphore IDs

$PDDIR/spool/.pdommenv Files for storing shared memory information

$PDDIR/spool/cmdlog/cmdlog1,
cmdlog2

Files containing the historical information about the executed commands

$PDDIR/spool/errlog/errlog1,
errlog2

Files containing the historical information about internal HiRDB operation

$PDDIR/spool/olkfifs Directory for storing pipe files for use with thread locking#7

$PDDIR/spool/olkrsfs Directory for storing pipe files for use with thread suspend/resume#8

$PDDIR/spool/oslcnt1 File for managing the number of pipe files

$PDDIR/spool/cnctusrinf File for storing the connected user information if there is any user still connected to
HiRDB during the execution of normal termination or a planned termination command

$PDDIR/spool/cnctusrdtl File for storing the execution result of pdls -d act, pdls -d prc, and pdls -
d trn commands if there is any user still connected to HiRDB during the execution
of normal termination or a planned termination command

1. Overview of HiRDB System Construction

7

File or directory name Description

$PDDIR/spool/pdsqldump#1 Directory for storing access path information files

$PDDIR/spool/pdtrninf Directory for outputting transaction information file when using realtime SAN
replication

$PDDIR/spool/pdprf Directory for outputting PRF trace files

$PDDIR/spool/pduaperr Directory for SQL error report files

$PDDIR/spool/pdcwwrn Directory for SQL runtime warning information files

$PDDIR/spool/utlrpt Directory for outputting processing performance information files

any name#2 RPC trace file

/dev/HiRDB/pth/#3 Directory for storing communication information files

$PDDIR/tmp#4 HiRDB's internal work directory

$PDDIR/tmp/pdommenv File for storing shared memory information

$PDDIR/tmp/home/HiRDB-managed-ID-
directory

Current work directory

$PDDIR/conf Directory for storing HiRDB system definition files

$PDDIR/conf/backconf Directory for storing the pre-reconfiguration HiRDB system definition when executing
the system reconfiguration command

$PDDIR/conf/Inittab /etc/inittab save directory

$PDDIR/.dbenv Directory for storing HiRDB database environment information files

$PDCLTPATH/pdsql1.trc,
pdsql2.trc#5

Files for storing trace information for SQL that is executed by a UAP

$PDCLTPATH/pderr1.trc,
pderr2.trc#5

Files for storing information about communication errors between a UAP and a server

$PDDIR/plugin Directory that integrates all HiRDB plug-in directories

$PDDIR/plugin/.sys HiRDB's internal work directory

$PDDIR/plugin/lib Directory for storing plug-in libraries

$PDDIR/plugin/plug-in-name Plug-in directory

$PDDIR/plugin/plug-in-name/.sys HiRDB's internal work directory

$PDDIR/plugin/plug-in-name/bin Directory for storing plug-in commands

$PDDIR/plugin/plug-in-name/etc Directory for storing the common files that are required by all plug-ins

$PDDIR/plugin/plug-in-name/conf Directory for storing plug-in configuration files

$PDDIR/jre#6 Java execution environment

$PDDIR/renew Directory used during updating to the HiRDB update version

$PDDIR/renew_bak Directory for backing up the operating HiRDB when updating to the HiRDB update
version

$PDDIR/.pdlogprgid File for managing the syslog program ID

 For HP-UX

/sbin/init.d/
/sbin/rc1.d/

Directory for storing script files that run when the operating system starts up or shuts
down.

File name:

1. Overview of HiRDB System Construction

8

File or directory name Description

 For Solaris

/etc/init.d/
/etc/rc0.d/
/etc/rc1.d/

 For Linux

/etc/init.d/
/etc/rc0.d/
/etc/rc1.d/
/etc/rc6.d/

 For HP-UX or Solaris

HiRDB single server configuration is HiRDB_S or K090HiRDB_S
HiRDB parallel server configuration is HiRDB_P or K090HiRDB_P

 For Linux

HiRDB single server configuration is HiRDB_S, K09HiRDB_S, or S91HiRDB_S
HiRDB parallel server configuration is HiRDB_P, K09HiRDB_P, or S91HiRDB_P

$PDDIR/pdistup Directory containing the simple setup tool

$PDDIR/spool/tmp Directory for storing temporary work files

#1: Because HiRDB uses this directory to output troubleshooting information, it may keep increasing in size. You
should use the pdcspool command periodically to delete the contents.

You use the operands listed below for periodic deletion of troubleshooting information. For details about these
operands, see the manual HiRDB Version 9 System Definition:

• pd_spool_cleanup_interval
• pd_spool_cleanup_interval_level
• pd_spool_cleanup
• pd_spool_cleanup_level

#2: To specify the filename, use the pd_rpc_trace_name operand.

#3: The files in this directory can be deleted when all HiRDB servers in this server machine have stopped.

#4: This directory is used internally by HiRDB. Do not create directories or files in this directory. Do not specify this
directory for use by HiRDB to create files (for example, for the pd_rpc_trace_name operand). This directory is
deleted and re-created each time the unit starts.

#5: Two copies of this file are output to the directory specified with PDCLTPATH. If PDCLTPATH is omitted, the files
are output to the current directory used to start the UAP (in the case of a UAP started from OpenTP1, $DCDIR/tmp/
home/directory-with-server-name-xx).

The names for the files to be created depends on whether X/Open-compliance API (TX_ function) was used. When
the TX_ function is used, the files are created with the following names:

• pdsqlxxxxx-1.trc, pdsqlxxxxx-2.trc
• pderrxxxxx-1.trc, pderrxxxxx-2.trc

Legend:
xxxxx: Process ID during UAP execution

Be aware that it is possible for as many files to be output as there are server processes during UAP execution, since
the process ID serves as the file name.

#6: This directory is created when the version is earlier than 07-03. When version 07-03 or later is used, this directory
is not created because JRE is not bundled with the package.

#7: The number of pipe files created in this directory is the value of the pd_max_server_process operand 2 + 100.

#8: Shown below are the formulas for approximating the number of pipe files to be created in this directory:

• HiRDB single server configuration
Value of pd_max_server_process + 127 + value of pd_max_users 4

• HiRDB parallel server configuration
Value of pd_max_server_process + 127 + a

1. Overview of HiRDB System Construction

9

a: Use one of the following formulas, as applicable:
Front-end server: value of pd_max_users 2
Dictionary server: value of pd_max_dic_process 35
Back-end server: value of pd_max_bes_process 35
Include in the total the appropriate value for the servers in the unit.

1.3.2 Files that consistently increase in size
Files that consistently increase in size when HiRDB is used are listed in the table below by information type.

In the table below, note that an asterisk (*) can be any alphanumeric character. Standard path names are given for files
or directory names. These might vary by system.

The earliest version that supports a given file is listed as the supporting version. For example, if the supporting version
is the initial version, then all subsequent versions also support that file.

The legend for the table below is as follows:
Y: The maximum size can be limited using options.
N: The maximum size cannot be limited.
S: HiRDB single server configuration
P: HiRDB parallel server configuration
DK: HiRDB/Developer's Kit
RT: HiRDB/Run Time

(1) Simple dump

No.
File or

directory
name

Description Approx. file size File count

Can the
max. size

be
limited?

Outputtin
g

software

Supportin
g version

1 $PDDIR/
spool/
pdfesdum
p/*

This is a simple dump file
for a front-end server. It is
generated when there is a
pdfes process
segmentation error or when
an abort occurs.

To delete automatically:
Specify the following
operands:

• pd_spool_clea
nup_interval

• pd_spool_clea
nup_interval_
level

• pd_spool_clea
nup

• pd_spool_clea
nup_level

To delete manually:
Execute the
pdcspool command.

The unit will shut down if
there is insufficient space
in $PDDIR.

Several MB
(undetermined)

Directory:
The system
loops
through
three
generations
of
directories:
$PDDIR/
spool/
pdfesdu
mp,
pdfesdu
mp1, and
pdfesdu
mp2

File:
Unlimited
within
directory

N P Initial

1. Overview of HiRDB System Construction

10

No.
File or

directory
name

Description Approx. file size File count

Can the
max. size

be
limited?

Outputtin
g

software

Supportin
g version

2 $PDDIR/
spool/
pddicdum
p/*

This is a simple dump file
for a dictionary server. It is
generated when there is a
pddic process
segmentation error, an
abort occurs or the
dictionary RDAREA is
closed.

To delete automatically:
Specify the following
operands:

• pd_spool_clea
nup_interval

• pd_spool_clea
nup_interval_
level

• pd_spool_clea
nup

• pd_spool_clea
nup_level

To delete manually:
Execute the
pdcspool command.

The unit will shut down if
there is insufficient space
in $PDDIR.

Several MB
(undetermined)

Directory:
The system
loops
through
three
generations
of
directories:
$PDDIR/
spool/
pddicdu
mp,
pddicdu
mp1,
pddicdu
mp2

File:
Unlimited
within
directory

N P Initial

3 $PDDIR/
spool/
pdbesdum
p/*

This is a simple dump file
for a back-end server. It is
generated when there is a
pdbes process
segmentation error, an
abort occurs or the user
RDAREA is closed.

To delete automatically:
Specify the following
operands:

• pd_spool_clea
nup_interval

• pd_spool_clea
nup_interval_
level

• pd_spool_clea
nup

• pd_spool_clea
nup_level

To delete manually:
Execute the
pdcspool command.

The unit will shut down if
there is insufficient space
in $PDDIR.

Several MB
(undetermined)

Directory:
The system
loops
through
three
generations
of
directories:
$PDDIR/
spool/
pdbesdu
mp,
pdbesdu
mp1, and
pdbesdu
mp2

File:
Unlimited
within
directory

N P Initial

1. Overview of HiRDB System Construction

11

No.
File or

directory
name

Description Approx. file size File count

Can the
max. size

be
limited?

Outputtin
g

software

Supportin
g version

4 $PDDIR/
spool/
pdsdsdum
p/*

This is a simple dump file
for a single server. It is
generated when there is a
pdsds process
segmentation error, an
abort occurs or the user
RDAREA is closed.

To delete automatically:
Specify the following
operands:

• pd_spool_clea
nup_interval

• pd_spool_clea
nup_interval_
level

• pd_spool_clea
nup

• pd_spool_clea
nup_level

To delete manually:
Execute the
pdcspool command.

The unit will shut down if
there is insufficient space
in $PDDIR.

Several MB
(undetermined)

Directory:
The system
loops
through
three
generations
of
directories:
$PDDIR/
spool/
pdsdsdu
mp,
pdsdsdu
mp1, and
pdsdsdu
mp2

File:
Unlimited
within
directory

N S Initial

5 $PDDIR/
spool/
pdsysdum
p/*

This is a simple dump file
shared by the system. It is
generated when a process
that controls the HiRDB
system terminates
abnormally.

When the server process is
XDS, it is generated in the
following cases:

• XDS is forcibly
terminated by a
pdxdsstop -f
command.

• Group system
switchover is
performed by HA
monitor's monswap
command.

• HiRDB is forcibly
terminated by a
pdstop -f command.

• XDS terminates
abnormally.

To delete automatically:
Specify the following
operands:

• pd_spool_clea
nup_interval

Several MB to
several dozen
MB
(undetermined)

Directory:
The system
loops
through
three
generations
of
directories:
$PDDIR/
spool/
pdsysdu
mp,
pdsysdu
mp1, and
pdsysdu
mp2

File:
Unlimited
within
directory

N S, P Initial

1. Overview of HiRDB System Construction

12

No.
File or

directory
name

Description Approx. file size File count

Can the
max. size

be
limited?

Outputtin
g

software

Supportin
g version

• pd_spool_clea
nup_interval_
level

• pd_spool_clea
nup

• pd_spool_clea
nup_level

To delete manually:
Execute the
pdcspool command.

The unit will shut down if
there is insufficient space
in $PDDIR.

(2) Error information

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

1 $PDDIR/
spool/
pdlckinf
/*

This is a deadlock timeout
information file. It is
generated when a lock
error occurs.

To delete automatically:
Specify the following
operands:

• pd_spool_clea
nup_interval

• pd_spool_clea
nup_interval_
level

• pd_spool_clea
nup

• pd_spool_clea
nup_level

To delete manually:
Execute the
pdcspool command.

The unit will shut down if
there is insufficient space
in $PDDIR.

Several KB Unlimited N S, P Initial

2 $PDDIR/
spool/
pdtrninf
/*

This is a transaction
information file. It is
generated using realtime
SAN replication.

To delete automatically:
Specify the following
operands:

• pd_spool_clea
nup_interval

Several KB Unlimited N S, P 07-01

1. Overview of HiRDB System Construction

13

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

• pd_spool_clea
nup_interval_
level

• pd_spool_clea
nup

• pd_spool_clea
nup_level

To delete manually:
Execute the
pdcspool command.

The unit will shut down if
there is insufficient space
in $PDDIR.

3 $PDDIR/
spool/
pdjnlinf
/*

This is the status
information file for the
facility for monitoring the
free space remaining for
system log files. When the
system log file free area
falls to a value below the
warning value, a file is
generated.

To delete automatically:
Specify the following
operands:

• pd_spool_clea
nup_interval

• pd_spool_clea
nup_interval_
level

• pd_spool_clea
nup

• pd_spool_clea
nup_level

To delete manually:
Execute the
pdcspool command.

The unit will shut down if
there is insufficient space
in $PDDIR.

Approx. 2,729 to
3,521 bytes

One file per
server

N S, P 07-00

4 $PDDIR/
spool/
pdjnlinf
/
errinf/*

This is a file for outputting
system log error
information. It is generated
at reruns and when a
system log read error
occurs.

To delete automatically:
Specify the following
operands:

• pd_spool_clea
nup_interval

• pd_spool_clea
nup_interval_
level

The max. value is
the value
specified in the
pd_log_max_
data_size
operand.

Number of log
generations
(finite number)

N S, P Initial

1. Overview of HiRDB System Construction

14

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

• pd_spool_clea
nup

• pd_spool_clea
nup_level

To delete manually:
Execute the
pdcspool command.
The file is also deleted
when the pdstop
command is executed
(with no options, the -
i option, or the
dbdestroy option).

The unit will shut down if
there is insufficient space
in $PDDIR.

5 /tmp/
pdskipsq
l_server-
name_proce
ss-ID

This is the reflection SQL
skip information file when
the pdorend command is
executed. It is generated
when an SQL skip target
error occurs in reflection
processing when the
pdorend command is
executed.

Use the OS's rm command
(or some other method) to
manually delete the file.

((400 + ((1,500
 mapping-key-

structure-column-
count) 2)
[+ 50 + ((50
+ (updated-
member-count#1

 9)
80)]#2)

skipped-SQL-
query-count)

1.2

Number of
servers in
RDAREA on
which the
pdorend
command was
run (for each
process ID of
the command
and in server
units)

N S, P 07-01

6 $PDCLTPA
TH/
pderr1.t
rc,
pderr2.t
rc

This is a client error
information file. It is
generated when a UAP is
executed. Use the OS's rm
command (or some other
method) to manually delete
the file.

Value specified in
client
environment
variable
PDUAPERLOG
(default is 4,096
bytes)

Two files,
between which
output is
cycled.

Y S, P, DK,
RT

Initial

7 $PDCLTPA
TH/
pderrxxx
xx-1.trc
,
pderrxxx
xx-2.trc
(xxxxx:
Process ID
when UAP
executes)

This is a client error
information file (when an
API (TX_ function) that
conforms to X/Open is
used). It is generated when
a UAP is executed. Use the
OS's rm command (or
some other method) to
manually delete the file.

Value specified in
client
environment
variable
PDUAPERLOG
(default is 4,096
bytes)

Two files
created for
each UAP
process ID,
between which
output is
cycled.

Y S, P, DK,
RT

07-01

#1
Details about the number of updated members are as follows.

 UPDATE SET (specifies members): Number of members to be updated
 UPDATE ADD: 1
 UPDATE DELETE: Number of members to be deleted

#2
When mvcelmwarn=ignore is specified in the control statement and a repetition column exists, the values in square brackets
are added.

: Adds amounts for the number of repetition columns.

1. Overview of HiRDB System Construction

15

(3) Tuning information

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

1 $PDDIR/
spool/
pdsqldum
p/*

This is an access path
information file. When 1 or
greater is specified in the
client environment variable
PDVWOPTMODE, this file is
generated when a SQL
statement is executed (for
each preprocessing).

To delete automatically:
Specify the following
operands:

• pd_spool_clea
nup_interval

• pd_spool_clea
nup_interval_
level

• pd_spool_clea
nup

• pd_spool_clea
nup_level

To delete manually:
Execute the
pdcspool command.

The unit will shut down if
there is insufficient space
in $PDDIR.

(Several KB to
several hundred
KB) SQL
statement count
within
transaction

For each
transaction

N S, P 04-03

(4) Troubleshooting information

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

1 $PDDIR/
spool/
save/
abcode.*

This is server process
abnormal termination
information (primarily
abort codes). It is generated
when a server process
terminates abnormally.

To delete automatically:
Specify the following
operands:

• pd_spool_clea
nup_interval

• pd_spool_clea
nup_interval_
level

• pd_spool_clea
nup

• pd_spool_clea
nup_level

In 32-bit mode:
40 bytes

In 64-bit mode:
72 bytes

Unlimited N S, P Initial

1. Overview of HiRDB System Construction

16

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

To delete manually:
Execute the
pdcspool command.

The unit will shut down if
there is insufficient space
in $PDDIR.

2 $PDDIR/
spool/
save/*

This is server process
abnormal termination
information (code file). It
is generated when a server
process terminates
abnormally.

To delete automatically:
Specify the following
operands:

• pd_spool_clea
nup_interval

• pd_spool_clea
nup_interval_
level

• pd_spool_clea
nup

• pd_spool_clea
nup_level

To delete manually:
Execute the
pdcspool command.

The unit will shut down if
there is insufficient space
in $PDDIR.

Several MB to
several dozen
MB

Note: In the
following cases,
the attached
shared memory
dump is also
included in the
core, so it can
grow to several
GB.

• In AIX, the
EXTSHM
environment
variable is
not specified.

• The Linux
version is
earlier than
5.2 and the
HiRDB
version is
earlier than
08-04.

Three
generations of
looped files
named
shutdown-
server-
name[1-3]
(If the name of
the server is
unknown, this
might be a
number rather
than a name.)

N S, P Initial

3 $PDDIR/
spool/
save/
*.deb

This is server process
abnormal termination
information. It is generated
when a server process
terminates abnormally.

When the server process is
XDS, it is generated in the
following cases:

• XDS is forcibly
terminated by a
pdxdsstop -f
command.

• Group system
switchover is
performed by HA
monitor's monswap
command.

• HiRDB is forcibly
terminated by a
pdstop -f command.

• XDS terminates
abnormally.

Several MB to
several dozen
MB

Three
generations of
looped files
named
shutdown-
server-
name[1-3].
deb
(If the name of
the server is
unknown, this
might be a
number rather
than a name.)

N S, P Initial

1. Overview of HiRDB System Construction

17

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

To delete automatically:
Specify the following
operands:

• pd_spool_clea
nup_interval

• pd_spool_clea
nup_interval_
level

• pd_spool_clea
nup

• pd_spool_clea
nup_level

To delete manually:
Execute the
pdcspool command.

The unit will shut down if
there is insufficient space
in $PDDIR.

4 $PDDIR/
spool/
save/
*.ext.de
b

This is server process
abnormal termination
information. It is generated
when a server process
terminates abnormally, and
a backtrace is output.

When the server process is
XDS, it is generated in the
following cases:

• XDS is forcibly
terminated by a
pdxdsstop -f
command.

• Group system
switchover is
performed by HA
monitor's monswap
command.

• HiRDB is forcibly
terminated by a
pdstop -f command.

• XDS terminates
abnormally.

To delete automatically:
Specify the following
operands.

• pd_spool_clea
nup_interval

• pd_spool_clea
nup_interval_
level

• pd_spool_clea
nup

• pd_spool_clea
nup_level

Several dozen
KB

Three
generations of
looped files
named
shutdown-
server-
name[1-3].
deb#

(If the name of
the server is
unknown, this
might be a
number rather
than a name.)

N S, P 09-03

1. Overview of HiRDB System Construction

18

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

To delete manually:
Execute the
pdcspool command.

The unit will shut down if
there is insufficient space
in $PDDIR.

5 $PDDIR/
spool/
save/
command-
name*.txt

This is troubleshooting
information for the
pdload, pdrorg,
pdreclaim, and
pdpgbfon commands. It
is generated when a
command times out.

To delete automatically:
Specify the following
operands:

• pd_spool_clea
nup_interval

• pd_spool_clea
nup_interval_
level

• pd_spool_clea
nup

• pd_spool_clea
nup_level

To delete manually:
Execute the
pdcspool command.

The unit will shut down if
there is insufficient space
in $PDDIR.

Several KB to
several dozen KB
(Varies with total
number of
HiRDB processes
executed at that
time and number
of resources
waiting for lock
release)

One file for
each command
process ID

N S, P 06-02

6 $PDDIR/
spool/
pdshmdum
p/*

This is a shared memory
dump file. It is generated
when a server process or
unit terminates abnormally.

To delete automatically:
Specify the following
operands:

• pd_spool_clea
nup_interval

• pd_spool_clea
nup_interval_
level

• pd_spool_clea
nup

• pd_spool_clea
nup_level

To delete manually:
Execute the
pdcspool command.

The unit will shut down if
there is insufficient space
in $PDDIR.

Several hundred
MB to several
GB (about the
same size as the
shared memory
segment whose
attribute of the
process that uses
shared memory
displayed with
the pdls -d
mem command is
MANAGER)

The system
loops through
two
generations of
files:
shmdump and
shmdump.ol
d

N S, P Initial

1. Overview of HiRDB System Construction

19

#
When the pdcancel -d command is used to forcibly terminate a server process, an instance of the following file is generated
for each process that is canceled.
$PDDIR/spool/save/server-name.process-ID.cancel.ext.deb

(5) Special files for communication

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

1 /dev/
HiRDB/pt
h/*

This is a special file for
communication. It is
generated at HiRDB
startup, HiRDB server
startup, command
execution, and UAP
connection.

It is automatically deleted
when the HiRDB server
process terminates
normally.

Use the OS's rm command
(or some other method) to
manually delete the file (it
can be deleted with all the
HiRDB servers of the
server machine stopped).

The unit cannot start if
there is insufficient space
in $PDDIR.

0 Maximum of
196,605

N S, P Initial

(6) Temporary files for index creation

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

1 directory-
specified-by-
pd_plugin_ix
mk_dir/
index-
name.RDA
REA-name

(if directory
specified in
pd_plugi
n_ixmk_d
ir)

This is a plug-in index
information file. It is
generated when an SQL
statement is executed.

It is automatically deleted
when batch creation of the
plug-in index terminates
normally or when re-
creation of the plug-in
index is executed.

Use the OS's rm command
(or some other method) to
manually delete the file.

See the Notes
section in
Delayed batch
creation of a
plug-in index in
the HiRDB
Version 9 System
Operation Guide.

plugin count
index storage
RDAREA-
count (number
of updated
RDAREAs)

N S, P 05-06

(7) Temporary work files for operation commands

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

1 $PDDIR/t
mp/CMr*

This is a temporary
operation command file. It
is generated when an

MAX(1,024
bytes global-
buffer-count, 512

One file for
each command
process ID

Y S, P Initial

1. Overview of HiRDB System Construction

20

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

operation command is
executed.

It is automatically deleted
when operation command
execution terminates.

bytes

RDAREA-count)

2 $PDDIR/t
mp/CMs*

This is a temporary
operation command file. It
is generated when an
operation command is
executed.

It is automatically deleted
when operation command
execution terminates.

128 bytes

RDAREA-count
One file for
each command
process ID

Y S, P Initial

3 $PDDIR/t
mp/CMb*

This is a differential
information file for the
pdbufls command. It is
generated when the
pdbufls command
(specifying -k sts or no
option) is executed.

It is automatically deleted
when HiRDB starts. Use
the OS's rm command (or
some other method) to
manually delete the file
while the pdbufls
command is not executing.

16 bytes + 124
bytes global-
buffer-count

One file for
each command
process ID

Y S, P Initial

4 $PDDIR/t
mp/
pdcmd*

This is the operation
command results file. It is
generated when an
operation command is
executed. It is
automatically deleted when
command execution
terminates.

This file is only used by a
HiRDB parallel server
configuration when the
dictionary server and
system manager are
different nodes.

MAX(1,024
bytes global
buffer count, 512
bytes

RDAREA count)

One file for
each command
process ID

Y P Initial

5 /tmp/
pddefrev
.exp.*(the
pd_tmp_d
irectory
operand is
ignored)

This is a temporary
pddefrev command
work file. It is generated
when the pddefrev
command is executed.

It is automatically deleted
when pddefrev
command execution
terminates. Use the OS's
rm command (or some
other method) to manually
delete the file.

number of
resources to
export 70
bytes

One file for
each command
process ID

N S, P 04-01

6 $PDDIR/
spool/tm
p/*

This is a temporary file for
an operation command. It
is generated when an
operation command is
executed. It is deleted

A maximum of
1,024 bytes

One file for
each command
process ID

N S, P 09-04

1. Overview of HiRDB System Construction

21

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

automatically when the
operation command
execution terminates.

(8) Utility results files

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

1 $TMPDIR/
pdcp1*, /
tmp/
pdcp1*,
directory-
specified-by-
the-p-
option/
pdcp1* (In
08-02 or
later, this file
is stored in
the
pd_tmp_d
irectory
directory if
the
pd_tmp_d
irectory
operand is
specified.)

This is a pdcopy results
file. It is generated when
pdcopy is executed.

Use the OS's rm command
(or some other method) to
manually delete the file.

3,500 (bytes)
RDAREA count

One file with a
different file
name each time
for pdcopy
with no -p
option

Y S, P Initial

2 $TMPDIR/
pdrs1*,
directory-
specified-by-
the-w-
option/
pdrs1* (In
08-02 or
later, this file
is stored in
the
pd_tmp_d
irectory
directory if
the
pd_tmp_d
irectory
operand is
specified.)

This is a temporary
pdrstr results file
(temporary file for storing
rollback logs when
recovering log
specifications). It is
generated when pdrstr is
executed.

It is deleted automatically
when rollback terminates.
Use the OS's rm command
(or some other method) to
manually delete the file.

Depends on
rollback log size

Number of
servers
associated with
the pdrstr
target
RDAREA

N S, P Initial

3 $TMPDIR/
pdrs2*, /
tmp/
pdrs2*,
directory-
specified-by-
the-p-
option/
pdrs2* (In
08-02 or

This is a pdrstr results
file. It is generated when
pdrstr is executed.

Use the OS's rm command
(or some other method) to
manually delete the file.

3,500 (bytes)
RDAREA count

One file with a
different file
name each time
for pdrstr
with no -p
option

Y S, P Initial

1. Overview of HiRDB System Construction

22

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

later, this file
is stored in
the
pd_tmp_d
irectory
directory if
the
pd_tmp_d
irectory
operand is
specified.)

4 $TMPDIR/
pdrs4, /t
mp/pdrs4
(In 08-02 or
later, this file
is stored in
the
pd_tmp_d
irectory
directory if
the
pd_tmp_d
irectory
operand is
specified.)

This is a temporary
pdrstr results file
(temporary file for
outputting messages to
console). It is generated
when pdrstr is executed.

It is deleted automatically
when pdrstr execution
terminates. Use the OS's
rm command (or some
other method) to manually
delete the file.

256 bytes One (command
execution node
only)

Y S, P Initial

5 /tmp/
REPORT*
(in 08-02 or
later, this file
is stored
under the
pd_tmp_d
irectory
directory if
the
pd_tmp_d
irectory
operand is
specified)

This is a pdrbal results
file. It is generated when
pdrbal is executed.

Use the OS's rm command
(or some other method) to
manually delete the file.

See 19.1.9 File
sizes required for
execution of the
rebalancing
utility (pdrbal).

One file with a
different file
name each time
no report
control
statement is
specified

N S, P 06-00

6 /tmp/
CONSTCK-
REPORT-
*(in 08-02
or later, this
file is stored
under the
pd_tmp_d
irectory
directory if
the
pd_tmp_d
irectory
operand is
specified)

This is a pdconstck
results file. It is generated
when pdconstck starts
executing.

Use the OS's rm command
(or some other method) to
manually delete the file.

See 19.1.10 File
sizes required for
execution of the
integrity check
utility
(pdconstck).

One file for
each command
process ID

N S, P 07-03

1. Overview of HiRDB System Construction

23

(9) Temporary work file for utilities

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

1 $TMPDIR/
pdcp3*, /
tmp/
pdcp3* (In
08-02 or
later, this file
is stored in
the
pd_tmp_d
irectory
directory if
the
pd_tmp_d
irectory
operand is
specified.)

This is a temporary
pdcopy results file (for
outputting messages to the
console). It is generated
when pdcopy is executed.

It is automatically deleted
when pdcopy execution
terminates. Use the OS's
rm command (or some
other method) to manually
delete the file.

256 bytes One (command
execution node
only)

Y S, P Initial

2 $TMPDIR/
pdcp4*, /
tmp/
pdcp4* (In
08-02 or
later, this file
is stored in
the
pd_tmp_d
irectory
directory if
the
pd_tmp_d
irectory
operand is
specified.)

This is a temporary
pdcopy results file (for
storing messages). It is
generated when pdcopy
execution starts.

It is automatically deleted
when pdcopy execution
terminates. Use the OS's
rm command (or some
other method) to manually
delete the file.

256 bytes

pdcopy target
RDAREA count

Number of
servers
associated with
the target
RDAREA of
pdcopy + 2

Y S, P Initial

3 $TMPDIR/
pdrs5*, /
tmp/
pdrs5* (In
08-02 or
later, this file
is stored in
the
pd_tmp_d
irectory
directory if
the
pd_tmp_d
irectory
operand is
specified.)

This is a temporary
pdrstr results file (for
storing messages). It is
generated when pdrstr
execution starts.

It is automatically deleted
when pdrstr execution
terminates. Use the OS's
rm command (or some
other method) to manually
delete the file.

256 bytes

pdrstr target
RDAREA count

Number of
servers
associated with
the target
RDAREA + 2.

However, add
an additional 1
when the
number of
target servers is
two or more, or
when you are
inputting a log
that exists
somewhere
other than the
recovery target
unit.

Y S, P Initial

4 /tmp/
ERROR* (in
08-02 or
later, this file
is stored
under the
pd_tmp_d
irectory
directory if

This is a results file for
pdload input data storage
information (error
information file). It is
generated when pdload is
executed. Use the OS's rm
command (or some other
method) to manually delete
the file.

See 19.1.1 File
sizes required for
the execution of
the database load
utility (pdload).

If no error
operand is
specified in the
source
statement, one
file, with a
different file
name each time

N S, P Initial

1. Overview of HiRDB System Construction

24

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

the
pd_tmp_d
irectory
operand is
specified)

5 /usr/tmp
/*, /var/
tmp/*, /t
mp/*(in
08-02 or
later, this file
is stored
under the
pd_tmp_d
irectory
directory if
the
pd_tmp_d
irectory
operand is
specified)

This is a temporary file for
creating the pdload error
information file. It is
generated when pdload is
executed. Use the OS's rm
command (or some other
method) to manually delete
the file.

This file is only used with a
HiRDB parallel server
configuration.

See 19.1.1 File
sizes required for
the execution of
the database load
utility (pdload).

Number of
servers that
store the table
to be loaded
with data

N S, P Initial

6 /tmp/
LOBMID*
(in 08-02 or
later, this file
is stored
under the
pd_tmp_d
irectory
directory if
the
pd_tmp_d
irectory
operand is
specified)

This is a work file for
pdload BLOB column
loads. It is generated when
pdload execution starts.
Use the OS's rm command
(or some other method) to
manually delete the file.

See 19.1.1 File
sizes required for
the execution of
the database load
utility (pdload).

When
something
other than d is
specified for
the -k option,
the lobmid
statement is
omitted, and a
table that has a
BLOB column
is loaded with
data, one file
with a different
file name each
time

N S, P 03-00

7 /tmp/
INDEX*,
idxwork-
control-
statement-
specification
-directory/
INDEX* (in
08-02 or
later, this file
is stored
under the
pd_tmp_d
irectory
directory if
the
pd_tmp_d
irectory
operand is
specified)

This is an index
information file for
pdload, pdrorg, and
pdrbal. It is generated
when pdload, pdrorg,
or pdrbal executes.

It is deleted automatically
when index loading
finishes. Use the OS's rm
command (or some other
method) to manually delete
the file.

See the
following:

19.1.1 File sizes
required for the
execution of the
database load
utility (pdload),

19.1.2 File sizes
required for the
execution of the
database
reorganization
utility (pdrorg),
19.1.9 File sizes
required for
execution of the
rebalancing
utility (pdrbal)

When index
batch creation
mode is
selected, the
number of files
is index count

 index
storage
RDAREA
count, with a
different file
name each
time.

N S, P Initial

8 /tmp/rs*,
sort-control-
statement-
specification
-

This is a sorting work file
for pdload, pdrorg, and
pdrbal. It is generated

See the
following:

19.1.1 File sizes
required for the

When index
batch creation
mode is
selected, the
number of files

N S, P Initial

1. Overview of HiRDB System Construction

25

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

directory/r
s* (in 08-02
or later, this
file is stored
under the
pd_tmp_d
irectory
directory if
the
pd_tmp_d
irectory
operand is
specified)

when pdload, pdrorg,
or pdrbal executes.

It is automatically deleted
when index loading
finishes or when the
process terminates. Use the
OS's rm command (or
some other method) to
manually delete the file.

execution of the
database load
utility (pdload),

19.1.2 File sizes
required for the
execution of the
database
reorganization
utility (pdrorg),

19.1.9 File sizes
required for
execution of the
rebalancing
utility (pdrbal).

equals the
index storage
server count,
with a different
file name each
time.

9 /tmp/
*.dbst.d
ata, /tmp
/
*.dbst.m
sg (in 08-02
or later, this
file is stored
under the
pd_tmp_d
irectory
directory if
the
pd_tmp_d
irectory
operand is
specified)

This is a pddbst
command temporary file. It
is generated when pddbst
execution starts.

It is deleted automatically
when pddbst execution
terminates. Use the OS's
rm command (or some
other method) to manually
delete the file.

See 19.1.4 File
sizes required for
the execution of
the database
condition
analysis utility
(pddbst).

One file for
each process
ID of the
command.

N S, P Initial

10 /tmp/
*.syi,
*.syo,
*.uai,
*.uao,
*.sqi,
*.sqo,
*.pci,
*.pco,
*.soi,
*.soo,
*.doi,
*.doo,
*.bui,
*.buo,
*.fii,
*.fio,
*.dfi,
*.dfo,
*.ixi,
*.ixo,
*.isi,
*.iso,
*.cni,
*.cno,
*.qhi,
*.qho,
*.shi,
*.sho,

This is a temporary
pdstedit command
work file. It is generated
when pdstedit
execution starts.

It is deleted automatically
when pdstedit
execution terminates. Use
the OS's rm command (or
some other method) to
manually delete the file.

See 19.1.3 File
sizes required for
the execution of
the statistics
analysis
utility(pdstedit).

One file for
each process
ID of the
command and
for each
information
item subject to
analysis.

N S, P Initial

1. Overview of HiRDB System Construction

26

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

*.obi,
*.obo,
*.fsi,
*.fso,
*.hbi,
*.hbo,

directory-
specified-
by--w-
option/***
(in 08-02 or
later, this file
is stored
under the
pd_tmp_d
irectory
directory if
the
pd_tmp_d
irectory
operand is
specified)

(10) Trace information

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

1 $PDCLTPA
TH/
pdsql1.t
rc,
pdsql2.t
rc

This is SQL trace
information. It is generated
at SQL statement
execution.

Use the OS's rm command
(or some other method) to
manually delete the file.

Specified by
client
environment
variable
PDSQLTRACE

Two files,
between which
output is
cycled.

Y S, P, DK,
RT

Initial

2 $PDCLTPA
TH/
pdsqlxxxxx
-1.trc,
pdsqlxxxxx
-2.trc
xxxxx:
Process ID
when UAP
executes

This is SQL trace
information (when using
X/Open-compliant API
(TX_ function)). It is
generated at SQL statement
execution.

Use the OS's rm command
(or some other method) to
manually delete the file.

Specified by
client
environment
variable
PDSQLTRACE

Two files
created for
each UAP
process ID,
between which
output is
cycled.

Y S, P, DK,
RT

07-01

3 $PDCLTPA
TH/
pdjsqlxxx
xxxxx_pppp
p_1.trc,
pdjsqlxxx
xxxxx_pppp
p_2.trc
xxxxxxxx:
Connected
server name

This is SQL trace
information (when using
Type 4 JDBC driver). It is
generated at SQL statement
execution.

Use the OS's rm command
(or some other method) to
manually delete the file.

Specified by
client
environment
variable
PDSQLTRACE

Two files each
created for
connected
server name
and client
reception port
number,
between which
output is
cycled.

Y S, P, DK,
RT

08-00

1. Overview of HiRDB System Construction

27

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

ppppp:
Client
reception
port number

4 $PDCLTPA
TH/
pdjsqlxxx
xxxxx_pppp
p_1.trc,
pdjsqlxxx
xxxxx_pppp
p_2.trc
xxxxxxxx:
Connected
server name

ppppp:
Client
reception
port number

This is a dynamic SQL
trace (when Type 4 JDBC
driver is used). It is
generated at SQL statement
execution.

Use the OS's rm command
(or some other method) to
manually delete the file.

Specified by the
pdtrcmgr -s
command

Two files each
created for
connected
server name
and client
reception port
number,
between which
output is
cycled.

Y S, P, DK,
RT

08-00

5 $PDJDBFI
LEDIR/
pdexc1.t
rc,
pdexc2.t
rc

This is an exception trace
log. It is generated when an
exception occurs within a
Type 4 JDBC driver.

Use the OS's rm command
(or some other method) to
manually delete the file.

See Exception
Trace Log in the
HiRDB Version 9
UAP
Development
Guide.

Two files,
between which
output is
cycled.

Y S, P, DK,
RT

08-00

6 Specified by
user (in
setLogWr
iter
method of
DriverMa
nager class
or
setLogWr
iter
method of
DataSour
ce interface)

This is a JDBC interface
method trace. It is
generated when an
exception occurs within a
Type 4 JDBC driver or
when a
Connection.close
method is called.

Use the OS's rm command
(or some other method) to
manually delete the file.

Specified in
system property
HiRDB_for_J
ava__FileSi
ze or client
environment
variable
PDJDBFILESI
ZE.

If not specified,
180 n

m 1,024
kilobytes

n: Specification
in user property
TRC_NO, which
is specified at
connection
(default is 500)

m: Number of
exceptions from
connection to
disconnection + 1

One file Y S, P, DK,
RT

08-00

7 $PDTRCPA
TH/
pdcHHMM
SSmmm_XX
X_1.trc,
pdcHHMM
SSmmm_XX
X_2.trc

This is a dynamic SQL
trace. It is generated at
SQL statement execution.

Use the OS's rm command
(or some other method) to
manually delete the file.

Specified by
pdtrcmgr -s
command

Two files
created for
each
connection,
between which
output is
cycled.

Y S, P, DK,
RT

06-00

1. Overview of HiRDB System Construction

28

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

HHMMSSm
mm:
CONNECT
time

XXX:
CONNECT
number

8 $PDCLTPA
TH/
pdrcnct1
.trc,
pdrcnct2
.trc

This is a reconnection
trace. It is generated when
a connection is made
automatically using the
automatic connection
function.

Use the OS's rm command
(or some other method) to
manually delete the file.

Specified by
client
environment
variable
PDRCTRACE

Two files,
between which
output is
cycled.

Y S, P, DK,
RT

07-01

(11) Statistical information

No.
File or

directory
name

Description Approx. file size File count
Can max.
size be
limited?

Outputtin
g

software

Supportin
g version

1 $PDREPPA
TH/
pdHHMMS
Smmm_XXX
_1.trc,p
dHHMMSS
mmm_XXX_
2.trc
HHMMSSm
mm:
CONNECT
time

XXX:
CONNECT
number

This is a UAP statistical
report. It is generated at
SQL statement execution.

Use the OS's rm command
(or some other method) to
manually delete the file.

Specified by
client
environment
variable
PDSQLTRACE

Two files
created for
each
connection,
between which
output is
cycled.

Y S, P, DK,
RT

06-00

2 $PDCLTPA
TH/
pdjsqlxxx
xxxxx_pppp
p_1.trc,
pdjsqlxxx
xxxxx_pppp
p_2.trc
xxxxxxxx:
Connected
server name

ppppp:
Client
reception
port number

This is a UAP statistical
report (when a Type 4
JDBC driver is used). It is
generated at SQL statement
execution.

Use the OS's rm command
(or some other method) to
manually delete the file.

Specified by
client
environment
variable
PDSQLTRACE

Two files each
created for the
connected
server name
and client
reception port
number,
between which
output is
cycled.

Y S, P, DK,
RT

08-00

1. Overview of HiRDB System Construction

29

1.4 Upgrading HiRDB
This section describes the procedure for upgrading HiRDB.

Upgrading refers to installing a later version or revision of HiRDB (for example, when VV or RR in the VV-RR-ZZ
format HiRDB version number increases).

When upgrading a HiRDB single server configuration, also upgrade the corresponding utility special unit. Make sure
that the HiRDB single server configuration and the corresponding utility special unit have matching versions of
HiRDB.

When upgrading a HiRDB parallel server configuration, upgrade all units constituting the HiRDB parallel server
configuration so that they have the same version of HiRDB.

! Important note

• When upgrading HiRDB, do not uninstall the existing HiRDB. Install the new version of HiRDB over the existing
version.

• There are some notes concerning upgrading that apply when the security audit facility is used. For details about these
notes, see the HiRDB Version 9 System Operation Guide.

• There are notes about upgrading to version 07-03 or later by using the Java stored procedures and functions. For details
about the notes, see 1.4.5 Using Java stored procedures and functions.

1.4.1 Before upgrading
Before upgrading, make sure that the steps described below are taken. Note that if you are sharing libraries in a multi-
HiRDB configuration, you must cancel the library sharing and apply the following actions to all directories:

• 1.4.1(3) Checking to see whether HiRDB is online.

• 1.4.1(5) Checking the HiRDB status.

• 1.4.1(6) Releasing library sharing.

(1) Checking for available space
Use the database condition analysis utility (pddbst) to see if there is enough space in the data dictionary RDAREAs.
If there is not enough space, allocate sufficient space using one of the following methods:

• Reorganize the dictionary table using the database reorganization utility (pdrorg).

• Extend the data dictionary RDAREAs using the database structure modification utility (pdmod).

This space checking is required only when you are upgrading your HiRDB; it is not necessary when you are updating
to the HiRDB update version.

For the utility execution method, see the manual HiRDB Version 9 Command Reference.

Free space required for upgrading

Check the free space requirements indicated in the following table for the version of HiRDB being used prior to the
upgrade. If there is not enough space, an insufficient space error may occur when you start HiRDB or execute the
pdvrup command after upgrading.

Table 1‒4: Free space required for upgrading

Dictionary tables stored
in data dictionary

RDAREA

Number of free segments required in data dictionary RDAREA

Upgrading from
07-00 or later

Upgrading from
06-00 or later

Upgrading from
05-02 or later

Upgrading from
03-00 or later

Upgrading from
02-05 or earlier

SQL_TABLES table 1 3 3 3 3

SQL_COLUMNS table 4 + 5 S 5 + 5 S 5 + 15 S 5 + 20 S 5 + 1 25 S

1. Overview of HiRDB System Construction

30

Dictionary tables stored
in data dictionary

RDAREA

Number of free segments required in data dictionary RDAREA

Upgrading from
07-00 or later

Upgrading from
06-00 or later

Upgrading from
05-02 or later

Upgrading from
03-00 or later

Upgrading from
02-05 or earlier

SQL_INDEXES table 1 1 4 4 4

SQL_TABLE_PRIVILEG
ES table

1 1 3 3 3

SQL_INDEX_COLINF
table

1 1 3 3 3

SQL_VIEW_TABLE_USA
GE table

2 3 4 4 4

SQL_VIEWS table 2 + 5 S 3 + 5 S 3 + 15 S 3 + 20 S 3 + 25 S

SQL_VIEW_DEF table 2 + 10 S 3 + 10 S 2 + 40 S 2 + 65 S 2 + 70 S

SQL_DIV_COLUMN
table#1

-- -- -- 1 --

SQL_ROUTINES table#2 -- -- 4 + 30 S 4 + 30 S --

SQL_ROUTINE_PARAMS
table#2

-- -- 2 + 20 S 2 + 20 S --

Legend:

--: Not applicable

S: Segment size of data dictionary RDAREA for storing the corresponding table

#1: The table is not needed if no LOB column or data dictionary LOB RDAREA is defined.

#2: The table is not needed if no stored procedure is defined.

(2) Backing up system RDAREAs
Use the database copy utility (pdcopy) to back up the following RDAREAs:

• Master directory RDAREA

• Data directory RDAREA

• Data dictionary RDAREAs

• RDAREAs containing audit trail tables (applicable when the security audit facility is used)

Note that if you downgrade the version after you have successfully upgraded (for example, if you upgrade for test
purposes and then downgrade to restore the original operations), you must first back up all RDAREAs.

To back up the RDAREAs, use the following procedure:

1. Use the pdstop command to terminate HiRDB normally.

2. Use the pdstart -r command to start HiRDB.

3. Use the database copy utility (pdcopy) to back up the RDAREAs. In this case, specify the reference/update-
possible mode (-M x specified). For details about the backup procedure, see the manuals HiRDB Version 9 System
Operation Guide or HiRDB Version 9 Command Reference.

(3) Checking to see whether HiRDB is online
Use the pdls command to see if all units are displayed as ACTIVE. If they are ACTIVE, use the pdstop command
to terminate them normally.

1. Overview of HiRDB System Construction

31

(4) Terminating HiRDB normally
Before upgrading, terminate HiRDB normally. In the case of a HiRDB parallel server configuration, terminate HiRDB
from the machine that contains the system manager. If HiRDB has already been terminated, check the following
information to determine whether HiRDB has terminated normally:

• Message log file or syslog file

If HiRDB has not terminated normally, enter the pdstart command to start HiRDB and then enter the pdstop
command to terminate it normally.

(5) Checking the HiRDB status
To check the status of a unit whose HiRDB is to be upgraded, execute the pdls -d ust command.

When the termination status is 4 (unit status is STARTING or STOPPING):
HiRDB is engaged in start or termination processing. Re-execute the pdls -d ust command after the start or
termination processing is completed.

When the termination status is 8 (unit status is PAUSE):
Restart of the process service has been cancelled due to an error. Check the KFPS00715-E message and the
message that has been output to the syslog file before this message, eliminate the cause of the error, and then
execute the pdrpause command. After that, re-start the unit, and then terminate it normally with the pdstop
command.

(6) Releasing library sharing
If you are sharing libraries with multi-HiRDB, use the pdmemsv -d command to release library sharing. After
upgrading HiRDB, use the pdmemsv command to share libraries again.

(7) Stopping commands, utilities, applications, and HiRDB-linked programs
Terminate commands, utilities, and applications. Before upgrading, also stop any linked program that accesses
HiRDB, such as HiRDB Datareplicator, HiRDB Dataextractor, or JP1/PFM. If any such item is running, deletion of
executable files and shared libraries fails, resulting in an upgrading error.

(8) Checking the default values of operands in the HiRDB system definition
With each version and revision, HiRDB revises the default values that are assumed when you omit HiRDB system
definition operands. HiRDB version 09-50 and later offers two modes for the default behavior when operands are
omitted: recommended mode, which assumes the recommended default values, and compatibility mode, which uses
the default values for a specific version of HiRDB. Normally, to build a more secure system, we suggest that you
apply the recommended mode, which greatly reduces the number of operands that must be specified. In version 09-50
and later, to use the default values for a specific version, apply the compatibility mode, and do not specify the operand
pd_sysdef_default_option.

• If you are upgrading from a version earlier than 09-50
For details about the advantages and disadvantages of changing the default values, see Changes to HiRDB system
definitions by version and revision in the manual HiRDB Version 9 System Definition. After checking the default
values, if you decide to focus on compatibility with the previous version, you can apply the compatibility mode to
make the default values the same as in the previous version. However, in this case all of the operands will have the
previous version's default values, so we recommend specifying the recommended values on a per-operand basis.

• If you are upgrading from a version earlier than 07-00, or if you are specifying the operand
pd_sysdef_default_option
In addition to the changes mentioned above in If you are upgrading from a version earlier than 09-50, see the
description about upgrading from a version earlier than 09-50 in Operands whose default value depends on the
version and operands that are no longer needed in the manual HiRDB Version 9 System Definitions. Then, after
taking note of the relevant advantages, consider specifying the recommended values on a per-operand basis.

1. Overview of HiRDB System Construction

32

(9) Checking other default values
With each version and revision, HiRDB revises the default values that are assumed when you omit utility options and
SQL options.

If you are upgrading from a version earlier than 09-50, check the locations listed below regarding the advantages and
disadvantages of changing the default values. After checking the default values, if you decide to focus on
compatibility with the previous version, you can apply the compatibility mode to make the default values the same as
in the previous version. However, in this case all of the operands will have the previous version's default values, so we
recommend specifying the recommended values on a per-operand basis.

• Options and Control Statements Whose Default Value Is Changed or Whose Specification Is No Longer Needed
After Upgrading in the manual HiRDB Version 9 Command Reference

• Changes to the default interpretation of SQL syntax by version and revision in the manual HiRDB Version 9 SQL
Reference

(10) Checking the memory requirements
The memory requirements may increase when you upgrade the HiRDB version. You should check the HiRDB
memory requirements in Chapter 15. Storage Requirements for HiRDB.

(11) Checking the size of status files
When you upgrade HiRDB, the size of the HiRDB status files may increase. You should check the size of the HiRDB
status files as described in 17.3 Determining the size of status files.

(12) Checking the size of synchronization point dump files
When you upgrade HiRDB, the size of the HiRDB synchronization point dump files may increase. You should check
the size of the HiRDB synchronization point dump files as described in 17.2 Determining the size of synchronization
point dump files.

(13) Checking the operating system parameters
The operating system parameter values (or kernel parameter values) may change when the HiRDB version is updated.
For details about how to estimate the operating system parameter values, see 20. Specifying OS Parameters.

Note
When the following conditions are satisfied, the values of the operating system parameters will have to be
increased, so the values will need to be re-evaluated:

• When upgrading from version 06-00 or earlier to version 06-01 or later

• When 31 or more system log file groups are created

(14) Checking the total number of records in the system log file
If you are upgrading, check the total number of records in the system log files in overwrite enabled status. If the
following condition is not satisfied, upgrading may fail:

When upgrading from HiRDB Version 4.0 or earlier
Total number of records# > 5,754,880/system log file record length

When upgrading from HiRDB Version 5.0 or earlier
Total number of records# > 4,239,360/system log file record length

When upgrading from HiRDB Version 6 or earlier
Total number of records# > 3,215,360/system log file record length

When upgrading from HiRDB Version 7 or earlier
Total number of records# > 1,413,120/system log file record length

1. Overview of HiRDB System Construction

33

For a HiRDB parallel server configuration, check the total number of records in the system log files (overwrite
enabled status) at the dictionary server.

#: Use one of the following methods to check the total number of records in the system log files:

• The total number of -n option values in the pdloginit command is the total number of records.

• Execute the pdlogls -d sys -s server-name -e command. The sum of the numbers of records
(hexadecimal) that are output at the top of the Recode-count in the execution result is the total number of
records.

(15) Backing up the files in the HiRDB directory
To be prepared for the possibility of upgrading errors, back up the files under the HiRDB directory ($PDDIR/conf).
Delete the backup copy after you have checked the operation of the new version. For details about how to back up the
HiRDB directory, see 2.3.1(4) Making a backup copy of the HiRDB directory.

(16) Upgrading option program products
If option program products were used with HiRDB before upgrading, those option program products must be
upgraded to the same version as HiRDB. For details about option program products, see 2.2.2 Installing option
program product.

(17) Checking the added reserved words
With the extension of SQL, the reserved words listed below have been added to each version of HiRDB. An SQL
statement containing a reserved word that is not enclosed in double-quotation marks might result in a syntax error
after upgrading.

HiRDB version Added reserved words

06-00 GET_JAVA_STORED_ROUTINE_SOURCE,

IS_USER_CONTAINED_IN_HDS_GROUP

06-01 None

06-02 BIT_AND_TEST

07-00 CONDITION,

EXIT,

HANDLER,

TIMESTAMP_FORMAT,

VARCHAR_FORMAT

07-01 FREE,

LOCATOR

07-02 None

07-03 OVER

08-00 ENCRYPT

08-01 None

08-02 COUNT_FLOAT,

SQLCODE_OF_LAST_CONDITION,

SQLERRM_OF_LAST_CONDITION,

XML,

XMLAGG,

XMLEXISTS,

1. Overview of HiRDB System Construction

34

HiRDB version Added reserved words

XMLQUERY,

XMLSERIALIZE

08-03 None

08-04 XMLPARSE

08-05 None

09-00 None

09-01 None

09-02 None

09-03 COMPRESSED

If any of the added reserved words has been used without being enclosed in double-quotation marks, take appropriate
action by referencing What to do if a name conflicts with an SQL reserved word in the manual HiRDB Version 9 SQL
Reference.

1.4.2 Replacing an existing version with the new version
This subsection describes the procedure for replacing an existing version of HiRDB with a more recent version.

1. Overview of HiRDB System Construction

35

Figure 1‒2: Procedure for replacing an existing version with the new version

#1

• If you specify pd_auto_vrup=N in the system common definition, the pdvrup command does not start
automatically. In this case, if the KFPS05203-Q message (pdvrup command entry request message) is
issued, the HiRDB administrator must enter the pdvrup command.

• When you are updating to the HiRDB update version, the pdvrup command does not start automatically.
Proceed to the next step.

#2
For the execution result of the pdvrup command, check the KFPX24404-I message in the message log file or
syslog file.

1. Overview of HiRDB System Construction

36

1.4.3 Installing a new version while retaining the old version
The following figure illustrates the procedure for installing a more recent version of HiRDB while retaining the
previous version (to create a multi-HiRDB configuration with both earlier and more recent versions).

Figure 1‒3: Installing a new version while retaining the old version (to create multi-HiRDB)

1.4.4 Upgrading the HiRDB plug-ins
When upgrading HiRDB, you also need to upgrade your plug-ins. For the HiRDB version required for plug-ins and
the plug-in upgrading procedure, see an applicable plug-in manual and 5.2 Upgrading plug-ins.

1.4.5 Using Java stored procedures and functions
With HP-UX and Solaris HiRDB, JRE (the Java execution environment), which is required to use Java stored
procedures and functions, is bundled with version 07-02 and earlier but not with version 07-03 or later. When you
update HiRDB version 07-02 or earlier to version 07-03 or later, the version of JRE that was installed with HiRDB
version 07-02 or earlier is deleted in the following situations:

When What is deleted

• When uninstalling HiRDB version 07-02 or earlier

• When overwrite installing HiRDB version 07-03 or later

JRE of the HiRDB installation directory

When executing the pdsetup -d command and sending y in
response to the KFPS00036-Q message

JRE of the HiRDB directory

Therefore, if you perform the installation described in 1.4.3 Installing a new version while retaining the old version,
you can use the JRE of the HiRDB directory of the old version (07-02 or earlier). However, if you install a new
version (07-03 or later), the JRE of the HiRDB installation directory is deleted.

Note the following tips when upgrading to HiRDB version 07-03 or later:

• To use Java stored procedures and functions, you must obtain JRE beforehand (you can obtain it from the website
of the platform vendor). For details about the specific JRE that is required to use Java stored procedures and
functions, see the HiRDB Version 9 System Operation Guide.

1. Overview of HiRDB System Construction

37

• To use Java stored procedures and functions, you must specify in the pd_java_runtimepath operand the root
directory of JRE to be used. Also, as required, specify in the pd_java_libpath operand the directory where
the Java virtual machine is stored. For details about the pd_java_runtimepath and pd_java_libpath
operands, see the manual HiRDB Version 9 System Definition.

• To use the JRE installed with the old version after upgrading to a new version, back up JRE to a directory other
than either the installation directory or the HiRDB operation directory before deleting JRE. By specifying in the
pd_java_runtimepath operand the directory in which JRE is backed up, you can use the backed up version
of JRE to run Java stored procedures and functions.

1.4.6 In the event of an upgrading error
This section discusses the actions that you should take if any of the following events occurs:

• The pdvrup command results in a return code of 5 or greater.

• During HiRDB startup, the KFPX24404-I message is issued with a return code of 5 or greater.

In this case, check the message that is output along with this message and take an appropriate action.

(1) When you do not need to terminate HiRDB
Eliminate the cause of the error and reenter the pdvrup command.

(2) When you need to terminate HiRDB
If you need to terminate HiRDB to correct the error, terminate HiRDB once. After eliminating the cause of the error,
use the pdstart command to start HiRDB. When HiRDB starts, the pdvrup command entry request message
(KFPS05203-Q) is issued, so that you can reenter the pdvrup command.

(3) When you need to restore the old version of HiRDB
To correct the error, you may need to restore an earlier version of HiRDB, depending on the error. For example, if
insufficient data dictionary RDAREA space is the cause of the upgrading error, you need to restore the previous
version of HiRDB and use the database structure modification utility (pdmod). In this case, restore the previous
version of HiRDB, eliminate the cause of the error, and then upgrade HiRDB again.

The following figure illustrates the procedure for restoring the previous version of HiRDB.

1. Overview of HiRDB System Construction

38

Figure 1‒4: Procedure to restore HiRDB to the previous version (when version upgrade fails)

#
If there is no backup copy but the system definition files under $PDDIR/conf have been retained, you can use
those files as they are. If there is no backup copy and the files under $PDDIR/conf have also been deleted, you
must re-create the system definition files.

The following figure illustrates the procedure for deleting and re-creating the system files created by the later version.

1. Overview of HiRDB System Construction

39

Figure 1‒5: Procedure for deleting and re-creating the system files created by the new version

1.4.7 Restoring an earlier version of HiRDB
To downgrade the version after a successful HiRDB upgrade (for example, to go back to the original operation after
upgrading HiRDB as a trial), you must re-create HiRDB using the previous version.

(1) Prerequisites
To be able to re-create the previous version after an upgrade, you must have backups available from before you
upgraded of all the RDAREAs and system definition files. Make these backups using the database copy utility
(pdcopy).

(2) Procedure for re-creating HiRDB
The procedure for re-creating HiRDB is basically the same as for initially installing HiRDB and configuring the
environment. The procedure for re-creating HiRDB using the previous version is described below.

1. Stop HiRDB (pdstop command).

2. Delete the more recent version of HiRDB from the OS (execute the pdsetup -d command, answering Y).

3. Uninstall the more recent version of HiRDB.#1

4. Uninstall the previous version.

5. Register the previous version of HiRDB in the OS (execute the pdsetup command).

6. Set the previous-version environment.
Create the HiRDB file system area (execute the pdfmkfs command).#2

In the HiRDB file system area, create the system files (system log file, sync point dump file, and status file)
(execute the pdloginit and pdstsinit commands).
If the system definitions were changed in the more recent version of HiRDB, they must be changed to the
previous-version system definitions file acquired prior to the upgrade (returning to the system definitions of the
previous version of HiRDB).

7. Use the pdstart -r command to start HiRDB in order to start up the database recovery utility (pdrstr).

1. Overview of HiRDB System Construction

40

8. Using the database recovery utility (pdrstr), restore the database from the backup file made prior to the upgrade
(restore all RDAREAs). Do not use the unload log file that includes the log that was updated by HiRDB after the
upgrade.

9. Stop HiRDB (pdstop command).

10. Start HiRDB (pdstart command).

#1
If you are running multiple HiRDB systems in a multi-HiRDB configuration, uninstalling HiRDB will delete all
HiRDB systems on the server. For this reason, do an overwrite install of the previous version of HiRDB over the
more recent version of HiRDB without uninstalling the later version of HiRDB.

#2
If you are not executing the pdfmkfs command with the more recent version of HiRDB, there is no need to
create a HiRDB file system area with the previous version.

(3) Notes
The following are notes concerning downgrading to a previous version.

1. If you use the system switchover function
Restore both the running system and the standby system to the previous version.

2. If an option program product has been set up
If after you restore the previous version, the option program product is no longer the required version, change to
an option program product that is compatible with the previous version of HiRDB.

3. If you use realtime SAN replication
Restore the main site and remote sites to the previous version simultaneously using the reflect all data method.
Also, if you use the log-only synchronous method, application of the system log must be executed after step 9 of
the procedure for re-creating HiRDB.

4. If you use the security monitoring function
When you create a system file in step 5 of the procedure for re-creating HiRDB, also create an audit trail file.

5. If you use the HiRDB Datareplicator data link functionality

• HiRDB Datareplicator must also be restored to the previous version in between steps 1 and 4 of the procedure
for re-creating HiRDB.

• HiRDB and the HiRDB Datareplicator link environment must be reinitialized after step 9 of the procedure for
re-creating HiRDB.

1. Overview of HiRDB System Construction

41

1.5 Updating to HiRDB update version
A HiRDB update version has the same version number and revision number as the active HiRDB, such as 07-02,
followed by a code, -mn; for example, 07-02-01, where the underlined part is the -mn code. For versions earlier than
07-02, m can be a /, an alphabetic character (excluding I, O, and P to T) or a number, and n is an alphabetic character
from A to Z. For versions 07-02 and later, m and n are both numbers.

You can switch to the HiRDB update version while the existing version of HiRDB is running.

If you exit HiRDB to switch to the update version, apply the default behavior for omitted operands that is already in
effect.

1.5.1 Updating HiRDB
There are the two ways to update HiRDB:

• Use the installer.

• Obtain and use the update patch from the Web.

The two methods are explained below.

(1) Using the installer to update HiRDB
You can use the installer to update HiRDB. There are two ways to use the installer to update HiRDB.

(a) Updating after terminating HiRDB

Switches performed after terminating HiRDB are performed according to the same method described in 1.4.2
Replacing an existing version with the new version. Check the following references before you update to the HiRDB
update version:

• The description and notes of 1.4 Upgrading HiRDB

• The operating procedures of 1.4.2 Replacing an existing version with the new version#

#: The operations in the procedure that involve the pdvrup command are not needed.

Also perform the following before you update to the HiRDB update version.

1. Check whether HiRDB is in online status.
Use the pdls command to check whether all units are shown as ACTIVE. If they are, proceed to step 2. If
HiRDB has already terminated, proceed to step 3.

2. Terminate HiRDB.
Stop HiRDB in any shutdown mode. For a HiRDB parallel server configuration, stop all HiRDB units.

3. Check the status of the HiRDB unit.
Execute the pdls -d ust command to check the status of the HiRDB unit. If the termination status is 4 (unit
status is STARTING or STOPPING), HiRDB is in the process of starting or stopping. After processing has
finished, execute the pdls -d ust command again.
For a HiRDB parallel server configuration, execute the pdls -d ust command on all HiRDB units and check
the HiRDB unit status.

4. Release library sharing.
Perform (6) Releasing library sharing described in 1.4.1 Before upgrading.

5. Stop commands, utilities, applications, and HiRDB-linked programs.
Follow the instructions in (7) Stopping commands, utilities, applications, and HiRDB-linked programs in the
subsection 1.4.1 Before upgrading.

(b) Updating with HiRDB operating

See 1.5.2 Prerequisites and following sections.

1. Overview of HiRDB System Construction

42

(2) Using the update patch to update HiRDB
When the version and revision numbers are the same as the active HiRDB, you can use the update patch to update
HiRDB. The patch is available from the Web. There are two ways to use the patch to update HiRDB:

(a) Quit HiRDB and update

For details of how to use this method, read RELEASE.TXT or RELEASE.EUC, which is included with the update
patch.

(b) Update while running HiRDB

See 1.5.2 Prerequisites and following sections.

1.5.2 Prerequisites
The following prerequisites must be satisfied in order to update while HiRDB is operating:

• Version, HiRDB server type, addressing mode
The following items must be the same for the HiRDB update version and the operating HiRDB; these items can be
checked with the pdadmvr command:

• Version number and revision number

• HiRDB server type (HiRDB single server configuration or HiRDB parallel server configuration)

• Addressing mode (32-bit mode or 64-bit mode)

• Operating system parameters
Estimates of the operating system parameters that will be required by HiRDB after the switch must be within the
bounds of the currently set kernel parameters.

• HiRDB directory
The installation directory must not be the same as the HiRDB directory.

• Library sharing
In the case of multi-HiRDBs, the libraries must not be shared.

• Free disk space
There must be sufficient free disk space in the HiRDB directory to store both the currently operating HiRDB and
the HiRDB update version. See the release notes for the free space required for the HiRDB update version.

• HiRDB client
A HiRDB client that is working online must be running on a HiRDB server that is not being updated. Such a
HiRDB client that is operating on a HiRDB server that is to be updated must be terminated and the online job
must be terminated.

• Client library
The HiRDB/Developer's Kit and HiRDB/Run Time that are being used by a HiRDB client that is working online
must be version 07-00 or later. If an earlier version is being used, the connection of the HiRDB client will be
released during updating.

• Application of the automatic reconnect facility
A HiRDB client that is connected to HiRDB must use the automatic reconnect facility
(PDAUTORECONNECT=YES). If the automatic reconnect facility is not being used, the connection of the HiRDB
client will be released during updating. For details about the automatic reconnect facility, see the HiRDB Version 9
UAP Development Guide.

1.5.3 Update procedure
To update to the HiRDB update version:

1. Install the HiRDB update version.

1. Overview of HiRDB System Construction

43

The HiRDB update version requires overwrite installation. For a HiRDB parallel server configuration, overwrite
installation of the HiRDB update version must be performed for each unit. For details about the installation
procedure, see Chapter 2. Installation.

2. Copy the HiRDB update version to the update directory.
To copy the HiRDB update version stored in the installation directory to the update directory in the HiRDB
directory ($PDDIR/renew), execute the following directory command of the operating HiRDB: HiRDB-update-
version-installation-directory/bin/pdprgcopy. For a HiRDB parallel server configuration, execute the
pdprgcopy command at the unit where the system manager is installed.

3. Check that HiRDB is online.
Use the pdls command to check that all units display as ACTIVE.

4. Update to the HiRDB update version.
To update HiRDB, execute the HiRDB-update-version-installation-directory/bin/
pdprgrenew directory command of the operating HiRDB. When this command is executed, the operating
HiRDB is saved to the backup directory ($PDDIR/renew_bak), at which point the operating HiRDB can be
updated with the HiRDB update version copied in step 2 to the update directory. For a HiRDB parallel server
configuration, execute the pdprgrenew command on the unit where the system manager is installed.

1.5.4 Update procedure when the system switchover facility is used
When the system switchover facility is used, an operating HiRDB can be updated in the following cases:

• Standby system switchover
This can be done only when the system that is running is operating as the primary system. When the system that is
running is operating as the secondary system, execute the command after performing system switchover.

• Standby-less system switchover
This can be done only when all normal BESs are operating. Switchover cannot occur when alternating.

The following describes how to update to the HiRDB update version when the system switchover facility is used.

• When operating in server mode
Standby system switchover

1. If the secondary system is running, perform system switchover in such a manner that the primary system will
be running after the switchover.

2. Terminate the standby system.

3. Use the running system to update to the HiRDB update version.

4. Use the pdsetup -d command to delete the HiRDB standby system from the OS (respond with y to the
KFPS00036-Q message).

5. Perform overwrite installation of the HiRDB update version on the standby system.

6. Use the pdsetup command to register the HiRDB standby system with the OS.

7. Re-start the standby system terminated in step 1. On the standby HiRDB system, execute the pdstart
command (for a HiRDB parallel server configuration, execute the pdstart -q command).

Standby-less system switchover (1:1)

1. If the alternate BES is running, switch back the system.

2. Remove the alternate portion from waiting status. For details about the procedure, see the HiRDB Version 9
System Operation Guide.

3. On the normal BES unit that is running, update to the HiRDB update version.
Because the alternate portion that was removed from waiting status in step 2 goes into waiting status
automatically when the pdprgrenew command is executed, no other action is required.

Standby-less system switchover (effects distributed)

1. If the accepting unit's guest BES is running, switch back to the normal unit.

2. Release the acceptable status of all inactive guest BESs that belong to the HA group.

1. Overview of HiRDB System Construction

44

3. On the running normal unit, update to the HiRDB update version.
Because the guest BESs whose acceptable status was released in step 2 go into acceptable status automatically
when the pdprgrenew command is executed, no other action is required.

• Operating in monitor mode

1. If the secondary system is running, perform switchover so that the primary system will be running.

2. On the running system, update to the HiRDB update version.

3. Use the pdsetup -d command to remove the HiRDB standby system from the OS (respond with y to the
KFPS00036-Q message).

4. On the standby system, perform overwrite installation of the HiRDB update version.

5. Use the pdsetup command to register the HiRDB standby system with the OS.

1.5.5 Cautions
• When you cannot update to the HiRDB update version

Depending on the HiRDB operating status, it might not be possible to update to the HiRDB update version. For
details, see the description of the pdprgrenew command in the manual HiRDB Version 9 Command Reference.

• UAP response delay
While the pdprgrenew command is executing, UAP response times will be delayed. Thus, we recommend that
you execute this command when traffic in the system is relatively low.

• Definition reconfiguration
The memory requirements change when you update to the HiRDB update version, which necessitates
reconfiguration of the system definition. Thus, the HiRDB system definition must be reconfigured in advance with
the pdchgconf system reconfiguration command. For details about the system reconfiguration command, see
the HiRDB Version 9 System Operation Guide.

• Execution of operation commands and utilities
You must not execute operation commands or utilities while the pdprgrenew command is executing. Doing so
may result in an error causing HiRDB to terminate or in a failure when HiRDB is updated.

• Use of the system switchover facility
You cannot use the system switchover facility while updating to the update version.

• Invalid holdable cursor
As the cursor cannot be maintained while updating to the update version, a UAP that uses the holdable cursor
cannot be used just before or after updating. Doing so will result in an error at the UAP.

• Invalid LOCK statement of the UNTIL DISCONNECT setting
As the UNTIL DISCONNECT setting cannot maintain an exclusive lock while updating to the update version, the
LOCK statement cannot use the UNTIL DISCONNECT setting just before or after updating. Doing so will result in
an error at the UAP.

1.5.6 Operation considerations
This subsection provides important information about updating to the HiRDB update version.

• Global buffers allocated using the database structure modification utility (pdmod) become invalid. The global
buffers must be reallocated after the update is completed.

• The count startup point of the pd_spool_cleanup_interval operand is reset at the time of the update.

• If the pd_spool_cleanup operand is set to normal or force, any troubleshooting information output from
completion of the update is deleted.

• If the pdstbegin command or the pdstend command is to be used to set collection conditions for statistical
information to values different from the settings of the pd_statistics operand or the pdstbegin operand,
use the following method:

1. Overview of HiRDB System Construction

45

• If statistical information was collected with the pdstbegin command in an environment that was activated
without setting the pd_statistics operand or the pdstbegin operand, statistical information will not
be collected after the update. In such a case, the pdstbegin command will have to be re-executed.

• If statistical information collection was terminated by using the pdstend command in an environment that
was activated where the pd_statistics operand was specified as A or Y or where the pdstbegin
operand was specified, or if the pdstbegin command was executed to change the type of statistical
information to be collected, the collection of statistical information after the update will be as specified in the
system common definition. Therefore, the pdstend command and the pdstbegin command must be re-
executed.

• Because the list used in any narrowed search will disappear, such a list must be re-created with the ASSIGN LIST
statement after the update.

• Because the number of resident processes altered by the pdchprc command returns to the number of resident
processes specified by the HiRDB system definition, the pdchprc command must be re-executed after the
update.

• The system log file is replaced during updating to the HiRDB update version. Before updating, check that there
are swappable system log files. If system log files are needed, perform the following:

• If there are no swappable system log files
If there are files in unload wait status, unload them. If there are no files in unload wait status, use the
pdchgconf system reconfiguration command to add swappable log files. For details about the system
reconfiguration command, see the HiRDB Version 9 System Operation Guide.
If the update is performed when there are no swappable system log files, you must terminate HiRDB with the
Psjnf07 or Psjn381 code once the KFPS01256-E message has been output. In such a case, prepare
swappable files, and then use the pdstart command to start HiRDB.

• If there is only one swappable system log file
It is possible to update to the HiRDB update version in such a case, although the KFPS01224-I message
will be output during the update to indicate that there are no log files. After the update, prepare swappable
system log files.

• The message log file is replaced during updating to the HiRDB update version. However, the KFPS01910-I
message notifying you that the message log file has been replaced is not output. If you want to save the messages
in the message log file, back up the file prior to updating.

1.5.7 Related product limitations and considerations
• Plug-ins

An operating HiRDB can be updated to the HiRDB update version even when plug-ins are used. However, the
plug-ins cannot be updated.

• HiRDB Datareplicator linkage facility
Do not execute the pdprgrenew command on HiRDB while the HiRDB Datareplicator is being used for data
extraction. If you are updating to the HiRDB update version without having terminated online applications, the
HiRDB Datareplicator that is engaged in extraction must be terminated. However, do not stop the HiRDB
Datareplicator linkage (do not execute the pdrplstop command). If the HiRDB Datareplicator linkage is
interrupted, the extracting database and the target database can lose integration.

1.5.8 Operation when an error occurs during installation

(1) Error handling
If an error occurs during updating to the HiRDB update version, the pdprgrenew command returns automatically to
the pre-update HiRDB and starts HiRDB operation. If this command outputs the KFPS04646-I message with return
code 12 and then terminates, it means that the operation to return to the pre-update HiRDB failed. In such a case, refer
to the preparation error that is output or to the error messages and KFPS04647-I message output to the syslogfile
for guidance on what to do next.

The following figure shows how to handle errors that might occur during updating to the HiRDB update version.

1. Overview of HiRDB System Construction

46

Figure 1‒6: Handling errors during updating to the HiRDB update version

1. Correct whatever caused the error in the pdprgrenew command, and then re-execute the pdprgrenew
command.

2. If there is a HiRDB server process, forcibly stop HiRDB with the pdstop -f command, and then execute the
pdprgrenew -b command. If there is no HiRDB server process, execute the pdprgrenew -b command.
When the pdprgrenew -b command is executed, recovery processing restarts the pre-update HiRDB.
Error messages and abort codes relating to a HiRDB shutdown processing failure may also be displayed. Follow
the message handling procedure, and check that HiRDB has returned to the pre-update environment.

3. If there is a HiRDB server process, forcibly stop HiRDB with the pdstop -f command, and then execute the
pdprgrenew -b command. If there is no HiRDB server process, execute the pdprgrenew -b command.
When the pdprgrenew -b command is executed, recovery processing returns to the directory for updating the
HiRDB update version.
Error messages and abort codes relating to a HiRDB startup processing failure may also be displayed. If after
updating to the HiRDB update version there are problems with the operating environment, follow the procedure
for the displayed message.

(2) Checking whether HiRDB returned to pre-update status in the event of a failure during
updating

If updating to the HiRDB update version failed, you can check whether HiRDB returned to its pre-update status by
checking the following items. If these conditions are satisfied, HiRDB returned to the pre-update status.

• The version displayed by the pdadmvr -s command matches the HiRDB version before the update.

• The HiRDB is in online status (the result of the pdls command is that all units are displayed as ACTIVE).

• There is no backup directory ($PDDIR/renew_bak).

1. Overview of HiRDB System Construction

47

1.6 Using JP1/Software Distribution to execute online
distribution of HiRDB

If you are upgrading multiple HiRDBs in a network, using JP1/Software Distribution to execute online distribution of
HiRDB (remote installation) can reduce the work involved in HiRDB installation and setup on each server machine.
To execute online distribution of HiRDB, you need one of the following products:

JP1 Version 5

• JP1/Software Distribution

• JP1/Software Distribution Workstation

JP1 Version 6

• JP1/Software Distribution Manager

• JP1/Software Distribution SubManager or JP1/Software Distribution Client

Notes about this section

• If you are using JP1 Version 6, replace JP1/Software Distribution with JP1/Software Distribution Manager and
JP1/Software Distribution Workstation with JP1/Software Distribution SubManager or JP1/Software
Distribution Client.

• This section assumes that you are familiar with the operation of JP1/Software Distribution and JP1/Software
Distribution Workstation.

• Information provided here is for the following versions of HiRDB:
HP-UX
Solaris

1.6.1 Online distribution procedure
The following figure illustrates the HiRDB online distribution procedure that uses JP1/Software Distribution.

1. Overview of HiRDB System Construction

48

Figure 1‒7: HiRDB online distribution procedure using JP1/Software Distribution

1.6.2 Preparations on JP1/Software Distribution Workstation
Before executing online HiRDB distribution, you need to set up your JP1/Software Distribution Workstation on the
managing server. This section describes only those JP1/Software Distribution Workstation settings that require special
attention.

(1) Specifying the registration file for JP1/Software Distribution Workstation
This section discusses the InstallTiming parameter that is specified in the registration file when registering
HiRDB as a resource in JP1/Software Distribution Workstation.

OS type Value of InstallTiming parameter

HP-UX or Solaris Specify BOOT in the InstallTiming parameter.

Example: InstallTiming BOOT

To automate the HiRDB setup procedure, specify a HiRDB setup automation shell during the program product
installation postprocessing for the registration file (APafterGeneration). For details about the HiRDB setup
automation shell, see subsection (2).

1. Overview of HiRDB System Construction

49

(2) Creating a HiRDB setup automation shell
To automate the HiRDB setup procedure, create a shell as the program product installation postprocessing. Specify the
pdsetup command in this shell to set up HiRDB. This automates HiRDB setup after online distribution.

The following shows coding examples of the HiRDB setup automation shell:

(a) HP-UX HiRDB single server configuration

Example 1
This sample shell uses the installation directory as the HiRDB directory:

/bin/chown USR1 /opt/HiRDB_S 1
/bin/chgrp GRP1 /opt/HiRDB_S 1
/bin/echo 'y' | /opt/HiRDB_S/bin/pdsetup -d /opt/HiRDB_S
/opt/HiRDB_S/bin/pdsetup -c sjis /opt/HiRDB_S 2

Explanation:

1. If you use the installation directory as the HiRDB directory, redefine the directory's owner and group as
the HiRDB administrator and HiRDB group. Replace the underlined parts with the actual HiRDB
administrator's user ID and group ID.

2. Replace the underlined part with the actual character encoding you want to use.

Example 2
This sample shell does not use the installation directory as the HiRDB directory:

DIR=/usr/HiRDB1 1
/bin/echo 'y' | /opt/HiRDB_S/bin/pdsetup -d $DIR
/opt/HiRDB_S/bin/pdsetup -c sjis $DIR 2
DIR=/usr/HiRDB2 3
/bin/echo 'y' | /opt/HiRDB_S/bin/pdsetup -d $DIR 3
/opt/HiRDB_S/bin/pdsetup -c sjis $DIR 3

Explanation:

1. Specify the name of the HiRDB directory.

2. Replace the underlined part with the actual character encoding you want to use.

3. Repeat as many times as there are HiRDBs being distributed online.

(b) HP-UX HiRDB parallel server configuration

Example 1
This sample shell uses the installation directory as the HiRDB directory:

/bin/chown USR1 /opt/HiRDB_P 1
/bin/chgrp GRP1 /opt/HiRDB_P 1
/bin/echo 'y' | /opt/HiRDB_P/bin/pdsetup -d /opt/HiRDB_P
/opt/HiRDB_P/bin/pdsetup -c sjis /opt/HiRDB_P 2

Explanation:

1. If you use the installation directory as the HiRDB directory, redefine the directory's owner and group as
the HiRDB administrator and HiRDB group. Replace the underlined parts with the actual HiRDB
administrator's user ID and group ID.

2. Replace the underlined part with the actual character encoding you want to use.

Example 2
This sample shell does not use the installation directory as the HiRDB directory:

DIR=/usr/HiRDB1 1
/bin/echo 'y' | /opt/HiRDB_P/bin/pdsetup -d $DIR
/opt/HiRDB_P/bin/pdsetup -c sjis $DIR 2
DIR=/usr/HiRDB2 3
/bin/echo 'y' | /opt/HiRDB_P/bin/pdsetup -d $DIR 3
/opt/HiRDB_P/bin/pdsetup -c sjis $DIR 3

Explanation:

1. Specify the name of the HiRDB directory.

1. Overview of HiRDB System Construction

50

2. Replace the underlined part with the actual character encoding you want to use.

3. Repeat as many times as there are HiRDBs being distributed online.

(c) Solaris HiRDB single server configuration

Example 1
This sample shell uses the installation directory as the HiRDB directory:

/bin/chown USR1 /opt/HiRDB_S 1
/bin/chgrp GRP1 /opt/HiRDB_S 1
/bin/echo 'y' | /opt/HiRDB_S/bin/pdsetup -d /opt/HiRDB_S
/opt/HiRDB_S/bin/pdsetup -c ujis /opt/HiRDB_S 2

Explanation:

1. If you use the installation directory as the HiRDB directory, redefine the directory's owner and group as
the HiRDB administrator and HiRDB group. Replace the underlined parts with the actual HiRDB
administrator's user ID and group ID.

2. Replace the underlined part with the actual character encoding you want to use.

Example 2
This sample shell does not use the installation directory as the HiRDB directory:

DIR=/usr/HiRDB1 1
/bin/echo 'y' | /opt/HiRDB_S/bin/pdsetup -d $DIR
/opt/HiRDB_S/bin/pdsetup -c ujis $DIR 2
DIR=/usr/HiRDB2 3
/bin/echo 'y' | /opt/HiRDB_S/bin/pdsetup -d $DIR 3
/opt/HiRDB_S/bin/pdsetup -c ujis $DIR 3

Explanation:

1. Specify the name of the HiRDB directory.

2. Replace the underlined part with the actual character encoding you want to use.

3. Repeat as many times as there are HiRDBs being distributed online.

(d) Solaris HiRDB parallel server configuration

Example 1
This sample shell uses the installation directory as the HiRDB directory:

/bin/chown USR1 /opt/HiRDB_P 1
/bin/chgrp GRP1 /opt/HiRDB_P 1
/bin/echo 'y' | /opt/HiRDB_P/bin/pdsetup -d /opt/HiRDB_P
/opt/HiRDB_P/bin/pdsetup -c ujis /opt/HiRDB_P 2

Explanation:

1. If you use the installation directory as the HiRDB directory, redefine the directory's owner and group as
the HiRDB administrator and HiRDB group. Replace the underlined parts with the actual HiRDB
administrator's user ID and group ID.

2. Replace the underlined part with the actual character encoding you want to use.

Example 2
This sample shell does not use the installation directory as the HiRDB directory:

DIR=/usr/HiRDB1 1
/bin/echo 'y' | /opt/HiRDB_P/bin/pdsetup -d $DIR
/opt/HiRDB_P/bin/pdsetup -c ujis $DIR 2
DIR=/usr/HiRDB2 3
/bin/echo 'y' | /opt/HiRDB_P/bin/pdsetup -d $DIR 3
/opt/HiRDB_P/bin/pdsetup -c ujis $DIR 3

Explanation:

1. Specify the name of the HiRDB directory.

2. Replace the underlined part with the actual character encoding you want to use.

3. Repeat as many times as there are HiRDBs being distributed online.

1. Overview of HiRDB System Construction

51

1.6.3 Notes about online distribution
• When upgrading your HiRDB, be sure to terminate the HiRDB at the target system using the pdstop command.

For details about how to upgrade HiRDB, see 1.4 Upgrading HiRDB.

• No response is available during the program product installation postprocessing that is specified in the
APafterGeneration parameter for the JP1/Software Distribution Workstation registration file. Therefore, if
you are using the pdsetup -d HiRDB command that requests the user's response, suppress a response wait by
passing an appropriate response with the UNIX echo command, as shown in the coding sample. Note that you
cannot use any HiRDB command other than pdsetup.

• The pdvrup command starts automatically. There is no need to enter this command while upgrading your
HiRDB.

1. Overview of HiRDB System Construction

52

1.7 Migrating to 64-bit mode HiRDB
This section describes how to migrate from 32-bit mode HiRDB to 64-bit mode HiRDB on the same machine.

1.7.1 Considerations when migrating to 64-bit mode

(1) Incompatible files
Files that were used by 32-bit mode HiRDB can generally be used by 64-bit mode HiRDB. However, the following
files are not compatible with 64-bit mode HiRDB and cannot be used.

• Backup files

• HiRDB files that consist of a master directory RDAREA and a data directory RDAREA

(2) Operands with altered default values
The default values of some HiRDB system definition operands change when HiRDB is migrated from the 32-bit mode
to the 64-bit mode. Check the changes in Operands with different default values in 32-bit and 64-bit mode in the
manual HiRDB Version 9 System Definition.

(3) Differences in memory requirements
When HiRDB is migrated from 32-bit mode to 64-bit mode, more memory is required. For details about calculating
memory requirements, see Chapter 15. Storage Requirements for HiRDB.

(4) Differences in the UOC interface
When HiRDB is migrated to 64-bit mode, the UOC interface changes for the database creation utility (pdload) and
the database reorganization utility (pdrorg). This means that the UOC must be re-created. For details about the UOC
interface, see the manual HiRDB Version 9 Command Reference.

1.7.2 How to migrate to 64-bit mode
The following figure illustrates how to migrate to 64-bit mode.

1. Overview of HiRDB System Construction

53

Figure 1‒8: How to migrate to 64-bit mode

1. Enter the pdstop command to terminate HiRDB normally.

2. Use the pdstsinit command to increase the size of status files.
See 17.3 Determining the size of status files to re-estimate the size of status files. If necessary, use the
pdstsinit command to increase the size of status files.

3. Delete the pdplugin operand from the system common definition.
Delete the pdplugin operand from the system common definition. Otherwise, HiRDB does not start normally
after being upgraded to 64-bit mode.

4. Upgrade HiRDB to 64-bit mode.
Upgrade your HiRDB to 64-bit mode. For details about how to upgrade HiRDB, see 1.4 Upgrading HiRDB.
Before upgrading HiRDB to 64-bit mode, check the data dictionary RDAREA for available space. In this case,
you need the space discussed in 1.4.1 Before upgrading, plus the space for the following tables:
SQL_TABLES table: 1 + 5 S
SQL_VIEW_DEF table: 2 + 200 S

1. Overview of HiRDB System Construction

54

5. The pdobjconv command starts automatically.
The pdvrup command is executed during the upgrading procedure. When this pdvrup command terminates
normally, the pdobjconv command#1 is executed automatically. If this command returns code#2 0 or 4,
migration to 64-bit mode was successful. If the return code is neither 0 nor 4, continue the 64-bit-mode migration
procedure with the procedure explained in 1.7.3 In the event of an SQL object migration error.
#1: This command makes the view tables and SQL objects for procedures and functions created in 32-bit mode
also available in 64-bit mode.
#2: The KFPX21002-I message displays the return code. This message is output to the system log file and
syslogfile. If the return code is 8 or 12, the message is also output to the standard error output. The following
explains the return code:

0:
The pdobjconv command terminated normally.

4:
There was a warning message, but the pdobjconv command terminated normally.

8:
A migration error occurred on some of the SQL objects. Check the cause of the error and correct it based on
the message and pdobjconv command processing result (SQL object migration information). Another
possibility is that a utility-execution error occurred.

12:
The pdobjconv command terminated abnormally. Check the cause of the error and correct it based on the
message and pdobjconv command processing result (SQL object migration information). If you use the
pdcancel command to cancel the pdobjconv command, or an error occurs in the pdobjconv command
process, the command returns code 12.

6. Enter the pdstop command to terminate HiRDB normally.

7. Use the pdplgset command to uninstall the 32-bit-mode plug-ins.
Execute the command in the format pdplgset -d plug-in-name.
With some plug-ins, you need to make a backup copy before uninstalling them. See each plug-in's documentation
to determine whether it needs to be backed up.

8. Install the 64-bit-mode plug-ins.
Install the applicable 64-bit-mode plug-ins. For the installation procedure, see each plug-in's documentation.

9. Use the pdplgset command to set up the 64-bit-mode plug-ins.
Execute the command in the format pdplgset plug-in-name plug-in-installation-directory-name.

10. Specify the pdplugin operand in the system common definition.
Specify the name of the 64-bit-mode plug-in in the pdplugin operand in the system common definition.

11. Enter the pdstart command to start HiRDB.

1.7.3 In the event of an SQL object migration error
This section discusses actions that should be taken if the pdobjconv command returns code 8 or 12.

(1) Return code 8
A migration error occurred in some of the SQL objects. See the SQL object migration information to check for the
SQL objects that resulted in a migration error. For details about the SQL object migration information, see the
pdobjconv command in the manual HiRDB Version 9 Command Reference.

To migrate an SQL object that resulted in a migration error, check the output message and eliminate the cause of the
error, then execute the pdobjconv command. If you have terminated HiRDB, start HiRDB again and then execute
the pdobjconv command.

1. Overview of HiRDB System Construction

55

(2) Return code 12
The pdobjconv command terminated abnormally. Check the output message and eliminate the cause of the
abnormal termination, then execute the pdobjconv command. If you have terminated HiRDB, start HiRDB again
and then execute the pdobjconv command.

1.7.4 In the event of a 64-bit-mode migration error (restoring the old
version)

For details about how to restore the old version of HiRDB due to a 64-bit-mode migration error, see 1.4.6 In the event
of an upgrading error.

After restoring the old version of HiRDB according to the instructions provided in 1.4.6 In the event of an upgrading
error, use the pdstsinit command to initialize all status files. If you do not initialize all status files, you cannot
start HiRDB normally.

1. Overview of HiRDB System Construction

56

2 Installation
This chapter describes tasks that are required before and after installation, and
explains procedures for installing and uninstalling HiRDB. It also provides notes
concerning installation of option program products.

57

2.1 Pre-installation procedure
This section describes the procedures that must be completed before HiRDB can be installed.

If you are using a HiRDB parallel server configuration, use the same version platform on all server machines.

2.1.1 Checking and modifying OS parameters
Executor: Superuser

The message queue and semaphore requirements used by HiRDB must be estimated, and the OS parameters (kernel
parameters) must be changed to reflect these requirements. For the details about specifying the OS parameters, see
Chapter 20. Specifying OS Parameters.

For AIX, the following also apply:

• You must first edit the /etc/security/limits file to change the root user's or HiRDB administrator's
limitation values for OS system resources, and then restart the OS.
For example, in AIX, the default limitation value for a regular file is 1 gigabyte. If the size of work files output
during utility execution exceeds 1 gigabyte, the HiRDB utility terminates abnormally. In such cases, you must
change limitation values for OS system resources; you must make these changes in advance.

• The syslogfile must be specified for output.

If No-space (insufficient space to write in the file) is output as an error message during installation, the following
may be the cause:

• If this error occurs even when disk space is sufficient, you might have not defined the HiRDB file system area for
a large file, or the case falls under OS kernel parameter restrictions. For details about OS kernel parameter
restrictions, see Chapter 20. Specifying OS Parameters.

2.1.2 Registering the HiRDB administrator
Executor: Superuser

In the OS of all server machines, register the user who will administer HiRDB. The following table lists the
information to be registered.

Table 2‒1: Information to be registered in OS on each server machine

Information to be registered Format

Log-in name 1-8 alphanumeric characters beginning with an alphabetic character#

User ID Any characters

Group ID

Home directory

Login shell

#: None of the following words can be used: ALL, HiRDB, MASTER, or PUBLIC.

If the system switchover facility is to be used with a HiRDB parallel server configuration or HiRDB single server
configuration, specify the same user ID as the HiRDB administrator registered in the OS for all server machines that
operate HiRDB. Note that it is not necessary to use the same password.

Note
A password should be registered after the user ID has been registered.
The user who uses the user ID registered here to log onto the system is called the HiRDB administrator. The
following privileges are granted to the HiRDB administrator:

2. Installation

58

1. Access privilege as the owner of various HiRDB system files and directories. The holder of this privilege can
prohibit write operations by other users.

2. Privilege to execute the HiRDB operation commands and utilities.

Multi-HiRDB
A HiRDB administrator must be registered for each HiRDB.

2.1.3 Setting up a HiRDB group
Executor: Superuser

A superuser can set up a group of HiRDB users in the OS of each server machine. The name of the group must be
eight or fewer alphanumeric characters starting with a letter.

By setting a HiRDB group, users other than the group can be blocked from creating files under the HRDB file system
area and HiRDB directory. This enhances security.

Multi-HiRDB
If a separate group is set up for each HiRDB, each HiRDB's users can be monitored.

2.1.4 Creating the installation directory
Executor: Superuser

To protect the root partition from excessive workload, the superuser must create an installation directory before
installing HiRDB. An installation directory should be created in a dedicated disk partition to avoid an excessive
workload on the file system.

HiRDB is installed under this installation directory.

For details about disk partitions, see the applicable OS documentation.

To install a new HiRDB, create the installation directory on each server machine. The following table lists the HiRDB
installation directories.

Table 2‒2: HiRDB installation directories

HiRDB type HP-UX, Solaris, AIX, or Linux

HiRDB single server configuration /opt/HiRDB_S

HiRDB parallel server configuration /opt/HiRDB_P

2.1.5 Registering host names
Register the host names that HiRDB will use (host names specified by the system definitions and client environment
definitions) in the hosts file or DNS, and resolve the names.

Specify host names in the system definitions and client environment definitions in host name, IP address or FQDN
format.

When the HiRDB system is configured with only a HiRDB single server configuration#, a loopback address can be
specified in the system definitions or client environment definitions. If a loopback address is specified, the host name
need not be registered.

#
A HiRDB system made up of HiRDB single server configurations only is one that meets the following conditions:

• The HiRDB clients are on the same machines as the HiRDB servers (there are no HiRDB clients on separate
machines).

• There is no utility special unit.

2. Installation

59

Reference note
A loopback address is an IP address in the range 127.0.0.0 to 127.255.255.255 (for example, 127.0.0.1). The OS
specifications dictate which IP addresses can be specified as loopback addresses.

Note that since HiRDB treats localhost as an ordinary host name, when localhost is specified as a host
name in the system definitions, it must be registered as a host name and name resolution must be performed.

2. Installation

60

2.2 HiRDB installation procedure
This section explains the HiRDB installation procedure.

2.2.1 Installing HiRDB
Executor: Superuser

Use Hitachi Program Product Installer to install HiRDB on each server machine.

Upgrading HiRDB
Before installing HiRDB, check for any active HiRDB under the installation directory (such as by using the OS's
ps command). If there in an active HiRDB, after it is terminated normally using the pdstop command, execute
the pdsetup -d command, respond with y to message KFPS00036-Q, and then delete HiRDB from the OS.
After this, perform the installation.

HiRDB parallel server configuration
Install the same version of HiRDB on all server machines that constitute the HiRDB parallel server configuration.

Multi-HiRDB
When you install multiple HiRDB single server configurations or multiple HiRDB parallel server configurations,
they all have the same installation directory. If you install multiple HiRDBs one after another, only the last HiRDB
installed is effective because they all share the same installation directory.
Therefore, once you have installed the first HiRDB, create its HiRDB directory and register the HiRDB in the
operating system (by following the procedures described in 2.3.1 Creating the HiRDB directory and 2.3.3
Registering HiRDB and option program products in the operating system). You can then install the next HiRDB.

2.2.2 Installing option program product
Executor: Superuser

To use HiRDB option program products, you must first install them. The following table lists the option program
product facilities and, for a HiRDB parallel server configuration, servers where option program products are installed.

Table 2‒3: Option program products facility and target installation servers

Product name Facilities available with introduction of the option
program product

Target installation server
machine

HiRDB Staticizer Option • Inner replica facility

• Updatable online reorganization

All server machines

HiRDB Advanced High Availability • Standby-less system switchover (1:1) facility

• Standby-less system switchover (effects distributed)
facility

Dynamic update of global buffer (pdbufmod command)

System reconfiguration command (pdchgconf
command)

Table matrix partitioning

Changing the partition storage conditions (ALTER
TABLE)

HiRDB Non Recover FES Recovery-unnecessary front-end server

HiRDB Accelerator • Memory database

• Rapid batch facility using in-memory data processing

2. Installation

61

Product name Facilities available with introduction of the option
program product

Target installation server
machine

HiRDB Disaster Recovery Light Edition Real Time SAN Replication of log-only synchronous
method

All server machines configuring
a HiRDB system at a business
site and all server machines
configuring a HiRDB system at
a log applicable site.

2.2.3 Installing plug-ins
The superuser must install a plug-in by using the OS's installer. For the installation procedure, see the documentation
provided with the corresponding software.

2. Installation

62

2.3 Post-installation procedures
This section describes the procedures that must be completed after HiRDB has been installed.

2.3.1 Creating the HiRDB directory
Executor: HiRDB administrator

The superuser must create a HiRDB directory in each server machine. This directory is used to execute HiRDB. The
HiRDB directory stores various directories and files.

You must not use the installation directory as the HiRDB directory. If the installation directory is used for the HiRDB
directory, disk space problems could result or installation may fail. For each installation, the owner of the installation
directory must change to the HiRDB administrator at the root, and the changes shown in (1) below must be made to
the group and mode.

(1) Information to be specified in the HiRDB directory
You can assign any name to the HiRDB directory, but be sure to specify all the following information. The pathname
of the HiRDB directory must be no longer than 128 characters (bytes). For Linux, specify 1-27 characters (bytes) as
the pathname.

• Directory name: Any name

• Owner: HiRDB administrator

• Group: HiRDB group

• Mode: 0755

Also note the following:

• Specify a character string that begins with / (forward slash) and that consists of only the following characters:

• Alphanumeric characters

• _ (underscore)

• . (period)

• / (forward slash separating paths)

• The forward slash (/) alone cannot be specified.

• A path name must not exceed 128 characters (bytes). For the Linux version, a path name must not exceed 118
characters (bytes).

(2) Points to be noted when creating the HiRDB directory

1. To create the HiRDB directory, you need at least 2 gigabytes of disk space. This is just a guideline; the actual size
that is required depends on the size of the system.

2. You should not create the HiRDB directory in the root directory. Files containing troubleshooting information are
created in the HiRDB directory (files under $PDDIR/spool). If you do not delete these files periodically using
the pdcspool command, a space shortage may occur on the disk, resulting in adverse effects on operating
system operation.
If you do create the HiRDB directory in the root directory, you should use a different partition than that of the root
directory.

3. Create the HiRDB directory on a local disk. Do not specify nosuid as the mount type of the file system
in /etc/checklist or etc/fstab.

4. Do not use the HiRDB directory as the target of a symbolic link.

5. For multi-HiRDB, create a HiRDB directory with a different name for each HiRDB.

6. To employ a 2-to-1 or mutual system switchover organization for a HiRDB parallel server configuration, you
cannot share the same HiRDB directory among all server machines. For details about how to define the HiRDB

2. Installation

63

directory, see Example of mutual switchover configuration in System configuration examples of a HiRDB parallel
server configuration in the HiRDB Version 9 System Operation Guide.

(3) Deleting files from the HiRDB directory
HiRDB outputs troubleshooting information to $PDDIR/spool in situations such as when a server process or client
is forcibly terminated. When a command or utility is aborted by pressing Ctrl + C (or some other method) and no
output destination has been explicitly specified for work files, temporary work files output under $PDDIR/tmp by
the command or utility are retained rather than deleted. These files are often the cause of a shortage of disk space
available to the HiRDB directory. Because insufficient disk space for the HiRDB directory can cause abnormal
termination, HiRDB deletes the following files periodically:

• Troubleshooting information files (files in $PDDIR/spool)

• Temporary work files (files in $PDDIR/tmp)

• Files in the directory specified in the pd_tmp_directory operand

For details about these consistently increasing files, see 1.3.2 Files that consistently increase in size.

Normally, these files are deleted every 24 hours. The interval between deletions can be changed with the
pd_spool_cleanup_interval operand. You can also specify deletion of only those files output prior to the
date specified by the pd_spool_cleanup_interval_level operand.

It is also possible to delete all at once all troubleshooting information (all files in $PDDIR/spool).

• Use the pdcspool command to delete the troubleshooting information files. Temporary work files (in $PDDIR/
tmp) can also be deleted.

• Automatically delete the troubleshooting information files during the HiRDB startup. In this case, use the
pd_spool_cleanup operand to specify whether to delete the troubleshooting information files. If you omit
this operand, the troubleshooting information files are deleted automatically.
You can also specify deletion of only those troubleshooting information files output prior to the date specified by
the pd_spool_cleanup_level operand.

Note
You can select the troubleshooting information to be deleted using the pdcspool command's option,
pd_spool_cleanup_level operand or pd_spool_cleanup_interval operand.

(4) Making a backup copy of the HiRDB directory
To prepare for possible errors on the disk that contains the HiRDB directory, make a backup copy of the files in the
HiRDB directory (files under $PDDIR/conf). You need the backup copy of the files under $PDDIR/conf to
restore the HiRDB directory. There are HiRDB system definition files under $PDDIR/conf. If you have modified
the HiRDB system definition, back up the files contained under $PDDIR/conf.

If you have created user files under the HiRDB directory, also back up those files. You need this backup copy to
restore the HiRDB directory.

For details about how to recover the HiRDB directory, see the HiRDB Version 9 System Operation Guide.

• Backing up the disk that contains the HiRDB directory
If you need to back up the disk that contains the HiRDB directory, use the following procedure:

1. Terminate HiRDB with the pdstop command.

2. Execute the pdsetup -d command. Enter n as a response.#

3. Use the OS function (command) to back up the disk that contains the HiRDB directory.

4. Execute the pdsetup command.

5. Enter the pdstart command to start HiRDB.

#: You need to execute the pdsetup -d command to remove all the files that may cause problems after recovery.
Additionally, you need to enter n as a response to retain all the files that are required after recovery.

2. Installation

64

2.3.2 Creating a work file output directory
Executor: HiRDB administrator

You can create a directory to serve as the output destination of work files output by HiRDB. You can then specify that
directory as the output destination for the various work files that are generated when commands or utilities are
executed. Since there will consequently be only one output destination for each unit, the difficult job of administering
work files becomes easier. HiRDB can be operated without creating a work file output directory, but work files are
then output to a variety of destinations and it is impossible to delete work files using the pdcspool command. For
this reason, we recommend that you create a work file output directory.

(1) Calculating the size of the work file output directory
Set the free space in the work file output directory to be at least the value shown below. When HiRDB or a command
terminates abnormally while a work file is being output, the work file is not deleted. For this reason, before executing
the pdcspool command, set a value that ensures sufficient space in the work file output directory so that disk space
does not run short.

Work file output directory size (kilobytes) =
178,224 + a + b + c + d + e + f + g + h

Variable Description Formula reference site

a Space for the process results file when pdconstck
is executed

19.1.10 File sizes required for execution of the integrity check
utility (pdconstck)

b Space for the following files when pddbst is
executed:

• Work files

• Work files for sorting

19.1.4 File sizes required for the execution of the database
condition analysis utility (pddbst)

c Space for the following files when pdload is
executed:

• Index information file

• Error information file

• Temporary file for creating error information file

• LOB middle file

• Work file for sorting

19.1.1 File sizes required for the execution of the database load
utility (pdload)

d When pdorend is executed 2,400 mapping key column count skipped SQL statement
count + 100

e Space for the following files when pdrbal is
executed:

• Index information file

• Work file for sorting

19.1.9 File sizes required for execution of the rebalancing utility
(pdrbal)

f Space for the following files when pdrorg is
executed:

• Index information file

• Work file for sorting

19.1.2 File sizes required for the execution of the database
reorganization utility (pdrorg)

g Space for the work directory for sorting when
pdrstr -w is executed

The manual HiRDB Version 9 Command Reference

h Space for the following files when pdstedit is
executed:

• Work files

• Work file for sorting

19.1.3 File sizes required for the execution of the statistics
analysis utility (pdstedit)

2. Installation

65

Variable Description Formula reference site

• DAT-format files

(2) Specifying the work file output directory
To create a single output destination for work files, specify the created directory in the pd_tmp_directory
operand.

If the pd_tmp_directory operand is not specified, HiRDB outputs work files to the directories determined by
individual commands or utilities. The work file output destination is the following:

1. The output destination specified in the command option or utility control statement.

2. If not specified as in location 1, the output destination specified by the pd_tmp_directory operand.

3. If not specified as in location 2, the output destination specified by environment variable TMPDIR#.

4. If not specified as in location 3, the /tmp directory.

#
If the command is running on the server side, this will be the environment variable TMPDIR set in the process
server process (pdprcd).

(3) Deleting work files
HiRDB normally deletes work files every 24 hours. This deletion interval can be changed with the
pd_spool_cleanup_interval operand. You can also specify deletion of only those files output prior to the
date specified by the pd_spool_cleanup_interval_level operand. In this case, files in the work file output
directory specified in the pd_tmp_directory operand are deleted.

Those work files output by commands and utilities that are not deleted by HiRDB must be deleted periodically using
the pdcspool command. In this case as well, files in the work file output directory specified in the
pd_tmp_directory operand are deleted.

For details about deleting work files, see2.3.1(3) Deleting files from the HiRDB directory.

2.3.3 Registering HiRDB and option program products in the operating
system

Executor: Superuser

(1) OS registration method

(a) Executing the pdsetup command

The superuser executes the pdsetup command to register HiRDB into the OS. The pdsetup command copies the
directories and files from the installation directory to the HiRDB directory. For a HiRDB parallel server configuration,
execute the pdsetup command for each server machine.

To perform registration into the OS:

1. Execute the pdsetup command.

2. Check the termination status.
If the termination status of the pdsetup command is not 0, an error may have occurred. See the message output
to the syslog file, eliminate the cause of the error, and then re-register HiRDB into the OS.

For details about the pdsetup command, see the manual HiRDB Version 9 Command Reference.

Notes

• The pdsetup command is located in the bin directory under the HiRDB installation directory.

2. Installation

66

• If you execute the pdsetup command, the Inittab directory is automatically created in the conf
directory under the HiRDB installation directory. This directory is used to back up the /etc/inittab file.
If the /etc/inittab file is damaged during or after the execution of the pdsetup command, use this
backup file to start the operating system.

• After you execute the pdsetup command, do not delete files or directories created under the HiRDB
directory, and do not change owners or access permissions. Doing so can prevent HiRDB from starting.

• The pdsetup command copies or overwrites the installed HiRDB load modules to the specified HiRDB
directory. To prevent loss of other program or user data, specify either of the following in the HiRDB
directory:

 A directory created exclusively for HiRDB
 A HiRDB installation directory (for a HiRDB single server configuration, /opt/HiRDB_S; for a HiRDB

parallel server configuration, /opt/HiRDB_P)

(b) Default operand behavior selected by the pdsetup command

The -v option of the pdsetup command can be used to choose the default behavior when operands are omitted.
After you have executed the pdsetup command to register HiRDB in the OS, if you want to change the operand
default behavior, execute the pdsetenv command. To check the mode being used to apply the default operand
behavior, execute the command pdadmvr, or check message KFPS01826-I, which is output when HiRDB starts.

Rules

• In a system switchover configuration, the default behavior when operands are omitted must be the same in the
primary and secondary systems.

• In a HiRDB parallel server configuration, the default behavior when operands are omitted must be the same
for all units.

(c) Specifying the character encoding by using the pdsetup command

 Specifying at the server

Use the -c option of the pdsetup command to specify the character encoding to be used in with HiRDB. The
following table shows the character encodings that can be used with HiRDB.

Table 2‒4: Character encoding supported by HiRDB

Character encoding
OS

HP-UX Solaris AIX Linux

Shift JIS Kanji Code Default Usable Default Usable

EUC Chinese Kanji Code Usable Usable Usable Usable

Chinese Character Code (GB18030) Usable Usable Usable Usable

Single-byte character encoding Usable Usable Usable Usable

EUC Japanese Kanji Code Usable Default Usable Default

Unicode (UTF-8) Usable Usable Usable Usable

Unicode (IVS-supported UTF-8) Usable Not usable Usable Usable

Default: Usable character encoding (the default character encoding when the pdsetup command -c option is
omitted)

Usable: Usable character encoding

Not usable: Not a usable character encoding

Use the pdadmvr -c command to check which character encoding is in use.

 Specifying at the client
On the client side, specify the character encoding with the LANG or PDCLTLANG operand in the client
environment definition as appropriate to the server's character encoding. The client environment definition is

2. Installation

67

referenced during UAP creation or execution. For the client environment variables supported based on the server's
available character encoding, see the HiRDB Version 9 UAP Development Guide.

(d) Specifying the pdsetup command when using the POSIX library version

If you are using the POSIX library version, specify the -l option in the pdsetup command. You need the POSIX
library version to use the following facilities:

• Java stored procedures and Java stored functions#

For details about Java stored procedures and Java stored functions, see the HiRDB Version 9 UAP Development
Guide.

The Linux version supports Java stored procedures and Java stored functions without requiring any special setup.

#: The following versions of HiRDB support Java stored procedures and Java stored functions:

• HP-UX version (32-bit mode POSIX library version) and HP-UX (IPF version)

• Solaris version (32-bit mode POSIX library version)

• AIX version (32-bit mode POSIX library version)

• Linux version (32-bit mode) and Linux version (EM64T)

(2) Registering option program products
To install option program products, use the pdopsetup command to register them in the OS.

 When using a HiRDB parallel server configuration
Execute the pdopsetup command on each machine to make sure the option program product is registered in all
units.

 When using the system switchover facility

• When you register the option program product on the primary system, register the same product on the
secondary system (execute the pdopsetup command on the secondary system also).

• If two or more HiRDB systems are registered to the OS on a single server machine, such as in a system
switchover configuration, execute the pdopsetup command on each HiRDB system (or each unit in the case
of a HiRDB parallel server configuration). For example, in a mutual system switchover configuration, if two
HiRDB systems (primary and secondary) exist on one server machine, the pdopsetup command must be
executed twice on the server machine (once on the primary HiRDB system and once on the secondary HiRDB
system).

 When using Real Time SAN Replication
If you register an option program product on the main site, register the same product on the remote site (execute
the pdopsetup command on the remote site also).

2.3.4 Setting environment variables

(1) Environment variables that need to be set by the HiRDB administrator
Set the environment variables shown in the table below in the HiRDB administrator environment.

Place the environment variables in one of the following files according to the server machine's login shell:

• Bourne shell: $HOME/.profile
• C shell: $HOME/.cshrc

Table 2‒5: Information to be set in HiRDB administrator defined environment variables

Environment variable Information to be set

PDDIR#1 Specifies the absolute path name of the HiRDB directory.

2. Installation

68

Environment variable Information to be set

PDCONFPATH#2 Specifies the absolute path name of the directory that is used to store the HiRDB system definition
file. The unit control information definition always uses the file under $PDDIR/conf, regardless
of this setting. If the PDCONFPATH operand is specified in the unit control information definition,
the same setting must be specified here as in that PDCONFPATH operand.

PATH Adds $PDDIR/bin.

SHLIB_PATH#3 Adds $PDDIR/lib.

#1: The PDDIR absolute path name can contain the following byte lengths:

• HP-UX, Solaris, and AIX: 128 bytes

• Linux: 118 bytes

#2: The PDCONFPATH absolute path name can contain a maximum of 213 bytes.

#3: For Solaris and Linux, use LD_LIBRARY_PATH; for AIX, use LIBPATH.

For details about the LANG and PDLANG environment variable settings, see the HiRDB Version 9 UAP Development
Guide.

Note
If the pd_tmp_directory operand is specified, there is no need to specify the environment variable TMPDIR.
If the environment variable TMPDIR is omitted when the operand pd_tmp_directory is not specified,
HiRDB creates temporary files in the same directory it would have done if the operand pd_tmp_directory
had been omitted. In addition, when the environment variable TMPDIR is specified, the directory path must not
exceed 512 bytes in length. When TMPDIR is set and HiRDB commands or utilities are interrupted, HiRDB might
create files beginning with pdcmd or plcmd in the directory specified by TMPDIR. If some files that begin with
pdcmd or plcmd remain in that directory after completion of the HiRDB commands or utilities, you must delete
them, such as by using the operating system's rm command.

(2) Environment variables that need to be set by users who execute UAPs
If a UAP is to be executed, the HiRDB administrator must set a client environment definition in the environment
variables for each applicable user. The format of the client environment definition depends on the client machine's OS
or shell being used. For details about the information to be set in the client environment definition, see the HiRDB
Version 9 UAP Development Guide.

(3) Environment variables that need to be set by users who define tables and indexes
If tables and indexes are to be defined, you need to set the following environment variables for each executing user.
Shown here are the environment variables to be set in the Bourne shell environment.

• PDHOST=HiRDB-server's-host-name[,secondary-HiRDB-server's-host-name]
This environment variable specifies the host name of the HiRDB server to be connected. For a HiRDB parallel
server configuration, specify the host name of the server machine at which the system manager is defined. If
PDFESHOST is specified, you can specify the host name of PDFESHOST. When the host name of PDFESHOST is
specified, the HiRDB server can be connected even if an error occurs on the system manager unit.

• $PDUSER=authorization-identifier/password
This environment variable specifies the authorization identifier and password. You need to assign the schema
definition privilege to the user specified here. For the authorization identifier specified for defining a schema
(CREATE SCHEMA), assign the authorization identifier specified by this environment variable. To use lower-case
alphabetic characters for the authorization identifier and password, use the "authorization-
identifier"/"password" format.

• PDNAMEPORT=HiRDB-server's-port-number
This environment variable specifies the port number of the HiRDB server. Specify the port number of the HiRDB
system that accesses the host specified in PDHOST.

2. Installation

69

2.3.5 Setting a remote shell execution environment
Executor: HiRDB administrator

Set a remote shell execution environment in the following cases:

• For a HiRDB parallel server configuration.

• When you are using the system switchover facility without inheriting IP addresses

• When a utility special unit is used.

(1) For a HiRDB parallel server configuration
Some HiRDB commands are executed at each server machine using the remote shell function. For this purpose, you
must set appropriate information in /etc/hosts.equiv or $HOME/.rhosts to enable mutual log-in between
the server machines that constitute the HiRDB parallel server configuration.

When you create the $HOME/.cshrc file without a registration terminal, make sure that data is not output to the
standard output file or the standard error file.

(2) When you are using the system switchover facility without inheriting IP addresses
When you are using the system switchover facility without inheriting IP addresses, use the remote shell facility to
transfer running system information to the standby system. For this purpose, you must set appropriate information
in /etc/hosts.equiv or $HOME/.rhosts to enable mutual log-in between the server machine constituting the
primary system and the server machine constituting the secondary system.

When you create the $HOME/.cshrc file without a registration terminal, make sure that data is not output to the
standard output file or the standard error file.

(3) When a utility special unit is used
Some HiRDB commands entered from a HiRDB single server configuration can be executed on a utility special unit
by using the remote shell facility. For this purpose, the superuser must set appropriate information in /etc/
hosts.equiv or $HOME/.rhosts to enable mutual log-in between the HiRDB single server configuration and
the utility special unit.

When the $HOME/.cshrc file is created without a registration terminal, the superuser should ensure that data is not
output to the standard output file or the standard error file.

2.3.6 Notes about background execution of HiRDB operation commands
To execute HiRDB operation commands in the background mode, care must be taken to ensure that background job
terminal output is not suppressed by a terminal port option.

If a command is executed while background job terminal output is suppressed, the command will not terminate and an
invalid process will remain in the HiRDB system.

The tostop option of the stty command is used to set the terminal port option. For the specification of the stty
command's tostop option, see the applicable OS documentation.

2.3.7 Preparing to create the HiRDB file system area
This section describes tasks you must do before you create a HiRDB file system area, procedures for creating a
HiRDB file system area, and Hitachi's approach to access permissions for HiRDB file system areas.

(1) Creating a HiRDB file system area in an ordinary file
The following figure illustrates the procedure for creating a HiRDB file system area in an ordinary file.

2. Installation

70

Figure 2‒1: Creating a HiRDB file system area in an ordinary file

(a) Preparations

Executor: Superuser

Do the following:

• Initialize a hard disk.

• Set up partitions on the initialized hard disk.

• Initialize the setup partitions as a UNIX file system.

See the OS documentation for instructions on performing these tasks.

(b) Creating a HiRDB file system area

Executor: HiRDB administrator

Execute the pdfmkfs command to create a HiRDB file system area in the UNIX file system area. The file mode
initial value is 660 (octal).

(c) Setting access permissions

Executor: HiRDB administrator

To prevent unauthorized access by users lacking permission, change the file mode of the created HiRDB file system
area.

Change the file mode using the umask or chmod command. Execute the umask command prior to creating the
HiRDB file system area, and the chmod command after creating the HiRDB file system area.

See the OS documentation for details about these commands.

For details about access restrictions, see (3) HiRDB file system area access permissions.

(d) Setting up symbolic links

Executor: HiRDB administrator

We recommend using a name symbolically linked to the actual name using the OS's ln command rather than using
the unaltered actual name of an ordinary file as the name of the HiRDB file system area.

See the OS documentation for details about the ln command.

(2) Creating a HiRDB file system area in a character special file or block special file
The procedure to create a HiRDB file system area in a character special file or block special file is shown in the
following figure.

2. Installation

71

Figure 2‒2: Procedure to create a HiRDB file system area in a character special file or block special file

(a) Preparations

Executor: Superuser

Do the following:

• Initialize a hard disk.

• Set up partitions on the initialized hard disk.

See the OS documentation for instructions on performing these tasks.

(b) Creating a character special file or block special file

Executor: Superuser

Create a character special file or block special file and set its mode.

Creating a file

 Character special file
Execute the mknod command to create a character special file for a disk partition.
For Linux 5 and later, create the file using a method other than the mknod command.
The following table shows how to create character special files in each OS. For details about the commands
and functions, see the OS documentation.

Table 2‒6: Creating character special files

OS Disk partition Creation method Notes

Linux 5 or later LV Execute the raw command. To
enable the disk partition,
execute the raw command
after LV is recognized.

To enable the disk partition,
execute the raw command again
when the OS restarts. To specify
automatically execution of the raw
command when the OS restarts,
state the raw command in /etc/
rc.local.

Non-LV Use the udev function. Create a rule file for the udev
function that defined the character
special file, and place it in a
suitable location.

Other operating systems All types Execute the mknod command. None

 Block special file
Use a disk partition as a block special file using OS commands (fdisk, parted, or mknod).
For details about the commands and functions, see the OS documentation.

2. Installation

72

Setting the mode
Set the mode of the created character special file or block special file as follows:

Owner, access permissions Information to be set

Owner User ID HiRDB administrator

Group ID Group ID of the HiRDB administrator

Access permissions Owner rw (can read/write)

Group rw (can read/write)

Other -- (cannot access)

(c) Setting access permissions

Executor: Superuser

To prevent unauthorized access from unauthorized users, change the file mode of the created character special file or
block special file.

Change the file mode using the umask or chmod command. Execute the umask command prior to creating the
character special file or block special file and the chmod command after creating the file.

See the OS documentation for details about these commands.

In addition, in the case of Linux 6 or later, separate configuration of udev is required, because in the normal
configuration it is not possible to secure access privileges to the block special file to the HiRDB administrator. For
details about configuring udev, see the OS documentation.

For details about access restrictions, see (3) HiRDB file system area access permissions.

(d) Creating a HiRDB file system area

Executor: HiRDB administrator

Execute the pdfmkfs command to create a HiRDB file system area in a character special file or block special file.

(e) Setting up symbolic links

Executor: HiRDB administrator

As the name of the HiRDB file system area, we recommend using a name symbolically linked to the actual name
using the OS's ln command, rather than using the unaltered actual name of a character special file or block special
file.

See the OS documentation for details about the ln command.

(3) HiRDB file system area access permissions
This subsection describes Hitachi's approach to setting HiRDB file system area access permissions.

(a) Approach to set values

For greater security, we recommend that HiRDB establish a user group that has the same group ID on the OS as the
HiRDB administrator, and that access to it by users outside that group be restricted. Hitachi also recommends only
granting read/write access permissions for the HiRDB file system area to the area owner and the group.

For example, in a multi-HiRDB configuration, you can divide up access by HiRDB by setting up groups for each
HiRDB. This can prevent unintended access to other HiRDBs.

For details about HiRDB groups, see 2.1.3 Setting up a HiRDB group.

(b) Changing access permissions

Notes on changing HiRDB file system area file modes are given below for each access permissions setting.

2. Installation

73

Access permissions setting (octal
notation) Description and notes

660 Recommended value.

640 Eliminates update permissions for users that have the same group ID as the HiRDB
administrator. Operating commands, utilities and the like that allow execution by users
other than the HiRDB administrator might not always be executable with user permissions
other than those of the HiRDB administrator.

600 Only the HiRDB administrator has access permissions. Operating commands, utilities and
the like that allow execution by users other than the HiRDB administrator might not
always be executable with user permissions other than those of the HiRDB administrator.

Other No change.

(c) umask settings

When changing the file mode of the HiRDB file system area, character special file, or block special file, set umask,
by using the explanation in section (b) as a guide.

The initial value for file mode of the HiRDB file system area created by the pdfmkfs command grants the owner and
group read/write permissions (660 in octal notation). For details about the initial file mode values of character special
files or block special files created by the OS's mknod command, see the OS documentation.

(d) Access permissions for HiRDB files

The access permissions of the OS described above are enabled for the HiRDB file system area, but OS access
permissions for files are disabled. HiRDB file access permissions cannot be controlled by HiRDB. Accordingly, to
restrict access to individual HiRDB files, divide the HiRDB file system area and change the access permissions for
each individual HiRDB file system area.

2. Installation

74

2.4 Uninstallation of HiRDB
Executor: Superuser

Uninstall HiRDB only if you will no longer use HiRDB on the applicable server machine. Otherwise, you should not
uninstall HiRDB.

Notes about uninstalling HiRDB
Before you uninstall HiRDB, make sure that all commands, utilities, applications, HiRDB Datareplicator, and
HiRDB Dataextractor have stopped. If any of these programs is running, deletion of executable files and shared
libraries may fail.
When a HiRDB single server configuration is uninstalled, files and directories required for HiRDB execution that
are located in the following directories on the server machine are deleted:

• /opt/HiRDB_S
• All HiRDB directories that the user has registered in the OS using the pdsetup command#

When a HiRDB parallel server configuration is uninstalled, files and directories required for HiRDB execution
that are located in the following directories on that server machine are deleted.

• /opt/HiRDB_P
• All HiRDB directories that the user has registered in the OS using the pdsetup command#

#
When the HiRDB system is deleted from the OS using the pdsetup -d command, HiRDB directories for
which you responded with n to the KFPS00036-Q message are also deleted.

The procedure for uninstalling HiRDB is described below. In the case of a HiRDB parallel server configuration, you
must uninstall HiRDB from all server machines that constitute the HiRDB parallel server configuration.

To uninstall HiRDB:

1. Stop HiRDB.
Execute the pdls -d ust command, and then, if HiRDB is running, use the pdstop command to stop HiRDB.
If an uninstall is performed while a HiRDB is running, HiRDB processes and OS resources that were being used
by HiRDB remain resident. Should that happen, reboot the OS to stop the HiRDB processes and release the OS
resources.

2. Delete HiRDB from the OS.
Execute the pdsetup -d command, respond with y to the KFPS00036-Q message, and then delete HiRDB
from the OS.
If the termination status of the pdsetup -d command is not 0, an error may have occurred. See the message
output to the syslog file, eliminate the cause of the error, and then re-execute the removal of HiRDB registration
from OS again.

3. Uninstall HiRDB.
Use the Hitachi Program Product Installer to uninstall HiRDB from each server machine.
At this time, check the results in the Hitachi Program Product Installer window. If the uninstallation was not
successful, check the message output to the syslog file, eliminate the cause of the error, and then re-execute the
uninstallation.

2. Installation

75

3 Setting Up an Environment Using
the Simple Setup Tool
This chapter describes the procedure for using the simple setup tool to set up a
HiRDB environment.

77

3.1 Overview of the simple setup tool
The simple setup tool is not supported.

3. Setting Up an Environment Using the Simple Setup Tool

78

4 Setting Up an Environment Using
Commands
This chapter describes the procedure for setting up the HiRDB environment using
commands.

79

4.1 Overview of environment setup using commands

(1) Items to be defined before environment setup
Before starting the HiRDB environment setup, design the system configuration for the following items:

• Units and servers

• HiRDB file system areas

• System files

• Work table files

• RDAREAs

Determine the configuration of these items by referring to Chapter 8. Designing a HiRDB single server configuration,
or Chapter 9. Designing a HiRDB parallel server configuration. After that, set up the HiRDB environment according
to the information provided in this chapter, beginning at 4.2 Creating the HiRDB system definitions.

(2) Environment setup procedure
The following figure illustrates the procedure for using commands to set up the HiRDB environment.

Figure 4‒1: Procedure for using commands to set up the HiRDB environment

You will be defining the following information in this chapter:

• First, use the database-initialization utility (pdinit) to create system RDAREAs (master directory RDAREA,
data directory RDAREA, and data dictionary RDAREA), so that you can start HiRDB.

• Next, use the database structure modification utility (pdmod) to add any required RDAREAs (user RDAREAs,
data dictionary RDAREAs, user LOB RDAREAs, and list RDAREAs).

4. Setting Up an Environment Using Commands

80

For the user RDAREAs, data dictionary LOB RDAREAs, user LOB RDAREAs, and RDAREAs for lists, you can use
the database initialization utility (pdinit) to create them together with the system RDAREAs.

4. Setting Up an Environment Using Commands

81

4.2 Creating the HiRDB system definitions
Executor: HiRDB administrator

Create HiRDB system definitions according to the designed system configuration and operating environment. This
section discusses the following topics:

• Creating HiRDB system definitions

• Sharing HiRDB system definition files (HiRDB parallel server configuration only)

• Modifying HiRDB system definitions

• Modifying UAP environment definitions

For details about the HiRDB system definition operands, see the manual HiRDB Version 9 System Definition.

Notes

• After creating HiRDB system definitions, use the pdconfchk command to check their conformity. This
command checks the definitions required for starting HiRDB for any inconsistencies. For details about the
operands supported by the pdconfchk command, see the manual HiRDB Version 9 System Definition.

• Set and maintain permission to access the HiRDB system definition file so that only the owner of the file (HiRDB
administrator) is granted read and write privileges.

• After modifying the HiRDB system definitions, be sure to back up the files under $PDDIR/conf. To protect
against possible errors on the disk that contains the HiRDB directory, you need to back up the files in the HiRDB
directory (files under $PDDIR/conf). To restore the HiRDB directory, you need a backup copy of the files under
$PDDIR/conf.

4.2.1 Creating HiRDB system definitions (HiRDB single server
configuration)

(1) Creating system common definitions (HiRDB single server configuration)
For system common definitions, define the HiRDB configuration and common information. Store the system common
definitions created in the following file:

• $PDDIR/conf/pdsys file

The system common definitions include the definitions of unit configuration, server configuration, and global buffer.

Note that HiRDB commands and utilities operate in conformance with the definitions in this definitions file.
Consequently, grant the read privilege (r) for this definitions file to users who execute HiRDB commands or utilities
(users on the OS).

(2) Creating unit control information definitions (HiRDB single server configuration)
For unit control information definitions, define the unit's execution environment. Store the unit control information
definitions created in the following file:

• $PDDIR/conf/pdutsys file

The unit control information definitions include the definitions of status files for units.

Note that HiRDB commands and utilities operate in conformance with the definitions in this definitions file.
Consequently, grant the read privilege (r) for this definitions file to users who execute HiRDB commands or utilities
(users on the OS).

(3) Creating single server definitions
For single server definitions, define the single server's execution environment. Store the created single server
definitions in the following file:

4. Setting Up an Environment Using Commands

82

• $PDDIR/conf/server-name# file

HiRDB commands and utilities operate in conformance with the definitions in this definitions file. Consequently,
grant the read privilege (r) for this definitions file to users who execute HiRDB commands or utilities (users on the
OS).

The following shows an example of items that can be specified in the single server definitions:

• System log files

• Synchronization point dump files

• Status files for server

• Work table files

A single server definition is not required for utility special units.

#: Use the server name that is specified in the -s option of the pdstart operand in the system common definitions.
For example, if your specification is pdstart -s sds1, then store the single server definitions in the following file:

• $PDDIR/conf/sds1 file

(4) UAP environment definition creation (optional)
Define UAP execution environments. Create UAP environment definitions as needed, and store them in the following
file:

• $PDDIR/conf/pduapenv/any-name#

The HiRDB administrator must grant to the users who will use a UAP environment definition the read privilege (r)
and the execute privilege (x) for the $PDDIR/conf/pduapenv directory. Read (r) privilege must also be granted
for the UAP environment definition file.

Also, since HiRDB commands and utilities operate in conformance with the definitions in this definitions file, grant
the read privilege (r) for this definitions file to users who execute HiRDB commands or utilities (users on the OS).

The following are examples of the items that can be specified in a UAP environment definition:

• The action to be taken by the UAP if local buffers are used to access an RDAREA or index, but the RDAREA or
index is being used by another user.

• The local buffers to be used by the UAP.

#: The file name must begin with an alphabetic character and must not exceed eight characters in length.

(5) Creating an SQL reserved word definition (optional)
To use the SQL reserved word deletion facility, you must define the reserved words to be deleted for each UAP. You
create an SQL reserved word definition as needed and store it in the following file:

• $PDDIR/conf/pdrsvwd/any-name#

The HiRDB administrator must grant to a user who uses the SQL reserved word definition the read (r) and execution
(x) privileges for the $PDDIR/conf/pdrsvwd directory and the read privilege (r) for the SQL reserved word
deletion file.

Also, since HiRDB commands and utilities operate in conformance with the definitions in this definitions file, grant
the read privilege (r) for this definitions file to users who execute HiRDB commands or utilities (users on the OS).

#: The file name must begin with an alphabetic character and must not exceed eight alphanumeric characters in length.

(6) Configuring the HiRDB system definition files
The following figure shows an example of a configuration of HiRDB system definition files.

4. Setting Up an Environment Using Commands

83

Figure 4‒2: Configuration of HiRDB system definition files: HiRDB single server configuration

4.2.2 Creating HiRDB system definitions (HiRDB parallel server
configuration)

(1) Creating system common definitions (HiRDB parallel server configuration)
For system common definitions, define the HiRDB configuration and common information. After you create the
system common definitions, store them in the following file:

• $PDDIR/conf/pdsys file

Create the same system common definitions for each server machine.

The system common definitions include the definitions of unit configuration, server configuration, and global buffer.

Note that HiRDB commands and utilities operate in conformance with the definitions in this definitions file.
Consequently, grant the read privilege (r) for this definitions file to users who execute HiRDB commands or utilities
(users on the OS).

(2) Creating unit control information definitions (HiRDB single server configuration)
For unit control information definitions, define the unit's execution environment. Store the unit control information
definitions created in the following file:

• $PDDIR/conf/pdutsys file

Create the unit control information definitions for each server machine.

The unit control information definitions include the definitions of status files for units.

Note that HiRDB commands and utilities operate in conformance with the definitions in this definitions file.
Consequently, grant the read privilege (r) for this definitions file to users who execute HiRDB commands or utilities
(users on the OS).

(3) Creating single server definitions
For single server definitions, define the default values of the server-definition operands, which are explained in (4)-
(6), below. Create the server common definitions for each server as required and store them in the following file:

• $PDDIR/conf/pdsvrc file

The server common definitions are useful in the following cases:

4. Setting Up an Environment Using Commands

84

• There are many servers to be defined per server machine.

• There are many definitions that are common to multiple servers.

The information specified in the server common definitions takes effect on all the servers defined in the corresponding
server machine. If there are many definitions that are common to multiple servers, you should specify the common
information in the server common definitions and the information unique to individual servers in the corresponding
server definitions.

If you are sharing HiRDB system definition files, you should create the server common definitions.

Also, since HiRDB commands and utilities operate in conformance with the definitions in this definitions file, grant
the read privilege (r) for this definitions file to users who execute HiRDB commands or utilities (users on the OS).

(4) Creating front-end server definitions
For front-end server definitions, define the front-end server's execution environment. Save the front-end server
definitions created in the following file:

• $PDDIR/conf/server-name# file

Create the front-end server definitions in the server machine where the front-end server is defined. The following
shows an example of items that can be specified in the front-end server definitions:

• System log files for the front-end server

• Synchronization point dump files for the front-end server

• Status files for the front-end server

#: Use the server name that is specified in the -s option of the pdstart operand in the system common definitions.
For example, if your specification is pdstart -s f001, then store the front-end server definitions in the following
file:

• $PDDIR/conf/f001 file

Note that HiRDB commands and utilities operate in conformance with the definitions in this definitions file.
Consequently, grant the read privilege (r) for this definitions file to users who execute HiRDB commands or utilities
(users on the OS).

(5) Creating dictionary server definitions
For dictionary server definitions, define the dictionary server's execution environment. Save the dictionary server
definitions created in the following file:

• $PDDIR/conf/server-name# file

Create the dictionary server definitions in the dictionary server machine where the dictionary server is defined. The
following shows an example of items that can be specified in the dictionary server definitions:

• System log files for the dictionary server

• Synchronization point dump files for the dictionary server

• Status files for the dictionary server

• Work table files

#: Use the server name that is specified in the -s option of the pdstart operand in the system common definitions.
For example, if your specification is pdstart -s dic, then store the dictionary server definitions in the following
file:

• $PDDIR/conf/dic file

Note that HiRDB commands and utilities operate in conformance with the definitions in this definitions file.
Consequently, grant the read privilege (r) for this definitions file to users who execute HiRDB commands or utilities
(users on the OS).

4. Setting Up an Environment Using Commands

85

(6) Creating back-end server definitions
For back-end server definitions, define the back-end server's execution environment. Save the back-end server
definitions created in the following file:

• $PDDIR/conf/server-name# file

Create the back-end server definitions in the server machine where the back-end server is defined. The following
shows an example of items that can be specified in the back-end server definitions:

• System log files for the back-end server

• Synchronization point dump files for the back-end server

• Status files for the back-end server

• Work table files

#: Use the server name that is specified in the -s option of the pdstart operand in the system common definitions.
For example, if your specification is pdstart -s b001, then store the back-end server definitions in the following
file:

• $PDDIR/conf/b001 file

Note that HiRDB commands and utilities operate in conformance with the definitions in this definitions file.
Consequently, grant the read privilege (r) for this definitions file to users who execute HiRDB commands or utilities
(users on the OS).

(7) UAP environment definition creation (optional)
Define UAP execution environments. Create UAP environment definitions as needed, and store them in the following
file:

• $PDDIR/conf/pduapenv/any-name#

A UAP environment definition is created at the unit with the front-end server. If there are multiple front-end servers,
the UAP environment definition can be defined at any of them, as appropriate.

The HiRDB administrator must grant to the users who will use a UAP environment definition the read privilege (r)
and the execute privilege (x) for the $PDDIR/conf/pduapenv directory. Read (r) privilege must also be granted
for the UAP environment definition file.

Also, since HiRDB commands and utilities operate in conformance with the definitions in this definitions file, grant
the read privilege (r) for this definitions file to users who execute HiRDB commands or utilities (users on the OS).

The following are examples of the items that can be specified in a UAP environment definition:

• The action to be taken by the UAP if local buffers are used to access an RDAREA or index, but the RDAREA or
index is being used by another user.

• The local buffers to be used by the UAP.

#: The file name must begin with an alphabetic character and must not exceed eight characters in length.

(8) Creating an SQL reserved word definition (optional)
To use the SQL reserved word deletion facility, you must define the reserved words to be deleted for each UAP. You
create an SQL reserved word definition as needed and store it in the following file:

• $PDDIR/conf/pdrsvwd/any-name#

Create the SQL reserved word definition on the unit where the front-end server is located. In the event of multiple
front-end servers, define the SQL reserved word definition on the front-end server to which the UAP environment
definition is to be applied.

The HiRDB administrator must grant to a user who uses the SQL reserved word definition the read (r) and execution
(x) privileges for the $PDDIR/conf/pdrsvwd directory and the read privilege (r) for the SQL reserved word
deletion file.

4. Setting Up an Environment Using Commands

86

Also, since HiRDB commands and utilities operate in conformance with the definitions in this definitions file, grant
the read privilege (r) for this definitions file to users who execute HiRDB commands or utilities (users on the OS).

#: The file name must begin with an alphabetic character and must not exceed eight alphanumeric characters in length.

(9) Configuring the HiRDB system definition files
The following figure shows an example of a configuration of HiRDB system definition files.

Figure 4‒3: Configuration of HiRDB system definition files: HiRDB parallel server configuration

4.2.3 Sharing HiRDB system definition files (HiRDB parallel server
configuration)

For a HiRDB parallel server configuration, the HiRDB administrator must create HiRDB system definition files and
manage them for each server machine. However, if the file sharing facility (NFS) is used, all the HiRDB system
definition files, except for unit control information definition files, can be managed by a single server machine. This is

4. Setting Up an Environment Using Commands

87

called sharing HiRDB system definition files. The following figure illustrates sharing of HiRDB system definition
files.

Figure 4‒4: Sharing HiRDB system definition files

Note
Shading indicates the shared files.

(1) Differences depending on whether definitions are shared

When not shared When shared

HiRDB system definitions must be managed for each server
machine.

HiRDB system definitions (except for unit control information
definitions) can be managed by one server machine.

4. Setting Up an Environment Using Commands

88

When not shared When shared

When the system common definition is modified, the same
modifications must be made as many times as there are server
machines.

For example, if there are four server machines, there are four
system common definitions. Because the contents of these four
system common definitions must be identical, all four definitions
must be modified.

• Because there is only one system common definition,
necessary modifications need to be made only once.

• Because there are fewer modifications to be made, the chances
of making errors are reduced significantly.

• If HiRDB can no longer reference the shared directory, HiRDB
may terminate abnormally.

(2) How to share HiRDB system definition files
To share HiRDB system definition files, do the following:

1. Create a directory to store the HiRDB system definition files that are to be shared. Create this directory at the
server machine that is to manage the HiRDB system definition files that are to be shared. This directory is called
the shared directory. These definition files can be managed by any server machine, but it is recommended that
they be managed by the server machine where the system manager is defined.

2. Create the HiRDB system definition files (except for unit control information definition files) under the shared
directory.

3. Create the unit control information definition files under $PDDIR/conf/ at each server machine. In this case,
specify the name of the shared directory in the PDCONFPATH operand.

4.2.4 Modifying HiRDB system definitions (excluding UAP environment
definitions)

This section describes how to modify HiRDB system definitions.

Note

• After modifying the HiRDB system definitions, be sure to back up the files under $PDDIR/conf. To protect
against possible errors on the disk that contains the HiRDB directory, you need to back up the files in the
HiRDB directory (files under $PDDIR/conf). To restore the HiRDB directory, you need a backup copy of
the files under $PDDIR/conf. If $PDCONFPATH is under the HiRDB directory, back it up in the same
manner.

• For a HiRDB parallel server configuration, create subdirectories for each unit under $PDDIR/conf and
$PDCONFPATH, and check the contents of the HiRDB system definition.

(1) How to modify HiRDB system definitions
This section describes how to modify HiRDB system definitions. In this explanation, the directory that stores the unit
control information definition file is referred to as $PDDIR/conf, and the directory that stores any other HiRDB
system definition files is referred to as $PDCONFPATH.

Procedure

1. Create subdirectories under $PDDIR/conf and $PDCONFPATH. In this example, the subdirectories will be
named work.

2. Copy the unit control information definition file under $PDDIR/conf/work. Copy the other HiRDB system
definition files under $PDCONFPATH/work.

3. Modify the HiRDB system definitions copied into $PDDIR/conf/work and $PDCONFPATH/work.

4. Use the pdconfchk -d work command to check the contents of the HiRDB system definitions in $PDDIR/
conf/work and $PDCONFPATH/work. If an error is detected, correct the HiRDB system definition and re-
execute the pdconfchk command.

5. Use the pdstop command to terminate HiRDB normally.

6. Use the pdlogunld command to unload system log files in unload wait status.

4. Setting Up an Environment Using Commands

89

7. Replace the HiRDB system definition files by copying the HiRDB system definition files modified in step 3 under
$PDDIR/conf and $PDCONFPATH.

8. If the values specified for the following operands have been modified, use the pdloginit command to initialize
the system log files:

 pd_log_dual
 pdstart

9. Use the pdstart command to perform a HiRDB normal startup.

(2) How to modify HiRDB system definitions with the system reconfiguration command
When the system reconfiguration command (pdchgconf command) is used, the HiRDB system definitions can be
modified while HiRDB is operating, which means that HiRDB need not be terminated. However, in order to use this
command, HiRDB Advanced High Availability must be installed. The following section shows how to modify a
HiRDB system definition with the system reconfiguration command.

Procedure

1. Create the $PDDIR/conf/chgconf directory.

2. Copy the HiRDB system definition files currently being used to the directory created in step 1.

3. Modify the HiRDB system definitions in $PDDIR/conf/chgconf.

4. Use the pdconfchk command to perform a check of the HiRDB system definitions in $PDDIR/conf/
chgconf. If an error is detected, correct the HiRDB system definition and re-execute the pdconfchk
command.

5. Use the pdchgconf command to replace the HiRDB system definitions with the modified HiRDB system
definitions.
When the pdchgconf command is executed, the HiRDB system definition files currently being used (before
modification) will be saved in $PDDIR/conf/backconf. Therefore, the modified HiRDB system
definition files in $PDDIR/conf/chgconf will be copied to $PDDIR/conf.

Notes

• If a transaction or utility is still operating 15 minutes after the pdchgconf command was entered, the
pdchgconf command terminates abnormally.

• There are restrictions on the use of the system reconfiguration command to modify HiRDB system definitions;
for details about the restrictions, see the HiRDB Version 9 System Operation Guide.

(3) Notes

• When a system common definition is modified, the same modification must be made to the system common
definitions for all the server machines (applicable to a HiRDB parallel server configuration).

• HiRDB system definitions that are being used by an active HiRDB must not be modified or deleted. If they are
modified or deleted, operation of the HiRDB cannot be guaranteed.

• In the event of HiRDB planned termination, forced termination, or abnormal termination, some items can be
modified using the HiRDB system definition operands, but some items cannot be modified in this manner. For
details, see the manual HiRDB Version 9 System Definition.

4.2.5 Modifying a UAP environment definition
This section describes how to modify a UAP environment definition.

Procedure

1. Check that the UAP that uses the UAP environment definition is not executing. If the UAP is executing when
the UAP environment definition is modified, the executing UAP will usually use the UAP environment
definition before modification; however, depending on the timing, the modified UAP environment definition
may be used.

2. Modify the UAP environment definition.

4. Setting Up an Environment Using Commands

90

3. Execute the UAP using the modified UAP environment definition.

4. Setting Up an Environment Using Commands

91

4.3 Creating HiRDB file system areas
Executor: HiRDB administrator

Use the pdfmkfs command to create an area where you can create HiRDB files (HiRDB file system area). A regular
file or character special file is used to create a HiRDB file system area.

Files in a file system that accesses files over a network such as NFS cannot be used as HiRDB file system areas.

4.3.1 Types of HiRDB file system areas
Create a different HiRDB file system area for each purpose, as shown in the following table. Use the pdfmkfs
command's -k option to specify the purpose.

Table 4‒1: Types of HiRDB file system areas

NO. Type of HiRDB file system area -k option value

1 RDAREAs DB

2 Shared RDAREA SDB

3 System files SYS

4 Work table files WORK

5 Utilities UTL

6 RDAREAs for lists WORK

Operating HiRDB requires HiRDB file system areas 1, 3 and 4.

For details about how to design a HiRDB file system area, see 8.2 Designing HiRDB file system areas for a HiRDB
single server configuration, and 9.2 Designing HiRDB file system areas for a HiRDB parallel server configuration.

Note
The size of a HiRDB file system area that is to be initialized must not exceed the partition size. If it exceeds the
partition size, the next partition physically following that partition may be damaged.

4.3.2 Using character special files

(1) Range of applicability of character special files
The utility files that can be created in character special files when UTL is specified in the pdfmkfs command's -k
option (the purpose of the HiRDB file system area) are as follows.

• Backup files

• Unload log files

• Unload data files

• Differential backup management files

• Index information files

(2) Initial setting
If character special files are to be used, you must use the pdfmkfs command to make an initial setting that the
HiRDB file system area will use character special files. If the character special files are symbolic links, specify the
names of the links.

Before you specify the initial setting, modify the owner and access privileges of the file system area. For details about
these modifications, see 2.3.7(2) Creating a HiRDB file system area in a character special file or block special file.

4. Setting Up an Environment Using Commands

92

The following is an example of specifying the pdfmkfs command:

pdfmkfs -n 200 -l 20 -k DB /dev/raw/raw1

4.3.3 Creating a large file
The maximum size of a HiRDB file system area is 2,047 MB (about 2 GB). To create a HiRDB file system area that is
larger than this size, you need to create the HiRDB file system area as a large file. If it is created it as a large file, the
maximum size of the HiRDB file system area is 1,048,575 MB.

• Method for creating a large file
You can create a large file in the same manner as with a HiRDB file system area. Use the pdfmkfs command's -
n option to specify the size of the HiRDB file system area that is to be a large file (2 gigabytes or greater).

• Files to be used with utilities
The following utilities may not support large files:

• Database load utility (pdload)

• Database reorganization utility (pdrorg)

See the manual HiRDB Version 9 Command Reference to determine whether these utilities support large files.

4.3.4 Example 1 (creating a HiRDB file system area for RDAREAs)
The following shows an example of creating a HiRDB file system area for RDAREAs:

Example
Create a HiRDB file system area for RDAREAs:

pdfmkfs -n 50 -l 10 -k DB -i /dbarea01

Explanation:
-n: Specifies the size of the HiRDB file system area in MB.
-l: Specifies the maximum number of files that can be created in this HiRDB file system area.

-k: Specifies the purpose of this HiRDB file system area.
This example specifies DB because this HiRDB file system area is for RDAREAs.

-i: Specifies that the entire HiRDB file system area is to be initialized.
When the -i option is specified, the system allocates the entire area. When the -i option is omitted, the
system creates only the management information for the HiRDB file system area.

/dbarea01: Specifies the name of the HiRDB file system area to be created.

After the command has executed, the execution results should be checked for errors. For details about how to check
command execution results, see the manual HiRDB Version 9 Command Reference.

4.3.5 Example 2 (creating a HiRDB file system area for system files)
The following shows an example of creating a HiRDB file system area for system files:

Example
Create a HiRDB file system area for system files:

pdfmkfs -n 50 -l 20 -k SYS -i /sysarea01

Explanation:
-n: Specifies the size of the HiRDB file system area in MB.
-l: Specifies the maximum number of files that can be created in this HiRDB file system area.

4. Setting Up an Environment Using Commands

93

-k: Specifies the purpose of this HiRDB file system area.
This example specifies SYS because this HiRDB file system area is for system files.

-i: Specifies that the entire HiRDB file system area is to be initialized.
When the -i option is specified, the system allocates the entire area. When the -i option is omitted, the
system creates only the management information for the HiRDB file system area.

/sysarea01: Specifies the name of the HiRDB file system area to be created.

After the command has executed, the execution results should be checked for errors. For details about how to check
command execution results, see the manual HiRDB Version 9 Command Reference.

4.3.6 Example 3 (creating a HiRDB file system area for work table files)
The following shows an example of creating a HiRDB file system area for work table files:

Example
Create a HiRDB file system area for work table files:

pdfmkfs -n 50 -l 20 -k WORK -e 3300 -i -a /workarea01

Explanation:

-n: Specifies the size of the HiRDB file system area in MB.
For details about how to estimate the area size, see Chapter 18. Determining Work Table File Size.

-l: Specifies the maximum number of files that can be created in this HiRDB file system area.

-k: Specifies the purpose of this HiRDB file system area.
This example specifies WORK because this HiRDB file system area is for work table files.

-e: Specifies the number of HiRDB file extensions permitted for this HiRDB file system area.

-i: Specifies that the entire HiRDB file system area is to be initialized.
When the -i option is specified, the system allocates the entire area. When the -i option is omitted, the
system creates only the management information for the HiRDB file system area.

-a: Specifies that the HiRDB file system area is to be extended automatically.
Specify the -a option to automatically extend the HiRDB file system area as much as necessary even if it
exceeds the size specified with the -n option when, for example, an SQL statement that uses automatic
extension of an RDAREA or a work table is executed.

/workarea01: Specifies the name of the HiRDB file system area to be created.
Enter the name that was specified in the pdwork operand in the HiRDB system definitions.

After the command has executed, the execution results should be checked for errors. For details about how to check
command execution results, see the manual HiRDB Version 9 Command Reference.

4.3.7 Example 4 (creating a HiRDB file system area for utilities)
This section shows an example of creating a HiRDB file system area for utilities. The following files are created in the
HiRDB file system area for utilities:

• Backup files

• Unload data files

• Unload log files

• Differential backup management files

• Index information files

Example
Create a HiRDB file system area for utilities:

4. Setting Up an Environment Using Commands

94

pdfmkfs -n 50 -l 10 -k UTL -i /utlarea01

Explanation:
-n: Specifies the size of the HiRDB file system area in MB.
-l: Specifies the maximum number of files that can be created in this HiRDB file system area.

-k: Specifies the purpose of this HiRDB file system area.
This example specifies UTL because this HiRDB file system area is for utilities.

-i: Specifies that the entire HiRDB file system area is to be initialized.
When the -i option is specified, the system allocates the entire area. When the -i option is omitted, the
system creates only the management information for the HiRDB file system area.

/utlarea01: Specifies the name of the HiRDB file system area to be created.

After the command has executed, the execution results should be checked for errors. For details about how to check
command execution results, see the manual HiRDB Version 9 Command Reference.

4.3.8 Example 5 (creating a HiRDB file system area for list RDAREAs)
The following shows an example of creating a HiRDB file system area for list RDAREAs:

Example
Create a HiRDB file system area for list RDAREAs:

pdfmkfs -n 50 -l 10 -k WORK -i /listarea01

Explanation:
-n: Specifies the size of the HiRDB file system area in MB.
-l: Specifies the maximum number of files that can be created in this HiRDB file system area.

-k: Specifies the purpose of this HiRDB file system area.
This example specifies WORK because this HiRDB file system area is for RDAREAs for lists.

-i: Specifies that the entire HiRDB file system area is to be initialized.
When the -i option is specified, the system allocates the entire area. When the -i option is omitted, the
system creates only the management information for the HiRDB file system area.

/listarea01: Specifies the name of the HiRDB file system area to be created.

After the command has executed, the execution results should be checked for errors. For details about how to check
command execution results, see the manual HiRDB Version 9 Command Reference.

4. Setting Up an Environment Using Commands

95

4.4 Creating system files
The HiRDB administrator creates system files in HiRDB file system areas as explained in 4.3 Creating HiRDB file
system areas. There are three types of system files:

• System log files

• Synchronization point dump files

• Status files

For details about how to design system files, see 8.3 Designing system files for a HiRDB single server configuration
and 9.3 Designing system files for a HiRDB parallel server configuration.

4.4.1 Creating system log files
The HiRDB administrator executes the pdloginit command to create system log files in a HiRDB file system area.

Example
Create system log files (log01) in a HiRDB file system area (/sysarea01):

pdloginit -d sys -s b001 -f /sysarea01/log01 -n 1024

Explanation:
-d sys: Specifies that this is a system log file.

-s: Specifies the name of the server corresponding to this system log file.
This specification is not necessary for a HiRDB single server configuration.

-f: Specifies a name for this system log file.
Enter the name that was specified with the pdlogadpf -d sys server definition operand in the HiRDB
system definitions.

-n: Specifies the number of records for this system log file.
The size of one system log file equals the record length times the number of records (bytes). A system log file
normally has a record length of 1,024 bytes, but if the pd_log_rec_leng operand is specified, the value of
the pd_log_rec_leng operand is used.

After the command has executed, we recommend that you check the execution results for errors. For details about how
to check command execution results, see the manual HiRDB Version 9 Command Reference.

Relationship with HiRDB system definitions
This pdloginit command is associated with the following server definition operands in the HiRDB system
definitions:

• pdlogadfg -d sys
• pdlogadpf -d sys

You need to define the system log file created using these operands.

4.4.2 Creating synchronization point dump files
The HiRDB administrator executes the pdloginit command to create synchronization point dump files in a
HiRDB file system area.

Example
Create a synchronization point dump file (b1sync01) in a HiRDB file system area (/sysarea01):

pdloginit -d spd -s b001 -f /sysarea01/sync01 -n 64

Explanation:
-d spd: Specifies that this is a synchronization point dump file.

4. Setting Up an Environment Using Commands

96

-s: Specifies the name of the server corresponding to this synchronization point dump file.
This specification is not necessary for a HiRDB single server configuration.

-f: Specifies a name for this synchronization point dump file.
Enter the name that was specified with the pdlogadpf -d spd server definition operand in the HiRDB
system definitions.

-n: Specifies the number of records for this synchronization point dump file.
The size of one synchronization point dump file equals 4,096 times the record length (bytes).

After the command has executed, the execution results should be checked for errors. For details about how to check
command execution results, see the manual HiRDB Version 9 Command Reference.

Relationship with HiRDB system definitions
This pdloginit command is associated with the following server definition operands in the HiRDB system
definitions:

• pdlogadfg -d spd
• pdlogadpf -d spd

You need to define the synchronization point dump file created using these operands.

4.4.3 Creating status files
The HiRDB administrator uses the pdstsinit command to create status files in a HiRDB file system area. The
HiRDB administrator must create status files for both the unit and server.

Example
Create a server status file (b1sts01a) in a HiRDB file system area (/sysarea01):

pdstsinit -s b001 -f /sysarea01/sts01 -l 4096 -c 256

Explanation:
-s: Specifies the name of the server corresponding to this server status file.

-f: Specifies a name for this server status file.
Enter the name that was specified with the pd_sts_file_name server definition operand in the HiRDB
system definitions.

-l: Specifies the record length for this status file.

-c: Specifies the number of records for this status file.
The size of one status file is equal to the record length times the number of records (bytes).

After the command has executed, the execution results should be checked for errors. For details about how to check
command execution results, see the manual HiRDB Version 9 Command Reference.

Relationship with HiRDB system definitions
This pdstsinit command is associated with the following operands in the HiRDB system definitions:

• pd_syssts_file_name (unit status file)

• pd_sts_file_name (server status file)

You need to define the status file created using these operands.

4.4.4 Example of system file creation (HiRDB single server configuration)
This section explains the system file creation procedure by way of example, based on the following system
configuration:

4. Setting Up an Environment Using Commands

97

Configuration of the HiRDB file system area

(1) Defining system files (specifying HiRDB system definitions)
Define the system files in the HiRDB system definitions.

(a) Unit control information definitions (for unit status files)

Define the unit status files in the unit control information definitions.

Definition example

set pd_syssts_file_name_1="usts1","/sysarea01/usts01a"\
 ,"/sysarea02/usts01b"
set pd_syssts_file_name_2="usts2","/sysarea02/usts02a"\
 ,"/sysarea03/usts02b"
set pd_syssts_file_name_3="usts3","/sysarea03/usts03a"\
 ,"/sysarea01/usts03b"

(b) Single server definitions

Define system log files, the synchronization point dump file, and server status files in the single server definitions.

4. Setting Up an Environment Using Commands

98

Definition example of system log files

pdlogadfg -d sys -g log1 ONL
pdlogadfg -d sys -g log2 ONL
pdlogadfg -d sys -g log3 ONL
pdlogadpf -d sys -g log1 -a "/sysarea01/log01a"\
 -b "/sysarea02/log01b"
pdlogadpf -d sys -g log2 -a "/sysarea02/log02a"\
 -b "/sysarea03/log02b"
pdlogadpf -d sys -g log3 -a "/sysarea03/log03a"\
 -b "/sysarea01/log03b"

Definition example of synchronization point dump files

pdlogadfg -d spd -g sync1 ONL
pdlogadfg -d spd -g sync2 ONL
pdlogadfg -d spd -g sync3 ONL
pdlogadpf -d spd -g sync1 -a "/sysarea01/sync01"
pdlogadpf -d spd -g sync2 -a "/sysarea02/sync02"
pdlogadpf -d spd -g sync3 -a "/sysarea03/sync03"

Definition example of server status files

set pd_sts_file_name_1="ssts1","/sysarea01/ssts01a"\
 ,"/sysarea02/ssts01b"
set pd_sts_file_name_2="ssts2","/sysarea02/ssts02a"\
 ,"/sysarea03/ssts02b"
set pd_sts_file_name_3="ssts3","/sysarea03/ssts03a"\
 ,"/sysarea01/ssts03b"

(2) Creating the HiRDB file system areas
Use the pdfmkfs command to create the HiRDB file system areas.

Example of command entry

pdfmkfs -n 50 -l 20 -i -k SYS /sysarea01
pdfmkfs -n 50 -l 20 -i -k SYS /sysarea02
pdfmkfs -n 50 -l 20 -i -k SYS /sysarea03

(3) Creating the system files

(a) Creating the system log files

Use the pdloginit command to create the system log files.

Example of command entry

pdloginit -d sys -f /sysarea01/log01a -n 1024
pdloginit -d sys -f /sysarea01/log03b -n 1024
pdloginit -d sys -f /sysarea02/log02a -n 1024
pdloginit -d sys -f /sysarea02/log01b -n 1024
pdloginit -d sys -f /sysarea03/log03a -n 1024
pdloginit -d sys -f /sysarea03/log02b -n 1024

(b) Creating the synchronization point dump file

Use the pdloginit command to create the synchronization point dump file.

Example of command entry

pdloginit -d spd -f /sysarea01/sync01 -n 64
pdloginit -d spd -f /sysarea02/sync02 -n 64
pdloginit -d spd -f /sysarea03/sync03 -n 64

(c) Creating the server status files

Use the pdstsinit command to create the server status files.

4. Setting Up an Environment Using Commands

99

Example of command entry

pdstsinit -s sds1 -f /sysarea01/ssts01a -l 4096 -c 256
pdstsinit -s sds1 -f /sysarea01/ssts03b -l 4096 -c 256
pdstsinit -s sds1 -f /sysarea02/ssts02a -l 4096 -c 256
pdstsinit -s sds1 -f /sysarea02/ssts01b -l 4096 -c 256
pdstsinit -s sds1 -f /sysarea03/ssts03a -l 4096 -c 256
pdstsinit -s sds1 -f /sysarea03/ssts02b -l 4096 -c 256

(d) Creating the unit status files

Use the pdstsinit command to create the unit status files.

Example of command entry

pdstsinit -u unt1 -f /sysarea01/usts01a -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea01/usts03b -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea02/usts02a -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea02/usts01b -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea03/usts03a -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea03/usts02b -l 4096 -c 256

4.4.5 Example of system file creation (HiRDB parallel server
configuration)

This section explains the system file creation procedure by way of example, based on the following system
configuration:

4. Setting Up an Environment Using Commands

100

MGR: System manager

FES: Front-end server

DS: Dictionary server

BES: Back-end server

4. Setting Up an Environment Using Commands

101

Configuration of the HiRDB file system area

Explanation
This is a sample configuration of HiRDB file system areas for unit A. The following examples are all based on the
system file creation for unit A.

(1) Defining system files (specifying HiRDB system definitions)
Define the system files in the HiRDB system definitions.

(a) Unit control information definitions (for unit status files)

Define the unit status files in the unit control information definitions.

4. Setting Up an Environment Using Commands

102

Definition example

set pd_syssts_file_name_1="u1sts1","/sysarea01/u1sts01a"\
 ,"/sysarea02/u1sts01b"
set pd_syssts_file_name_2="u1sts2","/sysarea02/u1sts02a"\
 ,"/sysarea03/u1sts02b"
set pd_syssts_file_name_3="u1sts3","/sysarea03/u1sts03a"\
 ,"/sysarea01/u1sts03b"

(b) FES1 front-end server definitions

Define system log files, the synchronization point dump files, and server status files in the FES1 front-end server
definitions.

Definition example of system log files

pdlogadfg -d sys -g f1log1 ONL
pdlogadfg -d sys -g f1log2 ONL
pdlogadfg -d sys -g f1log3 ONL
pdlogadpf -d sys -g f1log1 -a "/sysarea01/f1log01a"\
 -b "/sysarea02/f1log01b"
pdlogadpf -d sys -g f1log2 -a "/sysarea02/f1log02a"\
 -b "/sysarea03/f1log02b"
pdlogadpf -d sys -g f1log3 -a "/sysarea03/f1log03a"\
 -b "/sysarea01/f1log03b"

Definition example of synchronization point dump files

pdlogadfg -d spd -g f1sync1 ONL
pdlogadfg -d spd -g f1sync2 ONL
pdlogadfg -d spd -g f1sync3 ONL
pdlogadpf -d spd -g f1sync1 -a "/sysarea01/f1sync01"
pdlogadpf -d spd -g f1sync2 -a "/sysarea02/f1sync02"
pdlogadpf -d spd -g f1sync3 -a "/sysarea03/f1sync03"

Definition example of server status files

set pd_sts_file_name_1="f1sts1","/sysarea01/f1sts01a"\
 ,"/sysarea02/f1sts01b"
set pd_sts_file_name_2="f1sts2","/sysarea02/f1sts02a"\
 ,"/sysarea03/f1sts02b"
set pd_sts_file_name_3="f1sts3","/sysarea03/f1sts03a"\
 ,"/sysarea01/f1sts03b"

(c) BES1 back-end server definitions

Define system log files, synchronization point dump files, and server status files in the BES1 back-end server
definitions.

Definition example of system log files

pdlogadfg -d sys -g b1log1 ONL
pdlogadfg -d sys -g b1log2 ONL
pdlogadfg -d sys -g b1log3 ONL
pdlogadpf -d sys -g b1log1 -a "/sysarea01/b1log01a"\
 -b "/sysarea02/b1log01b"
pdlogadpf -d sys -g b1log2 -a "/sysarea02/b1log02a"\
 -b "/sysarea03/b1log02b"
pdlogadpf -d sys -g b1log3 -a "/sysarea03/b1log03a"\
 -b "/sysarea01/b1log03b"

Definition example of synchronization point dump files

pdlogadfg -d spd -g b1sync1 ONL
pdlogadfg -d spd -g b1sync2 ONL
pdlogadfg -d spd -g b1sync3 ONL
pdlogadpf -d spd -g b1sync1 -a "/sysarea01/b1sync01"
pdlogadpf -d spd -g b1sync2 -a "/sysarea02/b1sync02"
pdlogadpf -d spd -g b1sync3 -a "/sysarea03/b1sync03"

Definition example of server status files

set pd_sts_file_name_1="b1sts1","/sysarea01/b1sts01a"\
 ,"/sysarea02/b1sts01b"
set pd_sts_file_name_2="b1sts2","/sysarea02/b1sts02a"\

4. Setting Up an Environment Using Commands

103

 ,"/sysarea03/b1sts02b"
set pd_sts_file_name_3="b1sts3","/sysarea03/b1sts03a"\
 ,"/sysarea01/b1sts03b"

(d) BES2 back-end server definitions

Define system log files, synchronization point dump files, and server status files in the BES2 back-end server
definitions.

Definition example of system log files

pdlogadfg -d sys -g b2log1 ONL
pdlogadfg -d sys -g b2log2 ONL
pdlogadfg -d sys -g b2log3 ONL
pdlogadpf -d sys -g b2log1 -a "/sysarea01/b2log01a"\
 -b "/sysarea02/b2log01b"
pdlogadpf -d sys -g b2log2 -a "/sysarea02/b2log02a"\
 -b "/sysarea03/b2log02b"
pdlogadpf -d sys -g b2log3 -a "/sysarea03/b2log03a"\
 -b "/sysarea01/b2log03b"

Definition example of synchronization point dump files

pdlogadfg -d spd -g b2sync1 ONL
pdlogadfg -d spd -g b2sync2 ONL
pdlogadfg -d spd -g b2sync3 ONL
pdlogadpf -d spd -g b2sync1 -a "/sysarea01/b2sync01"
pdlogadpf -d spd -g b2sync2 -a "/sysarea02/b2sync02"
pdlogadpf -d spd -g b2sync3 -a "/sysarea03/b2sync03"

Definition example of server status files

set pd_sts_file_name_1="b2sts1","/sysarea01/b2sts01a"\
 ,"/sysarea02/b2sts01b"
set pd_sts_file_name_2="b2sts2","/sysarea02/b2sts02a"\
 ,"/sysarea03/b2sts02b"
set pd_sts_file_name_3="b2sts3","/sysarea03/b2sts03a"\
 ,"/sysarea01/b2sts03b"

(2) Creating the HiRDB file system areas
Use the pdfmkfs command to create the HiRDB file system areas.

Example of command entry

pdfmkfs -n 50 -l 20 -i -k SYS /sysarea01
pdfmkfs -n 50 -l 20 -i -k SYS /sysarea02
pdfmkfs -n 50 -l 20 -i -k SYS /sysarea03

(3) Creating the system files

(a) Creating the system log files

Use the pdloginit command to create the system log files.

Example of command entry (FES1)

pdloginit -d sys -s f001 -f /sysarea01/f1log01a -n 1024
pdloginit -d sys -s f001 -f /sysarea01/f1log03b -n 1024
pdloginit -d sys -s f001 -f /sysarea02/f1log02a -n 1024
pdloginit -d sys -s f001 -f /sysarea02/f1log01b -n 1024
pdloginit -d sys -s f001 -f /sysarea03/f1log03a -n 1024
pdloginit -d sys -s f001 -f /sysarea03/f1log02b -n 1024

Example of command entry (BES1)

pdloginit -d sys -s b001 -f /sysarea01/b1log01a -n 1024
pdloginit -d sys -s b001 -f /sysarea01/b1log03b -n 1024
pdloginit -d sys -s b001 -f /sysarea02/b1log02a -n 1024
pdloginit -d sys -s b001 -f /sysarea02/b1log01b -n 1024

4. Setting Up an Environment Using Commands

104

pdloginit -d sys -s b001 -f /sysarea03/b1log03a -n 1024
pdloginit -d sys -s b001 -f /sysarea03/b1log02b -n 1024

Example of command entry (BES2)

pdloginit -d sys -s b002 -f /sysarea01/b2log01a -n 1024
pdloginit -d sys -s b002 -f /sysarea01/b2log03b -n 1024
pdloginit -d sys -s b002 -f /sysarea02/b2log02a -n 1024
pdloginit -d sys -s b002 -f /sysarea02/b2log01b -n 1024
pdloginit -d sys -s b002 -f /sysarea03/b2log03a -n 1024
pdloginit -d sys -s b002 -f /sysarea03/b2log02b -n 1024

(b) Creating the synchronization point dump file

Use the pdloginit command to create the synchronization point dump file.

Example of command entry (FES1)

pdloginit -d spd -s f001 -f /sysarea01/f1sync01 -n 64
pdloginit -d spd -s f001 -f /sysarea02/f1sync02 -n 64
pdloginit -d spd -s f001 -f /sysarea03/f1sync03 -n 64

Example of command entry (BES1)

pdloginit -d spd -s b001 -f /sysarea01/b1sync01 -n 64
pdloginit -d spd -s b001 -f /sysarea02/b1sync02 -n 64
pdloginit -d spd -s b001 -f /sysarea03/b1sync03 -n 64

Example of command entry (BES2)

pdloginit -d spd -s b002 -f /sysarea01/b2sync01 -n 64
pdloginit -d spd -s b002 -f /sysarea02/b2sync02 -n 64
pdloginit -d spd -s b002 -f /sysarea03/b2sync03 -n 64

(c) Creating the server status files

Use the pdstsinit command to create the server status files.

Example of command entry (FES1)

pdstsinit -s f001 -f /sysarea01/f1sts01a -l 4096 -c 256
pdstsinit -s f001 -f /sysarea01/f1sts03b -l 4096 -c 256
pdstsinit -s f001 -f /sysarea02/f1sts02a -l 4096 -c 256
pdstsinit -s f001 -f /sysarea02/f1sts01b -l 4096 -c 256
pdstsinit -s f001 -f /sysarea03/f1sts03a -l 4096 -c 256
pdstsinit -s f001 -f /sysarea03/f1sts02b -l 4096 -c 256

Example of command entry (BES1)

pdstsinit -s b001 -f /sysarea01/b1sts01a -l 4096 -c 256
pdstsinit -s b001 -f /sysarea01/b1sts03b -l 4096 -c 256
pdstsinit -s b001 -f /sysarea02/b1sts02a -l 4096 -c 256
pdstsinit -s b001 -f /sysarea02/b1sts01b -l 4096 -c 256
pdstsinit -s b001 -f /sysarea03/b1sts03a -l 4096 -c 256
pdstsinit -s b001 -f /sysarea03/b1sts02b -l 4096 -c 256

Example of command entry (BES2)

pdstsinit -s b002 -f /sysarea01/b2sts01a -l 4096 -c 256
pdstsinit -s b002 -f /sysarea01/b2sts03b -l 4096 -c 256
pdstsinit -s b002 -f /sysarea02/b2sts02a -l 4096 -c 256
pdstsinit -s b002 -f /sysarea02/b2sts01b -l 4096 -c 256
pdstsinit -s b002 -f /sysarea03/b2sts03a -l 4096 -c 256
pdstsinit -s b002 -f /sysarea03/b2sts02b -l 4096 -c 256

(d) Creating the unit status files

Use the pdstsinit command to create the unit status files.

4. Setting Up an Environment Using Commands

105

Example of command entry

pdstsinit -u unt1 -f /sysarea01/u1sts01a -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea01/u1sts03b -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea02/u1sts02a -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea02/u1sts01b -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea03/u1sts03a -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea03/u1sts02b -l 4096 -c 256

4. Setting Up an Environment Using Commands

106

4.5 Creating system RDAREAs
Executor: HiRDB administrator

When starting HiRDB for the first time, the HiRDB administrator must create system RDAREAs using the database
initialization utility (pdinit).

Execute the database initialization utility (pdinit) when you are starting HiRDB for the first time (when executing
the first pdstart command after installation) in response to a command input request. You cannot execute the
database initialization utility (pdinit) at any other time.

This section describes the contents of a control statement file, which is specified as an argument of the database
initialization utility (pdinit) and provides an example of database initialization utility (pdinit) execution. To
create system RDAREAs, use the create rdarea statement.

The system RDAREAs include:

• Master directory RDAREA

• Data directory RDAREA

• Data dictionary RDAREA

4.5.1 Basics
To create system RDAREAs, use the following general procedures:

1. Create a system RDAREA in the HiRDB file system area for RDAREAs that you created in 4.3 Creating HiRDB
file system areas.

2. For a HiRDB parallel server configuration, create a system RDAREA in a HiRDB file system area for the server
machine on which the dictionary server is defined.

3. For details about how to design the system RDAREA, see 8.4 Placing RDAREAs for a HiRDB single server
configuration, and 9.4 Placing RDAREAs for a HiRDB parallel server configuration.

4. For a HiRDB parallel server configuration, execute the database initialization utility (pdinit) on the server
machine where the system manager is defined.

5. This section only describes the creation of system RDAREAs with the create rdarea statement of the
database initialization utility (pdinit). This is because the system RDAREAs are required for HiRDB operation.
You can also use the database initialization utility's (pdinit) create rdarea statement to define the
following RDAREAs:

• User RDAREAs

• User LOB RDAREAs

• Data dictionary LOB RDAREAs

• RDAREAs for lists

4.5.2 Example 1 (HiRDB single server configuration)
This example creates system RDAREAs in the following HiRDB file system area for RDAREAs:

• /rdarea01

4. Setting Up an Environment Using Commands

107

(1) Creating the control statement file
Create the control statement file that is to be specified in the database initialization utility's (pdinit) argument. You
can create the control statement file at any location. This example creates a file under the following filename:

• /usr/hirdb/pdinit01

Contents of the control statement file

create rdarea RDMAST for masterdirectory 1
 file name "/rdarea01/rdmast01"
 initial 10 segments;
create rdarea RDDIR for datadirectory 2
 file name "/rdarea01/rddir01"
 initial 5 segments;
create rdarea RDDIC for datadictionary 3
 extension use 50 segments
 file name "/rdarea01/rddic01"
 initial 20 segments;

Explanation:

1. Definition of the master directory RDAREA
This example creates a HiRDB file named rdmast01 in the HiRDB file system area. This HiRDB file has 10
segments.

2. Definition of data directory RDAREA
This example creates a HiRDB file named rddir01 in the HiRDB file system area. This HiRDB file has five
segments.

3. Definition of the data dictionary RDAREA
This example creates a HiRDB file named rddic01 in the HiRDB file system area. This HiRDB file has 20
segments.
The example uses the automatic RDAREA extension feature. The extension size is 50 segments.

(2) Executing the database initialization utility (pdinit)

Example of command entry

pdinit -d /usr/hirdb/pdinit01

Explanation:
-d: Specifies the name of the control statement file that was previously created in (1).

4.5.3 Example 2 (HiRDB parallel server configuration)
This example creates system RDAREAs in the following HiRDB file system area for RDAREAs on the server
machine where the dictionary server is defined:

• /rdarea01

(1) Creating the control statement file
Create the control statement file that is to be specified in the database initialization utility's (pdinit) argument. You
can create the control statement file at any location. This example creates a file under the following filename:

4. Setting Up an Environment Using Commands

108

• /usr/hirdb/pdinit01

Contents of the control statement file

create rdarea RDMAST for masterdirectory 1
 server name dic
 file name "/rdarea01/rdmast01"
 initial 10 segments;
create rdarea RDDIR for datadirectory 2
 server name dic
 file name "/rdarea01/rddir01"
 initial 5 segments;
create rdarea RDDIC for datadictionary 3
 server name dic
 extension use 50 segments
 file name "/rdarea01/rddic01"
 initial 20 segments;

Explanation:

1. Definition of the master directory RDAREA
This example specifies the name of the dictionary server (dic) that manages the master directory RDAREA.
It creates a HiRDB file named rdmast01 in the HiRDB file system area. This HiRDB file has 10 segments.

2. Definition of data directory RDAREA
This example specifies the name of the dictionary server (dic) that manages the data directory RDAREA. It
creates a HiRDB file named rddir01 in the HiRDB file system area. This HiRDB file has five segments.

3. Definition of the data dictionary RDAREA
This example specifies the name of the dictionary server (dic) that manages the data dictionary RDAREAs.
It creates a HiRDB file named rddic01 in the HiRDB file system area. This HiRDB file has 20 segments.
This example uses the automatic RDAREA extension feature. The extension size is 50 segments.

(2) Executing the database initialization utility (pdinit)

Example of command entry

pdinit -d /usr/hirdb/pdinit01

Explanation:
-d: Specifies the name of the control statement file that was previously created in (1).

4. Setting Up an Environment Using Commands

109

4.6 Starting HiRDB for the first time
Executor: HiRDB administrator

You can execute the database initialization utility (pdinit), which was described in 4.5 Creating system RDAREAs,
only after and during the execution of the HiRDB initial startup command (pdstart) command.

(1) HiRDB initial startup method
To start HiRDB for the first time (initial startup) after creating HiRDB file system areas, execute the pdstart
command. When you execute the pdstart command, a message is displayed that requests the execution of the
database initialization utility (pdinit).

• To start a HiRDB single server configuration, execute the pdstart command from the server machine where the
single server is defined.

• To start a HiRDB parallel server configuration, execute the pdstart command from the server machine where
the system manager is defined.

(2) Prerequisites for RDAREA creation
To create any of the following RDAREAs, HiRDB must be active. Be sure to start HiRDB beforehand.

• User RDAREAs

• User LOB RDAREAs

• Data dictionary LOB RDAREAs

• RDAREAs for lists

4. Setting Up an Environment Using Commands

110

4.7 Creating user RDAREAs
Executor: HiRDB administrator

The HiRDB administrator creates user RDAREAs for storing tables and indexes. To create a user RDAREA, use the
database structure modification utility's (pdmod) create rdarea statement.

4.7.1 Basics
To create user RDAREAs, use the following general procedures:

1. Create a user RDAREA in the HiRDB file system area for RDAREAs that you created in 4.3 Creating HiRDB file
system areas.

2. For a HiRDB parallel server configuration, create a user RDAREA in a HiRDB file system area for the server
machine on which the back-end server is defined.

3. For details about how to design the user RDAREA, see 8.4 Placing RDAREAs for a HiRDB single server
configuration, and 9.4 Placing RDAREAs for a HiRDB parallel server configuration.

4. For a HiRDB parallel server configuration, execute the database structure modification utility (pdmod) on the
server machine where the system manager is defined.

5. Before creating a user RDAREA, use the pdls command to make sure that HiRDB is running. For a HiRDB
parallel server configuration, enter the pdls command from the server machine where the system manager is
defined.

6. If HiRDB is not running, use the pdstart command to start it. To start a HiRDB parallel server configuration,
enter the pdstart command from the server machine where the system manager is defined.

4.7.2 Example 1 (HiRDB single server configuration)
This example creates user RDAREAs in the following HiRDB file system area for RDAREAs:

• /rdarea02

(1) Creating the control statement file
Create the control statement file that is to be specified in the database structure modification utility's (pdmod)
argument. You can create the control statement file at any location. This example creates a file under the following
filename:

• /usr/hirdb/pdmod01

Contents of the control statement file

create rdarea USER01 for user used by PUBLIC 1
 extension use 50 segments
 file name "/rdarea02/user01"
 initial 500 segments;
create rdarea USER02 for user used by PUBLIC 2
 extension use 50 segments
 file name "/rdarea02/user02"
 initial 500 segments;

4. Setting Up an Environment Using Commands

111

Explanation:

1. Definition of the user RDAREA (USER01)
USER01 is a public RDAREA (PUBLIC). This example creates a HiRDB file named user01 in the HiRDB
file system area. This HiRDB file has 500 segments. The example uses the RDAREA automatic extension
feature. The extension size is 50 segments.

2. Definition of the user RDAREA (USER02)
USER02 is a public RDAREA (PUBLIC). This example creates a HiRDB file named user02 in the HiRDB
file system area. This HiRDB file has 500 segments. The example uses the RDAREA automatic extension
feature. The extension size is 50 segments.

(2) Executing the database structure modification utility (pdmod)

Example of command entry

pdmod -a /usr/hirdb/pdmod01

Explanation:
-a: Specifies the name of the control statement file that was previously created in (1).

4.7.3 Example 2 (HiRDB parallel server configuration)
This example creates user RDAREAs in the following HiRDB file system area for RDAREAs on the server machine
where the back-end server is defined:

• /rdarea02

(1) Creating the control statement file
Create the control statement file that is to be specified in the database structure modification utility's (pdmod)
argument. You can create the control statement file at any location. This example creates the file under the following
filename:

• /usr/hirdb/pdmod01

Contents of the control statement file

create rdarea USER01 for user used by PUBLIC 1
 server name b001
 extension use 50 segments
 file name "/rdarea02/user01"
 initial 500 segments;
create rdarea USER02 for user used by PUBLIC 2
 server name b001
 extension use 50 segments
 file name "/rdarea02/user02"
 initial 500 segments;

Explanation:

1. Definition of the user RDAREA (USER01)
USER01 is a public RDAREA (PUBLIC). This example specifies the name of the back-end server (b001)
that manages USER01. It creates a HiRDB file named user01 in the HiRDB file system area. This HiRDB

4. Setting Up an Environment Using Commands

112

file has 500 segments. The example uses the RDAREA automatic extension feature. The extension size is 50
segments.

2. Definition of the user RDAREA (USER02)
USER02 is a public RDAREA (PUBLIC). This example specifies the name of the back-end server (b001)
that manages USER02. It creates a HiRDB file named user02 in the HiRDB file system area. This HiRDB
file has 500 segments. The example uses the RDAREA automatic extension feature. The extension size is 50
segments.

(2) Executing the database structure modification utility (pdmod)

Example of command entry

pdmod -a /usr/hirdb/pdmod01

Explanation:
-a: Specifies the name of the control statement file that was previously created in (1).

4. Setting Up an Environment Using Commands

113

4.8 Creating user LOB RDAREAs
Executor: HiRDB administrator

To create data with the LOB attribute, you need a user LOB RDAREA to store the data. To create a user LOB
RDAREA, use the database structure modification utility's (pdmod) create rdarea statement.

4.8.1 Basics
To create user LOB RDAREAs, use the following general procedures:

1. Create a user LOB RDAREA in the HiRDB file system area for RDAREAs, which you created in 4.3 Creating
HiRDB file system areas.

2. For a HiRDB parallel server configuration, create a user LOB RDAREA in a HiRDB file system area for the
server machine on which the back-end server is defined.

3. For details about how to design the user LOB RDAREA, see 8.4 Placing RDAREAs for a HiRDB single server
configuration, and 9.4 Placing RDAREAs for a HiRDB parallel server configuration.

4. For a HiRDB parallel server configuration, execute the database structure modification utility (pdmod) on the
server machine where the system manager is defined.

5. Before creating a user LOB RDAREA, use the pdls command to make sure that HiRDB is running. For a
HiRDB parallel server configuration, enter the pdls command from the server machine where the system
manager is defined.

6. If HiRDB is not running, use the pdstart command to start it. To start a HiRDB parallel server configuration,
enter the pdstart command from the server machine where the system manager is defined.

