
For UNIX Systems
Scalable Database Server

HiRDB Version 8
Installation and Design Guide

3000-6-352(E)

Relevant program products
List of program products:
For the HP-UX 11.0, HP-UX 11i, or HP-UX 11i V2 (PA-RISC) operating system:
P-1B62-1182 HiRDB/Single Server Version 8 08-00
P-1B62-1382 HiRDB/Parallel Server Version 8 08-00
P-1B62-1582 HiRDB/Single Server Version 8(64) 08-00
P-1B62-1782 HiRDB/Parallel Server Version 8(64) 08-00
P-1B62-1B82 HiRDB/Run Time Version 8 08-00
P-1B62-1C82 HiRDB/Developer's Kit Version 8 08-00
P-1B62-1D82 HiRDB/Run Time Version 8(64) 08-00
P-1B62-1E82 HiRDB/Developer's Kit Version 8(64) 08-00
P-F1B62-11823 HiRDB Staticizer Option Version 8 08-00
P-F1B62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F1B62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F1B62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
For the HP-UX 11i V2 (IPF) operating system:
P-1J62-1582 HiRDB/Single Server Version 8(64) 08-00
P-1J62-1782 HiRDB/Parallel Server Version 8(64) 08-00
P-1J62-1D82 HiRDB/Run Time Version 8(64) 08-00
P-1J62-1E82 HiRDB/Developer's Kit Version 8(64) 08-00
P-F1J62-11823 HiRDB Staticizer Option Version 8 08-00
P-F1J62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F1J62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F1J62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
For the Solaris 8, 9 or 10 operating system:
P-9D62-1182 HiRDB/Single Server Version 8 08-00
P-9D62-1382 HiRDB/Parallel Server Version 8 08-00
P-9D62-1582 HiRDB/Single Server Version 8(64) 08-00
P-9D62-1782 HiRDB/Parallel Server Version 8(64) 08-00
P-9D62-1B82 HiRDB/Run Time Version 8 08-00
P-9D62-1C82 HiRDB/Developer's Kit Version 8 08-00
P-9D62-1D82 HiRDB/Run Time Version 8(64) 08-00
P-9D62-1E82 HiRDB/Developer's Kit Version 8(64) 08-00
P-F9D62-11823 HiRDB Staticizer Option Version 8 08-00
P-F9D62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F9D62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F9D62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
For the AIX(R) 5L V5.1, V5.2 or V5.3 operating system:
P-1M62-1182 HiRDB/Single Server Version 8 08-00
P-1M62-1382 HiRDB/Parallel Server Version 8 08-00
P-1M62-1582 HiRDB/Single Server Version 8(64) 08-00
P-1M62-1782 HiRDB/Parallel Server Version 8(64) 08-00
P-1M62-1B82 HiRDB/Run Time Version 8 08-00
P-1M62-1C82 HiRDB/Developer's Kit Version 8 08-00

P-1M62-1D82 HiRDB/Run Time Version 8(64) 08-00
P-1M62-1E82 HiRDB/Developer's Kit Version 8(64) 08-00
P-F1M62-11823 HiRDB Staticizer Option Version 8 08-00
P-F1M62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F1M62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F1M62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
For the Red Hat Linux 7.1, Red Hat Linux 7.2, Red Hat Enterprise Linux AS 2.1, Red Hat Enterprise Linux AS 3 (x86), Red Hat
Enterprise Linux ES 3 (x86), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES 4 (x86), Red Hat Enterprise
Linux AS 3 (AMD64 & Intel EM64T),* Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), or Red Hat Enterprise Linux ES
4 (AMD64 & Intel EM64T) operating system:
P-9S62-1182 HiRDB/Single Server Version 8 08-00
P-9S62-1382 HiRDB/Parallel Server Version 8 08-00
P-9S62-1B82 HiRDB/Run Time Version 8 08-00
P-9S62-1C82 HiRDB/Developer's Kit Version 8 08-00
P-F9S62-11823 HiRDB Staticizer Option Version 8 08-00
P-F9S62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F9S62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F9S62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
* Only operating systems that run on the Intel EM64T are supported.

For the Red Hat Enterprise Linux AS 3 (AMD64 & Intel EM64T),* Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), or
Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T) operating system:
P-9W62-1182 HiRDB/Single Server Version 8 08-00
P-9W62-1382 HiRDB/Parallel Server Version 8 08-00
P-9W62-1B82 HiRDB/Run Time Version 8 08-00
P-9W62-1C82 HiRDB/Developer's Kit Version 8 08-00
* Only operating systems that run on the Intel EM64T are supported.

For the Red Hat Enterprise Linux AS 3 (IPF) or Red Hat Enterprise Linux AS 4 (IPF) operating system:
P-9V62-1182 HiRDB/Single Server Version 8 08-00
P-9V62-1382 HiRDB/Parallel Server Version 8 08-00
P-9V62-1B82 HiRDB/Run Time Version 8 08-00
P-9V62-1C82 HiRDB/Developer's Kit Version 8 08-00
P-F9V62-11823 HiRDB Staticizer Option Version 8 08-00
P-F9V62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F9V62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F9V62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
This edition of the manual is released for the preceding program products, which have been developed under a quality management
system that has been certified to comply with ISO9001 and TickIT. This manual may also apply to other program products; for
details, see Software Information or Before Installing.

Trademarks
ActiveX is a trademark of Microsoft Corp. in the U.S. and other countries.
AIX is a registered trademark of the International Business Machines Corp. in the U.S.
CORBA is a registered trademark of Object Management Group, Inc. in the United States.
DataStage, MetaBroker, MetaStage and QualityStage are trademarks of International Business Machines Corporation in the United
States, other countries, or both.

DB2 is a registered trademark of the International Business Machines Corp. in the U.S.
HACMP/6000 is a trademark of the International Business Machines Corp. in the U.S.
HP-UX is a product name of Hewlett-Packard Company.
IBM is a registered trademark of the International Business Machines Corp. in the U.S.
Itanium is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries.
JBuilder is a trademark of Borland Software Corporation in the United States and other countries.
Linux is a registered trademark of Linus Torvalds.
Lotus, 1-2-3 are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.
Microsoft Access is a registered trademark of Microsoft Corporation in the U.S. and other countries.
Microsoft Excel is a product name of Microsoft Corp.
Microsoft is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Motif is a registered trademark of the Open Software Foundation, Inc.
MS-DOS is a registered trademark of Microsoft Corp. in the U.S. and other countries.
ODBC is Microsoft's strategic interface for accessing databases.
OLE is the name of a software product developed by Microsoft Corporation and the acronym for Object Linking and Embedding.
ORACLE is a registered trademark of Oracle Corporation.
Oracle8i is a trademark of ORACLE Corporation.
Oracle9i is a trademark of ORACLE Corporation.
Oracle 10g is a trademark of ORACLE Corporation.
OS/390 is a trademark of the International Business Machines Corp. in the U.S.
POSIX stands for Portable Operating System Interface for Computer Environment, which is a set of standard specifications
published by the Institute of Electrical and Electronics Engineers, Inc.
RISC System/6000 is a registered trademark of the International Business Machines Corp. in the U.S.
Solaris is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
Sun is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
Sun Microsystems is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
The right to use the trademark DCE in Japan is sub-licensed from OSF.
UNIFY2000 is a product name of Unify Corp.
UNIX is a registered trademark of The Open Group in the United States and other countries.
VERITAS is a trademark or registered trademark of Symantec Corporation in the U.S. and other countries.
Visual Basic is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Visual C++ is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Visual Studio is a registered trademark of Microsoft Corp. in the U.S. and other countries.
WebLogic is a registered trademark of BEA Systems, Inc.
Windows is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Windows NT is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Windows Server is a registered trademark of Microsoft Corp. in the U.S. and other countries.
X/Open is a registered trademark of X/Open Company Limited in the U.K. and other countries.
X Window System is a trademark of X Consortium, Inc.
The following program products include material copyrighted by Sun Microsystems, Inc.: P-9D62-1182, P-9D62-1382,
P-9D62-1582, P-9D62-1782, P-9D62-1B82, P-9D62-1C82, P-9D62-1D82, P-9D62-1E82, P-F9D62-11823, P-F9D62-11825,
P-F9D62-11826, and P-F9D62-11827.
The following program products include material copyrighted by UNIX System Laboratories, Inc.: P-9D62-1182, P-9D62-1382,
P-9D62-1582, P-9D62-1782, P-9D62-1B82, P-9D62-1C82, P-9D62-1D82, P-9D62-1E82, P-F9D62-11823, P-F9D62-11825,

P-F9D62-11826, and P-F9D62-11827.
Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used
by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use
of a trademark in this document should not be regarded as affecting the validity of the trademark.

Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The
software described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of
the terms and conditions governing your use of the software and documentation, including all warranty rights, limitations of liability,
and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your country.
No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.
Printed in Japan.

Edition history
Edition 1 (3000-6-352(E)): March 2007

Copyright
All Rights Reserved. Copyright (C) 2007, Hitachi, Ltd.

i

Preface

This manual describes how to construct a HiRDB Version 8 scalable database server,
how to design the system and databases, and how to create the databases.

Intended readers
This manual is intended for users who will construct and/or operate a relational
database system using HiRDB Version 8 (hereafter referred to as HiRDB).
The manual assumes that you have the following:

• A basic knowledge of managing UNIX or Linux systems
• A basic knowledge of SQL

Please read the HiRDB Version 8 Description manual before reading this manual.

Organization of this manual
This manual consists of the following 25 chapters and 2 appendixes:
Chapter 1. Overview of HiRDB System Construction

Describes the HiRDB system construction procedure, organization of the HiRDB
files, and upgrading procedure.

Chapter 2. Installation
Describes the preparations required before installation, the HiRDB installation
procedure, and uninstallation of HiRDB. The chapter also provides notes on
installation of option program products.

Chapter 3. Setting Up an Environment Using the Simple Setup Tool
Describes use of the simple setup tool for environment setup for a HiRDB system.

Chapter 4. Setting Up an Environment Using the System Generator
Describes the procedure for setting up the HiRDB server environment using the
system generator, which provides an interactive HiRDB environment setup
method.

Chapter 5. Setting Up an Environment Using Commands
Describes the procedure for setting up the HiRDB environment using commands.

Chapter 6. Setting Up the Plug-in Environment
Describes the procedures for setting up the plug-in environment, along with the

ii

procedures for upgrading and deleting (uninstalling) it.
Chapter 7. Creating Databases

Describes the procedures from schema, table, and index creation through data
storage.

Chapter 8. Linking to Other Products
Describes how to link HiRDB to other products.

Chapter 9. Designing a HiRDB/Single Server
Describes the system configuration of a HiRDB/Single Server, the procedure for
designing its HiRDB file system areas and system files, and provides notes about
placement of RDAREAs.

Chapter 10. Designing a HiRDB/Parallel Server
Describes the system configuration of a HiRDB/Parallel Server, the procedure for
designing its HiRDB file system areas and system files, and provides notes about
placement of RDAREAs.

Chapter 11. Designing a Multi-HiRDB
Describes the design of a multi-HiRDB.

Chapter 12. Designing Global Buffers and Local Buffers
Describes global-buffer and local-buffer design.

Chapter 13. Designing Tables
Describes table design.

Chapter 14. Designing Indexes
Describes the design of indexes and plug-in indexes.

Chapter 15. Designing RDAREAs
Describes the design of the segments and pages that constitute an RDAREA.

Chapter 16. Storage Requirements for HiRDB
Explains how to determine the storage requirements for a HiRDB/Single Server
and a HiRDB/Parallel Server.

Chapter 17. Determining RDAREA Size
Explains how to determine the size of each type of RDAREA.

Chapter 18. Determining System File Size
Explains how to determine the sizes of system files, such as system log files,
synchronization point dump files, and status files.

iii

Chapter 19. Determining Work Table File Size
Explains how to determine the size of a work-table file.

Chapter 20. Storage Requirements for Utility Execution
Explains how to determine the file sizes and storage requirements for executing
utilities.

Chapter 21. Specifying OS Parameters
Explains how to determine the OS parameters (kernel parameters).

Chapter 22. Simple Installation of a HiRDB/Single Server
Describes the installation of a HiRDB/Single Server and the procedures from
database construction to using SQL to make simple retrievals.

Chapter 23. Simple Installation of a HiRDB/Parallel Server
Describes the installation of a HiRDB/Parallel Server and the procedures from
database construction to using SQL to make simple retrievals.

Chapter 24. Sample Files
Describes the sample files provided with HiRDB (sample database,
configuration, and UOC).

Chapter 25. Communication Between HiRDB Servers and HiRDB Clients
This chapter explains how to connect HiRDB clients with HiRDB servers. It also
describes the settings for a DNS server and a firewall.

Appendix A. HiRDB Maximum and Minimum Values
Lists the maximum and minimum values for HiRDB system configuration.

Appendix B. Questions and Answers
Provides important information concerning the construction, design, and
operation of a HiRDB system in question-and-answer format.

Related publications
This manual is related to the following manuals, which should be read as required.
HiRDB (for UNIX)

• For UNIX Systems HiRDB Version 8 Description (3000-6-351(E))
• For UNIX Systems HiRDB Version 8 System Definition (3000-6-353(E))
• For UNIX Systems HiRDB Version 8 System Operation Guide (3000-6-354(E))
• For UNIX Systems HiRDB Version 8 Command Reference (3000-6-355(E))

iv

• HiRDB Staticizer Option Version 7 Description and User's Guide
(3000-6-282(E))

• For UNIX Systems HiRDB Version 8 Disaster Recovery System Configuration
and Operation Guide (3000-6-364)*

HiRDB (for Windows)
• For Windows Systems HiRDB Version 8 Description (3020-6-351(E))
• For Windows Systems HiRDB Version 8 Installation and Design Guide

(3020-6-352(E))
• For Windows Systems HiRDB Version 8 System Definition (3020-6-353(E))
• For Windows Systems HiRDB Version 8 System Operation Guide

(3020-6-354(E))
• For Windows Systems HiRDB Version 8 Command Reference (3020-6-355(E))

HiRDB (for both Windows and UNIX)
• HiRDB Version 8 UAP Development Guide (3020-6-356(E))
• HiRDB Version 8 SQL Reference (3020-6-357(E))
• HiRDB Version 8 Messages (3020-6-358(E))
• HiRDB Datareplicator Version 8 Description, User's Guide and Operator's

Guide (3020-6-360(E))
• HiRDB Dataextractor Version 8 Description, User's Guide and Operator's Guide

(3020-6-362(E))
* This manual has been published in Japanese only; it is not available in English.
You must use the UNIX or the Windows manuals, as appropriate to the platform you
are using.
Others

• HiRDB External Data Access Version 7 Description and User's Guide
(3000-6-284(E))

• OpenTP1 Version 7 Programming Guide (3000-3-D51(E))
• OpenTP1 Version 7 System Definition (3000-3-D52(E))
• OpenTP1 Version 7 Operation (3000-3-D53(E))
• Job Management Partner 1/Integrated Management - Manager System

Configuration and User's Guide (3020-3-K01(E))
• Job Management Partner 1/Base User's Guide (3020-3-K06(E))

v

• Job Management Partner 1/Automatic Job Management System 2 Description
(3020-3-K21(E))

• Job Management Partner 1/Integrated Manager - Console (3020-3-F01(E))
• Job Management Partner 1/Base (3020-3-F04(E))
• Job Management Partner 1/Automatic Job Management System 2 Description

(3020-3-F06(E))
• JP1 V6 JP1/Automatic Job Management System 2 User's Guide (3020-3-980(E))
• JP1 V6 JP1/Base (3020-3-986(E))
• Job Management Partner 1/System Event Service Version 5 (3000-3-154(E))
• Job Management Partner 1/Automatic Operation Monitor Version 5

(3000-3-155(E))
• Job Management Partner 1/System Event Service ((3000-3-080(E))
• Job Management Partner 1/Automatic Operation Monitor (3000-3-091(E))

Organization of HiRDB manuals
The HiRDB manuals are organized as shown below. For the most efficient use of these
manuals, it is suggested that they be read in the order they are shown, going from left
to right.

vi

Conventions: Abbreviations
Unless otherwise required, this manual uses the following abbreviations for product
and other names.

vii

Name of product or other entity Representation

HiRDB/Single Server Version 8 HiRDB/Single
Server

HiRDB or
HiRDB Server

HiRDB/Single Server Version 8(64)

HiRDB/Parallel Server Version 8 HiRDB/Parallel
Server

HiRDB/Parallel Server Version 8(64)

HiRDB/Developer's Kit Version 8 HiRDB/
Developer's Kit

HiRDB Client

HiRDB/Developer's Kit Version 8(64)

HiRDB/Run Time Version 8 HiRDB/Run Time

HiRDB/Run Time Version 8(64)

HiRDB Datareplicator Version 8 HiRDB Datareplicator

HiRDB Dataextractor Version 8 HiRDB Dataextractor

HiRDB Text Search Plug-in Version 7 HiRDB Text Search Plug-in

HiRDB Spatial Search Plug-in Version 3 HiRDB Spatial Search Plug-in

HiRDB Staticizer Option Version 8 HiRDB Staticizer Option

HiRDB LDAP Option Version 8 HiRDB LDAP Option

HiRDB Advanced Partitioning Option Version 8 HiRDB Advanced Partitioning Option

HiRDB Advanced High Availability Version 8 HiRDB Advanced High Availability

HiRDB Non Recover Front End Server Version 8 HiRDB Non Recover FES

HiRDB Disaster Recovery Light Edition Version 8 HiRDB Disaster Recovery Light
Edition

HiRDB External Data Access Version 8 HiRDB External Data Access

HiRDB External Data Access Adapter Version 8 HiRDB External Data Access Adapter

HiRDB Adapter for XML - Standard Edition HiRDB Adapter for XML

HiRDB Adapter for XML - Enterprise Edition

HiRDB Control Manager HiRDB CM

HiRDB Control Manager Agent HiRDB CM Agent

viii

Hitachi TrueCopy TrueCopy

Hitachi TrueCopy basic

TrueCopy

TrueCopy remote replicator

JP1/Automatic Job Management System 2 JP1/AJS2

JP1/Automatic Job Management System 2 - Scenario Operation JP1/AJS2-SO

JP1/Cm2/Extensible SNMP Agent JP1/ESA

JP1/Cm2/Extensible SNMP Agent for Mib Runtime

JP1/Cm2/Network Node Manager JP1/NNM

JP1/Integrated Management - Manager JP1/Integrated Management or JP1/IM

JP1/Integrated Management - View

JP1/Magnetic Tape Access EasyMT

EasyMT

JP1/Magnetic Tape Library MTguide

JP1/NETM/DM JP1/NETM/DM

JP1/NETM/DM Manager

JP1/Performance Management JP1/PFM

JP1/Performance Management Agent for HiRDB JP1/PFM-Agent for HiRDB

JP1/Performance Management - Agent for Platform JP1/PFM-Agent for Platform

JP1/Performance Management/SNMP System Observer JP1/SSO

JP1/VERITAS NetBackup BS v4.5 NetBackup

JP1/VERITAS NetBackup v4.5

JP1/VERITAS NetBackup BS V4.5 Agent for HiRDB License JP1/VERITAS NetBackup Agent for
HiRDB License

JP1/VERITAS NetBackup V4.5 Agent for HiRDB License

JP1/VERITAS NetBackup 5 Agent for HiRDB License

OpenTP1/Server Base Enterprise Option TP1/EE

Virtual-storage Operating System 3/Forefront System Product VOS3/FS VOS3

Name of product or other entity Representation

ix

Virtual-storage Operating System 3/Leading System Product VOS3/LS

Extensible Data Manager/Base Extended Version 2
XDM basic program XDM/BASE E2

XDM/BASE E2

XDM/Data Communication and Control Manager 3
XDM Data communication control XDM/DCCM3

XDM/DCCM3

XDM/Relational Database XDM/RD XDM/RD XDM/RD

XDM/Relational Database Extended Version 2
XDM/RD E2

XDM/RD E2

VOS3 Database Connection Server DB Connection Server

DB2 Universal Database for OS/390 Version 6 DB2

DNCWARE ClusterPerfect (Linux Version) ClusterPerfect

Microsoft(R) Excel Microsoft Excel or Excel

Microsoft(R) Visual C++(R) Visual C++ or C++

Oracle 8i ORACLE

Oracle 9i

Oracle 10g

Sun JavaTM System Directory Server Sun Java System Directory Server or
Directory Server

HP-UX 11i V2 (IPF) HP-UX or HP-UX (IPF)

Red Hat Linux Linux

Red Hat Enterprise Linux

Red Hat Enterprise Linux AS 3 (IPF) Linux (IPF) Linux

Red Hat Enterprise Linux AS 4 (IPF)

Red Hat Enterprise Linux AS 3 (AMD64 & Intel EM64T) Linux (EM64T)

Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T)

Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T)

turbolinux 7 Server for AP8000 Linux for AP8000

Name of product or other entity Representation

x

Microsoft(R) Windows NT(R) Workstation Operating System Version
4.0

Windows NT

Microsoft(R) Windows NT(R) Server Network Operating System
Version 4.0

Microsoft(R) Windows(R) 2000 Professional Operating System Windows 2000

Microsoft(R) Windows(R) 2000 Server Operating System

Microsoft(R) Windows(R) 2000 Datacenter Server Operating System

Microsoft(R) Windows(R) 2000 Advanced Server Operating System Windows 2000 or Windows 2000
Advanced Server

Microsoft(R) Windows ServerTM 2003, Standard Edition Windows Server 2003

Microsoft(R) Windows ServerTM 2003, Enterprise Edition

Microsoft(R) Windows ServerTM 2003 R2, Standard Edition Windows Server 2003 R2 or Windows
Server 2003

Microsoft(R) Windows ServerTM 2003 R2, Enterprise Edition

64 bit Version Microsoft(R) Windows ServerTM 2003, Enterprise
Edition (IPF)

Windows Server 2003 (IPF) or
Windows Server 2003

Microsoft(R) Windows ServerTM 2003, Standard x64 Edition Windows Server
2003 or Windows
Server 2003 x64
Editions

Windows (x64)

Microsoft(R) Windows ServerTM 2003, Enterprise x64 Edition

Microsoft(R) Windows ServerTM 2003 R2, Standard x64 Edition Windows Server
2003, Windows
Server 2003 R2 or
Windows Server
2003 x64 Editions

Microsoft(R) Windows ServerTM 2003 R2, Enterprise x64 Edition

Microsoft(R) Windows(R) XP Professional x64 Edition Windows XP or
Windows XP x64
Edition

Microsoft(R) Windows(R) XP Professional Operating System Windows XP
Professional

Windows XP

Name of product or other entity Representation

xi

• Windows 2000, Windows XP, and Windows Server 2003 may be referred to
collectively as Windows.

• The HiRDB directory path is represented as $PDDIR.
• The hosts file means the hosts file stipulated by TCP/IP (including the /etc/

hosts file).
This manual also uses the following abbreviations:

Microsoft(R) Windows(R) XP Home Edition Operating System Windows XP Home
Edition

Single server SDS

System manager MGR

Front-end server FES

Dictionary server DS

Back-end server BES

Abbreviation Full name or meaning

ACK Acknowledgement

ADM Adaptable Data Manager

ADO ActiveX Data Objects

ADT Abstract Data Type

AP Application Program

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

BES Back End Server

BLOB Binary Large Object

BOM Byte Order Mark

CD-ROM Compact Disc - Read Only Memory

CGI Common Gateway Interface

CLOB Character Large Object

CMT Cassette Magnetic Tape

Name of product or other entity Representation

xii

COBOL Common Business Oriented Language

CORBA(R) Common ORB Architecture

CPU Central Processing Unit

CSV Comma Separated Values

DAO Data Access Object

DAT Digital Audio Taperecorder

DB Database

DBM Database Module

DBMS Database Management System

DDL Data Definition Language

DF for Windows NT Distributing Facility for Windows NT

DF/UX Distributing Facility/for UNIX

DIC Dictionary Server

DLT Digital Linear Tape

DML Data Manipulate Language

DNS Domain Name System

DOM Document Object Model

DS Dictionary Server

DTD Document Type Definition

DTP Distributed Transaction Processing

DWH Data Warehouse

EUC Extended UNIX Code

EX Exclusive

FAT File Allocation Table

FD Floppy Disk

FES Front End Server

FQDN Fully Qualified Domain Name

Abbreviation Full name or meaning

xiii

FTP File Transfer Protocol

GUI Graphical User Interface

HBA Host Bus Adapter

HD Hard Disk

HTML Hyper Text Markup Language

ID Identification number

IP Internet Protocol

IPF Itanium(R) Processor Family

JAR Java Archive File

Java VM Java Virtual Machine

JDBC Java Database Connectivity

JDK Java Developer's Kit

JFS Journaled File System

JFS2 Enhanced Journaled File System

JIS Japanese Industrial Standard code

JP1 Job Management Partner 1

JRE Java Runtime Environment

JTA Java Transaction API

JTS Java Transaction Service

KEIS Kanji processing Extended Information System

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LIP loop initialization process

LOB Large Object

LRU Least Recently Used

LTO Linear Tape-Open

LU Logical Unit

Abbreviation Full name or meaning

xiv

LUN Logical Unit Number

LVM Logical Volume Manager

MGR System Manager

MIB Management Information Base

MRCF Multiple RAID Coupling Feature

MSCS Microsoft Cluster Server

NAFO Network Adapter Fail Over

NAPT Network Address Port Translation

NAT Network Address Translation

NIC Network Interface Card

NIS Network Information Service

NTFS New Technology File System

ODBC Open Database Connectivity

OLAP Online Analytical Processing

OLE Object Linking and Embedding

OLTP On-Line Transaction Processing

OOCOBOL Object Oriented COBOL

ORB Object Request Broker

OS Operating System

OSI Open Systems Interconnection

OTS Object Transaction Service

PC Personal Computer

PDM II E2 Practical Data Manager II Extended Version 2

PIC Plug-in Code

PNM Public Network Management

POSIX Portable Operating System Interface for UNIX

PP Program Product

Abbreviation Full name or meaning

xv

PR Protected Retrieve

PU Protected Update

RAID Redundant Arrays of Inexpensive Disk

RD Relational Database

RDB Relational Database

RDB1 Relational Database Manager 1

RDB1 E2 Relational Database Manager 1 Extended Version 2

RDO Remote Data Objects

RiSe Real time SAN replication

RM Resource Manager

RMM Resource Manager Monitor

RPC Remote Procedure Call

SAX Simple API for XML

SDS Single Database Server

SGML Standard Generalized Markup Language

SJIS Shift JIS

SNMP Simple Network Management Protocol

SQL Structured Query Language

SQL/K Structured Query Language / VOS K

SR Shared Retrieve

SU Shared Update

TCP/IP Transmission Control Protocol / Internet Protocol

TM Transaction Manager

TMS-4V/SP Transaction Management System - 4V / System Product

UAP User Application Program

UOC User Own Coding

VOS K Virtual-storage Operating System Kindness

Abbreviation Full name or meaning

xvi

Log representations
The OS log is referred to generically as syslogfile. syslogfile is the log output
destination specified in /etc/syslog.conf. Typically, the following files are
specified as syslogfile.

VOS1 Virtual-storage Operating System 1

VOS3 Virtual-storage Operating System 3

WS Workstation

WWW World Wide Web

XDM/BASE E2 Extensible Data Manager / Base Extended Version 2

XDM/DF Extensible Data Manager / Distributing Facility

XDM/DS Extensible Data Manager / Data Spreader

XDM/RD E2 Extensible Data Manager / Relational Database Extended Version 2

XDM/SD E2 Extensible Data Manager / Structured Database Extended Version 2

XDM/XT Extensible Data Manager / Data Extract

XFIT Extended File Transmission program

XML Extensible Markup Language

OS File

HP-UX /var/adm/syslog/syslog.log

Solaris /var/adm/messages or /var/log/syslog

AIX 5L /var/adm/ras/syslog

Linux /var/log/messages

Abbreviation Full name or meaning

xvii

Conventions: Diagrams
This manual uses the following conventions in diagrams:

1 In some figures, a program is simply enclosed in a rectangle (without shading).
2 Input-data files, unload files, and backup files can be stored on magnetic tape,
magnetic cassette tape (CMT), and digital audio tape (DAT), as well as on magnetic
disk; only magnetic disk storage is described in this manual.

Conventions: Fonts and symbols
Font and symbol conventions are classified as:

• General font conventions
• Conventions in syntax explanations

These conventions are described below.
General font conventions

The following table lists the general font conventions:

xviii

Examples of coding and messages appear as follows (although there may be some
exceptions, such as when coding is included in a diagram):
MakeDatabase
...
StoreDatabase temp DB32

In examples of coding, an ellipsis (...) indicates that one or more lines of coding are not
shown for purposes of brevity.
Conventions in syntax explanations

Syntax definitions appear as follows:
StoreDatabase [temp|perm] (database-name ...)
The following table lists the conventions used in syntax explanations:

Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes menus,
menu options, buttons, radio box options, or explanatory labels. For example, bold is used in
sentences such as the following:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Italics Italics are used to indicate a placeholder for some actual text provided by the user or system.
Italics are also used for emphasis. For example:
• Write the command as follows:

copy source-file target-file
• Do not delete the configuration file.

Code font A code font indicates text that the user enters without change, or text (such as messages) output
by the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:

The password is incorrect.

Example font or symbol Convention

StoreDatabase Code-font characters must be entered exactly as shown.

database-name This font style marks a placeholder that indicates where appropriate characters are
to be entered in an actual command.

SD Bold code-font characters indicate the abbreviation for a command.

perm Underlined characters indicate the default value.

[] Square brackets enclose an item or set of items whose specification is optional.

xix

Notations used in formulas

The following notations are used in formulas:

Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of
two digits each, separated by a hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00.

| Only one of the options separated by a vertical bar can be specified at the same
time.

... An ellipsis (...) indicates that the item or items enclosed in () or [] immediately
preceding the ellipsis may be specified as many times as necessary.

() Parentheses indicate the range of items to which the vertical bar (|) or ellipsis (...)
is applicable.

Notation Explanation

 Round up the result to the next integer.
Example: The result of 34 3 is 12.

 Discard digits following the decimal point.

Example: The result of 34 3 is 11.

MAX Select the largest value as the result.
Example: The result of MAX (3 6, 4 + 7) is 18.

MIN Select the smallest value as the result.
Example: The result of MIN (3 6, 4 + 7) is 11.

mod mod (a, b) indicates the remainder of a divided by b.
Example: The result of mod (9, 2) is 1.

Example font or symbol Convention

xx

• Version 2.05 is written as 02-05.
• Version 2.50 (or 2.5) is written as 02-50.
• Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same
version number would be written in the program as 02-00.

Important notes on this manual
The following facilities are explained, but they are not supported:

• Distributed database facility
• Server mode system switchover facility
• User server hot standby
• Rapid system switchover facility
• Standby-less system switchover (1:1) facility
• Standby-less system switchover (effects distributed) facility
• HiRDB External Data Access facility
• Inner replica facility (when described for the Windows version of HiRDB)
• Updatable online reorganization (when described for the Windows version of

HiRDB)
• Sun Java System Directory Server linkage facility
• Simple setup tool

The following products and option program products are explained, but they are not
supported:

• HiRDB Control Manager
• HiRDB Disaster Recovery Light Edition
• HiRDB External Data Access
• HiRDB LDAP Option

xxi

Contents

Preface i
Intended readers ...i
Organization of this manual ...i
Related publications .. iii
Organization of HiRDB manuals ..v
Conventions: Abbreviations ...vi
Log representations ..xvi
Conventions: Diagrams ...xvii
Conventions: Fonts and symbols...xvii
Conventions: KB, MB, GB, and TB ..xix
Conventions: Version numbers...xix
Important notes on this manual ...xx

1. Overview of HiRDB System Construction 1
1.1 System construction procedures ...2

1.1.1 System construction procedure for installing a new HiRDB2
1.1.2 Setting up a HiRDB environment ...2
1.1.3 Environment setup for linking to other products ..4

1.2 Organization of HiRDB directories and files ...6
1.3 Upgrading HiRDB..12

1.3.1 Before upgrading...12
1.3.2 Replacing an existing version with the new version17
1.3.3 Installing a new version while retaining the old version...............................19
1.3.4 Upgrading the HiRDB plug-ins...19
1.3.5 Using Java stored procedures and functions ...20
1.3.6 In the event of an upgrading error ...20
1.3.7 Restoring HiRDB to the previous version when version upgrade fails21

1.4 Updating to HiRDB update version ...24
1.4.1 Updating HiRDB...24
1.4.2 Prerequisites ..25
1.4.3 Update procedure ..26
1.4.4 Update procedure when the system switchover facility is used....................26
1.4.5 Cautions...28
1.4.6 Operation considerations...29
1.4.7 Related product limitations and considerations ..31
1.4.8 Operation when an error occurs during installation31

1.5 Using JP1/Software Distribution to execute online distribution of HiRDB.............34
1.5.1 Online distribution procedure..34

xxii

1.5.2 Preparations on JP1/Software Distribution Workstation 35
1.5.3 Notes about online distribution... 39

1.6 Migrating to HiRDB in 64-bit mode (HP-UX, Solaris, and AIX 5L versions only)40
1.6.1 Required products... 40
1.6.2 64-bit mode migration method ... 40
1.6.3 In the event of an SQL object migration error.. 43
1.6.4 In the event of a 64-bit-mode migration error (restoring the old version) ... 44

2. Installation 45
2.1 Pre-installation procedure .. 46

2.1.1 Checking and modifying OS parameters.. 46
2.1.2 Registering the HiRDB administrator .. 46
2.1.3 Setting up a HiRDB group.. 47
2.1.4 Creating the installation directory .. 47

2.2 HiRDB installation procedure ... 49
2.2.1 Installing HiRDB.. 49
2.2.2 Installing option program product .. 49
2.2.3 Installing plug-ins ... 51

2.3 Post-installation procedures ... 52
2.3.1 Creating the HiRDB directory.. 52
2.3.2 Registering HiRDB and option program products in the operating system . 55
2.3.3 Setting environment variables .. 58
2.3.4 Setting a remote shell execution environment.. 59
2.3.5 Notes about background execution of HiRDB operation commands........... 60
2.3.6 Preparing to create the HiRDB file system area... 61

2.4 Uninstallation of HiRDB ... 63

3. Setting Up an Environment Using the Simple Setup Tool 65
3.1 Overview of the simple setup tool ... 66

4. Setting Up an Environment Using the System Generator 67
4.1 HiRDB/Single Server .. 68

4.1.1 Introduction to the system generator .. 68
4.1.2 System generator operation .. 78
4.1.3 Optimizing the HiRDB operation environment.. 100
4.1.4 Output of initialization commands to log ... 100

4.2 HiRDB/Parallel Server .. 102
4.2.1 HiRDB system construction procedure when system generator is used 102
4.2.2 System configuration created by the system generator114
4.2.3 System generator operation ...115
4.2.4 Optimizing the HiRDB operation environment.. 142
4.2.5 Output of initialization commands to log ... 143

4.3 RDAREA generation by the system generator .. 145

xxiii

5. Setting Up an Environment Using Commands 151
5.1 Overview of environment setup using commands ...152
5.2 Creating the HiRDB system definitions ...154

5.2.1 Creating HiRDB system definitions (HiRDB/Single Server)154
5.2.2 Creating HiRDB system definitions (HiRDB/Parallel Server)156
5.2.3 Sharing HiRDB system definition files (HiRDB/Parallel Server)163
5.2.4 Modifying HiRDB system definitions (excluding UAP environment

definitions) ..165
5.2.5 Modifying a UAP environment definition ..167

5.3 Creating HiRDB file system areas ...169
5.3.1 Types of HiRDB file system areas ..169
5.3.2 Using character special files..169
5.3.3 Creating a large file ...171
5.3.4 Duplexing a HiRDB file system area using a mirror disk...........................172
5.3.5 Example 1 (creating a HiRDB file system area for RDAREAs)172
5.3.6 Example 2 (creating a HiRDB file system area for system files)173
5.3.7 Example 3 (creating a HiRDB file system area for work table files)173
5.3.8 Example 4 (creating a HiRDB file system area for utilities)174
5.3.9 Example 5 (creating a HiRDB file system area for list RDAREAs)175

5.4 Creating system files ..177
5.4.1 Creating system log files ...177
5.4.2 Creating synchronization point dump files ...178
5.4.3 Creating status files ...179
5.4.4 Example of system file creation (HiRDB/Single Server)179
5.4.5 Example of system file creation (HiRDB/Parallel Server)183

5.5 Creating system RDAREAs ...193
5.5.1 Basics ..193
5.5.2 Example 1 (HiRDB/Single Server) ...194
5.5.3 Example 2 (HiRDB/Parallel Server) ...195

5.6 Starting HiRDB for the first time ...197
5.7 Creating user RDAREAs..198

5.7.1 Basics ..198
5.7.2 Example 1 (HiRDB/Single Server) ...198
5.7.3 Example 2 (HiRDB/Parallel Server) ...199

5.8 Creating user LOB RDAREAs...202
5.8.1 Basics ..202
5.8.2 Example 1 (HiRDB/Single Server) ...202
5.8.3 Example 2 (HiRDB/Parallel Server) ...204

5.9 Creating data dictionary LOB RDAREAs ...206
5.9.1 Basics ..206
5.9.2 Example 1 (HiRDB/Single Server) ...206
5.9.3 Example 2 (HiRDB/Parallel Server) ...208

5.10 Creating list RDAREAs ...210
5.10.1 Basics ..210

xxiv

5.10.2 Example 1 (HiRDB/Single Server) .. 210
5.10.3 Example 2 (HiRDB/Parallel Server) ...211

6. Setting Up the Plug-in Environment 213
6.1 Overview of plug-in environment setup .. 214

6.1.1 Environment setup procedure... 214
6.1.2 Notes on using plug-ins .. 221

6.2 Upgrading plug-ins .. 223
6.2.1 Notes about upgrading.. 223
6.2.2 Upgrading procedure .. 223

6.3 Deleting plug-ins.. 226

7. Creating Databases 229
7.1 Overview of database creation... 230

7.1.1 Preparing for database creation .. 230
7.1.2 Database creation procedure... 231
7.1.3 Database update log acquisition mode ... 232
7.1.4 Notes on data storage for a table for which an index with the unique attribute

has been defined ... 236
7.1.5 Loading a large amount of data (data loading with the synchronization point

specification) .. 236
7.1.6 Loading data into a row-partitioned table (Creating divided-input data

files).. 237
7.1.7 Input data file UOC .. 237
7.1.8 Deleting unneeded RDAREAs ... 237

7.2 Creating a row partitioned table... 238
7.3 Creating a table with a LOB column ... 242
7.4 Creating a table containing a plug-in-provided abstract data type 246
7.5 Creating a table containing a user-defined abstract data type................................ 251

7.5.1 Defining an abstract data type .. 251
7.5.2 Defining a table .. 255
7.5.3 Defining an index ... 257
7.5.4 Storing data in a table ... 257
7.5.5 Database update log acquisition methods... 258
7.5.6 Checking the data storage status... 260

7.6 Handling errors during batch index creation ... 261
7.6.1 When data was loaded in log acquisition mode or pre-update log acquisition

mode ... 261
7.6.2 When data was loaded in no-log mode... 264

7.7 Handling utility abnormal termination errors during data loading with the
synchronization point specification .. 267
7.7.1 Overview of error handling procedure ... 267
7.7.2 Example .. 268

xxv

8. Linking to Other Products 271
8.1 Linking to the replication facility ...272

8.1.1 Linking to HiRDB Datareplicator ...272
8.1.2 Linking to HiRDB Dataextractor ..273

8.2 Linking with an OLTP system..274
8.2.1 OLTP products supported for linking..274
8.2.2 HiRDB XA library ..275
8.2.3 Example of HiRDB system configuration with OLTP linkage277
8.2.4 Transaction transfer ...281
8.2.5 Registering HiRDB in the transaction manager ..284
8.2.6 Information to be registered in the transaction manager.............................286
8.2.7 Example of registering in the transaction manager292
8.2.8 Modifying the registration information in the transaction manager295
8.2.9 Methods for re-establishing connection between the transaction manager and

HiRDB ..297
8.2.10 Monitoring HiRDB using the TP1/Resource Manager Monitor facility...298
8.2.11 Notes..299

8.3 Linking to the inner replica facility ..301
8.4 Linking to the HiRDB External Data Access facility...302
8.5 Linking to JP1...304

8.5.1 Reporting events to JP1/Base..304
8.5.2 Managing events by JP1/IM..307
8.5.3 Automatic job execution using JP1/AJS2 linkage308

9. Designing a HiRDB/Single Server 311
9.1 System design for a HiRDB/Single Server ..312

9.1.1 System design..312
9.1.2 System configuration...312

9.2 Designing HiRDB file system areas...314
9.2.1 Designing HiRDB file system areas for RDAREAs...................................314
9.2.2 Designing HiRDB file system areas for system files316
9.2.3 Designing HiRDB file system areas for work table files317
9.2.4 Designing HiRDB file system areas for utilities ...317
9.2.5 Designing HiRDB file system areas for list RDAREAs319
9.2.6 Maximum sizes of HiRDB file system areas ..319

9.3 Designing system files..321
9.3.1 Designing system log files ..321
9.3.2 Designing synchronization point dump files...327
9.3.3 Designing status files ..330

9.4 Placing RDAREAs ...336
9.4.1 Placing system RDAREAs..336
9.4.2 Placing data dictionary LOB RDAREAs ..337
9.4.3 Placing user RDAREAs ..338
9.4.4 Placing user LOB RDAREAs ...338

xxvi

9.4.5 Placing list RDAREAs ... 339

10. Designing a HiRDB/Parallel Server 341
10.1 System design for a HiRDB/Parallel Server.. 342

10.1.1 System design ... 342
10.1.2 System configuration of HiRDB/Parallel Server...................................... 343
10.1.3 Setting up multiple front-end servers ... 344
10.1.4 Recovery-unnecessary front-end server ... 348

10.2 Designing HiRDB file system areas .. 353
10.2.1 Designing HiRDB file system areas for RDAREAs 353
10.2.2 Designing HiRDB file system areas for system files 355
10.2.3 Designing HiRDB file system areas for work table files 356
10.2.4 Designing HiRDB file system areas for utilities 357
10.2.5 Designing HiRDB file system areas for list RDAREAs 358
10.2.6 Maximum sizes of HiRDB file system areas.. 359

10.3 Designing system files ... 360
10.3.1 Designing system log files.. 360
10.3.2 Designing synchronization point dump files .. 366
10.3.3 Designing status files.. 369

10.4 Placing RDAREAs .. 375
10.4.1 Placing system RDAREAs ... 375
10.4.2 Placing data dictionary LOB RDAREAs ... 376
10.4.3 Placing user RDAREAs.. 377
10.4.4 Placing user LOB RDAREAs... 378
10.4.5 Placing list RDAREAs ... 379

10.5 Heterogeneous system configuration for HiRDB/Parallel Server 380

11. Designing a Multi-HiRDB 381
11.1 System design for a multi-HiRDB... 382

11.1.1 Installing a multi-HiRDB ... 382
11.1.2 Setting the environment for a multi-HiRDB .. 382

11.2 Notes about upgrading ... 386

12. Designing Global Buffers and Local Buffers 387
12.1 Allocating global buffers ... 388

12.1.1 Allocating index global buffers .. 388
12.1.2 Allocating data global buffers .. 389
12.1.3 Allocating LOB global buffers ... 392
12.1.4 Global buffer allocation procedures ... 392

12.2 Setting the number of global buffer sectors ... 395
12.3 Specifying the prefetch facility.. 397
12.4 Specifying the asynchronous READ facility ... 399
12.5 Specifying deferred write processing .. 400
12.6 Specifying the facility for parallel writes in deferred write processing............... 402

xxvii

12.7 Setting the commit-time reflection processing...403
12.8 Global buffer LRU management ..404

12.8.1 LRU management methods...404
12.8.2 LRU management suppression settings for a UAP...................................405

12.9 Page access using the snapshot method..407
12.10 Global buffer pre-writing..409
12.11 Local buffers ...411

12.11.1 Allocating index local buffers ...411
12.11.2 Allocating data local buffers ...412
12.11.3 Allocating local buffers ...412
12.11.4 Considerations about local buffers ..413

13. Designing Tables 415
13.1 Items to be examined during table design ..416
13.2 Normalizing a table ..422
13.3 Table row partitioning ..428

13.3.1 Table row partitioning ...428
13.3.2 Types of table row partitioning ...428
13.3.3 Forms of table row partitioning...439
13.3.4 Effects of table row partitioning..440
13.3.5 Design considerations ...441
13.3.6 Notes on table row partitioning...448

13.4 Table matrix partitioning ..450
13.5 Defining a trigger ...457

13.5.1 Application standards..458
13.5.2 Defining a trigger ..458
13.5.3 Trigger considerations ...463
13.5.4 Trigger management..464
13.5.5 Error recovery ...468

13.6 Creating a view table ..470
13.7 Specifying the FIX attribute ...473
13.8 Specifying a primary key..474
13.9 Specifying a cluster key..475
13.10 Specifying the suppress option ...477
13.11 Specifying the no-split option...478
13.12 Specifying a binary data column ..480

13.12.1 BLOB type ..481
13.12.2 BINARY type..482
13.12.3 BLOB type and BINARY type usage ...482

13.13 Specifying the WITHOUT ROLLBACK option ...485
13.14 Specifying the falsification prevention facility ..488

13.14.1 Specification..488
13.14.2 Restrictions..490

xxviii

13.14.3 Changing a falsification-unprevented table to a falsification prevented
table .. 493

13.14.4 Error operation.. 495
13.15 Table containing a repetition column... 496
13.16 Table containing an abstract data type ... 499
13.17 Shared tables .. 505

13.17.1 Effects and criteria.. 507
13.17.2 Definition method... 507
13.17.3 Manipulating shared tables ... 507
13.17.4 Limitations on shared tables ... 510
13.17.5 Notes about execution of definition SQL statements, utilities, and operation

commands... 510
13.17.6 Notes about using Real Time SAN Replication 510
13.17.7 Using shared tables with a HiRDB/Single Server511

13.18 Referential constraints ... 513
13.18.1 About referential constraints .. 513
13.18.2 Defining referential constraints .. 514
13.18.3 Check pending status .. 526
13.18.4 Data manipulation and integrity ... 535
13.18.5 Procedure for checking table integrity.. 541
13.18.6 Referential constraints and triggers .. 549
13.18.7 Notes about linkage with related products ... 552

13.19 Check constraints ... 554
13.19.1 About check constraints.. 554
13.19.2 Defining check constraints ... 554
13.19.3 Check pending status .. 556
13.19.4 Data manipulation and integrity ... 558
13.19.5 Procedure for checking table integrity.. 558
13.19.6 Notes about linkage with related products ... 563
13.19.7 Migrating check constraint tables to 64-bit mode (HP-UX, Solaris, and AIX

5L versions only).. 564

14. Designing Indexes 569
14.1 Items to be examined during index design .. 570
14.2 Index .. 571

14.2.1 Creating an index.. 571
14.2.2 Index creation taking into account optimizing based on cost................... 573
14.2.3 Single-column index vs. multicolumn index.. 577
14.2.4 Using multiple indexes ... 579
14.2.5 Using an index with an exceptional key value set.................................... 579
14.2.6 Effects on performance of the number of indexes.................................... 580

14.3 Index row partitioning ... 581
14.4 Plug-in index.. 587
14.5 Plug-in index row partitioning... 588

xxix

15. Designing RDAREAs 595
15.1 Items to be examined during RDAREA design ...596
15.2 Segments...600

15.2.1 Determining the segment size ...600
15.2.2 Setting the percentage of free pages in a segment602
15.2.3 Allocating and releasing segments ..603

15.3 Pages...604
15.3.1 Determining the page length ...604
15.3.2 Setting the percentage of unused space in a page606
15.3.3 Allocating and releasing pages..607

15.4 Designing list RDAREAs...609
15.5 Free space reusage facility..612

15.5.1 Data storage search modes ..612
15.5.2 Free space reusage facility ..612
15.5.3 Effects and applicability..614
15.5.4 Considerations ...616
15.5.5 Environment settings...617
15.5.6 Checking execution status ...618
15.5.7 Notes..619

15.6 Shared RDAREAs (HiRDB/Parallel Server only) ...620

16. Storage Requirements for HiRDB 625
16.1 Estimating the memory size required for a HiRDB/Single Server.......................626

16.1.1 Memory allocation ..626
16.1.2 Calculation of required memory ...629
16.1.3 Formulas for shared memory used by a unit controller638
16.1.4 Formulas for shared memory used by a single server649
16.1.5 Formula for size of shared memory used by global buffers......................655
16.1.6 Formulas for size of memory required during SQL execution657
16.1.7 Formula for size of memory required during SQL preprocessing665
16.1.8 Formula for size of memory required during BLOB data retrieval or updating

(HiRDB/Single Server) ...666
16.1.9 Formula for size of memory required during block transfer or array

FETCH..667
16.2 Estimating the memory size required for a HiRDB/Parallel Server.....................670

16.2.1 Memory allocation ..670
16.2.2 Calculation of required memory ...674
16.2.3 Formulas for shared memory used by a unit controller685
16.2.4 Formulas for shared memory used by each server717
16.2.5 Formula for size of shared memory used by global buffers......................729
16.2.6 Formulas for size of memory required during SQL execution733
16.2.7 Formula for size of memory required during SQL preprocessing741
16.2.8 Formula for size of memory required during BLOB data retrieval or updating

(front-end server) ..743

xxx

16.2.9 Formula for size of memory required during BLOB data retrieval or updating
(back-end server or dictionary server) ... 744

16.2.10 Formula for size of memory required during block transfer or array FETCH
(front-end server).. 744

17. Determining RDAREA Size 747
17.1 Determining the size of a user RDAREA.. 748

17.1.1 Calculating the size of a user RDAREA .. 748
17.1.2 Calculating the number of table storage pages ... 749
17.1.3 Calculating the number of index storage pages.. 763

17.2 Determining the size of a data dictionary RDAREA... 776
17.2.1 Determining the size of a normal data dictionary RDAREA 776
17.2.2 Determining the size of a data dictionary RDAREA for storing database state

analyzed tables and database management tables 809
17.3 Determining the size of the master directory RDAREA 812
17.4 Determining the size of the data directory RDAREA ... 813
17.5 Determining the size of a data dictionary LOB RDAREA.................................. 814
17.6 Determining the size of a user LOB RDAREA... 823
17.7 Determining the size of the registry RDAREA ... 824
17.8 Determining the size of the registry LOB RDAREA .. 826
17.9 Determining the size of the list RDAREA... 827

18. Determining System File Size 829
18.1 Determining the size of system log files.. 830

18.1.1 Total size of system log files .. 830
18.1.2 Amount of system log information output during table definition........... 833
18.1.3 Amount of system log information output during index definition.......... 834
18.1.4 Amount of system log information output during table data updating..... 836
18.1.5 Amount of system log information output during database creation by a

utility .. 852
18.1.6 Amount of system log information that is output depending on the SQL

manipulation... 855
18.1.7 Amount of system log information that is output during the execution of the

RDAREA automatic extension facility .. 855
18.1.8 Amount of system log information output when the PURGE TABLE

statement is executed.. 856
18.1.9 Amount of system log information output when the free page release utility

(pdreclaim) is executed .. 856
18.1.10 Amount of system log information that is output during execution of the

facility for predicting reorganization time.. 857
18.2 Determining the size of synchronization point dump files 859
18.3 Determining the size of status files.. 861

xxxi

19. Determining Work Table File Size 869
19.1 Overview of determining the size of a work table file ...870
19.2 Determining the size of a HiRDB file system area (pdfmkfs -n command)871

19.2.1 Size of a work table file used by an SQL statement..................................872
19.2.2 Size of a work table file used by a utility ..878

19.3 Determining the maximum number of files (pdfmkfs -l command)881
19.4 Determining the maximum number of extensions (pdfmkfs -e command)..........883

20. Storage Requirements for Utility Execution 885
20.1 Determining the file sizes required for utility execution......................................886

20.1.1 File sizes required for the execution of the database load utility (pdload)886
20.1.2 File sizes required for the execution of the database reorganization utility

(pdrorg) ...888
20.1.3 File sizes required for the execution of the statistics analysis utility

(pdstedit) ...895
20.1.4 File sizes required for the execution of the database condition analysis utility

(pddbst) ...897
20.1.5 File sizes required for the execution of the database copy utility

(pdcopy) ..898
20.1.6 File sizes required for the execution of the dictionary import/export utility

(pdexp) ..902
20.1.7 File sizes required for the execution of the optimizing information collection

utility (pdgetcst) ..903
20.1.8 File sizes required for the execution of the access path display utility

(pdvwopt) ..903
20.1.9 File sizes required for execution of the rebalancing utility (pdrbal)904
20.1.10 File sizes required for execution of the integrity check utility

(pdconstck)..906
20.2 Determining the memory size required for utility execution907

20.2.1 Memory size required for the execution of the database initialization utility
(pdinit)...907

20.2.2 Memory size required for the execution of the database definition utility
(pddef)...908

20.2.3 Memory size required for the execution of the database load utility
(pdload) ...908

20.2.4 Memory size required for the execution of the database reorganization utility
(pdrorg) ...913

20.2.5 Memory size required for the execution of the database structure
modification utility (pdmod)...915

20.2.6 Memory size required for the execution of the statistics analysis utility
(pdstedit) ...918

20.2.7 Memory size required for the execution of the database condition analysis
utility (pddbst)...918

xxxii

20.2.8 Memory size required for the execution of optimizing the information
collection utility (pdgetcst)... 919

20.2.9 Memory size required for the execution of the database copy utility
(pdcopy) ... 921

20.2.10 Memory size required for the execution of the database recovery utility
(pdrstr) .. 922

20.2.11 Memory size required for the execution of the dictionary import/export
utility (pdexp)... 925

20.2.12 Memory size required for the execution of the access path display utility
(pdvwopt) ... 927

20.2.13 Memory size required for the execution of the rebalancing utility
(pdrbal) ... 927

20.2.14 Memory size required for execution of the free page release utility
(pdreclaim) and global buffer residence utility (pdpgbfon) 931

20.2.15 Memory size required for execution of the integrity check utility
(pdconstck) ... 932

21. Specifying OS Parameters 935
21.1 Estimating HP-UX OS parameter values... 936
21.2 Estimating Solaris OS parameter values.. 941
21.3 Estimating AIX 5L OS parameter values .. 944
21.4 Estimating Linux kernel parameter values .. 948
21.5 Estimating the sizes of message queues and semaphores.................................... 952
21.6 Listen queue specified values .. 955

22. Simple Installation of a HiRDB/Single Server 957
22.1 Overview of simple installation... 958

22.1.1 What can be done with simple installation... 958
22.1.2 Hardware environment for simple installation ... 958
22.1.3 Storage requirements for simple installation .. 958
22.1.4 Sample files provided for simple installation ... 958
22.1.5 HiRDB system configuration for simple installation 959
22.1.6 Simple installation procedure ... 961

22.2 Setting a HiRDB environment ... 963
22.2.1 Setting information (superuser's task) .. 963
22.2.2 Preparing for a HiRDB file system area... 965
22.2.3 Installing HiRDB, and the HiRDB Text Search Plug-in 965
22.2.4 Specifying information in the OS (superuser's task) 966
22.2.5 Setting the environment (HiRDB administrator's task)............................ 966

22.3 Using the system generator to construct a HiRDB system.................................. 969
22.4 Registering a plug-in into HiRDB (to extend database facilities) 976

22.4.1 Using the system generator to register a plug-in into HiRDB.................. 976
22.4.2 Registering registry information required for the plug-in 977

22.5 Defining a table and index ... 979

xxxiii

22.6 Storing SGML documents in the table ...981
22.7 Making retrievals from the SGML documents...983

22.7.1 Using the interactive SQL execution utility to retrieve from manual's SGML
documents ...983

22.7.2 Creating a UAP to retrieve from manual's SGML documents..................983

23. Simple Installation of a HiRDB/Parallel Server 987
23.1 Overview of simple installation..988

23.1.1 What can be done with simple installation..988
23.1.2 Hardware environment for simple installation..988
23.1.3 Storage requirements for simple installation...988
23.1.4 Sample files provided for simple installation..988
23.1.5 HiRDB system configuration for simple installation................................989
23.1.6 Simple installation procedure..992

23.2 Setting a HiRDB environment..994
23.2.1 Setting information (superuser's task) ...994
23.2.2 Preparing for a HiRDB file system area..996
23.2.3 Installing HiRDB, and the HiRDB Text Search Plug-in996
23.2.4 Setting environment in OS (superuser's task) ...997
23.2.5 Setting the environment (HiRDB administrator's task).............................997

23.3 Using the system generator to construct a HiRDB system.................................1000
23.4 Registering a plug-in into HiRDB (to extend database facilities)1011

23.4.1 Using the system generator to register a plug-in into HiRDB1011
23.4.2 Registering registry information required for the plug-in1012

23.5 Defining a table and index..1013
23.6 Storing SGML documents in the table ...1015
23.7 Making retrievals from the SGML document ..1017

23.7.1 Using the interactive SQL execution utility to retrieve from manual's SGML
documents ...1017

23.7.2 Creating a UAP to retrieve from manual's SGML documents................1017

24. Sample Files 1021
24.1 Overview of sample files..1022

24.1.1 Names of sample files ...1023
24.2 System configuration and table definition information......................................1026
24.3 Use of the sample files ...1031

24.3.1 Creating the configuration files...1031
24.3.2 HiRDB file system area names and user-created file names used with sample

database...1037

25. Communication Between HiRDB Servers and HiRDB Clients 1045
25.1 Connecting to a HiRDB server with an FQDN specified...................................1046

25.1.1 Connection to a HiRDB server with an FQDN specified1046

xxxiv

25.1.2 Using the multi-connection address facility to connect to a HiRDB
server .. 1048

25.2 Settings for a DNS server to manage IP addresses .. 1053
25.3 Settings when a firewall and NAT are installed... 1056

25.3.1 When a firewall is installed on the HiRDB/Single Server side.............. 1056
25.3.2 When a firewall and NAT are installed on the HiRDB/Single Server

side ... 1057
25.3.3 When a firewall is installed on the HiRDB/Parallel Server side 1059
25.3.4 When a firewall and NAT are installed on the HiRDB/Parallel Server

side ... 1060
25.4 Port numbers used by HiRDB ... 1063

25.4.1 Estimating the number of ports that a unit will use................................ 1063
25.4.2 Notes... 1064
25.4.3 Calculation examples.. 1064

25.5 HiRDB reserved port facility ... 1066
25.5.1 Estimation of the HiRDB reserved port facility 1066

25.6 Using immediate acknowledgment in HiRDB communications (AIX 5L only)1068

Appendixes 1071
A. HiRDB Maximum and Minimum Values ... 1072

A.1 Maximum and minimum values for the system configuration................... 1072
A.2 Maximum and minimum values for databases ... 1074
A.3 Maximum and minimum values for HiRDB file names............................. 1077

B. Questions and Answers ... 1078

Index 1091

xxxv

List of figures

Figure 1-1: System construction procedure for installing a new HiRDB...................................2
Figure 1-2: Procedure for replacing an existing version with the new version18
Figure 1-3: Installing a new version while retaining the old version (to create

multi-HiRDB) ...19
Figure 1-4: Procedure to restore HiRDB to the previous version (when version upgrade

fails)...22
Figure 1-5: Procedure for deleting and re-creating the system files created by the new

version ...23
Figure 1-6: Handling errors during updating to the HiRDB update version32
Figure 1-7: HiRDB online distribution procedure using JP1/Software Distribution................35
Figure 1-8: How to migrate to 64-bit mode..41
Figure 4-1: Configuration of system files created by HiRDB with three files specified..........72
Figure 4-2: Configuration of system files created by HiRDB with two files specified............73
Figure 4-3: Configuration of system files created by HiRDB with one file specified74
Figure 4-4: Configuration of system files created by HiRDB with three files specified........109
Figure 4-5: Configuration of system files created by HiRDB with two files specified.......... 111
Figure 4-6: Configuration of system files created by HiRDB with one file specified112
Figure 4-7: Example of system configuration created by system generator...........................115
Figure 5-1: Procedure for using commands to set up the HiRDB environment.....................153
Figure 5-2: Configuration of HiRDB system definition files: HiRDB/Single Server156
Figure 5-3: Configuration of HiRDB system definition files: HiRDB/Parallel Server161
Figure 5-4: Configuration of HiRDB system definition files (when the HiRDB External Data

Access facility is used)..162
Figure 5-5: Sharing HiRDB system definition files ...164
Figure 6-1: How to set up plug-ins ...216
Figure 6-2: Plug-in registration procedure..217
Figure 6-3: Procedure for creating a registry RDAREA and registry LOB RDAREA..........220
Figure 7-1: Database creation procedure ..232
Figure 7-2: Differences in operating procedure based on the database update log acquisition

mode (data storage) ...234
Figure 7-3: Example of table containing abstract data type using substitutability254
Figure 7-4: Procedure for inserting data in a table that contains an abstract data type

column...258
Figure 7-5: Status of index in the event of an error during batch index creation by database load

utility (pdload)...261
Figure 7-6: Error handling procedure in the event of abnormal termination of a utility during

data loading with the synchronization point specification267
Figure 8-1: Relationship between HiRDB and X/Open DTP model......................................276
Figure 8-2: Linking HiRDB/Single Server with an OLTP system (OpenTP1)278
Figure 8-3: Linking HiRDB/Parallel Server with an OLTP system (OpenTP1)279

xxxvi

Figure 8-4: Linking between multiple OLTPs (OpenTP1) and a single HiRDB 280
Figure 8-5: Linking between one OLTP (OpenTP1) and multiple HiRDBs.......................... 281
Figure 8-6: Overview of transaction transfer ... 282
Figure 8-7: Overview of event monitoring by JP1/IM... 307
Figure 8-8: Automatic control achieved by JP1 linkage when system log files are unloaded309
Figure 9-1: System configuration for a HiRDB/Single Server .. 313
Figure 9-2: System configuration for a HiRDB/Single Server with a utility special unit

installed... 313
Figure 9-3: Example of creating adjacent generations on separate hard disks (HiRDB/Single

Server) .. 328
Figure 9-4: Number of guaranteed-valid generations for synchronization point dump files. 329
Figure 9-5: Example of placing six sets of status files on four sets of disks 332
Figure 9-6: Example of system RDAREA placement (HiRDB/Single Server)..................... 337
Figure 9-7: Example of data dictionary LOB RDAREA placement (HiRDB/Single Server)337
Figure 9-8: Example of user RDAREA placement (HiRDB/Single Server) 338
Figure 9-9: Example of user LOB RDAREA placement (HiRDB/Single Server) 339
Figure 9-10: Example of list RDAREA placement (HiRDB/Single Server) 339
Figure 10-1: System configuration for a HiRDB/Parallel Server .. 344
Figure 10-2: System configuration for a HiRDB/Parallel Server with multiple front-end

servers... 345
Figure 10-3: Operation based on whether or not a recovery-unnecessary front-end server is

used... 349
Figure 10-4: Example of a system configuration using a recovery-unnecessary front-end

server .. 350
Figure 10-5: Example of creating adjacent generations on separate hard disks (HiRDB/Parallel

Server) .. 367
Figure 10-6: Number of guaranteed-valid generations for synchronization point dump file

(HiRDB/Parallel Server) .. 368
Figure 10-7: Example of placing six sets of status files on four sets of disks 370
Figure 10-8: Example of system RDAREA placement (HiRDB/Parallel Server)................. 376
Figure 10-9: Example of data dictionary LOB RDAREA placement (HiRDB/Parallel

Server) .. 377
Figure 10-10: Example of user RDAREA placement (HiRDB/Parallel Server) 378
Figure 10-11: Example of user LOB RDAREA and user RDAREA placement (HiRDB/Parallel

Server) .. 379
Figure 10-12: Example of list RDAREA placement (HiRDB/Parallel Server) 379
Figure 10-13: Example of heterogeneous system configuration for HiRDB/Parallel Server 380
Figure 11-1: Example of utility special unit installation for a multi-HiRDB: One utility special

unit provided for each HiRDB ... 383
Figure 11-2: Example of utility special unit installation for a multi-HiRDB: One utility special

unit shared among multiple HiRDBs ... 384
Figure 12-1: Overview of global buffer for an index... 389
Figure 12-2: Example of data global buffer allocation .. 390
Figure 12-3: Overview of the facility for parallel writes in deferred write processing 402

xxxvii

Figure 12-4: Overview of the snapshot method..407
Figure 12-5: Overview of global buffer pre-writing...409
Figure 12-6: Overview of index local buffers...412
Figure 13-1: Multiple columns in a table containing similar data ..423
Figure 13-2: Same table used by multiple applications ..424
Figure 13-3: Columns with different access frequencies..426
Figure 13-4: Example of key range partitioning with storage condition specified436
Figure 13-5: Example of key range partitioning with boundary values specified..................437
Figure 13-6: Example of flexible hash partitioning and FIX hash partitioning......................438
Figure 13-7: Table row partitioning form for a HiRDB/Single Server...................................439
Figure 13-8: Table row partitioning form for a HiRDB/Parallel Server.................................440
Figure 13-9: Overview of row partitioning taking into account contention among disk

accesses ...442
Figure 13-10: Overview of row partitioning taking into account operability.........................443
Figure 13-11: Overview of input/output processing performance based on number of back-end

servers used for table row partitioning..445
Figure 13-12: Performance of parallel processing depending on table access frequency446
Figure 13-13: System configuration involving table row partitioning taking into account

complicated retrieval processing...448
Figure 13-14: Matrix partitioning example (combination of key range partitioning with

boundary values specified)..453
Figure 13-15: Example of matrix partitioning (combination of key range partitioning with

boundary values specified and hash partitioning) ...455
Figure 13-16: Overview of triggers ..457
Figure 13-17: Relationship between base table and view table..470
Figure 13-18: Overview of overhead when data is added to a table with a cluster key

specified ..476
Figure 13-19: Data storage method when actual variable-length character string data is 256

bytes or greater ..478
Figure 13-20: Data storage method when the no-split option is specified479
Figure 13-21: Example of a numbering application ...486
Figure 13-22: Reloading to another table ...492
Figure 13-23: Example of tables defined without repetition columns....................................496
Figure 13-24: Example of table containing repetition columns ...497
Figure 13-25: Data structure of a table containing an abstract data type................................499
Figure 13-26: Hierarchical structure based on the relationship between supertype and subtype

abstract data types ...501
Figure 13-27: Data structure of a table containing an abstract data type (using

substitutability)..502
Figure 13-28: Join processing without using a shared table ...505
Figure 13-29: Join processing using a shared table ..506
Figure 13-30: Example of referenced and referencing tables...513
Figure 13-31: Example of the actions that occur when update SQL code is executed on a

referenced table (with CASCADE specified) ...515

xxxviii

Figure 13-32: Example of the actions that occur when update SQL code is executed on a
referencing table (with CASCADE specified) ... 515

Figure 13-33: Example of the actions that occur when update SQL code is executed on a
referenced table (with RESTRICT specified) .. 518

Figure 13-34: Data manipulation availability when managing check pending status for each
RDAREA in a partitioned table.. 533

Figure 13-35: Data manipulation availability when using the inner replica facility and managing
check pending status by RDAREA .. 534

Figure 13-36: Overview of procedure for checking data integrity (referential constraint).... 541
Figure 13-37: Procedure for checking data integrity when check pending status is used

(referential constraint) .. 544
Figure 13-38: Procedure for checking data integrity when check pending status is not used 548
Figure 13-39: Overview of the procedure for checking data integrity (check constraint)..... 559
Figure 13-40: Procedure for checking data integrity when check pending status is used (check

constraint) ... 561
Figure 13-41: Basic procedure for migrating a check constraint table to 64-bit mode.......... 565
Figure 14-1: Partitioning key index (single-column partitioning) ... 581
Figure 14-2: Partitioning key index (multicolumn partitioning).. 582
Figure 14-3: Example of index row partitioning (HiRDB/Single Server) 584
Figure 14-4: Example of index row partitioning (within one server) 585
Figure 14-5: Example of index row partitioning (among multiple servers) 586
Figure 14-6: Form of plug-in index row partitioning (HiRDB/Single Server) 588
Figure 14-7: Example of plug-in index row partitioning (key range partitioning) (HiRDB/Single

Server) .. 589
Figure 14-8: Form of plug-in index row partitioning (HiRDB/Parallel Server) 591
Figure 14-9: Example of plug-in index row partitioning (key range partitioning)

(HiRDB/Parallel Server) .. 592
Figure 15-1: Overview of RDAREAs depending on segment size.. 601
Figure 15-2: Overview of percentage of free pages in a segment.. 602
Figure 15-3: Overview of unused space in pages .. 606
Figure 15-4: Overview of the free space reusage facility .. 613
Figure 15-5: Overview of a shared RDAREA ... 620
Figure 16-1: Memory allocation for a HiRDB/Single Server .. 626
Figure 16-2: Memory allocation for each unit of a HiRDB/Parallel Server 671
Figure 18-1: Concept of index page splitting... 847
Figure 22-1: HiRDB system configuration provided by simple installation 960
Figure 22-2: System generator's screen display transitions ... 969
Figure 22-3: Table used in the examples.. 979
Figure 22-4: Overview of pdload... 981
Figure 23-1: HiRDB system configuration provided by simple installation 990
Figure 23-2: System generator's screen display transitions ... 1001
Figure 23-3: Table used in the examples.. 1013
Figure 23-4: Overview of pdload... 1015
Figure 24-1: Directory structure of sample files .. 1022

xxxix

Figure 24-2: Configuration for HiRDB/Single Server ...1026
Figure 24-3: Configuration for HiRDB/Parallel Server ...1027
Figure 24-4: Sample file for Bourne shell ..1036
Figure 24-5: Sample file for C shell ...1036
Figure 25-1: Example of network configuration and definition for connecting to HiRDB system

with an FQDN specified..1047
Figure 25-2: Example of network configuration and definition: HiRDB/Single Server1049
Figure 25-3: Example of network configuration and definition: HiRDB/Parallel Server1050
Figure 25-4: Example of network configuration and definition: With inheritance of IP addresses

during system switchover..1051
Figure 25-5: Example of network configuration and definition: Without inheritance of IP

addresses during system switchover ...1052
Figure 25-6: Example system configuration using a single domain.....................................1053
Figure 25-7: Example system configuration using multiple domains1054
Figure 25-8: Network configuration example with a firewall installed on the HiRDB/Single

Server side ...1056
Figure 25-9: Network configuration example with a firewall and NAT installed on the

HiRDB/Single Server side ..1058
Figure 25-10: Network configuration example with a firewall installed on the HiRDB/Parallel

Server side ...1059
Figure 25-11: Network configuration example with a firewall and NAT installed on the

HiRDB/Parallel Server side ..1061
Figure 25-12: Object of immediate acknowledgment ..1069

xl

List of tables

Table 1-1: Advantages and disadvantages of each environment setup method 3
Table 1-2: Organization of directories and files that the HiRDB administrator creates 6
Table 1-3: Directories and files that HiRDB creates.. 6
Table 1-4: Free space required for upgrading .. 13
Table 1-5: Products required when HiRDB is migrated to 64-bit mode.................................. 40
Table 2-1: Information to be registered in OS on each server machine................................... 46
Table 2-2: HiRDB installation directory .. 48
Table 2-3: Option program products facility and target installation servers............................ 50
Table 2-4: Character encoding supported by HiRDB .. 56
Table 2-5: Information to be set in HiRDB administrator defined environment variables...... 58
Table 2-6: Owners and access privileges to be specified for HiRDB file system area 62
Table 4-1: Contents of system files created by the system generator (HiRDB/Single Server) 71
Table 4-2: Contents of the log file.. 101
Table 4-3: Contents of system files created by the system generator (HiRDB/Parallel

Server) .. 107
Table 4-4: Contents of the log file.. 143
Table 4-5: List of RDAREAs generated by the system generator ... 145
Table 5-1: Types of HiRDB file system areas.. 169
Table 6-1: HiRDB (unit) startup conditions and availability of plug-ins............................... 221
Table 6-2: SQL statements for deleting database resources... 226
Table 7-1: Database update log acquisition mode for user LOB RDAREAs depending on the -l

option value in pdload .. 233
Table 7-2: Database update log acquisition method for user LOB RDAREAs depending on a

specification in the client environment definition .. 259
Table 8-1: OLTP linkage support depending on the HiRDB type ... 274
Table 8-2: Functions supported by HiRDB XA library ... 276
Table 8-3: Relationship between OpenTP1's trnstring operand and HiRDB's PDXAMODE

operand ... 283
Table 8-4: Differences between dynamic and static registration ... 285
Table 8-5: Library names for RM-related object names .. 290
Table 8-6: HiRDB events that can be sent to JP1/Base.. 305
Table 8-7: Name of the event attribute definition file for each OS.. 308
Table 9-1: Allocation of HiRDB file system areas to improve performance......................... 316
Table 9-2: Maximum sizes of HiRDB file system areas.. 319
Table 9-3: Effects on operations of the number of generations of system log files 323
Table 9-4: HiRDB operation and HiRDB administrator's action that depend on whether or not

single operation is used .. 334
Table 10-1: Number of permitted servers .. 342
Table 10-2: Server that acquires the current timestamp depending on whether or not USING BES

is specified .. 347

xli

Table 10-3: Client environment definitions required for multiple front-end servers..............347
Table 10-4: Allocation of HiRDB file system areas to improve performance355
Table 10-5: Maximum sizes of HiRDB file system areas...359
Table 10-6: Effects on operations of the number of generations of system log files..............362
Table 10-7: HiRDB operation and HiRDB administrator's action that depend on whether or not

single operation is used ...373
Table 12-1: Applicability of the snapshot method for retrievals ..408
Table 13-1: Items to be examined for database table design ..416
Table 13-2: Hash functions ...430
Table 13-3: Differences among key range partitioning, flexible hash partitioning, and FIX hash

partitioning ..433
Table 13-4: Recommended data type for each binary data usage...483
Table 13-5: Operations permitted on falsification prevented tables488
Table 13-6: Restricted definition SQL statements and the restrictions...................................490
Table 13-7: Restricted utilities and the restrictions...491
Table 13-8: Restricted commands and their restrictions...493
Table 13-9: Meanings of values in the SQL_TABLES table..495
Table 13-10: Encapsulation levels and privileges...504
Table 13-11: SQL statements associated with synchronization wait at the remote site511
Table 13-12: Primary key operations and the resulting actions that occur in the referencing table

(with CASCADE specified) ..516
Table 13-13: Foreign key operations and the resulting actions that occur in the referenced table

(with CASCADE specified) ..516
Table 13-14: Primary key operations and the resulting actions that occur in referenced and

referencing tables ..518
Table 13-15: Storage locations of check pending status information and contents (referential

constraint)..527
Table 13-16: Availability of operations on tables in check pending status.............................528
Table 13-17: Restricted operations when table T2 is in check pending status529
Table 13-18: Restricted operations when table T3 is in check pending status530
Table 13-19: Restricted operations when tables T2 and T3 are in check pending status531
Table 13-20: Operations on referenced tables that nullify the guarantee of data integrity and the

conditions under which loss of data integrity occurs ..536
Table 13-21: Operations on referencing tables that nullify the guarantee of data integrity and the

conditions under which loss of data integrity occurs ..538
Table 13-22: Conditions that cause moving of mismatched data in a table between RDAREAs

when the target table is a partitioned table ..540
Table 13-23: Storage locations of check pending status information and their contents (check

constraint)..557
Table 13-24: Operations on check constraint tables that nullify the guarantee of data integrity

and the conditions under which loss of data integrity occurs558
Table 14-1: Items to be examined during index design ..570
Table 14-2: Priority order of index usage by HiRDB...573

xlii

Table 14-3: Whether or not HiRDB uses an index whose exception key value is the null
value ... 577

Table 14-4: Priority among single-column and multicolumn indexes 579
Table 14-5: Index partitioning guidelines .. 583
Table 15-1: Items to be examined during RDAREA design.. 596
Table 15-2: Maximum and minimum values for RDAREAs... 598
Table 15-3: Segment statuses ... 600
Table 15-4: Page statuses ... 604
Table 16-1: HiRDB/Single Server shared memory details .. 627
Table 16-2: Size of memory required for a HiRDB/Single Server .. 630
Table 16-3: Procedure for obtaining the number of work tables for each SQL statement..... 638
Table 16-4: Length of column subject to grouping and length of operation area for set

functions ... 657
Table 16-5: Data length of embedded variables and ? parameters... 664
Table 16-6: HiRDB/Parallel Server shared memory details per unit 671
Table 16-7: Size of memory required for each unit of a HiRDB/Parallel Server 675
Table 16-8: Procedure for obtaining the number of work tables for each SQL statement..... 684
Table 16-9: Calculation conditions depending on the options specified in the pdbuffer statement

(when the standby-less system switchover (effects distributed) facility is not used)
729

Table 16-10: Calculation conditions depending on the options specified in the pdbuffer
statement (when the standby-less system switchover (effects distributed) facility is
used) ... 731

Table 16-11: Length of column subject to grouping and length of operation area for set
functions ... 733

Table 17-1: List of data lengths.. 752
Table 17-2: Data lengths for the variable-length character string type (except abstract data type

and repetition columns) .. 757
Table 17-3: Data lengths for the variable-length character string type (abstract data type) .. 758
Table 17-4: Data lengths for the variable-length character string type (repetition columns) 759
Table 17-5: List of index key lengths... 767
Table 17-6: Variables used in the formulas for obtaining the number of index storage

pages ... 800
Table 18-1: Types of system log information that are output when table rows are

manipulated .. 836
Table 18-2: Amount of log information depending on type of database manipulation 837
Table 18-3: Formulas for determining the amount of base row log information per data

item ... 838
Table 18-4: Formulas for determining the amount of log information per BLOB column data

item ... 839
Table 18-5: Formulas for determining the amount of log information per branch row (1) ... 841
Table 18-6: Formulas for determining the amount of log information per branch row (2) ... 842
Table 18-7: System log information added per item of data with updatable online

reorganization ... 844

xliii

Table 18-8: System log information added per item of BLOB data with updatable online
reorganization..845

Table 18-9: System log information added per item of data that includes a repetition column
with updatable online reorganization ..845

Table 18-10: Amount of index log information per index..846
Table 18-11: Amount of index log information by split type ...848
Table 18-12: Amount of log information for page allocation and segment allocation851
Table 18-13: Amount of event log information that is output when a single row is

manipulated ...851
Table 18-14: Formulas for determining the amount of system log information output during

database creation by a utility...852
Table 18-15: Values added when calculating the amount of system log information, and

conditions required to perform this addition ...854
Table 18-16: Amount of system log information that is output during the execution of the

RDAREA automatic extension facility ...855
Table 18-17: Amount of system log information output during execution of the PURGE TABLE

statement..856
Table 18-18: Amount of system log information output when the free page release utility is

executed...857
Table 19-1: Options for which values need to be specified ..870
Table 19-2: Obtaining the number of rows in a column information work table874
Table 19-3: Obtaining the data length for each column and the number of columns in a work

table ...874
Table 19-4: Obtaining the maximum number of column information work tables876
Table 19-5: Obtaining the maximum number of location information work tables877
Table 20-1: Maximum lengths of converted character strings for columns (in DAT or extended

DAT format) ..892
Table 20-2: Maximum lengths of converted character strings for columns (fixed-length

character format) ...894
Table 21-1: Guidelines for the HP-UX OS parameter values...936
Table 21-2: Guidelines for the Solaris OS parameter values..941
Table 21-3: Guidelines for the AIX 5L OS parameter values ..944
Table 21-4: Guidelines for the Linux kernel parameter values...948
Table 21-5: Parameters for changing the value for the Listen queue955
Table 22-1: Storage requirements for simple installation ...958
Table 22-2: Sample files provided for simple installation ..959
Table 22-3: Types of HiRDB system files ..961
Table 22-4: Principal types of RDAREAs ..961
Table 22-5: Values of OS parameters..963
Table 22-6: Information to be set in /etc/group file ..964
Table 22-7: Information to be set in /etc/passwd file..964
Table 22-8: Information to be set in environment variables ...967
Table 22-9: Information to be set for RDAREAs ...975
Table 22-10: Locations of sample files before and after plug-in registration.........................977

xliv

Table 23-1: Storage requirements for simple installation .. 988
Table 23-2: Sample files provided for simple installation ... 989
Table 23-3: Types of HiRDB servers ... 991
Table 23-4: Types of HiRDB system files ... 992
Table 23-5: Principal types of RDAREAs ... 992
Table 23-6: Values of OS parameters... 994
Table 23-7: Information to be set in the /etc/group file.. 995
Table 23-8: Information to be set in the /etc/passwd file ... 995
Table 23-9: Information to be set for environment variables... 998
Table 23-10: Information to be set for RDAREAs .. 1009
Table 23-11: Locations of sample files before and after plug-in registration 1012
Table 24-1: Directories and files used with sample database... 1023
Table 24-2: Contents of sample configuration ... 1024
Table 24-3: Contents of sample UOC .. 1025
Table 24-4: Contents of tables to be defined.. 1027
Table 24-5: Column attributes and indexes (English version) ... 1028
Table 24-6: Files to be created for HiRDB/Single Server.. 1031
Table 24-7: Files to be created for HiRDB/Parallel Server.. 1031
Table 24-8: Sample shell script files for executing commands under aliases...................... 1035
Table 24-9: Names and sizes of HiRDB file system areas: HiRDB/Single Server.............. 1038
Table 24-10: Names and sizes of HiRDB file system areas: HiRDB/Parallel Server.......... 1038
Table 24-11: Names of user-created files: HiRDB/Single Server.. 1039
Table 24-12: Names of user-created files: HiRDB/Parallel Server...................................... 1040
Table 25-1: Names allowed in client environment definition .. 1046
Table A-1: Maximum and minimum values for the HiRDB system configuration 1072
Table A-2: Maximum and minimum values for databases .. 1074
Table A-3: Maximum and minimum values for HiRDB file names (in characters) 1077

1

Chapter

1. Overview of HiRDB System
Construction

This chapter provides an overview of the HiRDB system construction procedure,
HiRDB file organization, and upgrading procedure.
This chapter contains the following sections:

1.1 System construction procedures
1.2 Organization of HiRDB directories and files
1.3 Upgrading HiRDB
1.4 Updating to HiRDB update version
1.5 Using JP1/Software Distribution to execute online distribution of HiRDB
1.6 Migrating to HiRDB in 64-bit mode (HP-UX, Solaris, and AIX 5L versions

only)

1. Overview of HiRDB System Construction

2

1.1 System construction procedures

This section discusses the system construction procedure for installing a new HiRDB.

1.1.1 System construction procedure for installing a new HiRDB
Figure 1-1 shows the system construction procedure for installing a new HiRDB.

Figure 1-1: System construction procedure for installing a new HiRDB

For recommendations and notes on using HiRDB in continuous 24-hour operation, see
the manual HiRDB Version 8 System Operation Guide.

1.1.2 Setting up a HiRDB environment
The HiRDB administrator uses one of the following methods to set up a HiRDB
environment:

• The simple setup tool
• The system generator (pdgen)
• Commands

1. Overview of HiRDB System Construction

3

Hint:

Normally, Hitachi recommends that you use the simple setup tool to set up the
HiRDB environment.

Table 1-1 shows the advantages and disadvantages of each environment setup method.
Table 1-1: Advantages and disadvantages of each environment setup method

#
Try a simple installation before you construct the production system. Using the
sample files to execute a series of HiRDB construction procedures on a test
system makes it easier to create an actual production system.

Setup method Overview Advantages Disadvantages

Simple setup tool Enter the HiRDB
environment setup data
according to the displayed
windows. The HiRDB
environment is set up based
on the entered data.
For details about how to use
the simple setup tool, see 3.
Setting Up an Environment
Using the Simple Setup
Tool.

Easier than using other
methods to set up the
HiRDB environment. The
simple setup tool allows
you to start using HiRDB
immediately. You can also
use it to change existing
system definition settings.

The HiRDB system
construction is limited to
the range of
configurations that can be
set up using the simple
setup tool.

System generator
(pdgen)

Enter the HiRDB
environment setup data in
an interactive manner. The
HiRDB environment is set
up based on the entered
data.
For details about how to use
the system generator, see 4.
Setting Up an Environment
Using the System
Generator.

Easier than using
commands to set up the
HiRDB environment. The
system generator allows
you to start using HiRDB
immediately.

The HiRDB system
construction is limited to
the range of
configurations that can be
set up using the system
generator.

Commands# Use HiRDB commands to
set up the HiRDB
environment.
For details about how to use
commands, see 5. Setting
Up an Environment Using
Commands.

HiRDB commands allow
you to tailor the HiRDB
system configuration to
your needs.

You will require certain
knowledge to set up the
HiRDB environment.
Specifically, you need to
understand the facilities
and settings described in
this manual. In addition,
environment setup using
commands is more
difficult than other
methods.

1. Overview of HiRDB System Construction

4

For details about how to perform a simple installation, see 22. Simple Installation
of a HiRDB/Single Server or 23. Simple Installation of a HiRDB/Parallel Server.

Note:

With the simple setup tool method, a plug-in environment cannot be set up.

1.1.3 Environment setup for linking to other products
This section discusses the environment setup using related products.

(1) Using the replication facility
To use the replication facility, you need HiRDB Datareplicator and HiRDB
Dataextractor. For details about how to set up an environment for the replication
facility, see 8.1 Linking to the replication facility.

(2) Linking to OLTP
For details about the environment setup procedure to link your HiRDB to OLTP, see
8.2 Linking with an OLTP system.

(3) Using the system switchover facility
To use the system switchover facility, cluster software is required. The specific cluster
software to be used depends on the platform. For details about cluster software and the
system switchover facility, see the manual HiRDB Version 8 System Operation Guide.

(4) Using the Directory Server linkage facility
HiRDB can be linked to the following directory servers:

• Sun Java System Directory Server
For details about the environment setup procedure for the Hitachi Directory Server
linkage facility, see the manual HiRDB Version 8 System Operation Guide.

(5) Using the inner replica facility
To use the inner replica facility, HiRDB Staticizer Option is required. For details about
the environment setup procedure, see 8.3 Linking to the inner replica facility.

(6) Using the HiRDB External Data Access facility
HiRDB External Data Access is required in order to use the HiRDB External Data
Access facility. For details about the environment setup procedure for the HiRDB
External Data Access facility, see 8.4 Linking to the HiRDB External Data Access
facility.

(7) Using Real Time SAN Replication (disaster recovery)
To use Real Time SAN Replication with the log-only synchronous method, HiRDB
Disaster Recovery Light Edition is required.

1. Overview of HiRDB System Construction

5

For details about Real Time SAN Replication, see the manual HiRDB Version 8
Disaster Recovery System Configuration and Operation Guide.

(8) Using the distributed database facility
To use the distributed database facility, you need DF/UX.
For details about how to set up the environment for the distributed database facility,
see the manual HiRDB Version 8 System Operation Guide.

(9) When linking to JP1
You can manage HiRDB events as JP1 events by linking your system to JP1. When
JP1 is linked, you can achieve centralized management of system events and use
events to start jobs automatically. For details about linkage with JP1, see 8.5 Linking
to JP1.

1. Overview of HiRDB System Construction

6

1.2 Organization of HiRDB directories and files

(1) Directories and files that the HiRDB administrator creates
Table 1-2 lists the directories and files that the HiRDB administrator creates.

Table 1-2: Organization of directories and files that the HiRDB administrator
creates

(2) Directories and files that HiRDB creates
Table 1-3 lists the directories and files that HiRDB creates.

Table 1-3: Directories and files that HiRDB creates

File or directory name Description

$PDDIR/conf/pdsys File for storing system common definitions

$PDDIR/conf/pdutsys File for storing unit control information definitions

$PDDIR/conf/pdsvrc File for storing server common definitions

$PDDIR/conf/server-name File for storing each server definition

$PDDIR/conf/pduapenv Directory for storing UAP environment definitions

$PDDIR/conf/chgconf Directory for storing system reconfiguration definition files

$PDDIR/spool/dfc Directory for storing DF/UX server process' communication
error log

File or directory name Description

$PDDIR/bin Directory for storing HiRDB commands and utilities

$PDDIR/lib Directory for storing HiRDB's shared libraries and message text files

$PDDIR/lib/sysconf Directory for storing a file that is used to analyze HiRDB system
definitions

$PDDIR/lib/sysdef

$PDDIR/lib/servers Directory for storing HiRDB server's executable files and libraries

$PDDIR/lib/save Directory for storing information when the pdmemsv command is used
to share the libraries

$PDDIR/lib/jvm Directory for storing libraries that are required to execute the POSIX
library HiRDB (created for use with the 32-bit mode HP-UX 11.0
version of HiRDB)

$PDDIR/client/lib Directory for storing HiRDB client's libraries

1. Overview of HiRDB System Construction

7

$PDDIR/client/lib10_20 Directory for storing HP-UX 10.20 HiRDB client's libraries

$PDDIR/client/utl Directory for storing HiRDB client's commands and utilities

$PDDIR/client/jba Directory for storing HiRDB Java stored procedure/function
distribution wizard (created for use with the 32-bit-mode Solaris or
Linux version of HiRDB)

$PDDIR/include Directory for storing the header information that is used during UAP
creation

$PDDIR/spool/save1 Directory for storing saved core files

$PDDIR/spool/pdshmdump1 Directory for storing shared memory dump files

$PDDIR/spool/pdlckinf1 Directory for storing deadlock time-out information files

$PDDIR/spool/pdsysdump1 Directory for storing simple dump files common to the system

$PDDIR/spool/pdsdsdump1 Directory for storing simple dump files for a single server

$PDDIR/spool/pdfesdump1 Directory for storing simple dump files for a front-end server

$PDDIR/spool/pddicdump1 Directory for storing simple dump files for a dictionary server

$PDDIR/spool/pdbesdump1 Directory for storing simple dump files for a back-end server

$PDDIR/spool/pdstj1, pdstj2 Statistics log files

$PDDIR/spool/pdlog1, pdlog2 Message log files

$PDDIR/spool/pdjnlinf Directory for storing system log information output files

$PDDIR/spool/pdjnlinf/errinf Directory for storing system log error information output files

$PDDIR/spool/pdscdqi1,
pdscdqi2

Files for storing HiRDB's internal schedule queue information

$PDDIR/spool/oslmqid File for storing message queue IDs

$PDDIR/spool/oslsmid File for storing semaphore IDs

$PDDIR/spool/pdprcsts prc status file

$PDDIR/spool/.pdatmode Status files for startup and termination

$PDDIR/spool/.pdipcid Files used for managing semaphore IDs

$PDDIR/spool/.pdommenv Files for storing shared memory information

File or directory name Description

1. Overview of HiRDB System Construction

8

$PDDIR/spool/cmdlog/cmdlog1,
cmdlog2

Files containing the historical information about the executed
commands

$PDDIR/spool/errlog/errlog1,
errlog2

Files containing the historical information about internal HiRDB
operation

$PDDIR/spool/olkfifs Directory for storing pipe files for use with thread locking8

$PDDIR/spool/olkrsfs Directory for storing pipe files for use with thread suspend/resume9

$PDDIR/spool/oslcnt1 File for managing the number of pipe files

$PDDIR/spool/cnctusrinf File for storing the connected user information if there is any user still
connected to HiRDB during the execution of normal termination or a
planned termination command

$PDDIR/spool/cnctusrdtl File for storing the execution result of pdls -d act, pdls -d prc,
and pdls -d trn commands if there is any user still connected to
HiRDB during the execution of normal termination or a planned
termination command

$PDDIR/spool/pdsqldump1 Directory for storing access path information files

any name2 RPC trace file

/dev/HiRDB/pth/3 Directory for storing communication information files

$PDDIR/tmp4 HiRDB's internal work directory

$PDDIR/tmp/pdommenv File for storing shared memory information

$PDDIR/tmp/home/server-name Current work directory

$PDDIR/conf Directory for storing HiRDB system definition files

$PDDIR/conf/backconf Directory for storing the pre-reconfiguration HiRDB system definition
when executing the system reconfiguration command

$PDDIR/conf/inittab /etc/inittab save directory

any name5 Communication error log file for DF/UX server process

$PDDIR/.dbenv Directory for storing HiRDB database environment information files

$PDCLTPATH/pdsql1.trc,
pdsql2.trc6

Files for storing trace information for SQL that is executed by a UAP

File or directory name Description

1. Overview of HiRDB System Construction

9

1 Because HiRDB uses this directory to output troubleshooting information, it may
keep increasing in size. You should use the pdcspool command periodically to delete
the contents.
You use the operands listed below for periodic deletion of troubleshooting

$PDCLTPATH/pderr1.trc,
pderr2.trc6

Files for storing information about communication errors between a
UAP and a server

$PDDIR/plugin Directory that integrates all HiRDB plug-in directories

$PDDIR/plugin/.sys HiRDB's internal work directory

$PDDIR/plugin/lib Directory for storing plug-in libraries

$PDDIR/plugin/plug-in-name Plug-in directory

$PDDIR/plugin/plug-in-name/
.sys

HiRDB's internal work directory

$PDDIR/plugin/plug-in-name/bin Directory for storing plug-in commands

$PDDIR/plugin/plug-in-name/etc Directory for storing the common files that are required by all plug-ins

$PDDIR/plugin/plug-in-name/
conf

Directory for storing plug-in configuration files

$PDDIR/jre7 JavaTM execution environment

$PDDIR/renew Directory used during updating to the HiRDB update version

$PDDIR/renew_bak Directory for backing up the operating HiRDB when updating to the
HiRDB update version

$PDDIR/.pdlogprgid File for managing the syslog program ID

 For HP-UX
 /sbin/init.d/
 /sbin/rc1.d/

 For Solaris
 /etc/init.d/
 /etc/rc0.d/
 /etc/rc1.d/

 For Linux
 /etc/init.d/
 /etc/rc0.d/
 /etc/rc1.d/
 /etc/rc6.d/

Directory for storing script files that run when the operating system
starts up or shuts down.

File name:
 For HP-UX or Solaris

 HiRDB/Single Server is HiRDB_S or K090HiRDB_S
 HiRDB/Parallel Server is HiRDB_P or K090HiRDB_P

 For Linux
 HiRDB/Single Server is HiRDB_S, K09HiRDB_S, or S91HiRDB_S
 HiRDB/Parallel Server is HiRDB_P, K09HiRDB_P, or S91HiRDB_P

File or directory name Description

1. Overview of HiRDB System Construction

10

information. For details about these operands, see the manual HiRDB Version 8 System
Definition:

• pd_spool_cleanup_interval
• pd_spool_cleanup_interval_level
• pd_spool_cleanup
• pd_spool_cleanup_level

2 To specify the filename, use the pd_rpc_trace_name operand.
3 The files in this directory can be deleted when all HiRDB servers in this server
machine have stopped.
4 This directory is used internally by HiRDB. Do not create directories or files in this
directory. Do not specify this directory for use by HiRDB to create files (for example,
for the pd_rpc_trace_name operand). This directory is deleted and re-created each
time the unit starts.
5 Use one of the following methods to specify the file name. We recommend that you
use $PDDIR/spool/dfc.

• Use the user environment variable PDCLTPATH that starts DF/UX.
• To start DF/UX upon booting the server machine, use the environment

variable PDCLTPATH specified before the dfstart command by localrc
in the /etc/rc file.

6 Two copies of this file are output to the directory specified with PDCLTPATH. If
PDCLTPATH is omitted, the files are output to the current directory used to start the
UAP (in the case of a UAP started from OpenTP1, $DCDIR/tmp/home/
directory-with-server-name-xx).
The names for the files to be created depends on whether or not X/Open-compliance
API (TX_ function) was used. When the TX_ function is used, the files are created with
the following names:

• pdsqlxxxxx-1.trc, pdsqlxxxxx-2.trc
• pderrxxxxx-1.trc, pderrxxxxx-2.trc

Legend:
xxxxx: Process ID during UAP execution

Because the process ID is used in the file name, note that as many files as there are
processes may be output during UAP execution.

1. Overview of HiRDB System Construction

11

7 This directory is created when the version is earlier than 07-03. When version 07-03
or later is used, this directory is not created because JRE is not bundled with the
package.
8 The number of pipe files created in this directory is the value of the
pd_max_server_process operand + 100.
9 Shown below are the formulas for approximating the number of pipe files to be
created in this directory:

• HiRDB/Single Server
value-of-pd_max_server_process + 127 + value-of-pd_max_users a
a: 4 if pipe is specified for the pd_lck_release_detect operand, 0
otherwise.

• HiRDB/Parallel Server
value-of-pd_max_server_process + 127 + b
b: Use one of the following formulas, as applicable, when pipe is specified
for the pd_lck_release_detect operand, 0 otherwise:
Front-end server: value-of-pd_max_users 2
Dictionary server: value-of-pd_max_dic_process 35
Back-end server: value-of-pd_max_bes_process 35
Include in the total the appropriate value for the servers in the unit.

1. Overview of HiRDB System Construction

12

1.3 Upgrading HiRDB

This section describes the procedure for upgrading HiRDB.
When upgrading a HiRDB/Single Server, also upgrade the corresponding utility
special unit. Make sure that the HiRDB/Single Server and the corresponding utility
special unit have matching versions of HiRDB.
When upgrading a HiRDB/Parallel Server, upgrade all units constituting the HiRDB/
Parallel Server so that they have the same version of HiRDB.
Some default values for HiRDB system definition operands have changed from
version 07-00 (default values have been changed to recommended values). Also, some
operands no longer need to be specified. If you are upgrading from HiRDB Version 6
but do not want to change the default values, set v6compatible in the
pd_sysdef_default_option operand. For details about the default values that
have changed, the operands that no longer need to be specified, and the
pd_sysdef_default_option operand, see the manual HiRDB Version 8 System
Definition.
Notes

• When upgrading HiRDB, do not uninstall the existing HiRDB. Install the
new version of HiRDB over the existing version.

• There are some notes concerning upgrading that apply when the security
audit facility is used. For details about these notes, see the manual HiRDB
Version 8 System Operation Guide.

• There are notes about upgrading to version 07-03 or later by using the Java
stored procedures and functions. For details about the notes, see 1.3.5 Using
Java stored procedures and functions.

1.3.1 Before upgrading
Before upgrading, make sure that the steps described below are taken. For a
multi-HiRDB, you must apply the following actions to all directories:

• Check to see whether HiRDB is online.
• Check the HiRDB status.
• Release library sharing.

(1) Checking for available space
Use the database condition analysis utility (pddbst) to see if there is enough space in
the data dictionary RDAREAs. If there is not enough space, allocate sufficient space
using one of the following methods:

1. Overview of HiRDB System Construction

13

Reorganize the dictionary table using the database reorganization utility
(pdrorg).
Extend the data dictionary RDAREAs using the database structure modification
utility (pdmod).

This space checking is required only when you are upgrading your HiRDB; it is not
necessary when you are updating to the HiRDB update version.
For the utility execution method, see the manual HiRDB Version 8 Command
Reference.
Free space required for upgrading
Check to see if you have enough free space, as shown in Table 1-4, according to the
HiRDB version you are upgrading. If there is not enough space, an insufficient space
error may occur when you start HiRDB or execute the pdvrup command after
upgrading.

Table 1-4: Free space required for upgrading

Dictionary tables
stored in data

dictionary
RDAREA

Number of free segments required in data dictionary RDAREA

Upgrading
from 07-00

or later

Upgrading
from 06-00

or later

Upgrading
from 05-02

or later

Upgrading
from 03-00

or later

Upgrading
from 02-05
or earlier

SQL_TABLES table 1 3 3 3 3

SQL_COLUMNS table 4 + 5
S

5 + 5
S

5 + 15
S

5 + 20
S

5 + 1 25
S

SQL_INDEXES table 1 1 4 4 4

SQL_TABLE_PRIVILE
GES table

1 1 3 3 3

SQL_INDEX_COLINF
table

1 1 3 3 3

SQL_VIEW_TABLE_US
AGE table

2 3 4 4 4

SQL_VIEWS table 2 + 5
S

3 + 5
S

3 + 15
S

3 + 20
S

3 + 25
S

SQL_VIEW_DEF table 2 + 10
S

3 + 10
S

2 + 40
S

2 + 65
S

2 + 70
S

SQL_DIV_COLUMN
table1

1

1. Overview of HiRDB System Construction

14

Legend:
: Not applicable

S: Segment size of data dictionary RDAREA for storing the corresponding table
1 The table is not needed if no LOB column or data dictionary LOB RDAREA is
defined.
2 The table is not needed if no stored procedure is defined.

(2) Backing up system RDAREAs
Use the database copy utility (pdcopy) to back up the following RDAREAs:

• Master directory RDAREA
• Data directory RDAREA
• Data dictionary RDAREA
• Audit trail table RDAREA (applicable when the security audit facility is used)

To back up the RDAREAs, use the following procedure:
1. Use the pdstop command to terminate HiRDB normally.
2. Use the pdstart -r command to start HiRDB.
3. Use the database copy utility (pdcopy) to back up the RDAREAs. In this case,

specify the reference/update-possible mode (-M x specified). For details about
the backup procedure, see the manuals HiRDB Version 8 System Operation Guide
or HiRDB Version 8 Command Reference.

(3) Checking the memory size
You need 135 KB of memory to execute the upgrading command (pdvrup). Check
your available memory space. Note that this action is not necessary when you are
updating to the HiRDB update version.

SQL_ROUTINES table2 4 + 30
S

4 + 30
S

SQL_ROUTINE_PARAM
S table2

2 + 20
S

2 + 20
S

Dictionary tables
stored in data

dictionary
RDAREA

Number of free segments required in data dictionary RDAREA

Upgrading
from 07-00

or later

Upgrading
from 06-00

or later

Upgrading
from 05-02

or later

Upgrading
from 03-00

or later

Upgrading
from 02-05
or earlier

1. Overview of HiRDB System Construction

15

(4) Checking to see whether HiRDB is online
Use the pdls command to see if all units are displayed as ACTIVE. If they are
ACTIVE, use the pdstop command to terminate them normally.

(5) Terminating HiRDB normally
Before upgrading, terminate HiRDB normally. In the case of a HiRDB/Parallel Server,
terminate HiRDB from the machine that contains the system manager. If HiRDB has
already been terminated, check the following information to determine whether
HiRDB has terminated normally:

Message log file or syslog file
If HiRDB has not terminated normally, enter the pdstart command to start HiRDB
and then enter the pdstop command to terminate it normally.

(6) Checking the HiRDB status
To check the status of a unit whose HiRDB is to be upgraded, execute the pdls -d
ust command.
When the termination status is 4 (unit status is STARTING or STOPPING):

HiRDB is engaged in start or termination processing. Re-execute the pdls -d
ust command after the start or termination processing is completed.

When the termination status is 8 (unit status is PAUSE):
Restart of the process service has been cancelled due to an error. Check the
KFPS00715-E message and the message that has been output to the syslog file
before this message, eliminate the cause of the error, and then execute the
pdrpause command. After that, re-start the unit, and then terminate it normally
with the pdstop command.

(7) Releasing library sharing
If you are sharing libraries with multi-HiRDB, use the pdmemsv -d command to
release library sharing. After upgrading HiRDB, use the pdmemsv command to share
libraries again.

(8) Terminating commands, utilities, applications, HiRDB Datareplicator, and
HiRDB Dataextractor

You must first terminate all commands, utilities, applications, HiRDB Datareplicator,
and HiRDB Dataextractor. If any such item is running, deletion of executable files and
shared libraries fails, resulting in an upgrading error.

(9) Checking the memory requirements
The memory requirements may increase when you upgrade the HiRDB version. You
should check the HiRDB memory requirements in 16. Storage Requirements for
HiRDB.

1. Overview of HiRDB System Construction

16

(10) Checking the size of status files
When you upgrade HiRDB, the size of the HiRDB status files may increase. You
should check the size of the HiRDB status files as described in 18.3 Determining the
size of status files.

(11) Checking the size of synchronization point dump files
When you upgrade HiRDB, the size of the HiRDB synchronization point dump files
may increase. You should check the size of the HiRDB synchronization point dump
files as described in 18.2 Determining the size of synchronization point dump files.

(12) Checking the operating system parameters
The operating system parameter values (or kernel parameter values) may change when
the HiRDB version is updated. For details about how to estimate the operating system
parameter values, see 21. Specifying OS Parameters.
Note

When the following conditions are satisfied, the values of the operating system
parameters will have to be increased, so the values will need to be re-evaluated:

• When upgrading from version 06-00 or earlier to version 06-01 or later
• When 31 or more system log file groups are created

(13) Checking the total number of records in the system log file
If you are upgrading, check the total number of records in the system log files in
overwrite enabled status. If the following condition is not satisfied, upgrading may
fail:
When upgrading from HiRDB Version 4.0 or earlier

Total-number-of-records* > 5754880/system-log-file-record-length
When upgrading from HiRDB Version 5.0 or earlier

Total-number-of-records* > 4239360/system-log-file-record-length
When upgrading from HiRDB Version 6 or earlier

Total-number-of-records* > 3215360/system-log-file-record-length
When upgrading from HiRDB Version 7 or earlier

Total-number-of-records* > 1413120/system-log-file-record-length
For a HiRDB/Parallel Server, check the total number of records in the system log files
(overwrite enabled status) at the dictionary server.
* Use one of the following methods to check the total number of records in the system

1. Overview of HiRDB System Construction

17

log files:
The total number of -n option values in the pdloginit command is the total
number of records.
Execute the pdlogls -d sys -s server-name -e command. The sum of the
numbers of records (hexadecimal) that are output at the top of the
Recode-count in the execution result is the total number of records.

(14) Backing up the files in the HiRDB directory
In case of an upgrading error, make a backup copy of the files in the HiRDB directory.
Delete this backup copy after checking the operation of new version. For the procedure
for backing up the HiRDB directory, see 2.3.1 Creating the HiRDB directory.

(15) Upgrading option program products
If option program products were used with HiRDB before upgrading, those option
program products must be upgraded to the same version as HiRDB. For details about
option program products, see 2.2.2 Installing option program product.

1.3.2 Replacing an existing version with the new version
Figure 1-2 shows the procedure for replacing an existing version with the new version.

1. Overview of HiRDB System Construction

18

Figure 1-2: Procedure for replacing an existing version with the new version

1. Overview of HiRDB System Construction

19

1
• If you specify pd_auto_vrup=N in the system common definition, the

pdvrup command does not start automatically. In this case, if the
KFPS05203-Q message (pdvrup command entry request message) is
issued, the HiRDB administrator must enter the pdvrup command.

• When you are updating to the HiRDB update version, the pdvrup command
does not start automatically. Proceed to the next step.

2
For the execution result of the pdvrup command, check the KFPX24404-I
message in the message log file or syslog file.

1.3.3 Installing a new version while retaining the old version
To install a new version while retaining the old version (to create multi-HiRDB),
follow the procedure shown in Figure 1-3.

Figure 1-3: Installing a new version while retaining the old version (to create
multi-HiRDB)

1.3.4 Upgrading the HiRDB plug-ins
When upgrading HiRDB, you also need to upgrade your plug-ins. For the HiRDB
version required for plug-ins and the plug-in upgrading procedure, see an applicable

1. Overview of HiRDB System Construction

20

plug-in manual and 6.2 Upgrading plug-ins.

1.3.5 Using Java stored procedures and functions
With HP-UX and Solaris HiRDB, JRE (the Java execution environment), which is
required to use Java stored procedures and functions, is bundled with version 07-02
and earlier but not with version 07-03 or later. When you update HiRDB version 07-02
or earlier to version 07-03 or later, the version of JRE that was installed with HiRDB
version 07-02 or earlier is deleted in the following situations:

Therefore, if you perform the installation described in 1.3.3 Installing a new version
while retaining the old version, you can use the JRE of the HiRDB directory of the old
version (07-02 or earlier). However, if you install a new version (07-03 or later), the
JRE of the HiRDB installation directory is deleted.
Note the following tips when upgrading to HiRDB version 07-03 or later:

• To use Java stored procedures and functions, you must obtain JRE beforehand
(you can obtain it from the website of the platform vendor). For details about the
specific JRE that is required to use Java stored procedures and functions, see the
manual HiRDB Version 8 System Operation Guide.

• To use Java stored procedures and functions, you must specify in the
pd_java_runtimepath operand the root directory of JRE to be used. Also, as
required, specify in the pd_java_libpath operand the directory where the Java
virtual machine is stored. For details about the pd_java_runtimepath and
pd_java_libpath operands, see the manual HiRDB Version 8 System
Definition.

• To use the JRE installed with the old version after upgrading to a new version,
back up JRE to a directory other than either the installation directory or the
HiRDB operation directory before deleting JRE. By specifying in the
pd_java_runtimepath operand the directory in which JRE is backed up, you
can use the backed up version of JRE to run Java stored procedures and functions.

1.3.6 In the event of an upgrading error
This section discusses the actions that you should take if any of the following events
occurs:

• The pdvrup command results in a return code of 5 or greater.

When What is deleted

• When uninstalling HiRDB version 07-02 or earlier
• When overwrite installing HiRDB version 07-03 or

later

JRE of the HiRDB installation directory

When executing the pdsetup -d command and sending
y in response to the KFPS00036-Q message

JRE of the HiRDB directory

1. Overview of HiRDB System Construction

21

• During HiRDB startup, the KFPX24404-I message is issued with a return code
of 5 or greater.

In this case, check the message that is output along with this message and take an
appropriate action.

(1) When you do not need to terminate HiRDB
Eliminate the cause of the error and reenter the pdvrup command.

(2) When you need to terminate HiRDB
If you need to terminate HiRDB to correct the error, terminate HiRDB once. After
eliminating the cause of the error, use the pdstart command to start HiRDB. When
HiRDB starts, the pdvrup command entry request message (KFPS05203-Q) is issued,
so that you can reenter the pdvrup command.

(3) When you need to restore the old version of HiRDB
To correct the error, you may need to restore the old version of HiRDB, depending on
the error. For example, if insufficient data dictionary RDAREA space is the cause of
the upgrading error, you need to restore the old version of HiRDB and use the database
structure modification utility (pdmod). In this case, restore the old version of HiRDB,
eliminate the cause of the error, and then upgrade HiRDB again.
For details about how to restore the old version of HiRDB, see 1.3.7 Restoring HiRDB
to the previous version when version upgrade fails.

1.3.7 Restoring HiRDB to the previous version when version
upgrade fails

Figure 1-4 shows how to restore HiRDB to the previous version when version upgrade
fails.

1. Overview of HiRDB System Construction

22

Figure 1-4: Procedure to restore HiRDB to the previous version (when version
upgrade fails)

Figure 1-5 shows the procedure for deleting and re-creating the system files that have
been created by the new version.