4.8.2 Example 1 (HiRDB single server configuration)
This example creates a user RDAREA to store a LOB column structure base table in the following HiRDB file system
area for RDAREA:

• /rdarea03

Additionally, the example creates a user LOB RDAREA to store data with the LOB attribute in the following HiRDB
file system area for LOB RDAREA:

• /rdarea04

4. Setting Up an Environment Using Commands

114

(1) Creating the control statement file
Create the control statement file that is to be specified in the database structure modification utility's (pdmod)
argument. You can create the control statement file at any location. This example creates a file under the following
filename:

• /usr/hirdb/pdmod02

Contents of the control statement file

create rdarea USER03 for user used by PUBLIC 1
 extension use 50 segments
 file name "/rdarea03/user03"
 initial 500 segments;
create rdarea ULOB03 for LOB used by PUBLIC 2
 extension use 50 segments
 file name "/rdarea04/ulob03"
 initial 20000 segments;

Explanation:

1. Definition of the user RDAREA (USER03)
USER03 is a public RDAREA (PUBLIC). This example creates a HiRDB file named user03 in the HiRDB
file system area. This HiRDB file has 500 segments. The example uses the RDAREA automatic extension
feature. The extension size is 50 segments.

2. Definition of the user LOB RDAREA (ULOB03)
ULOB03 is a public RDAREA (PUBLIC). This example creates a HiRDB file named ulob03 in the HiRDB
file system area. This HiRDB file has 20,000 segments.
The example uses the RDAREA automatic extension feature. The extension size is 50 segments.

(2) Executing the database structure modification utility (pdmod)

Example of command entry

pdmod -a /usr/hirdb/pdmod02

Explanation:
-a: Specifies the name of the control statement file that was previously created in (1).

4.8.3 Example 2 (HiRDB parallel server configuration)
This example creates a user RDAREA to store a LOB column structure base table in the following HiRDB file system
area for RDAREA:

• /rdarea03

Additionally, the example creates a user LOB RDAREA to store data with the LOB attribute in the following HiRDB
file system area for RDAREA:

• /rdarea04

4. Setting Up an Environment Using Commands

115

(1) Creating the control statement file
Create the control statement file that is to be specified in the database structure modification utility's (pdmod)
argument. You can create the control statement file at any location. This example creates the file under the following
filename:

• /usr/hirdb/pdmod02

Contents of the control statement file

create rdarea USER03 for user used by PUBLIC 1
 server name b001
 extension use 50 segments
 file name "/rdarea03/user03"
 initial 500 segments;
create rdarea ULOB03 for LOB used by PUBLIC 2
 server name b001
 extension use 50 segments
 file name "/rdarea04/ulob03"
 initial 20000 segments;

Explanation:

1. Definition of the user RDAREA (USER03)
USER03 is a public RDAREA (PUBLIC). This example specifies the name of the back-end server (b001)
that manages USER03. It creates a HiRDB file named user03 in the HiRDB file system area. This HiRDB
file has 500 segments. The example uses the RDAREA automatic extension feature. The extension size is 50
segments.

2. Definition of the user LOB RDAREA (ULOB03)
ULOB03 is a public RDAREA (PUBLIC). This example specifies the name of the back-end server (b001)
that manages ULOB03. It creates a HiRDB file named ulob03 in the HiRDB file system area. This HiRDB
file has 20,000 segments. The example uses the RDAREA automatic extension feature. The extension size is
50 segments.

(2) Executing the database structure modification utility (pdmod)

Example of command entry

pdmod -a /usr/hirdb/pdmod02

Explanation:
-a: Specifies the name of the control statement file that was previously created in (1).

4. Setting Up an Environment Using Commands

116

4.9 Creating data dictionary LOB RDAREAs
Executor: HiRDB administrator

To use stored procedures or stored functions, you need a data dictionary LOB RDAREA. You can create a data
dictionary LOB RDAREA using the database structure modification utility's (pdmod) create rdarea statement.

You need to provide separate data dictionary LOB RDAREAs according to these purposes:

• Data dictionary LOB RDAREA for storing stored procedures' or stored functions' definition source

• Data dictionary LOB RDAREA for storing stored procedures' or stored functions' SQL objects

4.9.1 Basics
To create data dictionary LOB RDAREAs, use the following general procedures:

1. Create a data dictionary LOB RDAREA in the HiRDB file system area for RDAREAs, which you created in 4.3
Creating HiRDB file system areas.

2. For a HiRDB parallel server configuration, create a data dictionary LOB RDAREA in a HiRDB file system area
for the server machine on which the dictionary server is defined.

3. For details about how to design the data dictionary LOB RDAREA, see 8.4 Placing RDAREAs for a HiRDB
single server configuration, and 9.4 Placing RDAREAs for a HiRDB parallel server configuration.

4. For a HiRDB parallel server configuration, execute the database structure modification utility (pdmod) on the
server machine where the system manager is defined.

5. Before creating a data dictionary LOB RDAREA, use the pdls command to make sure that HiRDB is running.
For a HiRDB parallel server configuration, enter the pdls command from the server machine where the system
manager is defined.

6. If HiRDB is not running, use the pdstart command to start it. To start a HiRDB parallel server configuration,
enter the pdstart command from the server machine where the system manager is defined.

4.9.2 Example 1 (HiRDB single server configuration)
This example creates data dictionary LOB RDAREAs in the following HiRDB file system area for RDAREA:

• /rdarea05

(1) Creating the control statement file
Create the control statement file that is to be specified in the database structure modification utility's (pdmod)
argument. You can create the control statement file at any location. This example creates a file under the following
filename:

• /usr/hirdb/pdmod03

Contents of the control statement file

create rdarea DICLOB01 for LOB used by HiRDB(SQL_ROUTINES) 1
 extension use 1000 segments
 file name "/rdarea05/diclob01"

4. Setting Up an Environment Using Commands

117

 initial 10000 segments;
create rdarea DICLOB02 for LOB used by HiRDB(SQL_ROUTINES) 2
 extension use 1000 segments
 file name "/rdarea05/diclob02"
 initial 10000 segments;

Explanation:

1. Definition of the data dictionary RDAREA (DICLOB01)
DICLOB01 is a data dictionary LOB RDAREA for storing a definition source. The system uses the first data
dictionary LOB RDAREA defined for storing a definition source. This example creates a HiRDB file named
diclob01 in the HiRDB file system area. This HiRDB file has 10,000 segments.
The example uses the RDAREA automatic extension feature. The extension size is 1,000 segments.

2. Definition of the data dictionary RDAREA (DICLOB02)
DICLOB02 is a data dictionary LOB RDAREA for storing SQL objects. The system uses the second data
dictionary LOB RDAREA defined for storing SQL definitions. This example creates a HiRDB file named
diclob02 in the HiRDB file system area. This HiRDB file has 10,000 segments.
The example uses the RDAREA automatic extension feature. The extension size is 1,000 segments.

(2) Executing the database structure modification utility (pdmod)

Example of command entry

pdmod -a /usr/hirdb/pdmod03

Explanation:
-a: Specifies the name of the control statement file that was previously created in (1).

4.9.3 Example 2 (HiRDB parallel server configuration)
This example creates data dictionary LOB RDAREAs in the following HiRDB file system area for RDAREA:

• /rdarea05

(1) Creating the control statement file
Create the control statement file that is to be specified in the database structure modification utility's (pdmod)
argument. You can create the control statement file at any location. This example creates the file under the following
filename:

• /usr/hirdb/pdmod03

Contents of the control statement file

create rdarea DICLOB01 for LOB used by HiRDB(SQL_ROUTINES) 1
 server name dic
 extension use 1000 segments
 file name "/rdarea05/diclob01"
 initial 10000 segments;
create rdarea DICLOB02 for LOB used by HiRDB(SQL_ROUTINES) 2
 server name dic
 extension use 1000 segments
 file name "/rdarea05/diclob02"
 initial 10000 segments;

4. Setting Up an Environment Using Commands

118

Explanation:

1. Definition of the data dictionary RDAREA (DICLOB01)
DICLOB01 is a data dictionary LOB RDAREA for storing a definition source. The system uses the first data
dictionary LOB RDAREA defined for storing a definition source. This example specifies the name of the
dictionary server (dic) that manages this data dictionary LOB RDAREA. It creates a HiRDB file named
diclob01 in the HiRDB file system area. This HiRDB file has 10,000 segments.
The example uses the RDAREA automatic extension feature. The extension size is 1,000 segments.

2. Definition of the data dictionary RDAREA (DICLOB02)
DICLOB02 is a data dictionary LOB RDAREA for storing SQL objects. The system uses the second data
dictionary LOB RDAREA defined for storing SQL definitions. This example specifies the name of the
dictionary server (dic) that manages this data dictionary LOB RDAREA. It creates a HiRDB file named
diclob02 in the HiRDB file system area. This HiRDB file has 10,000 segments.
The example uses the RDAREA automatic extension feature. The extension size is 1,000 segments.

(2) Executing the database structure modification utility (pdmod)

Example of command entry

pdmod -a /usr/hirdb/pdmod03

Explanation:
-a: Specifies the name of the control statement file that was previously created in (1).

4. Setting Up an Environment Using Commands

119

4.10 Creating list RDAREAs
Executor: HiRDB administrator

To use a narrowed search, you need a list RDAREA. You can create list RDAREAs using the database structure
modification utility's (pdmod) create rdarea statement.

4.10.1 Basics
To create RDAREAs for lists, use the following general procedures:

1. Create a list RDAREA in the HiRDB file system area for list RDAREAs, which you created in 4.3 Creating
HiRDB file system areas.

2. For a HiRDB parallel server configuration, create a list RDAREA in a HiRDB file system area for the server
machine on which the back-end server (that contains the base table) is defined.

3. For details about how to design RDAREAs for lists, see 8.4 Placing RDAREAs for a HiRDB single server
configuration, and 9.4 Placing RDAREAs for a HiRDB parallel server configuration.

4. For a HiRDB parallel server configuration, execute the database structure modification utility (pdmod) on the
server machine where the system manager is defined.

5. Before creating a list RDAREA, use the pdls command to make sure that HiRDB is running. For a HiRDB
parallel server configuration, enter the pdls command from the server machine where the system manager is
defined.

6. If HiRDB is not running, use the pdstart command to start it. To start a HiRDB parallel server configuration,
enter the pdstart command from the server machine where the system manager is defined.

4.10.2 Example 1 (HiRDB single server configuration)
This example creates an list RDAREA in the following HiRDB file system area for list RDAREAs:

• /listarea01

(1) Creating the control statement file
Create the control statement file that is to be specified in the database structure modification utility's (pdmod)
argument. You can create the control statement file at any location. This example creates a file under the following
filename:

• /usr/hirdb/pdmod04

Contents of the control statement file

create rdarea LIST01 for list 1
 page 4096 characters storage control segment 2 pages
 file name "/listarea01/list01"
 initial 1000 segments;

Explanation:

1. Definition of the list RDAREAs (LIST01)

4. Setting Up an Environment Using Commands

120

This example specifies the page length and segment size of the RDAREA. It creates a HiRDB file named
list01 in the HiRDB file system area. This HiRDB file has 1,000 segments.

(2) Executing the database structure modification utility (pdmod)

Example of command entry

pdmod -a /usr/hirdb/pdmod04

Explanation:
-a: Specifies the name of the control statement file that was previously created in (1).

4.10.3 Example 2 (HiRDB parallel server configuration)
This example creates a list RDAREA in the following HiRDB file system area for list RDAREAs:

• /listarea01

(1) Creating the control statement file
Create the control statement file that is to be specified in the database structure modification utility's (pdmod)
argument. You can create the control statement file at any location. This example creates the file under the following
filename:

• /usr/hirdb/pdmod04

Contents of the control statement file

create rdarea LIST01 for list 1
 server name b001
 page 4096 characters storage control segment 2 pages
 file name "/listarea01/list01"
 initial 1000 segments;

Explanation:

1. Definition of the list RDAREA (LIST01)
This example specifies the name of the back-end server that manages LIST01 as well as the page length and
segment size of the RDAREA. It creates a HiRDB file named list01 in the HiRDB file system area. This
HiRDB file has 1,000 segments.

(2) Executing the database structure modification utility (pdmod)

Example of command entry

pdmod -a /usr/hirdb/pdmod04

Explanation:
-a: Specifies the name of the control statement file that was previously created in (1).

4. Setting Up an Environment Using Commands

121

5 Setting Up the Plug-in Environment
A plug-in environment is set up after the HiRDB environment setup. This chapter
describes the procedures for setting up a plug-in environment, as well as for
upgrading and deleting (uninstalling) plug-ins.

123

5.1 Overview of plug-in environment setup
This section describes the procedure for setting up HiRDB plug-ins.

5.1.1 Environment setup procedure
Executor: HiRDB administrator

This section describes the plug-in environment setup procedure using commands. This procedure assumes that the
HiRDB environment setup has been completed (HiRDB is already running).

To set up the plug-in environment:

1. Estimate the resources needed to install plug-ins.

2. Terminate the active HiRDB.

3. Install plug-ins.

4. Set up plug-ins.

5. Start HiRDB.

6. Add data dictionary LOB RDAREAs, user RDAREAs, and user LOB RDAREAs.#1

7. Register plug-ins.

8. Initialize the registry facility.#2

9. Terminate HiRDB.

10. Add the pdplugin operand.

11. Start HiRDB.

12. Register registry information.

#1: A data dictionary LOB RDAREA is not necessary if stored functions, stored procedures, or plug-ins are already
being used. A user RDAREA (user LOB RDAREA) is required if a table is created for a newly added plug-in.

#2: May not be needed, depending on the plug-in.

(1) Estimating resources
Before a plug-in can be installed into the HiRDB system, the sizes of the following resources must be estimated:

• Storage requirement for execution of the plug-in

• Disk space required in order to install the plug-in

For details about how to estimate the resources required for each plug-in, see the applicable plug-in documentation.

(2) Terminating HiRDB
Before setting up plug-ins, use the pdstop command to terminate the active HiRDB.

(3) Installing plug-ins
Install your plug-ins. For details about the installation procedure, see the applicable plug-in documentation.

(4) Setting up the plug-ins
The HiRDB administrator executes the setup procedure and specification.

The HiRDB administrator executes the pdplgset command to set up plugins in HiRDB. The HiRDB administrator
must set up plugins in each server machine on which HiRDB is installed.

To set up plug-ins, use the following procedure:

5. Setting Up the Plug-in Environment

124

1. Use the pdls command to check that HiRDB is not operating. If it is operating, use the pdstop command to
terminate HiRDB normally.

2. Execute the pdplgset command.

When the pdplgset command executes, the plug-in library is copied from the directory where plugins are installed
to $PDDIR/plugin/.

The following figure illustrates the plug-in setup procedure.

Figure 5‒1: How to set up plug-ins

Explanation:
The pdplgset command automatically creates the plugin directory under the HiRDB directory ($PDDIR) and
the directory with the plug-in name.

(5) Starting HiRDB
The HiRDB administrator uses the pdstart command to start HiRDB.

(6) Adding user RDAREAs
Before plug-ins are registered into HiRDB, the RDAREA administrator uses the create rdarea statement of the
database structure modification utility (pdmod) to add RDAREAs. The following RDAREAs need to be added:

• User RDAREA#1

• User LOB RDAREA#1

• Data dictionary LOB RDAREA#2 (there is no need to add this RDAREA if stored procedures, stored functions, or
plug-ins are already being used)

For details about how to add RDAREAs, see 4.7 Creating user RDAREAs, 4.8 Creating user LOB RDAREAs, or 4.9
Creating data dictionary LOB RDAREAs.

If a database environment has already been constructed, there is no need to add RDAREAs after installing plug-ins.

#1: You need to add this RDAREA if you want to create a separate table for plug-ins and store the table in a new
RDAREA.

#2: You need to add this RDAREA to make the stored-procedure facility available to HiRDB before the registry
facility initialization utility (pdreginit) is executed.

5. Setting Up the Plug-in Environment

125

(7) Registering plug-ins
Use the pdplgrgst command to register your plug-ins in HiRDB. You can enter the pdplgrgst command from
any server machine.

The following figure illustrates the plug-in registration procedure.

Figure 5‒2: Plug-in registration procedure

(a) pdplgrgst command input format

Following shows the input format of the pdplgrgst command:

pdplgrgst plug-in-definition-filename PIC-filename

Example of HiRDB Text Search Plug-in

• Data type plug-in
pdplgrgst _phsgml.adt _phsgml.pic
(Current directory: /TSPlugin/_phsgml/etc)

• Index type plug-in
pdplgrgst _phngram.idx _phngram.pic
(Current directory: /TSPlugin/_phngram/etc)

Notes

• To register an index-type plug-in, you need to register the corresponding data type plug-in beforehand.

• Register both data type and index type plug-ins in the same schema.

(b) Owner of a plug-in

The owner of a plug-in (owner of the abstract data type, index type, and function provided by a plug-in) is treated as
MASTER. This allows the authorization identifier to be omitted when specifying the plug-in-provided function call
processing using SQL statements.

Specifying a user other than MASTER as the plug-in owner

You can specify the user executing the pdplgrget command as the plug-in owner instead of MASTER. To do this,
specify the -u option in the pdplgrget command, in which case the pdplgrget command executor (the
authorization identifier specified in the PDUSER operand in the client environment definitions) becomes the owner of
the plug-in.

5. Setting Up the Plug-in Environment

126

Notes

1. The pdplgrgst command executor's schema must have already been defined.

2. If a plug-in provides both abstract data type and index type, be sure to assign the same owner.

3. Only the plug-in owner can delete or upgrade his/her plug-in. To delete or upgrade a plug-in, specify the -u
option in the pdplgrgst command.

4. If you delete a plug-in owner's schema, the plug-in itself is also deleted. In this case, do the following:
 Delete the pdplugin operand from the system common definitions.
 Execute the pdplgset -d command at all server machines to set up plugins.

5. When more than one plug-in includes a function that has the same name and number of parameters, you must
first register one of the plug-ins, define the function that calls the function in that plug-in, and then register the
other plug-ins. However, an error is returned when the plug-in is registered if the function you define declares
an abstract data type for a parameter or a return value, and that function is used in a view definition. If this
occurs, you must delete the view table that uses that function, and then register the plug-in again.

(c) Migrating from HiRDB Version 5.0 (with HiRDB Object Option) 01-00

The plug-in owner remains the same.
With HiRDB Version 5.0 (with HiRDB Object Option) 01-00, the plug-in's owner is the user who executes the
pdplgrgst command. After upgrading HiRDB to Version 6 06-00 or later, the plugin's owner remains the same
(not MASTER).

How to define the owner as MASTER
To define the owner as MASTER, you need to delete the plugin once and then re-register it.
To delete a plug-in, you must first delete the abstract data type, index type, and the tables, view tables and indexes
used by the function that are provided by the plug-in. Then, execute the pdplgrgst command.
If the authorization identifier is specified in the section where the function provided by the plug-in is called with
the SQL statement, you need to delete the authorization identifier or change it to MASTER.

(8) Initializing the registry facility
Some plug-ins require the registry facility. In such cases, use the registry facility initialization utility's (pdreginit)
create rdarea statement to create the following RDAREAs. This operation is not necessary when the registry
facility is already being used with plug-ins.

• Registry RDAREA

• Registry LOB RDAREA

Execute the registry facility initialization utility (pdreginit) only once before all plug-ins are registered.

The registry RDAREA and registry LOB RDAREA store the registry information. Which of the two RDAREAs is
used is determined automatically on the basis of the length of the data to be registered.

The following figure illustrates the procedure for creating the registry RDAREA and the registry LOB RDAREA.

5. Setting Up the Plug-in Environment

127

Figure 5‒3: Procedure for creating a registry RDAREA and registry LOB RDAREA

(9) Terminating HiRDB
To enable a plug-in, HiRDB must be terminated normally by entering the pdstop command. No tables or indexes
that use the registered plug-in can be defined until HiRDB has been restarted.

After HiRDB has been terminated, a backup copy should be made of all the updated RDAREAs.

(10) Adding the pdplugin operand
After HiRDB has been terminated normally, add the pdplugin operand in the system common definitions. Specify
the name of a plug-in to be used in the pdplugin operand.

For a HiRDB parallel server configuration, you need to add the pdplugin operand in the system common
definitions on all server machines; otherwise, you will not be able to start HiRDB.

(11) Starting HiRDB
Use the pdstart command to start HiRDB.

(12) Registering registry information
Once the registry facility has been initialized, registry information required by the plug-in must be registered. The
plug-in and the registry facility can then be used. For details about how to register registry information, see the
applicable plug-in documentation.

5.1.2 Notes on using plug-ins

(1) HiRDB setup/startup conditions and availability of plug-ins
The following table shows the HiRDB (unit) setup/startup conditions and availability of plug-ins.

5. Setting Up the Plug-in Environment

128

Table 5‒1: HiRDB (unit) setup/startup conditions and availability of plug-ins

Plug-in utilization
declaration (pdplugin

operand)

Registration of plug-
in (pdplgrgst) Plug-in initialization error Whether a unit can

be started
Availability of

plug-in

Not specified Registered None S --

Occurred S --

Not registered None S --

Occurred S --

Specified Registered None S S

Occurred S --

Not registered None S --

Occurred S --

S: Unit can be started, and plug-in can be used.

--: Unit cannot be started, nor can plug-in be used.

(2) Availability of plug-ins in the event of plug-in initialization error
Plug-ins are initialized automatically during HiRDB startup. If multiple pdplugin operands are specified in the
system common definition and at least one of them results in a plug-in initialization error, none of the plug-ins in the
unit can be used.

(3) Availability of plug-ins depending on the unit
The availability of plug-ins depends on conditions at the unit in the following cases:

• The plug-in utilization declaration (pdplugin operand) in the system common definition is not the same from
one unit to another.

• An error occurred during plug-in initialization processing and the plug-in is no longer available on that unit.

An SQL statement that calls only the available plug-ins will execute successfully; however, if it attempts to call even
one unavailable plug-in, execution of the SQL statement will fail.

5. Setting Up the Plug-in Environment

129

5.2 Upgrading plug-ins
This section describes the procedure for upgrading plug-ins installed in HiRDB (data type and index type plug-ins).
Upgrading a plug-in means changing the plug-in without deleting the following:

• Tables and view tables that use the data type provided by the plug-in.

• Indexes using the index type provided by the plug-in.

• Functions provided by the plug-in.

For notes about upgrading plug-ins, see Notes in pdplgrgst (Register and delete plug-ins) in the manual HiRDB
Version 9 Command Reference.

This section describes the upgrading procedure.

(1) Making a backup copy
To protect against possible errors, use the database copy utility (pdcopy) to make a backup copy of the following
RDAREAs. For this purpose, be sure to specify the-M x option in the database copy utility (pdcopy).

• Master directory RDAREA

• Data dictionary RDAREAs

• Data directory RDAREA

• Data dictionary LOB RDAREAs

For details about making backups, see the HiRDB Version 9 System Operation Guide.

(2) Terminating HiRDB
Enter the pdstop command to terminate HiRDB normally.

(3) Saving all necessary files
Save all necessary files at the following location:

• $PDDIR/plugin/plugin-name directory

For details about the files to be saved, see the applicable plug-in documentation. Save the applicable files on all server
machines where HiRDB is set up.

(4) Cancelling setup of the old version of the plug-in
Use the pdplgset -d command to cancel setup of the plug-in. This command deletes everything at the following
location:

• $PDDIR/plugin/plugin-name directory

This command does not delete any file under the Conf directory.

Cancel setup on all server machines where HiRDB is set up. For details about how to cancel plug-in setup, see 5.1
Overview of plug-in environment setup.

(5) Installing the new version of the plug-in
Install the new version of the plug-in at each HiRDB server machine. For details about the installation procedure, see
the applicable plug-in documentation.

5. Setting Up the Plug-in Environment

130

(6) Setting up the new version of the plug-in
Use the pdplgset command to set up the new plug-in. The new plug-in must be set up on all server machines where
HiRDB is set up. For details about how to set up plugins, see 5.1 Overview of plug-in environment setup.

(7) Making appropriate changes to the system common definition
Delete the pdplugin operand for the old version of the plug-in from the system common definition. Delete this
operand at all the server machines that contain the applicable system common definition.

(8) Restoring files that were saved
Restore the files that were saved in step (3) at all server machines where HiRDB is set up.

(9) Restarting HiRDB
Enter the pdstart command to start HiRDB.

(10) Registering the new version of the plug-in
Execute the pdplgrgst command, specifying the -a option to re-register the plug-in.

(11) Terminating HiRDB
Enter the pdstop command to terminate HiRDB normally.

(12) Making appropriate changes to the system common definition
When HiRDB has terminated normally, add the pdplugin operand to the system common definition. In the
pdplugin operand, specify the name of the upgraded plug-in.

For a HiRDB parallel server configuration, add this operand to the system common definition at all server machines;
otherwise, you will not be able to start HiRDB.

(13) Starting HiRDB
Enter the pdstart command to start HiRDB. The tables and indexes that were defined before the plug-in was
upgraded become available again. Any new facilities provided by the new version of plug-in are also available.

5. Setting Up the Plug-in Environment

131

5.3 Deleting plug-ins
This section describes the procedure for deleting plug-ins that have been registered into HiRDB. Deleting a plug-in
means the following:

• Deleting the plug-in definition information registered in the dictionary.

• Deleting the function, abstract data type, and index type provided by the plug-in.

The plug-in-provided file that contains the plug-in file set is not deleted.

(1) Deleting the database resources that use the facility provided by the plug-in
Before deleting a plug-in, the HiRDB administrator must delete the database resources listed below. The table below
lists the SQL statements issued to delete the following resources:

• Tables, view tables, functions, procedures, and abstract data types (when a user-defined abstract data type
specifies the abstract data type provided by the plug-in as one of its attributes) that use the abstract data type
provided by the plug-in that is to be deleted

• Index using the index type that is provided by the plug-in that is to be deleted

• Function and procedure using the function provided by the plug-in that is to be deleted

Table 5‒2: SQL statements for deleting database resources

Database resources to be deleted SQL statement to be used

Table DROP TABLE

Index DROP INDEX

View table DROP VIEW

Function DROP FUNCTION

Procedure DROP PROCEDURE

Abstract data type DROP DATA TYPE#

#: The data type provided by a plug-in must not be deleted.

(2) Deleting the registered plug-in
The following command is executed for each plug-in that is to be deleted:

pdplgrgst -d plug-in-definition-filename PIC-filename

Notes

1. When a data-type plug-in is to be deleted and an index-type plug-in providing the index facility for that data type
is also registered, the index-type plug-in must be deleted first.

2. If you are deleting a plug-in with an owner who is not MASTER, note the following:

• Only a plug-in's owner can delete his/her plug-in. Specify the authorization identifier and password of the
plug-in owner in the PDUSER operand in the client environment definitions. Then, specify the -u option when
executing the pdplgrgst command.

• The owner of a plugin registered with HiRDB Version 5.0 (with HiRDB Object Option) is not MASTER.
Therefore, you need to take the actions described previously.

• If you delete a plug-in owner's schema, the plug-in itself is also deleted. For details about the actions to be
taken after the plug-in has been deleted, see the sections beginning at (3) as follows.

5. Setting Up the Plug-in Environment

132

(3) Deleting the registry
For details about how to delete registry information, see the applicable plug-in documentation.

(4) Terminating HiRDB
The pdstop command must be entered to terminate HiRDB normally.

(5) Making appropriate changes to the system common definition
When HiRDB is terminated normally, the pdplugin operand must be deleted from the applicable system common
definitions.

(6) Canceling setup of the plug-in
The pdplgset -d command is used to cancel setup of the plug-in. Before this command is executed, save all
necessary files. No files are deleted from the conf directory. Plug-in setup cancellation must be performed at all units
where HiRDB is set up.

(7) Uninstalling the plug-in
The plug-in must be uninstalled from the server machine. For details about the uninstallation, see the procedure for the
applicable plug-in.

5. Setting Up the Plug-in Environment

133

6 Creating Databases
This chapter describes the procedures from schema, table, and index creation through
data storage.

135

6.1 Overview of database creation
This section provides the information that you need to be familiar with before creating databases (tables and indexes).
The topics covered include:

• Preparing for database creation

• Database creation procedure

• Database update log acquisition procedure

• Notes about loading data to a table containing a unique index

• Loading a large amount of data (data load with the synchronization point specification)

• Loading data into a row-partitioned table (using the parallel loading facility)

• Loading data into a row-partitioned table (creating divided-input data files)

• Data loads that use the automatic numbering facility

• Input data file UOC

• Checking for unneeded RDAREAs

6.1.1 Preparing for database creation
Executor: HiRDB administrator

This section discusses preparations for database creation.

(1) Defining the client environment
Before a database can be created, the following environment variables must be set in the client environment definition.
(For details about how to set client environment variables, see the HiRDB Version 9 UAP Development Guide):

• PDHOST
• PDUSER
• PDNAMEPORT

(2) Changing the password
If the password of the authorization identifier of the HiRDB administrator is the same character string as the
authorization identifier, use the GRANT definition SQL to change the password. To do this, execute the following SQL
with the database definition utility (pddef) or HiRDB SQL Executer:

GRANT DBA TO identifier-for-the-HiRDB-administrator IDENTIFIED BY new-password;

(3) Defining a schema
The CREATE SCHEMA definition SQL is used to define a schema. To define a schema, either the database definition
utility (pddef command) is used or an appropriate UAP is created. Only one schema can be defined for each user.

(4) Creating a database (users other than the HiRDB administrator)
Before a user other than the HiRDB administrator can create a database, the HiRDB administrator must grant an
appropriate user privilege to this user. Use the GRANT definition SQL to grant the necessary user privilege to the user
who will be creating databases. The following privileges are required:

• CONNECT privilege

• Schema definition privilege

• RDAREA usage privilege

6. Creating Databases

136

For details about user privileges, see the HiRDB Version 9 System Operation Guide.

Example
Grant the CONNECT, schema, and RDAREA usage (RDAREA name: RDAREA01) privileges to the user who
will create tables (authorization identifier: USER002, password: HIRDB002):
GRANT CONNECT TO USER002 IDENTIFIED BY HIRDB002;
GRANT SCHEMA TO USER002;
GRANT RDAREA RDAREA01 TO USER002;

(5) Specifying the data conversion facility
When storing data in a database, you can use a facility to convert the data. Evaluate whether to use the following
facilities. For details about these facilities, see the HiRDB Version 9 System Operation Guide.

• Space conversion facility

• Facility for conversion to a DECIMAL signed normalized number

6.1.2 Database creation procedure
The following figure shows the procedure for creating a database.

Figure 6‒1: Database creation procedure

Note
Execute CREATE TABLE and CREATE INDEX with one of the following methods:

• Database definition utility (pddef)

• HiRDB SQL Executer

6.1.3 Database update log acquisition mode
When storing data in a table using the database load utility (pdload), you can specify a database update log
acquisition mode. Use the database load utility's (pdload) -l option to specify a desired database update log
acquisition mode.

(1) Types of database update log acquisition mode
There are three different database update log acquisition modes:

• Log acquisition mode
This mode acquires the database update log required for rollback and rollforward. Use this mode when there are
relatively few data items.

• Pre-update log acquisition mode
This mode acquires only the database update log required for rollback. Use this mode when there are many data
items.

6. Creating Databases

137

• No-log mode
This mode does not acquire a database update log. Therefore, the data load processing time is the shortest of the
three modes. Use this mode when there is only one table per RDAREA (if the table is partitioned, only one row-
partitioned table per RDAREA) and any related index is also placed in one RDAREA.

For details about the functionality of these modes, see the HiRDB Version 9 System Operation Guide.

(2) Storing data in a user LOB RDAREA
If you are storing data in a user LOB RDAREA, use the CREATE TABLE's RECOVERY operand to specify the
database update log acquisition mode.

The database update log acquisition mode for user LOB RDAREAs (RECOVERY operand of CREATE TABLE) may
depend on the -l option value in pdload, as shown in the following table.

Table 6‒1: Database update log acquisition mode for user LOB RDAREAs depending on the -l option value
in pdload

Value specified for -l option in
pdload

RECOVERY operand value in CREATE TABLE

ALL PARTIAL NO

a (equivalent to ALL) ALL PARTIAL NO

p (equivalent to PARTIAL) PARTIAL# PARTIAL# NO

n (equivalent to NO) NO NO NO

ALL: Log acquisition mode

PARTIAL: Pre-update log acquisition mode

NO: No-log mode

For example, if PARTIAL is specified in the RECOVERY operand of CREATE TABLE and the log acquisition method
is NO in pdload, then NO (no-log mode) is set for the user LOB RDAREAs.

#: For the log that is output by plug-ins, ALL (log-acquisition mode) is assumed.

(3) Mode selection considerations
In general, the pre-update log acquisition mode, which is the default mode, should be selected. However, selection of
another mode should be considered under the following conditions:

Condition Mode to be selected

For initial storage, only the target table (or index) for data storage is stored in the RDAREA. No-log mode

There is large volume of input data, and data storage will take a long time.

There is only a small amount of input data. Log acquisition mode

(4) Operational differences
Depending on the mode that is selected, there are differences in the operating procedure during data storage, as shown
in the following figure.

6. Creating Databases

138

Figure 6‒2: Differences in operating procedure based on the database update log acquisition mode (data
storage)

Note 1
This operation is required when the no-log mode is selected. If the pdload command should terminate
abnormally during operation in the no-log mode, you would use this backup to recover the RDAREA. Note that it
is not necessary to make a backup if the conditions described in (5) When it is not necessary to make a backup
prior to data storage are satisfied.
However, regardless of the update log acquisition mode, a backup should be made when additional data storage is
performed in the batch index creation mode on a table for which a plug-in index has been defined. The reason is
that in order to perform database recovery after the pdload command has terminated abnormally, all the plug-in
indexes, including the data portions, must be re-created, which would require a long time for database recovery.

Note 2
This operation is required when the pre-update log acquisition mode or the no-log mode is selected. If a backup is
not made at this point, it will not be possible to recover the RDAREA to a subsequent status if it becomes
necessary to recover the RDAREA with the pdrstr command (target processing after data storage execution
cannot be recovered); the RDAREA can be recovered only to its status before data storage was executed.

Supplemental note
If the pre-update log acquisition mode or the no-log mode is selected, the target data storage RDAREA must
remain on shutdown status during the steps 1-4 shown in the figure. If the contents of the RDAREA are modified
before the backup at step 4 has been made, and if it becomes necessary to recover the RDAREA with the pdrstr
command, the modified contents will not be recovered; it will be possible to recover the RDAREA only to its
status before data storage was executed. If the pdrstr command is used to recover the RDAREA, an error will
occur during execution of the pdrstr command if the system log in the input information contains a log
collected in the pre-update log acquisition mode or the no-log mode.

(5) When it is not necessary to make a backup prior to data storage
If data storage is executed in the no-log mode, a backup must have been made prior to execution of data storage.
However, if either condition 1 or 2 in the following table is satisfied, it becomes unnecessary to make a backup,
because the RDAREA can be returned to its status before execution of data storage even if the pdload command
terminated abnormally:

No. Condition RDAREA recovery method in the event of an
error

1 Initial storage When only the targeted data
storage table and indexes of that
table are stored in the target data
storage RDAREA

If the target data storage RDAREA is reinitialized
with the database reconfiguration utility (pdmod
command), then once data storage is re-executed
the RDAREA can be recovered.

Data storage executed in the
creation mode

6. Creating Databases

139

No. Condition RDAREA recovery method in the event of an
error

2 There exists in the RDAREA
targeted for data storage at
least one table (index) other
than the table (index) targeted
for data storage.

When the RDAREA can be
recovered to its status before data
storage by using a backup and the
system log

The RDAREA can be recovered if you use the
pdclose command to close the target data storage
RDAREA, use the pdlogswap command to swap
system log files, and then use the current system
log file as input to the database recovery utility
(pdrstr command).

Data storage executed in the
addition mode

Note
With respect to the condition in No. 2, the recovery operation on the RDAREA is easier if a backup has been
made, so in general it is recommended that a backup be made. In particular, if pdload has terminated abnormally
while in the batch index creation mode, indexes cannot be recovered by a rollback even in the log acquisition
mode or the in pre-update log acquisition mode. If it is necessary to be able to recover quickly to the status before
data storage was attempted in the event of abnormal termination of pdload, you should definitely make a
backup.

6.1.4 Notes on data storage for a table for which an index with the
unique attribute has been defined

The following must be considered when you execute data storage on a table for which a primary key index (PRIMARY
index) or a unique index (index with the UNIQUE specification) has been defined:

• If the input data file contains data with duplicated key values, do not load data in the batch index creation mode.

If you attempt to load data in the batch index creation mode, the system stores data in the table and outputs the index
key information to an index information file. At this point, key values are not checked for any duplication. Key value
duplication checking occurs later when the index data is stored. If a duplicated key value is detected, index creation
processing is rolled back, but the data has already been stored (already committed and cannot go back). In these cases,
you need to use a backup copy to restore the RDAREAs.

Therefore, if you are loading data from an input data file that contains data with duplicated key values, be sure to
specify the index update mode. This mode updates an index each time data is stored. A duplicated key value is
immediately detected and the corresponding data is not stored in the database.

You can specify the batch index creation mode and index update mode using the -i option of the database load utility
(pdload). Note that the default value is the batch index creation mode.

6.1.5 Loading a large amount of data (data loading with the
synchronization point specification)

If you plan to load a large amount of data to a table, evaluate the use of data loading with the synchronization point
specification.

Normally, with data load processing, a transaction cannot be settled until all data store processing is completed.
Therefore, a synchronization point dump cannot be validated while the database load utility is executing. If HiRDB
terminates abnormally while loading a large amount of data, it takes a long time to restart HiRDB. To avoid this, you
can set a synchronization point at any interval based on the number of data items during data load processing, thereby
enabling transaction settlement. This is called a data load with the synchronization point specification.

To perform data loads with the synchronization point specification, specify a line number of a synchronization point
(the number of data items after which a synchronization point is to be set) using the database load utility's option
statement.

Notes

1. When this facility is used, the overall throughput is reduced by the synchronization point processing,
compared to when this facility is not used.

6. Creating Databases

140

2. If the utility terminates abnormally, the recovery method depends on the termination timing. For details about
how to handle abnormal termination, see 6.7 Handling utility abnormal termination errors during data
loading with the synchronization point specification. Note that the recovery method is complicated if the
utility terminates abnormally during a data load in the batch index creation mode.

3. Because data storage begins on a new page for each synchronization point, this facility is applicable only
when a large number of pages is stored.

6.1.6 Loading data into a row-partitioned table (using the parallel loading
facility)

The parallel loading facility executes, in parallel, data loads from a single input data file to multiple RDAREAs that
constitute a row-partitioned table. Executing a pdparaload command allows data to be loaded to multiple
RDAREAs at once.

The following figure shows an overview of the parallel loading facility.

Figure 6‒3: Overview of the parallel loading facility

Description
When the user executes a pdparaload command, pdload commands equal to the number of RDAREAs that
constitute the row-partitioned table are executed automatically. At this time, the pdparaload command
generates the pdload command control statement file.
Each pdload command accesses the input data file, extracts the relevant data, and stores it in the row-partitioned
table within the RDAREA.

(1) Advantages
Using the parallel loading facility offers the following two advantages.

• Data loads can take less time to process.
When pdparaload is executed, multiple pdload commands are executed in parallel. For this reason, data
loading takes less processing time than loading data by table using a single pdload command.

• Operation is easy, since there is a single input data file and a single command.
Through the use of divided-input data files, you can also execute the pdload command in parallel and load data
by RDAREA. However, this can become complicated because you need to divide the data file and execute the
pdload command many times. When you use the parallel loading facility, you do not need to divide the input
data file by RDAREA. Moreover, you only need to execute the command once.

The parallel loading facility thus offers the dual advantage of fast processing from data loads by RDAREA and easy
data loading by table.

6. Creating Databases

141

(2) Preparing for command execution
Do the following prior to executing parallel loading.

(a) Calculate the resources used

With parallel loading, multiple pdload commands execute in parallel. For example, when a table is divided into
three RDAREAs for storage, three pdload commands are executed simultaneously, so three portions of resources are
needed. Factor this in when you calculate the amount of resources that will be necessary.

(b) Prepare the input data

Prepare the data to be input to the table as an input data file. The pdparaload command uses a single input data
file.

(3) Operating procedures
The figure below shows the operating procedures for parallel loading.

Figure 6‒4: Parallel loading operating procedure

#1
This step might not be necessary depending on the specification for the database's update log acquisition mode
(the -l option).

#2
This step is required if n (index information output mode) or x (index information output suppression mode) was
specified as the index creation method (the -i option). It is also necessary if c (batch index creation mode) was
specified and if a non-partitioning key index has been defined.

(4) Limitations
The following limitations apply when data is loaded using the parallel loading facility:

• Data cannot be loaded in tables that define flexible hash partitioning.

• Data loads that specify a synchronization point cannot be performed.

• NOWAIT searches cannot be conducted on tables that are executing parallel loading.

6. Creating Databases

142

• LOB column structure base tables and LOB data cannot be loaded separately.

• Input data files that use tape devices such as EasyMT as the media cannot be used.

pdparaload command options and control statements can be specified in the same manner as pdload command
options and control statements, with some exceptions. For details about what can be specified, see the section on
pdparaload in the manual HiRDB Version 9 Command Reference.

(5) Conditions that might affect performance
The performance of the parallel loading facility, such as its allocation of the input data, might be affected by the
environment in which data loading is executed. For this reason, in some execution environments data loading might
not be any faster even when you use the parallel loading facility. Therefore, try using the parallel loading facility and
measure how much time data loading takes before you start actual operations. If this trial shows that using the parallel
loading facility will shorten data loading time, use the parallel loading facility. If the facility does not deliver the
expected processing performance, load data in table units or divide the input data file and load data in RDAREA units.
For details about creating a divided-input data file, see 6.1.7 Loading data into a row-partitioned table (Creating
divided-input data files).

The conditions that affect the parallel loading facility's performance are described below.

(a) Row partitioning among servers

The parallel loading facility is advantageous when you are partitioning rows among servers. Parallel loading can also
be executed on tables with row partitioning on a single server. But data loading is faster when it is divided among
servers, since processing of a single pdload command to store data can monopolize the servers.

(b) Allocation of input data

During parallel loading, multiple pdload commands read data from a single input data file. Processing time can be
shortened at this point by allocating data so as to increase read processing efficiency. As the following figure shows,
allocating input data evenly across partitioning keys results in efficient read processing.

Figure 6‒5: Allocation of input data vs. read efficiency

6. Creating Databases

143

If data from a table that uses row partitioning on one server is unloaded by a pdrorg command to a single file, the
unloaded data file will demonstrate lopsided data allocation, as shown in the figure. For this reason, if these tables are
used as input data files, performance might decline despite the use of parallel loading.

(c) Formats for input data

The parallel loading facility allows data loading in all the data formats that can be loaded using the pdload
command. However, whenever you are working with large quantities of data, we recommend using the binary format
for input data. The DAT and fixed-size data formats both require that the format be converted when the data is stored
in a database. This might increase CPU usage and decrease the performance of parallel processing of data loading.

(d) LOB creation types

When LOB columns and abstract data type columns that have LOB parameters are defined in the table you are
processing, we recommend specifying f as the LOB creation type (the -k option) for the data load. A file is prepared
for each LOB data item as the LOB input file for data loads that specify f. For this reason, there is no duplicate
reading of LOB data when data loads are executed in parallel. This reduces input and output.

When d is specified as the LOB creation type, all LOB data is stored in the input data file. This generates processing
to skip reading of LOB data that is not a target of processing when data is loaded in RDAREA units. This increase in
processing can weaken performance.

(6) Operating examples
This section provides operating examples that use parallel loading.

• In Operating example 1, LOB columns are defined.

• In Operating example 2, a non-partitioning key index is defined.

The conditions for these operating examples are as follows.

Table 6‒2: Parallel loading operating example conditions

Operating
example

Table definition Index definition
Input
data

format

Index
creation
method

Log
acquisition

mode
Row

partitioning
LOB

column
Partition-ing
key index

Non-
partitioning key

index

Operating
example 1

Y Y Y N Binary Batch index
creation
mode

Pre-update log
acquisition
mode

Operating
example 2

Y N Y Y Binary Batch index
creation
mode

Pre-update log
acquisition
mode

Legend
Y: Defined
N: Not defined

(a) Operating example 1 (defining LOB columns)

Data is loaded to TBL2, which defines LOB columns, using the parallel loading facility. For the LOB creation type (-
k option), f is specified and a file is created for each LOB data item.

 Table and index definitions

Table definition

CREATE TABLE "TBL2"(
 col001 int not null,
 col002 varchar(20),
 col003 blob(1M) in ((LOB01),(LOB02),(LOB03)),
 col004 decimal(10,3)
) fix hash hashf by col001
in (RDUSER11,RDUSER21,RDUSER31);

6. Creating Databases

144

Index definition

CREATE INDEX "INDX2" ON "TBL2"(col001,col002)
in ((RDUSER12),(RDUSER22),(RDUSER32));

 Data load procedure

1. Use the pdhold command to shut down the RDAREA to which you plan to load data.

pdhold -r LOB01,LOB02,LOB03,RDUSER11,RDUSER21,RDUSER31,RDUSER12,RDUSER22,RDUSER32

2. Create the pdparaload command control statement file.
source: Specify the server name, input data file and error information file. For a HiRDB parallel server
configuration, always specify the server name.
lobdata: Specify the LOB input file.
idxwork: Specifies the storage directory for the index information file.
sort: Specifies the storage directory of the work file for sorting.
report: Specifies the processing results file name.

source fes01:/users/data/input_file error=/users/rep/error_file
lobdata /users/data/lob
idxwork bes01 /users/work
idxwork bes02 /users/work
idxwork bes03 /users/work
sort bes01 /users/work
sort bes02 /users/work
sort bes03 /users/work
report file=/users/rep/result_file

3. Use the pdparaload command to load data.
-d: Load data in creation mode.
-b: Use a binary input data file.
-k: Specify the LOB creation type. Create a file for each LOB data item (f).
-i: Specify the batch index creation mode (c).
-l: Specify the pre-update log acquisition mode (p).

pdparaload -d -b -k f -i c -l p "TBL2" /users/cntl/control_file

4. Use the pdcopy command to make a backup of the RDAREA.

pdcopy -m /users/rdarea/mast/mast01 -M r -p /users/pdcopy/list/list01
-b /users/pdcopy/backup/backup01
-r LOB01,LOB02,LOB03,RDUSER11,RDUSER21,RDUSER31,RDUSER12,RDUSER22,RDUSER32

5. Use the pdrels command to release the RDAREA from shutdown status.

pdrels -r LOB01,LOB02,LOB03,RDUSER11,RDUSER21,RDUSER31,RDUSER12,RDUSER22,RDUSER32

(b) Operating example 2 (defining a non-partitioning key index)

Load data to TBL3, which defines a non-partitioning key index, using the parallel loading facility. Since a non-
partitioning key index is being defined, batch creation of the index using the pdrorg command is required after you
execute the pdparaload command. For batch creation of the index, you specify the index information file output by
the pdparaload command.

 Table and index definitions

Table definition

CREATE TABLE "TBL3"(
 col001 int not null,
 col002 varchar(20),
 col003 char(32),
 col004 decimal(10,3)
) partitioned by col001
in ((RDUSER11) 10000000, (RDUSER21) 20000000, (RDUSER31));

6. Creating Databases

145

Index definition (partitioning key index)

CREATE INDEX "INDX3" ON "TBL3" (col001,col002)
in ((RDUSER12),(RDUSER22),(RDUSER32));

Index definition (non-partitioning key index)

CREATE INDEX "INDX4" ON "TBL3" (col003)
in ((RDUSER13));

Data load procedure

1. Use the pdhold command to shut down the RDAREA to which you plan to load data.

pdhold -r RDUSER11,RDUSER21,RDUSER31,RDUSER12,RDUSER22,RDUSER32,RDUSER13

2. Create the pdparaload command control statement file.
source: Specify the input data file and the error information file. For a HiRDB parallel server configuration,
always specify the server name.
idxwork: Specify the storage directory for the index information file. After data loading, execute batch
creation of the index using the index information file created here.
sort: Specify the storage directory of the work file for sorting.
report: Specify the processing results file name.

source /users/data/input_file error=/users/rep/error_file
idxwork /users/work
sort /users/work
report file=/users/rep/result_file

3. Use the pdparaload command to load data.
-d: Load data in creation mode.
-b: Use a binary input data file.
-i: Specify the batch index creation mode (c).
-l: Specify the pre-update log acquisition mode (p).

pdparaload -d -b -i c -l p "TBL3" /users/cntl/control_file

4. Create the pdrorg command control statement file.
In the index statement, specify the index information file output by the pdparaload command.

index "INDX4" RDUSER13 "/users/work/INDEX-INDX4-RDUSER13-faaG4MnMf"
index "INDX4" RDUSER13 "/users/work/INDEX-INDX4-RDUSER13-caa34EnEc"
index "INDX4" RDUSER13 "/users/work/INDEX-INDX4-RDUSER13-caa06MnMc"
sort /users/work
report file=/users/rep/result_file2

5. With the pdrorg command, execute batch creation of the index.

pdrorg -k ixmk -l p -t "TBL3" /users/cntl/control_rorg

6. Use the pdcopy command to make a backup of the RDAREA.

pdcopy -m /users/rdarea/mast/mast01 -M r -p /users/pdcopy/list/list01
-b /users/pdcopy/backup/backup01
-r RDUSER11,RDUSER21,RDUSER31,RDUSER12,RDUSER22,RDUSER32,RDUSER13

7. Use the pdrels command to release the RDAREA from shutdown status.

pdrels -r RDUSER11,RDUSER21,RDUSER31,RDUSER12,RDUSER22,RDUSER32,RDUSER13

(7) What to do when a command error occurs
There are two basic types of errors that can occur when the pdparaload command is executed, and two
corresponding ways to handle them, as follows.

• Errors when executing data loads in RDAREA units (pdload command)

6. Creating Databases

146

In this case, data fails to load into some RDAREAs. After handling the error for those RDAREAs that experienced
errors, re-execute the data load in RDAREA units with the pdload command.

• Errors before data loads in RDAREA units (pdload command) begin
In this case, data loads to all RDAREAs fail. After handling the error, re-execute the pdparaload command.

This section describes details about errors generated when the pdparaload command is executed and their
handling. The handling procedure when an error occurs when the pdparaload command is executed is shown
below.

Figure 6‒6: Handling procedure when an error occurs during pdparaload command execution

Note:
Sections (a) through (e) in the figure correspond to (a) through (e) in the figure.

6. Creating Databases

147

(a) Identify error timing

Identify when the error occurred. Check whether the following two messages have been output.

• KFPL00791-I
• KFPL00792-I

Both messages have been output
An error occurred during execution of a data load in RDAREA units. This means data loads to some RDAREAs
have failed. In this case, handle the error by starting with step (b) of the procedure. Thereafter, re-execute the data
load in RDAREA units with the pdload command.

One of the messages has not been output
An error occurred before data loading in RDAREA units began. This means data loads to all RDAREAs have
failed. In this case, handle as directed by the error message output directly prior to the KFPL00794-I message.
Thereafter, re-execute the pdparaload command.

(b) Identify RDAREAs that require handling

Extract the KFPL00793-I message from the messages output to the OS console that executed the pdparaload
command or to the syslog file, and then identify the RDAREAs that require handling. When extracting the message,
use the following as search keywords.

• Message ID (KFPL00793-I)

• Authorization identifier

• Table identifier

Message extraction example

KFPL00793-I Pdload execution abnormal terminated, table=user1."T1", RDAREA=RDAREA1, return
code=8, pdload process id=1385412 (1212478)
 :
KFPL00793-I Pdload execution abnormal terminated, table=user1."T1", RDAREA=RDAREA2, return
code=8, pdload process id=1385433 (1212478)

Description
Extract the KFPL00793-I message based on the authorization identifier (user1) and the table identifier
(T1). This can identify the RDAREAs (RDAREA1 and RDAREA2) where the data load failed.

Take one of the following corrective actions for the identified RDAREA, depending on the return code of the
KFPL00793-I message.

Return code is 4
Check the error information file output by the pdload command and take corrective action for the error. The
error information file is specified by the error option of the source statement of the pdparaload command
(the RDAREA name is automatically appended to the file name). When nothing is specified, the following
directory and file name are used to create the file.

• The error information file storage directory
1. The directory specified in the pd_tmp_directory operand
2. If the above directory is not specified, the directory specified in environment variable TMPDIR
3. If the above directory is not specified, the /tmp directory

• The error information file name
The file name that includes the process ID and message ID (KFPL00793-I) identified in (c)

After corrective action is taken, re-execute the data load in units of RDAREAs using the procedure of step (e).

Return code is 8
Identify the error as instructed in steps (c) and (d) and take corrective action.
Then, re-execute the data load in units of RDAREAs using the procedure of step (e).

6. Creating Databases

148

(c) Identify the IDs of the processes that were executed

From the message log file, identify the IDs of the pdload control process and server process that the pdparaload
command executed. Extract the process IDs by the following procedure.

1. Output the message log from pdparaload command execution start (KFPL00791-I message) to termination
(KFPL00794-I message) to a file using the pdcat command.

2. Extract the KFPL00711-I message, which indicates the start of the process, from the content output in step 1. To
extract the message, use the following search keywords.

• Message ID (KFPL00711-I)

• Authorization identifier

• Table identifier

• RDAREA name identified in step (b)

Message extraction example

1572976 2010/11/04 15:55:48 0mload1 lod KFPL00711-I pdloadm started, table=user1."T1",
RDAREA=RDAREA1
1728690 2010/11/04 15:55:48 bes1 lod KFPL00711-I pdbes started, table=user1."T1",
RDAREA=RDAREA1

Description
Extract the KFPL00711-I message based on the authorization identifier (user1), the table identifier (T1)
and the RDAREA name (RDAREA1). This can identify the IDs of the processes (1572976, 1728690) that
generated the error.
In this case, these IDs identify the following processes.

• The process name of 1572976 is pdloadm, so it is the pdload control process.

• The process name of 1728690 is pdbes, so it is the back-end server process.

(d) Identify the error content

Identify the nature of the error from the message log file. Extract the error message that requires handling from the
message log file acquired in step 1 of (c) using the process IDs identified in step (c) as search keywords.

Message extraction example (pdload control process)

1572976 2010/11/04 15:55:48 0mload1 lod KFPL00711-I pdloadm started, table=user1."T1",
RDAREA=RDAREA1
1572976 2010/11/04 15:55:48 0mload1 lod KFPL00704-I Pdload terminated, return code=8

Message extraction example (back-end server process)

1728690 2010/11/04 15:55:48 bes1 lod KFPL00711-I pdbes started, table=user1."T1",
RDAREA=RDAREA1
1728690 2010/11/04 15:55:48 bes1 lod KFPL00709-I Error information file was created,
file=/tmp/ERROR-4cd258f41728690
1728690 2010/11/04 15:55:48 bes1 lod KFPL00709-I Lobmid file was created, file=/tmp/LOBMID-
T1-4cd258f41728690
1728690 2010/11/04 15:55:48 bes1 lod KFPL00702-I Pdload started, table=user1."T1",
generation=0
1728690 2010/11/04 15:55:48 bes1 lod KFPL00710-I Index information file assigned,
index=user1."T1NX", RDAREA="USER01", file=/tmp/INDEX-T1NX-USER01-GN0-daan_ylid
1728690 2010/11/04 15:55:48 bes1 lod KFPL00723-I 0 rows loaded, table=user1."T1",
RDAREA="USER01"
1728690 2010/11/04 15:55:48 bes1 lod KFPLxxxxx-E YYYYYY

Description
Extract messages based on the process IDs (1572976, 1728690). Here, a back-end server process has
output the error message (KFPLxxxxx-E). Take corrective action as indicated by the error message.

After corrective action is taken, re-execute the data load in units of RDAREAs according to the procedure of step (e).

6. Creating Databases

149

(e) Re-execute the data load in units of RDAREAs (pdload command)

Re-execute the data load in units of RDAREAs using the pdload command. Here, we recommend re-using the
pdload command control statement generated by the pdparaload command. The storage directory and file name
of the pdload command control statement file generated by the pdparaload command are as follows. Create the
pdload control statement file based on these.

• The pdload control statement storage directory
1. The directory specified in the pd_tmp_directory operand
2. If the above directory is not specified, the directory specified in environment variable TMPDIR
3. If the above directory is not specified, the /tmp directory

• The pdload control statement file name
LOD_CTL_authorization-ID_table-ID_RDAREA-NAME

! Important note
When re-executing the data load in units of RDAREAs, specify divermsg=off in the option statement of
pdload.

When loading data in RDAREA units, error information will be output when there is line data in the input data that does
not match the RDAREA storage conditions, and the pdload command will terminate with a return code of 4. If
divermsg=off is specified, output of this error data information is suppressed, and the pdload command can
terminate with a return code of 0.

The following is an example of the pdload command control statements and command lines when re-executing a
data load in units of RDAREAs.

Control statement example

option divermsg=off
source "RDUSER02" fes01:/users/data/input_file error=/users/rep/error_file_RDUSER02
lobdata /users/data/lob
idxwork bes02 /users/work
sort bes02 /users/work
report file=/users/rep/result_file_RDUSER02

Description

• Specifying divermsg=off in the option statement suppresses output of error data information.

• Specify the name of the RDAREA that is the target of the source statement for data loading in units of
RDAREAs.

Command line example

pdload -d -b -k f -i c -l p "TBL2" "/users/tmp/LOD_CTL_USER02_ TBL2_RDUSER02"

6.1.7 Loading data into a row-partitioned table (Creating divided-input
data files)

Data can also be loaded to a row-partitioned table using the parallel loading facility. For details about the parallel
loading facility, see 6.1.6 Loading data into a row-partitioned table (using the parallel loading facility). If you cannot
achieve the desired results using the parallel loading facility, load data using divided-input data files, as described in
this subsection.

When you load data into a row-partitioned table, you can reduce the time required for data loading and the length of
time the table is in the exclusive mode by dividing the input data files by storage RDAREAs and executing parallel
data loading. By specifying the src_work statement in the control information file and then executing the database
load utility (pdload), you can create an input data file for each RDAREA from user-created input data files. The
obtained input data files can be used to execute data loading for the individual RDAREAs. A file created by the
database load utility (pdload) is called a divided-input data file. For details about the options and control statements
used to create the divided-input data files, see the manual HiRDB Version 9 Command Reference.

6. Creating Databases

150

6.1.8 Data loads that use the automatic numbering facility
Use the sequence generator identifier to number automatically. This is called the automatic numbering facility. When
data is loaded, sequence numbers generated by the sequence generator identifier can be stored in the table columns.
This section describes selection criteria for the acquisition methods and storage methods of sequence numbering.

For details about the automatic numbering facility, see the HiRDB Version 9 UAP Development Guide; for details
about loading data using the automatic numbering facility, see the manual HiRDB Version 9 Command Reference.

(1) Criteria for selecting sequence number acquisition method
There are three methods for acquiring sequence numbers.

Number batch acquisition method:
After data has loaded, uses the sequence generator identifier values to number the sequence as a batch.

Specification unit acquisition method:
Loads data while acquiring sequence numbers at every specified unit.

Buffer unit acquisition method:
Loads data while acquiring sequence numbers in batches equal to the number of lines that can be read into the
input buffer.

When selecting a method of acquiring sequence numbers, consider the features listed in the following table.

Table 6‒3: Features of sequence number acquisition methods

Item considered

Features

Number batch acquisition
method

Specification unit acquisition
method

Buffer unit acquisition
method

Missing numbers under normal
circumstances

Does not occur. Missing numbers occur if the
number of lines of data loaded
is not a multiple of the
specified unit.

Does not occur.#2

Large quantities of missing
numbers during rollbacks

Does not occur. The current value is not
recovered even if a rollback
occurs, so large quantities of
missing numbers occur.

The current value is not
recovered even if a rollback
occurs, so large quantities of
missing numbers occur.

Communication overhead when
requesting numbering from
sequence generator identifier #1

Since there are only as many
numbering requests as there are
data load commits, the impact
of numbering on performance
is kept to a minimum.

The impact on performance can
be kept to a minimum by
keeping the number of
numbering requests down by
using large acquisition units.

The impact on performance can
be kept to a minimum by
keeping the number of
numbering requests down by
using a large input buffer.
However, the unit acquired at
one time is determined by the
line length calculated from the
input buffer size and the
column definition size, so a
long line requires ample
memory in the input buffer.

Simultaneous execution with
UAPs that use the same
sequence generator identifier

Cannot execute simultaneously.
The sequence generator
identifier is locked during data
loading.

Can execute simultaneously. Can execute simultaneously.

Parallel execution of data
loading in RDAREA units

Cannot execute simultaneously.
The sequence generator
identifier is locked during data
loading.

Can execute in parallel. Can execute in parallel.

#1
For a HiRDB parallel server configuration, communications occur during acquisition of sequence numbers when the server
whose database load utility reads input data is different from the server where the sequence generator identifier is defined.

6. Creating Databases

151

Consequently, frequent numbering requests result in increased communications, which adversely affects data loading
performance.

#2
When the sequence number storage method is not total replacement of column data, missing numbers might be generated.

(2) Criteria for selecting a sequence number storage method
There are three methods for storing sequence numbers. The following describes the criteria to use when you select a
method.

Total replacement of column data:
All column data in the input data file is replaced by sequence numbers for the corresponding columns that store
sequence numbers. Select this method when you are assigning new numbers to all the corresponding column
values.

Partial replacement of column data:
Only the column data in the input data file whose data matches specified replacement conditions is replaced by
sequence numbers for the corresponding columns that store sequence numbers. Select this method when, for
example, the input data file is in DAT or extended DAT format and when you are replacing only the NULL value
portion with sequence numbers.

Column data addition:
If the input data file has no data corresponding to the column that stores the sequence numbers, sequence numbers
are added as input data. Select this method when you are adding new columns to store numbers. This method
cannot be specified when the input data file format is binary.

6.1.9 Input data file UOC
You can use a user-created program to edit data that is to be loaded. The edited data is passed directly to pdload.
Therefore, programs that edit input files can perform data loading without creating temporary work files.

A program that the user creates to edit data is called the user's own coding (UOC). You can use a UOC to edit input
data, such as when the format of a file containing database data is different from the input data file format supported
by pdload, or when the character encoding used in the database data is not supported by HiRDB.

6.1.10 Deleting unneeded RDAREAs
After creating a database, you should check the SQL_RDAREAS table of the data dictionary tables for any user
RDAREAs for which no table or index is defined, or for any user LOB RDAREAs for which no LOB column is
defined. You can delete any unneeded RDAREA and save disk space.

For details about how to retrieve data dictionary tables and for details about the SQL_RDAREAS table, see the HiRDB
Version 9 UAP Development Guide. For details about how to delete RDAREAs, see the HiRDB Version 9 System
Operation Guide.

6. Creating Databases

152

6.2 Creating a row-partitioned table
This section describes the creation of a PRODUCT table. The following are the creation conditions:

• Partition the PRODUCT table by row. Store the PRODUCT table in user RDAREAs RDAREA01 and RDAREA02.

• Define a partitioning key index (INDX1) for the PRODUCT table. Store INDX1 in user RDAREAs RDAREA03
and RDAREA04.

• Define a non-partitioning key index (INDX2) for the PRODUCT table. Store INDX2 in user RDAREA
RDAREA05. For a HiRDB parallel server configuration, store INDX2 in user RDAREAs RDAREA05 and
RDAREA06.

• Store by means of initial storage in RDAREA01-RDAREA06 only the target data storage table (and indexes).

• In executing data storage, use batch creation (the default value) for the indexes.

• Perform data storage in the no-log mode.

For details about the partitioning key index and non-partitioning key index, see 13.3 Index row partitioning.

Data can also be loaded to a row-partitioned table using the parallel loading facility. For details about the parallel
loading facility, see 6.1.6 Loading data into a row-partitioned table (using the parallel loading facility).

6. Creating Databases

153

(1) Defining the PRODUCT table
Define the PRODUCT table with CREATE TABLE. The following shows an example:

(a) Key range partitioning

Specification of storage condition:

CREATE TABLE PRODUCT
(PNO CHAR(5) NOT NULL,
 PNAME NCHAR(15),
 LPRICE INTEGER,
 QTY INTEGER
)IN ((RDAREA01)PNO<='10000',(RDAREA02));

Specification of boundary value:

CREATE TABLE PRODUCT
(PNO CHAR(5) NOT NULL,
 PNAME NCHAR(15),
 LPRICE INTEGER,
 QTY INTEGER
)PARTITIONED BY PNO
 IN ((RDAREA01)'10000',(RDAREA02));

(b) Flexible hash partitioning or FIX hash partitioning

CREATE TABLE PRODUCT
(PNO CHAR(5) NOT NULL,
 PNAME NCHAR(15),
 LPRICE INTEGER,
 QTY INTEGER
)[FIX]# HASH HASH6 BY PNO
 IN (RDAREA01,RDAREA02);

#: This specification is applicable to FIX hash partitioning.

(2) Defining an index
Define an index for the PRODUCT table using CREATE INDEX. The following shows an example:

(a) HiRDB single server configuration

CREATE INDEX INDX1 ON TABLE (PNO)
 IN ((RDAREA03),(RDAREA04));
CREATE INDEX INDX2 ON PRODUCT (QTY)
 IN (RDAREA05);

(b) HiRDB parallel server configuration

CREATE INDEX INDX1 ON PRODUCT (PNO)
 IN ((RDAREA03),(RDAREA04));
CREATE INDEX INDX2 ON PRODUCT (QTY)
 IN ((RDAREA05),(RDAREA06));

(3) Storing data in the table
To use the database load utility (pdload) to store data in the table.

Procedure

1. Use the pdhold command to shut down the target data storage RDAREAs (RDAREA01-RDAREA05). For a
HiRDB parallel server configuration, shut down RDAREA01-RDAREA06.

2. Use the pdload command to load the input data file into the table. Because only the target data storage table
and indexes are stored in the RDAREAs, and because this is the initial storage, select the no-log mode as the
database update log acquisition mode. For the index creation method, select the batch index creation mode

6. Creating Databases

154

(the default value). For details about the options of the pdload command, see the manual HiRDB Version 9
Command Reference.

3. Because the pdload command is executed in the no-log mode, make a backup of the target data storage
RDAREAs. For details about how to make backups in units of RDAREAs, see the HiRDB Version 9 System
Operation Guide.

4. Use the pdrels command to release the target data storage RDAREAs from shutdown status.

For details about these commands and utilities, and about how to verify the command and utility execution results, see
the manual HiRDB Version 9 Command Reference.

Supplemental notes

• Because the pdload command executes in the no-log mode, the target data storage RDAREAs must remain
on shutdown status during steps 1-3.

• In the case of a falsification prevented table, when data storage is performed with the pdload command, the
-d option cannot be specified.

• For details about error handling during batch index creation, see 6.6 Handling errors during batch index
creation.

(4) Checking the data storage status
If you have executed data loading, you should execute the database condition analysis utility (pddbst) next to check
the data storage status. This utility enables you to check whether the database has been created exactly as designed.
The database condition analysis utility can obtain the following information:

• Data storage status of each user RDAREA

• Data storage status of each table or index

6. Creating Databases

155

6.3 Creating a table with a LOB column
This section describes the creation of a PRODUCT table. The following are the creation conditions:

• Partition the PRODUCT table by row. Store the PRODUCT table's LOB column structure base table in user
RDAREAs RDAREA01 and RDAREA02.

• Store LOB column data in user LOB RDAREAs LOBAREA01 and LOBAREA02.

• Define a partitioning key index (INDX1) for the PRODUCT table. Store INDX1 in user RDAREAs RDAREA03
and RDAREA04.

• In RDAREA01-RDAREA02 and LOBAREA01-LOBAREA02, perform initial storage only for the target data
storage table (and index).

• When executing data storage, perform batch creation (the default value) on the index.

• Perform data storage in the no-log mode.

Data can also be loaded into a row-partitioned table using the parallel loading facility. For details about the parallel
loading facility, see 6.1.6 Loading data into a row-partitioned table (using the parallel loading facility).

Notes

• Only one LOB column is stored in a user LOB RDAREA. If a table contains multiple LOB columns, they
must be stored in separate user LOB RDAREAs.

• For a row-partitioned table that has LOB columns, there must be a one-to-one correspondence between the
user LOB RDAREAs for the LOB columns and the user RDAREAs for storing the table.

(1) Defining the PRODUCT table
Define the PRODUCT table with CREATE TABLE. The following shows an example:

(a) Key range partitioning

Specification of storage condition:

CREATE TABLE PRODUCT
(PNO CHAR(5),

6. Creating Databases

156

 PNAME NCHAR(15),
 LPRICE INTEGER,
 QTY INTEGER,
 PPICT BLOB(64K) IN ((LOBAREA01),(LOBAREA02))
)IN ((RDAREA01) PNO<='10000',(RDAREA02));

Specification of boundary value:

CREATE TABLE PRODUCT
(PNO CHAR(5),
 PNAME NCHAR(15),
 LPRICE INTEGER,
 QTY INTEGER,
 PPICT BLOB(64K) IN ((LOBAREA01),(LOBAREA02))
)PARTITIONED BY PNO
IN ((RDAREA01)'10000',(RDAREA02));

(b) Flexible hash partitioning or FIX hash partitioning

CREATE TABLE PRODUCT
(PNO CHAR(5),
 PNAME NCHAR(15),
 LPRICE INTEGER,
 QTY INTEGER,
 PPICT BLOB(6000) IN ((LOBAREA01),(LOBAREA02))
)[FIX]# HASH HASH6 BY PNO
 IN (RDAREA01,RDAREA02);

#: This specification is applicable to FIX hash partitioning.

(2) Defining an index
Define an index for the PRODUCT table using CREATE INDEX. The following shows an example:

CREATE INDEX INDX1 ON PRODUCT (PNO)
 IN ((RDAREA03),(RDAREA04));

(3) Storing data in the table
To use the database load utility (pdload) to store data in the table.

Procedure

1. Use the pdhold command to shut down the target data storage RDAREAs (RDAREA01-RDAREA04 and
LOBAREA01-LOBAREA02).

2. Use the pdload command to load the input data file into the table. Because only the target data storage table
and index are stored in the RDAREAs, and because this is an initial storage, select the no-log mode as the
database update log acquisition mode. For the index creation method, select the batch index creation mode
(the default value). For details about the options of the pdload command, see the manual HiRDB Version 9
Command Reference.

3. Because the pdload command is executed in the no-log mode, make a backup of the target data storage
RDAREAs. For details about how to make backups in units of RDAREAs, see the HiRDB Version 9 System
Operation Guide.

4. Use the pdrels command to release the target data storage RDAREAs from shutdown status.

For details about these commands and utilities, and about how to verify the command and utility execution results, see
the manual HiRDB Version 9 Command Reference.

Supplemental notes

• Because the pdload command executes in the no-log mode, the target data storage RDAREAs must remain
on shutdown status during steps 1-3.

• In the case of a falsification prevented table, when data storage is performed with the pdload command, the
-d option cannot be specified.

6. Creating Databases

157

• For details about error handling during batch index creation, see 6.6 Handling errors during batch index
creation.

(4) Checking the data storage status
If you have executed data loading, you should execute the database condition analysis utility (pddbst) next to check
the data storage status. This utility enables you to check whether the database has been created exactly as designed.
The database condition analysis utility (pddbst) can obtain the following information:

• Data storage status of each user RDAREA or user LOB RDAREA

• Data storage status of each table or index

(5) Notes
When executing data loading on a table with a LOB column, you can load the LOB column structure base table and
LOB data separately.

Set the database update log acquisition mode to the no-log mode, and set the index creation method to batch index
creation (the default value).

Procedure

1. Use the pdhold command to shut down the target data storage RDAREAs (RDAREA01-RDAREA04 and
LOBAREA01-LOBAREA02).

2. Use the pdload command to load the input data file into the table (LOB column structure base table and
index). At this time, the target data storage RDAREAs are RDAREA01-RDAREA04. Output to the LOB
middle file the information required for data storage of the LOB column. For details about the options of the
pdload command, see the manual HiRDB Version 9 Command Reference.

3. Use the pdload command to perform data storage in user LOB RDAREAs LOBAREA01-LOBAREA02.
Specify the LOB input file and the LOB middle file specified in step 2.

4. Because the pdload command is executed in the no-log mode, make a backup of the target data storage
RDAREAs. For details about how to make backups in units of RDAREAs, see the HiRDB Version 9 System
Operation Guide.

5. Use the pdrels command to release the target data storage RDAREAs from shutdown status.

For details about these commands and utilities, and about how to verify the command and utility execution results, see
the manual HiRDB Version 9 Command Reference.

6. Creating Databases

158

6.4 Creating a table containing a plug-in-provided
abstract data type

This section describes the procedure for creating tables that define abstract data types (the SGMLTEXT and XML types)
provided by plug-ins.

To use the SGMLTEXT type, you will need HiRDB Text Search Plug-in; to use the XML type, you will need HiRDB
XML Extension. For details about environment settings for plug-ins, see Chapter 5. Setting Up the Plug-in
Environment. The plug-in owner should be MASTER.

6.4.1 The SGMLTEXT type
This section describes the procedure for creating a table with abstract data type (SGMLTEXT type) that is provided by
the HiRDB Text Search Plug-in.

A MEDICINE_MANAGEMENT_TABLE is created here. The following are the creation conditions:

• Partition the MEDICINE_MANAGEMENT_TABLE. Store the LOB column structure base table in user RDAREAs
RDAREA01 and RDAREA02.

• Store SGMLTEXT-type column data in user LOB RDAREAs LOBAREA01 and LOBAREA02.

• Store the plug-in index in user LOB RDAREAs LOBAREA03 and LOBAREA04.

• In RDAREA01-RDAREA02 and LOBAREA01-LOBAREA04, perform initial storage only for the target data
storage table (and index).

• When executing data storage, perform batch creation (the default value) on the index.

• Perform data storage in the no-log mode.

6. Creating Databases

159

Explanation:
This example stores MEDICINE_ID (MCHAR type) in the user RDAREAs and OPERATION_MANUAL
(SGMLTEXT type) in the user LOB RDAREAs.

(1) Defining the MEDICINE_MANAGEMENT_TABLE
Define the MEDICINE_MANAGEMENT_TABLE with CREATE TABLE. The following shows an example:

(a) Key range partitioning

Specification of storage condition:

CREATE TABLE MEDICINE_MANAGEMENT_TABLE(
MEDICINE_ID MCHAR(15),
OPERATION_MANUAL SGMLTEXT 1.
 ALLOCATE(SGMLTEXT IN((LOBAREA01),(LOBAREA02))) 2.
 PLUGIN'<DTD>medicine.dtd</DTD>' 3.
)IN((RDAREA01)MEDICINE_ID<='MEDICINE 10',(RDAREA02)); 4.

Specification of boundary value:

CREATE TABLE MEDICINE_MANAGEMENT_TABLE(
MEDICINE_ID MCHAR(15),
OPERATION_MANUAL SGMLTEXT 1.
 ALLOCATE(SGMLTEXT IN((LOBAREA01),(LOBAREA02))) 2.
 PLUGIN'<DTD>medicine.dtd</DTD>' 3.
)PARTITIONED BY MEDICINE_ID
 IN((RDAREA01)'MEDICINE 10',(RDAREA02)); 4.

6. Creating Databases

160

Explanation:

1. Specifies the data type provided by the plug-in module.

2. The SGMLTEXT LOB column in MEDICINE_MANAGEMENT_TABLE is divided among and stored in user
LOB RDAREAs LOBAREA01 and LOBAREA02.

3. Specifies the plug-in portion. For details about specification, see the applicable plug-in documentation.

4.MEDICINE_MANAGEMENT_TABLE's LOB column structure base table is divided and stored in user
RDAREAs RDAREA01 and RDAREA02.

(b) Flexible hash partitioning or FIX hash partitioning

CREATE TABLE MEDICINE_MANAGEMENT_TABLE(
MEDICINE_ID MCHAR(15),
OPERATION_MANUAL SGMLTEXT 1.
 ALLOCATE(SGMLTEXT IN((LOBAREA01),(LOBAREA02))) 2.
 PLUGIN'<DTD>medicine.dtd</DTD>' 3.
)[FIX]# HASH HASH6 BY MEDICINE_ID
 IN(RDAREA01,RDAREA02) 4.

#: This specification is applicable to FIX hash partitioning.

Explanation:

1. Specifies the data type provided by the plug-in module.

2. The SGMLTEXT LOB column in MEDICINE_MANAGEMENT_TABLE is divided among and stored in user
LOB RDAREAs LOBAREA01 and LOBAREA02.

3. Specifies the plug-in portion. For details about specification, see the applicable plug-in documentation.

4.MEDICINE_MANAGEMENT_TABLE's LOB column structure base table is divided and stored in user
RDAREAs RDAREA01 and RDAREA02.

(2) Defining a plug-in index
If you use the index type for data retrieval offered by a plug-in, you can retrieve data easily and at high speed. The
index type offered by a plug-in is called plug-in index. This section explains how to define a plug-in index using the
index type (NGRAM) provided by the HiRDB Text Search Plug-in.

The following example defines a plug-in index for MEDICINE_MANAGEMENT_TABLE using CREATE INDEX:

CREATE INDEX PLGINDX1
 USING TYPE NGRAM
 ON MEDICINE_MANAGEMENT_TABLE(OPERATION_MANUAL)
 IN ((LOBAREA03),(LOBAREA04));

Explanation:
For the row-partitioned MEDICINE_MANAGEMENT_TABLE, plug-in index PLGINDX1 is divided and stored in
user LOB RDAREAs LOBAREA03 and LOBAREA04. OPERATION_MANUAL is specified for the column that
constitutes the PLGINDX1 plug-in index.

(3) Storing data in the table
To use the database load utility (pdload) to store data in the table:

Procedure

1. Use the pdhold command to shut down the target data storage RDAREAs (RDAREA01-RDAREA02 and
LOBAREA01-LOBAREA04).

2. Use the pdload command to load the input data file into the table. Because only the target data storage table
and index are stored in the RDAREAs, and because this is an initial storage, select the no-log mode as the
database update log acquisition mode. For the index creation method, select the batch index creation mode
(the default value). For the constructor function and the data type information passed to the constructor
function, specify a column structure information file. For details about the options of the pdload command,
see the manual HiRDB Version 9 Command Reference.

6. Creating Databases

161

3. Because the pdload command is executed in the no-log mode, make a backup of the target data storage
RDAREAs. For details about how to make backups in units of RDAREAs, see the HiRDB Version 9 System
Operation Guide.

4. Use the pdrels command to release the target data storage RDAREAs from shutdown status.

For details about these commands and utilities, and about how to verify the command and utility execution results, see
the manual HiRDB Version 9 Command Reference.

Supplemental notes

• Because the pdload command executes in the no-log mode, the target data storage RDAREAs must remain
on shutdown status during steps 1-3.

• In the case of a falsification prevented table, when data storage is performed with the pdload command, the
-d option cannot be specified.

• For details about error handling during batch index creation, see 6.6 Handling errors during batch index
creation.

(4) Checking the data storage status
If you have executed data loading, you should execute the database condition analysis utility (pddbst) next to check
the data storage status. This utility enables you to check whether the database has been created exactly as designed.
The database condition analysis utility (pddbst) can obtain the following information:

• Data storage status of each user RDAREA or user LOB RDAREA (physical analysis only)

• Data storage status of each registry RDAREA or registry LOB RDAREA (physical and logical analyses)

(5) Loading data in units of RDAREAs into a table for which partitioning conditions are
specified with a hash function

You can create a UAP using a hash function for table partitioning to create an input data file for each RDAREA.
Because this makes it possible to check the amount of data to be stored in each RDAREA, you can select a hash
function for uniform partitioning. For details about how to create a UAP for using a hash function for table
partitioning, see the HiRDB Version 9 UAP Development Guide.

6.4.2 The XML type
This subsection describes the procedure for creating a table with the abstract data type (XML type) provided by HiRDB
XML Extension.

The following procedure creates a BOOK_MANAGEMENT_TABLE. The following are the creation conditions assumed
by the example:

• The BOOK_MANAGEMENT_TABLE is stored in user RDAREA RDAREA01.

• The substructure index is stored in user RDAREA RDAREA02.

• The XML-type full-text search index is stored in user LOB RDAREA LOBAREA01.

• In RDAREA01, RDAREA02 and LOBAREA01, only for the target data load table (and index) is stored in the initial
load.

• While data is loading, batch creation (the default value) is performed on the index.

• Data storage is performed in the no-log mode.

6. Creating Databases

162

(1) Defining the BOOK_MANAGEMENT_TABLE
Define the BOOK_MANAGEMENT_TABLE with CREATE TABLE. An example follows:

Example of defining a table that includes an XML type column
CREATE TABLE BOOK_MANAMEGEMENT_TABLE (book-ID INTEGER, book-information
XML) IN RDAREA01

(2) Defining the index

(a) Substructure index (B-tree)

In XML type columns, a specific substructure can be made into a key, and an index can be defined with that value as its
key value. Use this index to reduce the processing time for narrowing down the rows, if a predicate for a structure that
defines a substructure index was specified in the XQuery expression of an XMLEXISTS predicate or an XMLQUERY
function.

The following lists the predicates within an XQuery expression that can use a substructure index:

• Comparison expressions (=, !=, >, >=, <, <=, <>, eq, ne, lt, le, gt, ge) using the substructure that is the key

• The fn:contains function, fn:starts-with function, or fn:ends-with function with the substructure
that is the key

For details about index usage conditions, see (4) Index usage conditions.

For details about searches using substructure indexes, see the HiRDB Version 9 UAP Development Guide.

(b) XML-type full-text search index (n-gram)

N-gram indexes for full-text searches against the value of XML types (IXXML) can be defined within XML type
columns. Defining a XML-type full-text search index can reduce line narrowing processing time when a predicate that

6. Creating Databases

163

includes full-text search conditions such as character string matching is stated in the XQuery expression of a
XMLEXISTS predicate.

Predicates in XQuery expressions that serve as conditions for XML-type full-text searches are:

• Perfectly matching character strings (xs:string type) (=)

• fn:contains function

• fn:starts-with function

• fn:ends-with function

• hi-fn:contains function

For details about index usage conditions, see (4) Index usage conditions.

For details about searches that use XML-type full-text search indexes, see the HiRDB Version 9 UAP Development
Guide.

(3) Storing data in a table
There are two types of input data when data is stored in tables. The data storage methods to use differ according to the
type of input data.

1. ESIS-B format, for converting XML language to XML insertion data
In this case, XML language is parsed using the XML conversion command (phdxmlcnv) or the XML
conversion library (Java library), and XML insertion data (ESIS-B format) is generated. This ESIS-B format data
is output in binary format and stored in a table using pdload or an INSERT statement.
For details about the XML conversion command and XML conversion library, see the manual HiRDB Version 9
XML Extension.

2. XML language
In this case, XML language is converted to XML insertion data (ESIS-B format) using the database load utility
(pdload) or the XMLPARSE function, and stored in a table. The conversion from XML language to ESIS-B
format data is conducted with pdload or the XMLPARSE function. To perform the conversion to ESIS-B format
with pdload, specify the -G option.

(a) Loading data

To use the database load utility (pdload) to store data in the table:

Procedure

1. Use the pdhold command to shut down the target data load RDAREAs (RDAREA01, RDAREA02 and
LOBAREA01).

2. Use the pdload command to load the input data file into the table.

• To use XML statements directly as the input data, specify the -G option.

• Because only the target data load table and index are stored in the RDAREAs, and because this is an initial
load, select the no-log mode as the database update log acquisition mode.

• For the index creation method, select the batch index creation mode (the default value).

• Specify the constructor function and the data type information passed to the constructor function in a column
structure information file.

• Set the format of the input data file to binary.

For details about the options of the pdload command, see the manual HiRDB Version 9 Command Reference.

3. Because the pdload command is executed in the no-log mode, make a backup of the target data load RDAREAs.
For details about how to make backups in units of RDAREAs, see the HiRDB Version 9 System Operation Guide.

4. Use the pdrels command to release the target data load RDAREAs from shutdown status.

For details about these commands and utilities, and about how to verify the command and utility execution results, see
the manual HiRDB Version 9 Command Reference.

6. Creating Databases

164

Supplemental notes

• Because the pdload command executes in the no-log mode, the RDAREAs to which data is being loaded
must remain in shutdown status during steps 1 to 3.

• In the case of a falsification prevented table, when data loading is performed with the pdload command, the
-d option cannot be specified.

• For details about error handling during batch index creation, see 6.6 Handling errors during batch index
creation.

(b) Insertion of XML language

Inserting ESIS-B format data into a table or updating ESIS-B format data in a table
Specify an XML constructor function as the insertion value of an INSERT statement or the update value of an
UPDATE statement, and set the generated ESIS-B format data in its argument.
The following is an example of inserting an XML language (ESIS-B format) value stored in embedded variable
bookinfo into BOOK_MANAGEMENT_TABLE.

Example of XML language (ESIS-B format) insertion
INSERT INTO BOOK_MANAGEMENT_TABLE
 VALUES (310494321, XML(:bookinfo AS BINARY(102400)))

Inserting XML language into a table or updating XML language in a table
Specify an XMLPARSE function as the insertion value of an INSERT statement or as the update value of an
UPDATE statement, and set the XML language in its argument.
The following is an example of inserting an XML language value stored in embedded variable bookdoc into
BOOK_MANAGEMENT_TABLE.

Example of XML language insertion
INSERT INTO BOOK_MANAGEMENT_TABLE
 VALUES (310494321, XMLPARSE(DOCUMENT :bookdoc AS BINARY(32000)))

(4) Index usage conditions
This section describes the two index usage conditions described in (2).

Substructure index usage conditions
When a substructure index is defined, the index is used when the substructure index usage conditions shown in the
following table are met.

Table 6‒4: Substructure index usage conditions

USING UNIQUE TAG
specified?

Where XQuery
specification is located

Operators or functions in
XQuery

Substructure index usage
conditions#

Yes XMLEXISTS predicate = (a) 1, 2, 3

(b) 1, 2, 5, 6, 7, 8, 9

!=, >, >=, <, <=, <>, eq, ne, gt,
ge, lt, le,

fn:contains,

fn:starts-with,

fn:ends-with

(a) 1, 2, 3

(b) 1, 2, 4, 6, 7, 8, 9

XMLQUERY function = (c) 1, 2, 3

No XMLEXISTS predicate = (a) 1, 2, 3

(b) 1, 3, 5, 6, 7, 8, 9

!=, >, >=, <, <=, <> (a) 1, 2, 3

(b) 1, 3, 4, 6, 7, 8, 9

fn:contains (a) 1, 2, 3

6. Creating Databases

165

USING UNIQUE TAG
specified?

Where XQuery
specification is located

Operators or functions in
XQuery

Substructure index usage
conditions#

fn:starts-with
fn:ends-with

(b) 1, 3, 4, 6, 7, 8, 10

XMLQUERY function = (c) 1, 2, 3

#
(a): Indicates the usage conditions common to substructure indexes and XML-type full-text search indexes, as described in
(a) below.
(b): Indicates the usage conditions of substructure indexes as described in (b) below.
(c): Indicates the usage conditions of substructure indexes pertaining to XQuery in the XMLQUERY function, as described in
(c) below.
The numbers refer to the item numbers in sections (a), (b), and (c) below.

XML-type full-text search index usage conditions
When an XML-type full-text search index is defined, the index is used when the usage conditions for XML -type
full-text search indexes shown in the following table are met.

Table 6‒5:  XML-type full-text search index usage conditions

Where XQuery
specification is located Operators or functions in XQuery Index usage conditions for XML-type full-text search#

XMLEXISTS predicate fn:contains

fn:starts-with

fn:ends-with

=

(a) 1, 2, 3

(d) 1, 2, 4, 5, 6, 7, 8

hi-fn:contains (a) 1, 2, 3

(d) 1, 3, 4, 5, 6, 7, 8

#
(a): Indicates the usage conditions common to substructure indexes and XML-type full-text search indexes, as described in
(a) below.
(d): Indicates the usage conditions for XML -type full-text search indexes, as described in (d) below.
The numbers refer to the item numbers in sections (a) and (d) below.

Operators and functions that can use multiple indexes
During a search with XQuery operators or functions that can use both substructure indexes and XML-type full-text
search indexes, the index used for evaluation is determined by the operator or function. The table below shows
which indexes are used with each operator or function.

Table 6‒6: Indexes used to evaluate operators and functions that can use multiple indexes

Item No. Operator or function Index used in evaluation

1 = Substructure index

2 fn:contains XML-type full-text search index

3 fn:starts-with Substructure index

4 fn:ends-with XML-type full-text search index

To specify the index to be used, specify SQL optimization for that index. For details, see SQL optimization
specification for a used index in the manual HiRDB Version 9 SQL Reference.

HiRDB might sometimes not use these indexes because of the estimated access cost. Use the access path display
utility (pdvwopt) to determine whether a search that uses an index will be conducted.

For predicates that can use substructure indexes or XML-type full-text search indexes that were specified within the
XQuery query of a XMLEXISTS predicate, only a maximum of 255 indexes can be used in evaluation.

6. Creating Databases

166

(a) Usage conditions common to substructure indexes and XML-type full-text search indexes

The following are usage conditions that are common to substructure indexes and XML-type full-text search indexes.

Indexes defined in the manner shown below are used in sample text.

create index idx1 on t1(c1) key using unique tag from '/root/elm1/@attr1' as
varchar(10)

1. Any XML query context item is specified in the XML query argument of a XMLEXISTS predicate.
Example
select c2 from t1
 where xmlexists('/root/elm1[@attr1 eq "ABC"]'
 passing by value c1,'DEF' as A)
Note: The underlined part is the XML query context item.

2. All context item expressions (periods) specified in the XQuery query of the XMLEXISTS predicate are specified
in the XQuery predicate.
Example
select c2 from t1
 where xmlexists('/root/elm1[./@attr1 eq "ABC"]' passing by value c1)
Note: The underlined part is the context item expression specified in the XQuery predicate.

3. All XQuery Boolean expressions (AND, OR) within the XQuery query of the XMLEXISTS predicate are specified
in the XQuery predicate.
Example
select c2 from t1
 where xmlexists('/root[elm1/@attr1 = "ABC" or elm1/@attr1 = "DEF"]'
 passing by value c1)
Note: The underlined part is the XQuery Boolean expression (OR) specified in the XQuery predicate.

(b) Usage conditions for substructure indexes pertaining to the XQuery of the XMLEXISTS predicate

The following are usage conditions for substructure indexes pertaining to the XQuery of the XMLEXISTS predicate.

Items 1, 2, and 4 to 9 use indexes defined as shown below in the sample text.

 create index idx1 on t1(c1) key using unique tag from '/root/elm1/@attr1' as
varchar(10)
 create index idx4 on t1(c1) key using unique tag from '/root/elm1/elm2' as
varchar(10)

Items 3 and 10 use indexes defined as shown in the following sample text.

 create index idx2 on t1(c1) key from '/root/elm1/@attr1' as varchar(10)
 create index idx5 on t1(c1) key from '/root/elm1/elm2' as varchar(10)

1. The index substructure specification matches the substructure path specified as a condition in the XQuery query of
the XMLEXISTS predicate.
Example
select c2 from t1
 where xmlexists('/root/elm1[@attr1 eq "ABC"]' passing by value c1)
Note: The underlined part is the matching substructure path.

2. If the substructure index has a USING UNIQUE TAG specification, it is compared to the substructure path
specified as a condition in the XQuery query of the XMLEXISTS predicate. This is done using a general
comparison, value comparison, fn:contains function, fn:starts-with function, or fn:ends-with
function.
Example
select c2 from t1
 where xmlexists('/root/elm1[@attr1 eq "ABC"]' passing by value c1)
Note: The underlined part is an XQuery comparison expression (value comparison).

6. Creating Databases

167

3. If the substructure index does not have a USING UNIQUE TAG specification, it is compared to the substructure
path specified as a condition in the XQuery query of the XMLEXISTS predicate. This is done using a general
comparison, fn:contains function, fn:starts-with function, or fn:ends-with function.
Example
select c2 from t1
 where xmlexists('/root/elm1[@attr1 = "ABC"]' passing by value c1)
Note: The underlined part is an XQuery comparison expression (general comparison).

4. The following describes the case with general or value comparisons separately from the case with
fn:contains, fn:starts-with, or fn:ends-with functions.
Using general or value comparisons
The items compared using a general or value comparison are the substructure path specified as a condition in the
XQuery query of the XMLEXISTS predicate, and a single XQuery constant or XQuery variable.
Example
select c2 from t1
 where xmlexists('/root/elm1[@attr1 >= "ABC"]' passing by value c1)
Note: The underlined part compares the substructure path to an XQuery constant.
Using the fn:contains, fn:starts-with, or fn:ends-with functions
The first argument of the fn:contains, fn:starts-with, or fn:ends-with function is the substructure
path specified as a condition in the XQuery query of the XMLEXISTS predicate, while the second argument is a
single XQuery constant or XQuery variable.
Example
select c2 from t1
 where xmlexists('/root/elm1[fn:starts-with(@attr1,"ABC")]' passing by
value c1)
Note: The underlined part compares a substructure path and an XQuery constant.

5. Comparisons with = compare the substructure path, specified as a condition in the XQuery query of the
XMLEXISTS predicate, to an XQuery sequence concatenation expression comprised of an XQuery constant or
XQuery variable at or below the specification of the system common definition pd_apply_search_ats_num
operand.
Example
select c2 from t1
 where xmlexists('/root/elm1[@attr1 = ("ABC","DEF","GHI")]'
 passing by value c1)
Note: The underlined part is an XQuery sequence concatenation expression comprised of an XQuery constant at
or below the specification of the system common definition pd_apply_search_ats_num operand.

6. The data type of the key value specified when the substructure index was defined is the same as, or can be
converted to, the data type of the XQuery constant or the value expression passed to the XQuery variable in the
XQuery query that is compared to the substructure path specified as a condition in the XQuery query of the
XMLEXISTS predicate.
Example
select c2 from t1
 where xmlexists('/root/elm1[@attr1 = "ABC"]' passing by value c1)
Note: The underlined part is string type data that is the same as the VARCHAR type that is the data type of the
key value.

7. The XQuery Boolean expression (OR) operand specified in the XQuery query of the XMLEXISTS predicate
contains only the condition that allows use of substructure indexes.
Example
select c2 from t1
 where xmlexists('/root[elm1/@attr1 = "ABC" or elm1/@attr1 = "DEF"]'
 passing by value c1)
Note: The underlined part is the condition that allows use of all substructure indexes.

8. If an XQuery variable was specified as a condition in items 4 or 5 as the value compared with the substructure
path, the value expression passed to that XQuery variable is one of the following:

• Constant

6. Creating Databases

168

• USER value function

• CAST specification whose value expression is a dynamic parameter, an SQL parameter, or an SQL variable

• Scalar subquery that does not make an external reference

Example 1
select c2 from t1
 where xmlexists('/root/elm1[@attr1 eq $A]'
 passing by value c1,'ABC' as A)
Note: The underlined part is the value expression passed to an XQuery variable in an XQuery query (constant).
Example 2
select c2 from t1
 where xmlexists('/root/elm1[@attr1 eq $A]'
 passing by value c1,cast(? as varchar(256)) as A)
Note: The underlined portion is the value expression passed to the XQuery variable in an XQuery query (CAST
specification whose value expression is a dynamic parameter, an SQL parameter, or an SQL variable).

9. The substructure path that is compared using a value or general comparison is specified in the following format.
Alternatively, the substructure index has a USING UNIQUE TAG specification, and the substructure path that
includes the first argument of the fn:contains, fn:starts-with, or fn:ends-with function is
specified in the following format.
substructure-path:: = [XML-namespace-declaration]... substructure-path-
expression
XML-namespace-declaration::={declare namespace prefix = XML-namespace-URI;
 | declare default element namespace XML-namespace-URI;}
substructure-path-expression:: = [/step-expression...]/step-expression
step-expression:: = {[{child:: | attribute:: | @ }] qualifier-name |
context-item-expression}
context-item-expression:: = period
period::= .
qualifier-name:: = [prefix:]local-name
Example using value or general comparison
The following three examples use value comparisons or general comparisons. In these examples, the index is used
even when another value comparison or general comparison is specified in the value comparison operator eq. See
items 2 and 3 for index usage conditions pertaining to whether USING UNIQUE TAG has been specified.
Example 1: @ or attribute:: and a qualifier name are specified in a step expression (@ and attribute::
have the same meaning).
select c2 from t1
 where xmlexists('/root/child::elm1[@attr1 eq "ABC"]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.
Example 2: child:: is specified in a step expression, or child:: is not specified and a qualifier name is
specified.
select c2 from t1
 where xmlexists('/root/child::elm1[child::elm2 eq "ABC"]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.
Example 3: A context item expression is specified in a step expression (only when usage condition 2 applies to the
value comparison).
select c2 from t1
 where xmlexists('/root/child::elm1/elm2[. eq "ABC"]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.
Examples using XQuery functions
The following examples, 4 through 6, use XQuery functions. In these examples, the index is used even when an
XQuery function other than fn:starts-with is specified.
Example 4: @ or attribute:: and a qualifier name are specified in a step expression (@ and attribute::
have the same meaning).

6. Creating Databases

169

select c2 from t1
 where xmlexists('/root/elm1[fn:starts-with(@attr1 ,"ABC")]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.
Example 5: child:: is specified in a step expression, or child:: is not specified and a qualifier name is
specified.
select c2 from t1
 where xmlexists('/root/elm1[fn:starts-with(elm2 ,"ABC")]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.
Example 6: A context item expression is specified in a step expression.
select c2 from t1
 where xmlexists('/root/elm1/@attr1[fn:starts-with(. ,"ABC")]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.

10. With a substructure index that has no USING UNIQUE TAG specification, the substructure path that contains the
first argument of the fn:contains, fn:starts-with, or fn:ends-with function is specified in the
following format. The first argument is also specified in the following step expression end format.
substructure-path:: = [XML-namespace-declaration]... substructure-path-
expression
XML-namespace-declaration::={declare namespace prefix = XML-namespace-URI;
 | declare default element namespace XML-namespace-URI;}
substructure-path-expression:: = [/step-expression...]/step-expression-end
step-expression:: = {[{child:: | attribute:: | @ }] qualifier-name |
context-item-expression}
step-expression-end:: = {{attribute:: | @ } qualifier-name | context-item-
expression}
context-item-expression:: = period
period::= .
qualifier-name:: = [prefix:]local-name
In the following examples, the index is used even when another XQuery function is specified in the
fn:starts-with function.
Example 1: @ or attribute:: and a qualifier name are specified in a step expression end (@ and
attribute:: have the same meaning).
select c2 from t1
 where xmlexists('/root/elm1[fn:starts-with(@attr1 ,"ABC")]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.
Example 2: A context item expression is specified in a step expression end.
select c2 from t1
 where xmlexists('/root/elm1/@attr1[fn:starts-with(. ,"ABC")]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.

(c) Usage conditions for substructure indexes pertaining to the XQuery of the XMLQUERY function

This section shows usage conditions for substructure indexes pertaining to the XQuery of the XMLQUERY function.

An index defined as follows is used in the examples of items 1 and 2.

 create index idx1 on t1(c1) key using unique tag from '/root/elm1' as
varchar(10)

1. The SQL code fulfills all the following conditions.

• It is a SELECT statement or code from an INSERT statement to a SELECT statement.

• There is a single main query SELECT expression.

• That main query SELECT expression is XMLQUERY (the XMLSERIALIZE argument can be XMLQUERY).

• That XMLQUERY XML query argument is a single XML query variable, and the value expression passed to
the variable is XMLAGG.

6. Creating Databases

170

• The XMLAGG argument specified in that XML query variable is an independent column specification.

• The code specifies no table join.

• The code specifies no set operation.

• The code specifies no subqueries.

• The code specifies no set function.

• The code specifies no GROUP BY clause.

• The code specifies no HAVING clause.

• The code specifies a WHERE clause, but specifies AND 255 times or fewer.

See example 2 for SQL examples.

2. The XQuery specified in the XMLQUERY function satisfies all the following conditions.
a. It is a path expression that uses an XML query variable as a route.
b. There is only one XQuery predicate specification at the outermost level.
c. A comparison is performed between the predicate of b. and =, using a general comparison.
d. The comparison of c. is a path expression comparison whose route is an XML column specific substructure and
an XQuery variable.
Example
select xmlserialize(xmlquery('$VAR1/root[elm1 = $VAR1/root[elm2 = "ABC"]/
elm1]/elm1'
 passing by value xmlagg(c1) as VAR1 empty on empty) as varchar(32000))
from t1
Note: The underlined part is the location that matches the above conditions.

3. A substructure index is defined with the same data type as the path expression in 2d. whose route is an XML
column specific substructure and an XQuery variable (these indexes can be identical).

(d) Usage conditions for XML-type full-text search indexes

The following are usage conditions for XML -type full-text search indexes.

1. A full-text search index is defined in the XML type column that is the search target.
Example
create index idx3 using type ixxml on t2(c1) in (LOB1)

2. The substructure path that contains the first argument of the fn:contains, fn:starts-with, or
fn:ends-with function is specified in the following format. The first argument is specified in the following
text step expression end or attribute step expression end format. Alternatively, the substructure path that is the
subject of an = comparison is specified in the following format, and the substructure path specified in the XQuery
predicate is specified in the following text step expression end or attribute step expression end format.
substructure-path:: = [XML-namespace-declaration]... substructure-path-
expression
XML-namespace-declaration:: = {declare default element namespace
 "http://www.w3.org/XML/1998/namespace";
 |declare namespace prefix = XML-namespace-URI;#
 |declare default element namespace XML-namespace-URI;#}
substructure-path-expression:: = [{/ | //#}step-expression ...]
 {/ | //#}{text-step-expression | attribute-step-expression-end}
step-expression:: = {[child::] name-test | context-item-expression}
text-step-expression:: = [{child::|descendant::}]text-test
 /text-step-expression-end
text-step-expression-end:: = context-item-expression
attribute-step-expression-end:: = {{attribute:: | @} name-test
 | [{attribute:: | @}] attribute-test}
context-item-expression:: = period
period:: = .
name-test:: = {qualifier-name|*#|prefix:*#|*:local-name#}
qualifier-name:: = [prefix:]local-name
#: Can be specified if the HiRDB XML Extension version is 08-04 or later.
The index is used even if another XQuery function is specified in the fn:contains function in the following
example.

6. Creating Databases

171

Example 1: @ or attribute:: and a name test are specified in the first argument (@ and attribute:: have
the same meaning).
select c2 from t2
 where xmlexists('/root/child::elm1[fn:contains(@attr1,"ABC")]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.
Example 2: @ or attribute:: and an attribute test are specified in the first argument (@ and attribute::
have the same meaning).
select c2 from t2
 where xmlexists('/root/child::elm1[fn:contains(@attribute(),"ABC")]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.
Example 3: Only an attribute test is specified in the first argument.
select c2 from t2
 where xmlexists('/root/child::elm1[fn:contains(attribute(),"ABC")]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.
Example 4: A context item expression is specified in the first argument.
select c2 from t2
 where xmlexists('/root/child::elm1/text()[fn:contains(. ,"ABC")]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.

3. The substructure path that contains the first argument of the hi-fn:contains function is specified in the
following format. The first argument is also specified in the text step expression, text step expression end, or
attribute step expression end format shown below. Also, the version of HiRDB XML Extension is 08-04 or later.
substructure-path:: = [XML-namespace-declaration]... substructure-path-
expression
XML-namespace-declaration:: = {declare namespace prefix = XML-namespace-URI;
 |declare default element namespace XML-namespace-URI;}
substructure-path-expression:: = [{/ | //}step-expression ...]
 {/ | //}{text-step-expression | attribute-step-expression-end}
step-expression:: = {[child::] name-test | context-item-expression}
text-step-expression:: = [{child::|descendant::}]text-test
 [/text-step-expression-end]
text-step-expression-end:: = context-item-expression
attribute-step-expression-end:: = {{attribute:: | @} name-test
 | [{attribute:: | @}] attribute-test}
context-item-expression:: = period
period:: = .
name-test:: = {qualifier-name | * | prefix:* | *:local-name}
qualifier-name:: = [prefix:]local-name
Example 1: A text test is specified in the first argument.
select c2 from t2
 where xmlexists('/root/elm1[hi-fn:contains(text(),"""ABC AND DEF""")]'
 passing by value c1)

select c2 from t2
 where xmlexists('/root/elm1[hi-fn:contains(descendant::text(),"""ABC AND
DEF""")]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.
Example 2: A text test and a context item expression are specified in the first argument.
select c2 from t2
 where xmlexists('/root/elm1[hi-fn:contains(text()/.,"""ABC AND DEF""")]'
 passing by value c1)

select c2 from t2
 where xmlexists('/root/elm1[hi-fn:contains(descendant::text()/.,"""ABC
AND DEF""")]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.
Example 3: A context item expression is specified in the first argument.

6. Creating Databases

172

select c2 from t2
 where xmlexists('/root/elm1/text()[hi-fn:contains(. ,"""ABC AND DEF""")]'
 passing by value c1)

select c2 from t2
 where xmlexists('/root/elm1/ descendant::text()[hi-fn:contains(. ,"""ABC
AND DEF""")]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.
Example 4: @ or attribute:: and a name test are specified in the first argument (@ and attribute:: have
the same meaning).
select c2 from t2
 where xmlexists('/root/elm1[hi-fn:contains(@attr1,"""ABC AND DEF""")]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.
Example 5: @ or attribute:: and an attribute test are specified in the first argument (@ and attribute::
have the same meaning).
select c2 from t2
 where xmlexists('/root/elm1[hi-fn:contains(@attribute(),"""ABC AND
DEF""")]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.
Example 6: Only an attribute test is specified in the first argument.
select c2 from t2
 where xmlexists('/root/elm1[hi-fn:contains(attribute(),"""ABC AND
DEF""")]'
 passing by value c1)
Note: The underlined part is the substructure path that matches the above format.

4. The length of the character string specified in the XQuery query of the XMLEXISTS predicate is 32,000 bytes or
less.
Example
select c2 from t2
 where xmlexists('/root/elm1[fn:contains(@attr1,"ABCDEF")]'
 passing by value c1)
Note: The underlined part is a character string of 32,000 bytes or less.

5. The value compared to the substructure path specified in the format of 2 or 3 is a character string XQuery
constant.
Example
select c2 from t2
 where xmlexists('/root/child::elm1[fn:contains(@attr1,"ABC")]'
 passing by value c1)
Note: The underlined part is the character string XQuery constant.

6. The sum of the length of the /, //, @, and local name specified in the substructure path expression of the XQuery
query of the XMLEXISTS predicate (except when the first character of the substructure path expression is /) is
1,024 bytes or less.
Example
select c2 from t2
 where xmlexists('/root/elm1[fn:contains(@attr1,"ABCDEF")]'
 passing by value c1)
Note: The underlined part is a substructure path expression of 1,024 bytes or less.

7. There is no more than one // specified in the substructure path expression specified in the XQuery query of the
XMLEXISTS predicate.
Example
select c2 from t2
 where xmlexists('/root/elm1[fn:contains(@attr1,"ABCDEF")]'
 passing by value c1)
Note: The underlined part is the substructure path expression with no more than one // specification.

6. Creating Databases

173

8. None of the following plug-in options has been specified in the full-text search index defined in the XML type
column that is the search target.

• DELcode=file-name

• NOindex=file-name

• ENGLISH
• ENGLISH_STANDARD

For details about plug-in options, see the manual HiRDB Version 9 XML Extension.
Example
create index idx6 using type ixxml on t2(c1) in (LOB1)
PLUGIN'SAMECASE=ON,SAMEWIDE=ON,SAMEY=ON,SAMED=ON,DELcode=ON'
Note: The underlined part is the full-text search index that specified only options that can use the index.

(e) If no index is used

In the following situations, no substructure index or XML-type full-text search index is used.

In items 1 and 3 below, an index defined as follows is used in the examples.

 create index idx1 on t1(c1) key using unique tag from '/root/elm1/@attr1' as
varchar(10)

In items 2 and 4 below, an index defined as follows is used in the examples.

 create index idx3 using type ixxml on t2(c1) in (LOB1)

1. If an XQuery that evaluates whether '/root[elm1/@attr1' is "ABC" or "DEF" is specified in the XQuery
query of the XMLEXISTS predicate
In the following examples, not all of the XQuery Boolean expressions (AND, OR) in the XQuery query of the
XMLEXISTS predicate are specified in the XQuery predicate. Consequently, no index is used. With this
specification method, XQuery Boolean expressions are not specified directly in the XQuery query of the
XMLEXISTS predicate argument (except within the XQuery predicate), so the XQuery query result will always be
a Boolean value of TRUE or FALSE. For this reason, the XQuery query result is not a NULL sequence, so the
XMLEXISTS predicate result is always TRUE and will not be the intended result (the XMLEXISTS predicate is
only FALSE when the XQuery query result is a NULL sequence; otherwise, it is TRUE).
Example: Before change
select c2 from t1
 where xmlexists('/root[elm1/@attr1 = "ABC"] or /root[elm1/@attr1 = "DEF"]'
 passing by value c1)
Note: The underlined part is the XQuery Boolean expression (OR) not specified in the XQuery predicate.
If the index is changed as follows, it will be used.
Example: After change
select c2 from t1
 where xmlexists('/root[elm1/@attr1 = "ABC" or elm1/@attr1 = "DEF"]'
 passing by value c1)
Note: The underlined part is the XQuery Boolean expression (OR) specified in the XQuery predicate.

2. When an XQuery that searches text nodes under '/root/elm1' is specified in an XQuery query of an
XMLEXISTS predicate
In the following example, the text step expression end of the substructure path that includes the first argument of
the contains function does not match the format shown in item 2 of (4)(c), so the index is not used.
Example: Before change
select c2 from t2
 where xmlexists('/root[fn:contains(elm1/text(),"ABC")]' passing by value
c1)
Note: The underlined part is a substructure path that does not match the format shown in item 2 of (4)(c).
If the index is changed as follows, it will be used.
Example: After change

6. Creating Databases

174

select c2 from t2
 where xmlexists('/root/elm1/text()[fn:contains(. ,"ABC")]'
 passing by value c1)
Note: The underlined part is a substructure path that matches the format shown in item 2 of (4)(c).

3. If an XQuery that evaluates whether '/root/elm1/@attr1/' is "ABC" is specified in the XQuery query of
the XMLEXISTS predicate
In the following example, the substructure path expression of the substructure path specified as a condition in the
XQuery query of the XMLEXISTS predicate does not match the format shown in item 9 of (4)(b). Consequently,
no index is used.
Example: Before change
select c2 from t1
 where xmlexists('$A/root/elm1[@attr1 eq "ABC"]'
 passing by value c1,c1 as A)
Note: The underlined part is a substructure path that does not match the format shown in item 9 of (4)(b).
If the index is changed as follows, it will be used.
Example: After change
select c2 from t1
 where xmlexists('/root/elm1[@attr1 eq "ABC"]'
 passing by value c1,c1 as A)
Note: The underlined part is a substructure path that matches the format shown in item 9 of (4)(b).

4. If many XMLEXISTS predicates are joined by Boolean operators (OR, AND)
Due to calculated access costs, HiRDB judges that not using the index is the optimal access path, and the index is
not used to evaluate XMLEXISTS predicates. If the hi-fn:contains function was specified, an evaluation by
the index alone is impossible, so an SQL error results.
Example: Before change
select c2 from t2
 where xmlexists('/root/elm1[hi-fn:contains(text(),"""01ABC""")]'
 passing by value c1)
 or xmlexists('/root/elm1[hi-fn:contains(text(),"""02ABC""")]'
 passing by value c1)
 ...(Omitted)...
 or xmlexists('/root/elm1[hi-fn:contains(text(),"""30ABC""")]'
 passing by value c1)
Note: The underlined part is the condition that specifies 30 XMLEXISTS predicates that use the index if they are
specified alone.
When the used index specifies SQL optimization as shown below, the index is used.
Example: After change
select c2 from t2 with index(idx3,idx3)
 where xmlexists('/root/elm1[hi-fn:contains(text(),"""01ABC""")]'
 passing by value c1)
 or xmlexists('/root/elm1[hi-fn:contains(text(),"""02ABC""")]'
 passing by value c1)
 ...(Omitted)...
 or xmlexists('/root/elm1[hi-fn:contains(text(),"""30ABC""")]'
 passing by value c1)
Note: The underlined part is an index SQL optimization specification that specifies an index of the type required
for execution using multiple indexes.

6. Creating Databases

175

6.5 Creating a table containing a user-defined abstract
data type

6.5.1 Defining an abstract data type
The user can use an abstract data type and routines to define and use any desired data type with a complicated
structure and a desired data manipulation method.

(1) Definition method
The CREATE TYPE definition SQL is used to define a data type with a desired structure (an abstract data type).
CREATE TYPE defines a data structure and a data manipulation method. This section explains how to define the
abstract data type t_EMPLOYEE with the data structure shown below and then define a data manipulation method as a
function:

Data structure
The data consists of NAME, SEX, POSITION, EMPLOYMENT_DATE, ID_PHOTO, and SALARY.

Data manipulation

• Calculate SERVICE_YEARS from the current date and EMPLOYMENT_DATE.
• Calculate BONUS_FACTOR according to SERVICE_YEARS.

• Calculate the employee's bonus by multiplying SALARY times BONUS_FACTOR.

Example
CREATE TYPE t_EMPLOYEE (1.
 PUBLIC NAME NCHAR(16),
 SEX CHAR(1),
 POSITION NCHAR(10),
 PRIVATE EMPLOYMENT_DATE date, 2.
 PUBLIC ID_PHOTO BLOB(64K),
 PROTECTED SALARY INTEGER, 3.

 PUBLIC FUNCTION t_EMPLOYEE (p_NAME NCHAR(16), 4.
 p_SEX CHAR(1),
 p_POSITION NCHAR(10),
 p_EMPLOYMENT_DATE date,
 p_ID_PHOTO BLOB(64K),
 p_SALARY INTEGER)
 RETURNS t_EMPLOYEE
 BEGIN
 DECLARE d_EMPLOYEE t_EMPLOYEE; 5.
 SET d_EMPLOYEE=t_EMPLOYEE (); 6.
 SET d_EMPLOYEE..NAME=p_NAME; 7.
 SET d_EMPLOYEE..SEX=p_SEX; 7.
 SET d_EMPLOYEE..POSITION=p_POSITION; 7.
 SET d_EMPLOYEE..EMPLOYMENT_DATE
 =p_EMPLOYMENT_DATE; 7.
 SET d_EMPLOYEE..ID_PHOTO =p_ID_PHOTO; 7.
 SET d_EMPLOYEE..SALARY=p_SALARY; 7.
 RETURN d_EMPLOYEE; 8.
 END,

PUBLIC FUNCTION SERVICE_YEARS (p t_EMPLOYEE)
RETURNS INTEGER 9.
 BEGIN
 DECLARE working_years INTERVAL YEAR TO DAY;
 SET working_years=CURRENT_DATE - p.. EMPLOYMENT_DATE;
 RETURN YEAR(working_years);
 END,

PROTECTED FUNCTION BONUS_FACTOR (p t_EMPLOYEE)
RETURNS FLOAT 10.
 BEGIN
 DECLARE rate FLOAT;

6. Creating Databases

176

 SET rate=SERVICE_YEARS (p)*0.2/30;
 RETURN rate;
 END,

 PUBLIC FUNCTION BONUS (p t_EMPLOYEE)
 RETURNS INTEGER 11.
 BEGIN
 DECLARE bonus INTEGER;
 SET bonus=p..SALARY*BONUS_FACTOR (p);
 RETURN bonus;
 END
)

Explanation:

1. Defines the data structure. This example defines abstract data type t_employee.

2. Attribute EMPLOYMENT_DATE of the t_EMPLOYEE type is used to access the bonus. Encapsulation level
PRIVATE is specified for this attribute, because there is no need to reference or modify it directly from the
outside. For details about the encapsulation level, see 12.17 Table containing an abstract data type.

3. Attribute SALARY of the t_EMPLOYEE type is used to calculate the bonus. This attribute also need not be
referenced or modified directly from the outside. However, encapsulation level PROTECTED is specified for this
attribute because its subtype is commonly referenced. For details about the encapsulation level, see 12.17 Table
containing an abstract data type.

4. Defines a user-defined constructor function.

5. Generates a value (instance) and declares an SQL variable to be used as the function's return value with the
t_EMPLOYEE type.

6. Uses the system-provided default constructor function to generate a value (instance) whose attributes are all
NULL. The default constructor function has the same name as the t_EMPLOYEE type with no argument

7. For the value specified in item 6 above, assign the value of each attribute using an assignment statement
specifying the component. The assignment statement can be used to set the value obtained from the constructor
function's argument or to set the data processed using that value.

8. The RETURN statement returns a newly generated value (instance). The data type of the return value must be
t_EMPLOYEE, because the constructor function has the same name as the abstract data type and the type is
determined by the RETURNS clause.

9. This is a data manipulation function. It returns the employee's SERVICE_YEARS. This value is calculated from
the current date and EMPLOYMENT_DATE. This function accesses the EMPLOYMENT_DATE attribute for which
PRIVATE is specified as the encapsulation level.

10. This is another data manipulation function. It returns the employee's BONUS_FACTOR. SERVICE_YEARS is
used to calculate this value.

11. This is another data manipulation function. It returns the employee's BONUS. This value depends on
SERVICE_YEARS and is obtained by multiplying SALARY by BONUS_FACTOR.

(2) Definition method using inheritance
Following is an example of defining the subtype t_OPERATOR with the supertype being the t_EMPLOYEE abstract
data type:

Example

CREATE TYPE
 CREATE TYPE t_OPERATOR UNDER t_EMPLOYEE
 (PUBLIC CHARGE_CLIENT NCHAR(15),
 PUBLIC FUNCTION BONUS (p t_OPERATOR) RETURNS INTEGER
 BEGIN
 DECLARE salebonus INTEGER;
 SET salebonus=TOTAL_CLIENTS (...)*1000+P..SALARY*BONUS (p);
 RETURN salebonus;
 END
)

6. Creating Databases

177

(3) Null value for the abstract data type
If values are specified with the INSERT data manipulation SQL, the values for the entire abstract data type are set to
null.

(4) Procedure for deleting the subtype of an abstract data type
If an abstract data type is not specified directly in the table definition, but its parent abstract data type (supertype) is
specified as a column type, then the value of the abstract data type (subtype) may have been stored in the table due to
substitutability. Care must be taken when an abstract data type (subtype) is deleted.

The procedure for deleting a subtype is described as follows, based on a table containing an abstract data type using
substitutability, as shown in the following figure.

Figure 6‒7: Example of table containing abstract data type using substitutability

1. Delete STAFF_TABLE.

2. Delete subtype t_OPERATOR of t_EMPLOYEE.

3. Delete t_EMPLOYEE.

4. Delete subtype t_A_COMPANY_STAFF of t_A_COMPANY_STAFF.

5. Delete t_A_COMPANY_STAFF.

See (5) as follows for the subtypes of the abstract data type that cannot be deleted.

(5) Notes

1. If a constructor function is used to generate values, the abstract data type as a whole is not null, even if the value
of each attribute constituting the abstract data type is null.

2. If an abstract data type and its supertype are defined in a table, the abstract data type's subtypes cannot be deleted.

3. If an abstract data type and its supertype are specified as attributes of another abstract data type, the abstract data
type's subtypes cannot be deleted.

4. When a subtype is defined and the parent of the data type being created is one of the following, the corresponding
stored procedure and stored function become invalid:

• Data type specified in the SQL parameter of the stored procedure and stored function.

• Data type of the function's return value.

• Data type of the argument and return value of the function that is invoked from the stored procedure and
stored function.

• Data type specified in the stored procedure and stored function (including any intermediate data type if the
abstract data type is accessed with a component specified).

6. Creating Databases

178

6.5.2 Defining a table
The RDAREA storage unit depends on the data type of the columns that constitute the table. The explanations below
are based on the example of a STAFF_TABLE table that consists of EMPLOYEE_NUMBER, DOCUMENT_DATA (LOB
data), and abstract data type t_EMPLOYEE. For a table containing abstract data type columns, the portion without the
abstract data type columns is called the abstract data type column structure base table.

Explanation:
STAFF_TABLE is divided among and stored in user RDAREAs RDAREA01 and RDAREA02 on disks A and B,
respectively. DOCUMENT_DATA of this STAFF_TABLE (LOB column) is stored in user LOB RDAREAs
LOBAREA01 and LOBAREA02, and the abstract data type (LOB attribute) ID_PHOTO is stored in user LOB
RDAREAs LOBAREA03 and LOBAREA04.

(1) Key range partitioning
Specification of storage conditions:

CREATE TABLE STAFF_TABLE
(EMPLOYEE_NUMBER CHAR(6),
 DOCUMENT_DATA BLOB(64K) IN ((LOBAREA01),(LOBAREA02)),
 EMPLOYEE t_EMPLOYEE ALLOCATE(ID_PHOTO
 IN ((LOBAREA03),(LOBAREA04)))
)IN ((RDAREA01)EMPLOYEE_NUMBER<=700000,(RDAREA02));

Specification of boundary value:

CREATE TABLE STAFF_TABLE
(EMPLOYEE_NUMBER CHAR(6),
 DOCUMENT_DATA BLOB(64K) IN ((LOBAREA01),(LOBAREA02)),
 EMPLOYEE t_EMPLOYEE ALLOCATE(ID_PHOTO
 IN ((LOBAREA03),(LOBAREA04)))
)PARTITIONED BY EMPLOYEE_NUMBER
 IN ((RDAREA01)800000,(RDAREA02));

6. Creating Databases

179

(2) Flexible hash partitioning or FIX hash partitioning

CREATE TABLE STAFF_TABLE
(EMPLOYEE_NUMBER CHAR(6),
 DOCUMENT_DATA BLOB(64K) IN ((LOBAREA01),(LOBAREA02)),
 EMPLOYEE t_EMPLOYEE ALLOCATE(ID_PHOTO
 IN ((LOBAREA03),(LOBAREA04)))
)[FIX]# HASH HASH6 BY EMPLOYEE_NUMBER
 IN (RDAREA01,RDAREA02);

#: This specification is applicable to FIX hash partitioning.

6.5.3 Defining an index
This example defines an index for the EMPLOYEE_NUMBER column. Note that you cannot define an index for an
abstract data type column.

Example
CREATE INDEX INDX1 ON STAFF_TABLE (EMPLOYEE_NUMBER)
 IN ((RDAREA03),(RDAREA04));

Explanation:
For the row-partitioned STAFF_TABLE, partitioning key index INDX1 is divided and stored in user RDAREAs
RDAREA03 and RDAREA04. EMPLOYEE_NUMBER is specified for the columns that constitute the INDX1 index.

6.5.4 Storing data in a table
To store data in a table containing a user-defined abstract data type, use the INSERT statement of the data
manipulation SQL. You cannot use the database load utility (pdload) to load this data. To insert data, use the
INSERT statement to insert a value that is generated by a defined function. The following figure shows the procedure
for inserting data into a table that contains an abstract data type column.

6. Creating Databases

180

Figure 6‒8: Procedure for inserting data in a table that contains an abstract data type column

6.5.5 Database update log acquisition methods

(1) Database update log acquisition methods
There are three database update log acquisition methods:

1. Log acquisition mode
This mode acquires a database update log required for rollback and rollforward. It is used to create additional data
or to reorganize data when there are not many data items.

2. Pre-update log acquisition mode
This method acquires only the database update log required for rollback. It is used to create, add, or reorganize
data when there are many data items.

3. No-log mode

6. Creating Databases

181

This mode does not acquire a database update log. It is used to create or reorganize data when there is only one
table per RDAREA (if the table is partitioned, only one row-partitioned table per RDAREA) and any related index
is also placed in one RDAREA.

(2) Specification of the database update log acquisition method
There are two ways to specify the database update log acquisition method:

• With PDDBLOG in the client environment definition#1

• With the RECOVERY operand of CREATE TABLE#2

#1: This way is used to specify the database update log acquisition method for a UAP that updates user RDAREAs.

#2: This way is used to specify the database update log acquisition method for a UAP that updates user LOB
RDAREAs.

Note
The database update log acquisition method for user LOB RDAREAs (RECOVERY operand of CREATE TABLE)
may depend on a specification in the client environment definition, as explained in the following table.

Table 6‒7: Database update log acquisition method for user LOB RDAREAs depending on a
specification in the client environment definition

Client environment definition
PDDBLOG

RECOVERY operand value in CREATE TABLE

ALL PARTIAL NO

ALL ALL PARTIAL NO

NO NO NO NO

ALL: Log acquisition mode

PARTIAL: Pre-update log acquisition mode

NO: No-log mode

For example, if PARTIAL is specified in the RECOVERY operand of CREATE TABLE and the log acquisition method
is set to NO in the client environment definition, then NO (no-log mode) is set for the user LOB RDAREAs.

6.5.6 Checking the data storage status
When data is inserted into a table containing an abstract data type column, the database condition analysis utility
(pddbst) should be executed first to check the data storage status. This utility can check whether the database has
been created exactly as designed.

The database condition analysis utility (pddbst) can obtain information about the data storage status (physical
analysis only) of each RDAREA.

6. Creating Databases

182

6.6 Handling errors during batch index creation
If an error occurs during batch index creation, data may have been stored successfully in the table, but the index may
not have been created. This section explains the procedure for recovering from such a situation. The following figure
shows the status of the index in the event of an error during batch index creation using the database load utility
(pdload).

Figure 6‒9: Status of index in the event of an error during batch index creation by database load utility
(pdload)

6.6.1 When data was loaded in log acquisition mode or pre-update log
acquisition mode

This section explains the procedure for handling errors that may occur during data loading in the log acquisition mode
or pre-log acquisition mode.

If the table has a plug-in index, this procedure assumes that the applicable plug-in provides the batch plug-in index
creation partial recovery facility. If your plug-in does not have the batch plug-in index creation partial recovery
facility, see 6.6.2 When data was loaded in no-log mode.

Restore the index storage RDAREAs according to the cause of error. The following shows the procedure:

(1) Error due to shortage of space in index storage RDAREA

1. Expand the index storage RDAREA.

2. Create the index. Use the index information file created by the database load utility (pdload) to create the index
in the batch mode.

6. Creating Databases

183

If the index information file created by the database load utility (pdload) is not available, re-create the index
with the database reorganization utility (pdrorg).

(2) Sorting error (message KFPL15062-E is output) or an error due to forced termination of
the utility by the pdcancel command

1. Create the index. Use the index information file created by the database load utility (pdload) to create the index
in the batch mode.

If the index information file created by the database load utility (pdload) is not available, re-create the index
with the database reorganization utility (pdrorg).

6. Creating Databases

184

(3) Error due to a disk failure

1. Replace the faulty disk and use a backup copy to restore the status before the utility executed. To prevent accesses,
place the RDAREAs in shutdown status until the index storage executed in step 2 has been completed.

2. Re-create the index with the database reorganization utility (pdrorg).

6.6.2 When data was loaded in no-log mode
This section explains the procedure for handling errors that may occur during data loading in no-log mode or when
your plug-in does not provide the batch plug-in index creation partial recovery facility.

Restore the index storage RDAREAs according to the cause of error. The following shows the procedure:

(1) Error due to shortage of space in index storage RDAREA

1. Reinitialize the index storage RDAREA.
You can also recover from a backup. In such a case, until index storage has been completed, place the RDAREA
in shutdown status in order to prevent accesses. In the following case, recovery must be performed using a
backup:

• The relevant index is stored in an RDAREA with different tables, indexes, or falsification prevented tables.

6. Creating Databases

185

2. Expand the index storage RDAREA.

3. Re-create the index with the database reorganization utility (pdrorg).

(2) Sorting error (message KFPL15062-E is output) or an error due to forced termination of
the utility by the pdcancel command

1. Reinitialize the index storage RDAREA.
You can also recover from a backup. In such a case, until index storage has been completed, place the RDAREA
in shutdown status in order to prevent accesses. In the following case, recovery must be performed using a
backup:

• The relevant index is stored in an RDAREA with different tables, indexes, or falsification prevented tables.

2. Re-create the index with the database reorganization utility (pdrorg).

6. Creating Databases

186

(3) Error due to a disk failure

1. Replace the faulty disk and use a backup copy to restore the status before the utility executed.

2. Re-create the index with the database reorganization utility (pdrorg).

6. Creating Databases

187

6.7 Handling utility abnormal termination errors during
data loading with the synchronization point
specification

This section describes the error handling procedure in the event the database load utility terminates abnormally during
data loading with the synchronization point specification.

6.7.1 Overview of error handling procedure
The procedure depends on the abnormal termination timing. The following figure shows the error handling procedure
in the event of abnormal termination of a utility during data loading with synchronization point specification.

Figure 6‒10: Error handling procedure in the event of abnormal termination of a utility during data loading
with the synchronization point specification

Explanation:

• The total number of entries subject to data loading is three million with one million line numbers with
synchronization points.

• If the utility terminates abnormally in step 1, 3, or 5, reexecute data loading.

• If the utility terminates abnormally in step 2 or 4, re-create the plug-in index using the database reorganization
utility's batch index creation facility (-k ixmk), and then reexecute data loading.

• If the utility terminates abnormally in step 6, re-create the plug-in index using the database reorganization
utility's batch index creation facility (-k ixmk), and then create the B-tree index using the database
reorganization utility's index re-creation facility (-k ixrc).

6. Creating Databases

188

• If the utility terminates abnormally in step 7 and an index information file has already been created (the
KFPL00710-I message is output), create the B-tree index using the database reorganization utility's batch
index creation facility (-k ixmk). If the index information file has not been created, create the B-tree index
using the database reorganization utility's index re-creation facility (-k ixrc).

6.7.2 Example
This example assumes that the database load utility terminated while loading three million entries of data in the batch
index creation mode with one million line numbers with synchronization points.

(1) Checking the messages
The following messages are output:

KFPL00800-I Loading until 2000000th row committed

KFPL00710-I Index information file assigned, index=k87m271."INDX01",
RDAREA="LOB02", file=/pdrorg/INDX01_2

KFPL00715-I Index load started at bes2, index=k87m271."INDX01", RDAREA="LOB02"

Explanation:

• The KFPL00800-I message indicates that two million data entries have already been loaded.

• The KFPL00715-I message indicates that the creation of the plug-in index has begun, but a completion
message corresponding to this message (KFPL00716-I) has not been output.

This indicates that the utility terminated abnormally while creating the plug-in index for one to two million
entries.

(2) Using the pdrorg command to create the plug-in index in batch mode
Use the database reorganization utility to create the plug-in index for one million (one to two million) entries in batch
mode.

pdrorg -k ixmk -t TABLE1 /pdrorg/rorg01

Explanation:
-k: Specifies ixmk to create the plug-in index in batch mode.
-t: Specifies the name of the table.

/pdrorg/rorg01: Specifies the name of the control statement file for the pdrorg command.
The contents of the control statement file are shown as follows. The index information file that is specified in
the control statement file is indicated in the KFPL00710-I message, which was output in (1).

index INDX01 LOB02 /pdrorg/INDX01_2

(3) Reexecuting data loading

pdload TABLE1 /pdload/load01

Explanation:
There is no need to change the option specification.

(4) Making a backup of the target data storage RDAREAs
Make a backup of the target data storage RDAREAs. For details about making backups in units of RDAREAs, see the
HiRDB Version 9 System Operation Guide.

6. Creating Databases

189

(5) Using the pdrels command to release the target data storage RDAREAs from shutdown
status

Enter the pdrels command to release the table and index storage RDAREAs from shutdown status.

pdrels -r DATA01,DATA02,DATA03,INX01,INX02,INX03,LOB01,LOB02,LOB03

After the command has executed, the execution results should be checked for errors. For details about how to check
command execution results, see the manual HiRDB Version 9 Command Reference.

6. Creating Databases

190

7 Linking to Other Products
This chapter describes how to link HiRDB to other products.

191

7.1 Linking to the replication facility
This section describes the information that you need to specify to use HiRDB's replication facility (HiRDB
Datareplicator and HiRDB Dataextractor).

7.1.1 Linking to HiRDB Datareplicator
HiRDB Datareplicator enables the user to extract data automatically and incorporate it into a HiRDB database when
another HiRDB database is updated. To use HiRDB Datareplicator, you specify the following operands in the HiRDB
system common definitions:

• pd_rpl_init_start operand
This operand specifies whether to use the HiRDB Datareplicator linkage facility from the time of HiRDB startup.

• pd_rpl_hdepath operand
This operand specifies the name of the HiRDB Datareplicator directory where data is extracted. This directory
name must be the one that has been specified in the HDEPATH environment variable for the HiRDB Datareplicator
where data is extracted.

• pd_log_rpl_no_standby_file_opr operand
This operand specifies the desired operation in the event a swap request is issued while the HiRDB Datareplicator
linkage facility is being used, and none of the system log files can be swapped because extraction of system log
information at the HiRDB Datareplicator has not been completed.

For details about the system environment definition and how to use HiRDB Datareplicator to perform data replication,
see the HiRDB Datareplicator Version 8 Description, User's Guide and Operator's Guide.

Notes

• If you are using a HiRDB facility not supported by HiRDB Datareplicator, you might not be able to use the
data linkage facility. For details, see the HiRDB Datareplicator Version 8 Description, User's Guide and
Operator's Guide. For the most recent, detailed information, see the online manuals published on the HiRDB
website.

• When a recovery-unnecessary front-end server is used
Because a recovery-unnecessary front-end server cannot execute import processing using the two-phase
commitment method for the synchronization point processing method (enabled when fxa_sqle is specified
in the import system definition commitment_method operand) of the target HiRDB Datareplicator, you
need to use a front-end server other than the recovery-unnecessary front-end server. For details, see 9.1.4
Recovery-unnecessary front-end server.

7.1.2 Linking to HiRDB Dataextractor
HiRDB Dataextractor enables the user to extract data from a mainframe or HiRDB database in batch mode and store it
sequentially in a HiRDB database. HiRDB Dataextractor has the following features:

• Data in a central database can be incorporated by batch-mode processing into a departmental database at a
specified point in time. This capability enables tables to be created specifically for the departmental database or to
refresh all data.

• A portion of the data can be extracted from the central database to create a departmental database suitable for each
application.

For details about HiRDB Dataextractor, see the HiRDB Dataextractor Version 8 Description, User's Guide and
Operator's Guide.

7. Linking to Other Products

192

7.2 Linking with an OLTP system
This section describes the procedure for using the X/Open XA interface to link HiRDB to an OLTP system. The topics
covered include:

1. OLTP products supported for linking

2. HiRDB XA library

3. Example of HiRDB system configuration with OLTP linkage

4. Transaction transfer

5. Registering HiRDB in the transaction manager

6. Information to be registered in the transaction manager

7. Example of registering in the transaction manager

8. Modifying the registration information in the transaction manager

9. Methods for re-establishing connection between the transaction manager and HiRDB

10. Monitoring HiRDB using the TP1/Resource Manager Monitor facility

11. Notes

7.2.1 OLTP products supported for linking
HiRDB supports the following OLTP products for linking:

• OpenTP1

• TPBroker for C++

• TUXEDO

• WebLogic Server

• OpenTP1/Server Base Enterprise Option (referred to hereafter as TP1/EE)

Some of the OLTP products may not be supported, depending on the type of HiRDB in use. The following table
shows OLTP linkage support depending on the HiRDB type.

Table 7‒1: OLTP linkage support depending on the HiRDB type

HiRDB type

OLTP product type

OpenTP1 TPBroker for C
++ TUXEDO

WebLogic

Server
TP1/EE

HP-UX S S N S N

Solaris S S S S N

AIX S N N N S

Linux S N N N S

S: Supported.

N: Not supported.

7.2.2 HiRDB XA library
The X/Open XA interface is an X/Open standard specification that stipulates the interface between a transaction
manager (TM) and a resource manager (RM) in a distributed transaction processing (DTP) system. The XA interface
enables the transaction manager to control the resource manager's transaction processing. In order for the transaction

7. Linking to Other Products

193

manager to control the resource manager's transaction processing, a library provided by the resource manager and a
library provided by the transaction manager must be linked to an application program.

HiRDB provides the HiRDB XA library to enable a transaction manager to control HiRDB transaction processing.
This HiRDB XA library complies with the XA interface specifications based on the X/Open DTP software
architecture.

The following figure shows the relationship between HiRDB and the X/Open DTP model.

Figure 7‒1: Relationship between HiRDB and X/Open DTP model

Note that if connection is established from a UAP that is using the X/Open XA interface to a recovery-unnecessary
front-end server, the SQL statement returns an error. Specify PDFESHOST and PDSERVICEGRP in the client
environment definition and connect to a front-end server that is not the recovery-unnecessary front-end server.

(1) Functions supported by the HiRDB XA library
The following table shows the functions supported by the HiRDB XA library.

Table 7‒2: Functions supported by HiRDB XA library

Function Description

Transaction transfer Executes transaction commit processing by a process other than the one at the time the UAP accessed
HiRDB (UAP here refers to the user application program that established the connection with
HiRDB using the HiRDB XA library). Whether to use the transaction transfer function depends on
the PDXAMODE client environment definition operand. For details about the transaction transfer
function, see 7.2.4 Transaction transfer.

Single-phase optimization Optimizes two-phase commitment control to one phase.

When single-phase optimization is used, the transaction completion types of the transaction manager
and HiRDB do not always match. For details, see 7.2.11(3) Notes on single-phase optimization.

Read only When a HiRDB resource has not been updated by a prepare request, enables the transaction manager
to optimize the processing without issuing a commit request at the second phase.

Dynamic transaction registration Enables HiRDB to register dynamically a transaction immediately before executing a UAP.

Multi-connection facility Executes multiple CONNECTs for HiRDB servers separately from one process. For details about the
multi-connection facility in the X/Open XA interface environment, see the HiRDB Version 9 UAP
Development Guide.

Note:
The HiRDB XA library does not provide asynchronous XA calls (facility that enables the transaction manager to
call the HiRDB XA library asynchronously).

(2) XA interface supporting multi-thread (HP-UX 11.0 and Solaris only)
An XA interface supporting multi-thread enables you to link Object Transaction Service (OTS) with TPBroker for C+
+ and HiRDB.

7. Linking to Other Products

194

The multi-thread libraries support only C and C++ languages. They do not support COBOL.

To use an XA interface supporting multi-thread, link a dedicated HiRDB client library. A HiRDB client library version
earlier than 05-06 does not support multi-thread. You can use a library for multi-thread with any HiRDB server that
supports existing HiRDB clients. The library for multi-thread enables connection to be shared between threads.

7.2.3 Example of HiRDB system configuration with OLTP linkage
This section describes a HiRDB system linked with OLTP by way of an example using OpenTP1.

(1) Linking with a HiRDB single server configuration
You can execute the update processing of multiple HiRDB single server configurations as a single transaction by
linking OLTP (OpenTP1) to the HiRDB single server configurations. If you partition a database by key ranges, the
OLTP system (OpenTP1) running on each server machine can distribute processing to the linked HiRDB single server
configurations. This enables transaction processing to be performed at high speed. When integrating multiple HiRDB
single server configurations, consider linking your system to an OLTP system. The following figure shows linkage of
a HiRDB single server configuration with an OLTP system (OpenTP1).

Figure 7‒2: Linking a HiRDB single server configuration with an OLTP system (OpenTP1)

(2) Linking with a HiRDB parallel server configuration
When a HiRDB parallel server configuration is linked with an OLTP system (OpenTP1), transaction processing can be
achieved at high performance and high workload. The following figure shows linkage of a HiRDB parallel server
configuration with an OLTP system (OpenTP1).

7. Linking to Other Products

195

Figure 7‒3: Linking a HiRDB parallel server configuration with an OLTP system (OpenTP1)

(3) Linking between multiple OLTPs (OpenTP1) and a single HiRDB
In this type of linking, multiple OLTPs (OpenTP1) and one HiRDB communicate using the client/server method.
Different OLTPs (OpenTP1) can connect to one HiRDB at the same time. To do this, you must set a unique OLTP
identifier (client environment definition PDTMID) for each OLTP (OpenTP1). The following figure shows linkage
between multiple OLTPs (OpenTP1) and a single HiRDB.

Figure 7‒4: Linking between multiple OLTPs (OpenTP1) and a single HiRDB

7. Linking to Other Products

196

(4) Linking between one OLTP (OpenTP1) and multiple HiRDBs
In this type of linking, one OLTP (OpenTP1) is linked to multiple HiRDBs. SQL statements can be executed by
connecting to HiRDBs on different server machines at the same time. In such a case, you need to use the multi-
connection facility. The following figure shows linkage between one OLTP (OpenTP1) and multiple HiRDBs.

Figure 7‒5: Linking between one OLTP (OpenTP1) and multiple HiRDBs

For details about the multi-connection facility, see the HiRDB Version 9 UAP Development Guide.

7.2.4 Transaction transfer
For a UAP that connects to HiRDB using the HiRDB XA library, you can execute transaction commit processing by a
process other than the one used at the time the UAP accessed HiRDB. This is called transaction transfer. The
following figure gives an overview of transaction transfer.

Figure 7‒6: Overview of transaction transfer

Advantages
When transaction transfer is used, the transaction manager's UAP processing can accept the next service request
without having to wait for transaction completion. This makes it possible to execute a UAP with fewer processes.
However, the number of server processes used by HiRDB and the number of lock-release waits# may increase.

7. Linking to Other Products

197

#: Compared to when transaction transfer is not used, accesses to HiRDB for the next service request are more
likely to be placed in lock-release wait status until the transaction is completed.

Criteria
When the transaction manager is to use the transaction transfer function, HiRDB must also use the transaction
transfer function.
When the transaction manager is not to use the transaction transfer function, HiRDB must not use the transaction
transfer function.
The following should be noted when the transaction manager can set whether the transaction transfer function is to
be used:

• The transaction transfer function should be used when the UAP processing workload is greater than the
HiRDB access workload.

Operating procedure
To use this function, 1 must be set in the PDXAMODE operand of the client environment definition; to not use this
function, either 0 must be set in this operand or specification of the operand must be omitted.
For details about the PDXAMODE operand, see the HiRDB Version 9 UAP Development Guide.

Notes

1. If the information indicating whether the transaction transfer function is to be used does not match between
the transaction manager and HiRDB, transactions may not be settled, HiRDB may terminate abnormally, or
control may be returned to the transaction manager with an error.

2. When this function is used, the scope of LOCK TABLE UNTIL DISCONNECT in the LOCK statement changes.
For details about the scope of LOCK TABLE UNTIL DISCONNECT, see the HiRDB Version 9 UAP
Development Guide.

(1) OpenTP1 used as the transaction manager
When this function is used, HiRDB supports OpenTP1's commit optimization and prepare optimization. Therefore,
this function should be used when the -d option is omitted from OpenTP1's trnstring operand. When the -d
option is specified, this function should not be used.

The following table shows the relationship between the transaction service definition's trnstring operand in the
OpenTP1 system definition and HiRDB's PDXAMODE operand.

Table 7‒3: Relationship between OpenTP1's trnstring operand and HiRDB's PDXAMODE operand

trnstring operand specification
PDXAMODE

operand value

-d option omitted 1

-d option specified 0

Note

• If the trnstring operand's value does not match the PDXAMODE operand's value, HiRDB cannot settle
transactions. In this case, HiRDB returns to OpenTP1 an XA function error return code (-6).

• The -d option is supported by TP1/Server Base Version 03-03 or subsequent.

For details about the trnstring operand, see the manual OpenTP1 System Definition. For details about commit
optimization and prepare optimization, see the manual OpenTP1 Programming Guide.

7.2.5 Registering HiRDB in the transaction manager
To link your HiRDB to OLTP, you need to register the HiRDB in the transaction manager. You can use each
transaction manager's commands and functions to register HiRDB in the transaction manager:

• OpenTP1: Use the trnlnkrm command to register HiRDB.

• TPBroker for C++: Use the tslnkrm command to register HiRDB.

7. Linking to Other Products

198

• TUXEDO: Register HiRDB in $TUXDIR/udataobj/RM. $TUXDIR indicates the absolute path name of the
directory that contains the TUXEDO system software.

• WebLogic Server: Register HiRDB using the driver class name and the provider for the WebLogic Server JDBC
connection pool.

• TP1/EE: Use the eetrnmkobj command to register HiRDB.

(1) Dynamic registration and static registration
There are two ways to register HiRDB as the source manager in the transaction manager:

• Dynamic registration

• Static registration

You cannot use both dynamic and static registration with a single transaction manager.

For a WebLogic Server, only static registration can be used.

(a) Dynamic registration

If you dynamically register HiRDB in the transaction manager, HiRDB is placed under the control of the transaction
manager when the UAP issues the first SQL statement within a transaction. This method reduces the transaction
manager's transaction control overhead for HiRDB when the UAP accesses multiple resources including HiRDB, or
when the application program may not access HiRDB at all.

(b) Static registration

If you statically register HiRDB in the transaction manager, HiRDB is placed under the control of the transaction
manager when a transaction is started, whether the UAP issues any SQL statements. When OpenTP1 is used as the
transaction manager and the connection between a UAP and HiRDB is broken (due to abnormal termination of a unit
or server process, or other similar problem), OpenTP1 re-establishes connection at the time a transaction is started.
Therefore, there is no need to restart the UAP.

(2) Differences between dynamic and static registration
The following table shows the differences between dynamic and static registration.

Table 7‒4: Differences between dynamic and static registration

Timing Dynamic registration Static registration

When transaction is started Performs no management. • Checks to see if connection is being
established.

• Starts managing transaction under
transaction manager's control.

• Establishes connection.#1

When first SQL is issued within
transaction

• Starts managing transaction under
transaction manager's control.

• Starts HiRDB transaction.

• Processes SQL.

• Establishes connection.#1

• Starts HiRDB transaction.

• Processes SQL statements.

Number of times communication is
established between transaction manager
and HiRDB during transaction

Number of SQL statements + number of
commit processing communications + 1
(communication for establishing
connection)#1

Number of SQL statements + number of
commit processing communications + 1 (for
transaction startup processing) + 1
(communication for establishing connection)#1

Reconnection method if connection
between transaction manager and
HiRDB is broken during processing#2

Reestablishes connection automatically
the next time transaction is started.#3

Reestablishes connection automatically the next
time transaction is started.#4

7. Linking to Other Products

199

#1
Applicable when the XA interface supporting multi-thread is used.

#2
Connections broken as a result of network errors cannot be detected. However, if the transaction manager is
TPBroker for C++ or Weblogic Server, connections are established when a transaction starts, so reconnection is
possible.

#3
If the transaction manager is OpenTP1/Server Base, specifying transaction in the OpenTP1/Server Base
operand trn_rm_open_close_scope enables reconnection even when a connection is broken as a result of a
network error.

#4
If the transaction manager is OpenTP1/Server Base, reconnection is possible even in the event of a connection
broken as a result of a network error. Also, when the transaction manager is TP1/EE, specifying YES in the
HiRDB client environment definition PDXAAUTORECONNECT enables reconnection when a connection is broken
as a result of a network error.

7.2.6 Information to be registered in the transaction manager
For details about how to register HiRDB as the resource manager in the transaction manager, see the applicable
transaction manager documentation. Specification of information in the transaction manager is explained as follows.

For a WebLogic Server, perform the operations listed beginning in (6) below.

(1) RM switch name
HiRDB's RM switch name determines whether dynamic or static registration is used. The following shows the HiRDB
RM switch name (xa_switch_t structure-name):

• Dynamic registration: pdtxa_switch
• Static registration: pdtxa_switch_y

(2) RM name
The RM name(resource manager name) defined in the RM switch (xa_switch_t structure) is
HiRDB_DB_SERVER.

(3) Open character string
If you are using the multi-connection facility, specify the open character string to be used when the transaction
manager opens the resource manager with xa_open. If you are not using the multi-connection facility, there is no
need to specify an open character string. If the transaction manager is TP1/EE, specify the open character string for a
single HiRDB that has been registered. For the TUXEDO or WebLogic Server transaction manager, you cannot use
the multi-connection facility.

To use the multi-connection facility, register multiple HiRDBs in the transaction manager and specify the open
character string for each HiRDB. For the open character string, specify the following information:

• The absolute path name of the file containing the environment variable settings that take effect at the destination

• Environment variable group ID

Use one of the following formats:

• "environment variable group identifier + environment variable setup file name"
• "environment variable group identifier * environment variable setup file name"

An open character string in any other format is ignored. The environment variable group ID always consists of four
bytes, and the open character string cannot be longer than 256 bytes.

7. Linking to Other Products

200

The following shows an example of registering the open character string for the OpenTP1, TPBroker for C++, or
TP1/EE transaction manager.

(a) OpenTP1

Register the open character string using the trnstring operand in OpenTP1's transaction service definition. This
example registers two HiRDBs in OpenTP1. The registration conditions are as follows:

Resource manager Environment variable group ID Environment variable setup file name

HiRDB1 HDB1 /usr/conf/HiRDB/HiRDB11.ini
/usr/conf/HiRDB/HiRDB12.ini

HiRDB2 HDB2 /usr/conf/HiRDB/HiRDB21.ini
/usr/conf/HiRDB/HiRDB22.ini

The following shows an example of registering the open character string:

trnstring -n HiRDB_DB_SERVER -i H1 -o "HDB1*/usr/conf/HiRDB/HiRDB11.ini"
-O "HDB1+/usr/conf/HiRDB/HiRDB12.ini"
trnstring -n HiRDB_DB_SERVER -i H2 -o "HDB2*/usr/conf/HiRDB/HiRDB21.ini"
-O "HDB2+/usr/conf/HiRDB/HiRDB22.ini"

Explanation:
-n: Specifies the name of the resource manager.
-i: Specifies the resource manager extension.

-o: Specifies the character string for the xa_open function for transaction service.
This is the open character string that is used by OpenTP1's transaction service process. The format is
environment-variable-group-ID * environment-variable-setup-filename.

-O: Specifies the character string for the xa_open function for the user server.
This is the open character string that is used by the user server process. The format is environment-variable-
group-ID + environment-variable-setup-filename

• Specify the same environment variable group ID for -o and -O.

• Specify the same environment variables in the file that are specified for -o and -O.

Note
You can select the HiRDB to be connected from the user service using the trnrmid operand in OpenTP1's user
service definition. The following example connects to HiRDB1 and HiRDB2:

trnrmid -n HiRDB_DB_SERVER -i H1,H2

(b) TPBroker for C++

Register the open character string using the xa_open_string_info operand in TPBroker for C++'s resource
manager definition. This example registers two HiRDBs in TPBroker for C++. The registration conditions are as
follows:

Resource manager Environment variable group ID Environment variable setup file name

HiRDB1 HDB1 /usr/conf/HiRDB/HiRDB11.ini
/usr/conf/HiRDB/HiRDB12.ini

HiRDB2 HDB2 /usr/conf/HiRDB/HiRDB21.ini
/usr/conf/HiRDB/HiRDB22.ini

The following shows an example of registering the open character string:

tsdefvalue /OTS/RM/HiRDB_DB_SERVER_1/DMN/xa_open_string_info 1
-s "HDB1*/usr/conf/HiRDB/HiRDB11.ini"
tsdefvalue /OTS/RM/HiRDB_DB_SERVER_1/xa_open_string_info 2

7. Linking to Other Products

201

-s "HDB1+/usr/conf/HiRDB/HiRDB12.ini"

tsdefvalue /OTS/RM/HiRDB_DB_SERVER_2/DMN/xa_open_string_info 1
-s "HDB2*/usr/conf/HiRDB/HiRDB21.ini"
tsdefvalue /OTS/RM/HiRDB_DB_SERVER_2/xa_open_string_info 2
-s "HDB2+/usr/conf/HiRDB/HiRDB22.ini"

Explanation:

1. For /OTS/RM/RM-name/DMN/xa_open_string_info, specify the open character string that is used by
TPBroker for C++'s recovery process. Separate the environment variable group ID and environment variable
setup file name by an asterisk (*).

2. For /OTS/RM/RM-name/xa_open_string_info, specify the open character string that is used by the
application program process and settlement process. Separate the environment variable group ID and
environment variable setup file name by a plus sign (+).

• If the RM-name is the same, specify the same environment variable group ID.

• If the RM-name is the same, specify the same environment variable content for each environment variable
setup file.

• If the TPRMINFO environment variable is specified for the settlement process, specify the character string
specified in /OTS/RM/RM-name/xa_open_string_info as the open character string
for /OTS/RM/RM-name/(TPRMINFO-value)/xa_open_string_info. If the multi-connection facility
is used, specify 'TPRMINFO=' as the default in /OTS/completion_process_env even when
TPRMINFO is not specified for the settlement process. The following shows an example:

tsdefvalue /OTS completion_process_env -a 'TPRMINFO='

(c) TP1/EE

Register the open character string using the trnstring operand in the TP1/EE transaction-related definition. This
example registers two HiRDBs in TP1/EE. The registration conditions are as follows:

Resource manager Environment variable group ID Environment variable setup file name

HiRDB1 HDB1 /usr/conf/HiRDB/HiRDB11.ini
/usr/conf/HiRDB/HiRDB12.ini

HiRDB2 HDB2 /usr/conf/HiRDB/HiRDB21.ini
/usr/conf/HiRDB/HiRDB22.ini

The following shows an example of registering the open character string:

trnstring -n HiRDB_DB_SERVER -i H1 -o "HDB1*/usr/conf/HiRDB/HiRDB11.ini" \
 -O "HDB1+/usr/conf/HiRDB/HiRDB12.ini"
trnstring -n HiRDB_DB_SERVER -i H2 -o "HDB2*/usr/conf/HiRDB/HiRDB21.ini" \
 -O "HDB2+/usr/conf/HiRDB/HiRDB22.ini"

Explanation:
-n: Specifies the name of the resource manager.
-i: Specifies the resource manager extension.

-o:
Specifies the open character string that is used by TP1/EE's recovery and monitoring threads.
The format is environment-variable-group-ID*environment-variable-setup-file-name.

-O:
Specifies the open character string that is used by the process thread.
The format is environment-variable-group-ID+environment-variable-setup-file-name.

• In -o and -O, specify the same environment variable group ID.

• Set the same environment variables in the files that are set in -o and -O.

7. Linking to Other Products

202

(4) Close character string
There is no need to specify a character string to enable the transaction manager to close the resource manager using
xa_close.

(5) RM-related object name
For the RM-related object name, specify the library name listed in the following table. The suffix for the shared library
depends on the platform. The suffix is .so in Solaris and Linux, and .a in AIX. The archive library name is common
to all platforms.

Table 7‒5: Library names for RM-related object names

Library type Library name

Shared library Single thread libzclty.sl (libzcltx.sl)

Single thread

(Multi-connection facility supported)
libzcltys.sl1#1 (libzcltxs.sl)

Multi-thread

(Multi-connection facility supported)#2

libzcltyk.sl (libzcltxk.sl)

Archive library Single thread libcltya.a (libcltxa.a)

Notes

1. When using dynamic registration, you may specify the library name enclosed in parentheses.

2. Select either a shared library or archive library, whichever is appropriate to the purpose. It is more
advantageous to select the shared library because it has the following benefits:

• The object size of the UAP is small.

• There is no need to relink when upgrading HiRDB.

#1: Specify this library name when linking to TUXEDO.

#2: Applicable to HI-UX 11.0 and Solaris.

(6) Client environment definition
To enable the transaction manager to control HiRDB transaction processing, the HiRDB client environment definition
must be specified in the transaction manager definitions. For details about how to specify the client environment
definition in an OLTP environment, see the HiRDB Version 9 UAP Development Guide.

(a) OpenTP1

If the transaction manager is OpenTP1, the client environment definition must be specified in the putenv format in
the following OpenTP1 system definitions:

• System environment definition

• User service default definition

• User service definition

• Transaction service definition

For details about these definitions, see the manual OpenTP1 System Definition.

To connect to multiple OpenTP1s, be sure to specify the following client environment definition:

• HiRDB_PDTMID or PDTMID

(b) TPBroker for C++

Specify the client environment definition in TPBroker for C++'s system definition.

7. Linking to Other Products

203

(c) TUXEDO

Specify the client environment definition in the file that was specified with the ENVFILE parameter in the TUXEDO
configuration file (UBBCONFIG file). For details about the TUXEDO configuration file, see the TUXEDO
documentation.

(d) WebLogic Server

The WebLogic Server process environment variables must contain the specifications for the client environment
definition.

(e) TP1/EE

If the transaction manager is TP1/EE, you must specify the client environment definition in the following system
definitions for the OpenTP1 that is in the TP1/EE execution environment:

• User service default definition

• User service definition

For details about these definitions, see the manual OpenTP1 System Definition.

If you connect to multiple TP1/EEs, make sure that the following client environment definition is specified:

• PDTMID

(7) JDBC drivers (limited to use with WebLogic Server)
When HiRDB is registered, the following JDBC driver package name and driver class name must be specified:

• Package name: JP.co.Hitachi.soft.HiRDB.JDBC
• Driver class name: JdbhXADataSource

7.2.7 Example of registering in the transaction manager

(1) OpenTP1
To register HiRDB in OpenTP1, use OpenTP1's trnlnkrm command. The following shows examples of trnlnkrm
command specification:

(a) Dynamic registration

trnlnkrm -a HiRDB_DB_SERVER -s pdtxa_switch -o /HiRDB/client/lib/libzclty.sl

Explanation:
-a: Specifies the RM name.
-s: Specifies the RM switch name (name of the XA switch structure). The RM switch name depends on the
registration method (dynamic or static).
-o: Specifies the RM-related object name (shared library's file name).

(b) Static registration

trnlnkrm -a HiRDB_DB_SERVER -s pdtxa_switch_y -o /HiRDB/client/lib/libzclty.sl

Explanation:
-a: Specifies the RM name.
-s: Specifies the RM switch name (name of the XA switch structure). The RM switch name depends on the
registration method (dynamic or static).
-o: Specifies the RM-related object name (shared library's file name).

7. Linking to Other Products

204

(2) TPBroker for C++
To register HiRDB in TPBroker for C++, use TPBroker for C++'s tslnkrm command. The following shows
examples of tslnkrm command specification:

(a) Dynamic registration

tslnkrm -a HiRDB_DB_SERVER_1 -s pdtxa_switch -o '/HiRDB/client/lib/libzcltyk.sl'
-r -m
tslnkrm -a HiRDB_DB_SERVER_2 -s pdtxa_switch -o '/HiRDB/client/lib/libzcltyk.sl'
-r -m

Explanation:
-a: Specifies the RM name.
-s: Specifies the RM switch name (name of the XA switch structure). The RM switch name depends on the
registration method (dynamic or static).
-o: Specifies the RM-related object name (shared library's file name).
-r: Indicates dynamic registration.
-m: Enables OTS daemon operation with multi-thread.

(b) Static registration

tslnkrm -a HiRDB_DB_SERVER_1 -s pdtxa_switch_y -o '/HiRDB/client/lib/libzcltyk.sl'
-r -m
tslnkrm -a HiRDB_DB_SERVER_2 -s pdtxa_switch_y -o '/HiRDB/client/lib/libzcltyk.sl'
-r -m

Explanation:
-a: Specifies the RM name.
-s: Specifies the RM switch name (name of the XA switch structure). The RM switch name depends on the
registration method (dynamic or static).
-o: Specifies the RM-related object name (shared library's file name).
-r: Indicates static registration.
-m: Enables OTS daemon operation with multi-thread.

(3) TUXEDO
Use the $TUXDIR/udataobj/RM file to register HiRDB in TUXEDO. $TUXDIR indicates the absolute path name
of the directory that contains the TUXEDO system software. The following shows examples of RM file specification:

(a) Dynamic registration

HiRDB_DB_SERVER:pdtxa_switch:-L/HiRDB/client/lib -lzcltys

(b) Static registration

HiRDB_DB_SERVER:pdtxa_switch_y:-L/HiRDB/client/lib -lzcltys

(4) WebLogic Server
Register HiRDB using the driver class name and the provider for the WebLogic Server JDBC connection pool. An
example specification follows:

(a) Static registration

Driver-class-name:JP.co.Hitachi.soft.HiRDB.JDBC.JdbhXADataSource
Property(key=value):user=authorization-identifier
 password=password

7. Linking to Other Products

205

 XAOpenString=name-defined-by-transaction-data-source
 dataSourceName=name-specified-by-JDBC-connection-pool
 Description=name-defined-by-transaction-data-source

Explanation
When HiRDB is registered, the following JDBC driver package name and driver class must be specified:

• Package-name: JP.co.Hitachi.soft.HiRDB.JDBC
• Driver-class-name: JdbhXADataSource

(5) TP1/EE
To register HiRDB in TP1/EE, use TP1/EE's eetrnmkobj command. The following shows examples of
eetrnmkobj command specification:

(a) Dynamic registration

eetrnmkobj -r HiRDB_DB_SERVER -o seigyo -s pdtxa_switch \
-O /HiRDB/client/lib/libzcltyk.sl -i /HiRDB/include

Explanation:
-r: Specifies the RM name.
-o: Specifies the name of the resource manager linkage object.
-s: Specifies the RM switch name (name of the XA switch structure). The RM switch name depends on the
registration method (dynamic or static).
-O: Specifies the RM-related object name (shared library's file name).
-i: Specifies the HiRDB-provided header path.

(b) Static registration

eetrnmkobj -r HiRDB_DB_SERVER -o seigyo -s pdtxa_switch_y \
-O /HiRDB/client/lib/libzcltyk.sl -i /HiRDB/include

Explanation:
-r: Specifies the RM name.
-o: Specifies the name of the resource manager linkage object.
-s: Specifies the RM switch name (name of the XA switch structure). The RM switch name depends on the
registration method (dynamic or static).
-O: Specifies the RM-related object name (shared library's file name).
-i: Specifies the HiRDB-provided header path.

7.2.8 Modifying the registration information in the transaction manager
To modify registration information in the transaction manager (from static registration to dynamic registration or vice
versa), or to change a library to be specified for an RM-related object name, use the following procedure to reregister
HiRDB in the transaction manager. Because a WebLogic Server can use static registration only, the registration cannot
be modified.

(1) OpenTP1
To modify registration information in the transaction manager when using OpenTP1:

1. Use OpenTP1's trnlnkrm command to reregister HiRDB in the transaction manager.

2. Use OpenTP1's trnmkobj command to re-create the object file for transaction control.

7. Linking to Other Products

206

3. Relink all UAPs with HiRDB's XA library on the basis of the object file for transaction control re-created in step 2
and the information described in 7.2.6 Information to be registered in the transaction manager. Otherwise, UAP
operation cannot be guaranteed.

(2) TPBroker for C++
To modify registration information in the transaction manager when using TPBroker for C++:

1. Use TPBroker for C++'s tslnkrm command to reregister HiRDB in the transaction manager.

2. Use TPBroker for C++'s tsmkobj command to re-create the object file for transaction control.

3. Relink all UAPs with HiRDB's XA library on the basis of the object file for transaction control re-created in step 2
and the information described in 7.2.6 Information to be registered in the transaction manager. Otherwise, UAP
operation cannot be guaranteed.

(3) TUXEDO
To modify registration information in the transaction manager when using TUXEDO:

1. Use $TUXDIR/udataobj/RM to reregister HiRDB in the transaction manager.

2. Use TUXEDO's buildtms command to re-create the transaction manager server's load module on the basis of
the information described in 7.2.6 Information to be registered in the transaction manager.

3. Use TUXEDO's buildserver command to re-create the server's load module on the basis of the information
described in 7.2.6 Information to be registered in the transaction manager.

4. Use TUXEDO's buildclient command to re-create the client module on the basis of the information
described in 7.2.6 Information to be registered in the transaction manager.

(4) TP1/EE
To modify registration information in the transaction manager when using TP1/EE:

1. Use TP1/EE's eetrnmkobj command to reregister HiRDB in the transaction manager.

2. Use TP1/EE's eetrnmkobj command to re-create the resource manager linkage object file.

3. Relink all UAPs with HiRDB's XA library on the basis of the resource manager linkage object file re-created in
step 2 and the information described in 7.2.6 Information to be registered in the transaction manager. Otherwise,
UAP operation cannot be guaranteed.

7.2.9 Methods for re-establishing connection between the transaction
manager and HiRDB

(1) Using an application program
If the connection is broken, terminate the running UAP and then restart it. Connection should be re-established
automatically.

If restarting the application program is not desired, tx_open must be reissued when the error indicating the broken
connection is returned to the application program. The service can be resumed without having to terminate the
application program. The following is an example of coding for reissuing tx_open.

Example

int connection = 1;
void service(char *in_data,long *in_len,char *out_data,long *out_len) {
 if (connection == 0) {
 tx_close();
 tx_open(); Reissue tx_open when connection is cut
 }
 tx_begin();
 EXEC SQL INSERT INTO; Issue SQL statement
 if (SQLCODE == 0) {

7. Linking to Other Products

207

 tx_commit();
 *out_data = "OK";
 } else {
 tx_rollback();
 *out_data = "NG";
 if (SQLCODE == -563 || SQLCODE == -722) {
 connection = 0; Store broken connection
 }
 }
}

(2) When the OLTP product to be linked is TPBroker for C++ or WebLogic Server
If you are using an XA interface supporting multi-thread, connection with HiRDB is established when a transaction is
started, and connection is cut off when the transaction is terminated. Therefore, even if the connection is broken
during communication, it will be re-established when the next transaction is started.

(3) Using OpenTP1 facilities
If you used dynamic registration, specify transaction in the OpenTP1/Server Base operand
trn_rm_open_close_scope. With this specification, OpenTP1/Server Base establishes or breaks the connection
to HiRDB when the transaction starts or terminates. Therefore, even if the connection is broken during
communication, it will be re-established when the next transaction is started.

If you used static registration, the transaction manager checks the connection with HiRDB when a transaction is
started. If the connection has been broken, it is re-established automatically, and the transaction is started. For TP1/EE,
YES must be specified for the HiRDB client environment definition PDXAAUTORECONNECT.

(4) Re-establishing connection with the client library that supports HiRDB's XA interface
If connection with HiRDB is broken before the first SQL statement for accessing HiRDB is executed since the
transaction manager started the transaction, the HiRDB client library re-establishes connection when the SQL
statement is executed. However, the connection will not be re-established if the connection is broken as a result of a
network error, since these cannot be detected.

7.2.10 Monitoring HiRDB using the TP1/Resource Manager Monitor
facility

This section discusses important points about using the TP1/Resource Manager Monitor (RMM) with HiRDB when
OpenTP1 is linked as OLTP. For details about how to operate RMM, see the manual OpenTP1 System Operation.

(1) Notes on creating a command for obtaining process IDs subject to monitoring
When a command for obtaining the process IDs of the processes subject to monitoring is created, the processes to be
monitored must be specified. For HiRDB, _scd must be specified as the process to be monitored. Following is an
example of the command for HiRDB (shell script) provided by the RMM service.

#Watched Processes
PROCESSES="_scd"

To improve this command's reliability, the coding shown below should be added. When this is done, indeterminate
process IDs will not be obtained before completion of HiRDB startup. This coding should be inserted before the line
where process ID is obtained in the shell script (before the comment line #These Lines Are The Description
Of Get Process_ID Process).

#System status check
get_STATUS='$PDDIR/bin/pdls 2>/dev/null | \
 /usr/bin/awk'{print$4}' | /bin/grep -v STATUS'
for i in $get_STATUS
do
 if[$i!="ACTIVE"]
 then

7. Linking to Other Products

208

 exit 2
 fi
done

(2) Notes on using RMM operations with a HiRDB parallel server configuration
In the case of a HiRDB parallel server configuration, a series of commands should be specified for the resource
manager subject to monitoring in the definition of the RM subject to monitoring only for the OpenTP1 located on the
same host as the unit where the system manager is located.

7.2.11 Notes

(1) Notes about SQL

1. The transaction manager has permission to establish connection with or disconnect from the resource manager. Do
not specify an SQL statement in a UAP that establishes connection with or disconnects from the resource
manager. The transaction manager also has permission to adjust and monitor the progress of transactions.
Therefore, do not specify an SQL statement in a UAP that rolls back or commits a transaction. This means that
statements such as EXEC SQL COMMIT WORK and EXEC COMMIT WORK RELEASE will result in an error.

2. A definition SQL statement will result in an error. A definition SQL statement such as CREATE TABLE
automatically instructs a commit; therefore, do not specify a definition SQL statement in a UAP.

(2) Notes about libraries for multi-thread
A single transaction cannot establish connection with multiple HiRDB servers separately by using multi-thread. There
is only one server process for a HiRDB server connecting from a transaction, even in multithreaded environments.
This means that a single transaction can execute only one thread at any one time. Executing more than one SQL
statement at one time using multiple threads within the same transaction is not permitted.

(3) Notes on single-phase optimization
HiRDB applies single-phase optimization supported by the transaction manager. The transaction manager can request
single-phase commit for a transaction branch if HiRDB is the only shared resource in the transaction branch that was
modified. When the transaction manager uses single-phase optimization to request a single-phase commit, once the
result of the transaction branch has been decided, HiRDB will delete the information from the transaction branch and
return a response to the transaction manager.

With transaction managers that use single-phase optimization, it is not necessary to remember stable storage for global
transactions, and even if a failure occurs it is not necessary to know of that result. Therefore, if all of the following
conditions are satisfied, the transaction completion status might not match between the transaction manager and
HiRDB:

• The connection uses a transaction manager that employs single-phase optimization and XA interface

• The transaction manager uses single-phase optimization for commitment control of the modified system's
transaction

• The transaction manager's UAP terminates abnormally during commitment processing

Under these conditions, the result of the HiRDB transaction branch cannot be determined from the result of the failure
that was generated by the transaction manager. Therefore, the transaction completion type might not match between
the transaction manager and HiRDB.

To avoid this, when exercising commitment control on the transaction of a modified system, do not have the
transaction manager use single-phase commit.

(4) Considerations when WebLogic Server is used

• Commit or rollback deletes the preprocessing and the cursor. Re-execute from the preprocessing.

7. Linking to Other Products

209

• If commit or rollback is performed on a ResultSet object with the cursor still open, the HiRDB transaction
might remain uncompleted. If a ResultSet object is used, you must execute the ResultSet.close()
method to close the cursor before a commit or rollback.

(5) Considerations when the rapid system switchover facility is used
Caution must be exercised when all of the following conditions are satisfied:

• A HiRDB/Parallel Sever is using the rapid switchover facility with the unit where the system manager is installed

• Linkage is with an OLTP product that uses an API (such as OpenTP1 or TPBroker for C++) that complies with X/
Open

• The HiRDB client version is 06-02-/A or earlier

• The primary system specified in the OLTP product's PDHOST client environment variable is a standby system in
wait completion status

In such a case, when an OLTP product performs uncompleted transaction recovery processing, it is possible that the
X/Open-compliant API will return an error and the transaction will not be recovered. When this occurs, upgrade the
HiRDB client to version 06-02-/B or later. If the HiRDB client cannot be upgraded soon, for some reason such as you
do not want to stop a running application, perform a system switchover of the primary HiRDB system (unit) from a
standby system to a running system. However, this is a temporary measure; you should upgrade the HiRDB client
version as soon as possible.

7. Linking to Other Products

210

7.3 Linking to the inner replica facility
The inner replica facility enables construction of a database system that is capable of providing uninterrupted service.
In order to use the inner replica facility, HiRDB Staticizer Option is required.

(1) HiRDB system definition specifications
The following operands are specified in the HiRDB system definition:

• pd_inner_replica_control operand
Specifies the maximum number of inner replica groups.

• pd_inner_replica_lock_shift operand
Specifies whether UAPs and commands are to be executed concurrently when the inner replica facility is used.

• pd_lv_mirror_use operand
Specifies whether the open attribute for a replica RDAREA is to be SCHEDULE.

When the inner replica facility is used together with updatable online reorganization, the following operands are
specified:

• pd_max_reflect_process_count operand
Specifies the number of pdorend reflection processes secured in reflection processing. If this operand is omitted,
updatable online reorganization cannot be performed.

• pd_log_org_reflected_logpoint operand
Specifies whether the status of system log files that have completed reflection processing on all update logs is to
be changed.

• pd_log_org_no_standby_file_opr operand
When all system log files are in overwrite permitted status for online reorganization, specifies the HiRDB
processing when system log files have been swapped.

In addition to the operands above, you should also consider the specifications of the following operands:

• pd_max_rdarea_no
• pd_max_file_no
• pd_assurance_index_no

(2) Environment definition specifications
For details about the system environment definitions in conjunction with using the inner replica facility, see the
HiRDB Version 9 Staticizer Option Description and User's Guide.

7. Linking to Other Products

211

7.4 Linking to JP1
When linked with JP1, HiRDB can centrally manage all events in the entire system, including HiRDB, and start jobs
automatically using events as job start triggers. HiRDB can link to the following JP1 products:

• JP1/Base (JP1/System Event Service for JP1 Version 6 or earlier)

• JP1/Integrated Management - Manager (JP1/Integrated Manager for JP1 Version 7 or earlier)

• JP1/Automatic Job Management System 3 (for JP1 Version 8 or earlier, JP1/Automatic Job Management System
2; for JP1 Version 5 or earlier, JP1/Automatic Operation Monitor)

In this manual, JP1/Integrated Management - Manager is called JP1/IM and JP1/Automatic Job Management System
3 is called JP1/AJS3.

64-bit mode Solaris, HiRDB, AIX HiRDB and Linux (EM64T) HiRDB cannot be linked with JP1.

7.4.1 Reporting events to JP1/Base
Events, such as the start and termination of HiRDB, can be reported to the JP1/Base (JP1/System Event Service for
JP1 Version 6 or earlier) that manages JP1 events. JP1/Base manages the reported HiRDB events as JP1 events. This
makes it possible to use JP1/IM to manage events and to execute jobs automatically using JP1/AJS3 linkage. For
details about event monitoring using JP1/IM, see 7.4.2 Managing events by JP1/IM. For details about automatic job
execution using JP1/AJS3 linkage, see 7.4.3 Automatic job execution using JP1/AJS3 linkage.

For details about JP1/Base, see the JP1 manual. Because the manual name depends on the JP1 version, see the correct
manual for the version you are using:

• For JP1 Version 8 or later
Job Management Partner 1/Base User's Guide

• For JP1 Version 7i or earlier
Job Management Partner 1/Base

• For JP1 Version 5 or earlier
JP1/System Event Service

(1) Sending event notice
To send HiRDB events to JP1/Base, specify the following operands:

• pd_jp1_use operand: Y
• pd_jp1_event_level operand: 1 or 2

When 1 is specified in the pd_jp1_event_level operand, only the basic attributes are sent. When 2 is specified
in this operand, extended attributes are also sent.

! Important note

In the following cases, only 1 can be specified in the pd_jp1_event_level operand; if 2 is specified, events cannot be
sent:

• Events are to be sent to JP1/System Event Service.

• HiRDB in use is a 64-bit mode version for HP-UX.

(2) HiRDB events that can be sent
The following table shows HiRDB events that can be sent to JP1/Base.

7. Linking to Other Products

212

Table 7‒6: HiRDB events that can be sent to JP1/Base

Event Event ID#1 Message
Detail

information
#2

Registration timing

Value of
pd_jp1_event_l

evel

Extend
ed

attribut
e class1 2

Start 0x00010C00 KFPS05210-
I,
KFPS05219-
I#3, or
KFPS05260-
I#5

"start" After the system start
completion message
(KFPS05210-I,
KFPS05219-I, or
KFPS05260-I) is output

Y Y Informat
ion

0x00010C80

Normal
termination

0x00010C01 KFPS01850-
I#3

"end_nor
mal"

After HiRDB system
shutdown (immediately
before completion of
HiRDB termination or
immediately after output of
the KFPS01850-I
message)

Y Y Informat
ion

0x00010C81

Planned
termination

0x00010C01 KFPS01850-
I#3

"end_pla
n"

Y Y Informat
ion

0x00010C81

Forced
termination

0x00010C01 KFPS01850-
I#3

"end_for
ce"

Y Y Informat
ion

0x00010C81

Message log
output

0x00010C03 HiRDB
message

NULL After message log is output Y#4 Y#4 Informat
ion

0x00010C83

Abnormal
termination

0x00010C02 KFPS01821-
E

NULL • Upon HiRDB error
termination

• After error termination
is reported to the cluster
software when system
switchover is used in
server mode

N Y Error

0x00010C82

Definition
change

0x00010C04 KFPS04666-
I

NULL At completion of HiRDB
system normal start

N Y Notice

0x00010C84

RDAREA full 0x00010C05 KFPH00213-
W

NULL At output of RDAREA-full
error message
(KFPH00213-W)

N Y Warning

0x00010C85

RDAREA
expansion error

0x00010C06 KFPX14229-
E

NULL Upon pdmod (with
expand specified)
execution error

N Y Error

0x00010C86

Log file free
space warning

0x00010C07 KFPS01160-
E or
KFPS01162-
W

NULL At output of a system log
file free-space warning
message

N Y Warning

0x00010C87

Legend:
NULL: Null; nothing is sent.
Y: This event is sent.
N: This event is not sent.

#1: The top code is for a HiRDB single server configuration; the bottom code is for a HiRDB parallel server
configuration.

#2: The detail information is provided in text format. Following is the data format:

ssss mm...mm \0
ssss: System identifier (0-4 bytes)

7. Linking to Other Products

213

mm...mm: Character string indicated in the Detail information column

#3: When pd_jp1_event_level=1 is specified, the message is null.

#4: When pd_jp1_event_msg_out=N is specified, the event is not sent.

#5: This message is displayed only when a log applicable site is started using the pdstart -1 command in cases in
which the log-only synchronous method is used for Real Time SAN Replication processing.

7.4.2 Managing events by JP1/IM
JP1/IM optimizes (filters) the JP1 events managed by JP1/Base and centrally manages the events that occur in the
system as JP1 events. By sending HiRDB events to JP1/Base, you can have JP1/IM manage them in the same manner
as with other products' events. The user can check events using windows provided by JP1/IM. The following figure
gives an overview of event monitoring by JP1/IM.

Figure 7‒7: Overview of event monitoring by JP1/IM

For an overview of event monitoring by JP1/Integrated Management, see the applicable manual for the JP1 version
being used.

• For JP1 Version 9
Job Management Partner 1/Integrated Management - Manager Overview and System Design Guide

• For JP1 Version 8
Job Management Partner 1/Integrated Management - Manager System Configuration and User's Guide

• For JP1 Version 7i
Job Management Partner 1/Integrated Manager - Console

(1) Preparations for displaying HiRDB-specific extended attributes by JP1/IM
For JP1/IM to display HiRDB-specific extended attributes, you must copy the event attribute definition file provided
by HiRDB to the following directory:

• For JP1/Integrated Management - Manager (JP1 Version 7i or earlier JP1/Integrated Manager - Central Console):
installation-directory/conf/console/attribute

7. Linking to Other Products

214

The event attribute definition file is stored in the sample directory under the HiRDB installation directory. The
following table shows the names of event attribute definition files for each OS.

Table 7‒7: Name of the event attribute definition file for each OS

OS Name of the event attribute definition file

HP-UX HITACHI_HIRDB_HP_attr_ja.conf

AIX HITACHI_HIRDB_AIX_attr_ja.conf

Solaris HITACHI_HIRDB_SOL_attr_ja.conf

Linux HITACHI_HIRDB_LIN_attr_ja.conf

For a multi-HiRDB, copy the most recent version of the event attribute definition file in the running HiRDBs.

7.4.3 Automatic job execution using JP1/AJS3 linkage
For a HiRDB parallel server configuration, operations such as unloading system log files at each server may become
complex. In this case, when a HiRDB event is sent to JP1/Base, jobs can be executed automatically by JP1/AJS3 (for
JP1 Version 8 or earlier, JP1/AJS2; for JP1 Version 5 or earlier, JP1/Automatic Operation Monitor) using the sent
event as the trigger, allowing HiRDB operations to be automated.

The following figure shows the automatic control achieved by JP1 linkage when system log files are unloaded.

Figure 7‒8: Automatic control achieved by JP1 linkage when system log files are unloaded

For details about JP1/AJS3, see the JP1 manuals.

7. Linking to Other Products

215

8 Designing a HiRDB single server
configuration
This chapter describes the design considerations for a HiRDB single server
configuration, its HiRDB file system areas, and its system files, and provides notes on
the placement of RDAREAs.

217

8.1 System design for a HiRDB single server
configuration

This section describes the system design considerations and the system configuration for a HiRDB single server
configuration.

8.1.1 System design

(1) Memory used by a HiRDB single server configuration
This subsection describes the memory used by a HiRDB single server configuration.

A HiRDB single server configuration uses the following memory.

• Shared memory

• Process private memory

(a) Storage requirements

The storage space required by a HiRDB single server configuration must be estimated. For details about the storage
requirements for a HiRDB single server configuration, see 15.1 Estimating the memory size required for a HiRDB
single server configuration.

(b) Page fixing of shared memory

With HiRDB, the following shared memory can be fixed in actual memory.

• Shared memory for unit controllers

• Shared memory for global buffers

• Shared memory used by dynamically changed global buffers

• Shared memory for in-memory data buffers

Fixing shared memory in actual memory reduces the number of page I/Os, stabilizing performance.

Prerequisites
The following table shows the prerequisites for page fixing of shared memory by OS.

OS Prerequisites

HP-UX None

Solaris None

AIX Must be 64-bit mode

Linux None

Operating environment settings
AIX requires you to set operating system parameters. For details, see 20.3(1) Specifying parameters unique to
AIX.

Page fixing methods
This subsection describes shared memory page fixing methods for each type of shared memory.