1. Overview of HiRDB System Construction

23

Figure 1-5: Procedure for deleting and re-creating the system files created by
the new version

1. Overview of HiRDB System Construction

24

1.4 Updating to HiRDB update version

A HiRDB update version has the same version number and revision number as the
active HiRDB, such as 07-02, followed by a code, -mn; for example, 07-02-01, where
the underlined part is the -mn code. For versions earlier than 07-02, m can be a /, an
alphabetic character (excluding I, O, and P to T) or a number, and n is an alphabetic
character from A to Z. For versions 07-02 and later, m and n are both numbers.
You can switch to the HiRDB update version while the existing version of HiRDB is
running.

1.4.1 Updating HiRDB
There are the two ways to update HiRDB:

• Use the installer.
• Obtain and use the update patch from the Web.

The two methods are explained below.
(1) Using the installer to update HiRDB

You can use the installer to update HiRDB. There are two ways to use the installer to
update HiRDB.

(a) Updating after terminating HiRDB
The procedure for updating after terminating HiRDB is the same as for performing a
version upgrade; for details, see 1.3 Upgrading HiRDB. In this case, the differences in
updating to the HiRDB update version are as follows:

• The following steps in 1.3.1 Before upgrading are not needed:
• (1) Checking for available space
• (3) Checking the memory size

• Execution of the pdvrup command is not required.
(b) Updating with HiRDB operating

See 1.4.2 and following sections.
(2) Using the update patch to update HiRDB

When the version and revision numbers are the same as the active HiRDB, you can use
the update patch to update HiRDB. The patch is available from the Web. There are two
ways to use the patch to update HiRDB:

1. Overview of HiRDB System Construction

25

(a) Quit HiRDB and update
For details of how to use this method, read RELEASE.TXT or RELEASE.EUC, which is
included with the update patch.

(b) Update while running HiRDB
See 1.4.2 and following sections.

1.4.2 Prerequisites
The following prerequisites must be satisfied in order to update while HiRDB is
operating:

Version, HiRDB server type, addressing mode
The following items must be the same for the HiRDB update version and the
operating HiRDB; these items can be checked with the pdadmvr command:

• Version number and revision number
• HiRDB server type (HiRDB/Single Server or HiRDB/Parallel Server)
• Addressing mode (32-bit mode or 64-bit mode)

OS operating parameters
The estimates for the OS operating parameters needed by HiRDB after updating
must be within the ranges of the current values of the kernel parameters.
HiRDB directory
The installation directory must not be the same as the HiRDB directory.
Library sharing
In the case of multi-HiRDBs, the libraries must not be shared.
Free disk space
There must be sufficient free disk space in the HiRDB directory to store both the
currently operating HiRDB and the HiRDB update version. For the space
requirements of the HiRDB update version, see the Release Notes.
HiRDB client
A HiRDB client that is working online must be running on an HiRDB server that
is not being updated. Such a HiRDB client that is operating on a HiRDB server
that is to be updated must be terminated and the online job must be terminated.
Client library
The HiRDB/Developer's Kit and HiRDB/Run Time that are being used by a
HiRDB client that is working online must be version 07-00 or later. If an earlier
version is being used, the connection of the HiRDB client will be released during

1. Overview of HiRDB System Construction

26

updating.
Application of the automatic reconnect facility
A HiRDB client that is connected to HiRDB must use the automatic reconnect
facility (PDAUTORECONNECT=YES). If the automatic reconnect facility is not
being used, the connection of the HiRDB client will be released during updating.
For details about the automatic reconnect facility, see the manual HiRDB Version
8 UAP Development Guide.

1.4.3 Update procedure
To update to the HiRDB update version:
1. Install the HiRDB update version.

The HiRDB update version requires overwrite installation. For a HiRDB/Parallel
Server, overwrite installation of the HiRDB update version must be performed for
each unit. For details about the installation procedure, see 2. Installation.

2. Copy the HiRDB update version to the update directory.
To copy the HiRDB update version stored in the installation directory to the
update directory in the HiRDB directory ($PDDIR/renew), execute the
following directory command of the operating HiRDB:
HiRDB-update-version-installation-directory/bin/pdprgcopy.
For a HiRDB/Parallel Server, execute the pdprgcopy command at the unit where
the system manager is installed.

3. Check that HiRDB is online.
Use the pdls command to check that all units display as ACTIVE.

4. Update to the HiRDB update version.
To update HiRDB, execute the
HiRDB-update-version-installation-directory/bin/pdprgrenew
directory command of the operating HiRDB. When this command is executed, the
operating HiRDB is saved to the backup directory ($PDDIR/renew_bak), at
which point the operating HiRDB can be updated with the HiRDB update version
copied in step 2 to the update directory. For a HiRDB/Parallel Server, execute the
pdprgrenew command on the unit where the system manager is installed.

1.4.4 Update procedure when the system switchover facility is used
When the system switchover facility is used, an operating HiRDB can be updated in
the following cases:

• Standby system switchover
This can be done only when the system that is running is operating as the primary
system. When the system that is running is operating as the secondary system,

1. Overview of HiRDB System Construction

27

execute the command after performing system switchover.
• Standby-less system switchover

This can be done only when all normal BESs are operating. Switchover cannot
occur when alternating.

The following describes how to update to the HiRDB update version when the system
switchover facility is used.

When operating in server mode
Standby system switchover

1. If the secondary system is running, perform system switchover in such a
manner that the primary system will be running after the switchover.

2. Terminate the standby system.
3. Use the running system to update to the HiRDB update version.
4. Use the pdsetup -d command to delete the HiRDB standby system from

the OS (respond with y to the KFPS00036-Q message).
5. Perform overwrite installation of the HiRDB update version on the standby

system.
6. Use the pdsetup command to register the HiRDB standby system with the

OS.
7. Re-start the standby system terminated in step 1. On the standby HiRDB

system, execute the pdstart command (for a HiRDB/Parallel Server,
execute the pdstart -q command).

Standby-less system switchover (1:1)

1. If the alternate BES is running, switch back the system.
2. Remove the alternate portion from waiting status. For details about the

procedure, see the manual HiRDB Version 8 System Operation Guide.
3. On the normal BES unit that is running, update to the HiRDB update version.

Because the alternate portion that was removed from waiting status in step 2
goes into waiting status automatically when the pdprgrenew command is
executed, no other action is required.

Standby-less system switchover (effects distributed)

1. If the accepting unit's guest BES is running, switch back to the normal unit.
2. Release the acceptable status of all inactive guest BESs that belong to the HA

group.
3. On the running normal unit, update to the HiRDB update version.

1. Overview of HiRDB System Construction

28

Because the guest BESs whose acceptable status was released in step 2 go
into acceptable status automatically when the pdprgrenew command is
executed, no other action is required.

Operating in monitor mode
1. If the secondary system is running, perform switchover so that the primary

system will be running.
2. On the running system, update to the HiRDB update version.
3. Use the pdsetup -d command to remove the HiRDB standby system from

the OS (respond with y to the KFPS00036-Q message).
4. On the standby system, perform overwrite installation of the HiRDB update

version.
5. Use the pdsetup command to register the HiRDB standby system with the

OS.

1.4.5 Cautions
When you cannot update to the HiRDB update version
In the following cases, an operating HiRDB cannot update to the HiRDB update
version:

• In the case of a HiRDB/Parallel Server, when not all servers and units have
terminated (including reduced mode units) or when network communication
between units is blocked

• When a transaction or utility is still operating more than 15 minutes after the
pdprgrenew command was executed

• When the HiRDB Datareplicator linkage facility is used, and the setting of
the pd_rpl_init_start operand and the actual data extraction mode
differ as follows:

 Y is the setting for the pd_rpl_init_start operand, and the
pdrplstop command was executed to stop the HiRDB Datareplicator
linkage facility

 N is the setting for the pd_rpl_init_start operand, and the
pdrplstart command was executed to start the HiRDB Datareplicator
linkage facility

UAP response delay
While the pdprgrenew command is executing, UAP response times will be
delayed. Thus, we recommend that you execute this command when traffic in the
system is relatively low.

1. Overview of HiRDB System Construction

29

Definition reconfiguration
The memory requirements change when you update to the HiRDB update version,
which necessitates reconfiguration of the system definition. Thus, the HiRDB
system definition must be reconfigured in advance with the pdchgconf system
reconfiguration command. For details about the system reconfiguration
command, see the manual HiRDB Version 8 System Operation Guide.
Execution of operation commands and utilities
You must not execute operation commands or utilities while the pdprgrenew
command is executing. Doing so may result in an error causing HiRDB to
terminate or in a failure when HiRDB is updated.
Use of the system switchover facility
You cannot use the system switchover facility while updating to the update
version.
Invalid holdable cursor
As the cursor cannot be maintained while updating to the update version, a UAP
that uses the holdable cursor cannot be used just before or after updating. Doing
so will result in an error at the UAP.
Invalid LOCK statement of the UNTIL DISCONNECT setting
As the UNTIL DISCONNECT setting cannot maintain an exclusive lock while
updating to the update version, the LOCK statement cannot use the UNTIL
DISCONNECT setting just before or after updating. Doing so will result in an error
at the UAP.

1.4.6 Operation considerations
This subsection provides important information about updating to the HiRDB update
version.

• Global buffers allocated using the database structure modification utility (pdmod)
become invalid. The global buffers must be reallocated after the update is
completed.

• The count startup point of the pd_spool_cleanup_interval operand is reset
at the time of the update.

• If the pd_spool_cleanup operand is set to normal or force, any
troubleshooting information output from completion of the update is deleted.

• If the pdstbegin command or the pdstend command is to be used to set
collection conditions for statistical information to values different from the
settings of the pd_statistics operand or the pdstbegin operand, use the
following method:

1. Overview of HiRDB System Construction

30

• If statistical information was collected with the pdstbegin command in an
environment that was activated without setting the pd_statistics
operand or the pdstbegin operand, statistical information will not be
collected after the update. In such a case, the pdstbegin command will
have to be re-executed.

• If statistical information collection was terminated with the pdstend
command in an environment that was activated where the pd_statistics
operand was specified as Y or where the pdstbegin operand was specified,
or if the pdstbegin command was executed to change the type of statistical
information to be collected, the collection of statistical information after the
update will be as specified in the system common definition. Therefore, the
pdstend command and the pdstbegin command must be re-executed.

• Because the list used in any narrowed search will disappear, such a list must be
re-created with the ASSIGN LIST statement after the update.

• Because the number of resident processes altered by the pdchprc command
returns to the number of processes specified by the HiRDB system definition, the
pdchprc command must be re-executed after the update.

• The system log file is replaced during updating to the HiRDB update version.
Before updating, check that there are swappable system log files. If system log
files are needed, perform the following:

• If there are no swappable system log files
If there are files in unload wait status, unload them. If there are no files in
unload wait status, use the pdchgconf system reconfiguration command to
add swappable log files. For details about the system reconfiguration
command, see the manual HiRDB Version 8 System Operation Guide.
If the update is performed when there are no swappable system log files, you
must terminate HiRDB with the Psjnf07 or Psjn381 code once the
KFPS01256-E message has been output. In such a case, prepare swappable
files, and then use the pdstart command to start HiRDB.

• If there is only one swappable system log file
It is possible to update to the HiRDB update version in such a case, although
the KFPS01224-I message will be output during the update to indicate that
there are no log files. After the update, prepare swappable system log files.

• The message log file is replaced during updating to the HiRDB update version.
However, the KFPS01910-I message notifying you that the message log file has
been replaced is not output. If you want to save the messages in the message log
file, back up the file prior to updating.

1. Overview of HiRDB System Construction

31

1.4.7 Related product limitations and considerations
Plug-ins
An operating HiRDB can be updated to the HiRDB update version even when
plug-ins are used. However, the plug-ins cannot be updated.
HiRDB Datareplicator linkage facility
Do not execute the pdprgrenew command on HiRDB while the HiRDB
Datareplicator is being used for data extraction. If you are updating to the HiRDB
update version without having terminated online applications, the HiRDB
Datareplicator that is engaged in extraction must be terminated. However, do not
stop the HiRDB Datareplicator linkage (do not execute the pdrplstop
command). If the HiRDB Datareplicator linkage is interrupted, the extracting
database and the target database can lose integration.

1.4.8 Operation when an error occurs during installation
(1) Error handling

If an error occurs during updating to the HiRDB update version, the pdprgrenew
command returns automatically to the pre-update HiRDB and starts HiRDB operation.
If this command outputs the KFPS04646-I message with return code 12 and then
terminates, it means that the operation to return to the pre-update HiRDB failed. In
such a case, refer to the preparation error that is output or to the error messages and
KFPS04647-I message output to the syslogfile for guidance on what to do next.
Figure 1-6 shows how to handle errors during updating to the HiRDB update version.

1. Overview of HiRDB System Construction

32

Figure 1-6: Handling errors during updating to the HiRDB update version

1. Correct whatever caused the error in the pdprgrenew command, and then
re-execute the pdprgrenew command.

2. If there are HiRDB processes, use the pdstop -f command to perform forced
termination of HiRDB, and then execute the pdprgrenew -b command. If there
are no HiRDB processes, execute the pdprgrenew -b command. When the
pdprgrenew -b command is executed, recovery processing restarts the
pre-update HiRDB.
Error messages and abort codes relating to a HiRDB shutdown processing failure
may also be displayed. Follow the message handling procedure, and check that
HiRDB has returned to the pre-update environment.

3. If there are HiRDB processes, use the pdstop -f command to perform forced
termination of HiRDB, and then execute the pdprgrenew -b command. If there
are no HiRDB processes, execute the pdprgrenew -b command. When the
pdprgrenew -b command is executed, recovery processing returns to the
directory for updating the HiRDB update version.
Error messages and abort codes relating to a HiRDB startup processing failure
may also be displayed. If after updating to the HiRDB update version there are
problems with the operating environment, follow the procedure for the displayed
message.

1. Overview of HiRDB System Construction

33

(2) Checking whether HiRDB returned to pre-update status in the event of a
failure during updating

If updating to the HiRDB update version failed, you can check whether or not HiRDB
returned to its pre-update status by checking the following items. If these conditions
are satisfied, HiRDB returned to the pre-update status.

• The version displayed by the pdadmvr -s command matches the HiRDB version
before the update.

• The HiRDB is in online status (the result of the pdls command is that all units
are displayed as ACTIVE).

• There is no backup directory ($PDDIR/renew_bak).

1. Overview of HiRDB System Construction

34

1.5 Using JP1/Software Distribution to execute online distribution of
HiRDB

If you are upgrading multiple HiRDBs in a network, using JP1/Software Distribution
to execute online distribution of HiRDB (remote installation) can reduce the work
involved in HiRDB installation and setup on each server machine. To execute online
distribution of HiRDB, you need one of the following products:
JP1 Version 5

• JP1/Software Distribution
• JP1/Software Distribution Workstation

JP1 Version 6
• JP1/Software Distribution Manager
• JP1/Software Distribution SubManager or JP1/Software Distribution Client

Notes about this section
• If you are using JP1 Version 6, replace JP1/Software Distribution with JP1/

Software Distribution Manager and JP1/Software Distribution Workstation
with JP1/Software Distribution SubManager or JP1/Software Distribution
Client.

• This section assumes that you are familiar with the operation of JP1/
Software Distribution and JP1/Software Distribution Workstation.

• Information provided here is for the following versions of HiRDB:
HP-UX
Solaris

1.5.1 Online distribution procedure
Figure 1-7 shows the HiRDB online distribution procedure using JP1/Software
Distribution.

1. Overview of HiRDB System Construction

35

Figure 1-7: HiRDB online distribution procedure using JP1/Software
Distribution

1.5.2 Preparations on JP1/Software Distribution Workstation
Before executing online HiRDB distribution, you need to set up your JP1/Software
Distribution Workstation on the managing server. This section describes only those
JP1/Software Distribution Workstation settings that require special attention.

(1) Specifying the registration file for JP1/Software Distribution Workstation
This section discusses the InstallTiming parameter that is specified in the

1. Overview of HiRDB System Construction

36

registration file when registering HiRDB as a resource in JP1/Software Distribution
Workstation.

To automate the HiRDB setup procedure, specify a HiRDB setup automation shell
during the program product installation postprocessing for the registration file
(APafterGeneration). For details about the HiRDB setup automation shell, see
subsection (2).

(2) Creating a HiRDB setup automation shell
To automate the HiRDB setup procedure, create a shell as the program product
installation postprocessing. Specify the pdsetup command in this shell to set up
HiRDB. This automates HiRDB setup after online distribution.
The following shows coding examples of the HiRDB setup automation shell:

(a) HP-UX HiRDB/Single Server
Example 1

This sample shell uses the installation directory as the HiRDB directory:

Explanation:

1. If you use the installation directory as the HiRDB directory, redefine the
directory's owner and group as the HiRDB administrator and HiRDB
group. Replace the underlined parts with the actual HiRDB
administrator's user ID and group ID.

2. Replace the underlined part with the actual character encoding you want
to use.

Example 2
This sample shell does not use the installation directory as the HiRDB directory:

OS type Value of InstallTiming parameter

HP-UX or Solaris Specify BOOT in the InstallTiming parameter.
Example: InstallTiming BOOT

/bin/chown USR1 /opt/HiRDB_S 1
/bin/chgrp GRP1 /opt/HiRDB_S 1
/bin/echo 'y' | /opt/HiRDB_S/bin/pdsetup -d /opt/HiRDB_S
/opt/HiRDB_S/bin/pdsetup -c sjis /opt/HiRDB_S 2

DIR=/usr/HiRDB1 1
/bin/echo 'y' | /opt/HiRDB_S/bin/pdsetup -d $DIR
/opt/HiRDB_S/bin/pdsetup -c sjis $DIR 2
DIR=/usr/HiRDB2 3
/bin/echo 'y' | /opt/HiRDB_S/bin/pdsetup -d $DIR 3
/opt/HiRDB_S/bin/pdsetup -c sjis $DIR 3

1. Overview of HiRDB System Construction

37

Explanation:
1. Specify the name of the HiRDB directory.
2. Replace the underlined part with the actual character encoding you want

to use.
3. Repeat as many times as there are HiRDBs being distributed online.

(b) HP-UX HiRDB/Parallel Server
Example 1

This sample shell uses the installation directory as the HiRDB directory:

Explanation:
1. If you use the installation directory as the HiRDB directory, redefine the

directory's owner and group as the HiRDB administrator and HiRDB
group. Replace the underlined parts with the actual HiRDB
administrator's user ID and group ID.

2. Replace the underlined part with the actual character encoding you want
to use.

Example 2
This sample shell does not use the installation directory as the HiRDB directory:

Explanation:
1. Specify the name of the HiRDB directory.
2. Replace the underlined part with the actual character encoding you want

to use.
3. Repeat as many times as there are HiRDBs being distributed online.

(c) Solaris HiRDB/Single Server
Example 1

This sample shell uses the installation directory as the HiRDB directory:

/bin/chown USR1 /opt/HiRDB_P 1
/bin/chgrp GRP1 /opt/HiRDB_P 1
/bin/echo 'y' | /opt/HiRDB_P/bin/pdsetup -d /opt/HiRDB_P
/opt/HiRDB_P/bin/pdsetup -c sjis /opt/HiRDB_P 2

DIR=/usr/HiRDB1 1
/bin/echo 'y' | /opt/HiRDB_P/bin/pdsetup -d $DIR
/opt/HiRDB_P/bin/pdsetup -c sjis $DIR 2
DIR=/usr/HiRDB2 3
/bin/echo 'y' | /opt/HiRDB_P/bin/pdsetup -d $DIR 3
/opt/HiRDB_P/bin/pdsetup -c sjis $DIR 3

1. Overview of HiRDB System Construction

38

Explanation:
1. If you use the installation directory as the HiRDB directory, redefine the

directory's owner and group as the HiRDB administrator and HiRDB
group. Replace the underlined parts with the actual HiRDB
administrator's user ID and group ID.

2. Replace the underlined part with the actual character encoding you want
to use.

Example 2
This sample shell does not use the installation directory as the HiRDB directory:

Explanation:
1. Specify the name of the HiRDB directory.
2. Replace the underlined part with the actual character encoding you want

to use.
3. Repeat as many times as there are HiRDBs being distributed online.

(d) Solaris HiRDB/Parallel Server
Example 1

This sample shell uses the installation directory as the HiRDB directory:

Explanation:
1. If you use the installation directory as the HiRDB directory, redefine the

directory's owner and group as the HiRDB administrator and HiRDB
group. Replace the underlined parts with the actual HiRDB
administrator's user ID and group ID.

/bin/chown USR1 /opt/HiRDB_S 1
/bin/chgrp GRP1 /opt/HiRDB_S 1
/bin/echo 'y' | /opt/HiRDB_S/bin/pdsetup -d /opt/HiRDB_S
/opt/HiRDB_S/bin/pdsetup -c ujis /opt/HiRDB_S 2

DIR=/usr/HiRDB1 1
/bin/echo 'y' | /opt/HiRDB_S/bin/pdsetup -d $DIR
/opt/HiRDB_S/bin/pdsetup -c ujis $DIR 2
DIR=/usr/HiRDB2 3
/bin/echo 'y' | /opt/HiRDB_S/bin/pdsetup -d $DIR 3
/opt/HiRDB_S/bin/pdsetup -c ujis $DIR 3

/bin/chown USR1 /opt/HiRDB_P 1
/bin/chgrp GRP1 /opt/HiRDB_P 1
/bin/echo 'y' | /opt/HiRDB_P/bin/pdsetup -d /opt/HiRDB_P
/opt/HiRDB_P/bin/pdsetup -c ujis /opt/HiRDB_P 2

1. Overview of HiRDB System Construction

39

2. Replace the underlined part with the actual character encoding you want
to use.

Example 2
This sample shell does not use the installation directory as the HiRDB directory:

Explanation:
1. Specify the name of the HiRDB directory.
2. Replace the underlined part with the actual character encoding you want

to use.
3. Repeat as many times as there are HiRDBs being distributed online.

1.5.3 Notes about online distribution
• When upgrading your HiRDB, be sure to terminate the HiRDB at the target

system using the pdstop command. For details about how to upgrade HiRDB,
see 1.3 Upgrading HiRDB.

• No response is available during the program product installation postprocessing
that is specified in the APafterGeneration parameter for the JP1/Software
Distribution Workstation registration file. Therefore, if you are using the
pdsetup -d HiRDB command that requests the user's response, suppress a
response wait by passing an appropriate response with the UNIX echo command,
as shown in the coding sample. Note that you cannot use any HiRDB command
other than pdsetup.

• The pdvrup command starts automatically. There is no need to enter this
command while upgrading your HiRDB.

DIR=/usr/HiRDB1 1
/bin/echo 'y' | /opt/HiRDB_P/bin/pdsetup -d $DIR
/opt/HiRDB_P/bin/pdsetup -c ujis $DIR 2
DIR=/usr/HiRDB2 3
/bin/echo 'y' | /opt/HiRDB_P/bin/pdsetup -d $DIR 3
/opt/HiRDB_P/bin/pdsetup -c ujis $DIR 3

1. Overview of HiRDB System Construction

40

1.6 Migrating to HiRDB in 64-bit mode (HP-UX, Solaris, and AIX 5L
versions only)

Only the HP-UX, Solaris, and AIX 5L versions of HiRDB can be migrated from 32-bit
mode to 64-bit mode on the same machine.

1.6.1 Required products
Table 1-5 lists the products required when HiRDB is migrated to 64-bit mode.

Table 1-5: Products required when HiRDB is migrated to 64-bit mode

1.6.2 64-bit mode migration method
Figure 1-8 shows how to migrate your HiRDB to 64-bit mode.

Applicable OS Required product

HP-UX 11.0
HP-UX 11i
HP-UX 11i V2(PA-RISC)

• HiRDB/Single Server Version 8(64)
• HiRDB/Parallel Server Version 8(64)
• HiRDB/Run Time Version 8(64)
• HiRDB/Developer's Kit Version 8(64)

Solaris 8
Solaris 9

• HiRDB/Single Server Version 8(64)
• HiRDB/Parallel Server Version 8(64)
• HiRDB/Run Time Version 8(64)
• HiRDB/Developer's Kit Version 8(64)

AIX 5L • HiRDB/Single Server Version 8(64)
• HiRDB/Parallel Server Version 8(64)
• HiRDB/Run Time Version 8(64)
• HiRDB/Developer's Kit Version 8(64)

1. Overview of HiRDB System Construction

41

Figure 1-8: How to migrate to 64-bit mode

1. Enter the pdstop command to terminate HiRDB normally.
2. Use the pdstsinit command to increase the size of status files.

1. Overview of HiRDB System Construction

42

See 18.3 Determining the size of status files to reestimate the size of status files.
If necessary, use the pdstsinit command to increase the size of status files.

3. Delete the pdplugin operand from the system common definition.
Delete the pdplugin operand from the system common definition. Otherwise,
HiRDB does not start normally after being upgraded to 64-bit mode.

4. Upgrade HiRDB to 64-bit mode.
Upgrade your HiRDB to 64-bit mode. For details about how to upgrade HiRDB,
see 1.3 Upgrading HiRDB.
Before upgrading HiRDB to 64-bit mode, check the data dictionary RDAREA for
available space. In this case, you need the space discussed in 1.3.1 Before
upgrading, plus the space for the following tables:

SQL_TABLES table: 1 + 5 S

SQL_VIEW_DEF table: 2 + 200 S
5. The pdobjconv command starts automatically.

The pdvrup command is executed during the upgrading procedure. When this
pdvrup command terminates normally, the pdobjconv command1 is executed
automatically. If this command returns code2 0 or 4, migration to 64-bit mode was
successful. If the return code is neither 0 nor 4, continue the 64-bit-mode
migration procedure with the procedure explained in 1.6.3 In the event of an SQL
object migration error.
1 This command makes the view tables and SQL objects for procedures and
functions created in 32-bit mode also available in 64-bit mode.
2 The KFPX21002-I message displays the return code. This message is output to
the system log file and syslogfile. If the return code is 8 or 12, the message is also
output to the standard error output. The following explains the return code:
0:

The pdobjconv command terminated normally.
4:

There was a warning message, but the pdobjconv command terminated
normally.

8:
A migration error occurred on some of the SQL objects. Check the cause of
the error and correct it based on the message and pdobjconv command
processing result (SQL object migration information). Another possibility is

1. Overview of HiRDB System Construction

43

that a utility-execution error occurred.
12:

The pdobjconv command terminated abnormally. Check the cause of the
error and correct it based on the message and pdobjconv command
processing result (SQL object migration information). If you use the
pdcancel command to cancel the pdobjconv command, or an error occurs
in the pdobjconv command process, the command returns code 12.

6. Enter the pdstop command to terminate HiRDB normally.
7. Use the pdplgset command to uninstall a 32-bit-mode plug-in.

Execute the command in the format pdplgset -d plug-in-name.
With some plug-ins, you need to make a backup copy before uninstalling them.
See an applicable plug-in documentation to determine whether the plug-in needs
to be backed up.

8. Install a 64-bit-mode plug-in.
Install a 64-bit-mode plug-in. For the installation procedure, see an applicable
plug-in documentation.

9. Use the pdplgset command to set up the 64-bit-mode plug-in.
Execute the command in the format pdplgset plug-in-name
plug-in-installation-directory-name.

10. Specify the pdplugin operand in the system common definition.
Specify the name of the 64-bit-mode plug-in in the pdplugin operand in the
system common definition.

11. Enter the pdstart command to start HiRDB.

1.6.3 In the event of an SQL object migration error
This section discusses actions that should be taken if the pdobjconv command returns
code 8 or 12.

(1) Return code 8
A migration error occurred in some of the SQL objects. See the SQL object migration
information to check for the SQL objects that resulted in a migration error. For details
about the SQL object migration information, see the pdobjconv command in the
manual HiRDB Version 8 Command Reference.
To migrate an SQL object that resulted in a migration error, check the output message
and eliminate the cause of the error, then execute the pdobjconv command. If you
have terminated HiRDB, start HiRDB again and then execute the pdobjconv
command.

1. Overview of HiRDB System Construction

44

(2) Return code 12
The pdobjconv command terminated abnormally. Check the output message and
eliminate the cause of the abnormal termination, then execute the pdobjconv
command. If you have terminated HiRDB, start HiRDB again and then execute the
pdobjconv command.

1.6.4 In the event of a 64-bit-mode migration error (restoring the old
version)

For details about how to restore the old version of HiRDB due to a 64-bit-mode
migration error, see 1.3.7 Restoring HiRDB to the previous version when version
upgrade fails.
After restoring the old version of HiRDB according to the instructions provided in
1.3.7 Restoring HiRDB to the previous version when version upgrade fails, use the
pdstsinit command to initialize all status files. If you do not initialize all status
files, you cannot start HiRDB normally.

45

Chapter

2. Installation

This chapter describes the preparations required before installation, the HiRDB
installation procedure, notes about the installation of option program products, and
uninstallation of HiRDB.
This chapter contains the following sections:

2.1 Pre-installation procedure
2.2 HiRDB installation procedure
2.3 Post-installation procedures
2.4 Uninstallation of HiRDB

2. Installation

46

2.1 Pre-installation procedure

This section describes the procedures that must be completed before HiRDB can be
installed.

2.1.1 Checking and modifying OS parameters
Executor: Superuser
The message queue and semaphore requirements used by HiRDB must be estimated,
and the OS parameters (kernel parameters) must be changed to reflect these
requirements. For the details about specifying the OS parameters, see 21. Specifying
OS Parameters.
For AIX 5L, the following also apply:

• You must first edit the /etc/security/limits file to change the root user's
or HiRDB administrator's limitation values for OS system resources, and then
restart the OS.
For example, in AIX 5L, the default limitation value for a regular file is 1
gigabyte. If the size of work files output during utility execution exceeds 1
gigabyte, the HiRDB utility terminates abnormally. In such cases, you must
change limitation values for OS system resources; you must make these changes
in advance.

• The syslogfile must be specified for output.
If No-space (insufficient space to write in the file) is output as an error message
during installation, the following may be the cause:

• If this error occurs even when disk space is sufficient, you might have not defined
the HiRDB file system area for a large file, or the case falls under OS kernel
parameter restrictions. For details about OS kernel parameter restrictions, see 21.
Specifying OS Parameters.

2.1.2 Registering the HiRDB administrator
Executor: Superuser
The superuser must register users who will manage HiRDB into the OS on each server
machine. Table 2-1 lists the information that is to be registered.

Table 2-1: Information to be registered in OS on each server machine

Information to be registered Format

Log-in name 1-8 alphanumeric characters beginning with an alphabetic
character*

2. Installation

47

* None of the following words can be used: ALL, HiRDB, MASTER, or PUBLIC.
If the system switchover facility is to be used with HiRDB/Parallel Server or HiRDB/
Single Server, specify the same user ID as the HiRDB administrator registered in the
OS for all server machines that operate HiRDB.
Note

A password should be registered after the user ID has been registered.
The user who uses the user ID registered here to log onto the system is called the
HiRDB administrator. The following privileges are granted to the HiRDB
administrator:
1. Access privilege as the owner of various HiRDB system files and directories.

The holder of this privilege can prohibit write operations by other users.
2. Privilege to execute the HiRDB operation commands and utilities.

Multi-HiRDB
A HiRDB administrator must be registered for each HiRDB.

2.1.3 Setting up a HiRDB group
Executor: Superuser
The superuser may set up a group of HiRDB users.
By setting a HiRDB group, users other than the group can be blocked from creating
files under the HRDB file system area and HiRDB directory. This enhances security.
Multi-HiRDB

If a separate group is set up for each HiRDB, each HiRDB's users can be
monitored.

2.1.4 Creating the installation directory
Executor: Superuser
To protect the root partition from excessive workload, the superuser must create an
installation directory before installing HiRDB. An installation directory should be

User ID Any characters

Group ID

Home directory

Login shell

Information to be registered Format

2. Installation

48

created in a dedicated disk partition to avoid an excessive workload on the file system.
HiRDB is installed under this installation directory.
For details about disk partitions, see the applicable OS documentation.
To install a new HiRDB, create the installation directory on each server machine. Table
2-2 shows the installation directory names for HiRDB.

Table 2-2: HiRDB installation directory

HiRDB type HP-UX, Solaris, AIX 5L, or Linux

HiRDB/Single Server /opt/HiRDB_S

HiRDB/Parallel Server /opt/HiRDB_P

2. Installation

49

2.2 HiRDB installation procedure

This section explains the HiRDB installation procedure.

2.2.1 Installing HiRDB
Executor: Superuser
Use Hitachi Program Product Installer to install HiRDB on each server machine.
Upgrading HiRDB

Before installing HiRDB, check for any active HiRDB under the installation
directory (using the ps OS command, etc.). If there is an active HiRDB, normally
terminate the HiRDB with the pdstop command, use the pdsetup -d command
to remove HiRDB from the operating system, then install HiRDB.

HiRDB/Parallel Server
Install the same version of HiRDB on all server machines that constitute the
HiRDB/Parallel Server.

Multi-HiRDB
When you install multiple HiRDB/Single Servers or multiple HiRDB/Parallel
Servers, they all have the same installation directory. If you install multiple
HiRDBs one after another, only the last HiRDB installed is effective because they
all share the same installation directory.
Therefore, once you have installed the first HiRDB, create its HiRDB directory
and register the HiRDB in the operating system (by following the procedures
described in 2.3.1 Creating the HiRDB directory and 2.3.2 Registering HiRDB
and option program products in the operating system). You can then install the
next HiRDB.

2.2.2 Installing option program product
Executor: Superuser
If the HiRDB option program products facility is to be used, its version must be the
same as the HiRDB version. Table 2-3 shows the option program products facility and
the servers on which each option program product is installed.

2. Installation

50

Table 2-3: Option program products facility and target installation servers

For details about HiRDB External Data Access and HiRDB External Data Access
Adapter, see the manual HiRDB External Data Access Version 7. For details about
HiRDB Staticizer Option, see the manual HiRDB Staticizer Option Version 7
Description and User's Guide.

Product name Facilities available with introduction of
the option program product

Target installation
server machine

HiRDB External Data Access
HiRDB External Data Access
Adapter

HiRDB External Data Access facility All server machines

HiRDB Staticizer Option Inner replica facility
Updatable online reorganization

HiRDB Advanced High
Availability

• Server mode system switchover facility
• User server hot standby
• Rapid system switchover facility
• Standby-less system switchover (1:1)

facility
• Standby-less system switchover (effects

distributed) facility

Dynamic update of global buffer (pdbufmod
command)

System reconfiguration command (pdchgconf
command)

HiRDB Advanced Partitioning
Option

Table matrix partitioning

Changing the partition storage conditions
(ALTER TABLE)

HiRDB Non Recover FES Recovery-unnecessary front-end server

HiRDB LDAP Option Sun Java System Directory Server linkage
facility

Server machine
containing the dictionary
server

HiRDB Disaster Recovery Light
Edition

Real Time SAN Replication of log-only
synchronous method

All server machines
configuring a HiRDB
system at a business site
and all server machines
configuring a HiRDB
system at a log applicable
site.

2. Installation

51

2.2.3 Installing plug-ins
The superuser must install a plug-in by using the OS's installer. For the installation
procedure, see the documentation provided with the corresponding software.

2. Installation

52

2.3 Post-installation procedures

This section describes the procedures that must be completed after HiRDB has been
installed.

2.3.1 Creating the HiRDB directory
Executor: HiRDB administrator
The superuser must create a HiRDB directory in each server machine. This directory
is used to execute HiRDB. The HiRDB directory stores various directories and files.
You must not use the installation directory as the HiRDB directory. If the installation
directory is used for the HiRDB directory, disk space problems could result or
installation may fail. For each installation, the owner of the installation directory must
change to the HiRDB administrator at the root, and the changes shown in (1) below
must be made to the group and mode.

(1) Information to be specified in the HiRDB directory
You can assign any name to the HiRDB directory, but be sure to specify all the
following information. The pathname of the HiRDB directory must be no longer than
128 characters (bytes). For Linux, specify 1-27 characters (bytes) as the pathname.

• Directory name: Any name
• Owner: HiRDB administrator
• Group: HiRDB group
• Mode: 0755

Also note the following:
• Specify a character string that begins with / (forward slash) and that consists of

only the following characters:
• Alphanumeric characters
• _ (underscore)
• . (period)
• / (forward slash separating paths)

• The forward slash (/) alone cannot be specified.
• A path name must not exceed 128 characters (bytes). For the Linux version, a path

name must not exceed 27 characters (bytes).

2. Installation

53

(2) Points to be noted when creating the HiRDB directory
1. To create the HiRDB directory, you need at least 500 MB of disk space. The

recommended disk space is 1 GB. This is just a guideline; the actual size that is
required depends on the size of the system.

2. You should not create the HiRDB directory in the root directory. Files containing
troubleshooting information are created in the HiRDB directory (files under
$PDDIR/spool). If you do not delete these files periodically using the
pdcspool command, a space shortage may occur on the disk, resulting in
adverse effects on operating system operation.
If you do create the HiRDB directory in the root directory, you should use a
different partition than that of the root directory.

3. Create the HiRDB directory on a local disk. Do not specify nosuid as the mount
type of the file system in /etc/checklist or etc/fstab.

4. For multi-HiRDB, create a HiRDB directory with a different name for each
HiRDB.

5. To employ a 2-to-1 or mutual system switchover organization for a HiRDB/
Parallel Server, you cannot share the same HiRDB directory among all server
machines. For details about how to define the HiRDB directory, see the manual
HiRDB Version 8 System Operation Guide.

(3) Deleting files from the HiRDB directory
When a server process or client has been terminated forcibly, HiRDB outputs
troubleshooting information under $PDDIR/spool. If a command or utility is
terminated by pressing Ctrl + C, temporary work files output by the command or
utility remain in $PDDIR/tmp and are not deleted. These remaining troubleshooting
information items and temporary work files are often the cause of a shortage of disk
space available to the HiRDB directory. Because insufficient disk space for the HiRDB
directory can cause abnormal termination, HiRDB deletes the following files
periodically:

• Troubleshooting information files (files in $PDDIR/spool)
• Temporary work files (files in $PDDIR/tmp)

Normally, these files are deleted every 24 hours. The interval between deletions can be
changed with the pd_spool_cleanup_interval operand. The
pd_spool_cleanup_interval_level operand can be used to specify that only
files that were output earlier than a specified number of days previous to the current
date are to be deleted.
It is also possible to delete all at once all troubleshooting information (all files in
$PDDIR/spool).

• Use the pdcspool command to delete the troubleshooting information files.

2. Installation

54

Temporary work files (in $PDDIR/tmp) can also be deleted.
• Automatically delete the troubleshooting information files during the HiRDB

startup. In this case, use the pd_spool_cleanup operand to specify whether or
not to delete the troubleshooting information files. If you omit this operand, the
troubleshooting information files are deleted automatically.
You can also use the pd_spool_cleanup_level operand to delete only those
troubleshooting information files that have been output a specified number of
days ago.

Note

You can select the troubleshooting information to be deleted using the pdcspool
command's option, pd_spool_cleanup_level operand or
pd_spool_cleanup_interval operand.

(4) Making a backup copy of the HiRDB directory
To prepare for possible errors on the disk that contains the HiRDB directory, make a
backup copy of the files in the HiRDB directory (files under $PDDIR/conf). You need
the backup copy of the files under $PDDIR/conf to restore the HiRDB directory.
There are HiRDB system definition files under $PDDIR/conf. If you have modified
the HiRDB system definition, back up the files contained under $PDDIR/conf.
If you have created user files under the HiRDB directory, also back up those files. You
need this backup copy to restore the HiRDB directory.
For details about how to recover the HiRDB directory, see the manual HiRDB Version
8 System Operation Guide.

Backing up the disk that contains the HiRDB directory
If you need to back up the disk that contains the HiRDB directory, use the
following procedure:
1. Terminate HiRDB with the pdstop command.

2. Execute the pdsetup -d command. Enter n as a response.*

3. Use the OS function (command) to back up the disk that contains the HiRDB
directory.

4. Execute the pdsetup command.
5. Enter the pdstart command to start HiRDB.
* You need to execute the pdsetup -d command to remove all the files that may
cause problems after recovery. Additionally, you need to enter n as a response to
retain all the files that are required after recovery.

2. Installation

55

2.3.2 Registering HiRDB and option program products in the
operating system

Executor: Superuser
(1) OS registration method

(a) HiRDB
The superuser executes the pdsetup command to register HiRDB into the OS. The
pdsetup command copies the directories and files from the installation directory to
the HiRDB directory. For a HiRDB/Parallel Server, execute the pdsetup command
for each server machine.
To perform registration into the OS:
1. Execute the pdsetup command.
2. Check the termination status.

If the termination status of the pdsetup command is not 0, an error may have
occurred. See the message output to the syslog file, eliminate the cause of the
error, and then re-register HiRDB into the OS.

For details about the pdsetup command, see the manual HiRDB Version 8 Command
Reference.
Notes

• The pdsetup command is located in the bin directory under the HiRDB
installation directory.

• If you execute the pdsetup command, the Inittab directory is
automatically created in the conf directory under the HiRDB installation
directory. This directory is used to back up the /etc/inittab file. If the /
etc/inittab file is damaged during or after the execution of the pdsetup
command, use this backup file to start the operating system.

• Once you execute the pdsetup command, do not change the owner of the
HiRDB directory using the chown OS command. If you do so, HiRDB may
no longer start.

(b) Option program products
To install an option program product, you use the pdopsetup command to register the
option program product with the OS. In the case of a HiRDB/Parallel Server, you must
execute the pdopsetup command for each server machine. However, in the case of
HiRDB LDAP Option or HiRDB Disaster Recovery Light Edition, execute as follows:
For HiRDB LDAP Option

On the server machine that contains the dictionary server, execute the

2. Installation

56

pdopsetup command.
For HiRDB Disaster Recovery Light Edition

For HiRDB/Single Server, execute the command on the server machines at both
the business site and the log applicable site.
For HiRDB/Parallel Server, execute the command on each server at both the
business site and the log applicable site.

(2) Specifying character encoding
(a) Specification at the server

Use the -c option of the pdsetup command to specify the character encoding to be
used in with HiRDB. Table 2-4 lists the character encoding that can be used with
HiRDB.

Table 2-4: Character encoding supported by HiRDB

D: Default character encoding that is assumed when the -c option is omitted from the
pdsetup command

: Character encoding supported by the OS
1 The Unicode set (UTF-8) cannot be used for versions prior to HiRDB Text Search
Plug-in Version 02-02. Therefore, if you are using HiRDB in conjunction with a
version of HiRDB Text Search Plug-in that is prior to 02-02, do not specify utf-8 in
the -c option of the pdsetup command.

(b) Specification at the client
On the client side, specify the character encoding with the LANG or PDCLTLANG
operand in the client environment definition as appropriate to the server's character
encoding. The client environment definition is referenced during UAP creation or
execution. For the client environment variables supported based on the server's

Character encoding OS

HP-UX Solaris AIX 5L Linux

Shift JIS Kanji encoding D D

EUC Chinese Kanji encoding

Single-byte character encoding

EUC Japanese Kanji encoding D D

Unicode (UTF-8)1

2. Installation

57

available character encoding, see the manual HiRDB Version 8 UAP Development
Guide.

(3) Using JP1/OmniBack II (HP-UX only)
To use JP1/OmniBack II, specify the -p option in the pdsetup command. For
operation using JP1/OmniBack II, see the manual HiRDB Version 8 System Operation
Guide.
Note that JP1/OmniBack II is not supported by a 64-bit-mode HiRDB.

(4) Using POSIX library version
If you are using the POSIX library version, specify the -l option in the pdsetup
command. You need the POSIX library version to use the following facilities:

• Java stored procedures and Java stored functions1

• Directory Server linkage facility2

• HiRDB External Data Access facility3

For details about Java stored procedures and Java stored functions, see the manual
HiRDB Version 8 UAP Development Guide. For details about the Directory Server
linkage facility, see the manual HiRDB Version 8 System Operation Guide. For details
about the HiRDB External Data Access facility, see the manual HiRDB External Data
Access Version 7 Description and User's Guide.
The Linux version supports Java stored procedures and Java stored functions without
requiring any special setup.
1 The following versions of HiRDB support Java stored procedures and Java stored
functions:

• HP-UX version (32-bit mode POSIX library version) and HP-UX (IPF
version)

• Solaris version (32-bit mode POSIX library version)
• AIX 5L version (32-bit mode POSIX library version)
• Linux version (32-bit mode) and Linux version (EM64T)

2 The table below shows the OSs that support the Directory Server linkage facility.
Note that HiRDB must be in the 32-bit mode.

• HP-UX
• Solaris 8
• AIX 5L

3 The following operation systems can use the HiRDB External Data Access facility.

2. Installation

58

This is the HiRDB/Parallel Server limited facility.
• HP-UX (32-bit mode POSIX library version)
• Solaris (32-bit mode POSIX library version)
• AIX 5L (32-bit mode POSIX library version)
• Linux (32-bit mode)

2.3.3 Setting environment variables
(1) Environment variables that need to be set by the HiRDB administrator

Set the environment variables shown in Table 2-5 in the HiRDB administrator
environment.
Place the environment variables in one of the following files according to the server
machine's login shell:

• Bourne shell: $HOME/.profile
• C shell: $HOME/.cshrc

Table 2-5: Information to be set in HiRDB administrator defined environment
variables

#1: The PDDIR absolute path name can contain the following byte lengths:
• HP-UX, Solaris, and AIX: 128 bytes
• Linux: 27 bytes

#2: The PDCONFPATH absolute path name can contain a maximum of 213 bytes.
#3: For Solaris and Linux, use LD_LIBRARY_PATH; for AIX 5L, use LIBPATH.
For details about the LANG and PDLANG environment variable settings, see the manual
HiRDB Version 8 UAP Development Guide.
Note

Environment variable Information to be set

PDDIR#1 Specifies the absolute path name of the HiRDB directory.

PDCONFPATH#2 Specifies the absolute path name of the directory that is used to store the HiRDB
system definition file. The unit control information definition always uses the file
under $PDDIR/conf, regardless of this setting. If the PDCONFPATH operand is
specified in the unit control information definition, the same setting must be
specified here as in that PDCONFPATH operand.

PATH Adds $PDDIR/bin.

SHLIB_PATH#3 Adds $PDDIR/lib.

2. Installation

59

It is not necessary to set the TMPDIR environment variable. When TMPDIR is
omitted, HiRDB creates temporary files in $PDDIR/tmp. When TMPDIR is set
and HiRDB commands or utilities are interrupted, HiRDB may create files
beginning with pdcmd or plcmd in the directory specified by TMPDIR. If some
files that begin with pdcmd or plcmd remain in that directory after completion of
the HiRDB commands or utilities, you must delete them, such as by using the
operating system's rm command.

(2) Environment variables that need to be set by users who execute UAPs
If a UAP is to be executed, the HiRDB administrator must set a client environment
definition in the environment variables for each applicable user. The format of the
client environment definition depends on the client machine's OS or shell being used.
For details about the information to be set in the client environment definition, see the
manual HiRDB Version 8 UAP Development Guide.

(3) Environment variables that need to be set by users who define tables and
indexes

If tables and indexes are to be defined, you need to set the following environment
variables for each executing user. Shown here are the environment variables to be set
in the Bourne shell environment.

• PDHOST=HiRDB-server's-host-name[,secondary-HiRDB-server's-host-name]
This environment variable specifies the host name of the HiRDB server to be
connected. For a HiRDB/Parallel Server, specify the host name of the server
machine at which the system manager is defined. If PDFESHOST is specified, you
can specify the host name of PDFESHOST. When the host name of PDFESHOST is
specified, the HiRDB server can be connected even if an error occurs on the
system manager unit.

• $PDUSER=authorization-identifier/password
This environment variable specifies the authorization identifier and password.
You need to assign the schema definition privilege to the user specified here. For
the authorization identifier specified for defining a schema (CREATE SCHEMA),
assign the authorization identifier specified by this environment variable. To use
lower-case alphabetic characters for the authorization identifier and password,
use the "authorization-identifier"/"password" format.

• PDNAMEPORT=HiRDB-server's-port-number
This environment variable specifies the port number of the HiRDB server.
Specify the port number of the HiRDB system that accesses the host specified in
PDHOST.

2.3.4 Setting a remote shell execution environment
Executor: HiRDB administrator

2. Installation

60

The superuser must set a remote shell execution environment in the following cases:
• When a utility special unit is used.
• For a HiRDB/Parallel Server.
• When the rapid system switchover facility is used.

(1) When a utility special unit is used
Some HiRDB commands entered from a HiRDB/Single Server can be executed on a
utility special unit by using the remote shell facility. For this purpose, the superuser
must set appropriate information in /etc/hosts.equiv or $HOME/.rhosts to
enable mutual login between the HiRDB/Single Server and the utility special unit.
When the $HOME/.cshrc file is created without a registration terminal, the superuser
should ensure that data is not output to the standard output file or the standard error
file.

(2) For a HiRDB/Parallel Server
Some HiRDB commands are executed at each server machine using the remote shell
function. For this purpose, you must set appropriate information in /etc/
hosts.equiv or $HOME/.rhosts to enable mutual log-in between the server
machines that constitute the HiRDB/Parallel Server.
When you create the $HOME/.cshrc file without a registration terminal, make sure
that data is not output to the standard output file or the standard error file.

(3) When the rapid system switchover facility is used
When the rapid system switchover facility is used, the remote shell function is used to
transfer information about the primary system to the secondary system. For this
purpose, you must set appropriate information in /etc/hosts.equiv or $HOME/
.rhosts to enable mutual log-in between the server machine constituting the primary
system and the server machine constituting the secondary system.
When you create the $HOME/.cshrc file without a registration terminal, make sure
that data is not output to the standard output file or the standard error file.

2.3.5 Notes about background execution of HiRDB operation
commands

To execute HiRDB operation commands in the background mode, care must be taken
to ensure that background job terminal output is not suppressed by a terminal port
option.
If a command is executed while background job terminal output is suppressed, the
command will not terminate and an invalid process will remain in the HiRDB system.
The tostop option of the stty command is used to set the terminal port option. For
the specification of the stty command's tostop option, see the applicable OS

2. Installation

61

documentation.

2.3.6 Preparing to create the HiRDB file system area
This section describes the prerequisite procedures that must be completed before a
HiRDB file system area can be created.

(1) Initialize the hard disk
Executor: Superuser
The superuser must initialize the hard disk (if the hard disk has already been initialized,
this step may be skipped). For details about how to initialize the hard disk, see the
applicable OS documentation.

(2) Set partitions
Executor: Superuser
The superuser must set partitions on the initialized hard disk (if partitions have already
been set, this step may be skipped). For details about how to set partitions, see the
applicable OS documentation.

(3) Initialize the UNIX file system
Executor: Superuser
If the HiRDB file system areas are to be used as regular file areas, the superuser must
initialize the set partitions as a UNIX file system (if this initialization has already been
completed, this step may be skipped). For details about how to initialize a UNIX file
system, see the applicable OS documentation.
Perform the following if there is a file system area provided by the OS:

• To use a character special file as the HiRDB file system area, change the owner
and access privileges of the character special file that corresponds to the
initialized partition.

(4) Symbolically link the file name
Executor: Superuser
For the name of the HiRDB file system area, the superuser should use a name that is
symbolically linked (with the ln OS command) to the entity name of the character
special file or regular file instead of using the entity name itself. This simplifies the
following operations:

• Recovery of the HiRDB file system area onto another hard disk in the event of a
hard disk error

• Modification of RDAREA structure
For details about the ln command, see the applicable OS documentation.

2. Installation

62

(5) Change the owner and access privileges of the HiRDB file system area
(applicable to character special files)

The superuser must change the owner and access privileges of the HiRDB file system
so that it can be protected from access by unauthorized users.
Table 2-6 lists the owners and access privileges to be specified for the HiRDB file
system area.

Table 2-6: Owners and access privileges to be specified for HiRDB file system
area

Legend:
: Not applicable

* These are OS commands; see the applicable OS documentation.

Owner, access privilege Information to be specified Command to be executed*

Owner User ID HiRDB administrator Chown command

Group ID HiRDB group Chgrp command

Access
privilege

Owner rw- (both read and write permitted) Chmod command

Group rw- (both read and write permitted)

Other (access not permitted)

2. Installation

63

2.4 Uninstallation of HiRDB

Executor: Superuser
Uninstall HiRDB only if you will no longer use HiRDB on the applicable server
machine. Otherwise, you should not uninstall HiRDB.
Notes about uninstalling HiRDB

Before you uninstall HiRDB, make sure that all commands, utilities, applications,
HiRDB Datareplicator, and HiRDB Dataextractor have stopped. If any of these
programs is running, deletion of executable files and shared libraries may fail.

The procedure for uninstalling HiRDB is described below. In the case of a HiRDB/
Parallel Server, you must uninstall HiRDB from all server machines that constitute the
HiRDB/Parallel Server.
To uninstall HiRDB:
1. Before uninstalling HiRDB, remove the HiRDB's registration from the OS. To

check the status of a unit whose HiRDB registration is to be removed from the
OS, execute the pdls -d ust command at the corresponding unit.

• If the termination status is 0 or 4 (unit status is ONLINE, STARTING, or
STOPPING):
The HiRDB's registration cannot be removed from the OS. Check the status
to make sure that HiRDB is not running or engaged in start or termination
processing. If HiRDB is running, use the pdstop command to terminate it
normally. If HiRDB start or termination processing is underway, re-execute
the pdls -d ust command after the processing has terminated.

• If the termination status is 8 (unit status is PAUSE)
Restart of the process service has been cancelled due to an error. To remove
the HiRDB's registration from the OS in this status, proceed to the next step.
To not remove the HiRDB's registration, check the KFPS00715-E message
and the message that has been output to the syslog file before this message,
eliminate the cause of the error, execute the pdrpause command, and then
restart the unit.

• If the termination status is 12 (unit status is STOP)
HiRDB has stopped. Remove its registration from the OS.

• If the termination status is 16 (unit status is STOP)
There is no need to remove the HiRDB's registration from the OS.

2. Use the pdsetup -d command to remove the HiRDB from the OS.

2. Installation

64

If the termination status of the pdsetup -d command is not 0, an error may have
occurred. See the message output to the syslog file, eliminate the cause of the
error, and then re-execute the removal of HiRDB registration from OS again.

3. Uninstall HiRDB.
Use the Hitachi Program Product Installer to uninstall HiRDB from each server
machine.
Check the results in the Hitachi Program Product Installer window. The following
table describes the possible causes of uninstallation errors and the actions to be
taken:

Possible cause Action

A command, utility, HiRDB Datareplicator, or HiRDB
Dataextractor is running.

Terminate the command, utility, HiRDB
Datareplicator, or HiRDB Dataextractor that is
running, and then re-execute uninstallation.

Other (such as an error) See the message output to the syslog file, eliminate the
cause of the error, and then re-execute uninstallation.

65

Chapter

3. Setting Up an Environment Using
the Simple Setup Tool

This chapter describes the procedure for using the simple setup tool to set up the
HiRDB server environment.

3.1 Overview of the simple setup tool

3. Setting Up an Environment Using the Simple Setup Tool

66

3.1 Overview of the simple setup tool

The simple setup tool is not supported.

67

Chapter

4. Setting Up an Environment Using
the System Generator

This chapter describes the procedure for setting up the HiRDB server environment
using the system generator, which provides an interactive HiRDB environment setup
method.
This chapter contains the following sections:

4.1 HiRDB/Single Server
4.2 HiRDB/Parallel Server
4.3 RDAREA generation by the system generator

4. Setting Up an Environment Using the System Generator

68

4.1 HiRDB/Single Server

This section describes the environment setup method for a HiRDB/Single Server using
the system generator. The topics covered are:
1. Introduction to the system generator
2. System generator operation
3. Optimization of HiRDB operating environment
4. Output of initialization commands to log

Notes on the HiRDB system definition

• If a row of system definition information created using the system generator
exceeds 80 characters, you must divide it into multiple rows by adding the
continuation symbol \ at the end of each line to be continued. The following
shows an example of a definition created when
RDAREA000000000000000000000001 is specified as the RDAREA
name:

For details about the contents of HiRDB system definitions that are created
using the system generator, see Operands created by the pdgen command in
the manual HiRDB Version 8 System Definition. For details about RDAREA,
see 4.3 RDAREA generation by the system generator.

• Set and maintain permission to access the HiRDB system definition file so
that only the owner of the file (HiRDB administrator) is granted read and
write privileges.

4.1.1 Introduction to the system generator
If you enter information in response to queries that are displayed on the system
generator's menu screens, the system generator constructs a HiRDB/Single Server's
environment.
To set up the environment for a HiRDB/Single Server using the system generator:
1. On the HiRDB/Single Server License selection menu screen, specify your

HiRDB model.
2. On the Master menu screen, specify the minimum settings required for system

construction, such as HiRDB directory and port number.
3. On the Detail option setting menu screen, specify the detailed functions related

pdbuffer -a RDAREA000000000000000000000001 -r RDAREA000000000000000000000001 -n\
 350

4. Setting Up an Environment Using the System Generator

69

to HiRDB system definitions such as buffer sizes.
4. On the Log option setting menu screen, set up an environment for the system log

files.
5. On the Create new rdarea menu screen, add user RDAREAs and user LOB

RDAREAs.
6. On the Plugin Setup menu screen, set up an environment for plug-ins. Do this

step only if you have installed a plug-in.
The following explains each menu of the system generator:

(1) HiRDB/Single Server License selection menu

Explanation:
On this screen, there is no query regarding the HiRDB environment setup. Specify
the HiRDB's license type only.

4. Setting Up an Environment Using the System Generator

70

(2) Master menu

Explanation:
1. These inquiries relate to the HiRDB system definitions.
2. These inquiries relate to system files. HiRDB uses a character special file or

a regular file, whichever type is specified here, explained as follows:
HiRDB initializes the specified type of file (character special file or regular
file) as a HiRDB file system area for system files.
HiRDB creates system files in this HiRDB file system area.

3. These inquiries relate to RDAREAs. HiRDB uses a character special file or
a regular file, whichever type is specified here, explained as follows:
HiRDB initializes the specified type of file (character special file or regular
file) as a HiRDB file system area for RDAREAs.
HiRDB stores the RDAREAs that are created with the system generator in
this HiRDB file system area.

(a) Notes about specifying information in response to queries about system
files
1. A character special file is usually specified, but a regular file can be used instead.

4. Setting Up an Environment Using the System Generator

71

If creation of a highly reliable system is a top priority, a character special file
should be specified.

2. Character special files and regular files should not be located on the same hard
disk.

3. If only one character special file or regular file is provided, system reliability is
compromised because it will not be possible to collect dual system log files. Dual
system log files can be used only when two or more files are provided; three files
are better than two files in terms of system reliability. For details about dual
system log files, see 9.3.1 Designing system log files.

4. The configuration of the system files to be created depends on the number of
character special files or regular files provided.

5. The contents of the system files that are created by the system generator are
shown in Table 4-1.
Table 4-1: Contents of system files created by the system generator (HiRDB/
Single Server)

Three character special files provided
If three files are specified, HiRDB creates system files in the configuration shown
in Figure 4-1.

System file type Contents of each individual file

Unit status file 80 kilobytes

Server status file 3480 kilobytes

Synchronization point dump file 104 + (4 maximum-number-of-users) kilobytes

System log file This is the size (in megabytes) specified on the Log
Options Menu screen, 3: Size of log files.
If omitted, this is (database-update-size + 1) 1.5

 megabytes. The database update size is the size
specified on the Main Menu screen, 5: Database
update size per day.

4. Setting Up an Environment Using the System Generator

72

Figure 4-1: Configuration of system files created by HiRDB with three files
specified

Explanation:
This is the structure when system log files and synchronization point dump files
are duplexed:

• Six generations are created for each system log file.
The size of one system log file is equivalent to the amount of information
collected for one day. This means that three days of system log files can be

4. Setting Up an Environment Using the System Generator

73

retained.
• Three generations are created for each synchronization point dump file.
• Three generations are created for each status file.

Two character special files provided
If two files are specified, HiRDB creates system files in the configuration shown
in Figure 4-2.
Figure 4-2: Configuration of system files created by HiRDB with two files
specified

4. Setting Up an Environment Using the System Generator

74

Explanation:
This is the structure when system log files and synchronization point dump files
are duplexed:

• Six generations are created for each system log file.
The size of one system log file is equivalent to the amount of information
collected for one day. This means that three days of system log files can be
retained.

• Three generations are created for each synchronization point dump file.
• Two generations are created for each status file.

One character special file provided
If one file is specified, HiRDB creates system files in the configuration shown in
Figure 4-3.
Figure 4-3: Configuration of system files created by HiRDB with one file
specified

Explanation:
Because there is only one HiRDB file system area, the system log files and
synchronization point dump files are not duplexed:

• Six generations are created for each system log file.

4. Setting Up an Environment Using the System Generator

75

The size of one system log file is equivalent to the amount of information
collected for one day. This means that three days of system log files can be
retained.

• Three generations are created for each synchronization point dump file.
• Two generations are created for each status file.

(b) Notes about specifying information in response to queries about
RDAREAs
1. A character special file area is usually specified, but a regular file can be used

instead. If creation of a highly reliable system is a top priority, a character special
file should be specified.

2. When you execute the system generator, the parameters for RDAREA creation
(operands of the database initialization utility [pdinit]) are created under
$PDDIR/conf.

(3) Detail option setting menu

4. Setting Up an Environment Using the System Generator

76

Explanation:
This menu contains inquiries related to HiRDB system definitions.
When the system generator is executed, the parameters for HiRDB system
definitions (operand values) are created under $PDDIR/conf. They should be
referred to when HiRDB system definitions are modified.

(4) Log option setting menu

Explanation:
This menu lets you set up an environment for the system log files.

(5) Create new rdarea menu

4. Setting Up an Environment Using the System Generator

77

Explanation:
Specify information about an RDAREA that is to be added. You can add the
following types of RDAREAs on this screen:

• User RDAREA
• User LOB RDAREA
• RDAREA for lists

When you execute the system generator, the parameters for RDAREA creation
(operands of the database initialization utility [pdinit]) are created under
$PDDIR/conf.

Note
To create a user RDAREA (or user LOB RDAREA or RDAREA for lists) in a
different HiRDB file system area from the one used for system RDAREAs, do not
use the Create new rdarea menu. Instead, use the pdfmkfs command to
initialize another HiRDB file system area, and then use the database structure
modification utility (pdmod) to add RDAREAs.

(6) Plugin Setup menu
This menu is used to install a plug-in after HiRDB system creation has been
completed.
When this menu is used, the plug-in is registered as MASTER without creating a
schema for the user executing pdgen.

Explanation:
This menu is used to specify information about a plug-in that is to be set up and
registered after HiRDB system creation has been completed.

Note
If plug-in setup or registration fails, the cause of the failure must be investigated,
then HiRDB must be terminated (if it is active) by specifying t on the Master

4. Setting Up an Environment Using the System Generator

78

menu. If HiRDB is already engaged in termination processing, also terminate the
system generator. When the system generator has terminated, pdsetup -d can
be used to cancel the registration in the OS, and then pdsetup can be reexecuted.

4.1.2 System generator operation
Steps (1) through (17) as follows explain the system generator operating procedure.
Because the system generator displays the commands that are used to construct
HiRDB, a screen log should be collected.

(1) Change the current directory
Enter the OS's cd command to set the HiRDB directory as the current directory.

(2) Start the system generator (pdgen)
Enter the pdgen command to start the system generator.

(3) HiRDB/Single Server License selection menu is displayed
Specify the HiRDB's license type.

Select the HiRDB's license type.
1. Select this item if you have a license based on the number of concurrent

connections.
The following message is displayed:
Enter number of your licenses (2-[licenses])>
Enter the number of licenses purchased. If your HiRDB server consists of
multiple machines, specify the number of licenses purchased divided by the
number of machines.

2. Specify if you have a number of CPU licenses.
To quit execution of the system generator, enter q. When the following message is
displayed, enter Y:

$cd HiRDB-directory-name

$pdgen

4. Setting Up an Environment Using the System Generator

79

(4) Master menu is displayed
This menu is used to set basic information about the HiRDB system.
First enter 1, then enter appropriate information in response to the message displayed.
Repeat in the same manner for items 2-5.

The messages that are displayed when each of items 1-5 is entered are explained as
follows:
1: Enter HiRDB directory name >

Default: Current directory during the execution of pdgen
Specify the absolute pathname of the HiRDB directory.

2: Enter HiRDB port no (5001-65535) >
Default: 20000
Specify the port number of this HiRDB. This must not be the same port number
specified for any other HiRDB or program.
Enter HiRDB system id (xxxx) >

Really terminate system generation ? (Y/N) > Y

4. Setting Up an Environment Using the System Generator

80

Default: HDBS (for HiRDB/Single Server)
Specify the identifier of this HiRDB. This must be a unique HiRDB identifier.

3: Enter number of concurrently execute user (1-xxx [User]) >
Specify the number of concurrently executable users.

• If you selected Connection License from the HiRDB/Single Server
License selection menu, the number of licenses purchased is displayed as
xxx. If there are more than 1025 licenses, 1024 is displayed as xxx.

• If you selected CPU License from the HiRDB/Single Server License
selection menu, 1024 is displayed.

4: Enter number of access tables per user (4-32000 [tables]) >
Default: 16
Specify the maximum number of tables that can be accessed simultaneously by a
UAP.

5: Enter quantity of database update per day (0-2048 [MB]) >
Default: 100
Specify the volume of database updating per day.

(5) Display the Detail option setting menu
When items 1-5 have all been set, choose o to display the Detail option setting menu.

4. Setting Up an Environment Using the System Generator

81

Items o-q are explained as follows:
o: Select this option to display the Detail option setting menu.
g: Select this option to start HiRDB system creation. HiRDB system creation can be
executed after all necessary information has been specified on the Master menu and
the Detail option setting menu.
r: Select this option to display the Create new rdarea menu. This option is not
available until HiRDB system creation has been completed (by selecting g).
p: Select this option to display the Plug-in Setup menu.

This option is not available until HiRDB system creation has been completed (by
selecting g).

t: Select this option to terminate HiRDB.
csh or sh: Select one of these options to transfer control to a shell environment:

csh: Transfers control to the c shell environment.
sh: Transfers control to the b shell environment.

q: Select this option to quit (cancel) system generator execution.

4. Setting Up an Environment Using the System Generator

82

(6) Detail option setting menu (1/2) is displayed
This menu is used to specify information needed to create HiRDB system definitions.
Enter 1-13 and specify the appropriate information in response to the messages
displayed. When you have entered all necessary information, choose n to go on to the
next page.

The messages that are displayed when each of items 1-13 is entered are explained as
follows:
1: Enter table definition buffer size (100-65535 [KB]) >

64-bit mode: (100-2000000 [kB])
Default: 1000
Specify the buffer size for table definition information.

2: Enter view definition buffer size (0-32000 [KB]) >
64-bit mode: (0-2000000 [kB])
Default: 0
Specify the buffer size of view analysis information.

3: Enter type definition buffer size (0 or 100-65535 [KB]) >
64-bit mode: (0 or 100-2000000 [kB])

4. Setting Up an Environment Using the System Generator

83

Default: 100
Specify the buffer size for user-defined information.

4: Enter authorization information buffer size (1-100 [KB]) >
Default: 1
Specify the buffer size for user privilege information.

5: Enter routine definition buffer size (0 or 20-65535 [KB]) >
64-bit mode: (0 or 20-2000000 [kB])
Default: 100
Specify the buffer size for routine definition information.

6: Enter SQL object buffer size (22-256000 [kB]) >
64-bit mode: (22-2000000 [kB])
Default: 2000
Specify the buffer size for SQL objects. If plug-ins are to be used, take into
account the size of the SQL objects used with the plug-ins.

7: Enter Global buffer size (4-460000 [buffer pages]) >
64-bit mode: (4-1073741824 [buffer pages])
Default: 350
Specify the size of the global buffer allocated to RDAREAs.
The permitted maximum value is 460,000 pages for 32-bit mode and 1073741824
pages for 64-bit mode, but a large value increases the shared memory size. With
some OSs, the supported maximum shared memory size may be exceeded,
resulting in an error during HiRDB startup.
For details about the shared memory size to be allocated, see 16.1.5 Formula for
size of shared memory used by global buffers. For details about the maximum
shared memory size that can be allocated, see the applicable OS documentation.

8: Enter work buffer size (384-1000000 [KB]) >
Default: 1024
64-bit mode: (383-2000000000 [kB])
Specify the buffer size for work tables. For details about how to estimate work
table file sizes, see 19. Determining Work Table File Size.

9: Enter max rdarea number (5-8388608 [areas]) >
Default value: 200

4. Setting Up an Environment Using the System Generator

84

Specify the maximum number of RDAREAs.
Enter max file number (5-134217728 [files]) >
Default: 400
Specify the maximum number of HiRDB files.

10: Enter permanent process number (1-XXX [process]) >
Specify the number of resident processes (number of processes for user request
processing).
The value (number of concurrently executable users/2), which was specified on
the Master menu, is displayed as xxx.

11: Enter lock pool size (1-2000000 [KB]) >
64-bit mode: (1-2000000000 [KB])
Default: 1000
Specify the lock pool size.

12: Enter RDAREA size (for Basic part) (0-1024 [MB]) >
Default: 5
Specify the size of the registry RDAREA. If you do not use the registry facility,
specify a value of 0.
Enter RDAREA size (for long key value) (1-1024 [MB]) >
Default: 10
Specify the size of the registry LOB RDAREA. If you do not use the registry
facility, specify a value of 0.

13: Enter data dictionary size (Basic part) (4-1024 [MB]) >
Default: 10
Specify the size of the data dictionary RDAREA.
Enter data dictionary size (for Procedure source) (1-1024
[MB]) >
Default: 10
Specify the size of the data dictionary LOB RDAREA for storing the source. If
you do not use a stored procedure or stored function, specify a value of 0.
Enter data dictionary size (for Procedure object) (1-1024
[MB]) >
Default: 30

4. Setting Up an Environment Using the System Generator

85

Specify the size of the data dictionary LOB RDAREA for storing the object. If
you specified 0 as the size of the data dictionary LOB RDAREA for storing the
source, this query is not displayed.

n: Select this option to go on to the next page.
q: Select this option to return to the Master menu.

(7) Detail option setting menu (2/2) is displayed
Enter 14-16 and specify appropriate information in response to the messages
displayed. When you have entered all necessary information, choose q to return to the
Master menu.

The following explains the messages that are displayed on the screen when you enter
each of the numbers:
14: Enter lock wait time (0-32767 [second]) >

Default: 3600
Specify the lock-release wait time.

15: Enter sync point dump interval (100-32000 [logs]) >
Default: 1000
Specify the synchronization point dump interval. A synchronization point dump
is obtained when the specified number of blocks of system log information have
been output since the last effective synchronization point dump.
Enter sync point dump interval time (0 or 10-1440 [minute]) >
Default: 60
Specify the synchronization point dump interval. A synchronization point dump
is obtained when the specified amount of time has elapsed since the last effective
synchronization point dump. If 0 is specified, HiRDB will not obtain
synchronization point dumps based on elapsed time.

4. Setting Up an Environment Using the System Generator

86

16: Use assign list? (Y/N) >
Default: N
Specify whether or not to use a narrowed search.
To use a narrowed search, specify Y, in which case the following message is
displayed:
Enter max list users number (1-32767 [users]) >
Specify the number of users for whom lists are to be created.
Enter max list count per user (1-32767 [lists]) >
Specify the number of lists that can be created per user.

b: Select this option to go back to the previous page.
q: Select this option to return to the Master menu.

(8) Master menu is displayed
Enter 6-12 and specify the appropriate information in response to the messages
displayed. These items let you specify information about system files and RDAREAs
here.

The messages that are displayed when each of items 6-12 is entered are explained as

4. Setting Up an Environment Using the System Generator

87

follows:
6: Select file type for system file

1: Raw 2: UNIX
Enter no >
Default: UNIX
Specify the number that indicates the file type of the HiRDB file system area for
system files:

• Raw: Character special file
• UNIX: Regular file

For ease of construction, the default is regular file. To construct a highly reliable
system, character special file should be selected.

7:
This option displays the Log option setting menu.

This option lets you set up an environment for the system log files.
Enter 1-3 and specify the appropriate information in response to the messages
displayed. When you have entered all necessary information, choose q to return
to the Master menu.
The following explains the messages that are displayed on the screen when you
enter each of the numbers:
1: Use dual log file? (Y/N) >

Default: N
Specify whether or not to use dual log files. To use dual log files, specify Y.
Dual system log files should be used to improve system reliability. For
details about dual system log files, see 9.3.1 Designing system log files.

2: Check log unload status? (Y/N) >
Default: Y
Normally specify Y.

4. Setting Up an Environment Using the System Generator

88

If you specify N, the system does not check the log's unload status. This
operation mode may result in an error that makes database recovery
impossible. For details about the operation mode that releases unload status
checking, see the manual HiRDB Version 8 System Operation Guide.

3: Enter log file size (1-2048 [MB]) >
Default: MAX (1024, (a + 1) 1.5)
a: The database update size specified with Master menu item 5.
Specify the size of one system log file.
HiRDB creates multiple system log files based on this size for a single
system log file. The number of system log files to be created depends on the
number of HiRDB file system areas and whether or not you use dual system
log files.

q: Select this option to return to the Master menu.
8:

The HiRDB file system area for system files is initialized and then system files
are created in that area. Enter appropriate information in response to the
applicable message shown as follows:
Character special file

• XXX
Displays the size required for the HiRDB file system area for system
files. Specify in aa...aa a character special file whose size is greater than
this value.

• aa...aa (path-name-of-character-special-file)
Specify the absolute path name of the character special file to which the
HiRDB file system area for system files is to be allocated.

Enter file name and partition size for HiRDB-file-system-area.
This HiRDB-file-system-area will be used for HiRDB system files.
(log and status etc...)

-- Attention --
Please enter file name with complete path.
The path name must be a character special file because Raw file system are selected.
(ex) /dev/dsk/rhd00301
Please type the file name carefully because all the data will lose in the special file.
The size of HiRDB-file-system-area will more than XXX [MB].

Enter file name with completely path > aa....aa
Enter HiRDB-file-system-area size
(=partition size of this character special file) [MB] > bb....bb

4. Setting Up an Environment Using the System Generator

89

If the file name is symbolically linked, specify the symbolic link name.
Symbolically linking a file name simplifies hard disk exchange in the
event of hard disk failure. For details about symbolic linkage of file
names, see 2.3.6 Preparing to create the HiRDB file system area.
If an invalid name is specified, the corresponding character special file
area is damaged; care must be taken to ensure that the correct name is
specified.

• bb...bb (partition-size)
Specify in Mbytes the partition size for the character special file
specified in aa...aa. If the specified size is greater than the actual
partition size, an error results during system generation. If it is less than
the actual partition size, no error results, but the remaining area is
treated as invalid area because the system uses no more than the
specified size of area.

Regular file

• XXX
Displays the size required for the HiRDB file system area for system
files. Specify in aa...aa a regular file whose size is greater than this
value.

• aa...aa (path-name-of-regular-file)
Default: Regular file named sysfiles under the HiRDB directory
Specify the absolute path name of the regular file (name beginning with
/) to which the HiRDB file system area for system files is to be
allocated.
If the file name is symbolically linked, specify the symbolic link name.
Symbolically linking a file name simplifies hard disk exchange in the
event of hard disk failure. For details about symbolic linkage of file
names, see 2.3.6 Preparing to create the HiRDB file system area.

Enter file name and partition size for HiRDB-file-system-area.
This HiRDB-file-system-area will be used for HiRDB system files.
(log and status etc...)

-- Attention --
Please enter file name with complete path.
If specified file are already exist pdgen will delete the file and recreate.
The size of HiRDB-file-system-area will more than XXX [MB].
The HiRDB-file-system-area creates as UNIX file with specified size.

Enter file name with completely path > aa....aa
Enter HiRDB-file-system-area size [MB] > bb....bb

4. Setting Up an Environment Using the System Generator

90

If an invalid name is specified, the corresponding regular file area is
damaged; care must be taken to ensure that the correct name is
specified.

• bb...bb (size-of-regular-file)
Specify in Mbytes the size displayed in xxx. If system files are to be
added later, add the additional size to xxx. If the specified size is greater
than the available UNIX file system area, a shortage occurs. Care
should be taken that the specified size of a UNIX file system area is
actually available.

9:
Same as 8.

10:
Same as 8.

11: Select file type for RDAREA
1: Raw 2: UNIX
Enter 12>
Default UNIX
Specify the number that indicates the file type of the HiRDB file system area for
RDAREAs:

• Raw: Character special file
• UNIX: Regular file

For ease of construction, the default is regular file. To construct a highly reliable
system, character special file should be selected.

12:
This option initializes the HiRDB file system area for RDAREAs. The system
uses this HiRDB file system area to store the RDAREAs that are created by the
system generator.
The HiRDB administrator must enter the appropriate information in response to
the following messages.
Character special file

4. Setting Up an Environment Using the System Generator

91

• XXX
Displays the size required for the HiRDB file system area for
RDAREAs. Specify in aa...aa a character special file whose size is
greater than this value.
Note that this size does not include the size of RDAREAs that are added
with the Create new rdarea menu. If you are adding RDAREAs using
the Create new rdarea menu, add the size of additional RDAREAs to
this size.

• aa...aa (path-name-of-character-special-file)
Specify the absolute path name of the character special file to which the
HiRDB file system area for RDAREAs is to be allocated.
If the file name is symbolically linked, specify the symbolic link name.
Symbolically linking a file name simplifies hard disk exchange in the
event of hard disk failure. For details about symbolic linkage of file
names, see 2.3.6 Preparing to create the HiRDB file system area.
If an invalid name is specified, the corresponding character special file
area is damaged; care must be taken to ensure that the correct name is
specified.

• bb...bb (partition-size)
Specify in Mbytes the partition size for the character special file
specified in aa...aa. If the specified size is greater than the actual
partition size, an error results. If it is less than the actual partition size,
no error results, but the remaining area is treated as invalid area because
the system uses no more than the specified size of area.

Regular file

Enter file name and partition size for HiRDB-file-system-area.
This HiRDB-file-system-area will be used for RDAREA.

-- Attention --
Please enter file name with complete path.
The path name must be a character special file because Raw file system are selected.
(ex) /dev/dsk/rhd00301
Please type the file name carefully because all the data will lose in the special file.
The size of HiRDB-file-system-area will more than XXX [MB].

Enter file name with completely path > aa....aa
Enter HiRDB-file-system-area size
(=partition size of this character special file) [MB] > bb....bb

4. Setting Up an Environment Using the System Generator

92

• XXX
Displays the size required for the HiRDB file system area for
RDAREAs. Specify in bb...bb a regular file whose size is greater than
this value.
Note that this size does not include the size of RDAREAs that are added
with the Create new rdarea menu. If you are adding RDAREAs using
the Create new rdarea menu, add the size of additional RDAREAs to
this size.

• aa...aa (path-name-of-regular-file)
Default: Regular file named rdfiles under the HiRDB directory
Specify the absolute path name of the regular file (name beginning with
/) to which the HiRDB file system area for RDAREAs is to be
allocated.
If the file name is symbolically linked, specify the symbolic link name.
Symbolically linking a file name simplifies hard disk exchange in the
event of hard disk failure. For details about symbolic linkage of file
names, see 2.3.6 Preparing to create the HiRDB file system area.
If an invalid name is specified, the corresponding regular file area is
damaged; care must be taken to ensure that the correct name is
specified.

• bb...bb (size-of-regular-file)
Specify in Mbytes the size displayed in xxx plus the required size for
user RDAREA creation area. If the specified size is greater than the
available UNIX file system area, a shortage occurs. Care should be
taken that the specified size of a UNIX file system area is actually
available.

(9) Start the HiRDB environment setup
Specify g to start the HiRDB environment setup. The HiRDB environment is set up on

Enter file name and partition size for HiRDB-file-system-area.
This HiRDB-file-system-area will be used for rdarea.

-- Attention --
Please enter file name with complete path.
If specified file are already exist pdgen will delete the file and recreate.
The size of HiRDB-file-system-area will more than XXX [MB].
The HiRDB-file-system-area creates as UNIX file with specified size.

Enter file name with completely path > aa....aa
Enter HiRDB-file-system-area size [MB] > bb....bb

4. Setting Up an Environment Using the System Generator

93

the basis of the information specified so far.

(10) Message is displayed
A message is displayed that reports that the HiRDB system is being created. While the
HiRDB system is being created, each command that executes is displayed together
with an execution results message:

When creation processing is completed, press the Enter key.
If an error is detected, the corresponding command's message is displayed. The
HiRDB administrator must take action appropriate to the displayed message. After all
errors have been corrected, terminate the system generator, then re-execute it. To
terminate the system generator, enter q on the main menu.

(11) Master menu is displayed
To create a user RDAREA, LOB RDAREA, or list RDAREA, enter r to display the
Create new rdarea menu.

Start HiRDB system generation
Creating HiRDB deffinition files (/HiRDB/conf)
Definition files are created

Push enter key to main menu >

4. Setting Up an Environment Using the System Generator

94

(12) Create new rdarea menu is displayed
Set information about the RDAREA that is to be added.
Enter 1-7 and specify appropriate information in response to the displayed messages.
When all necessary information has been entered, select a to add the RDAREA.

The messages that are displayed when each of items 1-7 is entered are explained as
follows:
1: Enter rdarea name >

Specify with 1-16 upper-case alphanumeric characters the name of the RDAREA
to be created.
If the name of an existing RDAREA is specified, an error results.

2: Enter rdarea size (1[MB]) >
Default: 100

4. Setting Up an Environment Using the System Generator

95

Specify the size of the RDAREA.
3: Enter segment size (1-16000 [Pages]) >

Default: 1000
Specify the segment size of the RDAREA.

4: Enter page size (4-30 [KB]) >
Default: 4
Specify the page size of the RDAREA.

5: 1: for Table/Index data
2: for Binary large object data
3: for List
Enter rdarea type (1-3) >
Default: 1
Specify the type of RDAREA to be created.
1: User RDAREA
2: User LOB RDAREA
3: RDAREA for lists

6: Enter Global buffer number for this rdarea (4-460000 [buffer
pages] >

64-bit mode: (4-1073741824 [buffer pages])
Default: 350
Specify the size of the global buffer to be allocated for the RDAREA.
The permitted maximum value is 460,000 pages for 32-bit mode and 1073741824
pages for 64-bit mode, but a large value increases the shared memory size. With
some OSs, the supported maximum shared memory size may be exceeded,
resulting in an error during HiRDB startup.
For details about the shared memory size to be allocated, see 16.1.5 Formula for
size of shared memory used by global buffers. For details about the maximum
shared memory size that can be allocated, see the applicable OS documentation.

7: Enter HiRDB file system area name for this rdarea (complete
path name) >

Default: $PDDIR/rdfiles
Specify the absolute path name of the HiRDB file system area for RDAREAs

4. Setting Up an Environment Using the System Generator

96

(name beginning with /). The specified HiRDB file system area must be one of
the following:

• HiRDB file system area for RDAREAs that was specified on the Master
menu.

• HiRDB file system area for RDAREAs that was specified with the pdfmkfs
command.

If any other HiRDB file system area is specified, an error occurs when the
RDAREA is added (when a is selected).

a: Select this option to add the RDAREA.
l: Select this option to display a list of RDAREAs that have been created.

Following is an example:

q: Select this option to return to the Master menu.
(13) Master menu is displayed again

To add another RDAREA, repeat step (12).
When all RDAREAs have been added, enter q to return to the Master menu.

When an RDAREA has been added, the following message is displayed:
Rdarea are added. You have to restart HiRDB to use the area.
Restart now ? (Y/N) >

4. Setting Up an Environment Using the System Generator

97

To use the added RDAREA immediately, enter Y to restart HiRDB.
To use it later (the next time HiRDB is started), enter N (in which case HiRDB will not
be restarted).

(14) Master menu is displayed
To set up and register a plug-in, enter p to display the Plug-in Setup menu.

(15) Plug-in Setup menu is displayed
This menu is used to set information about a plug-in that is to be set up and registered.
Enter 1-4 and specify appropriate information in response to the displayed messages,
then enter s to set up and register the plug-in.

The messages that are displayed when each of items 1-4 is entered are explained as
follows:
1: Select Plugin for Setup

1: Text Search Plug-in
2: Image Search Plug-in

4. Setting Up an Environment Using the System Generator

98

3: Spatial Search Plug-in
o: Other Plugin
Enter no >
Specify the number that indicates the plug-in to be set up.
If you choose o, specify the name of the plug-in.

2: Enter Plugin PP installed directory name >
Specify the directory in which the plug-in is installed.
If you choose 1, 2, or 3 at item 1, the message Assume by pdgen is displayed on
the screen.

3: Enter Plugin definition file name >
Specify the name of the plug-in definition file.
If you choose 1, 2, or 3 at item 1, the message Assume by pdgen is displayed on
the screen.

4: Enter Plugin PIC file name >
Specify the name of the PIC file.
If you choose 1, 2, or 3 at item 1, the message Assume by pdgen is displayed on
the screen.

s: Select this option to set up the plug-in.
l: Select this option to display a list of plug-ins that have been set up.
Following is an example:

q: Select this option to return to the Master menu.
(16) Master menu is displayed again

To set up and register another plug-in, repeat step (15).
When all plug-ins have been set up and registered, enter q to return to the Master
menu.

4. Setting Up an Environment Using the System Generator

99

When a plug-in has been set up and registered, the following message is displayed:

To use immediately the plug-in that has just been set up and registered, enter Y to
restart HiRDB. To use it later (the next time HiRDB is started), enter N (in which case
HiRDB will not be restarted).
If plug-in setup or registration fails, determine the cause of the failure, then terminate
HiRDB (if it is active) by specifying t on the Master menu. If HiRDB is engaged in
termination processing, also terminate the system generator. When the system
generator is terminated, use pdsetup -d to cancel the registration in the OS, and then
reexecute pdsetup. In this case also, the plug-in registration authorization identifier
is MASTER.

(17) Master menu is displayed again
System construction by the system generator is now complete, and the system
generator can be terminated. HiRDB has already been started at this point.

• To not terminate HiRDB
Enter q; the system generator only is terminated.

• To terminate HiRDB
Enter t, then enter q. HiRDB and the system generator are both terminated.

• To define a schema and table
Enter csh or sh. The database definition utility (pddef command) can be
executed, because necessary environment variables have been set.

Plugin are setup. You have to restart HiRDB to use the Plugin.
Restart now ? (Y/N) >

4. Setting Up an Environment Using the System Generator

100

4.1.3 Optimizing the HiRDB operation environment
You can start HiRDB after completing the procedure described in 4.1.2 System
generator operation. After that, execute the following procedures as required.

(1) Modify HiRDB system definitions
Modify the HiRDB system definitions as required. For details about how to modify
HiRDB system definitions, see 5.2.4 Modifying HiRDB system definitions (excluding
UAP environment definitions).

(2) Set up a dictionary table
Use the alter system statement of the database structure modification utility
(pdmod) to set up data dictionary tables.

(a) Specifying the reference privilege
Define the reference privilege for data dictionary tables as required. For details about
how to define the reference privilege for data dictionary tables, see the manual HiRDB
Version 8 System Operation Guide.

(b) Defining the data type
You can change the data type of a data dictionary table from VARCHAR to MVARCHAR.
For details about how to change the data type, see the database structure modification
utility (pdmod) in the manual HiRDB Version 8 Command Reference.

4.1.4 Output of initialization commands to log
When a HiRDB system is created by the system generator (g specified on the Master
menu), the initialization commands are output to a log file.
Should the system files need to be reviewed for tuning purposes, this log file helps
improve the efficiency of the review process. Moreover, if the HiRDB system needs to
be reset to its initial status, the contents of this log file can be used to simplify the
process.

4. Setting Up an Environment Using the System Generator

101

Table 4-2 lists the contents of the log file.
Table 4-2: Contents of the log file

* The environment variable is LD_LIBRARY_PATH for Solaris and Linux and
LIBPATH for AIX 5L.
Following is an example of log file output:

Item Description

Output destination $PDDIR/conf

Type Regular file (UNIX file)

Name pdgen_cmd."name-of-host-where-unit-was-created"

Access privileges User who executed pdgen has reference and update privileges. Other users have reference
privileges only.

Output information • Contents of environment variables during creation (PDDIR, PDCONFPATH,
SHLIB_PATH*, PATH)

• Details of creation of HiRDB file system areas for system files (pdfmkfs)
• Details of creation of HiRDB file system areas for RDAREAs (pdfmkfs)
• Details of initialization of unit status files (pdstsinit)
• Details of initialization of server status files (pdstsinit)
• Details of initialization of synchronization point dump files for server (pdloginit)
• Details of initialization of system log files for server (pdloginit)

PDDIR="/HiRDB"
PDCONFPATH="${PDDIR}/conf"
SHLIB_PATH="${PDDIR}/lib"
PATH="${PDDIR}/bin:${PATH}"

pdfmkfs -r -n 20 -l 100 -k SVR -e 100 -i /sysarea

pdstsinit -u SDSU -f /sysarea/SDSUst1a -c 32
pdstsinit -u SDSU -f /sysarea/SDSUst1b -c 32
pdstsinit -u SDSU -f /sysarea/SDSUst2a -c 32
pdstsinit -u SDSU -f /sysarea/SDSUst2b -c 32
 .
 .
 .
pdloginit -d sys -s sds1 -f /sysarea/sds1jn1a -n 384
pdloginit -d sys -s sds1 -f /sysarea/sds1jn2a -n 384
pdloginit -d sys -s sds1 -f /sysarea/sds1jn3a -n 384

pdfmkfs -r -n 5 -l 100 -k SVR -e 100 -I /dbarea

4. Setting Up an Environment Using the System Generator

102

4.2 HiRDB/Parallel Server

This section describes the environment setup procedure for a HiRDB/Parallel Server
using the system generator. The topics covered are:
1. Introduction to the system generator
2. System configuration created by the system generator
3. System generator operation
4. Optimization of HiRDB operating environment

5. Output of initialization commands to log
Notes on HiRDB system definition information

• If a row of system definition information created using the system generator
exceeds 80 characters, you must divide it into multiple rows by adding the
continuation symbol \ at the end of each line to be continued. The following
shows an example of definition created when
RDAREA000000000000000000000001 is specified as the RDAREA
name:

For details about the contents of HiRDB system definitions that are created
using the system generator, see Operands created by the pdgen command in
the manual HiRDB Version 8 System Definition. For details about RDAREA,
see 4.3 RDAREA generation by the system generator.

• Set and maintain permission to access the HiRDB system definition file so
that only the owner of the file (HiRDB administrator) is granted read and
write privileges.

4.2.1 HiRDB system construction procedure when system generator
is used

The system generator constructs a HiRDB system automatically on the basis of
information entered in response to queries that are displayed on the system generator's
menu screens.
To set up the environment for a HiRDB/Parallel Server using the system generator:
1. On the HiRDB/Parallel Server License selection menu screen, specify your

HiRDB model.
2. On the Master menu screen, specify the minimum settings required for system

pdbuffer -a RDAREA000000000000000000000001 -r RDAREA000000000000000000000001 -n\
 350

4. Setting Up an Environment Using the System Generator

103

construction, such as HiRDB directory and port number.
3. On the Detail option setting menu screen, specify the detailed functions related

to HiRDB system definitions such as buffer sizes.
4. On the Log option setting menu screen, set up an environment for the system log

files.
5. On the HiRDB unit initialization menu screen, set up and initialize units.
6. On the Create new rdarea menu screen, add user RDAREAs and user LOB

RDAREAs.
7. On the Plugin Setup menu screen, set up an environment for plug-ins. Do this

step only if you have installed a plug-in.
The following explains each menu of the system generator:

(1) HiRDB/Parallel Server License selection menu

Explanation:
On this screen, there is no query regarding the HiRDB environment setup. Specify
the HiRDB's license type only.

4. Setting Up an Environment Using the System Generator

104

(2) Master menu

Explanation:
1. These inquiries relate to the HiRDB system definitions.
2. This inquiry is for specifying the unit on which the dictionary server is to be

created.
3. This inquiry is for specifying the number of back-end servers to be created

per unit.
4. These inquiries relate to system files. Whether the HiRDB file system area

for system files is to be created in a character special file or in a regular file
is specified here. A character special file is usually specified, but a regular
file can be used instead. If creation of a highly reliable system is a top
priority, a character special file should be specified.

5. This inquiry relates to RDAREAs. Whether the HiRDB file system area for
RDAREAs is to be created in a character special file or in a regular file is
specified here. A character special file is usually specified, but a regular file
can be used instead. If creation of a highly reliable system is a top priority, a
character special file should be specified.

4. Setting Up an Environment Using the System Generator

105

(3) Detail option setting menu

Explanation:
This menu contains inquiries related to HiRDB system definitions.
When the system generator is executed, the parameters for HiRDB system
definitions (operand values) are created under $PDDIR/conf. They should be
referred to when HiRDB system definitions are modified.

4. Setting Up an Environment Using the System Generator

106

(4) Log option setting menu

Explanation:
This menu lets you set up an environment for the system log files.

(5) HiRDB unit initialization

Explanation:
1. This inquiry is for specifying a unit that is to be initialized.
2. These inquiries relate to system files. HiRDB use a character special file or

a regular file, whichever type is specified here, as explained as follows:
Initializes the specified type of file (character special file or regular file) as a
HiRDB file system area for system files.
Creates system files in this HiRDB file system area.

3. These inquiries relate to RDAREAs. HiRDB uses a character special file or
a regular file, whichever type is specified here, as explained as follows:
Initializes the specified type of file (character special file or regular file) as a
HiRDB file system area for RDAREAs.

4. Setting Up an Environment Using the System Generator

107

If the dictionary server is to be created on this unit, HiRDB creates system
RDAREAs in this HiRDB file system area.

(a) Number of times HiRDB unit initialization is executed
HiRDB unit initialization is executed as many times as there are units.

(b) Notes on specifying information in response to queries about system
files
1. Normally, character special files are specified, but regular files are also

permissible. If you desire to create a high-reliability system, you should use
character special files.

2. Character special files and regular files should not be located on the same hard
disk.

3. If only one character special file or regular file is provided, system reliability is
compromised because it will not be possible to collect dual system log files. Dual
system log files can be used only when two or more files are provided; three files
are better than two files in terms of system reliability. For details about dual
system log files, see 10.3.1 Designing system log files.

4. The configuration of the system files to be created depends on the number of
provided character special files or regular files.

5. The contents of the system files that are created by the system generator are
shown in Table 4-3.
Table 4-3: Contents of system files created by the system generator (HiRDB/
Parallel Server)

System file type Contents of each file

Unit status file 200 kilobytes

Server status file Front-end server 260 kilobytes

Back-end server or
dictionary server

3480 kilobytes

Synchronization point dump file Front-end server 120 + (40
maximum-number-of-users) kilobytes

Back-end server or
dictionary server

380 + (80
maximum-number-of-users) kilobytes

4. Setting Up an Environment Using the System Generator

108

Three character special files provided
If three files are specified, HiRDB creates system files in the configuration shown
in Figure 4-4.

System log file Front-end server 1 megabyte

Dictionary server 2 megabytes

Back-end server This is the size (in megabytes)
specified on the Log Options Menu
screen, 3: Size of log files.
If omitted, this is
(database-update-size + 1) 1.5
megabytes. The database update size is
the size specified on the Main Menu
screen, 5: Database update size per
day.

System file type Contents of each file

4. Setting Up an Environment Using the System Generator

109

Figure 4-4: Configuration of system files created by HiRDB with three files
specified

Explanation:
This is the structure when system log files and synchronization point dump files
are duplexed:

• Six generations are created for each system log file.
The size of one system log file is equivalent to the amount of information

4. Setting Up an Environment Using the System Generator

110

collected for one day. This means that three days of system log files can be
retained.

• Three generations are created for each synchronization point dump file.
• Three generations are created for each status file.

Two character special files provided
If two files are specified, HiRDB creates system files in the configuration shown
in Figure 4-5.

4. Setting Up an Environment Using the System Generator

111

Figure 4-5: Configuration of system files created by HiRDB with two files
specified

Explanation:
This is the structure when system log files and synchronization point dump files
are duplexed:

• Six generations are created for each system log file.
The size of one system log file is equivalent to the amount of information
collected for one day. This means that three days of system log files can be

4. Setting Up an Environment Using the System Generator

112

retained.
• Three generations are created for each synchronization point dump file.
• Two generations are created for each status file.

One character special file provided
If one file is specified, HiRDB creates system files in the configuration shown in
Figure 4-6.
Figure 4-6: Configuration of system files created by HiRDB with one file
specified

Explanation:
Because there is only one HiRDB file system area, the system log files and
synchronization point dump files are not duplexed:

• Six generations are created for each system log file.
The size of one system log file is equivalent to the amount of information
collected for one day. This means that three days of system log files can be
retained.

• Three generations are created for each synchronization point dump file.
• Two generations are created for each status file.

4. Setting Up an Environment Using the System Generator

113

(c) Notes about specifying information in response to queries about
RDAREAs
When the system generator is executed, the parameters for RDAREA area creation
(operands of the database initialization utility) are created under $PDDIR/conf.

(6) Create new rdarea menu

Explanation:
Specify information about an RDAREA that is to be added. You can add the
following types of RDAREAs on this screen:

• User RDAREA
• User LOB RDAREA
• RDAREA for lists

When the system generator is executed, the parameters for RDAREA creation
(database initialization utility (pdinit) operands) are created under $PDDIR/
conf.

(a) Number of times Create new rdarea menu is to be executed
The Create new rdarea menu is executed as many times as there are RDAREAs to be
added.

(b) Notes on adding RDAREAs to the unit on which the dictionary server has
been created
An RDAREA added from the Create new rdarea menu is stored in the HiRDB file
system area for RDAREAs that was initialized from the HiRDB unit initialization
menu. This means that on the unit where the dictionary server is created, both system
RDAREAs and user RDAREAs (and user LOB RDAREAs) are stored in the same
HiRDB file system area.
To store system RDAREAs and user RDAREAs (and user LOB RDAREAs) in

4. Setting Up an Environment Using the System Generator

114

separate HiRDB file system areas, the Create new rdarea menu cannot be used.
Instead, the pdfmkfs command must be used to initialize another HiRDB file system
area, and then the database structure modification utility (pdmod command) must be
used to add RDAREAs.

(7) Plug-in Setup menu
This menu is used to install a plug-in after HiRDB system creation has been
completed.
When this menu is used, the plug-in is registered as MASTER without creating a
schema for the user executing pdgen.

Explanation:
This menu lets you specify information about a plug-in.

Note
If plug-in setup or registration fails, the cause of the failure must be investigated,
then HiRDB must be terminated (if it is active) by specifying t on the Master
menu. If HiRDB is already engaged in termination processing, also terminate the
system generator. When the system generator has terminated, pdsetup -d can
be used to cancel the registration in the OS, and then pdsetup can be
re-executed.

4.2.2 System configuration created by the system generator
When you use the system generator to set up an environment for your HiRDB/Parallel
Server, the resulting system configuration would be described as follows. Figure 4-7
shows a sample system configuration.
1. One front-end server is created on each unit (so that there will be multiple

front-end servers). For details about how to set up multiple front-end servers, see
10.1.3 Setting up multiple front-end servers.

2. The system manager is created on the server machine on which the system
generator (pdgen command) is executed.

4. Setting Up an Environment Using the System Generator

115

3. The dictionary server is created on the unit specified on the Master menu.
4. Back-end servers are created on each unit. The Master menu is used to specify

the number of back-end servers to be created on each unit.
Figure 4-7: Example of system configuration created by system generator

4.2.3 System generator operation
Steps (1) through (20) as follows explain the system generator operating procedure.

(1) Change the current directory
Enter OS's cd command to set the HiRDB directory as the current directory.

(2) Enter the pdgen command
Enter the pdgen command to start the system generator.
The system manager is defined on the server machine where the pdgen command is
executed.

$cd HiRDB-directory-name

$pdgen

4. Setting Up an Environment Using the System Generator

116

(3) HiRDB/Parallel Server License selection menu is displayed
Specify the HiRDB's license type.

Select the HiRDB's license type.
1: Select this item if you have a license based on the number of concurrent
connections.

The following message is displayed:
Enter number of your licenses (2-[licenses])>
Enter the number of licenses purchased. If your HiRDB server consists of
multiple machines, specify the number of licenses purchased divided by the
number of machines.

2: Specify if you have a number of CPU licenses.
To quit execution of the system generator, enter q. When the following message is
displayed, enter Y.

(4) Master menu is displayed
This menu is used to set basic information about the HiRDB system.
First enter 1, then enter appropriate information in response to the message displayed.
Repeat in the same manner for items 2-7.

Really terminate system generation ? (Y/N) > Y

4. Setting Up an Environment Using the System Generator

117

The messages that are displayed when each of items 1-7 is entered are explained as
follows:
1: Enter HiRDB directory name >

Default: Current directory during the execution of pdgen
Specify the absolute pathname of the HiRDB directory.

2: Enter HiRDB port no (5001-65535) >
Default: 20000
Specify the port number of this HiRDB. This must not be the same port number
specified for any other HiRDB or program.
Enter HiRDB system id (xxxx) >
Default: HDBP (for HiRDB/Parallel Server)
Specify the identifier of this HiRDB. This must be a unique HiRDB identifier. If
specification of the port number or HiRDB identifier is omitted, the current value
will remain unchanged.

3: Enter number of concurrently execute user (1-xxx [User]) >
Specify the number of concurrently executable users.

4. Setting Up an Environment Using the System Generator

118

• If you selected Connection License from the HiRDB/Parallel Server
License selection menu, the number of licenses purchased is displayed as
xxx. If there are more than 1025 licenses, 1024 is displayed as xxx.

• If you selected CPU License from the HiRDB/Parallel Server License
selection menu, 1024 is displayed.

4: Enter number of access tables per user (4-32000 [tables])>
Default: 16
Specify the maximum number of tables that can be accessed simultaneously by a
UAP.

5: Enter quantity of database update per day (0-2048 [MB])>
Default: 100
Specify the volume of database updating per day.

6: Enter host name for dictionary server >
Specify the host name of the unit on which the dictionary server is defined.

7: Enter backend server number per unit (1-32) >
Default: 2
Specify the number of back-end servers per unit.

(5) Display the Detail option setting menu
When items 1-7 have all been set, choose o to display the Detail option setting menu.

4. Setting Up an Environment Using the System Generator

119

Items o-q are explained as follows:
o: Select this option to display the Detail option setting menu.
u: Select this option to display the HiRDB unit initialization menu.
g: Select this option to start HiRDB system creation.

HiRDB system creation can be executed after all necessary information has been
specified on the Master menu, the Detail option setting menu, and the HiRDB
unit initialization menu.

r: Select this option to display the Create new rdarea menu.
This option is not available until HiRDB system creation has been completed (by
selecting g).

p: Select this option to display the Plugin Setup menu.
This option is not available until HiRDB system creation has been completed (by
selecting g).

t: Select this option to terminate HiRDB.
csh or sh: Select one of these options to transfer control to a shell environment:

• csh: Transfers control to the c shell environment.

4. Setting Up an Environment Using the System Generator

120

• sh: Transfers control to the b shell environment.
q: Select this option to quit (cancel) system generator execution.

(6) Detail option setting menu (1/2) is displayed
This menu is used to specify information needed to create HiRDB system definitions.
Enter 1-13 and specify the appropriate information in response to the messages
displayed. When you have entered all necessary information, choose n to go on to the
next page.

The messages that are displayed when each of items 1-13 is entered are explained as
follows:
1: Enter table definition buffer size (100-65535 [KB]) >

64-bit mode: (100-2000000 [kB])
Default: 1000
Specify the buffer size for table definition information.

2: Enter view definition buffer size (0-32000 [KB]) >
64-bit mode: (0-2000000 [kB])
Default: 0
Specify the buffer size of view analysis information.

4. Setting Up an Environment Using the System Generator

121

3: Enter type definition buffer size (0 or 100-65535 [KB]) >
64-bit mode: (0 or 100-2000000 [kB])
Default: 100
Specify the buffer size for user-defined information.

4: Enter authorization information buffer size (1-100[KB]) >
Default: 1
Specify the buffer size for user privilege information.

5: Enter routine definition buffer size (0 or 20-65535 [KB])>
64-bit mode: (0 or 20-2000000 [kB])
Default: 100
Specify the buffer size for routine definition information.

6: Enter SQL object buffer size (22-25600 [KB]) >
64-bit mode: (22-2000000 [kB])
Default: 2000
Specify the buffer size for SQL objects. If plug-ins are to be used, take into
account the size of the SQL objects used with the plug-ins.

7: Enter Global buffer size (4-460000 [buffer pages]) >
64-bit mode: (4-1073741824 [buffer pages])
Default: 350
Specify the size of the global buffer allocated to RDAREAs.
The permitted maximum value is 460,000 pages for 32-bit mode and 1073741824
pages for 64-bit mode, but a large value increases the shared memory size. With
some OSs, the supported maximum shared memory size may be exceeded,
resulting in an error during HiRDB startup.
For details about the shared memory size to be allocated, see 16.2.5 Formula for
size of shared memory used by global buffers. For details about the maximum
shared memory size that can be allocated, see the applicable OS documentation.

8: Enter work buffer size (384-1000000 [KB]) >
Default: 1024
64-bit mode: (384-2000000000 [kB])
Specify the buffer size for work tables. For estimating work table file sizes, see
19. Determining Work Table File Size.

4. Setting Up an Environment Using the System Generator

122

9: Enter max rdarea number (5-8388608 [areas]) >
Default value: 200
Specify the maximum number of RDAREAs.
Enter max file number (5-134217728 [files]) >
Default: 400
Specify the maximum number of HiRDB files.

10: Enter permanent process number (1-xxx [process]) >
Specify the number of resident processes (number of processes for user request
processing).
The value (number of concurrently executable users/2), which was specified on
the Master menu, is displayed as xxx.

11: Enter lock pool size (0-2000000 [KB]) >
64-bit mode: (1-2000000000 [kB])
Default: 1000
Specify the size of the area for managing locked resources.

12: Enter RDAREA size (for Basic part) (0-1024 [MB]) >
Default: 5
Specify the size of the registry RDAREA. If you do not use the registry facility,
specify a value of 0.
Enter RDAREA size (for long key value) (1-1024 [MB]) >
Default: 10
Specify the size of the registry LOB RDAREA. If you do not use the registry
facility, specify a value of 0.

13: Enter data dictionary size (Basic part) (4-1024 [MB]) >
Default: 10
Specify the size of the data dictionary RDAREA.
Enter data dictionary size (for Procedure source) (1-1024
[MB]) >
Default: 10
Specify the size of the data dictionary LOB RDAREA for storing the source. If
you do not use a stored procedure or stored function, specify a value of 0.
Enter data dictionary size (for Procedure object) (1-1024

4. Setting Up an Environment Using the System Generator

123

[MB]) >
Default: 30
Specify the size of the data dictionary LOB RDAREA for storing the object. If
you specified 0 as the size of the data dictionary LOB RDAREA for storing the
source, this query is not displayed.

n: Select this option to go on to the next page.
q: Select this option to return to the Master menu.

(7) Detail option setting menu (2/2) is displayed
Enter 14-16 and specify appropriate information in response to the messages
displayed. When you have entered all necessary information, choose q to return to the
Master menu.

The following explains the messages that are displayed on the screen when you enter
each of the numbers:
14: Enter lock wait time (0-32767 [second]) >

Default: 3600
Specify the lock-release wait time.

15: Enter sync point dump interval (100-32000 [logs]) >
Default: 1000
Specify the synchronization point dump interval. A synchronization point dump
is obtained when the specified number of blocks of system log information have
been output since the last effective synchronization point dump.
Enter sync point dump interval time (0 or 10-1440 [minute]) >
Default: 60
Specify the synchronization point dump interval. A synchronization point dump
is obtained when the specified amount of time has elapsed since the last effective

4. Setting Up an Environment Using the System Generator

124

synchronization point dump. If 0 is specified, HiRDB will not obtain
synchronization point dumps based on elapsed time.

16: Use assign list? (Y/N) >
Default: N
Specify whether or not to use narrowed search.
To use narrowed search, specify Y, in which case the following message is
displayed:
Enter max list users number (1-32767 [users]) >
Specify the number of users for whom lists are to be created.
Enter max list count per user (1-32767 [lists]) >
Specify the number of lists that can be created per user.

b: Select this option to go back to the previous page.
q: Select this option to return to the Master menu.

(8) Master menu is displayed
Enter 8-10 and specify the appropriate information in response to the displayed
messages. These items let you specify information about system files and RDAREAs
here.

4. Setting Up an Environment Using the System Generator

125

The messages that are displayed when each of items 8-10 is entered are explained as
follows:
8: Select file type for system file

1: Raw 2: UNIX
Enter no >
Default: UNIX
Specify the number that indicates the file type of the HiRDB file system area for
system files:

• Raw: Character special file
• UNIX: Regular file

For ease of construction, the default is regular file. To construct a highly reliable
system, character special file should be selected.

9:
This option displays the Log option setting menu.

4. Setting Up an Environment Using the System Generator

126

This option lets you set up an environment for the system log files.
Enter 1-3 and specify the appropriate information in response to the messages
displayed. When you have entered all necessary information, choose q to return
to the Master menu.
The following explains the messages that are displayed on the screen when you
enter each of the numbers:
1: Use dual log file? (Y/N) >

Default: N
Specify whether or not to use dual log files. To use dual log files, specify Y.
Dual system log files should be used to improve system reliability. For
details about dual system log files, see 10.3.1 Designing system log files.

2: Check log unload status (as dictionary and backend
server)? (Y/N) >

Default: Y
Normally specify Y.
Specify whether or not to check the system log's unload status for the
dictionary and back-end servers. If you specify N, the system does not check
the log's unload status. This operation mode may result in an error that makes
database recovery impossible. For details about the operation mode that
releases unload status checking, see the manual HiRDB Version 8 System
Operation Guide.
The system generator assumes N for the front-end server because the
front-end server's system log is not used for database recovery.

3: Enter log file size (for frontend server) (1-2048 [MB])>
Default: 1
Specify the size of one system log file for the front-end server.
HiRDB creates as many system log files as there are "the number of system
log files per server number of front-end servers in the unit," based on this

4. Setting Up an Environment Using the System Generator

127

size for a single system log file. The actual number of system log files to be
created for each server depends on the number of HiRDB file system areas
and whether or not you use dual system log files.
Enter log file size (for dictionary server) (1-2048[MB])
>
Default: 2
Specify the size of one system log file for the dictionary server.
HiRDB creates as many system log files as there are "the number of system
log files per server number of dictionary servers in the unit," based on this
size for a single system log file. The actual number of system log files to be
created for each server depends on the number of HiRDB file system areas
and whether or not you use dual system log files.
Enter log file size (for backend server) (1-2048])>
Default: MAX (1204, (a + 1) 1.5)
a: The database update size specified with Master menu item 5.
Specify the size of one system log file for the back-end server.
HiRDB creates as many system log files as there are "the number of system
log files per server number of back-end servers in the unit," based on this
size for a single system log file. The actual number of system log files to be
created for each server depends on the number of HiRDB file system areas
and whether or not you use dual system log files.

q: Select this option to return to the Master menu.
10: Select file type for RDAREA

1: Raw 2: UNIX
Enter no >
Default: UNIX
Specify the number that indicates the file type of the HiRDB file system area for
RDAREAs:

• Raw: Character special file
• UNIX: Regular file

For ease of construction, the default is regular file. To construct a highly reliable
system, character special file should be selected.