• Shared memory for unit controllers
Specify fixed in the pd_shmpool_attribute operand of the system common definition or unit control
information definition.

• Shared memory for global buffers

8. Designing a HiRDB single server configuration

218

Specify fixed in the pd_dbbuff_attribute operand of the system common definition or unit control
information definition.

• Shared memory used by dynamically changed global buffers
Specify fixed in the pd_dbbuff_attribute operand of the system common definition or unit control
information definition. This fixes shared memory used by global buffers dynamically changed by the
pdbufmod command in actual memory.

• Shared memory for in-memory data buffers
Specify fixed in the pdmemdb command -p option.

! Important note
When contiguous areas cannot be secured in actual memory, shared memory pages cannot be fixed. HiRDB
operation when page fixing fails is shown below.

OS

HiRDB operation when page fixing fails

Unit controller shared
memory

Global buffer
shared memory

Dynamically changed global
buffer shared memory

In-memory data buffer
shared memory

HP-UX Y N N N

Solaris Y N N N

AIX Y# Y# Y# Y#

Linux Y N N N

Legend:
Y: Shared memory is secured without fixing pages, and processing continues.
N: HiRDB or the command terminates abnormally.

#
In AIX, system calls terminate normally even when page fixing fails. This means that you cannot tell from
HiRDB that page fixing failed. Use the following procedure to check whether pages were fixed.
1. While HiRDB is running, execute the pdls -d mem command to check the identifier of the following
shared memory segment:

 For shared memory for unit controllers, the shared memory segment with MANAGER displayed under SHM-
OWNER.

 For other types of shared memory, the shared memory segment with a character string consisting of the unit
name in parentheses or the HiRDB server name displayed under SHM-OWNER.
2. Execute the OS's ipcs -s command, and then check the SID value of the shared memory that has the
identifier of the shared memory segment you checked in step 1.
3. Execute the OS's svmon command on the SID value you checked in step 2, and then check whether the
number of actual memory pages of the shared memory in question matches the number of fixed pages.

(2) Installing a utility special unit
It may not be possible to install a desired input/output device (such as MT drives) to be used by utilities at the HiRDB
single server configuration machine because of I/O device restrictions. In such a case, the I/O device can be installed
on a separate server machine and can be used by the utilities via a LAN. A server machine on which only input/output
devices are installed for use by utilities is called a utility special unit.

A utility special unit is used by the following utilities:

• Database load utility (pdload)

• Database reorganization utility (pdrorg)

• Dictionary import/export utility (pdexp)

• Database copy utility (pdcopy)

• Database recovery utility (pdrstr)

8. Designing a HiRDB single server configuration

219

For details about how to use a utility special unit with execution of utilities, see the manual HiRDB Version 9
Command Reference.

When an input/output device cannot be installed at the HiRDB single server configuration machine, installation of a
utility special unit should be considered.

One utility special unit can be shared among multiple HiRDB single server configurations.

8.1.2 System configuration
The following figure shows an example of a system configuration for a HiRDB single server configuration. Figure 8-2
shows system configurations with a utility special unit installed.

The HiRDB single server configuration is defined in the HiRDB system definition. For details about definition
examples of the system configurations, see the manual HiRDB Version 9 System Definition.

Figure 8‒1: System configuration for a HiRDB single server configuration

Figure 8‒2: System configuration for a HiRDB single server configuration with a utility special unit installed

8. Designing a HiRDB single server configuration

220

8.2 Designing HiRDB file system areas
When constructing a HiRDB system, you must create HiRDB file system areas where HiRDB files are created. This
section discusses the design considerations for creating HiRDB file system areas.

Separate HiRDB file system areas should be created for the types of items listed below, so that contention between
input/output operations on files with different purposes or access characteristics can be avoided. If regular files are
used, write performance can be improved by specifying the purpose explicitly, and an appropriate device can be
allocated according to the purpose. Separate file system areas should be created for:

• RDAREAs

• System files

• Work table files

• Utilities

• RDAREAs for lists (list RDAREAs)

8.2.1 Designing HiRDB file system areas for RDAREAs
This section discusses the design considerations for HiRDB file system areas in which RDAREAs are to be created.

(1) Design for improved reliability

1. For update processing, character special files are more reliable than regular files. Regular files may become
inaccessible if the OS terminates abnormally. Thus, character special files should be used for HiRDB file system
areas for user RDAREAs that satisfy the following characteristics:

• User RDAREAs for storing tables that are used primarily for update processing.

• User RDAREAs for storing particularly important data.

2. Calculate the size of the required HiRDB file system area and create a HiRDB file system area of that size or
larger.

3. HiRDB file system areas for RDAREAs must be created at the server machine where the single server is defined.

4. For the following RDAREAs, create HiRDB file system areas on the server machine where the single server is
defined:

• System RDAREAs

• Data dictionary LOB RDAREAs

• Registry RDAREAs

• Registry LOB RDAREAs

5. For the following RDAREAs, create HiRDB file system areas on the server machine where the single server is
defined:

• User RDAREAs

• User LOB RDAREAs

6. If the system switchover facility is to be used, the HiRDB file system areas for user RDAREAs should be
allocated as character special files.

(2) Design for improved performance

1. You should create separate HiRDB file system areas for the following types of RDAREAs:

• System RDAREAs

• Data dictionary LOB RDAREAs

• User RDAREAs

• User LOB RDAREAs

8. Designing a HiRDB single server configuration

221

• Registry RDAREAs

• Registry LOB RDAREAs

2. You should create HiRDB file system areas for system files on hard disks separate from the ones used for HiRDB
file system areas for RDAREAs. In this way, you can distribute input/output operations when collecting a
synchronization point dump, thereby reducing the amount of time required to collect the synchronization point
dump.

3. If you are not using the prefetch facility, the sequential read speed is faster with regular files than with character
special files.

4. For random one-page reads, processing speed is faster with character special files than with regular files.

5. For write processing, the speed is faster with character special files than with regular files.

6. Regular files have a hierarchical structure; therefore, as files become larger, the hierarchical levels increase. When
you access such files with many hierarchical levels, the number of input/output operations increases, adversely
affecting the access efficiency.

7. The HiRDB file system areas should be allocated as shown in the following table, so that input/output time can be
reduced.

Table 8‒1: Allocation of HiRDB file system areas to improve performance

Type of HiRDB file system areas File to be allocated

HiRDB file system area for system RDAREAs Character special file

HiRDB file system area for dictionary LOB RDAREAs

HiRDB file system area for user LOB RDAREAs

HiRDB file system area for user RDAREAs that store frequently updated tables or tables primarily subject
to retrieval of small amounts of data

HiRDB file system area for user RDAREAs that store tables with a large amount of data that are primarily
subject to retrieval of all entries or retrieval of large amounts of data by key using the cluster key (but with
data that is rarely updated)

• Regular file (when not
using the prefetch
facility)

• Character special file
(when using the
prefetch facility)

8.2.2 Designing HiRDB file system areas for system files
This section discusses the design considerations for HiRDB file system areas in which system files are to be created.

(1) Design for improved reliability

1. For update processing, character special files are more reliable than regular files. Regular files may become
inaccessible after a system shutdown. Thus, character special files should be used for HiRDB file system areas for
system log files, synchronization point dump files, and status files.

2. Create at least two HiRDB file system areas for system files. If there is only one HiRDB file system area for
system files, HiRDB cannot continue operating in the event of a hard disk failure at the disk containing the system
files.

3. Create HiRDB file system areas for system files on separate hard disks. In this way, in the event of a hard disk
error, you can restart HiRDB using the other hard disk.

4. Calculate the size of the required HiRDB file system area and create a HiRDB file system area of that size or
larger.

(2) Design for improved performance
You should create HiRDB file system areas for system files on hard disks separate from the ones used for HiRDB file
system areas for RDAREAs. In this way, you can distribute input/output operations when collecting a synchronization
point dump, thereby reducing the amount of time required to collect the synchronization point dump.

8. Designing a HiRDB single server configuration

222

8.2.3 Designing HiRDB file system areas for work table files
This section discusses the design considerations for HiRDB file system areas in which work table files are to be
created.

(1) Design considerations

1. Work table files can be allocated to regular files. However, if the system switchover facility is used, disk space can
be saved by allocating work table files to character special files because the files can then be shared.

2. The amount of space required for a HiRDB file system area for work table files must be greater than the total size
of the work table files to be created in the area. If you specify the -a option with the pdfmkfs command, the
HiRDB file system area can be automatically extended. We recommend specifying the -a option, since the
HiRDB file system area will be extended automatically when the total size of the work table files reaches the size
of the HiRDB file system area.#

For details about the sizes of work table files, see Chapter 18. Determining Work Table File Size.

#
To reduce the amount of disk space that the HiRDB file system area for work table files occupies when HiRDB is
re-started, before restarting HiRDB, execute the pdfmkfs command and then re-initialize the HiRDB file system
area for work table files.

(2) Checking the peak capacity
The peak capacity of a HiRDB file system area for work table files can be obtained by entering the following
command:

pdfstatfs -d name-of-HiRDB-file-system-area-for-work-tables

-d
Specifies that the maximum utilization value for the allocated HiRDB file system area is to be displayed. The
peak capacity display that is output is this value. The maximum utilization value is cleared by entering the
following pdfstatfs command:

pdfstatfs -c name-of-HiRDB-file-system-area-for-work-table

-c
Specifies that the maximum utilization value for the allocated HiRDB file system area is to be cleared to 0.

8.2.4 Designing HiRDB file system areas for utilities
This section discusses the design considerations for HiRDB file system areas in which utility files (backup files,
unload data files, and unload log files) are created. Use the HiRDB file system areas for utilities to create the
following files:

• Backup files

• Unload data files

• Unload log files

• Differential backup management files

(1) Design considerations

1. If you are creating a HiRDB file system area for backup files, allocate it to character special files.

2. The amount of space required for a HiRDB file system area for backup files must be greater than the total size of
the RDAREAs that will be backed up. For details about the sizes of RDAREAs, see Chapter 16. Determining
RDAREA Size.

3. If you use the system switchover facility, create unload log files on a shared disk (character special files).

8. Designing a HiRDB single server configuration

223

4. If you are creating a HiRDB file system area for unload log files, specify the following options in the pdfmkfs
command:

• -k option: Specify UTL (HiRDB file system area for utilities) as the usage.

• -n option: For the size of the HiRDB file system area, specify the value obtained from the following formula:

(total record count for system log file to be unloaded#1 system log file record size)#2 number of unload
log files to be created 1.2 1,048,576

• -l option: For the maximum number of files, specify the number of unload log files to be created.

• -e option: For the maximum number of extensions, specify the number of unload log files to be created times
24.

#1
If you are using the system log file automatic extension facility, calculate this number using the value
specified as the upper limit for expansion in the pd_log_auto_expand_size operand.

#2
This is the approximate value of the system log file.

(2) Checking the peak capacity
You can obtain the peak capacity of a HiRDB file system area for utilities by entering the following command:

pdfstatfs -d name-of-HiRDB-file-system-area-for-utilities

-d
Specifies that the maximum utilization value for the allocated HiRDB file system area is to be displayed. The
peak capacity display that is output is this value. You can clear the maximum utilization value by entering the
following pdfstatfs command:

pdfstatfs -c name-of-HiRDB-file-system-area-for-utilities

-c
Specifies that the maximum utilization value for the allocated HiRDB file system area is to be cleared to 0.

8.2.5 Designing HiRDB file system areas for list RDAREAs
This section discusses the design considerations for HiRDB file system areas in which list RDAREAs are to be
created.

(1) Design considerations

1. A list is used to store temporary intermediate results of search processing; therefore, it does not need to be as
reliable as other RDAREAs. You can create HiRDB file system areas for list RDAREAs in regular files.

2. If you use the system switchover facility, you can save disk space by allocating HiRDB file system areas for list
RDAREAs to character special files because the files can then be shared.

(2) Design for improved performance

1. If you are creating HiRDB file system areas for list RDAREAs on RAID, you should use character special files to
reduce processing time. If you are creating them on any other disk, you should use regular files to reduce
processing time.

2. You should create HiRDB file system areas for list RDAREAs on a hard disk separate from the ones used for the
following HiRDB file system areas. In this way, you can distribute input/output operations when searching a list,
thereby reducing the processing time.

• HiRDB file system areas for user RDAREAs

• HiRDB file system areas for user LOB RDAREAs

• HiRDB file system areas for work table files

8. Designing a HiRDB single server configuration

224

8.2.6 Maximum sizes of HiRDB file system areas
The following table lists the maximum sizes of the HiRDB file system areas.

Table 8‒2: Maximum sizes of HiRDB file system areas

HiRDB type Conditions Maximum size of HiRDB file system
area (MB)

HP-UX Large file not used Regular file 2,047

Character special file

Large file used Regular file 1,048,575

Character special file

Solaris Large file not used Regular file 2,047

Character special file

Large file used Regular file 1,048,575

Character special file

AIX Large file not used Regular file 2,047

Character special file

Large file used Regular file(JFS) 65,411

Regular file(JFS2) 1,048,575

Character special file

Linux Large file not used Regular file 2,047

Character special file

Large file used Regular file 1,048,575

Character special file

8. Designing a HiRDB single server configuration

225

8.3 Designing system files
This section describes the design considerations for system files.

8.3.1 Designing system log files
The following explains some of the design considerations for system log files.

(1) Design considerations

1. System log files are not required for a utility special unit.

2. Specify the same record length and number of records for all system log files.

3. The number of system log files that can be created is 2 to 200 groups (we recommend creating at least six groups).

4. For one server, creation of system log files must meet the following condition:

100 (unit: megabytes) (200 - number of system log file groups assigned to server) total system log file capacity allocated to the
server 3

Multiplying by three is necessary to restart a HiRDB system that terminated abnormally due to insufficient space
for the system log files. Depending on usage and whether there is enough space for system log files, you might
need to take action by creating system log files of three times the capacity allocated to the server, and then adding
them to the server.

5. To reduce the number of unload operations, it is advisable to create many large system log files.

6. A file that is involved in many input/output operations (such as a log unload file) should not be created on the
same disk that contains HiRDB directory.

7. The amount of space required for one system log file must satisfy the condition shown following.

Size of one system log file (bytes) (a + 368) c c b d

a: Value of pd_log_max_data_size operand
b: Value of pd_log_sdinterval operand
c: Value of pd_log_rec_leng operand
d: Value of pd_spd_assurance_count operand

8. The total size of the system log files (if duplexed, only their size in one of the systems) must meet the following
two conditions.

Condition 1
The size must be at least the value calculated according to the formula in 17.1.1(1) How to obtain the total size of
system log files.

Condition 2
After the start of the large object transaction, system log files cannot be overwritten until the large object
transaction finishes. Moreover, the current generation of system log files and system log files corresponding to the
number of guaranteed-valid generations of the synchronization point dump file cannot be overwritten either. For
this reason, make sure that there is at least enough system log file capacity to accommodate this amount of data.
Use the following equation to estimate the required capacity.

System log file total size (bytes) 3 a (b + 1)

a:
Size of system log information that may be output at the corresponding server while executing the database
updating transaction with the longest execution time.
For details about the formula for estimating the size of system log information, see 17.1 Determining the size
of system log files.

b: Value of pd_spd_assurance_count operand
Number of guaranteed-valid generations for synchronization point dump files.

8. Designing a HiRDB single server configuration

226

(a) Effects on operations of the number of generations of system log files

If the total size of the system log files is unchanged, the size of each generation will depend on how many generations
of system log files are being maintained. The following table describes the effect on operations of the number of
generations of system log files. The total size of the system log files is unchanged.

Table 8‒3: Effects on operations of the number of generations of system log files

Comparison item
System log file configuration

Small number of generations Large number of generations

Size of each generation of system log
files

Becomes larger. Becomes smaller.

Swap interval Because the size of each generation of system
log files becomes larger, the swap interval
becomes longer.

Because the size of each generation of
system log files becomes smaller, the swap
interval becomes shorter.

Unload frequency Because the swap interval becomes longer, the
unload frequency becomes lower.

Because the swap interval becomes shorter,
the unload frequency becomes higher.

Effects on the system log size when
something such as a disk failure
makes several generations of system
log files unusable

• Because the size of each generation of
system log files becomes larger, the log
volume used for database recovery in the
event of a disk failure increases, and the
time required for database recovery
increases.

• If the decrease in the system log volume is
large, the effects of the decrease in system
log volume will have increasing effects on
HiRDB operations.

• Because the size of each generation of
system log files becomes smaller, the log
volume used for database recovery in the
event of a disk failure decreases, and the
time required for database recovery
decreases.

• If the decrease in the system log volume
is small, the effects of the decrease in
system log volume will have decreasing
effects on HiRDB operations.

In normal operations, the lower the number of generations of system log files, the more advantageous the swapping
interval and the unload frequency will become. However, if there is a failure, the effects on operations will be reduced
with a larger number of log file generations.

(2) Design for improved reliability

(a) System log file duplexing

When system log file duplexing is used, HiRDB acquires the same system log information in both versions. In the
event of an error on one of the versions, the system log can be read from the other version, thereby improving system
reliability. When dual system log files are used, they must be used under the management of HiRDB rather than using
a mirror disk. When using dual system log files, create the files for each system on a separate hard disk.

To use dual system log files, specify the following operands in the server definition:

• pd_log_dual=Y
• -b option in the pdlogadpf operand (to specify the name of the B version of system log file)

(b) Single operation of system log files

Single operation of system log files is employed when dual system log files are used.

In the event of an error in a system log file, processing can continue using the normal version of the system log file
without having to terminate the HiRDB unit abnormally even if neither system has a usable system log file. This is
called single operation of system log files. To perform single operation of system log files, specify
pd_log_singleoperation=Y in the server definition.

As opposed to single operation of system log files, continuing processing using both versions of system log files
(normal processing mode) is called double operation of system log files.

8. Designing a HiRDB single server configuration

227

(c) Automatic opening of system log files

If there is no overwrite-enabled system log file at the time of a HiRDB restart, but a reserved file is available, then
HiRDB continues processing by opening the reserved file and placing it in overwrite-enabled status. This is called
automatic opening of system log files.

To perform automatic opening of system log files, specify pd_log_rerun_reserved_file_open=Y in the
server definition.

(3) Features to improve availability

(a) Facility for monitoring the free space remaining for system log files

When system log files need to be swapped, if no swappable system log files exist, HiRDB terminates abnormally. To
prevent this, HiRDB has a facility for monitoring the free space remaining for system log files. This facility operates
when the percentage of available free area for the system log files reaches a warning value. Select one of the following
two levels.

Level 1:
When the available space in the system log file falls below the warning level, the KFPS01162-W warning
message is output.

Level 2:
When the available space in the system log file falls below the warning level, scheduling of new transactions is
suppressed, and all transactions inside the server are forcibly terminated. At this time, message KFPS01160-E is
output. This controls the output volume of the system logs.

If level 2 is selected, all transactions on the server are terminated forcibly when there is insufficient free space in the
system log files. Therefore, the design of system log files requires more accuracy.

For details about this facility, see the HiRDB Version 9 System Operation Guide.

(b) System log file automatic extension facility

The HiRDB system (or unit) terminates abnormally when it runs out of free space for system log files. To prevent this,
HiRDB provides a facility to automatically expand the space for system log files (the system log file automatic
extension facility). By using this facility, you can reduce the frequency of abnormal termination of the HiRDB system
(or unit) due to lack of free space for system log files.

For details about the system log file automatic extension facility, see the HiRDB Version 9 System Operation Guide.

(c) Skipped effective synchronization point dump monitoring facility

If a UAP continues to update the database in an infinite loop, it cannot enable the synchronization point, and the
number of system log files that cannot be overwritten increases. If the point is reached where none of the system log
files can be overwritten, HiRDB terminates abnormally.

If HiRDB is forcibly terminated or terminates abnormally when the number of system log files that cannot be
overwritten reaches one-half or more of all system log files, a shortage of system log files occurs during rollback
processing when HiRDB restarts. In this case, HiRDB cannot be restarted unless new system log files are added. Any
such restart processing will take longer than usual.

To prevent this, HiRDB has established a skipped effective synchronization point dump monitoring facility.

For details about this facility, see the HiRDB Version 9 System Operation Guide.

(4) Facility for parallel output of system logs (AIX and Linux versions only)
When the system log file is duplexed, using the facility for parallel output of system logs allows output processing of
logs to the two systems to be executed in parallel. As a result, less time is required for log output. To use the facility
for parallel output of system logs, you need an aio library (for AIX, the Asynchronous I/O Subsystem; for Linux,
libaio). For details about the Asynchronous I/O Subsystem or libaio, see the documentation for the OS you are using.

Note that when you use the facility for parallel output of system logs in the Linux version, it is assumed that the
platform is one of the following.

• Red Hat Enterprise Linux ES 4(AMD64 & Intel EM64T) or later

8. Designing a HiRDB single server configuration

228

• Red Hat Enterprise Linux AS 4(AMD64 & Intel EM64T) or later

(a) Recommended usage

To shorten log output time, we recommend that the A and B systems be placed on separate devices.

(b) Environment settings (setting system definitions)

In the server definition, specify pd_log_dual_write_method=parallel.

• Dual system log files are not used (the value of the pd_log_dual operand is not Y).

• The system log files are not placed in character special files.

(c) Environment settings (setting the aio library)

Install the aio library on the server machine and configure the required settings. See the OS documentation for details
about how to install and set up the aio library.

If the aio library installation and setting are not performed correctly using the environment settings described in (b),
HiRDB cannot start.

 Using AIX 5L
Asynchronous I/O Subsystem must be enabled prior to starting HiRDB. Otherwise, HiRDB will not start. On AIX
5L V5.2 and later, Asynchronous I/O Subsystem comes in a legacy version and a POSIX version. Since HiRDB
uses the legacy version, enable the legacy Asynchronous I/O Subsystem.
After you have installed Asynchronous I/O Subsystem, set the following parameters.

Parameter Recommended value

STATE to be configured at system restart available

STATE of FastPath enable#

#: This is the default, so no change is needed. If the setting is changed, performance might decline.
Other parameters do not require tuning.

(d) Notes

1. If Asynchronous I/O Subsystem is not enabled on HiRDB for AIX 5L, HiRDB cannot start and terminates
abnormally. Either enable the Asynchronous I/O Subsystem, omit the pd_log_dual_write_method
operand, or specify serial, and then restart HiRDB. If the Asynchronous I/O Subsystem parameter is set to
STATE to be configured at system restart = available, HiRDB starts automatically.

2. The facility for parallel output of system logs is not applicable to system log files placed in regular files. If you
add system log files, place them in character special files.

3. The facility for parallel output of system logs is applied only when both primary and secondary current files are
placed in character special files and system log information can be output to those current files (they are not in
closed, reserved, or error status). Parallel output of system logs does not take place, regardless of the system
definition, if the current file satisfies either of the following conditions:

• The primary or secondary current file is placed in a regular file.

• The primary or secondary current file is in a status such that no log information can be output to it.

4. If the server that uses the facility for parallel output of system logs is running on multiple server machines, as
when the system switchover facility is used, startup of the standby unit or system switchover might fail if the aio
library is not enabled on any of the server machines. Therefore, enable the aio library on all server machines.

(5) Record length of a system log file (when the HiRDB system is already operating)
If the record length is not 1,024, we recommend that you change it to 1,024 to improve system log storage efficiency.

For details about how to change the system log file record length, see the HiRDB Version 9 System Operation Guide.

8. Designing a HiRDB single server configuration

229

(6) Defining the system log files
The pdlogadfg and pdlogadpf operands are used to define the correspondence between file groups and the
created system log files.

8.3.2 Designing synchronization point dump files
This section describes the design considerations for synchronization point dump files.

(1) Design considerations

1. Synchronization point dump files are not required for a utility special unit.

2. Between 2 and 60 groups (if ONL is specified, 2 and 30 groups) of synchronization point dump files can be created
per server.

3. HiRDB uses synchronization point dump files in the order specified in the pdlogadfg -d spd operand.

4. You should create at least four synchronization point dump files.

5. If a shortage of space occurs in a synchronization point dump file, HiRDB cannot be restarted. For this reason, the
size of a synchronization point dump file should be set to be greater than the value specified for the maximum
number of concurrent connections (pd_max_users) in the system common definition. For details about the
calculation of synchronization point dump file size, see 17.2 Determining the size of synchronization point dump
files.

(2) Design for improved reliability

(a) Example of file organization

As a safeguard against the possibility of hard disk failures, you should create the synchronization point dump files on
separate hard disks. If this is not possible, you should create adjacent generations of files on separate hard disks, as
shown in the example in the following figure.

Figure 8‒3: Example of creating adjacent generations on separate hard disks (HiRDB single server
configuration)

(b) Duplexing of the synchronization point dump file

When the synchronization point dump file is duplexed, HiRDB collects the same synchronization point dump on both
system A and system B. This increases system reliability, because when a collected synchronization point dump is
read and there is an abnormality in the file, the synchronization point dump can still be read from the other file.
Duplexing also enables the number of guaranteed-valid generations to be set to one generation, yet reliability is not
compromised and the number of synchronization point dump files in overwrite disabled status is reduced.

Specify the following operands in the server definition to enable duplexing of synchronization point dump files:

• pd_spd_dual = Y

8. Designing a HiRDB single server configuration

230

• -b option in the pdlogadpf operand (specifies the system log file name on system B)

(c) Number of guaranteed-valid generations for synchronization point dump files

Each synchronization point dump acquired by HiRDB is stored in a separate synchronization point dump file. HiRDB
uses the generation concept to manage synchronization point dump files. The HiRDB administrator specifies the
number of generations of synchronization point dump files, and the corresponding system log files, that are to be
placed in overwrite-disabled status. This concept is called the number of guaranteed-valid generations for
synchronization point dump files, and it is illustrated in the following figure.

Figure 8‒4: Number of guaranteed-valid generations for synchronization point dump files

Explanation
If there are two guaranteed-valid generations, the synchronization point dump files up to the second generation,
and the system log files relevant to those synchronization point dump files, are in overwrite disabled status. The
synchronization point dump files prior to the third generation, and the system log files relevant to those
synchronization point dump files, are in overwrite enabled status.

The required number of synchronization point dump files is the number of guaranteed-valid generations + 1. Specify
the number of guaranteed-valid generations for synchronization point dump files in the
pd_spd_assurance_count operand in the server definition.

If synchronization point dump files are to be duplexed, it is recommended that only one guaranteed-valid generation
be required. If duplexing is not to be used, two generations are recommended.

(d) Reduced mode operation for synchronization point dump files

If the number of synchronization point dump files available for use is reduced to the number of guaranteed-valid
generations + 1 because of errors in synchronization point dump files, processing can continue with a minimum of two
files. This is called the reduced mode operation for synchronization point dump files.

To perform reduced mode operation for synchronization point dump files, specify the pd_spd_reduced_mode
operand in the server definition.

(e) Automatic opening of synchronization point dump files

When the number of synchronization point dump files available for use is reduced to the number of guaranteed-valid
generations + 1 because of errors in synchronization point dump files, processing can continue by opening a reserved
file and placing it in overwrite-enabled status (assuming that such a reserved file is available). This is called automatic
opening of synchronization point dump files.

8. Designing a HiRDB single server configuration

231

To perform automatic opening of synchronization point dump files, specify the
pd_spd_reserved_file_auto_open=Y in the server definition.

(3) Defining the synchronization point dump files
The pdlogadfg and pdlogadpf operands are used to define the correspondence between file groups and the
created synchronization point dump files.

If only the pdlogadfg operand is specified, synchronization point dump files can be added during HiRDB
operation.

8.3.3 Designing status files
This section describes the design considerations for status files.

(1) Design considerations

1. Create the primary and secondary files on separate disks in order to avoid errors on both files.

2. To prevent abnormal termination of HiRDB as a result of a shortage of status file space, create several spare files
whose size is greater than the estimated value. When a status file becomes full, file swapping occurs in order to
use a spare file. If the size of the spare file is the same as the full status file, a space shortage also occurs on the
spare file, resulting in abnormal termination of HiRDB. For example, if you create six sets of status files, we
recommend that you make the file size for two of the sets larger than for the other sets.

3. Server status files are not required for a utility special unit. Create only unit status files.

4. Specify the same record length and number of records for both versions (A and B) of the status files.

5. You can create 1-7 sets of unit status files.

6. You can create 1-7 sets of server status files.

(2) Design for improved reliability

1. Provide at least three sets of status files (dual files 3 = 6 files) and place them in such a manner that corruption
of all status files by disk errors is unlikely.

2. To prevent abnormal termination of HiRDB resulting from a space shortage, we recommend that you set the size
of a status file to at least 1.2 times the estimated value.

3. A status file contains information that will be needed in order to restore the system status during HiRDB restart
processing. If an error occurs in such a file and no spare file is available, the system status cannot be restored.
Therefore, make sure that spare files are always available as a safeguard in the event of errors on the current files.

(a) Recommended configuration

In order to provide a safety margin until a disk becomes operational after it has been recovered from a disk failure, we
recommend that you provide six sets of status files on four sets of disks (dual files 6 = 12 files) and place them as
shown in the following figure. If an error occurs on the normal system during single operation, HiRDB cannot be
restarted; therefore, we recommend that you do not apply single operation to status files (specify stop in
pd_syssts_singleoperation and pd_sts_singleoperation).

The following figure shows an example of placing six sets of status files on four sets of disks.

8. Designing a HiRDB single server configuration

232

Figure 8‒5: Example of placing six sets of status files on four sets of disks

Explanation:
With this arrangement, if an error occurs on a disk, and then another error occurs on another disk, the remaining
two disks still contain intact primary and secondary files, and HiRDB can continue operation using the status files
on the error-free disks as the current files. For example, if an error occurs on disk A and then an error occurs on
disk B, HiRDB continues operation using as the current files the primary and secondary status files on disks C and
D (sts-3a and sts-3b). In this status, if another error occurs on one of the current files, HiRDB terminates
abnormally; however, because one of the current files is normal, HiRDB can be restarted after one of the disks is
recovered from its error.

(3) Defining the status files
The pd_syssts_file_name_1 to pd_syssts_file_name_7 and the pd_sts_file_name_1 to
pd_sts_file_name_7 operands are used to define the correspondence between the status files created by the
pdstsinit command and the logical files.

The pd_syssts_file_name_1 to pd_syssts_file_name_7 operands are for unit status files, and the
pd_sts_file_name_1 to pd_sts_file_name_7 operands are for server status files.

If the names of imaginary logical files or status files are defined in the pd_syssts_file_name2 to
pd_syssts_file_name7 operands or in the pd_sts_file_name2 to pd_sts_file_name7 operands,
status files can be added during HiRDB operation. In such a case, the following operands must be specified.

Unit status files
pd_syssts_initial_error
pd_syssts_last_active_file

Server status files
pd_sts_initial_error
pd_sts_last_active_file

(4) Single operation of status files
If an error occurs on one of the current files while there is no available spare file, continuing operation using only the
normal file (either the primary or secondary file) is called status-file single operation. When status files are placed in
the single operation mode, the KFPS01044-I message is displayed.

If an error occurs on the current file in the single operation mode, HiRDB can no longer be restarted. Therefore,
status-file single operation is not recommended. Increase the number of status file sets to avoid a situation where no
spare file is available.

As opposed to status-file single operation, continuing operation using both status files (normal processing mode) is
called status-file double operation.

8. Designing a HiRDB single server configuration

233

(a) Advantages and disadvantages of status-file single operation

Advantages
Processing can continue even if an error occurs on one of the current files while no spare file is available. This
reduces the adverse consequences of HiRDB shutdown resulting from a status file error.

Disadvantages
If an error occurs on the normal file during single operation or HiRDB terminates abnormally while the status file
is being updated, the contents of the current file are lost, disabling HiRDB restart.

(b) Specification method

To use unit status-file single operation, specify pd_syssts_singleoperation = continue in the unit control
information definition file. To use server status-file single operation, specify pd_sts_singleoperation =
continue in the server definition. Make sure that pd_syssts_singleoperation and
pd_sts_singleoperation have the same value.

• Relationship with other operands
The combination of the pd_syssts_singleoperation and pd_syssts_initial_error operand
values or the pd_sts_singleoperation and pd_sts_initial_error operand values determines the
HiRDB operation that is to take place if an error is detected in a status file during HiRDB startup. Therefore,
determine the values of these operands together. For details about the HiRDB operation that is to take place if an
error is detected in a status file during HiRDB startup, see the description of the
pd_syssts_initial_error or pd_sts_initial_error operand in the manual HiRDB Version 9
System Definition.

(c) Usage guidelines

The following are guidelines on when to use status-file single operation.

• Do not use single operation if the primary goal is to avoid HiRDB being unable to restart.

• Use single operation if the primary goal is to avoid disabling the ability of HiRDB to go online.

• Do not use single operation if you have set HiRDB to restart automatically, such as at the time of a system
switchover.

(d) Notes about using single operation

The following table outlines HiRDB operations and HiRDB administrator actions that depend on whether single
operation is used. For details about how to handle status file errors, see the HiRDB Version 9 System Operation Guide.

Table 8‒4: HiRDB operation and HiRDB administrator's action that depend on whether single operation is
used

Condition

Status-file single operation

(pd_syssts_singleoperation or pd_sts_singleoperation operand value)

Used (continue specified) Not used (omitted or stop
specified)

There are spare files Error occurred in the
current file

HiRDB operation:

Swaps status files.

HiRDB administrator's action:

Handle the error in the applicable status file.

Error occurred on
both current files
simultaneously

HiRDB operation:

Terminates abnormally. HiRDB cannot be restarted.

HiRDB administrator's action:

See Handling of status file errors in the HiRDB Version 9 System Operation Guide.

There is no spare file Error occurred in one
of the current files

HiRDB operation:

Resumes processing using single
operation.

HiRDB operation:

Terminates abnormally.

8. Designing a HiRDB single server configuration

234

Condition

Status-file single operation

(pd_syssts_singleoperation or pd_sts_singleoperation operand value)

Used (continue specified) Not used (omitted or stop
specified)

HiRDB administrator's action:

Create spare files immediately and return
HiRDB to the double operation mode.

HiRDB administrator's action:

Create spare files, and then restart
HiRDB.

Error occurred on
both current files
simultaneously

HiRDB operation:

Terminates abnormally. HiRDB cannot be restarted.

HiRDB administrator's action:

See Handling of status file errors in the HiRDB Version 9 System Operation Guide.

Error occurred in the
normal file during
single operation

HiRDB operation:

Terminates abnormally. HiRDB cannot be
restarted.

HiRDB administrator's action:

See Handling of status file errors in the
HiRDB Version 9 System Operation
Guide.

--

Legend:
--: Not applicable

(5) Notes on status file errors (important)

• If errors occur on both current files simultaneously, HiRDB terminates abnormally and HiRDB can no longer be
restarted. A possible measure for avoiding this situation is to use multiple physical disks (mirroring).

• If the current file (existing during termination) is deleted or initialized by the pdstsinit command prior to
HiRDB startup, HiRDB can no longer be restarted.

8. Designing a HiRDB single server configuration

235

8.4 Placing RDAREAs
This section discusses considerations concerning placement of the following types of RDAREAs:

• System RDAREAs

• Data dictionary LOB RDAREAs

• User RDAREAs

• User LOB RDAREAs

• List RDAREAs

8.4.1 Placing system RDAREAs
System RDAREAs should be placed taking into account the placement of user RDAREAs. Points to be considered
when a system RDAREA is placed are discussed as follows.

A system RDAREA should not be placed on the same disk with user RDAREAs.

Among the system RDAREAs, data dictionary RDAREAs and data directory RDAREAs are accessed frequently by
HiRDB for SQL statement analysis and other operations. If they are placed on the same disk as user RDAREAs,
contention may occur between an access request for the purpose of SQL statement analysis and a table access request,
in which case one of the requests will be placed on hold until the other request has been processed.

The following figure shows an example of system RDAREA placement that does not generate disk access contention.

Figure 8‒6: Example of system RDAREA placement (HiRDB single server configuration)

8.4.2 Placing data dictionary LOB RDAREAs
To avoid contention among disk accesses, a data dictionary LOB RDAREA should not be placed on the same disk as
any other RDAREA.

The following figure shows an example of data dictionary LOB RDAREA placement.

8. Designing a HiRDB single server configuration

236

Figure 8‒7: Example of data dictionary LOB RDAREA placement (HiRDB single server configuration)

Relationship with data dictionary RDAREAs
A dictionary table used to manage stored procedures or stored functions can be placed in a separate data dictionary
RDAREA from other dictionary tables.

8.4.3 Placing user RDAREAs

(1) Relationship with system log files
A user RDAREA should not be placed on the same disk as a system log file. When this rule is observed, input/output
operations on HiRDB files that constitute system log files and on user RDAREAs can be distributed to multiple disks
when a synchronization point dump is collected, thereby reducing the amount of time required for synchronization
point dump processing.

(2) Relationship with system RDAREAs
A user RDAREA should not be placed on the same disk as a system RDAREA.

(3) Row-partitioned tables
If you have partitioned a table by row, place the RDAREAs storing the row-partitioned table on separate disks. The
following figure shows an example of user RDAREA placement.

Figure 8‒8: Example of user RDAREA placement (HiRDB single server configuration)

8.4.4 Placing user LOB RDAREAs
To avoid contention among disk accesses, a user LOB RDAREA should not be placed on the same disk as any other
RDAREA.

8. Designing a HiRDB single server configuration

237

If you have partitioned a table by row, place the RDAREAs storing the row-partitioned table on separate disks. The
following figure shows an example of user LOB RDAREA placement.

Figure 8‒9: Example of user LOB RDAREA placement (HiRDB single server configuration)

8.4.5 Placing list RDAREAs
To avoid contention among disk accesses, you should place list RDAREAs on a separate disk from any other
RDAREAs.

Creating one list RDAREA lets you create lists for the tables that are stored in all user RDAREAs.

The following figure shows an example of list RDAREA placement.

Figure 8‒10: Example of list RDAREA placement (HiRDB single server configuration)

8. Designing a HiRDB single server configuration

238

9 Designing a HiRDB parallel server
configuration
This chapter describes the design considerations for a HiRDB parallel server
configuration, its HiRDB file system areas, and its system files, and provides notes on
the placement of RDAREAs.

239

9.1 System design for a HiRDB parallel server
configuration

This section describes the system design considerations and the system configuration for a HiRDB parallel server
configuration.

9.1.1 System design

(1) Server configuration
The basic configuration of a HiRDB parallel server configuration consists of a front-end server, dictionary server, and
back-end server on the same server machine.

If the CPU workload of the server machine is low, multiple servers may be placed on one server machine. In such a
case, more shared memory is required. If there is not enough shared memory, unit startup fails; for this reason,
sufficient memory must be allocated.

The following table shows the ranges for the number of servers that can be installed.

Table 9‒1: Number of permitted servers

Item Number of permitted servers

Number of system managers 1

Number of front-end servers 1 to 1,024

Number of dictionary servers 1

Number of back-end servers 1 to 16,382

Number of servers per unit 1 to 34

(2) Placement of system manager
The server machine on which the system manager is defined should be at a location that is easily accessible by the
HiRDB administrator for the following reasons:

• The HiRDB administrator uses operation commands to operate HiRDB, and most operation commands must be
entered from the server machine on which the system manager is defined.

• When HiRDB system definition files are shared, they should be placed on the server machine on which the system
manager is defined. For details about how to share HiRDB system definition files, see 4.2.3 Sharing HiRDB
system definition files (HiRDB parallel server configuration).

(3) Placement of floating server
When a complicated retrieval such as join processing is executed, it is better for HiRDB to use a back-end server that
does not have a database in order to improve performance. If the server machine has sufficient space and complicated
retrieval processing is to be performed, installation of a floating server should be considered. When a floating server is
installed, a HiRDB file system area for work table files must be created. The name of this HiRDB file system area is
specified in the pdwork operand of the back-end server definition.

(4) Using multiple front-end servers
If the CPU workload for SQL processing is too high to be processed on the front-end server, multiple front-end
servers can be set up. This is called multiple front-end servers; for details, see 9.1.3 Setting up multiple front-end
servers.

9. Designing a HiRDB parallel server configuration

240

(5) Memory used by a HiRDB parallel server configuration
This subsection describes the memory used by a HiRDB parallel server configuration.

A HiRDB parallel server configuration uses the following memory.

• Shared memory

• Process private memory

(a) Storage requirements

The storage space required by the HiRDB parallel server configuration must be estimated for each server machine. For
details about how to estimate the storage requirements, see 15.2 Estimating the memory size required for a HiRDB
parallel server configuration.

(b) Page fixing of shared memory

With HiRDB, the following types of shared memory can be fixed in actual memory.

• Shared memory for unit controllers

• Shared memory for global buffers

• Shared memory used by dynamically changed global buffers

• Shared memory for in-memory data buffers

Fixing shared memory in actual memory reduces the number of page I/Os, resulting in more stable performance.

Prerequisites
The following table shows the prerequisites for page fixing of shared memory for each OS.

OS Prerequisites

HP-UX None

Solaris None

AIX Must be 64-bit mode

Linux None

Operating environment settings
AIX requires you to set operating system parameters. For details, see 20.3(1) Specifying parameters unique to
AIX.

Page fixing methods
This subsection describes shared memory page fixing methods for each type of shared memory.

• Shared memory for unit controllers
Specify fixed in the pd_shmpool_attribute operand of the system common definition or unit control
information definition.

• Shared memory for global buffers
Specify fixed in the pd_dbbuff_attribute operand of the system common definition or unit control
information definition.

• Shared memory used by dynamically changed global buffers
Specify fixed in the pd_dbbuff_attribute operand of the system common definition or unit control
information definition. This fixes shared memory used by global buffers dynamically changed by the
pdbufmod command in actual memory.

• Shared memory for in-memory data buffers
Specify fixed in the pdmemdb command -p option.

! Important note
When contiguous areas cannot be secured in actual memory, shared memory pages cannot be fixed. HiRDB
operation when page fixing fails is as follows.

9. Designing a HiRDB parallel server configuration

241

OS

HiRDB operation when page locking fails

Unit controller shared
memory

Global buffer
shared memory

Dynamically changed global
buffer shared memory

In-memory data buffer
shared memory

HP-UX Y N N N

Solaris Y N N N

AIX Y# Y# Y# Y#

Linux Y N N N

Legend
Y: Shared memory is secured without fixing pages, and processing continues.
N: HiRDB or the command terminates abnormally.

#
In AIX, system calls terminate normally, even when page fixing fails. This means that you cannot tell from
HiRDB that page fixing failed. Use the following procedure to check whether pages were fixed.
1. While HiRDB is running, execute the pdls -d mem command to check the identifier of the following
shared memory segment.

 For shared memory for unit controllers, the shared memory segment with MANAGER displayed under SHM-
OWNER.

 For other types of shared memory, the shared memory segment with a character string consisting of the unit
name in parentheses or the HiRDB server name displayed under SHM-OWNER.
2. Execute the OS's ipcs -s command, and then check the SID value of the shared memory that has the
identifier of the shared memory segment you checked in step 1.
3. Execute the OS's svmon command on the SID value you checked in step 2, and then check whether the
number of actual memory pages of the shared memory in question matches the number of fixed pages.

9.1.2 System configuration of a HiRDB parallel server configuration
The following figure shows an example of a system configuration for a HiRDB parallel server configuration. The
system configuration of a HiRDB parallel server configuration is defined in the HiRDB system definition. For a
definition example of the HiRDB system configuration shown in the following figure, see the manual HiRDB Version
9 System Definition.

9. Designing a HiRDB parallel server configuration

242

Figure 9‒1: System configuration for a HiRDB parallel server configuration

9.1.3 Setting up multiple front-end servers
A HiRDB parallel server configuration uses multiple back-end servers to process multiple SQL processing in parallel.
The front-end server is responsible for such operations as executing SQL analysis and SQL optimization, sending
instructions to the back-end servers, and editing retrieval results. In a system with heavy traffic, the front-end server's
workload may be very high, resulting in adverse effects on processing performance. In such a case, multiple front-end
servers can be installed in order to distribute the workload. This is called multiple front-end servers.

Advantages
Throughput bottlenecks are resolved for each server machine where a front-end server is running, and its
scalability is improved.

Criteria
The CPU workload in SQL processing is too high to be processed by one server machine.

Rules
A maximum of 1,024 front-end servers can be installed.

Relationship to server machine
Multiple front-end servers cannot be set up in a single unit. It is also possible not to set up a front-end server in a
specific unit. The following figure shows an example of a configuration of multiple front-end servers.

9. Designing a HiRDB parallel server configuration

243

Figure 9‒2: System configuration for a HiRDB parallel server configuration with multiple front-end
servers

(1) Selecting a front-end server to be connected
When there are multiple front-end servers, the front-end server that is to be connected to a UAP is determined as
follows.

• Client user
The client user can specify the front-end server to be connected to a UAP using the PDFESHOST operand in the
client environment definition.

• HiRDB
HiRDB automatically determines the front-end server to be connected to a UAP.
If no particular front-end server is specified in the client environment definition, HiRDB selects an appropriate
front-end server for connection of the UAP.

(2) Environment setup
Because there are multiple front-end servers executing, no special specifications are usually required.

However, appropriate values must be specified in the following operands (for details about the standard values for
these operands, see the manual HiRDB Version 9 System Definition):

• pd_max_dic_process
• pd_max_bes_process

(3) HiRDB administrator operation
The operating procedures are the same, but there are differences in the operands that are specified in the HiRDB
system definition and in the environment setup procedures, such as the number of system files to be created.

(4) Sorting by insertion or update time in a configuration of multiple front-end servers
If a table contains a timestamp-type column for which the DEFAULT clause with CURRENT_TIMESTAMP as the
default value was specified during table definition, you must take precautions when you sort the table by row insertion
or update time in a configuration of multiple front-end servers.

9. Designing a HiRDB parallel server configuration

244

In the case of multiple front-end servers, the front-end server connected to the UAP acquires the current timestamp
and sets that value as the default value for the timestamp column. Note that the system time may not match between
the units containing the front-end servers. If the system time does not match, the sort order based on the timestamp
column and the sort order based on the actual row insertion or update time will not match.

To match the sort order, specify the DEFAULT clause with CURRENT_TIMESTAMP USING BES as the default value
for the timestamp column during table definition. If you specify USING BES, the back-end server that manages the
RDAREA storing the row to be inserted or updated is used to acquire the current timestamp, and then that value is
inserted in the row or the row is updated by that value. As a result, the sort order based on the timestamp-type column
matches the sort order based on the actual row insertion or update time for each unit that contains the back-end server
managing the RDAREA that stores the row.

The following table shows the server that acquires the current timestamp depending on whether USING BES is
specified.

Table 9‒2: Server that acquires the current timestamp depending on whether USING BES is specified

USING BES Server that acquires the current timestamp

Not specified Front-end server that connected to the UAP

Specified Back-end server that manages the RDAREA containing the row to be inserted or updated

Notes

• If a table is partitioned and the table storage RDAREA is managed by multiple back-end servers located on
different units, the sort order based on the value of the timestamp-type column may not match the sort order
based on the actual row insertion or update time.

• In the case of a shared table, you cannot insert the default value in a timestamp-type column or update it by
the default value unless the table is locked.

• If the database load utility (pdload) is used to store data in a table, the time the utility was started by the
activated unit is set as the timestamp value.

(5) Client user operation
To enable a client user to select the front-end server for connection, the desired front-end server must be specified in
the client environment definition. The client environment definition varies depending on whether the high-speed
connection facility or the FES host direct connection facility is used. The following table shows the client environment
definitions that must be specified. For details about the client environment definitions, see the HiRDB Version 9 UAP
Development Guide.

Table 9‒3: Client environment definitions required for multiple front-end servers

Client environment definition
operand

Not specifying a front-end server
to be connected

Specifying a front-end server

to be connected

FES host direct
connection High-speed connection

PDHOST M M M

PDFESHOST -- M M

PDNAMEPORT M M M

PDSERVICEPORT -- -- M

PDSERVICEGRP -- M M

PDSRVTYPE -- -- --

M: Must be specified.

--: Need not be specified.

9. Designing a HiRDB parallel server configuration

245

(a) Guidelines for determining the front-end server to be specified

• You should specify the front-end server on the server machine where the back-end server that manages the
RDAREA to be accessed is also located.

• You should select an appropriate front-end server according to its processing purposes. For example, separate
front-end servers may be used for general information retrieval processing, batch UAP processing, and UAP
processing under OLTP.

(b) HiRDB server connection time

The HiRDB server connection time increases from 1 to 3 as follows (with 1 being the shortest):

1. High-speed connection facility

2. FES host direct connection facility

3. No front-end server specified for connection

9.1.4 Recovery-unnecessary front-end server
If the unit containing the front-end server terminates abnormally due to an error, the transaction that was being
executed from that front-end server may be placed in uncompleted status. Because uncompleted transactions lock the
database, some database referencing or updating may be limited. To resolve an uncompleted transaction, normally the
front-end server must be recovered from the error and then restarted. If the abnormally terminated front-end server is a
recovery-unnecessary front-end server, HiRDB automatically resolves the uncompleted transaction. This enables you
to use another front-end or back-end server to restart database update processing. A unit that contains a recovery-
unnecessary front-end server is called a recovery-unnecessary front-end server unit. The following figure shows
operations based on whether a recovery-unnecessary front-end server is used.

Figure 9‒3: Operation based on whether a recovery-unnecessary front-end server is used

Note that HiRDB Non Recover FES is required in order to use recovery-unnecessary front-end servers.

Advantages
You can continue online operation using the remaining front-end servers without having to restart the erroneous
front-end server.

Criteria
We recommend that you use recovery-unnecessary front-end servers in a system that requires non-stop operation
24 hours a day.

Relationship with other front-end servers

• Place a recovery-unnecessary front-end server on an independent unit.

9. Designing a HiRDB parallel server configuration

246

• A recovery-unnecessary front-end server cannot support a UAP that uses the X/Open XA interface for
connection. Specify PDFESHOST and PDSERVICEGRP in the client environment definition and connect such
a UAP to a non-recovery-unnecessary front-end server.

• You can execute the pdrplstart and pdrplstop commands even when the recovery-unnecessary front-
end server and recovery-unnecessary front-end server unit are inactive.

The following figure shows an example of a system configuration using a recovery-unnecessary front-end server.

Figure 9‒4: Example of a system configuration using a recovery-unnecessary front-end server

• A recovery-unnecessary front-end server cannot execute import processing using the two-phase commitment
method for the synchronization point processing method (enabled when fxa_sqle is specified in the import
system definition commitment_method operand) of the target Datareplicator. To use the two-phase
commitment method for the synchronization point processing method of the target Datareplicator, you need to
place one or more front-end servers other than the recovery-unnecessary front-end server at the target HiRDB.
You also need to set the client environment variables PDFESHOST and PDSERVICEGRP at the target
Datareplicator to connect to a front-end server other than a recovery-unnecessary front-end server.

Relation with other facilities

• Recovery-unnecessary front-end servers cannot use the system switchover facility. To use the system
switchover facility with the system, you must specify nouse in the pd_ha_unit operand in the unit control
information definitions of the recovery-unnecessary front-end server unit.

(1) Setup method
To use a recovery-unnecessary front-end server, specify stls in the -k option of the pdstart operand.

(2) Notes

1. If the recovery-unnecessary front-end server does not start during HiRDB startup, HiRDB continues startup
processing excluding the corresponding unit, regardless of the value specified in the pd_start_level
operand. If all front-end servers in use are recovery-unnecessary front-end servers, HiRDB system startup cannot
be completed unless at least one front-end server starts successfully.

2. Recovery-unnecessary front-end servers are independently subject to reduced activation. HiRDB ignores the name
of a recovery-unnecessary front-end server in the pd_start_skip_unit operand, if specified.

9. Designing a HiRDB parallel server configuration

247

3. If a recovery-unnecessary front-end server terminates abnormally, the status information for the front-end server
and unit is STOP(A). Unlike the normal STOP(A), this status allows the pdstop command to perform normal
termination or planned termination on HiRDB's system manager and other units. If a recovery-unnecessary front-
end server is terminated forcibly, the status information for the front-end server and unit is STOP(F). However,
this status allows the pdstop command to perform normal termination or planned termination on HiRDB's
system manager and other units.

4. A recovery-unnecessary front-end server always starts the unit normally except in the following case:

• The unit was terminated by a method other than normal termination, and stls was not specified in the -k
option of the pdstart operand during the previous session.

5. If the status information for a recovery-unnecessary front-end server is STOP(A), HiRDB stops accepting SQL
requests from a UAP that has established connection with that recovery-unnecessary front-end server. In this case,
the KFPS01820-E message displays c800 as the process termination status of the recovery-unnecessary front-
end server. The server process termination status of a back-end server, dictionary server, or other server that
contains data on which an operation was attempted in SQL, might also be displayed in the KFPS01820-E
message as c900. If the KFPS01820-E message is displayed, use pdstop -z to terminate the unit containing
the front-end server whose process termination status is c800, eliminate the cause of the status STOP(A), and
then restart.

6. When a recovery-unnecessary front-end server unit is running but its status information is STOP(A) because of a
problem such as a network error, once the server unit has recovered from the error and the system manager is
again able to communicate with the unit, the system manager will forcibly stop the unit automatically and then
restart it. The system manager will do this in the following circumstances:

• When the unit monitoring process that monitors the unit's operating status confirms that the recovery-
unnecessary front-end server unit whose status information changed to STOP (A) is running, and outputs a
KFPS05288-I message.

• When a unit that has a system manager checks the operating status of all units when it restarts, and confirms
that the recovery-unnecessary front-end server unit whose status information changed to STOP (A) is
running.

During automatic restart after a forced stop, check whether a KFPS05110-I message was output by the
recovery-unnecessary front-end server unit. If it was, start processing of the recovery-unnecessary front-end server
unit terminated normally. If the KFPS05110-I message was not output within the time specified in the
pd_system_complete_wait_time operand of the system common definition after the circumstance that
triggered the automatic forcible stop and restart, start processing did not terminate normally. Take the following
corrective action.
(1) Use the pdls -d ust command to check the operating status of units that have system managers and units
that have a dictionary server.
If those units are not operating, start them with the pdstart command.
If they are operating, or if they have started but the KFPS05110-I message has not been output, take the
corrective action described in (2).
(2) Check the operating status of the recovery-unnecessary front-end server unit using the pdls -d ust
command, and take the corrective action described below that corresponds to the execution result.

Operating status of recovery-unnecessary front-end
server unit (pdls -d command execution result) Corrective action

STOP (stopped) Execute the pdstart -q command, and then restart the
recovery-unnecessary front-end server unit.

PAUSE (restart of the process server process is paused) 1. Check the KFPS00715-E message and any messages
previously output to the syslogfile. Remove the cause of the
error and then execute the pdrpause command.

2. Execute the pdstart -q command, and then restart the
recovery-unnecessary front-end server unit.

STARTING 1. Execute the pdstop -z command, and then forcibly
terminate the recovery-unnecessary front-end server unit.

2. Execute the pdstart -q command, and then restart the
recovery-unnecessary front-end server unit.

ONLINE (operating)

STOPPING

9. Designing a HiRDB parallel server configuration

248

Note that when a unit stops before the system manager is able to communicate with that unit, the system manager
does not forcibly stop and restart the unit.

7. If a transaction is processed at another server branched out from the recovery-unnecessary front-end server, its
completion is synchronized with the target server when the transaction is committed. If the target back-end server
or dictionary server cannot execute transaction processing at the time of synchronization (because system
switchover is underway, the server is stopped, the server is not ready for startup, or the server is not ready for
termination), processing might be queued in a state in which the first transaction status is set to READY or
COMMIT. If this happens, check the server to determine the cause of the queuing of transaction processing and
take appropriate action so that the transaction resolution processing can be resumed.

8. You may not be able to use the pdcmt, pdrbk, or pdfgt command to forcefully terminate a transaction for
which processing was performed by connection to a front-end server that uses the recovery-unnecessary FES
facility, regardless of whether the transaction is in first or second status. In such a case, see Forcing determination
of uncompleted transactions in the HiRDB Version 9 System Operation Guide for details about how to
automatically resolve an uncompleted transaction.

9. Designing a HiRDB parallel server configuration

249

9.2 Designing HiRDB file system areas
When a HiRDB system is constructed, areas for HiRDB-specific files (HiRDB files) must be created. This section
discusses the design considerations for creating HiRDB file system areas.

Separate HiRDB file system areas should be created for the types of items listed below, so that contention between
input/output operations on files with different purposes or access characteristics can be avoided. If regular files are
used, write performance can be improved by specifying the purpose explicitly, and an appropriate device can be
allocated according to the purpose. Separate file system areas should be created for:

• RDAREAs

• Shared RDAREAs

• System files

• Work table files

• Utilities

• RDAREAs for lists (list RDAREAs)

9.2.1 Designing HiRDB file system areas for RDAREAs
This section discusses the design considerations for HiRDB file system areas in which RDAREAs are to be created.

(1) Design for improved reliability

1. For purposes of update processing, character special files are more reliable than regular files. Regular files may
become inaccessible if the OS terminates abnormally. Thus, character special files should be used for HiRDB file
system areas for user RDAREAs that satisfy the following characteristics:

• User RDAREAs for storing tables that are used primarily for update processing.

• User RDAREAs for storing particularly important data.

2. Calculate the size of the required HiRDB file system area, and create a HiRDB file system area of that size or
larger.

3. HiRDB file system areas for RDAREAs must be created on a server machine where the following servers are
defined:

• Dictionary server

• Back-end server

4. HiRDB file system areas for the following RDAREAs can be created only on a server machine where a dictionary
server is defined:

• System RDAREAs

• Data dictionary LOB RDAREAs

• Registry RDAREA

• Registry LOB RDAREA

5. HiRDB file system areas for the following RDAREAs can be created only on a server machine where back-end
servers are defined:

• User RDAREAs

• User LOB RDAREAs

6. If the system switchover facility is to be used, the HiRDB file system areas for user RDAREAs should be
allocated as character special files.

(2) Design for improved performance

1. You should create separate HiRDB file system areas for the following types of RDAREAs:

9. Designing a HiRDB parallel server configuration

250

• System RDAREAs

• Data dictionary LOB RDAREAs

• User RDAREAs

• User LOB RDAREAs

• Registry RDAREAs

• Registry LOB RDAREAs

2. You should create HiRDB file system areas for system files on separate hard disks separately from the ones used
for HiRDB file system areas for RDAREAs. In this way, you can distribute input/output operations when
collecting a synchronization point dump, thereby reducing the amount of time required to collect the
synchronization point dump.

3. If you are not using the prefetch facility, the sequential read speed is faster with regular files than with character
special files.

4. For random one-page reads, processing speed is faster with character special files than with regular files.

5. For write processing, the speed is faster with character special files than with regular files.

6. Regular files have a hierarchical structure; therefore, as files become larger, the hierarchical levels increase. When
you access such files with many hierarchical levels, the number of input/output operations increases, adversely
affecting the access efficiency.

7. The HiRDB file system areas should be allocated as shown in the following table, so that input/output time can be
reduced.

Table 9‒4: Allocation of HiRDB file system areas to improve performance

Type of HiRDB file system area File to be allocated

HiRDB file system area for system RDAREAs Character special file

HiRDB file system area for dictionary LOB RDAREAs

HiRDB file system area for user LOB RDAREAs

HiRDB file system area for user RDAREAs that store frequently updated tables or tables primarily subject
to retrieval of small amounts of data

HiRDB file system area for user RDAREAs that store tables with a large amount of data that are primarily
subject to retrieval of all entries or retrieval of large amounts of data by key using the cluster key (but with
data that is rarely updated)

• Regular file (when not
using the prefetch
facility)

• Character special file
(when using the
prefetch facility)

9.2.2 Designing HiRDB file system areas for system files
This section discusses the design considerations for HiRDB file system areas in which system files are to be created.

(1) Design for improved reliability

1. For update processing, character special files are more reliable than regular files. Regular files may become
inaccessible after a system shutdown. Thus, character special files should be used for HiRDB file system areas for
system files.

2. Create at least two HiRDB file system areas for system files. If there is only one HiRDB file system area for
system files, HiRDB cannot continue operating in the event of a hard disk failure at the disk containing the system
files.

3. Create HiRDB file system areas for system files on separate hard disks. In this way, in the event of a hard disk
error, you can restart HiRDB using the other hard disk.

4. Calculate the size of the required HiRDB file system area, and create a HiRDB file system area of that size or
larger.

9. Designing a HiRDB parallel server configuration

251

(2) Design for improved performance
You should create HiRDB file system areas for system files on separate hard disks separately from the ones used for
HiRDB file system areas for RDAREAs. In this way, you can distribute input/output operations when collecting a
synchronization point dump, thereby reducing the amount of time required to collect the synchronization point dump.

9.2.3 Designing HiRDB file system areas for work table files
This section discusses the design considerations for HiRDB file system areas in which work table files are to be
created.

(1) Design for improved reliability

1. Work table files can be allocated to regular files. However, if the system switchover facility is used, disk space can
be saved by allocating work table files to character special files because the files can then be shared.

2. The amount of space required for a HiRDB file system area for work table files must be greater than the total size
of the work table files to be created in the area. If you specify the -a option with the pdfmkfs command, the
HiRDB file system area can be automatically extended. We recommend specifying the -a option, since this
allows the HiRDB file system area to be extended automatically when the total size of the work table files reaches
the size of the HiRDB file system area.#

For details about the sizes of work table files, see Chapter 18. Determining Work Table File Size.

3. A HiRDB file system area for work table files must be created at the server machines where the following servers
are defined:

• Dictionary server

• Back-end server

#
To reduce the amount of disk space that is occupied by the HiRDB file system area for work table files when
HiRDB restarts, before you restart HiRDB, execute the pdfmkfs command and then re-initialize the HiRDB file
system area for work table files.

(2) How to check the peak capacity
You can use the following command to obtain the peak capacity of a HiRDB file system area for work table files:

pdfstatfs -d name-of-HiRDB-file-system-area-for-work-tables

-d
Specifies that the maximum utilization value for the allocated HiRDB file system area is to be displayed. The
peak capacity display that is output is this value. The maximum utilization value is cleared by entering the
following pdfstatfs command:

pdfstatfs -c name-of-HiRDB-file-system-area-for-work-tables

-c
Specifies that the maximum utilization value for the allocated HiRDB file system area is to be cleared to 0.

9.2.4 Designing HiRDB file system areas for utilities
This section discusses the design considerations for HiRDB file system areas in which utility files (backup files,
unload data files, and unload log files) are created. Use the HiRDB file system areas for utilities to create the
following files:

• Backup files

• Unload data files

• Unload log files

• Differential backup management files

9. Designing a HiRDB parallel server configuration

252

(1) Design considerations

1. If you are creating a HiRDB file system area for backup files, allocate it to character special files.

2. The amount of space required for a HiRDB file system area for backup files must be greater than the total size of
the RDAREAs that will be backed up. For details about the sizes of RDAREAs, see Chapter 16. Determining
RDAREA Size.

3. Create a HiRDB file system area for differential backup management files on the server machine where the system
manager is located.

4. If you use the system switchover facility, create unload log files on a shared disk (character special files).

5. If you are creating a HiRDB file system area for unload log files, specify the following options in the pdfmkfs
command:

• -k option: Specify UTL (HiRDB file system area for utilities) as the usage.

• -n option: For the size of the HiRDB file system area, specify the value obtained from the following formula:

(total record count for system log file to be unloaded#1 zueng005.tif system log file record size)#2 zueng005.tif
number of unload log files to be created zueng005.tif 1.2 1,048,576

• -l option: For the maximum number of files, specify the number of unload log files to be created.

• -e option: For the maximum number of extensions, specify the number of unload log files to be created times
24.

#1
If you are using the system log file automatic extension facility, calculate this number using the value
specified as the upper limit for expansion in the pd_log_auto_expand_size operand.

#2
This is the approximate value of the system log file.

(2) How to check the peak capacity
You can use the following command to obtain the peak capacity of a HiRDB file system area for utilities:

pdfstatfs -d name-of-HiRDB-file-system-area-for-utilities

-d
Specifies that the maximum utilization value for the allocated HiRDB file system area is to be displayed. The
peak capacity display that is output is this value. You can clear the maximum utilization value by entering the
following pdfstatfs command:

pdfstatfs -c name-of-HiRDB-file-system-area-for-utilities

-c
Specifies that the maximum utilization value for the allocated HiRDB file system area is to be cleared to 0.

9.2.5 Designing HiRDB file system areas for list RDAREAs
This section discusses the design considerations for HiRDB file system areas in which list RDAREAs are to be
created.

(1) Design considerations

1. A list is used to store temporary intermediate results of search processing. Therefore, it does not need to be as
reliable as other RDAREAs. You can create HiRDB file system areas for list RDAREAs in regular files.

2. If you use the system switchover facility, you can save disk space by allocating HiRDB file system areas for list
RDAREAs to character special files because the files can then be shared.

3. Create a HiRDB file system area for list RDAREAs on the same back-end server that contains the base table.

9. Designing a HiRDB parallel server configuration

253

(2) Design for improved performance

1. If you are creating HiRDB file system areas for list RDAREAs on RAID, you should use character special files to
reduce processing time. If you are creating them on any other disk, you should use regular files to reduce
processing time.

2. You should create HiRDB file system areas for list RDAREAs on a separate hard disk separately from the ones
used for the following HiRDB file system areas. In this way, you can distribute input/output operations when
searching a list, thereby reducing the processing time.

• HiRDB file system areas for user RDAREAs

• HiRDB file system areas for user LOB RDAREAs

• HiRDB file system areas for work table files

9.2.6 Maximum sizes of HiRDB file system areas
The following table lists the maximum sizes of the HiRDB file system areas.

Table 9‒5: Maximum sizes of HiRDB file system areas

HiRDB type Conditions Maximum size of HiRDB file system
area (MB)

HP-UX Large file not used Regular file 2,047

Character special file

Large file used Regular file 1,048,575

Character special file

Solaris Large file not used Regular file 2,047

Character special file

Large file used Regular file 1,048,575

Character special file

AIX Large file not used Regular file 2,047

Character special file

Large file used Regular file (JFS) 65,411

Regular file (JFS2) 1,048,575

Character special file

Linux Large file not used Regular file 2,047

Character special file

Large file used Regular file 1,048,575

Character special file

9. Designing a HiRDB parallel server configuration

254

9.3 Designing system files
This section discusses design considerations for various system files.

9.3.1 Designing system log files
The following explains some of the design considerations for system log files.

(1) Design considerations

1. System log files are required for each server, except for the system manager.

2. Specify the same record length and number of records for all system log files on the same server.

3. The number of system log files that can be created for each server is 2 to 200 groups (we recommend creating at
least six groups).

4. For one server, creation of system log files must meet the following condition:

100 (unit: megabytes) (200 - number of system log file groups assigned to server) total system log file capacity allocated to the
server 3

Multiplying by three is necessary to restart a HiRDB system that has terminated abnormally due to insufficient
space for the system log files. Depending on usage and whether there is enough space for system log files, you
might need to take action by creating system log files of three times the capacity allocated to the server, and then
adding them to the server.

5. To reduce the number of unload operations, it is advisable to create many large system log files.

6. If the system switching facility is used, a file that is involved in many input/output operations (such as a log
unload file) should not be created on the same disk that contains $PDDIR%PDDIR%.

7. The amount of space required for one system log file must satisfy the condition shown following:

Size of one system log file (bytes) (a + 368) c zueng005.tif c zueng005.tif b zueng005.tif d

a: Value of pd_log_max_data_size operand
b: Value of pd_log_sdinterval operand
c: Value of pd_log_rec_leng operand
d: Value of pd_spd_assurance_count operand

8. The total size of the system log files (if duplexed, only their size in one of the systems) must meet the following
two conditions.

Condition 1
The size must be at least the value calculated according to the formula in 17.1.1(1) How to obtain the total size of
system log files.

Condition 2
After the start of the large object transaction, system log files cannot be overwritten until the large object
transaction finishes. Moreover, the current generation of system log files and system log files corresponding to the
number of guaranteed-valid generations of the synchronization point dump file cannot be overwritten either. For
this reason, make sure that there is at least enough system log file capacity to accommodate this amount of data.
Use the following equation to estimate the required capacity.

System log file total size (bytes) 3 zueng005.tif a zueng005.tif (b + 1)

a:
Size of system log information that may be output at the corresponding server while executing the database
updating transaction with the longest execution time.
For details about the formula for estimating the size of system log information, see 17.1 Determining the size
of system log files.

9. Designing a HiRDB parallel server configuration

255

b: Value of pd_spd_assurance_count operand
Number of guaranteed-valid generations for synchronization point dump files.

(a) Effects on operations of the number of generations of system log files

If the total size of the system log files is unchanged, the size of each generation will depend on how many generations
of system log files are being maintained. The following table describes the effect on operations of the number of
generations of system log files. The total size of the system log files is unchanged.

Table 9‒6: Effects on operations of the number of generations of system log files

Comparison item
System log file configuration

Small number of generations Large number of generations

Size of each generation of system log
files

Becomes larger. Becomes smaller.

Swap interval Because the size of each generation of system
log files becomes larger, the swap interval
becomes longer.

Because the size of each generation of
system log files becomes smaller, the swap
interval becomes shorter.

Unload frequency Because the swap interval becomes longer, the
unload frequency becomes lower.

Because the swap interval becomes shorter,
the unload frequency becomes higher.

Effects on the system log size when
something such as a disk failure makes
several generations of system log files
unusable

• Because the size of each generation of
system log files becomes larger, the log
volume used for database recovery in the
event of a disk failure increases, and the
time required for database recovery
increases.

• If the decrease in the system log volume is
large, the effects of the decrease in system
log volume will have increasing effects on
HiRDB operations.

• Because the size of each generation of
system log files becomes smaller, the log
volume used for database recovery in the
event of a disk failure decreases, and the
time required for database recovery
decreases.

• If the decrease in the system log volume
is small, the effects of the decrease in
system log volume will have decreasing
effects on HiRDB operations.

In normal operations, the lower the number of generations of system log files, the more advantageous the swapping
interval and the unload frequency will become. However, if there is a failure, the effects on operations will be reduced
with a larger number of log file generations.

(2) Design for improved reliability

(a) System log file duplexing

When system log file duplexing is used, HiRDB acquires the same system log information in both versions. In the
event of an error on one of the versions, the system log can be read from the other version, thereby improving system
reliability. When dual system log files are used, they must be used under the management of HiRDB rather than using
a mirror disk. When using dual system log files, create the files for each system on a separate hard disk.

To use dual system log files, specify the following operands in the server definition:

• pd_log_dual=Y
• -b option in the pdlogadpf operand (to specify the name of the B version of system log file)

(b) Single operation of system log files

Single operation of system log files is employed when dual system log files are used.

In the event of an error in a system log file, processing can continue using the normal version of the system log file
without having to terminate the HiRDB unit abnormally even if neither system has a usable system log file. This is
called single operation of system log files. To perform single operation of system log files, specify
pd_log_singleoperation=Y in the server definition.

As opposed to single operation of system log files, continuing processing using both versions of system log files
(normal processing mode) is called double operation of system log files

9. Designing a HiRDB parallel server configuration

256

(c) Automatic opening of system log files

If there is no overwrite-enabled system log file at the time of a HiRDB restart, but a reserved file is available, then
HiRDB continues processing by opening the reserved file and placing it in overwrite-enabled status. This is called
automatic opening of system log files.

To perform automatic opening of system log files, specify pd_log_rerun_reserved_file_open=Y in the
server definition.

(3) Features to improve availability

(a) Facility for monitoring the free space remaining for system log files

When system log files need to be swapped, if no swappable target system log files exist, HiRDB (the unit) terminates
abnormally. To prevent this, HiRDB has a facility for monitoring the free space remaining for system log files. This
facility operates when the percentage of available free area for the system log files reaches a warning value. Select one
of the following two levels:

Level 1:
When the available space in the system log file falls below the warning level, the KFPS01162-W warning
message is output.

Level 2:
When the available space in the system log file falls below the warning level, scheduling of new transactions is
suppressed, and all transactions inside the server are forcibly terminated. At this time, message KFPS01160-E is
output. This controls the output volume of the system logs.

If level 2 is selected, all transactions on the server are terminated forcibly when there is insufficient free space in the
system log files. Therefore, the design of system log files requires more accuracy.

For details about this facility, see the HiRDB Version 9 System Operation Guide.

(b) System log file automatic extension facility

The HiRDB system (or unit) terminates abnormally when it runs out of free space for system log files. To prevent this,
HiRDB provides a facility to automatically expand the space for system log files (the system log file automatic
extension facility). By using this facility, you can reduce the frequency of abnormal termination of the HiRDB system
(or unit) due to lack of free space for system log files.

For details about the system log file automatic extension facility, see the HiRDB Version 9 System Operation Guide.

(c) Skipped effective synchronization point dump monitoring facility

If a UAP continues to update the database in an infinite loop, it cannot enable the synchronization point, and the
number of system log files that cannot be overwritten increases. If the point is reached where none of the system log
files can be overwritten, HiRDB terminates abnormally.

If HiRDB is forcibly terminated or terminates abnormally when the number of system log files that cannot be
overwritten reaches one-half or more of all system log files, a shortage of system log files occurs during rollback
processing when HiRDB restarts. In this case, HiRDB cannot be restarted unless new system log files are added. Any
such restart processing will take longer than usual.

To prevent this, HiRDB has established a skipped effective synchronization point dump monitoring facility.

For details about this facility, see the HiRDB Version 9 System Operation Guide.

(4) Facility for parallel output of system logs (AIX and Linux versions only)
When the system log file is duplexed, using the facility for parallel output of system logs allows log output to the two
systems to be executed in parallel, so less time is required. To use the facility for parallel output of system logs, you
will need an aio library (for AIX, the Asynchronous I/O Subsystem; for Linux, libaio). For details about the
Asynchronous I/O Subsystem or libaio, see the OS documentation.

Note that when you use the facility for parallel output of system logs on the Linux version, it is assumed that the
platform you are using is one of the following:

• Red Hat Enterprise Linux ES 4(AMD64 & Intel EM64T) or later

9. Designing a HiRDB parallel server configuration

257

• Red Hat Enterprise Linux AS 4(AMD64 & Intel EM64T) or later

(a) Recommended usage

Although you can define for each server whether the facility for parallel output of system logs is to be used, we
recommend that you apply this facility to all servers. We also recommend that you place the primary and secondary
files on separate devices in order to further reduce the time required for output of log information.

(b) Environment settings (setting system definitions)

In the server definition, specify pd_log_dual_write_method=parallel. In the following cases, the facility
for parallel output of system logs is not applied, regardless of the specified value:

• Dual system log files are not used (the value of the pd_log_dual operand is not Y).

• The system log files are not placed in character special files.

(c) Environment settings (setting the aio library)

Install the aio library on all server machines that will use the facility for parallel output of system logs, and perform
the required settings. See the OS documentation for details about how to install and set up the aio library.

If the aio library installation and settings are not performed correctly using the environment settings described in (b),
HiRDB cannot start.

 Using AIX 5L
Asynchronous I/O Subsystem must be enabled prior to starting HiRDB. Otherwise, HiRDB will not start. On AIX
5L V5.2 and later, Asynchronous I/O Subsystem comes in a legacy version and a POSIX version. HiRDB uses the
legacy version, so enable the legacy Asynchronous I/O Subsystem.
Once you have installed Asynchronous I/O Subsystem, set the following parameters.

Parameter Recommended value

STATE to be configured at system restart available

STATE of FastPath enable#

#: This is the default, so no change is needed. If the setting is changed, performance might decline.
Other parameters do not require tuning.

(d) Notes

1. If Asynchronous I/O Subsystem is not enabled on HiRDB for AIX 5L, HiRDB cannot start and will terminate
abnormally. Either enable the Asynchronous I/O Subsystem, omit the pd_log_dual_write_method
operand, or specify serial, and then restart HiRDB. If the Asynchronous I/O Subsystem parameter is set to
STATE to be configured at system restart = available, HiRDB starts automatically.

2. The facility for parallel output of system logs is not applicable to system log files placed in regular files. If you
add system log files, place them in character special files.

3. The facility for parallel output of system logs is applied only when both primary and secondary current files are
placed in character special files and system log information can be output to those current files (they are not in
closed, reserved, or error status). Parallel output of system logs does not take place, regardless of the system
definition, if the current file satisfies either of the following conditions:

• The primary or secondary current file is placed in a regular file.

• The primary or secondary current file is in a status such that no log information can be output to it.

4. If the server that uses the facility for parallel output of system logs is running on multiple server machines, as
when the system switchover facility is used, startup of the standby unit or system switchover might fail if the aio
library is not enabled on any of the server machines. Enable the aio library on all server machines.

(5) Record length of a system log file (when the HiRDB system is already operating)
If the record length is not 1,024, we recommend that you change it to 1,024 to improve system log storage efficiency.

9. Designing a HiRDB parallel server configuration

258

For details about how to change the system log file record size, see the HiRDB Version 9 System Operation Guide.

(6) Defining the system log files
The pdlogadfg and pdlogadpf operands are used to define the correspondence between file groups and the
created system log files.

9.3.2 Designing synchronization point dump files
This section describes the design considerations for synchronization point dump files.

(1) Design considerations

1. Synchronization point dump files are required for each server, except for the system manager.

2. You can create 2-60 groups of synchronization point dump files per server (if ONL is specified, 2-30 groups per
server).

3. You should create at least four synchronization point dump files per server.

4. HiRDB uses synchronization point dump files in the order specified in the pdlogadfg -d spd operand.

5. If a shortage of space occurs in a synchronization point dump file, HiRDB cannot be restarted. For this reason, the
size of a synchronization point dump file should be set to be greater than the value specified for the maximum
number of concurrent connections (pd_max_users) in the system common definition. For details about the
calculation of synchronization point dump file size, see 17.2 Determining the size of synchronization point dump
files.

(2) Design for improved reliability

(a) Example of file organization

As a safeguard against the possibility of hard disk failures, the synchronization point dump files should be created on
separate hard disks. If this is not possible, adjacent generations of files should be created on separate hard disks, as
shown in the example in the following figure.

Figure 9‒5: Example of creating adjacent generations on separate hard disks (HiRDB parallel server
configuration)

(b) Duplexing of the synchronization point dump file

When the synchronization point dump file is duplexed, HiRDB collects the same synchronization point dump on both
system A and system B. This increases system reliability, because when a collected synchronization point dump is
read and there is an abnormality in the file, the synchronization point dump can still be read from the other file.
Duplexing also enables the number of guaranteed-valid generations to be set to one generation, yet reliability is not
compromised and the number of synchronization point dump files in overwrite disabled status is reduced.

9. Designing a HiRDB parallel server configuration

259

Specify the following operands in the server definition to enable duplexing of synchronization point dump files:

• pd_spd_dual = Y
• -b option in the pdlogadpf operand (specifies the system log file name on system B)

(c) Number of guaranteed-valid generations for synchronization point dump files

Each synchronization point dump acquired by HiRDB is stored in a separate synchronization point dump file. HiRDB
uses the generation concept to manage synchronization point dump files. The HiRDB administrator specifies the
number of generations of synchronization point dump files, and the corresponding system log files, that are to be
placed in overwrite-disabled status. This concept is called the number of guaranteed-valid generations for
synchronization point dump files, and it is illustrated in the following figure.

Figure 9‒6: Number of guaranteed-valid generations for synchronization point dump file (HiRDB parallel
server configuration)

Explanation
If there are two guaranteed-valid generations, the synchronization point dump files up to the second generation,
and the system log files relevant to those synchronization point dump files, are in overwrite disabled status. The
synchronization point dump files prior to the third generation, and the system log files relevant to those
synchronization point dump files, are in overwrite enabled status.

The required number of synchronization point dump files is the number of guaranteed-valid generations + 1. Specify
the number of guaranteed-valid generations for synchronization point dump files in the
pd_spd_assurance_count operand in the server definition.

If synchronization point dump files are to be duplexed, it is recommended that only one guaranteed-valid generation
be required. If duplexing is not to be used, two generations are recommended.

(d) Reduced mode operation for synchronization point dump files

If the number of synchronization point dump files available for use is reduced to the number of guaranteed-valid
generations + 1 because of errors in synchronization point dump files, processing can continue with a minimum of two
files. This is called the reduced mode operation for synchronization point dump files.

To perform reduced mode operation for synchronization point dump files, specify the pd_spd_reduced_mode
operand in the server definition.

9. Designing a HiRDB parallel server configuration

260

(e) Automatic opening of synchronization point dump files

When the number of synchronization point dump files available for use is reduced to the number of guaranteed-valid
generations + 1 because of errors in synchronization point dump files, processing can continue by opening a reserved
file and placing it in overwrite-enabled status (assuming that such a reserved file is available). This is called automatic
opening of synchronization point dump files.

To perform automatic opening of synchronization point dump files, specify the
pd_spd_reserved_file_auto_open=Y in the server definition.

(3) Defining the synchronization point dump files
The pdlogadfg and pdlogadpf operands are used to define the correspondence between file groups and the
created synchronization point dump files.

If only the pdlogadfg operand is specified, synchronization point dump files can be added during HiRDB
operation.

9.3.3 Designing status files
This section describes the design considerations for status files.

(1) Design considerations

1. Create the primary and secondary files on separate disks in order to avoid errors on both files.

2. To prevent abnormal termination of HiRDB as a result of a shortage of status file space, create several spare files
whose size is greater than the estimated value. When a status file becomes full, file swapping occurs in order to
use a spare file. If the size of the spare file is the same as the full status file, a space shortage also occurs on the
spare file, resulting abnormal termination of HiRDB. For example, if you create six sets of status files, we
recommend that you make the file size for two of the sets larger than the other sets.

3. Unit status files are required for each server machine.

4. Server status files are required for all servers except for the system manager.

5. Make sure that the primary and secondary files have the same record length and the same number of records.

6. You can create 1-7 sets of unit status files per unit.

7. You can create 1-7 sets of server status files per server.

(2) Design for improved reliability

1. Provide at least three sets of status files (dual files zueng005.tif 3 = 6 files) and place them in such a manner that
corruption of all status files by disk errors is unlikely.

2. To prevent abnormal termination of HiRDB resulting from a space shortage, we recommend that you set the size
of a status file to at least 1.2 times the estimated value.

3. A status file contains information that will be needed in order to restore the system status during HiRDB restart
processing. If an error occurs in such a file and no spare file is available, the system status cannot be restored.
Therefore, make sure that spare files are always available as a safeguard in the event of errors on the current files.

(a) Recommended configuration

In order to provide a safety margin until a disk becomes operational after it has been recovered from a disk failure, we
recommend that you provide six sets of status files on four sets of disks (dual files zueng005.tif 6 = 12 files) and place
them as shown in the following figure. If an error occurs on the normal system during single operation, HiRDB cannot
be restarted; therefore, we recommend that you do not apply single operation to status files (specify stop in
pd_syssts_singleoperation and pd_sts_singleoperation).

The following figure shows an example of placing six sets of status files on four sets of disks.

9. Designing a HiRDB parallel server configuration

261

Figure 9‒7: Example of placing six sets of status files on four sets of disks

Explanation:
With this arrangement, if an error occurs on a disk and then another error occurs on another disk, the remaining
two disks still contain intact primary and secondary files, and HiRDB can continue operation using the status files
on the error-free disks as the current files. For example, if an error occurs on disk A and then an error occurs on
disk B, HiRDB continues operation using as the current files the primary and secondary status files on disks C and
D (sts-3a and sts-3b). In this status, if another error occurs on one of the current files, HiRDB terminates
abnormally; however, because one of the current files is normal, HiRDB can be restarted after one of the disks is
recovered from its error.

(3) Defining the status files
The pd_syssts_file_name_1 to pd_syssts_file_name_7 and the pd_sts_file_name_1 to
pd_sts_file_name_7 operands are used to define the correspondence between the status files created by the
pdstsinit command and the logical files.

The pd_syssts_file_name_1 to pd_syssts_file_name_7 operands are for unit status files, and the
pd_sts_file_name_1 to pd_sts_file_name_7 operands are for server status files.

If the names of imaginary logical files or status files are defined in the pd_syssts_file_name_2 to
pd_syssts_file_name_7 operands or in the pd_sts_file_name_2 to pd_sts_file_name_7 operands,
status files can be added during HiRDB operation. In this case, the following operands must be specified.

Unit status files
pd_syssts_initial_error
pd_syssts_last_active_file

Server status files
pd_sts_initial_error
pd_sts_last_active_file

(4) Single operation of status files
If an error occurs on one of the current files while there is no available spare file, continuing operation using only the
normal file (either the primary or secondary file) is called status-file single operation. When status files are placed in
the single operation mode, the KFPS01044-I message is displayed.

If an error occurs on the current file in the single operation mode, HiRDB can no longer be restarted. Therefore,
status-file single operation is not recommended. Increase the number of status file sets to avoid a situation where no
spare file is available.

As opposed to status-file single operation, continuing operation using both status files (normal processing mode) is
called status-file double operation.

9. Designing a HiRDB parallel server configuration

262

(a) Advantages and disadvantages of status-file single operation

Advantages
Processing can continue even if an error occurs on one of the current files while no spare file is available. This
reduces the adverse consequences of HiRDB shutdown resulting from a status file error.

Disadvantages
If an error occurs on the normal file during single operation or HiRDB terminates abnormally while the status file
is updated, the contents of the current file are lost, disabling HiRDB restart.

(b) Specification method

To use unit status-file single operation, specify pd_syssts_singleoperation = continue in the unit control
information definition file. To use server status-file single operation, specify pd_sts_singleoperation =
continue in the server definition. Make sure that pd_syssts_singleoperation and
pd_sts_singleoperation have the same value.

• Relationship with other operands
The combination of the pd_syssts_singleoperation and pd_syssts_initial_error operand
values or the pd_sts_singleoperation and pd_sts_initial_error operand values determines the
HiRDB operation that is to take place if an error is detected in a status file during HiRDB startup. Therefore,
determine the values of these operands together. For details about the HiRDB operation that is to take place if an
error is detected in a status file during HiRDB startup, see the description of the
pd_syssts_initial_error or pd_sts_initial_error operand in the manual HiRDB Version 9
System Definition.

(c) Usage guidelines

The following are guidelines on when to use status-file single operation.

• Do not use single operation if the primary goal is to avoid HiRDB being unable to restart.

• Use single operation if the primary goal is to avoid disabling the ability of HiRDB to go online.

• Do not use single operation if you have set HiRDB to restart automatically, such as at the time of a system
switchover.

(d) Notes about using single operation

The following table outlines HiRDB operations and HiRDB administrator actions that depend on whether single
operation is used. For details about how to handle status file errors, see the HiRDB Version 9 System Operation Guide.

Table 9‒7: HiRDB operation and HiRDB administrator's action that depend on whether single operation is
used

Condition

Status-file single operation

(pd_syssts_singleoperation or pd_sts_singleoperation operand value)

Used (continue specified) Not used (omitted or stop
specified)

There are spare files Error occurred in the
current file

HiRDB operation:

Swaps status files.

HiRDB administrator's action:

Handle the error in the applicable status file.

Error occurred on
both current files
simultaneously

HiRDB operation:

Terminates abnormally. HiRDB cannot be restarted.

HiRDB administrator's action:

See Handling of status file errors in the HiRDB Version 9 System Operation Guide.

There is no spare file Error occurred in one
of the current files

HiRDB operation:

Resumes processing using single
operation.

HiRDB operation:

Terminates abnormally.

9. Designing a HiRDB parallel server configuration

263

Condition

Status-file single operation

(pd_syssts_singleoperation or pd_sts_singleoperation operand value)

Used (continue specified) Not used (omitted or stop
specified)

HiRDB administrator's action:

Create spare files immediately and return
HiRDB to the double operation mode.

HiRDB administrator's action:

Create spare files, and then restart
HiRDB.

Error occurred on
both current files
simultaneously

HiRDB operation:

Terminates abnormally. HiRDB cannot be restarted.

HiRDB administrator's action:

See Handling of status file errors in the HiRDB Version 9 System Operation Guide.

Error occurred in the
normal file during
single operation

HiRDB operation:

Terminates abnormally. HiRDB cannot be
restarted.

HiRDB administrator's action:

See Handling of status file errors in the
HiRDB Version 9 System Operation
Guide.

--

Legend:
--: Not applicable

(5) Notes on status file errors (important)

• If errors occur on both current files simultaneously, HiRDB terminates abnormally and HiRDB can no longer be
restarted. A possible measure for avoiding this situation is to use multiple physical disks (mirroring).

• If the current file (existing during termination) is deleted or initialized by the pdstsinit command prior to
HiRDB startup, HiRDB can no longer be restarted.

9. Designing a HiRDB parallel server configuration

264

9.4 Placing RDAREAs
This section discusses considerations concerning placement of the following types of RDAREAs:

• System RDAREAs

• Data dictionary LOB RDAREAs

• User RDAREAs

• User LOB RDAREAs

• List RDAREAs

9.4.1 Placing system RDAREAs
System RDAREAs should be placed taking into account the placement of user RDAREAs. Points to be considered
when a system RDAREA is placed are discussed below.

• Place system RDAREAs on the dictionary server.

• If both dictionary server and back-end server are located on the same server machine, place system
RDAREA areas on a separate disk from that for user RDAREAs.

Among the system RDAREAs, data dictionary RDAREAs and data directory RDAREAs are accessed frequently by
HiRDB for SQL statement analysis. If they are placed on the same disk as user RDAREAs, contention may occur
between an access request for the purpose of SQL statement analysis and a table access request, in which case one of
the requests is placed on hold until the other request has been processed.

The following figure shows an example of system RDAREA placement that does not generate disk access contention.

Figure 9‒8: Example of system RDAREA placement (HiRDB parallel server configuration)

9. Designing a HiRDB parallel server configuration

265

9.4.2 Placing data dictionary LOB RDAREAs
To avoid contention among disk accesses, a data dictionary LOB RDAREA should not be placed on the same disk as
any other RDAREA.

The following figure shows an example of data dictionary LOB RDAREA placement.

Figure 9‒9: Example of data dictionary LOB RDAREA placement (HiRDB parallel server configuration)

Relationship with data dictionary RDAREAs
A dictionary table used to manage stored procedures or stored functions can be placed in a separate data dictionary
RDAREA from other dictionary tables.

9.4.3 Placing user RDAREAs

(1) Relationship with system log files
A user RDAREA should not be placed on the same disk as a system log file. When this rule is observed, input/output
operations on HiRDB files that constitute system log files and on user RDAREAs can be distributed to multiple disks
when a synchronization point dump is collected, thereby reducing the amount of time required for synchronization
point dump processing.

(2) Relationship with system RDAREAs
A user RDAREA should not be placed on the same disk as a system RDAREA.

(3) Row-partitioned tables
If you have partitioned a table by row, place the RDAREAs storing the row-partitioned table on separate back-end
servers and on separate disks. The following figure shows an example of user RDAREA placement.

Figure 9‒10: Example of user RDAREA placement (HiRDB parallel server configuration)

9. Designing a HiRDB parallel server configuration

266

(4) Placement of a floating server
If you perform complicated query processing on tables, such as join and sort processing involving multiple back-end
servers, carefully determine the placement of user RDAREAs.

If you place user RDAREAs on all back-end servers, some back-end servers' workloads become high because they not
only access user RDAREAs but also execute complicated query processing. This results in reduction of overall system
throughput.

If you have a sufficient number of server machines, define a back-end server that has no user RDAREA placed on it
(floating server). In this way, complicated query processing is handled by the floating server, thereby reducing each
back-end server's workload.

9.4.4 Placing user LOB RDAREAs
To avoid contention among disk accesses, a user LOB RDAREA should not be placed on the same disk as any other
RDAREA.

In the case of a table containing a LOB column in a HiRDB parallel server configuration, the user LOB RDAREAs
containing the LOB data and the user RDAREAs containing the LOB column structure base table must be placed on
the same back-end server.

The following figure shows an example of user LOB RDAREA placement.

Figure 9‒11: Example of user LOB RDAREA and user RDAREA placement (HiRDB parallel server
configuration)

9.4.5 Placing list RDAREAs
Place list RDAREAs on the back-end server that contains its base table.

Creating one list RDAREA lets you create lists for all the tables that are stored in that back-end server.

To avoid contention among disk accesses, you should place list RDAREAs on a separate disk from any other
RDAREAs. The following figure shows an example of list RDAREA placement.

9. Designing a HiRDB parallel server configuration

267

Figure 9‒12: Example of list RDAREA placement (HiRDB parallel server configuration)

9. Designing a HiRDB parallel server configuration

268

9.5 Considerations that apply to building a system with
many units or servers

This section provides information that you need to take into account if you build and operate a system with many units
or servers. In general, you should read this section if you are building and operating a system that has 10 or more
units, or 10 or more servers.

Here, the term servers refers to front-end servers, dictionary servers, and back-end servers. Read this section if you
have ten or more of such servers.

9.5.1 Considerations that apply to configuring systems

(1) Setting system definitions
When you configure a system with many units or servers, you must reduce the communications load by locking the
ports that HiRDB uses. To do this, specify the system definition operands shown in the table below.

Table 9‒8: Operands that must be specified to reduce the communications load

No. Operand Description

1 pd_name_fixed_port_lookup=Y Specify Y for this operand and use the unit's own shared
memory information so that it communicates with other
units. Also specify the operands shown in No. 2.

2 • pd_mlg_port or the pdunit -m option

• pd_alv_port or the pdunit -a option

• pd_trn_port or the pdunit -t option

• pd_scd_port or the pdunit -s option

• pd_name_port or the pdunit -p option

--

3 pd_ipc_conn_nblock_time When HiRDB is performing communication between
servers and there is a server that is not running, the next
operation is pended by the amount of time specified in
this operand. For that reason, specifying too high a value
for this operand might cause performance to decline.

In systems without a high network load, specify 2
(seconds) for this operand.

In systems with a high network load, do one of the
following.

• Determine the value for this operand according to the
network environment.

• Consider modifying or upgrading your network
environment.

4 pd_bes_connection_hold=Y No particular specification.

5 pd_bes_conn_hold_trn_interval If the UAP connection time (from SQL CONNECT to
DISCONNECT) is short, specify 0 for this operand.

Legend:
--: Not applicable

(2) Setting the high-speed connection facility
Use the high-speed connection facility to reduce the communication load. For details about the high-speed connection
facility, see the HiRDB Version 9 UAP Development Guide.

9. Designing a HiRDB parallel server configuration

269

(3) Setting the standby-less system switchover (effects distributed) facility
The maximum number of units that can be defined for a single HA group is 32. So if the number of units is 33 or
more, define multiple HA groups. For details about the standby-less system switchover (effects distributed) facility,
see the HiRDB Version 9 System Operation Guide.

(4) Setting the number of open files
When you have high numbers of units or servers, you must also set an upper limit for the number of open files.
Determine a value for the operating system parameter (for HP-UX, maxfiles_lim; for Solaris, rlim_fd_max;
for AIX, nofiles_hard; and for Linux, hard nofile) that sets the physical limit value for the number of files
that can be opened or locked by a single process. For details about the operating system parameters, see Chapter 20.
Specifying OS Parameters.

(5) Settings to prevent Listen queue shortages
The TCP/IP Listen queue used during communications might run short. To prevent this, make sure that the Listen
queue specification is not too small. For details about how to specify the Listen queue, see 20.6 Listen queue specified
values.

(6) Settings to prevent a shortage of ports
The number of ports used during communications might run short. To prevent this, you need to take steps to keep a
port shortage from developing. For details about how to configure these settings, see 22.4.4 Ways to avoid a shortage
of ports.

9.5.2 Considerations for system operation
When a transaction or command (including utilities) is executed, one or more of the following phenomena might
occur, causing communication errors. This might result in a transaction or command error, or a unit abnormality might
be detected by host-to-host monitoring (the KFPS05289-E message is output).

• There are not enough ports for the remote shell to use
When a HiRDB command is executed, internally a remote shell is executed. For this reason, when the command is
being executed on a large number of units or servers, there might not be enough ports for the remote shell to use.

• There are not enough ports for the system to use
When a system has a large number of units or servers, the number of HiRDB server-to-server communication
connections increases, and there might not be enough ports for the system to use.

• There is not enough network area
When a system has a large number of units or servers, the number of HiRDB server-to-server communication
connections increases, and there might not be enough network area.

Should such phenomena occur, reduce the communications load using the following procedures as applicable.

(1) Specify a unit name when you execute a command
When you execute any of the following commands, specify a unit name. This makes the command execute for
individual units, so fewer ports are used.

• pdaudbegin, pdaudend, pdaudrm, pdaudswap

• pdcancel

• pdcat

• pdrisechk

• pdstscls, pdstsinit, pdstsopen, pdstsrm, pdstsswap

• pdstbegin, pdstend

• pdcmt, pdrbk, pdfgt

9. Designing a HiRDB parallel server configuration

270

• pdls (a server name can be specified)

However, ports can temporarily run short even when these commands are executed for individual units, if other units
generate processing requests while processing of the command is extended. Should this happen, wait a moment and
then re-execute the command.

(2) Specify a server name when you execute a command
When you execute any of the following commands, specify a server name. This makes the command execute for
individual servers, so fewer ports are used.

• pdchprc

• pdclttrc

• pdjarsync

• pdlogadpf, pdlogchg, pdlogcls, pdloginit, pdlogls, pdlogopen, pdlogrm, pdlogswap, pdlogsync, pdlogunld,
pdlogatul

• pdobils

• pdpfresh

However, ports can temporarily run short even when these commands are executed for individual servers, if other
servers generate processing requests while processing of the command is extended. Should this happen, wait a
moment and then re-execute the command.

(3) Reduce the communications load when you execute the pddbst command
When you execute the pddbst command, execute status analysis in RDAREA units.

(4) Reduce the communications load when you execute the pdload command
When you execute a pdload command, create input files for each partition storage condition to reduce the
communications load when the pdload command is executed in RDAREA units.

You can also reduce the communications load by placing the multiple input files that have been created not in one
place (on the same machine), but on a server machine that has a table storage RDAREA.

(5) Reduce the communications load when you execute the pdrorg command
When you reorganize a table, unload a table or reload a table using the pdrorg command, execute the command in
RDAREA or server units to reduce the communications load.

When you re-create indexes, reorganize indexes, or batch create indexes using the pdrorg command, execute the
command in index or server units to reduce the communications load.

(6) Reduce the communications load when you execute the pdcopy or pdrstr command
When you execute the pdcopy or pdrstr command, reduce the communications load as follows.

• Specify a single server name in the -s option, and then execute the command.

• If you use the -r option to specify multiple RDAREAs, specify only RDAREAs on the same back-end server
when you execute the command.

You can also reduce the communications load by placing backup files on the server machine that processes
commands.

(7) Reduce the communications load when you execute SQL statements
Since accessing data on multiple back-end servers through a single transaction generates data communication between
servers, you need to reduce data communication routes between servers as much as possible. Data on multiple back-
end servers is accessed when any one of the following conditions is met.

9. Designing a HiRDB parallel server configuration

271

• An SQL statement that specifies row-partitioned tables in multiple back-end servers is called.

• An SQL statement that specifies two or more table in a FROM clause is called.

• An SQL statement that specifies a subquery is called.

• An SQL statement that specifies a set operation is called.

• An SQL statement that updates shared table data is called.

• When multiple SQL statements are called within a single transaction, tables defined in different back-end servers
are specified in the FROM clauses of the respective SQLs.

When any one of the above conditions is met, you can reduce the data communication routes between servers by
taking the following actions.

• Reduce the number of partitions in row-partitioned tables.

• Specify conditions for partition keys in the SQL search conditions.

• For table joining, align the partitions of the tables in question and make the joining key the partition key.

• Store the data of the various tables that the transaction accesses on the same back-end server.

(8) Reduce the communications load when you use floating servers
The communications load increases when floating servers are used, so avoid floating servers whenever possible. Note
that floating servers are used when any one of the following conditions is met:

• An SQL statement that specifies two or more tables in a FROM clause (except when a nested loop join is used as a
joining method) is called.

• An SQL statement that specifies a subquery is called.

• An SQL statement that specifies a set operation is called.

• An SQL statement that specifies an ORDER BY clause is called (except when the sort order of a column contained
in ORDER BY can be guaranteed by searching an index, even without sort processing for the ORDER BY clause).

• An SQL statement that specifies a GROUP BY clause is called.

• An SQL statement that specifies DISTINCT is called.

• An SQL statement that specifies a derived table in a view table, WITH clause, or FROM clause is called (except
when an internal derived table is not created by the SQL that specifies a view table or WITH clause).
For details about conditions that create internal derived tables, see the manual HiRDB Version 9 SQL Reference.

• An SQL statement that specifies a FOR READ ONLY clause is called.

When any one of the above conditions is met, you can reduce the number of floating servers used by taking the
following actions.

• Specify FLTS_ONLY_DATA_BES in the SQL optimization option.

• Specify SORT_DATA_BES in the SQL optimization option.

For details about SQL optimization options, see the HiRDB Version 9 UAP Development Guide.

(9) Reduce the communications load when you use shared tables
When shared tables are updated through multiple front-end servers, the communications load increases. For this
reason, when you update multiple shared tables, connect the HiRDB client to the same front-end server whenever
possible.

(10) Notes on simultaneous execution of utilities
When a system has many back-end servers, utilities might terminate abnormally when many of them are executed
simultaneously. Should this occur, take a corrective action such as reducing the number of utilities that execute
simultaneously.

9. Designing a HiRDB parallel server configuration

272

(11) Corrective action to take when the connected user data file is not output
When the KFPS05120-W message is output, the connected user data file might not be output under $PDDIR/
spool/cnctusrinf. In these cases, execute the pdls -d act, pdls -d prc, and pdls -d trn commands for
units individually.

For details about the connected user data file, see the HiRDB Version 9 System Operation Guide.

(12) Limitations

• When there are 65 or more units, the facility for monitoring MIB performance information cannot be used.

• When the limit for the number of ports that the remote shell can use is exceeded, the following commands cannot
be executed.

• pdconfchk

• pdls -d rpc

9.5.3 Corrective actions to take in response to errors that occur when
commands are executed

The following table shows corrective actions to take in response to errors that occur when commands are executed.

Table 9‒9:  Corrective actions to take in response to errors that occur when commands are executed

Executed command Type of error and its corrective action

pdchgconf The pdchgconf command cannot be executed when the number of ports that the remote shell
can use exceeds its limit. If this occurs, terminate HiRDB normally using the pdstop command,
and then modify the configuration.

pdtrndec The pdtrndec command cannot be executed when the number of ports that the remote shell
can use exceeds its limit. If this occurs, manually resolve uncompleted transactions. For details
about how to manually resolve uncompleted transactions, see Actions when there is an
undetermined transaction in the HiRDB Version 9 System Operation Guide.

pdprgcopy or pdprgrenew The pdprgcopy and pdprgrenew commands cannot be executed when the number of ports
that the remote shell can use exceeds its limit. If this occurs, install updates to replace HiRDB on
the server machines on which it is installed.

pdstart The pdstart command cannot be executed when the number of ports that the remote shell can
use exceeds its limit. If this occurs, execute the pdstart -q command to start HiRDB on each
of the server machines that comprise a HiRDB parallel server configuration.

pdorend When you reflect online reorganization with the pdorend command, the communications load
can become large if there are many servers, and an error can result if the maximum wait time for
reflection processing specified in the -w option is exceeded. If this happens, take the following
corrective actions.

• Specify a larger value in the -w option.

• Make sure the number of online job transactions is low while the pdorend command is
executing.

9. Designing a HiRDB parallel server configuration

273

10 Designing a Multi-HiRDB
This chapter describes the system design considerations for a multi-HiRDB.

275

10.1 System design for a multi-HiRDB
This section describes only those design procedures for a multi-HiRDB that differ from an ordinary HiRDB.

10.1.1 Installing a multi-HiRDB
This section describes the points to be noted when installing a multi-HiRDB.

(1) Registering the HiRDB administrator
A different HiRDB administrator must be registered for each HiRDB. For details about registering a HiRDB
administrator, see 2.1.2 Registering the HiRDB administrator.

(2) Creating the HiRDB directories
A different HiRDB directory must be created for each HiRDB. For details about how to create a HiRDB directory, see
2.3.1 Creating the HiRDB directory.

10.1.2 Setting the environment for a multi-HiRDB

(1) Setting environment variables
Each HiRDB administrator separately defined with a multi-HiRDB server uses the PDDIR environment variable to
identify his/her own HiRDB. Specify the HiRDB directory in the PDDIR environment variable for each HiRDB
administrator.

If you specify $PDDIR/bin in the PATH environment variable for each HiRDB, only the previously specified
HiRDB operation commands in PATH become available. To operate each HiRDB individually, you should provide a
window for each HiRDB and define the environment variable for each window.

For details about the environment variables, see 2.3.4 Setting environment variables.

(2) Specifying HiRDB system definitions
Create a HiRDB system definition for each HiRDB. Specify the following information appropriately to each HiRDB
in the HiRDB system definition:

• HiRDB identifier (pd_system_id operand in the system common definition)

• HiRDB port number (pd_name_port operand in the system common definition)

• Unit identifier (pd_unit_id operand in the unit control information definition)

(3) Specifying client environment definitions
Use the PDNAMEPORT operand of the client environment definition to specify a HiRDB to be accessed from a client.
Specify the port number of a HiRDB to be accessed in the PDNAMEPORT operand. For details about the client
environment definition, see the HiRDB Version 9 UAP Development Guide.

(4) Installing utility special units
When the utility special unit facility is to be provided for a multi-HiRDB, one of the following system configurations
can be selected:

1. System configuration in which one utility special unit is installed for each HiRDB.

2. System configuration in which one utility special unit is shared among multiple HiRDBs.

10. Designing a Multi-HiRDB

276

Configuration 1 should be used if different applications are to be executed by the individual HiRDBs. Configuration 2
should be used when the system switching facility is to be used in a mutual system switching configuration.

Figure 10-1 Example of utility special unit installation for a multi-HiRDB system: One utility special unit provided for
each HiRDB system and Figure 10-2 Example of utility special unit installation for a multi-HiRDB system: One utility
special unit shared among multiple HiRDB systems show examples of utility special unit installation for a multi-
HiRDB.

Figure 10‒1: Example of utility special unit installation for a multi-HiRDB system: One utility special unit
provided for each HiRDB system

Figure 10‒2: Example of utility special unit installation for a multi-HiRDB system: One utility special unit
shared among multiple HiRDB system

(5) Library sharing
All HiRDBs constituting the multi-HiRDB can share a portion of a library in the installation directory (/opt/
HiRDB_S or /opt/HiRDB_P). You can save memory by using the pdmemsv -s command to share a portion of the
library.

10. Designing a Multi-HiRDB

277

To share a portion of a library, the following conditions must be satisfied:

• All HiRDBs constituting the multi-HiRDB must be the same version.

• All HiRDBs constituting the multi-HiRDB use the same character encoding.

• All HiRDBs constituting the multi-HiRDB use the same load type (the POSIX library must be used with all
HiRDBs).

If you share a library, place the installation directory and the HiRDB directory on separate volumes. If you do this and
a hard disk failure affects the installation directory, you can use the pdmemsv -d command to cancel library sharing
and enable HiRDB operation. The following shows the procedure for sharing a library:

pdsetup /USERS/DB1 1
pdsetup -d /USERS/DB1 2
PDDIR="USERS/DB1" 3
export PDDIR
$PDDIR/bin/pdmemsv -s 4
pdsetup /USERS/DB1 5

Explanation:
This procedure must be executed by the superuser.

1. Sets up the HiRDB environment in a directory other than the installation directory.

2. Releases the HiRDB registration from the OS. When the KFPS0036-Q message is displayed, enter n as the
response.

3. Defines the PDDIR environment variable.

4. Sharing the library.

5. Registers the HiRDB into the OS again.

Note
When reinstalling HiRDB, use the pdmemsv -d command to release library sharing. After reinstalling, re-
execute the pdmemsv -s command to share libraries.
When you execute the pdsetup -d command, if you respond with y to message KFPS00036-Q and cancel
registration with the OS, re-execute the pdmemsv command using the procedure described above.

10. Designing a Multi-HiRDB

278

10.2 Notes about upgrading
This section describes the points to be noted when upgrading HiRDB under a multi-HiRDB environment.

(1) Upgrading all HiRDBs at the same time
The following shows an overview of the procedure for upgrading all HiRDBs at the same time in a multi-HiRDB
environment. For details about how to upgrade, see 1.4 Upgrading HiRDB.

To upgrade all HiRDBs:

1. Delete all of the existing versions of HiRDB from the OS using the pdsetup -d command. Respond with y to
the KFPS00036-Q message (if you respond with n, the original environment is kept unchanged, so HiRDB is not
replaced by the new version even if the new version of HiRDB is installed and set up).

2. Install the new version(s) of HiRDB.

3. Register all of the new version of HiRDB in the OS using the pdsetup command.

(2) Upgrading only some of the HiRDBs
The following shows an overview of the procedure for upgrading only some of the HiRDBs in a multi-HiRDB
environment. For details about how to upgrade, see 1.4 Upgrading HiRDB.

To upgrade only some of the HiRDBs:

1. Delete the HiRDBs being upgraded from the OS using the pdsetup -d command. Respond with y to the
KFPS00036-Q message (if you respond with n, the original environment is kept unchanged, so HiRDB is not
replaced by the new version even if the new version of HiRDB is installed and set up).

2. Install the new version of HiRDB.

3. Register the upgraded HiRDBs in the OS using the pdsetup command.

(3) Using JP1/Software Distribution
If you are using JP1/Software Distribution to distribute HiRDB online, HiRDB cannot be registered automatically in
the OS (execution of the pdsetup command) after HiRDB is distributed.

10. Designing a Multi-HiRDB

279

11 Designing Global Buffers and Local
Buffers
This chapter describes global buffer and local buffer design.

281

11.1 Allocating global buffers
Global buffers refers to a group of buffers allocated in shared memory and used to read and write data stored in the
RDAREAs on a disk. A buffer that is designed to hold data that has been updated but not yet written to a database is
called an update buffer. A buffer that is designed for referencing data or that holds data that has already been written
to a database is called a reference buffer.

Global buffers must be allocated for RDAREAs that store data and indexes. There are three types of global buffers:

• Index global buffers

• Data global buffers

• LOB global buffers

Addition, modification, or deletion of global buffers while HiRDB is operating is called dynamic updating of global
buffers. The pdbufmod command is used for dynamic updating. For details about dynamic updating of global
buffers, see the HiRDB Version 9 System Operation Guide.

This section describes the various methods of allocating global buffers.

11.1.1 Allocating index global buffers
A dedicated global buffer should be allocated to an index that is accessed frequently, especially an index for which a
cluster key or UNIQUE is specified. This enables the index to be made resident, thereby reducing the number of input/
output operations required to access the index.

A dedicated global buffer that is allocated to an index is managed independently of the global buffer for the user
RDAREAs that contain the table rows. This means that index pages and data pages are not shared within a global
buffer. If the same global buffer is allocated to more than one index or table, information for one index may be
swapped out of the global buffer in the event a large amount of data for another table is placed in it temporarily.

The following figure shows an overview of a dedicated global buffer for an index.

Figure 11‒1: Overview of global buffer for an index

11.1.2 Allocating data global buffers

(1) Multiple RDAREAs with different page lengths
If there are multiple RDAREAs with different page lengths, all RDAREAs with the same or almost the same page
length should be allocated to a single global buffer, so that memory utilization efficiency can be improved.

11. Designing Global Buffers and Local Buffers

282

If multiple RDAREAs with very different page lengths are assigned to the same global buffer, the global buffer is
allocated as appropriate for the RDAREA with the largest page length. When data pages are input/output in this global
buffer for an RDAREA with a small page length, some of the global buffer sectors will remain unused, thereby
adversely affecting the memory utilization efficiency.

The following figure shows an example of global buffer allocation.

Figure 11‒2: Example of data global buffer allocation

For a HiRDB parallel server configuration, global buffers are maintained for each server as appropriate for that
server's RDAREA with the largest page length. For example, if the largest RDAREA page length on back-end server 1
is 4,096 bytes and the largest RDAREA page length on back-end server 2 is 8,192 bytes, the global buffer sizes that
could be allocated would be 4,096 for back-end server 1 and 8,192 for back-end server 2.

(2) Allocating multiple RDAREAs to one global buffer
If a single HiRDB file system area contains a HiRDB file that consists of multiple RDAREAs, all those RDAREAs
should be allocated to the same global buffer.

(3) Multiple RDAREAs with different UAP access methods
If multiple RDAREAs have the same page length, but their UAP access methods are different, each RDAREA should
be allocated to a different global buffer. Examples of such RDAREAs include RDAREAs with different usage,
RDAREAs with frequent sequential processing and infrequent update processing, and RDAREAs subject to frequent
addition or update processing.

(4) Addition of RDAREAs expected
The database structure modification utility (pdmod) can be used to add the following types of RDAREAs:

• User RDAREAs

• User LOB RDAREAs

• Data dictionary LOB RDAREAs

• Data dictionary RDAREAs for storing a dictionary table for management of stored procedures

• List RDAREAs

11. Designing Global Buffers and Local Buffers

283

For an RDAREA containing a table that uses flexible hash partitioning, ALTER TABLE can be used to add
RDAREAs.

Before an added RDAREA can be used, a global buffer must be allocated to it. Thus, if it is expected that RDAREAs
will need to be added in the future, global buffers for which the -o option is specified in the pdbuffer operand
must be provided in the system common definition, taking into account the largest likely page length for RDAREAs
that may be added later.

If no global buffers have been allocated in advance, global buffer allocation must be redefined in order to add an
RDAREA and make it usable; the pdbuffer operand in the system common definition is used for this purpose.

(5) Notes about allocating global buffer pools to list RDAREAs
When allocating global buffer pools to list RDAREAs, note the following, as well as the design considerations for
global buffer pool allocation to user RDAREAs:

1. If you create many lists while sharing the global buffers for list RDAREAs and for tables and indexes, tables or
indexes may be swept out of the global buffers. Therefore, if possible allocate a global buffer that is dedicated to
list RDAREAs without sharing it.

2. For the number of global buffer sectors for list RDAREAs, specify a value that is at least the number of
concurrently accessible lists times 1.5.

3. If you want to share the global buffers for list RDAREAs and for tables and indexes, share those RDAREAs with
page lengths that are the same or close to each other.

4. If you specify the prefetch facility for the global buffer for list RDAREAs, executing the following SQL
statements reads a page with a size of one segment at one time:

• If you use the SELECT statement to search a table via lists, the system reads a list page in batch mode.

• If you use the ASSIGN LIST statement to create a list, the system reads a list page of the list specified in the
FROM clause in batch mode.

11.1.3 Allocating LOB global buffers
If any of the following conditions is applicable, a global buffer must be allocated for the LOB RDAREA, so that the
number of input/output operations on data stored in the LOB RDAREA can be reduced:

• Plug-in index is stored

• Buffering effects can be expected because there is not much data

• LOB data that is accessed frequently is stored

A LOB global buffer should be allocated to a single RDAREA in order to avoid buffering interference between
RDAREAs. LOB global buffers can be allocated to the following types of LOB RDAREAs:

• Data dictionary LOB RDAREAs

• User LOB RDAREAs

• Registry LOB RDAREAs

11.1.4 Global buffer allocation procedures

(1) Index global buffer
Use the authorization-identifier.index-identifier format to specify the index to which the index global buffer is
allocated in the pdbuffer operand's -i option in the system common definition.

For a cluster key, HiRDB determines the index identifier. Therefore, after you have defined the table that specifies the
cluster key, search the INDEX_NAME column of the SQL_INDEXES table (a dictionary table) to confirm the index
identifier. The cluster key's index identifier is displayed as follows.

(CLUSTER table-number)

11. Designing Global Buffers and Local Buffers

284

For details about dictionary table retrieval and the SQL_INDEXES table, see the HiRDB Version 9 UAP Development
Guide.

When an index global buffer is allocated to the defined index, terminate HiRDB normally, and then specify the
pdbuffer operand to allocate the index global buffer. If you omit this task, the defined index will use the data global
buffer allocated to the index storage RDAREA.

 Approaches to calculating the global buffer sector count
The general rule is to make the global buffer sector count greater than the total page count of the index (the value
calculated as the number of pages stored in the index). From that count, reduce the global buffer sector count
according to the importance of the index.
The number of index pages in use can be checked with the database condition analysis utility (pddbst).

(2) Data global buffer
The name of the RDAREA for which a global buffer is to be allocated is specified in the -r option of the pdbuffer
operand in the system common definition.

(3) LOB global buffer
To allocate a LOB global buffer, use the following procedure:

1. Specify in the -r option of the pdbuffer operand in the system common definition the name of the LOB
RDAREA for which a global buffer is to be allocated.

2. Specify in the -b option of the pdbuffer operand in the system common definition the name of the LOB
RDAREA for which a global buffer is to be allocated.

(4) Example of global buffer definition
Organization of RDAREAs

The following shows the organization of the RDAREAs:

Type of RDAREA RDAREA name

Master directory RDAREA RDMAST

Data directory RDAREA RDDIR

Data dictionary RDAREA RDDIC

User RDAREAs USER01, USER02, USER03

User LOB RDAREA ULOB03

Data dictionary LOB RDAREAs DICLOB01, DICLOB02

List RDAREA LIST01

Definition example

The following shows an example of global buffer definition:

pdbuffer -a DGB1 -n 1000 -r RDMAST,RDDIR,RDDIC 1
pdbuffer -a DGB2 -n 1000 -r USER01,USER02
pdbuffer -a DGB3 -n 1000 -r USER03
pdbuffer -a DGB4 -n 1000 -r ULOB03
pdbuffer -a DGB5 -n 1000 -r DICLOB01
pdbuffer -a DGB6 -n 1000 -r DICLOB02
pdbuffer -a DGB7 -n 1000 -r LIST01

pdbuffer -a LGB1 -n 1000 -b ULOB03 2
pdbuffer -a LGB2 -n 1000 -b DICLOB01
pdbuffer -a LGB3 -n 1000 -b DICLOB02

pdbuffer -a IGB1 -n 1000 -i USER1.INDX01 3
pdbuffer -a IGB2 -n 1000 -i USER1.INDX02

11. Designing Global Buffers and Local Buffers

285

Explanation:

1. This is a definition of data global buffer. It uses the -r option to specify all RDAREAs to be created.

2. This is a definition of LOB global buffer. The RDAREAs specified with the -b option must also be specified
with the -r option.

3. This is a definition of index global buffer. It uses the -i option to specify the index authorization identifier
and index identifier.

The following provides a brief explanation of the pdbuffer operand's options that are used in this example:
-a: Specifies the name of the global buffer.
-n: Specifies the number of global buffer sectors.
-r: Specifies the RDAREAs to be allocated to the data global buffer.
-b: Specifies the LOB RDAREAs to be allocated to the LOB global buffer.
-i: Specifies the indexes to which the index global buffer is to be allocated.

11. Designing Global Buffers and Local Buffers

286

11.2 Setting the number of global buffer sectors

(1) Maximum value for shared memory considered
The number of global buffer sectors must be set so that the maximum value for the shared memory is not exceeded. If
the required number of global buffer sectors is greater than the maximum value for the shared memory that is being
used, the OS's sam command must be used to reset the maximum value per shared memory segment, and then the
number of buffer sectors that fit in one shared memory segment must be set. There is a limit to the amount of shared
memory in a server machine that can be allocated.

The amount of shared memory that can be allocated in one shared memory segment is determined by the OS. If a
defined global buffer is too large to allocate in one shared memory segment, multiple shared memory segments are
allocated, resulting in increased overhead for shared memory accesses.

(2) Buffer hit rate considered
Global buffers are allocated in shared memory and made resident in the memory. If more global buffer sectors are set
than are actually needed, the amount of memory space being used for shared memory increases, which can have
adverse effects on the system memory. Overhead for global buffer retrieval processing also increases. For these
reasons, global buffers must be set so that the required minimum input/output performance is achieved.

To achieve the minimum input/output performance, global buffers should be set so that the overall hit rate for global
buffers (update buffers hit rate + reference buffers hit rate) and the hit rate for reference buffers become high. This can
be done by the following methods:

• Increase the number of global buffer sectors.

• Allocate each RDAREA or index to a separate global buffer sector.

To improve the performance even more after setting the number of buffer sectors on the basis of the aforementioned
considerations, the pdbufls command or the statistics analysis utility (pdstedit) can be used after the HiRDB
system has been started.

If the pdbufls command is used, the number of buffer sectors must be set so that the overall global buffers hit rate
becomes high.

If the statistics analysis utility is used, the update buffers hit rate and reference buffers hit rate should be checked, and
the number of buffer sectors should be set so that the overall global buffers hit rate becomes high.

For details about the pdbufls command and the statistics analysis utility (pdstedit), see the manual HiRDB
Version 6 Command Reference.

(3) Setting procedure
The number of buffer sectors is set in the -n option of the pdbuffer operand in the system common definition.

11. Designing Global Buffers and Local Buffers

287

11.3 Specifying the prefetch facility
The prefetch facility inputs multiple pages to a global buffer or local buffer in the batch mode.

(1) Effects of the prefetch facility
When a large amount of data is to be retrieved using a character special file, the prefetch facility can reduce the input/
output time. This facility is especially effective for retrieving data without using an index or for using an index to
search a table that contains many data items in ascending order.

(2) Criteria
The prefetch facility can be used to input multiple pages in the batch mode for the following SQL statements and
utility:

• For the SELECT, UPDATE, and DELETE statements without using an index, multiple data pages can be input in
the batch mode.

• For the SELECT, UPDATE, and DELETE statements (excepting the = and IN conditions) for a search in ascending
order using an index, multiple index leaf pages can be input in the batch mode.

• For the SELECT, UPDATE, and DELETE statements (excepting the = and IN conditions) for a search in ascending
order using a cluster key, multiple index leaf pages and data pages can be input in batch mode.

• For the database reorganization utility's (pdrorg) unload processing without using a local buffer, multiple index
leaf pages and data pages can be input in the batch mode.

(3) Specification

(a) Global buffers

To use the prefetch facility, specify 1 or a greater value in the pdbuffer operand's -m option in the system common
definition. Specify the number of pages to be read in batch mode in the pdbuffer operand's -p option.

(b) Local buffers

To use the prefetch facility, use the -p option of the pdlbuffer operand to specify the number of pages for batch
input.

(4) Considerations

• When the prefetch facility is used, a buffer dedicated to batch input is obtained separately from the global buffers
or local buffers. This results in an increase in the amount of shared memory required for global buffers. For details
about the formula for calculating the amount of shared memory used by global buffers, see Chapter 15. Storage
Requirements for HiRDB.

• Whether the prefetch facility is operating effectively can be determined by checking the prefetch hit rate with the
statistics analysis utility (pdstedit) or with the pdbufls command.

11. Designing Global Buffers and Local Buffers

288

11.4 Specifying the asynchronous READ facility
When multiple pages are batch input to a global buffer using the prefetch facility, the pages are pre-read as batch input
in a synchronous process from the database processing server process to the batch input buffer. With the asynchronous
READ facility, when the prefetch facility is used two batch input buffers are prepared, and while database processing
uses one of the buffers, the asynchronous READ process pre-reads asynchronously into the other buffer. By executing
the database processing concurrently with the pre-read input, processing time is reduced. For a HiRDB parallel server
configuration, thread switchover processing reduces the input/output wait time.

The asynchronous READ facility cannot be used with local buffers. It is also not applicable to RDAREAs for which
the SCHEDULE attribute is set. It operates using the prefetch facility.

(1) Effectiveness of the asynchronous READ facility
Although it is the same as the prefetch facility, compared to use of the prefetch facility alone, the asynchronous READ
facility is effective for such processing as high processing-load joins. The asynchronous READ facility is particularly
effective when used with character special files, for which the processing time is high. Conversely, if you are using a
normal file or Hitachi disk array system disk, neither of which requires long I/O times, the facility might not be very
effective.

(2) Specification
You must declare use of the prefetch facility by specifying 1 or greater in the -m option of the pdbuffer operand.

Use the pd_max_ard_process operand to specify the number of asynchronous READ processes. If 0 is specified,
or if the operand is omitted, the asynchronous READ facility will not operate.

(3) Considerations
When the prefetch facility is used, two dedicated batch input buffers are used in addition to the global buffers. This
increases the global buffer shared memory. For details about the formula for calculating the shared memory used by
the global buffers, see Chapter 15. Storage Requirements for HiRDB.

11. Designing Global Buffers and Local Buffers

289

11.5 Specifying deferred write processing
Deferred write processing is a type of processing in which data is written to disk only when the number of updated
pages reaches a specified value, instead of data being written each time a COMMIT statement is issued. The point when
the number of updated pages reaches the specified value (as determined by HiRDB) is called the deferred write
trigger. HiRDB determines the number of updated pages to be written to disk on the basis of the updated output page
rate for deferred write trigger that is specified with the -w option of the pdbuffer operand in the system common
definition. Deferred write processing cannot be performed for the following RDAREAs:

• Data dictionary LOB RDAREAs

• User LOB RDAREAs

• Registry LOB RDAREAs

• List RDAREAs

(1) Effect of deferred write processing
Overloading caused by input/output processing can be reduced because data is not written to disk each time a
COMMIT statement is issued.

(2) Specification
Either specify sync or nothing in the pd_dbsync_point operand. In addition, specify the updated output page
rate for the deferred write trigger in the -w option of the pdbuffer operand.

(3) Considerations

1. If a table or index in an RDAREA allocated to a global buffer is updated frequently, a low value should be set as
the updated output page rate for deferred write trigger.

2. If a global buffer is updated frequently but the same data is rarely updated, a high value should be set as the
updated output page rate for deferred write trigger.

3. After the HiRDB system has been started, the pdbufls command can be used to improve performance even
further. In other words, each global buffer's update request hit rate, which is an edit item, should be checked and
set as follows:

• If the update request buffer hit rate is high, set the updated output page rate for deferred write trigger to a low
value.

• If the update request buffer hit rate is low, set the updated output page rate for deferred write trigger to a high
value.

(4) Notes
If the updated output page rate for deferred write trigger is set to a higher value than is necessary, disk write operations
occur more frequently during deferred write processing. This may cause a concurrently executing transaction to be
placed in input/output wait status, with adverse effects on the response time.

On the other hand, if the updated output page rate for deferred write trigger is set too low, the number of pages to be
written to the database increases, which may cause a concurrently executing transaction to be placed in input/output
wait status, with adverse effects on the response time.

11. Designing Global Buffers and Local Buffers

290

11.6 Specifying the facility for parallel writes in deferred
write processing

The facility for parallel writes in deferred write processing executes multiple processes of deferred write processing in
parallel. The following figure provides an overview of two cases: the first uses the facility for parallel writes. and the
second does not use the facility.

Figure 11‒3: Overview of the facility for parallel writes in deferred write processing

(1) Effects of the facility for parallel writes in deferred write processing
For deferred write processing, the time required to write to disk is reduced because write processing is executed by
multiple parallel WRITE processes.

(2) Specification
Specify in the pd_dfw_awt_process operand the number of parallel WRITE processes for deferred write
processing, which performs write processing. Also specify the deferred write trigger request ratio in the
pd_dbbuff_rate_updpage operand. If the pd_dfw_awt_process operand is omitted, the facility for parallel
writes in deferred write processing is disabled.

(3) Considerations
If you specify the facility for parallel writes in deferred write processing, the number of parallel WRITE processes for
deferred write processing increases. As a result, the CPU usage rate also increases

11. Designing Global Buffers and Local Buffers

291

11.7 Setting the commit-time reflection processing
Commit-time reflection processing is a type of processing that involves writing the pages updated in a global buffer to
disk whenever a COMMIT statement is issued.

(1) Effects of commit-time reflection processing
The contents of the database are guaranteed upon completion of a transaction because the updated database contents
are written to disk when the COMMIT statement is issued. Therefore, there is no need to recover the database from a
synchronization point during full recovery processing, thereby reducing the time required for full recovery processing.

(2) Specification
Specify commit in the pd_dbsync_point operand.

LOB RDAREAs are not affected by this operand. Directories are reflected at the point that the COMMIT statement is
issued. How data is processed depends on whether a LOB global buffer was allocated. If a LOB global buffer was not
allocated, data is reflected immediately upon issuance of the update request. If a LOB global buffer was allocated, data
is reflected at the point that the COMMIT statement is issued. However, data is also reflected whenever the global
buffer becomes full.

(3) Considerations
If the information obtained by the pdbufls command indicates that there are many output operations to disk and that
the update request hit rate is low, the number of global buffer sectors should be set to a large value.

11. Designing Global Buffers and Local Buffers

292

11.8 Global buffer LRU management
A global buffer LRU management method appropriate to the type of application (online or batch) can be selected.

11.8.1 LRU management methods
There are two LRU management methods:

• Independent LRUs for management of reference buffers and update buffers.

• Batch LRU management of global buffers.

(1) Independent LRUs for management of reference buffers and update buffers
With this method, reference buffers and update buffers are managed by independent LRUs.

If a shortage occurs in the global buffers, the least recently accessed reference buffer from among the global buffers is
removed from the memory.

(a) Criteria

In the following case, it is preferable for the reference buffer and the update buffer to be managed in separate LRUs:

• There is a relatively small amount of update processing compared to retrieval processing, and the update buffer hit
rate is high (the number of reference or update operations per transaction is relatively small, such as in the case of
online applications).

(b) Specification

SEPARATE is specified in pd_dbbuff_lru_option in the system common definition.

(c) Notes

• If a large amount of update processing occurs, the reference buffer hit rate drops, slowing down retrieval
processing.

• If either of the following applies, MIX is unconditionally assumed for the pd_dbbuff_lru_option operand.
For this reason, the reference and update buffers cannot be managed by independent LRUs.

• commit is specified in the pd_dbsync_point operand

• N is specified in the pd_dbbuff_binary_data_lru operand

(2) Batch LRU management of global buffers
With this method, the global buffers are managed collectively by one LRU.

If a shortage occurs in the global buffers, the least recently accessed buffer from among the global buffers is removed
from the memory.

(a) Criteria

It is beneficial to employ batch LRU management of global buffers in the following case:

• There is more update processing than retrieval processing, or a large amount of data is retrieved or updated
sporadically (both retrieval processing and update processing involving a large amount of data occur, such as
when online applications and batch applications co-exist).

(b) Specification

MIX is specified in pd_dbbuff_lru_option in the system common definition.

The updated output page rate for deferred write trigger is specified in the -w option of the pdbuffer operand in the
system common definition.

11. Designing Global Buffers and Local Buffers

293

(c) Notes

• If the update buffer hit rate is high, update buffers may be removed temporarily from memory due to retrieval of a
large amount of data. In such a case, file read operations may occur as an extension of update processing, slowing
down the processing.

• If pd_dbsync_point=sync is specified or omitted, file write operations may occur as an extension of
retrieval processing, slowing down the retrieval processing.

11.8.2 LRU management suppression settings for a UAP
In an OLTP environment, the data recently cached in the global buffer may be removed from memory due to a UAP
that searches and updates a large amount of data, resulting in a temporary reduction in OLTP performance. If it is
possible to identify the UAP that searches and updates a large amount of data, this reduction in OLTP performance can
be prevented by suppressing LRU management for the UAP.

Reference note
LRU management can only be suppressed for accesses from UAPs. Accesses from commands and utilities are managed by
LRU. However, the following commands suppress LRU management.

• The database condition analysis utility (pddbst)
LRU management is suppressed if either of the following conditions is met:

 The -s option is not specified
 The -s option and -b option are specified

• The free page release utility (pdreclaim)
LRU management is suppressed if the value of the globalbuffer_lru statement is no.

(1) Criteria
We recommend that you apply LRU management suppression when you execute a UAP that searches and updates a
large amount of data using the global buffer.

(2) Effects
A page accessed by a UAP for which LRU management has been suppressed is cached in the global buffer as the
oldest page accessed, regardless of the access frequency. This means that the pages accessed by this UAP are removed
from memory before pages accessed by any UAP to which URL management is being applied, thereby retaining the
latter in memory. However, when a UAP that suppresses LRU management and a UAP that does not suppress LRU
management both access the same page, LRU management is used for that page.

(3) Specification
Specify NO in the PDDBBUFLRU operand in the client environment definition.

(4) Notes

1. If a buffer shortage occurs, the pages accessed by a UAP for which LRU management has been suppressed are
removed from memory regardless of the access frequency. Therefore, the response performance for such a UAP
may decrease as the input/output count increases due to reduction in the buffer hit rate.

2. A UAP allocates 1-4 buffer sectors simultaneously. Therefore, even if LRU management suppression has been set,
1-4 cached pages may be removed from the global buffer per UAP.

3. If LRU management is suppressed for a UAP that executes update processing, more log information is output than
when LRU management is not suppressed, because more write operations occur on the database and log output
occurs frequently. To avoid space shortages, you should take the following steps:

• Re-evaluate the sizes of the system log files.

• If the UAP can be executed in the no-log mode, specify NO in PDDBLOG in the client environment definition.

11. Designing Global Buffers and Local Buffers

294

Use the formula shown below to determine the amount of log information when LRU management is suppressed.
If you specify 1024 in the pd_log_rec_leng operand, you can minimize the amount of log information that
is output when LRU management is suppressed.

update get count# value of the pd_log_rec_leng operand

#: To determine the update-get-count, check the value of DIDUC in the UAP statistical report or in the UAP
statistical information.

4. When a rollback occurs, LRU management might be used even if the UAP suppresses LRU management. This
differs depending on the timing of the rollback, as shown below.

Rollback timing Is LRU management used?

Timing is defined by SQL There is a rollback to the commit-time immediately prior to
execution of a specified control SQL ROLLBACK statement.

LRU management is suppressed.

Rollback is executed
automatically by HiRDB

Processing cannot continue at the time SQL is executed, and an
implicit rollback to the immediately prior commit-time is executed
by HiRDB.

LRU management is suppressed.

The UAP terminates abnormally and HiRDB rolls back to the
immediately prior commit-time.

LRU management is used.

Rollback is executed by a delayed rerun. LRU management is used.

11.8.3 Setting suppression of LRU management of binary data accessed
by UAPs

When you execute a UAP that accesses a great deal of large-sized binary data, caching the binary data in the global
buffer pushes out of memory whatever was most recently cached in the global buffer, so performance might decline
temporarily. If the binary data is not accessed frequently, performance declines can be avoided at this time by
suppressing LRU management of the branch row page of the binary data.

Note that this setting is valid for BINARY type binary data. It is not valid for BLOB type binary data.

Reference note
LRU management can only be suppressed for accesses from UAPs. Accesses from commands and utilities are managed by
LRU. However, the following commands suppress LRU management.

• Commands provided by plug-ins

• pddbst
LRU management is suppressed if either of the following conditions is met:

 The -s option is not specified
 The -s option and -b option are specified

• pdreclaim
LRU management is suppressed if the value of the globalbuffer_lru statement is no.

Note also that for the following commands, LRU management cannot be suppressed, but you can avoid pushing from
memory the most recently cached data in the global buffer.

• pdload, pdrorg, pdrbal
Pushing of base row data out of the global buffer can be avoided by specifying the -n option and using a local buffer.

• pdpgbfon
When the -b option is omitted, the branch row page of the binary data is not accessed.

(1) Application criteria
We recommend using suppression of LRU management of binary data accessed by UAPs when both of the following
conditions are met.

11. Designing Global Buffers and Local Buffers

295

• There are tables that include large binary data such as BINARY type, abstract data types that include BINARY type
attributes, or XML type.

• Access of binary data is rare.

! Important note
Do not apply this setting if you access binary data frequently.

(2) Effect of application
The branch row that stores binary data is cached in the global buffer as the least recently used page regardless of
access frequency. For this reason, the branch row page is pushed from memory before the base row page, meaning that
data in the base row page is not pushed from memory.

(3) Specification method
Specify N for the system common definition operand pd_dbbuff_binary_data_lru.

(4) Notes

1. When LRU management is suppressed, branch row pages of binary data that UAPs access are pushed from
memory when the buffer runs short, regardless of access frequency. For this reason, UAPs that access binary data
branch row pages might experience degraded response performance as well due to the increase in the number of
I/Os that results from a lower buffer hit rate.

2. UAPs secure one to four sectors of buffer simultaneously. For this reason, one to four of the pages cached in the
global buffer might be pushed out of the cache for each UAP, even when suppression of LRU management has
been specified.

3. When LRU management is suppressed, there are numerous writes to databases and log output events when UAPs
are executed that update binary data branch row pages. For this reason, the amount of log output will be greater
than if LRU management is not suppressed. Do the following to make sure that capacity does not run short.

• Re-calculate the size of the system log file.

• If you are executing in no-log mode, specify NO for client environment definition PDDBLOG.

The log size when LRU management is suppressed can be determined using the following formula. If 1024 is
specified as the pd_log_rec_leng operand, the log output size when LRU management is suppressed will be
minimized.

number of update GETs of UAPs that access binary data# pd_log_rec_leng operand value

#
The number of update GETs can be confirmed using the DIDUC value in the UAP statistical report or the
DIDUC value in the statistical information pertaining to UAPs.

4. When a rollback occurs, LRU management might be used even if the UAP suppresses LRU management. This
differs depending on the timing of the rollback, as shown below.

Rollback timing Is LRU management used?

Timing is defined by SQL There is a rollback to the commit-time immediately prior to
execution of a specified control SQL ROLLBACK statement.

LRU management is suppressed.

Rollback is executed
automatically by HiRDB

Processing cannot continue at the time SQL is executed, and an
implicit rollback to the immediately prior commit-time is executed
by HiRDB.

LRU management is suppressed.

The UAP terminates abnormally and HiRDB rolls back to the
immediately prior commit-time.

LRU management is used.

Rollback is executed by a delayed rerun. LRU management is used.

5. When this facility is applied, MIX is unconditionally assumed for the pd_dbbuff_lru_option operand. For
this reason, the reference and update buffers cannot be managed by independent LRUs.

11. Designing Global Buffers and Local Buffers

296

11.9 Page access using the snapshot method
When retrieval is performed but facilities designed to improve performance (such as the rapid grouping facility)
cannot be applied, the global buffers are accessed several times to retrieve rows that satisfy the retrieval conditions.
With the snapshot method, all rows in the buffer that match the retrieval conditions are copied into the process private
memory the first time they are accessed, and when the same pages are accessed subsequently the retrieval result is
returned by referencing the process private memory. The following figure provides an overview of the snapshot
method.

Figure 11‒4: Overview of the snapshot method

(1) Effectiveness of accesses using the snapshot method
The row that first matches the search conditions is copied into process private memory, which allows the retrieval time
for the second and subsequent accesses to be shortened. The number of times that the global buffers are accessed is
also reduced, preventing a concentration of accesses on the global buffer.

(2) Specification
Specify SNAPSHOT (the default value) in the pd_pageaccess_mode operand.

(3) Considerations
When the snapshot method is specified for use, the process private memory is maintained automatically on the basis
of the page size of the RDAREA where the table or index is stored. For details about calculating the size of the
maintained process private memory for a HiRDB single server configuration, see 15.1.6(4) Procedure for obtaining
the size of the memory required when the snapshot method is used; for a HiRDB parallel server configuration, see
15.2.6(4) Procedure for obtaining the size of the memory required when the snapshot method is used.

(4) Snapshot method applicability
The following table indicates whether you need to apply the snapshot method for retrievals.

When No is indicated for applicability, there is no impact on access performance even when SNAPSHOT is specified
in the system definition's pd_pageaccess_mode operand. Consequently, the snapshot method is not applicable.

11. Designing Global Buffers and Local Buffers

297

Table 11‒1: Applicability of the snapshot method for retrievals

Condition
Applicability

Tables Indexes

Retrievals for which pd_indexlock_mode=KEY is specified in the system common
definition, yet the following conditions are not satisfied:

• WITHOUT LOCK NOWAIT specified for retrieval

• LOCK TABLE required for retrieval

N/R No

Retrievals using a holdable cursor No No

Retrievals for which the retrieval method is an index scan
(INDEX SCAN, MULTI COLUMNS INDEX SCAN)

WITHOUT LOCK WAIT is
specified

No No

Other than above No Yes

Retrievals for which the retrieval method is ROWID FETCH No N/R

Retrievals with the following columns specified:

• VARCHAR, MVARCHAR, NVARCHAR columns with a
defined length greater than 256 bytes

• Recursive columns

• Columns with abstract data types

• LOB columns

• Binary columns with a defined length greater than 256
bytes

WITHOUT LOCK WAIT is
specified

No Key

Other than above No Yes

Retrievals for which retrieval conditions specify a hit rate of 1 hit per page No No

Retrievals using a plug-in index No No

Retrievals in a dictionary table No No

Legend:
Yes: Applicable.
No: Not applicable.
Key: Applicable when the retrieval type is a key scan (KEY SCAN, MULTI COLUMNS KEY SCAN).
N/R: Not relevant or condition does not apply.

11. Designing Global Buffers and Local Buffers

298

11.10 Global buffer pre-writing
Global buffer pre-writing is a function for reading data from a specified table or index in advance and placing it in the
global buffer. The following figure provides an overview of global buffer pre-writing.

Figure 11‒5: Overview of global buffer pre-writing

Explanation:

• When global buffer pre-writing is not performed
When a UAP accesses a table immediately after HiRDB has started, the UAP reads data from the table
because there is no data in the global buffer (physical input/output operations occur). Thereafter, when the
UAP accesses this table data, no read operation occurs on those pages that have been written into the global
buffer. To access other pages, read operations occur.

• When global buffer pre-writing is performed
The UAP can access the table without having to read data from it because the table data has already been
written into the global buffer in advance (no physical input/output operations occur). Thereafter, when the
UAP accesses this table, no read operation on the table occurs.

(1) Effects of global buffer pre-writing
The buffer hit rate improves because data is read from a specified table or index in advance. By pre-reading a table or
index on which many input/output operations are expected immediately after HiRDB starts and prior to starting online
applications, you can expect a high buffer hit rate.

(2) Execution method
Specify the table and index to be pre-read and execute the global buffer residence utility (pdpgbfon).

(3) Considerations

• You need more global buffer sectors than the actual number of pages that contain the table or index to be pre-read.

• If there are not enough global buffer sectors, the LRU management method removes the oldest page information
from the global buffer (the oldest page in the global buffer accessed according to the
pd_dbbuff_lru_option operand value in the system definition). Therefore, executing pdpgbfon serves no
purpose when there are not enough global buffer sectors.

• When the global buffer residence utility (pdpgbfon) is used, the prefetch facility takes effect because data is pre-
read in the order the pages were stored. When you define the database, you can reduce the execution time by
specifying a prefetch count.

11. Designing Global Buffers and Local Buffers

299

11.11 Local buffers
Local buffers are maintained in the process private memory and are used for input/output of data that is stored in an
RDAREA on disk. The types of local buffers are as follows:

• Index local buffers
These buffers are used for input/output of index data. Index local buffers are allocated in units of indexes.

• Data local buffers
These buffers are used for input/output of data. Data local buffers are allocated in units of RDAREAs.

Local buffers are defined for each UAP in the UAP environment definition. By allocating a dedicated local buffer to a
UAP, it is possible to avoid global buffer contention with other UAPs or waiting for buffer locks. For details about
UAP environment definition, see the manual HiRDB Version 9 System Definition.

You should define local buffers when both of the following conditions apply:

• A large amount of data is to be retrieved or updated

• The RDAREA to be accessed should not be accessed by other UAPs

Since UAPs that are always connected to HiRDB have a major impact on the system (in terms of use of memory,
server processes and the like), do not define local buffers for such UAPs.

11.11.1 Allocating index local buffers
If data local buffers and index local buffers are defined separately, data retrieval and index retrieval will be conducted
independently even if they are performed concurrently. Therefore, even if a large amount of data is to be retrieved
under all conditions, the frequency of index input/output can be reduced and processing time can be shortened.

The following figure provides an overview of index local buffers when table data and index data are respectively
allocated to local buffers.

Figure 11‒6: Overview of index local buffers

11.11.2 Allocating data local buffers

(1) Multiple RDAREAs with different page lengths
If there are multiple RDAREAs with different page lengths, all RDAREAs with the same or almost the same page
length should be allocated to a single local buffer, so that memory utilization efficiency can be improved.

If multiple RDAREAs with very different page lengths are assigned to the same local buffer, the local buffer is
allocated as appropriate for the RDAREA with the largest page length. When data pages are input/output on an

11. Designing Global Buffers and Local Buffers

300

RDAREA with a small page length, some areas in a single local buffer sector will remain unused, thereby adversely
affecting the efficiency of memory usage.

(2) Multiple RDAREAs with different UAP access methods
If multiple RDAREAs have the same page length, but their UAP access methods are different, each RDAREA should
be allocated to a different local buffer. Examples of such RDAREAs include RDAREAs with different usage,
RDAREAs with frequent sequential processing and infrequent update processing, and RDAREAs subject to frequent
addition or update processing.

11.11.3 Allocating local buffers
To allocate index local buffers, you specify in the -i option of the pdlbuffer operand the name of the index
(authorization-identifier.index-identifier) for which the index local buffer is to be allocated.

To allocate data local buffers, you specify in the -r option of the pdlbuffer operand the name of the RDAREA for
which the data local buffer is to be allocated.

The following are examples of local buffer definitions:

pdlbuffer -a localbuf01 -r RDAREA01,RDAREA02 -n 1000 1
pdlbuffer -a localbuf02 -i USER01.INDX01 -n 1000 2

Explanation:

1. Allocates data local buffers to two RDAREAs, RDAREA01 and RDAREA02.

2. Allocates an index local buffer to index USER01.INDX01.

11.11.4 Considerations about local buffers
If a server process terminates abnormally when a local buffer is being used, abort code Phb3008 is output and
HiRDB (the unit in the case of a HiRDB parallel server configuration) terminates abnormally. If there is an update
page when a server process terminates abnormally, it might not always be recoverable using a transaction recovery
process. In such a case, you must perform recovery processing when HiRDB restarts. For details about the measures
for HiRDB processing when a failure occurs while local buffers are being used, see the HiRDB Version 9 System
Operation Guide.

11. Designing Global Buffers and Local Buffers

301

12 Designing Tables
This chapter explains items that should be examined during table design.

303

12.1 Items to be examined during table design
A HiRDB database is a relational database. The user must examine the design of a table, which is the logical structure
of the database.

To begin with, tables must be normalized. Even among tables normalized in the same manner, table processing
performance may vary depending on the method used to store the table in user RDAREAs. In some cases, operability
may be more important than processing performance; therefore, tables must be designed to achieve expected results.
The following table lists items to consider when you are designing a table.

Table 12‒1: Items to consider when you are designing a table

Design task and items to be
examined Advantages Disadvantages Section

Table normalization Table storage efficiency and
processing efficiency improve.

Processing performance may be
reduced if join retrieval of
normalized tables is necessary during
table retrieval.

12.2

Table row
partitioning

Specification of
table row
partitioning

• Operations can be performed in
units of RDAREAs.

• For a HiRDB parallel server
configuration, high-speed table
access and workload distribution
can be achieved because table
access processing can be executed
concurrently on multiple
RDAREAs.

• The number of RDAREAs
increases.

• If an index for this table is not
row-partitioned, the level of
concurrent executions is reduced
due to index locking.

12.3

Key range
partitioning

• RDAREAs that contain specific
table data are known.

• Data for each application can be
stored in a separate RDAREA.

Data cannot be stored uniformly
without knowing the key ranges.

Flexible hash
partitioning#

• Data can be stored uniformly
without having to know the key
ranges.

• RDAREAs and hash function can
be changed easily.

• It is easy to cope with the addition
of CPUs or disks.

• It is difficult to know which table
data is stored in which RDAREA.

• If a specific key is heavily
weighted or duplicated, data
cannot be stored uniformly.

• Uniqueness of the key cannot be
checked.

FIX hash
partitioning#

• The RDAREAs to be used to store
data are determined by the key
values.

• Data can be stored uniformly in
RDAREAs without having to
know the key ranges.

• It is easy to add CPUs or disks.

• Input data can be stored in the
RDAREAs by creating a UAP that
uses the hash function for table
partitioning.

Once data is stored in a table, user
RDAREAs cannot be added, nor can
the hash function be changed.

Table matrix partitioning • Compared to normal key range
partitioning, high-speed SQL
processing and reduced operation
time can be expected because data
partitioned by key ranges can be
partitioned further on the basis of
the values in a different column.

• This method is applicable to a
wider range of applications
because key range partitioning can

Compared to normal row
partitioning, operation and
management become complex
because this method allows more
detailed partitioning of RDAREAs.

12.4

12. Designing Tables

304

Design task and items to be
examined Advantages Disadvantages Section

be combined with hash
partitioning.

Defining a trigger SQL can execute automatically in
response to an operation on a table.

None 12.5

Creation of view table • If other users are given access
privileges only for the view table
but not the base table, the
accessible range of the base table
can be restricted on a row or
column basis.

• If a view table is created
beforehand using data that can be
retrieved by a complicated query,
the table referencing operation is
simplified.

• A base table can be referenced or
updated via its view table.

None 12.6

Specification of FIX attribute • If row-by-row interface is used,
access performance can be
improved, even when there are
many columns.

• Null value can be prohibited as
input data for a table with the FIX
attribute.

• If a table contains many columns,
the disk space required can be
reduced.

None 12.7

Specification of primary key Uniqueness constraint and NOT NULL
constraint apply to a column for which
a primary key is defined.

None 12.8

Specification of cluster key • Input/output time can be reduced
when retrieving, updating, or
deleting a row with a range
specified, or when retrieving or
updating data on the basis of a
cluster key value.

• If UNIQUE is specified for the
cluster key, all the values in the
cluster key column must be
unique.

• The database load utility
(pdload) can be used to
determine whether input data for a
table is sorted in ascending or
descending order of the cluster
key values.

• When a table is being reorganized,
the database reorganization utility
(pdrorg) can be used to
determine whether the cluster key
for the unloaded row matches the
cluster key to be reloaded.

• Values in the column that
constitutes the cluster key cannot
be updated.

• The null value cannot be inserted
in the column that constitutes the
cluster key.

• When an attempt is made to add
data to a table for which a cluster
key is specified, there is overhead
for retrieving the page that has
the key value adjacent to the
specified key value.

12.9

Specification of suppress option • Disk space required can be
reduced.

• Input/output time for retrieval
processing can be reduced, such as
retrieval of all entries.

None 12.10

12. Designing Tables

305

Design task and items to be
examined Advantages Disadvantages Section

Specification of no-split option Data storage efficiency can be
improved, thereby reducing the disk
space required.

None 12.11

Specification of a binary data column Variable-length large object data can
be specified, such as document,
image, and audio data

None 12.12

Specification of a character set Character string data can be stored in
different character sets for each
column in a table. This allows the
following:

• When migrating from the VOS3
system to HiRDB, character data
stored in a database can be
retrieved, substituted, and
compared in the collating
sequence of character string data
in the VOS3 system.

• Retrieval, substitution, and
comparison of character data in
UTF-16.

None 12.13

Specification of WITHOUT
ROLLBACK option

Occurrences of locking can be
reduced because the rows subject to
update processing are unlocked
automatically when table update
processing is completed (such as when
defining a table used for numbering
applications).

None 12.14

Specification of the falsification
prevention facility

Prevents table data errors or invalid
updates.

There are restrictions on the facilities,
SQL, utilities, and commands that
can be executed on an RDAREA that
contains a falsification prevented
table.

12.15

Table with repetition column • There is no need to join multiple
tables.

• The disk space required can be
reduced because duplicated
information is eliminated.

• Better access performance can be
achieved than when a separate
table is used because related data
items (repetition columns) are
placed adjacent to each other.

None 12.16

Table with abstract data type Data with a complicated structure can
be stored in a table to process it as
normal table data.

None 12.17

Shared table • Overhead caused by connection
and data transfer between multiple
back-end servers can be reduced.

• Efficiency of parallel processing
improves, such as when multiple
transactions are executed
concurrently.

When a shared table is updated, all
back-end servers lock the RDAREA
that contains the shared table. If
another application accesses another
table in the same shared RDAREA,
deadlock may occur.

12.18

Referential constraints Integrity checking and data
manipulation on data in multiple
tables can be automated.

When referenced tables and
referencing tables are updated,
processing time increases because
data integrity is checked.

12.19

12. Designing Tables

306

Design task and items to be
examined Advantages Disadvantages Section

Check constraints Data checking can be automated when
data is added or updated.

When a table for which a check
constraint has been defined is
updated, processing time increases
because data integrity is checked.

12.20

Compressed table • Table data storage efficiency
improves and the database size
can be reduced.

• Data compression processing need
not be provided when UAP is
developed because HiRDB
compresses data.

When data in compressed columns is
manipulated by using SQL
statements and utilities, there is
overhead for compression and
expansion processing.

12.21

Temporary table • Processing is not affected by other
users because a dedicated table is
created for each transaction or
SQL session.

• Complex processing can be
performed, such as storing
intermediate processing results in
a temporary table and then
obtaining the final results by
processing the intermediate
results.

• No postprocessing is needed
because temporary tables are
deleted automatically.

There is overhead for initializing a
temporary table RDAREA when
HiRDB starts or when the first
INSERT statement is executed on a
temporary table.

12.22

#: You should use the hash facility for hash row partitioning in the following cases:

• Hash row partitioning is to be used with the table.

• The amount of data is expected to increase.

If you add RDAREAs to handle an increase of data for a hash row partitioning table (if you increase the number of
table row partitions), data may become uneven among the existing RDAREAs and newly added RDAREAs. The
rebalancing facility for hash row partitioning can correct such unevenness of data when you increase the number
of table row partitions. For details about the rebalancing facility for hash row partitioning, see the HiRDB Version
9 System Operation Guide.

12. Designing Tables

307

12.2 Normalizing a table
It is important in terms of table storage efficiency and processing efficiency to normalize tables. The columns that
constitute a table should be examined during table normalization.

This section describes the following normalization topics:

• Normalization for improved table storage efficiency

• Normalization for improved table processing efficiency

(1) Normalization for improved table storage efficiency
If a table has multiple columns that contain similar data, the table should be normalized so that all the columns contain
unique data. Such normalization improves the efficiency of data storage for the table. This subsection describes how
this works using the example depicted in the following figure.

12. Designing Tables

308

Figure 12‒1: Multiple columns in a table containing similar data

The PCODE and PNAME columns in the STOCK table have a one-to-one correspondence before normalization, which
means that the data in these columns is redundant. For this case, another table called PRODUCT can be created that
consists of the STOCK table's PCODE and PNAME columns. The PRODUCT table is created so that the PCODE and
PNAME columns do not contain duplicative data.

(2) Normalization for improved table processing efficiency

(a) Same table used by multiple applications

If the same table is used by multiple applications, normalization can result in a separate table for each application.
This can improve the level of concurrent execution for each table. This subsection describes how this works using the
example depicted in the following figure.

12. Designing Tables

309

Figure 12‒2: Same table used by multiple applications

The PMANAGE (product management) table is used by the inventory management application and the orders
management application. The PMANAGE table can be normalized to the STOCK table that is used only by the
inventory management application and the ORDERS table that is used only by the orders management application.

(b) Columns with different access frequencies

If some of a table's columns are accessed frequently and some are not, normalization can result in a table consisting of
the columns that are accessed frequently and a table consisting of the columns that are accessed infrequently. This
subsection describes how this works, using the example shown in the following figure.

12. Designing Tables

310

Figure 12‒3: Columns with different access frequencies

Taking the STOCK table shown in the above figure, if the retrieval frequency ratio of the PNO and SQUANTITY
columns to the PNAME and PRICE columns is 9:1, normalization of the STOCK table should result in a table
(STOCK2) consisting of the columns that are retrieved frequently and a table (PRODUCT) consisting of the columns
that are retrieved infrequently.

Assume that 10,000 physical input/output operations are required in order to retrieve all entries in the STOCK table.
When the STOCK table is divided into the two tables STOCK2 and PRODUCT, the numbers of physical input/output
operations required in order to retrieve all entries in these two tables drops to 4,500 (5,000 0.9) and 500 (5,000
0.1), respectively. As a result, only 5,000 physical input/output operations are required to retrieve all entries, thereby
improving the overall table processing efficiency.

12. Designing Tables

311

12.3 Table row partitioning
This section describes the design method for partitioning a table by rows.

HiRDB/Workgroup Server does not support the row-partitioning of a table or an index.

12.3.1 Table row partitioning
Dividing a table and storing it in multiple user RDAREAs is called table row partitioning. A table partitioned by rows
is called a row-partitioned table.

The RDAREAs used to store a row-partitioned table must be on different disks.

(1) Criteria
You should employ table row partitioning in the following circumstances:

• There is a large amount of data.

• Data access is concentrated at specific time periods.

• User RDAREAs are managed in units of table partitions (such as for data storage in tables, table reorganization,
and making backups).

(2) Definition procedure
You define table row partitioning with the CREATE TABLE definition SQL statement. For details about how to define
the table row partitioning, see 6.2 Creating a row-partitioned table.

12.3.2 Types of table row partitioning
There are two ways to partition a table by rows:

• Key range partitioning

• Hash partitioning (flexible hash partitioning or FIX hash partitioning)

These two methods of table row partitioning are explained as follows.

(1) Key range partitioning
Key range partitioning divides a table into groups of rows on the basis of ranges of values in a specific column in the
table. The column used as the condition for table row partitioning is called the partitioning key.

When this method is used, it is possible to tell which table data is stored in which RDAREA.

Row partitioning can be specified in two ways:

(a) By specifying storage conditions

Comparison operators are used to specify conditions for determining which table data is to be stored in each
RDAREA. Only one range of storage condition values can be specified for each RDAREA.

(b) By specifying boundary values

Literals are used to specify the boundary values of the data to be stored in each RDAREA. Multiple ranges determined
by boundary values can be specified for one RDAREA. Boundary values can also be specified with matrix
partitioning. For details about matrix partitioning, see 12.4 Table matrix partitioning.

(2) Hash partitioning
Hash partitioning uses the values of a table column as a hash function for dividing the table and storing it uniformly in
RDAREAs. The column specified for partitioning the table is called the partitioning key. This method is used to

12. Designing Tables

312

distribute the table data uniformly among the RDAREAs without having to deal with key ranges. Hash partitioning
can be combined with key range partitioning with boundary values specified to achieve matrix partitioning. For details
about matrix partitioning, see 12.4 Table matrix partitioning.

The two types of hash partitioning are flexible hash partitioning and FIX hash partitioning.

When a table is divided and stored in multiple RDAREAs using flexible hash partitioning, there is no way to know
which data is stored in which RDAREA. Therefore, in order to search for particular data in the table, all back-end
servers containing the table are subject to search processing.

When a table is partitioned using FIX hash partitioning, HiRDB identifies which table data is stored in which
RDAREA. Therefore, only the back-end server believed to contain the desired data is subject to search processing.

(a) Selecting the partitioning key

The key selected as the partitioning key should satisfy the following conditions:

• The key values are evenly distributed.

• There are few duplicated key values.

For hash partitioning, either a single column or multiple columns can be selected as the partitioning key. If a single
column is specified and there are too few different values in the column for purposes of partitioning or the key values
are unevenly distributed, data may not be divided uniformly. In this case, more than one column on which partitioning
can be based should be specified in order to distribute the data more uniformly among the RDAREAs.

(b) Types of hash functions

The hash functions available for hash partitioning include the following:

• HASH0
• HASH1
• HASH2
• HASH3
• HASH4
• HASH5
• HASH6
• HASHA
• HASHB
• HASHC
• HASHD
• HASHE
• HASHF
• HASHZ

If the table is not a rebalancing table, or if you want to specify a hash function for the second dimension of a
matrix-partitioned table

Specify a hash function between HASH0 and HASH6, or HASHZ. HASH6 provides the most uniform hashing
result, so normally you specify HASH6. However, depending on the data in the partitioning key, the hashing result
may not be uniform. In such a case, specify one of the other hash functions.

If the table is a rebalancing table
Specify a hash function between HASHA and HASHF. HASHF provides the most uniform hashing result, so
normally you specify HASHF. However, depending on the data in the partitioning key, the hashing result may not
be uniform. In such a case, specify one of the other hash functions.

For details about individual hash functions, see the descriptions of the hash functions in Operands under CREATE
TABLE (Define table) in the manual HiRDB Version 9 SQL Reference.

12. Designing Tables

313

(c) Selecting a hash function

Selecting an appropriate hash function by actually storing data in a database

To select a hash function, use the following procedure:

1. Specify a hash function appropriate to the partitioning key.

2. Use the database condition analysis utility (pddbst) to check the number of rows stored in each RDAREA.

3. If there is an uneven distribution in the number of rows stored in the RDAREAs, change the hash function so that
a uniform number of rows is stored in each RDAREA.

4. If the method described in step 3 does not result in an even distribution of stored rows, duplicate the specification
of an RDAREA with fewer rows stored to make the number of stored rows even. The following figure shows an
example.

Figure 12‒4: Example of duplicating a table storage RDAREA specification using hash partitioning

Selecting an appropriate hash function by creating a UAP that uses a hash function for table partitioning
To select a hash function, use the following procedure:

1. Create an application program that locates an uneven distribution in the number of data items in each
RDAREA by using the hash functions for table partitioning (function that outputs a partitioning condition
specification sequence from the data values for the partitioning key), available from a HiRDB library.

2. For each hash function, obtain the number of data items in the partitioning condition specification sequence
that is output by the hash function for table partitioning, then select the most evenly distributed hash function.

For details about how to create a UAP for using a hash function for table partitioning, see the HiRDB Version 9 UAP
Development Guide.

(d) Times when hash functions are used

Hash functions are used at the following times:

• When data is loaded in units of tables

• When data is added

• When data is reloaded in units of tables

(3) Differences among key range partitioning, flexible hash partitioning, and FIX hash
partitioning

The following table lists and explains the differences between key range partitioning, flexible hash partitioning, and
FIX hash partitioning.

12. Designing Tables

314

Table 12‒2: Differences between key range partitioning, flexible hash partitioning, and FIX hash
partitioning

Difference Key range partitioning Flexible hash partitioning FIX hash partitioning

Database design Key ranges must be taken into
account when database is
designed.

There is no need to take key ranges
into account when database is
designed.

There is no need to take key ranges
into account when database is
designed.

Retrieval Only back-end servers that
may contain the applicable
data according to the search
condition are subject to
retrieval processing.

All back-end servers containing the
table are subject to retrieval
processing.

When an = or an IN predicate for a
partitioning column is specified in a
search condition, only RDAREAs
that might contain the data are
searched. However, when HASH0 is
used as the hash function, RDAREAs
subject to retrieval processing when
an = predicate, IN predicate, range
condition (using <, >, <=, or >=),
BETWEEN predicate, LIKE predicate
(starts-with comparison), or
SIMILAR predicate (starts-with
comparison) is specified are
searched.#1

Support for increasing
the amount of data

If keys increase, data may be
concentrated in some
RDAREAs.

Data is already stored uniformly in
RDAREAs even if data increases.

Data is already stored uniformly in
RDAREAs even if data increases.

Handling of RDAREA
shutdown

SQLs can be executed if their
search condition is specified
so that no shutdown
RDAREA is accessed.

If even one of the RDAREAs
containing the table subject to
retrieval is shut down, SQLs
cannot be executed regardless of
their search condition.

SQLs can be executed if their search
condition is specified so that no
shutdown RDAREA is accessed.#2

Change in number of
table partitions

Table must be re-created and
reorganized.

ALTER TABLE can be used to add
RDAREAs, and reorganization of
the table is not required.

Table must be re-created and
reorganized. ALTER TABLE can be
used to add RDAREAs only if the
table contains no data.

Data loading and
reloading in units of
RDAREAs

Data is checked to see if it is
the correct data to be stored in
the corresponding RDAREAs.

Data is not checked to see if it is
the correct data to be stored in the
corresponding RDAREAs.

Data is checked to see if it is the
correct data to be stored in the
corresponding RDAREAs.

Method for creating an
input data file by
RDAREA during data
loading

Input data is classified by
RDAREA taking into account
the key ranges.

Input data is classified so that the
number of data items per
RDAREA becomes uniform.

An application is created using a hash
function for table partitioning,#3 and
input data is classified by RDAREA.

Updating of
partitioning key

Updating must use existing
values.

Can be updated. Updating must use existing values.

UNIQUE definition for
cluster key and index
definition with
UNIQUE specified

UNIQUE cannot be specified. UNIQUE cannot be specified. UNIQUE can be specified.

Changing the partition
storage conditions by
ALTER TABLE

Partitioning storage
conditions can be changed for
the following method:

• Boundary value
specification

Storage condition
specification (only = is used
for the storage condition
comparison operator)

Partition storage conditions cannot
be changed. RDAREAs can be
added by ALTER TABLE.

Partition storage conditions cannot be
changed. RDAREAs cannot be added
by ALTER TABLE.

12. Designing Tables

315

#1: The ASSIGN LIST statement results in a workload on the back-end servers to which the search condition is not
applied.

#2: The ASSIGN LIST statement handles the entire table as being shut down.

#3: For details about how to create a UAP for using a hash function for table partitioning, see the HiRDB Version 9
UAP Development Guide.

(4) Specification rules when table row partitioning is defined
When table row partitioning is defined, the following specification rules apply:

• For key range partitioning

• You can specify only one partitioning key.#1 The partitioning key cannot be updated.

• If you specify a storage condition,#2 you cannot specify the same RDAREA more than once. Although you
can specify the same RDAREA more than once in an environment variable specification,#3 you cannot specify
the same RDAREA two or more times in succession.

• For hash partitioning

• You can specify a maximum of 16 partitioning keys.#1 The same partitioning key cannot be specified more
than once. Flexible hash partitioning allows updating of partitioning keys, but FIX hash partitioning does not.

#1: A column or repetition column of any of the following data types cannot be specified as the partitioning key:

• CHAR, VARCHAR, MCHAR, or MVARCHAR type whose defined length is 256 bytes or greater

• NCHAR or NVARCHAR type whose defined length is 28 characters or greater

• BLOB type

• BINARY type

• Abstract data type

• TIMESTAMP type whose decimal places precision is greater than 0

• TIMESTAMP type whose default value is CURRENT_TIMESTAMP USING BES

#2: When multiple storage conditions are specified, the conditions are evaluated in the order they were specified, and
data is stored in the RDAREA that is specified in the first storage condition whose evaluation result is true. If none of
the conditions results in true, the system stores data in the RDAREA for which no storage condition was specified. If
there is no such RDAREA, data is not stored in any of the RDAREAs. The table definition is invalid if it contains an
RDAREA in which no row is stored as a result of evaluating the conditions.

#3: A literal is specified for a boundary value. A character string literal with a length of 0 is not permitted. If you
specify multiple boundary values, they must be specified in ascending order. Also, you must specify at the end an
RDAREA for which no boundary value is specified.

(5) Examples of key range partitioning (with storage condition specified)
The following figure shows an example of key range partitioning (with a storage condition specified).

12. Designing Tables

316

Figure 12‒5: Example of key range partitioning with a storage condition specified

Explanation:
The STOCK table is partitioned and stored in two user RDAREAs (USR01 and USR02) using ranges of values in
the product code (PCODE) column as the condition; the specified ranges are 100L-399S and 400L-699S.

(6) Example of key range partitioning (with boundary values specified)
The following figure shows an example of key range partitioning (with boundary values specified).

12. Designing Tables

317

Figure 12‒6: Example of key range partitioning with boundary values specified

Explanation:
The STOCK table is partitioned and stored in two user RDAREAs (USR01 and USR02) using values in the
product code (PCODE) column as boundary values; the specified boundary values are 302S and 591S.

(7) Example of flexible hash partitioning and FIX hash partitioning
The following figure shows an example of flexible hash partitioning and FIX hash partitioning.

12. Designing Tables

318

Figure 12‒7: Example of flexible hash partitioning and FIX hash partitioning

Explanation:
The STOCK table is partitioned and stored in two user RDAREAs (USR01 and USR02) using the product code
(PCODE) column as the partitioning key and using hash function 6.
The target RDAREAs for storage of actual data may differ from this example.

12.3.3 Forms of table row partitioning
Following are the basic forms of table row partitioning:

• Row partitioning within a server (applicable to a HiRDB single server configuration)

• Row partitioning among servers (applicable to a HiRDB parallel server configuration)

Figures 12-8 and 12-9 show these forms.

12. Designing Tables

319

Figure 12‒8: Table row partitioning form for a HiRDB single server configuration

Figure 12‒9: Table row partitioning form for a HiRDB parallel server configuration

12.3.4 Effects of table row partitioning
The effects obtained when a table is row-partitioned are discussed below.

(1) HiRDB single server configuration

Improved operability
Data storage in table, table reorganization, making backups, and additional operations are available for each user
RDAREA.

Key range partitioning
The user RDAREAs that contain particular table data can be determined by searching the SQL_DIV_TABLE
dictionary table. This means that if an error occurs in a user RDAREA, the unavailable data can be identified. For

12. Designing Tables

320

details about dictionary table retrieval and the SQL_DIV_TABLE table, see the HiRDB Version 9 UAP
Development Guide.

(2) HiRDB parallel server configuration

Improved performance
High-speed table access processing can be achieved, because table access processing can be handled in parallel
over multiple user RDAREAs.
Workload of table access processing can be distributed to multiple back-end servers.

Improved operability
Same as for a HiRDB single server configuration.

12.3.5 Design considerations

(1) Considerations common to both a HiRDB single server configuration and HiRDB parallel
server configuration

Following are the design considerations that are common to HiRDB single server configurations and HiRDB parallel
server configurations:

(a) Row partitioning taking into account contention among disk accesses

If multiple UAPs access separate tables concurrently, these tables should be partitioned and stored in separate user
RDAREAs on separate disks.

The following figure provides an overview of row partitioning, taking into account contention among disk accesses.

Figure 12‒10: Overview of row partitioning, taking into account contention among disk accesses

12. Designing Tables

321

Explanation:
Tables A and B are partitioned and stored in two sets of user RDAREAs, USR01-USR02 and USR03-USR04,
which are on separate disks. If UAP1 and UAP2 attempt to access tables A and B concurrently, no contention
occurs, thereby reducing their wait time.
If these tables are stored in user RDAREAs on the same disk, access contention occurs on the disk when multiple
UAPs attempt to access the tables concurrently. In this case, one of the UAPs is placed in wait status until the
other UAP completes its access processing, resulting in an increase in wait time.

(b) Row partitioning taking into account operability

This subsection provides an overview of row partitioning, taking into account operability with reference to the
following figure.

Figure 12‒11: Overview of row partitioning, taking into account operability

Explanation:

• Storing table and index in the same user RDAREAs
If operability for table creation, table reorganization, backing up of user RDAREAs, RDAREA recovery, and
other such operations is more important than retrieval performance, a row-partitioned table and its indexes
should be stored in the same user RDAREAs. Operations on individual user RDAREAs become easy.
In the example shown in Figure 12-11, the portion of table AB for application A is stored together with its
index in dedicated user RDAREA USR01. This enables the pdhold command (for shutting down
RDAREAs) to be used to terminate application A. Additionally, it simplifies backup processing for each
application that uses the database copy utility (pdcopy).

• Placing related user RDAREAs on the same disk
If a row-partitioned table and its indexes are stored in multiple user RDAREAs, the related user RDAREAs
should be placed on the same disk. This enables user RDAREAs to be used individually by disk.
In the example shown in Figure 12-11, the portion of table CD for application D is stored together with its
index in user RDAREAs USR04 and USR06 on the same disk. This enables applications to be executed by
disk.

12. Designing Tables

322

(2) HiRDB parallel server configuration
Following are the design considerations for HiRDB parallel server configurations:

(a) Row partitioning taking into account workload for disk accesses

• Row partitioning over multiple back-end servers
If multiple user RDAREAs are placed on the disk at one back-end server and the portions of a table stored in
individual RDAREAs all have high access frequency, the workload for disk accesses becomes high at this back-
end server.
Therefore, a frequently accessed table should be partitioned and stored in user RDAREAs on different disks at
multiple back-end servers. In this case, the table should be partitioned so that the table access frequency becomes
uniform among all the back-end servers containing the table.

• Parallel disk accesses over multiple server machines
If a table stored in a user RDAREA at a back-end server in a server machine with a low CPU workload is accessed
mostly for input/output operations, the workload of disk accesses is not uniform among the multiple servers,
thereby affecting adversely the efficiency of parallel processing.
If there is capacity in the CPU, more back-end servers and user RDAREAs should be installed in this server to
improve the degree of parallel disk access processing.

(b) Row partitioning taking into account the degree of parallel input/output processing

If a table is partitioned and stored in as many server machines as possible, the input/output processing time can be
reduced by parallel processing. If there is a limit to the number of server machines available for table row partitioning,
the same effects can be achieved by increasing the number of back-end servers and disks for each server machine. The
following figure provides an overview of input/output processing performance based on the number of back-end
servers used for table row partitioning.

Figure 12‒12: Overview of input/output processing performance based on the number of back-end servers
used for table row partitioning

12. Designing Tables

323

If a table is partitioned and stored in too many back-end servers, there is an increase in the amount of communication
required to return each back-end server's processing results to the front-end server. Therefore, the appropriate number
of back-end servers must be determined, taking into account the type of database operation and SQL processing
(whether SQLs are used to retrieve a large amount of data from a large table).

(c) Row partitioning taking into account table access frequency

A table must be partitioned so that table access frequency becomes uniform at each back-end server.

To do this, the considerations discussed below should be taken into account.

Key range partitioning

• When table row partitioning is defined, specify UNIQUE for the partitioning key so that the amount of data
becomes uniform.

• When a table is partitioned and the number of accesses to the data in a specific key range is expected to be
higher than in the other key ranges, divide the data in the heavy-accesses key range by finer key ranges.

Flexible hash partitioning or FIX hash partitioning

• Change the hash function so that the data is distributed uniformly.

• Select a partitioning key without uneven distribution or duplication so that the data is distributed uniformly.

Even when a table is partitioned and stored in multiple back-end servers, the performance of parallel processing of the
table can vary depending on whether the table is partitioned so that uniform access frequency can be achieved.

The following figure shows differences in parallel processing performance depending on table access frequency.

Figure 12‒13: Performance of parallel processing depending on table access frequency

Explanation:
The processing time that can be saved depends on whether the table is partitioned so that uniform access
frequency is achieved. If the access frequency is not uniform, table processing does not terminate until processing
at back-end server BES2 is completed, so the benefit of parallel processing is not obtained.

(d) Row partitioning taking into account complicated retrieval processing

For purposes of table partitioning taking into account complicated retrieval processing, such as retrieving or joining a
large amount of data, the table should be designed using the following procedure:

12. Designing Tables

324

1. Determining the disk processing time and the number of disks to be used
Obtain the disk access frequency (utilization factor) from the size of the data and the processing patterns,
distribute data to disks on the basis of this value, and determine the object value for disk processing time. If join
processing is to be executed, exclude the work disk required for join processing (the number of HiRDB file
system areas where work table files are created for sort/merge processing) when distributing data. Exclude the
time required for join processing from the object value of disk processing time. Determine the number of disks on
the basis of data distribution to disks.

2. Determining the number of server machines
Obtain the overhead time for processing at the server machines on the basis of the data processing patterns.
Determine the number of server machines (where back-end servers are installed) so that the disk processing time
and overhead time at the server machines become uniform.

3. Determining the number of server machines used for join processing
Obtain the overhead time for join processing at the server machines on the basis of the data processing patterns.
Then, determine the number of floating machines on the basis of this value and the disk processing time.
A floating machine is a server machine where a floating server is installed, which is a back-end server dedicated to
complicated retrieval processing such as join processing. User RDAREAs cannot be allocated to a back-end server
defined as a floating server.

4. Determining the number of work disks
The data subject to join processing is distributed uniformly from each back-end server to the floating server.
Determine the number of work disks (number of HiRDB file system areas used to create work table files) on the
basis of the expected amount of this data.

5. Determining the system configuration
Determine the overall system configuration on the basis of the numbers of server machines and disks determined
above.

The following figure shows an overview of a system configuration involving table row partitioning, designed using
the above procedure and taking into account complex retrieval processing.

Figure 12‒14: System configuration involving table row partitioning, taking into account complex retrieval
processing

Explanation:
Back-end servers BES1-BES3 and BES4-BES6 read the data subject to join processing from Tables A and B,
respectively. Floating servers BES7-BES9 receive data from back-end servers BES1-BES6 and execute parallel
match processing.

12. Designing Tables

325

This type of system configuration can reduce the workload of back-end servers BES1-BES6 and reduce
processing time. If no floating server is installed, one of the back-end servers BES1-BES6 must execute the join
processing.

12.3.6 Notes on table row partitioning
1. When a table is row-partitioned, its indexes must also be row-partitioned. If a table is partitioned and stored in

multiple RDAREAs while an index is stored in a single user RDAREA, the level of concurrent execution may be
reduced due to locking on the index. For details about index row partitioning, see 13.3 Index row partitioning.

2. You should use the hash facility for hash row partitioning in the following cases:

• Hash row partitioning is to be used with the table.

• The amount of data is expected to increase.

If you add RDAREAs to handle an increase of data for a hash row partitioning table (if you increase the number of
table row partitions), data may become uneven among the existing RDAREAs and newly added RDAREAs. The
rebalancing facility for hash row partitioning can correct such unevenness of data when you increase the number
of table row partitions. For details about the rebalancing facility for hash row partitioning, see the HiRDB Version
9 System Operation Guide.

12. Designing Tables

326

12.4 Table matrix partitioning
Partitioning a table by a combination of partitioning methods using two of the table columns as the partitioning key is
called matrix partitioning. The first column used as the partitioning key is called the first dimension partitioning
column, and the second column used as the partitioning key is called the second dimension partitioning column.
Matrix partitioning involves key range partitioning with boundary values specified for the first dimension partitioning
column and then partitioning the resulting data further by the second dimension partitioning column. The following
partitioning methods can be specified for the second dimension partitioning column:

• Key range partitioning with boundary values specified

• Flexible hash partitioning#

• FIX hash partitioning#

#
You can specify hash functions HASH0 to HASH6. You cannot specify HASHA to HASHF.

A table that has been matrix partitioned is called a matrix-partitioned table.

In order to matrix partition tables, HiRDB Advanced High Availability is required.

(1) Effects of table matrix partitioning
The effectiveness of partitioning on the basis of partitioning keys formed from multiple columns is as follows:

• High-speed SQL processing
High-speed SQL processing can be obtained by parallel execution of SQL processing and by maximizing the
retrieval range by retrieving on the basis of multiple keys.

• Reduced operating time
More precise partitioning makes it possible to reduce the size of an RDAREA. This reduces the time required for
reorganization, for making backups, and for error recovery.

(2) Criteria
We recommend using key range partitioning with boundary values specified for both partitioning columns when the
following conditions are met:

• Data was partitioned by the first dimension partitioning column, and there is a large amount of data corresponding
to the various boundary values.

• Multiple columns need to be specified in the search condition for a UAP that accesses the table and you wish to
limit the RDAREAs that are accessed by multiple columns. Alternatively, you wish to limit the RDAREAs that
are accessed only by column n specified in the SQL statement.

We recommend that you combine key range partitioning with boundary values specified and hash partitioning when
the following conditions are met:

• Data was partitioned by the first dimension partitioning column, and there is a large amount of data corresponding
to the various boundary values.

• You wish to uniformly segment the range of data that was partitioned by the first dimension partitioning column.

In the following cases, we recommend duplicative specification of the RDAREA name specified in hash partitioning
when key range partitioning with boundary values is combined with hash partitioning. Specifying the same RDAREA
more than once can reduce the number of RDAREAs actually used while keeping the number of partitions unchanged.
The amount of data stored in each RDAREA can also be kept even. For details about duplicative specification of
RDAREA names, see Figure 12-4 Example of duplicating a table storage RDAREA specification using hash
partitioning.

• You want to keep the re-organization processing time constant for each RDAREA by keeping the size of
individual RDAREAs constant, but it is difficult to specify a boundary value that will divide data amounts evenly
when you are partitioning using first dimension partitioning column boundary values. As a result, processing time
cannot be kept constant.

12. Designing Tables

327

• You want to reduce the number of partitions because this affects retrieval performance.

(3) Specification
You use the CREATE TABLE definition SQL statement with the PARTITIONED BY MULTIDIM operand to specify
the following:

• The table's allocation to RDAREAs

• The matrix partitioning parameters (partitioning key, partitioning method)

The definition rules are as follows:

• When key range partitioning with boundary values specified is specified for the second dimension partitioning
column

• You can specify two partitioning keys (partitioning key for the first dimension partitioning column +
partitioning key for the second dimension partitioning column). The partitioning keys for the first and second
dimension partitioning columns cannot be the same.

• When hash partitioning is specified for the second dimension partitioning column

• You can specify 2-16 partitioning keys. When flexible hash partitioning is used, only the partitioning key for
the second dimension partitioning column can be updated. When FIX hash partitioning is used, the
partitioning keys cannot be updated.

For an example definition, see (4) Matrix partitioning example.