(9) Display the HiRDB unit initialization menu
Enter u to display the HiRDB unit initialization menu.

4. Setting Up an Environment Using the System Generator

128

(10) HiRDB unit initialization menu is displayed
This menu is used to initialize each unit that forms the HiRDB/Parallel Server. For
each unit, initialize the HiRDB file system areas to be used for the following purposes:

• System files
• RDAREAs

Enter 1-5 and specify appropriate information in response to the displayed messages.
When specification of all items has been completed, select I to execute unit
initialization.

4. Setting Up an Environment Using the System Generator

129

The messages that are displayed when each of items 1-5 is entered are explained as
follows:
1: Enter host name to create unit >

Specify the host name of this unit.
Already unit created host displays the host name of a unit that has already
been initialized.

2:
The HiRDB file system area for system files is initialized and then system files
are created in that area. Enter appropriate information in response to the
applicable message shown as follows:
Character special file

• XXX
Displays the size required for the HiRDB file system area for system

Enter file name and partition size for HiRDB-file-system-area.
This HiRDB-file-system-area will be used for HiRDB system files.
(log and status etc...)

-- Attention --
Please enter file name with complete path.
The path name must be a character special file because Raw file system are
selected.
(ex) /dev/dsk/rhd00301
Please type the file name carefully because all the data will lose in the special file.
The size of HiRDB-file-system-area will more than XXX [MB].

Enter file name with completely path > aa....aa
Enter HiRDB-file-system-area size
(=partition size of this character special file) [MB] > bb....bb

4. Setting Up an Environment Using the System Generator

130

files. Specify in aa...aa a character special file whose size is greater than
this value.

• aa...aa (path-name-of-character-special-file)
Specify the absolute path name of the character special file to which the
HiRDB file system area for system files is to be allocated. If the file
name is symbolically linked, specify the symbolic link name.
Symbolically linking a file name simplifies hard disk exchange in the
event of hard disk failure. For details about symbolic linkage of file
names, see 2.3.6 Preparing to create the HiRDB file system area.
If an invalid name is specified, the corresponding character special file
area is damaged; care must be taken to ensure that the correct name is
specified.

• bb...bb (partition-size)
Specify in Mbytes the partition size for the character special file
specified in aa...aa. If the specified size is greater than the actual
partition size, an error results during system generation. If it is less than
the actual partition size, no error results, but the remaining area is
treated as invalid area because the system uses no more than the
specified size of area.

Regular file

• XXX
Displays the size required for the HiRDB file system area for system
files. Specify in aa...aa a regular file whose size is greater than this
value.

• aa...aa (path-name-of-regular-file)
Default: Regular file named sysfiles under the HiRDB directory
Specify the absolute path name of the regular file (name beginning with
/) to which the HiRDB file system area for system files is to be

Enter file name and partition size for HiRDB-file-system-area.
This HiRDB-file-system-area will be used for HiRDB system files.
(log and status etc...)

-- Attention --
Please enter file name with complete path.
If specified file are already exist pdgen will delete the file and recreate.
The size of HiRDB-file-system-area will more than XXX [MB].
The HiRDB-file-system-area creates as UNIX file with specified size.

Enter file name with completely path > aa....aa
Enter HiRDB-file-system-area size [MB] > bb....bb

4. Setting Up an Environment Using the System Generator

131

allocated. If the file name is symbolically linked, specify the symbolic
link name. Symbolically linking a file name simplifies hard disk
exchange in the event of hard disk failure. For details about symbolic
linkage of file names, see 2.3.6 Preparing to create the HiRDB file
system area.
If an invalid name is specified, the corresponding regular file area is
damaged; care must be taken to ensure that the correct name is
specified.

• bb...bb (size-of-regular-file)
Specify in Mbytes the size displayed in xxx. If system files are to be
added later, add the additional size to xxx. If the specified size is greater
than the available UNIX file system area, a shortage occurs. Care
should be taken that the specified size of a UNIX file system area is
actually available.

3:
Same as 2.

4:
Same as 2.

5:
This option initializes the HiRDB file system area for RDAREAs. The system
uses this HiRDB file system area to store the RDAREAs that are created by the
system generator.
The HiRDB administrator must enter the appropriate information in response to
the following message:
Character special file

• XXX

Enter file name and partition size for HiRDB-file-system-area.
This HiRDB-file-system-area will be used for RDAREA.

-- Attention --
Please enter file name with complete path.
The path name must be a character special file because Raw file system are selected.
(ex) /dev/dsk/rhd00301
Please type the file name carefully because all the data will lose in the
special file.
The size of HiRDB-file-system-area will more than XXX [MB].

Enter file name with completely path > aa....aa
Enter HiRDB-file-system-area size
(=partition size of this character special file) [MB] > bb....bb

4. Setting Up an Environment Using the System Generator

132

Displays the size required for the HiRDB file system area for
RDAREAs. Specify in aa...aa a character special file whose size is
greater than this value.
Note that this size does not include the size of RDAREAs that are added
with the Create new rdarea menu. If you are adding RDAREAs using
the Create new rdarea menu, add the size of additional RDAREAs to
this size.

• aa...aa (path-name-of-character-special-file)
Specify the absolute path name of the character special file to which the
HiRDB file system area for RDAREAs is to be allocated. If the file
name is symbolically linked, specify the symbolic link name.
Symbolically linking a file name simplifies hard disk exchange in the
event of hard disk failure. For details about symbolic linkage of file
names, see 2.3.6 Preparing to create the HiRDB file system area.
If an invalid name is specified, the corresponding character special file
area is damaged; care must be taken to ensure that the correct name is
specified.

• bb...bb (partition-size)
Specify in Mbytes the partition size for the character special file
specified in aa...aa. If the specified size is greater than the actual
partition size, an error results. If it is less than the actual partition size,
no error results, but the remaining area is treated as invalid area because
the system uses no more than the specified size of area.

Regular file

• XXX
Displays the size required for the HiRDB file system area for
RDAREAs. Specify in bb...bb a regular file whose size is greater than
this value.
Note that this size does not include the size of RDAREAs that are added

Enter file name and partition size for HiRDB-file-system-area.
This HiRDB-file-system-area will be used for rdarea.

-- Attention --
Please enter file name with complete path.
If specified file are already exist pdgen will delete the file and recreate.
The size of HiRDB-file-system-area will more than XXX [MB].
The HiRDB-file-system-area creates as UNIX file with specified size.

Enter file name with completely path > aa....aa
Enter HiRDB-file-system-area size [MB] > bb....bb

4. Setting Up an Environment Using the System Generator

133

with the Create new rdarea menu. If you are adding RDAREAs using
the Create new rdarea menu, add the size of additional RDAREAs to
this size.

• aa...aa (path-name-of-regular-file)
Default: Regular file named rdfiles under the HiRDB directory
Specify the absolute path name of the regular file (name beginning with
/) to which the HiRDB file system area for RDAREAs is to be
allocated. If the file name is symbolically linked, specify the symbolic
link name. Symbolically linking a file name simplifies hard disk
exchange in the event of hard disk failure. For details about symbolic
linkage of file names, see 2.3.6 Preparing to create the HiRDB file
system area.
If an invalid name is specified, the corresponding regular file area is
damaged; care must be taken to ensure that the correct name is
specified.

• bb...bb (size-of-regular-file)
Specify in Mbytes the size displayed in xxx plus the required size for
user RDAREA creation area. If the specified size is greater than the
available UNIX file system area, a shortage occurs. Care should be
taken that the specified size of a UNIX file system area is actually
available.

i: Select this option to execute initialization of the unit.
csh or sh: Select this option to transfer control to a shell environment:

• csh: Transfers control to the c shell environment.
• sh: Transfers control to the b shell environment.

q: Select this option to return to the Master menu.
(11) Message is displayed indicating that unit initialization processing is under
way

A message is displayed that reports that unit initialization processing is underway.
While a unit is being initialized, each command that executes is displayed together
with an execution results message:

HiRDB unit initialization start. host name: host01
Creating HiRDB definition files (/HiRDB/conf)
Definition files are created

HiRDB-file-system-area for rdarea created (/HiRDB/dbarea)
HiRDB system files are initialized
Unit are initialized . enter return key >

4. Setting Up an Environment Using the System Generator

134

When creation processing is completed, press the Enter key.
If an error is detected, the corresponding command's message is displayed. The
HiRDB administrator must take action appropriate to the displayed message. After all
errors have been corrected, terminate the system generator, then re-execute it. To
terminate the system generator, enter q on the main menu.
All units comprising the HiRDB/Parallel Server must be initialized in the same manner
(the procedure must be repeated as many times as there are units). When all units have
been initialized, select q to return to the Master menu.

(12) Start the HiRDB environment setup
Specify g to start the HiRDB environment setup. The HiRDB environment is set up on
the basis of the information specified so far.

(13) Message is displayed
A message is displayed that reports that the HiRDB system is being created. While the
HiRDB system is being created, each command that executes is displayed together
with an execution results message:

Start HiRDB system generation
HiRDB starting

Push enter key to main menu >

4. Setting Up an Environment Using the System Generator

135

When creation processing is completed, press the Enter key.
If an error is detected, the corresponding command's message is displayed. The
HiRDB administrator must take action appropriate to the displayed message. After all
errors have been corrected, terminate the system generator, then re-execute it. To
terminate the system generator, enter q on the main menu.
Server names

Server names are determined by HiRDB. To obtain the server names, see the
pdstart operand in the system common definition ($PDDIR/conf/pdsys).

(14) Master menu is displayed
To create a user RDAREA, LOB RDAREA, or RDAREA for lists, enter r to display
the Create new rdarea menu.

(15) Create new rdarea menu is displayed
Set information about the RDAREA that is to be added.
Enter 1-8 and specify appropriate information in response to the displayed messages.
When all necessary information has been entered, select a to add the RDAREA.

4. Setting Up an Environment Using the System Generator

136

The messages that are displayed when each of items 1-8 is entered are explained as
follows:
1: Enter rdarea name >

Specify with 1-16 upper-case alphanumeric characters the name of the RDAREA
to be created. Specifying an existing RDAREA name results in an error.

2: Enter rdarea size (1- [MB]) >
Default: 100
Specify the size of the RDAREA.

3: Enter segment size (1-16000 [Pages]) >
Default: 20
Specify the segment size of the RDAREA.

4: Enter page size (4-30 [KB]) >
Default: 4
Specify the page size of the RDAREA.

5: 1: for Table/Index data
2: for Binary large object data
3: for List
Enter rdarea type (1-3) >
Default: TABLE
Specify the number that indicates the type of RDAREA:
1: User RDAREA

4. Setting Up an Environment Using the System Generator

137

2: User LOB RDAREA
3: RDAREA for lists

6: Enter Global buffer number for this rdarea (4-460000 [buffer
pages]) >

64-bit mode: (4-1073741824 [buffer pages])
Default: 350
Specify the size of the global buffer to be allocated for the RDAREA.
The permitted maximum value is 460,000 pages for 32-bit mode and 1073741824
pages for 64-bit mode, but a large value increases the shared memory size. With
some OSs, the supported maximum shared memory size may be exceeded,
resulting in an error during HiRDB startup.
For details about the shared memory size to be allocated, see 16.2.5 Formula for
size of shared memory used by global buffers. For details about the maximum
shared memory size that can be allocated, see the applicable OS documentation.

7: Enter HiRDB file system area name for this rdarea (complete
path name) >

Default: $PDDIR/rdfiles
Specify the absolute path name of the HiRDB file system area for RDAREAs
(name beginning with "/"). The specified HiRDB file system area must be one of
the following:

• HiRDB file system area for RDAREAs that is located at the unit specified on
the HiRDB unit initialization menu (the unit is determined by the back-end
server specified at item 8)

• HiRDB file system area for RDAREAs that was specified with the pdfmkfs
command

If any other HiRDB file system area is specified, an error occurs when the
RDAREA is added (when a is selected).

8: Enter back-end-server name >
Specify the name of the back-end server in which the RDAREA is to be created.
See the pdstart operand in the system common definition ($PDDIR/conf/
pdsys) to obtain the back-end servers that are defined in each host.

a: Select this option to add the RDAREA.
l: Select this option to display a list of RDAREAs that have been created. Following
is an example:

4. Setting Up an Environment Using the System Generator

138

q: Select this option to return to the Master menu.
Notes about adding RDAREAs to the unit on which the dictionary server has
been defined

An RDAREA added from the Create new rdarea menu is stored in the HiRDB
file system area for RDAREAs that was initialized from the HiRDB unit
initialization menu. This means that on the unit where the dictionary server is
defined, both system RDAREAs and user RDAREAs (and user LOB RDAREAs)
are stored in the same HiRDB file system area. To store system RDAREAs and
user RDAREAs (and user LOB RDAREAs) in separate HiRDB file system areas,
the Create new rdarea menu cannot be used. Instead, the pdfmkfs command
must be used to initialize another HiRDB file system area, and then the database
structure modification utility (pdmod command) can be used to add RDAREAs.

(16) Master menu is displayed again
To add another RDAREA, repeat step (15).
When all RDAREAs have been added, enter q to return to the Master menu.

When an RDAREA has been added, the following message is displayed:
Rdarea are added. You have to restart HiRDB to use the area.
Restart now ? (Y/N) >

4. Setting Up an Environment Using the System Generator

139

To use the added RDAREA immediately, enter Y to restart HiRDB.
To use it later (the next time HiRDB is started), enter N (in which case HiRDB will not
be restarted).

(17) Master menu is displayed
To set up and register a plug-in, enter p to display the Plug-in Setup menu.

(18) Plug-in Setup menu is displayed
This menu is used to set information about a plug-in that is to be set up and registered.
Enter 1-4 and specify appropriate information in response to the displayed messages,
then enter s to set up and register the plug-in. The plug-in registration authorization
identifier is MASTER.

4. Setting Up an Environment Using the System Generator

140

The messages that are displayed when each of items 1-4 is entered are explained as
follows:
1: Select Plugin for Setup

1: Text Search Plug-in
2: Image Search Plug-in
3: Spatial Search Plug-in
o: Other Plugin
Enter no >
Specify the number that indicates the plug-in to be set up.
When o is selected, specify the name of the plug-in.

2: Enter Plugin PP installed directory name >
Specify the directory in which the plug-in program is installed. If 1, 2, or 3 was
selected at item 1, Assume by pdgen is displayed.

3: Enter Plugin definition file name >
Specify the name of the plug-in definition file to be installed. If 1, 2, or 3 was
selected at item 1, Assume by pdgen is displayed.

4: Enter Plugin PIC file name >
Specify the name of the PIC file to be installed. If 1, 2, or 3 was selected at item
1, Assume by pdgen is displayed.

s: Select this option to set up and register the plug-in.
l: Select this option to display a list of plug-ins that have been set up and registered.
Following is an example:

4. Setting Up an Environment Using the System Generator

141

q: Select this option to return to the Master menu.
(19) Master menu is displayed again

To set up and register another plug-in, repeat step (18).
When all plug-ins have been set up and registered, enter q to return to the Master
menu.

The following message is displayed:

To use immediately the plug-in that has just been set up and registered, enter Y to
restart HiRDB. To use it later (the next time HiRDB is started), enter N (in which case
HiRDB will not be restarted).
If plug-in setup or registration fails, determine the cause of the failure, then terminate
HiRDB (if it is active) by specifying t on the Master menu. If HiRDB is engaged in
termination processing, also terminate the system generator. When the system
generator is terminated, use pdsetup -d to cancel the registration in the OS, and then
re-execute pdsetup. In this case also, the plug-in registration authorization identifier
is MASTER.

(20) Master menu is displayed again
System construction by the system generator is now complete, and the system
generator can be terminated. HiRDB has already been started at this point.

Plugin are setup. You have to restart HiRDB to use the Plugin.
Restart now ? (Y/N) >

4. Setting Up an Environment Using the System Generator

142

• To not terminate HiRDB
Enter q; the system generator only is terminated.

• To terminate HiRDB
Enter t, then enter q. HiRDB and the system generator are both terminated.

• To define a schema and table
Enter csh or sh. The database definition utility (pddef command) can be
executed, because necessary environment variables have been set.

4.2.4 Optimizing the HiRDB operation environment
You can start HiRDB after completing the procedure described in 4.2.3 System
generator operation. After that, execute the following procedures as required.

(1) Modify HiRDB system definitions
Modify the HiRDB system definitions as required. For details about how to modify
HiRDB system definitions, see 5.2.4 Modifying HiRDB system definitions (excluding
UAP environment definitions).

(2) Set up a dictionary table
Use the alter system statement of the database structure modification utility
(pdmod) to set up data dictionary tables.

(a) Specifying the reference privilege
Define the reference privilege for data dictionary tables as required. For details about
how to define the reference privilege for data dictionary tables, see the manual HiRDB
Version 8 System Operation Guide.

(b) Defining the data type
You can change the data type of a data dictionary table from VARCHAR to MVARCHAR.
For details about how to change the data type, see the database structure modification

4. Setting Up an Environment Using the System Generator

143

utility (pdmod) in the manual HiRDB Version 8 Command Reference.

4.2.5 Output of initialization commands to log
When a HiRDB system is created by the system generator (g specified on the Master
menu), the initialization commands are output to the log file.
Should the system files need to be reviewed for tuning purposes, this log file helps
improve the efficiency of the review process. Moreover, if the HiRDB system needs to
be reset to its initial status, the contents of this log file can be used to simplify the
process.
Table 4-4 lists the contents of the log file.

Table 4-4: Contents of the log file

1 The command (pdfmkfs) for creating a HiRDB file system area is executed for each
server machine (host) in which the HiRDB file system area is to be created, and its
log information is output to the file corresponding to each host. On the other hand, the
commands for initializing a status file (pdstsinit), a synchronization point dump
file (pdloginit), and a system log file (pdloginit) are executed on the server
machine where the system manager is located; therefore, their log information is

Item Description

Output destination $PDDIR/conf at the server machine where the system manager is defined

Type Regular file (UNIX file)

Name pdgen_cmd."name-of-host-where-unit-was-created"

Access privilege User who executed pdgen has reference and update privileges. Other users have reference
privilege only.

Output
information1

(when output is to
the server machine
where the system
manager is defined)

• Contents of environment variables during creation (PDDIR, PDCONFPATH,
SHLIB_PATH2, PATH)

• Details of creation of HiRDB file system areas for system files (pdfmkfs)
• Details of creation of HiRDB file system areas for RDAREAs (pdfmkfs)
• Details of initialization of unit status files (pdstsinit)
• Details of initialization of server status files (pdstsinit)
• Details of initialization of synchronization point dump files for server (pdloginit)
• Details of initialization of system log files for server (pdloginit)

Output
information1

(when output is to a
server machine
other than where the
system manager is
defined)

• Contents of environment variables during creation (PDDIR, PDCONFPATH,
SHLIB_PATH2, PATH)

• Details of creation of HiRDB file system areas for system files (pdfmkfs)
• Details of creation of HiRDB file system areas for RDAREAs (pdfmkfs)

4. Setting Up an Environment Using the System Generator

144

output to the file corresponding to the host where the system manager is located.
2 The environment variable is LD_LIBRARY_PATH for Solaris and Linux and
LIBPATH for AIX 5L.

Example of output log file (corresponding to the host where the system manager
is located)

Example of output log file (corresponding to the host where the system manager
is not located)

PDDIR="/HiRDB"
PDCONFPATH="${PDDIR}/conf"
SHLIB_PATH="${PDDIR}/lib"
PATH="${PDDIR}/bin:${PATH}"

pdfmkfs -r -n 56 -l 100 -k SVR -e 100 -i /sysarea

pdstsinit -u u001 -f /sysarea/u001st1a -c 32
pdstsinit -u u001 -f /sysarea/u001st1b -c 32
pdstsinit -u u001 -f /sysarea/u001st2a -c 32
pdstsinit -u u001 -f /sysarea/u001st2b -c 32
 .
 .
 .
pdloginit -d sys -s dic -f /sysarea/dicjn1a -n 100
pdloginit -d sys -s dic -f /sysarea/dicjn2a -n 100
pdloginit -d sys -s dic -f /sysarea/dicjn3a -n 100

pdfmkfs -r -n 5 -l 100 -k SVR -e 100 -i /dbarea

PDDIR="/HiRDB"
PDCONFPATH="${PDDIR}/conf"
SHLIB_PATH="${PDDIR}/lib"
PATH="${PDDIR}/bin:${PATH}"

pdfmkfs -r -n 56 -l 100 -k SVR -e 100 -i /sysarea
 .
 .
 .
pdfmkfs -r -n 5 -l 100 -k SVR -e 100 -i /dbarea

4. Setting Up an Environment Using the System Generator

145

4.3 RDAREA generation by the system generator

Table 4-5 lists the types of RDAREAs that can be generated by the system generator.
Table 4-5: List of RDAREAs generated by the system generator

*1 Generated only if the RDAREA size specified on the Expanded Options Menu
screen is other than 0.
*2 Generated only by adding RDAREAs with the Add RDAREA screen.
*3 As many RDAREAs as the number of Add RDAREA screens added are generated.
Details of each type of RDAREA are provided below.

Master directory RDAREA

Generated RDAREA Number
generated

RDAREA name Control statement's output
destination file name

Master directory RDAREA 1 MAST $PDDIR/conf/PDINIT

Data directory RDAREA DDIR

Data dictionary RDAREA DDIC

Data dictionary LOB RDAREA
(for definition source storage)*1

0 or 1 DIC_RTN_SRC

Data dictionary LOB RDAREA
(for object storage)*1

DIC_RTN_OBJ

Registry RDAREA*1 REG_BASE $PDDIR/conf/PDREGINIT

Registry LOB RDAREA*1 REG_KEY_VALUE

User RDAREA*2 *3 RDAREA name
specified on the Add
RDAREA screen

$PDDIR/conf/RDAREA-name

User LOB RDAREA*2

List RDAREA*2

Item Contents

RDAREA name MAST

RDAREA type Master directory

Page length 4 (kilobytes)

4. Setting Up an Environment Using the System Generator

146

Data directory RDAREA

Data dictionary RDAREA

Data dictionary LOB RDAREA (for definition source storage)

Segment size 50 (pages)

HiRDB file path name RDAREA-HiRDB-file-system-area-name1/master

RDAREA segment count 10

Item Contents

RDAREA name DDIR

RDAREA type Data directory

Page length 4 (kilobytes)

Segment size 50 (pages)

HiRDB file path name RDAREA-HiRDB-file-system-area-name1/ddir

RDAREA segment count 5

Item Contents

RDAREA name DDIC

RDAREA type Data dictionary

Page length 4 (kilobytes)

Segment size 5 (pages)

HiRDB file path name RDAREA-HiRDB-file-system-area-name1/ddic

RDAREA segment count (a 1024) 20
a: Data dictionary RDAREA size specified on the Expanded Options
Menu screen

Item Contents

RDAREA name DIC_RTN_SRC

RDAREA type LOB used by HiRDB (SQL_ROUTINES)

RDAREA management server2 dic

Item Contents

4. Setting Up an Environment Using the System Generator

147

Data dictionary LOB RDAREA (for object storage)

Registry RDAREA

Page length3 8 (kilobytes)

Segment size 1 (pages)

HiRDB file path name RDAREA-HiRDB-file-system-area-name1/ddics

RDAREA segment count (a 1024) 8
a: Data dictionary LOB RDAREA size specified on the Expanded
Options Menu screen

Item Contents

RDAREA name DIC_RTN_OBJ

RDAREA type LOB used by HiRDB (SQL_ROUTINES)

RDAREA management server2 dic

Page length3 8 (kilobytes)

Segment size 1 (pages)

HiRDB file path name RDAREA-HiRDB-file-system-area-name1/ddico

RDAREA segment count (a 1024) 8
a: Data dictionary LOB RDAREA size specified on the Expanded
Options Menu screen

Item Contents

RDAREA name REG_BASE

RDAREA type Registry

Global buffer name bp01

Page length 4 (kilobytes)

Segment size 5 (pages)

HiRDB file path name RDAREA-HiRDB-file-system-area-name1/rdreg

Item Contents

4. Setting Up an Environment Using the System Generator

148

Registry LOB RDAREA

User RDAREA

User LOB RDAREA

RDAREA segment count (a 1024) 20
a: Registry RDAREA size specified on the Expanded Options Menu
screen

Item Contents

RDAREA name REG_KEY_VALUE

RDAREA type LOB used by HiRDB (SQL_REGISTRY)

Page length 8 (kilobytes)

Segment size 1 (pages)

HiRDB file path name RDAREA-HiRDB-file-system-area-name1/rdregk

RDAREA segment count (a 1024) 8
a: Registry LOB RDAREA size specified on the Expanded Options
Menu screen

Item Contents

RDAREA name RDAREA name specified on the Add RDAREA screen

RDAREA type Public user use

RDAREA
management server4

Server specified using the Add RDAREA screen

Page length Page length (kilobytes) specified using the Add RDAREA screen

Segment size Segment size (pages) specified using the Add RDAREA screen

HiRDB file path
name

HiRDB-file-system-area-name/
RDAREA-name-specified-using-the-Add-RDAREA-screen

RDAREA segment
count

 (a 1024) b
a: RDAREA size specified on the Expanded Options Menu screen
b: Page length segment size

Item Contents

4. Setting Up an Environment Using the System Generator

149

List RDAREA

1 This is the RDAREA HiRDB file system area specified on the Main Menu screen

Item Contents

RDAREA name RDAREA name specified on the Add RDAREA screen

RDAREA type Public user LOB

RDAREA
management server4

Server specified using the Add RDAREA screen

Page length Page length (kilobytes) specified using the Add RDAREA screen

Segment size Segment size (pages) specified using the Add RDAREA screen

HiRDB file path
name

HiRDB-file-system-area-name/
RDAREA-name-specified-using-the-Add-RDAREA-screen

RDAREA segment
count

 (a 1024) b
a: RDAREA size specified on the Expanded Options Menu screen
b: Page length segment size

Item Contents

RDAREA name RDAREA name specified using the Add RDAREA screen

RDAREA type Public user LOB

RDAREA
management server4

Server specified using the Add RDAREA screen

Page length Page length (kilobytes) specified using the Add RDAREA screen

Segment size Segment size (pages) specified using the Add RDAREA screen

Maximum number of
list registrations

• If number of RDAREA segments less than 500: 500
• If number of RDAREA segments greater than 500 but not exceeding 50000:

 (a 1024) b
a: RDAREA size specified on the Expanded Options Menu screen
b: Page length segment size
• If number of RDAREA segments greater than 50000: 50000

HiRDB file path
name

HiRDB-file-system-area-name/
RDAREA-name-specified-using-the-Add-RDAREA-screen

RDAREA segment
count

 (a 1024) b
a: RDAREA size specified on the Expanded Options Menu screen
b: Page length segment size

4. Setting Up an Environment Using the System Generator

150

for a HiRDB/Single Server or on the Unit Initialization screen for a HiRDB/Parallel
Server.
2 This is specified in control statements for a HiRDB/Parallel Server only.
3 There is no control statement specification.
4 This can be specified for a HiRDB/Parallel Server only.

151

Chapter

5. Setting Up an Environment Using
Commands

This chapter describes the procedure for setting up the HiRDB environment using
commands.
This chapter contains the following sections:

5.1 Overview of environment setup using commands
5.2 Creating the HiRDB system definitions
5.3 Creating HiRDB file system areas
5.4 Creating system files
5.5 Creating system RDAREAs
5.6 Starting HiRDB for the first time
5.7 Creating user RDAREAs
5.8 Creating user LOB RDAREAs
5.9 Creating data dictionary LOB RDAREAs
5.10 Creating list RDAREAs

5. Setting Up an Environment Using Commands

152

5.1 Overview of environment setup using commands

(1) Items to be defined before environment setup
Before starting the HiRDB environment setup, design the system configuration for the
following items:

• Units and servers
• HiRDB file system areas
• System files

• Work table files
• RDAREAs

Determine the configuration of these items by referring to 9. Designing a HiRDB/
Single Server, or 10. Designing a HiRDB/Parallel Server. After that, set up the HiRDB
environment according to the information provided in this chapter, beginning at 5.2
Creating the HiRDB system definitions.

(2) Environment setup procedure
Figure 5-1 shows the procedure for using commands to set up the HiRDB
environment.

5. Setting Up an Environment Using Commands

153

Figure 5-1: Procedure for using commands to set up the HiRDB environment

You will be defining the following information in this chapter:
• First, use the database-initialization utility (pdinit) to create system RDAREAs

(master directory RDAREAs), data directory RDAREAs, and data dictionary
RDAREAs, so that you can start HiRDB.

• Next, use the database structure modification utility (pdmod) to add any required
RDAREAs (user RDAREAs, data dictionary RDAREAs, user LOB RDAREAs,
and RDAREAs for lists).

For the user RDAREAs, data dictionary LOB RDAREAs, user LOB RDAREAs, and
RDAREAs for lists, you can use the database initialization utility (pdinit) to create
them together with the system RDAREAs.

5. Setting Up an Environment Using Commands

154

5.2 Creating the HiRDB system definitions

Executor: HiRDB administrator
Create HiRDB system definitions according to the designed system configuration and
operating environment. This section discusses the following topics:

• Creating HiRDB system definitions
• Sharing HiRDB system definition files (HiRDB/Parallel Server only)
• Modifying HiRDB system definitions

• Modifying UAP environment definitions
For details about the HiRDB system definition operands, see the manual HiRDB
Version 8 System Definition.
Notes

• After creating HiRDB system definitions, use the pdconfchk command to check
their conformity. This command checks the definitions required for starting
HiRDB for any inconsistencies. For details about the operands supported by the
pdconfchk command, see the manual HiRDB Version 8 System Definition.

• Set and maintain permission to access the HiRDB system definition file so that
only the owner of the file (HiRDB administrator) is granted read and write
privileges.

• After modifying the HiRDB system definitions, be sure to back up the files under
$PDDIR/conf. To protect against possible errors on the disk that contains the
HiRDB directory, you need to back up the files in the HiRDB directory (files
under $PDDIR/conf). To restore the HiRDB directory, you need a backup copy
of the files under $PDDIR/conf.

5.2.1 Creating HiRDB system definitions (HiRDB/Single Server)
(1) Creating system common definitions (HiRDB/Single Server)

For system common definitions, define the HiRDB configuration and common
information. Store the system common definitions created in the following file:

• $PDDIR/conf/pdsys file
The system common definitions include the definitions of unit configuration, server
configuration, and global buffer.

(2) Creating unit control information definitions (HiRDB/Single Server)
For unit control information definitions, define the unit's execution environment. Store
the unit control information definitions created in the following file:

5. Setting Up an Environment Using Commands

155

• $PDDIR/conf/pdutsys file
The unit control information definitions include the definitions of status files for units.

(3) Creating single server definitions
For single server definitions, define the single server's execution environment. Store
the created single server definitions in the following file:

• $PDDIR/conf/server-name* file
The following shows an example of items that can be specified in the single server
definitions:

• System log files
• Synchronization point dump files
• Status files for server
• Work table files

Single Server definition is not required for utility special units.
* Use the server name that is specified in the -s option of the pdstart operand in the
system common definitions. For example, if your specification is pdstart -s sds1,
then store the single server definitions in the following file:

• $PDDIR/conf/sds1 file
(4) UAP environment definition creation (optional)

Define UAP execution environments. Create UAP environment definitions as needed,
and store them in the following file:

• $PDDIR/conf/pduapenv/any-name1

The HiRDB administrator must grant to the users who will use a UAP environment
definition the read privilege (r) and the execute privilege (x) for the $PDDIR/conf/
pduapenv directory. Read (r) privilege must also be granted for the UAP environment
definition file.
The following are examples of the items that can be specified in a UAP environment
definition:

• The action to be taken by the UAP if local buffers are used to access an RDAREA
or index, but the RDAREA or index is being used by another user.

• The local buffers to be used by the UAP.
1 The file name must begin with an alphabetic character and must not exceed 8
characters in length.

5. Setting Up an Environment Using Commands

156

(5) Creating an SQL reserved word definition (optional)
To use the SQL reserved word deletion facility, you must define the reserved words to
be deleted for each UAP. You create an SQL reserved word definition as needed and
store it in the following file:

• $PDDIR/conf/pdrsvwd/any-name*

The HiRDB administrator must grant to a user who uses the SQL reserved word
definition the read (r) and execution (x) privileges for the $PDDIR/conf/pdrsvwd
directory and the read privilege (r) for the SQL reserved word deletion file.
* The file name must be expressed as no more than eight alphanumeric characters
beginning with an alphabetic character.

(6) Configuring the HiRDB system definition files
Figure 5-2 shows an example configuration of HiRDB system definition files created
by HiRDB.

Figure 5-2: Configuration of HiRDB system definition files: HiRDB/Single
Server

5.2.2 Creating HiRDB system definitions (HiRDB/Parallel Server)
(1) Creating system common definitions (HiRDB/Parallel Server)

For system common definitions, define the HiRDB configuration and common
information. After you create the system common definitions, store them in the
following file:

• $PDDIR/conf/pdsys file

5. Setting Up an Environment Using Commands

157

Create the same system common definitions for each server machine.
The system common definitions include the definitions of unit configuration, server
configuration, and global buffer.

(2) Creating unit control information definitions (HiRDB/Single Server)
For unit control information definitions, define the unit's execution environment. Store
the unit control information definitions created in the following file:

• $PDDIR/conf/pdutsys file
Create the unit control information definitions for each server machine.
The unit control information definitions include the definitions of status files for units.

(3) Creating single server definitions
For single server definitions, define the default values of the server-definition
operands, which are explained in (4)-(6), below. Create the server common definitions
for each server as required and store them in the following file:

• $PDDIR/conf/pdsvrc file
The server common definitions are useful in the following cases:

• There are many servers to be defined per server machine.
• There are many definitions that are common to multiple servers.

The information specified in the server common definitions takes effect on all the
servers defined in the corresponding server machine. If there are many definitions that
are common to multiple servers, you should specify the common information in the
server common definitions and the information unique to individual servers in the
corresponding server definitions.
If you are sharing HiRDB system definition files, you should create the server common
definitions.

(4) Creating front-end server definitions
For front-end server definitions, define the front-end server's execution environment.
Save the front-end server definitions created in the following file:

• $PDDIR/conf/server-name* file
Create the front-end server definitions in the server machine where the front-end server
is defined. The following shows an example of items that can be specified in the
front-end server definitions:

• System log files for the front-end server
• Synchronization point dump files for the front-end server

5. Setting Up an Environment Using Commands

158

• Status files for the front-end server
* Use the server name that is specified in the -s option of the pdstart operand in the
system common definitions. For example, if your specification is pdstart -s f001,
then store the front-end server definitions in the following file:

• $PDDIR/conf/f001 file
(5) Creating dictionary server definitions

For dictionary server definitions, define the dictionary server's execution environment.
Save the dictionary server definitions created in the following file:

• $PDDIR/conf/server-name* file
Create the dictionary server definitions in the dictionary server machine where the
dictionary server is defined. The following shows an example of items that can be
specified in the dictionary server definitions:

• System log files for the dictionary server
• Synchronization point dump files for the dictionary server
• Status files for the dictionary server
• Work table files

* Use the server name that is specified in the -s option of the pdstart operand in the
system common definitions. For example, if your specification is pdstart -s dic,
then store the dictionary server definitions in the following file:

• $PDDIR/conf/dic file
(6) Creating back-end server definitions

For back-end server definitions, define the back-end server's execution environment.
Save the back-end server definitions created in the following file:

• $PDDIR/conf/server-name* file
Create the back-end server definitions in the server machine where the back-end server
is defined. The following shows an example of items that can be specified in the
back-end server definitions:

• System log files for the back-end server
• Synchronization point dump files for the back-end server
• Status files for the back-end server
• Work table files

* Use the server name that is specified in the -s option of the pdstart operand in the

5. Setting Up an Environment Using Commands

159

system common definitions. For example, if your specification is pdstart -s b001,
then store the back-end server definitions in the following file:

• $PDDIR/conf/b001 file
(7) UAP environment definition creation (optional)

Define UAP execution environments. Create UAP environment definitions as needed,
and store them in the following file:

• $PDDIR/conf/pduapenv/any-name1

A UAP environment definition is created at the unit with the front-end server. If there
are multiple front-end servers, the UAP environment definition can be defined at any
of them, as appropriate.
The HiRDB administrator must grant to the users who will use a UAP environment
definition the read privilege (r) and the execute privilege (x) for the $PDDIR/conf/
pduapenv directory. Read (r) privilege must also be granted for the UAP environment
definition file.
The following are examples of the items that can be specified in a UAP environment
definition:

• The action to be taken by the UAP if local buffers are used to access an RDAREA
or index, but the RDAREA or index is being used by another user.

• The local buffers to be used by the UAP.
1 The file name must begin with an alphabetic character and must not exceed 8
characters in length.

(8) Creating an SQL reserved word definition (optional)
To use the SQL reserved word deletion facility, you must define the reserved words to
be deleted for each UAP. You create an SQL reserved word definition as needed and
store it in the following file:

• $PDDIR/conf/pdrsvwd/any-name*

Create the SQL reserved word definition on the unit where the front-end server is
located. In the event of multiple front-end servers, define the SQL reserved word
definition on the front-end server to which the UAP environment definition is to be
applied.
The HiRDB administrator must grant to a user who uses the SQL reserved word
definition the read (r) and execution (x) privileges for the $PDDIR/conf/pdrsvwd
directory and the read privilege (r) for the SQL reserved word deletion file.
* The file name must be expressed as no more than eight alphanumeric characters
beginning with an alphabetic character.

5. Setting Up an Environment Using Commands

160

(9) Foreign server information definition creation
When the HiRDB External Data Access facility is used, foreign server information
definition is required. This definition defines the linkage environment for a foreign
server. You create and store a foreign server information definition in the following
file:

• $PDDIR/conf/foreign-server-name
A foreign server information definition must be created on the server machine where
the back-end server that will link to the foreign server is defined.
Which operands you specify in a foreign server information definition depends on the
type of foreign server to be linked; for details, see the manual HiRDB Version 8 System
Definition.

(10) Hub optimization information definition creation
When the HiRDB External Data Access facility is used, Hub optimization information
definition is required. This definition defines optimization information for the HiRDB
External Data Access facility. You create and store a Hub optimization information
definition in the following file:

• $PDDIR/conf/any-name
A Hub optimization information definition must be created on the server machine
where the front-end server is defined. If there are multiple front-end servers, the same
Hub optimization information definition is required for each unit.

(11) Configuring the HiRDB system definition files
Figure 5-3 shows an example configuration of HiRDB system definition files.
Figure 5-4 shows an example configuration of HiRDB system definition files when the
HiRDB External Data Access facility is used.

5. Setting Up an Environment Using Commands

161

Figure 5-3: Configuration of HiRDB system definition files: HiRDB/Parallel
Server

5. Setting Up an Environment Using Commands

162

Notes

• The system common definitions must be identical at all server machines.
Figure 5-4: Configuration of HiRDB system definition files (when the HiRDB
External Data Access facility is used)

Notes

• The system common definitions must be identical at all server machines.

5. Setting Up an Environment Using Commands

163

• The networked back-end server is the back-end server to be linked with the
foreign server. A foreign server information definition file must be created
at the unit where the back-end server to be linked to the foreign server is
installed.

• Because this is an environment with multiple front-end servers, a Hub
optimization information definition file must be created on each unit.

5.2.3 Sharing HiRDB system definition files (HiRDB/Parallel Server)
For a HiRDB/Parallel Server, the HiRDB administrator must create HiRDB system
definition files and manage them for each server machine. However, if the file sharing
facility (NFS) provided by Hitachi CSMA/CD Network CD105 (TCP/IP) is used, all
the HiRDB system definition files, except for unit control information definition files,
can be managed by a single server machine. This is called sharing HiRDB system
definition files. Figure 5-5 shows an example of sharing HiRDB system definition
files.

5. Setting Up an Environment Using Commands

164

Figure 5-5: Sharing HiRDB system definition files

Note

5. Setting Up an Environment Using Commands

165

Shading indicates the shared files.
(1) Differences depending on whether or not definitions are shared

(2) How to share HiRDB system definition files
To share HiRDB system definition files, do the following:
1. Create a directory to store the HiRDB system definition files that are to be shared.

Create this directory at the server machine that is to manage the HiRDB system
definition files that are to be shared. This directory is called the shared directory.
These definition files can be managed by any server machine, but it is
recommended that they be managed by the server machine where the system
manager is defined.

2. Create the HiRDB system definition files (except for unit control information
definition files) under the shared directory.

3. Create the unit control information definition files under $PDDIR/conf/ at each
server machine. In this case, specify the name of the shared directory in the
PDCONFPATH operand.

5.2.4 Modifying HiRDB system definitions (excluding UAP
environment definitions)

This section describes how to modify HiRDB system definitions.
Note

• After modifying the HiRDB system definitions, be sure to back up the files
under $PDDIR/conf. To protect against possible errors on the disk that
contains the HiRDB directory, you need to back up the files in the HiRDB
directory (files under $PDDIR/conf). To restore the HiRDB directory, you
need a backup copy of the files under $PDDIR/conf. If $PDCONFPATH is
under the HiRDB directory, back it up in the same manner.

When not shared When shared

HiRDB system definitions must be managed for each
server machine.

HiRDB system definitions (except for unit control
information definitions) can be managed by one server
machine.

When the system common definition is modified, the
same modifications must be made as many times as
there are server machines.
For example, if there are four server machines, there are
four system common definitions. Because the contents
of these four system common definitions must be
identical, all four definitions must be modified.

• Because there is only one system common
definition, necessary modifications need to be
made only once.

• Because there are fewer modifications to be made,
the chances of making errors are reduced
significantly.

• If HiRDB can no longer reference the shared
directory, HiRDB may terminate abnormally.

5. Setting Up an Environment Using Commands

166

• For a HiRDB/Parallel Server, create subdirectories for each unit under
$PDDIR/conf and $PDCONFPATH, and check the contents of the HiRDB
system definition.

(1) How to modify HiRDB system definitions
This section describes how to modify HiRDB system definitions. In this explanation,
the directory that stores the unit control information definition file is referred to as
$PDDIR/conf, and the directory that stores any other HiRDB system definition files
is referred to as $PDCONFPATH.
Procedure

1. Create subdirectories under $PDDIR/conf and $PDCONFPATH. In this example,
the subdirectories will be named work.

2. Copy the unit control information definition file under $PDDIR/conf/work.
Copy the other HiRDB system definition files under $PDCONFPATH/work.

3. Modify the HiRDB system definitions copied into $PDDIR/conf/work and
$PDCONFPATH/work.

4. Use the pdconfchk -d work command to check the contents of the HiRDB
system definitions in $PDDIR/conf/work and $PDCONFPATH/work. If an error
is detected, correct the HiRDB system definition and re-execute the pdconfchk
command.

5. Use the pdstop command to terminate HiRDB normally.
6. Use the pdlogunld command to unload system log files in unload wait status.
7. Replace the HiRDB system definition files by copying the HiRDB system

definition files modified in step 3 under $PDDIR/conf and $PDCONFPATH.
8. If the values specified for the following operands have been modified, use the

pdloginit command to initialize the system log files:
 pd_log_dual
 pdstart

9. Use the pdstart command to perform a HiRDB normal startup.
(2) How to modify HiRDB system definitions with the system reconfiguration
command

When the system reconfiguration command (pdchgconf command) is used, the
HiRDB system definitions can be modified while HiRDB is operating, which means
that HiRDB need not be terminated. However, in order to use this command, HiRDB
Advanced High Availability must be installed. The following section shows how to
modify a HiRDB system definition with the system reconfiguration command.
Procedure

5. Setting Up an Environment Using Commands

167

1. Create the $PDDIR/conf/chgconf directory.
2. Copy the HiRDB system definition files currently being used to the directory

created in step 1.
3. Modify the HiRDB system definitions in $PDDIR/conf/chgconf.
4. Use the pdconfchk command to perform a check of the HiRDB system

definitions in $PDDIR/conf/chgconf. If an error is detected, correct the
HiRDB system definition and re-execute the pdconfchk command.

5. Use the pdchgconf command to replace the HiRDB system definitions with
the modified HiRDB system definitions.
When the pdchgconf command is executed, the HiRDB system definition
files currently being used (before modification) will be saved in $PDDIR/
conf/chgconf. Therefore, the modified HiRDB system definition files in
$PDDIR/conf/chgconf will be copied to $PDDIR/conf.

Notes

• If a transaction or utility is still operating 15 minutes after the pdchgconf
command was entered, the pdchgconf command terminates abnormally.

• There are restrictions on the use of the system reconfiguration command to
modify HiRDB system definitions; for details about the restrictions, see the
manual HiRDB Version 8 System Operation Guide.

(3) Notes
• When a system common definition is modified, the same modification must be

made to the system common definitions for all the server machines (applicable to
HiRDB/Parallel Server).

• HiRDB system definitions that are being used by an active HiRDB must not be
modified or deleted. If they are modified or deleted, operation of the HiRDB
cannot be guaranteed.

• In the event of HiRDB planned termination, forced termination, or abnormal
termination, some items can be modified using the HiRDB system definition
operands, but some items cannot be modified in this manner. For details, see the
manual HiRDB Version 8 System Definition.

5.2.5 Modifying a UAP environment definition
This section describes how to modify a UAP environment definition.
Procedure

1. Check that the UAP that uses the UAP environment definition is not
executing. If the UAP is executing when the UAP environment definition is
modified, the executing UAP will usually use the UAP environment

5. Setting Up an Environment Using Commands

168

definition before modification; however, depending on the timing, the
modified UAP environment definition may be used.

2. Modify the UAP environment definition.
3. Execute the UAP using the modified UAP environment definition.

5. Setting Up an Environment Using Commands

169

5.3 Creating HiRDB file system areas

Executor: HiRDB administrator
Use the pdfmkfs command to create an area where you can create HiRDB files
(HiRDB file system area). A regular file or character special file is used to create a
HiRDB file system area.

5.3.1 Types of HiRDB file system areas
Create the HiRDB file system areas according to their purposes as shown in Table 5-1.
Use the pdfmkfs command's -k option to specify the purpose.

Table 5-1: Types of HiRDB file system areas

Operating HiRDB requires HiRDB file system areas 1, 3 and 4.
For details about how to design a HiRDB file system area, see 9.2 Designing HiRDB
file system areas for a HiRDB/Single Server, and 10.2 Designing HiRDB file system
areas for a HiRDB/Parallel Server.
Note

The size of a HiRDB file system area that is to be initialized must not exceed the
partition size. If it exceeds the partition size, the next partition physically
following that partition may be damaged.

5.3.2 Using character special files
(1) Range of applicability of character special files

The range of support for file system areas in which character special files can be used
is shown in the following table:

NO. Type of HiRDB file system area -k option value

1 RDAREAs DB

2 Shared RDAREA SDB

3 System files SYS

4 Work table files WORK

5 Utilities UTL

6 RDAREAs for lists WORK

5. Setting Up an Environment Using Commands

170

Legend:
Yes: Character special files can be used.
No: Character special files cannot be used.

1 The entries in the Usage column are HiRDB file system areas specified in the -k
option of the pdfmkfs command.
2 For the Linux version, the following table shows for each type of RDAREA whether
or not character special files can be used:

Legend:
Yes: Character special files can be used.

Usage1 OS

HP-UX Solaris AIX 5L Linux

DB Yes Yes Yes Yes2

SDB Yes Yes Yes Yes

SYS Yes Yes Yes Yes

UTL3 Yes Yes Yes Yes

WORK Yes Yes Yes No

SVR Yes Yes Yes No

RDAREA type Status

Master directory RDAREA Yes

Data directory RDAREA Yes

Data dictionary RDAREA Yes

User RDAREA Yes

Registry RDAREA Yes

Data dictionary LOB RDAREA Yes

User LOB RDAREA Yes

Registry LOB RDAREA Yes

List RDAREA No

5. Setting Up an Environment Using Commands

171

No: Character special files cannot be used.
3 The following utility files support character special files:

• Backup files
• Unload log files
• Unload data files
• Differential backup management files
• Index information files

(2) Initial setting
If character special files are to be used, you must use the pdfmkfs command to make
an initial setting that the HiRDB file system area will use character special files. If the
character special files are symbolic links, specify the names of the links.
Modify the owner and access privileges of the file system area before making the
initial setting. For details about the modifications, see 2.3.6(5) Change the owner and
access privileges of the HiRDB file system area (applicable to character special files).
The following is an example of specifying the pdfmkfs command:

5.3.3 Creating a large file
The maximum size of a HiRDB file system area is 2047 MB (about 2 GB). To create
a HiRDB file system area that is larger than this size, you need to create the HiRDB
file system area as a large file. The following is the maximum size permitted for a large
file:

• HP-UX: 131,071 MB
• Solaris, AIX 5L, or Linux: 1,048,575 MB

Method for creating a large file
You can create a large file in the same manner as with a HiRDB file system area. Use
the pdfmkfs command's -n option to specify the size of the HiRDB file system area
that is to be a large file (2 gigabytes or greater).
To use large files, you need to specify Y in the pd_large_file_use operand in the
system common definitions.

Files to be used with utilities
The following utilities may not support large files:

• Database load utility (pdload)

pdfmkfs -n 200 -l 20 -k DB /dev/raw/raw1

5. Setting Up an Environment Using Commands

172

• Database reorganization utility (pdrorg)
See the manual HiRDB Version 8 Command Reference to determine whether these
utilities support large files.

5.3.4 Duplexing a HiRDB file system area using a mirror disk
If you are duplexing a HiRDB file system area using a mirror disk, specify the
following information:

3050RX group or 3500/3xx
Specify in the pdfmkfs command the name of the character special file on the
master disk (/dev/rdsk/rdskxxx) or the name symbolically linked to it.
3500 series (except 3500/3xx)
Specify in the pdfmkfs command the mirror special file name (/dev/mirror/
rdskxxx) or the name symbolically linked to it.

5.3.5 Example 1 (creating a HiRDB file system area for RDAREAs)
The following shows an example of creating a HiRDB file system area for RDAREAs:
Example

Create a HiRDB file system area for RDAREAs:

Explanation:
-n: Specifies the size of the HiRDB file system area in MB.

-l: Specifies the maximum number of files that can be created in this HiRDB file
system area.
-k: Specifies the purpose of this HiRDB file system area.

This example specifies DB because this HiRDB file system area is for
RDAREAs.

-i: Specifies that the entire HiRDB file system area is to be initialized.
When the -i option is specified, the system allocates the entire area. When
the -i option is omitted, the system creates only the management
information for the HiRDB file system area.

/dbarea01:
Specifies the name of the HiRDB file system area to be created.

After the command has executed, the execution results should be checked for errors.

pdfmkfs -n 50 -l 10 -k DB -i /dbarea01

5. Setting Up an Environment Using Commands

173

For details about how to check command execution results, see the manual HiRDB
Version 8 Command Reference.

5.3.6 Example 2 (creating a HiRDB file system area for system files)
The following shows an example of creating a HiRDB file system area for system files:
Example

Create a HiRDB file system area for system files:

Explanation:
-n: Specifies the size of the HiRDB file system area in MB.
-l: Specifies the maximum number of files that can be created in this HiRDB file
system area.
-k: Specifies the purpose of this HiRDB file system area.

This example specifies SYS because this HiRDB file system area is for
system files.

-i: Specifies that the entire HiRDB file system area is to be initialized.
When the -i option is specified, the system allocates the entire area. When
the -i option is omitted, the system creates only the management
information for the HiRDB file system area.

/sysarea01:
Specifies the name of the HiRDB file system area to be created.

After the command has executed, the execution results should be checked for errors.
For details about how to check command execution results, see the manual HiRDB
Version 8 Command Reference.

5.3.7 Example 3 (creating a HiRDB file system area for work table
files)

The following shows an example of creating a HiRDB file system area for work table
files:
Example

Create a HiRDB file system area for work table files:

pdfmkfs -n 50 -l 20 -k SYS -i /sysarea01

pdfmkfs -n 50 -l 20 -k WORK -e 3300 -i /workarea01

5. Setting Up an Environment Using Commands

174

Explanation:
-n: Specifies the size of the HiRDB file system area in MB.

For details about how to estimate the area size, see 19. Determining Work
Table File Size.

-l: Specifies the maximum number of files that can be created in this HiRDB file
system area.
-k: Specifies the purpose of this HiRDB file system area.

This example specifies WORK because this HiRDB file system area is for
work table files.

-e: Specifies the number of HiRDB file extensions permitted for this HiRDB file
system area.
-i: Specifies that the entire HiRDB file system area is to be initialized.

When the -i option is specified, the system allocates the entire area. When
the -i option is omitted, the system creates only the management
information for the HiRDB file system area.

/workarea01:
Specifies the name of the HiRDB file system area to be created. Enter the
name that was specified in the pdwork operand in the HiRDB system
definitions.

After the command has executed, the execution results should be checked for errors.
For details about how to check command execution results, see the manual HiRDB
Version 8 Command Reference.

5.3.8 Example 4 (creating a HiRDB file system area for utilities)
This section shows an example of creating a HiRDB file system area for utilities. The
following files are created in the HiRDB file system area for utilities:

• Backup files
• Unload data files
• Unload log files
• Differential backup management files

Example
Create a HiRDB file system area for utilities:

pdfmkfs -n 50 -l 10 -k UTL -i /utlarea01

5. Setting Up an Environment Using Commands

175

Explanation:
-n: Specifies the size of the HiRDB file system area in MB.
-l: Specifies the maximum number of files that can be created in this HiRDB file
system area.
-k: Specifies the purpose of this HiRDB file system area.

This example specifies UTL because this HiRDB file system area is for
utilities.

-i: Specifies that the entire HiRDB file system area is to be initialized.
When the -i option is specified, the system allocates the entire area. When
the -i option is omitted, the system creates only the management
information for the HiRDB file system area.

/utlarea01:
Specifies the name of the HiRDB file system area to be created.

After the command has executed, the execution results should be checked for errors.
For details about how to check command execution results, see the manual HiRDB
Version 8 Command Reference.

5.3.9 Example 5 (creating a HiRDB file system area for list
RDAREAs)

The following shows an example of creating a HiRDB file system area for list
RDAREAs:
Example

Create a HiRDB file system area for list RDAREAs:

Explanation:
-n: Specifies the size of the HiRDB file system area in MB.
-l: Specifies the maximum number of files that can be created in this HiRDB file
system area.
-k: Specifies the purpose of this HiRDB file system area.

This example specifies WORK because this HiRDB file system area is for
RDAREAs for lists.

-i: Specifies that the entire HiRDB file system area is to be initialized.

pdfmkfs -n 50 -l 10 -k WORK -i /listarea01

5. Setting Up an Environment Using Commands

176

When the -i option is specified, the system allocates the entire area. When
the -i option is omitted, the system creates only the management
information for the HiRDB file system area.

/listarea01:
Specifies the name of the HiRDB file system area to be created.

After the command has executed, the execution results should be checked for errors.
For details about how to check command execution results, see the manual HiRDB
Version 8 Command Reference.

5. Setting Up an Environment Using Commands

177

5.4 Creating system files

The HiRDB administrator creates system files in HiRDB file system areas as
explained in 5.3 Creating HiRDB file system areas. There are three types of system
files:

• System log files
• Synchronization point dump files
• Status files

For details about how to design system files, see 9.3 Designing system files for a
HiRDB/Single Server and 10.3 Designing system files for a HiRDB/Parallel Server.

5.4.1 Creating system log files
The HiRDB administrator executes the pdloginit command to create system log
files in a HiRDB file system area.
Example

Create system log files (log01) in a HiRDB file system area (/sysarea01):

Explanation:
-d sys: Specifies that this is a system log file.
-s: Specifies the name of the server corresponding to this system log file.

This specification is not necessary for a HiRDB/Single Server.
-f: Specifies a name for this system log file.

Enter the name that was specified with the pdlogadpf -d sys server
definition operand in the HiRDB system definitions.

-n: Specifies the number of records for this system log file.
The size of one system log file equals the record length times the number of
records (bytes). A system log file usually has a record length of 4096 bytes,
but this size can be changed with the pd_log_rec_leng operand.

After the command has executed, the execution results should be checked for errors.
For details about how to check command execution results, see the manual HiRDB
Version 8 Command Reference.
Relationship with HiRDB system definitions

pdloginit -d sys -s b001 -f /sysarea01/log01 -n 1024

5. Setting Up an Environment Using Commands

178

This pdloginit command is associated with the following server definition
operands in the HiRDB system definitions:

• pdlogadfg -d sys
• pdlogadpf -d sys

You need to define the system log file created using these operands.

5.4.2 Creating synchronization point dump files
The HiRDB administrator executes the pdloginit command to create
synchronization point dump files in a HiRDB file system area.
Example

Create a synchronization point dump file (b1sync01) in a HiRDB file system
area (/sysarea01):

Explanation:
-d spd: Specifies that this is a synchronization point dump file.
-s: Specifies the name of the server corresponding to this synchronization point
dump file.

This specification is not necessary for a HiRDB/Single Server.
-f: Specifies a name for this synchronization point dump file.

Enter the name that was specified with the pdlogadpf -d spd server
definition operand in the HiRDB system definitions.

-n: Specifies the number of records for this synchronization point dump file.
The size of one synchronization point dump file equals 4096 times the record
length (bytes).

After the command has executed, the execution results should be checked for errors.
For details about how to check command execution results, see the manual HiRDB
Version 8 Command Reference.
Relationship with HiRDB system definitions

This pdloginit command is associated with the following server definition
operands in the HiRDB system definitions:

• pdlogadfg -d spd
• pdlogadpf -d spd

pdloginit -d spd -s b001 -f /sysarea01/sync01 -n 64

5. Setting Up an Environment Using Commands

179

You need to define the synchronization point dump file created using these
operands.

5.4.3 Creating status files
The HiRDB administrator uses the pdstsinit command to create status files in a
HiRDB file system area. The HiRDB administrator must create status files for both the
unit and server.
Example

Create a server status file (b1sts01a) in a HiRDB file system area (/
sysarea01):

Explanation:
-s: Specifies the name of the server corresponding to this server status file.
-f: Specifies a name for this server status file.

Enter the name that was specified with the pd_sts_file_name server
definition operand in the HiRDB system definitions.

-l: Specifies the record length for this status file.
-c: Specifies the number of records for this status file.

The size of one status file is equal to the record length times the number of
records (bytes).

After the command has executed, the execution results should be checked for errors.
For details about how to check command execution results, see the manual HiRDB
Version 8 Command Reference.
Relationship with HiRDB system definitions

This pdstsinit command is associated with the following operands in the
HiRDB system definitions:

• pd_syssts_file_name (unit status file)
• pd_sts_file_name (server status file)

You need to define the status file created using these operands.

5.4.4 Example of system file creation (HiRDB/Single Server)
This section explains the system file creation procedure by way of example, based on
the following system configuration:

pdstsinit -s b001 -f /sysarea01/sts01 -l 4096 -c 256

5. Setting Up an Environment Using Commands

180

Configuration of the HiRDB file system area

(1) Defining system files (specifying HiRDB system definitions)
Define the system files in the HiRDB system definitions.

5. Setting Up an Environment Using Commands

181

(a) Unit control information definitions (for unit status files)
Define the unit status files in the unit control information definitions.
Definition example

(b) Single server definitions
Define system log files, the synchronization point dump file, and server status files in
the single server definitions.
Definition example of system log files

Definition example of synchronization point dump files

Definition example of server status files

set pd_syssts_file_name_1="usts1","/sysarea01/usts01a"\
 ,"/sysarea02/usts01b"
set pd_syssts_file_name_2="usts2","/sysarea02/usts02a"\
 ,"/sysarea03/usts02b"
set pd_syssts_file_name_3="usts3","/sysarea03/usts03a"\
 ,"/sysarea01/usts03b"

set pd_log_rec_leng=4096
pdlogadfg -d sys -g log1 ONL
pdlogadfg -d sys -g log2 ONL
pdlogadfg -d sys -g log3 ONL
pdlogadpf -d sys -g log1 -a "/sysarea01/log01a"\
 -b "/sysarea02/log01b"
pdlogadpf -d sys -g log2 -a "/sysarea02/log02a"\
 -b "/sysarea03/log02b"
pdlogadpf -d sys -g log3 -a "/sysarea03/log03a"\
 -b "/sysarea01/log03b"

pdlogadfg -d spd -g sync1 ONL
pdlogadfg -d spd -g sync2 ONL
pdlogadfg -d spd -g sync3 ONL
pdlogadpf -d spd -g sync1 -a "/sysarea01/sync01"
pdlogadpf -d spd -g sync2 -a "/sysarea02/sync02"
pdlogadpf -d spd -g sync3 -a "/sysarea03/sync03"

5. Setting Up an Environment Using Commands

182

(2) Creating the HiRDB file system areas
Use the pdfmkfs command to create the HiRDB file system areas.
Example of command entry

(3) Creating the system files
(a) Creating the system log files

Use the pdloginit command to create the system log files.
Example of command entry

(b) Creating the synchronization point dump file
Use the pdloginit command to create the synchronization point dump file.
Example of command entry

(c) Creating the server status files
Use the pdstsinit command to create the server status files.

set pd_sts_file_name_1="ssts1","/sysarea01/ssts01a"\
 ,"/sysarea02/ssts01b"
set pd_sts_file_name_2="ssts2","/sysarea02/ssts02a"\
 ,"/sysarea03/ssts02b"
set pd_sts_file_name_3="ssts3","/sysarea03/ssts03a"\
 ,"/sysarea01/ssts03b"

pdfmkfs -n 50 -l 20 -i -k SYS /sysarea01
pdfmkfs -n 50 -l 20 -i -k SYS /sysarea02
pdfmkfs -n 50 -l 20 -i -k SYS /sysarea03

pdloginit -d sys -f /sysarea01/log01a -n 1024
pdloginit -d sys -f /sysarea01/log03b -n 1024
pdloginit -d sys -f /sysarea02/log02a -n 1024
pdloginit -d sys -f /sysarea02/log01b -n 1024
pdloginit -d sys -f /sysarea03/log03a -n 1024
pdloginit -d sys -f /sysarea03/log02b -n 1024

pdloginit -d spd -f /sysarea01/sync01 -n 64
pdloginit -d spd -f /sysarea02/sync02 -n 64
pdloginit -d spd -f /sysarea03/sync03 -n 64

5. Setting Up an Environment Using Commands

183

Example of command entry

(d) Creating the unit status files
Use the pdstsinit command to create the unit status files.
Example of command entry

5.4.5 Example of system file creation (HiRDB/Parallel Server)
This section explains the system file creation procedure by way of example, based on
the following system configuration:

pdstsinit -s sds1 -f /sysarea01/ssts01a -l 4096 -c 256
pdstsinit -s sds1 -f /sysarea01/ssts03b -l 4096 -c 256
pdstsinit -s sds1 -f /sysarea02/ssts02a -l 4096 -c 256
pdstsinit -s sds1 -f /sysarea02/ssts01b -l 4096 -c 256
pdstsinit -s sds1 -f /sysarea03/ssts03a -l 4096 -c 256
pdstsinit -s sds1 -f /sysarea03/ssts02b -l 4096 -c 256

pdstsinit -u unt1 -f /sysarea01/usts01a -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea01/usts03b -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea02/usts02a -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea02/usts01b -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea03/usts03a -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea03/usts02b -l 4096 -c 256

5. Setting Up an Environment Using Commands

184

MGR: System manager
FES: Front-end server

5. Setting Up an Environment Using Commands

185

DS: Dictionary server
BES: Back-end server
Configuration of the HiRDB file system area

5. Setting Up an Environment Using Commands

186

Explanation

5. Setting Up an Environment Using Commands

187

This is a sample configuration of HiRDB file system areas for unit A. The
following examples are all based on the system file creation for unit A.

(1) Defining system files (specifying HiRDB system definitions)
Define the system files in the HiRDB system definitions.

(a) Unit control information definitions (for unit status files)
Define the unit status files in the unit control information definitions.
Definition example

(b) FES1 front-end server definitions
Define system log files, the synchronization point dump files, and server status files in
the FES1 front-end server definitions.
Definition example of system log files

Definition example of synchronization point dump files

Definition example of server status files

set pd_syssts_file_name_1="u1sts1","/sysarea01/u1sts01a"\
 ,"/sysarea02/u1sts01b"
set pd_syssts_file_name_2="u1sts2","/sysarea02/u1sts02a"\
 ,"/sysarea03/u1sts02b"
set pd_syssts_file_name_3="u1sts3","/sysarea03/u1sts03a"\
 ,"/sysarea01/u1sts03b"

set pd_log_rec_leng=4096
pdlogadfg -d sys -g f1log1 ONL
pdlogadfg -d sys -g f1log2 ONL
pdlogadfg -d sys -g f1log3 ONL
pdlogadpf -d sys -g f1log1 -a "/sysarea01/f1log01a"\
 -b "/sysarea02/f1log01b"
pdlogadpf -d sys -g f1log2 -a "/sysarea02/f1log02a"\
 -b "/sysarea03/f1log02b"
pdlogadpf -d sys -g f1log3 -a "/sysarea03/f1log03a"\
 -b "/sysarea01/f1log03b"

pdlogadfg -d spd -g f1sync1 ONL
pdlogadfg -d spd -g f1sync2 ONL
pdlogadfg -d spd -g f1sync3 ONL
pdlogadpf -d spd -g f1sync1 -a "/sysarea01/f1sync01"
pdlogadpf -d spd -g f1sync2 -a "/sysarea02/f1sync02"
pdlogadpf -d spd -g f1sync3 -a "/sysarea03/f1sync03"

5. Setting Up an Environment Using Commands

188

(c) BES1 back-end server definitions
Define system log files, synchronization point dump files, and server status files in the
BES1 back-end server definitions.
Definition example of system log files

Definition example of synchronization point dump files

Definition example of server status files

(d) BES2 back-end server definitions
Define system log files, synchronization point dump files, and server status files in the

set pd_sts_file_name_1="f1sts1","/sysarea01/f1sts01a"\
 ,"/sysarea02/f1sts01b"
set pd_sts_file_name_2="f1sts2","/sysarea02/f1sts02a"\
 ,"/sysarea03/f1sts02b"
set pd_sts_file_name_3="f1sts3","/sysarea03/f1sts03a"\
 ,"/sysarea01/f1sts03b"

set pd_log_rec_leng=4096
pdlogadfg -d sys -g b1log1 ONL
pdlogadfg -d sys -g b1log2 ONL
pdlogadfg -d sys -g b1log3 ONL
pdlogadpf -d sys -g b1log1 -a "/sysarea01/b1log01a"\
 -b "/sysarea02/b1log01b"
pdlogadpf -d sys -g b1log2 -a "/sysarea02/b1log02a"\
 -b "/sysarea03/b1log02b"
pdlogadpf -d sys -g b1log3 -a "/sysarea03/b1log03a"\
 -b "/sysarea01/b1log03b"

pdlogadfg -d spd -g b1sync1 ONL
pdlogadfg -d spd -g b1sync2 ONL
pdlogadfg -d spd -g b1sync3 ONL
pdlogadpf -d spd -g b1sync1 -a "/sysarea01/b1sync01"
pdlogadpf -d spd -g b1sync2 -a "/sysarea02/b1sync02"
pdlogadpf -d spd -g b1sync3 -a "/sysarea03/b1sync03"

set pd_sts_file_name_1="b1sts1","/sysarea01/b1sts01a"\
 ,"/sysarea02/b1sts01b"
set pd_sts_file_name_2="b1sts2","/sysarea02/b1sts02a"\
 ,"/sysarea03/b1sts02b"
set pd_sts_file_name_3="b1sts3","/sysarea03/b1sts03a"\
 ,"/sysarea01/b1sts03b"

5. Setting Up an Environment Using Commands

189

BES2 back-end server definitions.
Definition example of system log files

Definition example of synchronization point dump files

Definition example of server status files

(2) Creating the HiRDB file system areas
Use the pdfmkfs command to create the HiRDB file system areas.
Example of command entry

set pd_log_rec_leng=4096
pdlogadfg -d sys -g b2log1 ONL
pdlogadfg -d sys -g b2log2 ONL
pdlogadfg -d sys -g b2log3 ONL
pdlogadpf -d sys -g b2log1 -a "/sysarea01/b2log01a"\
 -b "/sysarea02/b2log01b"
pdlogadpf -d sys -g b2log2 -a "/sysarea02/b2log02a"\
 -b "/sysarea03/b2log02b"
pdlogadpf -d sys -g b2log3 -a "/sysarea03/b2log03a"\
 -b "/sysarea01/b2log03b"

pdlogadfg -d spd -g b2sync1 ONL
pdlogadfg -d spd -g b2sync2 ONL
pdlogadfg -d spd -g b2sync3 ONL
pdlogadpf -d spd -g b2sync1 -a "/sysarea01/b2sync01"
pdlogadpf -d spd -g b2sync2 -a "/sysarea02/b2sync02"
pdlogadpf -d spd -g b2sync3 -a "/sysarea03/b2sync03"

set pd_sts_file_name_1="b2sts1","/sysarea01/b2sts01a"\
 ,"/sysarea02/b2sts01b"
set pd_sts_file_name_2="b2sts2","/sysarea02/b2sts02a"\
 ,"/sysarea03/b2sts02b"
set pd_sts_file_name_3="b2sts3","/sysarea03/b2sts03a"\
 ,"/sysarea01/b2sts03b"

pdfmkfs -n 50 -l 20 -i -k SYS /sysarea01
pdfmkfs -n 50 -l 20 -i -k SYS /sysarea02
pdfmkfs -n 50 -l 20 -i -k SYS /sysarea03

5. Setting Up an Environment Using Commands

190

(3) Creating the system files
(a) Creating the system log files

Use the pdloginit command to create the system log files.
Example of command entry (FES1)

Example of command entry (BES1)

Example of command entry (BES2)

(b) Creating the synchronization point dump file
Use the pdloginit command to create the synchronization point dump file.
Example of command entry (FES1)

Example of command entry (BES1)

pdloginit -d sys -s f001 -f /sysarea01/f1log01a -n 1024
pdloginit -d sys -s f001 -f /sysarea01/f1log03b -n 1024
pdloginit -d sys -s f001 -f /sysarea02/f1log02a -n 1024
pdloginit -d sys -s f001 -f /sysarea02/f1log01b -n 1024
pdloginit -d sys -s f001 -f /sysarea03/f1log03a -n 1024
pdloginit -d sys -s f001 -f /sysarea03/f1log02b -n 1024

pdloginit -d sys -s b001 -f /sysarea01/b1log01a -n 1024
pdloginit -d sys -s b001 -f /sysarea01/b1log03b -n 1024
pdloginit -d sys -s b001 -f /sysarea02/b1log02a -n 1024
pdloginit -d sys -s b001 -f /sysarea02/b1log01b -n 1024
pdloginit -d sys -s b001 -f /sysarea03/b1log03a -n 1024
pdloginit -d sys -s b001 -f /sysarea03/b1log02b -n 1024

pdloginit -d sys -s b002 -f /sysarea01/b2log01a -n 1024
pdloginit -d sys -s b002 -f /sysarea01/b2log03b -n 1024
pdloginit -d sys -s b002 -f /sysarea02/b2log02a -n 1024
pdloginit -d sys -s b002 -f /sysarea02/b2log01b -n 1024
pdloginit -d sys -s b002 -f /sysarea03/b2log03a -n 1024
pdloginit -d sys -s b002 -f /sysarea03/b2log02b -n 1024

pdloginit -d spd -s f001 -f /sysarea01/f1sync01 -n 64
pdloginit -d spd -s f001 -f /sysarea02/f1sync02 -n 64
pdloginit -d spd -s f001 -f /sysarea03/f1sync03 -n 64

5. Setting Up an Environment Using Commands

191

Example of command entry (BES2)

(c) Creating the server status files
Use the pdstsinit command to create the server status files.
Example of command entry (FES1)

Example of command entry (BES1)

Example of command entry (BES2)

pdloginit -d spd -s b001 -f /sysarea01/b1sync01 -n 64
pdloginit -d spd -s b001 -f /sysarea02/b1sync02 -n 64
pdloginit -d spd -s b001 -f /sysarea03/b1sync03 -n 64

pdloginit -d spd -s b002 -f /sysarea01/b2sync01 -n 64
pdloginit -d spd -s b002 -f /sysarea02/b2sync02 -n 64
pdloginit -d spd -s b002 -f /sysarea03/b2sync03 -n 64

pdstsinit -s f001 -f /sysarea01/f1sts01a -l 4096 -c 256
pdstsinit -s f001 -f /sysarea01/f1sts03b -l 4096 -c 256
pdstsinit -s f001 -f /sysarea02/f1sts02a -l 4096 -c 256
pdstsinit -s f001 -f /sysarea02/f1sts01b -l 4096 -c 256
pdstsinit -s f001 -f /sysarea03/f1sts03a -l 4096 -c 256
pdstsinit -s f001 -f /sysarea03/f1sts02b -l 4096 -c 256

pdstsinit -s b001 -f /sysarea01/b1sts01a -l 4096 -c 256
pdstsinit -s b001 -f /sysarea01/b1sts03b -l 4096 -c 256
pdstsinit -s b001 -f /sysarea02/b1sts02a -l 4096 -c 256
pdstsinit -s b001 -f /sysarea02/b1sts01b -l 4096 -c 256
pdstsinit -s b001 -f /sysarea03/b1sts03a -l 4096 -c 256
pdstsinit -s b001 -f /sysarea03/b1sts02b -l 4096 -c 256

pdstsinit -s b002 -f /sysarea01/b2sts01a -l 4096 -c 256
pdstsinit -s b002 -f /sysarea01/b2sts03b -l 4096 -c 256
pdstsinit -s b002 -f /sysarea02/b2sts02a -l 4096 -c 256
pdstsinit -s b002 -f /sysarea02/b2sts01b -l 4096 -c 256
pdstsinit -s b002 -f /sysarea03/b2sts03a -l 4096 -c 256
pdstsinit -s b002 -f /sysarea03/b2sts02b -l 4096 -c 256

5. Setting Up an Environment Using Commands

192

(d) Creating the unit status files
Use the pdstsinit command to create the unit status files.
Example of command entry

pdstsinit -u unt1 -f /sysarea01/u1sts01a -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea01/u1sts03b -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea02/u1sts02a -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea02/u1sts01b -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea03/u1sts03a -l 4096 -c 256
pdstsinit -u unt1 -f /sysarea03/u1sts02b -l 4096 -c 256

5. Setting Up an Environment Using Commands

193

5.5 Creating system RDAREAs

Executor: HiRDB administrator
When starting HiRDB for the first time, the HiRDB administrator must create system
RDAREAs using the database initialization utility (pdinit).
Execute the database initialization utility (pdinit) when you are starting HiRDB for
the first time (when executing the first pdstart command after installation) in
response to a command input request. You cannot execute the database initialization
utility (pdinit) at any other time.

This section describes the contents of a control statement file, which is specified as an
argument of the database initialization utility (pdinit) and provides an example of
database initialization utility (pdinit) execution. To create system RDAREAs, use
the create rdarea statement.
The system RDAREAs include:

• Master directory RDAREAs
• Data directory RDAREAs
• Data dictionary RDAREAs

5.5.1 Basics
To create system RDAREAs, use the following general procedures:
1. Create a system RDAREA in the HiRDB file system area for RDAREAs that you

created in 5.3 Creating HiRDB file system areas.
2. For a HiRDB/Parallel Server, create a system RDAREA in a HiRDB file system

area for the server machine on which the dictionary server is defined.
3. For details about how to design the system RDAREA, see 9.4 Placing RDAREAs

for a HiRDB/Single Server, and 10.4 Placing RDAREAs for a HiRDB/Parallel
Server.

4. For a HiRDB/Parallel Server, execute the database initialization utility (pdinit)
on the server machine where the system manager is defined.

5. This section only describes the creation of system RDAREAs with the create
rdarea statement of the database initialization utility (pdinit). This is because
the system RDAREAs are required for HiRDB operation. You can also use the
database initialization utility's (pdinit) create rdarea statement to define the
following RDAREAs:

• User RDAREAs

5. Setting Up an Environment Using Commands

194

• User LOB RDAREAs
• Data dictionary LOB RDAREAs
• RDAREAs for lists

5.5.2 Example 1 (HiRDB/Single Server)
This example creates system RDAREAs in the following HiRDB file system area for
RDAREAs:

• /rdarea01

(1) Creating the control statement file
Create the control statement file that is to be specified in the database initialization
utility's (pdinit) argument. You can create the control statement file at any location.
This example creates a file under the following filename:

• /usr/hirdb/pdinit01
Contents of the control statement file

Explanation:
1. Definition of the master directory RDAREAs

This example creates a HiRDB file named rdmast01 in the HiRDB file
system area. This HiRDB file has 10 segments.

2. Definition of data directory RDAREAs

create rdarea RDMAST for masterdirectory 1
 file name "/rdarea01/rdmast01"
 initial 10 segments;
create rdarea RDDIR for datadirectory 2
 file name "/rdarea01/rddir01"
 initial 5 segments;
create rdarea RDDIC for datadictionary 3
 extension use 50 segments
 file name "/rdarea01/rddic01"
 initial 20 segments;

5. Setting Up an Environment Using Commands

195

This example creates a HiRDB file named rddir01 in the HiRDB file
system area. This HiRDB file has five segments.

3. Definition of the data dictionary RDAREAs
This example creates a HiRDB file named rddic01 in the HiRDB file
system area. This HiRDB file has 20 segments.
The example uses the automatic RDAREA extension feature. The extension
size is 50 segments.

(2) Executing the database initialization utility (pdinit)
Example of command entry

Explanation:
-d: Specifies the name of the control statement file that was previously created in
(1).

5.5.3 Example 2 (HiRDB/Parallel Server)
This example creates system RDAREAs in the following HiRDB file system area for
RDAREAs on the server machine where the dictionary server is defined:

• /rdarea01

(1) Creating the control statement file
Create the control statement file that is to be specified in the database initialization
utility's (pdinit) argument. You can create the control statement file at any location.
This example creates a file under the following filename:

• /usr/hirdb/pdinit01
Contents of the control statement file

pdinit -d /usr/hirdb/pdinit01

5. Setting Up an Environment Using Commands

196

Explanation:
1. Definition of the master directory RDAREAs

This example specifies the name of the dictionary server (dic) that manages
the master directory RDAREAs. It creates a HiRDB file named rdmast01
in the HiRDB file system area. This HiRDB file has 10 segments.

2. Definition of data directory RDAREAs
This example specifies the name of the dictionary server (dic) that manages
the data directory RDAREAs. It creates a HiRDB file named rddir01 in the
HiRDB file system area. This HiRDB file has five segments.

3. Definition of the data dictionary RDAREAs
This example specifies the name of the dictionary server (dic) that manages
the data dictionary RDAREAs. It creates a HiRDB file named rddic01 in
the HiRDB file system area. This HiRDB file has 20 segments.
This example uses the automatic RDAREA extension feature. The extension
size is 50 segments.

(2) Executing the database initialization utility (pdinit)
Example of command entry

Explanation:
-d: Specifies the name of the control statement file that was previously created in
(1).

create rdarea RDMAST for masterdirectory 1
 server name dic
 file name "/rdarea01/rdmast01"
 initial 10 segments;
create rdarea RDDIR for datadirectory 2
 server name dic
 file name "/rdarea01/rddir01"
 initial 5 segments;
create rdarea RDDIC for datadictionary 3
 server name dic
 extension use 50 segments
 file name "/rdarea01/rddic01"
 initial 20 segments;

pdinit -d /usr/hirdb/pdinit01

5. Setting Up an Environment Using Commands

197

5.6 Starting HiRDB for the first time

Executor: HiRDB administrator
You can execute the database initialization utility (pdinit), which was described in
5.5 Creating system RDAREAs, only after and during the execution of the HiRDB
initial startup command (pdstart) command.

(1) HiRDB initial startup method
To start HiRDB for the first time (initial startup) after creating HiRDB file system
areas, execute the pdstart command. When you execute the pdstart command, a
message is displayed that requests the execution of the database initialization utility
(pdinit).

• To start a HiRDB/Single Server, execute the pdstart command from the server
machine where the single server is defined.

• To start a HiRDB/Parallel Server, execute the pdstart command from the server
machine where the system manager is defined.

(2) Prerequisites for RDAREA creation
To create any of the following RDAREAs, HiRDB must be active. Be sure to start
HiRDB beforehand.

• User RDAREAs
• User LOB RDAREAs
• Data dictionary LOB RDAREAs
• RDAREAs for lists

5. Setting Up an Environment Using Commands

198

5.7 Creating user RDAREAs

Executor: HiRDB administrator
The HiRDB administrator creates user RDAREAs for storing tables and indexes. To
create a user RDAREA, use the database structure modification utility's (pdmod)
create rdarea statement.

5.7.1 Basics
To create user RDAREAs, use the following general procedures:
1. Create a user RDAREA in the HiRDB file system area for RDAREAs that you

created in 5.3 Creating HiRDB file system areas.
2. For a HiRDB/Parallel Server, create a user RDAREA in a HiRDB file system area

for the server machine on which the back-end server is defined.
3. For details about how to design the user RDAREA, see 9.4 Placing RDAREAs for

a HiRDB/Single Server, and 10.4 Placing RDAREAs for a HiRDB/Parallel
Server.

4. For a HiRDB/Parallel Server, execute the database structure modification utility
(pdmod) on the server machine where the system manager is defined.

5. Before creating a user RDAREA, use the pdls command to make sure that
HiRDB is running. For a HiRDB/Parallel Server, enter the pdls command from
the server machine where the system manager is defined.

6. If HiRDB is not running, use the pdstart command to start it. To start a HiRDB/
Parallel Server, enter the pdstart command from the server machine where the
system manager is defined.

5.7.2 Example 1 (HiRDB/Single Server)
This example creates user RDAREAs in the following HiRDB file system area for
RDAREAs:

• /rdarea02

5. Setting Up an Environment Using Commands

199

(1) Creating the control statement file
Create the control statement file that is to be specified in the database structure
modification utility's (pdmod) argument. You can create the control statement file at
any location. This example creates a file under the following filename:

• /usr/hirdb/pdmod01
Contents of the control statement file

Explanation:
1. Definition of the user RDAREA (USER01)

USER01 is a public RDAREA (PUBLIC). This example creates a HiRDB file
named user01 in the HiRDB file system area. This HiRDB file has 500
segments. The example uses the RDAREA automatic extension feature. The
extension size is 50 segments.

2. Definition of the user RDAREA (USER02)
USER02 is a public RDAREA (PUBLIC). This example creates a HiRDB file
named user02 in the HiRDB file system area. This HiRDB file has 500
segments. The example uses the RDAREA automatic extension feature. The
extension size is 50 segments.

(2) Executing the database structure modification utility (pdmod)
Example of command entry

Explanation:
-a: Specifies the name of the control statement file that was previously created in
(1).

5.7.3 Example 2 (HiRDB/Parallel Server)
This example creates user RDAREAs in the following HiRDB file system area for

create rdarea USER01 for user used by PUBLIC 1
 extension use 50 segments
 file name "/rdarea02/user01"
 initial 500 segments;
create rdarea USER02 for user used by PUBLIC 2
 extension use 50 segments
 file name "/rdarea02/user02"
 initial 500 segments;

pdmod -a /usr/hirdb/pdmod01

5. Setting Up an Environment Using Commands

200

RDAREAs on the server machine where the back-end server is defined:
• /rdarea02

(1) Creating the control statement file
Create the control statement file that is to be specified in the database structure
modification utility's (pdmod) argument. You can create the control statement file at
any location. This example creates the file under the following filename:

• /usr/hirdb/pdmod01
Contents of the control statement file

Explanation:
1. Definition of the user RDAREA (USER01)

USER01 is a public RDAREA (PUBLIC). This example specifies the name of
the back-end server (b001) that manages USER01. It creates a HiRDB file
named user01 in the HiRDB file system area. This HiRDB file has 500
segments. The example uses the RDAREA automatic extension feature. The
extension size is 50 segments.

2. Definition of the user RDAREA (USER02)
USER02 is a public RDAREA (PUBLIC). This example specifies the name of
the back-end server (b001) that manages USER02. It creates a HiRDB file
named user02 in the HiRDB file system area. This HiRDB file has 500
segments. The example uses the RDAREA automatic extension feature. The

create rdarea USER01 for user used by PUBLIC 1
 server name b001
 extension use 50 segments
 file name "/rdarea02/user01"
 initial 500 segments;
create rdarea USER02 for user used by PUBLIC 2
 server name b001
 extension use 50 segments
 file name "/rdarea02/user02"
 initial 500 segments;

5. Setting Up an Environment Using Commands

201

extension size is 50 segments.
(2) Executing the database structure modification utility (pdmod)

Example of command entry

Explanation:
-a: Specifies the name of the control statement file that was previously created in
(1).

pdmod -a /usr/hirdb/pdmod01

5. Setting Up an Environment Using Commands

202

5.8 Creating user LOB RDAREAs

Executor: HiRDB administrator
To create data with the LOB attribute, you need a user LOB RDAREA to store the data.
To create a user LOB RDAREA, use the database structure modification utility's
(pdmod) create rdarea statement.

5.8.1 Basics
To create user LOB RDAREAs, use the following general procedures:
1. Create a user LOB RDAREA in the HiRDB file system area for RDAREAs,

which you created in 5.3 Creating HiRDB file system areas.
2. For a HiRDB/Parallel Server, create a user LOB RDAREA in a HiRDB file

system area for the server machine on which the back-end server is defined.
3. For details about how to design the user LOB RDAREA, see 9.4 Placing

RDAREAs for a HiRDB/Single Server, and 10.4 Placing RDAREAs for a HiRDB/
Parallel Server.

4. For a HiRDB/Parallel Server, execute the database structure modification utility
(pdmod) on the server machine where the system manager is defined.

5. Before creating a user LOB RDAREA, use the pdls command to make sure that
HiRDB is running. For a HiRDB/Parallel Server, enter the pdls command from
the server machine where the system manager is defined.

6. If HiRDB is not running, use the pdstart command to start it. To start a HiRDB/
Parallel Server, enter the pdstart command from the server machine where the
system manager is defined.

5.8.2 Example 1 (HiRDB/Single Server)
This example creates a user RDAREA to store a LOB column structure base table in
the following HiRDB file system area for RDAREA:

• /rdarea03
Additionally, the example creates a user LOB RDAREA to store data with the LOB
attribute in the following HiRDB file system area for LOB RDAREA:

• /rdarea04

5. Setting Up an Environment Using Commands

203

(1) Creating the control statement file
Create the control statement file that is to be specified in the database structure
modification utility's (pdmod) argument. You can create the control statement file at
any location. This example creates a file under the following filename:

• /usr/hirdb/pdmod02
Contents of the control statement file

Explanation:
1. Definition of the user RDAREA (USER03)

USER03 is a public RDAREA (PUBLIC). This example creates a HiRDB file
named user03 in the HiRDB file system area. This HiRDB file has 500
segments. The example uses the RDAREA automatic extension feature. The
extension size is 50 segments.

2. Definition of the user LOB RDAREA (ULOB03)
ULOB03 is a public RDAREA (PUBLIC). This example creates a HiRDB file
named ulob03 in the HiRDB file system area. This HiRDB file has 20000

create rdarea USER03 for user used by PUBLIC 1
 extension use 50 segments
 file name "/rdarea03/user03"
 initial 500 segments;
create rdarea ULOB03 for LOB used by PUBLIC 2
 extension use 50 segments
 file name "/rdarea04/ulob03"
 initial 20000 segments;

5. Setting Up an Environment Using Commands

204

segments.
The example uses the RDAREA automatic extension feature. The extension
size is 50 segments.

(2) Executing the database structure modification utility (pdmod)
Example of command entry

Explanation:
-a: Specifies the name of the control statement file that was previously created in
(1).

5.8.3 Example 2 (HiRDB/Parallel Server)
This example creates a user RDAREA to store a LOB column structure base table in
the following HiRDB file system area for RDAREA:

• /rdarea03
Additionally, the example creates a user LOB RDAREA to store data with the LOB
attribute in the following HiRDB file system area for RDAREA:

• /rdarea04

(1) Creating the control statement file
Create the control statement file that is to be specified in the database structure
modification utility's (pdmod) argument. You can create the control statement file at
any location. This example creates the file under the following filename:

pdmod -a /usr/hirdb/pdmod02

5. Setting Up an Environment Using Commands

205

• /usr/hirdb/pdmod02
Contents of the control statement file

Explanation:
1. Definition of the user RDAREA (USER03)

USER03 is a public RDAREA (PUBLIC). This example specifies the name of
the back-end server (b001) that manages USER03. It creates a HiRDB file
named user03 in the HiRDB file system area. This HiRDB file has 500
segments. The example uses the RDAREA automatic extension feature. The
extension size is 50 segments.

2. Definition of the user LOB RDAREA (ULOB03)
ULOB03 is a public RDAREA (PUBLIC). This example specifies the name of
the back-end server (b001) that manages ULOB03. It creates a HiRDB file
named ulob03 in the HiRDB file system area. This HiRDB file has 20000
segments. The example uses the RDAREA automatic extension feature. The
extension size is 50 segments.

(2) Executing the database structure modification utility (pdmod)
Example of command entry

Explanation:
-a: Specifies the name of the control statement file that was previously created in
(1).

create rdarea USER03 for user used by PUBLIC 1
 server name b001
 extension use 50 segments
 file name "/rdarea03/user03"
 initial 500 segments;
create rdarea ULOB03 for LOB used by PUBLIC 2
 server name b001
 extension use 50 segments
 file name "/rdarea04/ulob03"
 initial 20000 segments;

pdmod -a /usr/hirdb/pdmod02

5. Setting Up an Environment Using Commands

206

5.9 Creating data dictionary LOB RDAREAs

Executor: HiRDB administrator
To use stored procedures or stored functions, you need a data dictionary LOB
RDAREA. You can create a data dictionary LOB RDAREA using the database
structure modification utility's (pdmod) create rdarea statement.
You need to provide separate data dictionary LOB RDAREAs according to these
purposes:

• Data dictionary LOB RDAREA for storing stored procedures' or stored functions'
definition source

• Data dictionary LOB RDAREA for storing stored procedures' or stored functions'
SQL objects

5.9.1 Basics
To create data dictionary LOB RDAREAs, use the following general procedures:
1. Create a data dictionary LOB RDAREA in the HiRDB file system area for

RDAREAs, which you created in 5.3 Creating HiRDB file system areas.
2. For a HiRDB/Parallel Server, create a data dictionary LOB RDAREA in a HiRDB

file system area for the server machine on which the dictionary server is defined.
3. For details about how to design the data dictionary LOB RDAREA, see 9.4

Placing RDAREAs for a HiRDB/Single Server, and 10.4 Placing RDAREAs for a
HiRDB/Parallel Server.

4. For a HiRDB/Parallel Server, execute the database structure modification utility
(pdmod) on the server machine where the system manager is defined.

5. Before creating a data dictionary LOB RDAREA, use the pdls command to
make sure that HiRDB is running. For a HiRDB/Parallel Server, enter the pdls
command from the server machine where the system manager is defined.

6. If HiRDB is not running, use the pdstart command to start it. To start a HiRDB/
Parallel Server, enter the pdstart command from the server machine where the
system manager is defined.

5.9.2 Example 1 (HiRDB/Single Server)
This example creates data dictionary LOB RDAREAs in the following HiRDB file
system area for RDAREA:

• /rdarea05

5. Setting Up an Environment Using Commands

207

(1) Creating the control statement file
Create the control statement file that is to be specified in the database structure
modification utility's (pdmod) argument. You can create the control statement file at
any location. This example creates a file under the following filename:

• /usr/hirdb/pdmod03
Contents of the control statement file

Explanation:
1. Definition of the data dictionary RDAREA (DICLOB01)

DICLOB01 is a data dictionary LOB RDAREA for storing a definition
source. The system uses the first data dictionary LOB RDAREA defined for
storing a definition source. This example creates a HiRDB file named
diclob01 in the HiRDB file system area. This HiRDB file has 10000
segments.
The example uses the RDAREA automatic extension feature. The extension
size is 1000 segments.

2. Definition of the data dictionary RDAREA (DICLOB02)
DICLOB02 is a data dictionary LOB RDAREA for storing SQL objects. The
system uses the second data dictionary LOB RDAREA defined for storing
SQL definitions. This example creates a HiRDB file named diclob02 in the
HiRDB file system area. This HiRDB file has 10000 segments.
The example uses the RDAREA automatic extension feature. The extension

create rdarea DICLOB01 for LOB used by HiRDB(SQL_ROUTINES) 1
 extension use 1000 segments
 file name "/rdarea05/diclob01"
 initial 10000 segments;
create rdarea DICLOB02 for LOB used by HiRDB(SQL_ROUTINES) 2
 extension use 1000 segments
 file name "/rdarea05/diclob02"
 initial 10000 segments;

5. Setting Up an Environment Using Commands

208

size is 1000 segments.
(2) Executing the database structure modification utility (pdmod)

Example of command entry

Explanation:
-a: Specifies the name of the control statement file that was previously created in
(1).

5.9.3 Example 2 (HiRDB/Parallel Server)
This example creates data dictionary LOB RDAREAs in the following HiRDB file
system area for RDAREA:

• /rdarea05

(1) Creating the control statement file
Create the control statement file that is to be specified in the database structure
modification utility's (pdmod) argument. You can create the control statement file at
any location. This example creates the file under the following filename:

• /usr/hirdb/pdmod03
Contents of the control statement file

pdmod -a /usr/hirdb/pdmod03

create rdarea DICLOB01 for LOB used by HiRDB(SQL_ROUTINES) 1
 server name dic
 extension use 1000 segments
 file name "/rdarea05/diclob01"
 initial 10000 segments;
create rdarea DICLOB02 for LOB used by HiRDB(SQL_ROUTINES) 2
 server name dic
 extension use 1000 segments
 file name "/rdarea05/diclob02"
 initial 10000 segments;

5. Setting Up an Environment Using Commands

209

Explanation:
1. Definition of the data dictionary RDAREA (DICLOB01)

DICLOB01 is a data dictionary LOB RDAREA for storing a definition
source. The system uses the first data dictionary LOB RDAREA defined for
storing a definition source. This example specifies the name of the dictionary
server (dic) that manages this data dictionary LOB RDAREA. It creates a
HiRDB file named diclob01 in the HiRDB file system area. This HiRDB
file has 10000 segments.
The example uses the RDAREA automatic extension feature. The extension
size is 1000 segments.

2. Definition of the data dictionary RDAREA (DICLOB02)
DICLOB02 is a data dictionary LOB RDAREA for storing SQL objects. The
system uses the second data dictionary LOB RDAREA defined for storing
SQL definitions. This example specifies the name of the dictionary server
(dic) that manages this data dictionary LOB RDAREA. It creates a HiRDB
file named diclob02 in the HiRDB file system area. This HiRDB file has
10000 segments.
The example uses the RDAREA automatic extension feature. The extension
size is 1000 segments.

(2) Executing the database structure modification utility (pdmod)
Example of command entry

Explanation:
-a: Specifies the name of the control statement file that was previously created in
(1).

pdmod -a /usr/hirdb/pdmod03

5. Setting Up an Environment Using Commands

210

5.10 Creating list RDAREAs

Executor: HiRDB administrator
To use a narrowed search, you need a list RDAREA. You can create list RDAREAs
using the database structure modification utility's (pdmod) create rdarea
statement.

5.10.1 Basics
To create RDAREAs for lists, use the following general procedures:
1. Create a list RDAREA in the HiRDB file system area for list RDAREAs, which

you created in 5.3 Creating HiRDB file system areas.
2. For a HiRDB/Parallel Server, create a list RDAREA in a HiRDB file system area

for the server machine on which the back-end server (that contains the base table)
is defined.

3. For details about how to design RDAREAs for lists, see 9.4 Placing RDAREAs
for a HiRDB/Single Server, and 10.4 Placing RDAREAs for a HiRDB/Parallel
Server.

4. For a HiRDB/Parallel Server, execute the database structure modification utility
(pdmod) on the server machine where the system manager is defined.

5. Before creating a list RDAREA, use the pdls command to make sure that
HiRDB is running. For a HiRDB/Parallel Server, enter the pdls command from
the server machine where the system manager is defined.

6. If HiRDB is not running, use the pdstart command to start it. To start a HiRDB/
Parallel Server, enter the pdstart command from the server machine where the
system manager is defined.

5.10.2 Example 1 (HiRDB/Single Server)
This example creates an list RDAREA in the following HiRDB file system area for list
RDAREAs:

• /listarea01

5. Setting Up an Environment Using Commands

211

(1) Creating the control statement file
Create the control statement file that is to be specified in the database structure
modification utility's (pdmod) argument. You can create the control statement file at
any location. This example creates a file under the following filename:

• /usr/hirdb/pdmod04
Contents of the control statement file

Explanation:
1. Definition of the list RDAREAs (LIST01)

This example specifies the page length and segment size of the RDAREA. It
creates a HiRDB file named list01 in the HiRDB file system area. This
HiRDB file has 1000 segments.

(2) Executing the database structure modification utility (pdmod)
Example of command entry

Explanation:
-a: Specifies the name of the control statement file that was previously created in
(1).

5.10.3 Example 2 (HiRDB/Parallel Server)
This example creates a list RDAREA in the following HiRDB file system area for list
RDAREAs:

• /listarea01

create rdarea LIST01 for list 1
 page 4096 characters storage control segment 2 pages
 file name "/listarea01/list01"
 initial 1000 segments;

pdmod -a /usr/hirdb/pdmod04

5. Setting Up an Environment Using Commands

212

(1) Creating the control statement file
Create the control statement file that is to be specified in the database structure
modification utility's (pdmod) argument. You can create the control statement file at
any location. This example creates the file under the following filename:

• /usr/hirdb/pdmod04
Contents of the control statement file

Explanation:
1. Definition of the list RDAREA (LIST01)

This example specifies the name of the back-end server that manages
LIST01 as well as the page length and segment size of the RDAREA. It
creates a HiRDB file named list01 in the HiRDB file system area. This
HiRDB file has 1000 segments.

(2) Executing the database structure modification utility (pdmod)
Example of command entry

Explanation:
-a: Specifies the name of the control statement file that was previously created in
(1).

create rdarea LIST01 for list 1
 server name b001
 page 4096 characters storage control segment 2 pages
 file name "/listarea01/list01"
 initial 1000 segments;

pdmod -a /usr/hirdb/pdmod04

213

Chapter

6. Setting Up the Plug-in
Environment

A plug-in environment is set up after the HiRDB environment setup. This chapter
describes the procedures for setting up a plug-in environment, as well as for upgrading
and deleting (uninstalling) plug-ins.
This chapter contains the following sections:

6.1 Overview of plug-in environment setup
6.2 Upgrading plug-ins
6.3 Deleting plug-ins

6. Setting Up the Plug-in Environment

214

6.1 Overview of plug-in environment setup

This section describes the procedure for setting up HiRDB plug-ins.

6.1.1 Environment setup procedure
Executor: HiRDB administrator
This section describes the plug-in environment setup procedure using commands. This
procedure assumes that the HiRDB environment setup has been completed (HiRDB is
already running).
To set up the plug-in environment:
1. Estimate the resources needed to install plug-ins.
2. Terminate the active HiRDB.
3. Install plug-ins.
4. Set up plug-ins.
5. Start HiRDB.
6. Add data dictionary LOB RDAREAs, user RDAREAs, and user LOB

RDAREAs.1

7. Register plug-ins.

8. Initialize the registry facility.1, 2

9. Terminate HiRDB.
10. Add the pdplugin operand.
11. Start HiRDB.
12. Register registry information.
1 A data dictionary LOB RDAREA is not necessary if stored functions, stored
procedures, or plug-ins are already being used. A user RDAREA (user LOB
RDAREA) is required if a table is created for a newly added plug-in.
2 May not be needed, depending on the plug-in.

(1) Estimating resources
Before a plug-in can be installed into the HiRDB system, the sizes of the following
resources must be estimated:

• Storage requirement for execution of the plug-in

6. Setting Up the Plug-in Environment

215

• Disk space required in order to install the plug-in
For details about how to estimate the resources required for each plug-in, see the
applicable plug-in documentation.

(2) Terminating HiRDB
Before setting up plug-ins, use the pdstop command to terminate the active HiRDB.

(3) Installing plug-ins
Install your plug-ins. For details about the installation procedure, see the applicable
plug-in documentation.

(4) Setting up the plug-ins
The HiRDB administrator executes the setup procedure and specification.
The HiRDB administrator executes the pdplgset command to set up plugins in
HiRDB. The HiRDB administrator must set up plugins in each server machine on
which HiRDB is installed.
To set up plug-ins, use the following procedure:
1. Use the pdls command to check that HiRDB is not operating. If it is operating,

use the pdstop command to terminate HiRDB normally.
2. Execute the pdplgset command.
When the pdplgset command executes, the plug-in library is copied from the
directory where plugins are installed to $PDDIR/plugin/.
Figure 6-1 shows how to set up plug-ins.

6. Setting Up the Plug-in Environment

216

Figure 6-1: How to set up plug-ins

Explanation:
The pdplgset command automatically creates the plugin directory under the
HiRDB directory ($PDDIR) and the directory with the plug-in name.

(5) Starting HiRDB
The HiRDB administrator uses the pdstart command to start HiRDB.

(6) Adding user RDAREAs
Before plug-ins are registered into HiRDB, the RDAREA administrator uses the create
rdarea statement of the database structure modification utility (pdmod) to add
RDAREAs. The following RDAREAs need to be added:

• User RDAREA1

• User LOB RDAREA1

• Data dictionary LOB RDAREA2 (there is no need to add this RDAREA if stored
procedures, stored functions, or plug-ins are already being used)

For details about how to add RDAREAs, see 5.7 Creating user RDAREAs, 5.8
Creating user LOB RDAREAs, or 5.9 Creating data dictionary LOB RDAREAs.
If a database environment has already been constructed, there is no need to add
RDAREAs after installing plug-ins.

6. Setting Up the Plug-in Environment

217

1 You need to add this RDAREA if you want to create a separate table for plug-ins and
store the table in a new RDAREA.
2 You need to add this RDAREA to make the stored-procedure facility available to
HiRDB before the registry facility initialization utility (pdreginit) is executed.

(7) Registering plug-ins
Use the pdplgrgst command to register your plug-ins in HiRDB. You can enter the
pdplgrgst command from any server machine.
Figure 6-2 shows the procedure for registering plug-ins.

Figure 6-2: Plug-in registration procedure

(a) pdplgrgst command input format
Following shows the input format of the pdplgrgst command:
pdplgrgst plug-in-definition-filename PIC-filename
Example of HiRDB Text Search Plug-in

• Data type plug-in
pdplgrgst _phsgml.adt _phsgml.pic
(Current directory: /TSPlugin/_phsgml/etc)

6. Setting Up the Plug-in Environment

218

• Index type plug-in
pdplgrgst _phngram.idx _phngram.pic
(Current directory: /TSPlugin/_phngram/etc)

Notes
• To register an index-type plug-in, you need to register the corresponding data

type plug-in beforehand.
• Register both data type and index type plug-ins in the same schema.

(b) Owner of a plug-in
The owner of a plug-in (owner of the abstract data type, index type, and function
provided by a plug-in) is treated as MASTER. This allows the authorization identifier
to be omitted when specifying the plug-in-provided function call processing using
SQL statements.
Specifying a user other than MASTER as the plug-in owner
You can specify the user executing the pdplgrget command as the plug-in owner
instead of MASTER. To do this, specify the -u option in the pdplgrget command,
in which case the pdplgrget command executor (the authorization identifier
specified in the PDUSER operand in the client environment definitions) becomes the
owner of the plug-in.
Notes

1. The pdplgrgst command executor's schema must have already been
defined.

2. If a plug-in provides both abstract data type and index type, be sure to assign
the same owner.

3. Only the plug-in owner can delete or upgrade his/her plug-in. To delete or
upgrade a plug-in, specify the -u option in the pdplgrgst command.

4. If you delete a plug-in owner's schema, the plug-in itself is also deleted. In
this case, do the following:

• Delete the pdplugin operand from the system common definitions.
• Execute the pdplgset -d command at all server machines to set up

plugins.
(c) Migrating from HiRDB Version 5.0 (with HiRDB Object Option) 01-00

The plug-in owner remains the same.
With HiRDB Version 5.0 (with HiRDB Object Option) 01-00, the plug-in's owner
is the user who executes the pdplgrgst command. After upgrading HiRDB to
Version 6 06-00 or later, the plugin's owner remains the same (not MASTER).

6. Setting Up the Plug-in Environment

219

How to define the owner as MASTER
To define the owner as MASTER, you need to delete the plugin once and then
re-register it. Before deleting a plugin, you need to delete all tables and indexes
using the abstract data type, index type, and functions provided by the plug-in.
Then, execute the pdplgrgst command.
If the authorization identifier is specified in the section where the function
provided by the plug-in is called with the SQL statement, you need to delete the
authorization identifier or change it to MASTER.

(8) Initializing the registry facility
Some plug-ins require the registry facility. In such cases, use the registry facility
initialization utility's (pdreginit) create rdarea statement to create the following
RDAREAs. This operation is not necessary when the registry facility is already being
used with plug-ins.

• Registry RDAREA
• Registry LOB RDAREA

Execute the registry facility initialization utility (pdreginit) only once before all
plug-ins are registered.
The registry RDAREA and registry LOB RDAREA store the registry information.
Which of the two RDAREAs is used is determined automatically on the basis of the
length of the data to be registered.
Figure 6-3 shows the procedure for creating a registry RDAREA and registry LOB
RDAREA.

6. Setting Up the Plug-in Environment

220

Figure 6-3: Procedure for creating a registry RDAREA and registry LOB
RDAREA

(9) Terminating HiRDB
To enable a plug-in, HiRDB must be terminated normally by entering the pdstop
command. No tables or indexes that use the registered plug-in can be defined until
HiRDB has been restarted.
After HiRDB has been terminated, a backup copy should be made of all the updated
RDAREAs.

(10) Adding the pdplugin operand
After HiRDB has been terminated normally, add the pdplugin operand in the system
common definitions. Specify the name of a plug-in to be used in the pdplugin
operand.
For a HiRDB/Parallel Server, you need to add the pdplugin operand in the system
common definitions on all server machines; otherwise, you will not be able to start
HiRDB.

6. Setting Up the Plug-in Environment

221

(11) Starting HiRDB
Use the pdstart command to start HiRDB.

(12) Registering registry information
Once the registry facility has been initialized, registry information required by the
plug-in must be registered. The plug-in and the registry facility can then be used. For
details about how to register registry information, see the applicable plug-in
documentation.

6.1.2 Notes on using plug-ins
(1) HiRDB setup/startup conditions and availability of plug-ins

Table 6-1 shows the HiRDB (unit) setup/startup conditions and availability of plug-ins.
Table 6-1: HiRDB (unit) startup conditions and availability of plug-ins

S: Unit can be started, and plug-in can be used.
: Unit cannot be started, nor can plug-in be used.

(2) Availability of plug-ins in the event of plug-in initialization error
Plug-ins are initialized automatically during HiRDB startup. If multiple pdplugin
operands are specified in the system common definition and at least one of them results
in a plug-in initialization error, none of the plug-ins in the unit can be used.

(3) Availability of plug-ins depending on the unit
The availability of plug-ins depends on conditions at the unit in the following cases:

Plug-in utilization
declaration
(pdplugin
operand)

Registration of
plug-in

(pdplgrgst)

Plug-in initialization
error

Whether or
not unit can
be started

Availability
of plug-in

Not specified Registered None S

Occurred S

Not registered None S

Occurred S

Specified Registered None S S

Occurred S

Not registered None S

Occurred S

6. Setting Up the Plug-in Environment

222

• The plug-in utilization declaration (pdplugin operand) in the system common
definition is not the same from one unit to another.

• An error occurred during plug-in initialization processing and the plug-in is no
longer available on that unit.

An SQL statement that calls only the available plug-ins will execute successfully;
however, if it attempts to call even one unavailable plug-in, execution of the SQL
statement will fail.

6. Setting Up the Plug-in Environment

223

6.2 Upgrading plug-ins

This section describes the procedure for upgrading plug-ins installed in HiRDB (data
type and index type plug-ins). Upgrading a plug-in means changing the plug-in
without deleting the following:

• Tables using the data type provided by the plug-in.
• Indexes using the index type provided by the plug-in.
• Functions provided by the plug-in.

6.2.1 Notes about upgrading
When upgrading your plug-ins, note the following:

• The versions of the data type plug-in and the index type plug-in must match.
• When upgrading both data type and index type plug-ins, be sure to upgrade the

data type plug-in first.
• Once you register a new version of a plug-in, you can no longer restore the old

version.
• The SPECIFIC_NAME column is updated in the SQL_PLUGIN_ROUTINES and

SQL_PLUGIN_ROUTINE_PARAMS data dictionary tables.
• If you change the owner of a plug-in during upgrading, the functions may become

invalid. In such cases, re-create the function's SQL object using ALTER
ROUTINE.

6.2.2 Upgrading procedure
This section describes the upgrading procedure.

(1) Making a backup copy
To protect against possible errors, use the database copy utility (pdcopy) to make a
backup copy of the following RDAREAs. For this purpose, be sure to specify the-M x
option in the database copy utility (pdcopy).

• Master directory RDAREAs
• Data dictionary RDAREAs
• Data directory RDAREAs
• Data dictionary LOB RDAREAs

(2) Terminating HiRDB
Enter the pdstop command to terminate HiRDB normally.

6. Setting Up the Plug-in Environment

224

(3) Saving all necessary files
Save all necessary files at the following location:

• $PDDIR/plugin/plugin-name directory
For details about the files to be saved, see the applicable plug-in documentation. Save
the applicable files on all server machines where HiRDB is set up.

(4) Cancelling setup of the old version of the plug-in
Use the pdplgset -d command to cancel setup of the plug-in. This command deletes
everything at the following location:

• $PDDIR/plugin/plugin-name directory
This command does not delete any file under the Conf directory.
Cancel setup on all server machines where HiRDB is set up. For details about how to
cancel plug-in setup, see 6.1 Overview of plug-in environment setup.

(5) Installing the new version of the plug-in
Install the new version of the plug-in at each HiRDB server machine. For details about
the installation procedure, see the applicable plug-in documentation.

(6) Setting up the new version of the plug-in
Use the pdplgset command to set up the new plug-in. The new plug-in must be set
up on all server machines where HiRDB is set up. For details about how to set up
plugins, see 6.1 Overview of plug-in environment setup.

(7) Making appropriate changes to the system common definition
Delete the pdplugin operand for the old version of the plug-in from the system
common definition. Delete this operand at all the server machines that contain the
applicable system common definition.