(4) Matrix partitioning example

(a) Combination of key range partitioning with boundary values specified

Boundary values are specified for the registration_date and store_number columns of the
CUSTOMER_TABLE, and the table is matrix-partitioned by registration_date and store_number. The
customer data is stored in user RDAREAs (USR01 to USR06) as shown below. The number of user RDAREAs
required for storage, based on the formula (number of boundary values + 1) (number of boundary values + 1), is 3

 2 = 6 in this example:

Registration date
Store number

100 or below Above 100

2000 or earlier USR01 USR02

2001 USR03 USR04

2002 or later USR05 USR06

The following is the SQL statement to define this matrix-partitioned table:

CREATE FIX TABLE CUSTOMER_TABLE
 (registration_date DATE, store_number INT, customer_name NCHAR(10))
 PARTITIONED BY MULTIDIM(
 registration_date (('2000-12-31'),
 ('2001-12-31')), 1.
 store_number ((100)) 2.
)IN ((USR01,USR02),(USR03,USR04),(USR05,USR06))

Explanation

1. Specifies the name of the first dimension partitioning column (name of the first column that is used as the
partitioning key) and its list of boundary values.

2. Specifies the name of the second dimension partitioning column (name of the second column that is used as
the partitioning key) and its list of boundary values.

The following figure shows an example of matrix partitioning.

12. Designing Tables

328

Figure 12‒15: Example of matrix partitioning (combination of key range partitioning with boundary values
specified)

(b) Combination of key range partitioning with boundary values specified and hash partitioning

This subsection describes an example of applying FIX hash partitioning to a second dimension partitioning column.

This example matrix-partitions the CUSTOMER_TABLE by specifying boundary values for registration_date
and using a hash function to partition store_number and region_code into three segments. The customer data
is stored in user RDAREAs (USR01 to USR09) as shown below. The number of RDAREAs needed for storage is
(number of boundary values + 1) (desired partitions to be obtained by hash function); therefore, 3 3 = 9
RDAREAs are needed for this example.

Registration date Store number and region code (divided into 3 partitions by hash function)

2002 or earlier USR01 USR02 USR03

2003 USR04 USR05 USR06

2004 or later USR07 USR08 USR09

The following SQL statement defines the table to be matrix-partitioned:

CREATE FIX TABLE CUSTOMER_TABLE
 (registration_date DATE, store_number INT, region_code INT, customer_name
NCHAR(10))
 PARTITIONED BY MULTIDIM
 (registration_date (('2002-12-31'),('2003-12-31')), ...1.
 FIX HASH HASH6 BY store_number, region_code ...2.
)IN ((USR01,USR02,USR03),

12. Designing Tables

329

 (USR04,USR05,USR06),
 (USR07,USR08,USR09))

Explanation:

1. Specifies the name of the first dimension partitioning column (name of the first column to be used as the
partitioning key) and its list of boundary values.

2. Specifies the name of the second dimension partitioning column (name of the second column that is used as
the partitioning key) and the hash function name.

The following figure shows another example of matrix partitioning.

Figure 12‒16: Example of matrix partitioning (combination of key range partitioning with boundary values
specified and hash partitioning)

12. Designing Tables

330

12. Designing Tables

331

12.5 Defining a trigger
By defining a trigger, an SQL statement can be executed automatically in response to some operation on a table
(updating, insertion, deletion). A trigger specification involves a table, an SQL statement that serves as the event to
activate the trigger (the trigger event), an automatically executed SQL statement (trigger event SQL), and the
conditions under which the trigger is activated (the trigger action search conditions). When an SQL statement that
matches the trigger action search conditions is executed on a table for which a trigger has been defined, the triggered
SQL statement executes automatically. The following figure provides an overview of triggers.

Figure 12‒17: Overview of triggers

Explanation:
When the UAP executes a trigger event SQL statement, triggers defined for Table A are called. If trigger action
search conditions are satisfied, triggered SQL statements are executed automatically (in this case, a row is inserted
into Table B and a row is updated in Table C).

Prerequisite:
Before you define a trigger, you need to create an RDAREA for the data dictionary LOB. Use the database
structure modification utility (pdmod) to create the RDAREA for the data dictionary LOB.

When a trigger is defined for a table, all existing functions, procedures, and trigger SQL objects that the table uses
become invalid and have to be re-created. The trigger SQL object will also become invalid and will have to be re-
created if any of the resources used by the trigger (such as tables or indexes) are defined, modified, or deleted. For
details, see 12.5.4 Trigger management.

12.5.1 Application standards
Triggers are recommended when a UAP performs the following processing:

• A table must be updated whenever another table is updated

• Whenever a table is updated, columns in the updated row must be updated (the columns are related)

For example, assume that whenever a price is updated in the product management table the change has to be recorded
also in the product management history table. If a trigger were not used, it would be up to the UAP to always update
the product management history table whenever it updates the product management table. If a trigger is used,
however, the product management history table would be updated automatically, which means that the UAP that
updates the product management table does not have to even be aware of the product management history table. In
this way, when triggers are applied appropriately, the burden on UAP developers is lessened.

12. Designing Tables

332

12.5.2 Defining a trigger

(1) Preparation for definition
When a trigger is defined, the SQL objects of the trigger action are created automatically on the basis of the triggered
SQL statement and are stored in a data dictionary LOB RDAREA. Therefore, when triggers are to be defined,
sufficient space must be available in the data dictionary LOB RDAREA. For details about estimating the size of the
data dictionary LOB RDAREA, see 16.5 Determining the size of a data dictionary LOB RDAREA.

In order to execute a trigger event SQL statement, you must take into account the triggered SQL objects when you
specify the SQL object buffer length. For details about estimating the buffer length used by SQL objects, see the
manual HiRDB Version 9 System Definition.

(2) Definition method
The following definition SQLs are used to define triggers and to re-create and delete SQL objects.

• CREATE TRIGGER
This statement defines a trigger. Triggers can be defined only for tables that are owned by the definer; they cannot
be created for tables that are owned by other users. This statement specifies the following items:

• Timing of the trigger action
You can execute the trigger action either before (BEFORE) or after (AFTER) table manipulation. A trigger
whose trigger action time is BEFORE is called a BEFORE trigger, and a trigger whose trigger action is AFTER
is called an AFTER trigger.

• Trigger event
The events that can cause a trigger action are the INSERT, DELETE, and UPDATE statements.

• Table for which trigger is defined
A trigger can be defined only for a base table.

• Row alias before and after execution of the trigger event SQL statement (old or new values alias)
For the row that is updated by the trigger event SQL statement, specify the name before SQL statement
execution (old correlation name) or the name after SQL statement execution (new values correlation name).
You can use these aliases to specify the details of the trigger action.

• Trigger action
There are three factors of the trigger action:

 The triggered SQL statement (the SQL statement that executes automatically)
 The trigger action search conditions (the conditions under which the triggered SQL statement is executed)
 Whether the action is executed at the row level or the statement level

A triggered SQL statement is executed only when the trigger action search conditions are satisfied. If no
conditions are provided, the triggered SQL statement is executed every time the trigger event SQL statement
executes.

• ALTER TRIGGER
This statement re-creates the SQL object for a trigger that has already been defined. The ALTER ROUTINE
definition SQL statement can also be used for re-creation.

• DROP TRIGGER
This statement deletes a trigger.

(3) Trigger definition example

(a) Example of using a trigger

The following is an example of defining a trigger for the product management table so that if there is an increase in
the value of the Price column that exceeds 10,000 yen, the pre-update and post-update prices will be inserted into the
product management history table.

CREATE TRIGGER TR1 ...Trigger name
 AFTER ...Timing of the trigger action

12. Designing Tables

333

 UPDATE OF price ...Triggering event
 ON product_management_table...Table the trigger is defined for
 REFERENCING OLD ROW AS X1 ...Pre-update row alias
 NEW ROW AS Y1 ...Post-update row alias
 FOR EACH ROW ...Whether for the entire statement or for each row
 WHEN(Y1.price - X1.price > 10000)
 ...Trigger action search condition
 INSERT INTO product_management_history_table VALUES ...Triggered SQL
statement
 (X1.item_no, X1.price, Y1.price)

(b) Example of a trigger action that uses an SQL control statement (assignment statement)

An assignment statement is an SQL statement that assigns a specified value to a specified column. A trigger can use
an assignment statement before executing its action on a table. When an assignment statement is used in a trigger
action, a relationship can be established between columns.

The following example shows two trigger definitions and their actions of updating the value of the Bonus column in
response to updates of the value in the Position column of the staff table.

• A trigger that sets a salary bonus value for a row that is inserted into the staff table; the bonus is set at 8% if the
Position is A, 10% if the Position is B, and 0% otherwise.
CREATE TRIGGER bonus_trigger_1
 BEFORE
 INSERT
 ON staff_table
 REFERENCING NEW ROW AS X1
 FOR EACH ROW
 SET X1.bonus=CASE X1.position
 WHEN 'A' THEN X1.salary*0.08
 WHEN 'B' THEN X1.salary*0.1
 ELSE 0 END

• A trigger that sets a salary bonus value for a row in the staff table in response to a change in the Position or Salary
column; the bonus is set at 8% if the Position is A, 10% if the Position is B, and 0% otherwise
CREATE TRIGGER bonus_trigger_2
 BEFORE

12. Designing Tables

334

 UPDATE OF position, salary
 ON staff_table
 REFERENCING NEW ROW AS X1
 FOR EACH ROW
 SET X1.bonus=CASE X1.position
 WHEN 'A' THEN X1.salary*0.08
 WHEN 'B' THEN X1.salary*0.1
 ELSE 0 END

Explanation
The INSERT statement acts as a triggering event, bonus_trigger_1 is executed, and then a row is added. The
INSERT statement causes the data in Bonus to be set to 0, and then the result of the assignment is stored.
Next, the UPDATE statement acts as a triggering event, bonus_trigger_2 is executed, and the data in Bonus
is updated to 0.

(c) Example where the triggering action uses SQL control statements (a compound statement)

A compound statement is an SQL statement that executes multiple SQL statements within a single statement. An
update to a table can act as a triggering event, such that the triggered SQL statement is a compound statement that
enables the single trigger to update multiple tables.

The following example defines a trigger that enables updates to the master inventory table to be reflected in the
Glasgow inventory table and the Edinburgh inventory table. If a compound statement were not used, it would be
necessary to define two separate triggers.

CREATE TRIGGER local_stock_table_update_trigger
 AFTER
 UPDATE OF stock_count
 ON inventory_master
 REFERENCING NEW ROW post_update
 OLD ROW pre_update
 BEGIN
 UPDATE Glasgow_stock SET stock_count=post_update.stock_count
 WHERE product_code=pre_update.product_code;
 UPDATE Edinburgh_stock SET stock_count=post_update.stock_count
 WHERE product_code=pre_update.product_code;
 END

(d) Example where the trigger action contains an SQL diagnostic statement (SIGNAL statement)

The SIGNAL statement causes an error to occur. If, before the action on a table, a trigger action is executed that
specifies the SIGNAL statement, then if the action is invalid the SIGNAL statement will execute to prevent the action.

The following example defines a trigger where there is an attempt to update information for someone else, and before
the staff information table is updated the SIGNAL statement issues an error and the update is prevented.

12. Designing Tables

335

CREATE TRIGGER update_prevention_trigger
 BEFORE
 UPDATE
 ON staff_information
 REFERENCING OLD ROW AS X1
 WHEN(X1.employee_name<>USER) SIGNAL SQLSTATE '99001'

12.5.3 Trigger considerations
Depending on the definition of row-level triggers, when a trigger event SQL statement is executed, the result may vary
according to the internal HiRDB processing (different contents after an update).

Explanation
When row 1 of Table A is updated, a trigger causes a row to be updated, deleted, or inserted in Table B. When row
2 is updated, a trigger causes the same row in Table B to be referenced, updated, or deleted (there is an
overlapping portion). The update sequence between row 1 and row 2 depends on internal HiRDB processing, such
that a different result may occur.

12.5.4 Trigger management

(1) Trigger definition
When a trigger is defined, all existing functions, procedures, and trigger SQL objects that the table uses become
invalid and have to be re-created. By referencing the SQL_ROUTINE_RESOURCES dictionary table before a trigger
is defined, you can check the functions, procedures, and trigger SQL objects that will become invalid. Check the SQL
objects that will become invalid so that you can re-create them.

(a) Checking the functions, procedures, and trigger SQL objects that will become invalid when a trigger is
defined

The following example shows how to check the functions, procedures, and trigger SQL objects that will become
invalid when a trigger definition is defined. In the case of a trigger, what will become invalid is the trigger identifier
(TRIGGER_NAME). In the case of functions and procedures, TRIGGER_NAME becomes NULL.

SELECT DISTINCT B.ROUTINE_SCHEMA, B.ROUTINE_NAME, B.SPECIFIC_NAME,
A.TRIGGER_NAME
FROM MASTER.SQL_ROUTINE_RESOURCES B LEFT JOIN MASTER.SQL_TRIGGERS A
ON B.ROUTINE_SCHEMA=A.TRIGGER_SCHEMA
AND B.SPECIFIC_NAME=A.SPECIFIC_NAME
WHERE B.BASE_TYPE='R'
AND B.BASE_OWNER='authorization-identifier-of-owner-of-table-for-which-trigger-
is-defined'
AND B.BASE_NAME='table-for-which-trigger-is-defined'
AND (B.column-name# ='Y'
 OR (B.INSERT_OPERATION IS NULL
 AND B.UPDATE_OPERATION IS NULL
 AND B.DELETE_OPERATION IS NULL))

12. Designing Tables

336

#: To retrieve the SQL objects that will become invalid when a trigger is defined with INSERT as the triggering event,
specify INSERT_OPERATION as the column name; when UPDATE is the triggering event, specify
UPDATE_OPERATION; and when DELETE is the triggering event, specify DELETE_OPERATION.

(2) Re-creating a trigger SQL object
When a table, index, or other resource already used by a trigger is defined, modified, or deleted, the trigger SQL
objects become invalid. Also, defining or deleting indexes for a table that a trigger is using will cause the index
information for the trigger SQL objects to become invalid.

If a trigger SQL object becomes invalid, or if the SQL object's index information becomes invalid, the trigger event
SQL statement cannot be executed. To prevent a trigger SQL object or the SQL object's index information from
becoming invalid, the trigger SQL objects must be re-created with the ALTER TRIGGER or ALTER ROUTINE
definition SQL statements.

(a) How to check the resources used by a trigger

You can check information on the resources that a trigger is using by referencing the SQL_ROUTINE_RESOURCES,
SQL_TRIGGER_USAGE, and SQL_ROUTINE_PARAMS dictionary tables.

• SQL example for checking the resources used by a trigger action condition
SELECT B.* FROM MASTER.SQL_TRIGGERS A, MASTER.SQL_TRIGGER_USAGE B
WHERE A.TRIGGER_SCHEMA='schema-name'
 AND A.TRIGGER_NAME='trigger-identifier'
 AND A.TRIGGER_SCHEMA=B.TRIGGER_SCHEMA
 AND A.TRIGGER_NAME=B.TRIGGER_NAME

• SQL example for checking the column resources used by a trigger in specifying old and new value aliases
SELECT B.* FROM MASTER.SQL_TRIGGERS A, MASTER.SQL_ROUTINE_PARAMS B
WHERE A.TRIGGER_SCHEMA='schema-name'
 AND A.TRIGGER_NAME='trigger-identifier'
 AND A.TRIGGER_SCHEMA=B.ROUTINE_SCHEMA
 AND A.SPECIFIC_NAME=B.SPECIFIC_NAME

• SQL example for checking resources other than the above used by a trigger
SELECT B. * FROM MASTER.SQL_TRIGGERS A, MASTER.SQL_ROUTINE_RESOURCES B
WHERE A.TRIGGER_SCHEMA='schema-name'
 AND A.TRIGGER_NAME='trigger-identifier'
 AND A.TRIGGER_SCHEMA=B.ROUTINE_SCHEMA
 AND A.SPECIFIC_NAME=B.SPECIFIC_NAME

(b) How to check triggers that will be deleted before deleting columns in a table

If all columns that act as triggering events are deleted, the trigger will be deleted. The following is an example of an
SQL for checking the triggers that will be deleted before deleting columns from a table:

SELECT A.TRIGGER_SCHEMA, A.TRIGGER_NAME
 FROM MASTER.SQL_TRIGGERS A
WHERE A.N_UPDATE_COLUMNS>0
 AND A.TABLE_SCHEMA='authorization-identifier-of-owner-of-table-from-which-
columns-will-be-deleted'
 AND A.TABLE_NAME='table-identifier-of-table-from-which-columns-will-be-
deleted'
 AND NOT EXISTS(SELECT * FROM MASTER.SQL_TRIGGER_COLUMNS B
 WHERE B.TRIGGER_SCHEMA=A.TRIGGER_SCHEMA
 AND B.TRIGGER_NAME=A.TRIGGER_NAME
 AND B.TABLE_SCHEMA=A.TABLE_SCHEMA
 AND B.TABLE_NAME=A.TABLE_NAME
 AND B.COLUMN_NAME NOT IN('name-of-column-to-be-
deleted', ...))

(c) How to check the functions, procedures, and trigger SQL objects or SQL object index information that will
become invalid before defining, modifying, or deleting a table or index

The following is an SQL example of checking for the functions, procedures, and trigger SQL objects or SQL object
index information that will become invalid before defining, modifying, or deleting a table or index. If a trigger will
become invalid, the trigger identifier (TRIGGER_NAME) is obtained. If it is a function or a procedure, the value of
TRIGGER_NAME becomes NULL.

12. Designing Tables

337

• Table (including view table) modification or deletion, or index definition (specify the schema name and identifier
of the table that defines the index)
SELECT DISTINCT B.ROUTINE_SCHEMA, B.ROUTINE_NAME, B.SPECIFIC_NAME,
A.TRIGGER_NAME
 FROM MASTER.SQL_ROUTINE_RESOURCES B LEFT JOIN MASTER.SQL_TRIGGERS A
 ON B.ROUTINE_SCHEMA=A.TRIGGER_SCHEMA
 AND B.SPECIFIC_NAME=A.SPECIFIC_NAME
WHERE B.BASE_TYPE IN('R','V')
 AND B.BASE_OWNER='table(view-table)-owner-authorization-identifier'
 AND B.BASE_NAME='table(view-table)-identifier'

• Index deletion
SELECT DISTINCT B.ROUTINE_SCHEMA, B.ROUTINE_NAME, B.SPECIFIC_NAME,
A.TRIGGER_NAME
 FROM MASTER.SQL_ROUTINE_RESOURCES B LEFT JOIN MASTER.SQL_TRIGGERS A
 ON B.ROUTINE_SCHEMA=A.TRIGGER_SCHEMA
 AND B.SPECIFIC_NAME=A.SPECIFIC_NAME
WHERE B.BASE_TYPE ='I'
 AND B.BASE_OWNER='index-owner-authorization-identifier'
 AND B.BASE_NAME='index-identifier'

• Function or procedure deletion
SELECT DISTINCT B.ROUTINE_SCHEMA, B.ROUTINE_NAME, B.SPECIFIC_NAME,
A.TRIGGER_NAME
 FROM MASTER.SQL_ROUTINE_RESOURCES B LEFT JOIN MASTER.SQL_TRIGGERS A
 ON B.ROUTINE_SCHEMA=A.TRIGGER_SCHEMA
 AND B.SPECIFIC_NAME=A.SPECIFIC_NAME
WHERE B.BASE_TYPE ='P'
 AND B.BASE_OWNER='function(procedure)-owner-authorization-identifier'
 AND B.BASE_NAME='routine-identifier'

• Trigger deletion
SELECT DISTINCT B.ROUTINE_SCHEMA, B.ROUTINE_NAME, B.SPECIFIC_NAME,
A.TRIGGER_NAME
 FROM MASTER.SQL_ROUTINE_RESOURCES B LEFT JOIN MASTER.SQL_TRIGGERS A
 ON B.ROUTINE_SCHEMA=A.TRIGGER_SCHEMA
 AND B.SPECIFIC_NAME=A.SPECIFIC_NAME
WHERE B.BASE_TYPE ='T'
 AND B.BASE_OWNER='trigger-owner-authorization-identifier'
 AND B.BASE_NAME='trigger-identifier'

• Schema deletion
SELECT DISTINCT B.ROUTINE_SCHEMA, B.ROUTINE_NAME, B.SPECIFIC_NAME,
A.TRIGGER_NAME
 FROM MASTER.SQL_ROUTINE_RESOURCES B LEFT JOIN MASTER.SQL_TRIGGERS A
 ON B.ROUTINE_SCHEMA=A.TRIGGER_SCHEMA
 AND B.SPECIFIC_NAME=A.SPECIFIC_NAME
WHERE B.BASE_OWNER='schema-name'

• Deletion of user-defined type
SELECT B.ROUTINE_SCHEMA, B.ROUTINE_NAME, B.SPECIFIC_NAME, A.TRIGGER_NAME
 FROM MASTER.SQL_ROUTINE_RESOURCES B LEFT JOIN MASTER.SQL_TRIGGERS A
 ON B.ROUTINE_SCHEMA=A.TRIGGER_SCHEMA
 AND B.SPECIFIC_NAME=A.SPECIFIC_NAME
WHERE B.BASE_NAME='identifier-of-data-type-to-be-deleted'
 AND B.BASE_TYPE='D'
UNION
SELECT B.ROUTINE_SCHEMA, B.ROUTINE_NAME, B.SPECIFIC_NAME, A.TRIGGER_NAME
 FROM MASTER.SQL_ROUTINES C INNER JOIN MASTER.SQL_ROUTINE_RESOURCES B
 ON C.SPECIFIC_NAME=B.BASE_NAME
 LEFT JOIN MASTER.SQL_TRIGGERS A
 ON B.ROUTINE_SCHEMA=A.TRIGGER_SCHEMA
 AND B.SPECIFIC_NAME=A.SPECIFIC_NAME
WHERE C.ROUTINE_ADT_OWNER='owner-authorization-identifier-of-user-defined-
type-to-be-deleted'
AND C.ROUTINE_ADT_NAME='type-identifier-of-user-defined-type-to-be-deleted'
AND B.BASE_TYPE='P'

12. Designing Tables

338

(d) How to check the functions, procedures, and trigger SQL objects or SQL object index information that has
become invalid as a result of defining, modifying, or deleting a table or index

To check the trigger SQL objects or SQL object index information that have become invalid because of definition,
modification, or deletion of a table or index, refer to the TRIGGER_VALID and INDEX_VALID columns of the
SQL_TRIGGER dictionary table. If the entry in the TRIGGER_VALID column is N, the trigger SQL object has
become invalid. If the entry in the INDEX_VALID column is N, the index information of that trigger SQL object has
become invalid.

The following is an SQL example of checking for the functions, procedures, and trigger SQL objects and SQL object
index information that has become invalid because of definition, modification, or deletion of a table or index. If a
trigger has become invalid, the trigger identifier (TRIGGER_NAME) is obtained. For functions and procedures, the
value of TRIGGER_NAME becomes NULL.

SELECT 'TRIGGER', TRIGGER_SCHEMA AS "SCHEMA", TRIGGER_NAME AS "NAME",
 TRIGGER_VALID AS "OBJECT_VALID", INDEX_VALID
 FROM MASTER.SQL_TRIGGERS
WHERE TRIGGER_VALID='N' OR INDEX_VALID='N'
UNION
SELECT 'ROUTINE', ROUTINE_SCHEMA, ROUTINE_NAME, ROUTINE_VALID, INDEX_VALID
 FROM MASTER.SQL_ROUTINES
WHERE ROUTINE_VALID='N' OR INDEX_VALID='N'

12.5.5 Error recovery
Trigger source code is stored in a data dictionary RDAREA, and trigger SQL objects are stored in a data dictionary
LOB RDAREA. The log collection mode for the data dictionary RDAREA is ALL, and the log collection mode for the
data dictionary LOB RDAREA is PARTIAL. Therefore, if an error occurs, the source code can be recovered to its
most recent status from the backup and the log. The SQL objects, however, can only be recovered to their status at the
time of the most recent backup. Therefore, the following considerations are important:

• Always have a recent backup on hand
Make frequent backups of the data dictionary LOB AREA, so that if an error occurs you can recover from a recent
backup. Use the pdcopy command with -M x or -M r specified.
For details about how to make backups, see the HiRDB Version 9 System Operation Guide.

• Re-create the trigger SQL objects
If you do not have a recent backup of the data dictionary LOB RDAREA, use the pdmod command to reinitialize
the data dictionary LOB RDAREA. Then execute ALTER ROUTINE with ALL specified, which will re-create all
trigger SQL objects.

12. Designing Tables

339

12.6 Creating a view table
Tables can be classified into base tables and view tables. A base table is an actual table. A view table is a virtual table
defined by selecting rows and columns from the base table.

(1) Relationship between base tables and view tables
The following figure shows the relationship between a base table and a view table.

Figure 12‒18: Relationship between a base table and a view table

Explanation:
This example uses base table STOCK to create view table VSTOCK, which consists of the product code (PCODE),
stock quantity (SQUANTITY), and unit price (PRICE) columns for those rows with SOCKS in the product name
(PNAME) column.
Let's assume that a branch office needs to reference only the three data items product code, stock
quantity, and unit price for the products whose product name is SOCKS. For this purpose, base table
STOCK is set to be inaccessible, and view table VSTOCK is set to be accessible for referencing purposes only
(SELECT privilege). In this way, data can be protected while allowing necessary information to be referenced.

(2) Effects of creating view tables
The effects of creating view tables are discussed as follows.

Improved security
To improve security for a specific table, the table should be used as a base table and view tables should be created
from it. Doing this enables only selected columns and rows to be disclosed. Row and column levels of security
can be achieved by granting access privileges to the view tables only.

Improved operability

• If a table is retrieved on the basis of specifying a complicated query, a view table that contains the data
obtained from that query should be created, so that there is no need to issue the complicated query again. This
simplifies table referencing operations.

• A view table can be used to reference or update its base table. As a result, when the base table definition is
modified, there is no need to modify the SQL statements or the view table definition depending on the nature
of the modification.

(3) How to create view tables
View tables are created with the CREATE VIEW definition SQL statement. The CREATE VIEW statement can define
the following view tables:

• View tables made from selected rows and columns of base tables

12. Designing Tables

340

• View tables with columns determined from set functions, date operations, time operations, concatenation
operations, scalar functions, or arithmetic operations performed on values from columns of base tables

• One view table based on a maximum of 64 base tables

• View tables based on the result of grouping retrieval

• View tables based on base tables that are owned by other users (limited to base tables or owned by other users and
for which the SELECT privilege has been granted)

Rules

1. A single view table can be defined with up to 30,000 columns.

2. Columns cannot be added to a view table, and indexes cannot be defined.

3. The owner of a view table defined from base tables owned by that user holds all privileges (row retrieval, add,
delete, update) to that view table.

4. The owner of a view table defined from base tables owned by another user holds the same privileges that he or
she holds for those base tables. However, if the view table definition has any of the following definitions, only
row retrieval is allowed, regardless of whether the security facility is used:

• View tables for which the columns contain multiple specifications of the same columns from base tables

• View tables for which the columns contain the results of literals; the USER, CURRENT_DATE, and
CURRENT_TIME value functions; arithmetic operations; date operations; time operations; concatenation
operations; or scalar functions

• Multiple base tables have been specified

• DISTINCT, set functions (COUNT(*), AVG, MAX, MIN, SUM), grouping (GROUP BY clause), or group
conditions (HAVING clause) have been specified
If the security facility has not been used, view tables other than those noted above can be freely updated by
other users. However, read-only view tables (READ ONLY specification) cannot be updated by other users
regardless of the security facility.

(4) Deleting view tables
You use the DROP VIEW definition SQL statement to delete view tables. When a view table is deleted, all related
access privileges are also deleted.

12. Designing Tables

341

12.7 Specifying the FIX attribute
The FIX attribute is an attribute assigned to a table whose row length is fixed.

(1) Effects of specifying the FIX attribute
The effects of specifying the FIX attribute for a table are discussed as follows.

Improved performance

• The performance of retrieving a specific column becomes constant regardless of the order of the column
definitions. Additionally, the column retrieval time is reduced, compared to when the FIX attribute is not
specified.

• Access performance is improved even when there are many columns because a UAP can use an interface for
each row.

Improved operability
If the null value is found in the input data when a column of a table with the FIX attribute is being updated, it can
be excluded as an error.

Reduction of required disk space
The physical row length is 2 bytes shorter per column than when the FIX attribute is not specified. If a table
contains many columns, disk space is saved.

(2) Criteria
If the null value will not be used in any column and no column is of variable length, the FIX attribute should be
specified during table definition.

When these conditions are not satisfied, the following should be evaluated:

• If columns will be added to a table in the future, define a reserved column during table definition. Once you have
defined a reserved column, you can add columns to the table even after data has been stored.

• Use the 0 (numeric data) or the space (character data) instead of the null value. Note that the null value is treated
differently in search conditions and set functions than other values.

• Change variable-length data with a small maximum value or small range of actual lengths to fixed-length data.
Note that variable-length data is handled differently in search conditions.

(3) Specification
To assign the FIX attribute to a table, FIX is specified in the CREATE TABLE definition SQL (that is, CREATE FIX
TABLE is specified).

(4) Notes
A reserved column is an area reserved for future use (for adding columns). You cannot perform insert or update
processing using desired values on a reserved column. HiRDB stores in the reserved column as many null characters
(0x00) as the defined length of the reserved column. Therefore, when you estimate the size of an RDAREA for
storing tables, you must include the reserved column in determining the number of table storage pages. The following
figure shows how to use a reserved column.

12. Designing Tables

342

Figure 12‒19: How to use a reserved column

12. Designing Tables

343

12.8 Specifying a primary key
A primary key is used to identify a unique table row. If you define a primary key, an index is created for the specified
column.

(1) Effects of defining a primary key
The uniqueness constraint and NOT NULL constraint apply to a column for which a primary key is defined. The
uniqueness constraint does not allow a duplication of data in the key (a column or a group of columns). That is, all
data in the key is always unique. The NOT NULL constraint does not allow a null value in any of the columns in the
key.

(2) Criteria
Define a primary key for a column that can identify a unique row. If there is more than one column that can identify a
unique row (candidate key), select one of the candidate keys as the primary key. Among the keys in the table, define
the one that is most important and that is to be controlled by the uniqueness and NOT NULL constraints as the primary
key.

(3) Specification
To define a primary key, specify the PRIMARY KEY option in the CREATE TABLE SQL definition statement.

Note that a primary key can also be added or deleted by using the ALTER TABLE SQL definition statement. To add a
primary key, specify the ADD PRIMARY KEY option. To delete a primary key, specify the DROP PRIMARY KEY
option.

12. Designing Tables

344

12.9 Specifying a cluster key
A cluster key is a column that is specified as the key for storing rows in ascending or descending order of the specified
column values. If a cluster key is specified for one or more columns in a table, the table rows can be stored in
ascending or descending order of the values in the cluster key column(s).

When a cluster key is specified for a table, an index is created automatically for the specified column(s).

(1) Effects of specifying a cluster key
The effects of specifying a cluster key for a table are discussed as follows.

Improved performance
Input/output time can be saved when retrieving, updating, or deleting rows with a range specified or when
retrieving or updating rows on the basis of the cluster key values.

Improved operability

• If you define a cluster key with UNIQUE specified, the uniqueness and NOT NULL constraints apply to the
cluster key. In this case, when rows are inserted, no duplicated value is allowed in any row in the cluster key
column. Note that you cannot define a cluster key with UNIQUE specified for a table partitioned by flexible
hash partitioning.

• If you define a cluster key with PRIMARY specified, the uniqueness and NOT NULL constraints apply to the
cluster key. In this case, when rows are inserted, no duplicated value is allowed in any row in the cluster key
column. Additionally, no null value can be stored in any of the columns that constitute the cluster key. Note
that you cannot define a cluster key with PRIMARY specified for a table partitioned by flexible hash
partitioning.

• When creating a table, you can use the database load utility (pdload) to determine whether the input data is
arranged in ascending or descending order of the cluster key values.

• When reorganizing a table, you can use the database reorganization utility (pdrorg) to determine whether the
unloaded cluster key matches the cluster key to be reloaded.

(2) Criteria
The cluster key should be specified in the following cases:

• Many applications accumulate and access data in ascending or descending order of the key values.

• Then table's keys will not be changed.

• The table has fixed-length rows.

(3) Specification
To define a cluster key for a table, specify the CLUSTER KEY option in the CREATE TABLE definition SQL
statement.

(4) Design considerations
To improve retrieval efficiency after data is added, some unused space should be set in the pages containing the table.
For details about how to set space in the pages containing the table, see 14.3 Pages.

(5) Notes

• The values in a column that constitutes the cluster key cannot be updated.

• The null value cannot be inserted in a column that constitutes the cluster key.

• When data is added to a table with a cluster key specified, there is overhead involved in searching for the page
with the key values that are adjacent to the key value being added. The following figure provides an overview of
this.

12. Designing Tables

345

Figure 12‒20: Overview of overhead when data is added to a table with a cluster key specified

Explanation:

1. Data with C in the cluster key column is added.

2. There is overhead involved in searching for the key values on either side of the C column.

12. Designing Tables

346

12.10 Specifying the suppress option
The option for omitting part of the data in a table in order to reduce the data length for storage is called the suppress
option.

When the suppress option is specified, only the significant digits of the table's decimal data (excluding leading zeros)
and the storage data length are stored when the data is stored.

(1) Effects of specifying the suppress option
The effects of specifying the suppress option are discussed as follows.

Improved performance

• The amount of disk space that is required is reduced because the stored data is shorter than the actual data.

• Reducing the required amount of disk space results in a reduction in the input/output time for retrieval processing,
such as retrieval of all entries.

(2) Criteria
The suppress option should be specified in the following cases:

• When a table contains much decimal data and there are many significant digits.

• When the table will be accessed by many retrieval applications, such as for retrieval of all entries, but few
updating applications.

(3) Specification
To specify the suppress option, enter the SUPPRESS option in the CREATE TABLE definition SQL statement.

(4) Notes

• If the number of significant digits in decimal data equals the defined length or equals 1, the data is stored with a
length of defined length + 1. In this case, the length of the stored data is greater than when the suppression option
is not specified.

• The suppression option cannot be specified for a table with the FIX attribute.

12. Designing Tables

347

12.11 Specifying the no-split option
If any of the data types below is defined for a table and the actual data length of that data type is 256 bytes or greater,
the system stores a row of data in multiple pages. The figure following the list shows the data storage method used to
do this.

• VARCHAR
• MVARCHAR
• NVARCHAR

Figure 12‒21: Data storage method when actual variable-length character string data is 256 bytes or
greater

Explanation:
The variable-length character string data is stored in a page separate from the remaining data, adversely affecting
the data storage efficiency. In these cases, use the no-split option to improve the data storage efficiency.

(1) Criteria
If you specify the no-split option, the system stores one row of actual variable-length character string data in one page,
even if the data length is 256 bytes or greater. The following figure shows the data storage method used when the no-
split option is specified.

Figure 12‒22: Data storage method used when the no-split option is specified

Explanation:
An entire row of data is stored in the same page. Therefore, the data storage efficiency is better than when the no-
split option is not specified.

12. Designing Tables

348

(2) Specification
To specify the no-split option, specify the NO SPLIT option in the ALTER TABLE, CREATE TABLE, or CREATE
TYPE SQL definition statement.

(3) Notes

• If the total length of a row of data exceeds the page length, data is split (one row of data is stored in multiple
pages) even when the no-split option is specified.

• If you specify the no-split option when the actual variable-length character string data is 255 bytes or less, the
column data becomes longer by one byte than when the no-split option is not specified.

• If the no-split option is specified, variable-length character columns will not be split even if the actual data length
exceeds 256 bytes. In such a case, a page will be able to store fewer rows than if the no-split option were not
specified. For this reason, if a retrieval does not collect column data from variable-length character columns for
which an index scan determined the no-split option was appropriate, more pages may be accessed than if the no-
split option were specified, and retrieval performance may be deteriorate. However, there is no effect when key
scans and table scans are performed.

12. Designing Tables

349

12.12 Specifying a binary data column
There are two data types for defining columns that store documents, images, audio, and other variable-length binary
data:

• BLOB type (columns specified as the BLOB type are called LOB columns)

• BINARY type

A comparison of how these types store data follows.

Data length (base row + binary data length) does not exceed 1 page

Data length (base row + binary data length) does exceed 1 page

Explanation:
A column for which the BLOB type is specified differs from a column with other attributes in that it is stored in a
user LOB RDAREA whose page length is fixed at 8 kilobytes.
In the case of a column for which the BINARY type is specified, if all of the column data that composes the table
can be stored on one page, then each row is stored on one page regardless of the actual data length. However, if
one row cannot be stored on one page, it is stored on multiple pages in binary-only segments.

12. Designing Tables

350

12.12.1 BLOB type

(1) Design considerations

• If the BLOB type is to be used, you must create a user LOB RDAREA.

• BLOB data is stored at an 8-kilobyte boundary, giving BINARY-type data better storage efficiency. However, if
there is large object data, such that the 8-kilobyte boundary can be ignored, there is not much difference.

(2) Specification
Specify the BLOB type as the data type for the column when you use the CREATE TABLE definition SQL statement.

(3) Notes
The BLOB type cannot be used with the following items:

• Tables with the FIX attribute

• Index definitions

• Partitioning keys

12.12.2 BINARY type

(1) Design considerations
Fewer rows of BINARY-type data can be stored on a page than is the case with BLOB-type data. Because of this, if
search conditions are specified on some columns where the BINARY type cannot be retrieved, the BINARY type will
require more frequent input/output operations than the BLOB type, thus reducing retrieval performance. However, if
indexes are defined for columns that are not the BINARY type and an index scan is performed, the performance
difference between the BINARY and BLOB types disappears.

(2) Specification
Specify the BINARY type as the data type for the column when you use the CREATE TABLE definition SQL
statement.

(3) Notes

• The BINARY type cannot be used with the following items:

• Tables with the FIX attribute

• Index definitions

• Partitioning keys

• Columns that make external references

• If the binary data length exceeds one page, the data is stored in binary-only segments, which are different from the
segments that store the base rows. When binary data that exceeds one page is stored, RDAREAs might run out of
space if there are no unused pages in binary-only segments, even if there are unused pages in segments that store
base rows. When an RDAREA does run out of space, you can check whether it was caused by binary data or base
row data by using the database analysis utility (pddbst) to access the usage statuses of binary-only segments and
segments that store base rows.

• When you define a BINARY type column, make a precise estimate of the column's defined length (maximum
length). If it is unnecessarily long, you might be unable to execute data loads that use memory proportional to the
column's defined length (when you execute data loads for tables that define BINARY columns, make sure that
there is memory equivalent to the defined length of the BINARY columns).

12. Designing Tables

351

12.12.3 BLOB type and BINARY type usage
The following table lists recommended data types for each binary data usage.

Table 12‒3: Recommended data type for each binary data usage

Binary data usage

Average size of recommended data
type

Explanation
32,000 bytes or

less
More than 32,000

bytes

Frequency of binary data
specification in projection
columns

High BINARY BLOB • For 32,000 bytes or less, BINARY type can also
use block transfer. A row's entire data is
together, yielding better performance.

• For more than 32,000 bytes, BLOB type can use
less memory processing large object data,
yielding better performance.

Low BLOB# BLOB BLOB type requires a smaller data size for base rows
than BINARY type, so if there are many pieces of
data, BLOB will yield better performance. However,
if indexes are defined for the non-BINARY columns,
index scans will eliminate the difference between
BINARY and BLOB types. Index scans are
recommended, but the larger the segment size the
smaller the performance difference.

SQL descriptor flexibility BINARY Equal For 32,000 bytes or less, if there are no index
definitions, BINARY type SQL descriptors can be
roughly the same as the VARCHAR descriptor.
Therefore, the SQL descriptor range is broader than
for the BLOB type. For details, see the manual
HiRDB Version 9 SQL Reference.

Data storage efficiency BINARY BINARY type has better storage efficiency.
However, for large data objects, for which the 8-
kilobyte boundary can be ignored, there is little
difference.

Frequent additions/updates BLOB The larger the concatenation data size, the better the
performance of BLOB type.

Frequent partial extractions Equal BLOB If partial extraction is done on a BINARY type with
a large stored data size, the performance will be very
poor. Further, the greater the frequency of partial
extraction, the poorer the performance. If partial
extraction will be required frequently against large
data, BLOB type is recommended.

Operability is emphasized BINARY BLOB type requires special operations, such as
backing up the user LOB RDAREA.

If you cannot determine from the
above methods or for a possible
future policy change

BINARY# BLOB If data of more than 32,000 bytes is handled, BLOB
type is recommended. If the data size is relatively
small, BINARY type is recommended.

#: If the data size is near to the page size, and if the BINARY type is used with a large number of table scans,
performance will be much poorer than for the BLOB type. To avoid this, change from a table scan to an index scan.
Index scans are recommended, and even with a large segment size the performance difference is small.

12. Designing Tables

352

12.13 Specifying a character set
A character set is an attribute of character data. A character set has the following three attributes.

• Usage format
These are rules for representing characters. For example, in a given character set, A might be represented by the
single-byte code X'41', but in another character set, it might be represented by X'C1'. These sorts of rules for
character representation are called the usage format.

• Character repertoire
This is the set of characters that can be represented. For example, a given character set might allow a backslash to
be represented, but another character set might not. The collection of characters that can be represented is called
the character repertoire.

• Default collating sequence
These are the rules for comparing two character string data items. For example, the collating sequence might be
'1' > 'A' in a given character set but 'A' > '1' in another. All character sets have default collating sequences.

The character set that is used when none is specified is called the default character set.

(1) Effects of defining a character set
When you define a character set, character string data can be stored in a different character set for each table column.
This makes it possible, if EBCDIK is specified as the character set, to retrieve, substitute, and compare character data
stored in a database in the collating sequence of VOS3 system character string data when you migrate from a VOS3
system to HiRDB. Specifying UTF-16 as the character set allows retrieval, substitution, and comparison of character
data in UTF-16.

(2) Character sets that can be used by HiRDB
The following character sets can be used by HiRDB.

• EBCDIK
To use EBCDIK, specify sjis as the character code type when setting up HiRDB.

• UTF16
To use UTF16, specify utf-8 or utf-8_ivs as the character code type when setting up HiRDB.

(3) Specifying a character set
Specify the character set in the character data type. For details about formats and rules that apply when specifying
character sets, see the manual HiRDB Version 9 SQL Reference.

(4) Notes

• Data cannot be loaded when the input data and the column have different character sets.

• When UTF16 is specified as the character set, the data stored in the database is big endian. When you perform an
operation that uses an embedded variable or a ? parameter on a column that specifies UTF16 for its character set,
make the value specified in the embedded variable or ? parameter big endian as well. If you use little endian, you
need to convert the character code, which degrades performance.

12. Designing Tables

353

12.14 Specifying the WITHOUT ROLLBACK option
When a table is updated (including addition and deletion processing) while the WITHOUT ROLLBACK option is in
effect, the updated rows are released immediately from locked status, so that the rows become no longer subject to
rollback.

(1) Effects of specifying the WITHOUT ROLLBACK option
The effects of specifying the WITHOUT ROLLBACK option for a table are discussed as follows.

Improved performance
There are fewer occurrences of locked status because lock control is released upon completion of update
processing.

(2) Criteria
This option is suitable for a table that is subject to concentrated update processing, such as when numbering is
performed.

A numbering application, such as one that handles form numbers or document numbers, may manage a table by
assigning numbers and incrementing the assigned numbers. If processing is concentrated, such an application may be
placed frequently in lock-release wait status because the lock status cannot be released until COMMIT is issued. If the
WITHOUT ROLLBACK option is specified for the table in this case, the lock status is released when increment
processing is completed, thereby reducing occurrences of lock-release wait status. The following figure shows an
example of a numbering application.

Figure 12‒23: Example of a numbering application

This example manages one type of numbers with one row.

Following is an example of defining the numbering management table shown in Figure 12-23:

CREATE TABLE numbering-management-table (type NCHAR(4),
 numbering INT)
 :
 WITHOUT ROLLBACK

12. Designing Tables

354

Because a missing number may occur for the following reason, this option should be used only with applications that
can handle missing numbers:

• A table defined with the WITHOUT ROLLBACK option specified is no longer subject to rollback once its rows are
updated. If the UAP or HiRDB is restarted after abnormal termination, a table for an application that uses the
assigned numbers can be rolled back correctly, but it is impossible to know how far back the table with the
WITHOUT ROLLBACK option specified has been rolled back. In this case, assigned numbers may not be used by
the application.

(3) Notes

• If the database load utility (pdload) or database reorganization utility (pdrorg) is executed with the log
acquisition mode specified, a table with the WITHOUT ROLLBACK option specified is also rolled back in the same
manner as with normal tables.

• If update processing is concentrated, such as in the case of a numbering application, a dedicated RDAREA and
global buffer should be allocated.

• In the case of a table for which the WITHOUT ROLLBACK option is specified, you can create an index only when
a row update on the index component column is a same-value update. Because lock is not released during row
insertion or deletion, rollback occurs in the same manner as for a normal table.

12. Designing Tables

355

12.15 Specifying the falsification prevention facility
The falsification prevention facility provides a means for prohibiting all users, including the table owner, from
updating table data. This facility protects important data from accidental modification or unauthorized tampering.
Tables to which this facility has been applied are called falsification prevented tables. The following table lists
operations that can be executed on falsification prevented tables.

Table 12‒4: Operations permitted on falsification prevented tables

Operation
Falsification prevented table

Deletion prevented duration specified Deletion prevented duration not specified

Insert (INSERT) Yes Yes

Retrieve (SELECT) Yes Yes

Update by column (UPDATE) Yes#1 Yes#1

Update by row (UPDATE) No No

Delete (DELETE) Yes#2 No

Delete all rows (PURGE TABLE) No No

Data manipulation SQL other than the
above

Yes Yes

Legend:
Yes: Can be executed.
No: Cannot be executed.

#1: Only updatable columns can be updated.

#2: Only data that has passed the deletion prevented duration can be deleted. If no deletion prevented duration is
specified, the table data cannot be deleted.

Applicability standards
The falsification prevention facility is recommended for use with tables when it is important to prevent the table
data from accidental modification or unauthorized tampering.

12.15.1 Specification
Specify the CREATE TABLE definition SQL with the INSERT ONLY operand (falsification prevention option)
specified. Alternatively, you can change the definition of an existing table to a falsification prevented table by
specifying the INSERT ONLY option in ALTER TABLE.

When you are defining a table or changing a table's definition, you can define the following types of columns:

• Updatable column
If you define an updatable column, you can update data for each column as follows:

• Always updatable (UPDATE specified)

• Updatable from null value to a non-null value only once (UPDATE ONLY FROM NULL specified)

You can define updatable columns at the following times:

• When CREATE TABLE is executed

• Before ALTER TABLE (CHANGE INSERT ONLY) is executed

• When ALTER TABLE (ADD column-name) or ALTER TABLE (CHANGE column-name)# is executed

12. Designing Tables

356

#: ALTER TABLE (CHANGE column-name) cannot be executed on falsification prevented tables. If you are
changing the definition of an existing table to a falsification prevented table, you must have executed this
statement in advance.

• Insert history maintenance column
If you define an insert history maintenance column, you can specify a deletion prevented duration. Because the
DROP TABLE statement cannot be executed if there is data in such a table (see 12.15.2(1) Definition SQL), the
table and its data are both protected from deletion when the deletion prevented duration is omitted. Therefore, you
should specify a deletion prevented duration only if the period over which the data needs to be maintained has
been clearly determined or can be determined.

Because there are limitations# on the operations that can be performed on RDAREAs by the database reorganization
utility or the pdrels command, it is recommended that you store each falsification prevented table in a single
RDAREA.

#: You must execute a command shutdown on the RDAREA in order to use the database reorganization utility to
reorganize a falsification prevented table. If the database reorganization utility terminates abnormally, then if there are
any other tables or indexes defined in the RDAREA they will become unavailable, because you cannot release the
shutdown until the reorganization has been completed. For details, see 12.15.2 Restrictions.

12.15.2 Restrictions
Data in a falsification prevented table cannot be updated or deleted. Therefore, there are restrictions on the SQL
statements, utilities, and commands that can be executed on a falsification prevented table and any RDAREA in which
it is stored.

(1) Definition SQL
Some definition SQL statements cannot be executed on falsification prevented tables. The following table lists
restricted definition SQL statements and the restrictions that apply to them.

Table 12‒5: Restricted definition SQL statements and the restrictions that apply to them

SQL statement Restrictions

CREATE TABLE If all columns have the updatable column attribute, the falsification prevention option cannot be
specified.

ALTER TABLE • Table names and column names cannot be changed.

• The falsification prevention facility cannot be applied to a table containing data. For details about
how to apply the falsification prevention facility to an existing table, see 12.15.3 Changing a
falsification-unprevented table to a falsification prevented table.

• The falsification prevention facility cannot be released.

• No existing column can be changed to an updatable column, or no updatable column can be changed
to a normal column.

• Updatable columns must be defined before the falsification prevention facility is applied.#

• Setting, releasing, and duration of deletion prevented duration cannot be changed.

• If a deletion prevented duration is specified for a falsification prevented table, the insert history
maintenance column that specifies the deletion prevented duration cannot be deleted.

• Partition storage conditions cannot be changed.

DROP TABLE Cannot be executed if there is data in a falsification prevented table.

#: To specify an updatable column for an existing table and apply the falsification prevention facility, you must
execute ALTER TABLE on the column and the table. To apply the falsification prevention facility:

1. Use ALTER TABLE to change the attribute of a desired column to updatable.

2. Use ALTER TABLE (CHANGE INSERT ONLY) to apply the falsification prevention facility to the table.

12. Designing Tables

357

(2) Utilities
The operation of utilities is restricted on falsification prevented tables and the RDAREAs that store them. The
following table lists restricted utilities and the restrictions that apply to them. There are no restrictions on utilities not
listed in the table.

Table 12‒6: Restricted utilities and the restrictions that apply to them

Utility Restrictions

Database creation utility (pdload) • Cannot be used in the creation mode (-d option specified).

• Cannot be executed if the table is in reload-not-completed data status.#

Database structure modification utility (pdmod) • Cannot re-initialize a falsification prevented table's storage RDAREA
(initialize rdarea).

• The following facilities cannot be used:
Registering a generation in the HiRDB file system area (create
generation)
Deleting a generation from the HiRDB file system area (remove
generation)
Defining an RDAREA replica (replicate rdarea)
Copying RDAREA configuration information (define copy rdarea)
Integrating RDAREAs (recast rdarea)

Database reorganization utility (pdrorg) Table reorganization (-k rorg)

• Cannot execute if the related table storage RDAREA is not in command
shutdown status.

• Cannot perform reorganization using a UOC (unlduoc statement).

• Cannot reorganize the synchronization point specification (option job
statement).

• Cannot execute if related tables are in reload-not-completed data status.#

Table unload (-k unld)

• Cannot be executed unless the -W option is specified.

Table reload (-k reld)

• Cannot execute if the related table storage RDAREA is not in command
shutdown status.

• Can execute if the related table is in reload-not-completed data status# (can
only re-execute if table reloading terminates abnormally during table
reorganization)

• Cannot reorganize the synchronization point specification (option job
statement).

• Cannot reload to another table (for details, see Figure 12-24).

Batch index creation (-k ixmk), re-creation (-k ixrc), reorganization (-k
ixor)

• Cannot execute if related tables are in reload-not-completed data status.#

Rebalance utility (pdrbal) Cannot execute if related tables are in reload-not-completed data status.#

#: If reorganization is executed for a falsification prevented table, but because of an error or some other reason the
reload is not completed, the table is placed in a status called reload-not-completed data status, which status is also
applied to the storage RDAREAs of the falsification prevented table. You can check whether an RDAREA is in
reload-not-completed data status with the database condition analysis utility, the RDAREA unit analysis utility
(logical analysis), or by means of a table unit status analysis. Reload-not-completed data status can be released when

12. Designing Tables

358

table reorganization (table reloading) completes normally. For details about the reload-not-completed data status, see
the manual HiRDB Version 9 Command Reference.

Figure 12‒24: Reloading to another table

Explanation:

1. Falsification prevented table T1 can be reloaded to non-falsification prevented table T3, because falsification
prevented table T1 loses its restrictions.

2. Non-falsification prevented table T3 cannot be reloaded to falsification prevented table T1, because the data
in falsification prevented table T1 is protected.

3. Falsification prevented table T1 cannot be reloaded to falsification prevented table T2, because the data in
falsification prevented table T2 is protected.

4. Falsification prevented table T1 can be reloaded back into itself, because falsification prevented table T1 loses
its protection.

5. Falsification prevented table T1 on HiRDB system 1 cannot be reloaded into falsification prevented table T1
on HiRDB system 2, because the data in falsification prevented table T1 on HiRDB system 1 loses its
protection when it is in falsification prevented table T1 on HiRDB system 2.

(3) Operation commands
There are restrictions on the commands that can be used on falsification prevented tables and the RDAREAs in which
falsification prevented tables are stored. The following table lists the restricted operating commands.

Table 12‒7: Restricted commands and their restrictions

Operation command Restrictions

RDAREA shutdown (pdhold) If you cannot execute a reload in order to complete the reorganization of a falsification
prevented table so that the status of the RDAREA that stores the table can be changed
from reload-not-completed data status, the following options cannot be executed:

• Reference-possible shutdown: -i
• Backup shutdown: -b

RDAREA shutdown release (pdrels) If you do not reload an RDAREA that stores a falsification prevented table that is in
reload-not-completed data status, you cannot release the shutdown before the table
reorganization is completed, because that would leave 0 records of data.

(4) Restrictions on related products
Restrictions on related products include the following:

12. Designing Tables

359

• Inner replica facility
The inner replica facility cannot be used with RDAREAs that store falsification prevented tables. The falsification
prevention facility cannot be applied to a table that is stored in an RDAREA using the inner replica facility.

• Replication facility
For falsification prevented tables, do not use the replication facilities (HiRDB Dataextractor and HiRDB
Datareplicator) to copy data and reflect the result. An attempt to do so could result in a mismatch in the data in the
reflection source and the reflection result, causing an error.

12.15.3 Changing a falsification-unprevented table to a falsification
prevented table

This subsection describes how to change an existing table to a falsification prevented table. Either of the following
methods can be used to change a table to a falsification prevented table:

• Using HiRDB Control Manager's falsification prevention wizard

• Using HiRDB commands

Tables in which data is stored cannot be changed into falsification prevented tables. When data is stored in the table,
first unload the table data, and then change the table definition using ALTER TABLE.

(1) Using HiRDB Control Manager's falsification prevention wizard
The following describes the procedure for changing a table to a falsification prevented table by using HiRDB Control
Manager's falsification prevention wizard.

Procedure
This example changes table T1 to a falsification prevented table with the following conditions set:

• Column COL_NOTE is an updatable column.

• Column COL_DATE is an insert history maintenance column, and the deletion prevented duration is set to 10
years.

1. Start HiRDB Control Manager - Console. For details about how to start HiRDB Control Manager - Console,
see the HiRDB Version 9 System Operation Guide.

2. Register the applicable HiRDB server. For details about how to register the management HiRDB system, see
the HiRDB Version 9 System Operation Guide. If it is already registered, this step is not necessary.

3. From the Table Operations tab menu, choose Falsification Prevented Table Migration Wizard.
The Falsification Prevention Wizard - 1/5 window appears.
Select the name of the table to be changed to a falsification prevented table, and then in the Password text
box, enter the password of the table owner. The value entered here is case-sensitive.

4. Click the Next button.
The Falsification Prevention Wizard - 2/5 window appears.
In this window, set the deletion prevented duration. If you do not set the deletion prevented duration, make
sure that Do not delete table data is selected. If you set a deletion prevented duration, select Allow deletion
of data in table after a certain period of time, and then set Insert history maintenance column name and
Deletion prevented duration.

5. Click the Next button.
The Falsification Prevention Wizard - 3/5 window appears.
In this window, set the updatable columns. If no updatable columns are set, make sure that Do not allow per-
column data updates is selected. If you set updatable columns, select Allow updates of some columns.
Next, from the Columns list, select the names of the columns to make updatable. Then, click the right arrow
button to add them to the Updatable columns list.

6. Click the Next button.
The Falsification Prevention Wizard - 4/5 window appears.
In this window, specify the directory for the temporary files that are used while the table is being changed. The
default values appear under Temporary file storage locations. Make changes if necessary.

12. Designing Tables

360

7. Click the Next button.
The Falsification Prevention Wizard - 5/5 window appears.
Check the conditions that were set. If you want to change the settings, click the Back button to return to the
previous screens.

8. When you are satisfied, click the Execute button. Processing for changing the table begins.

! Important note
After the falsification prevention wizard has been executed, make backups of the dictionary RDAREA and the
RDAREAs required for the recovery of the table data. You can make backups by executing HiRDB Control
Manager's backup wizard.

Reference note
In HiRDB Control Manager, a falsification prevented table has a different appearance from a normal table. You can
verify that the changed table has the falsification prevention attribute by selecting Tables from the Map tab menu
to display the Table Map window.

(2) Using HiRDB commands
The following procedure shows how to change a table into a falsification prevented table using HiRDB commands.

Procedure
Change table T1 stored in an RDAREA (RDAREA01) into a falsification prevented table.

1. Using the pdhold command, place a backup hold on the RDAREA that stores the falsification-unprevented
table and the RDAREA for the data dictionary (RDDIC01).

pdhold -r RDAREA01,RDDIC01 -b

2. Swap the system log files of the servers to which the RDAREA to be backed up belongs (bes01 and
dic01).

pdlogswap -d sys -s bes01 -w
pdlogswap -d sys -s dic01 -w

3. Execute the database copy utility (pdcopy) to make a backup of the RDAREA.
For details about how to make backups, see the HiRDB Version 9 System Operation Guide.

pdcopy -m /hirdb/rdarea/mast/mast01 -M r -p /usr/hirdb/pdcopy/pdcopy01 -b /usr/
hirdb/pdcopy/backup/backup01 -r RDAREA01,RDDIC01

4. Use the pdrels command to release the hold on the data dictionary RDAREA.

pdrels -r RDDIC01

5. Use the database reorganization utility (pdrorg) to unload data from the falsification-unprevented table.
Make sure that you specify the -W option so that the unloaded data can be used as input data for the database
load utility (pdload). For details about the control statement file (control_file), see the manual HiRDB
Version 9 Command Reference.

pdrorg -k unld -t T1 -W bin control_file

6. Use the pdrels command to release the hold on the user RDAREA. Do not access RDAREAs after this until
you again place a hold on the RDAREA in step 9. If the table you are working with is updated during this
period, data might lose integrity.

pdrels -r RDAREA01

7. Use PURGE TABLE to delete all data from the falsification-unprevented table.

PURGE TABLE T1

8. Use ALTER TABLE with the falsification prevention option specified to change the table to a falsification
prevented table.

12. Designing Tables

361

ALTER TABLE T1 CHANGE INSERT ONLY

9. Using the pdhold command, place a hold on the RDAREA that stores the falsification-prevented table.

pdhold -r RDAREA01

10. Use the database load utility (pdload) to load the data that was unloaded in step 5. For details about the
control statement file (control_file), see the manual HiRDB Version 9 Command Reference.

pdload -b -W T1 control_file

11. Use the pdrels command to release the hold on the RDAREA.

pdrels -r RDAREA01

12. Using the pdhold command, place a backup hold on the RDAREA to be backed up.

pdhold -r RDAREA01,RDDIC01 -b

13. Swap the system log files of the servers to which the RDAREA to be backed up belongs (bes01 and
dic01).

pdlogswap -d sys -s bes01 -w
pdlogswap -d sys -s dic01 -w

14. Execute the database copy utility (pdcopy) to make a backup of the RDAREA.
For details about how to make backups, see the HiRDB Version 9 System Operation Guide.

pdcopy -m /hirdb/rdarea/mast/mast01 -M r -p /usr/hirdb/pdcopy/pdcopy01 -b /usr/
hirdb/pdcopy/backup/backup01 -r RDAREA01,RDDIC01

15. Use the pdrels command to release the hold on the RDAREA.

pdrels -r RDAREA01,RDDIC01

To determine the timing of setting the falsification prevention option, check the values in the SQL_TABLES data
dictionary table. The following table lists the meanings of values in the SQL_TABLES table.

Table 12‒8: Meanings of values in the SQL_TABLES table

Falsification prevention option setting

SQL_TABLES

Value of INSERT_ONLY
column Value of CHANGE_TIME_INSERT_ONLY

Not specified Null Null

Specified during execution of CREATE
TABLE

Y Null

Specified during execution of ALTER
TABLE

Y Date and time the table was changed to falsification
prevented table

12.15.4 Error operation
Because RDAREAs that store falsification prevented tables cannot be reinitialized (initialize rdarea), these
RDAREAs cannot be recovered using re-initialization recovery. Recovery must be with the database recovery utility
(pdrstr). If the RDAREA is full, expand it with the expand rdarea statement.

12. Designing Tables

362

12.16 Table containing a repetition column
HiRDB permits definition of a table that contains a column in which multiple elements can be stored in each row. In
other words, a table can be defined with repetition columns.

Elements are the items that are repeated in the rows of a repetition column. To define such a table, it must be created
conventionally as shown in the following figure. The following figure shows an example of two tables defined without
repetition columns.

Figure 12‒25: Example of tables defined without repetition columns

To access these two tables, they must first be joined. Joining tables results in disadvantages, such as complicating the
SQL syntax. If repetition columns are used, one table containing all the information in two tables can be created
without having to join them.

The following figure shows an example of a table containing repetition columns.

Figure 12‒26: Example of table containing repetition columns

Explanation:
QUALIFICATION, FAMILY, RELATIONSHIP, and SUPPORT are repetition columns.

(1) Effects of defining repetition columns
A table with multiple values and multiplicity can be expressed in rows. Therefore, the following effects can be
expected:

• There is no need to join multiple tables.

12. Designing Tables

363

• Disk space can be saved because no information is duplicated.

• Because related data items (repeated data) are stored adjacent to each other, higher access performance can be
achieved than when separate tables are used.

(2) Specification
To specify a repetition column, specify the ARRAY option in the CREATE TABLE definition SQL statement.

An example of defining a table containing repetition columns is shown as follows. This definition is based on the
STAFF_TABLE shown in Figure 12-26. This example assumes that a multicolumn index has been defined for
RELATIONSHIP and SUPPORT.

Example
CREATE TABLE STAFF_TABLE
(NAME NVARCHAR(10),
 QUALIFICATION NVARCHAR(20) ARRAY[10],
 SEX NCHAR(1),
 FAMILY NVARCHAR(5) ARRAY[10],
 RELATIONSHIP NVARCHAR(5) ARRAY[10],
 SUPPORT SMALLINT ARRAY[10]);

CREATE INDEX SUPPORTIDX ON STAFF_TABLE (RELATIONSHIP,SUPPORT);

Note
SUPPORTIDX is an index name assigned to STAFF_TABLE.

(3) Notes

• A repetition column cannot be specified for the following data types:

• BLOB type

• BINARY type

• Abstract data type

• A repetition column cannot be specified for a column for which a cluster key is specified.

• If FIX is specified for a table, repetition columns cannot be specified.

• Neither storage conditions, hash partitioning, nor the suppress option can be specified for a repetition column.

• If key range partitioning is used, a repetition column cannot be specified as the column for which boundary values
are specified.

• The NOT NULL constraint cannot be specified for a repetition column.

12. Designing Tables

364

12.17 Table containing an abstract data type
An abstract data type can be defined as the data type of a column in a table. Tables containing abstract data types can
be created.

An abstract data type provides a structure that enables complicated data that cannot be handled at all by existing data
types to be handled easily. HiRDB allows users to define such a data type as an abstract data type. Creating an abstract
data type involves using the definition SQL to define attributes indicating the structure and to define the operations to
be performed on the values.

An abstract data type can be treated as a data type of a table, in the same manner as any other data type provided by
the HiRDB system, such as the numeric and character types.

The following figure shows the data structure of a table that contains an abstract data type. In this figure, the
EMPLOYEE column of the STAFF_TABLE is set to abstract data type t_EMPLOYEE.

Figure 12‒27: Data structure of a table containing an abstract data type

(1) Effects of defining an abstract data type

• Data with a complicated structure can be treated as a single value.

• Mapping with an object-oriented application is simplified by combining data and its manipulation procedure.

• By combining data and its manipulation procedure and using the manipulation procedure as an external interface,
data can be handled without having to know the internal information about the data.

(2) Overview of inheritance

(a) Inheritance

A new abstract data type can be derived from an existing abstract data type by inheriting attributes and the
manipulation procedure. When this is done, the base type is called the supertype and the derived type is called a
subtype. Transferring a supertype's attributes and function to a subtype is called inheritance.

The relationship between a supertype and a subtype can be expressed as a hierarchy. Therefore, a complicated concept
model can also be expressed as a hierarchy using an abstract data type.

The following figure shows a hierarchical structure based on the relationship between supertype and subtype abstract
data types. In this figure, the subtype OPERATOR is derived from the abstract data type EMPLOYEE.

12. Designing Tables

365

Figure 12‒28: Hierarchical structure based on the relationship between supertype and subtype abstract
data types

(b) Substitutability

The values of a subtype can be treated as values of its supertype. This is called substitutability. The following figure
shows the data structure of a table that contains an abstract data type with a value substituted by making use of
substitutability.

12. Designing Tables

366

Figure 12‒29: Data structure of a table containing an abstract data type (using substitutability)

(c) Override

A routine defined as a high-order abstract data type (supertype) can be overwritten with a low-order abstract data type
(subtype) that has the same name. Defining a routine by overwriting in such a manner is called override. When
override is used, the name of a routine called need not be changed depending on its type.

(3) Effects of using inheritance
When inheritance is used, the following effects can be expected:

• The characteristics of the high-order abstract data type (data and manipulation procedure) can be used by a low-
order abstract data type.

• The subtype enables a data definition to be shared without having to define from the beginning. This simplifies
database definition.

• When override is used, the name of a routine called need not be changed depending on its type.

(4) Defining an abstract data type
The CREATE TYPE definition SQL is used to define an abstract data type. CREATE TYPE defines the attributes
indicating the structure of the abstract data type and defines the procedure for manipulating the values. If inheritance
is used, the subtype clause of CREATE TYPE is specified. For an example of a CREATE TYPE definition, see 6.5
Creating a table containing a user-defined abstract data type.

(a) Defining a constructor function

A constructor function to be used to generate values for an abstract data type can be defined. The HiRDB system
provides a default constructor function that can be used when an abstract data type is defined. The default constructor
function generates values whose attributes are all the null value.

(b) Defining a routine

A routine can be defined in an abstract data type definition as an interface for manipulating the values of an attribute.

12. Designing Tables

367

(c) Specifying an encapsulation level

An encapsulation level can be specified to control accesses to the attributes comprising an abstract data type and a
routine. An encapsulation level can be specified for a routine that is used to manipulate attributes and the abstract data
type's values. There are three encapsulation levels:

• PUBLIC
This encapsulation level is used in the definition of an abstract data type other than the applicable abstract data
type or its subtypes or to allow accesses to attribute values from an application or to allow a routine to be used.

• PRIVATE
To prevent internal information from being modified directly by an application, this encapsulation level is used to
allow accesses to attribute values only in the definition of the applicable abstract data type or to allow a routine to
be used. To use an SQL to access an attribute value or to use a routine, functions must be defined.

• PROTECTED
To protect information from being referenced directly by an application for security purposes, this encapsulation
level is used to allow accesses to attribute values only within the definition of the applicable abstract data type and
its subtypes or to allow a routine to be used.

Once an encapsulation level is specified within the definition of an abstract data type, the encapsulation level remains
in effect until another encapsulation level is specified. If no encapsulation level is specified, PUBLIC is assumed. The
range of data access and routine usage privilege depends on the encapsulation level. The following table lists
encapsulation levels and privileges.

Table 12‒9: Encapsulation levels and privileges

Encapsulation level

Access source

Within the definition
of the abstract data

type

Within the definition of
its subtype abstract

data types

Within the definition of
another abstract data
type than those on the

left

Application

PUBLIC P P P P

PRIVATE P -- -- --

PROTECTED P P -- --

P: Accesses to attribute values and use of routines are permitted.

--: Accesses to attribute values and use of routines are not permitted (if violated, an SQL error results).

12. Designing Tables

368

12.18 Shared tables
In the case of a HiRDB parallel server configuration, when multiple tables are joined, table data is read from the back-
end servers where individual tables are located and then matching is performed at a separate back-end server. This
means that multiple servers are connected to transfer data. If the range of data to be searched for matches is located on
a single back-end server, matching can be completed at a single back-end server by creating that data as a shared table.
A shared table is a table stored in a shared RDAREA that can be referenced by all back-end servers. An index defined
for a shared table is called a shared index. Only an updatable back-end server can update shared tables. Other back-
end servers are referred to as reference-only back-end servers. Because there are limitations on updating a shared
table, it is important that you do not update shared tables during online operations. For details about updating shared
tables, see 12.18.3 Manipulating shared tables. Figure 12-30 shows join processing without using a shared table, and
Figure 12-31 shows join processing using a shared table.

Figure 12‒30: Join processing without using a shared table

Explanation:
This example joins tables A and B.
BES1, BES2: Retrieve data from table A and transfer it to BES5 and BES6 for matching.
BES3, BES4: Retrieve data from table B and transfer it to BES5 and BES6 for matching.
BES5, BES6: Perform matching and join processing and then transfer data to the FES.
FES: Merges the joined data and sends the result to the user.

12. Designing Tables

369

Figure 12‒31: Join processing using a shared table

Explanation:
This example joins tables A and B. Table B is a shared table that contains shared data. The search ranges are
located in back-end servers BES2 and BES3.
BES1, BES4, BES5, BES6: No processing.
BES2, BES3: Retrieve data from tables A and B, perform merge processing, and then transfer the data to the FES.
FES: Sends the results to the user.

Shared tables and shared indexes can also be defined for a HiRDB single server configuration. This provides SQL and
UAP compatibility with a HiRDB parallel server configuration. Shared tables and shared indexes are usually used
with a HiRDB parallel server configuration because they are especially effective in HiRDB parallel server
configurations. The following subsections describe the use of shared tables with a HiRDB parallel server
configuration. For details about using shared tables with a HiRDB single server configuration, see 12.18.7 Using
shared tables with a HiRDB single server configuration.

12.18.1 Effects and criteria

(1) Effects of shared tables
Because join processing can be completed by a single back-end server, the overhead associated with connecting
between back-end servers and transferring data is reduced. Additionally, the number of back-end servers required for
each transaction can be reduced, thereby improving the efficiency of parallel processing, particularly in the event of
multiple executions.

(2) Criteria
We recommend that you create as a shared table a table that typically involves minor update processing but which is
referenced by multiple transactions, such as for join processing.

12. Designing Tables

370

12.18.2 Definition method
Specify SHARE in the CREATE TABLE definition SQL statement (specify as CREATE SHARE FIX TABLE). Note
that the shared table must satisfy the following conditions:

• The shared table is an unpartitioned FIX table.

• The RDAREA for storing the shared table and shared index is a shared RDAREA (SDB is specified in the -k
option of the pdfmkfs command).

• The WITHOUT ROLLBACK option is not specified.

• It is not a referencing table for which a referential constraint has been defined.

12.18.3 Manipulating shared tables

(1) Searching
Because a shared table can be referenced by all back-end servers, HiRDB selects the back-end server that is most
suitable for searching the shared table. When a shared table is updated, deadlock may occur between the search and
update processing because all back-end servers apply lock. To avoid deadlock, we recommend that you search a
shared table as follows:

• Specify WITHOUT LOCK or WITHOUT LOCK NOWAIT as the lock option.

• When you search a shared table for updating purposes, specify the FOR UPDATE clause.

If a LOCK statement with IN EXCLUSIVE MODE specified is executed on a shared table, the RDAREA containing the
target shared table and shared index is locked. If the same RDAREA is accessed, this lock occurs even if the table to
be searched is not the target of the LOCK statement. Therefore, if another transaction is executing a LOCK statement
with IN EXCLUSIVE MODE specified, the shared table cannot be accessed even when WITHOUT LOCK NOWAIT is
specified. This means that the shared table cannot be searched while the LOCK statement with IN EXCLUSIVE MODE
specified is executing.

For details about the rules by which HiRDB allocates back-end servers, see 12.18.5 Rules used to allocate back-end
servers that search shared tables.

(2) Updating
To update a shared table, you must specify IN EXCLUSIVE MODE in the LOCK statement to lock the shared
RDAREAs of all back-end servers. In the case of an UPDATE statement that does not change index key values, there
is no need to issue the LOCK statement. An update to the shared table and shared index is written to the disk when the
COMMIT statement is issued.

If you are using a local buffer to update a shared table, make sure that you issue the LOCK statement. If the shared
table is updated without issuance of the LOCK statement and the server process terminates abnormally, the abort code
Phb3008 is output (the unit may terminate abnormally).

(a) Updating involving LOCK statement issuance

To update a shared table with issuance of a LOCK statement:

1. Issue the LOCK statement with IN EXCLUSIVE MODE specified.
The LOCK statement locks not only the specified shared table but also the shared RDAREAs that contain the
shared table and shared index. The global buffer for the shared RDAREA is disabled at the reference-only back-
end server.

2. Execute the INSERT, UPDATE, or DELETE statement for the shared table.
The updatable back-end server applies the update information to the file.
Because the shared RDAREA is locked until the LOCK statement is released, all accesses to other shared tables in
the same shared RDAREA are placed in wait status.

3. Release the LOCK statement.

12. Designing Tables

371

Notes

• Issue the LOCK statement at the beginning of the UAP. If any local server process has an open cursor to a table
in the related shared RDAREAs, the LOCK statement results in an error.

• When you create a procedure and trigger to update a shared table, specify the LOCK statement. If you execute
the LOCK statement from a procedure and trigger, locking does not take place at the point where the
transaction starts. This may result in an error.

• The shared table, the shared RDAREA containing the shared table, and the shared RDAREA containing the
shared index are locked at all back-end servers. If any application accesses a table or index in the
corresponding RDAREA, deadlock or server-to-server global deadlock may occur.

• If the unit for an updatable back-end server terminates abnormally and does not restart before a shared table
updating transaction is completed, and the following search is executed, a lock timeout error occurs
(KFPA11770-I message is displayed):

 A reference-only back-end server on another unit searches a table in the RDAREA that contains the shared
table being updated or an index defined for that table.

(b) Updating without LOCK statement issuance

If you do not issue a LOCK statement, you can execute only an UPDATE statement that does not change index key
values. Use this method only for minor changes.

To update a shared table without issuing a LOCK statement:

1. To place all back-end servers in the same status, distribute the update information to all back-end servers.

2. The updatable back-end server applies the update information to the database.
The reference-only back-end server updates information in the global buffer and retains the update information
without applying it to the file until the COMMIT statement is issued. If the transaction rolls back, the data is
restored in the global buffer.

Notes

• At a reference-only back-end server, if all global buffers are under update processing and there is no available
page before the COMMIT statement is issued, the transaction rolls back. Therefore, when you are not issuing a
LOCK statement, do not update a large amount of data.

• The rows to be updated are locked at all back-end servers. If any application accesses the corresponding table
at the same time, deadlock or server-to-server global deadlock may occur. To avoid deadlock, we recommend
that you use the UPDATE statement to update only one row per transaction.

• If the unit for an updatable back-end server terminates abnormally and does not restart before a shared table
updating transaction is completed, and the following search is executed, a lock timeout error occurs
(KFPA11770-I message is displayed):

 A reference-only back-end server on another unit searches a table in the RDAREA that contains the shared
table being updated or an index defined for that table.

12.18.4 Limitations on shared tables
• A shared table cannot be searched while a LOCK statement with IN EXCLUSIVE MODE specified is executing.

• The ASSIGN LIST statement cannot create a list for shared tables.

• A shared table cannot be specified as a replication target.

12.18.5 Rules used to allocate back-end servers that search shared
tables

This subsection explains the rules that are used for allocating back-end servers that search shared tables. The
allocation rules vary between cases in which only shared tables are specified in a single SQL statement, and cases in
which multiple tables that contain shared tables are specified in a single SQL statement. The following subsections
explain allocation rules separately for each case.

12. Designing Tables

372

(1) When all tables specified in a single SQL statement are shared tables
When all tables specified in a single SQL statement are shared tables, the allocation of back-end servers that search
shared tables is determined by conditions such as what kind of search is performed by the immediately preceding SQL
statement in the same transaction.

The following table lists the rules used for allocating back-end servers that search shared tables (when all tables
specified in a single SQL statement are shared tables). Item 1 has the highest priority.

Table 12‒10: Rules used for allocating back-end servers that search shared tables (when all tables
specified in a single SQL statement are shared tables)

Item Search conditions Back-end server allocated

1 One of the following conditions is met:

• A LOCK TABLE statement that specifies IN
EXCLUSIVE MODE is executed on the shared
table to be searched.

• A search is performed using a FOR UPDATE
clause.

HiRDB allocates an updatable back-end server.

2 Shared tables#2 are used in different SQL statements
in the same transaction (or across multiple
transactions#1).

From among the shared tables that were searched in the same
transaction, HiRDB allocates the back-end server used by the SQL
statement that most recently accessed a shared table.

For an example of how the back-end servers are allocated in this
case, see Example 1.

3 Row-partitioned tables#3 are used in different SQL
statements in the same transaction (or across
multiple transactions#1), and there is a restriction#4

that partitioning column searches are performed by
only one back-end server.

From among the row-partitioned tables for which partitioning
column searches are restricted to being performed by one back-end
server in the same transaction, HiRDB randomly allocates a back-
end server from among the back-end servers used by the SQL
statement that most recently accessed a row-partitioned table.

For an example of how the back-end servers are allocated in this
case, see Example 2.

4 Unpartitioned tables#5 are used in different SQL
statements in the same transaction (or across
multiple transactions#1).

From among the unpartitioned tables searched in the same
transaction, HiRDB randomly allocates a back-end server from
among the back-end servers used by the SQL statement that most
recently accessed an unpartitioned table.

For an example of how the back-end servers are allocated in this
case, see Example 3.

5 Row-partitioned tables are used in different SQL
statements in the same transaction (or across
multiple transactions#1).

From among the row-partitioned table searched in the same
transaction, HiRDB randomly allocates a back-end server from
among the back-end servers used by the SQL statement that most
recently accessed a row-partitioned table.

For an example of the how back-end servers are allocated in this
case, see Example 4.

6 There is a back-end server in the same unit as the
connected front-end server.

HiRDB randomly allocates a back-end server from among the
back-end servers in the same unit as the front-end server.

For an example of the how back-end servers are allocated in this
case, see Example 5.

7 Cases other than search conditions 1 through 6 HiRDB randomly allocates a back-end server.

For an example of the how back-end servers are allocated in this
case, see Example 6.

#1
Refers to use of the BES connection holding facility, holdable cursor, and local buffers in AP units.

#2
Exceptions are shared tables on which a LOCK TABLE statement that specifies IN EXCLUSIVE MODE is executed, and shared
tables that perform searches using FOR UPDATE clauses.

12. Designing Tables

373

#3
Exceptions are flexible hash partitions and partitions in a single back-end server.

#4
This is a condition (predicate or a predicate on which an OR is executed) that specifies only the column of a single table in the
search conditions.

#5
Includes shared tables on which a LOCK TABLE statement that specifies IN EXCLUSIVE MODE is executed, and shared tables
that perform searches using FOR UPDATE clauses.

(a) Example 1

Explanation

1. In SQL1, the back-end server used to access-shared table S1 is BES2.

2. In SQL2, the back-end servers used to access row-partitioned table D are BES1, BES2, and BES3.

3. When shared table S2 is accessed in SQL3 immediately after SQL1 and SQL2, BES2, which was used to
access shared table S1, is allocated.

12. Designing Tables

374

(b) Example 2

Explanation

1. In SQL1, row-partitioned table D1 and row-partitioned table D2 are searched with the restriction that only one
back-end server can search in a partitioning column. The back-end server used to access row-partitioned table
D1 is BES2, and the back-end server used to access row-partitioned table D2 is BES3.

2. In SQL2, the back-end server used to access unpartitioned table N is BES1.

3. When shared table S is accessed in SQL3 immediately after SQL1 and SQL2, BES2 is randomly selected
from among the back-end servers that were used to access row-partitioned tables D1 and D2, and is allocated
(since allocation is random, it might be BES3 in some cases).

12. Designing Tables

375

(c) Example 3

Explanation

1. In SQL1, unpartitioned table N1 and unpartitioned table N2 are searched. The back-end server used to access
unpartitioned table N1 is BES2, and the back-end server used to access unpartitioned table N2 is BES3.

2. In SQL2, the back-end servers used to access row-partitioned table D are BES1, BES2, and BES3.

3. When shared table S is accessed in SQL3 immediately after SQL1 and SQL2, BES2 is randomly selected
from among the back-end servers used to access unpartitioned tables N1 and N2, and is allocated. (since
allocation is random, it might be BES3 in some cases).

12. Designing Tables

376

(d) Example 4

Explanation

1. In SQL1, row-partitioned table D1 and row-partitioned table D2 are searched. The back-end servers that are
used to access row-partitioned table D1 are BES1 and BES2, and the back-end servers that are used to access
row-partitioned table D2 are BES2 and BES3.

2. In SQL2, the back-end servers that are used to access row-partitioned table D3 are BES1 and BES2.

3. When shared table S is accessed in SQL3 immediately after SQL1 and SQL2, BES2 is randomly selected
from among the back-end servers used to access row-partitioned table D3, and is allocated (since allocation is
random, it might be BES1 in some cases).

12. Designing Tables

377

(e) Example 5

Explanation
When shared table S is accessed immediately after a transaction starts, the back-end server BES2 in the same unit
as the front-end server is allocated.

(f) Example 6

Explanation
When shared table S is accessed immediately after a transaction starts, the randomly selected back-end server
BES2 is allocated (since allocation is random, it might be BES1 or BES3 in some cases).

(2) When multiple tables that contain shared tables are specified in a single SQL statement
When multiple tables that include a shared table are specified in a single SQL statement, allocation of the back-end
servers that search the shared table is determined by conditions such as the sort of search that is performed in that
single SQL statement. When both shared and unshared tables are included in a single SQL statement, HiRDB
allocates a back-end server to the unshared table before allocating a back-end server to the shared table.

The following table lists the rules used for allocating back-end servers that search shared tables (when multiple tables
that contain shared tables are specified in a single SQL statement). Item 1 has the highest priority.

Table 12‒11: Rules used for allocating back-end servers that search shared tables (when multiple tables
that contain shared tables are specified in a single SQL statement)

Item Search conditions Back-end server allocated

1 One of the following conditions is met:

• A LOCK TABLE statement that specifies IN
EXCLUSIVE MODE is executed on the shared
table to be searched.

• A search is performed using a FOR UPDATE
clause.

HiRDB allocates an updatable back-end server.

2 Shared tables#1 are used in the same SQL
statement.

When multiple shared tables are used in a single SQL statement,
HiRDB allocates the same back-end server. When all the tables are

12. Designing Tables

378

Item Search conditions Back-end server allocated

shared tables, HiRDB allocates according to Table 12-10 Rules used for
allocating back-end servers that search shared tables (when all tables
specified in a single SQL statement are shared tables).

For an example of how back-end servers are allocated in this case, see
Example 7.

3 Row-partitioned tables#2 are used in a single SQL
statement, and there is a restriction#3 to perform
searches on only one back-end server in a
partitioning column.

HiRDB randomly allocates a back-end server from among the back-end
servers used to access the row-partitioned tables being used in a single
SQL statement.

For an example of how back-end servers are allocated in this case, see
Example 8.

4 Unpartitioned tables#4 are used in the same SQL
statement.

HiRDB randomly allocates a back-end server from among the back-end
servers used to access the unpartitioned tables being used in a single
SQL statement.

For an example of how back-end servers are allocated in this case, see
Example 9.

5 Row-partitioned tables are used in the same SQL
statement.

HiRDB randomly allocates a back-end server from among the back-end
servers used to access the row-partitioned tables being used in a single
SQL statement.

For an example of how back-end servers are allocated in this case, see
Example 10.

#1
Exceptions are shared tables that execute LOCK TABLE statements that specify IN EXCLUSIVE MODE, and shared tables that
perform searches using FOR UPDATE clauses.

#2
Exceptions are flexible hash partitions and partitions in a single back-end server.

#3
This is a condition (predicate or a predicate on which an OR is executed) that specifies only the column of a single table in the
search conditions.

#4
Includes shared tables on which a LOCK TABLE statement that specifies IN EXCLUSIVE MODE is executed, and shared tables
that perform searches using FOR UPDATE clauses.

(a) Example 7

Explanation
In the same SQL statement, shared tables S1 and S2 are searched.

12. Designing Tables

379

1. The back-end server used to access shared table S1 is BES2.

2. When shared table S2 is accessed immediately after step 1, back-end server BES2, which was used to access
shared table S1, is allocated.

(b) Example 8

Explanation
In the same SQL statement, row-partitioned table D1, row-partitioned table D2, and shared table S are searched.

1. Row-partitioned table D1 is searched with the restriction that only one back-end server can search in a
partitioning column. The back-end server used to access row-partitioned table D1 is BES2.

2. Row-partitioned table D2 is searched with the restriction that only one back-end server can search in a
partitioning column. The back-end server used to access row-partitioned table D2 is BES3.

3. When shared table S is accessed immediately after steps 1 and 2, BES2 is randomly selected from among the
back-end servers that were used to access row-partitioned tables D1 and D2, and is allocated (since allocation
is random, it might be BES3 in some cases).

12. Designing Tables

380

(c) Example 9

Explanation
In the same SQL statement, unpartitioned table N1, unpartitioned table N2, and shared table S are searched.

1. The back-end server used to access unpartitioned table N1 is BES2.

2. The back-end server used to access unpartitioned table N2 is BES3.

3. When shared table S is accessed immediately after steps 1 and 2, BES2 is randomly selected from among the
back-end servers used to access unpartitioned tables N1 and N2, and is allocated (since allocation is random, it
might be BES3 in some cases).

12. Designing Tables

381

(d) Example 10

Explanation
In the same SQL statement, row-partitioned table D1, row-partitioned table D2, and shared table S are searched.

1. The back-end servers used to access row-partitioned table D1 are BES1 and BES2.

2. The back-end servers used to access row-partitioned table D2 are BES2 and BES3.

3. When shared table S is accessed immediately after steps 1 and 2, BES2 is randomly selected from among the
back-end servers used to access row-partitioned tables D1 and D2, and is allocated (since allocation is random,
it might be BES1 or BES3 in some cases).

12.18.6 Notes about execution of definition SQL statements, utilities, and
operation commands

When definition SQL statements, utilities, and operation commands are used to process a shared table or shared index,
HiRDB may internally issue the LOCK statement with IN EXCLUSIVE MODE specified and lock the target table and
RDAREAs at all back-end servers. If any application accesses a table or index in a corresponding RDAREA, deadlock
or server-to-server global deadlock may occur.

HiRDB internally issues the LOCK statement for the following definition SQL statements:

• CREATE TABLE, DROP TABLE, and PURGE TABLE for a shared table

• CREATE INDEX and DROP INDEX for a shared index

• DROP SCHEMA for a schema containing a shared table

• Change to the free space reusage facility for a shared table (ALTER TABLE)

• Add or remove the primary key for a shared table (ALTER TABLE)

12. Designing Tables

382

HiRDB internally issues the LOCK statement for the following utilities:

• Database load utility (pdload)

• Database reorganization utility (pdrorg -k reld, rorg, ixrc, ixmk, ixor)

• Free page release utility (pdreclaim)

• Database definition utility (pddef)

• Data dictionary import/export utility (pdexp)

• Database structure modification utility (pdmod -a initialize rdarea)

HiRDB internally issues the LOCK statement for the following operation command:

• pdorend

For details about the utilities and operation commands that cannot be executed on shared RDAREAs, see 14.6(8)
Notes about using shared RDAREAs.

12.18.7 Using shared tables with a HiRDB single server configuration
This subsection describes for a HiRDB single server configuration the differences from using shared tables with a
HiRDB parallel server configuration.

About notes
The notes about using shared tables with a HiRDB single server configuration (manipulation of shared tables,
limitations on shared tables, and notes during execution of definition SQL statements, utilities, and operation
commands) are basically the same as for a HiRDB parallel server configuration. The principal difference is that
with a HiRDB single server configuration, deadlock between servers does not occur because there is only one
server. Also, the notes about execution of operation commands for a HiRDB parallel server configuration do not
apply to a HiRDB single server configuration.

About the RDAREAs for storing shared tables and shared indexes
In the case of a HiRDB single server configuration, you store shared tables and shared indexes in normal user
RDAREAs because shared RDAREAs cannot be defined. You must provide separate user RDAREAs for storing
shared tables and indexes from the user RDAREAs for storing non-shared tables and indexes. If the same user
RDAREA contains both shared and non-shared tables or indexes, deadlock may occur (while a shared table is
being updated, the RDAREAs containing the shared table and shared index are locked. If any application accesses
a table or index in these RDAREAs, the application is placed in lock-release wait status).

About the use of local buffers
If a shared table or shared index is updated using local buffers on a HiRDB single server configuration without
issuing a LOCK statement and the server process terminates abnormally, HiRDB does not terminate abnormally
with abort code Phb3008.

About migrating from a HiRDB single server configuration to a HiRDB parallel server configuration
If you are migrating from a HiRDB single server configuration to a HiRDB parallel server configuration, make
sure that you do not use the database structure modification utility (pdmod) while shared tables and shared
indexes are still defined in the HiRDB single server configuration system. The migration procedure is as follows:

1. Check the HiRDB single server configuration for any defined shared tables or shared indexes.
Execute the SQL statement shown below (search the SQL_TABLES data dictionary table to check for the
names of any defined shared tables in the system). If no table names are displayed, no shared tables are
defined. If table names are displayed, those tables are defined.

SELECT TABLE_NAME
FROM MASTER.SQL_TABLES
WHERE SHARED='S'
WITHOUT LOCK NOWAIT

2. Delete all shared tables and shared indexes that are defined in the HiRDB single server configuration.

3. Use the database structure modification utility (pdmod) to migrate the HiRDB single server configuration to a
HiRDB parallel server configuration.

12. Designing Tables

383

4. Define shared RDAREAs in the HiRDB parallel server configuration, check and, if necessary, revise the
shared tables and shared indexes, then store them in shared RDAREAs.

12. Designing Tables

384

12.19 Referential constraints

12.19.1 About referential constraints
The tables in a database may not all be independent, because some tables may be related to one another. Some data in
a table may serve no purpose if related data does not exist in another table. To maintain referential conformity in data
between tables, a referential constraint can be defined for a particular column (called a foreign key) when the table is
defined. A table in which a referential constraint and a foreign key are defined is called a referencing table, while a
table that is referenced from a referencing table by means of such a foreign key is called a referenced table. A primary
key, which is referenced by one or more foreign keys, must be defined in the referenced table.

Execution of SQL code or utilities may cause loss of guaranteed data integrity between referenced and referencing
tables. In such cases, the referencing table is placed in check pending status. For details about check pending status,
see 12.19.3 Check pending status. For details about operations that cause loss of guaranteed data integrity, see 12.19.4
Data manipulation and integrity.

The figure below shows examples of a referenced and a referencing table. In this example, PRODUCT_TABLE is the
referencing table and MANUFACTURER_TABLE is the referenced table. The primary key is referenced by a foreign
key in the referencing table to obtain the name of a manufacturer.

Figure 12‒32: Example of referenced and referencing tables

When you define a referential constraint, defining an index for the foreign key improves throughput. However, if the
primary key values in the referenced table are not updated, updating performance may be affected adversely due to the
overhead associated with the index updating that results when a foreign key value is updated.

Effects of referential constraints
When you define a referential constraint, the workload associated with UAP creation can be reduced because
checking of data integrity on tables and data manipulation can be automated. However, note that the processing
time for checking increases when referenced and referencing tables are updated, because data integrity is checked.
Processing time increases for checks in the following cases.

• The column to be updated is the primary key of the referenced table.
The more foreign keys there are in the referencing table that references the primary key of the referenced
table, the greater the delay.

• The column to be updated is the foreign key of the referencing table.
The more foreign keys there are that have the column to be updated as a constituent column, the greater the
delay.

12.19.2 Defining referential constraints
To enable one or more referential constraints, you must first define in the referenced table the primary key that is to be
referenced by the foreign key (or keys). To do so, use the CREATE TABLE definition SQL statement to specify
PRIMARY KEY in the referenced table. To use check pending status, specify USE in the pd_check_pending
operand or do not specify (omit) the operand.

12. Designing Tables

385

For the referencing table, you specify FOREIGN KEY along with the following information in the FOREIGN KEY
clause:

• Referencing column

• Referenced table

• Referential constraint action
For the referential constraint action, use CASCADE or RESTRICT to specify the action that is to be taken on the
referencing table or referenced table when an operation such as insertion, updating, or deletion is performed.

The following subsections explain the actions in the referenced and referencing tables when CASCADE or RESTRICT
is specified.

(1) If CASCADE is specified
If CASCADE is specified and a change is executed on a primary key value of a referenced table, the referencing
foreign key value will also be changed in the same manner. When a foreign key of a referencing table is changed, a
check is performed to determine if there is a row containing a primary key whose value is the same as the value of the
foreign key after the change; the foreign key is not changed if such a change would result in a referential constraint
violation.

Figures 12-33 and 12-34 show examples of the actions that occur if CASCADE is specified when SQL code is
executed on a referenced table and on a referencing table.

Figure 12‒33: Example of the actions that occur when update SQL code is executed on a referenced table
(with CASCADE specified)

Explanation:
If there is a value in a foreign key that is the same as the value in the primary key, to maintain constraints, the
foreign key value is changed in the same way that the primary key value is changed. In the above case, updating of
the referenced table is performed. Insertion and deletion are handled in the same manner.

Figure 12‒34: Example of the actions that occur when update SQL code is executed on a referencing
table (with CASCADE specified)

12. Designing Tables

386

Explanation:
If there is a value in the primary key that is the same as the value in the foreign key after it is updated, updating of
the foreign key value is performed. Updating of the foreign key value is also performed if any foreign key in the
referencing table contains a null value, even if no value exists in the primary key that is the same as the updated
foreign key value. If neither of the above is true, a referential constraint violation results. If this occurs, there is no
effect on the referenced table. Insertion and deletion are handled in the same manner.

Table 12-12 lists primary key operations and describes the resulting actions that occur in the referencing table when
CASCADE is specified. Table 12-13 lists foreign key operations and describes the resulting actions that occur in the
referenced table when CASCADE is specified.

Table 12‒12: Primary key operations and the resulting actions that occur in the referencing table (with
CASCADE specified)

Primary key
manipulation

Relationship between rows in referenced and referencing
tables

Result of primary
key operation

Action in
referencing table

Insert (INSERT
statement)

None Y None

Update (UPDATE
statement), delete
(DELETE statement)

The referencing table has a value in a foreign key that is the
same as a value in the primary key before the update is
performed.

Y The update is
performed with the
same value as that
in the primary key,
or the rows are
deleted.

The referencing table does not have a value in a foreign key
that is the same as a value in the primary key before the update
is performed.

Y None

Legend:
Y: Executed normally.

Table 12‒13: Foreign key operations and the resulting actions that occur in the referenced table (with
CASCADE specified)

Foreign key
manipulation

Relationship between rows in referenced and
referencing tables

Result of foreign
key operation

Action in
referenced table

Insertion (INSERT
statement)

The referenced table has a value in its primary key that is the
same as a value in a foreign key of the rows to be inserted.

Y None

The referenced table does
not have a value in its
primary key that is the same
as a value in a foreign key of
the rows to be inserted.

A foreign key contains a null
value.

Y

A foreign key does not
contain a null value.

N

Update (UPDATE
statement)

The referenced table has a value in its primary key that is the
same as the updated foreign key value.

Y None

The referenced table does
not have a value in its
primary key that is the same
as the updated foreign key
value.

A foreign key contains a null
value.

Y

A foreign key does not
contain a null value.

N

Delete (DELETE
statement)

None Y None

Legend:
Y: Executed normally.
N: A constraint violation error occurs.

12. Designing Tables

387

Note that when you specify CASCADE, HiRDB internally generates a trigger during table definition to update the
foreign key value with the change made in the primary key value. For details about triggers for referential constraint
actions and about user-defined triggers, see 12.19.6 Referential constraints and triggers.

(2) If RESTRICT is specified
If RESTRICT is specified and a change is executed on a primary key value of a referenced table, a referential
constraint violation occurs if there is a value in a foreign key that is the same as the value in the primary key after it
has been updated. In this case, the primary key value is not changed. If a change is executed on a foreign key value, a
check is performed to determine if there is a value in the primary key that is the same as the updated foreign key
value. If a referential restraint violation error occurs, updating is not performed on the foreign key value.

The figure below shows an example of the actions that occur when update SQL code is executed on a referenced table
and RESTRICT is specified. The actions in a referencing table are the same as those when CASCADE is specified (see
Figure 12-34).

Figure 12‒35: Example of the actions that occur when update SQL code is executed on a referenced table
(with RESTRICT specified)

Explanation:
If there is a value in a foreign key that is the same as a value in the primary key, a referential constraint violation
error occurs, and updating of the primary key value is not performed. If there is no foreign key value that is the
same, updating of the referenced table is performed. Insertion and deletion are handled in the same manner.

The table below lists primary key operations when RESTRICT is specified, and resulting actions in referenced and
referencing tables. Foreign key operations and describes the resulting actions that occur in the referenced table are the
same as those when CASCADE is specified (see Table 12-13).

Table 12‒14: Primary key operations and the resulting actions that occur in referenced and referencing
tables

Primary key
manipulation

Relationship between rows in referenced and
referencing tables

Result of primary
key operation

Action in
referencing table

Insertion (INSERT
statement)

None Y None

Update (UPDATE
statement), delete
(DELETE statement)

The referencing table has a value in a foreign key that is the
same as a value in the primary key before the update is
performed.

N None

The referencing table does not have a value in a foreign key
that is the same as a value in the primary key before the
update is performed.

Y

Legend:
Y: Executed normally.
N: A constraint violation error occurs.

12. Designing Tables

388

(3) Constraint items in defining referenced and referencing tables
The following notes explain constraint items in table definition, table definition change, and table deletion performed
on referenced and referencing tables.

(a) Defining tables (CREATE TABLE)

• The same referenced table cannot be referenced from the foreign keys of columns that constitute that foreign key
(the line-up need not be the same).

• A foreign key cannot be defined in the following cases:

• When WITHOUT ROLLBACK is specified for the table, or the table is a shared table or falsification prevented
table.

• When a primary key is defined in a table for which WITHOUT ROLLBACK is specified, and that primary key
is referenced.

• A maximum of 255 foreign keys can be defined in one table.

• A maximum of 255 foreign keys can be defined to reference a single primary key.

• Only tables of the same schema can be referenced when a referencing table is defined.

• When both of the following conditions are met, you can define a referencing table for which ON UPDATE
CASCADE (referential constraint action during updating is CASCADE) that references the same primary key in one
table is specified.

• There are no duplicated foreign key columns.

• No check constraint or referential constraint related to multiple foreign key columns is defined.

• Use the same character set for the foreign key and for the primary key of the table referenced from that foreign
key.

(b) Changing table definitions (ALTER TABLE)

• Table definitions cannot be changed using the DROP or RENAME clause for a referenced or referencing table.

• When you change the definition in a referenced table for the primary key and foreign key columns, the following
restrictions apply:

• The CHANGE clause cannot be used to change data type or data length.

• The RENAME clause cannot be used to change the column name.

• Specification of WITH PROGRAM invalidates SQL object functions, procedures and triggers. You need to re-create
them using ALTER ROUTINE, ALTER PROCEDURE, or ALTER TRIGGER.

(c) Deleting tables (DROP TABLE)

• A table that is referenced by a foreign key cannot be deleted.

(4) Notes on defining referential constraints

• Deadlock between a referenced and referencing table
If both of the following conditions are met, deadlock may occur between a referenced and referencing table. These
conditions are the same regardless of whether the referential constraint action is RESTRICT or CASCADE.

• Two separate transactions occur: one that updates rows in the referencing table and the other that updates the
referenced table, and both transactions are executed simultaneously.

• A value in the primary key of the rows to be updated in the referencing table is the same as a value in a
foreign key of the rows to be updated in the referenced table.

When you manipulate referenced and referencing tables, make sure that at least one of the above conditions is not
true. You can also guarantee data integrity by using the LOCK statement's lock mode to lock the target table. Doing
so, however, may somewhat degrade concurrent execution efficiency.

• Estimating the size of the SQL object buffer length

12. Designing Tables

389

When you specify a referential constraint action, HiRDB internally generates a trigger to check constraint
conditions or execute a referential constraint action. Therefore, you must take these SQL objects into account
when specifying the SQL object buffer length. For details about how to estimate the SQL object buffer length
(pd_sql_object_cache_size), see the manual HiRDB Version 9 System Definition.

• Estimating the size of the data dictionary LOB RDAREA
When you specify CASCADE for a referential constraint action, HiRDB generates a trigger to execute the action.
The SQL object that defines the trigger action procedure of this trigger is stored in the data dictionary LOB
RDAREA. Therefore, when you specify CASCADE for a referential constraint action, you need to allocate
sufficient space for the data dictionary LOB RDAREA. For details about estimating the size of the data dictionary
LOB RDAREA, see 16.5 Determining the size of a data dictionary LOB RDAREA.

• Backup data
You must back up data at the same time for all RDAREAs in which referenced tables and referencing tables are
stored. If you use the inner replica facility, acquire backup for the generation number of all RDAREAs as well. If
you use the inner replica facility, back up the generation number of all RDAREAs as well.
The extent of the data that is backed up depends on the check pending status at the time of backup. For details
about the backup time and the extent of the data that is backed up, see RDAREAS to be backed up together in the
HiRDB Version 9 System Operation Guide.

(5) Referential constraint definition examples
The following section provides examples of how to define referential constraints.

(a) Example of defining a referential constraint with a 1-to-1 correspondence

This example defines a referential constraint where the referenced and referencing tables have a 1-to-1
correspondence.

Definition example of a referential constraint (1)
CREATE TABLE MANUFACTURER
 (MNO CHAR(4),MNAME NCHAR(6),TELEPHONE CHAR(12))
 PRIMARY KEY(MNO) ...Specification of the primary key
CREATE TABLE PRODUCT
 (PNO CHAR(4),MNO CHAR(4),PNAME NCHAR(10),QTY INTEGER)
 CONSTRAINT PRODUCT_FK ...Specification of the constraint name
 FOREIGN KEY(MNO) ...Specification of the foreign key
 REFERENCES MANUFACTURER ...Specification of the referenced table name

12. Designing Tables

390

Details of the referential constraint action
Because this example omits specification of a referential constraint action, RESTRICT is assumed during
updating or deletion. If the MANUFACTURER_NO (primary key) of the MANUFACTURER_TABLE is updated
or deleted and there is a row corresponding to the MANUFACTURER_NO (foreign key) of the
PRODUCT_TABLE, a referential constraint violation error occurs. As a result, updating or deletion of the
MANUFACTURER_NO of the MANUFACTURER_TABLE is suppressed.

Definition example of a referential constraint (2)
CREATE TABLE MANUFACTURER
 (MNO CHAR(4),MNAME NCHAR(6),TELEPHONE CHAR(12))
 PRIMARY KEY(MNO) ...Specification of the primary key
CREATE TABLE PRODUCT
 (PNO CHAR(4),MNO CHAR(4),PNAME NCHAR(10),QTY INTEGER)
 CONSTRAINT PRODUCT_FK ...Specification of the constraint name
 FOREIGN KEY(MNO) ...Specification of the foreign key
 REFERENCES MANUFACTURER ...Specification of the referenced table name
 ON UPDATE CASCADE ...Specification of a referential constraint action on
update
 ON DELETE CASCADE ...Specification of a referential constraint action on
deletion

Details of the referential constraint action
If the MANUFACTURER_NO (primary key) of the MANUFACTURER_TABLE is updated, the
MANUFACTURER_NO (foreign key) of the corresponding PRODUCT_TABLE is also updated to the same
value as for the primary key. If a row is deleted from the MANUFACTURER_TABLE, the row corresponding to
the PRODUCT_TABLE is also deleted.

(b) Example of defining a referential constraint with a 1-to-2 correspondence

This example defines a referential constraint where there is one referenced table and two referencing tables.

Definition example of a referential constraint
CREATE TABLE PRODUCT
 (PNO CHAR(4),MNO CHAR(4),PNAME NCHAR(10),QTY INTEGER)
 PRIMARY KEY(PNO) ...Specification of the primary key

12. Designing Tables

391

CREATE TABLE PURCHASE
 (PNO CHAR(4),PNAME NCHAR(10),PQTY INTEGER)
 CONSTRAINT PURCHASE_FK ...Specification of the constraint name
 FOREIGN KEY(PNO) ...Specification of the foreign key
 REFERENCES PRODUCT ...Specification of the referenced table name
 ON UPDATE CASCADE ...Specification of a referential constraint action on
update
 ON DELETE CASCADE ...Specification of a referential constraint action
on deletion
CREATE TABLE SALES
 (FNO CHAR(4),CNO CHAR(4),PNO CHAR(4),SQTY INTEGER)
 CONSTRAINT SALES_FK ...Specification of the constraint name
 FOREIGN KEY(PNO) ...Specification of the foreign key

 REFERENCES PRODUCT ...Specification of the referenced table name
 ON UPDATE RESTRICT Specification of a referential constraint action on
update
 ON DELETE RESTRICT ...Specification of a referential constraint action
on deletion

Details of the referential constraint action
If the PRODUCT_NO (primary key) of the PRODUCT_TABLE is to be updated and the SALES_TABLE
contains a row whose PRODUCT_NO (foreign key) is the same as the primary key before updating, a
referential constraint violation error occurs, in which case update processing is suppressed. If the
SALES_TABLE contains no row that has the same value as the primary key before updating, the
corresponding PRODUCT_NO in the PURCHASE_TABLE is also updated to the same value as the primary
key.
If a row is to be deleted from the PRODUCT_TABLE and the SALES_TABLE contains a row that has the
same value as the primary key before updating, a referential constraint violation error occurs, in which case
the deletion processing is suppressed. If the SALES_TABLE contains no row that has the same value as the
primary key, the corresponding row is also deleted from the PURCHASE_TABLE.

(c) Example of defining a referential constraint with a 2-to-1 correspondence

This example defines a referential constraint where there are two referenced tables and one referencing table.

12. Designing Tables

392

Definition example of a referential constraint
CREATE TABLE PRODUCT
 (PNO CHAR(4),MNO CHAR(4),PNAME NCHAR(10),QTY INTEGER)
 PRIMARY KEY(PNO) ...Specification of the primary key
CREATE TABLE CUSTOMER
 (CNO CHAR(4),CNAME NCHAR(8),ADDR NCHAR(24))
 PRIMARY KEY(CNO) ...Specification of the primary key
CREATE TABLE SALES
 (FNO CHAR(4),CNO CHAR(4),PNO CHAR(4),SQTY INTEGER)
 CONSTRAINT SALES_PRODUCT_FK ...Specification of the constraint name
 FOREIGN KEY(PNO) ...Specification of the foreign key
 REFERENCES PRODUCT ...Specification of the referenced table name
 ON UPDATE CASCADE Specification of a referential constraint action on
update
 ON DELETE CASCADE ...Specification of a referential constraint action on
deletion
 CONSTRAINT SALES_CUSTOMER_FK
 FOREIGN KEY(CNO) ...Specification of the foreign key

 REFERENCES CUSTOMER ...Specification of the referenced table name
 ON UPDATE CASCADE ...Specification of a referential constraint action on
update
 ON DELETE CASCADE ...Specification of a referential constraint action on
deletion

Details of the referential constraint action
If the PRODUCT_NO (primary key) of the PRODUCT_TABLE is updated, the PRODUCT_NO (foreign key) of
the SALES_TABLE is also updated to the same value. If a row is deleted from the PRODUCT_TABLE, the
corresponding row is also deleted from the SALES_TABLE.
If the CUSTOMER_NO (primary key) of the CUSTOMER_TABLE is updated, the CUSTOMER_NO (foreign
key) of the SALES_TABLE is also updated to the same value. If a row is deleted from the
CUSTOMER_TABLE, the corresponding row is also deleted from the SALES_TABLE.

12. Designing Tables

393

12.19.3 Check pending status
If data integrity between tables can no longer be guaranteed due to execution of an SQL statement or of a utility,
HiRDB restricts data manipulation in the referencing table. The status in which data manipulation is restricted due to
loss of guaranteed data integrity is called check pending status. To place a referencing table in check pending status
for the purpose of restricting data manipulation, you must either specify USE in the pd_check_pending operand
or do not specify (omit) the operand. You can use the integrity check utility (pdconstck) to clear the check pending
status of a table. You can also use the integrity check utility to forcibly place a table into check pending status.

If you have specified NOUSE in the pd_check_pending operand, data manipulation is not restricted even when
data integrity between tables cannot be guaranteed. In this case, if you execute an SQL statement or a utility that
nullifies the guarantee of data integrity, you can use the integrity check facility to forcibly place the table into check
pending status, and then check data integrity.

For details about operations that cause loss of guaranteed data integrity, see 12.19.4 Data manipulation and integrity.
For details about how to check data integrity, see 12.19.5 Procedure for checking table integrity.

(1) Setting or clearing check pending status
You can also decide whether to set a referencing table to check pending status or clear its check pending status using
the following utilities, commands and SQL statements, in addition to the integrity check utility.

• The constraint statement of the database load utility (pdload)

• The constraint statement of the database reorganization utility (pdrorg) (reload, reorganization)

• The database structure modification utility (pdmod) (re-initialization of RDAREA)

• Reflection processing of updatable online reorganization (pdorend -p command)

• The PURGE TABLE statement

• The ALTER TABLE (CHANGE RDAREA) statement

For details about utilities and commands, see the manual HiRDB Version 9 Command Reference. For details about
SQL, see the manual HiRDB Version 9 SQL Reference.

(2) Managing check pending status
Check pending status is managed based on dictionary tables and on the table information of the RDAREAs in which
the tables are stored. In dictionary tables, check pending status is managed for each table and constraint. In table
information, check pending status is managed for each RDAREA if the table is a partitioned table, and for each table
if the table is not a partitioned table.

The following table lists and describes the storage locations of check pending status information items.

Table 12‒15: Storage locations of check pending status information and contents (referential constraint)

Storage location Stored information

Dictionary
table

SQL_TABLES table CHECK_PEND column Check pending status of referential constraint for each
table

SQL_REFERENTIAL_CO
NSTRAINTS table

CHECK_PEND column Check pending status of referential constraint for each
constraint

RDAREA table information For unpartitioned table Check pending status of referential constraint or check
constraint for each table

For partitioned table Check pending status of referential constraint or check
constraint for each RDAREA

(3) Operations that are restricted for tables in check pending status
The table below lists operations that are no longer available for tables once they enter check pending status. When a
target table is accessed by a trigger action, restricted operations depend on the availability of SQL operations specified

12. Designing Tables

394

in the triggered SQL statement. If a target table is a view table, the restricted operations depend on the availability of
operations on the base table that is the source of the view table.

Table 12‒16: Availability of operations on tables in check pending status

Operation on check pending status tables Availability

Data
manipulation
SQL

SELECT statement Searches the target table Y#1

Searches a list created from the target table

INSERT statement Inserts data into the target table

UPDATE statement Updates the target table

DELETE statement Deletes a row from the target table

ASSIGN LIST statement Creates a list from the target table

Utility Rebalancing utility (pdrbal) N

Database reorganization utility
(pdrorg)

Reorganizes Y#2

Legend:
Y: The operation cannot be performed in certain cases.
N: The operation cannot be performed.

#1
The operation can be performed only when both of the following conditions are met:

• The target table is a partitioned table, and the partitioning condition is key range partitioning or FIX hash
partitioning.

• The target RDAREA is not in check pending status.

#2
Reorganizing a table partitioned using flexible hash partitioning may not be possible. For details, see Rules and
notes in the Database Reorganization Utility (pdrorg) chapter of the manual HiRDB Version 9 Command
Reference.

(4) Operations restricted for tables that are related to a table in check pending status
In this example, tables have the following referential relationship; only tables T2 and T3 are in check pending status.

The following subsections explain operations restricted for each table when either table T2 or T3 or both tables are in
check pending status.

(a) When only table T2 is in check pending status

The following table lists operations that are restricted for particular tables when table T2 alone is in check pending
status.

Table 12‒17: Restricted operations when table T2 is in check pending status

Target table Restricted operation Contents

Table T1 UPDATE (updates the target table) Restrictions depend on the referential constraint action specification
defined in table T2.

• If CASCADE is specified:
DELETE (deletes rows from the target
table)

12. Designing Tables

395

Target table Restricted operation Contents

These operations cannot be performed if the table information of the
RDAREA that is the target of referential constraint action is in check
pending status. However, update operations can be performed if the
values are the same.

• If RESTRICT is specified:
These operations can be performed. Referencing table T2 is
referenced to perform data integrity checking.

Table T2 SELECT statement (searches the target
table or a list created from the target
table)

These operations can be performed only when both of the following
conditions are met:

• The target table is a partitioned table and the partitioning condition is
key range partitioning or FIX hash partitioning.

• The target RDAREA is not in check pending status.
INSERT statement (inserts data into
the target table)

UPDATE statement (updates the target
table)

DELETE statement (deletes rows from
the target table)

ASSIGN LIST statement (creates a list
from the target table)

Rebalancing utility (pdrbal) This operation cannot be performed.

Reorganization by the database
reorganization utility (pdrorg)

Reorganization may not be possible for a table partitioned using flexible
hash partitioning. For details, see Database Reorganization Utility
(pdrorg) in the manual HiRDB Version 9 Command Reference.

Table T3 There is no restricted operation. For INSERT and DELETE, referenced table T2 is referenced to perform data
integrity checking.

(b) When only table T3 is in check pending status

The following table lists operations that are restricted for particular tables when table T3 alone is in check pending
status.

Table 12‒18: Restricted operations when table T3 is in check pending status

Target table Restricted operation Contents

Table T1 UPDATE (updates the target table) When the referential constraint action defined for table T2 and T3 is
CASCADE, these operations cannot be performed if the table information
of the RDAREA that is the target of referential constraint action is in
check pending status. However, update operations can be performed if the
values are the same.

DELETE (deletes rows from the target
table)

Table T2 UPDATE (updates the target table) Restrictions depend on the referential constraint action specification
defined for tables T2 and T3.

• If CASCADE is specified:
These operations cannot be performed if the table information of the
RDAREA that is the target of referential constraint action is in check
pending status. However, update operations can be performed if the
values are the same.

• If RESTRICT is specified:
These operations can be performed. Referencing table T3 is
referenced to perform data integrity checking.

DELETE (deletes rows from the target
table)

Table T3 SELECT statement (searches the target
table or a list created from the target
table)

These operations can be performed only when both of the following
conditions are met:

• The target table is a partitioned table and the partitioning condition is
key range partitioning or FIX hash partitioning.

12. Designing Tables

396

Target table Restricted operation Contents

INSERT statement (inserts data into
the target table)

• The target RDAREA is not in check pending status.

UPDATE statement (updates the target
table)

DELETE statement (deletes rows from
the target table)

ASSIGN LIST statement (creates a list
from the target table)

Rebalancing utility (pdrbal) The operation cannot be performed.

Reorganization by the database
reorganization utility (pdrorg)

Reorganization may not be possible for a table partitioned using flexible
hash partitioning. For details, see Database Reorganization Utility
(pdrorg) in the manual HiRDB Version 9 Command Reference.

(c) When both tables T2 and T3 are in check pending status

The following table lists operations that are restricted for particular tables when both table T2 and table T3 are in
check pending status.

Table 12‒19: Restricted operations when tables T2 and T3 are in check pending status

Target table Restricted operation Contents

Table T1 UPDATE (updates the target table) If the referential constraint action defined for table T2 and T3 is
CASCADE, these operations cannot be performed if the table information
of the RDAREA that is the target of referential constraint action is in
check pending status. However, update operations can be performed if the
value are the same.

These operations can be performed if the referential constraint action
specification defined for tables T2 and T3 is RESTRICT. Referencing
table T2 is referenced to perform data integrity checking.

DELETE (deletes rows from the target
table)

Table T2 SELECT statement (searches the target
table or a list created from the target
table)

These operations can be performed only when both of the following
conditions are met:

• The target table is a partitioned table and the partitioning condition is
key range partitioning or FIX hash partitioning.

• The target RDAREA is not in check pending status.
INSERT statement (inserts data into
the target table)

UPDATE statement (updates the target
table)

DELETE statement (deletes rows from
the target table)

ASSIGN LIST statement (creates a list
from the target table)

Rebalancing utility (pdrbal) This operation cannot be performed.

Reorganization by the database
reorganization utility (pdrorg)

Reorganization may not be possible for a table partitioned using flexible
hash partitioning. For details, see Database Reorganization Utility
(pdrorg) in the manual HiRDB Version 9 Command Reference.

Table T3 SELECT statement (searches the target
table or a list created from the target
table)

These operations can be performed only when both of the following
conditions are met:

• The target table is a partitioned table and the partitioning condition is
key range partitioning or FIX hash partitioning.

• The target RDAREA is not in check pending status.
INSERT statement (inserts data into
the target table)

12. Designing Tables

397

Target table Restricted operation Contents

UPDATE statement (updates the target
table)

DELETE statement (deletes rows from
the target table)

ASSIGN LIST statement (creates a list
from the target table)

Rebalancing utility (pdrbal) This operation cannot be performed.

Reorganization by the database
reorganization utility (pdrorg)

Reorganization may not be possible for a table partitioned using flexible
hash partitioning. For details, see Database Reorganization Utility
(pdrorg) in the manual HiRDB Version 9 Command Reference.

(5) When a partitioned table or the inner replica facility is used
Since the check pending status is managed for each RDAREA, if a partitioned table or the inner replica facility is
used, and the table information in the RDAREA actually used is in check pending status, operation on the partitioned
table or generation may be restricted. The following subsections explain these cases.

(a) For partitioned tables

The following figure shows an example of when some RDAREAs that store data in a partitioned table are in check
pending status.

Figure 12‒36: Data manipulation availability when managing check pending status for each RDAREA in a
partitioned table

Explanation:
When you execute a SELECT statement for partitioned table A, if data actually manipulated is in RDAREA 2
(whose table information is in check pending status), a SELECT statement error occurs. When manipulating data
in RDAREAs 1 and 3, the SELECT statement can be executed normally.

Notes on partitioned table
If you specify USE in the pd_check_pending operand and re-initialize the RDAREA where referencing table
data is partitioned and stored, use the integrity check utility to check the data integrity of each table.

(b) When the inner replica facility is used

The following figure shows an example of when some RDAREAs of a specific generation are placed in check pending
status using the inner replica facility.

12. Designing Tables

398

Figure 12‒37: Data manipulation availability when using the inner replica facility and managing check
pending status by RDAREA

Explanation:
When manipulating data of generation 1 (the generation that includes the RDAREA whose table information is in
check pending status), if the data that is actually being manipulated is in replica RDAREA 2-1, the SQL code
results in an error.

(6) Notes on using check pending status

• If you change the value specified in the pd_check_pending operand from NOUSE to USE, you must use the
integrity check utility to check the data integrity of the referencing table. For details about how to check data
integrity, see 12.19.5 Procedure for checking table integrity.

• Even if you have specified USE in the pd_check_pending operand and manipulated a table, causing loss of
guaranteed data integrity, depending on the RDAREA status, you may not be able to set check pending status. For
that reason, if you change the value specified in the pd_check_pending operand from NOUSE to USE,
operations that can normally be performed when check pending status is not used could cause an error. The
following explains the status of an RDAREA where the check pending status can be set when executing PURGE
TABLE statement or ALTER TABLE (CHANGE RDAREA).
When the open trigger attribute is INITIAL:

• RDAREA is not in hold and is in open status

• RDAREA is in updatable backup hold status and also in open status

• RDAREA is in online reorganization hold status and also in open status

• When RDAREA is in synchronous hold status and also open status, check pending status can be set after the
hold status is cleared.

When the open trigger attribute is DEFER or SCHEDULE:

• RDAREA is not in hold status

• RDAREA is in updatable backup hold status

12. Designing Tables

399

• RDAREA is in online reorganization hold status

• When RDAREA is in synchronous hold status, check pending status can be set after the hold status is cleared.

For details about RDAREAs on which check pending status can be set when the utility is executed, see Whether
or not the check pending status can be set of RDAREA Status During Command Execution in the manual HiRDB
Version 9 Command Reference.

• If you specify USE in the pd_check_pending operand, since lock is applied to referencing tables and
RDAREAs that are set to check pending status, locked resources when a utility or SQL code is executed are
different from those when check pending status is not used.

12.19.4 Data manipulation and integrity
When a referenced or referencing table is updated, added to, or deleted by a data manipulation SQL statement
(excluding the PURGE TABLE statement), HiRDB performs checking during execution to guarantee data integrity.
However, if the operations described in Table 12-20 and Table 12-21 are executed, data integrity may no longer be
guaranteed. If you specify USE in the pd_check_pending operand and perform these operations, the referencing
table is placed in check pending status.

Table 12‒20: Operations on referenced tables that nullify the guarantee of data integrity and the conditions
under which loss of data integrity occurs

Operation on table or RDAREA Condition for loss of data integrity

Database load utility
(pdload)

Data load of creation mode (-d
option)

The loaded primary key column does not contain a value that is
the same as a value in a foreign key column of the referencing
table.

Database reorganization
utility (pdrorg)

Reload (-k reld) The reloaded primary key column does not contain a value that
is the same as a value in a foreign key column of the referencing
table.

Reorganization (-k rorg) UOC was used to delete a row that contains a value that is the
same as a value in a foreign key column of the referencing table.

Database structure
modification utility (pdmod)

Reinitialization of RDAREA
(initialize rdarea)

The referencing table is stored in an RDAREA that is different
from the re-initialized RDAREA.

Reflection processing of updatable online re-organization (pdorend
command)

You perform any of operations (1) to (4) below on the replica
RDAREA and original RDAREA in the current database during
operation of updatable online reorganization# on tables having a
referential relationship (data mismatch occurs after reflection
processing):

(1) When you perform operations in the following order:
1. Insert data into the referencing table in the replica
RDAREA.
2. From the referenced table in the original RDAREA, delete
a row that has a value that is the same as one of the foreign
key values inserted in step 1.

(2) When you perform operations in the following order:
1. Update foreign key data in the referencing table in the
replica RDAREA.
2. From the referenced table in the original RDAREA, delete
a row that has a value that is the same as one of the foreign
key values updated in step 1.

(3) When you perform operations in the following order:
1. Delete data from the referenced table in the replica
RDAREA.
2. In the referencing table in the original RDAREA, insert a
row that has a value that is the same as one of the primary
key values deleted in step 1.

12. Designing Tables

400

Operation on table or RDAREA Condition for loss of data integrity

(4) When you perform operations in the following order:
1. Update data in the referenced table in the replica
RDAREA.
2. In the referencing table in the original RDAREA, insert a
row that has a value that is the same as one of the primary
key values that existed before it was updated in step 1.

PURGE TABLE statement Data exists in the referencing table.

Modification of table partition storage conditions by the ALTER
TABLE

As a result of partitioning or integration of RDAREAs, a row
that contains a value that is the same as a value in the foreign
key column of the referencing table is not included.

#
For details about using updatable online reorganization, see the HiRDB Version 9 Staticizer Option Description
and User's Guide.

Table 12‒21: Operations on referencing tables that nullify the guarantee of data integrity and the
conditions under which loss of data integrity occurs

Operation on table or RDAREA Condition for loss of data integrity

Database load utility
(pdload)

Data load The loaded foreign key column does not contain a value that is
the same as a value in the primary key column of the referenced
table.

Database reorganization utility
(pdrorg)

Reload (-k reld) The reloaded foreign key column does not contain a value that is
the same as a value in the primary key column of the referenced
table.

Reflection processing of updatable online re-organization

(pdorend command)

You perform any of operations (1) to (5) on the replica RDAREA
and original RDAREA in the current database during operation
of updatable online reorganization# on tables having a referential
relationship (data mismatch occurs after reflection processing):

(1) When you perform operations in the following order:
1. Insert data into the referencing table in the replica
RDAREA.
2. From the referenced table in the original RDAREA, delete
a row that has a value that is the same as one of the foreign
key values inserted in step 1.

(2) When you perform operations in the following order:
1. Update foreign key data in the referencing table in the
replica RDAREA.
2. From the referenced table in the original RDAREA, delete
a row that has a value that is the same as one of the foreign
key values updated in step 1.

(3) When you perform operations in the following order:
1. Delete data from the referenced table in the replica
RDAREA.
2. In the referencing table in the original RDAREA, insert a
row that has a value that is the same as one of the primary
key values deleted in step 1.

(4) When you perform operations in the following order:
1. Update data in the referenced table in the replica
RDAREA.
2. In the referencing table in the original RDAREA, insert a
row that has a value that is the same as one of the primary
key values that existed before it was updated in step 1.

12. Designing Tables

401

Operation on table or RDAREA Condition for loss of data integrity

(5) When you perform the following operation:
Use the database load utility (pdload) to perform operation
on the referencing table in the replica RDAREA, which
causes loss of data integrity.

#
For details about using updatable online reorganization, see the HiRDB Version 9 Staticizer Option Description
and User's Guide.

(1) When the target table is a partitioned table
If the target table is a partitioned table and the table contains mismatched data, execution of a utility may move the
RDAREA in which the mismatched data is stored. For example, assume there is mismatched data in RDAREA 1 for a
table that is partitioned and stored in RDAREAs 1, 2 and 3. Executing a utility could cause the mismatched data to be
moved to RDAREA 3. The following table lists conditions that cause moving of mismatched data in a table between
RDAREAs.

Table 12‒22: Conditions that cause moving of mismatched data in a table between RDAREAs when the
target table is a partitioned table

Operation on table or RDAREA Conditions that cause moving of mismatched data in a table
between RDAREAs

Database reorganization
utility (pdrorg)

Reorganization (-k rorg) You perform the following steps in the order listed below on a table
partitioned using flexible hash partitioning or a matrix-partitioned table
whose second dimension partitioning column is partitioned using
flexible hash partitioning:

1. Perform data load for each RDAREA.

2. In a HiRDB single server configuration, execute reorganization for
each table.#

In a HiRDB parallel server configuration, specify the -g option to
execute reorganization for each table.#

Rebalancing utility (pdrbal) You add an RDAREA for a table that has mismatched data to execute
the rebalancing utility (pdrbal).#

#
You cannot execute the utility when you specify USE in the pd_check_pending operand if the target table is
in check pending status.

(2) Other conditions under which loss of data integrity may occur
When all of the following conditions are met, data mismatch may occur; therefore, you need to check data integrity.
For details about how to check data integrity, see 12.19.5 Procedure for checking table integrity. These conditions are
the same regardless of whether the referential constraint action is RESTRICT or CASCADE.

• There are two transactions, one for deleting rows from the referencing table and the other for updating or deleting
the referenced table, and these transactions are executed at the same time.

• A value in the primary key column of a row that is to be deleted from the referencing table is the same as a value
in a foreign key column of a row that is to be updated or deleted in the referenced table.

• The transaction for updating or deleting rows in the referencing table is committed, and the transaction for
deleting rows from the referenced table is rolled back.

When you manipulate referenced tables and referencing tables, make sure that all the above conditions are not true at
the same time. You can guarantee data integrity by locking the target table with the LOCK statement's shared mode or
lock mode. Note that there are some adverse effects on concurrent execution efficiency.

12. Designing Tables

402

12.19.5 Procedure for checking table integrity
The following figure shows an overview of the procedure for checking data integrity.

Figure 12‒38: Overview of procedure for checking data integrity (referential constraint)

When the value specified in the pd_check_pending operand is USE, or the operand is omitted:

1. Identify tables in check pending status
Search SQL_TABLES of the dictionary table to detect the names of tables in check pending status.

SELECT TABLE_SCHEMA, TABLE_NAME FROM MASTER.SQL_TABLES
 WHERE CHECK_PEND = 'C' OR CHECK_PEND2 = 'C'

The owners and names of tables in check pending status are returned in the search result. If no rows are returned
in the search result, no tables are in check pending status.
To check whether each generation table is in check pending status when the inner replica facility is used, you can
use the condition analysis utility (pddbst).

2. Use the integrity check utility to check data integrity.
Use the integrity check utility to check the data integrity of each table and to correct any data that violates
constraint conditions. Repeat the procedure until no table remains in check pending status. For details about how
to use the integrity check utility to check data integrity, see 12.19.5(1) Procedure for checking data integrity when
check pending status is used (referential constraint).

When the value specified in the pd_check_pending operand is NOUSE:

1. Identify the tables for which you want to check data integrity, and forcibly place these tables into check pending
status.
To identify tables on which to check data integrity, check the following items:

• Whether a referencing table references a table on which an operation was performed that caused loss of data
integrity

• Whether a referential constraint has been defined in the table on which an operation was performed that
caused loss of data integrity

12. Designing Tables

403

The following is an example SQL execution to check these items:

SELECT N_PARENTS, N_CHILDREN FROM MASTER.SQL_TABLES
 WHERE TABLE_SCHEMA = 'name-of-the-owner-of-the-target-table' AND TABLE_NAME = 'name-of-
the-target-table'

The following search result is returned:

• The number of foreign keys defined in the target table

• The number of foreign keys that reference the primary key defined in the target table

If N_PARENTS is a null value, no referential constraint is defined in the target table.
If N_CHILDREN is a null value, no referencing table exists that references the target table as a referenced table.
If the N_CHILDREN value is not null, execute the following SQL to check the name of the referencing table that
references the target table.

SELECT TABLE_SCHEMA, TABLE_NAME, CONSTRAINT_NAME
 FROM MASTER.SQL_REFERENTIAL_CONSTRAINTS
 WHERE R_OWNER = 'name-of-the-owner-of-the-target-table' AND R_TABLE_NAME = 'name-of-the-
target-table'

The owners, names, and referential constraint names of referencing tables that reference a target table as a
referenced table are returned in the search results. If no rows are returned in the search result, no referencing table
that references a target table as a referenced table exists.
When one or more tables are identified, use the integrity check utility to forcibly place the tables into check
pending status (the integrity check utility cannot be used to check tables that are not in check pending status).

2. Use the integrity check utility to check data integrity.
This step is the same as the step 2 used when the value specified in the pd_check_pending operand is USE, or
the operand is omitted. For details about using the integrity check utility to check data integrity, see 12.19.5(2)
Procedure for checking data integrity when check pending status is not used.

(1) Procedure for checking data integrity when check pending status is used (referential
constraint)

The following figure shows the procedure for checking data integrity using the integrity check utility when the value
specified for the pd_check_pending operand is USE or is omitted.

12. Designing Tables

404

Figure 12‒39: Procedure for checking data integrity when check pending status is used (referential
constraint)

1. Check the data integrity of the next table to be checked.
Check the data integrity for each table and constraint.
If you use the inner replica facility, specify the generation numbers of the tables to be checked. If you do not use
the inner replica facility or if you plan to check the data integrity of all generations, you do not need to specify the
generation numbers.

2. Identify constraint violations.
Based on the results of the data integrity check performed in step 1, determine whether any data violates constraint
conditions.

3. Correct data that violates constraints.
Decide whether to use the utility or SQL code to correct the violating data. If you choose the utility, proceed to
step 6.

4. Stop operations on the table being checked.
Stop performing tasks that use the table for which data integrity cannot be guaranteed.

5. Forcibly cancel the check pending status of the table being checked.
Before taking action to resolve constraint violations, forcibly cancel the check pending status.

6. Take action to resolve constraint violations.

12. Designing Tables

405

Using the utility:
The following table lists actions. After taking action, return to step 1 to perform data integrity checking,
confirm that no violating data remains, and complete the procedure.

Condition Action

The primary key does not contain the
required data

Load correct data using the addition mode of the database load utility (pdload).

The foreign key contains constraint
violation data

• Load correct data using the addition mode of the database load utility (pdload).

• Use UOC for the database reorganization utility (pdrorg) to delete unnecessary data.

Using SQL code:
The following table lists actions. After taking action, proceed to step 7.

Condition Action

The primary key does not contain the
required data

Use the INSERT statement to insert the required data in the primary key#1, or use the UPDATE
statement to update existing data in the referenced table#2.

The foreign key contains constraint
violation data

Use the DELETE statement to delete the constraint violation data in the foreign key, or use the
UPDATE statement to change the data to the correct value#1.

#1
If a foreign key is also a primary key, and a referencing table has a referenced table for which action is to be
taken, you must be careful about the order in which the corrections are performed. For example, assume the
following referential relationship exists:

 Notes when taking action for REF1 constraint violations
If you use the DELETE statement to correct the data in table T2, if ON DELETE RESTRICT is specified in
REF2, first delete the corresponding data in table T3 and then delete the data in table T2. If you use the
UPDATE statement to correct the data, if ON UPDATE RESTRICT is specified in REF2, first delete the data in
table T3 that corresponds to the pre-update data, and then update the data in table T2.

 Notes when taking action for REF2 constraint violations
If you use the INSERT statement to correct the data in table T2, check for insertion target data in table T1. If
there is no such data, first insert the data into table T1 and then insert the data into table T2. If you use the
UPDATE statement to correct the data, check whether post-update data exists in table T1. If there is no such
data, first insert the data into table T1 and then update the data in table T2.

#2
About a constraint other than one for which an action is to be taken, if there is a referencing table that
references that table as a referenced table, you must be careful about the order of corrections. For example,
assume the following referential relationship exists:

 Notes when taking action for REF1 constraint violations
If you use an UPDATE statement to correct the data in table T1, if ON UPDATE RESTRICT is specified in
REF2, first delete the data in table T3 that corresponds to the pre-update date and then update the data in table
T2.

7. Forcibly place the violated constraint into check pending status.

12. Designing Tables

406

Execute the integrity check utility on each constraint, and forcibly place each constraint for which an action was
taken into check pending status.

8. Release the stopped operations.
Resume performance of stopped tasks. Return to step 1 to perform data integrity checking and to check for
violating data.

9. Determine if there is another generation to be checked.
When you have created replica RDAREAs of multiple generations or have performed data integrity checking for
each generation, return to step 1 to check the data integrity of each generation.

(2) Procedure for checking data integrity when check pending status is not used
The following figure shows the procedure for checking data integrity using the integrity check utility when the value
specified for the pd_check_pending operand is NOUSE.

Figure 12‒40: Procedure for checking data integrity when check pending status is not used

1. Stop operations on the tables to be checked.
Stop performing tasks that use tables for which data integrity cannot be guaranteed.

2. Forcibly place the tables into check pending status.
Forcibly place the tables to be checked into check pending status. If you perform data integrity checking for each
constraint in step 3, this step is not necessary.

3. Check the data integrity of the next table to be checked.
Check the data integrity of each table and constraint.
If you use the inner replica facility, specify the generation numbers of the tables to be checked. If you do not use
the inner replica facility or if you plan to check the data integrity of all generations, you do not need to specify the
generation numbers.

12. Designing Tables

407

4. Identify constraint violations.
Based on the results of the data integrity check performed in step 3, determine whether any data violates constraint
conditions.

5. Correct data that violates constraints.
See step 6 in 12.19.5(1) Procedure for checking data integrity when check pending status is used (referential
constraint) to correct data that violates constraints.

6. Determine if there is another generation to be checked.
When you have created replica RDAREAs of multiple generations or have performed data integrity checking for
each generation, return to step 1 and check the data integrity of each generation.

7. Release the stopped operations.
Resume performance of stopped tasks.

12.19.6 Referential constraints and triggers

(1) Triggers for referential constraint actions
If you specify CASCADE for a referential constraint action, HiRDB internally generates a trigger that updates the
referencing table for the referenced table. Triggers generated internally by HiRDB become disabled in the following
cases. In such a case, you need to re-create the trigger. You may need to create other triggers in addition to those that
were generated by HiRDB. Use ALTER ROUTINE to re-create all triggers that have been disabled. In addition, if the
index definition becomes invalid, or the index information becomes invalid by deletion, re-create the triggers by
specifying ALL in ALTER ROUTINE.

• For update processing

• The definition of the referencing table was changed.

• An index was defined for the referencing table.

• An index of the referencing table was dropped.

• A trigger whose timing is UPDATE was created for the referencing table.

• For the referencing table, a trigger whose timing is UPDATE was deleted.

• For the table that is referenced by the referencing table, change was made to the table definition of the primary
key column.

• For deletion

• The table definition of the referencing table was changed.

• An index was defined for the referencing table.

• An index of the referencing table was dropped.

• A trigger whose timing is DELETE was created for the referencing table.

• For the referencing table, a trigger whose timing is DELETE was deleted.

The triggers internally created by HiRDB are deleted when the referencing table is dropped (by DROP TABLE or
DROP SCHEMA).

(2) Relationship between referential constraints and user-defined triggers
The following explains the order of the operation of triggers, integrity checking for referential constraints, and
referential constraint operations (triggers generated internally by HiRDB when a referential constraint is defined)
when a trigger and referential constraint are defined for a table, and an update SQL (INSERT statement, UPDATE
statement, or DELETE statement) is to be executed. There are two operation order patterns, which depend on the
following conditions:

Condition for pattern 1:
The update target is the referenced table and only RESTRICT is specified for the referential constraint action, or
the update target is the referencing table.

12. Designing Tables

408

Condition for pattern 2:
The update target is the referenced table and the referential constraint action is not RESTRICT.

If the update target is the referencing table and is also the referenced table, the condition for the referenced table takes
precedence.

The order of the actions for each of the patterns is described below.

Pattern 1

#: All data integrity checking for the referential constraint takes place at this point. Following are the details of data
integrity checking:

1. When the update target is the referencing table
Checking for whether the update (INSERT, UPDATE) data is contained in the referenced table

2. When the update target is the referenced table
Checking for whether the update (UPDATE, DELETE) data is contained in the referencing table

3. When the update target is the referencing table and is also the referenced table
Checking of both 1 and 2 above

Pattern 2

12. Designing Tables

409

#: All data integrity checking for the referential constraint takes place at this point. Details of the integrity checking
are the same as for pattern 1.

12.19.7 Notes about linkage with related products
The following notes explain restrictions when linking with related products.

• When the inner replica facility is used

• When you create an inner replica of an RDAREA in which a referenced or referencing table is stored, use the
same generation number for all RDAREAs used to store table data having a referential relationship. If indexes
are defined for the referenced or referencing table, use the same generation number for the index storage
RDAREA and LOB RDAREA as is used for the RDAREAs that store the tables.

• If the referencing table in the original RDAREA is in check pending status, do not create an entity of the
replica RDAREA. Cancel the check pending status of the referencing table in the original RDAREA and then
create an entity for the replica RDAREA.

• When check pending status is set or canceled for all generations, the generations in command hold and in
closed status are handled as not having an entity of the replica RDAREA. Therefore, these areas are excluded
as targets for setting or canceling check pending status. If an RDAREA is excluded as a target for setting or
canceling check pending status even though it has an entity, first cancel the hold status of the RDAREA and
then use the integrity check utility to update the table information in the RDAREA.

• After executing the following operations, use the integrity check utility, specifying all generations to execute
data integrity checking for each table.

 PURGE TABLE statement
 Re-initialize RDAREA
 Delete replica RDAREA
 Integrate inner replica group

• When performing updatable online reorganization
Data integrity is not guaranteed when updatable online reorganization and database updating are performed in
batch mode. This means that, if you have set USE in the pd_check_pending operand, the referencing table

12. Designing Tables

410

might be in check pending status. In this case, use the integrity check utility to cancel check pending status. If
NOUSE is specified in the pd_check_pending operand, use the integrity check utility to forcibly place the
table into check pending status and then check data integrity. For details about how to check data integrity, see
12.19.5 Procedure for checking table integrity.

• Using HiRDB Datareplicator
Make sure that no referential constraint has been defined for the target table.

• Changing partitioning storage conditions
If you change the partition storage conditions for the referenced table or integrate or partition RDAREAs in such a
manner that existing data is deleted, data integrity is not guaranteed after the partition storage conditions have
been changed; in such a case, the user must check data integrity. For details about how to check data integrity, see
12.19.5 Procedure for checking table integrity.

12. Designing Tables

411

12.20 Check constraints

12.20.1 About check constraints
In many cases, there are restrictions on table data in a database, such as with respect to value ranges and conditions.
For example, when product information is stored in a database, a price cannot be a negative value. This means that no
negative value can exist in such a database and values should be checked for this constraint when data is inserted or
updated. The purpose of check constraints is to maintain data integrity in the table by checking constraint conditions
during data insertion or updating and suppressing the operation if checked data does not satisfy conditions. In this
manual, a table for which a check constraint has been defined is called a check constraint table.

Execution of a utility or other operation may cause loss of guaranteed data integrity. In such a case, the check
constraint table is placed in check pending status. For details about check pending status, see 12.20.3 Check pending
status; for details about operations that cause the loss of guaranteed data integrity, see 12.20.4 Data manipulation and
integrity.

Effects of check constraints
When check constraints are defined, the workload of UAP creation is reduced because checking can be automated
during data insertion or updating. However, when a check constraint table is updated, the processing time required
for checking increases because data integrity is checked.

12.20.2 Defining check constraints
You can define a check constraint by specifying CHECK in the CREATE TABLE definition SQL statement and the
constraint condition for table values as a search condition. Also, to use the check pending status, specify USE in the
pd_check_pending operand, or do not specify (omit) the operand.

(1) Limitations on tables for which check constraints are defined
This subsection describes limitations that apply to the definition of tables for which check constraints are defined and
to modification of the definitions of such tables.

(a) During table definition (CREATE TABLE)

• Check constraints cannot be defined for a falsification prevented table.

• You can define a maximum of 254 check constraints per table; you must be careful not to define more than 254
check constraints. The following shows an example of a table definition that is not valid:

This definition is invalid because there are more than 254 check constraints. This example would result in an error
during table definition.

• For each table, you can define a maximum of 254 check constraints separated by ANDs and ORs, including the
ANDs and ORs of search conditions in the individual check constraints (this number does not include ANDs and
ORs for search conditions in CASE expressions and in those search conditions). The following shows an example
of a table definition that is not valid:

12. Designing Tables

412

This example contains two check constraints, plus there are 200 ANDs in the search conditions in the constraint
named CHECK_T1_C1 and 53 ANDs in the search conditions in the constraint named CHECK_T1_C2. The sum
of the number of check constraints and the number of ANDs and ORs in the search conditions in the check
constraints is 255 (2 + 200 + 53), which is greater than 254. Therefore, this definition is invalid and would result
in an error during table definition.
The sum of the number of check constraints defined for the table and the number of ANDs and ORs in the search
conditions in each check constraint is stored in the N_CHECK_LIMIT column of the SQL_TABLE data dictionary
table.

(b) During table modification (ALTER TABLE)

• You cannot use the DROP and RENAME clauses in modifying the table definition of a check constraint table.

• You cannot use the CHANGE clause to modify a constraint table in the following ways:

• Changing the data type and data length

• Changing SPLIT
• Setting and releasing the default value

• Setting WITH DEFAULT
• The RENAME clause cannot be used to rename columns of a check constraint table.

(2) Notes when defining a check constraint

• Estimating the size of the SQL object buffer length
When you perform operations on a check constraint table, HiRDB generates triggers to check constraint
conditions. Therefore, you must take into account the SQL objects of the constraint conditions generated by
HiRDB when you specify the SQL object buffer. For details about how to estimate the SQL object buffer length
(pd_sql_object_cache_size), see the manual HiRDB Version 9 System Definition.

• Backing up data
The extent of data that is backed up differs depending on the check pending status at backup time. For details
about the backup time and extent, see RDAREAs to be backed up together in the HiRDB Version 9 System
Operation Guide.

• Reorganizing data dictionary RDAREAs
When you repeat definition and deletion of check constraint tables, storage efficiency of the data dictionary
RDAREA decreases. In such a case, use the database condition analysis utility (pddbst) to check the storage
efficiency of the data dictionary RDAREA and reorganize the area as necessary.

12.20.3 Check pending status
If data integrity can no longer be guaranteed due to execution of a utility or some other operation, HiRDB restricts
data manipulation in the check constraint table. The status in which data manipulation is restricted due to loss of
guaranteed data integrity is called check pending status. To place a check constraint table in check pending status for
the purpose of restricting data manipulation, you must either specify USE in the pd_check_pending operand or do
not specify (omit) the operand. You can use the integrity check utility (pdconstck) to clear the check pending status
of a table. You can also use the integrity check utility to forcibly place a table into check pending status.

If you have specified NOUSE in the pd_check_pending operand, data manipulation is not restricted even when
data integrity between tables cannot be guaranteed. In this case, if you execute an SQL statement or a utility that
nullifies the guarantee of data integrity, you can use the integrity check facility to forcibly place the table into check
pending status, and then check data integrity.

For details about operations that cause loss of guaranteed data integrity, see 12.20.4 Data manipulation and integrity.
For details of how to check data integrity, see 12.20.5 Procedure for checking table integrity.

(1) Managing check pending status
Check pending status is managed based on dictionary tables and on the table information of the RDAREAs in which
the tables are stored. In dictionary tables, check pending status is managed for each table and constraint. In table

12. Designing Tables

413

information, check pending status is managed for each RDAREA if the table is a partitioned table and for each table if
the table is not a partitioned table.

The following table lists and describes the storage locations of check pending status information.

Table 12‒23: Storage locations of check pending status information and their contents (check constraint)

Storage location Stored information

Dictionary
table

SQL_TABLES table CHECK_PEND2 column Check pending status of check constraint for each table

SQL_CHECKS table CHECK_PEND2 column Check pending status of check constraint for each
constraint

RDAREA table information For unpartitioned table Check pending status of check constraint or check
constraint for each table

For partitioned table Check pending status of referential constraint or check
constraint for each RDAREA

(2) Operations that are restricted for tables in check pending status
These restrictions are the same as those for the referential constraint. See 12.19.3(3) Operations that are restricted for
tables in check pending status.

(3) When a partitioned table or the inner replica facility is used
These restrictions are the same as those for the referential constraint. See 12.19.3(5) When a partitioned table or the
inner replica facility is used. However, replace the term referencing table with check constraint table.

(4) Notes on using check pending status

• If you change the value specified in the pd_check_pending operand from NOUSE to USE, you must use the
integrity check utility to check the data integrity of the check constraint table. For details about how to check data
integrity, see 12.20.5 Procedure for checking table integrity.

• If you specify USE in the pd_check_pending operand, referencing tables and RDAREAs placed in check
pending status are locked, and locked resources when a utility or an SQL statement is executed are different from
those when check pending status is not used.

12.20.4 Data manipulation and integrity
When a check constraint table is updated, added to, or deleted by a data manipulation SQL statement, HiRDB
performs checking during execution to guarantee data integrity. However, if the table is manipulated by the utilities
listed in the following table, data integrity may not be guaranteed because HiRDB does not perform integrity
checking. If you specify USE in the pd_check_pending operand and perform these operations, the check
constraint table is placed in check pending status.

Table 12‒24: Operations on check constraint tables that nullify the guarantee of data integrity and the
conditions under which loss of data integrity occurs

Operation on table or RDAREA Condition for loss of data integrity

Database load utility
(pdload)

Data reload Data that does not satisfy search conditions specified in the check
constraint definition is loaded.

Database reorganization utility
(pdrorg)

Reload (-k reld) Data that does not satisfy search conditions specified in the check
constraint definition is reloaded.

Updatable online reorganization reflection processing

(pdorend)
During operation of updatable online reorganization#, in a replica
RDAREA in the current database, you used the database load
utility (pdload) to perform an operation on a check constraint

12. Designing Tables

414

Operation on table or RDAREA Condition for loss of data integrity

table of the replica RDAREA, which caused a loss of data
integrity (loss of data integrity occurs after reflection processing).

#
For details about operating updatable online reorganization, see the HiRDB Version 9 Staticizer Option
Description and User's Guide.

12.20.5 Procedure for checking table integrity
The following figure shows an overview of the procedure for checking data integrity.

Figure 12‒41: Overview of the procedure for checking data integrity (check constraint)

When the value specified in the pd_check_pending operand is USE, or the operand is omitted:

1. Identify tables in check pending status.
Search SQL_TABLES of the dictionary table to detect the names of tables in check pending status.

SELECT TABLE_SCHEMA, TABLE_NAME FROM MASTER.SQL_TABLES
 WHERE CHECK_PEND = 'C' OR CHECK_PEND2 = 'C'

The owners and names of tables in check pending status are returned in the search result. If no rows are returned
in the search result, no tables are in check pending status.
To check whether each generation table is in check pending status when the inner replica facility is used, you can
use the condition analysis utility (pddbst).

2. Use the integrity check utility to check data integrity.
Use the integrity check utility to check the data integrity of each table and to correct any data that violates
constraint conditions. Repeat the procedure until no table remains in check pending status. For details about how
to use the integrity check utility to check data integrity, see 12.20.5(1) Procedure for checking data integrity when
check pending status is used (check constraint).

12. Designing Tables

415

When the value specified in the pd_check_pending operand is NOUSE:

1. Identify the tables for which you want to check data integrity, and forcibly place these tables into check pending
status.
Check whether a check constraint is defined for a table on which an operation that causes loss of guaranteed data
integrity was performed. The following shows an example of SQL code for checking this.

SELECT N_CHECK FROM MASTER.SQL_TABLES
 WHERE TABLE_SCHEMA = 'name-of-the-owner-of-the-target-table' AND TABLE_NAME = 'name-of-
the-target-table'

The following search result is returned:

• The number of check constraint definitions

When N_CHECK is a null value, no check constraint is defined for the target table.
After identifying the tables, use the integrity check utility to forcibly place the tables into check pending status
(you cannot use the integrity check utility to check tables that are not in check pending status).

2. Use the integrity check utility to check integrity.
This step is the same as the step 2 used when the value specified in the pd_check_pending operand is USE, or
the operand is omitted. The procedure for checking data integrity is the same as that used for a referential
constraint; for details, see 12.19.5(2) Procedure for checking data integrity when check pending status is not used.

(1) Procedure for checking data integrity when check pending status is used (check
constraint)

The following figure shows the procedure for checking integrity using the integrity check utility when the value
specified for the pd_check_pending operand is USE or is omitted.

12. Designing Tables

416

Figure 12‒42: Procedure for checking data integrity when check pending status is used (check constraint)

1. Check the data integrity of the tables to be checked.
Check the data integrity for each table and constraint.
If you use the inner replica facility, specify the generation numbers of the tables to be checked. If you do not use
the inner replica facility or if you plan to check the data integrity of all generations, you do not need to specify the
generation numbers.

2. Identify constraint violations.
Based on the results of the data integrity check performed in step 1, determine whether any data violates constraint
conditions.

3. Correct data that violates constraints.
Decide whether to use the utility or SQL code to correct the violating data. If you choose the utility, proceed to
step 6.

4. Stop operations on the tables to be checked.
Stop performing tasks that use tables for which data integrity cannot be guaranteed.

5. Forcibly cancel the check pending status of the tables to be checked.
Before taking action to resolve constraint violations, forcibly cancel the check pending status.

6. Take action to resolve constraint violations.

Using the utility:
The following table lists actions. After taking action, return to step 1 to perform data integrity checking,
confirm that no violating data remains, and complete the procedure.

12. Designing Tables

417

Condition Action

When correcting search conditions
specified in the check constraint

To correct search conditions:

1. Unload all data in the table.

2. Use DROP TABLE to delete the table definition.

3. Use CREATE TABLE to redefine the table. At this time, specify the correct check constraint
search conditions.

4. Load the data that was unloaded in step 1.

When there is constraint violation data
in the table

• Use the database load utility (pdload) to load data in creation mode.

• Use UOC for the database reorganization utility (pdrorg) to delete unnecessary data.

Using SQL code:
The following table lists actions. After taking action, proceed to step 7.

Condition Action

When correcting search conditions
specified in the check constraint

Same as the action when the utility is used.

When there is constraint violation data
in the table

Use the DELETE statement to delete the constraint violation data, or use the UPDATE statement
to update it to the correct value.#

#
If a referencing table references the table for which an action is to be taken, as a referenced table, you must
follow a specific order of corrections. For example, assume the following referential relationship exists:

 Notes when taking action for CHK1 constraint violations
If you use the DELETE statement to correct the data in table T1, if ON DELETE RESTRICT is specified in
REF1, first delete the corresponding data in table T2 and then delete the data in table T1. If you use the
UPDATE statement to correct the data, if ON UPDATE RESTRICT is specified in REF1, first delete the data in
table T2 that corresponds to the pre-update date and then update the data in T1.

7. Forcibly place the violated constraint into check pending status.
Execute the integrity check utility on each constraint, and forcibly place each constraint for which an action was
taken into check pending status.

8. Release the stopped operations.
Resume performance of stopped jobs. Return to step 1 to perform data integrity checking and to check for
violating data.

9. Check for the existence of more generations to be checked.
When you have created replica RDAREAs of multiple generations or have performed data integrity checking for
each generation, return to step 1 to check the data integrity of each generation.

12.20.6 Notes about linkage with related products
• When the inner replica facility is used

• If the referencing table in the original RDAREA is in check pending status, do not create an entity of the
replica RDAREA. Cancel the check pending status of the referencing table in the original RDAREA and then
create an entity for the replica RDAREA.

• When check pending status is set or canceled for all generations, the generations in command hold and in
closed status are handled as not having an entity of the replica RDAREA. Therefore, these areas are excluded
as targets for setting or canceling check pending status. If an RDAREA is excluded as a target for setting or

12. Designing Tables

418

canceling check pending status even though it has an entity, first cancel the hold status of the RDAREA and
then use the integrity check utility to update the table information in the RDAREA.

• After executing the following operations, use the integrity check utility, specifying all generations to execute
data integrity checking for each table.

 PURGE TABLE statement
 Re-initialize RDAREA
 Delete replica RDAREA
 Integrate inner replica group

• When performing updatable online reorganization

• Data integrity is not guaranteed when updatable online reorganization and database updating are performed in
batch mode. This means that, if you have set USE in the pd_check_pending operand, the check constraint
table might be in check pending status. In this case, use the integrity check utility to cancel check pending
status. If NOUSE is specified in the pd_check_pending operand, use the integrity check utility to forcibly
place the table into check pending status and then check data integrity. For details about how to check data
integrity, see 12.20.5 Procedure for checking table integrity.

• Using HiRDB Datareplicator
When you use HiRDB Datareplicator, there is no need to define check constraints for a target table because only
conforming data is applied.

12.20.7 Migrating check constraint tables to 64-bit mode
When you have migrated HiRDB from 32-bit mode to 64-bit mode, an attempt to insert or update data in a check
constraint table that was defined in the 32-bit mode will result in an error. To enable insertion and updating of data in
such a table in the 64-bit mode, you must restart HiRDB in the 64-bit mode and then re-define the check constraint
table. The following figure shows the basic procedure for migrating a check constraint table to 64-bit mode.

12. Designing Tables

419

Figure 12‒43: Basic procedure for migrating a check constraint table to 64-bit mode

To migrate a check constraint table to 64-bit mode:

1. Check for any check constraint tables.
To determine whether there are any check constraint tables, execute the following SQL statement:
SELECT TABLE_SCHEMA,TABLE_NAME FROM MASTER.SQL_TABLES WHERE N_CHECK > 0
If the number of resulting rows is 1 or greater, there is a check constraint table. In the search results,
TABLE_SCHEMA indicates the owner of each check constraint table and TABLE_NAME indicates the name of
each check constraint table.

2. Check for a view table.
If a check constraint table is dropped, the view tables that used the check constraint table are also dropped.
Therefore, you must check for any view tables that used a check constraint table. To check for any view tables that
used a check constraint table, execute the following SQL statement:
SELECT VIEW_SCHEMA,VIEW_NAME FROM MASTER.SQL_VIEW_TABLE_USAGE
 WHERE BASE_OWNER=owner-of-check-constraint-table AND TABLE_NAME=name-of-
check-constraint table

12. Designing Tables

420

If the number of resulting rows is 1 or greater, there is a view table that used the check constraint table. In the
search results, VIEW_SCHEMA indicates the owner of a view table and VIEW_NAME indicates the name of a view
table.

3. Create a view definition statement.
Use the pddefrev command (create a definition SQL statement) to create a view definition statement.

4. Check for a referencing table.
If a primary key has been defined for a check constraint table and a referencing table that references that primary
key has been defined, that check constraint table cannot be dropped. The referencing table referencing that
primary key must be dropped. To check for any referencing table that references the primary key of a check
constraint table, execute the following SQL statement:
SELECT CONSTRAINT_SCHEMA,TABLE_NAME
 FROM MASTER.SQL_REFERENTIAL_CONSTRAINTS
 WHERE R_OWNER= owner-of-check-constraint-table AND R_TABLE_NAME=name-
of-check-constraint table

If the number of resulting rows is 1 or greater, there is an applicable referencing table. In the search results,
CONSTRAINT_SCHEMA indicates the owner of a referencing table and TABLE_NAME indicates the name of a
referencing table.

5. Check for a view table.
If the referencing table is dropped, any view tables that used the referencing table are also dropped. Therefore, you
must check for any view tables that used the referencing table. To check for any view table that used a referencing
table, execute the following SQL statement:
SELECT VIEW_SCHEMA,VIEW_NAME FROM MASTER.SQL_VIEW_TABLE_USAGE
 WHERE BASE_OWNER=owner-of-referencing-table AND TABLE_NAME=name-of-
referencing-table

If the number of resulting rows is 1 or greater, there is a view table that used the referencing table. In the search
results, VIEW_SCHEMA indicates the owner of a view table and VIEW_NAME indicates the name of a view table.

6. Create a view definition statement.
Use the pddefrev command (create a definition SQL statement) to create a view definition statement using the
referencing table that references the check constraint table.

7. Create a table definition statement, unload data, and drop the referencing table.
Use the pddefrev command (create a definition SQL statement) to create a table definition statement for the
referencing table. After the table definition statement has been created, unload data from the referencing table that
is to be dropped, then drop the referencing table.

8. Create a table definition statement, unload data, and drop the check constraint table.
Use the pddefrev command (create a definition SQL statement) to create a table definition statement for the
check constraint table. After the table definition statement has been created, unload data from the check constraint
that is to be dropped, then drop the check constraint table.

9. Re-define the check constraint table and index.
Use the table definition statement created in step 8 to re-define the check constraint table and index.

10. Check for a referencing table.
In the same manner as in step 4, check for any referencing table that references the check constraint table re-
defined in step 9.

11. Re-define the referencing table and index.
If there is a referencing table that references the check constraint table re-defined in step 9, re-define the
referencing table and index using the table definition statement created in step 7.

12. Re-define the view table.
If there is a view table that used the check constraint table or that used the referencing table, re-define the view
table using the view table definition statement created in steps 3 and 6.

13. Execute ALTER ROUTINE.
Execute the ALTER ROUTINE definition SQL statement because the function may have been disabled due to
dropping of tables and view tables.

14. Reload data into the referencing table and check constraint table.
Reload data to the re-defined tables.

12. Designing Tables

421

12.21 Compressed tables

12.21.1 Data compression facility
You can compress the data that HiRDB stores in a table. This is called the data compression facility. Data compression
is specified for individual columns. A column in which compressed data is stored is called a compressed column, and
a table containing a compressed column is called a compressed table.

Compressing data provides the following advantages:

• The database size is reduced.

• There is no need for UAPs to perform data compression processing.

The following figure provides an overview of data compression.

Figure 12‒44: Overview of data compression

Explanation:
There is no need for the user to provide instructions for data compression and expansion because HiRDB performs
this processing.

(1) Criteria
We recommend that you compress a table that contains large variable-length binary data, such as images and audio
data. Because there is overhead for compression and expansion processing that is associated with compressed tables,
you should use compressed tables in a system that values storage efficiency over performance.

(2) Guidelines for data compression efficiency
Compression efficiency is a representation of how much storage space can be saved after compression versus before
compression. Use the following formula to determine compression efficiency:

Compression efficiency (%) =

{pre-compression data length - post-compression data length) pre-compression data length} 100

The relationship between the data compression rate and the compression efficiency is as follows:

compression rate + compression efficiency = 100

For details about how to measure the compression rate, see 12.21.7 How to measure the data compression rate.

12. Designing Tables

422

The table below provides guidelines for evaluating data compression efficiency. Note that the compression efficiency
values shown in the table are only guidelines. The actual data compression rate and compression efficiency depend on
the specific data to be compressed.

Table 12‒25: Guidelines for compression efficiency

Data type Compression efficiency (%)

BINARY data consisting of the same characters 98.51

Completely random BINARY data -0.36#

Text data (.txt) 58.50

Image data (.bmp) 75.42

Audio data (.wav) 9.46

#
This compression efficiency is a negative value because a header area is added during compression processing.
For details about the compression processing, see 12.21.2 How data is compressed.

(3) Files that are output by HiRDB when compressed tables are manipulated
The following table shows the data status in files that are output by HiRDB when compressed tables are manipulated.

Table 12‒26: Data status in files that are output by HiRDB

Processing File Data status

Execution of SQL statements that require a work
table file

Work table file Expanded data

Database update processing System log file Compressed data

System log unload processing Unload log file

Database backup processing (pdcopy command) Backup file

Table reorganization processing

(pdrorg -k rorg command)

Unload data file Compressed data#

Table unload processing

(pdrorg -k unld command)

Expanded data

#: If reorganization is performed by using UOC, the expanded data is stored in a table.

(4) Error handling
If an error occurs in an RDAREA containing the data and indexes of a compressed table, you can recover the
RDAREA by using the database recovery utility (pdrstr) in the same manner as for normal database recovery.

12.21.2 How data is compressed
The compression library used during data compression is zlib. HiRDB uses zlib to compress data into segments of
the split compression size specified when the table is defined (default: MIN (32,000 bytes, definition length for the
compressed column)). For purposes of managing information about the data before and after compression, HiRDB
adds a header area (8 bytes) to each segment of the split compression size (this is separate from the header area added
to the compressed data by zlib).

If the data length is the same before and after compression, or the data length is greater after compression than before
compression, HiRDB stores the data without compressing it. Because of the header areas that are added, the data size

12. Designing Tables

423

after compression might be greater than the data size before compression. The following figure shows data before and
after compression.

Figure 12‒45: Data before and after compression

12.21.3 How to define a compressed table
To define a compressed table, use the compression specification (COMPRESSED) in the column definition in the
CREATE TABLE definition SQL statement. If necessary, also specify a split compression size. Note that the following
conditions apply to the compression specification:

• A compression specification can only be specified for columns (it cannot be specified for tables).

• A compression specification can only be specified for columns of the following data types:

• BINARY type whose definition length is 256 bytes or greater

• Abstract data type (XML type)#

#
To compress data in a column with the abstract data type (XML type), HiRDB XML Extension version 09-03 or
later is required.

12.21.4 How to convert an existing table to a compressed table

(1) Converting columns in an existing table to compressed columns
The column attribute change definition (CHANGE column-name) of the ALTER TABLE definition SQL statement
cannot be used to change a column to a compressed column. Instead, you must use the procedure below to convert
columns in an existing table to compressed columns.

To convert columns to compressed columns:

1. Unload the existing table.
Unload the existing table.

2. Delete the existing table.

12. Designing Tables

424

Use DROP TABLE to delete the existing table.

3. Redefine the table.
Use CREATE TABLE to redefine the table with the compression specification made for each column that is to be
changed to a compressed column. Do not make any changes other than to add the compression specification.

4. Reload the table.
Reload the unload data file that was unloaded in step 1 to the table that was redefined in step 3.

For details about unloading and reloading data, see the manual HiRDB Version 9 Command Reference.

Reference note
When the column to be changed to a compressed column is the last column of a table, steps 2 and 3 above can be replaced
with the following step:

• Delete the existing column and add a compressed column
Use PURGE TABLE to remove all data from the table and then the column deletion definition (DROP column-name) of
ALTER TABLE to delete the column that is to be changed to a compressed column. Next, use the column addition
definition (ADD column-name) of ALTER TABLE to redefine (add) the table using the compression specification for the
column that was deleted.

(2) Adding a compressed column at the end of an existing table
Use the column addition definition (ADD column-name) of the ALTER TABLE definition SQL statement to add a
compressed column with the compression specification. Then load data into the compressed column. The data is
compressed and stored in the column.

Reference note
The column addition definition of ALTER TABLE adds a column at the end of a table. Therefore, a compressed column can
be added only at the end of a table.

12.21.5 How to change the definition of a compressed column (removing
the compression specification for a column)

The column attribute change definition (CHANGE column-name) of the ALTER TABLE definition SQL statement
cannot be used to change the definition of a compressed column. To change the definition of a compressed column,
such as removing the compression specification or changing the split compression size, you must use the procedure
below.

To change the definition of a compressed column:

1. Unload the compressed table.
Unload the compressed table whose definition is to be changed.

2. Redefine the table.
Use one of the following methods to redefine a table whose compression specification has been changed or
removed:

• Redefining the table
Use DROP TABLE to delete the compressed table and then use CREATE TABLE to redefine the table whose
compression specification was changed or removed.

• Deleting and adding columns
Use PURGE TABLE to remove all data from the table and then use the column deletion definition (DROP
column-name) of ALTER TABLE to delete the compressed column. Next, use the column addition definition
(ADD column-name) of ALTER TABLE to add the column whose compression specification was changed or
removed.
Note that the column addition definition of ALTER TABLE adds a column at the end of a table. Therefore, the
compression specification can be changed or removed only for the last column.

3. Reload the table

12. Designing Tables

425

Reload the unload data file that was unloaded in step 1 to the table that was defined in step 2.

For details about unloading and reloading data, see the manual HiRDB Version 9 Command Reference.

12.21.6 Notes about using compressed tables
• When data in compressed columns is manipulated by SQL statements and utilities, overhead is required for

compression and expansion processing. You can check the statistical information about a UAP provided by the
statistics analysis utility (pdstedit) to determine the time required for compressing and expanding BINARY
type data. Note that the processing time cannot be checked for an abstract data type (XML type).

• The data compression efficiency becomes higher as the split compression size is increased, although this also
depends on the nature of the data to be compressed. If the split compression size is large, more process private
area is required to execute some SQL statements# that involve storing and extracting data in compressed columns.
In order to avoid a memory shortage, specify an appropriate split compression size taking into account the
available memory in the system and the value of the pd_max_access_tables operand. For details about the
increase in the process-specific memory requirement, see 15.1.6(9) Determining the size of the memory required
to execute data manipulation SQL statements on compressed columns for a HiRDB single server configuration
and 15.2.6(9) Determining the size of the memory required to execute data manipulation SQL statements on
compressed columns for a HiRDB parallel server configuration.

• If an error occurred during table reorganization processing and an unload data file (file unloaded by pdrorg -k
rorg) that contains compressed data is to be reloaded during the course of responding to the error, the table's
compression specifications (whether compression specifications are used and the specified split compression size)
must be the same for the unload source and the reload target. If the table contains a column whose compression
specifications differ, pdrorg will terminate with an error.

• If a compressed table is to be rebalanced in shared mode, the time required for the processing might be longer
when the table contains compressed columns than when the table does not contain any compressed columns
because of the time required for data compression and expansion processing. If you want to reduce the execution
time, use exclusive mode.

#: This applies to the following SQL statements:

• SQL statements using the SUBSTR function

• SQL statements using the POSITION function

• SQL statements involving backward deletion/updating

12.21.7 How to measure the data compression rate
This subsection explains how to measure the data compression rate. Use the methods described here to see how much
data will actually be compressed before you compress and store data, or to see how much data was compressed after
you have stored data. Note that for columns of the abstract data type (XML type), the data compression rate cannot be
measured after columns have been compressed and stored because such columns cannot be checked by pddbst.

(1) How to measure the data compression rate before data is compressed and stored
The data compression rate depends greatly on the nature of the data to be compressed. An exact compression rate
cannot be obtained until after data has actually been compressed and stored. However, you can obtain an estimate of
the compression rate by using the approximate length of the data compressed by gzip.# The formula is shown below.

#
gzip uses a compression algorithm that is equivalent to the one used by HiRDB (Deflate).

Formula:

compression rate (%) =

{(data length after compression obtained by gzip 1.05#) data length before compression} 100

12. Designing Tables

426

#
An extra 5% is added to the compressed data size because of differences between zlib and gzip in the format
of the headers that are added during compression processing for managing compression information.

(2) How to measure the data compression rate after data has been compressed and stored
The following shows the formula for obtaining an approximate compression rate after data has actually been
compressed and stored.

Formula:

compression rate (%) =

(sum of data lengths after compression#1 sum of data lengths before compression#2)#3 100

#1: The following shows the calculation procedure:

1. Execute the database condition analysis utility (pddbst) with the -d option specified for each RDAREA or
table.

2. Based on the <BINARY segment> information in the output results, use the following formula to obtain the
length of the compressed data:

10

ni a b

i=1

ni: Maximum value of each ratio indicated as Used Page Ratio (number of used pages for each ratio) for
binary-only segments (for example, if Used Page Ratio is 1 to 10%, then the maximum value is 0.1 (10%);
if it is 11 to 20%, the maximum value is 0.2 (20%)).
a: Page value corresponding to ni

b: Page size of binary-only segment

3. If the RDAREA or table processed in step 1 contains both compressed and uncompressed columns of the
BINARY type, the data lengths of the uncompressed columns are subtracted from the results obtained in step
2. The data lengths of uncompressed columns are obtained by executing the following SQL statement:

select sum (length(uncompressed-column-name)) from table-identifier [in RDAREA-name]

#2
The length of the uncompressed data is obtained by executing the same SQL statement as is used for obtaining the
data length of an uncompressed column (see step 3 in footnote #1).

#3
A value of 1.0 or greater means that the data length has increased after compression processing or that the effects
of compression are small. In such a case, we recommend that you remove the compression specifications by
changing the definitions of the columns to be compressed. For details about removing the compression
specification, see 12.21.5 How to change the definition of a compressed column (removing the compression
specification for a column).

12. Designing Tables

427

12.22 Temporary tables
A temporary table is a base table that exists only during a transaction or an SQL session. A temporary table that exists
only during a transaction is called a transaction-specific temporary table, and a table that exists only during an SQL
session is called a SQL session-specific temporary table.

Temporary tables are not created when the table is defined. A temporary table is created when the first INSERT
statement for the table is executed. This is called instantiating a temporary table.

A temporary table is created for each connection that is established for a single table definition (by executing the
CONNECT statement). Therefore, a temporary table is not affected by data operations (SELECT, INSERT, UPDATE,
and DELETE statements) by another user even when multiple users use temporary tables at the same time. A
temporary table and the indexes defined for the temporary table (temporary table index) are stored in a temporary
table RDAREA and are deleted automatically when the transaction is completed or the SQL session is terminated. For
details about temporary table RDAREAs, see 14.7 Temporary table RDAREAs.

The following figure provides an overview of temporary tables.

Figure 12‒46: Overview of temporary tables

Effects of using temporary tables

• If you perform complex processing during a transaction or SQL session, you can use a temporary table as a
work table to store intermediate processing results and then obtain final results after further processing.

• If a part of a table containing many data items is accessed frequently during a transaction or SQL session, you
can reduce the number of input and output operations by storing the corresponding data in a temporary table,
thereby improving performance.

• Because temporary tables are deleted automatically when transactions are completed or SQL statements are
terminated, no postprocessing is required by UAPs, thereby reducing the workload for UAP creation.

Criteria for temporary tables
We recommend that you use temporary tables for transactions that frequently access only part of a table containing
many data items and for batch jobs that perform complex processing for which intermediate processing results
need to be stored temporarily.

12. Designing Tables

428

12.22.1 Valid period of data in temporary tables
The valid period of data (period in which entities exist) in an instantiated temporary table depends on whether the
temporary table is a transaction-specific temporary table or an SQL session-specific temporary table. The table below
describes when the valid period of data begins and ends for a temporary table. Figure 12-47 and Figure 12-48 show
examples of a valid period of data and the data stored at a given point in time.

Table 12‒27: Start and end of a valid period of data for temporary tables

Type of temporary table Start timing End timing

Transaction-specific temporary
table

When the first INSERT statement is
executed on the temporary table during a
transaction

When the transaction is completed

SQL session-specific temporary
table

When the first INSERT statement is
executed on the temporary table during an
SQL session

• When the SQL session is completed

• When the back-end server that instantiated
the temporary table is terminated

• When the unit containing the back-end server
that instantiated the temporary table is
terminated

• When a system switchover occurs on the
back-end server that instantiated the
temporary table or on the unit containing that
back-end server

Figure 12‒47: Example of a valid period of data and the data stored at a given point in time (1)

Explanation:
The following table shows at time T the data contained in temporary tables TMP1 and TMP2 which are used by
SQL sessions 1 and 2:

SQL session Temporary table Data contained

SQL session 1 TMP1 Data inserted in 4

TMP2 Data inserted in 1 and 3

SQL session 2 TMP1 No data at this point in time

TMP2 Data inserted in 1 and 3

12. Designing Tables

429

Figure 12‒48: Example of a valid period of data and the data stored at a given point in time (2)

Explanation:
The following table shows at times T1 and T2 the data contained in temporary table TMP2 which is used by the
SQL sessions 1 and 2:

Time SQL session Data contained

T1 SQL session 1 There is no data at this point in time, because the table data was
deleted in 2. However, there is an instantiation of TMP2.

SQL session 2 Data inserted in 1

T2 SQL session 1 Data inserted in 3 and 4

SQL session 2 There is no data at this point in time. There is no instantiation of
TMP2, because processing has rolled back to the synchronization
point before TMP2 was instantiated.

! Important note

• Performing search, update, or deletion processing on a temporary table whose valid period of data has expired has
the same result as when an SQL statement is executed on an empty table.

• For a HiRDB parallel server configuration, if a back-end server on which a SQL session-specific temporary table
has been instantiated (or the unit containing such a back-end server) terminates abnormally or results in a system
switchover, the valid period of data ends. Therefore, if data manipulation is attempted on the corresponding
temporary table before the SQL session terminates, an SQL error results.

12.22.2 How to define temporary tables and temporary table indexes

(1) How to define temporary tables
Specify GLOBAL TEMPORARY in the CREATE TABLE definition SQL statement. To define a transaction-specific
temporary table, specify ON COMMIT DELETE ROWS. To define an SQL session-specific temporary table, specify ON
COMMIT PRESERVE ROWS. Note that for temporary tables, some operands are not allowed or are ignored if
specified. For details, see CREATE TABLE in the manual HiRDB Version 9 SQL Reference.

(2) How to define temporary table indexes
The method is basically the same as when normal indexes are defined. For temporary table indexes, some operands
are not allowed or are ignored if specified (as is the case with temporary tables). For details, see CREATE INDEX in
the manual HiRDB Version 9 SQL Reference.

12. Designing Tables

430

(3) How to specify a temporary table RDAREA for storing data
Specify in PDTMPTBLRDAREA in the client environment definition the name of a temporary table RDAREA that can
be used. If you specify multiple RDAREAs or have omitted this environment definition, HiRDB determines the
temporary table RDAREA to use for storing data according to the following rules:

• When multiple RDAREAs are specified in PDTMPTBLRDAREA
If the specified RDAREAs include both a temporary table RDAREA with the SQL session-specific attribute and a
temporary table RDAREA with the SQL session shared attribute, HiRDB uses the temporary table RDAREA with
the SQL session-specific attribute.

• When PDTMPTBLRDAREA is omitted
HiRDB uses a temporary table RDAREA with the SQL session shared attribute.

Note that in an XDS client, the specification is assumed to be omitted because PDTMPTBLRDAREA is ignored.

12.22.3 Rules for choosing an RDAREA for storage
When there are multiple temporary table RDAREAs, or when PDTMPTBLRDAREA is omitted from the client
environment definition, HiRDB chooses a temporary table RDAREA for storing data. This subsection explains how
HiRDB chooses the target RDAREA to use for storage.

(1) Choosing a target back-end server for storage (applicable to HiRDB parallel server
configurations only)

For a HiRDB parallel server configuration, HiRDB first chooses a back-end server for storing data. HiRDB narrows
down the candidate back-end servers based on the rules described below and then chooses a back-end server that
accesses a base table that is not a temporary table among all the base tables specified in the INSERT statement.

• When RDAREAs are specified in PDTMPTBLRDAREA in the client environment definition
HiRDB chooses as the storage candidate the back-end server containing the specified RDAREAs.
If the specified RDAREAs include both temporary table RDAREAs with the SQL session-specific attribute and
with the SQL session shared attribute, HiRDB uses the back-end server that contains the temporary table
RDAREA with the SQL session-specific attribute.

• When no RDAREAs are specified in PDTMPTBLRDAREA in the client environment definition
HiRDB chooses as the storage candidate the back-end server containing a temporary table RDAREA with the
SQL session shared attribute.
Tip

When HiRDB chooses a target back-end server for storage, it preferentially chooses a back-end server that accesses a
base table that is not a temporary table among all the base tables specified in the INSERT statement. Therefore, you can
avoid data transfer between back-end servers if you use INSERT SELECT as shown in the following example.

Example: INSERT INTO TMP1 SELECT C1,C2,C3 FROM T1
This SQL statement inserts into temporary table TMP1 columns C1, C2, and C3 from table T1.
The figure below show the configuration for executing this SQL statement. In this example, RDTMP1 and RDTMP2
are specified in PDTMPTBLRDAREA.

12. Designing Tables

431

In this example, HiRDB chooses BES1 that contains table T1 as the target back-end server for storage. As a result,
SQL statements can be executed without having to transfer data between BES1 and BES2.

(2) Choosing storage candidate RDAREAs
HiRDB chooses the storage candidate RDAREAs based on the specification of PDTMPTBLRDAREA in the client
environment definition. For details about the specification of PDTMPTBLRDAREA, see 12.22.2(3) How to specify a
temporary table RDAREA for storing data.

(3) Choosing the RDAREAs that satisfy the conditions
From the storage candidate RDAREAs, HiRDB chooses RDAREAs that satisfy all the following conditions:

• RDAREAs that allow locks for temporary table operations to be acquired.
For details about acquiring locks for temporary table operations, see 12.22.5 Locking for temporary tables.

• RDAREAs that are accessible from the UAP.

• If the temporary table to be stored is a FIX table, RDAREAs that can accommodate the temporary table's row
length.
For details, see rule 3 for the FIX operand in CREATE TABLE in the manual HiRDB Version 9 SQL Reference.

• RDAREAs that can accommodate the total length of the columns that comprise any temporary table indexes that
are to be stored.
For details, see common rule 5 in CREATE INDEX in the manual HiRDB Version 9 SQL Reference.

• RDAREAs for which the usage count for temporary tables is less than 500.

• RDAREAs for which the usage count for temporary table indexes is less than 500.

• RDAREAs that have unused segments.

• RDAREAs for which the total number of temporary tables and temporary table indexes does not exceed the
specified pd_max_temporary_object_no operand value.

• If ACCESS is specified in the pd_tmp_table_initialize_timing operand, RDAREAs that are
uninitialized temporary table RDAREAs.
For details about initialization of temporary table RDAREAs, see 14.7(4) Initializing the temporary table
RDAREAs.

(4) Choosing the temporary table RDAREA in which to store data
Among the RDAREAs satisfying the conditions, HiRDB preferentially uses the following temporary table
RDAREAs:

• The temporary table RDAREA that contains the largest number of unused segments

• An uninitialized temporary table RDAREA if ACCESS is specified in the
pd_tmp_table_initialize_timing operand.
For details about initialization of temporary table RDAREAs, see 14.7(4) Initializing the temporary table
RDAREAs.

12.22.4 Processing when there are no available temporary table
RDAREAs

If no temporary table RDAREAs exist when HiRDB attempts to store data in a temporary table, HiRDB issues the
KFPA19704-E message and ignores the transaction. In such a case, the cause of the error indicated in the
KFPA19704-E message applies only to the first storage candidate RDAREA. If you have taken appropriate action
for the RDAREA displayed in the message but the same message is issued again, check the status of other temporary
table RDAREAs and take appropriate action for them also.

12. Designing Tables

432

Action to be taken:
Execute the pddbls -T command.
Check the execution results to see if there is an RDAREA for which OCCUPIED or SHARED is displayed for
RDAREA_FOR_TEMPORARY_TABLE.

• There is no RDAREA for which OCCUPIED or SHARED is displayed
If there are no available temporary table RDAREAs, you must add a temporary table RDAREA with the SQL
session-specific attribute. If necessary, specify that RDAREA in PDTMPTBLRDAREA in the client
environment definition.

• There are RDAREAs for which OCCUPIED or SHARED is displayed
If there are temporary table RDAREAs, then none of them satisfies the storage conditions (for details about
the storage conditions, see 12.22.3(3) Choosing the RDAREAs that satisfy the conditions). In order to
determine which conditions are not satisfied, execute pddbls -a -T and pddbst -k -phys on the
temporary table RDAREAs. Check the execution results for the items described in the table below and take
appropriate action for the conditions that are not satisfied.

Table 12‒28: Check items and actions

No. Command Check item Description Action

1 pddbls -a -T STATUS RDAREA's status If the RDAREA is in any of the
following statuses, you must take the
appropriate action explained below:

• Closed

• Shut down

• Status in which the pdhold
command has been accepted

Change the RDAREA status by
opening it or releasing its shutdown
status so that the UAP can access the
RDAREA. If the RDAREA is in error
shutdown status, use the pdmod
command to re-initialize the temporary
table RDAREA (initialize
rdarea statement).

2 SEGMENT Number of unused
segments in the
RDAREA

If there are no unused segments, use
the pdmod command to take one of
the following actions:

• Add a temporary table RDAREA
(create rdarea statement)

• Re-initialize the existing
temporary table RDAREA
(initialize rdarea
statement)

• Expand the existing temporary
table RDAREA (expand
rdarea statement)

• Change the attribute of the existing
temporary table RDAREA
(alter rdarea) to apply
automatic extension.

3 pddbst -k -phys Page Size RDAREA's page length If the condition for page length is not
satisfied, take one of the following
actions:

• Add a temporary table RDAREA
that satisfies the condition for page
length.

12. Designing Tables

433

No. Command Check item Description Action

• Change the page length of the
existing temporary table RDAREA
so that it satisfies the condition.

4 Unused Segment Number of unused
segments in the
RDAREA

Same as 2 above

12.22.5 Locking for temporary tables
A temporary table contains specific data for a particular transaction or SQL session and is not available to be accessed
by other users. In general, therefore, HiRDB does not acquire locks for table operations other than when a temporary
table is instantiated. This subsection explains locking for temporary tables.

(1) Locks acquired when temporary tables are instantiated
When a temporary table is instantiated, HiRDB acquires the locks shown in the following table.

Table 12‒29: Locks acquired when a temporary table is instantiated

Resource
type name Description

Unlock timing

Transaction-specific
temporary table

SQL session-specific
temporary table

RDAR RDAREA (table and index#1 storage
RDAREA)

When the transaction is
completed

When the DISCONNECT
statement is completed

TABL Table

RATM User directory table information

RAIM User directory index information#1

SBMB User directory segment information

TEMP Temporary table instantiation control
information

After the temporary table has
been instantiated#2

TPID User-specific ID management (temporary
table)

When the DISCONNECT
statement is completed

RDAS RDAREA status management After the temporary table has
been instantiated#2

RRAM,

TRAL,

TRAI

RDAREA management information

PTBL Table for preprocessing When the DISCONNECT
statement is completed

#1
Applicable only if there is a temporary table index.

#2
A lock for this resource is acquired temporarily during instantiation.

(2) Locks acquired for operations on temporary tables
When the following SQL statements are executed, a lock is acquired only for the preprocessing table (PTBL):

• LOCK statement

12. Designing Tables

434

• CREATE INDEX statement

• DROP INDEX statement

• DROP TABLE statement

Note that executing the following SQL statements on a temporary table will not lock pages, rows, or key values:

• SELECT statement

• INSERT statement

• UPDATE statement

• DELETE statement

• PURGE TABLE statement

(3) Operations that might result in a lock-release wait status or an execution error
If you are performing an operation on a temporary table and, at the same time, you execute any of the following
operations, a lock-release wait status or an execution error might result:

• pdclose (close a temporary table RDAREA)

• pdhold (shut down a temporary table RDAREA)

• pdopen (open a temporary table RDAREA)

• pdrels (release a temporary table RDAREA from shutdown status)

• create rdarea statement in the pdmod command (add a temporary table RDAREA)

• initialize rdarea statement in the pdmod command (re-initialize a temporary table RDAREA)

• remove rdarea statement in the pdmod command (delete a temporary table RDAREA)

• CREATE INDEX statement (define a temporary table index)

• DROP INDEX statement (delete a temporary table index)

• DROP SCHEMA statement (delete a schema)

• DROP TABLE statement (delete a temporary table)

12.22.6 Limitations on the use of temporary tables

(1) Operation commands and utilities
The operation command and the utilities listed below cannot be executed on temporary tables. For details, see the
manual HiRDB Version 9 Command Reference.

• pdorbegin command

• Optimizing information collection utility (pdgetcst)

• Database load utility (pdload)

• Global buffer residence utility (pdpgbfon)

• Free page release utility (pdreclaim)

• Database reorganization utility (pdrorg)

(2) SQL statements
Limitations (such as that temporary tables and temporary table indexes cannot be specified) apply to the SQL
statements listed below. For details, see the manual HiRDB Version 9 SQL Reference.

• Definition SQL statements
ALLOCATE MEMORY TABLE

12. Designing Tables

435

ALTER INDEX
ALTER TABLE
CREATE INDEX
CREATE TABLE
CREATE TRIGGER
DROP INDEX
DROP SCHEMA
DROP TABLE
GRANT
REVOKE

• Data manipulation SQL statements
ALLOCATE CURSOR statement
ASSIGN LIST statement
DECLARE CURSOR statement
Dynamic SELECT statement
SELECT statement (table reference, query expression format 2)
DELETE statement
UPDATE statement

• Control SQL statements
COMMIT statement
DISCONNECT statement
ROLLBACK statement
LOCK TABLE statement
SET SESSION AUTHORIZATION statement

12. Designing Tables

436

13 Designing Indexes
This chapter explains items that should be examined during design of an index with a
B-tree structure or a plug-in index.

437

13.1 Items to be examined during index design
An index is created to improve table processing performance. However, a poorly designed index can have an adverse
effect on performance. You should examine the methodology for creating effective indexes. Also, table processing
performance and operability vary depending on the method used to store indexes in user RDAREAs. You should take
these points into account when designing an index.

The following table lists items to consider when you are designing an index.

Table 13‒1: Items to consider when you are designing an index

Design task and items
to be examined Advantages Disadvantages Section

Index creation Table search performance is improved. As the number of indexes created
increases, overhead for index update
processing also increases.

13.2

Index row partitioning Table storage RDAREAs and index storage
RDAREAs can be managed on a one-by-one
basis, thereby improving utilities' operability.

If a non-partitioning key index is
partitioned, the performance of a search
using an index is reduced.

13.3

Creation of plug-in index If a plug-in index is created in a column
defined as an abstract data type using the
index type provided by a plug-in, table
search performance is improved.

As the number of indexes created
increases, overhead for index update
processing also increases.

13.4

Plug-in index row
partitioning

User LOB RDAREAs can be handled
independently during batch index creation.

Row partitioning results in an increase in
RDAREAs. When backing up a database
with RDAREAs specified or when
reorganizing the database, note that the
table and index have a one-to-one
correspondence.

13.5

13. Designing Indexes

438

13.2 Index
This section describes the design of an index that has a B-tree structure.

13.2.1 Creating an index

(1) Effects of indexes

Improved performance
Table retrieval performance improves when an index is created for a column that is used as the key for table
retrieval.

(2) Criteria
An index should be created for the following columns:

• Column used as a condition for narrowing the data to be retrieved

• Column used as a condition for table join processing

• Column used as a condition for data sorting or grouping

• Component column for which a referential constraint has been defined (foreign key)

An index should not be created for the following columns (if an index is created for such a column, retrieval
performance will be degraded):

• Column that is updated frequently

• Column that contains many duplicated values

(3) Creation procedure
The CREATE INDEX definition SQL is used to create an index for a table.

(4) Common rules

1. A maximum of 255 indexes can be defined per table.

2. Indexes can be defined for columns with null values or columns with no rows.

3. Indexes cannot be created for view tables.

4. When optimizing indexes based on cost, use the optimizing information collection utility (pdgetcst command)
to collect optimizing information as necessary to improve the accuracy of optimization. For details about the
necessity of executing this utility, see Optimizing information collection levels in the manual HiRDB Version 9
Command Reference.

(5) Data types for which indexes cannot be defined
Indexes cannot be specified for columns of the following types:

• BLOB
• BINARY
• Abstract data types

(6) Maximum index key length
The length of an index key must satisfy the following condition; if this condition is not satisfied, the index cannot be
defined:

13. Designing Indexes

439

Index key length (bytes)
 MIN{ (index-storage-RDAREA-page-size 2) - 1,242, 4,036}

If the page size of the index storage RDAREA is 4,096 bytes, the maximum key length that can be specified for an
index is 806 bytes. For details about index key length, see Table 16-5 List of index key lengths.

For a multicolumn index, the total index key length is the total of the key lengths of the columns that make up the
index.

(7) Notes
The same index cannot be created more than once for the same table. The following examples show how indexes can
be regarded as being the same index in spite of having different index names.

 Single-column index

CREATE INDEX index-1 ON table-1 (column-1 ASC)
CREATE INDEX index-2 ON table-1 (column-1 DESC)

In this case, index-2 is treated as the same index as index-1. Therefore, index-1, which was defined first, is the
valid one.

 Multicolumn index

CREATE INDEX index-1 ON table-1 (column-1 ASC, column-2 ASC)
CREATE INDEX index-2 ON table-1 (column-1 DESC, column-2 DESC)

or

CREATE INDEX index-1 ON table-1 (column-1 ASC, column-2 DESC)
CREATE INDEX index-2 ON table-1 (column-1 DESC, column-2 ASC)

In this case, index-1 and index-2 are treated as the same index. Therefore, index-1, which was defined first, is the
valid one. In the following case, on the other hand, the indexes are treated as different indexes:

CREATE INDEX index-1 ON table-1 (column-1 DESC, column-2 DESC)
CREATE INDEX index-2 ON table-1 (column-1 ASC, column-2 DESC)

13.2.2 Index creation taking into account optimizing based on cost
If a table has multiple indexes, HiRDB selects for use the index with the lowest access cost based on the search
conditions specified for the table retrieval. This index selection process is called optimizing based on cost.

HiRDB takes into account the following factors in estimating access cost:

• Hit rate based on the specified search conditions

• Number of input/output operations required for SQL processing

• CPU workload required for SQL processing

HiRDB provides better table retrieval performance because it optimizes processing based on cost. Table retrieval
performance will not be reduced even when an SQL statement that specifies complicated search conditions is
executed.

(1) Index creation criteria taking into account optimizing based on cost
Because HiRDB optimizes processing based on cost, the user can create a UAP without having to prioritize the
indexes to be used by HiRDB. However, the user should examine beforehand how an index should be created for a
table that is to be accessed by UAPs.

To take advantage of optimizing based on cost, an index that is to be used by HiRDB should be created taking into
account its priority. Consideration should also be given to the difference between a single-column index and a
multicolumn index, the use of multiple indexes, and performance depending on the number of indexes.

The following table lists the order of priority for index usage by HiRDB.

13. Designing Indexes

440

Table 13‒2: Order of priority for index usage by HiRDB

Priority Index used by HiRDB Example of condition specification for index
column (C1)

1

Always used#1

Plug-in index specified for the column in the first
argument of an index type plug-in function whose
condition is IS TRUE.

contains(C1,'...') IS TRUE

Index that contains as its index component columns all
the columns in the search condition in a structured
repetition predicate.

ARRAY(C1,C2)[ANY]
(C1='ABC' and C2=10)
C1 and C2 define a multi-column index.

2 Plug-in index specified for the column in the first
argument of a plug-in-provided function whose
condition is IS TRUE

within(C1,'...') IS TRUE

3 Index with UNIQUE specified for a column that is
subject to the = limitation condition.

C1=100

4 Index for a column subject to the = limitation
condition.

C1=100

5 Index for a column subject to the IS NULL limitation
condition#2.

C1 IS NULL

6 Index for a column specified for a prefix search using a
literal (%) in the LIKE or SIMILAR predicate pattern
character string.

C1 LIKE 'ABC%'
C1 SIMILAR TO 'ABC%'

7 Index for a column specified for a prefix search other
than the above using a literal in the LIKE or
SIMILAR predicate pattern character string.

C1 LIKE 'ABC_'
C1 SIMILAR TO 'ABC_'

8 Index for a column subject to a limitation condition in
the IN predicate.

C1 IN(10, 20, 30)

9 Index for a column subject to a limitation condition in
the BETWEEN predicate.

C1 BETWEEN 20 AND 40

Index for a column for which a range condition is
specified.

20<=C1 AND C1<=40

10 Single-column index for a column subject to a
limitation condition in the IN predicate using a
subquery that has no external reference.

C1 IN(SELECT C1 FROM T2)

Single-column index for a column subject to a
limitation condition in the =ANY or =SOME quantified
predicate using a subquery that has no external
reference.

C1=ANY(SELECT C1 FROM T2)
C1=SOME(SELECT C1 FROM T2)

11 Index for a column subject to the >, >=, <, or <=
limitation condition.

C1>50
C1<=200

12#3 Index for a column specified for a scalar operation
(system-defined scalar function, other than
IS_USER_CONTAINED_IN_HDS_GROUP)#2.

length(C1)=10

13 Index for a column subject to a limitation condition in
the NOT BETWEEN predicate.

C1 NOT BETWEEN 10 AND 30

14 Index for a column subject to a limitation condition in
the XLIKE predicate, or in LIKE or SIMILAR
predicates other than the above.

C1 XLIKE '%ABC%'
C1 LIKE '%ABC%'
C1 SIMILAR TO '%ABC%'

13. Designing Indexes

441

Priority Index used by HiRDB Example of condition specification for index
column (C1)

15 Index for a column specified in an argument of the set
function (MIN or MAX)#4.

MIN(C1)
MAX(C1)

16 Index for a join condition column or in a column
subject to grouping or sorting.

ORDER BY C1

-- Index for a column subject to a negation limitation
condition (except NOT BETWEEN).

C1 NOT LIKE '%ABC%' C1 IS NOT NULL

Index for a column subject to a limitation condition in
the quantified predicate ANY or SOME other than the
above.

C1>=ANY(SELECT C1 FROM T2)
C1>SOME(SELECT C1 FROM T2)

Index for a column subject to a limitation condition in
the quantified predicate ALL.

C1>ALL(SELECT C1 FROM T2)

Plug-in index specified for the column in the first
argument of a plug-in-provided function whose
condition is IS FALSE or IS UNKNOWN

within(C1,'...') IS FALSE

Legend:
--: Indexes that are not used.

Notes

1. The contains function call is a function provided by the HiRDB Text Search Plug-in.

2. The within function call is a function provided by the HiRDB Spatial Search Plug-in.

3. An index cannot be used if it is for a column subject to a limitation condition that contains a subquery
involving external referencing.

4. If indexes can be used in the conditional expressions on both the terms of the OR operator, the priority
depends on the predicate used in the conditional expressions.

5. A limitation condition refers to a search condition other than the join condition.

6. HiRDB may not use a defined index if it determines that the index cannot be used effectively.

#1: The index indicated as Always used in the Priority column must be defined; otherwise, an error results.

#2: For the following types of columns, do not create an index whose exception key is the null value:

• Column for which the IS NULL limitation condition is specified.

• Column for which a limitation condition includes VALUE and CASE expressions.

• Column with the BIT_AND_TEST limitation condition for which IS UNKNOWN, IS NOT TRUE, or IS NOT
FALSE is specified.

You can create indexes with limitation conditions other than as indicated above. Table 13-3 shows whether
HiRDB uses an index whose exception key is the null value.

#3: Only when Key conditions that include a scalar operation is selected as an SQL optimization option does an
index have this usage priority. For details about SQL optimization options, see the HiRDB Version 9 UAP
Development Guide. Depending on the predicate, an index may have a better priority. If negation is not included, the
priority order is in the range of 13-15; if negation is included, the priority order is 13 or up.

#4: In the case of an SQL statement specifying one table without specifying GROUP BY, the index for the column
specified in the argument is used if only one set function (MIN or MAX) is specified and one of the following
conditions is satisfied:

• The component column of a single-column index is specified in the set function's argument.

• The column specified in the set function's argument is component column n of a multicolumn index without
an exception key value and = or IS NULL is specified in component columns 1 through n-1.

• The column specified in the set function's argument is component column n of a multicolumn index with an
exception key value and = is specified in component columns 1 through n-1.

13. Designing Indexes

442

Table 13‒3: Whether HiRDB uses an index whose exception key value is the null value

Limitation condition specified in the component column

Whether index is usedIS NULL, VALUE, CASE
expression, and
BIT_AND_TEST

Other than IS NULL, VALUE,
CASE expression, and

BIT_AND_TEST#1

Specified Specified Used

Specified Not specified Not used

Not specified Specified Used#2

Not specified Not specified Not used#3

#1: Applicable to the limitation conditions for priority levels 4-15 shown in Table 13-2.

#2: HiRDB may not use the index if it determines that the index cannot be used effectively.

#3: The index is used for retrieval if all the following conditions are satisfied:

• The selection expression consists of only set functions that use the index component column as the argument.

• Only one table is specified in the FROM clause.

• The WHERE clause is not specified.

If indexes are created consistent with the priorities shown in Table 13-2, favorable results can be obtained in
narrowing the search conditions specified in the SQL statement. However, an index with a high priority may not be
used if HiRDB determines as a result of cost-based optimization that its use would not be effective.

13.2.3 Single-column index vs. multicolumn index
The two types of indexes are single-column indexes and multicolumn indexes. A single-column index is an index
based on the values in one column of a table. A multicolumn index is an index based on the values in multiple
columns of a table.

(1) Creating a single-column index
A single-column index should be created when retrieval will be executed using one column only as the key.

(2) Creating a multicolumn index
A multicolumn index should be created in the cases discussed below.

(a) Retrieval of data that satisfies multiple conditions

A multicolumn index should be created when data satisfying multiple conditions is to be retrieved, such as when a
complex-condition retrieval using the AND operator with multiple columns as the key is executed.

For example, suppose that a complex-condition search is to be executed using table columns C1, C2, and C3 as the
key items:

SELECT retrieval-column FROM retrieval-table WHERE C1=10 AND C2=20 AND C3=30

In this case, a multicolumn index consisting of the three columns C1, C2, and C3 should be created instead of creating
three separate single-column indexes. In this way, overhead for index and row accesses can be reduced.

When a complex-condition retrieval is to be executed, it is important that the column for which the equals (=)
condition is specified be defined as the first component column of the multicolumn index. Then the column that is
next most likely to have the equals condition should be specified, followed by the third column, and so on. As a result,
the retrieval range can be reduced within the index, thereby reducing the retrieval time. If the equals condition is not
specified for the first component column of a multicolumn index, appropriate retrieval results may not be obtained
from the index. In this case, better results may be achieved by using a single-column index.

13. Designing Indexes

443

(b) Grouping or sorting data after narrowing the data with a search condition

A multicolumn index should be created using the columns specified as the search condition then the columns to be
grouped or sorted, in this order.

Suppose that a complex condition retrieval is executed using table columns C1 and C2 as the key, and then the
retrieval results are sorted in descending order of C3 and ascending order of C4, as shown as follows:

SELECT retrieval-column FROM retrieval-table WHERE C1=10 AND C2=20
 ORDER BY C3 DESC,C4 ASC

In this case also, a multicolumn index consisting of columns C1, C2, C3, and C4 should be created, instead of creating
two single-column indexes in columns C1 and C2. The data in column C3 should be sorted in descending order, and
the data in column C4 should be sorted in ascending order, so that overhead for index and row accesses is reduced.

(c) Duplicated multicolumn indexes created for one table

If a multicolumn index consisting of columns C1 and C2 is created for a table together with another multicolumn
index consisting of columns C1 and C3, overhead increases when the duplicated column, C1, is updated. To reduce
this overhead, one multicolumn index consisting of C1, C2, and C3 should be created.

Note that if the table is retrieved using columns C1 and C3 as the search conditions, retrieval performance may be
reduced.

(d) Priority between single-column and multicolumn indexes

If both single-column and multicolumn indexes are created for the same table, HiRDB uses the indexes in the priority
order shown in the following table. This table assumes that search condition C1=10 AND C2=20 is specified for table
retrieval.

Table 13‒4: Priority among single-column and multicolumn indexes

Columns constituting the index
Priority

Component column 1 Component column 2 Component column 3

C1 C2 None 1

C1 C3 C2 2

C1 None None 3

C1 C3 None 4

C3 C2 None 5

13.2.4 Using multiple indexes
More than one index can be created for a table. It is more effective for purposes of narrowing the rows to be retrieved
to use multiple indexes than to use a single index (single-column or multicolumn index).

13.2.5 Using an index with an exceptional key value set
When an index is defined for a column, all the data in the column is loaded into the index as the index values.
Sometimes an index will contain unused values, such as the null value. In this case, the null value can be specified as
an exceptional key value so that its occurrences will be excluded from the index. This is appropriate for an index that
contains many occurrences of the null value in all its component columns.

(1) Effects of setting an exceptional key value for an index
The following are the effects of setting an exceptional key value for an index:

1. The size of the index is reduced because the null value key is not created in the index.

13. Designing Indexes

444

2. Overhead for index maintenance during row insertion, deletion, and update processing (CPU time, number of
input/output operations, number of lock requests, and frequency of deadlock) is reduced, in addition to the amount
of log information being reduced.

3. When the null value is specified as the exceptional key value and IS NULL, VALUE, or CASE expression is
specified as the search condition for the index component column, then the index is not used for the retrieval
processing. As a result, the retrieval performance is improved in the following case:

• Input/output operations occur on the same page because the index contains many occurrences of the null value
and the data page is accessed at random.

(2) Setting procedure
An exception value is set by specifying EXCEPT VALUES in the CREATE INDEX definition SQL.

(3) Notes

• The only key value that can be specified as an exceptional key value is the null value.

• An exceptional key value cannot be specified for an index that contains a column with the NOT NULL constraint.

• An exceptional key value cannot be specified for an index for which a cluster key is specified.

• An index with an exceptional key value cannot be specified for unloading in index order.

13.2.6 Effects on performance of the number of indexes
When rows are added to or deleted from a table, all indexes created for the table are updated. Therefore, as the number
of indexes increases, the overhead for index updating increases. Thus, the following considerations should be taken
into account when indexes are created:

• Do not define an index for a column that is updated frequently.

• Create multicolumn indexes to reduce the number of indexes.

• In the case of a HiRDB parallel server configuration, create the minimum number of indexes required in order to
improve the effects of parallel processing, especially when retrieving all entries.

13. Designing Indexes

445

13.3 Index row partitioning
If you partition a table, you can also partition and store its index in multiple user RDAREAs.

(1) Partitioning key index and non-partitioning key index
Before designing a row-partitioned index, you need to understand a partitioning key index and a non-partitioning key
index.

An index that satisfies a specified condition is a partitioning key index, while an index that does not satisfy a specified
condition is a non-partitioning key index. This condition depends on whether the table is a single-column partitioning
or multicolumn partitioning table.

Note
A table partitioning condition based on only one column corresponds to single-column partitioning, and a table
partitioning condition based on multiple columns corresponds to multicolumn partitioning.

(a) Single-column partitioning

An index that satisfies one of the following conditions is a partitioning key index:

Conditions:

• Single-column index defined for a column for which storage conditions were specified when partitioning the
table (partitioning key)

• Multicolumn index with a component column 1 for which storage conditions were specified when partitioning
the table (partitioning key)

The following figure shows an index that qualifies as a partitioning key index, using the inventory chart below as an
example.

Figure 13‒1: Partitioning key index (single-column partitioning)

Explanation:
CREATE INDEX A12 ON STOCK (PCODE ASC) ...1
CREATE INDEX A12 ON STOCK (PCODE ASC,PRICE DESC) ...2
CREATE INDEX A12 ON STOCK (PRICE DESC,PCODE ASC) ...3

1. If the partitioning key column PCODE is specified as an index, it becomes a partitioning key index. If any
other column is specified as an index, it becomes the non-partitioning key index.

2. If the partitioning key column PCODE is specified as component column 1 of a multicolumn index, the
multicolumn index becomes a partitioning key index.

3. If the partitioning key column PCODE is specified as a component column other than component column 1,
the multicolumn index becomes a non-partitioning key index.

(b) Multicolumn partitioning

An index that satisfies the following condition is a partitioning key index:

Condition:

• Index created on multiple columns that includes all columns specified for partitioning in the same order,
beginning with the partitioning key

13. Designing Indexes

446

The following figure shows an index that qualifies as a partitioning key index, using the inventory chart below as an
example.

Figure 13‒2: Partitioning key index (multicolumn partitioning)

Explanation:
CREATE INDEX A12 ON STOCK (PCODE ASC,PRICE DESC) ...1
CREATE INDEX A12 ON STOCK (PCODE ASC,PRICE DESC,
 SQUANTITY ASC) ...2
CREATE INDEX A12 ON STOCK (PRICE DESC,PCODE ASC) ...3
CREATE INDEX A12 ON STOCK (PCODE ASC,SQUANTITY
 DESC,PRICE ASC) ...4

1. This multicolumn index becomes a partitioning key index because it specifies all partitioning keys (columns
PCODE and PRICE), and the order of these partitioning keys is the same as when the table was defined.

2. This multicolumn index becomes a partitioning key index because it specifies all partitioning keys (columns
PCODE and PRICE), and the order of these partitioning keys is the same as when the table was defined.

3. This multicolumn index becomes a non-partitioning key index because it specifies all partitioning keys
(columns PCODE and PRICE), but the order of these partitioning keys is not the same as when the table was
defined.

4. This multicolumn index becomes a non-partitioning key index because it specifies all partitioning keys
(columns PCODE and PRICE), but the order of these partitioning keys is not the same as when the table was
defined.

(2) Index partitioning guidelines
Guidelines for index partitioning depend on whether the index is a partitioning key index or a non-partitioning key
index, as shown in the following table.

Table 13‒5: Index partitioning guidelines

Type of index HiRDB single server
configuration

HiRDB parallel server configuration

Table partitioned by rows within
one server

Table partitioned by
rows among multiple

servers

Partitioning key index Index is also row-partitioned
according to its row-partitioned
table.

Index is also row-partitioned
according to its row-partitioned
table.

Index is also row-
partitioned according to
its row-partitioned table.

Non-partitioning key index Index should not be row-
partitioned. Row-partitioning the
index may result in poor
performance during a search using
the index.#

Index should not be row-
partitioned. Row-partitioning the
index may result in poor
performance during a search using
the index.#

#: You should not row-partition a non-partitioning key index. Row-partitioning the index may result in poor
performance during a search using the index. Specifically, a search using any of the following paths is disabled,
adversely affecting the search performance:

• KEY SCAN MERGE JOIN

13. Designing Indexes

447

• LIST SCAN MERGE JOIN
• L-KEY R-LIST MERGE JOIN
• L-KEY R-SORT MERGE JOIN
• L-LIST R-KEY MERGE JOIN
• L-LIST R-SORT MERGE JOIN
• L-SORT R-KEY MERGE JOIN
• L-SORT R-LIST MERGE JOIN

For details about these access paths, see the access path display utility (pdvwopt command) in the manual
HiRDB Version 9 Command Reference.
However, if there is a large amount of table data, you should consider index row partitioning. Row-partitioning an
index enables table storage RDAREAs and index storage RDAREAs to be managed on a one-by-one basis,
thereby improving utilities' operability. For example, when the index is not row-partitioned, if you load data in
units of RDAREAs or reorganize each RDAREA, you need to create an index in batch mode after data loading or
reorganization is completed. If you row-partition the index, there is no need to execute such batch index creation
after loading data in units of RDAREAs or reorganizing each RDAREA.
If an index is defined for a matrix-partitioned table, row partitioning is required just as with partitioning keys even
if there is a non-partitioning key index.

(3) Design considerations

• You should use separate user RDAREAs for a row-partitioned table and for its index. This improves the utilization
efficiency of the user RDAREAs.

• If a table contains a key that is to be made unique, you should define a partitioning key index with UNIQUE
specified for this key, or you should specify a cluster key for the partitioning key. UNIQUE can be specified for
either of the following, even if there is a non-partitioning key index.

• Non-partitioning index

• Partitioning index with the partitioning key included in a random constituent column

However, UNIQUE cannot be specified for the index if the table is flexible hash partitioned. For details, see
Specifiability of UNIQUE in conjunction with row-partitioning of a table under CREATE INDEX in the manual
HiRDB Version 9 SQL Reference.

(4) Example of index row partitioning (HiRDB single server configuration)
The following figure shows an example of index row partitioning (for a HiRDB single server configuration).

Figure 13‒3: Example of index row partitioning (HiRDB single server configuration)

Explanation:

• To avoid disk access contention, place the RDAREAs storing the partitioned table on a disk separate from the
RDAREAs storing its index.

13. Designing Indexes

448

• Row-partition the partitioning key index.

• If performance is more important than operability, do not row-partition the non-partitioning key index.

• If operability is more important than performance, row-partition the non-partitioning key index.

(5) Example of index row partitioning (HiRDB parallel server configuration)

(a) Partitioning a table within one server

The following figure shows an example of index row partitioning (in one server).

Figure 13‒4: Example of index row partitioning (within one server)

Explanation:

• To avoid disk access contention, place the RDAREAs storing the partitioned table on a disk separate from the
RDAREAs storing its index.

• Row-partition the partitioning key index.

• If performance is more important than operability, do not row-partition the non-partitioning key index.

• If operability is more important than performance, row-partition the non-partitioning key index.

(b) Partitioning a table among multiple servers

The following figure shows an example of index row partitioning (among multiple servers).

13. Designing Indexes

449

Figure 13‒5: Example of index row partitioning (among multiple servers)

Explanation:

• To avoid disk access contention, place the RDAREAs storing the partitioned table on a disk separate from the
RDAREAs storing its index.

• Row-partition the partitioning key index as well as the non-partitioning key index.

13. Designing Indexes

450

13.4 Plug-in index
This section describes plug-in indexes.

(1) Effects of plug-in indexes

Improved performance
When a plug-in is used, table retrieval performance can be improved by creating a plug-in index. The user can
execute complicated retrieval processing at high speed by using the index types provided by plug-ins.

(2) Creation procedure
The CREATE INDEX definition SQL is used to create a plug-in index for a table.

(3) Notes
Some plug-ins require definition of a plug-in index. If a function that uses a plug-in index is specified without the
plug-in index having been defined, an error may result during execution.

(4) Batch creation of plug-in index
You can use the database load utility (pdload) to create a plug-in index in the batch mode. For details about batch
creation of a plug-in index, see 6.4 Creating a table containing a plug-in-provided abstract data type.

13. Designing Indexes

451

13.5 Plug-in index row partitioning
When you partition a table, you also need to partition its plug-in index and store it in multiple user LOB RDAREAs.

(1) Effects of plug-in row partitioning

Improved operability
When a plug-in index is created in the batch mode, the portion of the plug-in index in each user LOB RDAREA is
processed independently.

(2) Definition procedure
For details about how to define plug-in index row partitioning, see 6.4 Creating a table containing a plug-in-provided
abstract data type.

(3) Forms of plug-in index row partitioning
The forms of plug-in index row partitioning are described below for a HiRDB single server configuration and for a
HiRDB parallel server configuration.

(a) HiRDB single server configuration

For a HiRDB single server configuration, a plug-in index can be partitioned and stored in multiple user LOB
RDAREAs on multiple disks on the same basis as the row-partitioned table.

Figure 13-6 shows a form of plug-in index row partitioning. Figure 13-7 shows an example of plug-in index row
partitioning based on the form shown in Figure 13-6.

Figure 13‒6: Form of plug-in index row partitioning (HiRDB single server configuration)

13. Designing Indexes

452

Figure 13‒7: Example of plug-in index row partitioning (key range partitioning) (HiRDB single server
configuration)

Explanation:
The example assumes that a plug-in index is defined for the INSTRUCTIONS_FOR_USE column.
The MEDICAL_MANAGEMENT_TABLE is partitioned and stored in user LOB RDAREAs LOBSGML1 and
LOBSGML2 using the MEDICINE_ID column as the condition. The plug-in index is stored in LOBNGRAM1 and
LOGNGRAM2.

(b) HiRDB parallel server configuration

For a HiRDB parallel server configuration, a plug-in index can be partitioned and stored in multiple user LOB
RDAREAs located in multiple server machines or back-end servers, on the same basis as its row-partitioned table.

Figure 13-8 shows a form of plug-in index row partitioning. Figure 13-9 shows an example of plug-in index row
partitioning based on the form shown in Figure 13-8.

13. Designing Indexes

453

Figure 13‒8: Form of plug-in index row partitioning (HiRDB parallel server configuration)

13. Designing Indexes

454

Figure 13‒9: Example of plug-in index row partitioning (key range partitioning) (HiRDB parallel server
configuration)

Explanation:
The example assumes that a plug-in index is defined for the OPERATION_MANUAL column.

13. Designing Indexes

455

MEDICAL_MANAGEMENT_TABLE is partitioned and stored in user LOB RDAREAs LOBSGML1-LOBSGML3
using the MEDICINE_ID column as the condition. The plug-in index is stored in LOBNGRAM1, LOBNGRAM2,
and LOBSGML3.

(4) Design considerations
Separate user LOB RDAREAs should be used for a row-partitioned table and for its plug-in index.

(5) Notes
Row partitioning results in an increase in the number of RDAREAs; therefore, when the database is backed up with
RDAREA specified, the table and its index will have a one-to-one correspondence.

13. Designing Indexes

456

14 Designing RDAREAs
This chapter explains items that should be examined while designing the segments
and pages that constitute RDAREAs.

457

14.1 Items to be examined during RDAREA design
The amount of disk space required depends on the sizes of segments and pages that constitute RDAREAs. You should
take this point into account when designing RDAREAs. Table 14-1 Items to be examined during RDAREA design lists
the items to be examined during RDAREA design, and Table 14-2 Maximum and minimum values for RDAREAs lists
the maximum and minimum values for RDAREAs.

Table 14‒1: Items to be examined during RDAREA design

Design task and items to be
examined Advantages Disadvantages Section

Segment size Size increased If the length of a row changes as a result
of update processing or if a row is added
to a table for which a cluster key is
specified, unused pages can be allocated
that are adjacent to the page containing
the specified row, thereby reducing the
data input/output time.

Because the number of segments is
reduced, the number of tables and
indexes that can be stored per user
RDAREA is also reduced.

14.2.1

Size reduced If many tables, each of which contains a
small amount of data, are stored in one
user RDAREA, wasted space caused by
unused pages can be minimized.

• If a large amount of data is added
to a user RDAREA, the number
of segment allocations increases,
resulting in an increase in
overhead.

• Because the number of segments
increases, the amount of locked
resources also increases when a
table is deleted or all rows are
deleted from a table.

Per-cent-age
of free space
in segment

Specified When data is added to a table for which
a cluster key is specified, data can be
stored in the page close to the cluster
key value, thereby reducing the number
of data input/output operations.

As the value becomes larger, more
disk space is required.

14.2.2

Set to 0 The disk space required can be reduced. When data is added to a table for
which a cluster key is specified, data
cannot be stored in the page close to
the cluster key value, resulting in
poor storage status; therefore,
reduction in the number of data input/
output operations is no longer
beneficial.

Page length Percent-age of
unused space in
page specified

• If a row becomes longer as a result
of UPDATE statement processing,
and the contiguous free space is
longer than the updated row, the
corresponding line fits in the page.

• When rows are added repeatedly by
the INSERT statement, rows can be
added until the page located close to
the cluster key value becomes full.

For a table with the FIX attribute,
storage efficiency is poor.

14.3.2

Percent-age of
unused space in
page set to 0

For a table with the FIX attribute,
storage efficiency is improved if the data
is placed in ascending order.

If a row becomes longer than before
as a result of update processing, the
row spans multiple pages, resulting in
overhead in row accesses.

Free space
reusage

Used • Free space in the used segments can
be used effectively.

• The performance of free space
search after the RDAREA is full is
improved.

If there is insufficient free space for
reuse, the overhead for free space
search increases.

14.5

14. Designing RDAREAs

458

Design task and items to be
examined Advantages Disadvantages Section

Not used If there is adequate free space, rapid
insertion processing is possible.

RDAREA storage efficiency is
reduced. Performance of free space
search after the RDAREA is full is
degraded.

Shared
RDAREA

Used If a heavily accessed table that is
difficult to partition is stored in a shared
RDAREA, the efficiency of parallel
processing improves because the table
can be referenced by all back-end
servers.

When a shared table is updated, the
shared RDAREA containing the table
is locked, and deadlock may occur if
an application accesses another table
in the shared RDAREA.

14.6

Not used Deadlock and server-to-server global
deadlock, which sometimes result from
use of a shared RDAREA, are avoided.

For complex search processing, such
as join processing, overhead
associated with connection
establishment between multiple back-
end servers and with data transfer
increases.

Temporary
table
RDAREA

Used Temporary tables can be used to
perform complex data processing, as
well as for executing transactions and
SQL sessions without being affected by
other users. Temporary tables do not
require postprocessing.

There is overhead for initializing a
temporary table RDAREA when
HiRDB starts or when the first
INSERT statement is executed on a
temporary table.

14.7

Not used There is no overhead for initializing
temporary table RDAREAs when
HiRDB starts.

When intermediate processing results
are stored in a table during complex
processing, postprocessing is required
(such as deleting data after
completion of processing).

Table 14‒2: Maximum and minimum values for RDAREAs

Item Maximum and minimum values

Total number of RDAREAs 3 to 8,388,592

Number of master directory RDAREAs 1

Number of data directory RDAREAs 1

Number of data dictionary RDAREAs 1 to 41

Number of user RDAREAs 1 to 8,388,589

Number of data dictionary LOB RDAREAs 1 to 2

Number of user LOB RDAREAs 0 to 8,388,325

Number of registry RDAREAs 0 to 1

Number of registry LOB RDAREAs 0 to 1

Number of list RDAREAs 0 to 8,388,588

Number of HiRDB files per RDAREA 1 to 16

Number of base tables per RDAREA 0 to 500

Number of indexes per RDAREA 0 to 500

Number of lists per RDAREA 0 to 50,000

Total number of HiRDB files 1 to 134,217,728

• Estimating the size of index storage RDAREAs

14. Designing RDAREAs

459

For details about how to estimate the size of index storage RDAREAs, see 16.1 Determining the size of a user
RDAREA. The following lists notes about size estimation:

1. Data is stored orderly immediately after an index is created in the batch mode using the database load utility or
database reorganization utility. The size of the index continues to increase thereafter due to index page
splitting unless all keys are inserted in ascending order during data insertion.

2. In general, index pages do not reuse used free pages. Therefore, if there is an update or deletion that changes a
key value, the page where the key was stored before the update or deletion cannot be reused. For this reason,
there are used free pages that are wasted and are not reused. However, there are operations that can reuse used
free pages. For details see the HiRDB Version 9 System Operation Guide.

3. The structure of an index depends on whether there are duplicated key values. You need an accurate number of
duplicate values to estimate the accurate size of an index. The ratio of this error to the size of the index
becomes greater as the number of index records decreases.

14. Designing RDAREAs

460

14.2 Segments
The following table lists the statuses that a segment can have.

Table 14‒3: Segment statuses

Segment status Explanation

Used segment# This is a segment that stores table or index data.

A segment that is full, such that no more data can be added, is called a full segment. A used segment
that is not full is called a non-full segment.

A used segment from which data has been deleted so that only free pages remain (used free pages or
unused pages) is called a used free segment.

Unused segment This is a segment that has never been used. Such a segment can be used by all tables (or indexes) in
the RDAREA.

Free segment This is a segment that does not store any data. Used free segments and unused segments are free
segments.

#: Used segments can be used only by tables or indexes that have data stored in them. Other tables or indexes cannot
use such segments.

14.2.1 Determining the segment size
We normally recommend an RDAREA segment size of about one-tenth the RDAREA storage page count. The
segment size will be less than one-tenth for large RDAREAs, however, since the maximum segment size is 16,000
pages. This subsection describes the implications of segment size and considerations that should be taken into account
when the segment size is selected.

(1) Selecting a large segment size
Improved performance

• If the length of a row changes as a result of update processing or if rows are added to a table for which a cluster
key is specified, the data input/output time can be reduced because unused pages can be acquired adjacent to the
particular page that contains the rows.

• The effects of batch input can be achieved by the prefetch facility because the data in a table is stored in
consecutive pages. When the prefetch facility is used, the segment size should be the same as the maximum
number of pages for batch input that is specified with the -p option of the pdbuffer operand in the system
common definition.

Note:

• The number of tables and indexes that can be stored per user RDAREA is reduced because the number of
segments per RDAREA is reduced.

(2) Selecting a small segment size

Reduction in required disk space

• The number of unused pages can be reduced because many tables, each containing a small amount of data, can
be stored in one user RDAREA.

Notes

• If a large amount of data is added to a user RDAREA that is based on a small segment size, the segment
allocations count increases, thereby increasing overhead.

• Because the number of segments increases, the amount of locked resources also increases when a table is
deleted or all rows are deleted from a table.

The following figure provides an overview of user RDAREAs depending on segment size.

14. Designing RDAREAs

461

Figure 14‒1: Overview of RDAREAs depending on segment size

(3) Setting procedure
The create rdarea statement of the database initialization utility (pdinit) or the database structure modification
utility (pdmod) is used to set the segment size.

14.2.2 Setting the percentage of free pages in a segment
The percentage of unused pages allocated in a segment when a table is defined is called the percentage of free pages in
a segment. Free pages here refers to unused pages. The following figure provides an overview of the free pages in a
segment.

Figure 14‒2: Overview of percentage of free pages in a segment

14. Designing RDAREAs

462

(1) Effects of specifying a percentage of free pages in a segment

Improved performance:
When data is added to a table for which a cluster key is specified, the data is stored in a page close to the cluster
key value, which means that the number of data input/output operations is reduced.

(2) Criteria

• A percentage of free pages in a segment should be set if a large amount of data will be added to a table for which a
cluster key is specified after data has been stored by the database load utility (pdload).

• The percentage of free pages in a segment should be set at 0 if data addition or update processing on the table will
occur rarely.

(3) Specification
To specify the percentage of free pages in a segment, use the PCTFREE operand of the CREATE TABLE definition
SQL statement.

(4) Notes
If the percentage of free pages in a segment is set to 0 for a table for which a cluster key is specified, it will not be
possible to store added data close to the cluster key values. As a result, the data storage condition becomes poor and
reduction in the number of data input/output operations can no longer be expected.

14.2.3 Allocating and releasing segments
When a table is defined, segments are not allocated. Segments are allocated as needed when data is to be stored in the
table. Once a segment has been allocated (once a segment has been used), no other table or index can use that segment
until the segment has been released. With repeated additions and deletions of data, an RDAREA may run out of space
even though the data volume has not increased. To avoid this, you should perform the following operations
periodically in order to release segments:

• Use the database reorganization utility (pdrorg command) to reorganize the tables or indexes

• Release used free segments with the free page release utility (pdreclaim command)

For details about table reorganization, index reorganization, and releasing used free segments, see the HiRDB Version
9 System Operation Guide.

In addition to the above methods, you can release segments by performing any of the following types of operations:

• Deleting the table definition

• Deleting all rows of the table

• Deleting the table owner (schema)

• Deleting the index definition

• Deleting the primary key of the table

• Reinitializing RDAREAs

• Executing data loading in creation mode (-d option specified)

• Freeing segments as a result of table reorganization

Furthermore, in the following cases, the segments allocated by the transaction are released:

• If a rollback occurs during load processing of the database load utility or batch index creation

• If a rollback occurs during reload processing of the database reorganization utility

14. Designing RDAREAs

463

14.3 Pages
The following table lists the statuses that a page can have.

Table 14‒4: Page statuses

Page status Explanation

Unused page An unallocated page.

Used free page A page that stores no data because its data has been deleted.#

Used page A page that stores data but has free space where data can be added.

For tables that are using the free space reusage facility, this includes pages to which data cannot be
added because the free space created by deleting data# from the page cannot be used.

Used full page A page that stores data and has no free space where data can be added.

For tables and indexes that are not using the free space reusage facility, this includes pages to which
data cannot be added because the free space created by deleting data from the page# cannot be used.

#
Free space created by data deletion cannot be used until the transaction that executed the data deletion is
committed.

14.3.1 Determining the page length

(1) Considerations in determining the page length
The considerations that should be taken into account in determining the page length are discussed as follows.

1. A large page size should be used for an RDAREA when a table or index satisfying the following conditions is to
be stored by an application that retrieves or updates all entries or a large amount of data:

• RDAREA stores tables that do not have indexes

• RDAREA stores tables with a cluster key specified and their indexes

• RDAREA stores indexes used for range condition retrieval or updating of a large amount of data

2. The page length should be set on the basis of the row length of the tables stored in the RDAREA so that invalid
space can be eliminated as much as possible:
invalid space = MAX(mod((page length - 48), (row length + 2)), page length - 48 - (row length +2) 255)

3. The following formula should be used as a guideline to setting the percentage of unused space in a page:
(Page length percentage of unused space in a page) 100 - row length number of rows that can be stored
in unused space in a page.
A meaningless value that does not allow even one row to be stored in the unused space in a page should not be
specified.

4. For a page used to store an index, approximately 4,096 to 8,192 bytes is an appropriate size in terms of input/
output efficiency.

5. If a column's data type is VARCHAR, NVARCHAR, or MVARCHAR and its definition length is at least 256 bytes, its
data will be branched onto another page. If there is variable-length character string data with a length of at least
256 bytes, the page length should be set to the smallest value that is at least the average length of the data.

6. In the case of a column whose data type is VARCHAR, NVARCHAR, or MVARCHAR, if a row of null values is
inserted by the INSERT statement, the column's data may be branched onto another page depending on the length
of the updated data when the UPDATE statement is used subsequently to update the null-value data to real data. If
character string data is often set initially to the null value and then updated later to real data, the page length
should be determined taking into account the length of the updated rows.

14. Designing RDAREAs

464

7. HiRDB allows locking control in units of pages or rows. If row-level locking control is to be used, the page length
should be set on the basis of the row length so that as many rows as possible can be stored per page. The following
should be taken into account in this case:

• Minimize the percentage of unused space in a page.

• Define the page length to minimize the global buffer lock-release waits count for page input/output requests.
In the case of a frequently updated table, small pages should be used; otherwise, the lock-release waits count
may increase.

• Define the page length to lower the page input/output waits count becomes low for the number of page input/
output requests. If the application uses mainly random accesses, the page length should be small; otherwise,
the actual input/output units become too large for the row length, which is the access unit, resulting in
unneeded data transfers.

If the UPDATE statement is used frequently to update data in a column whose data type is VARCHAR, NVARCHAR,
or MVARCHAR and this updating results in a change in the row length, the percentage of unused space in a page
should be set to a slightly higher value when the table is defined. For details about how to set the percentage of
unused space in a page, see 14.3.2 Setting the percentage of unused space in a page.

(2) Specification
To specify a page length, use the create rdarea statement of the database initialization utility (pdinit) or
database structure modification utility (pdmod).

(3) Notes on determining the page length
An error results when a row is added to a table and as a result the actual row length exceeds the page length (except in
the case of columns whose data type is VARCHAR, NVARCHAR, or MVARCHAR). The actual row length is obtained
using the formula for required disk space that is provided in Chapter 16. Determining RDAREA Size. If the obtained
row length is greater than the page length of the user RDAREA to be used, the user RDAREA must be reinitialized
and then the page size must be redefined. The database structure modification utility (pdmod) is used to reinitialize
RDAREAs. For details about how to reinitialize RDAREAs, see the HiRDB Version 9 System Operation Guide.

14.3.2 Setting the percentage of unused space in a page
The percentage of unused space allocated in a page when a table or index is defined is called the percentage of unused
space in a page. When an unused space value is set, the database load utility (pdload) and database reorganization
utility (pdrorg) will not normally store data in the specified amount of space.

However, if the database load utility is executed with the -y option specified and no new page can be allocated, it will
store data in the specified unused space.

The following figure provides an overview of the unused space in pages.

Figure 14‒3: Overview of unused space in pages

14. Designing RDAREAs

465

(1) Effects of setting a percentage of unused space in a page

• If the length of contiguous free space is longer than the row length after update processing, the corresponding row
can fit in the page even if it has become longer than its original length as a result of UPDATE statement
processing.

• When the INSERT statement is used to add rows repeatedly, the pages close to the cluster key value can become
filled with rows.

(2) Criteria

1. You should specify a percentage of unused space in a page if rows will be added to a table for which a cluster key
is specified.

2. For a table with the FIX attribute, if data will be sorted in ascending order, you can improve the storage efficiency
by setting the percentage of unused space in a page to 0.

3. You should specify a percentage of unused space in a page if rows will become longer as a result of update
processing.

4. Rows become longer when the following types of update processing are executed:

• The null value is updated to real data.

• A column with the VARCHAR, NVARCHAR, MVARCHAR or BINARY data type is updated so that the value
becomes longer.

(3) Specification
To specify the percentage of unused space in a page, use the PCTFREE option of the definition SQL statement
CREATE TABLE, CREATE INDEX, or ALTER TABLE.

(4) Notes
If the set amount of unused space is too small and a row becomes longer as a result of update processing, the number
of input/output operations increases because a single row spans multiple pages.

(5) Obtaining the percentage of unused space in a page

• Generally, the value obtained from the following formula is used as the percentage of unused space (where the
length of the first row stored is L1 and becomes L2 after processing):
Percentage of unused space in a page = ((L2-L1) L2) 100 (%)

• The following procedure should be used when a cluster key is specified for a table:

1. Obtain the number of data items per page that are stored in the table by the database load utility (pdload);
assume that this value is m.

2. Obtain the number of data items that will be stored later; assume that this value is n.

3. Use the following formula to obtain the percentage of unused space in a page from m and n obtained in steps 1
and 2:
Percentage of unused space in a page = (n (m + n)) 100 (%)

14.3.3 Allocating and releasing pages

(1) Allocating pages
When a table is defined, pages are not allocated. Pages are allocated as needed when data is to be stored in the table.
Once a page has been allocated (once a page has been used), the page cannot be reused until it has been released.

If an index is defined, the system allocates pages according to the number of data items. If there is no data item, the
system allocates only one page (root page). If you specify the EMPTY option in the CREATE INDEX statement (so as
not to create the index entity), the system does not allocate any page.

14. Designing RDAREAs

466

Notes

1. If you update data in such a manner that the row length of a non-FIX table changes, the space created by the
reduced row length cannot be reused.

2. An index page cannot be reused until a key value that is identical to a key value that was stored in the deleted
page is added.

3. Reusing a page freed up by deletion of data is subject to the following restrictions:

• The page cannot be used for rows that contain a repetition column or a column whose type is VARCHAR of at
least 256 bytes, BINARY type, or abstract data type.

• Until a segment's usage reaches 100%, the page cannot be used for insertion of data.

• Until a transaction that issued a DELETE has been committed, the free space generated by the deletion cannot
be used.

(2) Releasing pages

• When a segment is released, the pages in the segment are also released.

• When a table has been locked with the LOCK statement with EXCLUSIVE specified, pages will be released when
the UAP deletes all rows on the pages. The index pages are not released.

• When the PURGE TABLE statement is executed, the pages and segments of the tables and indexes are released.
However, the root pages of the indexes remain.

• You release used free pages with the free page release utility (pdreclaim command). For details about releasing
used free pages, see the HiRDB Version 9 System Operation Guide.

14. Designing RDAREAs

467

14.4 Designing list RDAREAs

(1) Number of required list RDAREAs
You can use the following operands to specify the maximum number of lists that can be created per list RDAREA:

• create rdarea statement's max entries operand in the database initialization utility (pdinit)

• create rdarea statement's max entries operand in the database structure modification utility (pdmod)

• initialize rdarea statement's max entries operand in the database structure modification utility
(pdmod)

The permitted range of maximum values is 500 to 50,000.

(2) How to obtain a page length and a segment size
A list contains its base table's row identifiers. Unlike in tables, no data is stored directly in the list; therefore, a
comparatively large number of rows can be stored in one page. Note that if the specified page length and segment size
are too large for the actual number of rows to be stored in the list, unneeded free space is created in the RDAREA.

To determine the page length and segment size for a list RDAREA, estimate the average number of rows in the list
that may be created within the server, then specify the appropriate page length and segment size based on one of the
following cases:

Condition Page length Segment size

Average number of rows in a list created within the server is less than 3,000 4,096 1

Average number of rows in a list created within the server is 3,000 to 6,000 4,096 2

Average number of rows in a list created within the server is more than 6,000 See (a) See (b)

(a) Obtaining the page length when the average number of rows in a list is more than 6,000

Specify the page length in the range of 4,096 to 8,192. If you want to reduce the list input/output time by reducing the
number of list input/output operations, a larger page size may be specified. If the page length is large, the required size
of the global buffer also increases, thereby requiring a large amount of shared memory.

Specify the page length that satisfies the following condition:

Condition:

Number of rows that can be stored in one list page average number of rows in the list created within the server 2

To obtain the number of rows that can be stored in one list page, use the following formula:

Number of rows that can be stored in one list page = {page length - 70 - (a 8) 4

a: Total number of HiRDB files in the RDAREAs that contain the list's base table within the server

(b) Obtaining the segment size when the average number of rows in a list is more than 6,000

The segment size is a unit size of space in an RDAREA that can be allocated to a single list. This means that one
segment is the smallest size that can be allocated to a list. Following are the guidelines for the segment size:

• To reduce the overhead of segment allocation, increase the segment size.

• If you use the prefetch facility with the global buffer for a list RDAREA, specify a value of at least 2 for the
segment size. Otherwise, the prefetch facility will not function.

• If the segment size increases, the possibility of creating unneeded unused pages in a segment also increases. To
reduce such unneeded unused pages, specify a small segment size.

• Specify the segment size that satisfies the following condition:
Number of rows that can be stored per list segment average number of rows in list within the server 2

14. Designing RDAREAs

468

To obtain the number of rows that can be stored in one list segment, use the following formula:
Number of rows that can be stored per list segment = number of rows that can be stored in one list page
segment size

(3) How to obtain the number of segments
You can use the following formula to obtain the number of segments required for a list RDAREA:

Formula

Number of segments required for a list RDAREA = { a b (c + 0.5)}

a: Number of lists within the server

b: Number of list RDAREAs within the server

c: Average number of segments that are used per list
Obtain this value using the following formula:

average number of rows in list within the server number of rows that can be stored per list segment

If a segment shortage occurs, the system can no longer create a list. Therefore, specify a sufficient value based on the
number of segments obtained from the previous formula.

14. Designing RDAREAs

469

14.5 Free space reusage facility
The free space reusage facility makes free space reusable once the data it stores has been deleted. This section
explains the following items:

• Data storage search modes

• Free space reusage facility

• Effects and applicability

• Considerations

• Environment settings

• Checking execution status

• Notes

14.5.1 Data storage search modes
Once data has been stored in a table, either of the following two page search modes can be used to search the storage
area:

• New page allocate mode
When the final page of a used segment becomes full, a new unused segment is allocated. If no unused pages
remain in the RDAREA, free space to store the data is searched for in used pages from the beginning of the used
segments.
When there are unused segments, storage efficiency will not improve, but processing can be performed at high
speed. However, performance will drop significantly when there are no more unused segments.

• Free page reuse mode
When the final page of a used segment becomes full, free space is searched for in the used pages of the used
segments before any unused segments are allocated. The search start position is then remembered for next search,
and the subsequent search for free space begins from that point.
Storage efficiency will improve even when there are unused segments because free space is searched for and data
is then stored, but this also entails overhead.

14.5.2 Free space reusage facility
The free space reusage facility uses the free space on used pages by switching the page search mode to the free page
reuse mode once the number of a table's used segments reaches the number of user-specified segments and those
segments have all become full. If there is no free space in any of the specified number of segments, it switches to the
new page allocate mode for allocation of a new unused segment.

When no segment count has been specified, the free page reuse mode is used when there are no more unused pages in
the RDAREA.

When there are no more unused pages in the RDAREA, search efficiency is better in the free page reuse mode when
the free space reusage facility is used than when it is not used. In free page reuse mode, the next search position is
remembered and subsequent searches are performed from there. If this facility is not used, searches always start from
the beginning.

Note that if the free space reusage facility is not used, operations always use the new page allocate mode. In this case,
performance will drop significantly when there are no more unused segments. To prevent this, increase the number of
unused segments, such as by reorganizing the table or by releasing used free pages and used free segments.

The following figure provides an overview of the free space reusage facility.

14. Designing RDAREAs

470

Figure 14‒4: Overview of the free space reusage facility

Explanation:

• When the free space reusage facility is not used
When there are no more unused pages in the RDAREA, free space to store the data each subsequent time that
data is inserted is searched for on used pages from the beginning of the used segments.

• When the free space reusage facility is used and the number of segments is specified
If there is an attempt to insert data into a table once the specified number of segments has been reached, an
unused segment is not allocated, but instead free space to store the data is searched for in used pages from the
beginning of the used segments. The search start position is then remembered for the subsequent search, and
searching begins at that position the next time.

• When the free space reusage facility is used and the number of segments is not specified
When there is an attempt to insert data when there are no unused pages in the RDAREA, free space to store
the data is searched for in used pages from the beginning of the used segments. The search start position is
then remembered for the subsequent search, and searching begins at that position the next time.

14. Designing RDAREAs

471

14.5.3 Effects and applicability

(1) Effects
The following effects can be expected with the use of this facility:

• Effective reuse of free space
By reusing the free space of used pages, operations can be performed using a minimum amount of RDAREA
space, thereby minimizing the frequency of database reorganization. If multiple tables and indexes are stored in
the same RDAREA, the insertions and deletions for some tables can be combined, such that occupied area can be
recovered.

• Recovery from an insufficient pages error for variable-length columns and BINARY type columns
Normally, if the no-split option is not specified, unused pages are allocated whenever a variable-length character
column of at least 256 bytes is inserted or a BINARY type column that does not fit on one page is inserted. Even if
used free pages are available, an error will result if an unused page cannot be allocated. If the free space reusage
facility is being used, however, errors can be avoided because used free pages will be allocated if no unused free
pages are available.

• Reduction in overhead during a search for free space on used pages
In the free page reuse mode, high-speed processing is possible due to the reduced overhead because the search
start position is remembered and is used for the subsequent search.

(2) Applicability

• Since processing to reuse free space involves overhead, use the free space reusage facility when storage efficiency
matters more than performance.

• If you have an application that performs frequent deletions or insertions, such that the amount of data results in
use of a large number of segments and frequent need for reorganization, and you would like to minimize the
number of reorganizations, you should use the free space reusage facility. This subsection describes the
application characteristics and the circumstances under which this facility is recommended.

• When there is no increase in data volume, including deletions (updates) and insertions
If the maximum size of the data to be stored is specified with the free space reusage facility, the area from
deleted data will later have priority for reuse. The application can then continue without having to add new
area, so reorganization will not be necessary.

Example: Electronic administrative window
An application that receives data from an electronic window must be a 24-hour system. When an application
is received, the data is inserted and later, once the storage period has passed, it is deleted. If the maximum
segment size for the data to be received within the storage period is specified, then the space from deleted data
can be reused. The application can then continue without having to add additional space. Reorganization then
becomes unnecessary, the application will never need to stop, and it can provide 24-hour service.

• When there is a steady increase in data volume, including deletions (updates) and insertions
Steadily increasing data is stored not only in new space, but also in deleted space, increasing storage
efficiency.

Example: Customer management
This application requires inserting new customer data, and deleting old customer data as it becomes no longer
needed. Once the initial customer data has been entered in full, if the segment size is specified before starting
a transaction to add or delete a customer, customer data added later will reuse the space from any deleted
customer data.

• For insertion processing, performance is best if data is stored in unused pages and unused segments. Therefore, if
the database reorganization utility (pdrorg) can be executed quickly, the free space reusage facility would not be
appropriate, and database reorganization would provide better performance.

14. Designing RDAREAs

472

14.5.4 Considerations
1. The free space reusage facility is effective when deletion processing ensures that there is always sufficient free

space. If there is a search for space when there is not sufficient free space or when there is none at all, the search
for free space will constitute a waste of time and resources. It is then necessary to specify more pages per segment,
and the facility will have to be stopped. Because a change in the specification of the number of pages per segment
requires re-creation (deletion or addition) of the RDAREA, you should consider carefully the number of segments
and the segment size when you make your initial design.

• In the following case, the number of segments can be omitted from the SEGMENT REUSE option:
There is one table in the RDAREA, no indexes are mixed in, and automatic extension is not specified

• In the following cases, the number of segments cannot be omitted from the SEGMENT REUSE option:
 There is one table in the RDAREA, no indexes are mixed in, and automatic extension is specified
 There is one table in the RDAREA, with indexes mixed in
 There are multiple tables in the RDAREA
 If the amount of data will increase, specify the number of segments and specify the segment size to be large

enough so that deletion will take place in each segment until it becomes full. If the amount of data will not
increase, specify the number of segments by estimating the total number of segments that the table will need;
there is no need to consider the segment size. However, within the same RDAREA, keep the total number of
segments to be reused (if indexes are mixed in, the number of segments to be reused by the tables and the
number of segments estimated for the indexes in the same RDAREA) to less than the total number of
segments in the RDAREA.

If the free space reusage facility is used on tables for which automatic extension is specified, space extension has
priority, and free space reusage is executed once the extended space has reached the specified number of
segments.

2. If the free space reusage facility is enabled, it searches for free areas within used segments, which reduces the
effectiveness of the following functions:

• Storing data ordered by the cluster key in the cluster table

• Storing data close to the original data when the row length is long during execution of an UPDATE statement
(specifying PCTFREE in the CREATE TABLE statement, or specifying tblfree during data loading or table
reorganization)

Therefore, we do not recommend that you use these functions when you apply the free space reusage facility.

14.5.5 Environment settings
The environment settings for use of the free space reusage facility are explained in this section.

1. Use the pd_assurance_table_no operand to specify the number of tables that will use the free space
reusage facility.
For partitioning tables, calculate one table per partition. If the inner replica facility is being used, also calculate the
table stored in the replica RDAREA as one table. For a HiRDB parallel server configuration, make the calculation
separately for each back-end server, and specify the highest number in this operand.
The free space reusage facility can be used for tables defined by CREATE TABLE or modified by ALTER TABLE
up to the number of times (number reserved) specified in the pd_assurance_table_no operand. If an insert
is executed on a table for which the number reserved has been reached, the KFPH22030-W message is output,
and the free space reusage facility is not applied. In such a case, the free space reusage facility will be applied for
all defined tables if you increase the value of the pd_assurance_table_no operand. If the ALTER TABLE
statement is specified with ADD RDAREA to add table storage RDAREAs such that the defined number exceeds
the reserved number or the number defined for the HiRDB parallel server configuration exceeds the reserved
number, free space reusage may or may not be applied to each RDAREA by partitioning tables for which free
space reusage is defined.

2. Estimate the number of segments to be used for free space reusage (estimate the total number of segments from
the total amount of data in the tables; see 16.1 Determining the size of a user RDAREA), and specify the estimated
number of segments in the CREATE TABLE definition SQL statement with the SEGMENT REUSE option
specified. For tables already created, use the ALTER TABLE statement with the SEGMENT REUSE option
specified. The number of segments specified here is applicable to all RDAREAs.

14. Designing RDAREAs

473

In addition, if you want to further increase storage efficiency, specify a reuse option value for OPTION in
SEGMENT REUSE. By specifying a reuse option value, you can use the following features:

Reuse option value for
each feature Feature Cases in which storage efficiency is expected to improve

1 UPDATE operation support • UPDATE operations on fixed length data or ADT columns
that contain NULL values

• UPDATE operations on BINARY columns

• UPDATE operations on VARCHAR, NVARCHAR, and
MVARCHAR columns (with NO SPLIT specified)

• The number of search mode switchovers is small compared
to the number of segments already allocated (checkable
using the pddbst command).

2 Improved storage efficiency of
tables with many branch rows

Operations on tables that create branch rows

3 UPDATE operation support and
improved storage efficiency for
tables with many branch rows

• UPDATE operations on fixed length data or ADT columns
that contain NULL values

• UPDATE operations on BINARY columns

• UPDATE operations on VARCHAR, NVARCHAR, and
MVARCHAR columns (with NO SPLIT specified)

• The number of search mode switchovers is small compared
to the number of segments already allocated (checkable
using the pddbst command).

• Operations on tables that create branch rows

Note that if you apply OPTION 1 (UPDATE support), page allocation at the time of the UPDATE operation
proceeds from the last segment (in new page allocation mode), or from the segment at the start position of the
previous search (in free page reuse mode). In this case, free space created during data loading or reorganization is
no longer used preferentially. We therefore recommend, for tables in which OPTION 1 is specified, that you
specify (0,0) for PCTFREE in the CREATE TABLE statement.

3. To change the number of segments once it has been specified, you can specify the number of segments again using
ALTER TABLE with the SEGMENT REUSE option specified. HiRDB will process as follows, depending on the
page search mode and the value specified for the number of segments:

• When in the new page allocate mode
If the specified number of segments is fewer than the number of used segments, free space reusage will be
executed once all free space has disappeared from the last allocated segment.

• When in the free page reuse mode
If the number of segments specified is not greater than the number of used segments, nothing changes. If the
number of segments specified is greater than the number of used segments, then once all free space has been
used free space reusage will stop briefly, at which point new unused pages will be allocated.

4. If there is temporarily a large amount of addition due to such as batch processing, and you want to temporarily
stop the free space reusage facility, specify ALTER TABLE with SEGMENT REUSE NO specified. When this is
done, the free space reusage facility will stop immediately, and unused segments will be newly allocated.

5. To suppress the RDAREA segment usage notification messages (KFPH00211-I or KFPA12300-I) that are
output when a table that uses the free space reusage facility secures segments, specify N in the
pd_rdarea_warning_point_msgout operand.
If deletion (updating) and insertion are included and there is no increase in the amount of data, using the free space
reusage facility removes the need to reorganize the table or expand RDAREAs. For this reason, the user also does
not need to monitor the output of RDAREA segment usage notification messages. If deletion (updating) and
insertion are included, there is no increase in the amount of data, and all the following conditions are met, output
of RDAREA segment usage notification messages can be suppressed.

• Only tables that use the free space reusage facility are defined in the storage RDAREA.

• The table is a FIX attribute table or does not include variable length columns (that is, tables in which the data
size does not increase).

14. Designing RDAREAs

474

However, in the following cases, the free space reusage facility might not run, so you must output and monitor the
RDAREA segment usage notification messages. Then, you must take corrective action according to the RDAREA
usage status.

• The number of tables that define the free space reusage facility exceeds the reserved number specified in the
pd_assurance_table_no operand.

• Multiple tables that use the free space reusage facility are defined for the storage RDAREA, and the number
of SEGMENT REUSE segments specified in the table definition is not equal to or greater than the maximum
data size.

14.5.6 Checking execution status
You can check whether the free space reusage facility is effective from the items in the table below. This checking can
be made with the database condition analysis utility, the statistics analysis utility, or the UAP statistical report facility.
If this fails, the KFPH22031-W message is output to the message log for each table (for the partitioning RDAREA in
the case of a partitioned table). The items and their explanation follow:

Item Explanation Measure

Number of page search mode
switchovers

This is the number of times the search mode switches
from the new page allocate mode to the free page
reusage mode, or vice versa. Frequent switchover during
allocation of reused and unused segments means that
there is more added space than available space due to
deletions and that the segment size (number of pages) is
too small.

Consider changing the segment size or
the timing of deletion execution.

Number of failed page searches
by the free space reusage
facility

The number of used segments reaches the number of
specified segments, but even upon switchover to the free
page reuse mode, there are no free pages available. In
such a case, the number of search failures increases.
Because a search is performed even though there is no
free space, pointless search processing is performed.

If the number of failed page searches by the free space
reusage facility and the number of page search mode
switchovers both increase, then free page reusage is
being executed when there is absolutely no free space.

Re-evaluate the specified number of
segments and the segment size, or
consider stopping the free space reusage
facility.

Number of used segments If there is no free space in the segments used by a table,
unused segments will be allocated, causing the number
of the table's used segments to increase. If the increase
exactly matches the number of failed free space reusage
page searches, search processing to find free space will
continue even though there is none.

--

Legend:
--: Not applicable.

14.5.7 Notes
• In the following cases, the free space reusage facility will not function:

• When data is stored using the hash facility for hash row partitioning

• When data is stored in tables by means of data loading or by the database reorganization facility (pdrorg)

• When there is a user LOB RDAREA

• When the free space reusage facility is used, page search processing is slower when free space due to deletions is
not contiguous than when free space due to deletions is contiguous. In such a case, consider stopping the free
space reusage facility or consider reorganizing the data with the database reorganization utility (pdrorg).

14. Designing RDAREAs

475

• In the case of non-FIX tables, even if the free space reusage facility is used, the number of segments used might
increase. If you perform an update such as the following, the number of segments used might increase even if the
volume of additions and deletions of data remains the same:
If you perform repeated deletions after inserting (page length - 48) (row length + 2) data items and then
updating data that would become longer than the row length (when NULL values are included) or data that would
branch to another page
This case generates a full page, which you can release with the free page release utility (pdreclaim), in which
case that page will no longer be able to store data. You can check whether such a page has been generated by
using the database condition analysis utility (pddbst), in the value for Collect Prearranged Full Page.
Release the full page by executing one of the following:

• The free page release utility (pdreclaim)

• The database reorganization utility (pdrorg)

• Even when searching is executed in the free page reuse mode, deleted space cannot be reused within the same
transaction.

• Even when the free space reusage facility is used, if you repeatedly perform UPDATE operations that change a
non-NULL value to a NULL value, the number of segments allocated might exceed the actual data size. To prevent
this, perform operations that use DELETE instead of performing an UPDATE operation on a NULL value.

14. Designing RDAREAs

476

14.6 Shared RDAREAs (HiRDB parallel server
configuration only)

Normally, a back-end server can access only those RDAREAs that are located under that back-end server. By
partitioning a table, parallel processing can be applied to table search or update operations, thereby improving the
processing efficiency. In the case of a table that is heavily accessed by multiple transactions and that is difficult to
partition, you can improve the efficiency of parallel processing by storing the table in a shared RDAREA. A shared
RDAREA is a user RDAREA that can be accessed by all back-end servers. A table stored in a shared RDAREA is
called a shared table and its index is called a shared index. Shared tables and indexes can be referenced by all back-
end servers. Only shared tables and indexes can be stored in a shared RDAREA. The following figure provides an
overview of a shared RDAREA.

Only a HiRDB parallel server configuration can define shared RDAREAs.

Figure 14‒5: Overview of a shared RDAREA

Explanation:
The shared RDAREA RDSHR01 can be referenced by all back-end servers, BES1 to BES3. Note that only the
updatable back-end server (BES3) can update the shared table; BES1 and BES2 are reference-only back-end
servers.

(1) Effects
The efficiency of parallel processing improves because all back-end servers can access the shared RDAREA.

(2) Criteria
We recommend that you use shared RDAREAs in the following cases:

• A table is heavily accessed by multiple transactions, but it is difficult to partition the table.

• Complex search processing, such as join processing, is executed.

(3) Definition method
Specify a shared RDAREA as follows:

• Specify Y in the pd_shared_rdarea_use operand.

• Specify SDB in the -k option (purpose) of the pdfmkfs command and specify the name of a character special
file. Also set the access path so that all back-end servers will use the same path name to access the shared
RDAREA.

14. Designing RDAREAs

477

• Specify shared in the create rdarea statement of the database initialization utility (pdinit) or database
structure modification utility (pdmod) to define a user RDAREA. Also specify an updatable back-end server in
the server name operand. Any back-end server that is not specified in the server name operand becomes a
reference-only back-end server.

Notes about definition

• You can define as many shared RDAREAs as the value specified in the pd_max_rdarea_no operand,
which is the maximum number of RDAREAs. Note that the number of shared RDAREAs is added to the
number of RDAREAs for each back-end server.

• A shared RDAREA cannot be defined in the HiRDB file system area for a back-end server that is not an
updatable back-end server for the shared RDAREA.

• A shared RDAREA is defined in the HiRDB file system area for shared RDAREAs. To define a shared
RDAREA, specify SDB in the pdfmkfs -k command. Only shared RDAREAs can be defined in a HiRDB
file system area for shared RDAREAs.

The following shows an example of a control statement of the database structure modification utility (pdmod) for the
shared RDAREA shown in Figure 14-14 Overview of a shared RDAREA:

create shared rdarea RDSHR01 globalbuffer buf01 for user used by PUBLIC
 server name BES3 ...Specification of updatable back-end server
 open attribute INITIAL
 page 4096 characters
 storage control segment 20 pages
 file name "/HiRDB/DATABASE/SHR1/rdshr01_f01" ...file name
 initial 10000 segments;

(4) Updating a shared RDAREA
To update a shared RDAREA, you must specify IN EXCLUSIVE MODE in the LOCK statement to lock the shared
RDAREA for all back-end servers. In the case of an UPDATE statement that does not change index key values, there
is no need to issue the LOCK statement. For details about updating shared tables, see 12.18.3 Manipulating shared
tables. Updates to a shared table or shared index are written to the disk when the COMMIT statement is issued.

(5) Managing the shutdown status of a shared RDAREA
Accesses to a shared RDAREA are managed independently by each back-end server. Therefore, in the event of an
error, the shutdown status may vary from one back-end server to another. When you execute the database structure
modification utility (pdmod) or database recovery utility (pdrstr), you must use the pdhold command to match
the shutdown status of the shared RDAREA among all back-end servers. You can use the pddbls -m command to
display the status of the shared RDAREA for all the back-end servers.

(6) Setting system switchover
To use a shared RDAREA, you must activate the shared disks that store the shared RDAREAs for all units in which a
back-end server is installed. Therefore, in cases in which both an updatable back-end server and reference-only back-
end server are installed on the same host, if the updatable back-end server performs system switchover to switch the
shared disks, the reference-only back-end server is no longer able to reference the shared RDAREAs. For that reason,
to perform system switchover for units on which a back-end server is installed, the method used to set system
switchover differs depending on the system switchover system configuration. For details about how to set up system
switchover, see the HiRDB Version 9 System Operation Guide.

(a) When the standby system switchover configuration is used

• For a 1-to-1 system switchover configuration:
Since the updatable back-end server and reference-only back-end server do not exist on the same host, no special
settings are required for a 1-to-1 system switchover configuration. For details about how to set up system
switchover, see Shared disk access control by the cluster software in the HiRDB Version 9 System Operation
Guide.

• For a mutual system switchover or 2-to-1 system switchover configuration:

14. Designing RDAREAs

478

For a mutual system switchover configuration, no special settings are required unless system switchover is
performed for systems other than the updatable back-end server and reference-only back-end server (for example,
the system manager, front-end server, or dictionary server). For details about how to set up system switchover, see
Shared disk access control by the cluster software in the HiRDB Version 9 System Operation Guide.
For mutual system switchover between an updatable back-end server and reference-only back-end server,
switching of shared disks cannot be performed. For details about how to set up system switchover, see Shared disk
access control by HiRDB in the HiRDB Version 9 System Operation Guide.

(b) When a 1-to-1 standby-less system switchover configuration is used

When a 1-to-1 standby-less system switchover configuration is used with an updatable back-end server, the system is
switched to the reference-only back-end server, but the shared disks cannot be switched. For details about how to set
the system switchover, see Shared disk access control by HiRDB in the HiRDB Version 9 System Operation Guide.

(c) When the standby-less system switchover configuration (effects distributed) is used

When a 1-to-1 standby-less system switchover configuration is used with an updatable back-end server, the system is
switched to the reference-only back-end server, but the shared disks cannot be switched. For details about how to set
system switchover, see Shared disk access control by HiRDB in the HiRDB Version 9 System Operation Guide.

Note:
Make sure that, for the shared RDAREAs, no reference-only back-end server uses shared disks as a cluster
software management resource.

(7) Executing utilities and operation commands on a shared RDAREA
When a utility or operation command is used to process a shared RDAREA, shared table, or shared index, HiRDB
may internally issue LOCK TABLE to lock the shared RDAREA for all the back-end servers. If an application is
accessing a table or index in the shared RDAREA, deadlock or server-to-server global deadlock may occur. When you
execute a utility or operation command, make sure that you place the target shared RDAREA in command shutdown
status.

(8) Notes about using shared RDAREAs

1. If you use the system switchover facility, place the unit containing the updatable back-end server as follows:

• Place it on a separate host from a reference-only back-end server.

• Place the target system in such a manner that the updatable back-end server does not coexist with a reference-
only back-end server on the same host when system switchover occurs.

Make sure that no reference-only back-end server uses the disk volume for the shared RDAREA as the cluster
software's management resources.

2. No floating servers can be installed because a shared RDAREA is placed in all back-end servers.

3. A shared table cannot be the replication target.

4. Updatable online reorganization of shared RDAREAs cannot be executed for each server (-s option). However, if
some of the back-end servers are inactive and cannot be started immediately, the following actions can be taken
for each server:

• Forcibly cancel online reorganization hold (committing the database for online reorganization) only by the
active back-end servers (pdorbegin -u).

• Forcibly cancel reflection processing for updatable online reorganization only by the active back-end servers
(pdorend -u).

After the inactive back-end servers have started, place them in the same status as the other back-end servers.

5. When you use local buffers to update a table and index in a shared RDAREA, first issue the LOCK TABLE
statement. If you update without issuing a LOCK TABLE statement, updated pages that are recovered using the
global buffer might not always be retained when the server process terminates abnormally and the transaction
recovery process runs. If the updated pages cannot be retained, they cannot be restored; therefore, the unit
terminates abnormally with abort code Phb3008. If this happens, restart HiRDB.

14. Designing RDAREAs

479

14.7 Temporary table RDAREAs
A temporary table RDAREA is a user RDAREA for storing temporary tables and temporary table indexes.

(1) Criteria
Temporary table RDAREAs are required in order to use temporary tables.

(2) Attributes of temporary table RDAREAs
There are two types of temporary table RDAREAs:

• Temporary table RDAREAs with the SQL session shared attribute
This type of temporary table RDAREA can be used in any SQL session. Use this type to reduce the number of
temporary table RDAREAs because such RDAREAs can be shared among SQL sessions.

• Temporary table RDAREAs with the SQL session-specific attribute
This type of temporary table RDAREA can be used only in specific SQL sessions (for which the temporary table
RDAREA that is to be used is specified in PDTMPTBLRDAREA in the client environment definition). When a
particular user handles a large amount of data, this type is used to prevent a shortage of space from occurring for
the temporary table RDAREAs that are used by other users.

(3) How to create temporary table RDAREAs
The following describes how to create temporary table RDAREAs:

1. In the pd_max_temporary_object_no operand, specify the maximum number of temporary tables and
temporary table indexes that can be used at the same time. If you are applying 0904 compatibility mode, in
addition to specifying the pd_max_temporary_object_no operand, specify the maximum number of
temporary table RDAREAs in the pd_max_tmp_table_rdarea_no operand.

2. Specify DB in the -k option of the pdfmkfs command to create a HiRDB file system area.

3. Create a user RDAREA by specifying the following two operands in the create rdarea statement in the
database initialization utility (pdinit) or the database structure modification utility (pdmod):

• Specify for user used by PUBLIC.
To use an RDAREA as a temporary table RDAREA, it must be a public user RDAREA.

• Specify temporary table use.
If the temporary table RDAREA is to have the SQL session shared attribute, specify temporary table
use shared. If it is to have the SQL session-specific attribute, specify temporary table use
occupied.

Notes on creation

• If you are applying 0904 compatibility mode, make sure that the value of the
pd_max_tmp_table_rdarea_no operand is smaller than the value of the pd_max_rdarea_no
operand. When you add temporary table RDAREAs, make sure that the total number of RDAREAs, including
the temporary table RDAREAs being added, does not exceed the maximum number of RDAREAs specified in
the pd_max_rdarea_no operand. If the total number will exceed the set maximum, change the
pd_max_rdarea_no operand's value.

• If there are multiple available temporary table RDAREAs, HiRDB determines automatically the temporary
table RDAREA to be used. Therefore, we recommend that you set all temporary table RDAREAs that can be
used by the same UAP to have the same RDAREA size, segment size, and page size.
If the temporary table RDAREAs have different RDAREA sizes, segment sizes, or page sizes, the following
problems might arise:

 Each time a temporary table is instantiated by the first INSERT statement executed, an RDAREA with a
different page size might be chosen for the storage. In such a case, whether the first INSERT statement will
execute will depend on the relationship between the row length of the data to be inserted and the page size of
the storage RDAREA.

14. Designing RDAREAs

480

 HiRDB chooses an RDAREA with the largest number of segments as the storage RDAREA. Therefore, if
the storage candidate RDAREAs have different page or segment sizes, HiRDB might choose an RDAREA
with a smaller amount of free space as the storage RDAREA.

• A temporary table RDAREA is initialized when HiRDB starts or when the first INSERT statement is
executed on its temporary table. Therefore, if its size is large, the amount of overhead increases. For details
about initialization of temporary table RDAREAs, see (4) Initializing the temporary table RDAREAs.

Example
This example creates a temporary table RDAREA (RDTMP01) with the SQL session shared attribute on BES1 of
a HiRDB parallel server configuration. The following shows the control statement in the database structure
modification utility (pdmod).

create rdarea RDTMP01 Specifies the name of the temporary table RDAREA
 globalbuffer tmpbuf01
 for user used by PUBLIC Specifies a public user RDAREA
 server name BES1
 open attribute INITIAL
 page 4096 characters
 storage control segment 100 pages
 temporary table use shared Specifies the SQL-session shared attribute
 file name "/hirdb/db/rdtmp01_f01"
 initial 500 segments ;

(4) Initializing the temporary table RDAREAs
When HiRDB starts, it initializes the temporary table RDAREAs that were used during the previous session,
regardless of the start mode. Therefore, if a temporary table RDAREA to be initialized is large in size, it will take time
for HiRDB to start. If you use the rapid system switchover facility or the standby-less system switchover facility and
need to reduce the time required for system switchover, you can skip initialization of temporary table RDAREAs
during HiRDB startup by specifying ACCESS in the pd_tmp_table_initialize_timing operand. Note that
when ACCESS is specified, HiRDB initializes a temporary table RDAREA when the first INSERT statement is
executed on a temporary table in the RDAREA. Therefore, if the size to be initialized is large, the overhead for
executing the INSERT statement becomes large. To reduce the overhead, reduce the size of the temporary table
RDAREA.

For details about the pd_tmp_table_initialize_timing operand and how to estimate the overhead for
initializing temporary table RDAREAs, see the manual HiRDB Version 9 System Definition.

(5) Backing up temporary table RDAREAs
There is no need to back up a temporary table RDAREA because the data in temporary tables is retained only during
the transaction or SQL session. If an error occurs in a temporary table RDAREA, re-initialize the RDAREA with the
initialize rdarea statement of the database structure modification utility (pdmod).

(6) Notes about using temporary table RDAREAs

(a) Limitations

Some limitations apply when the operation commands and utilities listed below are executed on a temporary table
RDAREA. For details, see the manual HiRDB Version 9 Command Reference.

• pdhold command

• pdorcheck command

• pdorcreate command

• pdrdrefls command

• Database copy utility (pdcopy)

• Database condition analysis utility (pddbst)

• Database structure modification utility (pdmod)
This utility does not support moving RDAREAs or defining replicas for RDAREAs.

• Database recovery utility (pdrstr)

14. Designing RDAREAs

481

(b) Using a temporary table RDAREA that has the SQL session-specific attribute

A temporary table RDAREA that has the SQL session-specific attribute can be used only by the SQL sessions for
which the RDAREA is specified in PDTMPTBLRDAREA in the client environment definition. To use such an
RDAREA more exclusively (so that only one SQL session can use it), allocate a local buffer. The corresponding
temporary table RDAREA will be locked in lock mode (EX).

(c) Creating a non-FIX temporary table

To create a non-FIX temporary table, the temporary table RDAREA must satisfy the applicable condition listed below.
If the temporary table RDAREA does not satisfy the applicable condition below, the KFPA11809-I message might
be issued when data is stored.

• When PDTMPTBLRDAREA is specified in the client environment definition

The same page length# is defined for all temporary table RDAREAs that are specified in PDTMPTBLRDAREA.

• When PDTMPTBLRDAREA is not specified in the client environment definition or an XDS client is used

The same page length# is defined for all temporary table RDAREAs with the SQL session shared attribute.

#
The page length is greater than the basic row length. To determine the basic row length, use the formula for
determining the data length in Predefined-type data lengths in the manual HiRDB Version 9 SQL Reference. If
the KFPA11809-I message is issued, specify a value that is greater than the row length to be stored shown in
the KFPA11809-I message.

(d) Linking with HiRDB Datareplicator

An update operation on a temporary table is not subject to extraction. Therefore, there are no considerations related
specifically to temporary tables when HiRDB Datareplicator is used.

14. Designing RDAREAs

482

15 Storage Requirements for HiRDB
This chapter explains the HiRDB storage requirements.

483

15.1 Estimating the memory size required for a HiRDB
single server configuration

This section explains how to estimate the size of the memory required for a HiRDB single server configuration. The
topics covered include:

• Memory allocation

• Calculation of required memory

• Formulas for shared memory used by a unit controller

• Formulas for shared memory used by a single server

• Formulas for size of shared memory used by global buffers

• Formulas for size of memory required during SQL execution

• Formula for size of memory required during SQL preprocessing

• Formula for size of memory required during BLOB-type data retrieval or updating

• Formula for size of memory required during block transfer or array FETCH

15.1.1 Memory allocation
The following figure shows the memory allocation for a HiRDB single server configuration.

Figure 15‒1: Memory allocation for a HiRDB single server configuration

The following table lists details for HiRDB single server configuration shared memory.

15. Storage Requirements for HiRDB

484

Table 15‒1: HiRDB single server configuration shared memory details

Item

Type of shared memory

Unit controller
shared
memory

Global buffer
shared memory

Utility shared
memory

Security
monitoring
information

buffer shared
memory

Inter-process
memory

communicati
on shared
memory

Troubleshoot
ing

information
acquisition

shared
memory

Purpose System control Global buffers Communication
between the unit
controller and
utilities

Security
monitoring
information buffer

Client-server
inter-process
memory
communicatio
n

Acquisition of
troubleshootin
g information

Processes All HiRDB
processes

Single server Utility processes Single server Single server,
client
processes

All HiRDB
processes

Number of
segments

1 • If the facility
for dynamic
updating of
global buffers
is not used: 1
to 512

• If the facility
for dynamic
updating of
global buffers
is used:
32-bit mode: 1
to 1,012
64-bit mode: 1
to 1,512

1 1 Number of
clients
connected
using the
PDIPC=MEM
ORY
environment
variable
(0-2,000)
2

1

Maximum
value per
segment

See Table 15-2
Size of memory
required for a
HiRDB single
server
configuration.
Value of the
shmmax
operating system
parameter must
be equal to or
greater than the
calculation
value.

Divide the
segment by the
SHMMAX operand
value. Value of the
shmmax
operating system
parameter must be
equal to or greater
than the SHMMAX
operand value.

See Table 15-2
Size of memory
required for a
HiRDB single
server
configuration.
Value of the
shmmax operating
system parameter
must be equal to
or greater than the
calculation value.

See Table 15-2
Size of memory
required for a
HiRDB single
server
configuration.
Value of the
shmmax operating
system parameter
must be equal to
or greater than the
calculation value.

See Table
15-2 Size of
memory
required for a
HiRDB single
server
configuration.
Value of the
shmmax
operating
system
parameter
must be equal
to or greater
than the
calculation
value.

10 MB

Allocation
conditions

None There must be a
global buffer
definition

Specify
pd_utl_exec_
mode=1

Specify the
pd_aud_file_
name operand as
the HiRDB file
system area name
for the audit trail
file.

There are
clients
connected
using the
PDIPC=MEM
ORY
environment
variable

None

Creation
timing

At unit
activation
(including
standby unit
activation when

• At server
activation
(including
standby unit
activation

When utilities are
executed

When a HiRDB
single server
configuration
starts up

When client
and server are
connected

At unit
activation
(including
standby unit
activation

15. Storage Requirements for HiRDB

485

Item

Type of shared memory

Unit controller
shared
memory

Global buffer
shared memory

Utility shared
memory

Security
monitoring
information

buffer shared
memory

Inter-process
memory

communicati
on shared
memory

Troubleshoot
ing

information
acquisition

shared
memory

user server hot
standby or the
rapid system
switchover
facility is used)

when the rapid
system
switchover
facility is
used)

• When
pdbufmod -
k {add|
upd} is
executed

when user
server hot
standby or the
rapid system
switchover
facility is
used)

Deletion
timing

At next unit
activation
(including
standby unit
activation when
user server hot
standby or the
rapid system
switchover
facility is used)

• When
pdbufmod -
k del is
executed

• For normal
termination or
planned
termination:
When the
server is
terminated

• For forced
termination,
abnormal
termination, or
termination of
standby unit
when the rapid
system
switchover
facility is
used: When
the unit is next
activated

10 minutes after
the utility
terminates

When a HiRDB
Single server quits

When client
and server are
disconnected

At unit
termination

Indication by
pdls -d
mem

Indicated Indicated Indicated Indicated Not indicated Not indicated

SHM-OWNER
of pdls -d
mem

MANAGER Server name UTILITY AUDDEF Not indicated Not indicated

Related
operands

• pd_shmpo
ol_attri
bute

• pd_sds_s
hmpool_s
ize

• pd_dbbuff
_attribut
e

• pd_dbbuff
_modify

• pdbuffer
• SHMMAX

• pd_utl_exe
c_mode

• Operands
related to the
security audit
facility#

• PDIPC
• PDSENDM
EMSIZE

• PDRECVM
EMSIZE

None

Remarks -- -- Can be created
only when
pd_utl_exec_
mode=1 (when
pd_utl_exec_

-- -- --

15. Storage Requirements for HiRDB

486

Item

Type of shared memory

Unit controller
shared
memory

Global buffer
shared memory

Utility shared
memory

Security
monitoring
information

buffer shared
memory

Inter-process
memory

communicati
on shared
memory

Troubleshoot
ing

information
acquisition

shared
memory

mode=0, the
relevant space is
allocated in the
unit controller
shared memory).

Legend:
--: Not applicable.

#
For details, see the manual HiRDB Version 9 System Definition.

15.1.2 Calculation of required memory
The required memory used by a HiRDB single server configuration is the sum of all the terms shown in the following
table.

For details about the value specified in the shmmax operating system parameter (for Solaris,
shmsys:shminfo_shmmax; for Linux, SHMMAX), see Chapter 20. Specifying OS Parameters.

If you increase the size of shared memory, this might affect transaction performance by increasing the number of page
faults. For each operand, specify the most appropriate value based on the guidelines for your particular system.

Table 15‒2: Size of memory required for a HiRDB single server configuration

Item Required memory (KB)

Process private area Process private area used by all
unit controller processes

 32-bit mode

E + {(64 + 48 (u + 1)) (value of
pd_max_server_process - b - 6) + (64 + {48 (y
+ 1)) 3 + w + R} 1,024

 64-bit mode

E + {(64 + 64 (u + 1)) (value of
pd_max_server_process - b - 6) + (64 + 64 (y
+ 1)) 3 + w} 1,024 + R

 If you are using plug-ins, add:

+ 1,400

 If you are using the asynchronous READ
facility, add:

+ r

 If you are using Real Time SAN Replication,
add:

+ 425 (2 b + 7) 1,024

 If fixed was specified in the
pd_process_terminator operand, add:

+ F (value of pd_process_terminator_max - 1)

 If you are performing in-memory data
processing, add:

+ {K (value of pd_max_users 2 + 7)}
1,024

15. Storage Requirements for HiRDB

487

Item Required memory (KB)

 If you are changing the maximum number of
communication traces stored, add:

+ M 1,024

Process
private area
used by
single
server
process#1

pd_work_buff
_mode=each
specified

 32-bit mode

{G + g + (a + 9) c + h + i + m + p + q + s} (b
+ 3) + (64 + 48 (v + 1)) 1,024 (b
+ 3) + J

 64-bit mode

{G + g + (a + 9) c + h + i + m + p + q + s} (b
+ 3) + (64 + 64 (v + 1)) 1,024 (b
+ 3) + J

 If you are performing in-memory data
processing, add:

+ {K (b + 3)} 1,024

 If you are changing the maximum number of
communication traces stored, add:

+ P 1,024

pd_work_buff
_mode=pool
specified or
omitted

 32-bit mode

(G + g + a + a 128 0.1 + 11 + h + i + m
+ n + p + q + s) (b + 3) + (64 + 48 (v + 1))

 1,024 (b + 3) + J

 64-bit mode

(G + g + a + a 128 0.1 + 15 + h + i + m
+ n + p + q + s) (b + 3) + (64 + 64 (v + 1))

 1,024 (b + 3) + J

 If you are performing in-memory data
processing, add:

+ {K (b + 3)} 1,024

 If you are changing the maximum number of
communication traces stored, add:

+ P 1,024

Shared memory Space used by the unit controller
in the unit controller shared
memory

d 1,024

Space used by the single server in
the unit controller shared memory

E

Global buffer shared memory F

In-memory data processing shared
memory

L

Utility shared memory T

Security audit information buffer
shared memory

 For automatic calculation by the system:

0.3 + MAX{(H + 100), (H 1.2)} 0.25

 For user -specified values (specify the
pd_audit_def_buffer_size operand):

Value specified for
pd_audit_def_buffer_size

Inter-process memory
communication shared memory#2

j k

#1: If you are using plug-ins, add 300 per single server process.

15. Storage Requirements for HiRDB

488

#2: Add this value if you have specified PDIPC=MEMORY in the client environment definition. For details about the
inter-process memory communication facility and client environment definitions, see the HiRDB Version 9 UAP
Development Guide. If either the HiRDB server or the HiRDB client is in 32-bit mode, the system allocates the shared
memory for the inter-process memory communication facility in the 32-bit address space.

a: Value of pd_work_buff_size operand

b: Value of pd_max_users operand + value of pd_max_reflect_process_count operand

c: Maximum number of work tables
Obtain the number of work tables for each SQL statement from Table 15-3 Procedure for obtaining the number of
work tables for each SQL statement. Use the largest value obtained from Table 15-3 Procedure for obtaining the
number of work tables for each SQL statement as the maximum number of work tables.

d: Value obtained from 15.1.3 Formulas for shared memory used by a unit controller.

e: Value obtained from 15.1.4 Formulas for shared memory used by a single server.

f: Value obtained from 15.1.5 Formula for size of shared memory used by global buffers.

g: Size of memory required during SQL execution
For details about the formula, see 15.1.6 Formulas for size of memory required during SQL execution.

h: Size of memory required during SQL preprocessing
For details about the formula, see 15.1.7 Formula for size of memory required during SQL preprocessing.

i: LOB buffer batch input/output work memory
Add 62 KB if a LOB global buffer is specified in the global buffer definition (-b specified in the pdbuffer
operand of the system common definition).

j: Maximum number of concurrently executable clients that use the inter-process memory communication facility.
If you are not sure about the value, specify the number of all clients that use the inter-process memory
communication facility or the value of the pd_max_users operand.

k: Average memory size for data transfer performed by all clients that use the inter-process memory communication
facility (value of PDSENDMEMSIZE + value of PDRECVMEMSIZE in the client environment definition).

m: Memory requirement for Java virtual machine
If you use Java stored procedures or Java stored functions, add the size of memory used by the Java virtual
machine. This value depends on the Java virtual machine's options (-Xms, -Xmx, and -Xmn options for Hewlett-
Packard JRE 1.2.2.04) and version. For details about the memory requirement for your Java virtual machine, see
the applicable manual. Following are the guidelines for the memory required for HP-UX:

• Eight MB of memory is required to start a Java virtual machine.

• Add the maximum memory size for the Java virtual machine (value of the -Xmx option). Note that some Java
virtual machines may use more memory than the size specified in the -Xmx option.

n: Work table extended memory size
When the pd_work_buff_expand_limit operand is specified, add the work table extended memory size.
The work table extended memory size is determined from the following formula:
Work table extended memory size (kilobytes) = work table extended buffer size + (work table extended buffer
size 128) 0.1

• Work table extended buffer size (kilobytes) = MAX(0, work table extended buffer size based on hash join,
subquery hash execution) + MAX(0, work table extended buffer size based on the increase in the number of
work tables)

• Work table extended buffer size based on hash join, subquery hash execution = MIN{ (work table extended
buffer size based on hash join, subquery hash execution - value of the pd_work_buff_size operand), (value of
the pd_work_buff_expand_limit operand - value of the pd_work_buff_size operand) } number of
concurrently executing users executing hash join, subquery hash execution
For details about determining the work table extended buffer size when executing hash join, subquery hash
execution, see the HiRDB Version 9 UAP Development Guide.

• Work table extended buffer size based on the increase in the number of work tables = MIN{ (number of work
tables used 128 - value of the pd_work_buff_size operand), (value of pd_work_buff_expand_limit operand

15. Storage Requirements for HiRDB

489

- value of pd_work_buff_size operand) } (number of users such that the number of work tables is greater
than the value of the pd_work_buff_size operand 128)
Number of work tables used = MAX(number of work table files used per SQL statement, number of work
table files used by the ASSIGN LIST statement)
For details about determining the number of work table files used per SQL statement and the number of work
table files used by the ASSIGN LIST statement, see 18.3 Determining the maximum number of files (pdfmkfs
-l command).

p: Memory requirements required for BLOB data type
For details about the formula, see 15.1.8 Formula for size of memory required during BLOB data retrieval or
updating (HiRDB single server configuration).

q: Memory requirements required for server-side block transfer or array FETCH
For details about the formula, see 15.1.9 Formula for size of memory required during block transfer or array
FETCH.

r: Memory size used by asynchronous READ
This is applicable when the asynchronous READ facility is used; use the following formula (in kilobytes) for the
calculation:

(90 +

90

Memory used by the RDAREA for management of the HiRDB file system area)

i=1

 value of pd_max_ard_process

For the memory used by the RDAREA for management of the HiRDB file system area, use 90 areas as the
maximum in the calculation. If the number of areas used by the server is fewer than 90, assume that amount
anyway.
The memory used by the RDAREA for management of the HiRDB file system area (in kilobytes) is calculated
from the formula below based on the initial settings:
Note that the parameters at the time of initialization of the area can be checked by running the pdfstatfs
command with the -A option specified.

{(Number of files#1 + number of extensions#2) 64} 1.5#3

#1: Value specified by pdfmkfs -l, or displayed in available file count in the execution results of the
pdfstatfs command.
#2: Value specified by pdfmkfs -e, or displayed in available expand count in the execution results of
the pdfstatfs command.
#3: Multiply when the area size (value specified in pdfmkfs -n) is at least 2,048.

s: HiRDB file system memory size
Determine with the following formula (in kilobytes):

347 + Memory used by the work tables for management of the HiRDB file system area + Memory used by the system logs for management
of the HiRDB file system area +

90

 Memory used by the RDAREA for management of the HiRDB file system area

i=1

The memory used by the HiRDB file system area for management of work tables and system logs uses the
maximum value calculated for the memory used by the HiRDB file system area for management used by the
server. For RDAREAs, use 90 areas as the maximum calculation value. If the number of areas used by the server
is fewer than 90, assume that amount anyway.
The memory used by the RDAREA for management of the HiRDB file system area (in kilobytes) is calculated
with the formula below based on the initial settings:
Note that the parameters at the time of initialization of the area can be checked by running the pdfstatfs
command with the -A option specified.

15. Storage Requirements for HiRDB

490

{(Number of files#1 + number of extensions#2) 64} 1.5#3

#1: Value specified by pdfmkfs -l, or displayed in available file count in the execution results of the
pdfstatfs command.
#2: Value specified by pdfmkfs -e, or displayed in available expand count in the execution results of
the pdfstatfs command.
#3: Multiply when the area size (value specified in pdfmkfs -n) is at least 2,048.

t: When value of pd_utl_exec_mode is 0: 0
When value of pd_utl_exec_mode is 1: {(b 2,000 + 136) 1,024} 1,024

u: Valid value of pd_module_trace_max for the unit control information definition

v: Valid value of pd_module_trace_max for the single server definition

w: Memory size for restarting HiRDB
If this memory size cannot be allocated, HiRDB restart fails. Use the formula below to determine the size (in
bytes):

y: If the operand pd_module_trace_max is specified in the system common definition or the unit control
information definition: the value of pd_module_trace_max

If not: 16,383

A + B

• If commit is specified in the pd_dbsync_point operand, add:

+ 112 ((value of pd_max_users + value of pd_max_reflect_process_count) 2 + 7)

• If 1 or a greater value is specified in the pd_inner_replica_control operand, add:

+ C

• If the number of HiRDB file system areas that store RDAREAs created in a character special file is 1,001 or more, add:

+ D

Use the following variables in the formula to calculate the size of memory used by HiRDB to restart:

Variable Value

A • 32-bit mode

246,762 + 4 value of pd_max_rdarea_no

+ {48 (value of pd_max_rdarea_no + number of tables) + 304} ((value of pd_max_users + value of
pd_max_reflect_process_count) 2 + 7)

• 64-bit mode

305,274 + 8 value of pd_max_rdarea_no

+ {64 (value of pd_max_rdarea_no + number of tables) + 512} ((value of pd_max_users + value of
pd_max_reflect_process_count) 2 + 7)

Number of tables: 62 + MAX {value of pd_max_access_tables, 500}

B b1 X + b2 Y

b1: When the record length of the server status file < 4,096

MAX(((3,400 ((((record length - 40) - 308) 20)

+ ((record length - 40) 20) (MAX(4,096 record length ,2) - 1))

+ 0.7)),1) MAX(4,096 record length ,2) (record length - 40)

When 4,096 record length of server status file < 12,288

MAX((3,400 ((((record length - 40) - 308) 20)) + 0.7) ,1)

 (record length - 40)

When 12,288 record length of server status file

15. Storage Requirements for HiRDB

491

Variable Value

MAX((3,400 ((((record length - 40) - 836) 20)) + 0.7) ,1)

 (record length - 40)

X: When the number of RDAREAs 3,400: 1

When 3,401 number of RDAREAs 6,800: 2

When 6,801 number of RDAREAs: 3

b2: When the record length of the server status file < 4,096

((5,662,310 ((((record length - 40) - 308) 20)

+ ((record length - 40) 20) (MAX(4,096 record length ,2) - 1))

+ 0.7)) MAX(4,096 record length ,2) (record length - 40)

When 4,096 record length of server status file < 12,288

(5,662,310 ((((record length - 40) - 308) 20)) + 0.7)

 (record length - 40)

When 12,288 record length of server status file

(5,662,310 ((((record length - 40) - 836) 20)) + 0.7)

 (record length - 40)

Y: When the number of RDAREAs 10,200: 0

When 10,201 number of RDAREAs 5,672,510: 1

When 5,672,511 number of RDAREAs 11,334,820: 2

When 11,334,821 number of RDAREAs: 3

C • 32-bit mode

(48 value of pd_max_rdarea_no + 80) ((value of pd_max_users + value of pd_max_reflect_process_count) 2
+ 7)

• 64-bit mode

(64 value of pd_max_rdarea_no + 160) ((value of pd_max_users + value of pd_max_reflect_process_count) 2
+ 7)

D • 32-bit mode

12,012 ((number of HiRDB file system areas that store RDAREAs created in a character special file - 1,000)
1,000)

• 64-bit mode

16,016 ((number of HiRDB file system areas that store RDAREAs created in a character special file - 1,000)
1,000)

E, F, G: Fixed value
These values depend on the OS being used. The following table presents the values for each OS (in kilobytes):

OS Value of E Value of F Value of G

HP-UX (32-bit mode) 90,500 2,800 5,600

HP-UX (32-bit-mode POSIX library version) 130,000 2,800 4,900

HP-UX (64-bit mode) 92,100 2,900 6,600

HP-UX (IPF) 211,000 2,600 7,500

AIX (32-bit mode) 75,400 2,100 5,800

AIX (32-bit-mode POSIX library version) 138,200 4,900 8,500

AIX (64-bit mode) 151,900 6,000 12,200

Solaris (32-bit mode) 79,500 1,400 3,600

15. Storage Requirements for HiRDB

492

OS Value of E Value of F Value of G

Solaris (32-bit-mode POSIX library version) 125,100 1,700 3,300

Solaris (64-bit mode) 114,800 2,200 4,500

Linux (32-bit mode) 101,400 3,300 5,200

Linux (EM64T) 154,300 6,700 14,500

Linux 6 (64-bit x86_64) 117,200 1,900 5,800

H: If you are making a rough estimate, this is the number of audit events (the number of executions of CREATE
AUDIT). If you are making a detailed estimate, it is the number of entries in the security audit information buffer

J: Memory required when using the facility for acquiring syncpoint output synchronization control information (bytes)
If 1 is specified in the pd_dbbuff_trace_level operand and the pd_dfw_awt_process operand is
omitted, add:

32-bit mode
320 number of global buffers defined in a single server

64-bit mode
640 number of global buffers defined in a single server

K: If 1 or a greater value is specified in the pd_max_resident_rdarea_no operand, add:
1,648 + 16 value of pd_max_resident_rdarea_no + 16 value of pd_max_resident_rdarea_shm_no

L: Memory required by in-memory data processing
For the applicable formulas, see 15.1.10 Memory required by in-memory data processing.

M: Memory required by communication trace processing

32-bit mode
(16 (N - 1,024) 2) (value of pd_max_server_process - value of pd_max_users - 3)

64-bit mode
(32 (N - 1,024) 2) (value of pd_max_server_process - value of pd_max_users - 3)

N: Value of pd_pth_trace_max enabled as unit control information definition
The value specified for the operand rounded up to a power of two.

P: Memory required by communication trace processing

32-bit mode
(16 (Q - 1,024) 2) (value of pd_max_users + 3)

64-bit mode
(32 (Q - 1,024) 2) (value of pd_max_users + 3)

Q: Value of pd_pth_trace_max enabled as a single server definition
The value specified for the operand rounded up to a power of two.

R: Size of memory for signal handler
HP-UX (IPF) version: 512
Otherwise: 0

Table 15‒3: Procedure for obtaining the number of work tables for each SQL statement

SQL statement Procedure for obtaining the number of work tables

SELECT statement

INSERT(-SELECT)
statement

When none of 1-8 as follows are applicable: 0

When any of 1-8 as follows are applicable: Sum of the applicable values from 1-8

1. When multiple tables are joined for retrieval
Number of additional work tables = (Number of joined tables - 1) 2 + 1

2. When specifying the ORDER BY clause
Number of additional work tables = 2

15. Storage Requirements for HiRDB

493

SQL statement Procedure for obtaining the number of work tables

3. When specifying the GROUP BY clause
Number of additional work tables = Number of GROUP BY clauses specified

4. When specifying the DISTINCT clause
Number of additional work tables = Number of DISTINCT clauses specified

5. When specifying the UNION, UNION ALL, or EXCEPT[ALL] clause
Number of additional work tables = (Number of UNION or UNION ALL clauses specified) 2 + 1

6. When search condition contains columns with index defined
Number of additional work tables = Number of columns with index defined in the search condition

7. When specifying the FOR UPDATE or FOR READ ONLY clause
Number of additional work tables = 1

8. When specifying a subquery (quantified predicate)
Number of additional work tables = Number of subqueries specified

UPDATE statement

DELETE statement

Number of columns with index defined in the search condition + 1

DROP SCHEMA statement

DROP TABLE statement

DROP INDEX statement

CREATE INDEX statement

REVOKE statement to revoke
access privilege

2

15.1.3 Formulas for shared memory used by a unit controller

(1) 32-bit mode HiRDB
The size of the memory required for the unit controller from startup to termination of a HiRDB single server
configuration is the sum of the process items listed as follows:

Ensure that the size of the shared memory for the entire unit controller does not exceed 2 gigabytes.

Process item Shared memory calculation formula (bytes)

Scheduler Value of pd_utl_exec_mode set to 0:
{ (432 + 304 n) 1,024 + 500 + x + (134 + value of pd_trn_rcvmsg_store_buflen) 1,024

} 1,024

Value of pd_utl_exec_mode set to 1:
{ (432 + 304 n) 1,024 + (m 2,000 + 136) 1,024 + y + (134 + value of
pd_trn_rcvmsg_store_buflen) 1,024 } 1,024

x: Single server: 116 + 5 (m + 3) + 14
Utility special unit: 0

y: Single server: 5 (m + 3) + 14
Utility special unit: 0

m: Value of pd_max_users + value of pd_max_reflect_process_count

n: Number of servers in unit + number of utility servers in unit + 1
Number of utility servers in the unit: 27 +

: If there is a single server in the unit, 12; otherwise, 0

Lock server • For a unit other than a utility special unit

(320+ 48 + c + d + 48 + 4,096 + g + 48 + i + 48 + 4,096 + 48 + n + t + u + 16) value of
pd_lck_pool_partition

15. Storage Requirements for HiRDB

494

Process item Shared memory calculation formula (bytes)

c: When pd_lck_hash_entry is omitted or 0 is specified:

((8 + 4 MAX(largest prime number that is less than ((p + 3) (value of
pd_max_access_tables + 4 + 5 2)

+ value of pd_lck_pool_size value of pd_lck_pool_partition 6) 10 ,
11,261)) 16 + 1) 16

When 2 or a greater non-prime number is specified for pd_lck_hash_entry:

((8 + 4 largest prime number that is less than the value of pd_lck_hash_entry) 16 + 1)

 16

When 1 or a prime number is specified for pd_lck_hash_entry:

((8 + 4 value of pd_lck_hash_entry) 16 + 1) 16

d: ((p + 3) (value of pd_max_access_tables + 4 + 5 2) +

value of pd_lck_pool_size value of pd_lck_pool_partition 6) 96

g: When value of pd_utl_exec_mode = 1 and p > 32:

((p + 3) 3 + p) 256

When value of pd_utl_exec_mode = 0 or p 32:

((p + 3) 3 + 32) 256

i: When value of pd_utl_exec_mode = 1 and p > 32:

((value of pd_lck_pool_size value of pd_lck_pool_partition 8 + ((p + 3)

 (value of pd_max_access_tables + 4)) 2)

+ p (value of pd_max_rdarea_no + 1) + (p + 3) 2 2 5)

rounded up to the next even value 64

When value of pd_utl_exec_mode = 0 or p 32:

((value of pd_lck_pool_size value of pd_lck_pool_partition 8 + ((p + 3)

 (value of pd_max_access_tables + 4)) 2)

+ 32 (value of pd_max_rdarea_no + 1) + (p + 3) 2 2 5)

rounded up to the next even value 64

n: When value of pd_utl_exec_mode = 1 and p > 32:

((p + 3) 3 + p) 48

When value of pd_utl_exec_mode = 0 or p 32:

((p + 3) 3 + 32) 48

p: value of pd_max_users + value of pd_max_reflect_process_count
t: When value of pd_utl_exec_mode = 1 and p > 32:

48 + ((p + 3) 3 + p) value of pd_max_open_holdable_cursors 16 4

When value of pd_utl_exec_mode = 0 or p 32:

48 + ((p + 3) 3 + 32) value of pd_max_open_holdable_cursors 16 4

u: When value of pd_utl_exec_mode = 1 and p > 32:

48 + ((value of pd_lck_pool_size value of pd_lck_pool_partition 8 + ((p + 3)

 (value of pd_max_access_tables + 4)) 2)

+ p (value of pd_max_rdarea_no + 1) + (p + 3) 2 2 5)

rounded up to the next even value value of pd_max_open_holdable_cursors 16 4

When value of pd_utl_exec_mode = 0 or p 32:

48 + ((value of pd_lck_pool_size value of pd_lck_pool_partition 8 + ((p + 3)

 (value of pd_max_access_tables + 4)) 2)

+ 32 (value of pd_max_rdarea_no + 1) + (p + 3) 2 2 5)

rounded up to the next even value value of pd_max_open_holdable_cursors 16 4

• For a utility special unit

15. Storage Requirements for HiRDB

495

Process item Shared memory calculation formula (bytes)

8,416

Transaction server 288 + 32 + 192 m 2 + 1,028

+ (420 + 564 + 256 + 384 2 + 128) m 2 + 7) + 256 2

m: Value of pd_max_users + value of pd_max_reflect_process_count

Timer server 32 (value of pd_max_users + value of pd_max_reflect_process_count + 3) (1 + number
of utility servers in unit + 1) + 1,440

Number of utility servers in unit is 26 +

: For HP-UX, Solaris, and AIX, with a single server in the unit: 12. For Linux, with a single server in the
unit: 3.

Statistics log server 384 + 128 16 + 32 + 288 2 + 1,024 + 128 3

+ value of pd_stj_buff_size 1,024 3 + 64 + 4,096 + 8,192

Process server 192 + 512 a + 80 + 256 + (value of pd_max_server_process + 50) (256 + 144) + 16 + 8 16 + 16
+ 16 + 48 + 48 (b + 1)

a: For a single server: 131

For a utility special unit: 106

b: If the operand pd_module_trace_max is specified in the system common definition or the unit control
information definition: value of pd_module_trace_max
If not: 16,383

Single server 640 + (44 + 4) a 2 + (100 + 4) (b + 30 + 2) + (100 + 4) (c + 1) + 40 b 14 + 256 + 256
+ 36 d + 12 e + 8 + 5,844 + 224 + f + 16 + 1,024 + 272 h

a: Number of single server definitions

b: Number of single servers in unit

c: Number of units

d: Number of -c options specified in pdunit operand

e: Number of pdcltgrp operands specified

f: 2,052 + 128 (g + 3)

g: For a single server: 92. For a utility special unit: 74.

h: Number of IP addresses for hosts specified in the pd_security_host_group operand

If the pd_security_host_group operand is not specified, 0

Name server 169,984

Node manager (1,152 + 432 total number of units + 80 total number of servers + 7,680 + 1,008 + 56 number of
servers in unit + 240 A + 44 A + 28 A + 16 B + 32)

 1,024 1,024

A: pd_utl_exec_mode = 0: 1,024
pd_utl_exec_mode = 1 and the unit contains a single server: Value of pd_max_users 10 + 400
pd_utl_exec_mode = 1 and the unit contains no single server: Value of pd_max_users 7
If the value of A does not exceed 1,024, use 1,024 as the value of A.

B: pdcltgrp operand not specified: 0
pdcltgrp operand specified: Number of pdcltgrp operands specified + 1

I/O server (28 + ((32 + A) 32 32)) 128 128

A: 3,248 + (14 + 16) 972 + 1 276 + 534 276 + 16 276
+ value of pd_max_file_no 972
For utility special unit, the size is (3,248 + (14 + 16) 972 + 1 276) bytes.

Log server 32 + 48 + 128 19 + 384 + 128 7 + 1,024 + 512

+ (128 + 256 + 160 + 8 + 64) value of pd_log_rec_leng
 value of pd_log_rec_leng + 64 + 4,096 2 + (736 + 512) B + 128

15. Storage Requirements for HiRDB

496

Process item Shared memory calculation formula (bytes)

 value of pd_log_write_buff_count
+ (value of pd_log_write_buff_count + A)

 {value of pd_log_max_data_size + (68 + 44 + 96 + 160)} 4,096 4,096

+ C + {(B + 1) 12} 8,320

Add this when the pd_max_reflect_process_count operand is specified.

128 + 704

A: 16

B: Number of pdlogadfg -d sys operands specified

C: 0

Synchronization point
dump server

(368 + 1,456 2) 1,024 1,024

+ {(96 + 80 + 208 + 208) + 192 (number of pdlogadfg -d spd operands specified)

+ 416 (number of pdlogadpf -d spd operands specified) + 1,023}

 1,024 1,024

Common to all units a + b + 64 + (m + 3) c + 64 + 48 + d + e

+ (value of pd_max_server_process 2 + 100) (48 + 16) + 32

+ (value of pd_max_server_process 2 + 100 + 384) 32 + 32 + f + g + h + i + q

+ (value of pd_max_server_process + 127 + r) 32 + 32

a: 25,248 + p 4

b: 2,988

c: 1,956

d: 32 32

e: 64 + 64 {(m + 3) 2
+ MAX (5, (m + 3] 10) + 7}

f: 512 (13 + 3) 2

g: {(96 + value of pd_lck_until_disconnect_cnt 112 + 4,095) 4,096} 4,096 2

h: (number of port numbers specified with pd_registered_port 16 + 32 + 1,023) 1,024 1,024
If pd_registered_port is omitted: 0

i: If k is 2 or more, 32 + (8 + 8 k) n

Otherwise, 0

k: Value of pd_lck_pool_partition
m: Value of pd_max_users + value of pd_max_reflect_process_count
n: (m + 3) 2 + MAX{5, (m + 3) 10 } + 7

p: If Y is specified for pd_dbbuff_modify: 512 + value of pd_max_add_dbbuff_shm_no
Otherwise: 512

q: 144

r: When the value of pd_utl_exec_mode is set to 1 and m > 32: (m + 3) 3 + m
When the value of pd_utl_exec_mode is set to 0 or m 32: (m + 3) 3 + 32

Transaction log server 1,024 + 512 A

+ {
128 B + 128
+ [F + (128 + 256 + 8 + 224) value of pd_log_rec_leng value of pd_log_rec_leng
+ (value of pd_log_max_data_size + 68 + 44 + 96 + 160) value of pd_log_lec_leng value of
pd_log_rec_leng] D
+ E + (48 + 8) B 2

15. Storage Requirements for HiRDB

497

Process item Shared memory calculation formula (bytes)

} number of servers in unit

+ 584 B + 128 B + 64 B C + 128

+ {
F + (128 + 256 + 8 + 224) value of pd_log_rec_leng value of pd_log_rec_leng
+ (value of pd_log_max_data_size + 68 + 44 + 96 + 160)

 value of pd_log_lec_leng value of pd_log_rec_leng

}

+ E + (48 + 8) (B 2 + 2)

A: 2

B: 7 + (value of pd_max_users + value of pd_max_reflect_process_count) 2

C: 1

D: For a single server, if the value of pd_log_rollback_buff_count is 0, D is 8;

otherwise, it is the value of pd_log_rollback_buff_count
For a utility special unit, 0

E: 0

F: 60

Status server 64 32 32

Audit trail management
server

A 1,024 1,024

A: 640 if the pd_aud_file_name operand is omitted

640 + (304 200) + B + C if the pd_aud_file_name operand is specified

B: 0 if the pd_aud_async_buff_size operand value is 0

The following value if the pd_aud_async_buff_size operand value is 4,096 or greater:

For Linux:

(160 value of pd_aud_async_buff_count operand)

+ {(value of pd_aud_async_buff_size operand 4,096 4,096)

 value of pd_aud_async_buff_count operand} + 4,096

For a system other than Linux:

(160 value of pd_aud_async_buff_count operand)

+ {(value of pd_aud_async_buff_size operand 4,096 4,096)

 value of pd_aud_async_buff_count operand}

C: If N is specified for the pd_aud_auto_loading operand, 0

If Y is specified for the pd_aud_auto_loading operand, 256 2 + 240

(2) 64-bit mode HiRDB
The size of the memory required for the unit controller from startup to termination of a HiRDB single server
configuration is the sum of the process items listed as follows:

Process item Shared memory calculation formula (bytes)

Scheduler Value of pd_utl_exec_mode set to 0:

{ (432 + 304 n) 1,024 + 500 + x + (134 + value of pd_trn_rcvmsg_store_buflen) 1,024
} 1,024

Value of pd_utl_exec_mode set to 1:

{ (432 + 304 n) 1,024 + (m 2,000 + 136) 1,024 + y + (134 + value of
pd_trn_rcvmsg_store_buflen) 1,024 } 1,024

15. Storage Requirements for HiRDB

498

Process item Shared memory calculation formula (bytes)

x: Single server: 116 + 5 (m + 3) + 14
Utility special unit: 0

y: Single server: 5 (m + 3) + 14
Utility special unit: 0

m: Value of pd_max_users + value of pd_max_reflect_process_count

n: Number of servers in unit + number of utility servers in unit + 1
Number of utility servers in the unit: 27 +

: If there is a single server in the unit, 12; otherwise, 0

Lock server • For a unit other than a utility special unit

(496 + 80 + c + d + 64 + 8,192 + g + 80 + i + 64 + 8,192 + 64 + n + t + u + 16)

 value of pd_lck_pool_partition

c: When pd_lck_hash_entry is omitted or 0 is specified:

((8 + 8 MAX(largest prime number < ((p + 3) (value of pd_max_access_tables + 4 + 5 2)

+ value of pd_lck_pool_size value of pd_lck_pool_partition 4) 10 , 11,261)) 16
+ 1) 16

When 2 or a greater non-prime number is specified for pd_lck_hash_entry:

((8 + 8 largest prime number < value of pd_lck_hash_entry) 16 + 1)

 16

When 1 or a prime number is specified for pd_lck_hash_entry:

((8 + 8 value of pd_lck_hash_entry) 16 + 1) 16

d: ((p + 3) (value of pd_max_access_tables + 4 + 5 2) +

value of pd_lck_pool_size value of pd_lck_pool_partition 4) 128

g: When value of pd_utl_exec_mode = 1 and p > 32:

((p + 3) 3 + p) 320

When value of pd_utl_exec_mode = 0 or p 32:

((p + 3) 3 + 32) 320

i: When value of pd_utl_exec_mode = 1 and p > 32:

((value of pd_lck_pool_size value of pd_lck_pool_partition 5 + ((p + 3)

 (value of pd_max_access_tables + 4)) 2)

+ (value of pd_lck_pool_size value of pd_lck_pool_partition) 3 + p (value of
pd_max_rdarea_no + 1)

+ (p + 3) 2 2 5)

rounded up to the next even value 112

When value of pd_utl_exec_mode = 0 or p 32:

((value of pd_lck_pool_size value of pd_lck_pool_partition 5 + ((p + 3)

 (value of pd_max_access_tables + 4)) 2)

+ (value of pd_lck_pool_size value of pd_lck_pool_partition) 3 + 32 (value of
pd_max_rdarea_no + 1)

+ (p + 3) 2 2 5)

rounded up to the next even value 112

n: When value of pd_utl_exec_mode = 1 and p > 32:

((p + 3) 3 + p) 80

When value of pd_utl_exec_mode = 0 or p 32:

((p + 3) 3 + 32) 80

p: value of pd_max_users + value of pd_max_reflect_process_count
t: When value of pd_utl_exec_mode = 1 and p > 32:

15. Storage Requirements for HiRDB

499

Process item Shared memory calculation formula (bytes)

48 + ((p + 3) 3 + p) value of pd_max_open_holdable_cursors 16 4

When value of pd_utl_exec_mode = 0 or p 32:

48 + ((p + 3) 3 + 32) value of pd_max_open_holdable_cursors 16 4

u: When value of pd_utl_exec_mode = 1 and p > 32:

48 + ((value of pd_lck_pool_size value of pd_lck_pool_partition 5 + ((p + 3)

 (value of pd_max_access_tables + 4)) 2)

+ value of pd_lck_pool_size value of pd_lck_pool_partition 3 + p (value of
pd_max_rdarea_no + 1)

+ (p + 3) 2 2 5)

rounded up to the next even value value of pd_max_open_holdable_cursors 16 4

When value of pd_utl_exec_mode = 0 or p 32:

48 + ((value of pd_lck_pool_size value of pd_lck_pool_partition 5 + ((p + 3)

 (value of pd_max_access_tables + 4)) 2)

+ value of pd_lck_pool_size value of pd_lck_pool_partition 3 + 32 (value of
pd_max_rdarea_no + 1)

+ (p + 3) 2 2 5)

rounded up to the next even value value of pd_max_open_holdable_cursors 16 4

• For a utility special unit

16,704

Transaction server 304 + 32 + 192 m 2 + 1,048

+ (416 + 720 + 256 + 392 2 + 128) (m 2 + 7) + 256 2

m: Value of pd_max_users + value of pd_max_reflect_process_count

Timer server 32 (value of pd_max_users + value of pd_max_reflect_process_count + 3) (1 + number
of utility servers in unit + 1) + 1,440 + (48 - 32) 2

Number of utility servers in unit is 26 +

: For HP-UX, Solaris, and AIX, with a single server in the unit: 12. For Linux, with a single server in the
unit: 3.

Statistics log server 424 + 128 16 + 32 + 288 2 + 1,168 + 144 3

+ value of pd_stj_buff_size 1,024 3 + 64 + 4,096 + 8,192

Process server 208 + 528 a + 80 + 256 + (value of pd_max_server_process + 50) (256 + 160) + 16 + 8 16 + 16
+ 16 + 64 + 64 (b + 1)

a: For a single server: 131

For a utility special unit: 106

b: If the operand pd_module_trace_max is specified in the system common definition or the unit control
information definition: value of pd_module_trace_max
If not: 16,383

Single server 736 + (48 + 8) a 2 + (112 + 8) (b + 30 + 2) + (104 + 8) (c + 1) + 40 b 14 + 256 + 256
+ 40 d + 16 e + 8 + 5,864 + 256 + f + 16 + 1,024 + 272 h

a: Number of single server definitions

b: Number of single servers in unit

c: Number of units

d: Number of -c options specified in pdunit operand

e: Number of pdcltgrp operands specified

f: 2,056 + 128 (g + 3)

g: For a single server: 92. For a utility special unit: 74.

h: Number of IP addresses for the host specified in the pd_security_host_group operand

15. Storage Requirements for HiRDB

500

Process item Shared memory calculation formula (bytes)

If the pd_security_host_group operand is not specified, 0

Name server 169,984

Node manager (1,312 + 464 total number of units in HiRDB system

+ 96 total number of servers in HiRDB system + 10,240 + 1,200

+ 72 number of HiRDB servers in the unit + 240 A + 44 A + 28 A + 16 B + 48)

 1,024 1,024

A: pd_utl_exec_mode = 0: 1,024
pd_utl_exec_mode = 1 and the unit contains a single server: (value of pd_max_users + value of
pd_max_reflect_process_count) 10 + 400
pd_utl_exec_mode = 1 and the unit contains no single server: (value of pd_max_users + value of
pd_max_reflect_process_count) 7
If the value of A does not exceed 1,024, use 1,024 as the value of A.

B: pdcltgrp operand not specified: 0
pdcltgrp operand specified: Number of pdcltgrp operands specified + 1

I/O server (56 + ((56 + A) 32 32)) 128 128

A: 3,248 + (14 + 16) 972 + 1 276 + 534 276 + 16 276
+ value of pd_max_file_no 972 + (48 - 32) 3
For a utility special unit: (3,248 + (14 + 16) 972 + 1 276) + (48 - 32) 3 bytes

Log server 32 + 48 + 128 19 + 432 + 128 7 + 1,168 + 512

+ (128 + 256 + 160 + 8 + 64) value of pd_log_rec_leng value of pd_log_rec_leng

+ 64 + 4,096 2 + (768 + 512) B

+ 144 value of pd_log_write_buff_count

+ (value of pd_log_write_buff_count + A)

 {value of pd_log_max_data_size + (68 + 44 + 96 + 160)} 4,096 4,096

+ C + {(B + 1) 12} 8,320

Add this when the pd_max_reflect_process_count operand is specified.

128 + 704

A: 16

B: Number of pdlogadfg -d sys operands specified

C: 0

Synchronization point
dump server

(384 + 1,536 2) 1,024 1,024

+ {(128 + 80 + 240 + 240) + 192 (number of pdlogadfg -d spd operands specified)

+ 416 (number of pdlogadpf -d spd operands specified) + 1,023}

 1,024 1,024

Common to all units a + b + 80 + (m + 3) c + 64 + 48 + d + e

+ (value of pd_max_server_process 2 + 100) (64 + 16) + 32

+ (value of pd_max_server_process 2 + 100 + 384) 32 + 32 + f + g + h + i + q

+ (value of pd_max_server_process + 127 + r) 48 + 32

a: 34,656 + p 4

b: 3,480

c: 2,760

d: 48 32

e: 80 + 96 {(m + 3) 2

+ MAX (5, (m + 3] 10) + 7}

f: 512 (13 + 3) 2

15. Storage Requirements for HiRDB

501

Process item Shared memory calculation formula (bytes)

g: {(128 + value of pd_lck_until_disconnect_cnt 112 + 4,095) 4,096} 4,096 2

h: (number of port numbers specified with pd_registered_port 16 + 32 + 1,023) 1,024 1,024

If pd_registered_port is omitted: 0

i: If k is 2 or more, 32 + (8 + 8 k) n

Otherwise, 0

k: Value of pd_lck_pool_partition
m: Value of pd_max_users + value of pd_max_reflect_process_count
n: (m + 3) 2 + MAX{5, (m + 3) 10 } + 7

p: If Y is specified for pd_dbbuff_modify: 512 + value of pd_max_add_dbbuff_shm_no + value of
pd_max_resident_rdarea_shm_no

Otherwise: 512 + value of pd_max_resident_rdarea_shm_no

q: HP-UX (IPF) 64-bit mode: 256

Otherwise: 144

r: When the value of pd_utl_exec_mode is set to 1 and m > 32: (m + 3) 3 + m

When the value of pd_utl_exec_mode set to 0 or m 32: (m + 3) 3 + 32

Transaction log server 1,168 + 688 A

+ {
128 B + 144
+ [G + (128 + 256 + 8 + 224) value of pd_log_lec_leng value of pd_log_rec_leng
+ (value of pd_log_max_data_size + 68 + 44 + 96 + 160) value of pd_log_lec_leng

 value of pd_log_rec_leng] D
+ E + (48 + 8) B 2
} number of servers in unit

+ 600 B + 128 B + 64 B C + 144

+ {
G + (128 + 256 + 8 + 224) value of pd_log_lec_leng value of pd_log_rec_leng
+ value of pd_log_max_data_size + 68 + 44 + 96 + 160)

 value of pd_log_lec_leng value of pd_log_rec_leng
}

+ E + (48 + 8) (B 2 + 2)

A: 2

B: 7 + (value of pd_max_users + value of pd_max_reflect_process_count) 2

C: 1

D: For a single server, if the value of pd_log_rollback_buff_count is 0, D is 8;

otherwise, it is the value of pd_log_rollback_buff_count
For a utility special unit, 0

E: 0

G: 64

Status server 64 32 32

Audit trail management
server

A 1,024 1,024

A: 704 if the pd_aud_file_name operand is omitted

704 + (320 200) + B + C if the pd_aud_file_name operand is specified

B: 0 if the pd_aud_async_buff_size operand value is 0

The following value if the pd_aud_async_buff_size operand value is 4,096 or greater:

For Linux version:

(176 value of pd_aud_async_buff_count operand)

15. Storage Requirements for HiRDB

502

Process item Shared memory calculation formula (bytes)

+ {(value of pd_aud_async_buff_size operand 4,096 4,096)

 value of pd_aud_async_buff_count operand} + 4,096

For non-Linux versions:

(176 value of pd_aud_async_buff_count operand)

+ {(value of pd_aud_async_buff_size operand 4,096 4,096)

 value of pd_aud_async_buff_count operand}

C: If N is specified for the pd_aud_auto_loading operand, 0

If Y is specified for the pd_aud_auto_loading operand, 256 2 + 256

15.1.4 Formulas for shared memory used by a single server
This subsection lists and describes the formulas used for calculating the shared memory used by a HiRDB single
server configuration.

For 32-bit mode (KB):
Formula 1 + {((40 + (value obtained by adding Formulas 2 through 7 and Formula 9) + (6.5 1,024
1,024)) 512 512)} 1,024

For 64-bit mode (KB):
Formula 1 + {((72 + (value obtained by adding Formulas 2 through 9) + (6.5 1,024 1,024)) 512

 512)} 1,024

Notes on Formulas 1 to 10:

• If Y is specified in the pd_rdarea_open_attribute_use or pd_lv_mirror_use operand, add
Formula 3.

• If commit is specified in either the pd_dbsync_point operand or the pd_system_dbsync_point
operand, add Formula 4. The default for the pd_system_dbsync_point operand is commit.
Otherwise, add Formula 7.

• If the pd_inner_replica_control operand is specified, add Formula 5.

• If the pd_dfw_awt_process operand is specified, add Formula 6.

• If you omit the pd_sds_shmpool_size operand, the following value is set:
For 32-bit mode:

{((40 + (value obtained by adding Formulas 2 through 7 9, 10)) 512 512)} 1,024
For 64-bit mode:

{((72 + (value obtained by adding Formulas 2 through 9, 10)) 512 512)} 1,024

• If you specify the pd_max_resident_rdarea_no operand, add Formula 8.

• If the value of pd_max_temporary_object_no is 1 or greater, add Formula 9.

• If the value of pd_max_tmp_table_rdarea_no is 1 or greater, add Formula 10.

The following table shows Formulas 1 through 10.

Formula Shared memory calculation formula

Formula 1 (KB) 32-bit mode

b 1.3 + c + d + f + 1.6 + q + r + 4

+ { [(a + 12) 13] 1.1 + [(a + 62) 63] + 3.7} (e + 3) + 3.5

+ {
((b 64)) (8 16) 4 4

+ 12 {(b 3) + 1 - mod (b 3, 2)}
+ 8 a {(e + 3) 2 + 1 + MAX (e 10, 5)} + 32 + 20,000

15. Storage Requirements for HiRDB

503

Formula Shared memory calculation formula

+ {(c 8) + 7} 64 8 + {(f 8) + 7} 64 8
+ MAX {a (e + 3), c 8} 104 + MAX {a (e + 3), f 8} 24
+ {(q 4) + 7} 64 8
+ {[(r - (s 592 + t 916 + u 172)) 2] + 7} 64 8
+ MAX {13 (e + 3), q 4} 88
+ MAX {21 (e + 3), [r - (s 592 + t 916 + u 172)] 2} 60
+ 44 + 256 + 1,024 + 512#1

} 1,024 + y + 7.5

+ {248 v w + 47 v + 72} 1,024

+ { (28 + ((32 + ((g 127 + 1) 2,048 + 128)) 32 32))

 128 128

} 1,024

D

+ (Ei)

i=1

Add this if the pd_def_buf_control_area_assign operand is specified as INITIAL or if the
operand is omitted.

+ {[(a + 12) 13] 1.1 + [(a + 62) 63] + 3.7} (e + 7)

 64-bit mode

b 1.3 + c + d + f + 1.6 + q + r + 5

+ { [(a + 12) 13] 1.2 + [(a + 62) 63] 1.5 + 4.1} (e + 3) + 3.5

+ {
((b 64)) (8 16) 4 4 + 12
 {(b 3) + 1 - mod (b 3, 2)}

+ 8 a {(e + 3) 2 + 1 + MAX (e 10, 5)} + 48 + 20,000
+ {(c 8) + 7} 64 8 + {(f 8) + 7} 64 8
+ MAX {a (e + 3),c 8} 104 + MAX {a (e + 3), f 8} 40
+ {(q 4) + 7} 64 8
+ {[(r - (s 600 + t 936 + u 182)) 2] + 7} 64 8
+ MAX {13 (e + 3), q 4} 104
+ MAX {21 (e + 3), [r - (s 600 + t 936 + u 184)] 2} 72
+ 72 + 256 + 1,536 + 512#1

} 1,024 + y + 7.5

+ {248 v w + 64 v + 72} 1,024

+ { (56 + ((56 + ((g 127 + 1) 2,048 + 128)) 32 32))

 128 128

} 1,024

D

+ (Ei)

i=1

Add this if the pd_def_buf_control_area_assign operand is specified as INITIAL or if the
operand is omitted.

+ {[(a + 12) 13] 1.2 + [(a + 62) 63] 1.5 + 4.1} (e + 7)

Formula 2

(bytes)

 32-bit mode

500 1,024

+ 5,072 (e + 15) + (372 g 16 16) + 48#1 g + 432 h

+ 112 (p + 240)

+ 96 x + 32 j + 132 {19 + (e + 3) 3}

15. Storage Requirements for HiRDB

504

Formula Shared memory calculation formula

+ 48 n + 48 {(e + 3) 2 + 1 + MAX(5, (e + 3) 10)}

+ 68 B + 152 (A + 120) + 80 + 32 g + 64#2 + 96#3 + 368#4

+ ((((g 8) + 3) 4) 4) j

 64-bit mode

500 1,024

+ 9,416 (e + 15) + (472 g 16 16)

+ (56#1 g 16 16) + 448 h

+ (136 (p + 240) 16 16)

+ 144 x + 48 j + 240 {19 + (e + 3) 3}

+ 64 n + 96 {(e + 3) 2 + 1 + MAX(5, (e + 3) 10)}

+ 68 B + 184 (A + 120) + 96 + 48 g + 64#2 + 128#3 + 448#4

+ ((((g 8) + 7) 8) 8) j

Formula 3 (bytes) 32-bit mode

{[(g 8 4) 4] + 8} {(e + 3) 2 + 12}

 64-bit mode

{[(g 8 8) 8] + 8} {(e + 3) 2 + 12}

Formula 4 (bytes) 32-bit mode

(32 + 16 x) (e 2 + 7 + 1) + 16

 64-bit mode

(48 + 32 x) (e 2 + 7 + 1) + 16

Formula 5 (bytes) 56 z + 16

Formula 6 (bytes) 32-bit mode

72 + 52 C + 68 x

If you specify 1 in the pd_dbbuff_trace_level operand, add:

+ 320 x

 64-bit mode

96 + 56 C + 72 x

If you specify 1 in the pd_dbbuff_trace_level operand, add:

+ 640 x

Formula 7 (bytes) 32-bit mode

(32 + 16 x) 10 + 16

 64-bit mode

(48 + 32 x) 10 + 16

Formula 8 (bytes) 16 + 112 + (48 + 48 G) + (48 + 32 H)

Formula 9

(bytes)

16 + 80 I

Formula 10

(bytes)

(112 + (28 + J 52)) 8 8

a: Value of pd_max_access_tables operand

b: Value of pd_sql_object_cache_size operand

c: Value of pd_table_def_cache_size operand

d: Value of pd_auth_cache_size operand

15. Storage Requirements for HiRDB

505

e: Value of pd_max_users operand

f: Value of pd_view_def_cache_size operand

g: Value of pd_max_rdarea_no operand

h: Value of pd_max_file_no operand

j: Number of global buffers for indexes
If Y is specified in the pd_dbbuff_modify operand, add the pd_max_add_dbbuff_no operand value to
the number of pdbuffer commands that have been specified.

n: Value of pd_lck_until_disconnect_cnt operand

p: Value of pd_assurance_index_no operand

q: Value of pd_type_def_cache_size operand

r: Value of pd_routine_def_cache_size operand

s: Number of plug-ins installed

t: Total number of plug-in functions used with DML#5

u: Total number of parameters for the plug-in functions used with DML#5

v: Value of pd_max_list_users operand

w: Value of pd_max_list_count operand

x: Total number of global buffers (number specified in the pdbuffer operand)
If Y is specified in the pd_dbbuff_modify operand, add the pd_max_add_dbbuff_no operand value to
the number of pdbuffer commands that have been specified.

y: Value of pd_registry_cache_size operand

z: Value of the pd_inner_replica_control operand

A: Value of the pd_assurance_table_no operand

B: Maximum number of transactions in the server (2 e + 7)

C: Value of the pd_dfw_awt_process operand

D: Total number of specified pdplgprm operands

Ei: Size of the shared memory specified by the ith pdplgprm operand.

G: Value of the pd_max_resident_rdarea_no operand

H: Value of the pd_max_resident_rdarea_shm_no operand

I: Value of the pd_max_temporary_object_no operand

J: Value of the pd_max_tmp_table_rdarea_no operand

T: Number of tables that will use the free space reusage facility

#1: Add this value if neither the pd_max_list_users nor pd_max_list_count operand is 0.

#2: Add this value if at least 1 is specified in the pd_max_ard_process operand.

#3: Add this value if at least 1 is specified in the pd_max_reflect_process_count operand.

#4: Add this value if the facility for predicting reorganization time is used.

#5: You can use the following SQL statement to obtain the total number of plug-in functions and the total number of
parameters for the plug-in functions used with DML:

SELECT COUNT(*),SUM(N_PARAM) FROM MASTER.SQL_PLUGIN_ROUTINES
WHERE PLUGIN_NAME = 'plug-in-name'
AND (TIMING_DESCRIPTOR = 'ADT_FUNCTION'
 OR TIMING_DESCRIPTOR IS NULL
 OR TIMING_DESCRIPTOR = 'BEFORE_INSERT'
 OR TIMING_DESCRIPTOR = 'AFTER_INSERT'
 OR TIMING_DESCRIPTOR = 'BEFORE_UPDATE'
 OR TIMING_DESCRIPTOR = 'AFTER_UPDATE'

15. Storage Requirements for HiRDB

506

 OR TIMING_DESCRIPTOR = 'BEFORE_DELETE'
 OR TIMING_DESCRIPTOR = 'AFTER_DELETE'
 OR TIMING_DESCRIPTOR = 'BEFORE_PURGE_TABLE'
 OR TIMING_DESCRIPTOR = 'AFTER_PURGE_TABLE'
 OR TIMING_DESCRIPTOR = 'INDEX_SEARCH'
 OR TIMING_DESCRIPTOR = 'INDEX_COUNT'
 OR TIMING_DESCRIPTOR = 'INDEX_INSERT'
 OR TIMING_DESCRIPTOR = 'INDEX_BEFORE_UPDATE'
 OR TIMING_DESCRIPTOR = 'INDEX_AFTER_UPDATE'
 OR TIMING_DESCRIPTOR = 'INDEX_DELETE'
 OR TIMING_DESCRIPTOR = 'PURGE_INDEX'
 OR TIMING_DESCRIPTOR = 'INDEX_MAINTENANCE_DEFERRED'
 OR TIMING_DESCRIPTOR = 'BEFORE_INSERT_DC'
 OR TIMING_DESCRIPTOR = 'BEFORE_UPDATE_DC'
 OR TIMING_DESCRIPTOR = 'BEFORE_DATA_CHECK'
 OR TIMING_DESCRIPTOR = 'AFTER_DATA_CHECK')

15.1.5 Formula for size of shared memory used by global buffers
The size of the shared memory used by the global buffers is calculated for each pdbuffer statement using Formula
1. If Y is specified in the pd_dbbuff_modify operand, add Formula 2. The total value obtained from Formulas 1
and 2 is the memory size required for use by the global buffers.

If fixed is specified for the pd_dbbuff_attribute operand, pages are locked in real memory, which reduces
the real memory portion of the virtual memory by the same size. In addition, the same size is allocated from virtual
memory, which consists of the remaining real memory and swap area.

If the pdbuffer operand is omitted, HiRDB will automatically calculate the shared memory size, so it need not be
estimated.

Formula Shared memory calculation formula (KB)

Formula 1 32-bit mode

n

{

i=1

{752 + 64 + (296 + 64#1) (Pi + 4)

+ (124 + 80#2 + 96 A Mi) Ui} 4,096 4,096

+ Si {Pi + 4 + (Ui Mi A)}

} 1,024

64-bit mode

n

{management region part + data storage part} 1,024

i=1

management region part:

{944 + 64 + (480 + 112#1) (Pi + 4)

+ (176 + 96#2 + 136 A Mi) Ui} 4,096 4,096

data storage part:

Si {Pi + 4 + (Ui Mi A)}

Formula 2 32-bit mode

{{ ((s 1,024 2) 8 + 112) 2,048 2,048

a (s 1,024) } 1,024

64-bit mode

{ ((s 1,024 2) 8 + 144) 2,048 2,048

a (s 1,024) } 1,024

n: Number of global buffer pools

15. Storage Requirements for HiRDB

507

i: Global buffer pool definitions to be calculated

P: Number of global buffer sectors

A: If the asynchronous READ facility is used, 2; if it is not used, 1.

M: Maximum number of batch input pages
If at least 1 is specified in the pd_max_ard_process operand, this is twice the specified value.

U: Maximum number of concurrently executable prefetch operations

S: Maximum page length of the RDAREAs allocated to global buffer

s: SHMMAX specified value

a: Total from Formula 1

#1: Add this value for the LOB global buffer.

#2: Add this value if at least 1 is specified in the pd_max_ard_process operand.

15.1.6 Formulas for size of memory required during SQL execution

(1) Procedure for obtaining the size of the memory required during execution of rapid
grouping facility

If PDSQLOPTLVL is specified in the client environment definition, pd_optimize_level is specified in the
system common definition, or this operand is omitted, executing an SQL statement that satisfies the applicable
conditions will activate the rapid grouping facility. In such a case, HiRDB allocates process private area on the basis
of the value of the PDAGGR operand in the client environment definition. The size of the memory can be obtained
from the following formula (in bytes).

Formula:

e + d 4 4 + (17 + 4 a + 4 b + c + d) 4 4 (N + 1) (bytes)

a: Number of columns subject to grouping

b: Number of operations by set functions
Each of COUNT, SUM, MAX, and MIN is counted as 1.
Each of AVG (COUNT) and AVG (SUM) is counted as 2.

c: Length of rows subject to grouping (see Table 15-4 Length of column subject to grouping and length of operation
area for set functions)

d: Length of operation area for set functions (see Table 15-4 Length of column subject to grouping and length of
operation area for set functions)

e: 32-bit mode: MAX (4 N 24, 16,408)
64-bit mode: MAX (8 N 40, 32,808)

N: Value of PDAGGR operand in the client environment definition

Table 15‒4: Length of column subject to grouping and length of operation area for set functions

Column's data type Column length
Length of operation area for set

function#1

INTEGER 4 6

SMALLINT 2 4#2

DECIMAL(p,s) (p + 1) 2 (p + 7) 2 #3

FLOAT 8 10

SMALLFLT 4 6

15. Storage Requirements for HiRDB

508

Column's data type Column length
Length of operation area for set

function#1

INTERVAL YEAR TO DAY 5 8

INTERVAL HOUR TO SECOND 4 6

CHAR(n) N n + 3

VARCHAR(n) n + 2 n + 5

NCHAR(n) 2 n 2 n + 2

NVARCHAR(n) 2 n + 2 2 n + 4

MCHAR(n) N n + 3

MVARCHAR(n) n + 2 n + 5

DATE 4 6

TIME 3 6

BLOB(n) --

BINARY(n) n + 2 n + 5

Legend:
--: Not applicable

#1
If the set function is COUNT, the length of the operation area is always 6, regardless of the data type.

#2
If the set function is AVG or SUM, the length of the operation area is 6.

#3
If the set function is AVG or SUM, the length of the set function operation region is the following value:
If the set function value type is DECIMAL and precision is 29 digits: 18
If the set function value type is DECIMAL and precision is 38 digits: 23
For details about the data type rules of set functions, see Set functions in the manual HiRDB Version 9 SQL
Reference.

(2) Procedure for obtaining the size of the memory required when data suppression by
column is specified

The following formula can be used to obtain the size of the memory (in bytes) required to access a table for which
data suppression by column is specified (table for which SUPPRESS is specified in the column definition of CREATE
TABLE):

Formula:

a + 128 (bytes)

a: Sum of the lengths of columns in the table for which data suppression by column is specified

(3) Procedure for obtaining the size of the memory required during hash join and subquery
hash execution

If you specify the PDADDITIONALOPTLVL operand in the client environment definition or the
pd_additional_optimize_level operand in the HiRDB system definition, the SQL extension optimizing
option becomes available. If you specify an application of hash join, subquery hash execution (APPLY_HASH_JOIN)
with this SQL extension optimizing option, the system allocates the following size of process private area when a
table join or subquery SQL statement is executed:

15. Storage Requirements for HiRDB

509

Formula

32-bit mode

a

 (13 1,024 + 6 1,024 b + c)

i=1

64-bit mode

a

 (13 1,024 + 7 1,024 b + c) (bytes)

i=1

a: Maximum number of hash joins in the SELECT statement
For details about the maximum number of hash joins in the SELECT statement, see the HiRDB Version 9 UAP
Development Guide.

b: Obtain the hash join processing to be applied on the basis of the number of hash table rows, and then determine this
value from the following table:

Guidelines for the number

of hash table rows

Hash join processing

to be applied
Value of b

1,500 or less Batch hash join 0.5

1,500 (packet split count 3) or less Packet split

hash join

1-level packet split 1

1,500 (packet split count 3)2 or less 2-level packet split 2

Greater than 1,500 (packet split count 3)2 3-level packet split 3

Number of hash table rows: For join, it is the inner table count; for subquery, it is the subquery search count excluding
the predicates that contain external reference rows in the search condition.

Packet split count: MIN { (size of hash table 2) page length of hash table , 64}

Hash table size: Value of the pd_hash_table_size operand specified in the HiRDB system definition or the
value of the PDHASHTBLSIZE operand specified in the client environment definition.

Page length of hash table: Select the page length of the hash table corresponding to c (maximum length of hash table
row) from the following table:

Maximum length of hash table
row Page length of hash table (bytes)

0 to 1,012 4,096

1,013 to 2,036 8,192

2,037 to 4,084 16,384

4,085 to 16,360 32,768

16,361 to 32,720 (maximum length of hash table row + 48) 2,048 2,048

c: Maximum length of hash table row
For details about the length of a hash table row, see the HiRDB Version 9 UAP Development Guide.

(4) Procedure for obtaining the size of the memory required when the snapshot method is
used

If the pd_pageaccess_mode operand is omitted, or if SNAPSHOT is specified, then the page access method for
data retrieval uses the snapshot method when an SQL statement for which the snapshot method is applicable is
executed. At this time, memory in the process private area is allocated automatically, as shown below, based on the
page size of the table or index storage RDAREA.

15. Storage Requirements for HiRDB

510

Formula

a 2 (bytes)

a: Maximum page length in the RDAREA where the relevant table or index is stored
However, LOB RDAREAs are excluded.

(5) Determining the size of the memory required to retrieve the first n records
If the function for retrieving n rows of search results from the top is used, you can retrieve n rows from the top of the
search results (or from the location resulting from skipping as many rows from the top as specified by the user as an
offset).

If the number of rows specified in the LIMIT clause is 1 or greater and the value of (number of offset rows + number
of rows specified in the LIMIT clause) is 32,767 or less, as many rows are retained in memory as will fit in (number
of offset rows + number of rows specified in the LIMIT clause). The size of the process private area to be allocated
can be determined by the formula shown below. If the value of (number of offset rows + number of rows specified in
the LIMIT clause) is 32,768 or greater, see Chapter 18. Determining Work Table File Size because a work table is
created.

Formula

{100 + (a + 2) (number of offset rows + number of rows specified in the LIMIT clause)} b (bytes)

a: Row length
The row length cannot exceed 32,720 bytes. The row length is calculated with the following formula:

m

(Ai) + 2 m + 4 + c (bytes)

i=1

m: Number of rows specified in the selection formula, GROUP BY clause, or ORDER BY clause
Add 1 if the FOR UPDATE clause is specified. However, if ROW is specified in the selection formula, this
becomes the total number of rows in the table.

Ai: Data length of the ith column of the records stored in the first n records of the allocation area
For details about column data length, see Table 16-1 List of data lengths, and determine the length beginning
by assigning the defined length to d.
However, for BLOB data, character data with a fixed length of at least 256 bytes (including National character
data and mixed character string data), or BINARY data of columns without the following attributes, the value
is 12:

• Columns specified in a selection formula with the DISTINCT clause specified

• A query specification selection formula using a concatenation operation based on UNION [ALL]
• Columns specified in the ORDER BY clause

Also, if the FOR UPDATE clause is specified and 1 is added for m, use 12 bytes for Ai.

c: 8
However, in the following cases, use 0:

• There is an exclusive lock in the EX mode on the retrieval table

• WITHOUT LOCK is specified

• The rapid grouping facility is specified

• Multiple tables are combined

b: Number of allocated areas for the first n records
The number of allocated areas for the first n records is calculated with the following formula:

1 + number of UNION [ALL] clause specifications

15. Storage Requirements for HiRDB

511

(6) Determining the size of the memory required for executing SQL statements specifying an
index-type plug-in function as search condition

To determine the size of memory that is allocated in the process private area when an SQL statement specifying an
index-type plug-in function as search condition is executed, use the following formula:

Formula

a 500 + (20 + 6) 800 + 16 (bytes)

a: Row length. To determine the row length, use the following formula:

m

(Ai) + 4 (m + 2) + 12 + 4 + 8 (bytes)

i=1

m: Number of columns specified in the selection formula, join condition, GROUP BY clause, or ORDER BY
clause

If you specified the FOR UPDATE clause, add 1. If ROW is specified in the selection formula, the total number
of rows in the table is assumed.

Ai: Length of column data i in the row to be retrieved
For details about column data length, see Table 16-1 List of data lengths, and determine the length beginning
by assigning the defined length to d.
A length of 12 bytes is assumed for a column with BLOB data or character string data with a defined length of
256 bytes or greater (including national character data and mixed character string data) that is none of the
following:

• Column specified in a join condition (join column)

• Column specified in a selection formula specifying the DISTINCT clause

• Column specified in a selection formula in a subquery of a quantified predicate

• Column specified in the selection formula in a subquery of IN predicate

• Selection formula in a subquery that is the target of Set Operation due to UNION [ALL] or EXCEPT
[ALL]

• Column specified in an ORDER BY clause

If the FOR UPDATE clause is specified, Ai corresponding to 1 that was added to m is 12 bytes.

(7) Determining the size of the memory required to use the facility for output of extended SQL
error information

When the facility for output of extended SQL error information is used, a process private area is allocated in the
following cases:

(a) When the OPEN statement is executed

Formula

32-bit mode

(16 + 16 m) + a (bytes)

64-bit mode

(24 + 24 m) + a (bytes)

a: Total data length of ? parameters or embedded variables
m
a= (ai)
i=1
m: Number of ? parameters or embedded variables in the SQL statement

15. Storage Requirements for HiRDB

512

ai: Data length of the ith ? parameter or the embedded variable
The following table lists the data lengths of embedded variables and ? parameters.

Table 15‒5: Data length of embedded variables and ? parameters

Data type Column length (without indicator
variable)

Column length (with indicator
variable, embedded variable,

and ? parameter)

INTEGER 4 6

SMALLINT 2 4

DECIMAL(p,s) (p + 1) 2 (p + 5) 2

FLOAT 8 10

SMALLFLT 4 6

INTERVAL YEAR TO DAY 5 7

INTERVAL HOUR TO SECOND 4 6

CHAR(n) n n + 2

VARCHAR(n) n + 2 n + 4

NCHAR(n) 2 n 2 n + 2

NVARCHAR(n) 2 n + 2 2 n + 4

MCHAR(n) n n + 4

MVARCHAR(n) n + 2 n + 4

DATE 4 6

TIME 3 5

BLOB(n) n + 4 n + 8

TIMESTAMP(p) 7 + (p 2) 9 + (p 2)

BINARY(n) n + 4 n + 8

(b) When the PREPARE statement of the definition SQL is executed

Formula

SQL statement length + 20 (bytes)

(8) Calculating required memory for defining substructure indexes or updating tables that
define substructure indexes

(a) When a substructure index is defined

Use the following formula to calculate the process private area used to define a substructure index with CREATE
INDEX of the definition SQL.

Formula

(index key length# 100 + 64) (bytes)

#
The maximum definition length of the substructure index defined in the table.

15. Storage Requirements for HiRDB

513

(b) When a table is updated that defines a substructure index

Use the following formula to calculate the process private area used to update a table that defines a substructure index
with INSERT, UPDATE or DELETE of the data manipulation SQL.

Formula

(index key length#1 100 + 64 + 128) + (index key length + 128)#2 (bytes)

#1
The maximum definition length of the substructure index defined in the table.

#2
The number of substructure indexes that specify USING UNIQUE TAG.

(9) Determining the size of the memory required to execute data manipulation SQL
statements on compressed columns

If SQL statement execution, data storage processing, or extraction processing involves compressed columns, HiRDB
allocates a process private area whose memory size is as shown below.

Formula

MIN(split compression size, definition length of compressed column)# C + L (bytes)

C: If any of the following conditions is true, 2; if not, 1:

• The SUBSTR function is used.

• The POSITION function is used.

• Backward deletion/updating of data is performed.

L: Page length of the RDAREA containing the compressed table to be processed by the SQL statement
If multiple RDAREAs are processed, use the maximum page length.

#
Use the maximum value for all the compressed columns subject to SQL statement processing.

15.1.7 Formula for size of memory required during SQL preprocessing

(1) Size of memory required when no stored procedure is used
If no stored procedure is used, the following formula can be used to obtain the size of the memory that is allocated
during SQL preprocessing (KB).

Formula

{

2,586 + Si 60 + Pi 20 + Ti 1,424 + Ci Ti 72 + Wi 776 + Ti Wi 72

+ Ki 276 + Ki Ti 72 + Li 3 + Li Ti + Di Ti 134 + Ari 108

+ Gi 44 + Sli 40 + Upi 110

+ Fi 90 + Ti Cwi 48

+ MAX(Pi, Wpi) 60

} 1.2 1,024 (KB)

Si: Number of items to be retrieved in SQL statements

Pi: Number of embedded variables, ? parameters, or SQL parameters in SQL statements

Ti: Number of table names in SQL statements

Ci: Number of column names in SQL statements

15. Storage Requirements for HiRDB

514

Wi: Number of predicates used in Boolean operators (AND and OR) in SQL statements

Ki: Number of literals in SQL statements

Li: Total length of literals in SQL statements (bytes)

Di: Total number of storage conditions defined in SQL statements

Ari: Number of arithmetic operations and concatenation operations in SQL statements

Gi: Number of columns specified in GROUP BY clause of SQL statements

Ori: Number of column specification or sort item specification numbers in ORDER BY clause of SQL statements

Fi: Total number of set functions and scalar functions in SQL statements

Sli: Number of queries specified in SQL statements

Upi: Number of columns to be updated in SQL statements

Cwi: Number of WHENs in CASE expression of SQL statements

Wpi: Number of variables corresponding to WITH clause of SQL statements

Note
If SELECT_APSL is applied, this value is 3; otherwise, it is 1. The access path display utility (pdvwopt) can be
used to determine whether SELECT_APSL is applied. For details about the access path display utility
(pdvwopt), see the manual HiRDB Version 9 Command Reference.

(2) Procedure for obtaining the size of the memory required when using stored procedures
If stored procedures are used, the size of the memory (in KB) to be allocated during SQL preprocessing is the value
obtained from the formula shown in (1) above plus the length of the procedure control object for each stored
procedure. For details about the formula for obtaining the length of a procedure control object, see the section on the
pd_sql_object_cache_size operand of the system common definition. For details about the length of the
procedure control object per stored procedure, see Formula for determining the size of the routine control object of a
routine in the manual HiRDB Version 9 System Definition.

15.1.8 Formula for size of memory required during BLOB data retrieval
or updating (HiRDB single server configuration)

Use the following formula to determine the size of the memory required during BLOB data retrieval or updating.

Formula

a + b + 17 (KB)

a: Maximum value from the following formula for BLOB input variables or output variables specified in one SQL
statement:

{
c

(actual length of BLOB input variable i#1 + 118) +
i=1
d

(specified length of BLOB output variable j#2 + 86)
j=1

} 1,024

#1: This is the actual length of BLOB data passed as embedded variables from the UAP to the HiRDB server.

#2: This is the declared length of the UAP embedded BLOB data type variables received from the UAP and returned
from HiRDB to the UAP. If it is an INSERT or SELECT statement, the BLOB type reflected from the SELECT side is
an output variable.

15. Storage Requirements for HiRDB

515

b: Maximum value from the following formula for a combination of SQL statements performing join retrieval with
simultaneously open cursors:

{
e

{
i=1
d

(defined length of BLOB output variable j + 18)}
j=1

} 1,024

c: Number of input variables

d: Number of output variables

e: Number of simultaneously open cursors

15.1.9 Formula for size of memory required during block transfer or array
FETCH

To determine the size of the memory required for block transfer or array FETCH, use the formulas below.

Condition
Value specified in the PDBLKBUFFSIZE operand

Omitted or 0 1 or greater

An array-type embedded variable is specified in the INTO clause of
the FETCH statement

Formula 1

An array-type embedded
variable is not specified in the
INTO clause of the FETCH
statement

PDBLKF operand is omitted or is
set to 1

-- Formula 2

PDBLKF operand is set to 2 or
greater

Formula 1

Legend:
--: Not applicable

Formula 1

{864 + 16 a + (6 a + 2 d + b) c} 1,024 (kilobytes)

a: Number of retrieved items specified in the SELECT clause

b: Data length per row in the retrieval results obtained by the FETCH statement (sum of the maximum length of each
column, in bytes)

c: Value of the PDBLKF operand or number of arrays

d: Number of selection formulas with BINARY type specified in the search item specified in the SELECT clause

Formula 2

MAX(X1,X2) (kilobytes)

X1: (864 + 22 a + 2 c + b) 1,024

X2: Value of the PDBLKBUFFSIZE operand

a: Number of retrieved items specified in the SELECT clause

b: Data length per row in the retrieval results obtained by the FETCH statement (sum of the length of each column that
is actually obtained, in bytes)

15. Storage Requirements for HiRDB

516

c: Number of selection formulas with BINARY type specified in the search item specified in the SELECT clause

15.1.10 Memory required by in-memory data processing
Use the following formulas to calculate the memory required by in-memory data processing.

Formula

Formula 1 + D 2 (KB)

Formula 1

n

{736 + 32 A + 48 + 448 B + 2,048 + C B} 1,024 (KB)

i=1

n: Number of in-memory RDAREAs

A: Number of HiRDB files that constitute the in-memory RDAREAs

B: Total number of pages of in-memory RDAREAs

C: Page size of in-memory RDAREAs

D: Value of Formula 2

Formula 2 (number of shared memory segments used by in-memory data buffer)

value of Formula 1 (value of SHMMAX operand 1,024)

Formula 2 calculates the value per RDAREA. Calculate for as many in-memory RDAREAs as there are.

The value found by Formula 2 is used to calculate the pd_max_resident_rdarea_shm_no operand or the
operating system parameters.

15. Storage Requirements for HiRDB

517

15.2 Estimating the memory size required for a HiRDB
parallel server configuration

This section explains how to estimate the size of the memory required for each unit constituting a HiRDB parallel
server configuration. The topics covered include:

• Memory allocation

• Calculation of required memory

• Formulas for shared memory used by a unit controller

• Formulas for shared memory used by each server

• Formulas for size of shared memory used by global buffers

• Formulas for size of memory required during SQL execution

• Formula for size of memory required during SQL preprocessing

• Formula for size of memory required during BLOB data retrieval or updating (for front-end servers)

• Formula for size of memory required during block transfer or array FETCH (for front-end servers)

• Formula for size of memory required during BLOB data retrieval or updating (for back-end servers or dictionary
servers)

15.2.1 Memory allocation
The following figure shows the memory allocation for each unit of a HiRDB parallel server configuration.

Figure 15‒2: Memory allocation for each unit of a HiRDB parallel server configuration

The following table lists details about the shared memory for each unit of a HiRDB parallel server configuration.

15. Storage Requirements for HiRDB

518

Table 15‒6: HiRDB parallel server configuration shared memory details per unit

Item

Type of shared memory

Unit controller
shared
memory

Global buffer
shared
memory

Utility shared
memory

Security audit
information

buffer shared
memory

Inter-process
memory

communicatio
n shared
memory

Troubleshootin
g information
acquisition

shared
memory

Purpose System control Global buffers Communication
between the unit
controller and
utilities

Security audit
information
buffer

Client-server
inter-process
communication

Acquisition of
troubleshooting
information

Processes All HiRDB
processes

Back-end
servers,
dictionary
servers

Utility
processes

Front-end
servers

Front-end
servers, client
processes

All HiRDB
processes

Number of
segments

1 • If the
facility for
dynamic
updating of
global
buffers is
not used:

• 1 to 512#1

• If the
facility for
dynamic
updating of
global
buffers is
used:
32-bit
mode:
1 to 1,012#1

64-bit
mode:
1 to 1,512#1

1 1 Number of
clients
connected using
the
PDIPC=MEMOR
Y environment
variable
(0-2,000) 2

1

Maximum value
per segment

See Table 15-7
Size of memory
required for
each unit of a
HiRDB parallel
server
configuration.
Value of the
shmmax OS
parameter must
be equal to or
greater than the
calculation
value.

Divide the
segment by the
SHMMAX
operand value.
Value of the
shmmax OS
parameter must
be equal to or
greater than the
SHMMAX
operand value.

See Table 15-7
Size of memory
required for
each unit of a
HiRDB parallel
server
configuration.
Value of the
shmmax OS
parameter must
be equal to or
greater than the
calculation
value.

See Table 15-7
Size of memory
required for
each unit of a
HiRDB parallel
server
configuration.
Value of the
shmmax OS
parameter must
be equal to or
greater than the
calculation
value.

See Table 15-7
Size of memory
required for
each unit of a
HiRDB parallel
server
configuration.
Value of the
shmmax OS
parameter must
be equal to or
greater than the
calculation
value.

10 MB

Allocation
conditions

None There must be a
global buffer
definition

Specify
pd_utl_exec
_mode=1

Specify the
pd_aud_file
_name operand
as the HiRDB
file system area
name for the
audit trail.

There are clients
connected using
the
PDIPC=MEMOR
Y environment
variable

None

Creation timing At unit
activation
(including

• At server
activation
(including

When utilities
are executed

When a front-
end server starts
up

When client and
server are
connected

At unit
activation
(including

15. Storage Requirements for HiRDB

519

Item

Type of shared memory

Unit controller
shared
memory

Global buffer
shared
memory

Utility shared
memory

Security audit
information

buffer shared
memory

Inter-process
memory

communicatio
n shared
memory

Troubleshootin
g information
acquisition

shared
memory

standby unit
activation when
user server hot
standby or the
rapid system
switchover
facility is used)

standby unit
activation
when the
rapid
system
switchover
facility is
used)

• When
pdbufmod
-k {add|
upd} is
executed

standby unit
activation when
user server hot
standby or the
rapid system
switchover
facility is used)

Deletion timing At next unit
activation
(including
standby unit
activation when
user server hot
standby or the
rapid system
switchover
facility is used)

• When
pdbufmod
-k del is
executed

• For normal
termination
or planned
termination:
When the
server is
terminated

• For forced
termination,
abnormal
termination,
or
termination
of standby
unit when
the rapid
system
switchover
facility is
used: When
the unit is
next
activated

10 minutes after
the utility
terminates

When a front-
end server quits

When client and
server are
disconnected

At unit
termination

Indication by
pdls -d mem

Indicated Indicated Indicated Indicated Not indicated Not indicated

SHM-OWNER of
pdls -d mem

MANAGER Server name UTILITY AUDDEF Not indicated Not indicated

Related operands • pd_shmpo
ol_attri
bute

• pd_dic_s
hmpool_s
ize

• pd_bes_s
hmpool_s
ize

• pd_dbbuf
f_attrib
ute

• pd_dbbuf
f_modify

• pdbuffer
• SHMMAX

• pd_utl_e
xec_mode

• Operands
related to
the security
audit
facility#2

• PDIPC
• PDSENDME
MSIZE

• PDRECVME
MSIZE

None

15. Storage Requirements for HiRDB

520

Item

Type of shared memory

Unit controller
shared
memory

Global buffer
shared
memory

Utility shared
memory

Security audit
information

buffer shared
memory

Inter-process
memory

communicatio
n shared
memory

Troubleshootin
g information
acquisition

shared
memory

Remarks -- -- Can be created
only when
pd_utl_exec
_mode=1
(when
pd_utl_exec
_mode=0, the
relevant space is
allocated in the
unit controller
shared
memory).

-- -- --

Legend:
--: Not applicable.

#1: Number of global buffers allocated per back-end server or dictionary server.

#2: For details, see the manual HiRDB Version 9 System Definition.

15.2.2 Calculation of required memory
The size of the memory required for each unit of a HiRDB parallel server configuration is the sum of the items listed
in the following table.

For details about the value specified in the shmmax operating system parameter (for Solaris,
shmsys:shminfo_shmmax; for Linux, SHMMAX), see Chapter 20. Specifying OS Parameters.

If you increase the size of shared memory, it might affect transaction performance by increasing the number of page
faults. For each operand, consult the guidelines for your particular system and then specify the most appropriate value.

Table 15‒7: Size of memory required for each unit of a HiRDB parallel server configuration

Item Required memory (KB)

Process
private area

Process private area used by all unit controller
processes

• 32-bit mode

J + K number of FESs in unit + L (number of BESs in
unit + number of DSs in unit) + {(64 + 48 (v + 1))
(value of pd_max_server_process - w - 3) + (64 + 48 (ac
+ 1)) 3 + z} 1,024

• 64-bit mode

J + K number of FESs in unit + L (number of BESs in
unit + number of DSs in unit) + {(64 + 64 (v + 1))
(value of pd_max_server_process - w - 3) + (64 + 64 (ac
+ 1)) 3 + z} 1,024 + ab

• If a plug-in is used, add:

+ 1,400

• If the asynchronous READ facility is used, add:

+ s

• If Real Time SAN Replication is used, add:

+ (A + B + C) 1,024

15. Storage Requirements for HiRDB

521

Item Required memory (KB)

• If fixed is specified in the
pd_process_terminator operand, add:

+ M (value of pd_process_terminator_max - 1)

• If you are performing in-memory data processing, add:

+ {T (value of pd_max_bes_process 2 + 7)
 number of BESs in unit} 1,024

• If you are changing the maximum number of
communication traces stored, add:

+ V 1,024

Process
private area
used by each
server
process#1, #2

Front-end server (N + h + m + p + q) b + y

• If you are changing the maximum number of
communication traces stored, add:

+ W 1,024

Dictionary
server

pd_work_buff_m
ode=each
specified

{P + i + m + (a + 9) 2 + r + t} b + y + S

• If you are changing the maximum number of
communication traces stored, add:

+ W 1,024

pd_work_buff_
mode=pool
specified or omitted

• 32-bit mode

(P + i + m + a + a 128 0.1 + 11 + n + r + t)
b + y + S

• 64-bit mode

(P + i + m + a + a 128 0.1 + 15 + n + r + t)
b + y + S

• If you are changing the maximum number of
communication traces stored, add:
+ W 1,024

Back-end
server

pd_work_buff_
mode=each
specified

{Q + g + (a + 9) c + i + m + r + t}

 (b + 3) + y + S

• If you are performing in-memory data processing, add:

+ {T (b + 3)} 1,024

• If you are changing the maximum number of
communication traces stored, add:
+ W 1,024

pd_work_buff_
mode=pool
specified or omitted

• 32-bit mode

(Q + g + a + a 128 0.1 + 11 + i + m + n + r + t)
 (b 3) + y + S

• 64-bit mode

(Q + g + a + a 128 0.1 + 15 + i + m + n + r + t)
 (b 3) + y + S

• If you are performing in-memory data processing, add:

+ {T (b + 3)} 1,024

15. Storage Requirements for HiRDB

522

Item Required memory (KB)

• If you are changing the maximum number of
communication traces stored, add:
+ W 1,024

Shared
memory

Space used by the unit controller in the unit controller
shared memory

d 1,024

Space used by each server in the unit controller shared
memory#1

e

Global buffer shared memory F

In-memory data processing shared memory U

Utility shared memory u

Security audit information buffer shared memory For automatic calculation by the system:

0.3 + MAX{(R + 100), (R 1.2)} 0.25

 For user-specified values (specify the
pd_audit_def_buffer_size operand):

Value specified for pd_audit_def_buffer_size

Inter-process memory communication shared
memory#3

j k

#1: If the unit contains multiple servers (excluding the system manager), obtain the value for each server.

#2: When using plug-ins, add 300 per server process.

#3: Add this value if you have specified PDIPC=MEMORY in the client environment definition. For details about the
inter-process memory communication facility and client environment definitions, see the HiRDB Version 9 UAP
Development Guide. If either the HiRDB server or the HiRDB client is in 32-bit mode, the system allocates the shared
memory for the inter-process memory communication facility in the 32-bit address space.

a: Value of pd_work_buff_size operand

b: Value of pd_max_users operand + value of pd_max_reflect_process_count operand

• For a dictionary server, the value is (value of the pd_max_dic_process operand + value of the
pd_max_reflect_process_count operand).

• For a back-end server, the value is (value of the pd_max_bes_process operand + value of the
pd_max_reflect_process_count operand).

• If the pd_max_dic_process or pd_max_bes_process operand is omitted, the value is (value of the
pd_max_users operand + value of the pd_max_reflect_process_count operand).

c: Maximum number of work tables
Find the number of work tables for each SQL statement in Table 15-8 Procedure for obtaining the number of work
tables for each SQL statement. Use the largest number of work tables obtained from Table 15-8 Procedure for
obtaining the number of work tables for each SQL statement as the maximum number of work tables.

d: Value obtained from 15.2.3 Formulas for shared memory used by a unit controller.

e: Value obtained from 15.2.4 Formulas for shared memory used by each server.

f: Value obtained from 15.2.5 Formula for size of shared memory used by global buffers.

g: Size of memory required during SQL execution
For details about the formula, see 15.2.6 Formulas for size of memory required during SQL execution.

h: Size of memory required during SQL preprocessing
For details about the formula, see 15.2.7 Formula for size of memory required during SQL preprocessing.

15. Storage Requirements for HiRDB

523

i: LOB buffer batch input/output work memory
Add 62 KB if LOB global buffer is specified for the LOB RDAREA for the corresponding server (-b specified in
the pdbuffer operand of the system common definition).

j: Maximum number of concurrently executable clients that use the inter-process memory communication facility.
If you are not sure about the value, specify the number of all clients that use the inter-process memory
communication facility or the value of the pd_max_users operand.

k: Average memory size for data transfer performed by all clients that use the inter-process memory communication
facility (value of PDSENDMEMSIZE + value of PDRECVMEMSIZE in the client environment definition).

m: Memory requirement for a Java virtual machine
If you use Java stored procedures or Java stored functions, add the size of memory used by the Java virtual
machine. This value depends on the Java virtual machine's options (-Xms, -Xmx, and -Xmn options for Hewlett-
Packard JRE 1.2.2.04) and version. For details about the memory requirement for your Java virtual machine, see
the applicable manual. Following are the guidelines for the memory required for HP-UX:

• Eight MB of memory is required to start a Java virtual machine.

• Add the maximum memory size for the Java virtual machine (value of the -Xmx option). Note that some Java
virtual machines may use more memory than the size specified in the -Xmx option.

n: Work table extended memory size
When the pd_work_buff_expand_limit operand is specified, add the work table extended memory size.
The work table extended memory size is determined from the following formula:
Work table extended memory size (kilobytes) = work table extended buffer size + (work table extended buffer
size 128) 0.1

• Work table extended buffer size (kilobytes) = MAX(0, work table extended buffer size based on hash join,
subquery hash execution) + MAX(0, work table extended buffer size based on the increase in the number of
work tables)

• Work table extended buffer size based on hash join, subquery hash execution = MIN{ (work table extended
buffer size based on hash join, subquery hash execution - value of the pd_work_buff_size operand),
(value of the pd_work_buff_expand_limit operand - value of the pd_work_buff_size operand) }

 number of concurrently executing users executing hash join, subquery hash execution
For details about determining the work table extended buffer size when executing hash joins, subquery hash
executions, see the HiRDB Version 9 UAP Development Guide.

• Work table extended buffer size based on the increase in the number of work tables = MIN{ (number of work
tables used 128 - value of the pd_work_buff_size operand), (value of
pd_work_buff_expand_limit operand - value of pd_work_buff_size operand) } (number of
users such that the number of work tables is greater than the value of the pd_work_buff_size operand
128)
Number of work tables used = MAX(number of work table files used per SQL statement, number of work
table files used by the ASSIGN LIST statement)
For details about determining the number of work table files used per SQL statement and the number of work
table files used by the ASSIGN LIST statement, see 18.3 Determining the maximum number of files (pdfmkfs
-l command).

p: Memory requirements required for BLOB data type
For details about the formula, see 15.2.8 Formula for size of memory required during BLOB data retrieval or
updating (front-end server).

q: Memory requirements required for server-side block transfer or array FETCH
For details about the formula, see 15.2.10 Formula for size of memory required during block transfer or array
FETCH (front-end server).

r: Memory requirements required for BLOB data type
For details about the formula, see 15.2.9 Formula for size of memory required during BLOB data retrieval or
updating (back-end server or dictionary server).

s: Memory size used by asynchronous READ
This is applicable when the asynchronous READ facility is used; use the following formula (in kilobytes) for the
calculation:

15. Storage Requirements for HiRDB

524

(90 +

90

 Memory used by the RDAREA for management of the HiRDB file system area)

i=1

 value of pd_max_ard_process

For the memory used by the RDAREA for management of the HiRDB file system area, use the largest 90 areas in
descending order of the values. If the number of areas used by the server is fewer than 90, assume that amount
anyway.
The memory used by the RDAREA for management of the HiRDB file system area (in kilobytes) is calculated
from the formula below based on the initial settings:
Note that the parameters at the time of initialization of the area can be checked by running the pdfstatfs
command with the -A option specified.

{(Number of files#1 + number of extensions#2) 64} 1.5#3

#1: Value specified by pdfmkfs -l, or displayed in available file count in the execution results of the
pdfstatfs command.
#2: Value specified by pdfmkfs -e, or displayed in available expand count in the execution results of
the pdfstatfs command.
#3: Multiply when the area size (value specified in pdfmkfs -n) is at least 2,048.

t: HiRDB file system memory size
Determine with the following formula (in kilobytes):

347 + Memory used by the work tables for management of the HiRDB file system area + Memory used by the system logs for
management of the HiRDB file system area +

90

 memory used by the RDAREA for management of the HiRDB file system area

i=1

The memory used by the HiRDB file system area for management of work tables and system logs uses the
maximum value calculated for the memory used by the HiRDB file system area for management used by the
server. For RDAREAs, use the largest 90 areas in descending order of the values. If the number of areas used by
the server is fewer than 90, use as many areas as are used for the calculation.
The memory used by the RDAREA for management of the HiRDB file system area (in kilobytes) is calculated
with the formula below based on the initial settings:
Note that the parameters at the time of initialization of the area can be checked by running the pdfstatfs
command with the -A option specified.

{(Number of files#1 + number of extensions#2) 64} 1.5#3

#1: Value specified by pdfmkfs -l, or displayed in available file count in the execution results of the
pdfstatfs command.
#2: Value specified by pdfmkfs -e, or displayed in available expand count in the execution results of
the pdfstatfs command.
#3: Multiply when the area size (value specified in pdfmkfs -n) is at least 2,048.

u: When value of pd_utl_exec_mode is 0: 0
When value of pd_utl_exec_mode is 1: {(b 2,000 + 136) 1,024} 1,024

v: Value of pd_module_trace_max that is valid as the unit control information definition

w: Sum of (maximum number of processes that can be started + 3) for all server processes in the unit
For details about the maximum number of processes that can be started, see the manual HiRDB Version 9 System
Definition.

y: Sum of the values obtained by the following formula for each server process in the unit:
In the 32-bit mode:

15. Storage Requirements for HiRDB

525

{(64 + 48 (value of pd_module_trace_max + 1)) (maximum number of processes that can be
started + 3)} 1,024
In the 64-bit mode:

{(64 + 64 (value of pd_module_trace_max + 1)) (maximum number of processes that can be
started + 3)} 1,024
For details about the maximum number of processes that can be started, see the manual HiRDB Version 9 System
Definition.

z: Memory size for restarting HiRDB
If this memory size cannot be allocated, HiRDB restart fails. Use the following formula to determine the size (in
bytes):

(D + E + F) number of dictionary servers + (D + E + F + G) number of back-end servers + H

Use the following variables for the formula to calculate the size of memory used by HiRDB to restart:

Variable Value

D • 32-bit mode

246,762 + 4 value of pd_max_rdarea_no

+ {48 (value of pd_max_rdarea_no + number of tables) + 304} ((value of pd_max_users# + value of
pd_max_reflect_process_count) 2 + 7)

• 64-bit mode

305,274 + 8 value of pd_max_rdarea_no

+ {64 (value of pd_max_rdarea_no + number of tables) + 512} ((value of pd_max_users# + value of
pd_max_reflect_process_count) 2 + 7)

Number of tables: 62 + MAX{value of pd_max_access_tables, 500}

E b1 X + b2 Y

b1: When the record length of the server status file < 4,096

MAX(((3,400 ((((record length - 40) - 308) 20)

+ ((record length - 40) 20) (MAX(4,096 record length ,2) - 1))

+ 0.7)),1) MAX(4,096 record length ,2) (record length - 40)

When 4,096 record length of server status file < 12,288

MAX((3,400 ((((record length - 40) - 308) 20)) + 0.7) ,1)

 (record length - 40)

When 12,288 record length of server status file

MAX((3,400 ((((record length - 40) - 836) 20)) + 0.7) ,1)

 (record length - 40)

X: When the number of RDAREAS in server 3,400: 1

When 3,401 number of RDAREAS in server 6,800: 2

When 6,801 number of RDAREAS in server: 3

b2: When the record length of the status file for server < 4,096

((5,662,310 ((((record length - 40) - 308) 20)

+ ((record length - 40) 20) (MAX(4,096 record length ,2) - 1))

+ 0.7)) MAX(4,096 record length ,2) (record length - 40)

When 4,096 record length of server status file < 12,288

(5,662,310 ((((record length - 40) - 308) 20)) + 0.7)

 (record length - 40)

When 12,288 record length of server status file

(5,662,310 ((((record length - 40) - 836) 20)) + 0.7)

 (record length - 40)

Y: When the number of RDAREAS in server 10,200: 0

15. Storage Requirements for HiRDB

526

Variable Value

When 10,201 number of RDAREAS in server 5,672,510: 1

When 5,672,511 number of RDAREAS in server 11,334,820: 2

When 11,334,821 number of RDAREAS in server: 3

F If commit is specified in the pd_dbsync_point operand, add:

+ 112 ((value of pd_max_users# + value of pd_max_reflect_process_count) 2 + 7)

G If 1 or a greater value is specified in the pd_inner_replica_control operand, add:

• 32-bit mode

(48 value of pd_max_rdarea_no + 80) ((value of pd_max_users# + value of pd_max_reflect_process_count) 2
+ 7)

• 64-bit mode

(64 value of pd_max_rdarea_no + 160) ((value of pd_max_users# + value of pd_max_reflect_process_count) 2
+ 7)

H For back-end servers in which the number of HiRDB file system areas that store RDAREAs created in a character
special file in a server is 1,001 or more, add:

• 32-bit mode

12,012 ((number of HiRDB file system areas that store RDAREAs created in a character special file - 1,000)
1,000)

• 64-bit mode

16,016 ((number of HiRDB file system areas that store RDAREAs created in a character special file - 1,000)
1,000)

#
For a dictionary server, use the value of pd_max_dic_process. For a back-end server, use the value of
pd_max_bes_process. However, if both pd_max_dic_process and pd_max_bes_process are
omitted, use the value of pd_max_users

A: 425 (2 b + 7) Number of FESs in unit

B: 425 (2 b + 7) Number of DSs in unit

C: 425 (2 b + 7) Number of BESs in unit

J, K, L, M, N, P, Q: Fixed value
These values depend on the OS being used. The following table presents the values for each OS (in kilobytes):

OS Value of J Value of
K

Value
of L

Value of
M

Value of
N

Value of
P

Value of
Q

HP-UX (32-bit mode) 80,000 9,700 12,600 2,800 4,700 3,800 3,600

HP-UX (32-bit-mode POSIX library
version)

127,300 10,300 12,900 3,000 5,200 4,300 5,000

HP-UX (64-bit mode) 80,700 10,300 13,400 2,800 5,100 4,300 4,000

HP-UX (IPF) 200,500 15,100 17,900 2,600 7,100 8,100 10,600

AIX (32-bit mode) 67,700 8,400 10,700 2,200 5,100 4,100 4,300

AIX (32-bit-mode POSIX library
version)

123,700 16,800 19,200 5,000 7,900 7,300 7,400

AIX (64-bit mode) 123,700 25,000 31,200 6,000 11,900 11,700 13,400

Solaris (32-bit mode) 71,100 6,100 7,600 1,400 2,600 2,100 4,100

15. Storage Requirements for HiRDB

527

OS Value of J Value of
K

Value
of L

Value of
M

Value of
N

Value of
P

Value of
Q

Solaris (32-bit-mode POSIX library
version)

121,100 6,800 8,200 1,700 2,800 2,300 4,400

Solaris (64-bit mode) 106,900 9,700 11,900 12,100 4,100 3,300 6,400

Linux (32-bit mode) 74,200 6,700 8,800 1,700 2,900 4,300 4,300

Linux (EM64T) 134,600 24,100 31,700 7,600 13,300 15,400 14,700

Linux 6 (64-bit x86_64) 106,400 12,300 14,600 1,900 5,400 5,800 7,200

R: If you are making a rough estimate, this is the number of audit events (the number of executions of CREATE
AUDIT). If you are making a detailed estimate, it is the number of entries in the security audit information buffer

S: Memory required when using the facility for acquiring syncpoint output synchronization control information (bytes)
If 1 is specified in the pd_dbbuff_trace_level operand and the pd_dfw_awt_process operand is not
specified, add:

32-bit mode
320 number of global buffers defined in a single server

64-bit mode
640 number of global buffers defined in a single server

T: If 1 or a greater value is specified in the pd_max_resident_rdarea_no operand, add:
1,648 + 16 value of pd_max_resident_rdarea_no + 16 value of pd_max_resident_rdarea_shm_no

U: Memory required by in-memory data processing
For the applicable formulas, see 15.2.11 Memory required by in-memory data processing.