(8) Restoring files that were saved
Restore the files that were saved in step (3) at all server machines where HiRDB is set
up.

(9) Restarting HiRDB
Enter the pdstart command to start HiRDB.

(10) Registering the new version of the plug-in
Execute the pdplgrgst command, specifying the -a option to re-register the plug-in.

(11) Terminating HiRDB
Enter the pdstop command to terminate HiRDB normally.

6. Setting Up the Plug-in Environment

225

(12) Making appropriate changes to the system common definition
When HiRDB has terminated normally, add the pdplugin operand to the system
common definition. In the pdplugin operand, specify the name of the upgraded
plug-in.
For a HiRDB/Parallel Server, add this operand to the system common definition at all
server machines; otherwise, you will not be able to start HiRDB.

(13) Starting HiRDB
Enter the pdstart command to start HiRDB. The tables and indexes that were
defined before the plug-in was upgraded become available again. Any new facilities
provided by the new version of plug-in are also available.

6. Setting Up the Plug-in Environment

226

6.3 Deleting plug-ins

This section describes the procedure for deleting plug-ins that have been registered
into HiRDB. Deleting a plug-in means the following:

• Deleting the plug-in definition information registered in the dictionary.
• Deleting the function, abstract data type, and index type provided by the plug-in.

The plug-in-provided file that contains the plug-in file set is not deleted.
(1) Deleting the database resources that use the facility provided by the plug-in

Before deleting a plug-in, the HiRDB administrator must delete the database resources
listed below. Table 6-2 lists the SQL statements that can be used to delete these
resources.

• Abstract data type, procedure, function, and table using the abstract data type that
is provided by the plug-in that is to be deleted (applicable when the abstract data
type provided by the plug-in is specified as an attribute among all the user-defined
abstract data types)

• Index using the index type that is provided by the plug-in that is to be deleted
• Function and procedure using the function provided by the plug-in that is to be

deleted
Table 6-2: SQL statements for deleting database resources

* The data type provided by a plug-in must not be deleted.
(2) Deleting the registered plug-in

The following command is executed for each plug-in that is to be deleted:
pdplgrgst -d plug-in-definition-filename PIC-filename

Notes
1. When a data-type plug-in is to be deleted and an index-type plug-in providing the

Database resources to be deleted SQL statement to be used

Table DROP TABLE

Index DROP INDEX

Function DROP FUNCTION

Procedure DROP PROCEDURE

Abstract data type DROP DATA TYPE*

6. Setting Up the Plug-in Environment

227

index facility for that data type is also registered, the index-type plug-in must be
deleted first.

2. If you are deleting a plug-in with an owner who is not MASTER, note the
following:

• Only a plug-in's owner can delete his/her plug-in. Specify the authorization
identifier and password of the plug-in owner in the PDUSER operand in the
client environment definitions. Then, specify the -u option when executing
the pdplgrgst command.

• The owner of a plugin registered with HiRDB Version 5.0 (with HiRDB
Object Option) is not MASTER. Therefore, you need to take the actions
described previously.

• If you delete a plug-in owner's schema, the plug-in itself is also deleted. For
details about the actions to be taken after the plug-in has been deleted, see
the sections beginning at (3) as follows.

(3) Deleting the registry
For details about how to delete registry information, see the applicable plug-in
documentation.

(4) Terminating HiRDB
The pdstop command must be entered to terminate HiRDB normally.

(5) Making appropriate changes to the system common definition
When HiRDB is terminated normally, the pdplugin operand must be deleted from the
applicable system common definitions.

(6) Canceling setup of the plug-in
The pdplgset -d command is used to cancel setup of the plug-in. Before this
command is executed, save all necessary files. No files are deleted from the conf
directory. Plug-in setup cancellation must be performed at all units where HiRDB is
set up.

(7) Uninstalling the plug-in
The plug-in must be uninstalled from the server machine. For details about the
uninstallation, see the procedure for the applicable plug-in.

229

Chapter

7. Creating Databases

This chapter describes the procedures from schema, table, and index creation through
data storage.
This chapter contains the following sections:

7.1 Overview of database creation
7.2 Creating a row partitioned table
7.3 Creating a table with a LOB column
7.4 Creating a table containing a plug-in-provided abstract data type
7.5 Creating a table containing a user-defined abstract data type
7.6 Handling errors during batch index creation
7.7 Handling utility abnormal termination errors during data loading with the

synchronization point specification

7. Creating Databases

230

7.1 Overview of database creation

This section provides the information that you need to be familiar with before creating
databases (tables and indexes). The topics covered include:

• Preparing for database creation
• Database creation procedure
• Database update log acquisition procedure
• Notes about loading data to a table containing a unique index

• Loading a large amount of data (data load with the synchronization point
specification)

• Input data file UOC
• Checking for unneeded RDAREAs

7.1.1 Preparing for database creation
Executor: HiRDB administrator
This section discusses preparations for database creation.

(1) Defining the client environment
Before a database can be created, the following environment variables must be set in
the client environment definition. (For details about how to set client environment
variables, see the manual HiRDB Version 8 UAP Development Guide):

• PDHOST
• PDUSER
• PDNAMEPORT

(2) Changing the password
If the password of the authorization identifier of the HiRDB administrator is the same
character string as the authorization identifier, use the GRANT definition SQL to change
the password. To do this, execute the following SQL with the database definition
utility (pddef) or HiRDB SQL Executer:
GRANT DBA TO identifier-for-the-HiRDB-administrator IDENTIFIED BY
new-password;

(3) Defining a schema
The CREATE SCHEMA definition SQL is used to define a schema. To define a schema,
either the database definition utility (pddef command) is used or an appropriate UAP

7. Creating Databases

231

is created. Only one schema can be defined for each user.
(4) Creating a database (users other than the HiRDB administrator)

Before a user other than the HiRDB administrator can create a database, the HiRDB
administrator must grant an appropriate user privilege to this user. Use the GRANT
definition SQL to grant the necessary user privilege to the user who will be creating
databases. The following privileges are required:

• CONNECT privilege
• Schema definition privilege
• RDAREA usage privilege

For details about user privileges, see the manual HiRDB Version 8 System Operation
Guide.
Example

Grant the CONNECT, schema, and RDAREA usage (RDAREA name:
RDAREA01) privileges to the user who will create tables (authorization identifier:
USER002, password: HIRDB002):
GRANT CONNECT TO USER002 IDENTIFIED BY HIRDB002;
GRANT SCHEMA TO USER002;
GRANT RDAREA RDAREA01 TO USER002;

(5) Specifying the data conversion facility
When storing data in a database, you can use a facility to convert the data. Evaluate
whether or not to use the following facilities. For details about these facilities, see the
manual HiRDB Version 8 System Operation Guide.

• Space conversion facility

• Facility for conversion to a DECIMAL signed normalized number

7.1.2 Database creation procedure
Figure 7-1 shows the database creation procedure.

7. Creating Databases

232

Figure 7-1: Database creation procedure

Note
Execute CREATE TABLE and CREATE INDEX with one of the following methods:

• Database definition utility (pddef)
• HiRDB SQL Executer

7.1.3 Database update log acquisition mode
When storing data in a table using the database load utility (pdload), you can specify
a database update log acquisition mode. Use the database load utility's (pdload) -l
option to specify a desired database update log acquisition mode.

(1) Types of database update log acquisition mode
There are three different database update log acquisition modes:

• Log acquisition mode
This mode acquires the database update log required for rollback and rollforward.
Use this mode when there are relatively few data items.

• Pre-update log acquisition mode
This mode acquires only the database update log required for rollback. Use this
mode when there are many data items.

• No-log mode
This mode does not acquire a database update log. Therefore, the data load
processing time is the shortest of the three modes. Use this mode when there is
only one table per RDAREA (if the table is partitioned, only one row-partitioned
table per RDAREA) and any related index is also placed in one RDAREA.

For details about the functionality of these modes, see the manual HiRDB Version 8
System Operation Guide.

7. Creating Databases

233

(2) Storing data in a user LOB RDAREA
If you are storing data in a user LOB RDAREA, use the CREATE TABLE's RECOVERY
operand to specify the database update log acquisition mode.
The database update log acquisition mode for user LOB RDAREAs (RECOVERY
operand of CREATE TABLE) may depend on the -l option value in pdload, as shown
in Table 7-1.

Table 7-1: Database update log acquisition mode for user LOB RDAREAs
depending on the -l option value in pdload

ALL: Log acquisition mode
PARTIAL: Pre-update log acquisition mode
NO: No-log mode
For example, if PARTIAL is specified in the RECOVERY operand of CREATE TABLE
and the log acquisition method is NO in pdload, then NO (no-log mode) is set for the
user LOB RDAREAs.
* For the log that is output by plug-ins, ALL (log-acquisition mode) is assumed.

(3) Mode selection considerations
In general, the pre-update log acquisition mode, which is the default mode, should be
selected. However, selection of another mode should be considered under the
following conditions:

(4) Operational differences
Depending on the mode that is selected, there are differences in the operating

Value specified for -l
option in pdload

RECOVERY operand value in CREATE TABLE

ALL PARTIAL NO

a (equivalent to ALL) ALL PARTIAL NO

p (equivalent to PARTIAL) PARTIAL* PARTIAL* NO

n (equivalent to NO) NO NO NO

Condition Mode to be selected

For initial storage, only the target table (or index) for data storage is stored
in the RDAREA.

No-log mode

There is large volume of input data, and data storage will take a long time.

There is only a small amount of input data. Log acquisition mode

7. Creating Databases

234

procedure during data storage, as shown in Figure 7-2.
Figure 7-2: Differences in operating procedure based on the database update log
acquisition mode (data storage)

Note 1

This operation is required when the no-log mode is selected. If the pdload
command should terminate abnormally during operation in the no-log mode, you
would use this backup to recover the RDAREA. Note that it is not necessary to
make a backup if the conditions described in (5) When it is not necessary to make
a backup prior to data storage are satisfied.
However, regardless of the update log acquisition mode, a backup should be made
when additional data storage is performed in the batch index creation mode on a
table for which a plug-in index has been defined. The reason is that in order to
perform database recovery after the pdload command has terminated
abnormally, all the plug-in indexes, including the data portions, must be
re-created, which would require a long time for database recovery.

Note 2

This operation is required when the pre-update log acquisition mode or the no-log
mode is selected. If a backup is not made at this point, it will not be possible to
recover the RDAREA to a subsequent status if it becomes necessary to recover
the RDAREA with the pdrstr command (target processing after data storage
execution cannot be recovered); the RDAREA can be recovered only to its status
before data storage was executed.

7. Creating Databases

235

Supplemental note

If the pre-update log acquisition mode or the no-log mode is selected, the target
data storage RDAREA must remain on shutdown status during the steps 1-4
shown in the figure. If the contents of the RDAREA are modified before the
backup at step 4 has been made, and if it becomes necessary to recover the
RDAREA with the pdrstr command, the modified contents will not be
recovered; it will be possible to recover the RDAREA only to its status before
data storage was executed. If the pdrstr command is used to recover the
RDAREA, an error will occur during execution of the pdrstr command if the
system log in the input information contains a log collected in the pre-update log
acquisition mode or the no-log mode.

(5) When it is not necessary to make a backup prior to data storage
If data storage is executed in the no-log mode, a backup must have been made prior to
execution of data storage. However, if either condition 1 or 2 in the following table is
satisfied, it becomes unnecessary to make a backup, because the RDAREA can be
returned to its status before execution of data storage even if the pdload command
terminated abnormally:

Note

With respect to the condition in No. 2, the recovery operation on the RDAREA is
easier if a backup has been made, so in general it is recommended that a backup
be made. In particular, if pdload has terminated abnormally while in the batch
index creation mode, indexes cannot be recovered by a rollback even in the log
acquisition mode or the in pre-update log acquisition mode. If it is necessary to
be able to recover quickly to the status before data storage was attempted in the
event of abnormal termination of pdload, you should definitely make a backup.

No. Condition RDAREA recovery method in the
event of an error

1 Initial storage When only the targeted data
storage table and indexes of
that table are stored in the
target data storage
RDAREA

If the target data storage RDAREA is
reinitialized with the database
reconfiguration utility (pdmod command),
then once data storage is re-executed the
RDAREA can be recovered.

Data storage executed in
the creation mode

2 There exists in the
RDAREA targeted for
data storage at least one
table (index) other than
the table (index) targeted
for data storage.

When the RDAREA can be
recovered to its status before
data storage by using a
backup and the system log

The RDAREA can be recovered if you use
the pdclose command to close the target
data storage RDAREA, use the
pdlogswap command to swap system log
files, and then use the current system log
file as input to the database recovery
utility (pdrstr command).

Data storage executed in
the addition mode

7. Creating Databases

236

7.1.4 Notes on data storage for a table for which an index with the
unique attribute has been defined

The following must be considered when you execute data storage on a table for which
a primary key index (PRIMARY index) or a unique index (index with the UNIQUE
specification) has been defined:

• If the input data file contains data with duplicated key values, do not load
data in the batch index creation mode.

If you attempt to load data in the batch index creation mode, the system stores data in
the table and outputs the index key information to an index information file. At this
point, key values are not checked for any duplication. Key value duplication checking
occurs later when the index data is stored. If a duplicated key value is detected, index
creation processing is rolled back, but the data has already been stored (already
committed and cannot go back). In these cases, you need to use a backup copy to
restore the RDAREAs.
Therefore, if you are loading data from an input data file that contains data with
duplicated key values, be sure to specify the index update mode. This mode
updates an index each time data is stored. A duplicated key value is immediately
detected and the corresponding data is not stored in the database.
You can specify the batch index creation mode and index update mode using the -i
option of the database load utility (pdload). Note that the default value is the batch
index creation mode.

7.1.5 Loading a large amount of data (data loading with the
synchronization point specification)

If you plan to load a large amount of data to a table, evaluate the use of data loading
with the synchronization point specification.
Normally, with data load processing, a transaction cannot be settled until all data store
processing is completed. Therefore, a synchronization point dump cannot be validated
while the database load utility is executing. If HiRDB terminates abnormally while
loading a large amount of data, it takes a long time to restart HiRDB. To avoid this,
you can set a synchronization point at any interval based on the number of data items
during data load processing, thereby enabling transaction settlement. This is called a
data load with the synchronization point specification.
To perform data loads with the synchronization point specification, specify a line
number of a synchronization point (the number of data items after which a
synchronization point is to be set) using the database load utility's option statement.
Notes

1. When this facility is used, the overall throughput is reduced by the
synchronization point processing, compared to when this facility is not used.

7. Creating Databases

237

2. If the utility terminates abnormally, the recovery method depends on the
termination timing. For details about how to handle abnormal termination,
see 7.7 Handling utility abnormal termination errors during data loading
with the synchronization point specification. Note that the recovery method
is complicated if the utility terminates abnormally during a data load in the
batch index creation mode.

3. Because data storage begins on a new page for each synchronization point,
this facility is applicable only when a large number of pages is stored.

7.1.6 Loading data into a row-partitioned table (Creating
divided-input data files)

When you load data into a row-partitioned table, you can reduce the time required for
data loading and the length of time the table is in the exclusive mode by dividing the
input data files by storage RDAREAs and executing parallel data loading. By
specifying the src_work statement in the control information file and then executing
the database load utility (pdload), you can create an input data file for each RDAREA
from user-created input data files. The obtained input data files can be used to execute
data loading for the individual RDAREAs. A file created by the database load utility
(pdload) is called a divided-input data file. For details about the options and control
statements used to create the divided-input data files, see the manual HiRDB Version
8 Command Reference.

7.1.7 Input data file UOC
You can use a user-created program to edit data that is to be loaded. The edited data is
passed directly to pdload. Therefore, programs that edit input files can perform data
loading without creating temporary work files.
A program that the user creates to edit data is called the user's own coding (UOC). You
can use a UOC to edit input data, such as when the format of a file containing database
data is different from the input data file format supported by pdload, or when the
character encoding used in the database data is not supported by HiRDB.

7.1.8 Deleting unneeded RDAREAs
After creating a database, you should check the SQL_RDAREAS table of the data
dictionary tables for any user RDAREAs for which no table or index is defined, or for
any user LOB RDAREAs for which no LOB column is defined. You can delete any
unneeded RDAREA and save disk space.
For details about how to retrieve data dictionary tables and for details about the
SQL_RDAREAS table, see the manual HiRDB Version 8 UAP Development Guide. For
details about how to delete RDAREAs, see the manual HiRDB Version 8 System
Operation Guide.

7. Creating Databases

238

7.2 Creating a row partitioned table

This section describes the creation of a PRODUCT table. The following are the creation
conditions:

• Partition the PRODUCT table by row. Store the PRODUCT table in user RDAREAs
RDAREA01 and RDAREA02.

• Define a partitioning key index (INDX1) for the PRODUCT table. Store INDX1 in
user RDAREAs RDAREA03 and RDAREA04.

• Define a non-partitioning key index (INDX2) for the PRODUCT table. Store INDX2
in user RDAREA RDAREA05. For a HiRDB/Parallel Server, store INDX2 in user
RDAREAs RDAREA05 and RDAREA06.

• Store by means of initial storage in RDAREA01-RDAREA06 only the target data
storage table (and indexes).

• In executing data storage, use batch creation (the default value) for the indexes.
• Perform data storage in the no-log mode.

For details about the partitioning key index and non-partitioning key index, see 14.3
Index row partitioning.

7. Creating Databases

239

(1) Defining the PRODUCT table
Define the PRODUCT table with CREATE TABLE. The following shows an example:

(a) Key range partitioning
Specification of storage condition:
CREATE TABLE PRODUCT
(PNO CHAR(5),
 PNAME NCHAR(15),

7. Creating Databases

240

 LPRICE INTEGER,
 QTY INTEGER
)IN ((RDAREA01)PNO<='10000',(RDAREA02));

Specification of boundary value:
CREATE TABLE PRODUCT
(PNO CHAR(5),
 PNAME NCHAR(15),
 LPRICE INTEGER,
 QTY INTEGER
)PARTITIONED BY PNO
 IN ((RDAREA01)'10000',(RDAREA02));

(b) Flexible hash partitioning or FIX hash partitioning
CREATE TABLE PRODUCT
(PNO CHAR(5),
 PNAME NCHAR(15),
 LPRICE INTEGER,
 QTY INTEGER
)[FIX]* HASH HASH6 BY PNO
 IN (RDAREA01,RDAREA02);
* This specification is applicable to FIX hash partitioning.

(2) Defining an index
Define an index for the PRODUCT table using CREATE INDEX. The following shows
an example:

(a) HiRDB/Single Server
CREATE INDEX INDX1 ON TABLE (PNO)
 IN ((RDAREA03),(RDAREA04));
CREATE INDEX INDX2 ON PRODUCT (QTY)
 IN (RDAREA05);

(b) HiRDB/Parallel Server
CREATE INDEX INDX1 ON PRODUCT (PNO)
 IN ((RDAREA03),(RDAREA04));
CREATE INDEX INDX2 ON PRODUCT (QTY)
 IN ((RDAREA05),(RDAREA06));

(3) Storing data in the table
To use the database load utility (pdload) to store data in the table.
Procedure

1. Use the pdhold command to shut down the target data storage RDAREAs
(RDAREA01-RDAREA05). For a HiRDB/Parallel Server, shut down
RDAREA01-RDAREA06.

7. Creating Databases

241

2. Use the pdload command to load the input data file into the table. Because
only the target data storage table and indexes are stored in the RDAREAs,
and because this is the initial storage, select the no-log mode as the database
update log acquisition mode. For the index creation method, select the batch
index creation mode (the default value). For details about the options of the
pdload command, see the manual HiRDB Version 8 Command Reference.

3. Because the pdload command is executed in the no-log mode, make a
backup of the target data storage RDAREAs. For details about how to make
backups in units of RDAREAs, see the manual HiRDB Version 8 System
Operation Guide.

4. Use the pdrels command to release the target data storage RDAREAs from
shutdown status.

For details about these commands and utilities, and about how to verify the command
and utility execution results, see the manual HiRDB Version 8 Command Reference.
Supplemental notes

• Because the pdload command executes in the no-log mode, the target data
storage RDAREAs must remain on shutdown status during steps 1-3.

• In the case of a falsification prevented table, when data storage is performed
with the pdload command, the -d option cannot be specified.

• For details about error handling during batch index creation, see 7.6
Handling errors during batch index creation.

(4) Checking the data storage status
If you have executed data loading, you should execute the database condition analysis
utility (pddbst) next to check the data storage status. This utility enables you to check
whether the database has been created exactly as designed. The database condition
analysis utility can obtain the following information:

• Data storage status of each user RDAREA
• Data storage status of each table or index

7. Creating Databases

242

7.3 Creating a table with a LOB column

This section describes the creation of a PRODUCT table. The following are the creation
conditions:

• Partition the PRODUCT table by row. Store the PRODUCT table's LOB column
structure base table in user RDAREAs RDAREA01 and RDAREA02.

• Store LOB column data in user LOB RDAREAs LOBAREA01 and LOBAREA02.
• Define a partitioning key index (INDX1) for the PRODUCT table. Store INDX1 in

user RDAREAs RDAREA03 and RDAREA04.

• In RDAREA01-RDAREA02 and LOBAREA01-LOBAREA02, perform initial storage
only for the target data storage table (and index).

• When executing data storage, perform batch creation (the default value) on the
index.

• Perform data storage in the no-log mode.

Notes

7. Creating Databases

243

• Only one LOB column is stored in a user LOB RDAREA. If a table contains
multiple LOB columns, they must be stored in separate user LOB
RDAREAs.

• For a row partitioned table that has LOB columns, there must be a one-to-one
correspondence between the user LOB RDAREAs for the LOB columns and
the user RDAREAs for storing the table.

(1) Defining the PRODUCT table
Define the PRODUCT table with CREATE TABLE. The following shows an example:

(a) Key range partitioning
Specification of storage condition:
CREATE TABLE PRODUCT
(PNO CHAR(5),
 PNAME NCHAR(15),
 LPRICE INTEGER,
 QTY INTEGER,
 PPICT BLOB(64K) IN ((LOBAREA01),(LOBAREA02))
)IN ((RDAREA01) PNO<='10000',(RDAREA02));

Specification of boundary value:
CREATE TABLE PRODUCT
(PNO CHAR(5),
 PNAME NCHAR(15),
 LPRICE INTEGER,
 QTY INTEGER,
 PPICT BLOB(64K) IN ((LOBAREA01),(LOBAREA02))
)PARTITIONED BY PNO
IN ((RDAREA01)'10000',(RDAREA02));

(b) Flexible hash partitioning or FIX hash partitioning
CREATE TABLE PRODUCT
(PNO CHAR(5),
 PNAME NCHAR(15),
 LPRICE INTEGER,
 QTY INTEGER,
 PPICT BLOB(6000) IN ((LOBAREA01),(LOBAREA02))
)[FIX]* HASH HASH6 BY PNO
 IN (RDAREA01,RDAREA02);
* This specification is applicable to FIX hash partitioning.

(2) Defining an index
Define an index for the PRODUCT table using CREATE INDEX. The following shows
an example:
CREATE INDEX INDX1 ON PRODUCT (PNO)

7. Creating Databases

244

 IN ((RDAREA03),(RDAREA04));

(3) Storing data in the table
To use the database load utility (pdload) to store data in the table.
Procedure

1. Use the pdhold command to shut down the target data storage RDAREAs
(RDAREA01-RDAREA04 and LOBAREA01-LOBAREA02).

2. Use the pdload command to load the input data file into the table. Because
only the target data storage table and index are stored in the RDAREAs, and
because this is an initial storage, select the no-log mode as the database
update log acquisition mode. For the index creation method, select the batch
index creation mode (the default value). For details about the options of the
pdload command, see the manual HiRDB Version 8 Command Reference.

3. Because the pdload command is executed in the no-log mode, make a
backup of the target data storage RDAREAs. For details about how to make
backups in units of RDAREAs, see the manual HiRDB Version 8 System
Operation Guide.

4. Use the pdrels command to release the target data storage RDAREAs from
shutdown status.

For details about these commands and utilities, and about how to verify the command
and utility execution results, see the manual HiRDB Version 8 Command Reference.
Supplemental notes

• Because the pdload command executes in the no-log mode, the target data
storage RDAREAs must remain on shutdown status during steps 1-3.

• In the case of a falsification prevented table, when data storage is performed
with the pdload command, the -d option cannot be specified.

• For details about error handling during batch index creation, see 7.6
Handling errors during batch index creation.

(4) Checking the data storage status
If you have executed data loading, you should execute the database condition analysis
utility (pddbst) next to check the data storage status. This utility enables you to check
whether the database has been created exactly as designed. The database condition
analysis utility (pddbst) can obtain the following information:

• Data storage status of each user RDAREA or user LOB RDAREA
• Data storage status of each table or index

7. Creating Databases

245

(5) Notes
When executing data loading on a table with a LOB column, you can load the LOB
column structure base table and LOB data separately.
Set the database update log acquisition mode to the no-log mode, and set the index
creation method to batch index creation (the default value).
Procedure

1. Use the pdhold command to shut down the target data storage RDAREAs
(RDAREA01-RDAREA04 and LOBAREA01-LOBAREA02).

2. Use the pdload command to load the input data file into the table (LOB
column structure base table and index). At this time, the target data storage
RDAREAs are RDAREA01-RDAREA04. Output to the LOB middle file the
information required for data storage of the LOB column. For details about
the options of the pdload command, see the manual HiRDB Version 8
Command Reference.

3. Use the pdload command to perform data storage in user LOB RDAREAs
LOBAREA01-LOBAREA02. Specify the LOB input file and the LOB middle
file specified in step 2.

4. Because the pdload command was executed in the no-log mode, make a
backup of the target data storage RDAREAs. For details about how to make
backups in units of RDAREAs, see the manual HiRDB Version 8 System
Operation Guide.

5. Use the pdrels command to release the target data storage RDAREAs from
shutdown status.

For details about these commands and utilities, and about how to verify the command
and utility execution results, see the manual HiRDB Version 8 Command Reference.

7. Creating Databases

246

7.4 Creating a table containing a plug-in-provided abstract data type

This section describes the procedure for creating a table with abstract data type
(SGMLTEXT type) that is provided by the HiRDB Text Search Plug-in.
A MEDICINE_MANAGEMENT_TABLE is created here. The following are the creation
conditions:

• Partition the MEDICINE_MANAGEMENT_TABLE. Store the LOB column structure
base table in user RDAREAs RDAREA01 and RDAREA02.

• Store SGMLTEXT-type column data in user LOB RDAREAs LOBAREA01 and
LOBAREA02.

• Store the plug-in index in user LOB RDAREAs LOBAREA03 and LOBAREA04.
• In RDAREA01-RDAREA02 and LOBAREA01-LOBAREA04, perform initial storage

only for the target data storage table (and index).
• When executing data storage, perform batch creation (the default value) on the

index.
• Perform data storage in the no-log mode.

7. Creating Databases

247

Explanation:
This example stores MEDICINE_ID (MCHAR type) in the user RDAREAs and
OPERATION_MANUAL (SGMLTEXT type) in the user LOB RDAREAs.

(1) Defining the MEDICINE_MANAGEMENT_TABLE
Define the MEDICINE_MANAGEMENT_TABLE with CREATE TABLE. The following
shows an example:

(a) Key range partitioning
Specification of storage condition:
CREATE TABLE MEDICINE_MANAGEMENT_TABLE(
MEDICINE_ID MCHAR(15),

7. Creating Databases

248

OPERATION_MANUAL SGMLTEXT 1.
 ALLOCATE(SGMLTEXT IN((LOBAREA01),(LOBAREA02))) 2.
 PLUGIN'<DTD>medicine.dtd</DTD>' 3.
)IN((RDAREA01)MEDICINE_ID<='MEDICINE 10',(RDAREA02)); 4.

Specification of boundary value:
CREATE TABLE MEDICINE_MANAGEMENT_TABLE(
MEDICINE_ID MCHAR(15),
OPERATION_MANUAL SGMLTEXT 1.
 ALLOCATE(SGMLTEXT IN((LOBAREA01),(LOBAREA02))) 2.
 PLUGIN'<DTD>medicine.dtd</DTD>' 3.
)PARTITIONED BY MEDICINE_ID
 IN((RDAREA01)'MEDICINE 10',(RDAREA02)); 4.

Explanation:
1. Specifies the data type provided by the plug-in module.
2. The SGMLTEXT LOB column in MEDICINE_MANAGEMENT_TABLE is divided

among and stored in user LOB RDAREAs LOBAREA01 and LOBAREA02.
3. Specifies the plug-in portion. For details about specification, see the applicable

plug-in documentation.
4. MEDICINE_MANAGEMENT_TABLE's LOB column structure base table is divided

and stored in user RDAREAs RDAREA01 and RDAREA02.
(b) Flexible hash partitioning or FIX hash partitioning

CREATE TABLE MEDICINE_MANAGEMENT_TABLE(
MEDICINE_ID MCHAR(15),
OPERATION_MANUAL SGMLTEXT 1.
 ALLOCATE(SGMLTEXT IN((LOBAREA01),(LOBAREA02))) 2.
 PLUGIN'<DTD>medicine.dtd</DTD>' 3.
)[FIX]* HASH HASH6 BY MEDICINE_ID
 IN(RDAREA01,RDAREA02) 4.

Explanation:
1. Specifies the data type provided by the plug-in module.
2. The SGMLTEXT LOB column in MEDICINE_MANAGEMENT_TABLE is divided

among and stored in user LOB RDAREAs LOBAREA01 and LOBAREA02.
3. Specifies the plug-in portion. For details about specification, see the applicable

plug-in documentation.
4. MEDICINE_MANAGEMENT_TABLE's LOB column structure base table is divided

and stored in user RDAREAs RDAREA01 and RDAREA02.
* This specification is applicable to FIX hash partitioning.

7. Creating Databases

249

(2) Defining a plug-in index
If you use the index type for data retrieval offered by a plug-in, you can retrieve data
easily and at high speed. The index type offered by a plug-in is called plug-in index.
This section explains how to define a plug-in index using the index type (NGRAM)
provided by the HiRDB Text Search Plug-in.
The following example defines a plug-in index for MEDICINE_MANAGEMENT_TABLE
using CREATE INDEX:
CREATE INDEX PLGINDX1
 USING TYPE NGRAM
 ON MEDICINE_MANAGEMENT_TABLE(OPERATION_MANUAL)
 IN ((LOBAREA03),(LOBAREA04));

Explanation:
For the row-partitioned MEDICINE_MANAGEMENT_TABLE, plug-in index
PLGINDX1 is divided and stored in user LOB RDAREAs LOBAREA03 and
LOBAREA04. OPERATION_MANUAL is specified for the column that constitutes the
PLGINDX1 plug-in index.

(3) Storing data in the table
To use the database load utility (pdload) to store data in the table:
Procedure

1. Use the pdhold command to shut down the target data storage RDAREAs
(RDAREA01-RDAREA02 and LOBAREA01-LOBAREA04).

2. Use the pdload command to load the input data file into the table. Because
only the target data storage table and index are stored in the RDAREAs, and
because this is an initial storage, select the no-log mode as the database
update log acquisition mode. For the index creation method, select the batch
index creation mode (the default value). For the constructor function and the
data type information passed to the constructor function, specify a column
structure information file. For details about the options of the pdload
command, see the manual HiRDB Version 8 Command Reference.

3. Because the pdload command is executed in the no-log mode, make a
backup of the target data storage RDAREAs. For details about how to make
backups in units of RDAREAs, see the manual HiRDB Version 8 System
Operation Guide.

4. Use the pdrels command to release the target data storage RDAREAs from
shutdown status.

For details about these commands and utilities, and about how to verify the command
and utility execution results, see the manual HiRDB Version 8 Command Reference.
Supplemental notes

7. Creating Databases

250

• Because the pdload command executes in the no-log mode, the target data
storage RDAREAs must remain on shutdown status during steps 1-3.

• In the case of a falsification prevented table, when data storage is performed
with the pdload command, the -d option cannot be specified.

• For details about error handling during batch index creation, see 7.6
Handling errors during batch index creation.

(4) Checking the data storage status
If you have executed data loading, you should execute the database condition analysis
utility (pddbst) next to check the data storage status. This utility enables you to check
whether the database has been created exactly as designed. The database condition
analysis utility (pddbst) can obtain the following information:

• Data storage status of each user RDAREA or user LOB RDAREA (physical
analysis only)

• Data storage status of each registry RDAREA or registry LOB RDAREA
(physical and logical analyses)

(5) Loading data in units of RDAREAs into a table for which partitioning
conditions are specified with a hash function

You can create a UAP using a hash function for table partitioning to create an input
data file for each RDAREA. Because this makes it possible to check the amount of data
to be stored in each RDAREA, you can select a hash function for uniform partitioning.
For details about how to create a UAP for using a hash function for table partitioning,
see the manual HiRDB Version 8 UAP Development Guide.

7. Creating Databases

251

7.5 Creating a table containing a user-defined abstract data type

7.5.1 Defining an abstract data type
The user can use an abstract data type and routines to define and use any desired data
type with a complicated structure and a desired data manipulation method.

(1) Definition method
The CREATE TYPE definition SQL is used to define a data type with a desired structure
(an abstract data type). CREATE TYPE defines a data structure and a data manipulation
method. This section explains how to define the abstract data type t_EMPLOYEE with
the data structure shown below and then define a data manipulation method as a
function:
Data structure

The data consists of NAME, SEX, POSITION, EMPLOYMENT_DATE, ID_PHOTO,
and SALARY.

Data manipulation
• Calculate SERVICE_YEARS from the current date and EMPLOYMENT_DATE.
• Calculate BONUS_FACTOR according to SERVICE_YEARS.
• Calculate the employee's bonus by multiplying SALARY times

BONUS_FACTOR.
Example

CREATE TYPE t_EMPLOYEE (1.
 PUBLIC NAME NCHAR(16),
 SEX CHAR(1),
 POSITION NCHAR(10),
 PRIVATE EMPLOYMENT_DATE date, 2.
 PUBLIC ID_PHOTO BLOB(64K),
 PROTECTED SALARY INTEGER, 3.

 PUBLIC FUNCTION t_EMPLOYEE (p_NAME NCHAR(16), 4.
 p_SEX CHAR(1),
 p_POSITION NCHAR(10),
 p_EMPLOYMENT_DATE date,
 p_ID_PHOTO BLOB(64K),
 p_SALARY INTEGER)
 RETURNS t_EMPLOYEE
 BEGIN
 DECLARE d_EMPLOYEE t_EMPLOYEE; 5.
 SET d_EMPLOYEE=t_EMPLOYEE (); 6.
 SET d_EMPLOYEE..NAME=p_NAME; 7.

7. Creating Databases

252

 SET d_EMPLOYEE..SEX=p_SEX; 7.
 SET d_EMPLOYEE..POSITION=p_POSITION; 7.
 SET d_EMPLOYEE..EMPLOYMENT_DATE
 =p_EMPLOYMENT_DATE; 7.
 SET d_EMPLOYEE..ID_PHOTO =p_ID_PHOTO; 7.
 SET d_EMPLOYEE..SALARY=p_SALARY; 7.
 RETURN d_EMPLOYEE; 8.
 END,

PUBLIC FUNCTION SERVICE_YEARS (p t_EMPLOYEE)
RETURNS INTEGER 9.
 BEGIN
 DECLARE working_years INTERVAL YEAR TO DAY;
 SET working_years=CURRENT_DATE - p.. EMPLOYMENT_DATE;
 RETURN YEAR(working_years);
 END,

PROTECTED FUNCTION BONUS_FACTOR (p t_EMPLOYEE)
RETURNS FLOAT 10.
 BEGIN
 DECLARE rate FLOAT;
 SET rate=SERVICE_YEARS (p)*0.2/30;
 RETURN rate;
 END,

 PUBLIC FUNCTION BONUS (p t_EMPLOYEE)
 RETURNS INTEGER 11.
 BEGIN
 DECLARE bonus INTEGER;
 SET bonus=p..SALARY*BONUS_FACTOR (p);
 RETURN bonus;
 END
)

1. Defines the data structure. This example defines abstract data type t_employee.
2. Attribute EMPLOYMENT_DATE of the t_EMPLOYEE type is used to access the

bonus. Encapsulation level PRIVATE is specified for this attribute, because there
is no need to reference or modify it directly from the outside. For details about the
encapsulation level, see 13.16 Table containing an abstract data type.

3. Attribute SALARY of the t_EMPLOYEE type is used to calculate the bonus. This
attribute also need not be referenced or modified directly from the outside.
However, encapsulation level PROTECTED is specified for this attribute because
its subtype is commonly referenced. For details about the encapsulation level, see
13.16 Table containing an abstract data type.

4. Defines a user-defined constructor function.

7. Creating Databases

253

5. Generates a value (instance) and declares an SQL variable to be used as the
function's return value with the t_EMPLOYEE type.

6. Uses the system-provided default constructor function to generate a value
(instance) whose attributes are all NULL. The default constructor function has the
same name as the t_EMPLOYEE type with no argument

7. For the value specified in 6 above, assign the value of each attribute using an
assignment statement specifying the component. The assignment statement can
be used to set the value obtained from the constructor function's argument or to
set the data processed using that value.

8. The RETURN statement returns a newly generated value (instance). The data type
of the return value must be t_EMPLOYEE, because the constructor function has the
same name as the abstract data type and the type is determined by the RETURNS
clause.

9. This is a data manipulation function. It returns the employee's SERVICE_YEARS.
This value is calculated from the current date and EMPLOYMENT_DATE. This
function accesses the EMPLOYMENT_DATE attribute for which PRIVATE is
specified as the encapsulation level.

10. This is another data manipulation function. It returns the employee's
BONUS_FACTOR. SERVICE_YEARS is used to calculate this value.

11. This is another data manipulation function. It returns the employee's BONUS. This
value depends on SERVICE_YEARS and is obtained by multiplying SALARY by
BONUS_FACTOR.

(2) Definition method using inheritance
Following is an example of defining the subtype t_OPERATOR with the supertype
being the t_EMPLOYEE abstract data type:
Example
CREATE TYPE
 CREATE TYPE t_OPERATOR UNDER t_EMPLOYEE
 (PUBLIC CHARGE_CLIENT NCHAR(15),
 PUBLIC FUNCTION BONUS (p t_OPERATOR) RETURNS INTEGER
 BEGIN
 DECLARE salebonus INTEGER;
 SET salebonus=TOTAL_CLIENTS (...)*1000+P..SALARY*BONUS
(p);
 RETURN salebonus;
 END
)

(3) Null value for the abstract data type
If values are specified with the INSERT data manipulation SQL, the values for the

7. Creating Databases

254

entire abstract data type are set to null.
(4) Procedure for deleting the subtype of an abstract data type

If an abstract data type is not specified directly in the table definition, but its parent
abstract data type (supertype) is specified as a column type, then the value of the
abstract data type (subtype) may have been stored in the table due to substitutability.
Care must be taken when an abstract data type (subtype) is deleted.
The procedure for deleting a subtype is described as follows, based on a table
containing an abstract data type using substitutability, as shown in Figure 7-3.

Figure 7-3: Example of table containing abstract data type using substitutability

1. Delete STAFF_TABLE.
2. Delete subtype t_OPERATOR of t_EMPLOYEE.
3. Delete t_EMPLOYEE.
4. Delete subtype t_A_COMPANY_STAFF of t_A_COMPANY_STAFF.
5. Delete t_A_COMPANY_STAFF.
See (5) as follows for the subtypes of the abstract data type that cannot be deleted.

(5) Notes
1. If a constructor function is used to generate values, the abstract data type as a

whole is not null, even if the value of each attribute constituting the abstract data
type is null.

2. If an abstract data type and its supertype are defined in a table, the abstract data
type's subtypes cannot be deleted.

3. If an abstract data type and its supertype are specified as attributes of another

7. Creating Databases

255

abstract data type, the abstract data type's subtypes cannot be deleted.
4. When a subtype is defined and the parent of the data type being created is one of

the following, the corresponding stored procedure and stored function become
invalid:

• Data type specified in the SQL parameter of the stored procedure and stored
function.

• Data type of the function's return value.
• Data type of the argument and return value of the function that is invoked

from the stored procedure and stored function.
• Data type specified in the stored procedure and stored function (including

any intermediate data type if the abstract data type is accessed with a
component specified).

7.5.2 Defining a table
The RDAREA storage unit depends on the data type of the columns that constitute the
table. The explanations below are based on the example of a STAFF_TABLE table that
consists of EMPLOYEE_NUMBER, DOCUMENT_DATA (LOB data), and abstract data type
t_EMPLOYEE. For a table containing abstract data type columns, the portion without
the abstract data type columns is called the abstract data type column structure base
table.

7. Creating Databases

256

Explanation:
STAFF_TABLE is divided among and stored in user RDAREAs RDAREA01 and
RDAREA02 on disks A and B, respectively. DOCUMENT_DATA of this
STAFF_TABLE (LOB column) is stored in user LOB RDAREAs LOBAREA01 and
LOBAREA02, and the abstract data type (LOB attribute) ID_PHOTO is stored in
user LOB RDAREAs LOBAREA03 and LOBAREA04.

(1) Key range partitioning
Specification of storage conditions:
CREATE TABLE STAFF_TABLE
(EMPLOYEE_NUMBER CHAR(6),
 DOCUMENT_DATA BLOB(64K) IN ((LOBAREA01),(LOBAREA02)),
 EMPLOYEE t_EMPLOYEE ALLOCATE(ID_PHOTO
 IN ((LOBAREA03),(LOBAREA04)))
)IN ((RDAREA01)EMPLOYEE_NUMBER<=700000,(RDAREA02));

Specification of boundary value:
CREATE TABLE STAFF_TABLE
(EMPLOYEE_NUMBER CHAR(6),

7. Creating Databases

257

 DOCUMENT_DATA BLOB(64K) IN ((LOBAREA01),(LOBAREA02)),
 EMPLOYEE t_EMPLOYEE ALLOCATE(ID_PHOTO
 IN ((LOBAREA03),(LOBAREA04)))
)PARTITIONED BY EMPLOYEE_NUMBER
 IN ((RDAREA01)800000,(RDAREA02));

(2) Flexible hash partitioning or FIX hash partitioning
CREATE TABLE STAFF_TABLE
(EMPLOYEE_NUMBER CHAR(6),
 DOCUMENT_DATA BLOB(64K) IN ((LOBAREA01),(LOBAREA02)),
 EMPLOYEE t_EMPLOYEE ALLOCATE(ID_PHOTO
 IN ((LOBAREA03),(LOBAREA04)))
)[FIX]* HASH HASH6 BY EMPLOYEE_NUMBER
 IN (RDAREA01,RDAREA02);
* This specification is applicable to FIX hash partitioning.

7.5.3 Defining an index
This example defines an index for the EMPLOYEE_NUMBER column. Note that you
cannot define an index for an abstract data type column.
Example

CREATE INDEX INDX1 ON STAFF_TABLE (EMPLOYEE_NUMBER)
 IN ((RDAREA03),(RDAREA04));

Explanation:
For the row-partitioned STAFF_TABLE, partitioning key index INDX1 is divided
and stored in user RDAREAs RDAREA03 and RDAREA04. EMPLOYEE_NUMBER is
specified for the columns that constitute the INDX1 index.

7.5.4 Storing data in a table
To store data in a table containing a user-defined abstract data type, use the INSERT
statement of the data manipulation SQL. You cannot use the database load utility
(pdload) to load this data. To insert data, use the INSERT statement to insert a value
that is generated by a defined function. Figure 7-4 shows the procedure for inserting
data in a table that contains an abstract data type column.

7. Creating Databases

258

Figure 7-4: Procedure for inserting data in a table that contains an abstract data
type column

7.5.5 Database update log acquisition methods
(1) Database update log acquisition methods

There are three database update log acquisition methods:

7. Creating Databases

259

1. Log acquisition mode
This mode acquires a database update log required for rollback and rollforward.
It is used to create additional data or to reorganize data when there are not many
data items.

2. Pre-update log acquisition mode
This method acquires only the database update log required for rollback. It is used
to create, add, or reorganize data when there are many data items.

3. No-log mode
This mode does not acquire a database update log. It is used to create or
reorganize data when there is only one table per RDAREA (if the table is
partitioned, only one row-partitioned table per RDAREA) and any related index
is also placed in one RDAREA.

(2) Specification of the database update log acquisition method
There are two ways to specify the database update log acquisition method:

• With PDDBLOG in the client environment definition1

• With the RECOVERY operand of CREATE TABLE2

1 This way is used to specify the database update log acquisition method for a UAP
that updates user RDAREAs.
2 This way is used to specify the database update log acquisition method for a UAP
that updates user LOB RDAREAs.
Note

The database update log acquisition method for user LOB RDAREAs (RECOVERY
operand of CREATE TABLE) may depend on a specification in the client
environment definition, as explained in Table 7-2.
Table 7-2: Database update log acquisition method for user LOB RDAREAs
depending on a specification in the client environment definition

ALL: Log acquisition mode
PARTIAL: Pre-update log acquisition mode

Client environment
definition PDDBLOG

RECOVERY operand value in CREATE TABLE

ALL PARTIAL NO

ALL ALL PARTIAL NO

NO NO NO NO

7. Creating Databases

260

NO: No-log mode
For example, if PARTIAL is specified in the RECOVERY operand of CREATE TABLE
and the log acquisition method is set to NO in the client environment definition, then
NO (no-log mode) is set for the user LOB RDAREAs.

7.5.6 Checking the data storage status
When data is inserted into a table containing an abstract data type column, the database
condition analysis utility (pddbst) should be executed first to check the data storage
status. This utility can check whether the database has been created exactly as
designed.
The database condition analysis utility (pddbst) can obtain information about the data
storage status (physical analysis only) of each RDAREA.

7. Creating Databases

261

7.6 Handling errors during batch index creation

If an error occurs during batch index creation, data may have been stored successfully
in the table, but the index may not have been created. This section explains the
procedure for recovering from such a situation. Figure 7-5 shows the status of the
index in the event of an error during batch index creation by the database load utility
(pdload).

Figure 7-5: Status of index in the event of an error during batch index creation
by database load utility (pdload)

7.6.1 When data was loaded in log acquisition mode or pre-update
log acquisition mode

This section explains the procedure for handling errors that may occur during data
loading in the log acquisition mode or pre-log acquisition mode.
If the table has a plug-in index, this procedure assumes that the applicable plug-in
provides the batch plug-in index creation partial recovery facility. If your plug-in does
not have the batch plug-in index creation partial recovery facility, see 7.6.2 When data
was loaded in no-log mode.
Restore the index storage RDAREAs according to the cause of error. The following
shows the procedure:

(1) Error due to shortage of space in index storage RDAREA
1. Expand the index storage RDAREA.

7. Creating Databases

262

2. Create the index. Use the index information file created by the database load
utility (pdload) to create the index in the batch mode.

If the index information file created by the database load utility (pdload) is not
available, re-create the index with the database reorganization utility (pdrorg).

(2) Sorting error (message KFPL15062-E is output) or an error due to forced
termination of the utility by the pdcancel command

1. Create the index. Use the index information file created by the database load

7. Creating Databases

263

utility (pdload) to create the index in the batch mode.

If the index information file created by the database load utility (pdload) is not
available, re-create the index with the database reorganization utility (pdrorg).

(3) Error due to a disk failure
1. Replace the faulty disk and use a backup copy to restore the status before the

utility executed. To prevent accesses, place the RDAREAs in shutdown status
until the index storage executed in step 2 has been completed.

2. Re-create the index with the database reorganization utility (pdrorg).

7. Creating Databases

264

7.6.2 When data was loaded in no-log mode
This section explains the procedure for handling errors that may occur during data
loading in no-log mode or when your plug-in does not provide the batch plug-in index
creation partial recovery facility.
Restore the index storage RDAREAs according to the cause of error. The following
shows the procedure:

(1) Error due to shortage of space in index storage RDAREA
1. Reinitialize the index storage RDAREA.

You can also recover from a backup. In such a case, until index storage has been
completed, place the RDAREA in shutdown status in order to prevent accesses.
In the following case, recovery must be performed using a backup:

• The relevant index is stored in an RDAREA with different tables, indexes,
or falsification prevented tables.

2. Expand the index storage RDAREA.

7. Creating Databases

265

3. Re-create the index with the database reorganization utility (pdrorg).

(2) Sorting error (message KFPL15062-E is output) or an error due to forced
termination of the utility by the pdcancel command

1. Reinitialize the index storage RDAREA.
You can also recover from a backup. In such a case, until index storage has been
completed, place the RDAREA in shutdown status in order to prevent accesses.
In the following case, recovery must be performed using a backup:

• The relevant index is stored in an RDAREA with different tables, indexes,
or falsification prevented tables.

2. Re-create the index with the database reorganization utility (pdrorg).

7. Creating Databases

266

(3) Error due to a disk failure
1. Replace the faulty disk and use a backup copy to restore the status before the

utility executed.

2. Re-create the index with the database reorganization utility (pdrorg).

7. Creating Databases

267

7.7 Handling utility abnormal termination errors during data loading
with the synchronization point specification

This section describes the error handling procedure in the event the database load
utility terminates abnormally during data loading with the synchronization point
specification.

7.7.1 Overview of error handling procedure
The procedure depends on the abnormal termination timing. Figure 7-6 shows the error
handling procedure in the event of abnormal termination of a utility during data
loading with the synchronization point specification.

Figure 7-6: Error handling procedure in the event of abnormal termination of a
utility during data loading with the synchronization point specification

7. Creating Databases

268

Explanation:
• The total number of entries subject to data loading is three million with one

million line numbers with synchronization points.
• If the utility terminates abnormally in step 1, 3, or 5, reexecute data loading.
• If the utility terminates abnormally in step 2 or 4, re-create the plug-in index

using the database reorganization utility's batch index creation facility (-k
ixmk), and then reexecute data loading.

• If the utility terminates abnormally in step 6, re-create the plug-in index
using the database reorganization utility's batch index creation facility (-k
ixmk), and then create the B-tree index using the database reorganization
utility's index re-creation facility (-k ixrc).

• If the utility terminates abnormally in step 7 and an index information file
has already been created (the KFPL00710-I message is output), create the
B-tree index using the database reorganization utility's batch index creation
facility (-k ixmk). If the index information file has not been created, create
the B-tree index using the database reorganization utility's index re-creation
facility (-k ixrc).

7.7.2 Example
This example assumes that the database load utility terminated while loading three
million entries of data in the batch index creation mode with one million line numbers
with synchronization points.

(1) Checking the messages
The following messages are output:

Explanation:
• The KFPL00800-I message indicates that two million data entries have

already been loaded.
• The KFPL00715-I message indicates that the creation of the plug-in index

has begun, but a completion message corresponding to this message
(KFPL00716-I) has not been output.

This indicates that the utility terminated abnormally while creating the plug-in

KFPL00800-I Loading until 2000000th row committed

KFPL00710-I Index information file assigned, index=k87m271."INDX01",
RDAREA="LOB02", file=/pdrorg/INDX01_2

KFPL00715-I Index load started at bes2, index=k87m271."INDX01", RDAREA="LOB02"

7. Creating Databases

269

index for one to two million entries.
(2) Using the pdrorg command to create the plug-in index in batch mode

Use the database reorganization utility to create the plug-in index for one million (one
to two million) entries in batch mode.

Explanation:
-k: Specifies ixmk to create the plug-in index in batch mode.
-t: Specifies the name of the table.
/pdrorg/rorg01:

Specifies the name of the control statement file for the pdrorg command.
The contents of the control statement file are shown as follows. The index
information file that is specified in the control statement file is indicated in
the KFPL00710-I message, which was output in (1).

(3) Reexecuting data loading

Explanation:
There is no need to change the option specification.

(4) Making a backup of the target data storage RDAREAs
Make a backup of the target data storage RDAREAs. For details about making backups
in units of RDAREAs, see the manual HiRDB Version 8 System Operation Guide.

(5) Using the pdrels command to release the target data storage RDAREAs from
shutdown status

Enter the pdrels command to release the table and index storage RDAREAs from
shutdown status.

pdrorg -k ixmk -t TABLE1 /pdrorg/rorg01

index INDX01 LOB02 /pdrorg/INDX01_2

pdload TABLE1 /pdload/load01

pdrels -r DATA01,DATA02,DATA03,INX01,INX02,INX03,LOB01,LOB02,LOB03

7. Creating Databases

270

After the command has executed, the execution results should be checked for errors.
For details about how to check command execution results, see the manual HiRDB
Version 8 Command Reference.

271

Chapter

8. Linking to Other Products

This chapter describes how to link HiRDB to other products.
This chapter contains the following sections:

8.1 Linking to the replication facility
8.2 Linking with an OLTP system
8.3 Linking to the inner replica facility
8.4 Linking to the HiRDB External Data Access facility
8.5 Linking to JP1

8. Linking to Other Products

272

8.1 Linking to the replication facility

This section describes the information that you need to specify to use HiRDB's
replication facility (HiRDB Datareplicator and HiRDB Dataextractor).

8.1.1 Linking to HiRDB Datareplicator
HiRDB Datareplicator enables the user to extract data automatically and incorporate it
into a HiRDB database when another HiRDB database is updated. To use HiRDB
Datareplicator, you specify the following operands in the HiRDB system common
definitions:

• pd_rpl_init_start operand
This operand specifies whether or not to use the HiRDB Datareplicator linkage
facility from the time of HiRDB startup.

• pd_rpl_hdepath operand
This operand specifies the name of the HiRDB Datareplicator directory where
data is extracted. This directory name must be the one that has been specified in
the HDEPATH environment variable for the HiRDB Datareplicator where data is
extracted.

• pd_log_rpl_no_standby_file_opr operand
This operand specifies the desired operation in the event a swap request is issued
while the HiRDB Datareplicator linkage facility is being used, and none of the
system log files can be swapped because extraction of system log information at
the HiRDB Datareplicator has not been completed.

For details about the system environment definition and how to use HiRDB
Datareplicator to perform data replication, see the manual HiRDB Datareplicator
Version 8 Description, User's Guide and Operator's Guide.
Notes on system construction

• When a recovery-unnecessary front-end server is used
Because a recovery-unnecessary front-end server cannot execute import
processing using the two-phase commitment method for the synchronization
point processing method (enabled when fxa_sqle is specified in the import
system definition commitment_method operand) of the target HiRDB
Datareplicator, you need to use a front-end server other than the
recovery-unnecessary front-end server. For details, see 10.1.4
Recovery-unnecessary front-end server.

8. Linking to Other Products

273

8.1.2 Linking to HiRDB Dataextractor
HiRDB Dataextractor enables the user to extract data from a mainframe or HiRDB
database in batch mode and store it sequentially in a HiRDB database. HiRDB
Dataextractor has the following features:

• Data in a central database can be incorporated by batch-mode processing into a
departmental database at a specified point in time. This capability enables tables
to be created specifically for the departmental database or to refresh all data.

• A portion of the data can be extracted from the central database to create a
departmental database suitable for each application.

For details about HiRDB Dataextractor, see the manual HiRDB Dataextractor Version
8 Description, User's Guide and Operator's Guide.

8. Linking to Other Products

274

8.2 Linking with an OLTP system

This section describes the procedure for using the X/Open XA interface to link HiRDB
to an OLTP system. The topics covered include:
1. OLTP products supported for linking
2. HiRDB XA library
3. Example of HiRDB system configuration with OLTP linkage
4. Transaction transfer

5. Registering HiRDB in the transaction manager
6. Information to be registered in the transaction manager
7. Example of registering in the transaction manager
8. Modifying the registration information in the transaction manager
9. Methods for re-establishing connection between the transaction manager and

HiRDB
10. Monitoring HiRDB using the TP1/Resource Manager Monitor facility
11. Notes

8.2.1 OLTP products supported for linking
HiRDB supports the following OLTP products for linking:

• OpenTP1
• TPBroker
• TUXEDO
• WebLogic Server
• OpenTP1/Server Base Enterprise Option (referred to hereafter as TP1/EE)

Some of the OLTP products may not be supported, depending on the type of HiRDB
in use. Table 8-1 shows the OLTP linkage support depending on the HiRDB type.