V: Memory required by communication trace processing

32-bit mode
(16 (Z - 1,024) 2) (value of pd_max_server_process - w)

64-bit mode
(32 (Z - 1,024) 2) (value of pd_max_server_process - w)

W: Memory required by communication trace processing
This is either of the following values calculated for each server process within the unit.

32-bit mode
(16 (aa - 1,024) 2) (maximum number of startup processes + 3)

64-bit mode
(32 (aa - 1,024) 2) (maximum number of startup processes + 3)

For details about the maximum number of startup processes, see the manual HiRDB Version 9 System Definition.

Z: The value of pd_pth_trace_max enabled as the unit control information definition.
The value specified for the operand rounded up to a power of two.

aa: The value of pd_pth_trace_max enabled as each server definition.
The value specified for the operand rounded up to a power of two.

ab: Size of memory for signal handler
HP-UX (IPF) version: 768
Otherwise: 0

ac: If the operand pd_module_trace_max is specified in the system common definition or the unit control
information definition: value of pd_module_trace_max

Otherwise: 16,383

15. Storage Requirements for HiRDB

528

Table 15‒8: Procedure for obtaining the number of work tables for each SQL statement

SQL statement Procedure for obtaining the number of work tables

SELECT statement

INSERT(-SELECT) statement

When none of 1-8 as follows are applicable: 0

When any of 1-8 as follows are applicable: Sum of the applicable values from 1-8

1. When multiple tables are joined for retrieval
Number of additional work tables = (Number of joined tables - 1) 2 + 1

2. When specifying the ORDER BY clause
Number of additional work tables = 2

3. When specifying the GROUP BY clause
Number of additional work tables = Number of GROUP BY clauses specified

4. When specifying the DISTINCT clause
Number of additional work tables = Number of DISTINCT clauses specified

5. When specifying the UNION, UNION ALL, or EXCEPT[ALL] clause
Number of additional work tables = (Number of UNION or UNION ALL clauses specified)
2 + 1

6. When search condition contains columns with index defined
Number of additional work tables = Number of columns with index defined in the search
condition

7. When specifying the FOR UPDATE or FOR READ ONLY clause
Number of additional work tables = 1

8. When specifying a subquery (quantified predicate)
Number of additional work tables = Number of subqueries specified

UPDATE statement

DELETE statement

Number of columns with index defined in the search condition + 1

DROP SCHEMA statement

DROP TABLE statement

DROP INDEX statement

CREATE INDEX statement

REVOKE statement to revoke
access privilege

2

15.2.3 Formulas for shared memory used by a unit controller

(1) 32-bit mode HiRDB
The size of memory required for the unit controller in each server machine from startup to termination of the unit is
the sum of the items listed as follows:

Ensure that the size of the shared memory within the entire controller does not exceed 2 gigabytes.

Process item Shared memory calculation formula (bytes)

Scheduler Value of pd_utl_exec_mode set to 0:
{ (432 + 304 n) 1,024 + 494 + x + z + (134 + value of pd_trn_rcvmsg_store_buflen)
1,024 } 1,024

Value of pd_utl_exec_mode set to 1:
{ (432 + 304 n) 1,024 + (s 2,000 + 136) 1,024 + y + z + (134 + value of
pd_trn_rcvmsg_store_buflen) 1,024 } 1,024

x: Unit contains MGR: 37
Unit contains FES: 57 + 1 (s + 3) + 14
Unit contains DS: 102 + 5 (t + 3) + 14

15. Storage Requirements for HiRDB

529

Process item Shared memory calculation formula (bytes)

Unit contains BES: {192 + 9 (u + 3) + 14} (number of BESs + +)

y: Unit contains MGR: 0
Unit contains FES: 1 (s + 3) + 14
Unit contains DS: 5 (t + 3) + 14
Unit contains BES: {9 (u + 3) + 14} (number of BESs + +)

z: Unit subject to standby-less system switchover (effects distributed):
64 + {(Number of BESs in unit + number of acceptable BESs#) 48} 1,024

Other unit: 0

n: Number of servers in unit + + + number of utility servers in unit + 1
Number of utility servers in unit: 24 +

: If the unit controller has a MGR: 3
If the unit controller contains a FES: 3
If the unit controller contains a DS: 7
If the unit controller contains BESs: (number of BESs +) 15

s: Value of pd_max_users + value of pd_max_reflect_process_count
t: Value of pd_max_dic_process + value of pd_max_reflect_process_count
u: Value of pd_max_bes_process + value of pd_max_reflect_process_count

: Unit subject to standby-less system switchover (effects distributed):

Number of acceptable BESs#

Other unit: 0

:Unit subject to standby-less system switchover (1:1):
Number of alternate BESs
Other unit: 0

#: Value of pd_ha_max_guest_act_servers

Lock server If a server (FES, BES, or DS) exists in the unit:

For the values of the operands that are used for each server to determine the value for guest BESs in the unit
subject to standby-less system switchover (effects distributed) (such as pd_lck_pool_size,
pd_lck_pool_partition, pd_lck_hash_entry, and pd_max_bes_process), use the
maximum value among those specified for all guest BESs in that unit, not the operand values for a particular
guest BES. In the unit that is subject to standby-less system switchover (effects distributed), servers in the
unit means all host BESs + all guest BESs.

In a unit subject to standby-less system switchover (1:1), servers in the unit means all normal BESs + all
alternate BESs.

y

{

x = 1

320 + 48 + cx + dx + 48 + 4,096 + gx + 48 + ix
+ 48 + 12,252 + 48 + nx + px + tx + ux + 16

} value of pd_lck_pool_partition#

#: For a FES, the value of pd_fes_lck_pool_partition
x: Server serial number in the unit

y: Number of servers in the unit

cx: If pd_lck_hash_entry is omitted or 0 is specified:

For a FES with pd_fes_lck_pool_size omitted:

((8 + 4 MAX(largest prime number < ((px + 3) (value of pd_max_access_tables + 4)
6

 value of pd_fes_lck_pool_partition 6) 10 , 11,261)) 16 + 1) 16

For a FES with pd_fes_lck_pool_size omitted:

15. Storage Requirements for HiRDB

530

Process item Shared memory calculation formula (bytes)

((8 + 4 MAX(largest prime number < (value of pd_fes_lck_pool_size value of
pd_fes_lck_pool_partition 6)

 10 , 11,261)) 16 + 1) 16

For a BES or DS:

((8 + 4 MAX(((px + 3) 2 5 + value of pd_lck_pool_size value of
pd_lck_pool_partition 6)

 10 , 11,261)) 16 + 1) 16

When 2 or a larger non-prime number is specified for pd_lck_hash_entry:

((8 + 4 largest prime number < value of pd_lck_hash_entry) 16 + 1)

 16

If 1 or a prime number is specified for pd_lck_hash_entry:

((8 + 4 value of pd_lck_hash_entry) 16 + 1) 16

dx: For a FES with pd_fes_lck_pool_size omitted:

((px + 3) (value of pd_max_access_tables + 4) 6

 value of pd_fes_lck_pool_partition 6) 96

For a FES with pd_fes_lck_pool_size specified:

value of pd_fes_lck_pool_size value of pd_fes_lck_pool_partition 6 96

For a BES or DS:

((px + 3) 2 5 + value of pd_lck_pool_size

 value of pd_lck_pool_partition 6) 96

gx: For a FES:

(p + 3) 2 256

For a BES with the value of pd_utl_exec_mode set to 1 and s > 32:

((p + 3) 2 + s) 256

For a BES with the value of pd_utl_exec_mode set to 0 or s 32:

((p + 3) 2 + 32) 256

For a DS with the value of pd_utl_exec_mode set to 1 and s > 16:

((p + 3) 2 + s) 256

For a DS with the value of pd_utl_exec_mode set to 0 or s 16:

((p + 3) 2 + 16) 256

ix: For a FES with pd_fes_lck_pool_size omitted:

((px + 3) (value of pd_max_access_tables + 4) 6

 value of pd_fes_lck_pool_partition) 12 64

For a FES with pd_fes_lck_pool_size specified:

(value of pd_fes_lck_pool_size value of pd_fes_lck_pool_partition 8) rounded up to an even
number 64

For a BES with the value of pd_utl_exec_mode set to 1 and s > 32:

(value of pd_lck_pool_size value of pd_lck_pool_partition 8

+ (px + 3) 2 2 5 + s (value of pd_max_rdarea_no + 1))

rounded up to an even number 64

For a BES with the value of pd_utl_exec_mode set to 0 or s 32:

(value of pd_lck_pool_size value of pd_lck_pool_partition 8

+ (px + 3) 2 2 5 + 32 (value of pd_max_rdarea_no + 1))

rounded up to an even number 64

For a DS with the value of pd_utl_exec_mode set to 1 and s > 16:

(value of pd_lck_pool_size value of pd_lck_pool_partition 8

15. Storage Requirements for HiRDB

531

Process item Shared memory calculation formula (bytes)

+ (px + 3) 2 2 5 + s + 4) rounded up to an even number 64

For a DS with the value of pd_utl_exec_mode set to 0 or s 16:

(value of pd_lck_pool_size value of pd_lck_pool_partition 8

+ (px + 3) 2 2 5 + 20) rounded up to an even number 64

nx: For a FES:

(px + 3) 2 48

For a BES with the value of pd_utl_exec_mode set to 1 and s > 32:

((px + 3) 2 17 + s) 48

For a BES with the value of pd_utl_exec_mode set to 0 or s 32:

((px + 3) 2 17 + 32) 48

For a DS with the value of pd_utl_exec_mode set to 1 and s > 16:

((px + 3) 2 17 + s) 48

For a DS with the value of pd_utl_exec_mode set to 0 or s 16:

((px + 3) 2 17 + 16) 48

px: For a FES if the number of FESs in the HiRDB system > 1: s + 1

For a FES, if the number of FESs in the HiRDB system = 1: s

For a BES with s > value of pd_max_bes_process: s

For a BES with s value of pd_max_bes_process:

value of pd_max_bes_process operand

+ value of pd_max_reflect_process_count operand

For a DS with s > value of pd_max_dic_process: s

For a DS with s value of pd_max_dic_process:

value of pd_max_dic_process operand

+ value of pd_max_reflect_process_count operand

s: value of pd_max_users + value of pd_max_reflect_process_count

tx: For a FES:

48 + (px + 3) 2 value of pd_max_open_holdable_cursors 16 4

For a BES with the value of pd_utl_exec_mode set to 1 and s > 32:

48 + ((px + 3) 2 + s) value of pd_max_open_holdable_cursors 16 4

For a BES with the value of pd_utl_exec_mode set to 0 or s 32:

48 + ((px + 3) 2 + 32) value of pd_max_open_holdable_cursors 16 4

For a DS with the value of pd_utl_exec_mode set to 1 and s > 16:

48 + ((px + 3) 2 + s) value of pd_max_open_holdable_cursors 16 4

For a DS with the value of pd_utl_exec_mode set to 0 or s 16:

48 + ((px + 3) 2 + 16) value of pd_max_open_holdable_cursors 16 4

ux: For a FES with pd_fes_lck_pool_size omitted:

48 + ((px + 3) (value of pd_max_access_tables + 4) 6 value of
pd_fes_lck_pool_partition) 12

 value of pd_max_open_holdable_cursors 16 4

For a FES with pd_fes_lck_pool_size specified:

48 + value of pd_fes_lck_pool_size value of pd_fes_lck_pool_partition 8

 value of pd_max_open_holdable_cursors 16 4

For a BES with the value of pd_utl_exec_mode set to 1 and s > 32:

48 + (value of pd_lck_pool_size value of pd_lck_pool_partition 8

+ (px + 3) 2 2 5 + s (value of pd_max_rdarea_no + 1))

15. Storage Requirements for HiRDB

532

Process item Shared memory calculation formula (bytes)

rounded up to an even number value of pd_max_open_holdable_cursors 16 4

For a BES with the value of pd_utl_exec_mode set to 0 or s 32:

48 + (value of pd_lck_pool_size value of pd_lck_pool_partition 8

+ (px + 3) 2 2 5 + 32 (value of pd_max_rdarea_no + 1))

rounded up to an even number value of pd_max_open_holdable_cursors 16 4

For a DS with the value of pd_utl_exec_mode set to 1 and s > 16:

48 + (value of pd_lck_pool_size value of pd_lck_pool_partition 8

+ (px + 3) 2 2 5 + s + 4) rounded up to an even number

 value of pd_max_open_holdable_cursors 16 4

For DS with the value of pd_utl_exec_mode set to 0 or s 16:

48 + (value of pd_lck_pool_size value of pd_lck_pool_partition 8

+ (px + 3) 2 2 5 + 20) rounded up to an even number

 value of pd_max_open_holdable_cursors 16 4

 If no server (FES, BES, or DS) exists in the unit

8,416

Transaction server 288 + 32 B + 192 s 2

If the unit contains FES, add the following value:#

+ 1,028 + (420 + 564 + 256 + 384 2) (A 2 + 7) + 256 2
+ 128 (number of BESs in the system 4 + number of DSs in the system 2
+ number of FESs in the system) (A 2 + 7)
+ C

If the unit contains BES, add the following value:#

+ 1,028 + (420 + 564 + 256 + 384 2)
 (u 2 + 7) + 256 2

+ 128 (number of BESs in the system 4 + number of DSs in the system 2
+ number of FESs in the system) (A 2 + 7)
+ D

If the unit contains DS, add the following value:#

+ 1,028 + (420 + 564 + 256 + 384 2)
 (t 2 + 7) + 256 2

+ 128 (number of BESs in the system 4 + number of DSs in the system 2
+ number of FESs in the system) (A 2 + 7)
+ E

s: Value of pd_max_users + value of pd_max_reflect_process_count
t: Value of pd_max_dic_process + value of pd_max_reflect_process_count
u: Value of pd_max_bes_process + value of pd_max_reflect_process_count
A: For a multi-FES system: s + 1

If not a multi-FES system: s

B: Unit subject to standby-less system switchover (effects distributed):

Number of host BESs + pd_ha_max_act_guest_servers operand correction value

Other unit: Number of servers in the unit

C: If the unit meets one condition in Conditions below:

128 (number of BESs in the system 4 + number of DSs in system 2

+ number of FESs in the system) (A 2 + 7)

If the unit does not match both of the conditions in Conditions below: 0
D: If the unit meets one condition in Conditions below:

128 (number of BESs in the system 4 + number of DSs in the system 2

15. Storage Requirements for HiRDB

533

Process item Shared memory calculation formula (bytes)

+ number of FESs in the system) (u 2 + 7)

If the unit does not meet both conditions in Conditions below: 0
E: If the unit meets one condition in Conditions below:

128 (number of BESs in the system 4 + number of DSs in the system 2

+ number of FESs in the system) (t 2 + 7)

If the unit does not meet both conditions in Conditions below: 0
Conditions

• uap is specified in the pd_rpl_reflect_mode operand.

• The pdstart -k stls operand is specified for a front-end server in the system.

#: Add the value calculated by the above formula once for each server.

For units subject to standby-less system switchover (1:1):
Number of normal BESs + Number of alternate BESs

Other than the above, the number of the servers in the unit.

Timer server 32 (value of pd_max_users + value of pd_max_reflect_process_count + 3)

 (number of BESs in system + 1 + number of utility servers in unit + 1)

+ 1,440

Number of utility servers in unit is 23 +

: When there is MGR in the unit: 2

When there is FES in the unit: 3

When there is DS in the unit: 7

When there is BES in the unit: Number of BESs b

b: For HP-UX, Solaris, and AIX: 15

For Linux: 6

Statistics log server 384 + 128 16 + 32 + 288 2 + 1,024 + 128 3

+ value of pd_stj_buff_size 1,024 3 + 64 + 4,096 + 8,192

Process server 192 + 512 MAX(c, 256) + 80 + 256 + (value of pd_max_server_process + 50) (256 + 144) + 16 + 8
 34 + 16 + 16 + 48 + 48 (k + 1)

c: (51 + d + e + f + (g number of BESs in the unit#) + h + i) 16 16

d: If the unit contains MGR, 59; if not, j.

e: If the unit contains DS, 17; if not, 0.

f: If the unit contains FES, 11; if not, 0.

g: If the unit contains BES, 25; if not, 0.

h: If the standby-less system switchover (1:1) facility is used, 9; if not, 0.

i: If the unit is subject to standby-less system switchover (effects distributed), 1; if not, 0.

j: If manager is specified in the pd_mlg_msg_log_unit operand, 1; if local is specified, 2.

k: If the operand pd_module_trace_max is specified in the system common definition or the unit
control information definition, the value of pd_module_trace_max; if not, 16,383.

#: If the unit is subject to standby-less system switchover (1:1), the value is (number of BESs 2). If the
unit is subject to standby-less system switchover (effects distributed), the value includes the
pd_ha_max_act_guest_servers operand correction value.

System manager 704 + (44 + 4) (g + h + i) + (100 + 4) {(p + q + 3) + u (15 + 1)} + (92 + 4) c + 40 (k + m +
n o + u) 14 + 256 m + 128 c + 36 d + 12 e + 96 o + v (16 35 (k + u)
+ 15 + 36 z + 15) + w (48 B + 15 + 4 z + 15 + 4 y + 15) + v (132 + 15) + 8 + 5,844 + s
+ s o + 16 + 96 o + 1,024 + 272 A

c: Number of units

d: Number of -c options specified in pdunit operand

15. Storage Requirements for HiRDB

534

Process item Shared memory calculation formula (bytes)

e: Number of pdcltgrp operands specified

g: Number of FESs in the system

h: Number of BESs in the system

i: Number of DSs in the system

j: Number of FESs in unit

k: Number of BESs in unit

m: Number of DSs in the unit

n: Number of alternate BESs in the unit

o: If the unit is subject to standby-less system switchover (1:1), 1; if not 0

p: i + k + m + n

q: 24 + t + j 3 + k 15 + m 7

r: 14 (k + m + u) + p + q + u 15 + 2 + 38 + 5 + p 4

s: 224 + 2,052 + 128 (r + 3) + v (40 (k + u) + 72 (k + u))

t: If the unit contains MGR, 2; if not, 0

u: Number of acceptable BESs (value of the pd_ha_max_act_guest_servers operand)

v: If the unit is subject to standby-less system switchover (effects distributed), 1; if not, 0

w: If there is a unit that is subject to standby-less system switchover (effects distributed), 1; if not, 0

y: Sum of the number of units in the HA group

z: Sum of the number of servers in the HA group

A: Number of IP addresses for the host specified in the pd_security_host_group operand

If the pd_security_host_group operand is not specified, 0

B: Number of pdhagroup operands specified in the system common definition

Name server MAX{65,536, (X + Y + Z)} + MAX(16,384, L) + M

X: (256 + 16 + 156 number of units + 16 + 16 126) 1,024 1,024

Y: 8,192

Z: (264 (Z2 + Z3 + j + 32)) 1,024 1,024

Z2: b + 10 + c + 11 number of HiRDB servers within local unit + d + e

Z3: f + 7 + g + 4 number of HiRDB servers within local unit + h + i

L: (224 (L2 + L3 + L4)) 1,024 1,024

L2: k + 2 number of units within system

L3: Number of BESs within system + number of FESs within system + number of DSs within system

L4: 15 number of HiRDB servers within system

M: Number of HiRDB servers within unit + z + m number of system servers within unit 1,024
1,024

b: If the unit has a MGR: 3

If the unit does not have a MGR: 0

c: For units subject to standby-less system switchover (1:1): 2

For other units: 0

d: For units subject to standby-less system switchover (effects distributed):

11 number of guest BESs that can be accepted

For other units: 0

e: For units subject to standby-less system switchover (1:1):

6 number of HiRDB servers within local unit

For other units: 0

f: If the unit has a MGR: 3

If the unit does not have a MGR: 0

15. Storage Requirements for HiRDB

535

Process item Shared memory calculation formula (bytes)

g: For units subject to standby-less system switchover (1:1): 2

For other units: 0

h: For units subject to standby-less system switchover (effects distributed):

3 number of guest BESs that can be accepted

For other units: 0

i: For units subject to standby-less system switchover (1:1):

4 number of HiRDB servers within local unit

For other units: 0

j: Number of servers in unit + + + number of utility servers in unit + 2

Number of utility servers in unit: 23 +

k: If the unit has a MGR: 3

If the unit does not have a MGR: 0

m: 38 + n + o

n: If the unit has a MGR and the number of units is 2 or more: 5

If the unit has a MGR and the number of units is 1: 4

If the unit does not have a MGR and the value of pd_mlg_msg_log_unit is local: 4

If the unit does not have a MGR and the value of pd_mlg_msg_log_unit is manager: 3

o: 4 number of HiRDB servers within unit

z: 23 +

: If the unit has a MGR: 3

If the unit has a FES: 3

If the unit has a DS: 7

If the unit has a BES: (number of BESs +) 15

: For units subject to standby-less system switchover (effects distributed):

Number of guest BESs that can be accepted#

For other units: 0

: For units subject to standby-less system switchover (1:1): number of alternate BESs

For other units: 0

#: Value of pd_ha_max_guest_act_servers

Node manager Unit contains MGR:

(1,152 + 432 total number of units in the system + 80 total number of servers in the system

+ 7,680 + 1,008 + 56 C + 240 A + 44 A + 28 A

+ 16 B + 16 total number of BESs in the system + 8 total number of units in the system

+ 64 total number of servers in system + 32 total number of servers in system + 32)

 1,024 1,024

Unit contains no MGR:

(1,008 + 56 C + (240 A + 44 A + 28 A) F

+ 16 B + 16 total number of BESs in the system + 8 total number of units in the system

+ 64 total number of servers in system + 32 total number of servers in system + 32)

 1,024 1,024

A: Value of pd_utl_exec_mode = 0: 1,024
Value of pd_utl_exec_mode = 1: value of pd_max_users total number of BESs in system
3
If the unit contains MGR, add: Value of pd_max_users 4 + 200
If the unit contains DS, add: Value of pd_max_users 3 + 200
If the unit contains BESs, add: Value of pd_max_users D
If the value of A obtained from the previous formula is not greater than 1,024, use 1,024.

15. Storage Requirements for HiRDB

536

Process item Shared memory calculation formula (bytes)

B: pdcltgrp operand not specified: 0
pdcltgrp operand specified: Number of pdcltgrp operands specified + 1

C: Number of servers in the unit + E

D: Number of BESs in unit + E

E: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the unit
Unit subject to standby-less system switchover (effects distributed): Number of acceptable BESs
Other unit: 0

F: Unit subject to standby-less system switchover (1:1): 2
Other unit: 1

I/O server (28 + ((32 + A) 32 32)) 128 128

If the unit is not subject to standby-less system switchover (effects distributed):

A: 3,248 + (14 + 16) 972 + 1 276 + (534 276)#1

+ {(534 276 + 16 276 + value of pd_max_file_no 972) number of BESs}#2

+ {534 276 + 16 276 + value of pd_max_file_no 972}#3

#1 Add this value if FESs exist.
#2 Add this value if BESs exist.
#3 Add this value if DSs exist.

In a unit subject to standby-less system switchover (1:1), double the value obtained in the above formula.

If the unit is subject to standby-less system switchover (effects distributed):

A: 48 + 24 number of BESs#4 16 16
+ (3,248 + 16 972 + 534 276 + 16 276 + value of pd_max_file_no 972) 16
16 number of BESs#4

+ (3,248 + (14 + 16) 972 + 1 276) 16 16
#4 Includes the value of pd_ha_max_act_guest_servers.

Log server 32 + 48 + 128 37

+ {
384 + 128 7 + 1,024 + 512
+ (128 + 256 + 160 + 8 + 64) value of pd_log_rec_leng#

 value of pd_log_rec_leng#

+ 64 + 4,096 2 + (736 + 512) B
+ {(B + 1) 12} 8,320

+ 128 value of pd_log_write_buff_count#

+ (value of pd_log_write_buff_count# + A)

 {value of pd_log_max_data_size# + (68 + 44 + 96 + 160)} 4,096
 4,096 + C

} number of servers in the unit + D + 128 number of FESs in the unit

Add this if the pd_max_reflect_process_count operand is specified.

(128 + 704) (number of BESs in the unit + D)

A: 16

B: Number of pdlogadfg -d sys operands specified#

C: 0

D: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the unit

Unit subject to standby-less system switchover (effects distributed):

pd_ha_max_act_guest_servers operand correction value

#: Of the values specified for all servers in the unit, specify the maximum value. If the unit is subject to
standby-less system switchover (1:1), specify the maximum value of all the values specified for all servers
and the alternate BESs in the unit.

15. Storage Requirements for HiRDB

537

Process item Shared memory calculation formula (bytes)

If the unit is subject to standby-less system switchover (effects distributed), specify the maximum value of
all the values specified for all servers in the unit and all BESs in the HA group.

Synchronization point
dump server

{
(368 + 1,456 2) 1,024 1,024

+ {(96 + 80 + 208 + 208) + 192 (number of pdlogadfg -d spd operands specified#)

+ 416 (number of pdlogadpf -d spd operands specified#) + 1,023} 1,024 1,024

} (total number of servers + A)

A: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the unit

Unit subject to standby-less system switchover (effects distributed):

pd_ha_max_act_guest_servers operand correction value

#: Of the values specified for all servers in the unit, specify the maximum value. If the unit is subject to
standby-less system switchover (1:1), specify the maximum value of all the values specified for all servers
and the alternate BESs in the unit.

If the unit is subject to standby-less system switchover (effects distributed), specify the maximum value of
all the values specified for all servers in the unit and all BESs in the HA group.

Common to all units a + {b + 64 + (s + 3) c + 64 + 48 + d + e}

 (total number of FESs, BESs, and DSs in unit + i)

+ (g (total number of BESs and DSs in unit + i)) + f

+ (value of pd_max_server_process 2 + 100) (48 + 16) + 32

+ (value of pd_max_server_process 2 + 100 + 384) 32 + 32 + h + j + w

+ (value of pd_max_server_process + 127 + y) 32 + 32

If you are using the standby-less system switchover (effects distributed) facility, add:

((28 + ((56 + 72,584) 32 32)) 128 128)

a: 26,640 + v 4 34

b: 2,988

c: 1,956

d: 32 32

e: 64 + 64 {(s + 3) 2

+ MAX(5, [s + 3] 10) + 7}

f: 512 (13 + total number of FESs, BESs, and DSs in unit 3) 2

g: {(96 + value of pd_lck_until_disconnect_cnt 112 + 4,095) 4,096}

 4,096 2

h: (number of port numbers specified with pd_registered_port 16 + 32 + 1,023)

 1,024 1,024

If pd_registered_port is omitted: 0

i: Unit subject to standby-less system switchover (1:1): Number of alternate BESs

Unit subject to standby-less system switchover (effects distributed): pd_ha_max_guest_servers
operand correction value

j: p (number of FESs in unit) + q (number of BESs in unit + i) + r (number of DSs in unit)

k: value of pd_fes_lck_pool_partition in FES

m: value of pd_lck_pool_partition in BES

n: value of pd_lck_pool_partition in DS

o: (s + 3) 2 + MAX{5, (s + 3) 10 } + 7

p: If k is 2 or more: 32 + (8 + 8 k) o

Otherwise: 0

q: If m is 2 or more: 32 + (8 + 8 m) o

Otherwise: 0

r: If n is 2 or more: 32 + (8 + 8 n) o

15. Storage Requirements for HiRDB

538

Process item Shared memory calculation formula (bytes)

Otherwise: 0

s: value of pd_max_users + value of pd_max_reflect_process_count

t: value of pd_max_dic_process + value of pd_max_reflect_process_count

u: value of pd_max_bes_process + value of pd_max_reflect_process_count

s is t for a DS and u for a BES. If pd_max_dic_process or pd_max_bes_process is omitted, use s.

v: If Y is specified for pd_dbbuff_modify and the unit has a BES or DS: 512 + (maximum value in unit
of the value of pd_max_add_dbbuff_shm_no in the BES or DS definition)

If N is specified for pd_dbbuff_modify and the unit has a BES or DS: 512

Otherwise: 16

w: 144

y: Add the value calculated by the following formula once for each server.

If the unit has a FES, add:

(z + 3) 2

If the unit has a BES#1, with pd_utl_exec_mode set to 1 and s > 32, add:

(z + 3) 34 + s

If the unit has a BES#1, with pd_utl_exec_mode set to 0 or s 32, add:

(z + 3) 34 + 32

If the unit has a DS, with pd_utl_exec_mode set to 1 and s > 16, add:

(z + 3) 34 + s

If the unit has a DS, with pd_utl_exec_mode set to 0 or s 16, add:

(z + 3) 34 + 16

z: For a FES if the number of FESs in the HiRDB system > 1: s + 1

For a FES if the number of FESs in the HiRDB system = 1: s

For a BES with s > value of pd_max_bes_process#2: s

For a BES with s value of pd_max_bes_process#2: u

For a DS with s > value of pd_max_dic_process: s

For a DS with s value of pd_max_dic_process: t

#1
In a unit subject to standby-less system switchover (1:1), servers include all normal BESs and all
alternate BESs.
In a unit subject to standby-less system switchover (effects distributed) facility, servers include all host
BESs and all guest BESs.

#2
To make the calculation for guest BESs in the unit subject to standby-less system switchover (effects
distributed), use the maximum value among those specified for all guest BESs in that unit, not the
operand values for a particular guest BES.

Transaction log server {1,024 + 512 A} (number of servers in unit + H)

+ {
128 B + 128
+ [F + (128 + 256 + 8 + 224) value of pd_log_rec_leng# value of pd_log_rec_leng#

+ (value of pd_log_max_data_size# + 68 + 44 + 96 + 160)

 value of pd_log_rec_leng# value of pd_log_rec_leng#]
 D + E + (48 + 8) B 2

} (number of BESs and DSs in unit + H)

+ {
584 B + 128 B + 64 B C + 128 + F
+ (128 + 256 + 8 + 224) value of pd_log_rec_leng# value of pd_log_rec_leng#

+ (value of pd_log_max_data_size# + 68 + 44 + 96 + 160)

15. Storage Requirements for HiRDB

539

Process item Shared memory calculation formula (bytes)

 value of pd_log_rec_leng# value of pd_log_rec_leng
+ E + (48 + 8) (B 2 + 2)

} (number of servers in unit + H)

A: 2

B: 7 + J 2

C: number of BESs in the entire system 4 + number of DSs in the entire system 2

+ number of FESs in the entire system

D: If the value of pd_log_rollback_buff_count is 0: 8

Otherwise: value of pd_log_rollback_buff_count

E: 0

F: 60

H: In a unit subject to standby-less system switchover (1:1): number of alternate BESs in unit

When the unit is subject to standby-less system switchover (effects distributed):

corrected value of pd_ha_max_act_guest_servers operand

J: Maximum value of s, t, and u on the servers in the unit

s: value of pd_max_users + value of pd_max_reflect_process_count

t: value of pd_max_dic_process + value of pd_max_reflect_process_count

u: value of pd_max_bes_process + value of pd_max_reflect_process_count

#
Of the values specified for all servers in the unit, specify the maximum value. If the unit is subject to
standby-less system switchover (1:1), specify the maximum value of all the values specified for all
servers and the alternate BESs in the unit. If the unit is subject to standby-less system switchover (effects
distributed), specify the maximum value of all the values specified for all servers in the unit and all BESs
in the HA group.

Status server 64 32 32 (number of servers in unit + A)

A: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the unit

Unit subject to standby-less system switchover (effects distributed):

pd_ha_max_act_guest_servers operand correction value

Audit trail management
server

A 1,024 1,024

A: 640 if the pd_aud_file_name operand is omitted

640 + (304 200) + B + C if the pd_aud_file_name operand is specified

B: 0 if the pd_aud_async_buff_size operand value is 0

The following value if the pd_aud_async_buff_size operand value is 4,096 or greater:

For Linux:

(160 value of pd_aud_async_buff_count operand)

+ {(value of pd_aud_async_buff_size operand 4,096 4,096)

 value of pd_aud_async_buff_count operand} + 4,096

For a system other then Linux:

(160 value of pd_aud_async_buff_count operand)

+ {(value of pd_aud_async_buff_size operand 4,096 4,096)

 value of pd_aud_async_buff_count operand}

C: If Y is specified for the pd_aud_auto_loading operand and the unit has a MGR: 256 (total
number of units in system + 1) + 240

Otherwise: 0

If the unit uses the standby-less system switchover facility, the size of memory required for security audit at
the target unit must be added to the size of memory for the local unit.

15. Storage Requirements for HiRDB

540

(2) 64-bit mode
The size of memory required for the unit controller in each server machine from startup to termination of the unit is
the sum of the following items:

Process item Shared memory calculation formula (bytes)

Scheduler Value of pd_utl_exec_mode set to 0:

{ (432 + 304 n) 1,024 + 494 + x + z + (134 + value of pd_trn_rcvmsg_store_buflen)
1,024 } 1,024

Value of pd_utl_exec_mode set to 1:

{ (432 + 304 n) 1,024 + (s 2,000 + 136) 1,024 + y + z + (134 + value of
pd_trn_rcvmsg_store_buflen) 1,024 } 1,024

x: Unit contains MGR: 37
Unit contains FES: 57 + 1 (s + 3) + 14
Unit contains DS: 102 + 5 (t + 3) + 14
Unit contains BES: {192 + 9 (u + 3) + 14} (number of BESs + +)

y: Unit contains MGR: 0
Unit contains FES: 1 (s + 3) + 14
Unit contains DS: 5 (t + 3) + 14
Unit contains BES: {9 (u + 3) + 14} (number of BESs + +)

z: Unit subject to standby-less system switchover (effects distributed):
64 + {(Number of BESs in unit + number of acceptable guest BESs#) 48} 1,024

Other unit: 0

n: Number of servers in unit + + + number of utility servers in unit + 1
Number of utility servers in unit: 24 +

: If the unit has a MGR: 3
If the unit has a FES: 3
If the unit has a DS: 7
If the unit has a BES: (number of BESs +) 15

s: value of pd_max_users + value of pd_max_reflect_process_count
t: value of pd_max_dic_process + value of pd_max_reflect_process_count
u: value of pd_max_bes_process + value of pd_max_reflect_process_count

: For units subject to standby-less system switchover (effects distributed):

Number of guest BESs that can be accepted#

For other units: 0

: For units subject to standby-less system switchover (1:1): Number of alternate BESs
For other units: 0

#: Value of pd_ha_max_guest_act_servers

Lock server If a server (FES, BES, or DS) exists in the unit:

For the values of the operands that are used for each server to determine the value for guest BESs in the unit
subject to standby-less system switchover (effects distributed) (such as pd_lck_pool_size,
pd_lck_pool_partition, pd_lck_hash_entry, and pd_max_bes_process), use the
maximum value among those specified for all guest BESs in that unit, not the operand values for a particular
guest BES. In a unit that is subject to standby-less system switchover (effects distributed), servers in the unit
means all host BESs + all guest BESs.

In a unit subject to standby-less system switchover (1:1), servers in the unit means all normal BESs + all
alternate BESs.

y

 {

x=1

496 + 80 + cx + dx + 64 + 8,192 + gx + 80 + ix

15. Storage Requirements for HiRDB

541

Process item Shared memory calculation formula (bytes)

+ 64 + 16,336 + 64 + nx + px + tx + ux + 16

} value of pd_lck_pool_partition#

#: For a FES, the value of pd_fes_lck_pool_partition
x: Server serial number in the unit

y: Number of servers in the unit

cx: If pd_lck_hash_entry is omitted or if 0 is specified:

For a FES with pd_fes_lck_pool_size omitted:

((8 + 8 MAX(largest prime number < ((px + 3) (value of pd_max_access_tables + 4)
4

 value of pd_fes_lck_pool_partition 4) 10 , 11,261))

 16 + 1) 16

For a FES with pd_fes_lck_pool_size omitted:

((8 + 8 MAX(largest prime number < (value of pd_fes_lck_pool_size value of
pd_fes_lck_pool_partition 4) 10

, 11,261)) 16 + 1) 16

For a BES or DS:

((8 + 8 MAX(largest prime number < ((px + 3) 2 5

+ value of pd_lck_pool_size value of pd_lck_pool_partition 4) 10

, 11,261)) 16 + 1) 16

If 2 or a larger non-prime number is specified for pd_lck_hash_entry:

((8 + 8 largest prime number that is less than the value of pd_lck_hash_entry) 16 + 1)

 16

If 1 or a prime number is specified for pd_lck_hash_entry:

((8 + 8 value of pd_lck_hash_entry) 16 + 1) 16

dx: For a FES with pd_fes_lck_pool_size omitted:

((px + 3) (value of pd_max_access_tables + 4) 4

 value of pd_fes_lck_pool_partition 4) 128

For a FES with pd_fes_lck_pool_size specified:

value of pd_fes_lck_pool_size value of pd_fes_lck_pool_partition 4 128

For a BES or DS:

((px + 3) 2 5 + value of pd_lck_pool_size

 value of pd_lck_pool_partition 4) 128

gx: For a FES:

(p + 3) 2 320

For a BES with the value of pd_utl_exec_mode set to 1 and s > 32:

((p + 3) 2 + s) 320

For a BES with the value of pd_utl_exec_mode set to 0 or s 32:

((p + 3) 2 + 32) 320

For a DS with the value of pd_utl_exec_mode set to 1 and s > 16:

((p + 3) 2 + s) 320

For a DS with the value of pd_utl_exec_mode set to 0 or s 16:

((p + 3) 2 + 16) 320

ix: For a FES with pd_fes_lck_pool_size omitted:

(((px + 3) (value of pd_max_access_tables + 4))

 value of pd_fes_lck_pool_partition) 8 112

15. Storage Requirements for HiRDB

542

Process item Shared memory calculation formula (bytes)

For a FES with pd_fes_lck_pool_size specified:

(value of pd_fes_lck_pool_size value of pd_fes_lck_pool_partition 5

+ value of pd_fes_lck_pool_size value of pd_fes_lck_pool_partition 3) rounded up to an
even number 112

For a BES with the value of pd_utl_exec_mode set to 1 and s > 32:

(value of pd_lck_pool_size value of pd_lck_pool_partition 5

+ value of pd_lck_pool_size value of pd_lck_pool_partition 3

+ (px + 3) 2 2 5 + s (value of pd_max_rdarea_no + 1))

rounded up to an even number 112

For a BES with the value of pd_utl_exec_mode set to 0 or s 32:

(value of pd_lck_pool_size value of pd_lck_pool_partition 5

+ value of pd_lck_pool_size value of pd_lck_pool_partition 3

+ (px + 3) 2 2 5 + 32 (value of pd_max_rdarea_no + 1))

rounded up to an even number 112

For a DS with the value of pd_utl_exec_mode set to 1 and s > 16:

(value of pd_lck_pool_size value of pd_lck_pool_partition 5

+ value of pd_lck_pool_size value of pd_lck_pool_partition 3

+ (px + 3) 2 2 5 + s + 4) rounded up to an even number 112

For a DS with the value of pd_utl_exec_mode set to 0 or s 16:

(value of pd_lck_pool_size value of pd_lck_pool_partition 5

+ value of pd_lck_pool_size value of pd_lck_pool_partition 3

+ (px + 3) 2 2 5 + 20)

rounded up to an even number 112

nx: For a FES:

(px + 3) 2 80

For a BES with the value of pd_utl_exec_mode set to 1 and s > 32:

((p + 3) 2 17 + s) 80

For a BES with the value of pd_utl_exec_mode set to 0 or s 32:

((p + 3) 2 17 + 32) 80

For a DS with the value of pd_utl_exec_mode set to 1 and s > 16:

((p + 3) 2 17 + s) 80

For a DS with the value of pd_utl_exec_mode set to 0 or s 16:

((p + 3) 2 17 + 16) 80

px: For a FES with the number of FESs in the HiRDB system > 1: s + 1

For a FES with the number of FESs in the HiRDB system = 1: s

For a BES with s > value of pd_max_bes_process: s

For a BES with s value of pd_max_bes_process:

value of pd_max_bes_process operand

+ value of pd_max_reflect_process_count operand

For a DS with s > value of pd_max_dic_process: s

For a DS with s pd_max_dic_process:

value of pd_max_dic_process operand

+ value of pd_max_reflect_process_count operand

s: value of pd_max_users + value of pd_max_reflect_process_count

15. Storage Requirements for HiRDB

543

Process item Shared memory calculation formula (bytes)

tx: For a FES:

48 + (px + 3) 2 value of pd_max_open_holdable_cursors 16 4

For a BES with the value of pd_utl_exec_mode set to 1 and s > 32:

48 + ((px + 3) 2 + s) value of pd_max_open_holdable_cursors 16 4

For a BES with the value of pd_utl_exec_mode set to 0 or s 32:

48 + ((px + 3) 2 + 32) value of pd_max_open_holdable_cursors 16 4

For a DS with the value of pd_utl_exec_mode set to 1 and s > 16:

48 + ((px + 3) 2 + s) value of pd_max_open_holdable_cursors 16 4

For a DS with the value of pd_utl_exec_mode set to 0 or s 16:

48 + ((px + 3) 2 + 16) value of pd_max_open_holdable_cursors 16 4

ux: For a FES with pd_fes_lck_pool_size omitted:

48 + ((px + 3) (value of pd_max_access_tables + 4) 4 value of
pd_fes_lck_pool_partition) 8

 value of pd_max_open_holdable_cursors 16 4

For a FES with pd_fes_lck_pool_size specified:

48 + (value of pd_fes_lck_pool_size value of pd_fes_lck_pool_partition 5

+ value of pd_fes_lck_pool_size value of pd_fes_lck_pool_partition 3)

rounded up to an even number value of pd_max_open_holdable_cursors 16 4

For a BES with the value of pd_utl_exec_mode set to 1 and s > 32:

48 + (value of pd_lck_pool_size value of pd_lck_pool_partition 5

+ value of pd_lck_pool_size value of pd_lck_pool_partition 3

+ (px + 3) 2 2 5 + s (value of pd_max_rdarea_no + 1))

rounded up to an even number value of pd_max_open_holdable_cursors 16 4

For a BES with the value of pd_utl_exec_mode set to 0 or s 32:

48 + (value of pd_lck_pool_size value of pd_lck_pool_partition 5

+ value of pd_lck_pool_size value of pd_lck_pool_partition 3

+ (px + 3) 2 2 5 + 32 (value of pd_max_rdarea_no + 1))

rounded up to an even number value of pd_max_open_holdable_cursors 16 4

For a DS with the value of pd_utl_exec_mode set to 1 and s > 16:

48 + (value of pd_lck_pool_size value of pd_lck_pool_partition 5

+ value of pd_lck_pool_size value of pd_lck_pool_partition 3

+ (px + 3) 2 2 5 + s + 4) rounded up to an even number

 value of pd_max_open_holdable_cursors 16 4

For a DS with the value of pd_utl_exec_mode set to 0 or s 16:

48 + (value of pd_lck_pool_size value of pd_lck_pool_partition 5

+ value of pd_lck_pool_size value of pd_lck_pool_partition 3

+ (px + 3) 2 2 5 + 20) rounded up to an even number

 value of pd_max_open_holdable_cursors 16 4

 If no server (FES, BES, or DS) exists in the unit

16,704

Transaction server 304 + 32 B + 192 s 2

If the unit contains FES, add the following value:#

+ 1,048 + (416 + 720 + 256 + 392 2) (A 2 + 7) + 256 2

15. Storage Requirements for HiRDB

544

Process item Shared memory calculation formula (bytes)

+ 128 (number of BESs in the system 4 + number of DSs in the system 2
+ number of FESs in the system) (A 2 + 7)
+ C

If the unit contains BES, add the following value:#

+ 1,048 + (416 + 720 + 256 + 392 2) (u 2 + 7)
+ 256 2
+ 128 (number of BESs in the system 4 + number of DSs in the system 2
+ number of FESs in the system) (A 2 + 7)
+ D

If the unit contains DS, add the following value:#

+ 1,048 + (416 + 720 + 256 + 392 2) (t 2 + 7)
+ 256 2
+ 128 (number of BESs in the system 4 + number of DSs in the system 2
+ number of FESs in the system) (A 2 + 7)
+ E

s: Value of pd_max_users + value of pd_max_reflect_process_count
t: Value of pd_max_dic_process + value of pd_max_reflect_process_count
u: Value of pd_max_bes_process + value of pd_max_reflect_process_count
A: For a multi-FES system: s + 1; if not a multi-FES system: s

B: Unit subject to standby-less system switchover (effects distributed):

Number of host BESs + value of pd_ha_max_act_guest_servers operand

Other unit: Number of servers in the unit

C: If the unit meets one condition in Conditions below: 0
128 (number of BESs in the system 4 + number of DSs in the system 2

+ number of FESs in the system) (A 2 + 7)

If the unit does not meet both conditions in Conditions below: 0
D: If the unit meets one condition in Conditions below:

128 (number of BESs in the system 4 + number of DSs in the system 2

+ number of FESs in the system) (u 2 + 7)

If the unit does not meet both conditions in Conditions below: 0
E: If the unit meets one condition in Conditions below:

128 (number of BESs in the system 4 + number of DSs in the system 2

+ number of FESs in the system) (t 2 + 7)

If the unit does not meet both conditions in Conditions below: 0
Conditions:

• uap is specified in the pd_rpl_reflect_mode operand.

• The pdstart -k stls operand is specified for a front-end server in the system.

#: Add the value calculated by the above formula once for each server.

For units subject to standby-less system switchover (1:1):
Number of normal BESs + Number of alternate BESs

Other than the above, the number of the servers in the unit

Timer server 32 (value of pd_max_users + value of pd_max_reflect_process_count + 3)

 (number of BESs in system + 1 + number of utility servers in unit + 1)

+ 1,440 + (48 - 32) 2

Number of utility servers in unit is 23 +

: When there is MGR in the unit: 2

When there is FES in the unit: 3

15. Storage Requirements for HiRDB

545

Process item Shared memory calculation formula (bytes)

When there is DS in the unit: 7

When there is BES in the unit: number of BESs b

b: For HP-UX, Solaris, and AIX: 15

For Linux: 6

Statistics log server 424 + 128 16 + 32 + 288 2 + 1,168 + 144 3

+ value of pd_stj_buff_size 1,024 3 + 64 + 4,096 + 8,192

Process server 208 + 528 MAX(c, 256) + 80 + 256 + (value of pd_max_server_process + 50) (256 + 160) + 16 + 8
 34 + 16 + 16 + 64 + 64 (k + 1)

c: (51 + d + e + f + (g number of BESs in the unit#) + h + i) 16 16

d: If the unit contains MGR, 59; if not, j.

e: If the unit contains DS, 17; if not, 0.

f: If the unit contains FES, 11; if not, 0.

g: If the unit contains BES, 25; if not, 0.

h: If the standby-less system switchover (1:1) facility is used, 9; if not, 0.

i: If the unit is subject to standby-less system switchover (effects distributed), 1; if not, 0.

j: If manager is specified in the pd_mlg_msg_log_unit operand, 1; if local is specified, 2.

k: If the operand pd_module_trace_max is specified in the system common definition or the unit
control information definition, the value of pd_module_trace_max; if not, 16,383.

m: If the unit has a MGR, 0; otherwise, 1.

#: If the unit is subject to standby-less system switchover (1:1), the value is (number of BESs 2). If the
unit is subject to standby-less system switchover (effects distributed), the value includes the
pd_ha_max_act_guest_servers operand correction value.

System manager 736 + (48 + 8) (g + h + i) + (108 + 8) {(p + q + 3) + u (15 + 1)} + (104 + 8) c + 40 (k + m
+ n o + u) 14 + 256 m + 128 c + 40 d + 16 e + 96 o + v (16 35 (k + u)
+ 15 + 44 z + 15) + w (48 B + 15 + 4 z + 15 + 4 y + 15) + v (144 + 15) + 8 + 5,864 + s
+ s o + 16 + 96 o + 1,024 + 272 A

c: Number of units

d: Number of -c options specified in pdunit operand

e: Number of pdcltgrp operands specified

g: Number of FESs in the system

h: Number of BESs in the system

i: Number of DSs in the system

j: Number of FESs in unit

k: Number of BESs in unit

m: Number of DSs in the unit

n: Number of alternate BESs in the unit

o: If the unit is subject to standby-less system switchover, 1; if not, 0

p: i + k + m + n

q: 24 + t + j 3 + k 15 + m 7

r: 14 (k + m + u) + p + q + u 15 + 2 + 38 + 5 + p 4

s: 256 + 2,052 + 148 (r + 3) + v (40 (k + u) + 72 (k + u))

t: If the unit contains MGR, 2; if not, 0

u: Number of acceptable BESs (value of the pd_ha_max_act_guest_servers operand)

v: If the unit is subject to standby-less system switchover (effects distributed), 1; if not, 0

w: If there is a unit that is subject to standby-less system switchover (effects distributed), 1; if not, 0

y: Sum of the units in the HA group

z: Sum of the servers in the HA group

A: Number of IP addresses for the host specified in the pd_security_host_group operand

15. Storage Requirements for HiRDB

546

Process item Shared memory calculation formula (bytes)

If the pd_security_host_group operand is not specified, 0

B: Number of pdhagroup operands specified in the system common definition

Name server MAX{65,536, (X + Y + Z)} + MAX(16,384, L) + M

X: (272 + 16 + 156 number of units + 16 + 16 126) 1,024 1,024

Y: 8,192

Z: (264 (Z2 + Z3 + j + 32)) 1,024 1,024

Z2: b + 10 + c + 11 number of HiRDB servers within local unit + d + e

Z3: f + 7 + g + 4 number of HiRDB servers within local unit + h + i

L: (224 (L2 + L3 + L4)) 1,024 1,024

L2: k + 2 number of units within system

L3: Number of BESs within system + number of FESs within system + number of DSs within system

L4: 15 number of HiRDB servers within system

M: Number of HiRDB servers within unit + z + m number of system servers within unit 1,024
1,024

b: If the unit has a MGR: 3

If the unit does not have a MGR: 0

c: For units subject to standby-less system switchover (1:1): 2

For other units: 0

d: For units subject to standby-less system switchover (effects distributed):

11 number of guest BESs that can be accepted

For other units: 0

e: For units subject to standby-less system switchover (1:1):

6 number of HiRDB servers within local unit

For other units: 0

f: If the unit has a MGR: 3

If the unit does not have a MGR: 0

g: For units subject to standby-less system switchover (1:1): 2

For other units: 0

h: For units subject to standby-less system switchover (effects distributed):

3 number of guest BESs that can be accepted

For other units: 0

i: For units subject to standby-less system switchover (1:1):

4 number of HiRDB servers within local unit

For other units: 0

j: Number of servers in unit + + + number of utility servers in unit + 2

Number of utility servers in unit: 23 +

k: If the unit has a MGR: 3

If the unit does not have a MGR: 0

m: 38 + n + o

n: If the unit has a MGR and the number of units is 2 or more: 5

If the unit has a MGR and the number of units is 1: 4

If the unit does not have a MGR and the value of pd_mlg_msg_log_unit is local: 4

If the unit does not have a MGR and the value of pd_mlg_msg_log_unit is manager: 3

o: 4 number of HiRDB servers within unit

z: 23 +

: If the unit has a MGR: 3

15. Storage Requirements for HiRDB

547

Process item Shared memory calculation formula (bytes)

If the unit has a FES: 3

If the unit has a DS: 7

If the unit has a BES: (number of BESs +) 15

: For units subject to standby-less system switchover (effects distributed):

Number of guest BESs that can be accepted#

For other units: 0

: For units subject to standby-less system switchover (1:1): number of alternate BESs

For other units: 0

#: Value of pd_ha_max_guest_act_servers

Node manager Unit contains MGR:

(1,312 + 464 total number of units in system + 96 total number of servers in system

+ 10,240 + 1,200 + 72 C + 240 A + 44 A + 28 A

+ 16 B + 16 total number of BESs in system + 8 total number of units in system

+ 64 total number of servers in system + 32 total number of servers in system + 48

+ J + 16 K)

 1,024 1,024

Unit contains no MGR:

(1,200 + 72 C + (240 A + 44 A + 28 A) F

+ 16 B + 16 total number of BESs in system + 8 total number of units in system

+ 64 total number of servers in system + 32 total number of servers in system + 48)

 1,024 1,024

A: Value of pd_utl_exec_mode = 0: 1,024
If pd_utl_exec_mode = 1: (value of pd_max_users + value of
pd_max_reflect_process_count) total number of BESs in system 3
If the unit has a MGR, add: (value of pd_max_users + value of
pd_max_reflect_process_count) 4 + 200
If unit has a DS, add: (value of pd_max_users + value of pd_max_reflect_process_count)

 3 + 200
If unit has a BES, add: (value of pd_max_users + value of pd_max_reflect_process_count)

 D
If the value of A calculated in the above formulas does not exceed 1,024, substitute 1,024 for A.

B: pdcltgrp operand not specified: 0
pdcltgrp operand specified: Number of pdcltgrp operands specified + 1

C: Number of servers in the unit + E

D: Number of BESs in unit + E

E: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the unit
Unit subject to standby-less system switchover (effects distributed): Number of acceptable BESs
Other unit: 0

F: For units subject to standby-less system switchover (1:1): 2
For other units: 1

J: If the pd_system_expand_unit operand is specified: 16
If the pd_system_expand_unit operand is omitted: 0

K: If the pd_system_expand_unit operand is specified: The number of units specified in the
pd_system_expand_unit

If the pd_system_expand_unit operand is omitted: 0

I/O server (56 + ((56 + A) 32 32)) 128 128

If the unit is not subject to standby-less system switchover (effects distributed):

15. Storage Requirements for HiRDB

548

Process item Shared memory calculation formula (bytes)

A: 3,248 + (14 + 16) 972 + 1 276 + (534 276)#1

+ {(534 276 + 16 276 + value of pd_max_file_no 972) number of BESs}#2

+ {534 276 + 16 276 + value of pd_max_file_no 972}#3

+ (48 - 32) 3
#1 Add this value if FESs exist.
#2 Add this value if BESs exist.
#3 Add this value if DSs exist.

In a unit subject to standby-less system switchover (1:1), double the value obtained in the above formula.

If the unit is subject to standby-less system switchover (effects distributed):

A: 64 + 24 number of BESs#4 16 16
+ (3,296 + 16 972 + 534 276 + 16 276 + value of pd_max_file_no 972) 16
16 number of BESs#4

+ (3,296 + (14 + 16) 972 + 1 276) 16 16

#4 Includes the value of pd_ha_max_act_guest_servers.

Log server 32 + 48 + 128 37

+ {
432 + 128 7 + 1,168 + 512
+ (128 + 256 + 160 + 8 + 64) value of pd_log_rec_leng#

 value of pd_log_rec_leng#

+ 64 + 4,096 2 + (768 + 512) B
+ {(B + 1) 12} 8,320

+ 144 value of pd_log_write_buff_count#

+ (value of pd_log_write_buff_count# + A)
 {value of pd_log_max_data_size# + (68 + 44 + 96 + 160)} 4,096 4,096

+ C

} number of servers in the unit + D + 128 number of FESs in the unit

Add this if the pd_max_reflect_process_count operand is specified.

(128 + 704) (number of BESs in the unit + D)

A: 16

B: Number of pdlogadfg -d sys operands specified#

C: 0

D: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the unit

Unit subject to standby-less system switchover (effects distributed):

pd_ha_max_act_guest_servers operand correction value

#: Of the values specified for all servers in the unit, specify the maximum value. If the unit is subject to
standby-less system switchover (1:1), specify the maximum value of all the values specified for all servers
and the alternate BESs in the unit.

If the unit is subject to standby-less system switchover (effects distributed), specify the maximum value of
all the values specified for all servers in the unit and all BESs in the HA group.

Synchronization point
dump server

{
(384 + 1,536 2) 1,024 1,024

+ {(128 + 80 + 240 + 240) + 192 (number of pdlogadfg -d spd operands specified#)

+ 416 (number of pdlogadpf -d spd operands specified#) + 1,023} 1,024 1,024

} (total number of servers + A)

A: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the unit

Unit subject to standby-less system switchover (effects distributed):

pd_ha_max_act_guest_servers operand correction value

15. Storage Requirements for HiRDB

549

Process item Shared memory calculation formula (bytes)

#: Of the values specified for all servers in the unit, specify the maximum value. If the unit is subject to
standby-less system switchover (1:1), specify the maximum value of all the values specified for all servers
and the alternate BESs in the unit.

If the unit is subject to standby-less system switchover (effects distributed), specify the maximum value of
all the values specified for all servers in the unit and all BESs in the HA group.

Common to all units a + {b + 80 + (s + 3) c + 64 + 48 + d + e}

 (total number of FESs, BESs, and DSs in unit + i)

+ (g (total number of BESs and DSs in unit + i)) + f

+ (value of pd_max_server_process 2 + 100) (64 + 16) + 32

+ (value of pd_max_server_process 2 + 100 + 384) 32 + 32 + h + j + w

+ (value of pd_max_server_process + 127 + y) 48 + 32

If you are using the standby-less system switchover (effects distributed) facility, add:

((56 + ((56 + 88,560) 32 32)) 128 128)

a: 36,048 + v 4 34

b: 3,480

c: 2,760

d: 48 32

e: 80 + 96 {(s + 3) 2

+ MAX(5, [s + 3] 10) + 7}

f: 512 (13 + (total number of FESs, BESs, and DSs in unit + i) 3) 2

g: {(128 + value of pd_lck_until_disconnect_cnt 112 + 4,095) 4,096}

 4,096 2

h: (number of port numbers specified with pd_registered_port 16 + 32 + 1,023)

 1,024 1,024

If pd_registered_port is omitted: 0

i: Unit subject to standby-less system switchover (1:1): Number of alternate BESs

Unit subject to standby-less system switchover (effects distributed): pd_ha_max_guest_servers
operand correction value

j: p (number of FESs in unit) + q (number of BESs in unit + i) + r (number of DSs in unit)

k: value of pd_fes_lck_pool_partition in FES

m: value of pd_lck_pool_partition in BES

n: value of pd_lck_pool_partition in DS

o: (s + 3) 2 + MAX{5, (s + 3) 10 } + 7

p: If k is 2 or more: 32 + (8 + 16 k) o

Otherwise: 0

q: If m is 2 or more: 32 + (8 + 16 m) o

Otherwise: 0

r: If n is 2 or more: 32 + (8 + 16 n) o

Otherwise: 0

s: value of pd_max_users + value of pd_max_reflect_process_count

t: value of pd_max_dic_process + value of pd_max_reflect_process_count

u: value of pd_max_bes_process + value of pd_max_reflect_process_count

s is t for a DS and u for a BES. If pd_max_dic_process or pd_max_bes_process is omitted, use s.

v: If Y is specified for pd_dbbuff_modify and the unit has a BES or DS: 512 + (maximum value in unit
of the value of pd_max_add_dbbuff_shm_no in the BES or DS definition) + value of
pd_max_resident_rdarea_shm_no

If N is specified for pd_dbbuff_modify and the unit has a BES or DS: 512 + value of
pd_max_resident_rdarea_shm_no

Otherwise: 16

15. Storage Requirements for HiRDB

550

Process item Shared memory calculation formula (bytes)

w: HP-UX (IPF) 64-bit mode: 256

Otherwise: 144

y: Add the value calculated using the following formula once for each server.

If the unit has a FES, add:

(z + 3) 2

If the unit has a BES#1, with pd_utl_exec_mode set to 1 and s > 32, add:

(z + 3) 34 + s

If the unit has a BES#1, with pd_utl_exec_mode set to 0 or s 32, add:

(z + 3) 34 + 32

If the unit has a DS, with pd_utl_exec_mode set to 1 and s > 16, add:

(z + 3) 34 + s

If the unit has a DS, with pd_utl_exec_mode set to 0 or s 16, add:

(z + 3) 34 + 16

z: For a FES if the number of FESs in the HiRDB system > 1: s + 1

For a FES if the number of FESs in the HiRDB system = 1: s

For a BES with s > value of pd_max_bes_process#2: s

For a BES with s value of pd_max_bes_process#2: u

For a DS with s > value of pd_max_dic_process: s

For a DS with s value of pd_max_dic_process: t

#1
In a unit subject to standby-less system switchover (1:1), servers include all normal BESs and all
alternate BESs.
In a unit subject to the standby-less system switchover (effects distributed) facility, servers include all
host BESs and all guest BESs.

#2
To make the calculation for guest BESs in the unit subject to standby-less system switchover (effects
distributed), use the maximum value among those specified for all guest BESs in that unit, not the
operand values for a particular guest BES.

Transaction log server {1,168 + 688 A} (number of servers in unit + H)

+ {
128 B + 144
+ [G + (128 + 256 + 8 + 224) value of pd_log_rec_leng# value of pd_log_rec_leng#

+ (value of pd_log_max_data_size# + 68 + 44 + 96 + 160)

 value of pd_log_rec_leng# value of pd_log_rec_leng#]
 D + E + (48 + 8) B 2

} (number of BESs and DSs in unit + H)

+ {
600 B + 128 B + 64 B C + 144 + G
+ (128 + 256 + 8 + 224) value of pd_log_rec_leng# value of pd_log_rec_leng#

+ (value of pd_log_max_data_size# + 68 + 44 + 96 + 160)

 value of pd_log_rec_leng# value of pd_log_rec_leng#

+ E + (48 + 8) (B 2 + 2)

} (number of servers in unit + H)

A: 2

B: 7 + J 2

C: number of BESs in the entire system 4 + number of DSs in the entire system 2

+ number of FESs in the entire system

15. Storage Requirements for HiRDB

551

Process item Shared memory calculation formula (bytes)

D: If the value of pd_log_rollback_buff_count is 0: 8

Otherwise: value of pd_log_rollback_buff_count

E: 0

G: 64

H: In a unit subject to standby-less system switchover (1:1): number of alternate BESs in unit

When the unit is subject to standby-less system switchover (effects distributed):

corrected value of pd_ha_max_act_guest_servers operand

J: Maximum value of s, t, and u on the servers in the unit

s: value of pd_max_users + value of pd_max_reflect_process_count

t: value of pd_max_dic_process + value of pd_max_reflect_process_count

u: value of pd_max_bes_process + value of pd_max_reflect_process_count

#
Of the values specified for all servers in the unit, specify the maximum value. If the unit is subject to
standby-less system switchover (1:1), specify the maximum value of all the values specified for all
servers and the alternate BESs in the unit. If the unit is subject to standby-less system switchover (effects
distributed), specify the maximum value of all the values specified for all servers in the unit and all BESs
in the HA group.

Status server 64 32 32 (number of servers in unit + A)

A: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the unit

Unit subject to standby-less system switchover (effects distributed):

pd_ha_max_act_guest_servers operand correction value

Audit trail management
server

A 1,024 1,024

A: 704 if the pd_aud_file_name operand is omitted

704 + (320 200) + B + C if the pd_aud_file_name operand is specified

B: 0 if the pd_aud_async_buff_size operand value is 0

The following value if the pd_aud_async_buff_size operand value is 4,096 or greater:

For Linux version:

(176 value of pd_aud_async_buff_count operand)

+ {(value of pd_aud_async_buff_size operand 4,096 4,096)

 value of pd_aud_async_buff_count operand} + 4,096

For non-Linux versions:

(176 value of pd_aud_async_buff_count operand)

+ {(value of pd_aud_async_buff_size operand 4,096 4,096)

 value of pd_aud_async_buff_count operand}

C: If Y is specified for the pd_aud_auto_loading operand and the unit has a MGR: 256 (total
number of units in system + 1) + 256

Otherwise: 0

If the unit uses the standby-less system switchover facility, the size of memory required for security audit at
the target unit must be added to the size of memory for the local unit.

15.2.4 Formulas for shared memory used by each server

(1) Formula for the shared memory used by a front-end server
Following is the formula for calculating the size of the shared memory that is used by a front-end server. For the
variables used in this formula, see (4) below.

• 32-bit mode

15. Storage Requirements for HiRDB

552

40 + b 1.3 + c + d + k + 1.6 + x + y + 4

+ {[(a + 12) 13] 1.1 + [(a + 62) 63] + 3.7} (e + 3)

+ {

b 64 (8 16) 4 4

+ 12 {(b 3) + 1 - mod(b 3, 2)}

+ 4 a {(e + 3) 2 + 1 + MAX(e 10, 5)}

+ 32 + 4+ {28 (f + 1) g} + 20,000

+ {(c 8) + 7} 64 8 + {(k 8) + 7} 64 8

+ MAX{a (e + 3), c 8} 104 + MAX{a (e + 3), k 8}

 24

+ {(x 4) + 7} 64 8

+ {[(y - (s 592 + t 916 + u 172)) 2] + 7} 64

 8

+ MAX{13 (e + 3), x 4} 88

+ 60 MAX{21 (e + 3), (y - (s 592 + t 916 + u

 172)) 2}

+ 44 + 256 + 1,024

} 1,024 + A + 7

I

+ (Ji)

i=1

+ 6.5 1,024 f

• Add this value if you specified INITIAL in the pd_def_buf_control_area_assign operand or omitted this operand.
+ {[(a + 12) 13] 1.1 + [(a + 62) 63] + 3.7} (e + 7) (KB)

• 64-bit mode

40 + b 1.3 + c + d + k + 1.6 + x + y + 5

+ {[(a + 12) 13] 1.2 + [(a + 62) 63] 1.5 + 4.1} (e + 3)

+ {

b 64 (8 16) 4 4

+ 12 {(b 3) + 1-mod(b 3, 2)}

+ 4 a {(e + 3) 2 + 1 + MAX(e 10, 5)}

+ 48 + 8+ {40 (f + 1) g} + 20,000

+ {(c 8) + 7} 64 8 + {(k 8) + 7} 64 8

+ MAX(a (e + 3), c 8) 104 + MAX{a (e + 3), k 8} 40

+ {(x 4) + 7} 64 8

+ {[(y - (s 600 + t 936 + u 184)) 2] + 7} 64 8

+ MAX{13 (e + 3), x 4} 104

+ 72 MAX{21 (e + 3), (y-(s 600 + t 936 + u 184)) 2}

+ 72 + 256 + 1,536

} 1,024 + A + 7

I

+ (Ji)

i=1

+ 6.5 1,024 f

• Add this value when INITIAL is specified in the pd_def_buf_control_area_assign operand or the operand is omitted.

+ {[(a + 12) 13] 1.2 + [(a + 62) 63] 1.5 + 4.1} (e + 7) (KB)

15. Storage Requirements for HiRDB

553

(2) Formulas for the size of the shared memory used by a dictionary server
This subsection lists and describes the formulas used for calculating the shared memory used by a dictionary server.

For 32-bit mode (KB):
Formula 1 + {((40 + (value obtained by adding Formulas 2 through 5)) 512 512)} 1,024

For 64-bit mode (KB):
Formula 1 + {((72 + (value obtained by adding Formulas 2 through 5)) 512 512)} 1,024

For the variables used in the formulas, see (4).

Notes

• Add 3 to the formula if commit is specified in either the pd_dbsync_point operand or the
pd_system_dbsync_point operand. The default for the pd_system_dbsync_point operand is
commit.
Otherwise, add Formula 5.

• Add Formula 4 if the pd_dfw_awt_process operand is specified.

• If you omit the pd_dic_shmpool_size operand, the following value is set:
For 32-bit mode:

{((40 + (total of Formulas 2 through 5)) 512 512)} 1,024
For 64-bit mode:

{((72 + (total of Formulas 2 through 5)) 512 512)} 1,024

Condition Shared memory calculation formula (KB)

Formula 1 (KB) 32-bit mode

b 1.3

+ {

b 64 (8 16) 4 4

+ 12 {(b 3) + 1 - mod(b 3, 2)}

+ 8 a {(e + 3) 2 + 1 + MAX(e 10, 5)}

+ 512

} 1,024

+ 3.5 + (224 v w) 1,024 + 0.5

+ {

(28 + ((32 + ((g 127 + 1) 2,048 + 128)) 32 32))

 128 128

} 1,024

K

+ (Li)

i=1

 64-bit mode

b 1.3

+ {

b 64 (8 16) 4 4

+ 12 {(b 3) + 1 - mod(b 3, 2)}

+ 8 a {(e + 3) 2 + 1 + MAX(e 10, 5)}

+ 1,024

} 1,024

+ 3.5 + (224 v w) 1,024 + 0.5

+ {

(56 + ((56 + ((g 127 + 1) 2,048 + 128)) 32 32))

15. Storage Requirements for HiRDB

554

Condition Shared memory calculation formula (KB)

 128 128

} 1,024

K

+ (Li)

i=1

Formula 2 (bytes) 32-bit mode

500 1,024

+ (372 g 16 16) + 432 h + 112 240

+ 5,072 (e + 15) + 96 z

+ 32 m + 172 {a (e + 3) + (e + 3) 2 + 22} + 16

+ 48 p + 36 {(e + 3) 2 + 1 + MAX(5, [e + 3] 10)}

+ 68 G + 152 120 + 80 + 64#1 + 368#2

+ ((((g 8) + 3) 4) 4) m

 64-bit mode

500 1,024

+ (472 g 16 16) + 448 h

+ (136 240 16 16)

+ 9,424 (e + 15) + 144 z

+ 48 m + 336 {a (e + 3) + (e + 3) 2 + 22} + 16

+ 64 p + 72 {(e + 3) 2 + 1 + MAX(5, [e + 3] 10)}

+ 68 G + 184 120 + 96 + 64#1 + 448#2

+ ((((g 8) + 7) 8) 8) m

Formula 3 (bytes) 32-bit mode

(32 + 16 z) (G + 1) + 16

64-bit mode

(48 + 32 z) (G + 1) + 16

Formula 4 (bytes) 32-bit mode

72 + 52 H + 68 z

If you specify 1 in the pd_dbbuff_trace_level operand, add:

+ 320 z

64-bit mode

96 + 56 H + 72 z

If you specify 1 in the pd_dbbuff_trace_level operand, add:

+ 640 z

Formula 5 (bytes) 32-bit mode

(32 + 16 z) 10 + 16

64-bit mode

(48 + 32 z) 10 + 16

#1: Add this if the pd_max_ard_process operand is specified with a value of at least 1.

#2: Add this value if the facility for predicting reorganization time is used.

(3) Formulas for the size of the shared memory used by a back-end server
This subsection lists and describes the formulas used for calculating the shared memory used by a back-end server.

15. Storage Requirements for HiRDB

555

For 32-bit mode (KB):
Formula 1 + {((40 + (value obtained by adding Formulas 2 through 7)) 512 512)} 1,024

For 64-bit mode (KB):
Formula 1 + {((72 + (value obtained by adding Formulas 2 through 9)) 512 512)} 1,024

For details about the variables used in these formulas, see (4) below.

Notes on Formulas 1 through 9

• If any of the following conditions is satisfied, add Formula 3:
 Y is specified in the pd_rdarea_open_attribute_use operand
 Y is specified in the pd_lv_mirror_use operand
 The rapid switchover facility is used

• If either of the following conditions is satisfied, add Formula 4:
 commit is specified in the pd_dbsync_point operand
 Y is specified in the pd_shared_rdarea_use operand
 Otherwise, add Formula 7.

• If commit is specified in the pd_inner_replica_control operand, add Formula 5.

• If the pd_dfw_awt_process operand is specified, add Formula 6.

• If you omit the pd_bes_shmpool_size operand, the following value is set:
For 32-bit mode:

{((40 + (value obtained by adding Formulas 2 through 7)) 512 512)} 1,024
For 64-bit mode:

{((72 + (value obtained by adding Formulas 2 through 9)) 512 512)} 1,024

• If you specify the pd_max_resident_rdarea_no operand, add Formula 8.

• If the value of pd_max_temporary_object_no is 1 or greater, add Formula 9.

Condition Shared memory calculation formula

Formula 1 (KB) 32-bit mode

b 1.3

+ {
b 64 (8 16) 4 4

+ 12 {(b 3) + 1 - mod(b 3, 2)}
+ 8 a {(e + 3) 2 + 1 + MAX(e 10, 5)} + 512 + 512#1

} 1,024

+ {72 + 8 v (8 + 3 w)} 1,024

+ {(g 127 + 1) 2,048 + 128} 1,024

+ {

(28 + ((32 + ((g 127 + 1) 2,048 + 128)) 32 32))

 128 128}

} 1,024

M

+ (Ni)

i=1

 64-bit mode

b 1.3

+ {

b 64 (8 16) 4 4

+ 12 {(b 3) + 1 - mod(b 3, 2)}

+ 8 a {(e + 3) 2 + 1 + MAX(e 10, 5)} + 1,024 + 512#1

15. Storage Requirements for HiRDB

556

Condition Shared memory calculation formula

} 1,024

+ {72 + 24 v (2 + w)} 1,024

+ {

(56 + ((56 + ((g 127 + 1) 2,048 + 128)) 32 32))

 128 128

} 1,024

M

+ (Ni)

i=1

Formula 2 (bytes) 32-bit mode

500 1,024

+ (308 + 48#1) g + 432 h + 112 r

+ 5,072 (e + 15) + 96 z

+ 32 m + 172 {a (e + 3) + (e + 3) 2 + 22} + 16

+ 48 p + 48 {(e + 3) 2 + 1 + MAX(5, [e + 3] 10)}

+ 68 G + 152 F + 80 + 32 g + 64#2 + 96#3

+ ((((g 8) + 3) 4) 4) m

 64-bit mode

500 1,024

+ (400 + 56#1) g + 448 h + 136 r

+ 9,424 (e + 15) + 144 z

+ 48 m + 336 {a (e + 3) + (e + 3) 2 + 22} + 16

+ 64 p + 96 {(e + 3) 2 + 1 + MAX(5, [e + 3] 10)}

+ 68 G + 184 F + 96 + 48 g + 64#2 + 128#3

+ ((((g 8) + 7) 8) 8) m

Formula 3 (bytes) 32-bit mode

{{[(g 8 4) 4] + 8} (a [[e + 3] + e + 15)}

64-bit mode

{([(g 8 8) 8] + 8} (a [e + 3] + e + 15)}

Formula 4 (bytes) 32-bit mode

(32 + 16 z) (e 2 + 7 + 1) + 16

64-bit mode

(48 + 32 z) (e 2 + 7 + 1) + 16

Formula 5 (bytes) 56 E + 16

Formula 6 (bytes) 32-bit mode

72 + 52 H + 68 z

If you specify 1 in the pd_dbbuff_trace_level operand, add:

+ 320 z

64-bit mode

96 + 56 H + 72 z

If you specify 1 in the pd_dbbuff_trace_level operand, add:

+ 640 z

Formula 7 (bytes) 32-bit mode

(32 + 16 z) 10 + 16

15. Storage Requirements for HiRDB

557

Condition Shared memory calculation formula

64-bit mode

(48 + 32 z) 10 + 16

Formula 8 (bytes) 16 + 112 + (48 + 48 Q) + (48 + 32 R)

Formula 9

(bytes)

16 + 80 S

#1: Add this value if neither pd_max_list_user nor pd_max_list_count operand is 0.

#2: Add this if the value of the pd_max_ard_process operand is at least 1.

#3: Add this if the value of the pd_max_reflect_process_count operand is at least 1.

(4) Variables used in the formulas
a: Value of pd_max_access_tables operand

b: Value of pd_sql_object_cache_size operand

c: Value of pd_table_def_cache_size operand

d: Value of pd_auth_cache_size operand

e: Value of pd_max_users operand#1

f: Total number of back-end servers

g: Value of pd_max_rdarea_no operand

h: Value of pd_max_file_no operand

k: Value of pd_view_def_cache_size operand

m: Number of global buffers for index
If Y is specified in the pd_dbbuff_modify operand, add the pd_max_add_dbbuff_no operand value of
the server definition to the number of pdbuffer statements related to the server.

p: Value of pd_lck_until_disconnect_cnt operand

q: MIN (e + 3, p)

r: Value of pd_assurance_index_no operand

s: Number of plug-ins installed

t: Total number of plug-in functions used with DML#2

u: Total number of parameters for the plug-in functions used with DML#2

v: Value of pd_max_list_users operand

w: Value of pd_max_list_count operand

x: Value of pd_type_def_cache_size operand

y: Value of pd_routine_def_cache_size operand

z: Total number of global buffers (number of pdbuffer operands specified)
If Y is specified in the pd_dbbuff_modify operand, add the pd_max_add_dbbuff_no operand value of
the server definition to the number of pdbuffer statements related to the server.

A: Value of pd_registry_cache_size operand

E: Value of the pd_inner_replica_control operand

F: Value of the pd_assurance_table_no operand

G: Maximum number of transactions in the server (2 e + 7)

H: Value of the pd_dfw_awt_process operand

15. Storage Requirements for HiRDB

558

I: Total number of pdplgprm operands specified in the front-end server

Ji: Size of the shared memory specified in the ith pdplgprm operand specified in the front-end server

K: Total number of pdplgprm operands specified in the dictionary server

Li: Size of the shared memory specified in the ith pdplgprm operand specified in the dictionary server

M: Total number of pdplgprm operands specified in the back-end server

Ni: Size of the shared memory specified in the ith pdplgprm operand specified in the back-end server

Q: Value of the pd_max_resident_rdarea_no operand

R: Value of the pd_max_resident_rdarea_shm_no operand

S: Value of the pd_max_temporary_object_no operand

U: Number of tables that will use the free space reusage facility

#1: For a dictionary server, use the value of the pd_max_dic_process operand. For a back-end server, use the
value of the pd_max_bes_process operand. If the pd_max_dic_process or pd_max_bes_process
operand is omitted, use the value of the pd_max_users operand.

#2: You can use the following SQL statement to obtain the total number of plug-in functions and the total number of
parameters for the plug-in functions used with DML:

SELECT COUNT(*),SUM(N_PARAM) FROM MASTER.SQL_PLUGIN_ROUTINES
WHERE PLUGIN_NAME = 'plug-in-name'
AND (TIMING_DESCRIPTOR = 'ADT_FUNCTION'
 OR TIMING_DESCRIPTOR IS NULL
 OR TIMING_DESCRIPTOR = 'BEFORE_INSERT'
 OR TIMING_DESCRIPTOR = 'AFTER_INSERT'
 OR TIMING_DESCRIPTOR = 'BEFORE_UPDATE'
 OR TIMING_DESCRIPTOR = 'AFTER_UPDATE'
 OR TIMING_DESCRIPTOR = 'BEFORE_DELETE'
 OR TIMING_DESCRIPTOR = 'AFTER_DELETE'
 OR TIMING_DESCRIPTOR = 'BEFORE_PURGE_TABLE'
 OR TIMING_DESCRIPTOR = 'AFTER_PURGE_TABLE'
 OR TIMING_DESCRIPTOR = 'INDEX_SEARCH'
 OR TIMING_DESCRIPTOR = 'INDEX_COUNT'
 OR TIMING_DESCRIPTOR = 'INDEX_INSERT'
 OR TIMING_DESCRIPTOR = 'INDEX_BEFORE_UPDATE'
 OR TIMING_DESCRIPTOR = 'INDEX_AFTER_UPDATE'
 OR TIMING_DESCRIPTOR = 'INDEX_DELETE'
 OR TIMING_DESCRIPTOR = 'PURGE_INDEX'
 OR TIMING_DESCRIPTOR = 'INDEX_MAINTENANCE_DEFERRED'
 OR TIMING_DESCRIPTOR = 'BEFORE_INSERT_DC'
 OR TIMING_DESCRIPTOR = 'BEFORE_UPDATE_DC'
 OR TIMING_DESCRIPTOR = 'BEFORE_DATA_CHECK'
 OR TIMING_DESCRIPTOR = 'AFTER_DATA_CHECK')

15.2.5 Formula for size of shared memory used by global buffers

(1) When the standby-less system switchover (effects distributed) facility is not used
The size of the shared memory used by global buffers is calculated for each dictionary server and back-end server,
using Formula 1. If the calculations are made for each server machine, the values can differ depending on the options
specified in the pdbuffer statement, as shown in the following table.

Table 15‒9: Calculation conditions depending on the options specified in the pdbuffer statement (when the
standby-less system switchover (effects distributed) facility is not used)

pdbuffer statement option Calculation condition

-r If the server has an RDAREA for which -r is specified, that RDAREA is used in the calculation.

-i If the server has an RDAREA that stores an index for which -i is specified, that server is used in
the calculation.

15. Storage Requirements for HiRDB

559

pdbuffer statement option Calculation condition

-b If the server has an RDAREA for which -b is specified, that server is used in the calculation.

-o If there are any RDAREAs in the server that are not specified with pdbuffer -r, they are used
in the calculation.

If Y is specified in the pd_dbbuff_modify operand, add Formula 2. The total value determined from Formulas 1
and 2 is the required shared memory area for the server's global buffers.

If you specify fixed for the pd_dbbuff_attribute operand, pages are locked in real memory, which reduces
the real memory portion of the virtual memory by the same size. In addition, the same size is allocated from virtual
memory, which consists of the remaining real memory and swap area.

If the pdbuffer operand is omitted, HiRDB calculates the shared memory area automatically, so it need not be
estimated.

Formulas Shared memory calculation formula (KB)

Formula 1 32-bit mode

n

{

i=1

{752 + 64 + (296 + 64#1) (Pi + 4)

+ (124 + 80#2 + 96 A Mi) Ui} 4,096 4,096

+ Si {Pi + 4 + (Ui Mi A)}

} 1,024

64-bit mode

n

{management region part + data storage part} 1,024

i=1

management region part:

{944 + 64 + (480 + 112#1) (Pi + 4)

+ (176 + 96#2 + 136 A Mi) Ui} 4,096 4,096

data storage part:

Si {Pi + 4 + (Ui Mi A)}

Formula 2 32-bit mode

{ ((s 1,024 2) 8 + 112) 2,048 2,048

a (s 1,024) } 1,024

64-bit mode

{ ((s 1,024 2) 8 + 144) 2,048 2,048

a (s 1,024) } 1,024

n: Number of global buffer pools

i: Global buffer pool definitions to be calculated

P: Number of global buffer sectors

A: If the asynchronous READ facility is used, 2; if it is not used, 1

M: Maximum number of batch input pages
If at least 1 is specified in the pd_max_ard_process operand, this is twice the specified value.

U: Maximum number of concurrently executable prefetch operations

S: Maximum page length of the RDAREAs allocated to global buffer

s: Value of SHMMAX

15. Storage Requirements for HiRDB

560

a: Total from Formula 1

#1: Add this value in the case of a global buffer for LOB.

#2: Add this value if at least 1 is specified in the pd_max_ard_process operand.

(2) When the standby-less system switchover (effects distributed) facility is used
When the standby-less system switchover (effects distributed) facility is used, the size of the shared memory used by
global buffers is obtained for each unit using the formula. If the calculations are made for each unit, the values can
differ depending on the options specified in the pdbuffer statement, as shown in the following table.

Table 15‒10: Calculation conditions depending on the options specified in the pdbuffer statement (when
the standby-less system switchover (effects distributed) facility is used)

pdbuffer statement option Calculation condition

-r, -b If the unit has an RDAREA for which -r is specified and which belongs to the same HA group,
that RDAREA is used in the calculation.

-i If an RDAREA that contains the index specified with -i belongs to the same HA group, that
RDAREA is used in the calculation.

-o If there are any RDAREAs in the same HA group that are not specified with pdbuffer -r, they
are used in the calculation.

When fixed is specified for the pd_dbbuff_attribute operand, pages are locked in real memory, which
reduces the real memory portion of the virtual memory by the same size. In addition, the same size is allocated from
virtual memory, which consists of the remaining real memory and swap area.

If the pdbuffer operand is omitted, HiRDB calculates the shared memory area automatically, so it need not be
estimated.

Shared memory calculation formula (KB)

32-bit mode

n

{

i=1

(96 + ((752 (A + B)) + (288 (F + (8 (A + B))))

+ 8 F (A + B) + 16) + H + D)

+ 2,048 + G + (E F + (8 (A + B)))

} 1,024

64-bit mode

n

{management region part + data storage part} 1,024

i=1

management region part:

((144 + ((944 (A + B)) + (464 (F + (8 (A + B))))

+ (16 F (A + B)))) + 16 + H + D)

data storage part:

2,048 + G + (E F + (8 (A + B)))

n: Number of global buffer pools allocated to this unit

i: Global buffer pool definitions to be calculated

A: Number of host BESs

B: Maximum number of acceptable guest BESs

C: Number of batch input pages (value specified in pdbuffer -p)

15. Storage Requirements for HiRDB

561

D: Add this value if the prefetch facility is used (pdbuffer -m specified):
In the 32-bit mode:
2 (((80 U C) + (80 U) + (124 U) + (8 U C)) (A + B))
In the 64-bit mode:
2 (((112 U C) + (96 U) + (176 U) + (16 U C)) (A + B))

E: The value depends on the options specified in the pdbuffer statement. The following table lists and describes the
options and formulas:

pdbuffer statement option Formula for the maximum value

-r, -b (MAX ((buffer size (value of pdbuffer -l), MAX (page size of the specified RDAREA that
belongs to the same HA group)))

-i (MAX (buffer size (value of pdbuffer -l), MAX (page size of the RDAREA that stores the
index specified with -i and that belongs to the same HA group)))

-o (MAX (buffer size (value of pdbuffer -l), MAX (page size of the RDAREA in the same HA
group that is not specified with pdbuffer -r)))

F: Number of buffer sectors (value of pdbuffer -n)

G: Add this value if the prefetch facility is used (pdbuffer -m specified):
2 ((E U C) (A + B))

H: Add this value if LOB RDAREA is specified (pdbuffer -b specified):
In the 32-bit mode:
64 (F + (8 (A + B)))
In the 64-bit mode:
112 (F + (8 (A + B)))

U: Maximum concurrent prefetch count (value of pdbuffer -m)

15.2.6 Formulas for size of memory required during SQL execution

(1) Procedure for obtaining the size of the memory required during execution of rapid
grouping facility

If PDSQLOPTLVL is specified in the client environment definition, pd_optimize_level is specified in the
system common definition or front-end server definition, or this operand is omitted, executing an SQL statement that
satisfies the applicable conditions will activate the rapid grouping facility. In such a case, HiRDB allocates process
private area on the basis of the value of the PDAGGR operand in the client environment definition. The size of the
memory can be obtained from the following formula (in bytes). The size of the memory required during execution of
rapid grouping facility should be calculated for the server machine defining the back-end server only.

Formula

e + d 4 4 + (17 + 4 a + 4 b + c + d) 4 4 (N + 1) (bytes)

a: Number of columns subject to grouping

b: Number of operations by set functions
Each of COUNT, SUM, MAX, and MIN is counted as 1.
Each of AVG(COUNT) and AVG(SUM) is counted as 2.

c: Length of rows subject to grouping (see Table 15-11 Length of column subject to grouping and length of operation
area for set functions)

d: Length of operation area for set functions (see Table 15-11 Length of column subject to grouping and length of
operation area for set functions)

15. Storage Requirements for HiRDB

562

e: 32-bit mode: MAX (4 N 24, 16,408)
64-bit mode: MAX (8 N 40, 32,808)

N: Value of the PDAGGR operand in the client environment definition

Table 15‒11: Length of column subject to grouping and length of operation area for set functions

Column's data type Column length
Length of operation area for set

function#1

INTEGER 4 6

SMALLINT 2 4#2

DECIMAL(p,s) (p + 1) 2 (p + 7) 2 #3

FLOAT 8 10

SMALLFLT 4 6

INTERVAL YEAR TO DAY 5 8

INTERVAL HOUR TO SECOND 4 6

CHAR(n) n n + 3

VARCHAR(n) n + 2 n + 5

NCHAR(n) 2 n 2 n + 2

NVARCHAR(n) 2 n + 2 2 n + 4

MCHAR(n) n n + 3

MVARCHAR(n) n + 2 n + 5

DATE 4 6

TIME 3 6

BLOB(n) --

BINARY(n) n + 2 n + 5

Legend:
--: Not applicable

#1
If the set function is COUNT, the length of the operation area is always 6 regardless of the data type.

#2
If the set function is AVG or SUM, the length of the operation area is 6.

#3
If the set function is AVG or SUM, the length of the set function operation region is the following value:
If the set function value type is DECIMAL and precision is 29 digits: 18
If the set function value type is DECIMAL and precision is 38 digits: 23

For details about the data type rules of set functions, see Set functions in the manual HiRDB Version 9 SQL Reference.

(2) Procedure for obtaining the size of the memory required when data suppression by
column is specified

The following formula can be used to obtain the size of the memory (in bytes) required to access a table for which
data suppression by column is specified (table for which SUPPRESS is specified in the column definition of CREATE
TABLE).

15. Storage Requirements for HiRDB

563

Formula

a + 128 (bytes)

a: Sum of the lengths of columns in the table for which data suppression by column is specified

(3) Procedure for obtaining the size of the memory required during hash join and subquery
hash execution

If you specify the PDADDITIONALOPTLVL operand in the client environment definition or the
pd_additional_optimize_level operand in the HiRDB system definition, the SQL extension optimizing
option becomes available. If you specify an application of hash join, subquery hash execution (APPLY_HASH_JOIN)
with this SQL extension optimizing option, the system allocates the following size of process private area when a
table join or subquery SQL statement is executed:

Formula

32-bit mode

a

 (13 1,024 + 6 1,024 b + c)

i=1

64-bit mode

a

 (13 1,024 + 7 1,024 b + c) (bytes)

i=1

a: Maximum number of hash joins in the SELECT statement
For details about the maximum number of hash joins in the SELECT statement, see the HiRDB Version 9 UAP
Development Guide.

b: Obtain the hash join processing to be applied on the basis of the number of hash table rows, then determine the this
value from the following table:

Guidelines for the number of hash table rows Hash join processing to be applied Value of b

1,500 or less Batch hash join 0.5

1,500 (packet split count 3) or less Packet split
Hash join

1-level packet split 1

1,500 (packet split count 3)2 or less 2-level packet split 2

Greater than 1,500 (packet split count 3)2 3-level packet split 3

Number of hash table rows: For join, it is the inner table count; for subquery, it is the subquery search count excluding
the predicates that contain external reference rows in the search condition.

Packet split count: MIN { (size of hash table 2) page length of hash table , 64}

Hash table size: Value of the pd_hash_table_size specified in the HiRDB system definition or the value of the
PDHASHTBLSIZE operand specified in the client environment definition.

Page length of hash table: Select the page length of hash table corresponding to c (maximum length of hash table row)
from the following table:

Maximum length of hash table row Page length of hash table (bytes)

0 to 1,012 4,096

1,013 to 2,036 8,192

2,037 to 4,084 16,384

4,085 to 16,360 32,768

15. Storage Requirements for HiRDB

564

Maximum length of hash table row Page length of hash table (bytes)

16,361 to 32,720 (maximum length of hash table row + 48) 2,048 2,048

c: Maximum length of hash table row
For details about the length of a hash table row, see the HiRDB Version 9 UAP Development Guide.

(4) Procedure for obtaining the size of the memory required when the snapshot method is
used

If the pd_pageaccess_mode operand is omitted, or if SNAPSHOT is specified, then the page access method for
data retrieval uses the snapshot method when an SQL statement for which the snapshot method is applicable is
executed. At this time, memory in the process private area is allocated automatically, as shown below, based on the
page size of the table or index storage RDAREA.

Formula

a 2 (bytes)

a: Maximum page length in the RDAREA where the relevant table or index is stored
However, LOB RDAREAs are excluded.

(5) Determining the size of the memory required to retrieve the first n records
If the function for retrieving n rows of search results from the top is used, you can retrieve n rows from the top of the
search results (or from the location resulting from skipping as many rows from the top as specified by the user as an
offset).

If the number of rows specified in the LIMIT clause is 1 or greater and the value of (number of offset rows + number
of rows specified in the LIMIT clause) is 32,767 or less, as many rows are retained in memory as will fit in (number
of offset rows + number of rows specified in the LIMIT clause). The size of the process private area to be allocated
can be determined by the formula shown below. If the value of (number of offset rows + number of rows specified in
the LIMIT clause) is 32,768 or greater, see Chapter 18. Determining Work Table File Size because a work table is
created.

Formula

{100 + (a + 2) (number of offset rows + number of rows specified in the LIMIT clause)} b (bytes)

a: Row length
The row length cannot exceed 32,720 bytes. The row length is calculated with the following formula:

m

(Ai) + 2 m + 4 + c (bytes)

i=1

m: Number of rows specified in the selection formula, GROUP BY clause, or ORDER BY clause
Add 1 if the FOR UPDATE clause is specified. However, if ROW is specified in the selection formula, this is the
total number of rows in the table.

Ai: Data length of the ith column of the records stored in the first n records of the allocation area
For details about column data length, see Table 16-1 List of data lengths, and determine the length beginning
by assigning the defined length to d.
The data length is set to 12 bytes for a column whose data type is BLOB, character string whose defined
length is 256 bytes or greater (including national and mixed character strings), or BINARY that does not
belong to any of the following:

• Columns specified in a selection formula with the DISTINCT clause specified

• A query specification selection formula using a concatenation operation based on UNION [ALL]

• Columns specified in the ORDER BY clause

Also, if the FOR UPDATE clause is specified and 1 is added for m, use 12 bytes for Ai.

15. Storage Requirements for HiRDB

565

c: 8
However, in the following cases, use 0.

• There is an exclusive lock in the EX mode on the retrieval table

• WITHOUT LOCK is specified

• The rapid grouping facility is specified

• Multiple tables are combined

b: Number of maintenance areas for the first n records
The number of maintenance areas for the first n records is calculated with the following formula:

1 + number of UNION [ALL] clause specifications

(6) Determining the size of the memory required for executing SQL statements specifying an
index-type plug-in function as a search condition

To determine the size of memory that is allocated in the process private area when an SQL statement specifying an
index-type plug-in function as a search condition is executed, use the following formula:

Formula

a 500 + (20 + 6) 800 + 16 (bytes)

a: Row length. To determine the row length, use the following formula:

m

(Ai) + 4 (m + 2) + 12 + 4 + 8 (bytes)

i=1

m: Number of columns specified in the selection formula, join condition, GROUP BY clause, or ORDER BY
clause

If you specified the FOR UPDATE clause, add 1. If ROW is specified in the selection formula, the total number
of rows in the table is assumed.

Ai: Length of column data i in the row to be retrieved
For details about column data length, see Table 16-1 List of data lengths, and determine the length beginning
by assigning the defined length to d.
A length of 12 bytes is assumed for a column with BLOB data or character string data with a defined length of
256 bytes or greater (including national character data and mixed character string data) that is none of the
following:

• Column specified in the join condition (join column)

• Column specified in the selection formula with the DISTINCT clause specified

• Column specified in the selection formula in a subquery of a quantified predicate

• Column specified in the selection formula in a subquery of an IN predicate

• Selection formula in the subquery that is the target of Set Operation due to UNION [ALL] or EXCEPT
[ALL]

• Column specified in the ORDER BY clause

If the FOR UPDATE clause is specified, Ai corresponding to 1 that was added to m is 12 bytes.

(7) Determining the size of the memory required to use the facility for output of extended SQL
error information

When the facility for output of extended SQL error information is used, a process private area is allocated in the
following cases:

15. Storage Requirements for HiRDB

566

(a) When the OPEN statement is executed

Formula

32-bit mode

(16 + 16 m) + a (bytes)

64-bit mode

(24 + 24 m) + a (bytes)

a: Total data length of ? parameters or embedded variables
m
a = (ai)
i=1
m: Number of ? parameters or embedded variables in the SQL statement

ai: Data length of the ith ? parameter or the embedded variable
For details about the data length, see Table 15-5 Data length of embedded variables and ? parameters.

(b) When the PREPARE statement of the definition SQL is executed

Formula

SQL statement length + 20 (bytes)

(8) Determining the size of memory required for defining substructure indexes or for updating
tables in which a substructure index is defined

(a) If a substructure index is defined

Use the following formula to calculate the process private area used when a substructure index is defined with the
CREATE INDEX statement of definition SQL.

Formula

(index key length# 100 + 64) (bytes)

#
The maximum definition length of the substructure index defined in the table.

(b) If a table in which a substructure index is defined is updated

Use the following formula to calculate the amount of process private area used for updating a table in which a
substructure index has been defined with the INSERT, UPDATE or DELETE statement of data manipulation SQL.

Formula

(index key length#1 100 + 64 + 128) + (index key length + 128)#2 (bytes)

#1
The maximum definition length of the substructure index defined in the table.

#2
The number of substructure indexes that specify USING UNIQUE TAG.

(9) Determining the size of the memory required to execute data manipulation SQL
statements on compressed columns

If SQL statement execution, data storage processing, or extraction processing involves compressed columns, HiRDB
allocates a process private area whose memory size is as shown below.

15. Storage Requirements for HiRDB

567

Formula

MIN(split compression size, definition length of compressed column)# C + L (bytes)

C: If any of the following conditions is true, 2; if not, 1:

• The SUBSTR function is used.

• The POSITION function is used.

• Backward deletion/updating of data is performed.

L: Page length of the RDAREA containing the compressed table to be processed by the SQL statement
If multiple RDAREAs are processed, use the maximum page length.

#
Use the maximum value for all the compressed columns subject to SQL statement processing.

(10) Determining the size of the communication memory required for executing SQL
statements using a HiRDB parallel server configuration
When SQL statements are executed, the system allocates a process private area of the following size for
communication between BESs or for FES-BES communication:

Formula

4 1,024 3

 (maximum number of tables specified in one SQL statement number of BESs with tables of maximum partition size

+ number of floating servers# number of BESs in system) value of pd_max_users (bytes)

#
For SQL statements that use floating servers, specify the maximum number of tables specified in the SQL
statement. Specify 0 for SQL statements that do not use floating servers. For details about SQL statements that
use floating servers, see Allocating floating servers in the HiRDB Version 9 UAP Development Guide.

15.2.7 Formula for size of memory required during SQL preprocessing

(1) Size of memory required when no stored procedure is used
If no stored procedure is used, the following formula can be used to obtain the size of the memory that is allocated
during SQL preprocessing (KB).

Formula

{

(2,539 + Si 70 + Pi 20 + Ti 980 + Ci 68 + Wi 818 + Ki 416 + Li 5

+ Di 116 + Ari 108 + Gi 44 + Ori 10 + Sli 40 + Upi 96 + Fi 90

+ Ti Cwi 48 + MAX(Pi, Wpi) 52 + MAX(Ti, Sli - 1) 96

+ MAX(Ti 2, Wi) 24 + MAX(Ti 3, Wi) 24

+ MAX{MAX(Ti, Ori + Gi + Si + Fi), Sli - 1} 24

} 1.2 1,024 CLS (KB)

Si: Number of items to be retrieved in SQL statements

Pi: Number of embedded variables, ? parameters, or SQL parameters in SQL statements

Ti: Number of table names in SQL statements

Ci: Number of column names in SQL statements

Wi: Number of predicates used in Boolean operators (AND and OR) in SQL statements

Ki: Number of literals in SQL statements

15. Storage Requirements for HiRDB

568

Li: Total length of literals in SQL statements (bytes)

Di: Total number of storage conditions defined in SQL statements

Ari: Number of arithmetic operations and concatenation operations in SQL statements

Gi: Number of columns specified in GROUP BY clause of SQL statements

Ori: Number of column specification or sort item specification numbers in ORDER BY clause of SQL statements

Fi: Total number of set functions and scalar functions in SQL statements

Sli: Number of queries specified in SQL statements

Upi: Number of columns to be updated in SQL statements

Cwi: Number of WHENs in CASE expression of SQL statements

Wpi: Number of variables corresponding to WITH clause of SQL statements

CLS: Number of areas generated per access path in an SQL object#

#: The following formula can be used to obtain the number of areas where one access path is generated in an SQL
object.

Formula

When SELECT_APSL is applied#

a + b 4 + c + d + e 2

When SELECT_APSL is not applied#

a + b + c + d + e

a: Number of front-end servers
Specify 1 for the number of front-end servers.

b: Number of tables
Use the following formula to obtain the number of tables:
Number of base tables + number of correlation names

c: Number of set operation servers
If a set function is specified, specify 1; otherwise, specify 0.

d: Number of queries specifying GROUP BY, DISTINCT, or ORDER BY clause

e: Number of join servers
Use the following formula to obtain the number of join servers:
b - number of queries in SQL statement

#: The access path display utility (pdvwopt) can be used to determine whether SELECT_APSL is applied. For
details about the access path display utility (pdvwopt), see the manual HiRDB Version 9 Command Reference.

(2) Procedure for obtaining the size of the memory required when using stored procedures
If stored procedures are used, the size of the memory (in KB) to be allocated during SQL preprocessing is the value
obtained from the formula shown in (1) above plus the length of the procedure control object for each stored
procedure. For the formula for obtaining the length of a procedure control object, see the section on the
pd_sql_object_cache_size operand of the system common definition. For details about the length of the
procedure control object per stored procedure, see Formula for determining the size of the routine control object of a
routine in the manual HiRDB Version 9 System Definition.

15.2.8 Formula for size of memory required during BLOB data retrieval
or updating (front-end server)

Use the following formula to determine the size of the memory required during BLOB data retrieval or updating.

15. Storage Requirements for HiRDB

569

Formula

a + b + 7 (KB)

a: Maximum value from the following formula for BLOB input variables or output variables specified in one SQL
statement.

{
c

(actual length of BLOB input variable i#1 2 + 58) +
i=1
d

(specified length of BLOB output variable j#2 + 26)
j=1

} 1,024

#1: This is the actual length of BLOB data passed as embedded variables from the UAP to the HiRDB server.

#2: This is the declared length of the UAP embedded BLOB data type variables received from the UAP and returned
from HiRDB to the UAP. If it is an INSERT or SELECT statement, the BLOB type reflected from the SELECT side is
an output variable.

b: Maximum value from the following formula for a combination of SQL statements performing join retrieval with
simultaneously open cursors:

256 number of concurrently open cursors

c: Number of input variables

d: Number of output variables

15.2.9 Formula for size of memory required during BLOB data retrieval
or updating (back-end server or dictionary server)

Use the following formula to determine the size of the memory required during BLOB data retrieval or update.

Formula

a + b (KB)

a: Maximum value from the following formula for BLOB input variables or output variables specified in one SQL
statement:

{
c

(actual length of BLOB input variable i# + 118 + 70 number of output variables)
i=1

} 1,024

#: This is the actual length of BLOB data passed as embedded variables from the UAP to the HiRDB server.

b: The result of the following formula is the largest memory value for a combination of SQL statements that search
BLOB data while there are simultaneously open cursors.

d

{280 + 184 (number of tables specified in SQLi + 1)}

i=1

c: Number of input variables

15. Storage Requirements for HiRDB

570

d: Number of cursors

15.2.10 Formula for size of memory required during block transfer or
array FETCH (front-end server)

To determine the size of the memory required for block transfer or array FETCH, use the following formulas:

Condition
Value specified in the PDBLKBUFFSIZE operand

Omitted or 0 1 or greater

An array-type embedded variable is specified in the INTO clause of
FETCH statement

Formula 1

An array-type embedded
variable is not specified in the
INTO clause of FETCH
statement

PDBLKF operand is omitted or set
to 1

-- Formula 2

PDBLKF operand is set to 2 or
greater

Formula 1

Legend:
--: Not applicable

Formula 1

{864 + 16 a + (6 a + 2 d + b) c} 1,024 (KB)

a: Number of retrieval items specified in the SELECT clause

b: Data length per row in the retrieval result obtained by the FETCH statement (sum of the maximum length of each
column in bytes)

c: Value specified by the PDBLKF operand or the number of array columns

d: Number of selection formulas with BINARY type specified in the search item specified in the SELECT clause

Formula 2

MAX(X1,X2) (kilobytes)

X1: (864 + 22 a + 2 c + b) 1,024

X2: Value of the PDBLKBUFFSIZE operand

a: Number or retrieved items that is specified in the SELECT clause

b: Data length per row in the retrieval results obtained by the FETCH statement (sum of the length of each column that
is actually obtained, in bytes)

c: Number of selection formulas with BINARY type specified in the search item specified in the SELECT clause

15.2.11 Memory required by in-memory data processing
Use the following formulas to calculate the memory required by in-memory data processing.

For a HiRDB parallel server configuration, calculate the RDAREA used as in-memory separately for each server
machine.

Formula

Formula 1 + D 2 (KB)

Formula 1

n

15. Storage Requirements for HiRDB

571

{736 + 32 A + 48 + 448 B + 2,048 + C x B} 1,024 (KB)

i=1

n: Number of in-memory RDAREAs

A: Number of HiRDB files that constitute an in-memory RDAREAs

B: Total number of pages of in-memory RDAREAs

C: Page size of in-memory RDAREAs

D: Value of Formula 2

Formula 2 (number of shared memory segments used by in-memory data buffer)

value of Formula 1 (value of SHMMAX operand 1,024)

The value found by Formula 2 is used to calculate the pd_max_resident_rdarea_shm_no operand or the
operating system parameters.

15. Storage Requirements for HiRDB

572

16 Determining RDAREA Size
This chapter explains how to determine the size of each type of RDAREA.

573

16.1 Determining the size of a user RDAREA
This section explains how to determine the size of a user RDAREA.

16.1.1 Calculating the size of a user RDAREA

(1) Formula for calculating the size of a user RDAREA
The following formula is used to calculate the size of a user RDAREA.

Formula

Size of user RDAREA (bytes)

= Page length of the user RDAREA#1 total number of pages in the user RDAREA#2

#1: This is the page length specified in the create rdarea statement for the database initialization utility or
database structure modification utility.

#2: See (2) as follows.

(2) Formula for calculating the total number of pages in a user RDAREA
The following formula is used to calculate the total number of pages in a user RDAREA.

Total number of pages in a user RDAREA (pages)

= total number of pages in the directory page part + total number of pages in the data page part

(a) Formula for calculating the total number of pages in the directory page part

Total number of pages in the directory page part (pages) =

6 (n + 1) + 20,480 P 2

n

+ { di b + di f }

i=1

n: Number of HiRDB files that constitute the user RDAREA

P: Page length of the user RDAREA (bytes)

b: (P - 20) (S 32 8 + 56)

f: (125 P) (16 b) b

di: Number of segments for each HiRDB file specified with the create rdarea statement of the database
initialization utility (pdinit) or database structure modification utility (pdmod)

S: Number of pages for one segment (segment size) specified with the create rdarea statement of the database
initialization utility (pdinit) or database structure modification utility (pdmod)

(b) Formula for calculating the total number of pages in the data page part

Total number of pages in the data page part (pages) =

e

{ (i S) S}

i=1

e

16. Determining RDAREA Size

574

+ { (i S) S}

i=1

k

+ { ((i + 1) S S}

i=1

e: Total number of pages stored in the user RDAREA

k: Total number of indexes stored in the user RDAREA

S: Number of pages for one segment (segment size) specified with the create rdarea statement of the database
initialization utility (pdinit) or database structure modification utility (pdmod)

i: Number of pages required to store a column other than BINARY columns defined as branching in each table
See 16.1.2 Calculating the number of table storage pages.

i: Number of pages required to store BINARY columns defined as branching in each table
See 16.1.2 Calculating the number of table storage pages.

i: Number of pages required to store each index
See 16.1.3 Calculating the number of index storage pages.

16.1.2 Calculating the number of table storage pages
The procedure used to calculate the number of pages required to store a table depends on whether FIX is specified for
the table in CREATE TABLE. The procedures are explained in (1) and (2). The variables used by the formulas in (1)
and (2) are explained in (3), and examples of calculating the number of pages needed to store a table are presented in
(7). Estimating the RDAREA size when the rebalancing facility is used is explained in (6).

If a table is row-partitioned, the number of pages for the table in each storage RDAREA must be obtained.

(1) FIX not specified
When FIX is not specified, the following formula is used to calculate the number of pages needed to store a table.

Formula

Number of table storage pages =
number of pages that store columns other than BINARY columns defined as branching
+ number of pages that store BINARY columns defined as branching (pages)

 Number of pages that store columns other than BINARY columns defined as branching

 Number of pages that store BINARY columns defined as branching

SPN2

(a) How to obtain the value of P

Use the following formula to obtain the value of P. The denominator enclosed in parentheses indicates the number of
rows stored per page; its minimum and maximum values are 1 and 255, respectively.

16. Determining RDAREA Size

575

Formula

(b) How to obtain the value of PSi

Use the following formula to obtain the value of each PSi and then obtain their sum, where n indicates the number of
columns to which Table 16-2 Data lengths for the variable-length character string type (except abstract data type and
repetition columns) is applicable.

PSi = a ei/(b - 62)

(2) FIX specified
When FIX is specified, the following formula is used to calculate the number of pages needed to store a table.

Formula

(a) How to obtain the value of Q

Use the following formula to obtain the value of Q, in which the denominator enclosed in parentheses indicates the
number of rows stored per page; its minimum and maximum values are 1 and 255, respectively.

16. Determining RDAREA Size

576

(3) Variables used in formulas
a: Total number of rows stored in table

b: Page length of user RDAREA (bytes)

c: Percentage of unused area specified with CREATE TABLE (%)
If you omit the percentage of unused area, the system assumes 30%.

di: Data length of a column (bytes)
Obtain the values for all columns from Table 16-1 List of data lengths.
For a column with an abstract data type, see (4) How to obtain the data lengths of abstract data type columns.
For a repetition column, see (5) How to obtain the data lengths of repetition columns.

ei: Average column data length (bytes)

• For columns defined as a provided data type, see Table 16-2 Data lengths for the variable-length character
string type (except abstract data type and repetition columns) and obtain the values only for the columns with
data types listed in this table.

• For columns defined as an abstract data type, see Table 16-3 Data lengths for the variable-length character
string type (abstract data type) and obtain the values only for the columns with data types listed in this table.

• For repetition columns, see Table 16-4 Data lengths for the variable-length character string type (repetition
columns) and obtain the values only for the columns with data types listed in this table.

f: Total number of columns defined for table

g: Segment size of RDAREA for storing table (pages)

h: Percentage of free pages in segment specified with CREATE TABLE (%)
If you omit the percentage of free pages in segment, the system assumes 10%. Here, free pages refers to unused
pages.

z: System common definition

• If ALL is specified for the operand pd_dbreuse_remaining_entries, or if the specification is
omitted: 0

• If NONE is specified for the operand pd_dbreuse_remaining_entries: 510

SPN1: Number of pages that store columns defined as branching (non-BINARY)
For details about branching conditions, see footnote #5 following Table 16-1 List of data lengths.

SPN1 =

f

Value of branch di (b - 61) a SF

i=1

SPN2: Number of pages that store BINARY columns defined as branching
For details about branching conditions, see footnote #5 following Table 16-1 List of data lengths.

SPN2 = SPN2A + SPN2B + SPN2C

 Number of branch pages that use INSERT SQL
Calculate for the BINARY columns defined as branching.

SPN2A =

k

{ Li (b - 59) a + A} SF

i=1

 Number of branch pages that use pdload or pdorg
Li > (b - 2,853) 255

SPN2B =

16. Determining RDAREA Size

577

k

{ (Li + 11) a} (b - 48) SF

i=1

Li (b - 2,853) 255

SPN2C =

a 255 SF

The formula for A is shown below.

k: Number of columns defined as branching

Li: Actual data length of each column (bytes)
For a compressed column, use the following formula:
Data length after compression + (data length before compression split compression size) 8

SF: 1.3
However, make this value larger than 1.3 when:

• Large numbers of abstract data type columns will be updated

• Executing, on repetition columns, large quantities of updates that increase element data length or updates
that increase the number of elements

• Executing large quantities of updates that significantly increase data length on VARCHAR, NVARCHAR,
MVARCHAR, or BINARY type columns

• Executing large quantities of updates that significantly increase data length on BINARY type columns

• Executing, on columns on which data suppression has been executed on individual columns, large
quantities of updates that significantly increase data length

• Executing large quantities of updates from NULL value to non-NULL values with data type other than the
above

Table 16‒1: List of data lengths

Classification Data type Data length (bytes)

Numeric data INTEGER 4

SMALLINT 2

LARGE DECIMAL(m,n)#1 m/2 + 1#2

FLOAT or DOUBLE PRECISION 8

SMALLFLT or REAL 4

Character data CHARACTER(n) n#3

VARCHAR(n)
(variable-length
character string)

d 255 Element of repetition column d + 2

Other d + 1

d 256 6

VARCHAR (n) with
no-split option
specified

n 255 Attribute of abstract data type d + 3

Element of repetition column d + 2

Other d + 1

16. Determining RDAREA Size

578

Classification Data type Data length (bytes)

n 256 Branching#5 6

Not
branching#5

Attribute of
abstract data
type

d + 3

Element of
repetition
column

d + 2

Other d + 3

National character data NCHAR(n) or NATIONAL CHARACTER(n) 2 n#4

NVARCHAR(n) d 127 Element of repetition column 2 d + 2

Other 2 d + 1

d 128 6

NVARCHAR(n) with
no-split option
specified

n 127 Attribute of abstract data type 2 d + 3

Element of repetition column 2 d + 2

Other 2 d + 1

n 128 Branching#5 6

Not
branching#5

Attribute of
abstract data
type

2 d + 3

Element of
repetition
column

2 d + 2

Other 2 d + 3

Mixed character string
data

MCHAR(n) n#3

MVARCHAR(n) d 255 Element of repetition column d + 2

Other d + 1

d 256 6

MVARCHAR(n) with
no-split option
specified

n 255 Attribute of abstract data type d + 3

Element of repetition column d + 2

Other d + 1

n 256 Branching#5 6

Not
branching#5

Attribute of
abstract data
type

d + 3

Element of
repetition
column

d + 2

Other d + 3

Date data DATE 4

Time data TIME 3

Date interval data INTERVAL YEAR TO DAY 5

16. Determining RDAREA Size

579

Classification Data type Data length (bytes)

Time interval data INTERVAL HOUR TO SECOND 4

Timestamp data TIMESTAMP(n) 7 + (n 2)

Large object data BLOB 9

Binary data BINARY(n) n 255 d + 3

n 256 Branching#5 15

Not branching#5 d + 3

Binary data BINARY(n) n 255 d + 3

n 256 Branching#5 15

Not branching#5 d + 3

BINARY(n)

with compression
specified

Branching#5 15

Not branching#5 + 9

d: Actual data length (in characters)

m, n: Positive integer

: Data length after compression (number of characters)

#1: This is a fixed decimal number consisting of a total of m digits and n decimal places. If m is omitted, 15 is
assumed.

#2: If the SUPPRESS DECIMAL table option is specified in the table definition, the data length will be k 2
+ 2, where k is the number of significant digits during storage (excluding leading zeros). If the condition shown as
follows is satisfied, SUPPRESS DECIMAL should not be used (a in the condition is the total data lengths of the
columns in the table when SUPPRESS DECIMAL or column data suppression is not used):

32,717 < (a + number of columns in table 2 + 8)

#3: If column data suppression is specified and data suppression actually occurs, the value of n is n - b + 4. Data
suppression occurs only when column data suppression is specified, the column data ends with the blank character,
and this blank character is immediately followed by at least four single-byte blank characters. b is the number of blank
characters following the last character of the column data.

If column data suppression is specified but data suppression does not actually occur, one byte of information is
added to each column. However, if the condition shown below is satisfied, column data suppression should not be
specified (a in the condition is the total data lengths of the columns in the table when SUPPRESS DECIMAL or
column data suppression is not used):
32,717 < (a + number of columns in table 2 + 8)

#4: If column data suppression is specified and data suppression actually occurs, 2 n becomes 2 n - 2 b + 5.
Data suppression occurs only when column data suppression is specified, the column data ends with the blank
character, and this blank character is immediately followed by at least three double-byte blank characters. b is the
number of blank characters following the last character of the column data.

However, if the condition shown below is satisfied, column data suppression should not be specified (a in the
condition is total data lengths of the columns in the table when SUPPRESS DECIMAL or column data suppression
is not used):
32,717 < (a + number of columns in table 2 + 8)

#5: In general, the calculation assumes that there is no branching. Branch only when the condition shown below is
satisfied. For a compressed column, use the data length before compression in the calculation.

BL > page length - 50

f

BL (bytes) = di + 2 f + 6

16. Determining RDAREA Size

580

i=1

If this branch condition is satisfied, recalculate the value of BL assuming that each column branches, starting with
the column having the smallest column number until the column no longer satisfies the branch condition.

Table 16‒2: Data lengths for the variable-length character string type (except abstract data type and
repetition columns)

Data type Data length (bytes)

VARCHAR (n) d 256 d + 2

No-split option specified 0

NVARCHAR (n) d 128 2 d + 2

No-split option specified 0

MVARCHAR (n) d 256 d + 2

No-split option specified 0

d: Actual data length (in characters)

(4) How to obtain the data lengths of abstract data type columns
Use the following formula to obtain data length di of an abstract data type column.

Formula

h

di = ADTk + 5

k=1

h: Inheritance count for the abstract data type
If there is no inheritance, this value is 1.
If you have specified the UNDER operand in the CREATE TYPE statement to inherit another abstract data type,
the highest abstract data type is h and the lowest abstract data type is 1.

ADTk: Data length of the abstract data type (bytes)
Use the following formula to obtain this value:

m

ADTk= attj + 10 + 2 m

i=1

m: Total number of attributes of the abstract data type

attj: Data length for each attribute of the abstract data type (bytes)
If there is no inheritance, m = 1; therefore, calculate the value of ADT1.

For the data lengths for each attribute, see Table 16-1 List of data lengths. If the data type satisfies the condition
shown in Table 16-3 Data lengths for the variable-length character string type (abstract data type), calculate the data
according to Table 16-3 Data lengths for the variable-length character string type (abstract data type).

Assign the value of the corresponding attej to the following formula and add branch row storage pages ADTLS to P:

h

ADTLS= attej (b - 62) a

I=1

16. Determining RDAREA Size

581

When attributes are defined as an abstract data type, use the following formula to obtain their data length:

h

attj(bytes)= ADTk + 5

k=1

Table 16‒3: Data lengths for the variable-length character string type (abstract data type)

Data type Condition Data length attj (bytes) Data length of branch
section attej (bytes)

VARCHAR (n) d 256 8 d + 2

No-split option specified d + 3 0

NVARCHAR (n) d 128 8 2 d + 2

No-split option specified 2 d + 3 0

MVARCHAR (n) d 256 8 d + 2

No-split option specified d + 3 0

d: Actual data length (in characters)

(5) How to obtain the data lengths of repetition columns
Use the following formula to obtain the data length of a repetition column:

Formula

di = 4 + (eli + 1) eni

eli: Data length of a repetition column
Obtain the data length from Table 16-1 List of data lengths.
For the variable-length character string type, obtain the data length from Table 16-4 Data lengths for the variable-
length character string type (repetition columns).

eni: Average number of elements for a repetition column

Table 16‒4: Data lengths for the variable-length character string type (repetition columns)

Data type Condition Data length eli (bytes) Data length of branch
section esj (bytes)

VARCHAR (n) d 256 5 d + 2

No-split option specified d + 2 0

NVARCHAR (n) d 128 5 2 d + 2

No-split option specified 2 d + 3 0

MVARCHAR (n) d 256 5 d + 2

No-split option specified d + 2 0

d: Actual data length (in characters)

If a repetition column with the variable-length character string type satisfies the value of eli shown in Table 16-4 Data
lengths for the variable-length character string type (repetition columns), add the value obtained from the following
formula to P:

m

 {esi eni + 14 (eni - 1)} (b - 62) a

16. Determining RDAREA Size

582

i=1

m: Number of repetition columns with the variable-length character string type that satisfy the condition shown in
Table 16-4 Data lengths for the variable-length character string type (repetition columns).

esi: Average value of the actual data length per element
Apply the data length shown in Table 16-2 Data lengths for the variable-length character string type (except
abstract data type and repetition columns).

(6) How to estimate the area when the rebalancing facility is used
If there are partitioning tables that use any one of the HASHA through HASHF hash functions, the data is divided into
1,024 hash element values, each of which is stored in a separate segment.

An average of (1,024 number of partitions) hash elements of data is stored in each partitioned RDAREA.
Therefore, at a minimum, enough segments must be allocated to each RDAREA to store the number of elements.

When the rebalancing facility is used, the RDAREA size can be estimated as follows:

1. The total number of segments Sn that will be required is estimated from the number of items of data N, row length
L, and page length P.

2. Estimate the number of segments Ssn required per RDAREA.

Ssn = Sn Srn Srn
Srn: 1,024 Dvn
Dvn: Number of RDAREA partitions

3. Estimate the number of segments S used per RDAREA, making provision for a surplus.

S = (Ssn K) Srn Srn
K: Coefficient (Example: 20% surplus, 1.2)

(7) Examples of calculating the number of table storage pages

(a) Example
Obtain the number of table storage pages for the following STOCK table:

PCODE PNAME STANDARD PRICE QUANTITY COST

20180 CLEANER C20 20000 26 15000

20190 CLEANER C77 28000 105 23000

20130 REFRIGERATOR P10 30000 70 25000

20220 TV K18 35000 12 30000

20200 CLEANER C89 35000 30 30000

20140 REFRIGERATOR P23 35000 60 30000

20280 AMPLIFIER L10 38000 200 33000

20150 REFRIGERATOR P32 48000 50 43000

20290 AMPLIFIER L50 49800 260 45000

20230 TV K20 50000 15 45000

20160 REFRIGERATOR P35 55800 120 50000

Conditions:

1. Total number of rows stored in the table: 10,000

16. Determining RDAREA Size

583

2. Page length of user RDAREA: 8,192 bytes

3. Percentage of unused space specified with CREATE TABLE: 30%

4. Number of columns: 6

5. Segment size for storing table: 100 pages

6. Percentage of free pages in a segment specified in CREATE TABLE: 40%

7. Columns' data types:

Column Data type

PCODE CHARACTER(5)

PNAME CHARACTER(4)

STANDARD CHARACTER(3)

PRICE INTEGER

QUANTITY INTEGER

COST INTEGER

8. The operand pd_dbreuse_remaining_entries is not specified in the system common definition.

FIX not specified

1. Calculation of row length
5(PCODE) + (2 4)(PNAME) + 3(STANDARD) + 4(PRICE) + 4(QUANTITY) + 4(COST) = 28 bytes

2. Calculation of P

3. Calculation of the number of table storage pages

FIX specified

1. Calculation of row length
5(PCODE) + (2 4)(PNAME) + 3(STANDARD) + 4(PRICE) + 4(QUANTITY) + 4(COST) = 28 bytes

2. Calculation of Q

3. Calculation of the number of table storage pages

16. Determining RDAREA Size

584

16.1.3 Calculating the number of index storage pages
The procedure used to calculate the number of pages required to store an index is explained in (1) as follows. The
variables used in the formulas are explained in (2), and examples of calculating the number of pages needed to store
an index are presented in (3).

If cluster key is specified with CREATE TABLE, the number of cluster key storage pages should be obtained in the
same manner as for the number of index storage pages.

If an index is row-partitioned, the number of pages for the index in each storage RDAREA must be obtained.

Note
When an index page split occurs, the storage ratio of the keys in the index is 50:50, and the index is divided into
two indexes. Therefore, if there are many additions or updates to an index, make the estimate for the maximum
number of index storage pages double the calculated value. Also, even if there are inserts from the UAP, the index
page split of the leaf page that stores the largest key considers the value of the PCTFREE operand.
One method to reduce the frequency of index page splits is unbalanced index splits. For details about index page
splits and unbalanced index splits, see the HiRDB Version 9 System Operation Guide.

(1) Calculation procedure
The following formula is used to calculate the number of pages needed to store an index.

Formula

n

Number of index storage pages = Pi + Pd

i=1

The recursive formula shown in Formula 1 as follows is used to obtain Pi. Pi + 1 must be calculated until Pn = 1, then
the sum of the results must be obtained.

The value of Pd must be obtained if the number of duplicated key values exceeds 200. The formula for obtaining the
value of Pd is shown in Formula 2 as follows:

16. Determining RDAREA Size

585

Formula 1

Formula 2

Number of duplicated elements per row when the index contains repetition columns
If the index contains repetition columns, the number of duplicated elements per row must not exceed the following
value:

Number of duplicated elements = (a 0.95 - 82) 4 - 1

(2) Variables used in formulas
a: Page length of user RDAREA (bytes)

b: Percentage of unused space specified with CREATE TABLE#1(%)

c: Number of keys with up to 200 duplicated key values#2, #3, #4

d: Average number of duplicates for keys with up to 200 duplicated key values#3, #5

e: Number of keys with more than 200 duplicated key values,#3, #4

16. Determining RDAREA Size

586

f: Average number of duplicates for keys with more than 200 duplicated key values#3, #5

g: DB storage key length#6 (bytes)

h: One of the following:

• For a unique index: Number of keys not containing a null value
For a multicolumn index, the total number of keys not containing a null value in its component columns.

• For other than unique index: 0
#1

If no percentage of unused space is specified, 30% should be used in the calculation. If a cluster key is specified,
the percentage of unused space specified with CREATE TABLE should be used.

#2
Non-duplicated keys in unique indexes must be included.

#3
Calculate so that the value of c d + e f is larger than the total number of index keys.

#4
Duplicate keys in unique indexes must be included (keys that are duplicate due to the fact that the key contains a
null value).

#5
Round up fractions to an integer value.

#6
See Table 16-5 List of index key lengths. The length of the DB storage key can be obtained from the following
formula:

• For single column indexes and fixed-size multicolumn indexes
key length 4 4

• For variable-size multicolumn indexes with a key length of 255 bytes or less
(key length + 1) 4 4

• For variable-size multicolumn indexes with a key length of 256 bytes or more
(key length + 2) 4 4

The key length of a multicolumn index is the sum of the key lengths of its component columns based on the key
lengths shown in Table 16-5 List of index key lengths.

Table 16‒5: List of index key lengths

Classifi-

cation
Data type

Data length (bytes)

Key length less than 256 Key length 256 or greater

Single-

column
index

Multicolumn index Single-

column
index

Multicolumn index

Fixed
length#1

Variable
length#2

Fixed
length#1

Variable
length#2

Numeric
data

INTEGER 4 5 6 N 5 7

SMALLINT 2 3 4 N 3 5

LARGE
DECIMAL(m,n)#3

m 2
+ 1

m 2
+ 2

m 2
+ 3

N m 2
+ 2

m 2
+ 4

FLOAT or DOUBLE
PRECISION

8 E E -- E E

SMALLFLT or
REAL

4 E E -- E E

Character
data

CHARACTER(n) N n + 1 n + 2 n n + 1 n + 3

VARCHAR(n) a + 1 N a + 2 a + 2 N a + 3

16. Determining RDAREA Size

587

Classifi-

cation
Data type

Data length (bytes)

Key length less than 256 Key length 256 or greater

Single-

column
index

Multicolumn index Single-

column
index

Multicolumn index

Fixed
length#1

Variable
length#2

Fixed
length#1

Variable
length#2

National
character
data

NCHAR(n) or
NATIONAL
CHARACTER(n)

2 n 2 n + 1 2 n + 2 2 n 2 n + 1 2 n + 3

NVARCHAR(n) 2 b + 1 N 2 b + 2 2 b + 2 N 2 b + 3

Mixed
character
data

MCHAR(n) N n + 1 n + 2 n n + 1 n + 3

MVARCHAR(n) a + 1 N a + 2 a + 2 N a + 3

Date data DATE 4 5 6 -- 5 7

Time data TIME 3 4 5 -- 4 6

Date interval
data

INTERVAL YEAR
TO DAY

5 6 7 -- 6 8

Time
interval data

INTERVAL HOUR
TO SECOND

4 5 6 -- 5 7

Timestamp
data

TIMESTAMP(p) 7 + (p 2) 8 + (p 2) 9 + (p 2) -- 8 + (p 2) 10 + (p
2)

a: Actual data length

b: Actual number of characters

m, n, p: Positive integer

E: Error occurs during index definition

--: Not applicable

Note
Begin calculation with a key length less than 255 bytes. If it turns out that the key length is 256 bytes or greater,
recalculate at a key length of 256 bytes or greater.

#1: Key length of an index that contains only fixed-length component columns.

#2: Key length of an index that contains variable-length component columns.

#3: This is a fixed decimal number consisting of a total of m digits and n decimal places. If m is omitted, 15 is
assumed.

Reference note
Non-unique indexes have areas that store index data multiple times in their index data storage areas, so they are that
much larger. Unique indexes, on the other hand, have no areas that store duplicated instances. For this reason, unique
indexes are smaller than non-unique indexes.

(3) Examples of calculating the number of index storage pages

(a) Example 1

Obtain the number of index storage pages for a unique index (no duplicated key values) of the PCODE column for the
following STOCK table:

PNO PNAME STANDARD PRICE QUANTITY COST

20180 CLEANER C20 20000 26 15000

16. Determining RDAREA Size

588

PNO PNAME STANDARD PRICE QUANTITY COST

20190 CLEANER C77 28000 105 23000

20130 REFRIGERATOR P10 30000 70 25000

20220 TV K18 35000 12 30000

20200 CLEANER C89 35000 30 30000

20140 REFRIGERATOR P23 35000 60 30000

20280 AMPLIFIER L10 38000 200 33000

20150 REFRIGERATOR P32 48000 50 43000

20290 AMPLIFIER L50 49800 260 45000

20230 TV K20 50000 15 45000

20160 REFRIGERATOR P35 55800 120 50000

Conditions:

1. Total number of index keys: 10,000

2. Page length of user RDAREA: 8,192 bytes

3. Percentage of unused space specified with CREATE TABLE: 30%

4. Data type of index: CHARACTER
5. Index key length: 5 bytes

6. Number of key duplicates: 1

16. Determining RDAREA Size

589

Formula

(b) Example 2

Obtain the number of index storage pages for the STOCK table shown in Example 1 when the PNAME column is used
as the index (with duplicated key values).

Conditions:

1. Total number of index keys: 10,000

2. Page length of user RDAREA: 8,192 bytes

3. Percentage of unused space specified with CREATE TABLE: 30%

4. Data type of index: NCHAR
5. Index key length: 4 characters (kanji characters)

6. Number of keys with more than 200 duplicated key values: 1
(Average number of duplicates: 250)

7. Number of keys with up to 200 duplicated key values: (10,000 - 250)/5 =
1,950 (Average number of duplicates: 5)

16. Determining RDAREA Size

590

Formula

Obtain the number of index storage pages for the following MEMBERSHIP_TABLE using the SEX and
YEAR_JOINED columns as a multicolumn index:

MNO NAME AGE SEX YEAR_JOINED

0001
0002
0003
0004
...
...

Lisa Roberts
John Anderson
Jane Wood
Mark Wood

...

...

18
25
24
25
...
...

F
M
F
M

...

...

1983
1967
1987
1964
...
...

16. Determining RDAREA Size

591

MNO NAME AGE SEX YEAR_JOINED

...
1000

...
Joe Young

...
30

...
M

...
1995

Conditions:

1. Total number of index keys: 10,000

2. Page length of user RDAREA: 8,192 bytes

3. Percentage of unused space specified with CREATE INDEX: 30%

4. Number of members joined in 1964: 1,000

5. Number of members joined in any other year: 200 or fewer

6. Period covered: 31 years from 1965 to 1995

7. The same numbers of male and female members are assumed to have joined each year.

8. Data types of columns:

Column Data type

MNO CHARACTER(5)

NAME NCHAR(4)

AGE INTEGER

SEX CHARACTER(4)

YEAR_JOINED INTEGER

Formula:

1. The number of keys (c) for members who joined within 31 years after 1965 (no more than 200 per year
including both male and female members): c = 31 2 = 62

2. The average number of duplicates (d) is: d=(10,000 - 1,000) 62 = 146.

3. Number of keys (e) for members who joined in 1964 (1,000 members including both male and female
members): e = 2

4. Average number of duplicates (f): f = 1,000 2 = 500

5. DB storage key length (g) of the SEX and YEAR_JOINED columns:
g = (4 + 1 + 5)/4 4 = 12

16. Determining RDAREA Size

592

16. Determining RDAREA Size

593

16.2 Determining the size of a data dictionary RDAREA
You can use the create rdarea statement of the database structure modification utility (pdmod) to create the
following two types of data dictionary RDAREA:

• Normal data dictionary RDAREA
Specify datadictionary or datadictionary of routines in the create rdarea statement.

• Data dictionary RDAREA for storing database state analyzed tables and database management tables
Specify datadictionary of dbmanagement in the create rdarea statement.

You must determine the size of each RDAREA of either of these types.

16.2.1 Determining the size of a normal data dictionary RDAREA

(1) Formula for calculating the size of a data dictionary RDAREA
Use the following formula to determine the size of a data dictionary RDAREA that will be created by the create
rdarea statement with datadictionary or datadictionary of routines specified:

Formula

Size of data dictionary RDAREA (bytes)

= a b 1.3 + c 125 + 1,600,000

 If you are defining an extended system-defined scalar function, add:

+ 1,933,312

a: Page length of the data dictionary RDAREA#1

b: Total number of pages in the data dictionary RDAREA#2

c: Segment size of the data dictionary RDAREA#3

#1: This is the page length specified in the create rdarea statement of the database initialization utility
(pdinit) or database structure modification utility (pdmod).

#2: This is the number of table storage pages + number of index storage pages (see (2) and (3) as follows).

#3: This is the segment size specified in the create rdarea statement of the database initialization utility
(pdinit) or database structure modification utility (pdmod).

(2) Calculating the number of table storage pages
The number of pages required to store tables is the sum of the values obtained from Formulas 1 through 23.

(a) Formula 1

Dictionary table
name Formula

SQL_TABLES

16. Determining RDAREA Size

594

Dictionary table
name Formula

SQL_COLUMNS

SQL_DIV_TABL
E

a: Total number of tables

b: Page length of data dictionary RDAREA (bytes)

c: Average length of column names (bytes)

d: Average length of the names of the RDAREAs for storing the tables

e: Average length of the comments in the tables (bytes)

f: Average length of the names of the columns for which table partitioning conditions are specified (bytes)

g: Average number of table columns

h: Average length of the authorization identifiers (bytes)

i: Average length of the table identifiers (bytes)

j: Average length of the comments on the columns (bytes)

k: Average length of the authorization identifiers of the base tables used to create view tables (bytes)

m: Average length of the column names in the base tables used to create view tables (bytes)

n: Average length of the table identifiers of the base tables used to create view tables (bytes)

p: Average length of the names of user-defined data types (bytes)

q: Average number of table row partitioning conditions

t: Average length of PLUGIN clauses (bytes)

v: Average length of partitioning key (bytes)

w: Average value for the name of the insert history maintenance column (bytes)

y: Average base length of constants specified in the DEFAULT clause (bytes)
For details about how to calculate the base length, see the section on data codes and data lengths set in the SQL
descriptor area in the HiRDB Version 9 UAP Development Guide.

A: Average length of constants specified in the DEFAULT clause (bytes)
If the specified constant is a literal, this is the apparent length of the literal. If there is a possibility that the length
of the constant will increase, keep the post-update length in mind when making the calculation. Character literals

16. Determining RDAREA Size

595

are indicated by notations, such as N for National character column literals, M for mixed character column literals,
X for hexadecimal character literals, and single quotation marks ('). Constant specification is in bytes.

Example:
'HiRDB': 7 bytes

X'4869524442': 13 bytes
CURRENT_TIME: 12 bytes
100: 3 bytes

B: Average length of table row partitioning conditions (bytes)

C: Specified number of table storage RDAREAs

D: Average length of names of database areas that store tables (bytes)

(b) Formula 2

Dictionary table name Formula

SQL_INDEXES

SQL_INDEX_COLINF

SQL_DIV_INDEX

SQL_EXCEPT

SQL_INDEX_DATATYPE

16. Determining RDAREA Size

596

Dictionary table name Formula

SQL_INDEX_FUNCTION

SQL_INDEX_XMLINF

a: Page length of the data dictionary RDAREA (bytes)

b: Average length of table identifiers (bytes)

c: Total number of indexes

d: Average length of index identifiers (bytes)

e: Average number of index exception key values per index

f: Average length of index identifiers (bytes)

g: Average length of column names (bytes)

i: Average number of table row partitioning conditions

j: Average length of the names of the RDAREAs for storing indexes (bytes)

k: Average number of columns constituting indexes

m: Average length of the index type names (bytes)

n: Average length of PLUGIN clause specifications (bytes)

p: Average length of plug-in index application function names (bytes)

q: Average length of abstract data type names (bytes)

r: Average length of attribute names (bytes)

s: Number of application functions per plug-in index

t: Total number of plug-in indexes

u: Average length of substructure path (bytes)

v: Average number of substructure paths constituting a substructure index

w: Average number of binary data items (analysis tree for substructure paths) that have a data length of at least 256
bytes and are branching

For details about the branching conditions of the number of storage pages for binary data, see Table 16-1 List of
data lengths.

y: Total number of substructure indexes

A: Substructure path analysis tree length (bytes)
The value found using the following formula:
S 120 + P + L + S 4 + 32
L: Total length of character string expression of local name that specifies the modifier name of a step expression
(bytes)#

P: Total length of character string expression of XML name space URI associated with prefix (bytes)#

When the prefix is omitted, the default associated XML namespace URI

S: Number of step expression specifications

16. Determining RDAREA Size

597

#: Round up to a power of four.

B: Average length of names of database areas that store indexes (bytes)

(c) Formula 3

Dictionary table name Formula

SQL_TABLE_ PRIVILEGES

SQL_RDAREA_ PRIVILEGES

SQL_VIEW_ TABLE_USAGE

SQL_VIEWS

SQL_VIEW_DEF#

a: Page length of the data dictionary RDAREA (bytes)

b: Average length of authorization identifiers (bytes)

c: Average length of table identifiers (bytes)

d: Number of access privileges defined

• If you have granted the privilege to n users per table, the value is the number of tables for which the privilege
is granted times n.

• If you have granted the privilege to PUBLIC, the value is one (user).

• If you have granted the privilege to a group, one group ID is treated as one (user).

e: Total number of RDAREAs

f: Average length of the names of RDAREAs for storing tables (bytes)

g: Average length of SQL statements for defining view tables (bytes)

h: Total number of view definitions

16. Determining RDAREA Size

598

j: Average length of view analysis information (bytes)
For details about the length of view analysis information per table viewed, see Formulas for determining size of
view analysis information buffers (pd_view_def_cache_size) in the manual HiRDB Version 9 System Definition.

#: These tables are used by the system.

(d) Formula 4

Data dictionary table name Formula

SQL_REFERENTIAL_
CONSTRAINTS

E: {e h + 2 h + (h - 1)} + 1

F: {e i + 2 i + (i- 1)} + 1

G: {2 h + (h - 1)} + 1

H: {2 i + (i - 1)} + 1

a: Page length of the data dictionary RDAREA (bytes)

b: Average length of the constraint names (bytes)

c: Average length of the authorization identifiers (bytes)

d: Average length of the table identifiers (bytes)

e: Average length of the column names for which a foreign key has been defined (bytes)

f: Average length of the column names for which a primary key has been defined (bytes)

h: Average number of columns constituting the foreign keys

i: Average number of columns constituting the primary keys

(e) Formula 5

Dictionary table name Formula

SQL_PHYSICAL_FILES

SQL_RDAREAS

SQL_USERS

16. Determining RDAREA Size

599

a: Page length of the data dictionary RDAREA (bytes)

b: Total number of RDAREAs

c: Average length of RDAREA names (bytes)

d: Average length of schema authorization identifiers (bytes)

e: Total number of schemas

f: Total number of HiRDB files constituting all RDAREAs

g: Average length of the names of HiRDB files constituting all RDAREAs (bytes)

h: Average length of a password (bytes)

(f) Formula 6

Dictionary table name Formula

SQL_DIV_TABLE_REGULARSIZE#

a: Total number of row-partitioned tables

b: Page length of the data dictionary RDAREA (bytes)

c: Average length of the names of the RDAREAs for storing tables (bytes)

d: Average number of table row partitioning conditions

e: Average length of authorization identifiers (bytes)

f: Average length of table identifiers (bytes)

g: Average length of the condition values for character-string columns for which table partitioning conditions are
specified (bytes)

h: Average length of the condition values for numeric columns for which table partitioning conditions are specified
(bytes)

#: These tables are used by the system.

(g) Formula 7

Dictionary table name Formula

SQL_TABLE_STATISTICS#1

SQL_COLUMN_STATISTICS#

1

16. Determining RDAREA Size

600

Dictionary table name Formula

SQL_INDEX_STATISTICS#1

a: Total number of tables for which optimizing information is to be collected

b: Page length of the data dictionary RDAREA (bytes)

c: Average length of column names (bytes)

e: Average length of authorization identifiers (bytes)

f: Average length of table identifiers (bytes)

g: Total number of indexes defined for tables for which optimizing information is collected

h: Average length of index identifiers (bytes)

i: Number of index key column values for tables for which optimizing information is collected#2

#1: These tables are used by the system.

#2: If the number of key column values < 100, then i = number of key column values.
If the number of key column values 100, then i = 100.

(h) Formula 8

Dictionary table name Formula

SQL_DIV_COLUMN

a: Total number of BLOB column storage RDAREAs

b: Page length of the data dictionary RDAREA (bytes)

c: Average length of column names (bytes)

d: Average length of the names of the RDAREAs for storing tables (bytes)

e: Average length of authorization identifiers (bytes)

f: Average length of table identifiers (bytes)

h: Average length of component names (bytes)

(i) Formula 9

Dictionary table name Formula

SQL_ROUTINES

16. Determining RDAREA Size

601

Dictionary table name Formula

SQL_ROUTINE_RESOURCES

SQL_ROUTINE_PARAMS

a: Total number of routines

b: Page length of the data dictionary RDAREA (bytes)

c: Average length of routine names (bytes)

d: Average length of authorization identifiers (bytes)

e: Average length of specified names#1 (bytes)

f: Average length of parameter names (bytes)

g: Average length of authorization identifiers of resource#2 owners (bytes)

h: Average length of resource#2 names (bytes)

i: Average number of resources#2 per routine

j: Average number of parameters per routine

k: Average length of abstract data type names (bytes)

m: Average length of user-defined data type names (bytes)

n: Average length of external routine names (bytes)

p: Average length of Java class name (bytes)

q: Average length of Java archive name (bytes)

r: Average length of data type name for Java return value (bytes)

s: Average length of name with Java parameter data type (bytes)

t: Average length of column names specified by old or new value correlation names (bytes)

#1: Indicates authorization-identifier.routine-identifier.

#2: Resources include tables and indexes.

(j) Formula 10

Dictionary table name Formula

SQL_DATATYPES

16. Determining RDAREA Size

602

Dictionary table name Formula

SQL_DATATYPE_DESCRIPT
ORS

a: Total number of user-defined data types

b: Page length of the data dictionary RDAREA (bytes)

c: Average length of attribute or field names (bytes)

d: Average length of user-defined data type comments (bytes)

e: Average number of attributes per data type

f: Average length of authorization identifiers (bytes)

g: Average length of data type identifiers (bytes)

h: Average length of authorization identifiers for supertype abstract data types (bytes)

i: Average length of data identifiers for supertype abstract data types (bytes)

j: Number of attributes defined for user-defined data types

k: Average length of authorization identifiers of abstract data types for attributes defined for user-defined data types
(bytes)

m: Average length of data identifiers of abstract data types for attributes defined for user data types (bytes)

(k) Formula 11

Dictionary table name Formula

SQL_PLUGINS

SQL_PLUGIN_ROUTINES

SQL_PLUGIN_ROUTINE_PA
RAMS

a: Average number of plug-in routines per plug-in

b: Page length of the data dictionary RDAREA (bytes)

c: Average length of routine names (bytes)

d: Average length of authorization identifiers (bytes)

16. Determining RDAREA Size

603

e: Average length of specified names# (bytes)

f: Average length of parameter names per plug-in (bytes)

i: Average number of resources per routine

k: Total number of plug-ins

m: Average length of plug-in names (bytes)

n: Average length of abstract data type/index type names (bytes)

o: Average length of plug-in library path names (bytes)

p: Average length of plug-in comments (bytes)

q: Average length of timing indicators (bytes)

r: Average length of operation qualifiers (bytes)

s: Average length of operation qualifier code (bytes)

t: Average length of parameter qualifier information (bytes)

u: Average length of bind operation name (bytes)

v: Average length of parameter modifier information code (bytes)

#: This means the authorization-identifier.routine-identifier.

(l) Formula 12

Dictionary table name Formula

SQL_INDEX_TYPES

SQL_INDEX_TYPE_FUNCTION

a: Total number of index types

b: Page length of the data dictionary RDAREA (bytes)

c: Average length of authorization identifiers (bytes)

d: Average length of index type identifiers (bytes)

e: Average length of abstract data type names (bytes)

f: Number of application functions per index type

16. Determining RDAREA Size

604

(m) Formula 13

Dictionary table name Formula

SQL_INDEX_RESOURCES

SQL_TYPE_RESOURCES

SQL_TABLE_RESOURCES

a: Total number of plug-in indexes

b: Page length of the data dictionary RDAREA (bytes)

c: Average length of authorization identifiers (bytes)

d: Average length of index type identifiers (bytes)

e: Average length of abstract data type names (bytes)

g: Total number of attributes defined for abstract data types

h: Total number of abstract data types defined as subtypes

i: Total number of abstract data types

j: Average length of table identifier (bytes)

(n) Formula 14

Dictionary table name Formula

SQL_IOS_GENERATIONS

a: Number of files that compose the replica RDAREAs

b: Data dictionary RDAREA page length (bytes)

c: Average length of names of HiRDB files that compose the RDAREAs (bytes)

16. Determining RDAREA Size

605

(o) Formula 15

Dictionary table name Formula

SQL_TRIGGERS

SQL_TRIGGER_ACTCOND#

SQL_TRIGGER_COLUMNS

SQL_TRIGGER_DEF_SOURCE

SQL_TRIGGER_USAGE

a: Data dictionary RDAREA page length (bytes)

b: Total number of trigger definitions

c: Average length of trigger authorization identifiers (bytes)

d: Average length of trigger names (bytes)

e: Average length of authorization identifiers of tables defined by triggers (bytes)

f: Average length of names of tables defined by triggers (bytes)

g: Average length of old value correlation names (bytes)

h: Average length of new value correlation names (bytes)

i: Average length of specified names of trigger action procedures (bytes)

j: Average length of SQL statements when triggers were defined (bytes)

k: Number of triggers defined with UPDATE statement as the triggering event

m: Average length of column names specified in trigger events (bytes)

n: Average number of columns specified as trigger events

p: Number of resources in trigger action retrieval conditions

q: Average length of authorization identifiers of resources in trigger action retrieval conditions (bytes)

r: Average length of resource table names used in trigger retrieval action conditions (bytes)

16. Determining RDAREA Size

606

s: Average length of specified names used in trigger action retrieval conditions (bytes)

t: Length of analysis tree for trigger action condition (bytes)
To find the value, use the following formula. All variables in this formula are specifications in the WHEN search
conditions.
S 36 + T + U 48 + V 128
+ F1 420 + F2 132 + F3 124 + F4 296 + F5 F4 132
+ A 140 + B 200 + 1,000
A: Number of component specification attributes
B: Number of abstract data types that appear in value expressions
F1: Number of system-defined scalar functions
F2: Number of arguments of system-defined scalar functions
F3: Number of user-defined functions
F4: Number of potential user-defined functions
F5: Number of arguments of user-defined functions
S: Total number of Boolean operators, arithmetic operators, constants and system-embedded scalar functions
T: Total length of constants (data types parsed by HiRDB) (bytes)
U: Number of value expressions in scalar function VALUE, CASE expressions, and CAST specifications
V: Number of column specifications

#: This is a table used by the system.

(p) Formula 16

Dictionary table name Formula

SQL_PARTKEY

SQL_PARTKEY_DIVISION

SQL_DIV_TYPE

a: Number of matrix partitions created

b: Data dictionary RDAREA page length (bytes)

c: Average number of table row partitioning conditions

d: Average length of column names specified in table row partitioning conditions (bytes)

f: Average length of authorization identifiers (bytes)

g: Average length of table identifiers (bytes)

h: Average length of table row partitioning conditions (bytes)

16. Determining RDAREA Size

607

n: Number of matrix partitioning tables that combine hash partitioning and key range partitioning with boundary
values specified

(q) Formula 17

Dictionary table name Formula

SQL_AUDITS

a: Data dictionary RDAREA page length (bytes)

b: Number of HiRDB files that compose duplicated RDAREAs

c: Average length of event type names (bytes)

d: Average length of event subtype names (bytes)

e: Average length of object type name (bytes)

f: Average length of object owner name (bytes)

g: Average length of object name (bytes)

h: Average length of event executor name (bytes)

(r) Formula 18

Dictionary table name Formula

SQL_AUDITS_REGULARIZE#

a: Data dictionary RDAREA page length (bytes)

b: Number of HiRDB files that compose duplicated RDAREAs

c: Average length of object type name (bytes)

d: Average length of object owner name (bytes)

e: Average length of object name (bytes)

f: Average length of event executor name (bytes)

#: This is a table used by the system.

(s) Formula 19

Data dictionary table name Formula

SQL_KEYCOLUMN_USAGE

a: Page length of the data dictionary RDAREA (bytes)

16. Determining RDAREA Size

608

b: Total number of constraint definitions

c: Average length of the constraint authorization identifiers (bytes)

d: Average length of the constraint names (bytes)

e: Average length of the authorization identifiers for a table for which constraints have been defined (bytes)

f: Average length of the names of tables for which constraints have been defined (bytes)

g: Average length of the constraint type names (bytes)

(t) Formula 20

Data dictionary table name Formula

SQL_TABLE_CONSTRAINTS

SQL_CHECKS

SQL_CHECK_COLUMNS

a: Page length of the data dictionary RDAREA (bytes)

b: Total number of constraint definitions

c: Average length of the constraint authorization identifiers (bytes)

d: Average length of the constraint names (bytes)

e: Average length of the authorization identifiers for tables for which constraints have been defined (bytes)

f: Average length of the names of tables for which constraints have been defined (bytes)

g: Average length of the constraint type names (bytes)

h: Average length of SQL statements during check constraint definition (bytes)

i: Number of check constraint definitions

j: Average length of the column names specified for the columns for which check constraints have been defined
(bytes)

k: Average number of columns specified for the columns for which check constraints have been defined

m: Average number of binary data items (check constraint search conditions and analysis tree for check constraints)
whose length is 256 or greater and that are subject to branching.

For details about the conditions for branching the number of binary storage pages, see 16.1.2 Calculating the
number of table storage pages.

16. Determining RDAREA Size

609

X: Length of analysis tree for check constraint (bytes)
Value obtained from the formula shown below, where all the variables are specified in the check constraint search
conditions:
In 32-bit mode: S 36 + T + (U1 + U2 + U3) 48 + V 128 + 1,000
In 64-bit mode: S 72 + T + (U1 + U2 + U3) 96 + V 184 + 1,400
S: Total number of Boolean operators, arithmetic operators (+ , -,*, /, and ||), and system built-in scalar functions
T: Total length of literals (data type handled by HiRDB) (bytes)
U1: Number of CASE expressions and value expressions in CAST specification
U2: Number of value expressions in scalar functions (VALUE, SUBSTR, BIT_AND_TEST, POSITION,
TIMESTAMP, VARCHAR_FORMAT, TIMESTAMP_FORMAT)
U3: Number of datetime formats
V: Number of column specifications

(u) Formula 21

Data dictionary table name Formula

SQL_SYSPARAMS

(v) Formula 22

Data dictionary table name Formula

SQL_PUBLICVIEW_
SAME_USERS

a: Page length of the data dictionary RDAREA (bytes)

b: Total number of public view table definitions

c: Average number of duplicate names for each public view table# (bytes)

d: Average length of the table identifiers of public view tables (bytes)

e: Average length of the authorization identifiers (bytes)

#: Average number of rows with the same TABLE_NAME column value in the SQL_TABLES table per public view
table identifier

(w) Formula 23

Dictionary table name Formula

SQL_SEQUENCES

a: Page length of data dictionary RDAREAs (bytes)

b: Total number of sequence generator definitions

c: Average length of sequence generator identifiers (bytes)

16. Determining RDAREA Size

610

d: Average length of authorization identifiers (bytes)

e: Average length of sequence generator start values (bytes)

f: Average length of sequence generator maximum values (bytes)

g: Average length of sequence generator minimum values (bytes)

h: Average length of sequence generator increment values (bytes)

i: Average length of RDAREA names (bytes)

(3) Calculating the number of index storage pages
The following formula is used to calculate the number of pages required to store indexes.

Formula

Number of pages needed to store indexes

= number of index storage pages for dictionary tables# + 12

#: See 16.1.3 Calculating the number of index storage pages to calculate the number of index storage pages for
dictionary tables; the following conditions apply:

1. The variables listed in Table 16-6 Variables used in the formulas for obtaining the number of index storage
pages must be used.

2. 30 must be used as the value for variable b (percentage of unused space specified with CREATE INDEX).

3. 12 must be used as the value of variables e (number of keys with at least dx + 1 duplicated key values) and f
(average number of key duplicates).

Table 16‒6: Variables used in the formulas for obtaining the number of index storage pages

Table name Type
Key length#3

(Variable g#1)

Number of key types
(Variable c#1)

Average number of key duplicates
(Variable d#1)

SQL_PHYSICAL_FILES 1 8 Number of servers Average number of HiRDB files in
server

2 g + 1 Number of RDAREAs Average number of HiRDB files
constituting an RDAREA

SQL_RDAREAS 3 g + 1 Number of RDAREAs 1

4 4

SQL_TABLES 5 d + e + 2 Total number of tables + 80 1

6 4

SQL_COLUMNS 7 d + e + f + 3 a b 1

8 d + e + 6

9 4 B

SQL_INDEXES 10 d + e + 2 a h a

11 d + i + 2 h 1

12 4

SQL_USERS 13 d + 1 Number of authorization
identifiers

1

SQL_RDAREA_
PRIVILEGES

14 d + 1 Number of unique
authorization identifiers
specified in the USER
USED BY operand of the
database initialization
utility (pdinit)

Average number of RDAREA access
privileges used per user

16. Determining RDAREA Size

611

Table name Type
Key length#3

(Variable g#1)

Number of key types
(Variable c#1)

Average number of key duplicates
(Variable d#1)

15 g + 1 Number of RDAREAs
specified in the USER
USED BY operand of the
database initialization
utility (pdinit)

Average number of users for each
RDAREA

SQL_TABLE_PRIVILEG
ES

16 d + 1 a y a

17 2 d + e + 3 y 1

SQL_DIV_TABLE 18 d + e + 6 Total number of table
partitions

1

19 g + 1 Number of unique
RDAREAs specified when
partitioning table

Average number of tables stored in
RDAREAs

20 4

SQL_DIV_TABLE_REGU
LARSIZE

21 d + e + 6 Total number of table
partitions

1

22 4 Number of row-partitioned
tables

Average number of table partitions

SQL_INDEX_COLINF 23 d + e + 6 Number of unique tables
with index definitions

Average number of columns
constituting an index

24 d + i + 6 Number of columns
constituting an index

1

SQL_TABLE_STATISTI
CS

25 d + e + 2 Total number of tables
(including dictionary
tables)

1

SQL_COLUMN_STATIST
ICS

26 d + e + f + 3 h 1

SQL_INDEX_STATISTI
CS

27 d + e + 2 Total number of tables for
which an index is defined

h a

28 d + i + 2 h 1

SQL_VIEW_TABLE_USA
GE

29 d + e + 2 z 1

30 d + e + 2 Total number of base tables
for which a view is defined

Average number of view definitions for
a table

31 4 z 1

SQL_VIEWS 32 d + e + 2 z 1

33 4

SQL_VIEW_DEF 34 d + e + 2 z 1

35 10

SQL_REFERENTIAL_CO
NSTRAINTS

39 d + e + 2 Total number of referential
constraints

1

40 d + e + 2 Total number of
referencing tables

Average number of referencing tables
per table

41 d + e + 2 Total number of referenced
table

Average number of referenced tables
per table

16. Determining RDAREA Size

612

Table name Type
Key length#3

(Variable g#1)

Number of key types
(Variable c#1)

Average number of key duplicates
(Variable d#1)

SQL_EXCEPT 86 d + e + 2 Number of indexes for
which an exception value
is specified

Number of indexes with an exception
value specified for a single table

87 d + i + 2 1

88 4 Number of unique tables
with an index for which an
exception value is specified

Number of indexes for which an
exception value is specified for a single
table

SQL_DIV_INDEX 36 d + e + 6 Number of row-partitioned
indexes number of
partitions

Average number of partitions per table

37 d + i + 2 Total number of row-
partitioned indexes

1

SQL_DIV_COLUMN 38 d + e + f + 3 Number of LOB column
definitions

Average number of partitions per table

52 d + e + 9 Number of LOB attribute
definitions

1

SQL_ROUTINES 43 d + MAX (q, 7) p + 174 1

44 d + MAX (t, 18) u + 65 1

45 4 p + 174 1

53 d + UDT Number of abstract data
types + 1 (NULL value)

Average number of routines per
abstract data type + number of NULL

SQL_ROUTINE_RESOUR
CES

46 d + q p s Average number of resources used per
routine

47 d + t

48 d + q

49 4

SQL_ROUTINE_PARAMS 50 d + MAX (q, 8) p r + 347 Average number of parameters per
routine

51 d + MAX (t, 19) Number of routines Average number of parameters per
specific name (if less than 3, use 3)

106 e + 4 + 2 Number of trigger SQL
objects r + 1 (NULL
values)

Average number of parameters per
specified name (if less that 3, use 3) +
number of NULL values

SQL_DATATYPES 54 d + UDT Number of abstract data
types

1

55 4

56 d + UDT Number of abstract data
types that have subtypes
+ 1 (NULL value)

Average number of subtypes per
abstract data type + number of NULL
values

SQL_DATATYPE_DESCR
IPTORS

57 d + UDT + ATT NUDT NATT 1

58 4 Number of abstract data
types

Average number of attributes per
abstract data type

SQL_TABLE_RESOURCE
S

59 d + e Total number of tables that
use user-defined data types

Average number of user-defined data
types used per table

60 d + UDT UDT Average number of tables used per
user-defined data type

61 4

16. Determining RDAREA Size

613

Table name Type
Key length#3

(Variable g#1)

Number of key types
(Variable c#1)

Average number of key duplicates
(Variable d#1)

SQL_PLUGINS 62 d + PLG Number of plug-ins 1

63 4

64 {(d + UDT) IXT}
+ 2

Number of data type plug-
ins + number of index-type
plug-ins

SQL_PLUGIN_ROUTINE
S

65 t NPLG NFPLG 1

66 PLG + TMD + 2 Number of operations Number of plug-ins

67 PLG + 4

68 POPR + 1

SQL_PLUGIN_ROUTINE
_PARAMS

69 t + PRM NPLG NPPAR 1

70 PLG NPLG Average number of parameters per
plug-in

71 t + 4 NPLG NPPAR 1

SQL_REGISTRY_CONTE
XT

72 CNM + 1 Number of contexts 1

SQL_REGISTRY_KEY 73 KNM + 6 Number of keys 1

SQL_INDEX_TYPES 74 d + IXT Number of index types to
be created

1

75 4

SQL_INDEX_RESOURCE
S

76 d + IXT Number of plug-in indexes Average number of index definitions
that use index type

77 4

SQL_INDEX_DATATYPE 78 d + e Number of table definitions
for which plug-in index is
defined

Average number of plug-in indexes for
the same table

79 d + i Number of plug-in indexes 1

SQL_INDEX_FUNCTION 80 d + e Number of table definitions
for which plug-in index is
defined

Average number of plug-in indexes per
table average number of functions
to which plug-in index is applied

81 d + i Number of plug-in indexes Average number of functions to be
applied per plug-in index

SQL_TYPE_RESOURCES 82 d + e Number of user-defined
data types that use a user-
defined data type

Average number of user-defined data
types that are specified as an attribute
of a user-defined data type

83 d + UDT Number of user-defined
data types

Average number of user-defined data
types that use a user-defined data type

84 4

SQL_INDEX_TYPE_FUN
CTION

85 d + IXT Number of index types Average number of functions to be
applied per index

SQL_TRIGGERS 90 d + e + 2 + 16 Number of triggers 1

91 d + TRIG + 2

92 d + t + 2

93 4

16. Determining RDAREA Size

614

Table name Type
Key length#3

(Variable g#1)

Number of key types
(Variable c#1)

Average number of key duplicates
(Variable d#1)

SQL_TRIGGER_ACTCON
D

94 d + TRIG + 2 + 4 Number of triggers with
action conditions

1

95 d + e + 2 Number of tables that
define triggers

Average number of triggers per table

SQL_TRIGGER_COLUMN
S

96 d + TRIG + 2 Number of triggers that use
the UPDATE statement as
the triggering event

Average column length specified per
trigger

97 d + e + f + 3 Number of columns
specified that use the
UPDATE statement as the
triggering event

1

SQL_TRIGGER_DEF_SO
URCE

98 d + TRIG + 2 + 4 Number of triggers 1

99 d + e + 2 Number of tables defined
with triggers

Average number of triggers per table

SQL_TRIGGER_USAGE 100 d + TRIG + 2 Number of triggers that
reference resources while
performing the trigger
action search condition

Average number of resources
referenced per trigger

101 d + e + 2 Number of tables that
define triggers that
reference resources while
performing the trigger
action search conditions

Average number of resources
referenced per table

102 d + e + (t or e) + 2 Number of resources used 1

103 8

SQL_PARTKEY 104 d + e + f + 3 Number of matrix
partitioning tables
number of partitioning
keys

1

SQL_PARTKEY_DIVISI
ON

105 d + e + 6 Number of matrix
partitioning tables
number of boundary values

 number of partitioning
keys

1

SQL_AUDITS 107 ETP + EST + 2 Number of monitored
events

1

108 OTP + OSC + ONM
+ 3

Number of monitored
objects

Average number of events monitored
per object

109 d Number of monitored users Average number of events monitored
per user

SQL_AUDITS_REGULAR
IZE

110 OTP + OSC + ONM
+ 3

Number of monitored
objects

Average number of events monitored
per object

111 d Number of monitored users Average number of events monitored
per user

SQL_KEYCOLUMN_USAG
E

112 d + CNS + 2 Number of constraints 1

113 d + e + 2 Number of tables for which
constraints have been
defined

Average number of constraints per table

16. Determining RDAREA Size

615

Table name Type
Key length#3

(Variable g#1)

Number of key types
(Variable c#1)

Average number of key duplicates
(Variable d#1)

SQL_TABLE_CONSTRAI
NTS

114 d + CNS + 2 Number of constraints 1

115 d + e + 2 Number of tables for which
constraints have been
defined

Average number of constraints per table

SQL_CHECKS 116 d + CNS + 2 Number of check
constraints

1

117 d + e + 2 Number of tables for which
check constraints have
been defined

Average number of check constraints
per table

SQL_CHECK_COLUMNS 118 d + CNS + 2 Number of check
constraints

Average number of columns specified
per check constraint

119 d + e + f + 3 Number of columns used
in the check constraints

Average number of duplicate columns
used in check constraints per table

SQL_SYSPARAMS 121 8 2 1

SQL_PUBLICVIEW_SAM
E_USERS

124 d + e + 2 Number of public view
tables number of
authorization identifiers

1

SQL_INDEX_XMLINF 125 d + e + 2 NPSIT Average number of substructure paths
making up an index

126 d + i + 7 NPSS 1

SQL_SEQUENCES 127 d + SEQN + 2 Number of sequence
generators in system

1

128 4 Number of sequence
generators in system

1

a: Total number of tables

b: Average number of table columns

c: Page length of the data dictionary RDAREA (bytes)

d: Average length of authorization identifiers (bytes)

e: Average length of table identifiers (bytes)

f: Average length of column names (bytes)

g: Average length of RDAREA names (bytes)

h: Total number of indexes

i: Average length of index identifiers (bytes)

n: Average length of HiRDB file names constituting RDAREAs (bytes)

p: Number of routines to be created

q: Average length of routine names (bytes)

r: Average number of parameters per routine

s: Average number of resources used per routine

t: Average length of specific names#2 (bytes)

u: Total number of specific names#2

y: Number of access privileges defined
If the privilege is granted to n users per table, then the value of this variable would be the number of tables n.

16. Determining RDAREA Size

616

z: Total number of view definitions

NUDT: Number of user-defined data types to be created

UDT: Average length of user-defined data type names (bytes)

NATT: Average number of attributes per user-defined data type

ATT: Average length of attributes with user-defined data type (bytes)

PLG: Average length of plug-in names (bytes)

NPLG: Number of plug-ins to be created

IXT: Average length of index type names (bytes)

NFPLG: Average number of plug-in functions

POPR: Average length of plug-in function names (bytes)

NPPAR: Average number of parameters per plug-in function

PRM: Average length of parameter names per plug-in function (bytes)

TMD: Average length of timing description (bytes)

CNM: Average length of context name (bytes)

KNM: Average length of key name (bytes)

TRIG: Average length of trigger names (byte)

ETP: Average length of event type names (bytes)

EST: Average length of event subtype names (bytes)

OTP: Average length of object type names (bytes)

OSC: Average length of object owner names (bytes)

ONM: Average length of object names (bytes)

CNS: Average length of constraint names (bytes)

NPSIT: Number of tables that define substructure indexes

NPSS: Number of substructure paths making up a substructure index

SEQN: Average length of sequence generator identifiers (bytes)

#1: Variables shown in (2) Variables used in formulas in 16.1.3 Calculating the number of index storage pages.

#2: Indicates authorization-identifier.routine-identifier.

#3: The key length is rounded up in units of four bytes. Use the following formula to obtain the key length:

• key length 4 4

16.2.2 Determining the size of a data dictionary RDAREA for storing
database state analyzed tables and database management tables

You can use the following formula to determine the size of a data dictionary RDAREA for which datadictionary
of dbmanagement is specified in the create rdarea statement:

Formula

Size of data dictionary RDAREA = ((a 1.3) b) b 4,096

(bytes)

a: Total number of pages in the data dictionary RDAREA#1

b: Segment size of the data dictionary RDAREA#2

#1
Number of table storage pages + Number of index storage pages. For details, see (1) and (2) below.

16. Determining RDAREA Size

617

#2
Segment size specified in the create rdarea statement of the database structure modification utility (pdmod).

(1) How to determine the number of table storage pages
The number of table storage pages is the sum of Formula 1 and Formula 2:

Formula 1

Formula 2

a: Number of tables to be created + 61

b: Average number of partitions in the table storage RDAREA
If the RDAREA is not partitioned, the value is 1. The average value is rounded up.

c: Number of indexes to be created + 124

e: Total number of BLOB columns defined for the tables to be created + 3

g: Total number of BLOB attributes defined for the tables to be created

(2) How to determine the number of index storage pages
Use the following formula to determine the number of index storage pages:

Number of pages for index storage for the data dictionary tables# 2

#: See 16.1.3 Calculating the number of index storage pages to determine the number of pages for index storage for
the data dictionary tables. The following is the calculation condition:

1. The ratio of unused space specified in CREATE INDEX is 0.

2. Use the following variables in the formula:

Key length

(variable g#)

Number of key types

(variable c#)

Average number of duplicate keys

(variable d#)

12 (a + c + e + g) (b + 1) + 120 30

a: Number of tables to be created

b: Average number of partitions in the table storage RDAREA

c: Number of indexes to be created

e: Total number of BLOB columns defined for the tables to be created

g: Total number of BLOB attributes defined for the tables to be created

There is no need to add variable h, since no unique index is defined in the database state analyzed table or the database
management table.

#: Variables shown in (2) Variables used in formulas in 16.1.3 Calculating the number of index storage pages.

16. Determining RDAREA Size

618

16.3 Determining the size of the master directory
RDAREA

The following formula is used to determine the size of the master directory RDAREA.

Formula

Size of master directory RDAREA (bytes)

= {
(a + 2) 800 51 + (b + 120) 6,000 51 + (c + 240) 6,000 51

+ (d + 240) 64,000 51 + e 64,000 51 + f 50 51 + 2 + 6 n
}#1 4,096#2

a: Total number of data dictionary RDAREAs + total number of user RDAREAs
When the inner replica facility is used, also calculate the total number of replica RDAREAs.

b: Total number of tables to be defined

c: Total number of indexes to be defined

d: Total number of view tables to be defined

e: Total number of data types and index types to be defined

f: Total number of original RDAREAs and replica RDAREAs
If the inner replica facility is not being used: 0
The information on the original RDAREAs is not deleted even if all replica RDAREAs are deleted (this
information is not deleted until the original RDAREAs are deleted).

n: Number of HiRDB files that constitute the master directory RDAREA

#1: Indicates the total number of pages in the master directory RDAREA.

#2: Indicates the page length of the master directory RDAREA.

16. Determining RDAREA Size

619

16.4 Determining the size of the data directory RDAREA
The following formula is used to determine the size of the data directory RDAREA.

Formula

Size of data directory RDAREA (bytes)

e f

={ (gi + pj + 86) 3,000 51 + 6 n + 1 }#1 4,096#2

i=1 j=1

gi= (5 ai + 2 bi + 2 ci + 48) 32

pj= (dj + 12) 16

ai: Number of columns constituting indexes

bi: Number of RDAREAs storing indexes

ci: Number of RDAREAs storing tables for which an index is defined

dj: Number of RDAREAs storing tables

e: Total number of indexes to be defined

f: Total number of tables to be partitioned

n: Number of HiRDB files that constitute the data directory RDAREA

#1: Indicates the total number of pages in the data directory RDAREA.

#2: Indicates the page length of the data directory RDAREA.

16. Determining RDAREA Size

620

16.5 Determining the size of a data dictionary LOB
RDAREA

(1) Estimating the size of the data dictionary LOB RDAREA for storing sources
The following formula is used to determine the size of the data dictionary LOB RDAREA for storing sources.

Formula

Size of data dictionary LOB RDAREA for source storage (bytes)

={

a

[Si 64,000 96 + 7 + 3 (a - 1)]#1

i=1

+

b

[(Cj + 1,024) 8,192]#2

j=1

}#3 8,192#4

a: Number of HiRDB files that constitute the data dictionary LOB RDAREA for storing sources

b: Total number of procedures (CREATE PROCEDURE), functions and procedures in abstract data types (each
FUNCTION (excluding plug-in functions) and PROCEDURE), and user-defined functions (CREATE FUNCTION)

Si: Number of segments for each HiRDB file specified with the create rdarea statement of the database
initialization utility or database structure modification utility.

Cj: Length of each procedure (length of each CREATE PROCEDURE), function and procedure in abstract data types
(length of each FUNCTION (excluding plug-in functions) and PROCEDURE), and user-defined function (length of
CREATE FUNCTION)

#1: Total number of pages in the directory pages part.

#2: Total number of pages in the data pages part.

#3: Indicates the total number of pages in the data dictionary LOB RDAREA for storing sources.

#4: Indicates the page length of the data dictionary LOB RDAREA for storing sources.

(2) Estimating the size of the data dictionary LOB RDAREA for storing objects
The following formula is used to estimate the size of the data dictionary LOB RDAREA for storing objects:

Formula

Size of data dictionary LOB RDAREA for object storage (bytes)

={

a

[Si 64,000 96 + 7 + 3 (a - 1)]#1

i=1

+

b

[(Cj + 1,024) 8,192]#2

j=1

}#3 8,192#4 + 500,000#5

16. Determining RDAREA Size

621

a: Number of HiRDB files that constitute the data dictionary LOB RDAREA for storing objects

b: Total number of procedures (CREATE PROCEDURE), functions and procedures in abstract data types (FUNCTION
(excluding plug-in functions), PROCEDURE), user-defined functions (CREATE FUNCTION), and trigger definitions
(CREATE TRIGGER).

Si: Number of segments for each HiRDB file specified with the create rdarea statement of the database
initialization utility (pdinit) or database structure modification utility (pdmod).

Cj: QOi + PR (The formula for QOi is shown in (3), and the formula for PR is shown in (4) The variables used in these
formulas are shown in (5)).

#1: Total number of pages in the directory pages part.

#2: Total number of pages in the data pages part.

#3: Indicates the total number of pages in the data dictionary LOB RDAREA for storing objects.

#4: Indicates the page length of the data dictionary LOB RDAREA for storing objects.

#5: This is added when an abstract data type or plug-in function is used.

(3) QOi (SQL object size) formula

QOi (bytes) =

a

{

i=1

1,840 + 46 RCN + 298 Si + 20 Pi + 1,138 Ti + 76 Ti Di + 80 Ci + 40 Ii + 534 Wi

+ 20 Ki + Li + 8 TCi + 656 Di + 48 nFF + 100 nFP + 148 nFC + 696 nPFF

+ 16 (nAT + nPAT) + 20 nCAT + 28 (nAF + nCAF) + 20 (nAA + nPAA + nCAA)

+ 1,057 nSPA + 120 nSPP + 287 nSFF + 8 nSFP + 813 nJFC + 20 nJFP

[+ 1,057 nTR + 120 (nTSN + nTSO) + 20 (nTCN + nTCO)]#1

[+ 760 + 376 RCC + 1,880 RCT]#2

[+ 32 Si + 16]#3

[+ (42 SiT) + {52 + 152 (SiTA + SiSA + SiNA) (SiT + SiS + SiN)}]#4

}

a: Number of SQL statements in stored procedures

#1: Add this formula if you use triggers.

#2: Add this formula if you use referential constraints.

#3: This is the formula for determining the length of the Column Name Descriptor Area (SQLCNDA). Add it for
dynamic SQL statements.

#4: This is the formula for determining the length of the Type Name Descriptor Area (SQLTNDA). Add it for dynamic
SQL statements.

(4) PR (routine control object size) formula

(a) When defined by the user

If you have defined a stored procedure, stored function, or trigger, use the following formula to determine the size of
the routine control object:

PR (bytes) =

a

{

i=1

16. Determining RDAREA Size

622

600 + 28 sRi + 32 (sRUi + sDi) + 56 sSXi + sCUi + sSi + sPi + sLA

+ sKi + sL + 80 sWi + 24 sCM + 32 sCCR + 2 sDCR + 60 sCHD + 72 sDHD + 64 sHCN

+ 8 sCHD sHCN + 48 nRFF + 100 nRFP + 148 nRFC + 200 nPRFF + 8 nPRFP

+ 196 nPA + 64 nPP + 36 nPPI + 20 nPPO + 200 nPPA + 8 nPPP + 20 nAR + 48 nARA

+ 16 nRPAT + 20 nCAT + 28 (nRPAF + nRCAF) + 20 (nRPAA + nRCAA) + 287 nRSFF

+ 8 nRSFP + 813 nPJA + 20 nPJP + 813 nRJFC + 20 nRJFP

[+ 28 (nTSN 2 + nTSO)]#

}

a: Number of the following SQL statements:

• Procedures (CREATE PROCEDURE)

• Functions and procedures in abstract data types (each FUNCTION (excluding plug-in functions),
PROCEDURE)

• User-defined functions (CREATE FUNCTION)

• Trigger definitions (CREATE TRIGGER)

#: Add this formula if you use triggers.

(b) When HiRDB creates automatically

If you specified CASCADE during table definition, use the following formula to determine the size of the routine
control object when HiRDB creates triggers for constraint control:

PR (bytes) =

a

{240 + 608 RCC + (5,120 + 100 RDi + 256 RIi) RCP RCT}

i=1

a: Number of the following SQL statements:

• Procedures (CREATE PROCEDURE)

• Functions and procedures in abstract data types (FUNCTION (excluding plug-in functions), PROCEDURE)

• User defined functions (CREATE FUNCTION)

• Trigger definitions (CREATE TRIGGER)

(5) Variables used in the calculation of PR and QOi

Variable name Explanation

RCN Total number of tables and indexes used by SQL objects

Si Number of retrieval items in SQL statements (if the columns specified by SQL statements are index columns, the
number of those columns)

Pi Number of embedded variables or parameters in SQL statements

Ti Number of table names in SQL statements

Ci Number of column names in SQL statements

TCi Number of table composition columns in SQL statements

Wi Number of logical operators in SQL statements#

Ki Number of literals in SQL statements#

Li Total length of literals in SQL statements# (bytes)

16. Determining RDAREA Size

623

Variable name Explanation

Ii Number of indexes used during SQL statement execution (of the tables specified by SQL statements, the number of
indexes specified in retrieval conditions)

Di Total number of storage conditions defined by tables used in SQL statements (count matrix partitioning tables twice)

SiT Number of abstract data types in queries in SQL statements

SiS Number of supertypes of abstract data types in queries in SQL statements

SiN Number of subtypes of abstract data types in queries in SQL statements

SiTA Number of attributes of abstract data types in queries in SQL statements

SiSA Number of supertype attributes of abstract data types in queries in SQL statements

SiNA Number of component specifications of abstract data types that are query subtypes in SQL statements

nSPA Number of procedure calls in SQL statements

nSPP Total number of procedure call parameters in SQL statements

nFF Number of function calls in SQL statements#

nFP Number of function call parameters in SQL statements#

nFC Total number of function definition candidates among the functions in the SQL statements (to the number of function
calls nFF, add the number of function definitions that have subtypes as arguments for which the arguments are abstract
data types)

nPFF Number of plug-in function calls used by SQL objects (number of plug-in function calls in SQL statements + 1 for
SELECT and 6 for INSERT, UPDATE, or DELETE)

nSFF Number of system definition scalar function calls in SQL statements#

nSFP Total number of system definition scalar function arguments in SQL statements#

nJFC Number of external Java function calls in SQL statements

nJFP Total number of external Java functions in SQL statements

nAT Number of abstract data types used by component specifications in SQL statements (excluding supertypes and abstract
data types that emerge depending on the abstract data type attributes)

nAA Number of abstract data types used by component specifications in SQL statements (including supertypes and abstract
data types that emerge depending on the abstract data type attributes)

nAF Total number of attributes used by component specifications in SQL statements

nPAT Number of abstract data types of plug-in function arguments used by SQL objects (excluding supertypes and abstract
data types that emerge depending on the abstract data type attributes)

nPAA Number of abstract data types of plug-in function arguments used by SQL objects (including supertypes and subtypes)

nCAT Number of constructor function calls in SQL statements

nCAA Number of constructor function abstract data types in SQL statements (including supertypes)

nCAF Total number of constructor function abstract data type attributes in SQL statements

nTR Number of triggers activated by the execution of SQL statements

nTSN Total number of columns modified by new value correlation names in SQL statements that are triggered by the
execution of SQL statements

nTSO Total number of columns modified by old value correlation names in SQL statements that are triggered by the
execution of SQL statements

nTCN Total number of columns modified by new value correlation names in the trigger action conditions of triggers that are
activated by the execution of SQL statements

16. Determining RDAREA Size

624

Variable name Explanation

nTCO Total number of columns modified by old value correlation names in the trigger action conditions of triggers that are
activated by the execution of SQL statements

RCC Total number of foreign key component columns and primary key component columns of the tables that reference
update-target tables in SQL statements

RCT Sum of the number of tables that reference update-target tables and the number of tables that are referenced by update-
target tables in SQL statements

RCP Total number of CASCADEs specified for referencing action when referencing tables are defined

RIi Total number of indexes defined for referenced tables with reference specified when referencing tables are defined

RDi Total number of partition storage conditions defined for referenced tables with reference specified when referencing
tables are defined (double the value for matrix partitioning tables)

sRi Number of SQL parameters in procedures and functions (count SQL parameters specified with INOUT twice)

sRUi Total number of SQL parameters in procedures and functions (or total number of columns modified by new or old
value correlation names in the triggered SQL statements defined by triggers)

sDi Total number of SQL variables (declare) in procedures, functions, and triggered SQL statements

sSXi Total number of SQLCODE and SQLCOUNT variables in procedures, functions, and triggered SQL statements

sCUi Total number of CURRENT_TIME and CURRENT_DATE value functions in procedures, functions, and triggered SQL
statements

sSi Number of data manipulation SQL statements in procedures and triggered SQL statements (excluding cursor
declarations: OPEN, FETCH, CLOSE, UPDATE, DELETE, INSERT)

sPi Number of routine control SQL statements in procedures, functions, and triggered SQL statements (BEGIN, SET, IF,
ELSEIF, WHILE)

sLA Number of labels in procedures, functions, and triggered SQL statements

sKi Number of literals in procedures, functions, and triggered SQL statements (excluding data manipulation SQL literals
described in procedures and triggered SQL statements)

sL Total length of constants in procedures, functions, and triggered SQL statements (excluding data manipulation SQL
literals described in procedures and triggered SQL statements)

sWi Number of conditional predicates in procedures, functions, and triggered SQL statements

sCM Number of compound statements in procedures, functions, and triggered SQL statements

sCCR Number of compound statements that describe cursor declarations in procedures and triggered SQL statements

sDCR Number of cursor declarations in procedures and triggered SQL statements

sCHD Number of compound statements that specify handler declarations in procedures, functions, and triggered SQL
statements

sDHD Number of handler declarations in procedures, functions, and triggered SQL statements

sHCN Number of condition values specified in handler declarations in procedures, functions, and triggered SQL statements

nRFF Number of function calls in routines

nRFP Total number of function arguments in routines

nRFC Total number of function definition candidates among the routines in the SQL statements (to the number of function
calls nFF, add the number of function definitions that have subtypes as arguments for which the arguments are abstract
data types)

nPRFF Number of plug-in function calls used by routine SQL objects

nPRFP Total number of plug-in parameters of plug-in function calls used by routine SQL objects

16. Determining RDAREA Size

625

Variable name Explanation

nPA Number of procedure calls in routines

nPP Total number of procedure parameters in routines

nPPI Total number of input parameters in routine procedures (including input/output parameters)

nPPO Total number of output parameters in routine procedures (including input/output parameters)

nPPA Number of plug-in procedure calls in routine SQL objects

nPPP Total number of plug-in parameters of plug-in procedures used by routine SQL objects

nRSFF Number of system defined scalar function calls in routines

nRSFP Total number of system defined scalar function call arguments in routines

nPJA Number of external Java procedure calls in routine

nPJP Total number of arguments of external Java procedures in routine

nRJFC Number of external Java function calls in routine

nRJFP Total number of arguments of external Java functions in routine

nAR Number of abstract data types used by component specifications in routines (excluding supertypes and abstract data
types that emerge depending on the abstract data type attributes)

nARA Total number of attributes used by component specifications in routines

nRPAT Total number of abstract data types used as parameters of plug-in routines used by routine SQL objects (excluding
abstract data types that are supertypes or abstract data type attributes)

nRPAA Number of abstract data types used as parameters of plug-in routines used by routine SQL objects (including
supertypes)

nRPAF Total number of attributes of abstract data types used as parameters of plug-in routines used by routine SQL objects

nRCAT Number of constructor function calls in routines

nRCAA Number of abstract data types of constructor functions in routines (including supertypes)

nRCAF Total number of abstract data type attributes of constructor functions in routines

#: When triggers are used, all of the trigger activation conditions of the triggers activated by execution of SQL
statements must be counted.

16. Determining RDAREA Size

626

16.6 Determining the size of a user LOB RDAREA
The following formula is used to determine the size of a user LOB RDAREA.

Formula

Size of user LOB RDAREA (bytes)

= (total number of pages in the directory page part + total number of pages in the data page part) 8,192#

#: Page length of user LOB RDAREA.

(1) Total number of pages in the directory page part

Formula

Total number of pages in the directory page part

a

= Si 64,000 96 + 7 + 3 (a - 1)

i=1

a: Number of HiRDB files that constitute the user LOB RDAREA

Si: Number of segments for each HiRDB file specified with the create rdarea statement of the database
initialization utility (pdinit) or database structure modification utility (pdmod)

(2) Total number of pages in the data page part

Formula

Total number of pages in the data page part

b

= (Cj + 1,024) 8,192

j = 1

b: Total number of rows in LOB columns
Count rows with a data length of 0, but do not count rows with the NULL value.

Cj: Length of each BLOB data (bytes)

16. Determining RDAREA Size

627

16.7 Determining the size of the registry RDAREA
The following formula is used to determine the size of the registry RDAREA.

Formula

Registry RDAREA size (bytes)

= registry RDAREA page length# total number of registry RDAREA pages 1.3

#
This is the page length specified by the create rdarea statement of the registry facility initialization utility
(pdreginit).

Finding the total number of registry RDAREA pages

Total number of registry RDAREA pages (pages)

a

= { Si d + Si e + 6 (a + 1) + 2 20,480 b

i=1

+ number of pages storing registry management tables + number of pages storing indexes of registry management table

a: Number of HiRDB files that constitute the registry RDAREA
b: Page length of the registry RDAREA (bytes)
c: Segment size specified by the create rdarea statement of the registry facility initialization utility
(pdreginit)
d: (b - 20) {(c 32 8) + 56}
e: (125 b) (16 d) d
Si: Number of segments of each HiRDB file specified by the create rdarea statement of the registry facility
initialization utility (pdreginit)

Each table or index is allocated in segments. The value obtained for each table or index is rounded up in segments.

(1) Number of pages storing registry management tables

Formula

a: Number of contexts for registry management tables

b: Page length of the registry management table

c: Length of registry context names

d: Length of access passwords

e: Number of registry management table key values (number of key names registered in the registry management
table)

f: Length of registry key name

g: Length of registry key value (add when the registry key value length is 32,000 bytes or less)

16. Determining RDAREA Size

628

(2) Number of pages storing registry management table indexes

Formula

Number of pages storing registry management table indexes (pages)

= number of pages storing indexes of SQL_REGISTRY_CONTEXT tables

+ number of pages storing indexes of SQL_REGISTRY_KEY tables

For details about the number of pages storing indexes of SQL_REGISTRY_CONTEXT tables and the number of pages
storing indexes of SQL_REGISTRY_KEY tables, see 16.1.3 Calculating the number of index storage pages. However,
calculate the formula using 30% as the percentage of unused areas specified in the CREATE INDEX statement.

The following table lists the values used in the formula for the number of pages storing indexes.

Values used in formula for number of pages storing registry RDAREA indexes

Name of table Type Key length Key type Average
duplication level

SQL_REGISTRY_CONTEXT 72 a + 1 Number of context names
(number of registry
management table contexts)

1

SQL_REGISTRY_KEY 73 f + 6 Number of key values
(number of registry
management table key
values)

1

a: Length of registry contexts

f: Length of registry key names

16. Determining RDAREA Size

629

16.8 Determining the size of the registry LOB RDAREA
The following formula is used to determine the size of the registry LOB RDAREA.

Formula

Size of registry LOB RDAREA (bytes)

= (total number of pages in the directory page part + total number of pages in the data page part) 8,192#

#: Page length of the registry LOB RDAREA

(1) Total number of pages in the directory page part

Formula

Total number of pages in the directory page part

a

= Si 64,000 96 + 7 + 3 (a - 1)

i=1

a: Number of HiRDB files that constitute the registry LOB RDAREA
Si: Number of registry LOB RDAREA segments

(2) Total number of pages of data page part

Formula

Total number of pages in the data page part

b

= (Cj + 1,024) 8,192

j = 1

b: Number of registry key values that exceed 32,000 bytes
Cj: Length of registry key values that exceed 32,000 bytes

16. Determining RDAREA Size

630

16.9 Determining the size of the list RDAREA
Use the following formula to determine the size of the list RDAREA:

Formula

Size of list RDAREA (bytes)

={

a

(Si f + Si g)

i=1

+ 6 (a + 1) + (1,024 n) (25 b) + 20,480 b + c e

} b

a: Number of HiRDB files that constitute the list LOB RDAREA

b: Page length of the list RDAREA# (bytes)

c: Number of segments for the list RDAREA

e: Size of a segment for the list RDAREA#

f: {b - 20} { e 32 8} + 56}

g: (125 b) (16 f) f

n: Maximum number of lists that can be created in one list RDAREA#

Use the following formula to find the maximum number of list RDAREAs.
Total number of lists retained in server number of list RDAREAs placed in server

Si: Number of HiRDB file segments that constitute the list RDAREA#

#: Use the create rdarea statement of the database initialization utility (pdinit) or database structure
modification utility (pdmod), or the initialize rdarea statement of the database structure modification utility
to specify the 500 smallest integer multiple values at or above the value found using the above formula.

16. Determining RDAREA Size

631

17 Determining the Size of System
Files and Audit Trail Files
This chapter describes how to determine the size of system files such as system log
files, synchronization point dump files and status files, as well as the size of audit trail
files.

633

17.1 Determining the size of system log files
This section describes the methods for determining the size of system log files. The topics covered include:

• Total size of system log files

• Amount of system log information that is output during table definition

• Amount of system log information that is output during index definition

• Amount of system log information that is output during table data updating

• Amount of system log information that is output during database creation by a utility

• Amount of system log information that is output depending on the SQL manipulation

• Amount of system log information that is output during the definition of extended system-defined scalar functions

• Amount of system log information that is output during the execution of the RDAREA automatic extension
facility

• Amount of system log information that is output during execution of the PURGE TABLE statement

• Amount of system log information that is output during execution of the free page release utility

• Amount of system log information that is output during execution of the facility for predicting reorganization time

• Amount of system log information that is output during updatable backup holds

For details about estimating the size of the system log files and notes on the usage of updatable online reorganization,
see the HiRDB Staticizer Option Version 9 Description and User's Guide.

17.1.1 Total size of system log files

(1) How to obtain the total size of system log files
The following formula is used to obtain the total size of all system log files.

Formula

Total size of all system log files (bytes) = (a c 3)# b

a: Amount of system log information to be output
For the procedure for obtaining this value, see (2), as follows.

b: System log file record length that is specified in the pd_log_rec_leng operand

c: Use one of the following values:
pd_log_rec_leng = 1024: 1000
pd_log_rec_leng = 2048: 2000
pd_log_rec_leng = 4096: 4000

Notes

• Because there may be unused space in system log files, it is recommended that the allocation size be at least
1.2 times the value obtained.

• Because extension information is added when the inner replica facility is used, allocate 1.1 times the value
obtained.

• The value obtained is converted to a size per unit of time, and then an estimate is made of the size of one
system log file and the number of system log files. The unload intervals for the system log files must be taken
into account.

#: This is the formula for obtaining the total number of system log file records.

17. Determining the Size of System Files and Audit Trail Files

634

(2) Determining the size of system log information
The following formula is used to obtain the amount of system log information that will be output.

Formula

Amount of system log information to be output (bytes) = {b + e + b (a - 256) 256 + d} + c

 For a recovery-unnecessary front-end server only, add:

+ f

 refers to the total for each transaction. However, if an executing transaction satisfies all the following
conditions, that part will not be output to the system log:

• The transaction is performing a retrieval, and it ends with the COMMIT statement.

• The server that is executing the transaction is a single server, a dictionary server, or a back-end server.

a: Value of the pd_log_max_data_size operand

b: 1,336 + amount of system log information that is output depending on the database manipulation
Note that the value is 0 for a recovery-unnecessary front-end server.
This is the total amount of system log information that is obtained for each transaction, as explained in 17.1.2
Amount of system log information output during table definition through 17.1.5 Amount of system log information
output during database creation by a utility.

c: Amount of system log information that is output depending on the SQL manipulation
See 17.1.6 Amount of system log information that is output depending on the SQL manipulation.

d: Value calculated using the following formula for each server type

• For a HiRDB single server configuration
2 pd_log_rec_leng operand value

• For a HiRDB parallel server configuration
 For a front-end server

Execution of UAP using the HiRDB library to
implement a connection method that

supports multi-threading and complies with
X/Open, and use of the transaction transfer

facility

Use of recovery-unnecessary
front-end server Formula

Used Not used (cannot be used) (1,336 value of pd_log_rec_leng
operand + 3) value of pd_log_rec_leng
operand

Not used Used 0

Not used Not used 2 value of pd_log_rec_leng operand

 For a back-end server or a dictionary server

The system includes a front-end
server that uses a recovery-

unnecessary front-end server

pd_rpl_reflect_mode operand
specification value Formula

Yes uap Value of pd_log_rec_leng operand + {176 + 128
(maximum number of BESs updated in one transaction
+ 1)} value of pd_log_rec_leng operand value
of pd_log_rec_leng operand

server

No uap

server 2 value of pd_log_rec_leng operand

e:

• For a HiRDB parallel server configuration
For a front-end server: 8 + 72 maximum number of BESs and DSs accessed or updated in a single
transaction

17. Determining the Size of System Files and Audit Trail Files

635

Other than a front-end server: 0

• For a HiRDB single server configuration: 0

f: 10 value of pd_log_rec_leng

Notes
The system log is output when any of the following operations takes place:

• Table definition

• Index definition

• Table data updating

• Database creation by a utility

If rollback occurs while the database is being updated during any of these operations, the amount of system log
information applicable to the part of the database updated up to that point is added and output; this must be taken
into account in estimating the size of system log information.

(3) Notes on determining the amount of system log information that is output
Large amounts of system log information are output when the following SQLs are executed. Since system log file
capacity might run short, execute these only after determining the amount of system log information that will be
output. If your calculations indicate that system log file capacity will be insufficient, take the actions indicated below.

SQL statements that output large amounts of
system log information How to avoid running short of system log file capacity

CREATE INDEX, Method 1 (index definition) Define an index that specifies EMPTY in its index option, and create the index using
the database reorganization utility (pdrorg). When you create the index, specify
pre-update log acquisition mode as the log acquisition mode.

CREATE INDEX, Method 2 (index definition)

CREATE INDEX, Method 3 (substructure index
definition)

Execute the SQL code in no-log mode.

When you execute one of the SQLs at left, a particularly large amount of system
log information will be output. For this reason, we recommend running on no-log
mode regardless of the amount of system log file capacity. For details about
operation when UAPs or utilities are executed in the no-log mode, see the HiRDB
Version 9 System Operation Guide.

DROP SCHEMA (delete schema) Individually delete the definitions shown below in the schema of the specified
authorization identifier to reduce the amount of system log information that is
output at once.

• Base tables

• View tables (including public views)

• Indexes

• Access privileges

• Routines (including public procedures and public functions that define
authorization identifiers specified by DROP SCHEMA)

• Triggers

• Abstract data types

• Index types

17.1.2 Amount of system log information output during table definition
The formulas used to obtain the amount of system log information that is output during table definition are presented
as follows.

17. Determining the Size of System Files and Audit Trail Files

636

(1) HiRDB single server configuration

Condition Amount of system log information (bytes)

Table not partitioned ((1,256 b + 2,500) 1.2) a + (632 a d)#

Table partitioned ((1,256 b + 1,800 c + 2,500) 1.2) a + (632 a d)#

a: Total number of tables to be defined

b: Average number of columns in tables to be defined

c: Average number of partitions in tables to be defined

d: Number of RDAREAs for storing LOB columns

#: Add this value if a LOB column is defined in any of the tables.

(2) HiRDB parallel server configuration

Condition Amount of system log information (bytes)

Amount of system log information output by dictionary
server

((1,256 b + 1,800 c + 2,500) 1.2) a

Amount of system log information output by back-end
server

912 a d + (632 a e)#

a: Total number of tables to be defined

b: Average number of columns in tables to be defined

c: Average number of partitions in tables to be defined

d: Number of partitions in the back-end server for tables to be defined

e: Number of RDAREAs for storing LOB columns in the back-end server

#: Add this value if a LOB column is defined in any of the tables that are defined in the back-end server.

17.1.3 Amount of system log information output during index definition
The formulas used to obtain the amount of system log information that is output during index definition (including
when a primary key is added) are as follows.

(1) HiRDB single server configuration

Condition Amount of system log information (bytes)

Indexes not partitioned n

{5,624 + 800 b + 1,256 b 5 24 + 1,256# + 288 g

i=1

+ (132 + Xi (100 - f) 100) Wi + 272 Wi + 1,940 Wi Vi

}

Indexes partitioned n

{5,124 + 800 b + 500 c + 800 a + 1,256 b 5 24

i=1

+ 1,256# + 288 g +

a

{(132 + Xij (100 - f) 100) Wij + 272 Wij

17. Determining the Size of System Files and Audit Trail Files

637

Condition Amount of system log information (bytes)

j=1

+ 1,940 Wij Vij }

}

#: If there is no exception value specification, 0.

a: Number of partitions for table for which index is defined

b: Number of index component columns

c: Number of RDAREAs that store indexes

f: Value (%) of the PCTFREE operand specified during index definition
This is the percentage of unused space in a page.

g: Number of replica generations of RDAREAs that store indexes
If there are no replica RDAREAs, 0.

n: Total number of indexes to be defined

V: Segment size of user RDAREA used to store index (pages)

W: Number of index storage pages
For details, see 16.1.3 Calculating the number of index storage pages.
If EMPTY is specified by CREATE INDEX, 0.

X: Page length of user RDAREA used to store index (bytes)

(2) HiRDB parallel server configuration

Condition Amount of system log information (bytes)

Amount of system log information output by dictionary
server

N

{5,124 + 800 b + 500 c + 800 a + (1,256 b 5 24
)

i=1

+ 1,256# + 288 g

}

Amount of system log information output by back-end
server

N

{814 + (132 + Xi (100 - f) 100) Wi + 272 Wi

i=1

+ 1,940 Wi Vi

}

#: If there is no exception value specification, 0.

a: Number of partitions for table for which index is defined

b: Number of index component columns

c: Number of RDAREAs used to store index

f: Value (%) of the PCTFREE operand specified during index definition
This is the percentage of unused space in a page.

g: Number of replica generations of RDAREAs that store indexes
If there are no replica RDAREAs, 0.

n: Total number of indexes to be defined

17. Determining the Size of System Files and Audit Trail Files

638

V: Segment size of user RDAREA used to store index (pages)

W: Number of index storage pages
For details, see 16.1.3 Calculating the number of index storage pages.
If EMPTY is specified by CREATE INDEX, 0.

X: Page length of user RDAREA used to store index (bytes)

17.1.4 Amount of system log information output during table data
updating

When you manipulate rows in tables, the system logs shown below are output.

For a HiRDB single server configuration, add the amount of system log information calculated here to the amount of
log information output by a single server. For a HiRDB parallel server configuration, add the amount of system log
information calculated here to, respectively, the amounts of log information output by the back-end server and
dictionary server that manage the RDAREAs that store the tables and indexes being updated.

Table 17‒1: Types of system log information that are output when table rows are manipulated

Type of system log information Description

Base row log information This log information is output when a table's row data is added, deleted, or updated.

Branch row log information This log information is output when row data is manipulated in columns with the following
data types:

• VARCHAR#1

• NVARCHAR#2

• MVARCHAR#1

• Repetition columns

• Abstract data type

• BINARY type#3

Index log information This log information is output when index keys are added, deleted, or updated. Determine
the amount of index log information on the basis of the type of database manipulation
(INSERT, DELETE, or UPDATE statement), as shown in Table 17-2 Amount of log
information depending on type of database manipulation.

Event log This log information is output when HiRDB Datareplicator is used or when row data
containing repetition columns is added, deleted, or updated.

#1: Branch row log information is output if either one of the following conditions is satisfied:

• The no-split option is not specified and the actual data length is 256 bytes or greater.

• The no-split option is specified and the actual total length of data per row exceeds the page length.

#2: Branch row log information is output if either one of the following conditions is satisfied:

• The no-split option is not specified and the actual data length is 128 bytes or greater.

• The no-split option is specified and the actual total length of data per row exceeds the page length.

#3: If the actual total length of data per row exceeds the page length, branch row log information is output.

Table 17‒2: Amount of log information depending on type of database manipulation

Type of data manipulation (SQL statement) Amount of log information

Key addition (INSERT statement) Amount of addition log information

Key deletion (DELETE statement) Amount of deletion log information

Key updating (UPDATE statement) Amount of deletion log information for the key before updating + amount of
addition log information for the key after updating

17. Determining the Size of System Files and Audit Trail Files

639

The amount of system log information that is output when a database is updated (INSERT, DELETE, or UPDATE) can
be obtained from Formulas 1 and 2 as follows, depending on the type of operation (INSERT, DELETE, or UPDATE).

The amount of system log information that is output during UAP execution that does collect log is 460 bytes, which is
based on the fact that segment allocations occur.

Condition Formula (bytes)

Amount of system log information that is output to add (INSERT) or delete (DELETE) n
rows in a table

(a + b + c) n

Amount of system log information that is output to update (UPDATE) n rows in a table (a#1 + d#2 + e#3) n

a: Amount of base row log information (bytes)

b: Total amount of all branch row log information (bytes)

c: Total amount of all index log information (bytes)

d: Total amount of all branch row log information subject to update processing (bytes)

e: Total amount of all index log information subject to update processing (bytes)

n: Number of rows manipulated

#1: This value is added when the column value to be updated (UPDATE) is in the base row.

#2: This value is added when the column value to be updated (UPDATE) is in the branch row.

#3: This value is added when an index is defined for the column being updated (UPDATE).

(1) Determining the amount of base row log information
The following table lists the formulas for determining the amount of base row log information per data item.

Table 17‒3: Formulas for determining the amount of base row log information per data item

Type of data manipulation (SQL statement) Amount of log information output (bytes)

Data addition (INSERT statement) k + 152

Data deletion (DELETE statement)

Data updating (UPDATE statement) FIX table with f 12 f

 di +

i=1

f

 dj + 4 f + 152

j=1

Non-FIX table or f > 12 k1 + k2 + 160

 If LOCK is specified in the
pd_nowait_scan_option operand, add:

314 2

Row interface used 2 k1 + 160

k: Length of row to be added or deleted

k1: Length of row before updating

k2: Length of row after updating

f: Number of columns to be updated

di: Data length of column before updating

dj: Data length of column after updating

17. Determining the Size of System Files and Audit Trail Files

640

Note 1
The values of k, k1, and k2 depend on the specification of FIX, as shown as follows.

• Table 16-1 List of data lengths

• Table 16-2 Data lengths for the variable-length character string type (except abstract data type and repetition
columns)

• Table 16-3 Data lengths for the variable-length character string type (abstract data type)

• Table 16-4 Data lengths for the variable-length character string type (repetition columns)

• FIX specified
Total data length of all columns in table + 4.

• FIX not specified
Total data length of all columns in table + 6 + 2 total number of columns in table.

Note 2
If HiRDB Datareplicator is being used, or if updatable online reorganization is executing, then the same amount
will be output to the log file for updating 12 or fewer columns of the FIX table as for updating 13 or more
columns.

Note 3
When a BLOB column is defined in a table, fix the row length of Table 17-3 Formulas for determining the amount
of base row log information per data item at nine bytes for BLOB columns, and add the amounts of log
information shown in the following table.

Table 17‒4: Formulas for determining the amount of log information per BLOB column data item

Type of data manipulation (SQL
statement) Specification of recovery Amount of log information output (bytes)

Data addition

(INSERT statement)

Not specified or partial specified 604 + 180 p5

All specified 2,348 + p1 + 8,340 p2

+ (148 + lt) p3

Not specified 300

Data deletion

(DELETE statement)

Not specified or partial specified 460 + 180 p6

All specified

Not specified 468

Data updating

(UPDATE statement)

Not specified or partial specified 604 + 180 p5 + 460 + 180 p6

All specified 2,496 + p1 + 8,334 p2

+ (148 + lt) p3

Not specified 312

Data concatenation operation

(UPDATE statement)

Bb 7,168

Not specified or partial specified 2,344

All specified 8,340 a + 1,600 + d + 8,340 p4 + (148 +
lt2) p3

Not specified 428

Data concatenation operation

(UPDATE statement)

Bb > 7,168

Not specified or partial specified 2,772

All specified 2,772 + Ba + 8,340 p4 + (148 + lt2) p3

Not specified 428

Backward deletion/updating of data

(UPDATE statement)

Bb 7,168

Not specified or partial specified 2,344

All 9,512

No 428

17. Determining the Size of System Files and Audit Trail Files

641

Type of data manipulation (SQL
statement) Specification of recovery Amount of log information output (bytes)

Backward deletion/updating of data

(UPDATE statement)

Bb > 7,168

Not specified or partial specified 2,492 + 180 (Bb-Bd) 8,192

All 2,492 + 180 (Bb -Bd) 8,192

No 428 + 180 (Bb-Bd) 8,192

Bi: BLOB data length (bytes)

Ba: One of the following values:

• If Bb > 7,168: 8,192-{(Bb - 7,168)- (Bb - 7,168) 8,192 8,192}

• If Bb 7,168: 0

Bb: BLOB data length before update (bytes)

Bc: BLOB added data length (bytes)

Bd: Data length after update (value specified by value expression 3 of SUBSTR function) (bytes)

lt: One of the following values:

• If Bi > 7,168: Bi - 7,168- (Bi - 7,168) 8,192 8,192

• If Bi 7,168: 0

lt2: One of the following values:

• If Bc + Bb > 7,168: (Bc + Bb - Ba - 7,168)- (Bc + Bb - Ba - 7,168) 8,192 8,192

• If Bc + Bb 7,168: 0

p1: One of the following values:

• If Bi > 7,168: 7,168

• If Bi 7,168: Bi

p2: One of the following values:

• If Bi > 7,168: (Bi - 7,168) 8,192

• If Bi 7,168: 0

p3: One of the following values:

• If lt = 0 or lt2 = 0: 0

• If lt > 0 or lt2 > 0: 1

p4: One of the following values:

• If Bc + Bb > 7,168: (Bc + Bb - Ba - 7,168) 8,192

• If Bc + Bb 7,168: 0

p5: One of the following values

• If Bi > 0: (Bi + 1,024) 8,192

• If Bi = 0: 0

p6: One of the following values

• If Bb > 0: (Bb + 1,024) 8,192

• If Bb = 0: 0

a: One of the following values:

• If Bb > 0: 1

• If Bb = 0: 0

d: One of the following values:

• If Bc + Bb 7,168: Bc + Bb

• If Bc + Bb > 7,168: 7,168

17. Determining the Size of System Files and Audit Trail Files

642

(2) Determining the amount of branch row log information

(a) Branch row log information for VARCHAR, NVARCHAR, and MVARCHAR, when the no-split option is not
specified

Calculate the amount of branch row log information that will be generated. The following table lists the formulas for
determining the amount of log information per branch row.

Table 17‒5: Formulas for determining the amount of log information per branch row (1)

Type of data manipulation (SQL statement) Amount of log information output (bytes)

Data addition (INSERT statement) k + 152

Data deletion (DELETE statement)

Data updating

(UPDATE statement)

Creating a new branch row by update processing k2 + 160

Updating a branch row k1 + k2 + 160

Deleting a branch row by update processing k1 + 160

k: Length of one branch row to be added or deleted

k1: Length of one branch row before updating

k2: Length of one branch row after updating

Note
The following formula is used to obtain the row lengths k, k1, and k2:
8 + MIN (average length of actual data, page length of RDAREA - 48)

(b) Branch row log information for abstract data columns, repetition columns, BINARY columns, and VARCHAR,
NVARCHAR, and MVARCHAR when the no-split option is specified

Calculate the amount of branch row log information that will be generated. The table below lists the formulas for
determining the amount of log information per branch row.

If there is more than one table storage RDAREA and the page length varies from one RDAREA to another, obtain the
amount of branch row log information for each RDAREA with the same page length, then use their sum as the amount
of branch row log information.

Table 17‒6: Formulas for determining the amount of log information per branch row (2)

Type of data manipulation (SQL statement) Amount of log information output (bytes)

Data addition (INSERT statement) SPN (b + 152)

Data deletion (DELETE statement)

Data updating (UPDATE statement) SPN (b + 160)

Data concatenation operation (UPDATE statement)#1 (b + 160) + (SPN - 1) (b + 152)

 If the pd_rpl_hdepath operand is specified,
add:

160

Backward deletion/updating of data (UPDATE statement)#1, #2 (b 2 + 160) + ((c - d) (b - 57)) (b
+ 152)

 If you specify the pd_rpl_hdepath operand,
add:

160

#1
For BINARY type columns only

17. Determining the Size of System Files and Audit Trail Files

643

#2
Not applicable to compressed columns. For backward deletion/updating of data in compressed columns (UPDATE
statement), use data updating (UPDATE statement).

b: Page length of an RDAREA

c: Data length before update

d: Data length after update (value specified by value expression 3 of SUBSTR function)

SPN: The following shows how to obtain this value:
If there is a branch row (for the branch condition, see #5 in Table 16-1 List of data lengths), obtain the value of
SPN for all columns that constitute the table for the INSERT and DELETE statements and the value for the
columns subject to updating for the UPDATE statement. However, for concatenation operations on BINARY
columns, calculate di as the length of data to be added.

SPN = SPN1 + SPN2

For details about SPN1 and SPN2, see (3) Variables used in formulas in 16.1.2 Calculating the number of table
storage pages. Make sure, however, to use 1 for a.

(c) Additional log information output with updatable online reorganization

To determine the amount of log information that is output when a UAP accesses an RDAREA for the purpose of
updatable online reorganization (while accessing subordinate RDAREAs that are in online reorganization hold), you
must add the amount of event log information for the pdorend application process to the amount of log information
that is ordinarily output. This section explains the additional log information.

• During updatable online reorganization, each time a row is updated, a row update start event and a row update
completion event are output to the log. In addition, in the event of rollback, for each row recovered a row recovery
start event and a row recovery completion event are output to the log. Therefore, when you determine system log
file capacity, add the amounts of log information shown in the following table to the formulas of Table 17-3
Formulas for determining the amount of base row log information per data item.

Table 17‒7: System log information added per item of data with updatable online reorganization

Type of data manipulation (SQL statement) Additional log information output (bytes)

INSERT 320

DELETE

UPDATE 320 + c#1 + 160#2

INSERT rollback 320

DELETE rollback

UPDATE rollback 496 + data length before row update + c#1 + 160#2

#1
c is added when the -e option of the commit a database for online reorganization command (pdorbegin) is specified. The
formula for c is as follows:
(((a - b + 1) 8 + 6) 4) 4 2
a: ID of the largest column of the columns to be updated
b: ID of the smallest column of the columns to be updated

#2
Add this amount of log information when you perform a concatenation operation or a backward deletion/update on a
BINARY type column with a defined length of 32,001 or more.

• If a BLOB column is defined for a table during updatable online reorganization, a BLOB update event log is
added. Therefore, when you determine system log file capacity, add the amounts of log information shown in the
following table to the formulas of Table 17-4 Formulas for determining the amount of log information per BLOB
column data item.

17. Determining the Size of System Files and Audit Trail Files

644

Table 17‒8: System log information added per item of BLOB data with updatable online reorganization

Type of data manipulation (SQL statement) Additional log information output (bytes)

INSERT 0

DELETE 224

UPDATE 224 + 160#2

INSERT rollback 0

DELETE rollback 148 + p1 + 8,340 p2 + (148 + lt) p3#1

UPDATE rollback 148 + p1 + 8,340 p2 + (148 + lt) p3#1 + 160#2

#1
For details about variables p1, p2, p3, and lt, see Table 17-4 Formulas for determining the amount of log
information per BLOB column data item. In these variables, substitute the length of the BLOB data to be
deleted.

#2
Add this amount of log information when you perform a concatenation operation or a backward deletion/
update.

• During updatable online reorganization, a new repetition column update event log is output in the cases listed
below. Therefore, when determining system log file capacity, add the amounts of log information shown in the
table below to the formulas of Table 17-3 Formulas for determining the amount of base row log information per
data item.

• When a row containing repetition columns is deleted

• When an entire repetition column is specified for update processing

• When elements in a repetition column are specified for update processing

• When elements in a repetition column are specified for deletion processing

• When specified elements in a repetition column are specified for update processing

Table 17‒9:  System log information added per item of data that includes a repetition column with
updatable online reorganization

Type of data manipulation (SQL statement) Additional log information output (bytes)

UPDATE-SET (column specification) 164

UPDATE-ADD (element specification)

(when new elements are added by updating)

N

 164

i=1

UPDATE-DELETE (element specification)

(when new elements are deleted by updating)

M

 (p4 + 160)

i=1

UPDATE-SET (element specification)

(when only the specified elements are updated)

N

 ((p4 + 160) 2)

i=1

DELETE 156

UPDATE-SET (column specification) rollback 156

Rollback of UPDATE-ADD (element specification)

(when new elements are deleted by updating)

N

 (p4 + 180)

i=1

Rollback of UPDATE-DELETE (element specification) M

17. Determining the Size of System Files and Audit Trail Files

645

Type of data manipulation (SQL statement) Additional log information output (bytes)

(when new elements are added by updating) 184

i=1

Rollback of UPDATE-SET (element specification)

(when only the specified elements are updated)

N

 (p4 + 180)

i=1

DELETE rollback 156

n: Number of repetition columns to be updated
m: Number of elements to be deleted
p4: { (Average of the largest subscript number that is specified - average of the smallest subscript number
that is specified + 1) 8 } 4 4

(3) Determining the amount of index log information
Use the formulas shown in the following table to determine the amount of index log information that is output for each
row operated on in an index.

Table 17‒10: Amount of index log information per index

Type of data manipulation (SQL statement) Amount of log information output
(bytes)

Key addition

(INSERT statement)

Adding a new key k1 + 156 or (k1 + 156) 2#

Adding the same key as for existing
row

d 200 k1 + 156

d > 200 k1 + 292

Key deletion

(DELETE statement)

Deleting a key value k2 + 156

Deleting the same key value as for
existing row

d 200 k2 + 156

d > 200 k2 + 292

Key updating (UPDATE statement) Amount of log information for key
deletion + amount of log information
for key addition

d: Number of duplicated key values

k1: Length of key to be added (bytes)

k2: Length of key to be deleted (bytes)

Note
Length of key refers to the database storage key length. For details about how to determine the key length, see
16.1.3 Calculating the number of index storage pages.

#: Use this formula for indexes with UNIQUE specified using the index key no-lock option.

(a) Determining the amount of index log information for index page splitting

The following figure illustrates the concept of index page splitting.

17. Determining the Size of System Files and Audit Trail Files

646

Figure 17‒1: Concept of index page splitting

Explanation:

1. Splitting a page in two by adding a key to the rightmost leaf page (containing the maximum key value in the
figure) is called page splitting containing the maximum key value.

2. Splitting a page in two by adding a key to any other leaf page is called page splitting without the maximum
key value.

When a page that stores an index is split, HiRDB uses one of the two methods explained below to store the key value.

• Page splitting without the maximum key value
When a key value is added or deleted, HiRDB stores the key value by splitting the key and the unused area at a
ratio of approximately 50:50. Page splitting without the maximum key value occurs in the following cases:

• The index storage page is too small to store the key value.

• a rows with the same key value are added while there are more than 200 duplicated key values (the value of a
can be obtained from the formula shown below; in this case, page splitting occurs at every a rows).

Formula
a = Page length of RDAREA for storing index (bytes) 4

• Page splitting containing the maximum key value
If a key value is added or updated in an index storage page containing the maximum key value, HiRDB stores the
key value by splitting the key and the unused area at the ratio specified by the PCTFREE operand of CREATE
INDEX.
For example, if PCTFREE = 30 is specified, HiRDB stores the key value by splitting the key and unused area at a
ratio of approximately 70:30.
Page splitting containing the maximum key value occurs if it is impossible to acquire as much free space as
specified in the PCTFREE operand of CREATE INDEX when a key value is to be added. However, this does not
apply to an upper-level page.

The following table lists the amount of index log information output per instance by split type.

Table 17‒11: Amount of index log information by split type

Split type Condition Amount of log information output
(bytes)

Page splitting
containing the
maximum key
value

Adding a key value
that is different from
any key value
already in the index

There is enough
unused area to add the
key in upper-level
page

2 k1 + a + 8 (m
+ 1) 31,516

2 k1 + 472 + a + 8

 (m + 1)

2 k1 + a + 8 (m
+ 1) > 31,516

2 k1 + 632 + a + 8

 (m + 1)

There is not enough
unused area to add the
key in upper-level
page

2 k1 + a + 8 (m
+ 1) 31,516

n-1

 (288 + a)

i=2

17. Determining the Size of System Files and Audit Trail Files

647

Split type Condition Amount of log information output
(bytes)

+ 2 k1 + 472 + a +

8 (m + 1)

2 k1 + a + 8 (m
+ 1) > 31,516

n-1

 (288 + a)

i=2

+ 2 k1 + 628 + a +

8 (m + 1)

Adding the same key
value as one already
in the index

d1 200 There is enough
unused area to add the
key in upper-level
page

2 k1 + 472 + a + 8

 (m + 1)

There is not enough
unused area to add the
key in upper-level
page

n-1

 (288 + a)

i=2

+ 2 k1 + 472 + a +

8 (m + 1)

d1 > 200 There is enough
unused area to add the
key in lower-level
page

k1 + 472 + a

There is not enough
unused area to add the
key in lower-level
page

k1 + 462 + 2 a

Page splitting
without the
maximum key
value

There is not enough
unused area to add
the key

There is enough
unused area to add the
key in upper-level
page

2 k1 + a + 8 (m
+ 1) 31,516

2 k1 + 332 + a + 8

 (m + 1)

2 k1 + a + 8 (m
+ 1) > 31,516

2 k1 + 492 + a + 8

 (m + 1)

There is not enough
unused area to add the
key in upper-level
page

2 k1 + a + 8 (m
+ 1) 31,516

n-1

 (288 + a)

i=2

+ 2 k1 + 332 + a +

8 (m + 1)

2 k1 + a + 8 (m
+ 1) > 31,516

n-1

 (288 + a)

i=2

+ 2 k1 + 492 + a +

8 (m + 1)

a: Page length of RDAREA storing the index (bytes)

d1: Number of duplicated key values

k1: Length of key value to be added (bytes)
Length of key refers to the database storage key length. For details about how to determine the key length, see
16.1.3 Calculating the number of index storage pages.

m: Number of index levels where split occurred

17. Determining the Size of System Files and Audit Trail Files

648

n: Number of upper page levels affected by splitting
If an upper-level page affected by leaf page splitting is also split, the value of n is 3 (n 3).

Note
These formulas are used to estimate the amount of update log information for each row and index part. The
derived value does not include the amount of log information related to system management that is output when a
new page or segment is allocated during addition or update processing. Therefore, if you are handling large
amounts of data, you must add the amounts of log information shown in the following table to determine the
amount.

Table 17‒12: Amount of log information for page allocation and segment allocation

Condition Amount of log information
output (bytes)

Allocation of a new page for storing rows resulting from data addition (INSERT) or updating
(UPDATE)

440

Index page splitting resulting from data addition (INSERT) or updating (UPDATE) 544 n + 272

Segment allocation resulting from the above page allocation (each time as many pages are allocated
as the segment size)

1,940

n
Number of index levels when page splitting occurred

(4) Determining the size of event log information
The event log information is output when row data containing repetition columns is added, deleted, or updated using
HiRDB Datareplicator. The following table shows the amount of event log information that is output when a single
row is manipulated.

Table 17‒13: Amount of event log information that is output when a single row is manipulated

Type of data manipulation Amount of event log information
(bytes)

Data addition (INSERT statement) 156 n

Data updating (UPDATE statement) New elements added by updating (UPDATE ADD) 164 n

Elements deleted by updating

(UPDATE DELETE)

n

 (p5 +160)i

i = 1

Only specified elements updated

(UPDATE SET)

n

 (p5 +160)

i = 1

Specified repetition columns updated

(UPDATE SET)

164 n

n: Number of repetition columns being updated

p5: { (average of the largest subscript number that is specified - average of the smallest subscript number that is
specified + 1) 8 } 4 4

17.1.5 Amount of system log information output during database creation
by a utility

When you execute the following utilities, the system outputs the system log information shown in Table 17-14
Formulas for determining the amount of system log information output during database creation by a utility.

17. Determining the Size of System Files and Audit Trail Files

649

• Database load utility (pdload command)

• Database reorganization utility (pdrorg command)

• Rebalancing facility (pdrbal command)

The system log size is calculated by adding the value shown in Table 17-15 Values added when calculating the amount
of system log information, and conditions required to perform this addition to the value obtained in Table 17-14
Formulas for determining the amount of system log information output during database creation by a utility. For row-
partitioned tables and indexes, the amount of system log information is calculated for each RDAREA in which tables
and indexes are stored.

• For a HiRDB single server configuration:
Add the total amount of system log information calculated for each RDAREA to the amount of log information
output by a single server.

• For a HiRDB parallel server configuration:
Add the total amount of system log information calculated for each RDAREA to the amount of log information of
the back-end server that manages the tables and indexes to be processed. If you reorganize dictionary tables with
the database reorganization utility (pdrorg), however, add the amount of log information output by the
dictionary server.

Table 17‒14: Formulas for determining the amount of system log information output during database
creation by a utility

Number Condition
Amount of system log information output (bytes)

a specified in -l option p specified in -l option

1 Batch index creation
performed (c specified in
-i option)

n

{
i=1

[132 + (100 - f) 100 Xi]

 Wi

+ 280 Wi + 1,940 Wi Vi

}

+ 280 m + 1,940 m s + a r

n

{
i=1

280 Wi + 1,940 Wi Vi

}

+ 280 m + 1,940 m s + c
 r

2 Batch index creation not
performed (s specified in
-i option)

n

{
i=1

280 Wi + 1,940 Wi Vi

+ b r + e d

}

+ 280 m + 1,940 m s + a r

n

{
i=1

280 Wi + 1,940 Wi Vi

+ b r + e d

}

+ 280 m + 1,940 m s + c
 r

3 No index is created (n or
x is specified in the -i
option)

280 m + 1,940 s + a r 280 m + 1,940 m s + c
 r

4 Index creation or
regeneration performed
(nothing loaded with
pdload, or ixrc or
ixor specified in
pdrorg -k option)

Add the following amount to the system log:

• 17.1.3 Amount of system log information
output during index definition

• Table 17-12 Amount of log information for
page allocation and segment allocation

• Table 17-17 Amount of system log
information output during execution of the
PURGE TABLE statement

Add the following amount to the system
log:

• Table 17-12 Amount of log
information for page allocation and
segment allocation

• Table 17-17 Amount of system log
information output during execution
of the PURGE TABLE statement

17. Determining the Size of System Files and Audit Trail Files

650

Note:
The amount of system log information when indexes are created in batch or singularly needs to be calculated for
the number of indexes.

a: Amount of log information output when one data item is added, as obtained from Table 17-3 Formulas for
determining the amount of base row log information per data item and Table 17-4 Formulas for determining the
amount of log information per BLOB column data item.

b: Amount of log information output when one data item is added, as obtained from Table 17-10 Amount of index log
information per index.

c: Amount of log information output when one data item is added, as obtained from 17-4 Formulas for determining
the amount of log information per BLOB column data item.

d: Amount of system log information output during index splitting
See Table 17-11 Amount of index log information by split type and Table 17-12 Amount of log information for
page allocation and segment allocation.

e: Number of times index splitting occurs

f: Value (%) of the PCTFREE operand specified during index definition (percentage of unused space in a page)

m: Number of table storage pages
See 16.1.2 Calculating the number of table storage pages.

n: Total number of indexes defined for table

r: Number of rows to be stored in table (rows)

s: Segment size of user RDAREA used to store table (pages)

Vi: Segment size of user RDAREA used to store index (pages)

Wi: Number of index storage pages
See 16.1.3 Calculating the number of index storage pages.

Xi: Page length of user RDAREA used to store index (bytes).

For items 1 and 2 in Table 17-14 Formulas for determining the amount of system log information output during
database creation by a utility, the following table lists the values that are added when calculating the amount of
system log information, and the conditions required to perform this addition.

Table 17‒15: Values added when calculating the amount of system log information, and conditions
required to perform this addition

Conditions for addition Values added to the amount of system log information

When LOB columns are defined Add the following amount of log information for (the number of LOB columns the number of
rows):

• See Data addition (INSERT statement) in Table 17-4 Formulas for determining the amount of
log information per BLOB column data item

• When the recovery attribute of the LOB column is not recovery no
3,544 (LOB data length 31,744) (bytes)

When the database load utility
(pdload) is executed with the -d
option specified, or the database
reorganization utility (pdrorg) is
executed

Add the amount of log information of all indexes and all LOB columns (or LOB attributes)
defined in Tables or Rebalancing tables in Table 17-17 Amount of system log information output
during execution of the PURGE TABLE statement and target tables.

When a table having a LOB column
or LOB attribute is reorganized
using the database reorganization
utility (pdrorg), if the following
two conditions are met:

Add the following log amount of information for each LOB RDAREA configuration file:

 {17,000 (the number of HiRDB file segments 64,000) 95}

Add the following amount of log information for each item (the number of LOB columns or LOB
attributes the number of rows).

 LOB column is recovery all specification and also -l a specification

17. Determining the Size of System Files and Audit Trail Files

651

Conditions for addition Values added to the amount of system log information

• The table is reorganized without
the -j option specified

• The LOB column does not
specify recovery no and n is
not specified for the -l option

17,600 sr sr

 Other than the above

3,200 sr sr

sr: Record length of the system log file specified in the pd_log_rec_leng operand.

The HiRDB Datareplicator linkage
facility is used (the
pd_rpl_hdepath operand is
specified) and the table contains
repetition columns

Add the log information shown in Table 17-13 Amount of event log information that is output
when a single row is manipulated for each added row.

17.1.6 Amount of system log information that is output depending on the
SQL manipulation

If -k cnc is specified in the pdhibegin operand of the system common definition, system log information is output
when CONNECT, DISCONNECT, or set session authorization is executed.

You can use the formula shown below to calculate the amount of system log information that is output depending on
the SQL manipulation. For a HiRDB single server configuration, add this amount to the amount of log information
output by a single server; for a HiRDB parallel server configuration, add it to the amount of log information output by
the front-end server.

Formula

Amount of system log information (bytes)

= 568 (CONNECTs count + set session authorization executions count)

17.1.7 Amount of system log information that is output during the
definition of extended system-defined scalar functions

The amount of system log information that is output when you use the pdextfunc command to define an extended
system-defined scalar function is shown below. For a HiRDB single server configuration, add this amount to the
amount of log information output by a single server. For a HiRDB parallel server configuration, add it to the amount
of log information output by the dictionary server.

Amount of system log information (bytes) = 233,529

17.1.8 Amount of system log information that is output during the
execution of the RDAREA automatic extension facility

When you use the RDAREA automatic extension facility, the system outputs log information during the execution of
automatic extension.

The table below shows formulas for finding the amount of system log information that is output. For a HiRDB single
server configuration, add this amount of log information to the amount of log information output by a single server;
for a HiRDB parallel server configuration, add it to the amount of log information output by the back-end server and
dictionary server that manage the applicable RDAREA.

Table 17‒16: Amount of system log information that is output during the execution of the RDAREA
automatic extension facility

Type of RDAREA Amount of system log information (bytes)

LOB RDAREA 1,956

17. Determining the Size of System Files and Audit Trail Files

652

Type of RDAREA Amount of system log information (bytes)

Other than LOB RDAREA 1,372 + (144 + p) 2

p: Page size of RDAREA subject to automatic extension

17.1.9 Amount of system log information output when the PURGE
TABLE statement is executed

The amount of log information output when the PURGE TABLE statement is executed is determined from the total log
information calculated for the table from all indexes, LOB columns, and LOB attributes. For partitioning tables and
partitioning indexes, determine the total amount of log information for each RDAREA.

For a HiRDB single server configuration, add the value found to the amount of log information to be output by a
single server. For a HiRDB parallel server configuration, add it to the amount of log information of the back-end
server that manages the RDAREA in which the applicable table is stored (including the RDAREAs in which the
index, LOB column and LOB attributes defined in the table are stored).

The following table shows formulas for determining the amount of system log information that is output when a
PURGE TABLE statement is executed. Find the variables A, B and C in the formulas for each RDAREA constituent
file.

Table 17‒17: Amount of system log information output during execution of the PURGE TABLE statement

Type Amount of system log information (bytes)

Tables 1,000 + 1,100 number of allocated segments

Rebalancing tables 1,000 + 1,100 number of allocated segments + 400 1,024 number of
partitioning RDAREAs

Indexes# 1,000 + 1,100 number of allocated segments

LOB columns or LOB attributes# 1,000 + 17,000 A + 160 B + 2 C

A: (number of segments used by HiRDB files 64,000) 95

B: (number of segments used by HiRDB files 64,000)

C: (number of segments used by HiRDB files 64,000) 8,150

#: For plug-ins, the initialization log for each plug-in is output. For details, see the documentation for each plug-in.

17.1.10 Amount of system log information output when the free page
release utility (pdreclaim) is executed

System log information is output when free pages or segments of tables and indexes are released by the free page
release utility (pdreclaim).

The table below shows the amounts of log information that are output by combination of specified option and
applicable resources. The item numbers under the description of the amount of log information correspond to the item
numbers in Table 17-18 Amount of system log information output when the free page release utility is executed.

Option Applicable resources Amount of log information

None Tables Value of item (1)

Indexes Value of item (2)

-j Tables Value of item (3)

Indexes

-a Tables Sum of the values of items (1) and (4)

17. Determining the Size of System Files and Audit Trail Files

653

Option Applicable resources Amount of log information

Indexes Sum of the values of items (2) and (4)

The table below shows formulas for finding the amount of log information that is output. When tables and indexes are
row-partitioned, you must calculate the amount of log information for each partitioned RDAREA. For a HiRDB single
server configuration, find the total amount of log information calculated for each row-partitioned RDAREA. Add this
to the amount of log information that a single server outputs. For a HiRDB parallel server configuration, find the
amounts of log information calculated for each row-partitioned RDAREA for each server, and then total them. Add
these totals respectively to the amounts of log information of the back-end servers and dictionary servers that manage
the RDAREAs that store the applicable resources.

Table 17‒18: Amount of system log information output when the free page release utility is executed

Item
No. Type Amount of system log information (bytes)

(1) Tables 140 n

 If the -o option is not specified:

+ 504 m

(2) Indexes With no key
whose key value
duplication is 201
or more

{((k + 14) (j - 68)) 1,408 + k + 12 h + 908} n + 304 q

 If the -x option is specified, add:

+{m - n - (((k + 14) 2 m) (j - 68))} (j + 76) 0.7

With a key whose
key value
duplication is 201
or more

(724 + k) n + 285 MAX(n, 16 n (j - 78)) - 159 + 304 q

 If the -x option is specified, add:

+{m - n - (((k + 14) 2 m) (j - 68))} (j + 76) 0.7

(3) Segments If the -j option
is specified

2,380 p

 If index is specified for the -k option, add:

+ 304 p

(4) If the -a option
is specified

3,100 p

 If index is specified for the -k option, add:

+ 304 p

h: Index levels

j: Page size (bytes)

k: Index key length (bytes)

m: Number of used pages (excluding full pages)

n: Number of used free pages

p: Number of used free segments
Includes the number of segments in the process of being released.

q: Number of non-full segments
This value is obtained by subtracting the number of full segments from the number of used segments.
You can check the number of used segments and the number of full segments by using the database condition
analysis utility (pddbst).

17.1.11 Amount of system log information that is output during execution
of the facility for predicting reorganization time

If you use the facility for predicting reorganization time, you must add the amount of log information obtained from
the following formula to the amount of log information that is output by the dictionary server for a HiRDB parallel
server configuration (or that is output by the single server for a HiRDB single server configuration):

17. Determining the Size of System Files and Audit Trail Files

654

Formula

Amount of system log information (bytes) =

n {1,604 (A + B + C + D) (E + 1)}

+ m {872 (a + b + c + 1)}

+ 11,680 {(A + B + C + D) (E + 1)} 30 540

+ 332 {(A + B + C + D) (E + 1)} 30

+ 7,760

A: Number of tables that have been created + 61

B: Number of indexes that have been created + 124

C: Total number of BLOB columns defined for the tables that have been created + 3

D: Total number of BLOB attributes defined for the tables that have been created

E: Average number of partitions in the table storage RDAREA
If the RDAREA is not partitioned, the value is 1. The average value is rounded up.

a: Number of RDAREAs storing tables processed by SQL statements or commands

b: Number of RDAREAs storing indexes processed by SQL statements or commands

c: Number of LOB RDAREAs storing tables processed by SQL statements or commands

n: Number of times the condition analysis result accumulation facility (pddbst -k logi -e) executed

m: Number of SQL statements or commands executed to update the database management table
For details about the SQL statements and commands for updating the database management table, see the HiRDB
Version 9 System Operation Guide.

17.1.12 Amount of system log information output during an updatable
backup hold

When the database is updated during an updatable backup hold, the additional amount of system log information
shown by the following formula is output. For a HiRDB single server configuration, add the amount of system log
information found here to the amount of log information output by a single server. For a HiRDB parallel server
configuration, add the corresponding amounts of log information for the back-end servers and dictionary servers that
manage the RDAREAs that are being updated.

However, when HiRDB terminates abnormally or is forcibly terminated during a backup hold, the backup hold is not
inherited when HiRDB restarts (unless it is a reference-possible backup hold). For this reason, the system log
information calculated here is not output.

Formula

a

(Si + 200) Ti
i=1

a: Number of RDAREAs updated during the updatable backup hold

Si: Page size of RDAREAs (bytes)

Ti: Number of update pages of RDAREA updated during the updatable backup hold

Use the following procedure to find the number of RDAREA update pages.

Procedure

1. Execute the statistics analysis utility (HiRDB file statistical information pertaining to database manipulation)
at the following points:

 At the start of the updatable backup hold

17. Determining the Size of System Files and Audit Trail Files

655

 At the release of the updatable backup hold

2. Check the number of synchronization WRITEs (SYNC-W) to find the number of update pages from that
differential.

17. Determining the Size of System Files and Audit Trail Files

656

17.2 Determining the size of synchronization point dump
files

(1) Determining the size of a synchronization point dump file
The following formula is used to determine the size of a synchronization point dump file.

Formula

Size of synchronization point dump file (bytes)

= MAX(12, number of records in synchronization point dump file)#1 4,096#2

#1: See (2) as follows; the obtained value is specified in the -n option of the pdloginit command. If the obtained
value is less than 12, specify 12 for the -n option of the pdloginit command.

#2: This is the record length of a synchronization point dump file.

(2) Determining the number of records in a synchronization point dump file

Condition Formula for determining the number of records

HiRDB single server configuration (96 + 112 a) 4,096 + 3

HiRDB parallel server
configuration

Front-end server 4

Back-end server (96 + 112 a) 4,096 + 3

Dictionary server (96 + 112 a) 4,096 + 3

a: Value of the pd_lck_until_disconnect_cnt operand

17. Determining the Size of System Files and Audit Trail Files

657

17.3 Determining the size of status files

(1) Determining the size of a status file
The following formula is used to determine the size of a status file.

Formula

Size of status file (bytes) = a b

a: Number of records in the status file.
See (2) as follows; the obtained value is specified in the -c option of the pdstsinit command.

b: Record length of the status file. This value is specified in the -l option of the pdstsinit command.

(2) Determining the number of records in a status file
The following formula is used to determine the number of records in a status file.

Formula

Number of records

= { S (record length - 40) + S 100 + S + 2} 1.2

See (3) as follows for the value of S.

(3) Determining the value of S

(a) HiRDB single server configuration

Type Formula for S

Unit (2,056 + 128 d) g + 2,512 g + 40 g

+ 308 g + 4,000 g + 43,536 g + 32 g

Server 128 g + 3,280#1 g + (592#2 + j b) g

+ 8,192 g + (8,192 - 128) g { (a + m) k - 1}

+ [{(c 127 + 1) 2,048} 8,192 8,192] g

+ 2,048 g + {244 + 64 (2 h + 7)} g

+ 96 g + {48 + 68 (2 h + 7)} g

+ [20,480 {1 + ((152 e) - (16 f) - (80 A) + (8 B))

 20,476 + (4f + 4C) 20,480 }] g

+ (12 c + 4) g

+ w

+ (4 + 16 c) g

 If the status file record length < 4,096, add:

+ MAX{3,400 r + 0.7, 1} MAX(4,096 s , 2) n

+ 5,662,310 r + 0.7 MAX(4,096 s , 2) p

 If 4,096 the status file record length < 12,288, add:

+ MAX{(3,400 (s - 348) 20) + 0.7, 1} n

+ (5,662,310 (s - 348) 20) + 0.7 p

 If 12,288 the status file record length, add:

+ MAX{(3,400 (s - 876) 20) + 0.7, 1} n

17. Determining the Size of System Files and Audit Trail Files

658

Type Formula for S

+ (5,662,310 (s - 876) 20) + 0.7 p

 If the pd_log_auto_unload_path is specified, add:

+ 20,848 g

 If you are using the rapid system switchover facility, add:

+ ((256 i + 4,096) 4,096) 4,096 g

 If Y is specified for the pd_dbbuff_modify operand, add:

+ v

 If HiRDB Staticizer Option has finished setup and the pd_max_reflect_process_count operand is specified,
add:

+ (128 + 704) g

+ 256 g

 If XDS is defined, add:

+ 32 g

a: Number of specified pdlogadfg operands

b: Number of specified pdlogadfg -d spd operands

c: Value of pd_max_rdarea_no operand

d: 108 (single server) or 74 (utility special unit)

e: Number of specified pdbuffer operands

f: Number of -i options specified in the pdbuffer operand

g: Record length of status file minus 40

h: Value of pd_max_users + value of pd_max_reflect_process_count

i: When the inner replica facility is used, the value of the pd_max_file_no operand
When the inner replica facility is not used, the value of the pd_max_rdarea_no operand

j: 736

k: 11

m: 1

n: If the number of RDAREAs in the server 3,400, the value is 1.
If 3,401 number of RDAREAs in the server 6,800, the value is 2.
If 6,801 number of RDAREAs in the server, the value is 3.

p: If the number of RDAREAs in the server 10,200, the value is 0.
If 10,201 number of RDAREAs in the server 5,672,510, the value is 1.
If 5,672,511 number of RDAREAs in the server 11,334,820, the value is 2.
If 11,334,821 number of RDAREAs in the server, the value is 3.

r: (s - 348) 20 + g 20 (MAX(4,096 s ,2) - 1)

s: Status file record length

v: 32-bit mode: (24 + 28 (+ 512) + 32 + 112 D) g
64-bit mode: (32 + 32 (+ 512) + 32 + 144 D) g

w: 32-bit mode: ((12 + ((c 8) 4) 4) z) g
64-bit mode: ((12 + ((c 8) 8) 8) z) g

x: Value of pd_max_add_dbbuff_shm_no operand

y: Value of pd_max_add_dbbuff_no operand

17. Determining the Size of System Files and Audit Trail Files

659

z: Value obtained by adding the pd_max_add_dbbuff_no operand value to the total number of -i options
specified in the pdbuffer operand (if a value other than Y is specified in the pd_dbbuff_modify operand, 0 is
used)

A: With the -o option specified for the pdbuffer operand of the system common definition: 1
Without the -o option specified for the pdbuffer operand of the system common definition: 0

B: Total number of RDAREAs specified in the -r and -b options to the pdbuffer operand of the system common
definition

C: Total number of RDAREAs containing indexes specified in the -i option to the pdbuffer operand of the system
common definition

D: If Y is specified for the pd_dbbuff_modify operand of the system common definition:

• If the pd_max_add_dbbuff_no operand of the system common definition is specified: e + y

• If the pd_max_add_dbbuff_no operand of the system common definition is omitted: 1,000

If N is specified for the pd_dbbuff_modify operand of the system common definition: e

#1: For the 64-bit mode, use a value of 3,456.

#2: For the 64-bit mode, use a value of 688.

(b) HiRDB parallel server configuration

Type Formula for S

Unit [2,056 + 128 {14 (p - P + q + N) + (p - P + q + r)

+ (25 + 15 (p - P) + 7 q + 3 r) + (s 2 + 1) + (N 16)

+ (38 + 4 (p - P + q + r + N) + d + z + 3 (p - P + q + r + N))}] j

+ 944 j + 4,816 j + 40 j

+ 308 j + 4,000 j + 43,536 j

+ (16 + 8 M) j + 16 j

 If the unit has a system manager, add:

+ (L + 16 M) j

 If you are not using the standby-less system switchover (effects distributed) facility, add:

+ 32 j

 If you are using the standby-less system switchover (effects distributed) facility, add:

+ [20,480 {1 + ((152 f) - (16 g) - (80 Q) + (8 R)) 20,476 + (4g + 4S)
20,480 }] j

Front-end server 128 j + 3,280#1 j + (592#2 + A b) j

+ 8,192 j + (8,192 - 128) j { (a + C) B - 1}

+ 8,192 j + 2,048 j

+ {244 + 64 (2 e + 7)} j + 96 j + 32 j

 If the pd_log_auto_unload_path operand is specified, add:

+ 20,848 j

Dictionary server 128 j + 3,280#1 j + (592#2 + A b) j

+ 8,192 j + 8,192 j { (a + C) B - 1}

+ [{(c 127 + 1) 2,048} 8,192 8,192] j

+ 2,048 j + {244 + 64 (2 h + 7)} j + 96 j

+ {48 + 68 (2 h + 7)} j

+ [20,480 {1 + ((152 f) - (16 g) - (80 Q) + (8 R))

 20,476 + (4g + 4S) 20,480 }] j

+ (12 c + 4) j + 32 j

17. Determining the Size of System Files and Audit Trail Files

660

Type Formula for S

+ H

+ (4 + 16 c) j

 If the status file record length < 4,096, add:

+ MAX{3,400 D + 0.7, 1} MAX(4,096 n , 2)

 If 4,096 the status file record length < 12,288, add:

+ MAX{(3,400 (n - 348) 20) + 0.7, 1

 If 12,288 the status file record length, add:

+ MAX{(3,400 (n - 876) 20) + 0.7, 1}

 If you are using the system switchover facility, add:

+ ((256 c + 4,096) 4,096 4,096) j

 If the pd_log_auto_unload_path operand is specified, add:

+ 20,848 j

 If you specify Y for the pd_dbbuff_modify operand, add:

+ G

Back-end server 128 j + 3,280#1 j + (592#2 + A b) j

+ 8,192 j + 8,192 j { (a + C) B - 1}

+ [{(c 127 + 1) 2,048} 8,192 8,192] j

+ 2,048 j + {244 + 64 (2 i + 7)} j + 96 j

+ {48 + 68 (2 i + 7)} j + (12 c + 4) j

+ [20,480 {1 + ((152 f) - (16 g) - (80 Q) + (8 R))

 20,476 + (4g + 4S) 20,480 }] j #3

+ 32 j + H + (4 + 16 c) j

 If the status file record length < 4,096, add:

+ MAX{3,400 D + 0.7, 1} MAX(4,096 n , 2) k

+ 5,662,310 D + 0.7 MAX(4,096 n , 2) m

 If 4,096 the status file record length < 12,288, add:

+ MAX{(3,400 (n - 348) 20) + 0.7, 1} k

+ (5,662,310 (n - 348) 20) + 0.7 m

 If 12,288 the status file record length, add:

+ MAX{(3,400 (n - 876) 20) + 0.7, 1} k

+ (5,662,310 (n - 876) 20) + 0.7 m

 When using the system switchover facility, add:

+ ((256 y + 4,096) 4,096 4,096) j

 If you are using the standby-less system switchover (effects distributed) facility, add:

+ 2,816 j + 80 j

+ 32 j

 If the pd_log_auto_unload_path operand is specified, add:

+ 20,848 j

 If you specify Y for the pd_dbbuff_modify operand, add:

+ G

 If the HiRDB Staticizer Option has been set up and the pd_max_reflect_process_count operand is
specified, add:

+ 256 j

+ (128 + 704) j

 If XDS is defined, add:

17. Determining the Size of System Files and Audit Trail Files

661

Type Formula for S

+ 32 j

a: Number of specified pdlogadfg operands

b: Number of specified pdlogadfg -d spd operands

c: Value of pd_max_rdarea_no operand

d: 3
For a HiRDB parallel server configuration on a single server machine, the value is 2.

e: (value of pd_max_users operand + value of pd_max_reflect_process_count operand) + 1
However, if a HiRDB parallel server configuration is used with a single server machine, (value of
pd_max_users operand + value of pd_max_reflect_process_count operand)

f: Number of specified pdbuffer operands

g: Number of -i options specified in the pdbuffer operand

h: Value of pd_max_dic_process operand + value of pd_max_reflect_process_count operand

i: Value of pd_max_bes_process operand + value of pd_max_reflect_process_count operand

j: Record length of status file minus 40

k: If the number of RDAREAs in the server 3,400, the value is 1.
If 3,401 number of RDAREAs in the server 6,800, the value is 2.
If 6,801 number of RDAREAs in the server, the value is 3.

m: If the number of RDAREAs in the server 10,200, the value is 0.
If 10,201 number of RDAREAs in the server 5,672,510, the value is 1.
If 5,672,511 number of RDAREAs in the server 11,334,820, the value is 2.
If 11,334,821 number of RDAREAs in the server, the value is 3.

n: Status file record length

p: Number of back-end servers in unit

q: 1 if there is a dictionary server in the unit; otherwise, 0

r: 1 if there is a front-end server in the unit; otherwise, 0

s: 1 if there is a system manager in the unit; otherwise, 0

y: When the inner replica facility is used, value of the pd_max_file_no operand
When the inner replica facility is not used, value of the pd_max_rdarea_no operand

z: 1 in the following cases:

• When there is a system manager in the unit

• When there is no system manager in the unit and local is specified in the pd_mlg_msg_log_unit
operand

0 when there is no system manager in the unit and manager is specified in the pd_mlg_msg_log_unit
operand or specification is omitted

A: 736

B: 11

C: 1

D: (n - 348) 20 + j 20 (MAX(4,096 n ,2) - 1)

G:
32-bit mode: (24 + 28 (I + 512) + 32 + 112 T) j
64-bit mode: (32 + 32 (I + 512) + 32 + 144 T) j

17. Determining the Size of System Files and Audit Trail Files

662

H:
32-bit mode: ((12 + ((c 8) 4) 4) K) j
64-bit mode: ((12 + ((c 8) 8) 8) K) j

I: Value of pd_max_add_dbbuff_shm_no operand

J: Value of pd_max_add_dbbuff_no operand

K: Value obtained by adding the pd_max_add_dbbuff_no operand value to the total number of specified -i
options in the pdbuffer operand (if a value other than Y is specified in the pd_dbbuff_modify operand, 0 is
used)

L: If the pd_system_expand_unit operand is specified: 16
If the pd_system_expand_unit operand is omitted: 0

M: If the pd_system_expand_unit operand is specified: number of units specified in the
pd_system_expand_unit operand

If the pd_system_expand_unit operand is omitted: 0

N: If the pd_ha_max_act_guest_servers operand is specified: the value specified for the
pd_ha_max_act_guest_servers operand

If the pd_ha_max_act_guest_servers operand is omitted: 0

P: Number of alternate BESs in the unit (alternate BESs when using the standby-less system switchover (1:1) facility)

Q: With the -o option specified for the pdbuffer operand of the system common definition: 1
Without the -o option specified for the pdbuffer operand of the system common definition: 0

R: Total number of RDAREAs specified in the -r and -b options of the pdbuffer operand of the system common
definition

S: Total number of RDAREAs containing indexes specified in the -i option of the pdbuffer operand of the system
common definition

T: If Y is specified for the pd_dbbuff_modify operand of the system common definition:

• If the pd_max_add_dbbuff_no operand of the system common definition is specified: f + J

• If the pd_max_add_dbbuff_no operand of the system common definition is omitted: 1,000

If N is specified for the pd_dbbuff_modify operand of the system common definition: f

#1: For the 64-bit mode, use a value of 3,456.

#2: For the 64-bit mode, use a value of 688.

#3: Do not add this value if you use the standby-less system switchover (effects distributed) facility.

17. Determining the Size of System Files and Audit Trail Files

663

17.4 Determining audit trail file capacity
Determine the capacity of the HiRDB file system for audit trail files using the following formulas.

Formula

HiRDB file system capacity for audit trail files (MB) = a + 19

a: Maximum amount of audit trail data (MB)
({b c}) (1,024 1,024)

When an audit trail file input/output error has occurred or an audit trail file swap has been executed using the
pdaudswap command, the swap occurs before the audit trail file reaches capacity. In this case, the free space
cannot be used until registration of data to the audit trail table terminates. For this reason, we recommend doubling
the value of a in advance.

b: Audit trail record size (bytes)
Find the audit trail record size using the following formula.

464 + d + e + f + g + h + i

c: Number of audit trail records
This is the number of records recorded by audit trail event type.

d: Length of SQL statement output to the audit trail record (bytes)
If the value of pd_aud_sql_source_size is 0 or is not specified: 0
If there is no SQL statement in the record item: 0
If there is a SQL statement in the record item, but the SQL statement is NULL: 0

In other cases:
MIN(value of pd_aud_sql_source_size, average SQL statement length) 4 4 + 8

e: Length of SQL data output to audit trail record (bytes)
If the pd_aud_sql_data_size value is 0 or is not specified: 0
If there is no SQL data in the record item: 0
If there is SQL data in the record item, but the SQL data is NULL: 0

In other cases:
MIN(value of pd_aud_sql_data_size, average length of SQL data) 4 4 + 8

f, g, h: Length of additional user information 1, 2 and 3 output to audit trail record (bytes)
If there is no additional user information in the record item or if that information is NULL: 0

In other cases:
average length of additional user information 4 4 + 8

i: Length of additional related product information output to audit trail record (bytes)
If there is no additional related product information in the record item or if that additional related product
information is NULL#1: 0

In other cases:
average length of additional related product information#2 4 4 + 8

#1
For details about conditions when additional related product information is NULL, see the relevant product
documentation.

#2
For details about average length of additional related product information, see the relevant product
documentation. If you find no pertinent information in that documentation, calculate the maximum length of
additional related product information.

For details about the audit trail record length and information output to the audit trail file, see the HiRDB Version 9
System Operation Guide.

17. Determining the Size of System Files and Audit Trail Files

664

18 Determining Work Table File Size
This chapter explains how to determine the size of a work table file.

665

18.1 Overview of work table files
This section describes the work table files that are used to temporarily store information needed to execute SQL
statements.

(1) Work table file creation timing
A work table file is a file that stores temporary information that is generated when the following operations are
performed:

• Execution of SQL statements#

• Batch index creation

• Index re-creation

• Index reorganization

• Execution of the rebalancing utility

#
A work table file is used at the time that a specific SQL statement is executed, such as when you join multiple
tables in a SELECT statement for retrieval, or execute CREATE INDEX. The following types of SQL processing
require work table files:

1. Retrieval specifying the UNION [ALL] or EXCEPT [ALL] clause

2.DROP SCHEMA
3.DROP TABLE
4.DROP INDEX
5. Revocation of access privileges by using REVOKE
6.CREATE INDEX
7. Creation of a list from a base table with an ASSIGN LIST statement

8. Specification of the following in a SELECT statement:

• Retrieval by joining multiple tables

• Specification of an ORDER BY clause in a column for which no index is defined

• Specification of an ORDER BY clause in a row-partitioned table

• Specification of a value expression containing a set function in the selection expression (applies only to a
HiRDB parallel server configuration)

• Specification of a value expression that includes the window function COUNT(*) OVER() in the selection
expression

• Specification of a GROUP BY clause

• Specification of a DISTINCT clause

• Specification of a retrieval condition based on multiple columns for which an index is defined

• Specification of a retrieval condition for a column for which a repetition column index is defined

• Specification of the facility for batch acquisition from functions provided by plug-ins for the SQL
optimization option, and specification of and searching for functions provided by plug-ins that use a plug-
index for a retrieval condition.

• Specification of a retrieval condition based on a column for which an index is defined, and for which either a
FOR UPDATE clause is specified or an update using this cursor exists

• Specification of a FOR READ ONLY clause

• Specification of a subquery of a quantified predicate

• Specification of a subquery of the IN predicate

18. Determining Work Table File Size

666

• Creation of an internally derived table in a retrieval from a view table or a retrieval in which a WITH clause is
specified

9. Specification in the query body at the insertion source of the INSERT statement of either of the following:

• An update table for a subquery that has an external reference

• An update table for the main query of the query expression body at the insertion source

10. Specification in an UPDATE statement of any of the following:

• A subquery that has an external reference in a search condition or update value, and specification of an update
table in that subquery

• A subquery with a quantified predicate in a search condition

• A subquery with the IN predicate in a search condition

• A column for which an index is defined as the update target and search condition, and use of that index

11. Specification in a DELETE statement of any of the following:

• An update table for a subquery in a search condition that has an external reference

• A subquery with a quantified predicate in a search condition

• A subquery with the IN predicate in a search condition

• A column for which an index is defined as the search condition, and use of that index

12.ALTER TABLE ADD PRIMARY KEY
13.ALTER TABLE DROP PRIMARY KEY

(2) Storing work table files
HiRDB creates a work table file in a HiRDB file system area. The HiRDB administrator must do the following:

• Use the pdfmkfs command to initialize HiRDB file system areas for creation of work table files.

• Use the pdwork operand of the system definition to specify the name of the HiRDB file system area that is to be
used.

This section explains how to determine the values to be specified in options of the pdfmkfs command options. The
following table describes the relationships between the pdfmkfs command options and work table file-related items.

Table 18‒1: Options for which values need to be specified

Option Description

-n Size of HiRDB file system area in which work table files are to be created

-l Maximum number of HiRDB files (work table files) that can be created in the HiRDB file system area

-e Maximum number of secondary allocations for the HiRDB file system area

-a Whether the HiRDB file system area extends automatically

18. Determining Work Table File Size

667

18.2 Determining the size of a HiRDB file system area
(pdfmkfs -n command)

Use the pdfmkfs command's -n option to specify the size of a HiRDB file system area in which a work table file is
created.

The following formula is used to obtain the size of a HiRDB file system area in which work table files are to be
created.

Formula

Size of HiRDB file system area (bytes) = A + B

A
Size of a work table file to be used by an SQL statement. For details about how to obtain this value, see 18.2.1
Size of a work table file used by an SQL statement.

B
Size of a work table file used by the database load utility (pdload), database reorganization utility (pdrorg),
and rebalancing utility (pdrbal). For details about how to obtain this value, see 18.2.2 Size of a work table file
used by a utility.

If you do not execute an SQL statement that uses a work table file concurrently with a utility that also uses a work
table file, specify either A or B, whichever is larger, as the size of the HiRDB file system area.

Notes
If the size of the HiRDB file system area obtained with this formula is too large for one HiRDB file system area,
initialize multiple HiRDB file system areas with the pdfmkfs command and specify the pdwork operand in the
HiRDB system definition. In this case, note the following:

• Set the size of each HiRDB file system area to the same value.

• Make the size of each HiRDB file system area larger than the size of a work table (for storing column
information).

• If you divide a HiRDB file system area into too many segments, unused area is distributed among multiple
HiRDB file system areas, and a shortage of space may occur because the space is not used efficiently.

• If the size of a single work table file exceeds 2 gigabytes, use large files. A single work table file cannot be
partitioned among multiple HiRDB file system areas.

18.2.1 Size of a work table file used by an SQL statement
To determine the size of a work table file used by an SQL statement, use the following formula:

Size of a work table file used by an SQL statement (bytes) = MAX (a, b) c

a: Maximum size of a work table file that is used by one SQL statement
Calculate the size of a work table file for each SQL statement and use the largest such size as the value of a. For
details about how to obtain this value, see (1) Formula for calculating the size of the work table file to be used by
one SQL as follows.

b: Maximum size of a work table file that is used by an ASSIGN LIST statement.
Calculate the size of a work table file for each ASSIGN LIST statement and use the largest such size as the value
of b. For details about how to obtain this value, see (2) Formula for calculating the size of the work table file to be
used by the ASSIGN LIST statement as follows.

c: Value of the pd_max_users operand + value of the pd_max_reflect_process_count operand
However, when multiple front-end servers are being used, the back-end servers are (value of the
pd_max_bes_process operand + value of the pd_max_reflect_process_count operand).

18. Determining Work Table File Size

668

(1) Formula for calculating the size of the work table file to be used by one SQL
The following formula is used to calculate the size of the work table file that is to be used by one SQL statement.

Formula

Size of work table file to be used by one SQL statement (bytes) = a b + c d

a: Size of a column information work table

b: Maximum number of column information work tables

c: Size of a location information work table

d: Maximum number of location information work tables

(a) Obtaining the size of a column information work table

To obtain the size of a column information work table, use the following formula:

Formula

Size of a column information work table (bytes)

= a MIN{ (b - 48) c , 255 } b 2

a: Number of rows in the column information work table (see Table 18-2 Obtaining the number of rows in a column
information work table)

b: Page length of the work table (use Formula 1 as follows)

c: Row length of the work table (use Formula 2 as follows)

Formula 1

Page length for a work table# = MAX { (row length for work table + 48) 2,048 2,048, 4,096}

#: The page length of a work table must be no greater than 32,768 bytes.

Formula 2

Row length for a work table# =

n

 Ai + 2 n + 6

i = 1

Ai:
Data length for each column in work table (see Table 18-3 Obtaining the data length for each column and the
number of columns in a work table for the calculation procedure)

n:
Number of columns in work table (see Table 18-3 Obtaining the data length for each column and the number of
columns in a work table for the calculation procedure)

#: The row length of a work table must be no greater than 32,720 bytes.
If the LIMIT clause is specified and the value of (number of offset rows + number of rows specified in the
LIMIT clause) is 32,768 or greater, add 12 to the row length of the work table obtained from Formula 2.
However, addition of 12 is not necessary in the following cases:

• The table to be searched is locked in the EX mode.

• WITHOUT LOCK was specified.

• The rapid grouping facility was specified.

• Multiple tables are to be joined.

18. Determining Work Table File Size

669

Table 18‒2: Obtaining the number of rows in a column information work table

SQL statement Number of rows in column information work table

SELECT statement This is the total number of rows subject to retrieval in individual tables. If multiple tables
are joined, then use the resulting number of rows, if it is greater.

• CREATE INDEX
• ALTER TABLE ADD PRIMARY KEY

This is the number of rows in a table. For an index for repetition columns, use the total
number of elements per repetition column among the index component columns.

Table 18‒3: Obtaining the data length for each column and the number of columns in a work table

SQL statement N Ai

SELECT statement Number of columns specified in the select
expression + number of columns specified
in the GROUP BY clause# + number of
columns specified in the ORDER BY
clause# + number of column specified in
the HAVING clause# + 1 if the FOR
UPDATE clause is specified#

If ROW is specified in the selection
expression, specify the total number of
rows in the table.

Data length for each column

However, for large object data (BLOB),
character data with a defined length of 256
or greater (including National and mixed
character data), or binary data for columns
that do not have the following attributes or
for location information columns: 12

• Column specified in a join condition
(join column)

• Selection expression with DISTINCT
clause specified

• Column specified in the subquery
selection expression with a quantified
predicate

• Column specified in the subquery
selection expression with the IN
predicate

• Selection expression in a query
specification subject to set operation
with UNION[ALL] or EXCEPT[ALL]

• Column specified in the ORDER BY
clause

• CREATE INDEX
• ALTER TABLE ADD PRIMARY KEY

1 (index information column) + 1
(positional information column)

• For an index information column,
specify the sum of the data lengths for
index component columns

• 12 for a positional information column

Note
For details about the data lengths of columns, see the following tables:

• Table 16-1 List of data lengths

• Table 16-2 Data lengths for the variable-length character string type (except abstract data type and repetition
columns)

• Table 16-3 Data lengths for the variable-length character string type (abstract data type)

• Table 16-4 Data lengths for the variable-length character string type (repetition columns)

#
When the columns are the same as ones specified in the selection expression, there is no need to add this term.

(b) Obtaining the maximum number of column information work tables

The following table shows how to calculate the maximum number of column information work tables.

Table 18‒4: Obtaining the maximum number of column information work tables

SQL statement Maximum number of work tables for storing column information#1

SELECT statement When none of 1-10 as follows is applicable: 0

18. Determining Work Table File Size

670

SQL statement Maximum number of work tables for storing column information#1

When any of 1-10 as follows is applicable: Sum of all the applicable values from 1-10

1. When multiple tables are joined for retrieval
Number of additional work tables (HiRDB single server configuration) = number of joined tables
+ 1
Number of additional work tables (HiRDB parallel server configuration) = number of joined tables

 2
If the join key column has an index and there is a limitation condition, the number of work tables
is 0.

2. When specifying the ORDER BY clause
Number of additional work tables = 2
When an index containing all the columns specified in the ORDER BY clause is to be used for
search processing = 0

3. When specifying a value expression containing a set function in the selection expression without
specifying the GROUP BY clause#2

Number of additional work tables = 1

4. When specifying the GROUP BY clause
Number of additional work tables = number of GROUP BY clauses specified 2

5. When specifying the DISTINCT clause
Number of additional work tables = number of DISTINCT clauses specified 2

6. When specifying the UNION[ALL] or EXCEPT[ALL] clause
Number of additional work tables (HiRDB single server configuration) = number of
UNION[ALL] or EXCEPT[ALL] clauses specified + 2
Number of additional work tables (HiRDB parallel server configuration) = (number of
UNION[ALL] or EXCEPT[ALL] clauses specified + 1) 2

7. When specifying the FOR UPDATE clause or when using this cursor for updating purposes and
specifying a search condition for a column with the index defined#2

Number of additional work tables = 2

8. When specifying the FOR READ ONLY clause
Number of additional work tables = 1

9. When specifying a subquery (quantified predicate)
Number of additional work tables = number of subqueries specified + (number of =ANY quantified
predicates for a column with the index defined) + (number of IN predicate subqueries specified
for a column with the index defined) + (number of =SOME quantified predicates for a column with
the index defined)

10. When specifying the window function COUNT(*) OVER() in a selection expression
Number of increased work tables = number of query specifications in which the window function
is specified in the selection expression

• CREATE INDEX
• ALTER TABLE ADD
PRIMARY KEY

2

#1: A work table might not be created depending on the access cost determined by HiRDB.

#2: Applicable only to a HiRDB parallel server configuration

(c) Obtaining the size of a location information work table

To obtain the size of a location information work table, use the following formula:

Formula

Size of a location information work table (bytes)

= a 184# 4,096 2

#: If an index-type plug-in function is specified as the search condition, use the value 155.

18. Determining Work Table File Size

671

a: Number of rows in the location information work table
The following shows the procedure for obtaining the number of rows in the location information work table:

SQL statement Obtaining the number of rows in the location information work table

SELECT statement

UPDATE statement

DELETE statement

If the search condition contains one predicate that includes a column with the index defined, use the
number of rows for which the predicate is true. If there is more than one predicate, use the sum of the
following values:

• If OR operation is conducted on the predicates, the total number of rows for which at least one
predicate is true.

• If AND operation is conducted on the predicates, sum of the larger numbers of rows for which the
predicates are true.

(d) Obtaining the maximum number of location information work tables

The following table shows how to calculate the maximum number of location information work tables.

Table 18‒5: Obtaining the maximum number of location information work tables

SQL statement Maximum number of location information work tables

SELECT statement Number of indexes to be used during search + 1 in either of the following cases:

1. Search condition is specified for multiple columns with index defined.

2. The FOR UPDATE clause is specified or this cursor is used for updating purposes and a
search condition is specified for the column with index defined.#

3. Search condition is specified for a column for which a repetition column index is defined.

4. Facility for batch acquisition from functions provided by plug-ins is specified as the SQL
optimization option and a function provided by a plug-in that uses a plug-in index is
specified as a search condition.

In all these cases, the value is the number of indexes used during a search + 1.

UPDATE statement

DELETE statement

If the search condition contains a column with an index defined, use the number of indexes used
during search processing + 1.

#: This is applicable to a HiRDB single server configuration only.

(2) Formula for calculating the size of the work table file to be used by the ASSIGN LIST
statement

To obtain the size of a work table file used by the ASSIGN LIST statement, use the following formula:

Formula

Size of work table file to be used by the ASSIGN LIST statement (bytes) =

n

 (Bi 2)
i = 1

n: Number of predicates in the selection condition of the ASSIGN LIST statement

Bi: Size of the work table used to process predicate i in the search condition. Use the following formula to obtain this
value:

Bi = number of rows for which predicate i is true in the base table for the list# 504 4,096 1.5
(bytes)

#: If the predicate is a condition for a repetition column, this value is the total number of elements that are true.

18. Determining Work Table File Size

672

18.2.2 Size of a work table file used by a utility
If you create an index in batch mode, re-create an index, reorganize an index, or reorganize data using the rebalancing
utility, you need the following size of work table file:

Formula

Size of a work table file used by a utility (bytes) = {A + B} 2 D} C

A: Number of rows in the work table required for index creation 1

B: Number of rows in the work table required for index creation 2

C: Number of rows per work table page

D: Page length of work table

Notes

• If you create multiple indexes in batch mode or re-create multiple indexes using one utility, obtain the size for
the index with the longest index key.

• If you execute batch index creation and re-creation concurrently, obtain the size of work table file for each
operation and add the sizes.

• If you execute multiple utilities concurrently, obtain the total of the sizes of the work table files calculated for
each utility.

(1) Obtaining the number of rows in the work table required for index creation 1
To obtain the number of rows in the work table required for index creation 1, use the following formula:

Formula

Number of rows in work table 1

= c { a (100 - b) 0.01 (d + 22) }

a: Page size of a user RDAREA used to store the index

b: Percentage of unused area specified in the PCTFREE operand of the CREATE INDEX statement

c: Number of data items
For the index for repetition columns, use the sum of the elements of each row per repetition column among the
index component columns.

d: Length of index key
For details about the length of the index key, see Table 16-5 List of index key lengths. Because the key lengths
stored in the database are based on a 4-byte boundary, it becomes key length 4 4.
For multiple indexes, add the key lengths of all component columns on the basis of Table 16-5 List of index key
lengths.

(2) Obtaining the number of rows in the work table required for index creation 2
To obtain the number of rows in the work table required for index creation 2, use the following formula:

Formula

Number of rows in work table 2

= c { a (100 - b) 0.01 (d + 14) }

a: Page size of a user RDAREA used to store the index

b: Percentage of unused area specified in the PCTFREE operand of the CREATE INDEX statement

c: Number of rows in the work table required for index creation 1
Use the value obtained at (1) previously.

18. Determining Work Table File Size

673

d: Length of index key
For details about the length of the index key, see Table 16-5 List of index key lengths. Because the key lengths
stored in the database are based on a 4-byte boundary, it becomes key length 4 4.
For multiple indexes, add the key lengths of all component columns on the basis of Table 16-5 List of index key
lengths.

(3) Obtaining the number of rows per work table page
To obtain the number of rows per work table page, use the following formula:

Formula

Number of rows per work table page = MIN{ (b - 48) a 255}

a: Length of row in the work table (index key length + 18)
For details about the length of the index key, see Table 16-5 List of index key lengths. The key length is key
length 4 4.
For multiple indexes, add the key lengths of all component columns on the basis of Table 16-5 List of index key
lengths.

b: Page length of the work table
See (4) as follows.

(4) Obtaining the page length of a work table
To obtain the page length of a work table, use the following formula:

Formula

Page length of work table# = MAX{ (Row length of work table + 48) 2,048 2,048, 4,096}

#: The page length of a work table must be no more than 32,768 bytes.

a: Length of row in the work table (index key length + 18)
For details about the length of the index key, see Table 16-5 List of index key lengths. The key length is key
length 4 4.
For multiple indexes, add the key lengths of all component columns on the basis of Table 16-5 List of index key
lengths.

18. Determining Work Table File Size

674

18.3 Determining the maximum number of files (pdfmkfs
-l command)

To specify the maximum number of work table files to be created in a HiRDB file system area, use the pdfmkfs
command's -l option.

You can use the following formula to determine the maximum number of work table files that need to be created in a
HiRDB file system area:

Formula

Maximum number of files = MAX(a, b) c + 20 + 2#

a: Number of work table files to be used by one SQL statement
Calculate the number of work table files to be used by each SQL statement and specify the largest such value for a
in the formula; see (1) as follows.

b: Number of work table files to be used by an ASSIGN LIST statement
Calculate the number of work table files to be used by each ASSIGN LIST statement and specify the largest such
value for b in the formula; see (2) as follows.

c: Value of the pd_max_users operand + value of the pd_max_reflect_process_count operand
However, when multiple front-end servers are being used, the back-end servers are (value of the
pd_max_bes_process operand + value of the pd_max_reflect_process_count operand).

#: Add this value if you execute an SQL statement that uses a work table file concurrently with a utility that also uses
a work table file (database load utility or database reorganization utility).

(1) Obtaining the number of work table files to be used by one SQL statement
To obtain the number of work table files to be used by one SQL statement, use the following formula:

Formula

Number of work table files to be used by one SQL statement =

maximum number of column information work tables + maximum number

of location information work tables

For details about the maximum numbers of column information work tables and location information work tables, see
18.2.1 Size of a work table file used by an SQL statement.

(2) Obtaining the number of work table files to be used by an ASSIGN LIST statement
To obtain the number of work table files to be used by an ASSIGN LIST statement, use the following formula:

Formula

Number of work table files to be used by an ASSIGN LIST statement =

number of predicates in the search condition of ASSIGN LIST
statement 2

(3) Note
When specifying multiple HiRDB file system areas to create work table files, note the following:

• If the value obtained is greater than 4,096, specify a value of 4,096 in the -l option.

18. Determining Work Table File Size

675

18.4 Determining the maximum number of extensions
(pdfmkfs -e command)

To specify the maximum number of extensions for a work table file in a HiRDB file system area, use the -e option in
the pdfmkfs command.

You can use the following formula to determine the maximum number of extensions for the HiRDB file system area:

Formula

Maximum number of extensions

= MIN(maximum number of files 23, 60,000)

Note 1
When the maximum number of extensions is smaller than the estimated value, it might become impossible to
secure area even when there is free space in the HiRDB file system area.

Note 2
For details about how to obtain the maximum number of files, see 18.3 Determining the maximum number of files
(pdfmkfs -l command).

18. Determining Work Table File Size

676

19 Storage Requirements for Utility
Execution
This chapter explains how to determine the file sizes and storage requirements for
execution of utilities.

677

19.1 Determining the file sizes required for utility
execution

19.1.1 File sizes required for the execution of the database load utility
(pdload)

The following table shows the formulas for determining the file sizes required for the execution of the database load
utility (pdload):

File type Formula (bytes)

Input data file h b

Index information file B-tree index:
(d + y) (b + e) + 512

Plug-in index:
(12 + q) p + 1,024

These formulas are for the size of one index. If there are multiple indexes, determine the size of
each index.

Error information file k f + s 200

Temporary file for creating error
information file

In the following conditions, the work file output directory will need number of key duplication
errors 8 + number of errors detected by plug in function 200 of space for each server that
has a table storage RDAREA. For details about work file output destination directories, see 2.3.2
Creating a work file output directory.

• For a HiRDB single server configuration, a utility special unit contains the input files.

• For a HiRDB parallel server configuration, the server that contains the input files is different
from the server containing the table storage RDAREAs.

LOB input file EasyMT used to create the LOB input file:

a

 (LOB data length + 400)

i=1

LOB input file by column:

b

 (LOB data length + 4)i

i=1

LOB middle file B

{

i=1

c

 (LOB file name length-ij + 36) + 24} + 1,024 + c 84

j = 1

Error data file MIN(f, g) h

Process results file 1,500 + number of servers storing table 500

Work file# [4 + 2 R + 2 r + 4 I R + {b (value of past message output interval specified by the
-m option)}] 200

Work file for sorting Condition 1:

Size of index information file + 4 (b + e)

19. Storage Requirements for Utility Execution

678

File type Formula (bytes)

Condition 2:

{Size of index information file + 4 (b + e)} 2

• Condition 1
When 1,024 (KB) E

• Condition 2
When 1,024 (KB) < E

E: Buffer size
The buffer size obtained according to 19.1.12 Buffer size used to determine the size of the work
file for sorting.

a: Number of input rows number of LOB columns

b: Number of input rows (for a repetition column, number of input rows number of elements)

c: Number of LOB columns

d: Index key length
See Table 16-5 List of index key lengths. For variable-length data, treat a single column as multicolumn and use
the largest defined length.

e: Number of existing rows (for a repetition column, number of existing rows number of elements)

f: Number of error data items

g: Number of output rows specified in the errdata operand of the source statement

h: Average source record length

k: If there is a column with an abstract data type, the value is 300; otherwise, it is 120.

m: For a DAT-format file or a binary format file output by pdrorg, the value is 0.
For any other file, the value is (record length of one row in the input file 4).

p: If index storage RDAREAs are initialized, the value is (b + e); otherwise, the value is b.

q: Value as follows

• 27 for the abstract data type stored in the LOB RDAREA

• Key length + 2 for the abstract data type of a maximum of 255 bytes of definition length

• 2 for the abstract data type of 256 bytes or more of definition length

Typical abstract data type values are as follows.

• 27 for the SGMLTEXT type

• 2 for the FREEWORD, GEOMETRY, and XML types

r: Number of RDAREAs for LOB storage

s: Number of servers

y: If all key component columns are fixed length, the value is 10; if they include a variable length, the value is 12.

I: Number of indexes

R: Number of partitioned index or table RDAREAs

Note
When calculating the size of index information files and sort work files, if the index configuration columns are
repetition columns, b and e do not refer to the number of rows but to (number of rows number of elements).

#
Output if lvl2 is specified as the information message output suppression level in the -m option.

19. Storage Requirements for Utility Execution

679

19.1.2 File sizes required for the execution of the database
reorganization utility (pdrorg)

The following table shows the formulas for determining the file sizes required for the execution of the database
reorganization utility (pdrorg):

File type Formula (bytes)

Unload data file#1 (no
options specified)

n

 (Pi + M) + Li
#7

 + 1,200 + A + B + c 96 + D + I + F

i=1

Unload data file#1 (-w
option specified)

DAT or extended DAT format:

{

c

(maximum length of converted character string for column i #2 + 1) C + M

i = 1

} n

FIX table in binary format:

{

c

(column data length i#3) + M

i = 1

} n

Non-FIX table in binary format:

{

c

(column data length i#3 + G) + M + 4 (c + 1)

i = 1

} n

Fixed-length character format:

{

c

(maximum length of converted character string for column i #4 + crlf) C + M

i = 1

} n

Unload data file#1 (-j
option specified or during
reorganization in units of
schemas)#5

n

 (Pi + M) + Li
#7 +

i = 1

n

{

i = 1

m

 (Oij + 44)

j = 1

} + 1,200 + A + B + c 96 + D + I + F

LOB data unload file#1 n

{

i = 1

19. Storage Requirements for Utility Execution

680

File type Formula (bytes)

m

 (Oij + 44)

j = 1

} + 1,200 + A + B + c 96 + D + I + F

Index information file B-tree index:

(K + p) n + 512

Plug-in index:

(12 + X) n + 1,024

These formulas are for the size of one index. If there are multiple indexes, determine the size of each index.

Process results file 1,700 + number of servers storing table 500 + number of tables in schema 1,000 + total number of
storage RDAREAs in schema 100

Work file#6 [8 + 2 S + 2 {n (value of past message output interval specified by the -m option)} + 3 R + 4
 J R] 200

Work file for sorting Condition 1:

Size of index information file + 4 n

Condition 2:

{Size of index information file + 4 n} 2

• Condition 1
When 1,024 (KB) E

• Condition 2
When 1,024 (KB) < E

E: Buffer size
The buffer size obtained according to 19.1.12 Buffer size used to determine the size of the work file for
sorting.

A: For key range partitioning: 48 + number of partitioning conditions 284
For hash partitioning: 40 + a 60
For matrix partitioning (combination of key range partitioning of the boundary value specification and hash
partitioning): 48 + (number of partitioning conditions 284) + (40 + a 60)

B: n 36 (for FIX table) or (44 + c 4) n (for non-FIX table)

C: If the output character encoding of the unload data file is not a default HiRDB character encoding: 2
Otherwise: 1

D: 16 + (number of LOB columns a 80)
Add the value of D only if there are LOB columns.

F: Use the following value:

D

{(number of abstract-data-type attributes provided by plug-in in column i 84) +

i = 1

(number of abstract-data-type LOB attributes provided by plug-in in column i a 72)}

+ 64 +

d

 (84 + number of reverse generation functions i 60)

i = 1

G: Number of attributes for which the return value of the reverse generation function on column I is BLOB 4

19. Storage Requirements for Utility Execution

681

I: 136 + number of index partitions 60
Add this value when including the index.

J: Number of indexes

K: Index key length
See Table 16-5 List of index key lengths. For variable-length data, keep in mind when defining the maximum
length that single columns are also handled as multicolumns.

Li: Actual length of row
Obtain the actual row length (approximate or accurate value). If the row is BINARY type and has the compression
specification, we recommend that you obtain an approximate value because obtaining an accurate value requires a
complicated calculation.

Obtaining an approximate value:
Use the following formula to obtain from the data stored in the database an approximate value (bytes) for the
sum of the actual lengths of all rows:

Number of pages used in the table storage RDAREA page length of the table storage RDAREA

You can obtain the number of pages used in the table storage RDAREA and the table storage RDAREA's page
length from the results of a condition analysis by RDAREA (logical analysis) or table that are provided by
pddbst.

Obtaining an accurate value:
Use the following values to obtain the actual row length for the data stored in each column:

Column's data type Actual length (bytes)

BLOB 16

Abstract data type provided by plug-
ins

2

BINARY# • If pdrorg -k rorg is specified with the compression specification and no UOC is used
Definition length + 8 MAX(number of times a concatenation operation was used in the
UPDATE SQL statement,

definition length split compression size)

• Otherwise
Definition length of the BINARY type column

Other Actual length of each column

#
For obtaining the maximum actual row length, this assumes BINARY type data whose length is the definition
length and that the compression rate is 0%.

M: Total data length of the character string type column for which the character set is specified
The value is as follows:

k

(column data length i)

i = 1

Oij: LOB data length

Pi: Data length of the abstract data type provided by a plug-in

R: Number of partitioned table or index RDAREAs

S: Number of table-storing servers

X: Value is as follows

• 27 for the abstract data type stored in the LOB RDAREA

• Key length + 2 for the abstract data type of a maximum of 255 bytes of definition length

19. Storage Requirements for Utility Execution

682

• 2 for the abstract data type of 256 bytes or more of definition length

Typical abstract data type values are as follows.

• 27 for the SGMLTEXT type

• 2 for the FREEWORD, GEOMETRY, and XML types

a: Number of partitioned RDAREAs

c: Number of column definitions

d: Number of columns for which the abstract data type provided by a plug-in is defined

k: Number of character string type columns for which the character set is specified

m: Number of LOB columns

n: Number of rows (for a repetition column, number of rows number of elements)

p: If all key component columns are fixed length, the value is 10; if they include a variable length, the value is 12.

crlf: Length of linefeed characters added when cr or crlf is specified in the -W option
Determine the length of linefeed characters from the following table:

-W option value Value to be added

-W dat or -W extdat ,cr 1

,crlf 2

Not specified 1

-W fixtext ,cr 1

,crlf 2

Not specified 0

Note
When calculating the size of index information files and sort work files, if the index configuration columns are
repetition columns, the number of rows to reload and n do not refer to the number of rows but to (number of rows

 number of elements).

#1: If the file is larger than 2 GB, take one of the following actions:

• Create multiple files, each of which is no larger than 2 GB.

• Use large files. For details about how to create large files, see 4.3 Creating HiRDB file system areas.

#2: The following table lists maximum lengths of converted character strings for columns in DAT format (-W dat) or
extended DAT format (-W extdat).

Table 19‒1: Maximum lengths of converted character strings for columns (in DAT or extended DAT
format)

Data type Maximum length of converted character string
(bytes)

Numeric data INTEGER 11

SMALLINT 11

DECIMAL 40

FLOAT 23

SMALLFLT 23

Character string data#1 CHARACTER Defined length + 2#2

VARCHAR Actual length + 2#2

Mixed character string data#1 MCHAR Defined length + 2#2

19. Storage Requirements for Utility Execution

683

Data type Maximum length of converted character string
(bytes)

MVARCHAR Actual length + 2#2

National character data#1 NCHAR Defined length + 2#2

NVARCHAR Actual length + 2#2

Date data DATE 10

Time data TIME 8

Date interval data INTERVAL YEAR TO DAY 9

Time interval data INTERVAL HOUR TO SECOND 7

Time stamp data TIMESTAMP 19

If the number of digits for fractions of a second is not 0,
add the number of digits for fractions of a second + 1.

Binary data#1 BINARY Actual length + 2#2

#1: If data in extended DAT format contains a double quotation mark ("), the length of the converted character
string becomes longer by the number of double quotation marks.

#2: Two bytes are added for the enclosing brackets.
If -W dat or -W extdat is specified and sup is specified in the operand, the maximum lengths of converted
character strings take effect on the columns as shown below. Note that the actual length indicates the length
without the trailing consecutive spaces. For details about the space-compressed output format, see the -W
option of the database reorganization utility (pdrorg) in the manual HiRDB Version 9 Command Reference.

Data type Maximum lengths of converted character string (bytes)

Character string data CHARACTER Actual length + 2

Mixed character string data MCHAR Actual length + 2

National character data NCHAR Actual length + 2

#3: For details about the data length, see the following tables:

• Table 16-1 List of data lengths

• Table 16-2 Data lengths for the variable-length character string type (except abstract data type and repetition
columns)

• Table 16-3 Data lengths for the variable-length character string type (abstract data type)

• Table 16-4 Data lengths for the variable-length character string type (repetition columns)

#4: The following table lists maximum lengths of converted character strings for columns in fixed-length character
format (-W fixtext).

Table 19‒2: Maximum lengths of converted character strings for columns (fixed-length character
format)

Data type Maximum lengths of converted character string (bytes)

Numeric data INTEGER 11

SMALLINT 6

DECIMAL Number of digits + 2

FLOAT 23

SMALLFLT 23

19. Storage Requirements for Utility Execution

684

Data type Maximum lengths of converted character string (bytes)

Character string data CHARACTER
VARCHAR

Defined length If fixtext_option is specified in the
enclose operand, add 2 to the output
length.

Mixed character string data MCHAR
MVARCHAR

Defined length

National character data NCHAR
NVARCHAR

Defined length
 2

Date data DATE 10

Time data TIME 8

Date interval data INTERVAL YEAR TO DAY 10

Time interval data INTERVAL HOUR TO SECOUND 8

Time stamp data TIMESTAMP Decimal part

0:19 2:22 4:24 6:26

Large object data BLOB 0

Binary data BINARY 0

Abstract data type ADT 0

#5: If you are reorganizing files in units of schemas (including unload files), use the sum of the values obtained for
individual tables.

#6: Output if lvl2 is specified as the information message output suppression level in the -m option.

#7: To obtain an accurate value of Li, replace (Pi + M) + Li with (Li + Pi + M).

19.1.3 File sizes required for the execution of the statistics analysis utility
(pdstedit)

The following table shows the formulas for determining the file sizes required for the execution of the statistics
analysis utility (pdstedit):

File type Formula (bytes)

Temporary
work file

Statistical information about system
activity

4,096 collection count# 2

Statistical information about system
activity per server

4,096 collection count# number of servers 2

Statistical information about UAPs 872 number of UAPs to be executed or number of transactions to be
executed 2

Statistical information about SQL 512 number of SQLs to be executed 2

Statistical information about SQL
static optimization

512 SQL object cache mishit count

Statistical information about SQL
dynamic optimization

49,624 number of SELECT statements issued by OPEN or EXECUTE
(including INSERT SELECT)

Statistical information about SQL
object execution

512 number of SQLs to be executed number of servers

Statistical information about SQL
object transfer

256 number of SQLs to be executed number of servers

19. Storage Requirements for Utility Execution

685

File type Formula (bytes)

Statistical information about the
history of SQL statements

(1,024 + average SQL length) number of SQLs to be executed

Statistical information about
CONNECT/DISCONNECT

256 number of CONNECTs and DISCONNECTs

Statistical information about global
buffer

512 number of synchronization points 2

Statistical information about
database manipulation for HiRDB
files

512 number of synchronization points 2

Statistical information about
deferred write processing

512 number of deferred write operations 2

Statistical information about
indexes (input: STJ)

128 number of synchronization points 2

Statistical information about
indexes (input: FJ)

128 number of page splits 2

Statistical information about
database I/O

256 total number of HiRDB files that make up the RDAREAs accessed at
each acquisition time interval 2

Work file for
sorting

Work area for sorting the above
types of temporary work files for
analysis

Maximum size of the temporary work files that will be needed for analysis

DAT-

format file

Statistical information about system
activity

3,404 collection count#

Statistical information about system
activity per server

3,262 collection count# number of servers

Statistical information about UAPs 1,991 number of UAPs to be executed or number of transactions to be
executed

Statistical information about SQL 447 number of SQLs to be executed

Statistical information about SQL
static optimization

646 SQL object cache mishit count

Statistical information about SQL
dynamic optimization

380 number of SELECT statements issued by OPEN or EXECUTE
(including INSERT SELECT)

Statistical information about SQL
object execution

520 number of SQLs to be executed number of servers

Statistical information about SQL
object transfer

389 number of SQLs to be executed number of servers

Statistical information about the
history of SQL statements

(240 + average SQL length) number of SQLs to be executed

Statistical information about
CONNECT/DISCONNECT

278 number of CONNECTs and DISCONNECTs

Statistical information about global
buffer

600 number of synchronization points

Statistical information about
database manipulation for HiRDB
files

356 number of synchronization points

Statistical information about
deferred write processing

300 number of deferred write operations

19. Storage Requirements for Utility Execution

686

File type Formula (bytes)

Statistical information about
database I/O (DAT output)

196 total number of HiRDB files that make up the RDAREAs accessed at
each acquisition time interval

#: Collection count = (pdstend command input time - pdstbegin command input time) interval specified
with the -m option

(1) Approximate size of a temporary work file
You can use the formula shown below to obtain an approximation of the size of a temporary work file that is created
during execution of the statistics analysis utility. This formula assumes that all information in the statistics log file that
is input to the utility is analyzed.

Size of temporary work file = size of statistics log file a (bytes)

a
Use one of the values listed below, depending on the type of statistical information contained in the statistics log
file. If the statistics log file contains more than one type of statistical information, use the largest value for a.

Type of statistical information Value for a

System activity statistical information 3.4

SQL dynamic optimization information 135.6

Other 2

About errors
If the statistics log file contains multiple types of statistical information and one of them is SQL dynamic
optimization information, the difference between the approximated value and the actual value might be large
depending on the ratio of the SQL dynamic optimization information contained in the file. If you want to reduce
this difference, make a separate calculation for SQL dynamic optimization information.
You can use the following formula to obtain the temporary work file size for SQL dynamic optimization
information:

Size of temporary work file for SQL dynamic optimization information = number of SQL dynamic optimization information items
49,624 (bytes)

You can obtain the number of SQL dynamic optimization information items from the input log file summary
information that is output when you execute the statistics analysis utility. For details about the input log file
summary information, see Statistics analysis utility (pdstedit) in the manual HiRDB Version 9 Command
Reference.

(2) Approximate size of a work file for sorting
You can use the formula shown below to obtain an approximation of the size of a work file for sorting that is created
during execution of the statistics analysis utility. This formula assumes that all information in the statistics log file that
is input to the utility is analyzed.

Size of work file for sorting = size of statistics log file b (bytes)

b
Use one of the values listed below, depending on the type of statistical information contained in the statistics log
file. If the statistics log file contains more than one type of statistical information, use the largest value for b.

Type of statistical information Value for b

System activity statistical information 1.7

Other 1

19. Storage Requirements for Utility Execution

687

(3) Approximate size of a DAT format file
You can use the formula shown below to obtain an approximation of the size of a DAT format file that is created
during execution of the statistics analysis utility. This formula assumes that all information in the statistics log file that
is input to the utility is analyzed.

Size of DAT format file = size of statistics log file 2 (bytes)

19.1.4 File sizes required for the execution of the database condition
analysis utility (pddbst)

The following table shows the formulas for determining the file sizes required for the execution of the database
condition analysis utility (pddbst):

File type Formula (bytes)

Work file Physical analysis by RDAREA 1 + 4.1 a

Logical analysis by RDAREA a

1 + 4.1 (

i=1

number of tables in RDAREAi

+ number of indexesi

+ number of LOB RDAREAsi)

Accumulating condition analysis result
or reorganization time prediction#

a

1 + 4.1 (

i=1

number of tables in RDAREAi

+ number of indexesi

+ number of LOB RDAREAsi)

Status analysis in units of tables 1 + 4.1 (number of storage RDAREAs)

Status analysis in units of indexes 1 + 4.1 (number of storage RDAREAs)

Cluster key status analysis 1 + 4.1 (number of storage RDAREAs)

Work file for
sorting

Work area for sorting the above work
files

Value obtained from the above formula 2

#: When pddbst -r ALL is specified, the number of resources in the dictionary RDAREAs as well as in the user
RDAREAs must be added. For partitioned tables and indexes, add the number for each RDAREA.

a: Number of RDAREAs subject to analysis

19.1.5 File sizes required for the execution of the database copy utility
(pdcopy)

The following table shows the formulas for determining the file sizes required for the execution of the database copy
utility (pdcopy):

File type Formula (bytes)

Backup file#

Full backup file#

a

{28 ci + (di + 28) (ei + qi)}

19. Storage Requirements for Utility Execution

688

File type Formula (bytes)

i = 1

+ 88 a + 220 b

Differential backup file# w size of full backup file

Differential backup management file (1 + j + m) 32,768

Log point information file 1,024

#: If the backup file is larger than 2 GB, take one of the following actions:

• Use large files for backup files. For details about how to create large files, see 4.3 Creating HiRDB file system
areas.

• Create multiple partitions, each of which is no larger than 2 GB, and specify multiple backup files.

a: Number of RDAREAs being backed up

b: Total number of HiRDB files in RDAREA being backed up

ci: Number of unused pages in RDAREA being backed up
Assume 0 if you build the system before estimating.

• User RDAREAs
Determine after executing RDAREA unit status release (physical release) with the database release utility
(pddbst command). The value is the resulting total number of pages - number of used pages of the RDAREA
page information.

• User LOB RDAREAs
Determine after executing RDAREA unit status release (physical release) with the database release utility
(pddbst command). The value is the resulting Total number of segments - number of used segments of the
RDAREA segment information.

di: Page length of RDAREA being backed up

ei: Number of pages used in RDAREA being backed up
Assume (number of segments in the RDAREAs being backed up segment size) if you build the system before
estimating.

• User RDAREAs
Determine after executing RDAREA unit status release (physical release) with the database release utility
(pddbst command). The value is the resulting total number of pages - number of used pages of the RDAREA
page information.

• User LOB RDAREAs
Determine after executing RDAREA unit status release (physical release) with the database release utility
(pddbst command). The value is the resulting total number of segments - number of used segments of the
RDAREA segment information.

g: Length of a backup file name that is specified in the -b option (bytes)
If multiple backup files are specified, this is the total length of the specified file names.

h: Number of backup files specified in the -b option

j: (512 + 128 a) 32,700 k: Number of consecutive differential backup operations

m: { (256 + 128 a + g + 8 h} 256 k} 100

qi: Number of directory pages in the RDAREAs being backed up

• User RDAREAs
6 (ti + 1) + 2 (20,480 di) + { (si ui) + (si vi) + 2 ti}

• User LOB RDAREA
7 + 3 (ti - 1) + { (si 64,000) + ti} 96

19. Storage Requirements for Utility Execution

689

ri: Segment size of RDAREAs being backed up

si: Total number of segments in RDAREAs being backed up
This is the total number of segments for HiRDB files specified by the database initialization utility (pdinit
command) or the create rdarea statement of the database configuration utility (pdmod command). If
automatic extension is specified for the RDAREAs, add the number of extended segments.

ti: Number of HiRDB files of RDAREAs being backed up

ui: {di - 20} {(ri 32 8) + 56}

vi: (125 di) (16 ui) ui

w: Percentage of all pages that are being updated on the RDAREAs being backed up
Determine w from the following formula (user RDAREA):

w = {
a

 Xi
i=1
a

 ei} 1.2
i=1

Xi: Number of updated pages in RDAREAs being backed up
The number of updated pages refers to the number of pages that have been updated since the last time a
differential backup was made. Calculate the number of updated pages for the tables and indexes stored in the
RDAREAs being backed up based on the type of update SQL statements and the number of updated items, subject
to the following conditions:

• INSERT
Based on 16.1 Determining the size of a user RDAREA, calculate the number of storage pages from the
number of inserts, and add it to Xi. Calculate PCTFREE as 0.

• DELETE
Increase the value of Xi based on the following conditions:

Condition Value added to Xi

Tables Row length <
di

Deleted rows are distributed over
the entire table

MIN(number of deleted rows, number of table pages used)

Deleted rows are concentrated
on a few pages

MIN(number of deleted rows number of rows that can be
stored on 1 page, number of table pages used)

Row length > di MIN(number of deleted rows number of pages required
to store 1 row, number of table pages used)

Indexes Updated keys are distributed over the entire index MIN(number of update keys + , number of index pages
used)

Updated keys are concentrated on a few pages MIN(number of update keys number of keys that can be
stored on 1 page + , number of index pages used)

: Number of duplicate keys in excess of 200

• UPDATE
Calculate the value to add to Xi based on the following conditions:

Condition Value added to Xi

Tables Update
column length
< di

Updated rows are distributed
over the entire table

MIN(number of updated rows, number of table pages used)

Updated rows are concentrated
on a few pages

MIN(number of updated rows number of rows that can be
stored on 1 page, number of table pages used)

19. Storage Requirements for Utility Execution

690

Condition Value added to Xi

Update column length > di MIN(number of updated rows number of pages required
to store updated columns, number of table pages used)

Indexes Updated keys are distributed over the entire index MIN(number of update keys 2 + 2, number of
index pages used)

Updated keys are concentrated on a few pages MIN(number of update keys 2 number of keys that
can be stored on 1 page + 2, number of index pages
used)

: Number of duplicate keys in excess of 200

• After regenerating
Calculate as the regenerated tables or indexes that are stored on RDAREAs being backed up.

 = number of used pages of regenerated tables or indexes + number of used segments of regenerated tables
or indexes ui + number of used segments of regenerated tables or indexes vi
Calculate only for regenerated tables and indexes, and add the value to Xi.

• PURGE
Calculate as the tables or indexes on which PURGE was performed that are stored in RDAREAs being
backed up.

 = number of used segments of purged tables or indexes ui + number of used segments of purged tables
or indexes vi
Calculate only for regenerated tables and indexes, and add the value to Xi.

19.1.6 File sizes required for the execution of the dictionary import/export
utility (pdexp)

The following table shows the formulas for determining the file sizes required for the execution of the dictionary
import/export utility (pdexp):

File type Formula (bytes)

Export file Base table 0.7 + 0.5 CMN + (0.1 CMN 10)

DEF

+ (0.1 + DSn) + 0.1 LRD 10
n = 1

+ 0.6 DIV 10 + 2.8 REF

CHK

+ (0.1 + 1.0 CSn 10)
n = 1

IDX

+ (2.7 + 0.2 IRn)
n = 1

View table 0.6 + 0.4 CMN + (0.1 CMN 10) + e

Procedure 0.6 + 0.1 g + h

CHK: Number of check constraints (0 CHK 254)

CMN: Number of table columns (1 CMN 30,000)

CSn: Size of search conditions of nth check constraint (0 CSn 2,000,000)

DEF: Number of default value definition columns (0 DEF 30,000)

DIV: Number of partition conditions (0 DIV 4,096)

19. Storage Requirements for Utility Execution

691

DSn: Default size of nth default column (1 DSn 64,003)

IDX: Number of indexes (0 IDX 254)

IRn: Number of RDAREAs for storing nth index (0 IRn 4,096)

LRD: Number of LOB RDAREAs (0 LRD 4,096)

REF: Number of reference constraints (0 REF 255)

e: Length of the source during view table definition (KB)

g: Number of resources used by a stored procedure that is exported#

This is the value of the N_RESOURCE column in the SQL_ROUTINES table.

h: Length of the source of a stored procedure (KB)
This is the value of the SOURCE_SIZE column in the SQL_ROUTINES table.

#: If exporting multiple tables, determine the previously described sizes for each table. The sum of the sizes obtained
is the size of the export file.

19.1.7 File sizes required for the execution of the optimizing information
collection utility (pdgetcst)

The following table shows the formulas for determining the file sizes required for the execution of the optimizing
information collection utility (pdgetcst):

File type Formula (bytes)

Parameter file that contains optimized
information

162 + 405 a + 567 b + 162 + 324 b g

Output results file Collecting optimizing information by retrieval (-c lvl1 specified):

202 + 131 e

Collecting optimizing information by retrieval (-c lvl2 specified):

370 + 561 d + 196 d

Registering optimizing information using the parameter file that contains optimized
information:

370 + 235 c + 387 f + 196 g

a: Number of specified indexes

b: Number of specified columns

c: Number of indexes defined in table

d: Number of intervals (total of number of sectors for all indexes)

e: Number of tables

f: Number of columns in table

g: Number of sectors (total of number of sectors specified in all column definitions)

19.1.8 File sizes required for the execution of the access path display
utility (pdvwopt)

The following table shows the formulas for determining the file sizes required for the execution of the access path
display utility (pdvwopt):

19. Storage Requirements for Utility Execution

692

File type Formula (bytes)

Access path
information
file

a: Number of retrieval SQLs

bi: Number of queries in SQL

cij: Number of tables in query

dij: Number of join processes in query

eijk: Number of table storage RDAREAs

fijk: Number of table index definitions

19.1.9 File sizes required for execution of the rebalancing utility (pdrbal)
The following table shows the formulas for determining the file sizes required for the execution of the rebalancing
utility (pdrbal):

File type Formula (bytes)

Index information file B-tree index:

(K + d) N + 512

Plug-in index:

(12 + Y) N + 1,024

These formulas are for the size of one index. If there are multiple indexes, determine the size of each
index.

Work file#1 (3 + 4 I R) 200

Work file for sorting#2 Condition 1:

Size of index information file + 4 N

19. Storage Requirements for Utility Execution

693

File type Formula (bytes)

Condition 2:

{Size of index information file + 4 N} 2

• Condition 1
When 1,024 (KB) E

• Condition 2
When 1,024 (KB) < E

E: Buffer size
The buffer size obtained according to 19.1.12 Buffer size used to determine the size of the work
file for sorting.

Execution results output file 1,000 + number of table storage RDAREAs 200

d: If all key component columns are fixed-length, the value is 10; if they include a variable-length column, the value is
12.

I: Number of indexes

K: Index key length
See Table 16-5 List of index key lengths. For variable-length data, keep in mind when defining the maximum
length that single columns are also handled as multicolumns.

N: Number of rows to be moved by rebalancing (for a repetition column, number of rows number of elements)

R: Number of partitioned RDAREAs for table or index

Y: Value as follows

• 27 for the abstract data type stored in the LOB RDAREA

• Key length + 2 for the abstract data type of a maximum of 255 bytes of definition length

• 2 for the abstract data type of 256 bytes or more of definition length

Typical abstract data type values are shown below.

• 27 for the SGMLTEXT type

• 2 for FREEWORD, GEOMETRY, and XML type

#1
Output when lvl2 is specified in the -m option.

#2
This file is not needed for a plug-in index.

19.1.10 File sizes required for execution of the integrity check utility
(pdconstck)

The following table shows the formulas for determining the file sizes required for execution of the integrity check
utility (pdconstck).

File type Formula (bytes)

Process result file -k set/release
560 + (REF + 1) 70 + (CHK + 1) 70
-k check
700 + (REF + 1) 70 + (CHK + 1) 70

REF

+ (490+ (RCn 70)

n=1

19. Storage Requirements for Utility Execution

694

File type Formula (bytes)

GEN ROW

+ ((RCnml 70)))

m=1 l=1

CHK

+ (490+ (CCn 70)

n=1

GEN ROW

+ ((CCnml 70)))

m = 1 l = 1

REF: Number of referential constraints defined for the table

CHK: Number of check constraints defined for the table

RC: Number of referential constraint columns containing foreign keys

CC: Number of column in the search condition of check constraint

GEN: 1 if the inner replica facility is not used
If the inner replica facility is used, the number of generations (1 to 10) + 1 in which the replica RDAREA of the
table exists

ROW: Upper limit of the number of outputs of the key value that caused a constraint error (value specified by the -w
option)

19.1.11 File sizes required for execution of parallel loading (pdparaload)
The following table shows the formulas for calculating the sizes of files used in parallel loading (pdparaload).

File type Formula (bytes)

pdload control statement
file

(pdparaload control statement file size + 200) Ri

Files created by pdload# RDAREAs that make up table

(file sizes required to execute data loading by RDAREA)

i=1

R: Number of RDAREAs that constitute the table

#
The pdparaload command executes as many data loads in RDAREA units (pdload) internally as there are
RDAREAs that constitute the table. For this reason, pdparaload uses as many files required for execution of
data loads in RDAREA units as there are RDAREAs that constitute the table. For details about the sizes of files
required for execution of data loads by RDAREA, see 19.1.1 File sizes required for the execution of the database
load utility (pdload).

19.1.12 Buffer size used to determine the size of the work file for sorting
This subsection lists and describes the formulas used to calculate the buffer size for sorting.

19. Storage Requirements for Utility Execution

695

n: Number of data items to be processed

• For pdload: Sum of existing data in the table and additional data to be loaded

• For pdrorg: Number of data items to be unloaded

• For pdrbal: Number of data items to be rebalanced

For a repetition column, the number of data items is the number of elements, not the number of rows.

k: Key length (maximum value). For details about the formula for obtaining the key length, see 16.1.3(3) Examples of
calculating the number of index storage pages.

x: If all key component columns are fixed length, the value is 10. If they include a variable length column, the value is
12.

c: Number of index component columns

y: Linux edition: 2, otherwise: 1

z: For a variable-length multicolumn index: c 4, otherwise: 0

K: For a variable-length multicolumn index: k + c + 8, otherwise: k + 12

N: For a variable-length multicolumn index: (c 2) + y, otherwise: 3 + y

R: k + x + z

A: 32-bit mode HiRDB: R + (K + 8) + 28, 64-bit mode HiRDB: R + (K + 8) + 56

B: 32-bit mode HiRDB: R + (K + 8) + 56, 64-bit mode HiRDB: R + (K + 8) + 104

C: 32-bit mode HiRDB: 2,092 + (N 32) + (K + 8), 64-bit mode HiRDB: 2,112 + (N 32) + (K + 8)

19. Storage Requirements for Utility Execution

696

19.2 Determining the memory size required for utility
execution

19.2.1 Memory size required for the execution of the database
initialization utility (pdinit)

The following tables show the formulas for determining the memory sizes required for the execution of the database
initialization utility (pdinit).

(1) HiRDB single server configuration

Condition Formula for determining memory size (KB)

32-bit mode {

61,440 (140 a + 20 b + c) 61,432 + 6,004 d 500

+ 36,008 a 1,000 + 468 e + 403,888

} 1,024 + 267

64-bit mode {

61,448 (144 a + 24 b + c) 61,436 + 8,004 d 500

+ 36,016 a 1,000 + 468 e + 405,888

} 1,024 + 267

a: Total number of RDAREAs

b: Number of HiRDB files in all RDAREAs

c: Sum of the lengths of all HiRDB file names

d: Total number of authorization identifiers

e: Number of RDAREAs for dictionary server

(2) HiRDB parallel server configuration

Condition Formula for determining memory size (KB)

32-bit mode DS {

{61,440 (140 a + 20 b + c)} 61,432 + (6,004 d) 500

+ (36,008 a) 1,000 + 468 e + 403,888 + 348 f + 344 g

} 1,024 + 268

BES (4 b + 237,220) 1,024 + 268

MGR 10

64-bit mode DS {

{61,448 (144 a + 24 b + c)} 61,436 + (8,004 d) 500

+ (36,016 a) 1,000 + 468 e + 405,888 + 348 f + 344 g

} 1,024 + 268

BES (4 b + 245,744) 1,024 + 268

MGR 10

a: Total number of RDAREAs

19. Storage Requirements for Utility Execution

697

b: Number of HiRDB files in all RDAREAs

c: Sum of the lengths of all HiRDB file names

d: Total number of authorization identifiers

e: Number of RDAREAs for dictionary server

f: Total number of back-end servers

g: Sum of the values of (144 a + 24 b + c) 7,780 for all back-end servers

19.2.2 Memory size required for the execution of the database definition
utility (pddef)

The following table shows the formulas for determining the memory size required for the execution of the database
definition utility (pddef):

Condition Formula for determining memory size (KB)

HiRDB single server configuration 1,956 (or 1,957 in the 64-bit mode)

HiRDB parallel server configuration 1,956 (or 1,957 in the 64-bit mode)

19.2.3 Memory size required for the execution of the database load utility
(pdload)

The following tables show the formulas for determining the memory size required for the execution of the database
load utility (pdload). For details about the variables, see (3) Variables used in the formulas.

(1) HiRDB single server configuration

Condition Formula for determining memory size (KB)

32-bit mode Single server 6,352 + {(+) 1,024}

Utility special unit# 1,968 + {(+) 1,024}

64-bit mode Single server 12,172 + {(+) 1,024}

Utility special unit# 2,423 + {(+) 1,024}

#: If no utility special unit is being used, use the value for a single server.

(2) HiRDB parallel server configuration

Condition Formula for determining memory size (KB)

32-bit mode MGR 2,255 + { 1,024}

Server machine containing input files 2,045 + {(+) 1,024}

BES# 3,762 + { 1,024}

64-bit mode MGR 2,575 + { 1,024}

Server machine containing input files 2,406 + {(+) 1,024}

BES# 8,247 + { 1,024}

19. Storage Requirements for Utility Execution

698

#: If a single server machine has multiple back-end servers, add into the calculation only for the number of back-end
servers.

(3) Variables used in the formulas

 (bytes):
{3,056 + A + B + (516 a) + (572 b) + (312 c) + (144 d) + (8 e) + (1,032 f) + (44 g) + (272

 h) + (224 i) + (44 j) + (60 k) + (260 m) + (56 n) + (196 p) + (236 q) + (744 r)
+ (620 s)} 2

 (bytes):
{6,908 + + (C t) + K + (48 a) + (22 b) + (8 e) + (240 i) + (48 j) + (4 k) + (224 m)
+ (47,416 t) + (1,032 u) + (4 v)}

 (bytes):
{37,700 + (2) + C + D + F + H + P + Q + T + (80 a) + (1,871 b) + (120 c) + (26 g) + (1,532

 i) + (36 j) + (44 k) + (1,212 m) + (40 n) + (344 p) + (30 q) + (16 u) + (88 v) + (20
 w)}

 (bytes):
{69,436 + + D + K + E + L + M + N + S + (U 2) + 8 + (48 a) + (32 a) + (88 c) + (4 g)
+ (2,156 k) + (24 t) + (1,024 u) + (4 v) + (50 y) + (50 z)}

a: Number of columns

b: Number of columns with abstract data type

c: Number of parameters in constructor or reverse constructor function

d: Number of file path names specified in command line or control information file

e: Number of LOB middle files

f: Number of LOB files by the column that are specified

g: Number of table storage RDAREAs

h: Number of table row partitioning conditions

i: Number of indexes

j: Number of index storage RDAREAs

k: Number of BLOB-type columns

m: Number of plug-in indexes

n: Number of user LOB RDAREAs storing LOB-attribute abstract data type

p: Number of functions provided by plug-in

q: Number of function parameters provided by plug-in

r: Number of data-type plug-ins

s: Number of index-type plug-ins

t: Number of servers storing tables

u: Number of BLOB-type parameters among the constructor function parameters used

v: Number of user LOB RDAREAs storing LOB columns

w: Number of user LOB RDAREAs storing plug-in indexes

y: Number of BINARY columns
This is the BINARY-data columns in input data that have been excluded from processing by the skipdata
control statement plus the number of columns actually defined in the tables.

z: Number of BINARY-attribute parameters for plug-in-provided functions
This is the number of BINARY data columns of the plug-in-provided functions in input data that have been
excluded from processing by the skipdata control statement, plus the number of columns actually defined in
the tables.

19. Storage Requirements for Utility Execution

699

A: Total file size specified in the command line

B: Total length of file path names specified in the command line and control information file

C: If the following condition is satisfied, the value is (pd_utl_buff_size 1,024 + 4,096) 2; otherwise, the
value is 0:

• HiRDB single server configuration
A utility special unit is used.

• HiRDB parallel server configuration
The pdload command is executed with a back-end server name containing the table storage RDAREA that
is different from the server name specified in the source statement; or, the pdrorg command specifying
the -g option is executed.

D: Row length
This is the sum of the defined lengths of all columns that constitute the table. The length of a BINARY-type row is
the defined length for pdload plus MIN(defined length, 32,500) for pdrorg (in bytes). For a non-FIX table,
add (a + 1) 4.

E: Memory required for EasyMT
Add this value if you have specified easymt in the -f option.

F: 550 1,024 + 1,024 1,024 + G
Add this value if you have specified c in the -i option.

G: 256 (32-bit mode) or 512 (64-bit mode)

H: Value specified for the batch input/output local buffers RDAREA page length J + value specified for the
random access local buffers RDAREA page length

Add this value if you have specified the -n option. If an RDAREA's page length varies from one partitioned
RDAREA to another, use the longest page length for this calculation.

J: Determine from the following table:

Value specified with -n
option

Table partition type

Non-
partitioning

table

Key range
partitioning

table

Hash partitioning table

Rebalancing hash

(HASHA-HASHF)

Non- rebalancing
hash

(HASH0-HASH6,
HASHZ)FIX hash Flexible hash

div specified 1 Number of row
partitions in the
server for the
table

HiRDB single server
configuration: 1,024

HiRDB parallel server
configuration: (
1,024 g)
(number of table
storage RDAREAs on
the server)

Number of row
partitions in the
server for the
table

Number of row
partitions in the
server for the table

div not specified 1 1

K: Parameter length
Sum of the lengths of arguments in the constructor function that is used to generate values for the abstract data
type. For a BLOB-type parameter, the parameter length is 8 bytes.

L: If all the following conditions are satisfied, add 1 or 2; otherwise, the value is 0:

• The errdata operand is specified in the source statement.

• A utility special unit is used (HiRDB single server configuration), or the server name specified in the source
statement is not the name of the back-end server that contains the table storage RDAREA (HiRDB parallel
server configuration).

• The table contains an abstract data type column, or a unique index is defined.

1.errwork operand specified: Value of errwork operand 1,024

19. Storage Requirements for Utility Execution

700

2.errwork operand omitted: Value of pd_utl_buff_size 1,024 3 t

M: Memory required for UOC
Add this value if you use UOC.

N: When the maxreclen operand is specified, calculate the following value:

If the input data file is in extended DAT format:
Value specified in maxreclen operand 1,024

If the input data file is in DAT format:
Value specified in maxreclen operand 1,024 3

When the table has BINARY type columns, or when the input data files are in binary format:
Add the smaller of the following to the calculation:

• Value specified in maxreclen operand 1,024

• Variable D (row length)

When other than the above:
0

P: Memory required for plug-ins
Add this value if there is an abstract data type column provided by a plug-in. For details about the size of memory
required by plug-ins, see the applicable plug-in documentation.
If the constructor functions' arguments are BLOB or BINARY type, add (actual parameter length stored in all
abstract data types 2) that is defined per row.

Q: Memory requirement for output buffer
If the specified index creation method is the batch index creation mode or the index information output mode and
the following condition is satisfied, add 2 megabytes:

• Number of table partitions number of index definitions > maximum number of processes that can be open -
576

S: (4 Buffer length + 1.1) 1,024
The buffer length is as follows (round up the value in units of 32 kilobytes).

• The value specified in the option statement file_buff_size of the database load utility (pdload).

• If the above value is not specified: 1,024.

T: If there are compressed columns, split compression size 2 + RDAREA's page length; if there are no compressed
columns, 0

For the split compression size, use the largest value among all the compressed columns. If the page length varies
from one RDAREA to another for a row-partitioned table, use the longest page length for this calculation.

U: Row length of input file (bytes)
DAT format: Value specified for the maxreclen operand 1,024 (or 32,768 if the maxreclen operand is not
specified)
Fixed-length format: Row length of input file
Binary format: 0

19.2.4 Memory size required for the execution of the database
reorganization utility (pdrorg)

The following tables show the formulas for determining the memory size required for the execution of the database
reorganization utility (pdrorg). For details about the variables, see (3) Variables used in the formulas as follows.

(1) HiRDB single server configuration

Condition Formula for determining memory size (KB)

32-bit mode Single server 7,536 + {(+) 1,024}

19. Storage Requirements for Utility Execution

701

Condition Formula for determining memory size (KB)

Utility special unit# 2,119 + {(+) 1,024}

64-bit mode Single server 13,196 + {(+) 1,024}

Utility special unit# 2,593 + {(+) 1,024}

#: If no utility special unit is being used, use the value for a single server.

(2) HiRDB parallel server configuration

Condition Formula for determining memory size (KB)

32-bit mode MGR 2,200 + { 1,024}

-g option
omitted

DS 1,940 + { 1,024}

BES#1, #2 4,976 + {(+) 1,024}

-g option
specified

Server machine containing unload
data file

1,940 + {(+) 1,024}

BES#2 4,976 + { 1,024}

64-bit mode MGR 2,569 + { 1,024}

-g option
omitted

DS 2,294 + { 1,024}

BES#1, #2 9,441 + {(+) 1,024}

-g option
specified

Server machine containing unload
data file

2,294 + {(+) 1,024}

BES#1 9,441+ { 1,024}

#1: If dictionary tables are regenerated, add to the calculation the server machines that have dictionary servers.

#2: If a single server machine has multiple back-end servers, add into the calculation only for the number of back-end
servers.

(3) Variables used in the formulas

 (bytes):
{2,592 + A + B + (116 a) + (260 b) + (6 c) + (272 d) + (44 g) + (272 h) + (224 i) + (44
j) + (60 k) + (260 m) + (56 n) + (196 p) + (236 q) + (744 r) + (620 s) + (24 t)} 2

 (bytes):
{40,940 + + (C t) + (D t) + (136 a) + (56 g) + (2,200 j) + (4 k) + (548 t)}

 (bytes):
{101,140 + (2) + C + (D 2) + F + H + P + Q + T + 64,010 + (48 a) + (128 a) + (1,949 b)
+ (120 c) + (154 g) + (336 i) + (216 j) + (32,056 k) + (1,212 m) + (131,224 n) + (344
p) + (30 q) + (20 w)}

 (bytes):
{33,104 + + (K 2) + E + S + 72 + (48 a) + (204 a) + (688 b) + (306 c) + (44 g) + (272
h) + (224 i) + (44 j) + (56 n) + (716 r) + (152 v)}

Notes

• Variables are described in (3) Variables used in the formulas of 19.2.3 Memory size required for the execution
of the database load utility (pdload).

• If one command is used to process multiple tables for the purpose of reorganizing dictionaries or reorganizing
tables in units schemas, use the total size of all such tables for variables a through z.

19. Storage Requirements for Utility Execution

702

19.2.5 Memory size required for the execution of the database structure
modification utility (pdmod)

The following tables show the formulas for determining the memory size required for the execution of the database
structure modification utility (pdmod).

(1) HiRDB single server configuration

Condition Formula for determining memory size (KB)

32-bit mode {

4 a + 56,016 b + 53,016 c + 2,440 d + 1,724 e

+ (94,008 f) 500 + (4,008 g) 1,000 + 440,720 + h + i + j + k

} 1,024 + 9.8

64-bit mode {

4 a + 56,024 b + 53,024 c + 3,040 d + 1,736 e

+ (100,016 f) 500 + (4,012 g) 1,000 + 450,720 + h + i + j + k

} 1,024 + 9.8

a: Value of pd_max_rdarea_no
b: Number of indexes in local RDAREAs during the execution of initialize rdarea statement + number of
indexes in remote RDAREAs

c: Total number of LOB columns during the execution of initialize rdarea statement

d: Total number of LOB-attribute abstract data types during the execution of initialize rdarea statement

e: Total number of plug-in columns and plug-in indexes during the execution of initialize rdarea statement

f: Total number of abstract data types during the execution of initialize rdarea statement

g: Total number of ASSIGN LISTs for the tables stored in the local RDAREAs during the execution of
initialize rdarea statement

h: 8 a + 30,720
Add this value if the alter HiRDB mode to parallel statement is used to migrate from a HiRDB single
server configuration to a HiRDB parallel server configuration.

i: 46,744
Add this value if the create rdarea statement is used to add a data dictionary LOB RDAREA.

j: 88,064
Add this value if the alter system statement is used to change the dictionary table's reference privilege.

k: 54,732
Add this value if the alter system statement is used to change the dictionary table's column attribute to
MCHAR.

(2) HiRDB parallel server configuration

Condition Formula for determining memory size (KB)

32-bit mode DS {

4 a + 56,016 b + 53,016 c + 2,440 d + 1,724 e

+ (94,008 f) 500 + (4,008 g) 1,000 + 440,720 + h + i + j

+ 108,428 m

} 1,024

BES (4 a + 252,755 + k) 1,024

19. Storage Requirements for Utility Execution

703

Condition Formula for determining memory size (KB)

FES 0.52

MGR 9.8

64-bit mode DS {

4 a + 56,024 b + 53,024 c + 3,040 d + 1,736 e

+ (100,016 f) 500 + (4,012 g) 1,000 + 450,720 + h + i + j

+ 108,432 m

} 1,024

BES (4 a + 261,112 + k) 1,024

FES 0.53

MGR 9.8

a: Value of pd_max_rdarea_no
b: Number of indexes in local RDAREAs during the execution of initialize rdarea statement + number of
indexes in remote RDAREAs

c: Total number of LOB columns during the execution of initialize rdarea statement

d: Total number of LOB-attribute abstract data types during the execution of initialize rdarea statement

e: Total number of plug-in columns and plug-in indexes during the execution of initialize rdarea statement

f: Total number of abstract data types during the execution of initialize rdarea statement

g: Total number of ASSIGN LISTs for the tables stored in the local RDAREAs during the execution of
initialize rdarea statement

h: 46,744
Add this value if the create rdarea statement is used to add a data dictionary LOB RDAREA.

i: 88,064
Add this value if the alter system statement is used to change the dictionary table's reference privilege.

j: 54,732
Add this value if the alter system statement is used to change the dictionary table's column attribute to
MCHAR.

k: 2,200
Add this value if the initialize rdarea statement is executed.

m: If the move rdarea statement is executed, add the following to the calculation (if move rdarea is not
executed, use 0):

(192 number of moved RDAREAs + 160 total number of HiRDB files on moved RDAREAs + 136 total
number of HiRDB files on moved RDAREAs that are replica RDAREAs + 8 total number of tables stored on
moved RDAREAs + 8 total number of indexes stored on moved RDAREAs + 8 total number of LOB
columns stored on moved RDAREAs) 102,400

19.2.6 Memory size required for the execution of the statistics analysis
utility (pdstedit)

The following table shows the formulas for determining the memory size required for the execution of the statistics
analysis utility (pdstedit).

Condition Formula for determining memory size (KB)

HiRDB single server configuration 16,384# + 1.5 number of hosts number of HiRDB servers number of UAPs

19. Storage Requirements for Utility Execution

704

Condition Formula for determining memory size (KB)

HiRDB parallel server configuration

#: For the 64-bit mode, the value is 18,432.

19.2.7 Memory size required for the execution of the database condition
analysis utility (pddbst)

The following subsections show the formulas for determining the memory size required for the execution of the
database condition analysis utility (pddbst). For details about the variables used in the formulas, see (3) Variables
used in the formulas.

(1) For a HiRDB single server configuration

Condition Formula for determining memory size (KB)

32-bit mode 9,425 + {(+) 1,024}

64-bit mode 15,311 + {(+) 1,024}

(2) For a HiRDB parallel server configuration

Condition Formula for determining memory size (KB)

32-bit mode MGR 5,117 + { 1,024 }

DS 4,177 + { 1,024 }

BES#

64-bit mode MGR 5,645 + { 1,024}

DS 8,329 + { 1,024}

BES#

#: The value must be obtained for each back-end server that contains the tables and indexes subject to analysis.

(3) Variables used in the formulas

 (bytes):
{28,000 + A + (10,592 a) + (10,592 b) + (10,592 c) + (2,264 d) + (848 e) + (272 f) + (432
g) + (304 h)}

 (bytes):
{100,000 + (1,024 d) + (2,784 i) + (2,784 j) + (2,784 k)}

Note

• For details about other variables, see (3) Variables used in the formulas in 19.2.3 Memory size required for the
execution of the database load utility (pdload).

19.2.8 Memory size required for the execution of optimizing the
information collection utility (pdgetcst)

The following table shows the formulas for determining the memory size required for the execution of the optimizing
information collection utility (pdgetcst).

19. Storage Requirements for Utility Execution

705

Condition Formula for determining memory size (KB)

HiRDB single server configuration 6,060 + 0.1 number of table storage RDAREAs + 0.07 number of index storage
RDAREAs + 1.0 number of indexes + 0.04 number of tables in schema + 1.0
number of servers + 11 number of columns

HiRDB parallel server
configuration

BES 1,813 + 0.06 number of table storage RDAREAs + 0.05 number of index storage
RDAREAs + 0.03 number of indexes

MGR 3,336 + 0.1 number of table storage RDAREAs + 0.07 number of index storage
RDAREAs + 1.0 number of indexes + 0.04 number of tables in schema + 1.0
number of servers + 11 number of columns

DS 16,402

Note
Other than these sizes, add the memory size used by the following SQL:

SELECT internal-information#, index-first-configuration-column-name FROM
authorization-identifier, table-identifier ORDER BY primary-index-component-
column-name WITHOUT LOCK NOWAIT;
SELECT FLOAT (COUNT(*)) FROM authorization-identifier.table-identifier WITHOUT LOCK NOWAIT;
SELECT FLOAT (COUNT(primary-index-component-column-name)) FROM authorization-identifier.table-
identifier WITHOUT LOCK NOWAIT;
ALTER TABLE authorization-identifier.table-identifier CHANGE LOCK ROW;
#: The internal information is 12 bytes. Therefore, estimate as though an SQL statement were issued to retrieve a
12-byte character column (CHAR(12)), in addition to the index first configuration column name.
For details about the size of memory required by SQL, see the following sections:

• For a HiRDB single server configuration
15.1.6 Formulas for size of memory required during SQL execution
15.1.7 Formula for size of memory required during SQL preprocessing

• For a HiRDB parallel server configuration
15.2.6 Formulas for size of memory required during SQL execution
15.2.7 Formula for size of memory required during SQL preprocessing

19.2.9 Memory size required for the execution of the database copy
utility (pdcopy)

The following tables show the formulas for determining the memory size required for the execution of the database
copy utility (pdcopy).

(1) HiRDB single server configuration

Condition Formula for determining memory size (KB)

Single server 88 + number of backup files 2 MAX(32, value of pd_utl_buff_size)

+ number of backup files {(number of RDAREAs subject to backup + 9) 10} 6

+ {(total number of RDAREA component files subject to backup + 25) 16} 8 + 100

+ 49 + number of backup files 2 MAX(32, value of pd_utl_buff_size) + 64

+ number of backup files {(number of RDAREAs subject to backup + 9) 10} 6

+ {(total number of RDAREA component files subject to backup + 25) 16} 8 + 100

Add the following value if this server machine contains backup files:

+ 63 + number of backup files (2 MAX(32, value of pd_utl_buff_size) 2

+ number of backup files {(number of RDAREAs subject to backup + 9) 10} 6

+ {(total number of RDAREA component files subject to backup + 25) 16} 8 + 100 + 1,024

19. Storage Requirements for Utility Execution

706

Condition Formula for determining memory size (KB)

Add the following value if differential backup files are to be collected:

+ 32 2 + (512 + 128 number of RDAREAs subject to backup) 32,768 32

+ (256 + 128 number of RDAREAs subject to backup + a + 8 b) 32,768 32 2

Utility special
unit

63 + number of backup files (2 MAX(32, value of pd_utl_buff_size) 2

+ number of backup files {(number of RDAREAs subject to backup + 9) 10} 6

+ {(total number of RDAREA component files subject to backup + 25) 16} 8 + 100 + 1,024

a: Length of the backup file name specified in the -b option (bytes). If multiple backup files are specified, this value
is the total length of the file names.

b: Number of backup files specified in the -b option

(2) HiRDB parallel server configuration

Condition Formula for determining memory size (KB)

MGR 88 + number of backup files 2 MAX(32, value of pd_utl_buff_size)

+ number of backup files {(number of RDAREAs subject to backup + 9) 10} 6

+ {(total number of RDAREA component files subject to backup + 25) 16} 8 + 100

Add the following value if differential backup files are to be collected:

+ 32 2 + (512 + 128 number of RDAREAs subject to backup) 32,768 32

+ (256 + 128 number of RDAREAs subject to backup + a + 8 b) 32,768 32 2

DS 49 + number of backup files 2 MAX(32, value of pd_utl_buff_size) + 64

+ number of backup files {(number of RDAREAs subject to backup + 9) 10} 6

+ {(total number of RDAREA component files subject to backup + 25) 16} 8 + 100
BES

Server machine
containing
backup files

63 + number of backup files 2 MAX(32, value of pd_utl_buff_size)

 (number of servers subject to backup + 1)

+ number of backup files {(number of RDAREAs subject to backup + 9) 10} 6

+ {(total number of RDAREA component files subject to backup + 25) 16} 8 + 100 + 1,024

a: Length of the backup file name specified in the -b option (bytes). If multiple backup files are specified, this value
is the total length of the file names.

b: Number of backup files specified in the -b option

19.2.10 Memory size required for the execution of the database recovery
utility (pdrstr)

The following tables show the formulas for determining the memory size required for the execution of the database
recovery utility (pdrstr).

(1) HiRDB single server configuration

Condition Formula for determining memory size (KB)

Single server 65 + {(number of RDAREAs subject to recovery + 9) 10} 6

+ {(number of RDAREA component files subject to recovery + 25) 16} 8 + 50

+ 98 + 2 MAX(32, value of pd_utl_buff_size)

+ {(number of RDAREAs subject to recovery + 9) 10} 6 + c

+ {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100

19. Storage Requirements for Utility Execution

707

Condition Formula for determining memory size (KB)

+ {(number of RDAREAs subject to recovery + 99) 100} 5

Add the following value if this server contains backup files:

+ 100 + 2 MAX(32, value of pd_utl_buff_size)

+ {(number of RDAREAs subject to recovery + 9) 10} 6

+ {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100 + 1,024

If you are inputting the unload log file or system log file, add:

+ 57 + 2 MAX(32, value of pd_utl_buff_size)

+ {(number of RDAREAs subject to recovery + 9) 10} 6 + 64

+ {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100 + d

+ 0.6 number of RDAREAs subject to recovery + size of work buffer for sorting (value of -y option)

Add the following value if differential backup files are used for recovery:

+ 32 2 + (512 + 128 number of RDAREAs subject to backup) 32,768 32

+ (256 + 128 number of RDAREAs subject to backup + a + 8 b) 32,768 32

+ (32 differential backup count) 1,024

Utility special
unit

100 + 2 MAX(32, value of pd_utl_buff_size)

+ {(number of RDAREAs subject to recovery + 9) 10} 6

+ {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100 + 1,024

a: Length of the backup file name specified in the -b option (bytes). If multiple backup files are specified, this value
is the total length of the file names.

b: Number of backup files specified in the -b option

c: If the write buffer size is specified, this value is MAX(64, write buffer size). If not, this value is 60.
The write buffer size is the value specified by the -Y option.

d:

• 32-bit mode
640 + 8 maximum number of concurrently executed transactions 100
+ 5 number of RDAREAs subject to recovery 100
+ maximum page size of RDAREAs subject to recovery 54
+ 9 number of transactions subject to rollback
+ 0.02 number of RDAREA component files subject to recovery
+ (304 + 36 + 4 (number of RDAREAs subject to recovery - 1)
+ 352 + 304 (number of RDAREAs subject to recovery - 1)
+ 96 + 4 (number of RDAREAs subject to recovery - 1)
+ 384 + 320 (number of RDAREAs subject to recovery - 1) + 16) 1,024

• 64-bit mode
640 + 11 maximum number of concurrently executed transactions 100
+ 6 number of RDAREAs subject to recovery 100
+ maximum page size of RDAREAs subject to recovery 54
+ 9 number of transactions subject to rollback
+ 0.03 number of RDAREA component files subject to recovery
+ (304 + 40 + 8 (number of RDAREAs subject to recovery - 1)
+ 400 + 336 (number of RDAREAs subject to recovery - 1)
+ 168 + 8 (number of RDAREAs subject to recovery - 1)
+ 408 + 336 (number of RDAREAs subject to recovery - 1) + 16) 1,024

19. Storage Requirements for Utility Execution

708

(2) HiRDB parallel server configuration

Condition Formula for determining memory size (KB)

MGR 65 + {(number of RDAREAs subject to recovery + 9) 10} 6

+ {(number of RDAREA component files subject to recovery + 25) 16} 8 + 50

Add the following value if differential backup files are used for recovery:

+ 32 2 + (512 + 128 number of RDAREAs subject to backup) 32,768 32

+ (256 + 128 number of RDAREAs subject to backup + a + 8 b) 32,768 32

+ (32 differential backup count) 1,024

DS 35 + 2 MAX(32, value of pd_utl_buff_size) + 100

+ 98 + 2 MAX(32, value of pd_utl_buff_size)

+ {(number of RDAREAs subject to recovery + 9) 10} 6 + c

+ {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100

+ {(number of RDAREAs subject to recovery + 99) 100} 5

If you are inputting the unload log file or system log file, add:

+ 57 + 2 MAX(32, value of pd_utl_buff_size)

+ {(number of RDAREAs subject to recovery + 9) 10} 6 + 64

+ {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100 + d

+ 0.6 number of RDAREAs subject to recovery + size of work buffer for sorting (value of -y option)

BES 98 + 2 MAX(32, value of pd_utl_buff_size)

+ {(number of RDAREAs subject to recovery + 9) 10} 6 + c

+ {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100

+ {(number of RDAREAs subject to recovery + 99) 100} 5

If you are inputting the unload log file or system log file, add:

+ 57 + 2 MAX(32, value of pd_utl_buff_size)

+ {(number of RDAREAs subject to recovery + 9) 10} 6 + 64

+ {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100 + d

+ 0.6 number of RDAREAs subject to recovery + size of work buffer for sorting (value of -y option)

Server machine
containing
backup files

100 + 2 MAX(32, value of pd_utl_buff_size) number of servers subject to recovery

+ {(number of RDAREAs subject to recovery + 9) 10} 6

+ {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100 + 1,024

a: Length of the backup file name specified in the -b option (bytes). If multiple backup files are specified, this value
is the total length of the file names.

b: Number of backup files specified in the -b option

c: If the write buffer size is specified, this value is MAX(64, write buffer size). If not, this value is 60.
The write buffer size is the value specified by the -Y option.

d:

• 32-bit mode
640 + 8 maximum number of concurrently executed transactions 100
+ 5 number of RDAREAs subject to recovery 100
+ maximum page size of RDAREAs subject to recovery 54
+ 9 number of transactions subject to rollback
+ 0.02 number of RDAREA component files subject to recovery
+ (304 + 36 + 4 (number of RDAREAs subject to recovery - 1)
+ 352 + 304 (number of RDAREAs subject to recovery - 1)
+ 96 + 4 (number of RDAREAs subject to recovery - 1)

19. Storage Requirements for Utility Execution

709

+ 384 + 320 (number of RDAREAs subject to recovery - 1)
+ 16 + 32 number of RDAREAs subject to recovery) 1,024

• 64-bit mode
640 + 11 maximum number of concurrently executed transactions 100
+ 6 number of RDAREAs subject to recovery 100
+ maximum page size of RDAREAs subject to recovery 54
+ 9 number of transactions subject to rollback
+ 0.03 number of RDAREA component files subject to recovery
+ (304 + 40 + 8 (number of RDAREAs subject to recovery - 1)
+ 400 + 336 (number of RDAREAs subject to recovery - 1)
+ 168 + 8 (number of RDAREAs subject to recovery - 1)
+ 408 + 336 (number of RDAREAs subject to recovery - 1)
+ 16 + 48 number of RDAREAs subject to recovery) 1,024

19.2.11 Memory size required for the execution of the dictionary import/
export utility (pdexp)

The following tables show the formulas for determining the memory size required for the execution of the dictionary
import/export utility (pdexp).

(1) HiRDB single server configuration

Conditions Memory required by formula (KB)

32-bit mode SDS 1,307 + 6.7 CTL 100 + 0.07 CTL

Host with export file 4,499 + 0.07 CTL + 0.11 CHK + 1.5 FKY + CSZ + 0.5
CMN + 0.01 (CHK + FKY + CMN + DIV + 10) + 0.6 DIV +
DEF + 0.06 LOB + 0.2 TBL + SQL+ 8,791

64-bit mode SDS 1,494 + 6.7 CTL 100 + 0.07 CTL

Host with export file 4,582 + 0.07 CTL + 0.11 CHK + 1.5 FKY + CSZ + 0.5
CMN + 0.01 (CHK + FKY + CMN + DIV + 10) + 0.6 DIV +
DEF + 0.06 LOB + 0.2 TBL + SQL+ 8,791

(2) HiRDB parallel server configuration

Conditions Memory required by formula (KB)

32-bit mode MGR 1,714 + 6.7 CTL 100 + 0.07 CTL

Host with export file 4,907 + 0.07 CTL + 0.11 CHK + 1.5 FKY + CSZ + 0.5
CMN + 0.01 (CHK + FKY + CMN + DIV + 10) + 0.6 DIV +
DEF + 0.06 LOB + 0.2 TBL + SQL+ 8,791

64-bit mode MGR 2,016 + 6.7 CTL 100 + 0.07 CTL

Host with export file 5,293 + 0.07 CTL + 0.11 CHK + 1.5 FKY + CSZ + 0.5
CMN + 0.01 (CHK + FKY + CMN + DIV + 10) + 0.6 DIV +
DEF + 0.06 LOB + 0.2 TBL + SQL+ 8,791

(3) Variables used in the formula
CMN: Number of columns

CHK: Number of check constraints

CSZ: Total size of search conditions of check constraint (CHK_SOURCE_LEN value in SQL_TABLES table) (bytes)

19. Storage Requirements for Utility Execution

710

CTL: Number of controls specified in control statement file

DEF: Maximum definition length of DEFAULT clause (bytes)

DIV: Number of partition conditions

FKY: Number of foreign keys

LOB: Number of LOB storage RDAREAs

SQL: Memory required to use the following SQL statements:

• For table export/import: CREATE TABLE statement

• For procedure export/import: CREATE PROCEDURE statement

• For trigger import/export: CREATE TRIGGER statement

For details about these memory requirements, see 15.1.6 Formulas for size of memory required during SQL
execution and 15.1.7 Formula for size of memory required during SQL preprocessing.

TBL: Number of tables, procedures and triggers actually imported or exported (for procedures and triggers, the same
as CTL)

19.2.12 Memory size required for the execution of the access path
display utility (pdvwopt)

The following table shows the formulas for determining the memory size required for the execution of the access path
display utility (pdvwopt).

Condition
Formula for determining

memory size (KB)

HiRDB single server configuration a

 bi 0.7 + 200

i = 1
HiRDB parallel server configuration FES

a: Number of queries in SQL

bi: Number of tables in query

19.2.13 Memory size required for the execution of the rebalancing utility
(pdrbal)

The following table shows the formulas for determining the memory size required for the execution of the rebalancing
utility (pdrbal).

(1) For a HiRDB single server configuration

Formula for determining memory size (KB)

8,756#3 + 536 + 0.02 number of columns + 0.2 number of target RDAREAs

+ 1.7 number of source RDAREAs + 0.26 number of target RDAREAs number of indexes

+ (0.09 + average index statement file length 1,024) number of index statements

+ (0.02 + average directory length 1,024) (number of idxwork statements + number of sort statements)

+ (length of control information file + length of execution results file) 1,024

+ 0.05 number of columns + 0.05 number of RDAREAs + 0.15 number of indexes

+ 0.05 number of index storage RDAREAs

+ 550 1,024 + size of work file for sorting#1

19. Storage Requirements for Utility Execution

711

Formula for determining memory size (KB)

-n option specified:

+ page length of RDAREA#2 number of batch input/output buffer sectors y

Applicable table containing LOB columns:

+ 64 + 0.01 number of LOB columns + 0.18 number of target RDAREAs

+ 0.09 number of source RDAREAs + 0.08 number of LOB storage RDAREAs

When the target table contains BINARY columns:

+ 33 (number of BINARY columns number of target RDAREAs number of source RDAREAs)

+ buffer length used for BINARY columns#5

Applicable table containing an abstract data type provided by plug-in:

+ 40 + (0.27 + 2 length of abstract data type) number of abstract data-type columns

+ 0.3 number of unld_func statements

+ (128 + 0.11 number of LOB attributes + 0.1 number of functions specifying unld_func

+ 0.07 number of abstract data type attributes) number of abstract data-type columns

+ (33 number of BINARY attributes number of target RDAREAs number of source RDAREAs) 2

+ 0.01 number of plug-in indexes + 0.19 number of unld_func statements

+ (average length of unld_func statements 1,024 number of unld_func statements)

+ (average length of reld_func statements 1,024 number of reld_func statements)

+ number of abstract data-type columns 1 + (number of LOB attributes 0.05) number of RDAREAs

+ number of data type plug-ins 10 + number of plug-in indexes 10

+ memory required for plug-ins

When the specified index creation method is the batch index creation mode or the index information output mode and the
following condition is satisfied:

Number of table partitions number of index definitions > maximum number of processes that can be open - 576 + 2,048

When there are compressed columns:

+ split compression size#4 z + RDAREA's page length#2

y: Use one of the following values:

• When the rebalancing facility is used with a FIX hash-partitioned table
(1,024 number of storage RDAREAs for the entire table) number of table storage RDAREAs in
the corresponding server

• Other than the above
1

z: Use one of the following values, as applicable:

• Exclusive mode (-k exclusive): 2

• Shared mode (-k share): 1

#1: Add this value during batch index creation (-ic specified or omitted).

#2: If the page length varies from one RDAREA to another for a row-partitioned table, use the longest page length for
this calculation.

#3: For the 64-bit mode, the value is 9,764.

#4: Use the largest value among all compressed columns for the split compression size.

#5: Use one of the following values, as applicable, for the buffer length used for BINARY columns:

• Exclusive mode
0

• Shared mode

n

(definition length i)

19. Storage Requirements for Utility Execution

712

i = 1

n: Number of BINARY columns

(2) For a HiRDB parallel server configuration

Condition Formula for determining memory size (KB)

MGR 1,498#3 + 2 + 0.05 number of columns + 0.05 number of RDAREAs + 0.15 number of indexes

+ 0.05 number of index storage RDAREAs

+ (0.09 + average index statement file length 1,024) number of index statements)

+ (0.02 + average directory length 1,024) (number of idxwork statements + number of sort
statements)

+ (length of control information file + length of execution results file) 1,024

Applicable table containing LOB columns:

+ 0.08 number of LOB storage RDAREAs

Applicable table containing an abstract data type provided by plug-in:

+ 0.19 number of unld_func statements

+ (average length of unld_func statement 1,024 number of unld_func statements)

+ (average length of reld_func statement 1,024 number of reld_func statements)

DS 1,455#4 + 32 + 0.33 number of target BESs + 0.3 number of source BESs

+ 0.2 number of target RDAREAs + 0.22 number of source RDAREAs + 0.34 number of FESs

+ (0.09 + average index statement file length 1,024) number of index statements

+ (0.02 + average directory length 1,024) (number of idxwork statements + number of sort
statements) + 0.05 number of columns + 0.05 number of RDAREAs + 0.15 number of indexes

+ 0.05 number of index storage RDAREAs

Applicable table containing LOB columns:

+ 0.08 number of LOB storage RDAREAs

When the target table contain BINARY columns:

+ 33 (number of BINARY columns number of target RDAREAs number of source RDAREAs)

Applicable table containing an abstract data type provided by plug-in:

+ 0.01 number of target BESs + 0.19 number of unld_func statements

+ (average length of unld_func statements 1,024 number of unld_func statements)

+ (average length of reld_func statements 1,024 number of reld_func statements)

+ number of abstract data type columns 1 + (number of LOB attributes 0.05) number of RDAREAs

+ number of data type plug-ins 10 + number of plug-in indexes 10

BES 6,601#5 + 50 + (517 + 0.01 number of columns) number of target BESs

+ (33 + 0.01 number of columns) number of source BESs + 0.2 number of target RDAREAs

+ 1.7 number of source RDAREAs + 0.01 number of columns

+ 0.26 number of target RDAREAs number of indexes

+ (0.09 + average index statement file length 1,024) number of index statements

+ (0.02 + average directory length 1,024) (number of idxwork statements + number of sort
statements)

+ 0.05 number of columns + 0.05 number of RDAREAs + 0.15 number of indexes

+ 0.05 number of index storage RDAREAs

+ 550 1,024 + size of work file for sorting#1

-n option specified:

+ page length of RDAREA#2 number of batch input/output buffer sectors y

Applicable table containing LOB columns:

19. Storage Requirements for Utility Execution

713

Condition Formula for determining memory size (KB)

+ 32 + 0.01 number of LOB columns + (32 + 0.01 number of LOB columns) number of target BESs

+ 0.18 number of target RDAREAs + 0.1 number of source RDAREAs

+ 0.08 number of LOB storage RDAREAs

When the target table contain BINARY columns:

+ 33 (number of BINARY columns number of target RDAREAs number of source RDAREAs)

+ buffer length used for BINARY columns#7

When the target table contains abstract data types provided by plug-ins:

+ 40 + (0.27 + 2 length of abstract data type) number of abstract data-type columns

+ 0.3 number of unld_func statements

+ {(64 + 0.05 number of LOB attributes) number of abstract data-type columns} number or target BESs

+ {(64 + 0.01 number of functions specifying unld_func + 0.07 number of abstract data type attributes

+ 0.05 number of LOB attributes) number of abstract data-type columns} number of source BESs

+ (33 number of BINARY attributes number of target RDAREAs number of source RDAREAs) 2

+ 0.01 number of plug-in indexes + 0.19 number of unld_func statements

+ (average length of unld_func statements 1,024 number of unld_func statements)

+ (average length of reld_func statements 1,024 number of reld_func statements)

+ number of abstract data-type columns 1 + (number of LOB attributes 0.05) number of RDAREAs

+ number of data type plug-ins 10 + number of plug-in indexes 10

+ memory required for plug-ins

When the specified index creation method is the batch index creation mode or the index information output
mode and the following condition is satisfied:

Number of table partitions number of index definitions > maximum number of processes that can be open - 576
+ 2,048

When there are compressed columns:

+ split compression size#6 z + RDAREA's page length#2

y: Use one of the following values:

• When the rebalancing facility is used for FIX hash partitioning tables
(1,024 number of storage RDAREAs for the entire table) number of table storage RDAREAs in
the corresponding server

• Other than the above

z: Use one of the following values, as applicable:

• Exclusive mode (-k exclusive): 2

• Shared mode (-k share): 1

#1: Add this value during batch index creation (-ic specified or omitted).

#2: If the page length varies from one RDAREA to another for a row-partitioned table, use the longest page length for
this calculation.

#3: For the 64-bit mode, the value is 1,790.

#4: For the 64-bit mode, the value is 1,671.

#5: For the 64-bit mode, the value is 6,908.

#6: Use the largest value among all compressed columns for the split compression size.

#7: Use one of the following values, as applicable, for the buffer length used for BINARY columns:

• Exclusive mode

m

((definition length i)
i = 1

19. Storage Requirements for Utility Execution

714

n

+ (definition length i 9)) number of target BESs
i = 1

m: Number of BINARY columns for which the compression specification is not specified
n: Number of BINARY columns for which the compression specification is specified

• Shared mode

n

(definition length i) number of target BESs
i = 1

n: Number of BINARY columns

19.2.14 Memory size required for execution of the free page release
utility (pdreclaim) and global buffer residence utility (pdpgbfon)

Use the following formulas to determine the memory size required for execution of the free page release utility
(pdreclaim) and global buffer residence utility (pdpgbfon):

Condition
Formula for the memory requirement

(KB)

HiRDB single server configuration (32-bit mode) 800 + W

HiRDB single server configuration (64-bit mode) 800 + W

HiRDB parallel server configuration (32-
bit mode)

MGR 800 + X

Servers specified with the -s option#1 Y

BES#2 Z

HiRDB parallel server configuration (64-
bit mode)

MGR 850 + X

Servers specified with the -s option#1 Y

BES#2 Z

#1: If the -s option is omitted, the table storage RDAREA used for processing is at the first defined server.

#2: If there are multiple back-end servers, add this memory size for each back-end server.

W: Memory required for a single server when the database reorganization utility (pdrorg) is executing.

X: Memory required for a MGR when the database reorganization utility (pdrorg) is executing.

Y: Memory required for a DS when the database reorganization utility (pdrorg) is executing.

Z: Memory required for a BES when the database reorganization utility (pdrorg) is executing.

For details about the size of the memory required when the database reorganization utility (pdrorg) is executing, see
19.2.4 Memory size required for the execution of the database reorganization utility (pdrorg).

19.2.15 Memory size required for execution of the integrity check utility
(pdconstck)

Use the following formulas to determine the size of the memory required to execute the integrity check utility
(pdconstck).

19. Storage Requirements for Utility Execution

715

Condition
Formula for the memory

requirement

(KB)

HiRDB single server configuration 32-bit mode 13,995 +

64-bit mode 14,766 +

HiRDB parallel server configuration 32-bit mode MGR 6,675 +

DS 5,910 +

64-bit mode MGR 7,252 +

DS 8,740 +

: The value obtained by the following formula:
2,175
+ 0.14 number of columns
+ 0.09 number of table storage RDAREAs
+ 0.23 number of indexes
+ 0.09 number of index storage RDAREAs
+ 0.09 number of LOB storage RDAREAs
Number of foreign keys
+ (42 + 0.47 number of foreign key component columns r)
r=1
Number of check constraints
+ (5+ 0.29 number of columns in the search condition c + 0.85
c=1

 number of ANDs and ORs in the search condition c + length of the search condition c)

: The value obtained from the following formula
0.2
+ 0.02 number of table storage RDAREAs
+ 0.02 number of index storage RDAREAs
+ 0.02 number of LOB column storage RDAREAs

19.2.16 Memory size required for the execution of parallel loading
(pdparaload)

The following table shows the formula for finding the amount of memory required to execute parallel loading
(pdparaload).

Amount of memory required to execute parallel loading (KB)

= 1,000 + Size of pdparaload control statement file + 10 + 10 + R

R

+ (Amount of memory required to execute data loads by RDAREA)

i=1

R: Number of RDAREAs that constitute the table

Note
The pdparaload command executes as many data loads in RDAREA units (pdload) internally as there are
RDAREAs that constitute the table. For this reason, pdparaload uses as many files required for execution of
data loads in RDAREA units as there are RDAREAs that constitute the table. For details about the size of memory

19. Storage Requirements for Utility Execution

716

required for execution of data loads by RDAREA, see 19.2.3 Memory size required for the execution of the
database load utility (pdload).

19. Storage Requirements for Utility Execution

717

20 Specifying OS Parameters
This chapter describes the procedures for estimating the OS parameter values (or
kernel parameter values).

719

20.1 Estimating HP-UX OS parameter values
This section describes the procedures for estimating the HP-UX OS parameter values (or kernel parameter values). If
OS parameter values are too small, HiRDB may not function correctly. The table below shows guidelines for HP-UX
OS parameter values.

If you are using HP-UX 11i, do not change the OS parameter values while HiRDB is running. Even an OS parameter
that can be adjusted automatically, if changed may affect HiRDB operations.

Table 20‒1: Guidelines for the HP-UX OS parameter values

OS parameter Guideline for value

maxdsiz (32-bit-
mode)
maxdsiz_64bit
(64-bit mode)

 HiRDB single server configuration

The target value should satisfy the following two conditions; however, if the value is less than (process private
area used by the single server process#1) g, specify a value greater than this:

32-bit mode

• Memory size for restarting HiRDB#2 + 52,428,800 (bytes) or greater

• Value of pd_work_buff_size 1,024 + 134,217,728 (bytes) or greater

64-bit mode

• Memory size for restarting HiRDB#2 + 52,428,800 (bytes) or greater

• Value of pd_work_buff_size 1,024 + 134,217,728 (bytes) or greater

 HiRDB parallel server configuration

Use the following value as a guideline; however, if the value is less than (process private area used by each server
process#3) g, specify a value greater than this:

• Size of memory required to restart HiRDB on each server#2 + 134,217,728 (bytes) or greater

maxssiz
maxssiz_64bit (64-
bit mode)

Specify 80 MB or greater. Note that the unit for this value is MB. If this value is less than the value required by
another program that is run on the server machine, specify the latter, which is greater.

maxfiles HiRDB calculates and sets this value, so you do not need to specify it.

maxfiles_lim Specify 8192.

nfile#6 Specify a value at or above: MAX{1,600, 320 (h - g - i) + [a + (b c) + 320] g + 848 i + h 2
+ 227 + k m + C}

Specify at least the value obtained with the above formula by adding one of the following:

 HiRDB single server configuration

value of pd_max_users + value of pd_max_reflect_process_count

 HiRDB parallel server configuration

(D + 3 number of servers in unit) E

D: Total the values found by executing the following formulas for each server in the unit.

Back-end server

value of pd_max_bes_process + value of pd_max_reflect_process_count

Dictionary server

value of pd_max_dic_process + value of pd_max_reflect_process_count

If the pd_max_bes_process or pd_max_dic_process operand is omitted, perform the calculation using
the pd_max_users value.

If the unit has multiple back-end servers, perform the calculation for each back-end server.

E: 16 (number of lock-release wait threads)

If the value determined from this formula exceeds the system maximum, use the system maximum value.

nflocks Specify at least a + (b c) + 3 + (320 g).

20. Specifying OS Parameters

720

OS parameter Guideline for value

maxuprc Specify at least MAX(value of pd_max_server_process + e, 512).

However, if this value is less than the value required by another program that runs on the server machine, specify
the higher value.

nproc Specify at least the value of MAX (pd_max_server_process + 20, 576).

msgmni Specify the number of message queue identifiers required by all programs that are run on the server machine. For
details about the number of message queue identifiers required by HiRDB, see 20.5 Estimating the sizes of
message queues and semaphores. Add the values obtained.

msgtql See msgtql formula below. Specify at least the value obtained.

msgmnb See msgmnb formula below. Specify at least the value obtained. However, for a multi-HiRDB configuration,
specify the highest of the values obtained for the HiRDB systems.

semmni Specify the number of semaphore identifiers required by all programs that are run on the server machine. For
details about the number of semaphore identifiers required by HiRDB, see 20.5 Estimating the sizes of message
queues and semaphores. Add the values obtained. The recommended value is 1,024 or greater.

semmns Specify the number of semaphores required by all programs that are run on the server machine. For details about
the number of semaphores required by HiRDB, see 20.5 Estimating the sizes of message queues and semaphores.
Add the values obtained. The recommended value is 7,200 or greater.

semmnu Specify a value of 512 or greater.

semume Specify a value of 512 or greater.

shmmax Specify at least MAX(p + q, r, s, t), and at least 200,000,000.

If the global buffer dynamic update facility is used, consider the size of the global buffers to be added; if there is a
possibility that the size of the added part will become greater than the specified value, specify the anticipated size
of the added part.

However, if the inter-process memory communication facility is used (PDIPC=MEMORY is specified in the client
environment definition), specify a size of at least MAX(p + q, r, s, value of PDSENDMEMSIZE, value of
PDRECVMEMSIZE).

Specify in the HiRDB system definition's SHMMAX operand a value no greater than the value for shmmax
determined here.

shmmni Specify a value of 1,000 or greater.

• If you are using the security audit facility, add 1.

• If you are using the facility for dynamically changing global buffers, add:
HiRDB single server configuration
value of pd_max_add_dbbuff_shm_no operand
HiRDB parallel server configuration
n

the values of pd_max_add_dbbuff_shm_no operands specified in each server definition
i=1
n: Number of back-end servers + dictionary servers on the server machine

• If you are using the inter-process memory communication facility (if PDIPC=MEMORY has been specified in
the client environment definitions), add the value obtained with the following formula:
A 2 1.2
A is the maximum number of concurrent executions of clients that use the inter-process memory
communication facility. If A is unknown, substitute the total number of clients that use the inter-process
memory communication facility or k.

• If you are using in-memory data processing, add:
HiRDB single server configuration
value of pd_max_resident_rdarea_shm_no operand
HiRDB parallel server configuration
value of pd_max_resident_rdarea_shm_no operand number of back-end servers

shmseg Specify a value of 120 or greater.

20. Specifying OS Parameters

721

OS parameter Guideline for value

• If you are using the security audit facility, add 1.

• If you are dynamically changing global buffers, add the maximum value of the
pd_max_add_dbbuff_shm_no operand specified by the individual server definitions.

• For in-memory data processing, add the value of the pd_max_resident_rdarea_shm_no operand.

a: Number of input data files and divided-input data files used by the database load utility, or the number of unload
data files used by the database reorganization utility

b: Maximum number of index row partitions (indexes subject to processing by the database load utility, database
reorganization utility, or rebalancing utility)

c: Number of indexes (indexes subject to processing by the database load utility, database reorganization utility, or
rebalancing utility)

d: One of the following values:

• HiRDB single server configuration
Value of pd_max_users operand + value of pd_max_reflect_process_count operand

• HiRDB parallel server configuration
Value of pd_max_bes_process operand + value of pd_max_reflect_process_count operand

e: Maximum number of concurrently executable commands (including utilities)

f: One of the following:

• HiRDB single server configuration: 1

• HiRDB parallel server configuration: 16

g: One of the following values:

• HiRDB single server configuration: Value of pd_max_users operand + value of
pd_max_reflect_process_count operand

• HiRDB parallel server configuration: Total of the following values for all back-end and dictionary servers in
the unit:
Value of pd_max_bes_process operand + value of pd_max_reflect_process_count operand
Value of pd_max_dic_process operand + value of pd_max_reflect_process_count operand

h: Value of pd_max_server_process operand

i: Number of servers in the unit

j: One of the following:

• HiRDB single server configuration: 4

• HiRDB parallel server configuration: 35

k: Value of pd_max_users operand + value of pd_max_reflect_process_count operand

m: One of the following values:

• If a front-end server exists in the unit in a HiRDB parallel server configuration: 2

• Other than the above: 0

n: If you specify the batch index creation mode or index information output mode as the index creation mode with the
database load utility, database reorganization utility, or rebalancing utility, use the value obtained from the following
formula:

MIN(MAX(576, number of HiRDB servers in the system + 448) + b c, maximum value of the
pd_max_open_fds operand)
For details about the maximum value of the pd_max_open_fds operand, see the manual HiRDB Version 9
System Definition.

p: Size of the shared memory used by the unit controller

20. Specifying OS Parameters

722

q: Size of the shared memory used by the single server or each server

r: Value specified in the HiRDB system definition's SHMMAX operand

s: Estimated value for shared memory used by the global buffers#4

t: Estimated value for shared memory used by the security audit information buffer#5

C:
For a HiRDB single server configuration: MAX(256, (number of HiRDB servers in the system+ 32)) (g + k) +
(h - k) MAX(number of HiRDB servers in the system, number of units)
For a HiRDB parallel server configuration: MAX(256, (number of HiRDB servers in the system+ 32)) (g + k)
+ (h - g - k) MAX(number of HiRDB servers in the system, number of units)

#1: For details about the process private area used by a single server process, see 15.1.2 Calculation of required
memory.

#2: For details about estimating the memory size for restarting HiRDB, see 15.1.2 Calculation of required memory for
a HiRDB single server configuration, and 15.2.2 Calculation of required memory for a HiRDB parallel server
configuration.

#3: For details about the process private area used by each server process, see 15.2.2 Calculation of required memory.

#4: For details about estimating the shared memory used by the global buffers, see 15.1.5 Formula for size of shared
memory used by global buffers for a HiRDB single server configuration, and see 15.2.5 Formula for size of shared
memory used by global buffers for a HiRDB parallel server configuration.

#5: For details about estimating the size of shared memory used by the security audit information, for a HiRDB single
server configuration, see 15.1.2 Calculation of required memory for a HiRDB parallel server configuration and 15.2.2
Calculation of required memory for a HiRDB parallel server configuration.

#6: This value does not need to be specified in HP-UX 11i V3 or later.

 msgtql formula
The following table shows the formula for msgtql.

Add Bi if you are using the asynchronous READ facility (if 1 or more is specified for the
pd_max_ard_process operand). If you are not using the asynchronous READ facility, count this as 0.

Ci: The number of global buffers allocated to each server
Total the global buffer names displayed by the pdbufls command in server units to confirm them.

Di: Skips of effective synchronization point dumps generated by each server

• If a nonzero value is specified in the pd_spd_syncpoint_skip_limit operand: Use the value
specified by the pd_spd_syncpoint_skip_limit operand in the formula.

• If the pd_spd_syncpoint_skip_limit operand is not specified or is 0: Calculate as directed in
Method based on the byte count of all system logs in Monitoring UAP status (skipped effective
synchronization point dump monitoring facility) in the HiRDB Version 9 System Operation Guide.

Ei: Maximum number of concurrent executions of pdload, pdrorg, pdrbal, and no-log mode UAPs executed
in each server
Fi: Total of values specified in the -m options of pdbuffer operands among the global buffers allocated to
individual servers

20. Specifying OS Parameters

723

m: For a HiRDB single server configuration, 1. For a HiRDB parallel server configuration, the following value.

• Number of back-end servers in unit + number of dictionary servers in unit + number of guest BESs in unit

Add the number of guest BESs in the unit if the unit is using the standby-less system switchover (effects
distributed) facility.

n: Number of units defined in the server machine

p: For a HiRDB single server configuration, 1. For a HiRDB parallel server configuration, the following value:

• number of FESs in the unit + number of BESs in the unit + number of dictionary servers in the unit + value
of pd_ha_max_act_guest_servers operand

Add the value of the pd_ha_max_act_guest_servers operand for a unit that uses the standby-less
system switchover (effects distributed) facility.

 msgmnb formula
The formula for msgmnb is as follows:

Value of msgmnb = MAX((A + B 2 + C + 1)#2 40, D#2 16, E F 4, G 4)#1

#1
Specify the largest of the values obtained for all servers in the unit.
If the unit is subject to standby-less system switchover (1:1), specify the largest value among the values
obtained for all servers and alternate BESs in the unit.
If the unit is subject to standby-less system switchover (effects distributed), specify the largest value among
the values obtained for all servers in the unit and all BESs in the HA group.

#2
Front-end server: 0

A: Number of global buffers allocated to the server
To confirm this number, total the global buffer names displayed by the pdbufls command per server.

B: Number of skips of effective synchronization point dumps generated by the server

• If a nonzero value is specified in the pd_spd_syncpoint_skip_limit operand:
Use the value specified by the pd_spd_syncpoint_skip_limit operand in the formula.

• If the pd_spd_syncpoint_skip_limit operand is not specified or is 0:
Calculate as directed in Method based on the byte count of all system logs in Monitoring UAP status
(skipped effective synchronization point dump monitoring facility) in the HiRDB Version 9 System
Operation Guide.

C: Maximum number of concurrent executions of pdload, pdrorg, pdrbal, and no-log mode UAPs executed
on the server

D: If you are using the asynchronous READ facility (if 1 or more is specified for the pd_max_ard_process
operand), the value is as follows:

• Total of values specified in the -m options of pdbuffer operands among the global buffers allocated to
the server

If you are not using the asynchronous READ facility, use 0.

E: Value of the pd_max_users operand

F: For a HiRDB single server configuration, 1. For a HiRDB parallel server configuration, the following value:

• number of FESs in the unit + number of BESs in the unit + number of dictionary servers in the unit + value
of pd_ha_max_act_guest_servers operand

Add the value of the pd_ha_max_act_guest_servers operand for a unit that applies the standby-less
system switchover (effects distributed) facility.

G: value of pd_trn_rcvmsg_store_buflen operand 72

20. Specifying OS Parameters

724

20.2 Estimating Solaris OS parameter values
This section describes the procedures for estimating the Solaris OS parameter values (or kernel parameter values). If
OS parameter values are too small, HiRDB may not function correctly. If you are controlling the IPC function using
resource control on Solaris 10 or later, set the parameters for the system project.

The following table provides guidelines for Solaris OS parameter values.

Table 20‒2: Guidelines for the Solaris OS parameter values

OS parameter Guideline for value

rlim_fd_cur HiRDB calculates and sets this value, so you do not need to specify it.

rlim_fd_max For 32-bit mode

Specify 2,048.

For 64-bit mode

Specify 8,192.

maxuprc Specify at least MAX(d + e, 1,024).

However, if the default values calculated from maxusers and max_nproc are greater, do not
change those values.

maxusers Specify at least 128.

max_nprocs#1 Specify at least MAX(d + 20, 1,000).

However, if the default value calculated from maxusers is greater, do not change that value.

msgsys:msginfo_msgmni
(project.max-msg-ids)#1,

#4

Specify the number of message queue identifiers required by all programs that are run on the server
machine. For details about the number of message queue identifiers required by HiRDB, see 20.5
Estimating the sizes of message queues and semaphores. Add the values obtained.

msgsys:msginfo_msgtql
(process.max-msg-
messages)#1, #4

See msgtql formula in 20.1 Estimating HP-UX OS parameter values. Specify at least the value
obtained.

semsys:seminfo_semmni
(project.max-sem-ids)#4

Specify the number of semaphore identifiers required by all programs that are run on the server
machine. For details about the number of semaphore identifiers required by HiRDB, see 20.5
Estimating the sizes of message queues and semaphores. Add the values obtained. The recommended
value is 1,024 or greater.

semsys:seminfo_semmns#

1, #3
Specify the number of semaphores required by all programs that are run on the server machine. For
details about the number of semaphores required by HiRDB, see 20.5 Estimating the sizes of message
queues and semaphores. Add the values obtained. The recommended value is 7,200 or greater.

semsys:seminfo_semmnu#

1, #3
Specify a value of 1,024 or greater.

semsys:seminfo_semume#

1, #3
Specify a value of 512 or greater.

semsys:seminfo_semmsl
(process.max-sem-
nsems)#4

Specify a value of 128 or greater.

semsys:seminfo_semopm
(process.max-sem-ops)#4

Specify a value of 128 or greater.

semsys:seminfo_semmap#

1, #2, #3
Specify a value of 1,024 or greater.

shmsys:shminfo_shmmax#

1, #5
Specify at least MAX(p + q, r, s, t), and at least 200,000,000.

20. Specifying OS Parameters

725

OS parameter Guideline for value

If the global buffer dynamic update facility is used, consider the size of the global buffers to be added;
if there is a possibility that the size of the added part will become greater than the specified value,
specify the anticipated size of the added part.

However, if the inter-process memory communication facility is used (PDIPC=MEMORY is specified
in the client environment definition), specify a size of at least MAX(p + q, r, s, value of
PDSENDMEMSIZE, value of PDRECVMEMSIZE).

Specify in the HiRDB system definition's SHMMAX operand a value no greater than the value for
shmmax determined here.

project.max-shm-memory#6 Specify a value greater than the value obtained from adding the HiRDB shared memory size to the
size of shared memory used by other applications and OS processes.

You can find the size of HiRDB shared memory in the following locations:

• For a HiRDB single server configuration
The shared memory of Table 15-2 Size of memory required for a HiRDB single server
configuration

• For a HiRDB parallel server configuration
The shared memory of Table 15-7 Size of memory required for each unit of a HiRDB parallel
server configuration

If you are using the facility for dynamically changing global buffers, consider the size of the global
buffer to be added and, if the additional amount might possibly become larger than the set value,
specify the predicted size of the additional amount.

shminfo_shmmni
(project.max-shm-ids)#1,

#4

Specify a value of 2,000 or greater.

• If you are using the security audit facility, add 1.

• Also, if you are using the facility for dynamically changing global buffers, add:
HiRDB single server configuration
value of the pd_max_add_dbbuff_shm_no operand
HiRDB parallel server configuration
n

values of the pd_max_add_dbbuff_shm_no operands set in each server definition
i=1
n: number of back-end servers + dictionary servers on the server machine

• If you are using the inter-process memory communication facility (if PDIPC=MEMORY was
specified in the client environment definitions), add the value obtained with the following
formula:
A 2 1.2
A is the maximum number of concurrent executions of clients that use the inter-process memory
communication facility. If A is unknown, substitute the total number of clients that use the inter-
process memory communication facility or k.

• If you are using in-memory data processing, add:
HiRDB single server configuration
value of the pd_max_resident_rdarea_shm_no operand
HiRDB parallel server configuration
value of the pd_max_resident_rdarea_shm_no operand number of back-end servers

shminfo_shmseg#2, #3 Specify a value of 240 or greater.

• If you are using the security audit facility, add 1.

• If you are dynamically changing global buffers, add the maximum value of the
pd_max_add_dbbuff_shm_no operands specified in the individual server definitions.

• For in-memory data processing, add the value of the pd_max_resident_rdarea_shm_no
operand.

d: Value of pd_max_server_process
e: Maximum number of utility processes that are executed concurrently by the HiRDB administrator

k: Value of pd_max_users operand + value of pd_max_reflect_process_count operand

20. Specifying OS Parameters

726

n: If you specify the batch index creation mode or index information output mode as the index creation mode with the
database load utility, database reorganization utility, or rebalancing utility, use the value obtained from the following
formula:

MIN(MAX(576, number of HiRDB servers in system + 448) + b c, maximum value of the
pd_max_open_fds operand)
For details about the maximum value of the pd_max_open_fds operand, see the manual HiRDB Version 9
System Definition.
In other cases, use 0.

b: Maximum number of index row partitions (indexes subject to processing by the database load utility, database
reorganization utility, or rebalancing utility)

c: Number of indexes (indexes subject to processing by the database load utility, database reorganization utility, or
rebalancing utility)

p: Size of the shared memory used by the unit controller

q: Size of the shared memory used by the single server or each server

r: Value specified in the HiRDB system definition's SHMMAX operand

s: Estimated value for shared memory used by the global buffers
For details about estimating the shared memory used by the global buffers, see 15.1.5 Formula for size of shared
memory used by global buffers for a HiRDB single server configuration, and see 15.2.5 Formula for size of shared
memory used by global buffers for a HiRDB parallel server configuration.

t: Estimated value for shared memory used by the security audit information buffer
For details about estimating the shared memory used by the security audit information buffer, see 15.1.2
Calculation of required memory for a HiRDB single server configuration and 15.2.2 Calculation of required
memory for a HiRDB parallel server configuration.

#1: This parameter is not required for Solaris 8.

#2: This parameter is not required for Solaris 9.

#3: This parameter is not required for Solaris 10.

#4: For Solaris 10, use Solaris' resource control to specify the parameter inside the parenthesis () for adjustment.

#5
For Solaris 10, this parameter is not required if you are making adjustments using Solaris' resource control.

#6
For Solaris 10, specify this parameter if you are making adjustments using Solaris' resource control.

20. Specifying OS Parameters

727

20.3 Estimating AIX OS parameter values
This section describes the procedures for estimating the HP-UX OS parameter values (or kernel parameter values). If
OS parameter values are too small, HiRDB may not function correctly. The following table provides guidelines for
AIX OS parameter values.

Table 20‒3: Guidelines for the AIX OS parameter values

OS parameter Guideline for value

data_hard The parameter default value is -1 (unlimit). Do not specify this if there is no particular reason to do so.

stack_hard Specify -1 (unlimit).

nofiles HiRDB calculates and sets this value, so you do not need to specify it.

nofiles_hard The parameter default value is -1 (unlimit). Do not specify this if there is no particular reason to do so.

maxuproc Specify at least MAX(value of pd_max_server_process + e, 512).

However, if this value is less than the value required by another program that runs on the server machine, specify
the higher value.

EXTSHM
environment
variable

For 32-bit mode HiRDB, specify ON (do not specify if the number of shared memory segments attached by a
single process is less than 11). For 64-bit mode HiRDB, the value to specify depends on the function to be used.

e: Maximum number of concurrently executable commands (including utilities)

Note

• The maximum number of files that can be opened in the system concurrently can be controlled by value of
maxuprocxnofiles number of fixed licenses.

• The maximum number of users who can log in to the system can be controlled by the number of fixed
licenses.

• The maximum number of processes that can execute concurrently in the entire system can be controlled by
value of maxuproc number of fixed licenses.

! Important note
TCP ports might go into TIME_WAIT status, TCP ports in the system as a whole might run short and cause
transactions to generate errors, or HiRDB might terminate abnormally. Should any such problems occur, set the
operating system parameters to avoid port shortages. For details, see 22.4.4 Ways to avoid a shortage of ports.

(1) Specifying parameters unique to AIX

(a) Specifying environment variables

For AIX, you need to specify the environment variables given below in the system common definition. Note that the
environment variables PSALLOC, NODISCLAIM, and CORE_NOSHM do not need to be specified in the system
common definition.

Also, note that the environment variables below must also be set in the HiRDB command execution environment. The
values of the environment variables set in the system common definition must the same as the values set in the HiRDB
command execution environment. For details about setting environment variables, see the OS documentation.

• EXTSHM
For 32-bit mode HiRDB, specify ON, which indicates that there are no restrictions on the number of shared
memory areas in process space.
For 64-bit mode HiRDB, if you are using the page fix facility of shared memory, do not specify (omit) putenv
EXTSHM ON in order to enable the OS's page fix facility. Also, for 64-bit mode HiRDB servers, if you are using
the inter-process memory communication facility between 32-bit mode client processes, specify ON, indicating
that there are no restrictions on the number of shared memory areas in process space.

20. Specifying OS Parameters

728

The following table shows EXTSHM environment variable specification formats for combinations of address
modes and facilities used.

Address mode of
HiRDB server

Page fix facility of shared
memory#1

Inter-process memory
communication facility with

32-bit mode client
processes

Specification format for the
EXTSHM environment variable

32-bit mode --#2 Y putenv EXTSHM ON#3

N

64-bit mode Y Y --#4

N Do not specify

N Y putenv EXTSHM ON

N --#5

Legend:
Y: Facility is used
N: Facility is not used
--: N/A

#1
The page fix facility of shared memory is used when you specify fixed in the pd_shmpool_attribute
operand or pd_dbbuff_attribute operand. For details, see pd_shmpool_attribute operand or
pd_dbbuff_attribute operand in the manual HiRDB Version 9 System Definition.

#2
The facility is not supported.

#3
If the size of one segment of shared memory is less than 256 MB, the OS releases shared memory in 4 KB units in
shared memory detachment processing that occurs when processes stop. This could cause CPU usage rates to rise
and a system switchover to occur. When the number of shared memory segments attached with a single process
(the number of shared memory segments that can be checked with the pdls -d mem command) is fewer than
11, do not specify EXTSHM=ON.

#4
The page fix facility of shared memory cannot be used simultaneously with the inter-process memory
communication facility between 32-bit mode client processes.

#5
This parameter is not required.

• PSALLOC
In the HiRDB command execution environment, specify early, which indicates that the required paging space is
to be allocated immediately. You also need to specify NODISCLAIM at the same time. However, useless paging
space might still occur.

• NODISCLAIM
In the HiRDB command execution environment, specify true, which prevents nodisclaim() from being
issued as the method of processing a free() call.

• LDR_CNTRL
For 32-bit mode, specify this variable so that a larger data area than the standard kernel partitioning can be
handled. Specify MAXDATA=0x40000000. This variable is not required for 64-bit mode.

• CORE_NOSHM
In the HiRDB command execution environment, specify two consecutive double quotation marks ("") to exclude
the shared memory area in the core file, which is output when a process failure occurs. For details, see (d)
Restricting the core file output information.

20. Specifying OS Parameters

729

(b) Notes on the /etc/security/limits file specification values

Root users and HiRDB administrators must pay attention to the following specification values:

• data
An error occurs when the process heap area exceeds the limit value. If this limit value is not required, specify -1
(unlimited).

• fsize, fsize_hard
An error occurs when the file size exceeds this limit value. If this limit value is not required, specify -1
(unlimited).

(c) Specifying the Virtual Memory Manager (VMM) tuning parameters

Specify the following parameters when using specific facilities. VMM parameters can be specified with AIX's vmo
command (AIX 5L V5.2 or later). For details about the vmo command, see the AIX documentation.

• v_pinshm
This parameter enables page fixing for shared memory segments. To fix shared memory pages used by HiRDB,
specify 1 for this parameter. For details about how to fix shared memory pages used by HiRDB, see
pd_shmpool_attribute operand or pd_dbbuff_attribute operand in the manual HiRDB Version 9 System Definition.

• maxpin
This parameter specifies the maximum percentage of page-fixed real memory. When you fix shared memory
pages used by HiRDB, specify this parameter so that the real memory size within the percentage specified in this
parameter is larger than the total size (including the size of paged memory fixed by the OS) of all page-fixed
memory on the machine, including the size of the page-fixed HiRDB shared memory. For details about how to fix
shared memory pages used by HiRDB, see pd_shmpool_attribute operand or pd_dbbuff_attribute operand in the
manual HiRDB Version 9 System Definition.

(d) Restricting the core file output information

You must specify the settings in such a manner that in AIX 5L V5.2 or later, the core file output in the event of a
process failure does not include the shared memory area.

• Setting contents

HiRDB administrator's environment variable (k shell)
$ export CORE_NOSHM=

• Assumptions

• The fullcore parameter of the system attribute (sys0) is true.

• Notes

• The AIX version determines whether environment variable CORE_NOSHM is enabled. See the OS
documentation to determine whether you can use this environment variable.

• HiRDB automatically sets fullcore to true when it registers with the OS (when the pdsetup command
executes).
The fullcore parameter may have later been be reset to false with an OS command; make sure that the
current fullcore parameter is true.

• Do not specify this environment variable CORE_NOSHM setting in /etc/environment.

(e) Notes on bogging down of programs due to high I/O load on the JFS/JFS2 file system

Execution of programs that send requests to the JFS/JFS2 file system for large output can cause the performance of
system disk I/O to degrade. Programs such as pdcopy, or the compress, cp, and dd commands for large size files
can cause programs running on the same system to stall for up to 20 to 30 seconds.

In particular, if the system operates with a cluster configuration that uses HA monitor or HACMP to monitor system
response time, system switchover might occur.

To minimize this problem, you can equalize the write request frequency from application programs by setting an OS
parameter for the system parameter (sys0). By specifying the following OS parameters, you can control I/O requests
so that large numbers of I/O requests not completed for writing to the disk device do not accumulate in the file cache.

20. Specifying OS Parameters

730

OS parameters Guide to specification value#

Maxpout 33

Minpout 16

#
The optimum setting value of the maxpout/minpout parameter depends on the system configuration or I/O
characteristics of applications.
Therefore, it is effective to set a value listed in the above table and increase the value until application I/O
performance is acceptable.
For details about the maxpout/minpout parameter setting values, see the documentation for the OS.

(f) Notes on correcting the system time

Note the following points when you use the NTP program to correct the system time.

• For the NTP adjustment method, choose Slew mode, which gradually corrects the shift in time so that large
corrections of tens of seconds do not occur at once.

• In the AIX environment assignment file (/etc/environment), set GETTOD_ADJ_MONOTONIC=1 so that
time will not be turned back.

The AIX version determines whether the environment variable GETTOD_ADJ_MONOTONIC is enabled.

See the OS documentation to determine whether you can use this environment variable.

20. Specifying OS Parameters

731

20.4 Estimating Linux kernel parameter values
This section describes the procedures for estimating the Linux kernel parameter values (or kernel parameter values). If
kernel parameter values are too small, HiRDB may not function correctly. The following table provides guidelines for
Linux kernel parameter values.

Table 20‒4: Guidelines for the Linux kernel parameter values

Kernel
parameter Guideline for value

Example of option
settings file#

hard
nofile

Specify 8,192. /etc/security/
limits.conf

soft
nofile

There is no need to specify this value because it will be set by HiRDB. --

fs.file-
max

MAX{1,600, 320 (h - g - i) + [a + (b c) + 320] g + 848 i + h 2 + 227 + k
 m + C}

Specify at least the value obtained in the above formula by adding one of the following:

 HiRDB single server configuration

value of pd_max_users + value of pd_max_reflect_process_count
 HiRDB parallel server configuration

(D + 3 number of servers in the unit) E

D: Total the values found by executing the following formulas for each server in the unit.

Back-end server

value of pd_max_bes_process + value of pd_max_reflect_process_count
Dictionary server

value of pd_max_dic_process + value of pd_max_reflect_process_count
If the pd_max_bes_process or pd_max_dic_process operand is omitted, perform
this calculation using the pd_max_users value.

If the unit has multiple back-end servers, perform this calculation for each back-end server.

E: 16 (number of lock-release wait threads)

If the value determined from this formula exceeds the system maximum, use the system
maximum value.

/proc/sys/fs/
file-max

nproc Specify at least (value of pd_max_server_process + e, 512).

If the value required by another program running on the server machine is greater than this
value, use that value.

/etc/security/
limits.conf

threads-
max

Specify at least MAX((value of pd_max_server_process + 20), 576). /proc/sys/
kernel/threads-
max

msgmnb See 20.1 Estimating HP-UX OS parameter values, under msgmnb formula. Specify at least
the value obtained. However, for a multi-HiRDB configuration, specify the largest of the
values obtained for the HiRDB systems.

/proc/sys/
kernel/msgmnb

msgmni Specify the number of message queue identifiers required by all programs that are run on
the server machine. For details about the number of message queue identifiers required by
HiRDB, see 20.5 Estimating the sizes of message queues and semaphores. Add the values
obtained.

/proc/sys/
kernel/msgmni

SEMMNI Specify the number of semaphore identifiers required by all programs that are run on the
server machine. For details about the number of semaphore identifiers required by HiRDB,
see 20.5 Estimating the sizes of message queues and semaphores. Add the values obtained.
The recommended value is 1,024 or greater.

Parameter 4 in /
proc/sys/
kernel/sem

SEMMNS Specify the number of semaphores required by all programs that are run on the server
machine. For details about the number of semaphores required by HiRDB, see 20.5
Estimating the sizes of message queues and semaphores. Add the values obtained. The
recommended value is 7,200 or greater.

Parameter 2 in /
proc/sys/
kernel/sem

20. Specifying OS Parameters

732

Kernel
parameter Guideline for value

Example of option
settings file#

shmmax Specify at least MAX(p + q, r, s, t), and at least 200,000,000.

If the global buffer dynamic update facility is used, consider the size of the global buffers to
be added; if there is a possibility that the size of the added part will become greater than the
specified value, specify the anticipated size of the added part.

Specify the value of shmmax obtained here or less in the SHMMAX operand of the HiRDB
system definition.

/proc/sys/
kernel/shmmax

shmmni Specify a value of 2,000 or greater.

• If you are using the security audit facility, add 1.

• If you are using the facility for dynamically changing global buffers, add the following
values. If you are using the security audit facility, add 1.
HiRDB single server configuration
value of the pd_max_add_dbbuff_shm_no operand
HiRDB parallel server configuration
n

values of the pd_max_add_dbbuff_shm_no operands set in each server definition
i=1
n: number of back-end servers + dictionary servers on the server machine

• If you are using in-memory data processing, add:
HiRDB single server configuration
value of the pd_max_resident_rdarea_shm_no operand
HiRDB parallel server configuration
value of the pd_max_resident_rdarea_shm_no operand number of back-
end servers

/proc/sys/
kernel/shmmni

SHMALL Specify the value obtained by adding the size of shared memory required for other
programs running on the same server machine to si, which is the size of shared memory
allocated by HiRDB on the server.

/proc/sys/
kernel/shmall

Legend:
--: Not applicable

#: The file depends on the OS and kernel versions being used. See the applicable OS documentation and set
appropriate values, using the values provided in the table as guidelines. With some OS versions, parameter settings
may not be necessary. If a kernel parameter is not supported by the OS being used, its setting is not needed.

a: Number of input data files and divided-input data files used by the database load utility, or the number of unload
data files used by the database reorganization utility

b: Maximum number of index row partitions (indexes subject to processing by the database load utility, database
reorganization utility, or rebalancing utility)

c: Number of indexes (indexes subject to processing by the database load utility, database reorganization utility, or
rebalancing utility)

e: Maximum number of concurrently executable commands (including utilities)

g: One of the following values:

• HiRDB single server configuration: Value of pd_max_users operand + value of
pd_max_reflect_process_count operand

• HiRDB parallel server configuration: Total of the following values for all back-end and dictionary servers in
the unit:
Value of pd_max_bes_process operand + value of pd_max_reflect_process_count operand
Value of pd_max_dic_process operand + value of pd_max_reflect_process_count operand

h: Value of pd_max_server_process operand

i: Number of servers in the unit

20. Specifying OS Parameters

733

k: Value of pd_max_users operand + value of pd_max_reflect_process_count operand

m: One of the following values:

• If a front-end server exists in the unit in a HiRDB parallel server configuration: 2

• Other than the above: 0

n: If you specify the batch index creation mode or index information output mode as the index creation mode with the
database load utility, database reorganization utility, or rebalancing utility, use the value obtained from the following
formula:

MIN(MAX(576, number of HiRDB servers in the system + 448) + b c, maximum value of the
pd_max_open_fds operand)
For details about the maximum value of the pd_max_open_fds operand, see the manual HiRDB Version 9
System Definition.

p: Size of the shared memory used by the unit controller

q: Size of the shared memory used by the single server or each server

r: Value specified in the HiRDB system definition's SHMMAX operand

s: Estimated value for shared memory used by global buffers
For details about estimating the shared memory used by global buffers, see 15.1.5 Formula for size of shared
memory used by global buffers for a HiRDB single server configuration, and see 15.2.5 Formula for size of shared
memory used by global buffers for a HiRDB parallel server configuration.

si: Shared memory allocated by HiRDB at the corresponding server machine

• For a HiRDB single server configuration
Value obtained in 15.1.3 Formulas for shared memory used by a unit controller
+ value obtained in 15.1.4 Formulas for shared memory used by a single server
+ value obtained in 15.1.5 Formula for size of shared memory used by global buffers

• For a HiRDB parallel server configuration
Value obtained in 15.2.3 Formulas for shared memory used by a unit controller
+ value obtained in 15.2.4 Formulas for shared memory used by each server
+ value obtained in 15.2.5 Formula for size of shared memory used by global buffers

t: Estimated value for shared memory used by the security audit information buffer
For details about estimating the size of shared memory used by the security audit information buffer, see 15.1.2
Calculation of required memory for a HiRDB single server configuration, and see 15.2.2 Calculation of required
memory for a HiRDB parallel server configuration.

C:
For a HiRDB single server configuration: MAX(256, (number of HiRDB servers in the system + 32)) (g + k) +
(h - k) MAX(number of HiRDB servers in the system, number of units)
For a HiRDB parallel server configuration: MAX(256, (number of HiRDB servers in the system + 32)) (g + k)
+ (h - g - k) MAX(number of HiRDB servers in the system, number of units)

! Important note

TCP ports might go into TIME_WAIT status, TCP ports in the system as a whole might run short and cause transactions to
generate errors, or HiRDB might terminate abnormally. Should any such problems occur, set the operating system
parameters to avoid port shortages. For details, see 22.4.4 Ways to avoid a shortage of ports.

(1) Linux-specific specifications
For the Linux version, values specified in settings files such as xinetd.conf for the extended Internet service
daemon (hereafter, xinetd) must be adjusted when the daemon is started. For that reason, specify the following
values in the settings file parameters. When a calculated value is smaller than the default for that parameter, you do
not need to change the parameter.

For details about xinetd and xinetd.conf, see the OS documentation.

20. Specifying OS Parameters

734

(a) The cps attribute

To set for shell service, specify the following values for the first argument (connections processed per second) of
the cps attribute.

For a HiRDB single server configuration:
If there is no utility special unit: A
If there is a utility special unit: MAX(A, B)
A: number of single servers activated by the machine 4
B: maximum concurrent executions of pdcopy and pdrstr 2

For a HiRDB parallel server configuration: MAX(C, (D + E1 + E2))

C: number of dictionary servers started by the machine
 total number of back-end servers defined in the HiRDB system 6

+ number of dictionary servers started by the machine
 total number of back-end servers defined in the HiRDB system 2

+ number of back-end servers started by the machine 7
+ number of dictionary server s started by the machine 4

D: maximum number of concurrent executions of pdcopy and pdrstr
 (number of back-end servers defined in the HiRDB system + 4)

E1: number of concurrently executable operation commands and utilities 3

E2: When operation involves executing the pdtrndec command, the following totals; when it does not, 0
When there is a FES on the machine, the value of pd_max_users
When there is a BES on the machine, the value of pd_max_bes_process
When there is a DS on the machine, the value of pd_max_dic_process

(b) The instances attribute

With the settings for shell service, specify value set in (a) 2 in the instances attribute (the maximum value
that the service can concurrently execute).

20. Specifying OS Parameters

735

20.5 Estimating the sizes of message queues and
semaphores

This section presents the formulas for determining the sizes of message queues and semaphores required for one
server machine.

(1) HiRDB single server configuration

Type Formula

Number of message queue identifiers (16 + f) a + 30

Number of semaphore identifiers { {2 (b + 3) + 12} 64 + c 64 + g + 5 } a + 2 + d

Number of semaphores(Total number of
semaphores per identifier)

{2 (b + 3) + c + h + 37} a + 3 + e

a: 1 (single server) or 0 (utility special unit)

b: Value of pd_max_users operand + value of pd_max_reflect_process_count operand.

c: Number of pdbuffer operands specified (number of global buffers)

d: Add when the system switchover facility is being used; determine the value from the table below.

e: Add when the system switchover facility is being used; determine the value from the following table:

Condition Value of d Value of e

pd_ha_acttype=monitor (or default) 0 0

pd_ha_acttype=
server

pd_ha_agent=standbyunit 1 7

pd_ha_agent
omitted

pd_ha_server_process_standby=Y
(or default)

1 2

pd_ha_server_process_standby=N 0 1

f: 1 (if 1 or greater is specified in the pd_max_ard_process operand) or 0

g: 2 (if a value is specified in the pd_dfw_awt_process operand) or 0

h: Value of the pd_dfw_awt_process operand + 1 (if a value is specified in the pd_dfw_awt_process
operand) or 0

(2) HiRDB parallel server configuration
For details about the variables used in the formulas, see (c) Variables used in the formulas.

(a) When the standby-less system switchover (effects distributed) facility is not used

Type Formula

Number of message queue
identifiers

b

 Vi + 2 a + 3 b + c + d + e + 26 + m

i = 1

Number of semaphore
identifiers

b

{ (Si + Ti + Ui) 64 + Wi} + 6 b + 2 + f

i = 1

20. Specifying OS Parameters

736

Type Formula

Number of semaphores (total
number of semaphores per
identifier)

b

(Si + Ti + Ui + Xi) + 26 b + 3 + g

i = 1

(b) When the standby-less system switchover (effects distributed) facility is used

Type Formula

Number of message queue
identifiers

b

 Vi + 2 a + 3 b + c + d + e + 26 + m

i = 1

Number of semaphore
identifiers

b

{ {Yi (j + k)} 64 + Wi} + 6 b + 2 + f

i = 1

Number of semaphores (total
number of semaphores per
identifier)

b

{Yi (j + k) + Xi} + 26 b + 3 + g

i = 1

(c) Variables used in the formulas

a: Number of front-end servers in the server machine

b: Number of dictionary servers in the server machine + n

c: 4 (front-end server) or 0 (other server)

d: 8 (dictionary server) or 0 (other server)

e: 16 n (back-end server) or 0 (other server)

f and g: Add when the system switchover facility is being used; determine the value from the table below.

Condition Value of f Value of g

pd_ha_acttype=monitor (or omitted) 0 0

pd_ha_acttype=serv
er

pd_ha_agent=standbyunit 1 h

pd_ha_agent=server 1 6 + 2 (number of
BESs in the unit to
which standby-less
system switchover

(1:1) is applied)

pd_ha_agent=activeunits 0 0

pd_ha_agent
omitted

pd_ha_server_process_standby
=Y
(or omitted)

1 i

pd_ha_server_process_standby
=N

0 1

h: 6 + 2 (total number of front-end servers, dictionary servers, and back-end servers in the server machine)

i: 1 + (total number of front-end servers, dictionary servers, and back-end servers in the server machine)

j: Number of host BESs

k: Number of guest BESs

m: If there is a system manager unit, 3; otherwise, 0

20. Specifying OS Parameters

737

n: One of the following:

• When the standby-less system switchover (effects distributed) facility is not used
Then number of back-end servers in the server machine

• When the standby-less system switchover (effects distributed) facility is used
number of host BESs in server machine + value of pd_ha_max_act_guest_servers operand

Si: Number of pdbuffer -r operands defined for RDAREAs placed in each server

Ti: Number of pdbuffer -i operands defined for RDAREAs placed in each server

Ui: Number of -o options specified in the pdbuffer operand

Vi: 1 (if 1 or greater is specified in the pd_max_ard_process operand) or 0

Wi: 2 (if a value is specified in the pd_dfw_awt_process operand) or 0

Xi: Value of the pd_dfw_awt_process operand + 1 (if a value is specified in the pd_dfw_awt_process
operand) or 0

Yi: Number of -c options specified in the pdbuffer operand

20. Specifying OS Parameters

738

20.6 Listen queue specified values
If HiRDB receives many connection requests simultaneously, the Listen queue used by the HiRDB server may
become insufficient to handle them, in which case the KFPA11723-E message is displayed to the client-side
applications to notify them of the error. When this occurs, use an OS command to determine whether the Listen queue
is insufficient. You can determine that the Listen queue is insufficient if the frequency of insufficient Listen queuing is
greater than before the errors began and the errors continue to increase. For details about making this determination,
refer to the OS documentation.

If you have determined that the Listen queue is insufficient, enlarge the Listen queue on the HiRDB server machine.
To enlarge the Listen queue, have it steadily increase to the 200 level each. However, if the OS cannot enlarge the
Listen queue, or if increasing up to the specified maximum number of concurrent connections does not stop the errors,
take a measure such as increasing the HiRDB connection processing power by increasing the processing power of the
server machine (such as by adding CPUs) or reduce the number of connection requests to HiRDB by reducing the
maximum number of concurrent connections.

The table below shows the parameters that need to be changed (for Linux, the option settings file) when you change
the value specified in the Listen queue. For details about the commands whose parameters are to be changed and how
to use them, see the applicable OS documentation.

Table 20‒5: Parameters for changing the value for the Listen queue

OS Parameter to be changed#

HP-UX /dev/tcp tcp_conn_request_max

Solaris /dev/tcp tcp_conn_req_max_q, /dev/tcp tcp_conn_req_max_q0

AIX Somaxconn

Linux /etc/sysctl.conf net.core.somaxconn

#: The file depends on the OS and kernel versions being used. See the applicable OS documentation and set
appropriate values, using the values provided in the table as guidelines. With some OS versions, parameter settings
may not be necessary. If a kernel parameter is not supported by the OS in use, its setting is not needed.

20. Specifying OS Parameters

739

21 Sample Files
This chapter describes the sample files provided by HiRDB (sample database,
configuration, and UOC).

741

21.1 Overview of sample files
HiRDB provides the following sample files:

• Sample audit

• Sample database

• Sample configuration

• Sample UOC

The following figure shows the directory structure of the sample files. All the directories following sample are
located under the installation directory. Executing the pdsetup command does not copy them to the HiRDB
directory.

Figure 21‒1: Directory structure of sample files

Note
The following are the installation directories:

HiRDB single server configuration HiRDB parallel server configuration

/HiRDB_S/sample/sampleconf /HiRDB_P/sample/sampleconf

/opt/HiRDB_S/sample/sampleconf /opt/HiRDB_P/sample/sampleconf

21.1.1 Names of sample files
This section describes the names of the following sample files:

• Sample audit

• Sample database

• Sample configuration

• Sample UOC

21. Sample Files

742

(1) Sample audit file names
The sample audit files are used in connection with JP1/NETM/Audit. The following table lists their file names and
descriptions.

Table 21‒1: Sample audit file names and descriptions

File name Description

HiRDB.conf Product definition file

admjevlog_HiRDB.conf Operation definition file

sampleaud1 Search condition definition files

sampleaud2

For details about the environment settings that use these sample files, see Linkage to JP1/NETM/Audit in the HiRDB
Version 9 System Operation Guide.

(2) Name of sample database file
The table below lists and describes the directories and files used with the sample database.

The sample files are provided in a Japanese version (containing single-byte kana characters) and an English version.
Unless Shift JIS is being used as the character encoding set, the English version of the sample files should be used.

Table 21‒2: Directories and files used with sample database

Name of directory or file Contents Remarks

tblecreate#1 Table definition statements (including schema
definitions)

pddef input format

loadinf#2 Control statements for pdload Shell

loaddata Input data for data loading Directory

CONTROL_FILE Control statements for data loading --

Legend:
--: Not applicable

#1: The file name of the English version is tblecreate_e.

#2: The file name of the English version is loadinf_e.

(3) Names of sample configuration files
The table below describes the sample configuration.

This sample configuration uses values based on the minimum configuration in order to simplify the relationships
among parameters; these are not the optimum values.

Table 21‒3: Contents of sample configuration

Classification Contents

File name

HiRDB single
server configuration

HiRDB parallel server
configuration

System definitions System common definition Pdsys pdsys

Unit control information definition Pdutsys pdutsys1, pdutsys2

Server common definition -- pdsvrc

Single server definition sds01 --

21. Sample Files

743

Classification Contents

File name

HiRDB single
server configuration

HiRDB parallel server
configuration

Front-end server definition -- fes1

Back-end server definition -- bes1, bes2

Dictionary server definition -- dic1

Allocation/ initialization
of HiRDB file system
areas

Shell for allocating RDAREAs Fmkfile fmkfile

Shell for allocating system log, synchronization
point dump, and status files

Sysfmkfs sysfmkfs1,
sysfmkfs2

Shell for initializing system log, synchronization
point dump, and status files

Sysfinit sysfint

Log unloading Shell for unloading system log files logunld feslogunld,
bes1logunld,
bes2logunld,
diclogunld

Database initialization
utility

Shell for creating control statements mkinit mkinit

Database initialization utility control statements rdinit01# rdinit01#

Execution of operation
commands under aliases

Sample of shell script for
executing operation commands
under aliases

Bourne shell aliascmdbsh aliascmdbsh

C shell aliascmdcsh aliascmdcsh

Legend:
--: Not applicable

#: Can be generated by executing the control statement creation shell for the database initialization utility (mkinit).

(4) Sample UOC files
The UOC shown below is provided. The table below describes the sample UOC.

• Database load utility (pdload) file input example

• Database reconfiguration utility (pdrorg) file output example

For details about UOCs, see the manual HiRDB Version 9 Command Reference.

Table 21‒4: Contents of sample UOC

File name Contents

sample1.c Example of UOC for entering DAT-format input files by the database load utility

sample2.c Example of UOC for entering binary format input files

sample4.c Functions used by sample2.c

sampleA.c Example of UOC that prevents output of unneeded data to an unload file

sampleB.c Example of UOC that outputs a UOC data file

21. Sample Files

744

21.2 System configuration and table definition
information

(1) System configuration
Figure 21-2 shows the relationships between the host and server for a HiRDB single server configuration, and Figure
21-3 shows the relationships among hosts and servers for a HiRDB parallel server configuration.

Figure 21‒2: Configuration for a HiRDB single server configuration

Figure 21‒3: Configuration for a HiRDB parallel server configuration

21. Sample Files

745

(2) Table definition information
There is a Japanese version (containing single-byte kana characters) and an English version of the sample files for
table definitions and data loading. Unless Shift JIS is being used as the character encoding set, the English version
should be used.

Table 21-5 lists the tables that are to be defined, Table 21-6 shows the English version of the column attributes and
indexes.

All the tables presented here have the FIX attribute.

Table 21‒5: Contents of tables to be defined

Table name Contents Number of rows

CUSTOM Customer master 100#1

GOODS Product master 100#1

VENDOR Vendor master 50#1

TAKEODR Orders received --#2

STOCK Stock 100

WAREHUS Warehousing --#2

SHIPMNT Shipments --#2

SENDODR Orders placed --#2

LAYIN Purchasing --#2

Legend:
--: Not applicable

#1: Data loading is not applicable in the English version.

#2: Data loading is not applicable in either the Japanese or the English version.

Table 21‒6: Column attributes and indexes (English version)

Table name Column name Column attribute Index name

CUSTOM CUSTOM_CD CHAR(5) UNIQUE CLUSTER
KEY CUSTOMXCUSTOM_NAME CHAR(30)

TELNO CHAR(12)

ZIPCD CHAR(3)

ADDRESS CHAR(30)

GOODS PRODUCT_CD CHAR(6) UNIQUE CLUSTER
KEY GOODSXPRODUCT_NAME CHAR(30)

PRICE DECIMAL(7,0)

VENDOR_CD CHAR(5)

VENDOR VENDOR_CD CHAR(5) UNIQUE CLUSTER
KEY VENDORXVENDOR_NAME CHAR(30)

TELNO CHAR(12)

ZIPCD CHAR(3)

21. Sample Files

746

Table name Column name Column attribute Index name

ADDRESS CHAR(30)

TAKEODR ORDER_ACCEPTED_CD CHAR(7) CLUSTER KEY

CUSTOM_CD CHAR(5)

PRODUCT_CD CHAR(6)

QUANTITY DECIMAL(7,0)

RESERVED_QUANTITY DECIMAL(7,0)

SURPLUS DECIMAL(7,0)

ORDER_ACCEPTED_DATE CHAR(6)

DELIVERY_DATE CHAR(6)

STOCK PRODUCT_CD CHAR(6)

STOCK DECIMAL(7,0)

RESERVED_QUANTITY DECIMAL(7,0)

ORDER DECIMAL(7,0)

VENDOR_CD CHAR(5)

WAREHUS PRODUCT_CD CHAR(6)

WAREHOUSE DECIMAL(7,0)

LAY_IN_NO INTEGER

WAREHOUSE_DATE CHAR(6)

SHIPMNT PRODUCT_CD CHAR(6)

SHIPMENT DECIMAL(7,0)

ORDER_ACCEPTED_CD CHAR(7)

ORDER_ACCEPTED_DATE CHAR(6)

SENDODR ORDER_NO INTEGER CLUSTER KEY
SENDODRXVENDOR_CD CHAR(5)

PRODUCT_CD CHAR(6)

ORDER_QUANTITY DECIMAL(7,0)

ORDER_DATE CHAR(6)

DELIVERY_DATE CHAR(6)

LAYIN LAY_IN_NO INTEGER CLUSTER KEY
LAYINXVENDOR_CD CHAR(5)

PRODUCT_CD CHAR(6)

LAY_IN_QUANTITY DECIMAL(7,0)

LAY_IN_DATE CHAR(6)

Notes
The name of the table storage RDAREA is RDDATA10.

21. Sample Files

747

The name of the index storage RDAREA is RDINDX10.

21. Sample Files

748

21.3 Use of the sample files

21.3.1 Creating the configuration files
Table 21-7 lists and explains the configuration files that are to be created for the HiRDB single server configuration;
Table 21-8 lists and explains the configuration files that are to be created for the HiRDB parallel server configuration.

To use these files, they must be copied under $PDDIR/conf, then appropriate changes must be made to them
according to the notes provided in Table 21-7 or 21-8.

Specify the HiRDB directory path in the PDDIR environment variable.

• HiRDB single server configuration: /opt/HiRDB_S
• HiRDB parallel server configuration: /opt/HiRDB_P

Table 21‒7: Files to be created for a HiRDB single server configuration

File name Contents Notes

pdsys System common definition • Port number is set to 22200. Change it as appropriate
for the execution environment.

• Host name is set to host1. Change it as appropriate for
the execution environment.

pdutsys Unit control information definition None

sds01 Single server definition

sysfmkfs Command for creating HiRDB file system
areas for system files

sysfint Command for initializing system files

logunld Command for unloading system log files • An unload log file storage directory (/HiRDB_S/
unloadlog) must have been created beforehand.

• To change the unload load file storage directory, specify
-o in pdlogunld.

Table 21‒8: Files to be created for a HiRDB parallel server configuration

File name Contents Notes

pdsys System common definition • Port number is set to 22200. Change it as appropriate for
the execution environment.

• Host names are set to host1 and host2. Change them as
appropriate for the execution environment.

pdutsys1 Unit control information definition for unt1
of host1

After copying it to host1's environment, change the file name
to pdutsys.

pdutsys2 Unit control information definition for unt2
of host2

After copying it to host2's environment, change the file name
to pdutsys.

pdsvrc Server common definition None

fes1 Definition for front-end server fes1

bes1 Definition for back-end server bes1

bes2 Definition for back-end server bes2

dic1 Definition for dictionary server dic1

21. Sample Files

749

File name Contents Notes

sysfmkfs1 Command for creating HiRDB file system
areas for system files to be used by unt1 of
host1

Input from host1.

sysfmkfs2 Command for creating HiRDB file system
areas for system files to be used by unt2 of
host2

Input from host2.

sysfint Command for initializing system files to be
used by host1 and host2

• Input from host1.

• Host names are host1 and host2. Change them as
appropriate for the execution environment.

Feslogunld Command for unloading system log files for
pdfes

• Unload log file storage directory /HiRDB_P/unloadlog
must have been created beforehand for each host.

• To change the unload load file storage directory, specify -o
in pdlogunld.

bes1logunld Command for unloading system log files for
pdbes1

bes2logunld Command for unloading system log files for
pdbes2

dic1logunld Command for unloading system log files for
pddic

(1) Allocating and initializing HiRDB file system areas

(a) Creating a HiRDB file system area for the database

The following instruction must be executed to create the HiRDB file system areas:

HiRDB single server configuration
Execute the following shell script:

$PDDIR/sample/sampleconf/fmkfile

Note
Be sure to set the PDDIR environment variable.

HiRDB parallel server configuration
Execute the following shell script at each host (host1 and host2):

$PDDIR/sample/sampleconf/fmkfile

Note
Be sure to set the PDDIR environment variable.

(b) Allocating files such as system log files

The following instruction must be executed to allocate files such as system log files:

HiRDB single server configuration
Execute the following shell script:

$PDDIR/sample/sampleconf/sysfmkfs

Note
Be sure to set the PDDIR environment variable.

HiRDB parallel server configuration
Execute the following shell script at host1:

$PDDIR/sample/sampleconf/sysfmkfs1

21. Sample Files

750

Note
Be sure to set the PDDIR environment variable.

Execute the following shell script at host2:

$PDDIR/sample/sampleconf/sysfmkfs2

Note
Be sure to set the PDDIR environment variable.

(c) Initializing files such as system log files

The following instruction must be executed to initialize files such as system log files:

HiRDB single server configuration
Execute the following shell script:

$PDDIR/sample/sampleconf/sysfint

Note
Be sure to set the PDDIR environment variable.

HiRDB parallel server configuration
Execute the following shell script at the host where the system manager is defined (host1):

$PDDIR/sample/sampleconf/sysfint

Note
Be sure to set the PDDIR environment variable.

(2) Creating the initialization control statement file
The instruction shown as follows must be executed to create the initialization control statement file.

The name of the initialization control statement file is $PDDIR/sample/sampleconf/rdinit01.

HiRDB single server configuration
Execute the following shell script:

$PDDIR/sample/sampleconf/mkinit

Note
Be sure to set the PDDIR environment variable.

HiRDB parallel server configuration
Execute the following shell script at the dictionary server:

$PDDIR/sample/sampleconf/mkinit

Note
Be sure to set the PDDIR environment variable.

(3) Starting HiRDB
Use the pdstart command to start HiRDB.

(4) Table definition
The database definition utility (pddef) is executed shown as follows:

$PDDIR/bin/pddef < $PDDIR/sample/sampleDB/tblecreate_e

21. Sample Files

751

Note
Set appropriate values in the PDUSER, PDDIR, PDNAMEPORT, and PDHOST environment variables.

(5) Data loading
Execute the following shell script to load data using the database load utility (pdload). For details about data
loading, see the manual HiRDB Version 9 Command Reference.

$PDDIR/sample/sampleDB/loadinf_e

(6) Creating a shell script for executing operation commands under aliases
It may not be possible to execute a HiRDB operation command because it has the same name as an OS command or a
command provided by another program. In this case, the following actions can be taken:

• Make the environment variable setting that gives HiRDB commands precedence over other commands.

• Specify the absolute path of the command to be executed.

If neither of these actions can be taken, there is a way to execute a HiRDB operation command under a user-defined
name. HiRDB provides a sample shell script for this purpose.

(a) Names of sample files for shell script provided by HiRDB

HiRDB provides a sample shell script file appropriate to each platform. The table below lists and describes the sample
shell script files provided by HiRDB; they are stored in the following directory:

• HiRDB single server configuration: /opt/HiRDB_S/sample/sampleconf
• HiRDB parallel server configuration: /opt/HiRDB_P/sample/sampleconf

Table 21‒9: Sample shell script files for executing commands under aliases

File name Contents Notes

aliascmdbsh Sample file for Bourne shell Do not copy in the bin or lib directory under the
HiRDB directory

aliascmdcsh Sample file for C shell

(b) Procedure for creating an alias for a command

To create an alias for an operation command:

1. Copy the shell script sample file into a desired directory. To create aliases for multiple commands, copy it once for
each of the commands. Do not copy it into the bin or lib directory under the HiRDB directory.

2. Set the copy target directory for the sample file in the PATH environment variable, or set path as the search path.

3. Rename the file copied in step 1 to the alias of the HiRDB operation command. For example, command name
pdmod might be changed to hirmod.

4. Open the copied sample file and change cc...cc to the name of the HiRDB operation command to be executed
under the alias, as shown in Figures 21-4 and 21-5.

Figure 21‒4: Sample file for Bourne shell

21. Sample Files

752

Figure 21‒5: Sample file for C shell

This procedure enables a HiRDB operation command to be executed under any desired name. Options can be
specified in the alias command in the same manner as with the normal HiRDB operation command.

(c) Notes

1. A name other than the HiRDB operation command name must be assigned to a copy of the sample file.

2. It is possible that the $PDDIR/bin and $PDDIR/lib directories under the HiRDB directory will be deleted in
their entirety when the pdsetup -d command is executed. For this reason, sample files must not be copied into
these directories.

3. The contents of the sample files must not be changed, except for setting a HiRDB operation command name.

4. To cancel execution of a created alias command during command processing, the HiRDB command process must
be terminated at an extension of the alias process. Terminating the alias process does not automatically terminate
the HiRDB command process.

5. If a created alias command is executed and another process is terminated while the HiRDB command is waiting
for a response to be entered, HiRDB command execution may result in an error or the response entry wait status
may still be in effect. If the response entry wait status is still in effect, the HiRDB command process must be
terminated.

21.3.2 HiRDB file system area names and user-created file names used
with sample database

This section lists the names and sizes of the HiRDB file system areas and the names of the user-created files that are
used with the sample database.

These are the names used in the provided sample database; any names could have been used.

(1) Names and sizes of HiRDB file system areas
Table 21-10 lists the names and sizes of the HiRDB file system areas that are used with the database for the HiRDB
single server configuration. Table 21-11 lists the names and sizes of the HiRDB file system areas that are used with
the database for the HiRDB parallel server configuration.

Table 21‒10: Names and sizes of HiRDB file system areas: HiRDB single server configuration

No. Classification Files Size
(MB)

HiRDB file system area
name Remarks

1 System files • System log files

• Synchronization point dump
files

• Status files

74 /HiRDB_S/rdsys011
/HiRDB_S/rdsys012
/HiRDB_S/rdsys013
/HiRDB_S/rdsys014
/HiRDB_S/rdsys015
/HiRDB_S/rdsys016

Regular files

2 System RDAREAs • Master directory 20 /HiRDB_S/rdsys02

21. Sample Files

753

No. Classification Files Size
(MB)

HiRDB file system area
name Remarks

• Data directory

• Data dictionary

3 Work table files -- 20 /HiRDB_S/rdsys03

4 User RDAREAs -- 40 /HiRDB_S/rdsys04

Legend:
--: Not applicable

Table 21‒11: Names and sizes of HiRDB file system areas: HiRDB parallel server configuration

No. Classification Files Size
(MB)

HiRDB file system area
name Remarks

1 System files • System log files

• Synchronization
point dump files

• Status files

host1 156 /HiRDB_P/rdsys011
/HiRDB_P/rdsys012
/HiRDB_P/rdsys013
/HiRDB_P/rdsys014

Regular files

host2 74 /HiRDB_P/rdsys015
/HiRDB_P/rdsys016

2 System RDAREAs • Master directory

• Data directory

• Data dictionary

20 /HiRDB_P/rdsys02

3 Work table files -- 20 /HiRDB_P/rdsys03

4 User RDAREAs -- 40 /HiRDB_P/rdsys04

Legend:
--: Not applicable

(2) Names of user-created files
Table 21-12 lists the names of the user-created files that are used with the sample database for the HiRDB single
server configuration. Table 21-13 lists the names of the user-created files that are used with the sample database for
the HiRDB parallel server configuration.

Table 21‒12: Names of user-created files: HiRDB single server configuration

No. Type File name Remarks

1 Definition files System common definition $PDCONFPATH/pdsys The directories have
already been created
during installation.2 Unit control information

definition
$PDDIR/conf/pdutsys

3 Single server definition $PDDIR/conf/sds01

4 System log files /HiRDB_S/rdsys011/log1
/HiRDB_S/rdsys012/log2
/HiRDB_S/rdsys013/log3
/HiRDB_S/rdsys014/log4

4 groups

5 Synchronization point dump files /HiRDB_S/rdsys014/spd1
/HiRDB_S/rdsys015/spd2
/HiRDB_S/rdsys016/spd3

3 groups

21. Sample Files

754

No. Type File name Remarks

6 Status files Unit status files /HiRDB_S/rdsys011/utsts1a
/HiRDB_S/rdsys012/utsts1b
/HiRDB_S/rdsys013/utsts2a
/HiRDB_S/rdsys014/utsts2b
/HiRDB_S/rdsys015/utsts3a
/HiRDB_S/rdsys016/utsts3b

2 per unit x 3

7 Server status files /HiRDB_S/rdsys011/sts1a
/HiRDB_S/rdsys012/sts1b
/HiRDB_S/rdsys013/sts2a
/HiRDB_S/rdsys014/sts2b
/HiRDB_S/rdsys015/sts3a
/HiRDB_S/rdsys016/sts3b

2 per server x 3

8 System
RDAREAs

Master directory /HiRDB_S/rdsys02/rdmast RDAREA name:
RDMAST

9 Data directory /HiRDB_S/rdsys02/rddirt RDAREA name:
RDDIRT

10 Data dictionary /HiRDB_S/rdsys02/rddict RDAREA name:
RDDICT

11 Work table files /HiRDB_S/rdsys03 --

12 RPC trace files /HiRDB_S/spool/pdrpctr --

13 User
RDAREAs

Data section /HiRDB_S/rdsys04/rddata10 RDAREA name:
RDDATA10

14 Index section /HiRDB_S/rdsys04/rdindx10 RDAREA name:
RDINDX10

Legend:
--: Not applicable

Table 21‒13: Names of user-created files: HiRDB parallel server configuration

No. Type File name Remarks

1 Definition
files

System common
definition

$PDCONFPATH/pdsys The directories have
already been created
during installation.

2 Unit control information
definition

$PDDIR/conf/pdutsys

3 Server common definition $PDCONFPATH/pdsvrc

4 Front-end server
definition

$PDDIR/conf/fes1

5 Dictionary server
definition

$PDDIR/conf/dic1

6 Back-end
server
definition

host1 $PDDIR/conf/bes1

host2 $PDDIR/conf/bes2

7 System log files host1 /HiRDB_P/rdsys011/feslog1
/HiRDB_P/rdsys012/feslog2
/HiRDB_P/rdsys013/feslog3
/HiRDB_P/rdsys014/feslog4

4 groups per server

21. Sample Files

755

No. Type File name Remarks

/HiRDB_P/rdsys011/diclog1
/HiRDB_P/rdsys012/diclog2
/HiRDB_P/rdsys013/diclog3
/HiRDB_P/rdsys014/diclog4
/HiRDB_P/rdsys011/bes1log1
/HiRDB_P/rdsys012/bes1log2
/HiRDB_P/rdsys013/bes1log3
/HiRDB_P/rdsys014/bes1log4

host2 /HiRDB_P/rdsys011/bes2log1
/HiRDB_P/rdsys012/bes2log2
/HiRDB_P/rdsys013/bes2log3
/HiRDB_P/rdsys014/bes2log4

8 Synchronization point dump
files

host1 /HiRDB_P/rdsys014/fesspd1
/HiRDB_P/rdsys015/fesspd2
/HiRDB_P/rdsys016/fesspd3
/HiRDB_P/rdsys014/dicspd1
/HiRDB_P/rdsys015/dicspd2
/HiRDB_P/rdsys016/dicspd3
/HiRDB_P/rdsys014/bes1spd1
/HiRDB_P/rdsys015/bes1spd2
/HiRDB_P/rdsys016/bes1spd3

3 groups per server

host2 /HiRDB_P/rdsys014/bes2spd1
/HiRDB_P/rdsys015/bes2spd2
/HiRDB_P/rdsys016/bes2spd3

9 Status files Unit status
files

host1 /HiRDB_P/rdsys011/ut1sts1a
/HiRDB_P/rdsys012/ut1sts1b
/HiRDB_P/rdsys013/ut1sts2a
/HiRDB_P/rdsys014/ut1sts2b
/HiRDB_P/rdsys015/ut1sts3a
/HiRDB_P/rdsys016/ut1sts3b

2 per unit x 3

host2 /HiRDB_P/rdsys011/ut2sts1a
/HiRDB_P/rdsys012/t2sts1b
/HiRDB_P/rdsys013/ut2sts2a
/HiRDB_P/rdsys014/ut2sts2b
/HiRDB_P/rdsys015/ut2sts3a
/HiRDB_P/rdsys016/ut2sts3b

10 Status files Server status
files

host1 /HiRDB_P/rdsys011/fessts1a
/HiRDB_P/rdsys012/fessts1b
/HiRDB_P/rdsys013/fessts2a
/HiRDB_P/rdsys014/fessts2b
/HiRDB_P/rdsys015/fessts3a
/HiRDB_P/rdsys016/fessts3b
/HiRDB_P/rdsys011/dicsts1a
/HiRDB_P/rdsys012/dicsts1b
/HiRDB_P/rdsys013/dicsts2a

2 per server x 3

21. Sample Files

756

No. Type File name Remarks

/HiRDB_P/rdsys014/dicsts2b
/HiRDB_P/rdsys015/dicsts3a
/HiRDB_P/rdsys016/dicsts3b
/HiRDB_P/rdsys011/bes1sts1a
/HiRDB_P/rdsys012/bes1sts1b
/HiRDB_P/rdsys013/bes1sts2a
/HiRDB_P/rdsys014/bes1sts2b
/HiRDB_P/rdsys015/bes1sts3a
/HiRDB_P/rdsys016/bes1sts3b

host2 /HiRDB_P/rdsys011/bes2sts1a
/HiRDB_P/rdsys012/bes2sts1b
/HiRDB_P/rdsys013/bes2sts2a
/HiRDB_P/rdsys014/bes2sts2b
/HiRDB_P/rdsys015/bes2sts3a
/HiRDB_P/rdsys016/bes2sts3b

11 System
RDAREAs

Master directory /HiRDB_P/rdsys02/rdmast RDAREA name:
RDMAST

12 Data directory /HiRDB_P/rdsys02/rddirt RDAREA name:
RDDIRT

13 Data dictionary /HiRDB_P/rdsys02/rddict RDAREA name:
RDDICT

14 Work table files /HiRDB_P/rdsys03 --

15 RPC trace files /HiRDB_P/spool/pdrpctr --

16 User
RDAREAs

bes1 Data
section

/HiRDB_P/rdsys04/rddata10 RDAREA name:
RDDATA10

17 Index
section

/HiRDB_P/rdsys04/rdindx10 RDAREA name:
RDINDX10

18 bes2 Data
section

/HiRDB_P/rdsys04/rddata20 RDAREA name:
RDDATA20

19 Index
section

/HiRDB_P/rdsys04/rdindx20 RDAREA name:
RDINDX20

Legend:
--: Not applicable

21. Sample Files

757

22 Communication Between HiRDB
Servers and HiRDB Clients
This chapter explains how to connect HiRDB clients with HiRDB servers. It also
describes the settings for a DNS server and for a firewall.

759

22.1 Connecting HiRDB clients to a HiRDB server
To connect a HiRDB client to a HiRDB server, the Hirdb system's host name (or IP address) must be specified in the
following operands of the client environment definition:

• PDHOST
• PDFESHOST

The host name specified in these operands must be the same host name specified in the pdunit operand of the
system common definition.

With some network configurations, a connection might not be established using the host name specified in the
pdunit operand. In an environment using DNS, see 22.1.1 Connection to a HiRDB server with an FQDN specified.
If the network used among HiRDB servers does not match the network used between a HiRDB client and a HiRDB
server, see 22.1.2 Using the multi-connection address facility to connect to a HiRDB server.

22.1.1 Connection to a HiRDB server with an FQDN specified
The host name specified in the pdunit operand must be registered, together with the IP address, in the host's file at
every client machine that accesses the HiRDB server. Use of DNS eliminates the need for registration in the hosts
file, thereby eliminating the need for modifying the hosts file that is associated with registration and IP address
changes.

Connection with a HiRDB server running on a host in a domain can be established by specifying the server machine's
fully qualified domain name (FQDN) in PDHOST and PDFESHOST.

The following table lists names that can be specified in client environment definition.

Table 22‒1: Names allowed in client environment definition

Name specified in client environment definition Version 05-02 or earlier Version 05-03 or later

Host name S S

FQDN -- S#

S: Can be specified.

--: Cannot be specified.

#: This is used in a large-scale network environment to avoid having to modify the host's file when a host name or IP
address is registered or when an IP address is changed.

(1) Example of network configuration and definition for connecting to a HiRDB server with an
FQDN specified

The following figure shows an example of a network configuration and definition for connecting to a HiRDB system
with an FQDN specified.

22. Communication Between HiRDB Servers and HiRDB Clients

760

Figure 22‒1: Example of network configuration and definition for connecting to HiRDB system with an
FQDN specified

Explanation:

• The host name (HS01) in the network that is used by the HiRDB system is specified in the -x option of the
pdunit operand.

• The HiRDB system's FQDN (HS01.soft.hitachi.co.jp) is specified in PDHOST in the client
environment definition.

(2) Notes

1. An FQDN cannot be specified in PDHOST or PDFESHOST of the client environment definition in the case of
connection to a HiRDB system whose version is earlier than 05-03. If specified, a server process might not be able
to execute cancellation processing after the maximum client wait time (value specified in PDCWAITTIME) has
elapsed.

2. An FQDN cannot be specified as a host name in a HiRDB system.

3. If the HiRDB server and HiRDB client use different networks, the multi-connection address facility must be used
to connect to the HiRDB system; for details, see 22.1.2 Using the multi-connection address facility to connect to a
HiRDB server.

22.1.2 Using the multi-connection address facility to connect to a HiRDB
server

It might not be possible in some network configurations to connect to a HiRDB system even though the host name is
specified in the pdunit operand. This happens when the network between the HiRDB client and HiRDB system is
different from the network connecting the HiRDB system's server machines.

In such a case, the multi-connection address facility can be used. This facility enables connection to the HiRDB
system without having to specify the same host name in the PDHOST/PDFESHOT operand and the pdunit operand.

22. Communication Between HiRDB Servers and HiRDB Clients

761

(1) Using the multi-connection address facility
To use the multi-connection address facility, the -m option of the pdstart operand must be specified in the system
common definition.

If you are using the system switchover configuration, even if the IP address of the network used between the HiRDB
servers is not inherited, make sure to use a configuration that inherits the IP address of the network used between the
HiRDB client and server (the IP address that the client connects to). For an example of a definition in such a case, see
(c) HiRDB parallel server configuration (with inheritance of IP addresses during system switchover).

The HiRDB client specifies in the -m and -n options the host name of the HiRDB system to which connection can be
established in the network; this does not have to be the host name specified in the pdunit operand.

(2) Examples of network configurations and definitions using the multi-connection address
facility

(a) HiRDB single server configuration

The following figure shows an example of a network configuration and definition using the multi-connection address
facility (for a HiRDB single server configuration).

Figure 22‒2: Example of network configuration and definition: HiRDB single server configuration

Explanation:

• The host name (HS01) used for the network communications between the HiRDB systems is specified in the
-x option of the pdunit operand.

• The host name (he01) in the network that is used between the HiRDB client and the HiRDB single server
configuration is specified in the -m option of the pdstart operand.

• The host name (he01) in the network that is used between the HiRDB client and the HiRDB single server
configuration is specified in the PDHOST operand in the client environment definition.

(b) HiRDB parallel server configuration

The following figure shows an example of a network configuration and definition using the multi-connection address
facility (for a HiRDB parallel server configuration).

22. Communication Between HiRDB Servers and HiRDB Clients

762

Figure 22‒3: Example of network configuration and definition: HiRDB parallel server configuration

Explanation:

• The host names (HS01 and HS02) used for the network communications between the HiRDB systems are
specified in the -x option of the pdunit operand.

• The host name (he03) in the network that is used between the HiRDB client and the HiRDB system is
specified in the -m option of the pdstart operand (for defining the front-end server).

• The host name (he01) where the system manager is located in the network that is used between the HiRDB
client and the HiRDB system is specified in the PDHOST operand in the client environment definition.

(c) HiRDB parallel server configuration (with inheritance of IP addresses during system switchover)

The following figure shows an example of a network configuration and definition using the multi-connection address
facility (with inheritance of IP addresses during system switchover).

22. Communication Between HiRDB Servers and HiRDB Clients

763

Figure 22‒4: Example of network configuration and definition: With inheritance of IP addresses during
system switchover

Explanation:

• The host names (HS01 and HS03) used for the network communications between the HiRDB systems are
specified in the -x option of the pdunit operand.

• The host name (he04) corresponding to the IP address of the network that is used between the HiRDB client
and the HiRDB system is specified in the -m option of the pdstart operand (for defining the front-end
server). The -n option is omitted.

• The host name (he01) where the system manager is located in the network that is used between the HiRDB
client and the HiRDB system is specified in the PDHOST operand in the client environment definition.

(d) HiRDB parallel server configuration (without inheritance of IP addresses during system switchover)

The following figure shows an example of a network configuration and definition using the multi-connection address
facility (without inheritance of IP addresses during system switchover).

22. Communication Between HiRDB Servers and HiRDB Clients

764

Figure 22‒5: Example of network configuration and definition: Without inheritance of IP addresses during
system switchover

Explanation:

• The host names (HS01 and HS03) used for the network communications between the HiRDB systems are
specified in the -x option of the pdunit operand. The host name of the secondary system (HS02) is
specified in the -c option.

• The host name (he04) in the network that is used between the HiRDB client and the HiRDB system is
specified in the -m option of the pdstart operand (for defining the front-end server). The host name of the
secondary system (he03) is specified in the -n option.

• The host name (he01) where the system manager is located in the network that is used between the HiRDB
client and the HiRDB system is specified in the PDHOST operand in the client environment definition. The
host name of the secondary system (he03) is also specified.

22. Communication Between HiRDB Servers and HiRDB Clients

765

22.2 Settings for a DNS server to manage IP addresses
There are two ways for a HiRDB system to use a DNS server to manage IP addresses:

• The server machines reside in the same domain

• The server machines that make up a single HiRDB reside across multiple domains

This section describes how to manage each of these configurations.

(1) How to set up HiRDB in a single domain
If the server machines reside in the same domain, specify either the host name or the FQDN (fully-qualified domain
name; maximum of 32 characters) as the host name in the pdunit and pdstart operands. In this way, a DNS
server can manage IP addresses, thereby making the hosts file unnecessary.

Basically, the host name or FQDN is specified using the following options:

• pdunit operand: -x and -c options

• pdstart operand: -x, -m, and -n options

The following figure shows an example of a system configuration using a single domain.

Figure 22‒6: Example system configuration using a single domain

The following is an example of how to specify pdunit -x in this case:

• For specifying the host name
pdunit -x hirdb01 -u unt1 -d "operating-directory-name" -p port-number ...
pdunit -x hirdb02 -u unt2 -d "directory-name" -p port-number ...
pdunit -x hirdb03 -u unt3 -d "directory-name" -p port-number ...

• For specifying the FQDN
pdunit -x hirdb01.p1.ne.jp -u unt1 -d "operating-directory-name" -p port-number ...
pdunit -x hirdb02.p1.ne.jp -u unt2 -d "directory-name" -p port-number ...
pdunit -x hirdb03.p1.ne.jp -u unt3 -d "directory-name" -p port-number ...

(2) How to set up HiRDB in multiple domains
If the server machines reside in multiple domains, specify the FQDN (fully-qualified domain name; maximum of 32
characters) as the host name in the pdunit and pdstart operands. In this way, a DNS server can manage the IP
addresses, thereby making the hosts file unnecessary.

Basically, the FQDN is specified using the following options.

• pdunit operand: -x and -c options

• pdstart operand: -x, -m, and -n options

22. Communication Between HiRDB Servers and HiRDB Clients

766

The following figure shows an example of a system configuration using multiple domains.

Figure 22‒7:  Example system configuration using multiple domains

The following is an example of how to specify pdunit -x in this case:

• Specifying the FQDN
pdunit -x hirdb01.pl1.ne.jp -u unt1 -d "operating-directory-name" -p port-number ...
pdunit -x hirdb02.pl1.ne.jp -u unt2 -d "directory-name" -p port-number ...
pdunit -x hirdb03.pl2.ne.jp -u unt3 -d "directory-name" -p port-number ...

22. Communication Between HiRDB Servers and HiRDB Clients

767

22.3 Settings when a firewall and NAT are installed
This section describes the HiRDB environment settings when a firewall and NAT are installed between HiRDB
servers and HiRDB clients.

22.3.1 When a firewall is installed on the HiRDB single server
configuration side

Here, a firewall is installed on the HiRDB single server configuration side as shown in the figure, with the firewall
settings as follows.

Firewall settings

• Direction: Receive

• IP address: 172.16.0.10

• Port numbers: 20000, 20001

Figure 22‒8: Network configuration example with a firewall installed on the HiRDB single server
configuration side

In this configuration, the settings for the server and client machines are as listed below. When you install the firewall,
you must set one of the following operands.

• pd_service_port operand

• pd_scd_port operand

• -s option of the pdunit operand

If only a firewall is installed, there is no need to specify the client environment definition (PDSERVICEPORT
operand).

Server machine settings

• System common definition file
set pd_name_port= 20000
set pd_service_port= 20001
pdunit -x hirdb01 -u unt1
pdstart -t SDS -s sds01 -u unt1

Client machine settings

• Client environment definition
PDHOST hirdb01
PDNAMEPORT 20000
PDCLTRCVPORT 30000#

22. Communication Between HiRDB Servers and HiRDB Clients

768

• hosts file
172.16.0.10 hirdb01

#: Specify this when there is a firewall on the client side.

22.3.2 When a firewall and NAT are installed on the HiRDB single server
configuration side

Here, a firewall and NAT are installed on the HiRDB single server configuration side as shown in the figure, with the
two set as follows.

Firewall settings

• Direction: Receive

• IP address: 172.16.0.10

• Port numbers: 20000, 20001

NAT address translation
128.1.1.1 172.16.0.10
Note that HiRDB does not support a function that converts global and local IP addresses as a pair, such as NAPT
(IP masquerade). It supports only 1-to-1 conversion.

Figure 22‒9: Network configuration example with a firewall and NAT installed on the HiRDB single
server configuration side

In this configuration, configure the high-speed connection facility. The settings for the server and client machines are
as follows:

Server machine settings

• System common definition file
set pd_name_port= 20000
set pd_service_port= 20001
pdunit -x hirdb01 -u unt1
pdstart -t SDS -s sds01 -u unt1

Client machine settings

• Client environment definition
PDHOST hirdb01
PDNAMEPORT 20000
PDSERVICEGRP sds01
PDSERVICEPORT 20001
PDSRVTYPE WS#1

PDCLTRCVPORT 30000#2

22. Communication Between HiRDB Servers and HiRDB Clients

769

• hosts file
128.1.1.1 hirdb01

#1: To operate a HiRDB server on Linux, specify PC.
#2: Specify this when there is a firewall on the client side.

22.3.3 When a firewall is installed on the HiRDB parallel server
configuration side

Here, a firewall is installed on the HiRDB parallel server configuration side as shown in the figure, with the firewall
settings as follows.

Firewall settings

• Direction: Receive

• IP addresses: 172.16.0.10, 172.16.0.20

• Port numbers: 20000, 20001

Figure 22‒10: Network configuration example with a firewall installed on the HiRDB parallel server
configuration side

In this configuration, the settings for the server and client machines are as listed below. When you install the firewall,
you must set one of the following operands.

• pd_service_port operand

• pd_scd_port operand

• -s option of the pdunit operand

If only a firewall is installed, there is no need to specify the client environment definition (PDSERVICEPORT
operand).

Server machine settings

• System common definition file
set pd_name_port = 20000

22. Communication Between HiRDB Servers and HiRDB Clients

770

set pd_service_port = 20001
pdunit -x hirdb01 -u unt1
pdunit -x hirdb02 -u unt2
pdstart -t MGR -u unt1
pdstart -t FES -s fes -u unt2

Client machine settings

• Client environment definition
PDHOST hirdb01
PDNAMEPORT 20000
PDCLTRCVPORT 30000#

• hosts file
172.16.0.10 hirdb01
172.16.0.20 hirdb02

#: Specify this when there is a firewall on the client side.

22.3.4 When a firewall and NAT are installed on the HiRDB parallel
server configuration side

Here, a firewall and NAT are installed on the HiRDB parallel server configuration side as shown in the figure, with the
two set as follows.

Firewall settings

• Direction: Receive

• IP addresses: 172.16.0.10, 172.16.0.20

• Port numbers: 20000, 20001

NAT address translation
128.1.1.1 172.16.0.10
128.1.1.2 172.16.0.20
Note that HiRDB does not support a function that converts global and local IP addresses as a pair, such as NAPT
(IP masquerade). It supports only 1-to-1 conversion.

22. Communication Between HiRDB Servers and HiRDB Clients

771

Figure 22‒11:  Network configuration example with a firewall and NAT installed on the HiRDB parallel
server configuration side

In this configuration, configure the high-speed connection facility. The settings for the server and client machines are
as follows:

Server machine settings

• System common definition file
set pd_name_port = 20000
set pd_service_port = 20001
pdunit -x hirdb01 -u unt1
pdunit -x hirdb02 -u unt2
pdstart -t MGR -u unt1
pdstart -t FES -s fes -u unt2

Client machine settings

• Client environment definition
PDHOST hirdb01
PDNAMEPORT 20000
PDSERVICEGRP fes
PDSERVICEPORT 20001
PDFESHOST hirdb02
PDSRVTYPE WS#1

PDCLTRCVPORT 30000#2

• hosts file
128.1.1.1 hirdb01
128.1.1.2 hirdb02

#1: To operate a HiRDB server on Linux, specify PC.
#2: Specify this when there is a firewall on the client side.

22. Communication Between HiRDB Servers and HiRDB Clients

772

22.4 Port numbers used by HiRDB
With HiRDB communication processing, if the pd_registered_port operand is not specified, the
communication port numbers allocated automatically by the operating system are used. Increase the number of
communication ports to be used in accordance with the value of the pd_max_users operand and increases in the
number of back-end servers. If there are insufficient port numbers, processing can be interrupted or the
communication processing of other programs can be influenced.

You can use the pd_registered_port operand to specify a range of port numbers for HiRDB to use for
communication processing (reserved port facility). For details about the HiRDB reserved port facility, see 22.6 HiRDB
reserved port facility.

22.4.1 Estimating the number of ports that a unit will use
The following shows the target number of ports that a HiRDB unit will use:

(1) HiRDB single server configuration

Formula

value of pd_max_users 4 + 1,000

(2) HiRDB parallel server configuration
With a multi-front-end server configuration, decide the values for f and F for each front-end server, which will become
the total number of ports. Use the following formula to calculate the target number of port numbers for each front-end
server.

Formula

{b [k (B + F) + 1]

+ f (k B + D + 2) + d (F + 1)}

 value of pd_max_users + 1,000

b: Number of back-end servers inside the unit

B: Number of back-end servers outside the unit

f: Number of front-end servers inside the unit
Each front-end server counts as either 1 or 0:
If the front-end server is inside the unit: 1
If the front-end server is outside the unit: 0

F: Number of front-end servers outside the unit
Each front-end server counts as either 1 or 0:
If the front-end server is inside the unit: 1
If the front-end server is outside the unit: 0

d: Number of dictionary servers inside the unit

D: Number of dictionary servers outside the unit

k: 2 3

22.4.2 Notes
• Depending on the SQL statement that is executed, more ports will be required than the calculated target value.

22. Communication Between HiRDB Servers and HiRDB Clients

773

• If the number of ports allocated automatically by the operating system is insufficient, respecify the number in the
pd_registered_port operand.

• When HiRDB releases port numbers, the OS does not necessarily release the numbers immediately (TIME_WAIT
status). Therefore, the system will sometimes temporarily use a larger number of port numbers than the target
number. For details about how to avoid a shortage of ports caused by the TIME_WAIT status, see 22.4.4 Ways to
avoid a shortage of ports.

• When the system configuration includes numerous back-end servers within the system, the calculated value might
exceed the operating system's upper limit for port numbers or the port number specified in
pd_registered_port. For details about the corrective action to take in this situation, see 9.5 Considerations
that apply to building a system with many units or servers.

22.4.3 Calculation examples
Example 1

• A 1-unit configuration of a HiRDB parallel server configuration (with a FES, a DS, and 5 BESs), where
pd_max_users=1000
{5 [2 3 (0 + 0) + 1]
+ 1 (2 3 0 + 0 + 2) + 1 (0 + 1)}

 1,000 + 1,000 = 9,000
The target number of ports is 9,000.

Example 2

• A parallel unit configuration (unit 1: a FES, a DS, and 2BESs; unit 2: 3 BESs), where pd_max_users=1000
Unit 1:
{2 [2 3 (3 + 0) + 1]
+ 1 (2 3 3 + 0 + 2) + 1 (0 + 1)}

 1,000 + 1,000 = 12,000
Unit 2:
{3 [2 3 (2 + 1) + 1]
+ 0 (2 3 2 + 1 + 2) + 0 (1 + 1)}

 1,000 + 1,000 = 10,000
The target number of ports is 12,000 for unit 1 and 10,000 for unit 2.

22.4.4 Ways to avoid a shortage of ports
When the following types of operations are performed, a large number of TCP ports might go into the TIME_WAIT
status, TCP ports in the system as a whole might run short and cause transactions to generate errors, or HiRDB might
terminate abnormally.

• Utilities or commands are executed consecutively (in the case of a HiRDB parallel server configuration).

• A UAP makes numerous concurrent connection requests to HiRDB, and the UAP repeatedly executes any of the
following types of transactions (in the case of a HiRDB parallel server configuration).

• Transactions that execute SQL processing on multiple tables

• Transactions that use a floating server

• Update transactions that use a recovery-unnecessary front-end server

For these sorts of operations, use the settings shown below to avoid TCP port shortages.

The OS parameters and setting methods described here will differ depending on the OS and kernel versions you are
using. Consult the documentation of the OS you are using, and set the corresponding OS parameters to the values that
are given as guidelines in this discussion.

22. Communication Between HiRDB Servers and HiRDB Clients

774

(1) Settings to avoid a shortage of TCP ports
You can avoid a shortage of TCP ports by using the pd_registered_port operand to expand the range of port
numbers that HiRDB uses for communication processing (the HiRDB reserved port facility). For details about the
HiRDB reserved port facility, see 22.6 HiRDB reserved port facility.

(2) Settings that shorten the time a TCP port spends in TIME_WAIT status (AIX and HP-UX
only)

To shorten the amount of time a TCP port spends in the TIME_WAIT status, specify the following OS parameter.

 For AIX

• OS parameter: tcp_timewait
• Specification guideline: 1
• Example of parameter setting command: the no command

 For HP-UX

• OS parameter: tcp_time_wait_interval
• Specification guideline: 15000
• Example of parameter setting command: the ndd command

(3) Settings that expand the OS's auto-allocated port range for TCP ports
To expand the OS's auto-allocated port range for TCP ports, specify the following OS parameter.

 For Linux

• OS parameter: ip_local_port_range
• Specification guideline: Expand the range of the OS's auto-allocated ports, but without allowing that range to

encroach upon the range of reserved ports in the server machine.

• Option settings file example: /proc/sys/net/ipv4/ip_local_port_range
 For AIX

• OS parameters: tcp_ephemeral_high and tcp_ephemeral_low
• Specification guideline: Expand the range of the OS's auto-allocated ports, but without allowing that range to

encroach upon the range of reserved ports in the server machine.

• Example of parameter setting command: The no command

 For HP-UX

• OS parameters: tcp_largest_anon_port and tcp_smallest_anon_port
• Specification guideline: Expand the range of the OS's auto-allocated ports, but without allowing that range to

encroach upon the range of reserved ports in the server machine.

• Example of parameter setting command: the ndd command

22. Communication Between HiRDB Servers and HiRDB Clients

775

22.5 Port numbers specified in HiRDB

22.5.1 List of port numbers specified in HiRDB
The following table lists the operands that specify port numbers.

Table 22‒2: List of port numbers specified in HiRDB

Setting location Environmental variable or operand to
specify Description

Client environment definition PDNAMEPORT HiRDB port number

HiRDB_PDNAMEPORT

PDSERVICEPORT Port number for high-speed connection

PDFESHOST Port number of unit that has a front-end server

PDCLTRCVPORT Client reception port number

PDASTPORT HiRDB Control Manager - Agent port number

System common definition pd_name_port HiRDB port number

pdunit -p

pd_service_port Scheduler process port number

pd_scd_port

pdunit -s

pd_trn_port Transaction server process port number

pdunit -t

pd_mlg_port Message log server process port number

pdunit -m

pd_alv_port Unit monitoring process port number

pdunit -a

pd_registered_port Port number that is used by HiRDB reserved port
facility

Unit control information
definition

pd_service_port Scheduler process port number

pd_registered_port Port number that is used by HiRDB reserved port
facility

22.5.2 Specifying port numbers
This section describes the different ways to specify port numbers.

(1) Client environment definition
See Client environment definition (setting environment variables) in the HiRDB Version 9 UAP Development Guide.

(2) System common definition and unit control information definition
This subsection describes the port numbers that are used, depending on whether system common definition and unit
control information definition operands are specified.

22. Communication Between HiRDB Servers and HiRDB Clients

776

To lock the port number specified in an operand, see the Port number used column in the table, and specify the
applicable operand in a combination that uses that port number. For example, in (a) HiRDB port numbers, to lock the
port number specified in the pd_name_port operand for a HiRDB parallel server configuration, do not specify
pdunit -p.

(a) HiRDB port numbers

HiRDB port numbers are specified in the pd_name_port operand and in the pdunit operand's -p option. This
subsection describes the port numbers that are used when these operands are specified.

For a HiRDB single server configuration

pd_name_port pdunit -p Port number used

Specified Specified Port specified in pd_name_port

Not specified

Not specified Specified 20,000

Not specified

The following table shows the port numbers that are used when the utility special unit is installed.

Location specified Port number used

System common definition At single server At utility special unit

pd_name_port pdunit -p Unit that has a
single server Utility special unit Unit that has a

single server Utility special unit

Specified Specified Port specified in
pd_name_port

Port specified in
pdunit -p

Port specified in
pdunit -p

Port specified in
pd_name_port

Not specified Port specified in pd_name_port

Not specified Specified 20,000 Port specified in
pdunit -p

Port specified in
pdunit -p

20,000

Not specified 20,000 20,000 20,000 20,000

For a HiRDB parallel server configuration

pd_name_port pdunit -p Port number used

Specified Specified Port specified in pdunit -p

Not specified Port specified in pd_name_port

Not specified Specified Port specified in pdunit -p

Not specified 20,000

(b) Scheduler process port numbers

Specify scheduler process port numbers in the following operands.

• pd_service_port operand

• pd_scd_port operand

• -s option of the pdunit operand

This subsection describes the port numbers that are used, depending on whether these operands are specified.

22. Communication Between HiRDB Servers and HiRDB Clients

777

Location specified

Port number usedSystem common definition Unit control information
definition

pd_service_port pd_scd_port pdunit -s pd_service_port

Specified Specified Specified Specified Port specified in pdunit -s

Not specified

Not specified Specified Port specified in pd_scd_port

Not specified

Not specified Specified Specified Port specified in pdunit -s

Not specified

Not specified Specified Port specified in
pd_service_port of unit
control information definitionNot specified

Not specified Specified Specified Specified Port specified in pdunit -s

Not specified

Not specified Specified Port specified in pd_scd_port

Not specified

Not specified Specified Specified Port specified in pdunit -s

Not specified

Not specified Specified Port specified in
pd_service_port of unit
control information definition

Not specified #

#
If the pd_registered_port operand is specified in the system common definition or the unit control
information definition, a port number in the range specified in the pd_registered_port operand is used. If
the pd_registered_port operand is not specified, a port number is allocated automatically by the OS.

(c) Port numbers of transaction server processes, message log server processes, and unit monitoring
processes

Specify the port numbers of transaction server processes, message log server processes, and unit monitoring processes
in the operands shown below.

• Transaction server processes
pd_trn_port operand and -t option of pdunit operand

• Message log server processes
pd_mlg_port operand and -m option of pdunit operand

• Unit monitoring processes
pd_alv_port operand and -a option of pdunit operand

This section describes the port numbers that are used, depending on whether these operands are specified.

22. Communication Between HiRDB Servers and HiRDB Clients

778

pd_trn_port,

pd_mlg_port, or

pd_alv_port

pdunit -t,

-m

or -a

Port number used

Specified Specified Port specified in pdunit -t, -m, or -a

Not specified Port specified in pd_trn_port,
pd_mlg_port, or pd_alv_port

Not specified Specified Port specified in pdunit -t, -m, or -a

Not specified #

#
If the pd_registered_port operand is specified in the system common definition or unit control information
definition, a port number in the range specified in the pd_registered_port operand is used. If the
pd_registered_port operand is not specified, a port number is allocated automatically by the OS.

(d) Port numbers used by the HiRDB reserved port facility

Port numbers used by the HiRDB reserved port facility are specified in the pd_registered_port operand. This
section describes the port numbers that are used, depending on whether these operands are specified.

Location specified

Port number usedSystem common definition Unit control information definition

pd_registered_port pd_registered_port

Specified Specified Port specified in the unit control information
definition

Not specified Port specified in system common definition

Not specified Specified Port specified in the unit control information
definition

Not specified --

Legend:
--: N/A

22.5.3 Notes on port number duplication
The following provides notes on duplication of the port numbers specified in HiRDB system definitions (the System
common definition and Unit control information definition sections of Table 22-2 List of port numbers specified in
HiRDB).

• In a single unit, specify different port numbers in each operand.

• For a HiRDB parallel server configuration, if you start multiple units on a single server machine, specify different
port numbers in each operand of the respective units.

• If you start multiple units on the same server machine, specify different port numbers in each operand of the
respective HiRDBs.

• If the same server machine has a HiRDB client and a HiRDB server, specify port numbers different from the client
environment definition PDCLTRCVPORT in each operand.

• Specify port numbers that fulfill the following conditions.

• They are different from the port numbers used by other program products.

• They are different from the port numbers registered in the /etc/services file (for an NIS or DNS
environment, the locations they respectively define)

22. Communication Between HiRDB Servers and HiRDB Clients

779

• They are not included in the range of port numbers auto-allocated by the OS#

#: The range of port numbers auto-allocated by the OS differs from OS to OS.

• When no HiRDB port number is specified, 20000 is assumed for the HiRDB port number. For this reason, do not
specify 20000 in an operand.

22. Communication Between HiRDB Servers and HiRDB Clients

780

22.6 HiRDB reserved port facility
The HiRDB reserved port facility uses the pd_registered_port operand to specify a range of port numbers that
can be used for communication. This facility prevents the following:

• A program other than HiRDB communicates with a server using several port numbers allocated automatically by
the OS, but processing is interrupted because there are no available port numbers

• HiRDB uses a large number of communication port numbers, which affects the communication processing of
other programs
Allocated ports that are released by HiRDB cannot be used for a period of time. Therefore, if a large number of
ports are in use, it is possible that for a brief period there will be no available port numbers.

If HiRDB is using a large number of ports, see 22.4.4 Ways to avoid a shortage of ports.

For details about definition examples and notes about using the HiRDB reserved port facility, see the explanation for
the pd_registered_port operand in the manual HiRDB Version 9 System Definition.

22.6.1 Estimation of the HiRDB reserved port facility

(1) Estimating from statistical information
The number of communication port numbers that HiRDB will use can be estimated from statistical information. Using
the statistical analysis utility's Statistical information related to system moving, you can calculate the number of
HiRDB communication ports from the following statistical information (for details, see the manual HiRDB Version 9
Command Reference):

• The number of HiRDB reserved ports in use

• When there are excess HiRDB reserved ports, the number of ports allocated automatically by the OS that are in
use

Formula

Number of HiRDB reserved ports in use + number of ports allocated automatically by the OS that are in use when there are excess HiRDB
reserved ports + 100#

#: Added as a reserve.

(2) Estimation of the recommended value
The recommended value is determined from the formula in 22.4.1 Estimating the number of ports that a unit will use.
This is the target value. During operation, use the value from (1) Estimating from statistical information.

22. Communication Between HiRDB Servers and HiRDB Clients

781

Appendixes

783

A. HiRDB Maximum and Minimum Values

A.1 Maximum and minimum values for the system configuration
The following table lists maximum and minimum values for the HiRDB system configuration.

Table A‒1: Maximum and minimum values for the HiRDB system configuration

Item Minimum value Maximum value Units

Number of servers that can be created per unit 1 34 Count

Number of single servers 1 1 Count

Number of system managers 1 1 Count

Number of front-end servers 1 1,024 Count

Number of dictionary servers 1 1 Count

Number of back-end servers 1 16,382 Count

Total number of RDAREAs 3 8,388,592 Count

Number of master directory RDAREAs 1 1 Count

Number of data directory RDAREAs 1 1 Count

Number of data dictionary RDAREAs 1 59 Count

Number of data dictionary RDAREAs that store database state analyzed
tables and database management tables

1 1 Count

Number of user RDAREAs 0 8,388,589 Count

Number of data dictionary LOB RDAREAs 0 2 Count

Number of user LOB RDAREAs 0 8,388,325 Count

Number of registry RDAREAs 0 1 Count

Number of registry LOB RDAREAs 0 1 Count

Number of list RDAREAs 0 8,388,588 Count

Number of HiRDB files per RDAREA 1 16 Count

Number of base tables and sequence generators per RDAREA 0 500 Count

Number of indexes per RDAREA 0 500 Count

Number of lists per RDAREA 0 50,000 Count

Total number of HiRDB files 1 134,217,728 Count

Number of concurrently accessible tables 4 32,000 Count

Maximum number of concurrent connections 1 For a HiRDB
single server
configuration:
3,000

For a HiRDB
parallel server
configuration:
2,000#1

Count

Maximum number of users that can be created by HiRDB#2 1 Unlimited Count

A. HiRDB Maximum and Minimum Values

784

Item Minimum value Maximum value Units

Number of users who can own the same list 0 32,767 Count

Number of lists created per user 0 32,767 Count

Number of work tables created per transaction 0 255 Count

Number of global buffers per server#3 1 2,000,000 Count

HiRDB file
system area

HP-UX Large file not
used

Regular file 1 2,047 MB

Character special file 1 2,047 MB

Large file used Regular file 1 1,048,575 MB

Character special file 1 1,048,575 MB

Solaris Large file not
used

Regular file 1 2,047 MB

Character special file 1 2,047 MB

Large file used Regular file 1 1,048,575 MB

Character special file 1 1,048,575 MB

AIX Large file not
used

Regular file 1 2,047 MB

Character special file 1 2,047 MB

Large file used Regular file (JFS) 1 65,411 MB

Regular file (JFS2) 1 1,048,575 MB

Character special file 1 1,048,575 MB

Linux Large file not
used

Regular file 1 2,047 MB

Character special file 1 2,047 MB

Large file used Regular file 1 1,048,575 MB

Character special file 1 1,048,575 MB

#1: For a configuration with multiple front-end servers, the maximum for number of front-end servers value of
pd_max_users is 2,000.

#2: The value depends on the size of data dictionary RDAREAs because one row of the data dictionary table
(SQL_USERS) is used per user.

#3: However, for the entire system, the maximum is 2,147,483,647.

A.2 Maximum and minimum values for databases
The following table lists maximum and minimum values for databases.

Table A‒2: Maximum and minimum values for databases

Item Minimum value Maximum value Units

Length of character data (defined length) CHAR 1 30,000 Characters
(Bytes)

VARCHAR 1 32,000 Characters
(Bytes)

Length of national character data (defined
length)

NCHAR 1 15,000 Characters

NVARCHAR 1 16,000 Characters

A. HiRDB Maximum and Minimum Values

785

Item Minimum value Maximum value Units

Length of mixed character data (defined
length)

MCHAR 1 30,000 Bytes

MVARCHAR 1 32,000 Bytes

Precision of packed decimal DECIMAL or
NUMERIC

1 38 Digits

Decimal places for packed decimal DECIMAL or
NUMERIC

0 38 Digits

Seconds precision for timestamp data TIMESTAMP 0 6 Digits

Length of BLOB data 0 2,147,483,647 Bytes

BINARY data length (defined length) 1 2,147,483,647 Bytes

Number of columns in a table 1 30,000 Columns

Number of indexes in a table 0 255 Count

Number of index component columns 1 64 Columns

Number of cluster key component columns 1 64 Columns

Number of RDAREAs for storing table partitions 1 4,096 Count

Number of BESs where partitioned tables are placed 1 4,096 Count

Total number of literals specified for storage conditions when a row-
partitioned table is defined (if storage condition is omitted, 1 is
assumed)

1 15,000 Count

Number of tables based on view tables 1 64 Count

Number of columns in a view table 1 30,000 Columns

Number of primary key component columns 1 64 Columns

Number of foreign key component columns 1 64 Columns

Number of foreign keys per table 0 255 Count

Number of foreign keys that reference a single primary key 0 255 Count

Number of check constraints that can be specified per table 0 254 Count

Total number of Boolean operators (AND and OR) and check
constraint definitions that can be defined per table (excluding the
Boolean operators AND and OR in WHEN search conditions in CASE
expressions)

0 254 Count

Identifier length

(Applicable to table identifier, column name, data type identifier,
index type identifier, attribute name, routine identifier, correlation
name, index identifier, cursor name, SQL statement identifier,
RDAREA name, embedded variable name, indicator variable name,
password, constraint name, condition name, SQL variable name,
query name, trigger identifier, statement label, loop variable name,
host identifier, list name, SQL parameter name)

1 30 Bytes

Row length of FIX table 1 30,000 Bytes

Number of SQL parameters in a procedure 0 30,000 Count

Number of repetition columns 2 30,000 Count

Number of index information files created per
server

HP-UX 1 8,092#1 Count

Solaris 1 1,948#1 Count

A. HiRDB Maximum and Minimum Values

786

Item Minimum value Maximum value Units

Solaris(64-bit
mode)

1 8,092#1 Count

AIX 1 8,092#1 Count

Linux 1 8,092#1 Count

Number of processed rows that can be displayed in messages by the
following utilities:

• pdload
• pdrorg
• pdrbal

0 4,294,967,295#2 Count

#1: The maximum value depends on specifications such as the pd_max_open_fds operand value, whether plug-ins
are used, and the number of RDAREAs in the server. The table value is the maximum value specified in the
pd_max_open_fds operand. If plug-in index delayed batch creation uses a HiRDB file system area, the maximum
value is 4,096.

#2: When the number of processed data items exceeds 4,294,967,295, the displayed row count is reset to 0 and the
count starts again from 1.

A.3 Maximum and minimum values for HiRDB file names
The following table lists maximum and minimum values for HiRDB file names.

Table A‒3: Maximum and minimum values for HiRDB file names (in characters)

HiRDB file type
HiRDB file name length Maximum length of

path name#
Minimum Maximum

System status file 1 30 167

Server status file 1 30 167

System log file 1 30 167

Synchronization point dump file 1 30 167

Unload log file 1 30 167

Audit trail file 16 -- 167

Work table file 25 -- 167

RDAREA structure file 1 30 167

Backup file 1 30 167

Unload data file 1 30 167

Index information file 30 -- 167

Differential backup management file 1 30 167

Legend:
--: Not applicable; the length must be the value shown in the Minimum column.

#: Structure of a path name is HiRDB-file-system-area/HiRDB-file.

A. HiRDB Maximum and Minimum Values

787

B. Processes Started by HiRDB
This appendix lists and describes processes that are started by HiRDB.

B.1 Processes started by a HiRDB single server configuration
The organization of processes started by HiRDB is shown below.

The following table lists processes started by a HiRDB single server configuration.

Table B‒1: Processes started by a HiRDB single server configuration (system server)

Process name

Description Number of processes Server
nameNotation in

manual Process name

Process server
process

pdprcd Manages HiRDB
related processes

1 _prc

Post-processing
process

pdrsvre Performs cleanup
processing after
abnormal termination
of a process

If fixed is specified in
pd_process_terminator: value of
pd_process_terminator_max
If resident is specified in
pd_process_terminator: from 3 to the
number of processes defined by HiRDB

If nonresident is specified in
pd_process_terminator: from 0 to the
number of processes that terminated abnormally

_admrsvr

HiRDB start
process for server
mode system
switchover

pdstart2d Controls start of
HiRDB processes
linked to cluster
software

• Standby system
switchover that
does not perform
user server hot
standby

• User server hot
standby

• Rapid system
switchover

1 (none when online) _pdstrt2

Message log server
process

pdmlgd Controls message
output

1 _mlg

System manager
process

pdrdmd Unit start/stop control,
connected user
management

(This might also be
notated as a name
server or a node
manager.)

1 _rdm

Status server
process

pdstsd I/O control of status
file for units

1 _sts0

B. Processes Started by HiRDB

788

Process name

Description Number of processes Server
nameNotation in

manual Process name

Scheduler process pdscdd Allocates transactions
to single server
processes

(This might also be
notated as a lock
server.)

1 _scd

Transaction server
process

pdtrnd Controls transactions 1 _trn

Transaction
recovery process

pdtrnrvd Controls transaction
completion/recovery

From 1 to the number of crashed pdsds#1 _trnrcv

Audit trail
management server
process

pdaudd Manages audit trails If pd_aud_file_name is specified, 1;
otherwise, 0

_aud

Audit trail
automatic load
process

pdaudld Start control of
pdload for automatic
data loading

If pd_aud_file_name is specified and Y is
specified in pd_aud_auto_loading, 1;
otherwise 0

_audld

XDS log output
process#8

pdprctee Controls output of
XDS log

If the pdxds operand is specified, 1; otherwise, 0 --

Command
execution process

pdcmdd Controls execution of
update log reflection
command

If the pdxds operand is specified, 1; otherwise, 0 _cmdd

Cluster
synchronization
monitoring process

pdxcl Synchronization
monitoring of running
XDS and standby XDS

If the pdxds operand is specified, 1; otherwise, 0 _xcl

Troubleshooting
information
acquisition process

pdprfd Controls the
troubleshooting
function

1 --

Log server process pdlogd Controls system log
acquisition and log-
related processes

1 _logN

Deferred write
process

pd_buf_dfw Background writes to
DB storage disk

1 1dfwN

Asynchronous
READ process

pd_ios_ard Asynchronous READ
facility

Value of pd_max_ard_process 1ardN

Process for parallel
writes in deferred
write processing

pd_buf_awt Facility for parallel
writes in deferred
write processing

Value of pd_dfw_awt_process 1awtN

REDO process pd_rcv_rd Roll forward of
database at full rerun

MIN(number of connected disks, value of
pd_max_recover_process)

Number of connected disks: Number of character
special files that define RDAREAs

If Y is specified in
pd_rdarea_open_attribute_use, the
value of pd_max_recover_process#2

2rrnM

Log swap process pdlogswd Manages allocation,
release and I/O of
system log-related files
and acquires syncpoint
dump

1 _logNs

B. Processes Started by HiRDB

789

Process name

Description Number of processes Server
nameNotation in

manual Process name

Deadlock
monitoring process

pdlckmnd Detects deadlock when
lock processing is
distributed

If 2 or more is specified for
pd_lck_pool_partition and Y is specified
for pd_lck_deadlock_check, 1; otherwise,
0

_lckmnN

Table B‒2: Processes started by a HiRDB single server configuration (user server)

Process name

Explanation Number of processes Server
nameNotation in

manual Process name

Single server
process

pdsds SQL processing Value of pd_max_users + value of
pd_max_reflect_process_count#3

Server
name#4

Table B‒3: Processes started by a HiRDB single server configuration (XDS server)

Process name

Explanation Number of processes Server
nameNotation in

manual Process name

XDS process pdxds SQL processing, manages
memory database

If the pdxds operand is specified, 1;
otherwise, 0#9

Server
name#10

Table B‒4: Processes started by a HiRDB single server configuration (utility server)

Process name#5

Explanation Number of processes Server
nameNotation in

manual Process name

pdinit control
process

pdinitd Initialization utility
execution process

1 0minit0

pdcopy backup
output process

pdcopyb Backup file output Degrees of duplication number of
concurrent command executions

0bcpy?0#6

pdcopy database
read process

pdcopyr Database reads Number of concurrent command
executions

0rcopy0

pdrstr backup
read process

pdrstrb Backup file reads Number of concurrent command
executions

0brstr0

pdrstr master
directory
RDAREA read
process

pdrstrm Reads master directory
RDAREA

Number of concurrent command
executions

0mrstr0

pdrstr unload
log read process

pdrstrl Reads unload log file Number of concurrent command
executions

0lrstr0

pdrstr database
write process

pdrstrr Database writes Number of concurrent command
executions

0brstr0

pdrstr master
directory
RDAREA write
process

pdrstrw Writes to master directory
RDAREA

Number of concurrent command
executions

0wrstr0

pdload control
process

pdloadm Controls data loads Number of concurrent pdload
command executions

0mload0

B. Processes Started by HiRDB

790

Process name#5

Explanation Number of processes Server
nameNotation in

manual Process name

pdrorg control
process

pdrorgm Controls database
reorganization (unloading,
reloading, index
reorganization/re-creation,
free page release, and
making global buffers
resident)

Number of concurrent pdrorg,
pdreclaim, and pdpgbfon
command executions

0mrorg0

pdgetcst
control process

pdgcstm Collects optimization
information

Number of concurrent pdgetcst
command executions

0mgcst0

pddbst control
process

pddbst1 Controls database condition
analysis

Number of concurrent pddbst
command executions

0mdbst0

pdexp control
process

pdexpm Controls dictionary export/
import

1 0mexp0

pdplgexe
control process

pdplgexm Plug-in utility execution
control

Number of concurrent executions of
commands provided by plug-ins

0mplge0

pdorend control
process

pdorendm Online reorganization

Reflection control

1 0more0

pdorend
application
process

pdorendl Online reorganization

Reflection processing

Degrees of duplication (number of
specifications of the pdorend
command's -m option)

0lore?0#7

Legend
--: N/A

Notes

• The xxxN in the server name increases by 1, 2, ..., up to the maximum number of servers in the unit, based on
the number of user servers.

• The xxxM in the server name increases by 2 to 11 based on the definitions.

• The server name is used in message output, command information output, and so on.

#1
If two or more pdsds have crashed, increases to the number of crashes. As the crashed pdsds transactions
complete, the number of processes decreases, returning to 1 when there are no more transactions subject to
recovery. The upper limit value is as follows:
MIN(value of pd_trn_rcvmsg_store_buflen 72 , (value of pd_max_users + value of
pd_max_reflect_process_count) 2 + 7)

#2
The REDO process starts when HiRDB starts, and stops when startup is complete.

#3
For utility servers, the number of processes is 0. When it exceeds 2,000 after calculation, everything up to 2,000 is
processes that are started. When pd_process_count is specified, the number of startup process is the amount
of the specification. When the number of access requests exceeds pd_process_count, concurrent processing
occurs, the number of processes that start is the number of concurrent accesses, up to value of pd_max_users +
value of pd_max_reflect_process_count.

#4
This is the server name specified by the -s option of the system common definition's pdstart operand.

#5
The process only starts up when the corresponding command is executing. The process stops when the command
terminates.

B. Processes Started by HiRDB

791

#6
? is increased 0, 1, ..., f by the backup output process's degree of duplication (the number of specifications of the -
b option in the control statement file specified by the pdcopy -f option).

#7
? is increased 1, 2, ..., 8 by the online reorganization reflection processing's degree of duplication (the number of
specifications of the pdorend command's -m option).

#8
The XDS log output process starts if the pdstart command executes and then becomes resident. It does not stop
even if the pdstop command is executed.

#9
If the pdxdsstart command is executed, the process starts; it stops if the pdxdsstop command is executed.

#10
This is the server name specified by the -s option of the system common definition's pdxds operand.

B.2 Processes started by a HiRDB parallel server configuration
The organization of processes started by HiRDB is shown below.

The processes started by a HiRDB parallel server configuration are listed in the following table.

Table B‒5: Processes started by a HiRDB parallel server configuration (system server) (1/2)

Process name

Description Number of processes Server
name

Does
process
start for

each
server?

Notation in
manual

Process
name

MG
R

Non
-

MG
R

Process server
process

pdprcd Manages HiRDB related
processes

1 _prc Y Y

Post-processing
process

pdrsvre Performs cleanup
processing after abnormal
termination of a process

If fixed is specified in
pd_process_terminator:
value of
pd_process_terminator_ma
x
If resident is specified in
pd_process_terminator:
from 3 to the number of processes
defined by HiRDB

If nonresident is specified in
pd_process_terminator:
from 0 to the number of processes
that terminated abnormally

_admrsv
r

Y Y

HiRDB start
process for
server mode
system
switchover 1

pdstart2d Controls start of HiRDB
processes linked to cluster
software

1 (none when online) _pdstrt
2

Y Y

B. Processes Started by HiRDB

792

Process name

Description Number of processes Server
name

Does
process
start for

each
server?

Notation in
manual

Process
name

MG
R

Non
-

MG
R

• Standby system
switchover that does not
perform user server hot
standby

• User server hot standby

• Rapid system
switchover

• Running system of
standby-less system
switchover (1:1)

HiRDB start
process for
server mode
system
switchover 2

pdstart2a Controls start of HiRDB
processes linked to cluster
software

• Standby system of
standby-less system
switchover (1:1)

1 (none when online) _pdst2a
1

N Y

HiRDB start
process for
server mode
system
switchover 3

pdsvstart
d

Controls start of HiRDB
processes linked to cluster
software

• Standby system of
standby-less system
switchover (effects
distributed)

If activeunits is specified in
pd_ha_agent, 1; otherwise, 0

_pdsvst
d

N Y

XDS log output
process#14

pdprctee Controls output of XDS log If the pdxds operand is specified
for a BES within a unit, 1; otherwise,
0

-- Y Y

Command
execution
process

pdcmdd Controls execution of
update log reflection
command

If the pdxds operand is specified
for a BES within a unit, 1; otherwise,
0

_cmdd Y Y

Cluster
synchronization
monitoring
process

pdxcl Synchronization monitoring
of running XDS and
standby XDS

If the pdxds operand is specified
for a BES within a unit, 1; otherwise,
0

_xcl Y Y

Troubleshooting
information
acquisition
process

pdprfd Controls the troubleshooting
function

1 -- Y Y

Message log
server process

pdmlgd Controls message output

(starts when local is
specified for
pd_mlg_msg_log_unit
)

1 _mlg Y Y

System manager
(MGR) process

pdrdmd Controls unit start/stop and
manages connected users

(This might also be notated
as a name server or a node
manager.)

1 _rdm Y N

B. Processes Started by HiRDB

793

Process name

Description Number of processes Server
name

Does
process
start for

each
server?

Notation in
manual

Process
name

MG
R

Non
-

MG
R

Node manager
(non-MGR unit)
process

pdndmd Controls unit start/stop and
manages connected users

(This might also be notated
as a name server.)

1 _ndm N Y

Status server
process

pdstsd Controls I/O of status files
for units

1 _sts0 Y Y

Scheduler
process

pdscdd Allocates back-end server,
dictionary server, and front-
end server processes

(This might also be notated
as a lock server.)

1 _scd Y Y

Transaction
server process

pdtrnd Controls transactions 1 _trn Y Y

Transaction
recovery process

pdtrnrvd Controls transaction
completion/recovery

For an FES:

from 1 to the number of crashed
pdfes#1

For a DS:

from 1 to the number of crashed
pddic#1

For a BES:

from 1 to the number of crashed
pdbes#1

_trnrcv Y Y

Audit trail
management
server process

pdaudd Manages audit trails If pd_aud_file_name is
specified, 1; otherwise, 0

_aud
_auz#2

Y Y

Audit trail
automatic load
process

pdaudld Controls start of pdload
for automatic data load

If Y is specified for
pd_aud_auto_loading in
keeping with the conditions of the
audit trail management server
process, 1; when N or nothing is
specified, 0

_audld Y N

Unit monitoring
process

pdrdma Monitors whether the
HiRDB unit is running

1 (when the number of units is 1, 0) _rdmck Y N

Table B‒6: Processes started by a HiRDB parallel server configuration (system server) (2/2)

Process name

Description Number of processes Server
name

Does process
start for each

server?
Notation in

manual
Process
name BE

S
D
S

FE
S

Log server
process

pdlogd Controls system
log acquisition
and log-related
processes

1 _logN

_lozN#2

Y Y Y

B. Processes Started by HiRDB

794

Process name

Description Number of processes Server
name

Does process
start for each

server?
Notation in

manual
Process
name BE

S
D
S

FE
S

Deferred write
process

pd_buf_df
w

Background
write to DB
storage disk

1 1dfwN Y Y N

Asynchronous
READ process

pd_ios_ar
d

Asynchronous
READ facility

Value of pd_max_ard_process 1ardN Y Y N

Parallel
WRITE
process for
deferred write
processing

pd_buf_aw
t

Facility for
parallel writes in
deferred write
processing

Value of pd_dfw_awt_process 1awtN Y Y N

REDO process pd_rcv_rd DB roll forward
at full rerun

MIN(number of connected disks, value of
pd_max_recover_process)

Number of connected disks: Number of
character special files that define
RDAREAs

If the value of
pd_rdarea_open_attribute_use
is Y, the value of
pd_max_recover_process#3

2rrnM Y Y N

Log swap
process

pdlogswd Manages
allocation,
release and I/O
of system log-
related files and
acquires
syncpoint dump

1 _logsN

_lozsN#2

Y Y Y

Deadlock
monitoring
process

pdlckmnd Detects deadlock
when lock
processing is
distributed

For a FES:

If 2 or more is specified for
pd_fes_lck_pool_partition and
if Y is specified for
pd_lck_deadlock_check, 1;
otherwise, 0

For a DS or BES:

If 2 or more is specified for
pd_lck_pool_partition and if Y is
specified for
pd_lck_deadlock_check 1;
otherwise, 0

_lckmnN

_lckmzN#

2

Y Y Y

Table B‒7: Processes started by a HiRDB parallel server configuration (user server)

Process name

Explanation Number of processes Server
name

Does process start
for each server?

Notation in
manual

Process
name BES DS FES

Back-end
server process

pdbes Access to
database

MAX (value of pd_max_users, value
of pd_max_bes_process)

Server
name#4

Y N N

Dictionary
server process

pddic Batch
management of
dictionary table

MAX (value of pd_max_users, value
of pd_max_dic_process)

Server
name#4

N Y N

B. Processes Started by HiRDB

795

Process name

Explanation Number of processes Server
name

Does process start
for each server?

Notation in
manual

Process
name BES DS FES

Front-end
server process

pdfes SQL processing,
instructions to
back-end server

Value of pd_max_users Server
name#4

N N Y

Table B‒8: Processes started by a HiRDB parallel server configuration (XDS server)

Process name

Explanation Number of processes Server
name

Does process start
for each server?

Notation in
manual

Process
name BES DS FES

XDS process pdxds SQL processing,
manages
memory
database

For each pdxds operand
specification, 1#12

Server
name#13

Y N N

Table B‒9: Processes started by a HiRDB parallel server configuration (utility server)

Process name

Explanation Number of processes Server name

Does process start
for each server?

Notation in
manual

Process
name BES DS FES

pdinit control
process

pdinitd Initialization utility
execution process

1 0minit0 N Y N

pdinit
execution
process

pdinitb Initialization utility
BES-side execution
process

1 to 2 0sinit0 Y N N

pdcopy backup
output process

pdcopyb Backup file output

(starts at the backup
output destination
specified in pdcopy
(-b option))

Degree of duplication
 number of concurrent

pdcopy command
executions

0bcpy?0#5 N N N

pdcopy
database read
process

pdcopyr Database reads Number of servers
subject to copy#6

0rcopyN Y Y N

pdrstr backup
read process

pdrstrb Backup file reads

(starts at the backup
read destination
specified in pdrstr
(-b option))

Number of concurrent
pdrstr command
executions

0brstr0 N N N

pdrstr master
directory
RDAREA read
process

pdrstrm Reads master
directory RDAREA#7

Number of concurrent
pdrstr command
executions

0mrstr0 N Y N

pdrstr unload
log read process

pdrstrl Reads unload log
file#8

Number of concurrent
pdrstr command
executions

0lrstr0 N N N

pdrstr
database write
process

pdrstrr Database writes Number of servers
subject to recovery#9

0brstrN Y Y N

pdrstr master
directory
RDAREA write
process

pdrstrw Writes to master
directory
RDAREA#10

1 0wrstr0 N Y N

B. Processes Started by HiRDB

796

Process name

Explanation Number of processes Server name

Does process start
for each server?

Notation in
manual

Process
name BES DS FES

pdload control
process

pdloadm Controls data loads Number of concurrent
pdload command
executions

0mload0 Y Y Y

pdrorg control
process

pdrorgm Controls database
reorganization
(unloading, reloading,
index
reorganization/re-
creation, free page
release, and making
global buffers
resident)

Number of concurrent
pdrorg, pdreclaim,
and pdpgbfon
command executions

0mrorg0 Y Y Y

pdrbal control
process

pdrbalm Controls rebalancing Number of concurrent
pdrbal command
executions

0mrbal0 N Y N

pdgetcst
control process

pdgcstm Collects optimization
information

Number of concurrent
pdgetcst command
executions

0mgcst0 N Y N

pddbst control
process

pddbst1 Controls database
condition analysis

(starts at MGR unit)

Number of concurrent
pddbst command
executions

0mdbst0 N N N

pdexp control
process

pdexpm Controls dictionary
export/import

(starts in unit that has
export file)

1 0mexp0 N N N

pdplgexe
control process

pdplgexm Plug-in utility
execution control

Number of concurrent
executions of
commands provided by
plug-ins

0mplge0 N Y N

pdorend
control process

pdorendm Online reorganization

Reflection control

1 0more0 Y N N

pdorend
application
process

pdorendl Online reorganization

Reflection processing

Degrees of duplication
(number of
specifications of the
pdorend command's -
m option)

0lore?0#11 Y N N

pdutlcex
control process

pdutlexm Controls utility
execution

Number of parallel
executions
(pd_import_export
_parallel operand
value of XDS database
definition) number
of starting and
terminating XDSs

0mucex N N N

Legend
Y: Process starts.
N: Process does not start.
--: N/A

Notes

• The xxxN in the server name increases by 1, 2, ..., up to the maximum number of servers in the unit, based on
the number of user servers.

B. Processes Started by HiRDB

797

• The xxxM in the server name increases by 2 to (maximum number of units 11) based on the definitions.

#1
When two or more pdbes, pdfes, or pddic have crashed, this value increases to the number of crashes. As the
crashed pdbes, pdfes, or pddic transactions complete, the number of processes decreases, returning to 1
when there are no more transactions subject to recovery. Note that the upper limit value is the following:
For an FES: (Value of pd_max_users + value of pd_max_reflect_process_count) 2 + 7
For a DS: (value of pd_max_dic_process + value of pd_max_reflect_process_count) 2 + 7
For a BES: (value of pd_max_bes_process + value of pd_max_reflect_process_count) 2 + 7
Note that the maximum value per unit is value of pd_trn_rcvmsg_store_buflen 72 . The maximum
number of processes per unit will be this value even if the sum of the values obtained for each FES, DS, and BES
in the unit is greater than this.

#2
For a standby-less system switchover (1:1) configuration, this is the name used when an alternate BES unit is
started.

#3
The REDO process starts when HiRDB starts, and stops when startup is complete.

#4
This is the server name specified by the -s option of the system common definition's pdstart operand.

#5
? is increased 0, 1, ..., f by the backup output process's degree of duplication (the number of specifications of the -
b option in the control statement file specified by the pdcopy -f option).

#6
The process starts the same number of processes as there are servers that have RDAREAs subject to copying, as
specified in pdcopy (-r, -s, -u, and -a options), as members.

#7
The process starts when the host that has the backup file specified in pdrstr (-b option) differs from the host
that has the dictionary server. It also starts when the output destination host of the backup file specified in
pdrstr (-b option) differs from the host that has the dictionary server.

#8
When pdrstr has specified an unload log file (-l option) or directory (-d option), the process starts if there are
two or more servers to recover, or if the host that stores the unload log file is different from the host that has the
server that RDAREAs subject to recovery are members of.

#9
The process starts the same number of processes as there are servers that have RDAREAs subject to recovery, as
specified in pdrstr (-r, -s, -u, -c, and -a options), as members.

#10
The process starts if the host that specifies the master directory RDAREA as subject to recovery, and that has the
backup file, is different from the host that has the dictionary server.

#11
? is increased 1, 2, ..., 8 by the online reorganization reflection processing's degree of duplication (the number of
specifications of the pdorend command's -m option).

#12
If the pdxdsstart command is executed, the process starts; it stops when the pdxdsstop command is
executed.

#13
This is the server name specified by the -s option of the system common definition's pdxds operand.

#14
The XDS log output process starts if the pdstart command executes and then becomes resident. It does not stop
even if the pdstop command is executed.

B. Processes Started by HiRDB

798

C. Questions and Answers
This appendix discusses in question-and-answer format some of the topics concerning HiRDB system construction
that can be easily misunderstood.

(1) HiRDB/Developer's Kit

Question
When do I need a HiRDB/Developer's Kit?

Answer
When creating a UAP on a machine on which a HiRDB server is installed, you do not need a HiRDB/Developer's
Kit because the HiRDB server provides its facilities. You need a HiRDB/Developer's Kit when you create a UAP
on a machine on which a HiRDB server is not installed.
You also need a HiRDB/Developer's Kit to create a UAP for a platform that is different from that for the HiRDB
server.

(2) Execution of the database definition utility (pddef)

Question
Why didn't anything happen when I executed CREATE TABLE with the database definition utility (pddef)?

Answer
Check for spaces after the semicolon (;) in a pddef control statement. If there is a space, that SQL statement will
not execute.

Wrong: CREATE TABLE; [: space]

Correct: CREATE TABLE;

(3) Maximum table size

Question
What is the maximum size of a HiRDB table?

Answer
A single table can be divided and stored in a maximum of 4,096 RDAREAs, and one RDAREA can consist of a
maximum of 16 HiRDB files.
Because the maximum size of a HiRDB file is approximately 2 GB, the maximum size of a table is as follows:

• Maximum size of a table
4,096 16 2 gigabytes = approximately 128 terabytes

HiRDB supports large files. When you use large files, the maximum size of a HiRDB file is 64 gigabytes.
Therefore, the maximum size of a table is as follows:

• Maximum size of a table
4,096 16 64 gigabytes = approximately 4 petabytes

(4) OpenTP1 and XA interface

Question
When OpenTP1 is linked to HiRDB, why does transaction commit processing for a referencing-only SQL not
seem to be passed via the XA interface?

Answer
When a referencing-only SQL is executed, the process is passed to HiRDB via the XA interface at the time of
commit processing. However, it might not be apparent because fewer steps are required than in the case of an
updating SQL.

C. Questions and Answers

799

(5) Performance of FIX tables

Question
How much difference in terms of performance is there between FIX tables and non-FIX tables?

Answer
It is difficult to say because performance depends on the number of columns and rows subject to manipulation;
however, there has been a case where the execution time for retrieval of a large amount of data in one row of a
FIX table was approximately two-thirds of the execution time for a table for which FIX was not specified.
Performance is never reduced by specifying FIX; therefore, FIX should always be specified when all the
following apply:

• There are no variable-length columns

• There are no column with the NULL value

(6) Duplicate key index

Question
Is it permissible to define an index with duplicate keys? If it's permissible, are there any problems in doing so?

Answer
Such an index can be defined (non-UNIQUE attribute). However, an index with many instances of keys duplicated
many times (more than 200 keys) in a column is not desirable in terms of performance because a special storage
structure is required and there are many index pages to be accessed.

(7) Index definition for a partitioned table

Question
When an index is defined for a table that is partitioned among multiple server machines, how should the index be
placed?

Answer
The index should be defined in units of table partitions, shown as follows.

(8) Response to pdsetup -d command

Question
Which response, y or n, should be entered when pdsetup -d has been entered and the KFPS00036-Q message
is displayed requesting a response?

Answer
If you respond with y, you will delete files and directories that HiRDB requires for execution. In such a case, the
next time you execute the pdsetup command, copy the files required for execution from the installation
directory. If you respond with n, the files and directories are not deleted.
In the following cases, you should respond with y:

• When you are replacing the currently running HiRDB with the HiRDB that ran at the time of installation
(when upgrading HiRDB, you must perform a normal shutdown using the pdstop command)

• When you change the HiRDB administrator's authorization identifier

• When there is an error in the files in the HiRDB operation directory, with a directory owner, or with a file
mode, and they were changed or deleted

C. Questions and Answers

800

Note
If y is entered when the operation directory is different from the installation directory, the entire set of loaded files
will be deleted from the operation directory. The set of loaded files will then be copied from the installation
directory at the next pdsetup. Therefore, it takes some time to execute the command.

(9) Handling of synchronization point dumps

Question
How many guaranteed-valid generations of synchronization point dump files should be provided?

Answer
Information such as the read operation start location in the system log file is acquired in the synchronization point
dump file each time a synchronization point dump is collected in order to prepare for a full rerun. The portion of
the system log file beginning at the location indicated in the synchronization point dump file is overwrite-
protected, so that it will not be used during a full rerun.
The number of guaranteed-valid generations is the number of generations of the synchronization point dump file
that are used to overwrite-protect the system log file. In other words, if the number of guaranteed-valid
generations is 1, the system log file beginning at the location indicated by the most recent synchronization point
dump file is placed in overwrite-protected status. If the number of guaranteed-valid generations is 2, the system
log file beginning at the location indicated by the synchronization point dump file generation immediately
preceding the most recent synchronization point dump file will be placed in overwrite-protected status.

(10) Handling of status files (dual status files)

Question
How is a pair of dual status files formed? In the figure below, if errors occur in version A of logical file 1 and in
version B of logical file 2, can version B of logical file 1 and version A of logical file 2 be used to constitute a
pair?

Answer
A pair of system files is never formed using different logical files. A logical file whose versions A and B are both
normal is selected. If there is no logical file with normal versions A and B, either the unit is terminated abnormally
or the system is placed in the single operation mode in order to continue processing according to the specification
of pd_sts_singleoperation.

(11) Handling of status files (when an error occurs)

Question
There are two operands that determine the method for handling status files in the event there are no more logical
files with normal versions A and B (either A or B is erroneous):

• pd_syssts_singleoperation=stop|continue (for unit status file)

• pd_sts_singleoperation=stop|continue (for server status file)

C. Questions and Answers

801

Which option (stop or continue) should be specified?

Answer
If you specify stop, HiRDB (the unit for a HiRDB parallel server configuration) terminates abnormally. If you
specify continue, the single operation takes effect on the status files.
Status files are important because they contain information that is needed for a full recovery. If you specify
continue and an error occurs in the status file during single operation, the unit is shut down because the error is
on both versions. In this case, full recovery is not possible because both versions of the current file are
inaccessible. This operand should be specified according to the following guidelines:

• Specify stop if guaranteeing a successful full recovery is more important than avoiding online shutdown.

• Specify continue if an application requires uninterrupted online operation (in the worst case, the database
must be rolled back to its backup copy or data loading must be re-executed instead of executing a full
recovery).

(12) Handling of status files (status file definition)

Question
You say that 1-7 logical status files can be defined, but what if there is not enough room on the disk? What is a
reasonable number of logical status files that should be provided?

Answer
Considering maintenance of disk integrity from error to recovery, at least three logical status files should be
provided (dual files 3 = 6 files).
If there is not enough room on the disk, two logical status files are reasonable (dual files 2 = 4 physical files).
If an error occurs in such a case, it must be recovered immediately.
If only one logical status file is provided and an error occurs in the status file, the database will have to be re-
created.

(13) Handling of status files (status file placement)

Question
How should status files be placed on disks?

Answer
As a rule, no more than one physical status file should be placed on the same disk (if multiple files are placed on
the same disk, using dual files or multiple logical files serves no purposes).
If two logical files are defined, the files should be distributed among four disks; if three logical files are defined,
they should be distributed among six disks.
Reliability can be achieved with fewer disks by placing physical status files in a ring format, as shown in the
following figure.

Example of placement of three logical files:

This placement configuration provides two generations with both versions available in the event of an error on one
of the volumes.

C. Questions and Answers

802

(14) Peak capacity of a HiRDB file system area for work table files

Question
How do I determine the maximum utilization value, maximum number of files that can be used, and maximum
utilization increment count of a HiRDB file system area for work table files (the back-end server definition of the
pdwork operand)?

Answer
Use the pdfstatfs command:

pdfstatfs -d name-of-HiRDB-file-system-area-for-work-table-files
The -d option displays the maximum utilization value, maximum number of files that can be used, and
maximum utilization increment count for the allocated HiRDB file system area. The maximum utilization
value is output as peak capacity, the maximum number of files that can be used is output as peak file
count, and the maximum utilization increment count is output as peak expand count.
Note that the maximum utilization value can be cleared using the pdfstatfs command.

pdfstatfs -c name-of-HiRDB-file-system-area-for-work-table-files
The -c option clears (sets to 0) the maximum utilization value, maximum number of files that can be used,
and maximum utilization increment count for the allocated HiRDB file system area.

Notes
The -c option of the pdfstatfs command is applicable only when the usage of the HiRDB file system area is
WORK or UTL.
The -k option of the pdfmkfs command is used to specify the usage of a HiRDB file system area.

(15) HiRDB cannot be started by the pdstart command

Question
What is happening when HiRDB won't start when the pdstart command is entered and -prc results in
abnormal termination with Psp4017?

Answer
Possible causes are:

• HiRDB has not been set up correctly.

• There is no access privilege to the /dev/HiRDB/pth directory or this directory does not exist.

Set up HiRDB correctly. After setting up HiRDB, check the access privilege for /dev/HiRDB/pth.

(16) Any particular unit cannot be started by the pdstart command

Question
The pdstart command was entered, but a unit (other than the system manager unit) doesn't start. Why?
When the OS's ps command is executed in a unit other than the system manager, only pdprcd is running (other
HiRDB processes have not been started).

Answer
Check in the system common definition (pdsys) for the unit that cannot be started. The information defined with
pdunit or pdstart probably does not match the information defined with pdsys for the MGR unit.
Correct pdsys for this unit and then restart the unit with pdstart -u.

(17) HiRDB startup using the pdstart command is slow

Question
The pdstart command terminated with the message, KFPS05078-I Unable to recognize HiRDB
initialization Completion, but why does it take so long time (up to two hours) for all units to start?

C. Questions and Answers

803

Answer

1. If KFPS00608-W-314 is output more than once, check that the same host name is specified for pdunit
and pdstart in pdsys for all units and that the specified host is correct (existing).

2. Check that all the hosts and networks specified with HiRDB are active.

(18) pdstart command results in an error (reason code=SETUP)

Question
The pdstart command results in an error with the KFPS01801-E message. Why?

Answer
Following are possible reasons:

1. A HiRDB directory set in the PDDIR environment variable was not registered in the OS with the pdsetup
command.

2. A prerequisite program process is not installed (applicable only to 02-00).

3. A process server process cannot start because of a shortage of semaphores in the kernel.

Take the following action:

1. Register the HiRDB directory into the OS with the pdsetup command.

2. Install the prerequisite program process.

3. Increase the number of semaphores defined in the system. Note that the specified value does not take effect
until the system is restarted.

(19) pdstart command results in an error (reason code=TIMEOUT)

Question
The pdstart command results in an error with the KFPS01861-E message (reason code=TIMEOUT).
Why?

Answer
Following are possible reasons:

1. It took more time to start a unit than was expected.

2. There is a specification error in the server common definition or in an individual server definition.

Take the following action:

1. Increase the value specified in the pd_start_time_out operand, and re-enter the pdstart command.

2. Check the HiRDB message output to syslogfile and correct the definition. Use pdsetup -d and enter y
in response to the KFPS00036-Q message to delete HiRDB from the OS, then re-execute pdsetup.

(20) A unit cannot be started by the pdstart command

Question
When pdstart was executed, the KFPS01815-E message (errno=11, 13, 22) was output indicating that
semaphore manipulation (semop, semctl) failed, making it impossible to start the unit. Why?

Answer
Following are possible reasons:

1. HiRDB is not installed on the corresponding machine.

2. HiRDB was not registered into the OS with the pdsetup command.

3. The installation directory is linked to a shared disk.

Take the following action:

1. Restart the machine, execute pdsetup -d to delete the machine from the OS, and then re-execute
pdsetup.

C. Questions and Answers

804

2. If HiRDB is installed on that machine, execute pdsetup.

3. Place the installation directories on a local disk at the local node.

Remarks
HiRDB cannot be used simply by copying its files from another environment; it must actually be installed.

(21) Database definition utility (pddef) results in an error

Question
pdinit (database initialization utility) executed successfully, but pddef (definition utility) results in an error.
What causes this?

Answer
Possible causes are:

• If no response or connection error results, some information is probably missing in the environment variables.
Check the values set in PDHOST and PDNAMEPORT.

PDHOST
Specify the name of the host where HiRDB was started. This is the host name specified with pdstart in the
HiRDB system common definition (pdsys).

PDNAMEPORT
This is the port number specified with pd_name_port in the HiRDB system common definition (pdsys).

• If a connection error results, an invalid value might be set in the PDUSER environment variable.
Only one authorization identifier having the DBA privilege exists immediately after executing pdinit.
Specify the authorization identifier and password in the PDUSER environment variable as follows:

Bourne shell
PDUSER="authorization-identifier"/"password"
export PDUSER

C shell
setenv PDUSER "authorization-identifier"/"password"

Notes

1. For details about the authorization identifier and password immediately after executing pdinit, see Options
in Database Initialization Utility (pdinit) in the manual HiRDB Version 9 Command Reference.

2. When the PDUSER environment variable is set, the authorization identifier and password must each be
enclosed in double quotation marks and the entire string must be enclosed in apostrophes. The same applies
when any other HiRDB utility or UAP is executed.

(22) CREATE TABLE statement LOB column definition

Question
In a column definition using the CREATE TABLE statement, what is the difference in the memory requirements of
HiRDB servers and HiRDB clients and in the volume of data transfer if you specify the LOB column maximum
length (for example, 300 megabytes) as opposed to using the default (2 gigabytes)?

Answer
Regardless of whether the maximum length of LOB columns is specified, the memory requirements and the data
transfer volume are the same. The memory requirements and data transfer volume when LOB columns are used
for retrieval or updating depend not on the maximum length in the column definition, but on the actual length and
the defined length of the embedded variables during retrieval or updating. If there is no limit on the storage of
binary data, it can be limited by the maximum length of LOB columns.

C. Questions and Answers

805

(23) Antivirus software

Question
After I installed antivirus software, a UAP could no longer connect to HiRDB. The antivirus software's firewall
seems to be the problem. Which port numbers should I specify as exceptions on the firewall's exceptions list?

Answer
22.5.1 List of port numbers specified in HiRDB lists port numbers used by HiRDB. Specify exceptions for the
following port numbers, which are found on these lists.
Note that the port numbers that you need to specify as exceptions vary depending on where the firewall was
installed.

 If the firewall was installed on the HiRDB server side
Specify exceptions for the following port numbers, which are specified in the system common definition and unit
control information definition.

• HiRDB port numbers

• Scheduler process port numbers

If the operands that specify these port numbers have not been specified, specify them, including the port numbers
as exceptions.

 If the firewall was installed on the client side
Specify exceptions for the following port number, which is specified in the client environment definition.

• Client's reception port number

If the client environment definition that specifies this port number has not been specified, specify it, including the
port number as an exception.

C. Questions and Answers

806

Index

A
abstract data type 365

defining 176
null value for 178

abstract data type column structure base table 179
AFTER trigger 333
AIX, specifying parameters unique to 728
alias (for command) 752
ALTER TRIGGER 333
ARRAY option (CREATE TABLE) 364
asynchronous READ facility 289
asynchronous XA call 194
automatic opening

HiRDB parallel server configuration 257, 261
HiRDB single server configuration 228, 231

B
back-end server definition, creating 86
base row log information, determining amount of 640
basic attribute (JP1 linkage) 212
batch index creation, handling errors during 183
BEFORE trigger 333
BINARY type 350
BLOB type 350
boundary value, specifying 312
branch row log information, determining amount of 643
buffer hit rate 287

C
candidate key 344
character encoding

specifying using the pdsetup command 67
character special file, using 92
check constraint 412

table 412
check pending status 394, 413
client environment definition

registering, in transaction manager 203
setting (database creation) 136
specifying (multi-HiRDB) 276

close character string 203
cluster key, specifying 345
CLUSTER KEY option (CREATE TABLE) 345
column information work table, obtaining size of 669
column information work tables, obtaining maximum

number of 670
command

environment setup using 79
overview of environment setup using 80

commit-time reflection processing 292
compressed column 422
compressed table 422
configuration file, creating 749
constructor function 177, 367

conventions
diagrams I
fonts and symbols I
version numbers II

CREATE INDEX 439
create rdarea statement 107, 111, 478, 480
CREATE SCHEMA 136
CREATE TRIGGER 333
CREATE TYPE 176

D
database

creating 135
maximum value for 785

database compression facility 422
database definition utility

execution of (pddef) 799
results in error (pddef) 805

database initialization utility 107
database load utility 137
database structure modification utility 111
database update log acquisition method 181
database update log acquisition mode 137

types of 137
data conversion facility, specifying (database creation) 137
data dictionary LOB RDAREA

creating 117
determining size of 621
page length of 621, 622
placing (HiRDB parallel server configuration) 266
placing (HiRDB single server configuration) 236
total number of pages in 621, 622

data dictionary RDAREA
determining size of 594
determining size of (for storing database state

analyzed tables and database management tables)
617

page length of 594
total number of pages in 594

data directory RDAREA
determining size of 620
page length of 620
total number of pages in 620

data global buffer 285
allocating 282

data in table, storing 180
data integrity

check constraint 414
referential constraint 400

data length
for abstract data type 582
for repetition columns 582
for variable-length character string type 581
of abstract data type column, obtaining 581
of repetition columns, obtaining 582

data lengths, list of 578

807

data loading
with synchronization point specification 140
with synchronization point specification (handling

utility abnormal termination errors) 188
data local buffer 300

allocating 300
data manipulation

check constraint 414
referential constraint 400

data page 288
data storage status, checking 162, 182
data types for which indexes cannot be defined 439
deadlock between referenced and referencing tables 389
DECIMAL signed normalized number, facility for

conversion to 137
default constructor function 177, 367
deferred write processing 290

facility for parallel writes in 291
deferred write trigger 290

updated output page rate for 290
deletion prevented duration 357
diagram conventions I
dictionary server definition, creating 85
directory

created by HiRDB 6
created by HiRDB administrator 6

disaster recovery 4
distributed transaction processing 193
divided-input data file 150

creating 150
DROP TRIGGER 333
DTP 193
duplicate key index 800
dynamic registration 199
dynamic transaction registration 194
dynamic updating of global buffers 282

E
EBCDIK 353
encapsulation level 177, 368
environment

overview of setting up, using command 80
setting up, using command 79

environment variable
setting 68
setting (multi-HiRDB) 276

error occurs during updating to HiRDB update version,
operation when 46

event
managing by JP1/IM 214
monitoring by JP1/IM (overview) 214

event attribute definition file 214
event notice, sending (JP1 linkage) 212
exceptional key 444
EXCEPT VALUES option (CREATE INDEX) 445
extended attribute (JP1 linkage) 212
extended system-defined scalar function

amount of system log information output during
definition of 652

F
facility for monitoring free space remaining for system log

files (HiRDB parallel server configuration) 257
facility for monitoring free space remaining for system log

files (HiRDB single server configuration) 228
failed page searches by free space reusage facility, number

of 475
falsification prevented table 356
falsification prevention facility 356
FES host direct connection facility 245
file

created by HiRDB 6
created by HiRDB administrator 6

file size
required for execution of access path display utility

(pdvwopt) 692
required for execution of database condition

analysis utility (pddbst) 688
required for execution of database copy utility

(pdcopy) 688
required for execution of database load utility

(pdload) 678
required for execution of database reorganization

utility (pdrorg) 680
required for execution of dictionary import/export

utility (pdexp) 691
required for execution of integrity check utility

(pdconstck) 694
required for execution of optimizing information

collection utility (pdgetcst) 692
required for execution of rebalancing utility

(pdrbal) 693
required for execution of statistics analysis utility

(pdstedit) 685
required for utility execution, determining 678

first dimension partitioning column 327
FIX attribute, specifying 342
FIX hash partitioning 313

examples of 318
FIX table, performance of 800
flexible hash partitioning 313

examples of 318
floating machine 325
floating server 325

placement of 240
font conventions I
foreign key 385
FOREIGN KEY 386
free page reuse mode 470
free space required for upgrading 30
free space reusage facility 470
front-end server definition, creating 85
full segment 461

G
global buffer

allocating 282, 284
designing 281
dynamic updating of 282
LRU management of 293

Index

808

pre-writing of 299
setting number of sectors of 287

global buffer definition, example 285
global buffer pool, notes about allocating to list RDAREA

284
global buffer residence utility 299
guaranteed-valid generations

number of (HiRDB parallel server configuration)
260

number of (HiRDB single server configuration) 231

H
hash facility for hash row partitioning 307, 326
hash functions, types of 313
hash partitioning 312
high-speed connection facility 245
HiRDB

64-bit mode migration error of 56
continuous 24-hour operation 3
directory organization of 6
file organization of 6
installing 57, 61
installing new version while retaining old version37
in transaction manager, registering 198
linking to other products 191
linking with OLTP system 193
maximum value of 784
minimum value of 784
notes about upgrading 279
online distribution of 48
port number used by 773
post-installation procedure 63
registering, in operating system 66
replacing existing version with new version 35
starting, for the first time 110
terminating normally 32
uninstalling 75
update version 42
updating to update version of 42
upgrading 30
upgrading error 38
upgrading plug-in of 37

HiRDB/Developer's kit 799
HiRDB administrator

registering 58
registering (multi-HiRDB) 276

HiRDB Advanced High Availability 327
HiRDB client to HiRDB server, connecting 760
HiRDB Dataextractor, linking to 192
HiRDB Datareplicator, linking to 192
HiRDB directory

backing up 64
backing up disk containing 64
backing up files in (upgrading) 34
creating 63
creating (multi-HiRDB) 276
deleting files from 64
information to be specified in 63
making backup copy of 64
notes when creating 63

HiRDB environment setup 3

HiRDB event
that can be sent 212
that can be sent to JP1/Base 213

HiRDB file name
maximum value for 787
minimum value for 787

HiRDB file system area
creating 92
creating, for list RDAREA 95
creating, for RDAREA 93
creating, for system file 93
creating, for utility 94
creating, for work table file 94
creating in a character special file or block special

file 71
designing, for list RDAREA (HiRDB parallel

server configuration) 253
designing, for list RDAREA (HiRDB single server

configuration) 224
designing, for RDAREA (HiRDB parallel server

configuration) 250
designing, for RDAREA (HiRDB single server

configuration) 221
designing, for system file (HiRDB parallel server

configuration) 251
designing, for system file (HiRDB single server

configuration) 222
designing, for utility (HiRDB parallel server

configuration) 252
designing, for utility (HiRDB single server

configuration) 223
designing, for work table file (HiRDB parallel

server configuration) 252
designing, for work table file (HiRDB single server

configuration) 223
designing (HiRDB parallel server configuration)250
designing (HiRDB single server configuration) 221
determining size of (work table file) 668
for work table files, peak capacity of 803
maximum size of 225, 254
types of 92

HiRDB group, setting up 59
HiRDB parallel server configuration, estimating size of

memory required for 518
HiRDB reserved port facility 781
HiRDB server

using multi-connection address facility to connect
to 761

with FQDN specified, connecting to 760
HiRDB setup automation shell, creating 50
HiRDB single server configuration, estimating size of

memory required for 484
HiRDB Staticizer Option 4
HiRDB status, checking (upgrading) 32
HiRDB system construction with OLTP linkage 195
HiRDB system definition

creating 82
creating (HiRDB parallel server configuration) 84
creating (HiRDB single server configuration) 82
modifying (excluding UAP environment

definitions) 89
sharing 88

Index

809

specifying (multi-HiRDB) 276
HiRDB system definition file

configuring (HiRDB parallel server configuration)
87

configuring (HiRDB single server configuration) 83
sharing 87

HiRDB Text Search Plug-in 159
HiRDB XA library 193

functions supported by 194
host name 760

I
index 439

creating 439
defining 180
definition for partitioned table 800
designing 437
having B-tree structure 439
items to be examined during design of 438
key lengths, list of 587
maximum key length of 439
multicolumn 443
non-partitioning key index 446
partitioning guideline of 447
partitioning key index 446
row partitioning of 446
single-column 443
storage pages, calculating number of 585, 588
storage pages, number of 611
using, with exceptional key value set 444

index global buffer 284
allocating 282

index local buffer 300
allocating 300

index log information
determining amount of 646
determining amount of, for index page splitting 646

index storage RDAREA, notes on estimating size of 459
inheritance 177, 365
inner replica facility 4, 211
input data file UOC 152
insert history maintenance column 357
INSERT ONLY operand (CREATE TABLE) 356
installation directory, creating 59
installer to update HiRDB, using 42
installing

multi-HiRDB 276
plug-in 124

InstallTiming parameter 49
instantiating (temporary table) 428
inter-process memory communication shared memory

HiRDB parallel server configuration 523
Inter-process memory communication shared memory 488
IP address 760

J
JP1/Automatic Job Management System 3 212
JP1/Base 212
JP1/IM 214
JP1/Integrated Management - Manager 212

JP1/Software Distribution 48
JP1/Software Distribution Workstation

preparation on 49
specifying registration file for 49

JP1/System Event Service 212

K
kernel parameter 58

estimating (AIX) 728
estimating (HP-UX) 720
estimating (Linux) 732
estimating (Solaris) 725

key range partitioning 312
examples of (with boundary values specified) 317
examples of (with storage condition specified) 316

KFPS00036-Q message 800
KFPS01801-E message 804
KFPS01815-E message 804
KFPS01861-E message 804
KFPS05078-I message 803

L
large file

creating 93
LD_LIBRARY_PATH 69
LIBPATH 69
libraries for multi-thread, notes about 209
library sharing

multi-HiRDB 277
releasing (upgrading) 32

listen queue 739
list RDAREA

creating 120
creating HiRDB file system area for 95
designing 468
designing HiRDB file system area for 224, 253
determining size of 631
placing (HiRDB parallel server configuration) 267
placing (HiRDB single server configuration) 238

LOB column 350
LOB global buffer 285

allocating 284
local buffer 300

designing 281
location information work table, obtaining size of 671
location information work tables, obtaining maximum

number of 672
log acquisition mode 137, 181
LRU management method 293

M
master directory RDAREA

determining size of 619
page length of 619
total number of pages in 619

matrix-partitioned table 327
matrix partitioning 327
maximum utilization value (HiRDB file system area for

work table) 803

Index

810

memory
allocation of (HiRDB parallel server configuration)

518
allocation of (HiRDB single server configuration)

484
memory requirement

calculation of (HiRDB parallel server
configuration) 521

calculation of (HiRDB single server configuration)
487

checking (upgrading) 33
during array FETCH (front-end server) 571
during array FETCH (HiRDB single server

configuration) 516
during BLOB data retrieval (back-end server) 570
during BLOB data retrieval (dictionary server) 570
during BLOB data retrieval (front-end server) 569
during BLOB data retrieval (HiRDB single server

configuration) 515
during BLOB data updating (back-end server) 570
during BLOB data updating (dictionary server) 570
during BLOB data updating (front-end server) 569
during BLOB data updating (HiRDB single server

configuration) 515
during block transfer (front-end server) 571
during block transfer (HiRDB single server

configuration) 516
during execution of rapid grouping facility (HiRDB

parallel server configuration) 562
during execution of rapid grouping facility (HiRDB

single server configuration) 508
during hash join 509, 564
during SQL execution (HiRDB parallel server

configuration) 562
during SQL execution (HiRDB single server

configuration) 508
during SQL preprocessing (HiRDB parallel server

configuration) 568
during SQL preprocessing (HiRDB single server

configuration) 514
during subquery hash execution 509, 564
estimating, for HiRDB parallel server configuration

518
estimating, for HiRDB single server configuration

484
for Java virtual machine (HiRDB parallel server

configuration) 524
for Java virtual machine (HiRDB single server

configuration) 489
memory size

required for execution of access path display utility
(pdvwopt) 711

required for execution of database condition
analysis utility (pddbst) 705

required for execution of database copy utility
(pdcopy) 706

required for execution of database definition utility
(pddef) 698

required for execution of database initialization
utility (pdinit) 697

required for execution of database load utility
(pdload) 698

required for execution of database recovery utility
(pdrstr) 707

required for execution of database reorganization
utility (pdrorg) 701

required for execution of database structure
modification utility (pdmod) 703

required for execution of dictionary import/export
utility (pdexp) 710

required for execution of optimizing information
collection utility (pdgetcst) 705

required for execution of statistics analysis utility
(pdstedit) 704

required for utility execution, determining 697
message queue, estimating size of 736
multicolumn partitioning 446
multi-connection facility 194

X/Open XA interface environment 200
multi-HiRDB

installing 276
setting environment for 276
system design for 276

multiple front-end server 240
setting up 243
using 240

multi-thread, XA interface supporting 194

N
network configuration

example of (FQDN) 760
example of (multi-connection address facility) 762

network definition
example of (FQDN) 760
example of (multi-connection address facility) 762

new page allocate mode 470
new values correlation name 333
NFS 87
no-log mode 138, 181
non-full segment 461
non-UNIQUE attribute 800
normalizing table 308
NO SPLIT option 349
no-split option, specifying 348
NOT NULL constraint 344
number reserved 473

O
old correlation name 333
old or new values alias 333
OLTP products supported for linking 193
open character string 200
OpenTP1 193, 799
OpenTP1/Server Base Enterprise Option 193
operand, specifying port number 776
operating system parameter 58

checking (upgrading) 33
optimizing based on cost 440
option program product

installing 61
registering, in operating system 66

OS parameter 58

Index

811

estimating (AIX) 728
estimating (HP-UX) 720
estimating (Linux) 732
estimating (Solaris) 725
specifying 719

OTS 194
override 367

P
page 464

allocating 466
determining length of 464
releasing 467

page search mode switchovers, number of 475
partitioning key 312

selecting 313
password, changing (database creation) 136
PATH 69
PCTFREE option (CREATE TABLE, CREATE INDEX,

ALTER TABLE) 466
PCTFREE option (CREATE TABLE) 463
pd_assurance_table_no operand 473
pd_check_pending operand 385, 412
pd_dbbuff_lru_option operand 293
pd_dbbuff_rate_updpage operand 291
pd_dbsync_point operand 290, 292
pd_dfw_awt_process operand 291
pd_inner_replica_control operand 211
pd_inner_replica_lock_shift operand 211
pd_jp1_event_level operand 212
pd_jp1_use operand 212
pd_log_dual operand 227, 256
pd_log_org_no_standby_file_opr operand 211
pd_log_org_reflected_logpoint operand 211
pd_log_rerun_reserved_file_open operand 228, 257
pd_log_rpl_no_standby_file_opr operand 192
pd_log_singleoperation operand 227, 256
pd_lv_mirror_use operand 211
pd_max_reflect_process_count operand 211
pd_max_temporary_object_no operand 480
pd_max_tmp_table_rdarea_no operand 480
pd_pageaccess_mode operand 297
pd_registered_port operand 773, 781
pd_rpl_hdepath operand 192
pd_rpl_init_start operand 192
pd_shared_rdarea_use operand 477
pd_spd_assurance_count operand 231, 260
pd_spd_dual operand 230, 260
pd_spd_reduced_mode operand 231, 260
pd_spd_reserved_file_auto_open operand 232, 261
pd_spool_cleanup_interval operand 64
pd_spool_cleanup operand 64
pd_sts_singleoperation operand 234, 263
pd_syssts_singleoperation operand 234, 263
pd_tmp_table_initialize_timing operand 481
pdadmvr command 43
pdbes (HiRDB parallel server configuration) 795
pdbufmod command 282
pdchgconf command 90
pdconfchk command 82
PDCONFPATH 69

pdcopyb (HiRDB parallel server configuration) 796
pdcopyb (HiRDB single server configuration) 790
pdcopyr (HiRDB parallel server configuration) 796
pdcopyr (HiRDB single server configuration) 790
pdcspool command 64
pddbst1 (HiRDB parallel server configuration) 797
pddbst1 (HiRDB single server configuration) 791
pddef control statement 799
pddic (HiRDB parallel server configuration) 795
PDDIR 68
pdexpm (HiRDB parallel server configuration) 797
pdexpm (HiRDB single server configuration) 791
pdfes (HiRDB parallel server configuration) 796
pdfmkfs command 92, 477, 480
pdgcstm (HiRDB parallel server configuration) 797
pdgcstm (HiRDB single server configuration) 791
pdinit 107
pdinitb (HiRDB parallel server configuration) 796
pdinitd (HiRDB parallel server configuration) 796
pdinitd (HiRDB single server configuration) 790
pdload 137
pdloadm (HiRDB parallel server configuration) 797
pdloadm (HiRDB single server configuration) 790
pdloginit command 96
pdls command 44
pdls -d ust command

when upgrading HiRDB 32
pdmod 111
pdopsetup command 68
pdorendl (HiRDB parallel server configuration) 797
pdorendl (HiRDB single server configuration) 791
pdorendm (HiRDB parallel server configuration) 797
pdorendm (HiRDB single server configuration) 791
pdpgbfon 299
pdplgexm (HiRDB parallel server configuration) 797
pdplgexm (HiRDB single server configuration) 791
pdplgrgst command 126
pdplgset command 124
pdplugin operand 128
pdprgcopy command 44
pdprgrenew command 44
pdrbalm (HiRDB parallel server configuration) 797
pdrorgm (HiRDB parallel server configuration) 797
pdrorgm (HiRDB single server configuration) 791
pdrplstart command 247
pdrplstop command 247
pdrstrb (HiRDB parallel server configuration) 796
pdrstrb (HiRDB single server configuration) 790
pdrstrl (HiRDB parallel server configuration) 796
pdrstrl (HiRDB single server configuration) 790
pdrstrm (HiRDB parallel server configuration) 796
pdrstrm (HiRDB single server configuration) 790
pdrstrr (HiRDB parallel server configuration) 796
pdrstrr (HiRDB single server configuration) 790
pdrstrw (HiRDB parallel server configuration) 796
pdrstrw (HiRDB single server configuration) 790
pdsds (HiRDB single server configuration) 790
pdsetup command 66
pdsetup -d command, response to 800
pdstart command

fails to start any particular unit by 803
fails to start HiRDB by 803

Index

812

fails to start unit by 804
results in error 804
when HiRDB startup is slow using 803

pdstsinit command 97
pdutlexm (HiRDB parallel server configuration) 797
pdxds (HiRDB parallel server configuration) 796
pdxds (HiRDB single server configuration) 790
percentage of free pages in a segment 462
percentage of unused space in a page 465

obtaining 466
setting 465

plug-in
canceling setup of 133
deleting 132
installing 62, 124
owner of 126
registering 126
setting up 124
uninstalling 133
upgrading 130

plug-in environment, setting up 123
plug-in index 451

defining 161
effects of row partitioning of 452
row partitioning of 452

port number 773
port numbers, list of 776
POSIX library version 68
prefetch facility 288, 461
pre-update log acquisition mode 137, 181
primary key, specifying 344
PRIMARY KEY option (CREATE TABLE) 344
PRIVATE 368
process private area (memory requirement) 521
PROTECTED 368
Psp4017 803
PUBLIC 368

Q
questions and answers 799

R
RDAREA

creating HiRDB file system area for 93
deleting unneeded 152
designing 457
designing HiRDB file system area for 221, 250
determining size of 573
items to be examined during design of 458
maximum value for 459
minimum value for 459
placing (HiRDB parallel server configuration) 265
placing (HiRDB single server configuration) 236
temporary table 480

read only 194
Real Time SAN Replication 4
reason code=SETUP 804
reason code=TIMEOUT 804
rebalancing facility 307, 326
RECOVERY operand 182

CREATE TABLE 138
recovery-unnecessary front-end server 246
recovery-unnecessary front-end server unit 246
reduced mode operation

HiRDB parallel server configuration 260
HiRDB single server configuration 231

reference buffer 282
referenced table 385
reference-only back-end server 369
referencing table 385
referential constraint 385
registry, deleting 133
registry facility, initializing 127
registry information, registering 128
registry LOB RDAREA

determining size of 630
page length of 630

registry RDAREA, determining size of 628
reload-not-completed data status 358
remote installation 48
remote shell execution environment, setting 70
repetition column 363
replication facility, linking to 192
resource manager 193
RM 193
RMM 208
RM name 200
RM-related object name 203
RM switch name 200
routine 367
row-partitioned table 312

creating 153

S
sample configuration file, name of 743
sample database file, name of 743
sample file 741

use of 749
sample UOC file, name of 744
schema, defining (database creation) 136
second dimension partitioning column 327
segment 461

allocating 463
determining size of 461
free 461
releasing 463
setting percentage of free pages in 462
unused 461
used 461

SEGMENT REUSE option 473
ALTER TABLE 473

segments, number of 621, 622, 627
semaphore, estimating size of 736
server name operand 478
setting

when firewall is installed 768
when NAT is installed 768

shared directory 89
shared memory

formula for, used by each server (HiRDB parallel
server configuration) 552

Index

813

formula for, used by single server (HiRDB single
server configuration) 503

memory requirement 523
used by back-end server 555
used by dictionary server 554
used by front-end server 552
used by global buffer (HiRDB parallel server

configuration) 559
used by global buffer (HiRDB single server

configuration) 507
used by single server 503
used by unit controller (HiRDB parallel server

configuration) 529
used by unit controller (HiRDB single server

configuration) 494
shared RDAREA 477
shared table 369
shell script for executing operation commands under

aliases, creating 752
SHLIB_PATH 69
simple setup tool 77
single-column partitioning 446
single operation

HiRDB parallel server configuration 256
HiRDB single server configuration 227

single-phase optimization 194
notes on 209

single server definition, creating 82, 84
skipped effective synchronization point dump monitoring

facility (HiRDB parallel server configuration) 257
skipped effective synchronization point dump monitoring

facility (HiRDB single server configuration) 228
snapshot method 297
space conversion facility 137
split compression size 423
SQL, notes about (X/Open XA interface environment) 209
SQL reserved word definition

creating (HiRDB parallel server configuration) 86
creating (HiRDB single server configuration) 83

SQL session shared attribute 480
SQL session-specific attribute 480
SQL session-specific temporary table 428
static registration 199
status file

creating 97
designing (HiRDB parallel server configuration)261
designing (HiRDB single server configuration) 232
determining number of records in 658
determining size of 658
handling of (dual status file) 801
handling of (status file definition) 802
handling of (status file placement) 802
handling of (when error occurs) 801
single operation of (HiRDB parallel server

configuration) 262
single operation of (HiRDB single server

configuration) 233
status-file double operation

HiRDB parallel server configuration 262
HiRDB single server configuration 233

status-file single operation
HiRDB parallel server configuration 262

HiRDB single server configuration 233
storage condition, specifying 312
storage requirement

for HiRDB 483
for utility execution 677

substitutability 178, 366
subtype 365
supertype 365
suppress option, specifying 347
SUPPRESS option (CREATE TABLE) 347
symbol conventions I
symbolic link 73
synchronization point, line number of 140
synchronization point dump, handling of 801
synchronization point dump file

automatic opening of (HiRDB parallel server
configuration) 261

automatic opening of (HiRDB single server
configuration) 231

creating 96
designing (HiRDB parallel server configuration)259
designing (HiRDB single server configuration) 230
determining number of records in 657
determining size of 657
duplexing of 230, 259
number of guaranteed-valid generations for

(HiRDB parallel server configuration) 260
number of guaranteed-valid generations for

(HiRDB single server configuration) 231
reduced mode operation for (HiRDB parallel server

configuration) 260
reduced mode operation for (HiRDB single server

configuration) 231
system common definition

creating (HiRDB parallel server configuration) 84
creating (HiRDB single server configuration) 82

system configuration
maximum value for 784
of HiRDB parallel server configuration 242
of HiRDB single server configuration 220
sample file 745

system design
for HiRDB parallel server configuration 240
for HiRDB single server configuration 218
for multi-HiRDB 276

system file
creating 96
creating HiRDB file system area for 93
designing (HiRDB parallel server configuration)255
designing (HiRDB single server configuration) 226
designing HiRDB file system area for 222, 251
example of creating (HiRDB parallel server

configuration) 100
example of creating (HiRDB single server

configuration) 97
system log file

automatic opening of (HiRDB parallel server
configuration) 257

automatic opening of (HiRDB single server
configuration) 228

creating 96
designing (HiRDB parallel server configuration)255

Index

814

designing (HiRDB single server configuration) 226
determining size of 634
double operation of (HiRDB parallel server

configuration) 256
double operation of (HiRDB single server

configuration) 227
duplexing of (HiRDB parallel server configuration)

256
duplexing of (HiRDB single server configuration)

227
record length of 634
record length of (HiRDB parallel server

configuration) 258
record length of (HiRDB single server

configuration) 229
records, number of 634
single operation of (HiRDB parallel server

configuration) 256
single operation of (HiRDB single server

configuration) 227
total size of 634

system log file automatic extension facility (HiRDB
parallel server configuration) 257

system log file automatic extension facility (HiRDB single
server configuration) 228

system log information
determining size of 635
output depending on SQL manipulation, amount of

652
output during database creation by utility, amount

of 649
output during execution of RDAREA automatic

extension facility, amount of 652
output during index definition, amount of 637
output during table data updating, amount of 639
output during table definition, amount of 636

system manager, placement of 240
system RDAREA

backing up (upgrading) 31
creating 107
placing (HiRDB parallel server configuration) 265
placing (HiRDB single server configuration) 236

system reconfiguration command 90
system switchover facility, using 4

T
table

actual 340
containing abstract data type 365
containing repetition column 363
creating, containing plug-in-provided abstract data

type 159
creating, containing user-defined abstract data type

176
creating, with LOB column 156
defining 179
definition information of (sample file) 746
designing 303
design method for row partitioning of 312
effects of row partitioning of 320
forms of row partitioning of 319

items to be examined during design of 304
matrix partitioning of 327
maximum size of 799
normalizing 308
partitioning, among multiple servers 449
partitioning, within one server 449
procedure for creating, with abstract data type

(SGMLTEXT type) 159
row partitioning of 312
storage pages, calculating number of 575, 583, 594
storing data in 180
view 340

table integrity
how to check (check constraint) 415
how to check (referential constraint) 403

temporary table 428
temporary table index 428
TIMEOUT 804
TM 193
TP1/Resource Manager Monitor 208
TPBroker for C++ 193
transaction completion type 209
transaction manager 193

example of registering in 204
information to be registered in 200
modifying registration information in 206
registering HiRDB in 198

transaction-specific temporary table 428
transaction transfer 194, 197
trigger

defining 332
management of 336

trigger action search conditions 332
trigger event 332
trigger event SQL 332
trnstring operand 198
TUXEDO 193

U
UAP environment definition

creating (HiRDB parallel server configuration) 86
creating (HiRDB single server configuration) 83
modifying 90

uninstalling plug-in 133
unique index 140
uniqueness constraint 344
unit control information definition

creating (HiRDB parallel server configuration) 84
creating (HiRDB single server configuration) 82

UOC 152
updatable back-end server 369
updatable column 356
update buffer 282
update patch to update HiRDB, using 43
upgrading

backing up files in HiRDB directory before 34
backing up system RDAREAs before 31
before 30
checking HiRDB status before 32
checking memory requirement before 33
checking operating system parameters before 33

Index

815

checking to see whether HiRDB is online before 31
checking total number of records in system log file

before 33
free space checking before 30
HiRDB 30
HiRDB plug-in 37
plug-in 130
releasing library sharing before 32
terminating HiRDB normally before 32

used free pages, release of 467
used free segment 461
user's own coding 152
user LOB RDAREA

creating 114
determining size of 627
placing (HiRDB parallel server configuration) 267
placing (HiRDB single server configuration) 237

user RDAREA
creating 111
determining size of 574
formula for calculating total number of pages in 574
placing (HiRDB parallel server configuration) 266
placing (HiRDB single server configuration) 237

UTF16 353
utility

creating HiRDB file system area for 94
designing HiRDB file system area for 223, 252

utility special unit
installing 219
installing (multi-HiRDB) 276

V
valid period of data (temporary table) 429
version number conventions II
view table, creating 340

W
WebLogic Server 193
WITHOUT ROLLBACK option, specifying 354
work disk 325
work file for sorting

buffer size for determining size of 695
work table file 666

creating HiRDB file system area for 94
designing HiRDB file system area for 223, 252
determining maximum number of extensions for676
determining size of 665
SQL that requires 666
used by SQL statement, size of 668
used by utility, size of 673

work table files, determining maximum number of 675

X
X/Open XA interface 193
xa_switch_t structure-name 200
XA interface 799

supporting multi-thread 194

Index

816

	HiRDB Version 9
	Preface
	Contents
	1. Overview of HiRDB System Construction
	1.1 Overview of behavior when operands are omitted
	1.2 System construction procedures
	1.2.1 System construction procedure for installing a new HiRDB
	1.2.2 Setting up a HiRDB environment
	1.2.3 Environment setup for linking to other products

	1.3 Organization of HiRDB directories and files
	1.3.1 Initial files that are created
	1.3.2 Files that consistently increase in size

	1.4 Upgrading HiRDB
	1.4.1 Before upgrading
	1.4.2 Replacing an existing version with the new version
	1.4.3 Installing a new version while retaining the old version
	1.4.4 Upgrading the HiRDB plug-ins
	1.4.5 Using Java stored procedures and functions
	1.4.6 In the event of an upgrading error
	1.4.7 Restoring an earlier version of HiRDB

	1.5 Updating to HiRDB update version
	1.5.1 Updating HiRDB
	1.5.2 Prerequisites
	1.5.3 Update procedure
	1.5.4 Update procedure when the system switchover facility is used
	1.5.5 Cautions
	1.5.6 Operation considerations
	1.5.7 Related product limitations and considerations
	1.5.8 Operation when an error occurs during installation

	1.6 Using JP1/Software Distribution to execute online distribution of HiRDB
	1.6.1 Online distribution procedure
	1.6.2 Preparations on JP1/Software Distribution Workstation
	1.6.3 Notes about online distribution

	1.7 Migrating to 64-bit mode HiRDB
	1.7.1 Considerations when migrating to 64-bit mode
	1.7.2 How to migrate to 64-bit mode
	1.7.3 In the event of an SQL object migration error
	1.7.4 In the event of a 64-bit-mode migration error (restoring the old version)

	2. Installation
	2.1 Pre-installation procedure
	2.1.1 Checking and modifying OS parameters
	2.1.2 Registering the HiRDB administrator
	2.1.3 Setting up a HiRDB group
	2.1.4 Creating the installation directory
	2.1.5 Registering host names

	2.2 HiRDB installation procedure
	2.2.1 Installing HiRDB
	2.2.2 Installing option program product
	2.2.3 Installing plug-ins

	2.3 Post-installation procedures
	2.3.1 Creating the HiRDB directory
	2.3.2 Creating a work file output directory
	2.3.3 Registering HiRDB and option program products in the operating system
	2.3.4 Setting environment variables
	2.3.5 Setting a remote shell execution environment
	2.3.6 Notes about background execution of HiRDB operation commands
	2.3.7 Preparing to create the HiRDB file system area

	2.4 Uninstallation of HiRDB

	3. Setting Up an Environment Using the Simple Setup Tool
	3.1 Overview of the simple setup tool

	4. Setting Up an Environment Using Commands
	4.1 Overview of environment setup using commands
	4.2 Creating the HiRDB system definitions
	4.2.1 Creating HiRDB system definitions (HiRDB single server configuration)
	4.2.2 Creating HiRDB system definitions (HiRDB parallel server configuration)
	4.2.3 Sharing HiRDB system definition files (HiRDB parallel server configuration)
	4.2.4 Modifying HiRDB system definitions (excluding UAP environment definitions)
	4.2.5 Modifying a UAP environment definition

	4.3 Creating HiRDB file system areas
	4.3.1 Types of HiRDB file system areas
	4.3.2 Using character special files
	4.3.3 Creating a large file
	4.3.4 Example 1 (creating a HiRDB file system area for RDAREAs)
	4.3.5 Example 2 (creating a HiRDB file system area for system files)
	4.3.6 Example 3 (creating a HiRDB file system area for work table files)
	4.3.7 Example 4 (creating a HiRDB file system area for utilities)
	4.3.8 Example 5 (creating a HiRDB file system area for list RDAREAs)

	4.4 Creating system files
	4.4.1 Creating system log files
	4.4.2 Creating synchronization point dump files
	4.4.3 Creating status files
	4.4.4 Example of system file creation (HiRDB single server configuration)
	4.4.5 Example of system file creation (HiRDB parallel server configuration)

	4.5 Creating system RDAREAs
	4.5.1 Basics
	4.5.2 Example 1 (HiRDB single server configuration)
	4.5.3 Example 2 (HiRDB parallel server configuration)

	4.6 Starting HiRDB for the first time
	4.7 Creating user RDAREAs
	4.7.1 Basics
	4.7.2 Example 1 (HiRDB single server configuration)
	4.7.3 Example 2 (HiRDB parallel server configuration)

	4.8 Creating user LOB RDAREAs
	4.8.1 Basics
	4.8.2 Example 1 (HiRDB single server configuration)
	4.8.3 Example 2 (HiRDB parallel server configuration)

	4.9 Creating data dictionary LOB RDAREAs
	4.9.1 Basics
	4.9.2 Example 1 (HiRDB single server configuration)
	4.9.3 Example 2 (HiRDB parallel server configuration)

	4.10 Creating list RDAREAs
	4.10.1 Basics
	4.10.2 Example 1 (HiRDB single server configuration)
	4.10.3 Example 2 (HiRDB parallel server configuration)

	5. Setting Up the Plug-in Environment
	5.1 Overview of plug-in environment setup
	5.1.1 Environment setup procedure
	5.1.2 Notes on using plug-ins

	5.2 Upgrading plug-ins
	5.3 Deleting plug-ins

	6. Creating Databases
	6.1 Overview of database creation
	6.1.1 Preparing for database creation
	6.1.2 Database creation procedure
	6.1.3 Database update log acquisition mode
	6.1.4 Notes on data storage for a table for which an index with the unique attribute has been defined
	6.1.5 Loading a large amount of data (data loading with the synchronization point specification)
	6.1.6 Loading data into a row-partitioned table (using the parallel loading facility)
	6.1.7 Loading data into a row-partitioned table (Creating divided-input data files)
	6.1.8 Data loads that use the automatic numbering facility
	6.1.9 Input data file UOC
	6.1.10 Deleting unneeded RDAREAs

	6.2 Creating a row-partitioned table
	6.3 Creating a table with a LOB column
	6.4 Creating a table containing a plug-in-provided abstract data type
	6.4.1 The SGMLTEXT type
	6.4.2 The XML type

	6.5 Creating a table containing a user-defined abstract data type
	6.5.1 Defining an abstract data type
	6.5.2 Defining a table
	6.5.3 Defining an index
	6.5.4 Storing data in a table
	6.5.5 Database update log acquisition methods
	6.5.6 Checking the data storage status

	6.6 Handling errors during batch index creation
	6.6.1 When data was loaded in log acquisition mode or pre-update log acquisition mode
	6.6.2 When data was loaded in no-log mode

	6.7 Handling utility abnormal termination errors during data loading with the synchronization point specification
	6.7.1 Overview of error handling procedure
	6.7.2 Example

	7. Linking to Other Products
	7.1 Linking to the replication facility
	7.1.1 Linking to HiRDB Datareplicator
	7.1.2 Linking to HiRDB Dataextractor

	7.2 Linking with an OLTP system
	7.2.1 OLTP products supported for linking
	7.2.2 HiRDB XA library
	7.2.3 Example of HiRDB system configuration with OLTP linkage
	7.2.4 Transaction transfer
	7.2.5 Registering HiRDB in the transaction manager
	7.2.6 Information to be registered in the transaction manager
	7.2.7 Example of registering in the transaction manager
	7.2.8 Modifying the registration information in the transaction manager
	7.2.9 Methods for re-establishing connection between the transaction manager and HiRDB
	7.2.10 Monitoring HiRDB using the TP1/Resource Manager Monitor facility
	7.2.11 Notes

	7.3 Linking to the inner replica facility
	7.4 Linking to JP1
	7.4.1 Reporting events to JP1/Base
	7.4.2 Managing events by JP1/IM
	7.4.3 Automatic job execution using JP1/AJS3 linkage

	8. Designing a HiRDB single server configuration
	8.1 System design for a HiRDB single server configuration
	8.1.1 System design
	8.1.2 System configuration

	8.2 Designing HiRDB file system areas
	8.2.1 Designing HiRDB file system areas for RDAREAs
	8.2.2 Designing HiRDB file system areas for system files
	8.2.3 Designing HiRDB file system areas for work table files
	8.2.4 Designing HiRDB file system areas for utilities
	8.2.5 Designing HiRDB file system areas for list RDAREAs
	8.2.6 Maximum sizes of HiRDB file system areas

	8.3 Designing system files
	8.3.1 Designing system log files
	8.3.2 Designing synchronization point dump files
	8.3.3 Designing status files

	8.4 Placing RDAREAs
	8.4.1 Placing system RDAREAs
	8.4.2 Placing data dictionary LOB RDAREAs
	8.4.3 Placing user RDAREAs
	8.4.4 Placing user LOB RDAREAs
	8.4.5 Placing list RDAREAs

	9. Designing a HiRDB parallel server configuration
	9.1 System design for a HiRDB parallel server configuration
	9.1.1 System design
	9.1.2 System configuration of a HiRDB parallel server configuration
	9.1.3 Setting up multiple front-end servers
	9.1.4 Recovery-unnecessary front-end server

	9.2 Designing HiRDB file system areas
	9.2.1 Designing HiRDB file system areas for RDAREAs
	9.2.2 Designing HiRDB file system areas for system files
	9.2.3 Designing HiRDB file system areas for work table files
	9.2.4 Designing HiRDB file system areas for utilities
	9.2.5 Designing HiRDB file system areas for list RDAREAs
	9.2.6 Maximum sizes of HiRDB file system areas

	9.3 Designing system files
	9.3.1 Designing system log files
	9.3.2 Designing synchronization point dump files
	9.3.3 Designing status files

	9.4 Placing RDAREAs
	9.4.1 Placing system RDAREAs
	9.4.2 Placing data dictionary LOB RDAREAs
	9.4.3 Placing user RDAREAs
	9.4.4 Placing user LOB RDAREAs
	9.4.5 Placing list RDAREAs

	9.5 Considerations that apply to building a system with many units or servers
	9.5.1 Considerations that apply to configuring systems
	9.5.2 Considerations for system operation
	9.5.3 Corrective actions to take in response to errors that occur when commands are executed

	10. Designing a Multi-HiRDB
	10.1 System design for a multi-HiRDB
	10.1.1 Installing a multi-HiRDB
	10.1.2 Setting the environment for a multi-HiRDB

	10.2 Notes about upgrading

	11. Designing Global Buffers and Local Buffers
	11.1 Allocating global buffers
	11.1.1 Allocating index global buffers
	11.1.2 Allocating data global buffers
	11.1.3 Allocating LOB global buffers
	11.1.4 Global buffer allocation procedures

	11.2 Setting the number of global buffer sectors
	11.3 Specifying the prefetch facility
	11.4 Specifying the asynchronous READ facility
	11.5 Specifying deferred write processing
	11.6 Specifying the facility for parallel writes in deferred write processing
	11.7 Setting the commit-time reflection processing
	11.8 Global buffer LRU management
	11.8.1 LRU management methods
	11.8.2 LRU management suppression settings for a UAP
	11.8.3 Setting suppression of LRU management of binary data accessed by UAPs

	11.9 Page access using the snapshot method
	11.10 Global buffer pre-writing
	11.11 Local buffers
	11.11.1 Allocating index local buffers
	11.11.2 Allocating data local buffers
	11.11.3 Allocating local buffers
	11.11.4 Considerations about local buffers

	12. Designing Tables
	12.1 Items to be examined during table design
	12.2 Normalizing a table
	12.3 Table row partitioning
	12.3.1 Table row partitioning
	12.3.2 Types of table row partitioning
	12.3.3 Forms of table row partitioning
	12.3.4 Effects of table row partitioning
	12.3.5 Design considerations
	12.3.6 Notes on table row partitioning

	12.4 Table matrix partitioning
	12.5 Defining a trigger
	12.5.1 Application standards
	12.5.2 Defining a trigger
	12.5.3 Trigger considerations
	12.5.4 Trigger management
	12.5.5 Error recovery

	12.6 Creating a view table
	12.7 Specifying the FIX attribute
	12.8 Specifying a primary key
	12.9 Specifying a cluster key
	12.10 Specifying the suppress option
	12.11 Specifying the no-split option
	12.12 Specifying a binary data column
	12.12.1 BLOB type
	12.12.2 BINARY type
	12.12.3 BLOB type and BINARY type usage

	12.13 Specifying a character set
	12.14 Specifying the WITHOUT ROLLBACK option
	12.15 Specifying the falsification prevention facility
	12.15.1 Specification
	12.15.2 Restrictions
	12.15.3 Changing a falsification-unprevented table to a falsification prevented table
	12.15.4 Error operation

	12.16 Table containing a repetition column
	12.17 Table containing an abstract data type
	12.18 Shared tables
	12.18.1 Effects and criteria
	12.18.2 Definition method
	12.18.3 Manipulating shared tables
	12.18.4 Limitations on shared tables
	12.18.5 Rules used to allocate back-end servers that search shared tables
	12.18.6 Notes about execution of definition SQL statements, utilities, and operation commands
	12.18.7 Using shared tables with a HiRDB single server configuration

	12.19 Referential constraints
	12.19.1 About referential constraints
	12.19.2 Defining referential constraints
	12.19.3 Check pending status
	12.19.4 Data manipulation and integrity
	12.19.5 Procedure for checking table integrity
	12.19.6 Referential constraints and triggers
	12.19.7 Notes about linkage with related products

	12.20 Check constraints
	12.20.1 About check constraints
	12.20.2 Defining check constraints
	12.20.3 Check pending status
	12.20.4 Data manipulation and integrity
	12.20.5 Procedure for checking table integrity
	12.20.6 Notes about linkage with related products
	12.20.7 Migrating check constraint tables to 64-bit mode

	12.21 Compressed tables
	12.21.1 Data compression facility
	12.21.2 How data is compressed
	12.21.3 How to define a compressed table
	12.21.4 How to convert an existing table to a compressed table
	12.21.5 How to change the definition of a compressed column (removing the compression specification for a column)
	12.21.6 Notes about using compressed tables
	12.21.7 How to measure the data compression rate

	12.22 Temporary tables
	12.22.1 Valid period of data in temporary tables
	12.22.2 How to define temporary tables and temporary table indexes
	12.22.3 Rules for choosing an RDAREA for storage
	12.22.4 Processing when there are no available temporary table RDAREAs
	12.22.5 Locking for temporary tables
	12.22.6 Limitations on the use of temporary tables

	13. Designing Indexes
	13.1 Items to be examined during index design
	13.2 Index
	13.2.1 Creating an index
	13.2.2 Index creation taking into account optimizing based on cost
	13.2.3 Single-column index vs. multicolumn index
	13.2.4 Using multiple indexes
	13.2.5 Using an index with an exceptional key value set
	13.2.6 Effects on performance of the number of indexes

	13.3 Index row partitioning
	13.4 Plug-in index
	13.5 Plug-in index row partitioning

	14. Designing RDAREAs
	14.1 Items to be examined during RDAREA design
	14.2 Segments
	14.2.1 Determining the segment size
	14.2.2 Setting the percentage of free pages in a segment
	14.2.3 Allocating and releasing segments

	14.3 Pages
	14.3.1 Determining the page length
	14.3.2 Setting the percentage of unused space in a page
	14.3.3 Allocating and releasing pages

	14.4 Designing list RDAREAs
	14.5 Free space reusage facility
	14.5.1 Data storage search modes
	14.5.2 Free space reusage facility
	14.5.3 Effects and applicability
	14.5.4 Considerations
	14.5.5 Environment settings
	14.5.6 Checking execution status
	14.5.7 Notes

	14.6 Shared RDAREAs (HiRDB parallel server configuration only)
	14.7 Temporary table RDAREAs

	15. Storage Requirements for HiRDB
	15.1 Estimating the memory size required for a HiRDB single server configuration
	15.1.1 Memory allocation
	15.1.2 Calculation of required memory
	15.1.3 Formulas for shared memory used by a unit controller
	15.1.4 Formulas for shared memory used by a single server
	15.1.5 Formula for size of shared memory used by global buffers
	15.1.6 Formulas for size of memory required during SQL execution
	15.1.7 Formula for size of memory required during SQL preprocessing
	15.1.8 Formula for size of memory required during BLOB data retrieval or updating (HiRDB single server configuration)
	15.1.9 Formula for size of memory required during block transfer or array FETCH
	15.1.10 Memory required by in-memory data processing

	15.2 Estimating the memory size required for a HiRDB parallel server configuration
	15.2.1 Memory allocation
	15.2.2 Calculation of required memory
	15.2.3 Formulas for shared memory used by a unit controller
	15.2.4 Formulas for shared memory used by each server
	15.2.5 Formula for size of shared memory used by global buffers
	15.2.6 Formulas for size of memory required during SQL execution
	15.2.7 Formula for size of memory required during SQL preprocessing
	15.2.8 Formula for size of memory required during BLOB data retrieval or updating (front-end server)
	15.2.9 Formula for size of memory required during BLOB data retrieval or updating (back-end server or dictionary server)
	15.2.10 Formula for size of memory required during block transfer or array FETCH (front-end server)
	15.2.11 Memory required by in-memory data processing

	16. Determining RDAREA Size
	16.1 Determining the size of a user RDAREA
	16.1.1 Calculating the size of a user RDAREA
	16.1.2 Calculating the number of table storage pages
	16.1.3 Calculating the number of index storage pages

	16.2 Determining the size of a data dictionary RDAREA
	16.2.1 Determining the size of a normal data dictionary RDAREA
	16.2.2 Determining the size of a data dictionary RDAREA for storing database state analyzed tables and database management tables

	16.3 Determining the size of the master directory RDAREA
	16.4 Determining the size of the data directory RDAREA
	16.5 Determining the size of a data dictionary LOB RDAREA
	16.6 Determining the size of a user LOB RDAREA
	16.7 Determining the size of the registry RDAREA
	16.8 Determining the size of the registry LOB RDAREA
	16.9 Determining the size of the list RDAREA

	17. Determining the Size of System Files and Audit Trail Files
	17.1 Determining the size of system log files
	17.1.1 Total size of system log files
	17.1.2 Amount of system log information output during table definition
	17.1.3 Amount of system log information output during index definition
	17.1.4 Amount of system log information output during table data updating
	17.1.5 Amount of system log information output during database creation by a utility
	17.1.6 Amount of system log information that is output depending on the SQL manipulation
	17.1.7 Amount of system log information that is output during the definition of extended system-defined scalar functions
	17.1.8 Amount of system log information that is output during the execution of the RDAREA automatic extension facility
	17.1.9 Amount of system log information output when the PURGE TABLE statement is executed
	17.1.10 Amount of system log information output when the free page release utility (pdreclaim) is executed
	17.1.11 Amount of system log information that is output during execution of the facility for predicting reorganization time
	17.1.12 Amount of system log information output during an updatable backup hold

	17.2 Determining the size of synchronization point dump files
	17.3 Determining the size of status files
	17.4 Determining audit trail file capacity

	18. Determining Work Table File Size
	18.1 Overview of work table files
	18.2 Determining the size of a HiRDB file system area (pdfmkfs -n command)
	18.2.1 Size of a work table file used by an SQL statement
	18.2.2 Size of a work table file used by a utility

	18.3 Determining the maximum number of files (pdfmkfs -l command)
	18.4 Determining the maximum number of extensions (pdfmkfs -e command)

	19. Storage Requirements for Utility Execution
	19.1 Determining the file sizes required for utility execution
	19.1.1 File sizes required for the execution of the database load utility (pdload)
	19.1.2 File sizes required for the execution of the database reorganization utility (pdrorg)
	19.1.3 File sizes required for the execution of the statistics analysis utility (pdstedit)
	19.1.4 File sizes required for the execution of the database condition analysis utility (pddbst)
	19.1.5 File sizes required for the execution of the database copy utility (pdcopy)
	19.1.6 File sizes required for the execution of the dictionary import/export utility (pdexp)
	19.1.7 File sizes required for the execution of the optimizing information collection utility (pdgetcst)
	19.1.8 File sizes required for the execution of the access path display utility (pdvwopt)
	19.1.9 File sizes required for execution of the rebalancing utility (pdrbal)
	19.1.10 File sizes required for execution of the integrity check utility (pdconstck)
	19.1.11 File sizes required for execution of parallel loading (pdparaload)
	19.1.12 Buffer size used to determine the size of the work file for sorting

	19.2 Determining the memory size required for utility execution
	19.2.1 Memory size required for the execution of the database initialization utility (pdinit)
	19.2.2 Memory size required for the execution of the database definition utility (pddef)
	19.2.3 Memory size required for the execution of the database load utility (pdload)
	19.2.4 Memory size required for the execution of the database reorganization utility (pdrorg)
	19.2.5 Memory size required for the execution of the database structure modification utility (pdmod)
	19.2.6 Memory size required for the execution of the statistics analysis utility (pdstedit)
	19.2.7 Memory size required for the execution of the database condition analysis utility (pddbst)
	19.2.8 Memory size required for the execution of optimizing the information collection utility (pdgetcst)
	19.2.9 Memory size required for the execution of the database copy utility (pdcopy)
	19.2.10 Memory size required for the execution of the database recovery utility (pdrstr)
	19.2.11 Memory size required for the execution of the dictionary import/export utility (pdexp)
	19.2.12 Memory size required for the execution of the access path display utility (pdvwopt)
	19.2.13 Memory size required for the execution of the rebalancing utility (pdrbal)
	19.2.14 Memory size required for execution of the free page release utility (pdreclaim) and global buffer residence utility (pdpgbfon)
	19.2.15 Memory size required for execution of the integrity check utility (pdconstck)
	19.2.16 Memory size required for the execution of parallel loading (pdparaload)

	20. Specifying OS Parameters
	20.1 Estimating HP-UX OS parameter values
	20.2 Estimating Solaris OS parameter values
	20.3 Estimating AIX OS parameter values
	20.4 Estimating Linux kernel parameter values
	20.5 Estimating the sizes of message queues and semaphores
	20.6 Listen queue specified values

	21. Sample Files
	21.1 Overview of sample files
	21.1.1 Names of sample files

	21.2 System configuration and table definition information
	21.3 Use of the sample files
	21.3.1 Creating the configuration files
	21.3.2 HiRDB file system area names and user-created file names used with sample database

	22. Communication Between HiRDB Servers and HiRDB Clients
	22.1 Connecting HiRDB clients to a HiRDB server
	22.1.1 Connection to a HiRDB server with an FQDN specified
	22.1.2 Using the multi-connection address facility to connect to a HiRDB server

	22.2 Settings for a DNS server to manage IP addresses
	22.3 Settings when a firewall and NAT are installed
	22.3.1 When a firewall is installed on the HiRDB single server configuration side
	22.3.2 When a firewall and NAT are installed on the HiRDB single server configuration side
	22.3.3 When a firewall is installed on the HiRDB parallel server configuration side
	22.3.4 When a firewall and NAT are installed on the HiRDB parallel server configuration side

	22.4 Port numbers used by HiRDB
	22.4.1 Estimating the number of ports that a unit will use
	22.4.2 Notes
	22.4.3 Calculation examples
	22.4.4 Ways to avoid a shortage of ports

	22.5 Port numbers specified in HiRDB
	22.5.1 List of port numbers specified in HiRDB
	22.5.2 Specifying port numbers
	22.5.3 Notes on port number duplication

	22.6 HiRDB reserved port facility
	22.6.1 Estimation of the HiRDB reserved port facility

	Appendixes
	A. HiRDB Maximum and Minimum Values
	A.1 Maximum and minimum values for the system configuration
	A.2 Maximum and minimum values for databases
	A.3 Maximum and minimum values for HiRDB file names

	B. Processes Started by HiRDB
	B.1 Processes started by a HiRDB single server configuration
	B.2 Processes started by a HiRDB parallel server configuration

	C. Questions and Answers

	Index