Table 8-1: OLTP linkage support depending on the HiRDB type

HiRDB type OLTP product type

OpenTP1 TPBroker TUXEDO WebLogic
Server

TP1/EE

HP-UX S S N S N

8. Linking to Other Products

275

S: Supported.
N: Not supported.
#

When the operating system is Linux (EM64T), HiRDB cannot link with OLTP
products because no client library is provided for OLTP products that run in 64-bit
mode.

8.2.2 HiRDB XA library
The X/Open XA interface is an X/Open standard specification that stipulates the
interface between a transaction manager (TM) and a resource manager (RM) in a
distributed transaction processing (DTP) system. The XA interface enables the
transaction manager to control the resource manager's transaction processing. In order
for the transaction manager to control the resource manager's transaction processing,
a library provided by the resource manager and a library provided by the transaction
manager must be linked to an application program.
HiRDB provides the HiRDB XA library to enable a transaction manager to control
HiRDB transaction processing. This HiRDB XA library complies with the XA
interface specifications based on the X/Open DTP software architecture. Figure 8-1
shows the relationship between HiRDB and the X/Open DTP model.

Solaris S S S S N

AIX 5L S N N N S

Linux# S N N N N

HiRDB type OLTP product type

OpenTP1 TPBroker TUXEDO WebLogic
Server

TP1/EE

8. Linking to Other Products

276

Figure 8-1: Relationship between HiRDB and X/Open DTP model

Note that if connection is established from a UAP that is using the X/Open XA
interface to a recovery-unnecessary front-end server, the SQL statement returns an
error. Specify PDFESHOST and PDSERVICEGRP in the client environment definition
and connect to a front-end server that is not the recovery-unnecessary front-end server.

(1) Functions supported by the HiRDB XA library
Table 8-2 lists the functions supported by the HiRDB XA library.

Table 8-2: Functions supported by HiRDB XA library

Function Description

Transaction transfer Executes transaction commit processing by a process other than the one at the time
the UAP accessed HiRDB (UAP here refers to the user application program that
established the connection with HiRDB using the HiRDB XA library). Whether or
not to use the transaction transfer function depends on the PDXAMODE client
environment definition operand. For details about the transaction transfer function,
see 8.2.4 Transaction transfer.

Single-phase optimization Optimizes two-phase commitment control to one phase.
When single-phase optimization is used, the transaction completion types of the
transaction manager and HiRDB do not always match. For details, see 8.2.11(3)
Notes on single-phase optimization.

Read only When a HiRDB resource has not been updated by a prepare request, enables the
transaction manager to optimize the processing without issuing a commit request at
the second phase.

Dynamic transaction
registration

Enables HiRDB to register dynamically a transaction immediately before executing
a UAP.

Multi-connection facility Executes multiple CONNECTs for HiRDB servers separately from one process. For
details about the multi-connection facility in the X/Open XA interface environment,
see the manual HiRDB Version 8 UAP Development Guide.

8. Linking to Other Products

277

Note:
The HiRDB XA library does not provide asynchronous XA calls (facility that
enables the transaction manager to call the HiRDB XA library asynchronously).

(2) XA interface supporting multi-thread (HP-UX 11.0 and Solaris only)
An XA interface supporting multi-thread enables you to link Object Transaction
Service (OTS) with TPBroker and HiRDB.
The multi-thread libraries support only C and C++ languages. They do not support
COBOL.
To use an XA interface supporting multi-thread, link a dedicated HiRDB client library.
A HiRDB client library version earlier than 05-06 does not support multi-thread. You
can use a library for multi-thread with any HiRDB server that supports existing
HiRDB clients. The library for multi-thread enables connection to be shared between
threads.

8.2.3 Example of HiRDB system configuration with OLTP linkage
This section describes a HiRDB system linked with OLTP by way of an example using
OpenTP1.

(1) Linking with HiRDB/Single Servers
You can execute multiple HiRDB/Single Servers' update processing as a single
transaction by linking OLTP (OpenTP1) to HiRDB/Single Servers. If you partition a
database by key ranges, the OLTP system (OpenTP1) running on each server machine
can distribute processing to the linked HiRDB/Single Servers. This enables transaction
processing to be performed at high speed. When integrating multiple HiRDB/Single
Servers, consider linking your system to an OLTP. Figure 8-2 shows multiple HiRDB/
Single Servers linked with an OLTP system (OpenTP1).

8. Linking to Other Products

278

Figure 8-2: Linking HiRDB/Single Server with an OLTP system (OpenTP1)

(2) Linking with a HiRDB/Parallel Server
When a HiRDB/Parallel Server is linked with an OLTP system (OpenTP1), transaction
processing can be achieved at high performance and high workload. Figure 8-3 shows
a HiRDB/Parallel Server linked with an OLTP system (OpenTP1).

8. Linking to Other Products

279

Figure 8-3: Linking HiRDB/Parallel Server with an OLTP system (OpenTP1)

(3) Linking between multiple OLTPs (OpenTP1) and a single HiRDB
In this type of linking, multiple OLTPs (OpenTP1) and one HiRDB communicate
using the client/server method. Different OLTPs (OpenTP1) can connect to one
HiRDB at the same time. To do this, you must set a unique OLTP identifier (client
environment definition PDTMID) for each OLTP (OpenTP1). Figure 8-4 shows linking
between multiple OLTPs (OpenTP1) and a single HiRDB.

8. Linking to Other Products

280

Figure 8-4: Linking between multiple OLTPs (OpenTP1) and a single HiRDB

(4) Linking between one OLTP (OpenTP1) and multiple HiRDBs
In this type of linking, one OLTP (OpenTP1) is linked to multiple HiRDBs. SQL
statements can be executed by connecting to HiRDBs on different server machines at
the same time. In such a case, you need to use the multi-connection facility. Figure 8-5
shows linking between one OLTP (OpenTP1) and multiple HiRDBs.

8. Linking to Other Products

281

Figure 8-5: Linking between one OLTP (OpenTP1) and multiple HiRDBs

For details about the multi-connection facility, see the manual HiRDB Version 8 UAP
Development Guide.

8.2.4 Transaction transfer
For a UAP that connects to HiRDB using the HiRDB XA library, you can execute
transaction commit processing by a process other than the one used at the time the
UAP accessed HiRDB. This is called transaction transfer. Figure 8-6 provides an
overview of transaction transfer.

8. Linking to Other Products

282

Figure 8-6: Overview of transaction transfer

Advantages
When transaction transfer is used, the transaction manager's UAP processing can
accept the next service request without having to wait for transaction completion.
This makes it possible to execute a UAP with fewer processes. However, the
number of server processes used by HiRDB and the number of lock-release waits*
may increase.
* Compared to when transaction transfer is not used, accesses to HiRDB for the
next service request are more likely to be placed in lock-release wait status until
the transaction is completed.

Criteria
When the transaction manager is to use the transaction transfer function, HiRDB
must also use the transaction transfer function.
When the transaction manager is not to use the transaction transfer function,
HiRDB must not use the transaction transfer function.
The following should be noted when the transaction manager can set whether or
not the transaction transfer function is to be used:

• The transaction transfer function should be used when the UAP
processing workload is greater than the HiRDB access workload.

Operating procedure
To use this function, 1 must be set in the PDXAMODE operand of the client
environment definition; to not use this function, either 0 must be set in this

8. Linking to Other Products

283

operand or specification of the operand must be omitted.
For details about the PDXAMODE operand, see the manual HiRDB Version 8 UAP
Development Guide.

Notes
1. If the information indicating whether or not the transaction transfer function

is to be used does not match between the transaction manager and HiRDB,
transactions may not be settled, HiRDB may terminate abnormally, or
control may be returned to the transaction manager with an error.

2. When this function is used, the scope of LOCK TABLE UNTIL DISCONNECT
in the LOCK statement changes. For details about the scope of LOCK TABLE
UNTIL DISCONNECT, see the manual HiRDB Version 8 UAP Development
Guide.

(1) OpenTP1 used as the transaction manager
When this function is used, HiRDB supports OpenTP1's commit optimization and
prepare optimization. Therefore, this function should be used when the -d option is
omitted from OpenTP1's trnstring operand. When the -d option is specified, this
function should not be used.
However, depending on conditions, as shown in Table 8-3, HiRDB can be set to not
use the transaction transfer function even when OpenTP1 is set to use the transaction
transfer function (to not suppress commit optimization or prepare optimization). Table
8-3 shows the relationship between the trnstring operand in the transaction service
definition of the OpenTP1 system definition and the PDXAMODE operand for HiRDB.

Table 8-3: Relationship between OpenTP1's trnstring operand and HiRDB's
PDXAMODE operand

Legend:
: Not applicable

Condition PDXAMODE
operand

valuetrnstring operand
specification

Status of OpenTP1 system

-d option omitted In the same OpenTP1 system, global transaction consists of only
one AP.

0 or 1

In the same OpenTP1 system,
global transaction consists of
multiple APs

Only one AP is linked to the
HiRDB XA library

0 or 1

Multiple APs are linked to the
HiRDB XA library

1

-d option specified 0

8. Linking to Other Products

284

Note
• If the trnstring operand's value does not match the PDXAMODE operand's

value, HiRDB cannot settle transactions. In this case, HiRDB returns to
OpenTP1 an XA function error return code (-6).

• The -d option is supported by TP1/Server Base Version 03-03 or subsequent.
For details about the trnstring operand, see the manual OpenTP1 System
Definition. For details about commit optimization and prepare optimization, see the
manual OpenTP1 Programming Guide.
The following criteria should be used to determine whether or not the transaction
transfer function should be used in systems connected to OpenTP1 and HiRDB:
Criteria

The transaction transfer function should be used when the client UAPs and server
UAPs satisfy the following conditions:
1. Client UAPs and server UAPs are located in the same OpenTP1 system

environment.
2. Client UAPs and server UAPs are linked to the HiRDB XA library.

3. Client UAPs and server UAPs access HiRDB.*

* This means that one of the following conditions is satisfied:
1. SQL for accessing HiRDB is issued.
2. Either process or nothing is specified in the

trn_rm_open_close_scope operand in the transaction service
definition/user service definition of the OpenTP1 system definition.

8.2.5 Registering HiRDB in the transaction manager
To link your HiRDB to OLTP, you need to register the HiRDB in the transaction
manager. You can use each transaction manager's commands and functions to register
HiRDB in the transaction manager:

• OpenTP1: Use the trnlnkrm command to register HiRDB.
• TPBroker: Use the tslnkrm command to register HiRDB.
• TUXEDO: Register HiRDB in $TUXDIR/udataobj/RM. $TUXDIR indicates the

absolute path name of the directory that contains the TUXEDO system software.
• WebLogic Server: Register HiRDB using the driver class name and the provider

for the WebLogic Server's JDBC connection pool.
• TP1/EE: Use the eetrnmkobj command to register HiRDB.

8. Linking to Other Products

285

(1) Dynamic registration and static registration
There are two ways to register HiRDB as the source manager in the transaction
manager:

• Dynamic registration
• Static registration

You cannot use both dynamic and static registration with a single transaction manager.
For a WebLogic Server, only static registration can be used.

(a) Dynamic registration
If you dynamically register HiRDB in the transaction manager, HiRDB is placed under
the control of the transaction manager when the UAP issues the first SQL statement
within a transaction. This method reduces the transaction manager's transaction
control overhead for HiRDB when the UAP accesses multiple resources including
HiRDB, or when the application program may not access HiRDB at all.

(b) Static registration
If you statically register HiRDB in the transaction manager, HiRDB is placed under
the control of the transaction manager when a transaction is started, whether or not the
UAP issues any SQL statements. When OpenTP1 is used as the transaction manager
and the connection between a UAP and HiRDB is broken (due to abnormal termination
of a unit or server process, etc.), OpenTP1 re-establishes connection at the time a
transaction is started. Therefore, there is no need to restart the UAP.

(2) Differences between dynamic and static registration
Table 8-4 lists the differences between dynamic and static registration.

Table 8-4: Differences between dynamic and static registration

Timing Dynamic registration Static registration

When transaction is started Performs no management. • Checks to see if connection is being
established.

• Starts managing transaction under
transaction manager's control.

• Establishes connection.#

When first SQL is issued within
transaction

• Starts managing transaction
under transaction manager's
control.

• Starts HiRDB transaction.
• Processes SQL.
• Establishes connection.#

• Starts HiRDB transaction.
• Processes SQL statements.

8. Linking to Other Products

286

#: Applicable when the XA interface supporting multi-thread is used.

8.2.6 Information to be registered in the transaction manager
For details about how to register HiRDB as the resource manager in the transaction
manager, see the applicable transaction manager documentation. Specification of
information in the transaction manager is explained as follows.
For a WebLogic Server, perform the operations listed beginning in (6) below.

(1) RM switch name
HiRDB's RM switch name determines whether dynamic or static registration is used.
The following shows the HiRDB's RM switch name (xa_switch_t structure-name):

• Dynamic registration: pdtxa_switch
• Static registration: pdtxa_switch_y

(2) RM name
The RM name(resource manager name) defined in the RM switch (xa_switch_t
structure) is HiRDB_DB_SERVER.

(3) Open character string
If you are using the multi-connection facility, specify the open character string to be
used when the transaction manager opens the resource manager with xa_open. If you
are not using the multi-connection facility, there is no need to specify an open character
string. If the transaction manager is TP1/EE, specify the open character string for a
single HiRDB that has been registered. For the TUXEDO or WebLogic Server
transaction manager, you cannot use the multi-connection facility.
To use the multi-connection facility, register multiple HiRDBs in the transaction
manager and specify the open character string for each HiRDB. For the open character
string, specify the following information:

• The absolute path name of the file containing the environment variable settings
that take effect at the destination

Number of times communication
is established between
transaction manager and HiRDB
during transaction

Number of SQL statements +
number of commit processing
communications + 1
(communication for establishing
connection)#

Number of SQL statements + number
of commit processing communications
+ 1 (for transaction startup processing)
+ 1 (communication for establishing
connection)#

Reconnection method if
connection between transaction
manager and HiRDB is broken
during processing

Reestablishes connection
automatically the next time
transaction is started.

Reestablishes connection
automatically the next time transaction
is started.

Timing Dynamic registration Static registration

8. Linking to Other Products

287

• Environment variable group ID
Use one of the following formats:

• "environment-variable-group-identifier +
environment-variable-setup-file-name"

• "environment-variable-group-identifier *
environment-variable-setup-file-name"

An open character string in any other format is ignored. The environment variable
group ID always consists of four bytes, and the open character string cannot be longer
than 256 bytes.
The following shows an example of registering the open character string for the
OpenTP1, TPBroker, or TP1/EE transaction manager.

(a) OpenTP1
Register the open character string using the trnstring operand in OpenTP1's
transaction service definition. This example registers two HiRDBs in OpenTP1. The
registration conditions are as follows:

The following shows an example of registering the open character string:

Explanation:
-n: Specifies the name of the resource manager.
-i: Specifies the resource manager extension.
-o: Specifies the character string for the xa_open function for transaction
service.

This is the open character string that is used by OpenTP1's transaction
service process. The format is environment-variable-group-ID *

Resource manager Environment variable
group ID

Environment variable setup file name

HiRDB1 HDB1 /usr/conf/HiRDB/HiRDB11.ini
/usr/conf/HiRDB/HiRDB12.ini

HiRDB2 HDB2 /usr/conf/HiRDB/HiRDB21.ini
/usr/conf/HiRDB/HiRDB22.ini

trnstring -n HiRDB_DB_SERVER -i H1 -o "HDB1*/usr/conf/HiRDB/HiRDB11.ini"
-O "HDB1+/usr/conf/HiRDB/HiRDB12.ini"
trnstring -n HiRDB_DB_SERVER -i H2 -o "HDB2*/usr/conf/HiRDB/HiRDB21.ini"
-O "HDB2+/usr/conf/HiRDB/HiRDB22.ini"

8. Linking to Other Products

288

environment-variable-setup-filename.
-O: Specifies the character string for the xa_open function for the user server.

This is the open character string that is used by the user server process. The
format is environment-variable-group-ID +
environment-variable-setup-filename.

• Specify the same environment variable group ID for -o and -O.
• Specify the same environment variables in the file that are specified for

-o and -O.
Note

You can select the HiRDB to be connected from the user service using the
trnrmid operand in OpenTP1's user service definition. The following example
connects to HiRDB1 and HiRDB2:

(b) TPBroker
Register the open character string using the xa_open_string_info operand in
TPBroker's resource manager definition. This example registers two HiRDBs in
TPBroker. The registration conditions are as follows:

The following shows an example of registering the open character string:

trnrmid -n HiRDB_DB_SERVER -i H1,H2

Resource manager Environment variable
group ID

Environment variable setup file name

HiRDB1 HDB1 /usr/conf/HiRDB/HiRDB11.ini
/usr/conf/HiRDB/HiRDB12.ini

HiRDB2 HDB2 /usr/conf/HiRDB/HiRDB21.ini
/usr/conf/HiRDB/HiRDB22.ini

tsdefvalue /OTS/RM/HiRDB_DB_SERVER_1/DMN/xa_open_string_info 1
-s "HDB1*/usr/conf/HiRDB/HiRDB11.ini"
tsdefvalue /OTS/RM/HiRDB_DB_SERVER_1/xa_open_string_info 2
-s "HDB1+/usr/conf/HiRDB/HiRDB12.ini"

tsdefvalue /OTS/RM/HiRDB_DB_SERVER_2/DMN/xa_open_string_info 1
-s "HDB2*/usr/conf/HiRDB/HiRDB21.ini"
tsdefvalue /OTS/RM/HiRDB_DB_SERVER_2/xa_open_string_info 2
-s "HDB2+/usr/conf/HiRDB/HiRDB22.ini"

8. Linking to Other Products

289

Explanation:
1. For /OTS/RM/RM-name/DMN/xa_open_string_info, specify the open

character string that is used by TPBroker's recovery process. Separate the
environment variable group ID and environment variable setup file name by
an asterisk (*).

2. For /OTS/RM/RM-name/xa_open_string_info, specify the open
character string that is used by the application program process and
settlement process. Separate the environment variable group ID and
environment variable setup file name by a plus sign (+).

• If the RM-name is the same, specify the same environment variable group
ID.

• If the RM-name is the same, specify the same environment variable content
for each environment variable setup file.

• If the TPRMINFO environment variable is specified for the settlement
process, specify the character string specified in /OTS/RM/RM-name/
xa_open_string_info as the open character string for /OTS/RM/
RM-name/(TPRMINFO-value)/xa_open_string_info. If the
multi-connection facility is used, specify 'TPRMINFO=' as the default in /
OTS/completion_process_env even when TPRMINFO is not specified
for the settlement process. The following shows an example:

tsdefvalue /OTS completion_process_env -a 'TPRMINFO='

(c) TP1/EE
Register the open character string using the trnstring operand in the TP1/EE
transaction-related definition. This example registers two HiRDBs in TP1/EE. The
registration conditions are as follows:

The following shows an example of registering the open character string:

Resource manager Environment variable group ID Environment variable setup file
name

HiRDB1 HDB1 /usr/conf/HiRDB/HiRDB11.ini
/usr/conf/HiRDB/HiRDB12.ini

HiRDB2 HDB2 /usr/conf/HiRDB/HiRDB21.ini
/usr/conf/HiRDB/HiRDB22.ini

trnstring -n HiRDB_DB_SERVER -i H1 -o "HDB1*/usr/conf/HiRDB/HiRDB11.ini" \
 -O "HDB1+/usr/conf/HiRDB/HiRDB12.ini"
trnstring -n HiRDB_DB_SERVER -i H2 -o "HDB2*/usr/conf/HiRDB/HiRDB21.ini" \
 -O "HDB2+/usr/conf/HiRDB/HiRDB22.ini"

8. Linking to Other Products

290

Explanation:
-n: Specifies the name of the resource manager.
-i: Specifies the resource manager extension.
-o:

Specifies the open character string that is used by TP1/EE's recovery and
monitoring threads.
The format is
environment-variable-group-ID*environment-variable-setup-file-name.

-O:
Specifies the open character string that is used by the process thread.
The format is
environment-variable-group-ID+environment-variable-setup-file-name.

• In -o and -O, specify the same environment variable group ID.
• Set the same environment variables in the files that are set in -o and -O.

(4) Close character string
There is no need to specify a character string to enable the transaction manager to close
the resource manager using xa_close.

(5) RM-related object name
For the RM-related object name, specify the library name listed in Table 8-5. The
suffix for the shared library depends on the platform. The suffix is .so in Solaris and
Linux, and .a in AIX 5L. The archive library name is common to all platforms.

Table 8-5: Library names for RM-related object names

Notes

Library type Library name

Shared library Single thread libzclty.sl (libzcltx.sl)

Single thread
(Multi-connection facility
supported)

libzcltys.sl11 (libzcltxs.sl)

Multi-thread
(Multi-connection facility
supported)2

libzcltyk.sl (libzcltxk.sl)

Archive library Single thread libcltya.a (libcltxa.a)

8. Linking to Other Products

291

1. When using dynamic registration, you may specify the library name
enclosed in parentheses.

2. Select either a shared library or archive library, whichever is appropriate to
the purpose. It is more advantageous to select the shared library because it
has the following benefits:

• The object size of the UAP is small.
• There is no need to relink when upgrading HiRDB.

1 Specify this library name when linking to TUXEDO.
2 Applicable to HI-UX 11.0 and Solaris.

(6) Client environment definition
To enable the transaction manager to control HiRDB transaction processing, the
HiRDB client environment definition must be specified in the transaction manager
definitions. For details about how to specify the client environment definition in an
OLTP environment, see the manual HiRDB Version 8 UAP Development Guide.

(a) OpenTP1
If the transaction manager is OpenTP1, the client environment definition must be
specified in the putenv format in the following OpenTP1 system definitions:

• System environment definition
• User service default definition
• User service definition
• Transaction service definition

For details about these definitions, see the manual OpenTP1 System Definition.
To connect to multiple OpenTP1s, be sure to specify the following client environment
definition:

• HiRDB_PDTMID or PDTMID
(b) TPBroker

Specify the client environment definition in TPBroker's system definition.
(c) TUXEDO

Specify the client environment definition in the file that was specified with the
ENVFILE parameter in the TUXEDO configuration file (UBBCONFIG file). For details
about the TUXEDO configuration file, see the TUXEDO documentation.

(d) WebLogic Server
The WebLogic Server process environment variables must contain the specifications

8. Linking to Other Products

292

for the client environment definition.
(e) TP1/EE

If the transaction manager is TP1/EE, you must specify the client environment
definition in the following system definitions for the OpenTP1 that is in the TP1/EE
execution environment:

• User service default definition
• User service definition

For details about these definitions, see the manual OpenTP1 System Definition.
If you connect to multiple TP1/EEs, make sure that the following client environment
definition is specified:

• PDTMID
(7) JDBC drivers (limited to use with WebLogic Server)

When HiRDB is registered, the following JDBC driver package name and driver class
name must be specified:

• Package name: JP.co.Hitachi.soft.HiRDB.JDBC
• Driver class name: JdbhXADataSource

8.2.7 Example of registering in the transaction manager
(1) OpenTP1

To register HiRDB in OpenTP1, use OpenTP1's trnlnkrm command. The following
shows examples of trnlnkrm command specification:

(a) Dynamic registration

Explanation:
-a: Specifies the RM name.
-s: Specifies the RM switch name (name of the XA switch structure). The RM
switch name depends on the registration method (dynamic or static).
-o: Specifies the RM-related object name (shared library's file name).

(b) Static registration

trnlnkrm -a HiRDB_DB_SERVER -s pdtxa_switch -o /HiRDB/client/lib/libzclty.sl

trnlnkrm -a HiRDB_DB_SERVER -s pdtxa_switch_y -o /HiRDB/client/lib/libzclty.sl

8. Linking to Other Products

293

Explanation:
-a: Specifies the RM name.
-s: Specifies the RM switch name (name of the XA switch structure). The RM
switch name depends on the registration method (dynamic or static).
-o: Specifies the RM-related object name (shared library's file name).

(2) TPBroker
To register HiRDB in TPBroker, use TPBroker's tslnkrm command. The following
shows examples of tslnkrm command specification:

(a) Dynamic registration

Explanation:
-a: Specifies the RM name.
-s: Specifies the RM switch name (name of the XA switch structure). The RM
switch name depends on the registration method (dynamic or static).
-o: Specifies the RM-related object name (shared library's file name).
-r: Indicates dynamic registration.
-m: Enables OTS daemon operation with multi-thread.

(b) Static registration

Explanation:
-a: Specifies the RM name.
-s: Specifies the RM switch name (name of the XA switch structure). The RM
switch name depends on the registration method (dynamic or static).
-o: Specifies the RM-related object name (shared library's file name).
-r: Indicates static registration.

tslnkrm -a HiRDB_DB_SERVER_1 -s pdtxa_switch -o '/HiRDB/client/lib/libzcltyk.sl'
-r -m
tslnkrm -a HiRDB_DB_SERVER_2 -s pdtxa_switch -o '/HiRDB/client/lib/libzcltyk.sl'
-r -m

tslnkrm -a HiRDB_DB_SERVER_1 -s pdtxa_switch_y -o '/HiRDB/client/lib/libzcltyk.sl'
-r -m
tslnkrm -a HiRDB_DB_SERVER_2 -s pdtxa_switch_y -o '/HiRDB/client/lib/libzcltyk.sl'
-r -m

8. Linking to Other Products

294

-m: Enables OTS daemon operation with multi-thread.
(3) TUXEDO

Use the $TUXDIR/udataobj/RM file to register HiRDB in TUXEDO. $TUXDIR
indicates the absolute path name of the directory that contains the TUXEDO system
software. The following shows examples of RM file specification:

(a) Dynamic registration

(b) Static registration

(4) WebLogic Server
Register HiRDB using the driver class name and the provider for the WebLogic
Server's JDBC connection pool. An example specification follows:

(a) Static registration

Explanation
When HiRDB is registered, the following JDBC driver package name and driver
class must be specified:

• Package-name: JP.co.Hitachi.soft.HiRDB.JDBC
• Driver-class-name: JdbhXADataSource

(5) TP1/EE
To register HiRDB in TP1/EE, use TP1/EE's eetrnmkobj command. The following
shows examples of eetrnmkobj command specification:

HiRDB_DB_SERVER:pdtxa_switch:-L/HiRDB/client/lib -lzcltys

HiRDB_DB_SERVER:pdtxa_switch_y:-L/HiRDB/client/lib -lzcltys

Driver-class-name:JP.co.Hitachi.soft.HiRDB.JDBC.JdbhXADataSource
Property(key=value):user=authorization-identifier
 password=password
 XAOpenString=name-defined-by-transaction-data-source
 dataSourceName=name-specified-by-JDBC-connection-pool
 Description=name-defined-by-transaction-data-source

8. Linking to Other Products

295

(a) Dynamic registration

Explanation:
-r: Specifies the RM name.
-o: Specifies the name of the resource manager linkage object.
-s: Specifies the RM switch name (name of the XA switch structure). The RM
switch name depends on the registration method (dynamic or static).
-O: Specifies the RM-related object name (shared library's file name).
-i: Specifies the HiRDB-provided header path.

(b) Static registration

Explanation:
-r: Specifies the RM name.
-o: Specifies the name of the resource manager linkage object.
-s: Specifies the RM switch name (name of the XA switch structure). The RM
switch name depends on the registration method (dynamic or static).
-O: Specifies the RM-related object name (shared library's file name).
-i: Specifies the HiRDB-provided header path.

8.2.8 Modifying the registration information in the transaction
manager

To modify registration information in the transaction manager, use the following
procedure to reregister HiRDB in the transaction manager. Because a WebLogic
Server can use static registration only, the registration cannot be modified.

(1) OpenTP1
To modify registration information in the transaction manager when using OpenTP1:
1. Use OpenTP1's trnlnkrm command to reregister HiRDB in the transaction

manager.

eetrnmkobj -r HiRDB_DB_SERVER -o seigyo -s pdtxa_switch \
-O /HiRDB/client/lib/libzcltyk.sl -i /HiRDB/include

eetrnmkobj -r HiRDB_DB_SERVER -o seigyo -s pdtxa_switch_y \
-O /HiRDB/client/lib/libzcltyk.sl -i /HiRDB/include

8. Linking to Other Products

296

2. Use OpenTP1's trnmkobj command to re-create the object file for transaction
control.

3. Relink all UAPs with HiRDB's XA library on the basis of the object file for
transaction control re-created in step 2 and the information described in 8.2.6
Information to be registered in the transaction manager. Otherwise, UAP
operation cannot be guaranteed.

(2) TPBroker
To modify registration information in the transaction manager when using TPBroker:
1. Use TPBroker's tslnkrm command to reregister HiRDB in the transaction

manager.
2. Use TPBroker's tsmkobj command to re-create the object file for transaction

control.
3. Relink all UAPs with HiRDB's XA library on the basis of the object file for

transaction control re-created in step 2 and the information described in 8.2.6
Information to be registered in the transaction manager. Otherwise, UAP
operation cannot be guaranteed.

(3) TUXEDO
To modify registration information in the transaction manager when using TUXEDO:
1. Use $TUXDIR/udataobj/RM to reregister HiRDB in the transaction manager.
2. Use TUXEDO's buildtms command to re-create the transaction manager

server's load module on the basis of the information described in 8.2.6
Information to be registered in the transaction manager.

3. Use TUXEDO's buildserver command to re-create the server's load module
on the basis of the information described in 8.2.6 Information to be registered in
the transaction manager.

4. Use TUXEDO's buildclient command to re-create the client module on the
basis of the information described in 8.2.6 Information to be registered in the
transaction manager.

(4) TP1/EE
To modify registration information in the transaction manager when using TP1/EE:

1. Use TP1/EE's eetrnmkobj command to reregister HiRDB in the
transaction manager.

2. Use TP1/EE's eetrnmkobj command to re-create the resource manager
linkage object file.

3. Relink all UAPs with HiRDB's XA library on the basis of the resource
manager linkage object file re-created in step 2 and the information

8. Linking to Other Products

297

described in 8.2.6 Information to be registered in the transaction manager.
Otherwise, UAP operation cannot be guaranteed.

8.2.9 Methods for re-establishing connection between the
transaction manager and HiRDB
(1) Using an application program

If the connection is broken, terminate the running UAP and then restart it. Connection
should be re-established automatically.
If restarting the application program is not desired, tx_open must be reissued when
the error indicating the broken connection is returned to the application program. The
service can be resumed without having to terminate the application program.
Following is an example of coding for reissuing tx_open.
Example

(2) When the OLTP product to be linked is TPBroker or WebLogic Server
If you are using an XA interface supporting multi-thread, connection with HiRDB is
established when a transaction is started, and connection is cut off when the transaction
is terminated. Therefore, even if the connection is broken during communication, it
will be re-established when the next transaction is started.

(3) Using OpenTP1 facilities
If you used dynamic registration, specify transaction in the
trn_rm_open_close_scope operand in OpenTP1's transaction service definition
or user service definition, so that OpenTP1 establishes connection with HiRDB when
a transaction is started and disconnects from HiRDB when the transaction is

int connection = 1;
void service(char *in_data,long *in_len,char *out_data,long *out_len) {
 if (connection == 0) {
 tx_close();
 tx_open(); Reissue tx_open when connection is cut
 }
 tx_begin();
 EXEC SQL INSERT INTO; Issue SQL statement
 if (SQLCODE == 0) {
 tx_commit();
 *out_data = "OK";
 } else {
 tx_rollback();
 *out_data = "NG";
 if (SQLCODE == -563 || SQLCODE == -722) {
 connection = 0; Store broken connection
 }
 }
}

8. Linking to Other Products

298

terminated. Therefore, even if the connection is broken during communication, it will
be re-established when the next transaction is started.
If you used static registration, the transaction manager checks the connection with
HiRDB when a transaction is started. If the connection has been broken, it is
re-established automatically, and the transaction is started.

(4) Re-establishing connection with the client library that supports HiRDB's XA
interface

If connection with HiRDB is broken before the first SQL statement for accessing
HiRDB is executed since the transaction manager started the transaction, the HiRDB
client library re-establishes connection when the SQL statement is executed.

8.2.10 Monitoring HiRDB using the TP1/Resource Manager Monitor
facility

This section discusses important points about using the TP1/Resource Manager
Monitor (RMM) with HiRDB when OpenTP1 is linked as OLTP. For details about how
to operate RMM, see the manual OpenTP1 System Operation.

(1) Notes on creating a command for obtaining process IDs subject to
monitoring

When a command for obtaining the process IDs of the processes subject to monitoring
is created, the processes to be monitored must be specified. For HiRDB, _scd must be
specified as the process to be monitored. Following is an example of the command for
HiRDB (shell script) provided by the RMM service.

To improve this command's reliability, the coding shown below should be added.
When this is done, indeterminate process IDs will not be obtained before completion
of HiRDB startup. This coding should be inserted before the line where process ID is
obtained in the shell script (before the comment line "#These Lines Are The
Description Of Get Process_ID Process").

#Watched Processes
PROCESSES="_scd"

#System status check
get_STATUS='$PDDIR/bin/pdls 2>/dev/null | \
 /usr/bin/awk'{print$4}' | /bin/grep -v STATUS'
for i in $get_STATUS
do
 if[$i!="ACTIVE"]
 then
 exit 2
 fi
done

8. Linking to Other Products

299

(2) Notes on using RMM operations with a HiRDB/Parallel Server
In the case of a HiRDB/Parallel Server, a series of commands should be specified for
the resource manager subject to monitoring in the definition of the RM subject to
monitoring only for the OpenTP1 located on the same host as the unit where the system
manager is located.

8.2.11 Notes
(1) Notes about SQL

1. The transaction manager has permission to establish connection with or
disconnect from the resource manager. Do not specify an SQL statement in a UAP
that establishes connection with or disconnects from the resource manager. The
transaction manager also has permission to adjust and monitor the progress of
transactions. Therefore, do not specify an SQL statement in a UAP that rolls back
or commits a transaction. This means that statements such as EXEC SQL COMMIT
WORK and EXEC COMMIT WORK RELEASE will result in an error.

2. A definition SQL statement will result in an error. A definition SQL statement
such as CREATE TABLE automatically instructs a commit; therefore, do not
specify a definition SQL statement in a UAP.

(2) Notes about libraries for multi-thread
A single transaction cannot establish connection with multiple HiRDB servers
separately by using multi-thread. Even in a multi-thread environment, a transaction
can establish connection with only one HiRDB server process. This means that a single
transaction can execute only one thread at any one time. Executing more than one SQL
statement at one time using multiple threads within the same transaction is not
permitted.

(3) Notes on single-phase optimization
HiRDB applies single-phase optimization supported by the transaction manager. The
transaction manager can request single-phase commit for a transaction branch if
HiRDB is the only shared resource in the transaction branch that was modified. When
the transaction manager uses single-phase optimization to request a single-phase
commit, once the result of the transaction branch has been decided, HiRDB will delete
the information from the transaction branch and return a response to the transaction
manager.
With transaction managers that use single-phase optimization, it is not necessary to
remember stable storage for global transactions, and even if a failure occurs it is not
necessary to know of that result. Therefore, if all of the following conditions are
satisfied, the transaction completion status might not match between the transaction
manager and HiRDB:

• The connection uses a transaction manager that employs single-phase

8. Linking to Other Products

300

optimization and XA interface
• The transaction manager uses single-phase optimization for commitment control

of the modified system's transaction
• The transaction manager's UAP terminates abnormally during commitment

processing
Under these conditions, the result of the HiRDB transaction branch cannot be
determined from the result of the failure that was generated by the transaction manager.
Therefore, the transaction completion type might not match between the transaction
manager and HiRDB.
To avoid this, when exercising commitment control on the transaction of a modified
system, do not have the transaction manager use single-phase commit.

(4) Considerations when WebLogic Server is used
• Commit or rollback deletes the preprocessing and the cursor. Re-execute from the

preprocessing.
• If commit or rollback is performed on a ResultSet object with the cursor still

open, the HiRDB transaction might remain uncompleted. If a ResultSet object
is used, you must execute the ResultSet.close() method to close the cursor
before a commit or rollback.

(5) Considerations when the rapid system switchover facility is used
Caution must be exercised when all of the following conditions are satisfied:

• A HiRDB/Parallel Sever is using the rapid switchover facility with the unit where
the system manager is installed

• Linkage is with an OLTP product that uses an API (such as OpenTP1 or
TPBroker) that complies with X/Open

• The HiRDB client version is 06-02-/A or earlier
• The primary system specified in the OLTP product's PDHOST client environment

variable is a standby system in wait completion status
In such a case, when an OLTP product performs uncompleted transaction recovery
processing, it is possible that the X/Open-compliant API will return an error and the
transaction will not be recovered. When this occurs, upgrade the HiRDB client to
version 06-02-/B or later. If the HiRDB client cannot be upgraded soon, for some
reason such as you do not want to stop a running application, perform a system
switchover of the primary HiRDB system (unit) from a standby system to a running
system. However, this is a temporary measure; you should upgrade the HiRDB client
version as soon as possible.

8. Linking to Other Products

301

8.3 Linking to the inner replica facility

The inner replica facility enables construction of a database system that is capable of
providing uninterrupted service. In order to use the inner replica facility, HiRDB
Staticizer Option is required.

(1) HiRDB system definition specifications
The following operands are specified in the HiRDB system definition:

• pd_inner_replica_control operand

Specifies the maximum number of inner replica groups.
• pd_lv_mirror_use operand

Specifies whether or not the mirror facility of logical volume management is to
be used to operate replica RDAREAs.

When the inner replica facility is used together with updatable online reorganization,
the following operands are specified:

• pd_max_reflect_process_count operand
Specifies the number of processes to be maintained during reflection processing.
If this operand is omitted, updatable online reorganization cannot be performed.

• pd_log_org_reflected_logpoint operand
Specifies whether or not the status of system log files that have completed
reflection processing on all update logs is to be changed.

• pd_log_org_no_standby_file_opr operand
When all system log files are in overwrite permitted status for online
reorganization, specifies the HiRDB processing when system log files have been
swapped.

In addition to the operands above, you should also consider the specifications of the
following operands:

• pd_max_rdarea_no
• pd_max_file_no
• pd_assurance_index_no

(2) Environment definition specifications
For details about the system environment definitions in conjunction with using the
inner replica facility, see the manual HiRDB Staticizer Option Version 7 Description
and User's Guide.

8. Linking to Other Products

302

8.4 Linking to the HiRDB External Data Access facility

When the HiRDB External Data Access facility is used, the HiRDB interface can be
used to access the tables of multiple databases constructed from other database
management systems, including products of other companies. Also, when multiple
databases of other types exist, their information can be viewed and updated as one
table using foreign table or view table. To use the HiRDB External Data Access
facility, HiRDB External Data Access is required.
Note that the HiRDB External Data Access facility is provided only for the Solaris,
Linux, HP-UX version and AIX 5L version of the POSIX library. Also, the HiRDB
External Data Access facility can be used only with the HiRDB/Parallel Server.

(1) HiRDB system definition specifications
The following operands and definition statements are specified in the HiRDB system
definition:

• pd_max_foreign_server operand
Specifies the maximum number of foreign servers that can be linked.

• pdhubopt operand
Specifies the foreign servers to which Hub optimization information definition is
applicable.

• pd_foreign_server_libpath operand
Specifies the path names of the client libraries of the foreign servers.

• Environment variables required for foreign servers
The environment variables required for foreign servers are specified in the
back-end server definition.

• Foreign server information definition
• Hub optimization information definition

In addition to the operands above, you should also consider the specification of the
following operand:

• pdstbegin operand
Specifies whether or not the following statistical information related to the
HiRDB External Data Access facility is to be collected:

• Statistical information related to the operation of foreign servers
• Statistical information related to the usage status of foreign servers

8. Linking to Other Products

303

(2) Environment definition specification
Because the POSIX library is used, you must use the pdsetup command to select the
POSIX library when you specify the HiRDB environment definition.
For details about the system environment definition in conjunction with using the
HiRDB External Data Access facility, see the manual HiRDB External Data Access
Version 7 Description and User's Guide.

8. Linking to Other Products

304

8.5 Linking to JP1

When linked with JP1, HiRDB can centrally manage all events in the entire system,
including HiRDB, and start jobs automatically using events as job start triggers.
HiRDB can link to the following JP1 products:

• JP1/Base (JP1/System Event Service for JP1 Version 6 or earlier)
• JP1/Integrated Management - Manager (JP1/Integrated Manager for JP1 Version

7 or earlier)
• JP1/Automatic Job Management System 2 (JP1/Automatic Operation Monitor for

JP1 Version 6 or earlier)
In this manual, JP1/Integrated Management - Manager is called JP1/IM and JP1/
Automatic Job Management System 2 is called JP1/AJS2.
64-bit mode Solaris, HiRDB, AIX 5L HiRDB and Linux (EM64T) HiRDB cannot be
linked with JP1.

8.5.1 Reporting events to JP1/Base
Events, such as the start and termination of HiRDB, can be reported to the JP1/Base
(JP1/System Event Service for JP1 Version 6 or earlier) that manages JP1 events. JP1/
Base manages the reported HiRDB events as JP1 events. This makes it possible to use
JP1/IM to manage events and to execute jobs automatically using JP1/AJS2 linkage.
For details about event monitoring using JP1/IM, see 8.5.2 Managing events by JP1/
IM. For details about automatic job execution using JP1/AJS2 linkage, see 8.5.3
Automatic job execution using JP1/AJS2 linkage.
For details about JP1/Base, see the JP1 manual. Because the manual name depends on
the JP1 version, see the correct manual for the version you are using:

• For JP1 Version 8
Job Management Partner 1/Base User's Guide

• For JP1 Version 7i or earlier
Job Management Partner 1/Base

• For JP1 Version 5 or earlier
JP1/System Event Service

(1) Sending event notice
To send HiRDB events to JP1/Base, specify the following operands:

• pd_jp1_use operand: Y

8. Linking to Other Products

305

• pd_jp1_event_level operand: 1 or 2
When 1 is specified in the pd_jp1_event_level operand, only the basic attributes
are sent. When 2 is specified in this operand, extended attributes are also sent.

Note:

In the following cases, only 1 can be specified in the pd_jp1_event_level
operand; if 2 is specified, events cannot be sent:

• Events are to be sent to JP1/System Event Service.
• HiRDB in use is a 64-bit mode version for HP-UX.

(2) HiRDB events that can be sent
Table 8-6 lists and describes the HiRDB events that can be sent to JP1/Base.

Table 8-6: HiRDB events that can be sent to JP1/Base

Event Event ID1 Message Detail
information2

Registration timing Value of
pd_jp1_event

_level

1 2

Start 0x00010C00 KFPS05210
-I,
PS05219-I
3, or
KFPS05260
-I5

"start" After the system start
completion message
(KFPS05210-I,
KFPS05219-I, or
KFPS05260-I) is
output

Y Y

0x00010C80

Normal
termination

0x00010C01 KFPS01850
-I3

"end_normal" After termination of
system service
(immediately before
completion of HiRDB
termination or
immediately after
output of the
KFPS01850-I
message)

Y Y

0x00010C81

Planned
termination

0x00010C01 KFPS01850
-I3

"end_plan" Y Y

0x00010C81

Forced
termination

0x00010C01 KFPS01850
-I3

"end_force" Y Y

0x00010C81

Message log
output

0x00010C03 HiRDB
message

NULL After message log is
output

Y4 Y4

0x00010C83

8. Linking to Other Products

306

Legend:
NULL: Null; nothing is sent.
Y: This event is sent.
N: This event is not sent.

1 The top code is for a HiRDB/Single Server; the bottom code is for a HiRDB/Parallel
Server.
2 The detail information is provided in text format. Following is the data format:

ssss mm...mm \0
ssss: System identifier (0-4 bytes)
mm...mm: Character string indicated in the Detail information column

Abnormal
termination

0x00010C02 KFPS01821
-E

NULL • Upon HiRDB
error termination

• After error
termination is
reported to the
cluster software
when system
switchover is used
in server mode

N Y

0x00010C82

Definition
change

0x00010C04 KFPS04666
-I

NULL At completion of
HiRDB system normal
start

N Y

0x00010C84

RDAREA
full

0x00010C05 KFPH00213
-W

NULL At output of
RDAREA-full error
message
(KFPH00213-W)

N Y

0x00010C85

RDAREA
expansion
error

0x00010C06 KFPX14229
-E

NULL Upon pdmod (with
expand specified)
execution error

N Y

0x00010C86

Log file free
space
warning

0x00010C07 KFPS01160
-E or
KFPS01162
-W

NULL At output of a system
log file free-space
warning message

N Y

0x00010C87

Event Event ID1 Message Detail
information2

Registration timing Value of
pd_jp1_event

_level

1 2

8. Linking to Other Products

307

3 When pd_jp1_event_level=1 is specified, the message is null.
4 When pd_jp1_event_msg_out=N is specified, the event is not sent.
5 This message is displayed only when a log applicable site is started using the
pdstart -1 command in cases in which the log-only synchronous method is used for
Real Time SAN Replication processing.

8.5.2 Managing events by JP1/IM
 JP1/IM optimizes (filters) the JP1 events managed by JP1/Base and centrally
manages the events that occur in the system as JP1 events. By sending HiRDB events
to JP1/Base, you can have JP1/IM manage them in the same manner as with other
products' events. The user can check events using windows provided by JP1/IM.
Figure 8-7 provides an overview of event monitoring by JP1/IM.

Figure 8-7: Overview of event monitoring by JP1/IM

For an overview of event monitoring by JP1/Integrated Management, see the
applicable manual for the JP1 version being used.

• For JP1 Version 8

8. Linking to Other Products

308

Job Management Partner 1/Integrated Management - Manager System
Configuration and User's Guide

• For JP1 Version 7i
Job Management Partner 1/Integrated Manager - Console

(1) Preparations for displaying HiRDB-specific extended attributes by JP1/IM
For JP1/IM to display HiRDB-specific extended attributes, you must copy the event
attribute definition file provided by HiRDB to the following directory:

• For JP1/Integrated Management - Manager (JP1 Version 7i or earlier JP1/
Integrated Manager - Central Console): installation-directory/conf/console/
attribute

The event attribute definition file is stored in the sample directory under the HiRDB
installation directory. Table 8-7 shows the name of the event attribute definition file for
each OS.

Table 8-7: Name of the event attribute definition file for each OS

In the case of a multi-HiRDB, copy the most recent version of the event attribute
definition file in the running HiRDBs.

8.5.3 Automatic job execution using JP1/AJS2 linkage
In the case of a HiRDB/Parallel Server, operations such as unloading system log files
at each server may become complex. If HiRDB events are sent to JP1/Base, you can
use JP1/AJS2 (JP1/Automatic Operation Monitor for a JP1 Version 6 or earlier) to
execute jobs automatically on the basis of those events, thereby achieving automation
of HiRDB operation.
Figure 8-8 shows automatic control achieved by JP1 linkage when system log files are
unloaded.

OS Name of the event attribute definition file

HP-UX HITACHI_HIRDB_HP_attr_ja.conf

AIX HITACHI_HIRDB_AIX_attr_ja.conf

Solaris HITACHI_HIRDB_SOL_attr_ja.conf

Linux HITACHI_HIRDB_LIN_attr_ja.conf

8. Linking to Other Products

309

Figure 8-8: Automatic control achieved by JP1 linkage when system log files
are unloaded

For details about JP1/AJS2, see the JP1 manual. Because the manual name depends on
the JP1 version, see the correct manual for the version you are using:

• For JP1 Version 7i or later
JP1/Automatic Job Management System 2

• For JP1 Version 6
JP1/Automatic Job Management System 2 User's Guide

• For JP1 Version 5 or earlier
JP1/Automatic Operation Monitor

311

Chapter

9. Designing a HiRDB/Single Server

This chapter describes the design considerations for a HiRDB/Single Server, its
HiRDB file system areas, and its system files, and provides notes on the placement of
RDAREAs.
This chapter contains the following sections:

9.1 System design for a HiRDB/Single Server
9.2 Designing HiRDB file system areas
9.3 Designing system files
9.4 Placing RDAREAs

9. Designing a HiRDB/Single Server

312

9.1 System design for a HiRDB/Single Server

This section describes the system design considerations and the system configuration
for a HiRDB/Single Server.

9.1.1 System design
(1) Storage requirements

The storage space required by the HiRDB/Single Server must be estimated. For details
about the storage requirements for a HiRDB/Single Server, see 16.1 Estimating the
memory size required for a HiRDB/Single Server.

(2) Installing a utility special unit
It may not be possible to install a desired input/output device (such as MT drives) to
be used by utilities at the HiRDB/Single Server machine because of I/O device
restrictions. In such a case, the I/O device can be installed on a separate server machine
and can be used by the utilities via a LAN. A server machine on which only input/
output devices are installed for use by utilities is called a utility special unit.
A utility special unit is used by the following utilities:

• Database load utility (pdload)
• Database reorganization utility (pdrorg)
• Dictionary import/export utility (pdexp)
• Database copy utility (pdcopy)
• Database recovery utility (pdrstr)

For details about how to use a utility special unit with execution of utilities, see the
manual HiRDB Version 8 Command Reference.
When an input/output device cannot be installed at the HiRDB/Single Server machine,
installation of a utility special unit should be considered.
One utility special unit can be shared among multiple HiRDB/Single Servers.

9.1.2 System configuration
Figure 9-1 shows system configurations for a HiRDB/Single Server. Figure 9-2 shows
system configurations with a utility special unit installed.
The HiRDB/Single Server system configuration is defined in the HiRDB system
definition. For details about definition examples of the system configurations, see the
manual HiRDB Version 8 System Definition.

9. Designing a HiRDB/Single Server

313

Figure 9-1: System configuration for a HiRDB/Single Server

Figure 9-2: System configuration for a HiRDB/Single Server with a utility
special unit installed

9. Designing a HiRDB/Single Server

314

9.2 Designing HiRDB file system areas

When constructing a HiRDB system, you must create HiRDB file system areas where
HiRDB files are created. This section discusses the design considerations for creating
HiRDB file system areas.
Separate HiRDB file system areas should be created for the types of items listed below,
so that contention between input/output operations on files with different purposes or
access characteristics can be avoided. If regular files are used, write performance can
be improved by specifying the purpose explicitly, and an appropriate device can be
allocated according to the purpose. Separate file system areas should be created for:

• RDAREAs
• System files
• Work table files
• Utilities
• RDAREAs for lists (list RDAREAs)

9.2.1 Designing HiRDB file system areas for RDAREAs
This section discusses the design considerations for HiRDB file system areas in which
RDAREAs are to be created.

(1) Design for improved reliability
1. For update processing, character special files are more reliable than regular files.

Regular files may become inaccessible if the OS terminates abnormally. Thus,
character special files should be used for HiRDB file system areas for user
RDAREAs that satisfy the following characteristics:

• User RDAREAs for storing tables that are used primarily for update
processing.

• User RDAREAs for storing particularly important data.
2. The amount of space required for a HiRDB file system area is displayed when the

system generator (pdgen) is executed. At least the displayed amount of space
should be allocated to the HiRDB file system area.

3. HiRDB file system areas for RDAREAs must be created at the server machine
where the single server is defined.

4. For the following RDAREAs, create HiRDB file system areas on the server
machine where the single server is defined:

• System RDAREAs

9. Designing a HiRDB/Single Server

315

• Data dictionary LOB RDAREAs
• Registry RDAREAs
• Registry LOB RDAREAs

5. For the following RDAREAs, create HiRDB file system areas on the server
machine where the single server is defined:

• User RDAREAs
• User LOB RDAREAs

6. If the system switchover facility is to be used, the HiRDB file system areas for
user RDAREAs should be allocated as character special files.

(2) Design for improved performance
1. You should create separate HiRDB file system areas for the following types of

RDAREAs:
• System RDAREAs
• Data dictionary LOB RDAREAs
• User RDAREAs
• User LOB RDAREAs
• Registry RDAREAs
• Registry LOB RDAREAs

2. You should create HiRDB file system areas for system files on hard disks separate
from the ones used for HiRDB file system areas for RDAREAs. In this way, you
can distribute input/output operations when collecting a synchronization point
dump, thereby reducing the amount of time required to collect the
synchronization point dump.

3. If you are not using the prefetch facility, the sequential read speed is faster with
regular files than with character special files.

4. For random one-page reads, processing speed is faster with character special files
than with regular files.

5. For write processing, the speed is faster with character special files than with
regular files.

6. Regular files have a hierarchical structure; therefore, as files become larger, the
hierarchical levels increase. When you access such files with many hierarchical
levels, the number of input/output operations increases, adversely affecting the
access efficiency.

7. The HiRDB file system areas should be allocated as shown in Table 9-1, so that

9. Designing a HiRDB/Single Server

316

input/output time can be reduced.
Table 9-1: Allocation of HiRDB file system areas to improve performance

9.2.2 Designing HiRDB file system areas for system files
This section discusses the design considerations for HiRDB file system areas in which
system files are to be created.

(1) Design for improved reliability
1. For update processing, character special files are more reliable than regular files.

Regular files may become inaccessible after a system shutdown. Thus, character
special files should be used for HiRDB file system areas for system log files,
synchronization point dump files, and status files.

2. Create at least two HiRDB file system areas for system files. If there is only one
HiRDB file system area for system files, HiRDB cannot continue operating in the
event of a hard disk failure at the disk containing the system files.

3. Create HiRDB file system areas for system files on separate hard disks. In this
way, in the event of a hard disk error, you can restart HiRDB using the other hard
disk.

4. The amount of space required for a HiRDB file system area is displayed when the
system generator (pdgen) is executed. At least the displayed amount of space
should be allocated to the HiRDB file system area.

(2) Design for improved performance
You should create HiRDB file system areas for system files on hard disks separate

Type of HiRDB file system areas File to be
allocated

HiRDB file system area for system RDAREAs Character special file

HiRDB file system area for dictionary LOB RDAREAs

HiRDB file system area for user LOB RDAREAs

HiRDB file system area for user RDAREAs that store frequently updated tables or tables
primarily subject to retrieval of small amounts of data

HiRDB file system area for user RDAREAs that store tables with a large amount of data
that are primarily subject to retrieval of all entries or retrieval of large amounts of data by
key using the cluster key (but with data that is rarely updated)

• Regular file
(when not using
the prefetch
facility)

• Character special
file (when using
the prefetch
facility)

9. Designing a HiRDB/Single Server

317

from the ones used for HiRDB file system areas for RDAREAs. In this way, you can
distribute input/output operations when collecting a synchronization point dump,
thereby reducing the amount of time required to collect the synchronization point
dump.

9.2.3 Designing HiRDB file system areas for work table files
This section discusses the design considerations for HiRDB file system areas in which
work table files are to be created.

(1) Design for improved reliability
1. Work table files can be allocated to regular files. However, if the system

switchover facility is used, disk space can be saved by allocating work table files
to character special files because the files can then be shared.

2. The amount of space required for a HiRDB file system area for work table files
must be greater than the total size of the work table files to be created in the area.
For details about the sizes of work table files, see 19. Determining Work Table
File Size.

3. With Linux, the file system area for work table files cannot be created in character
special files.

(2) Checking the peak capacity
The peak capacity of a HiRDB file system area for work table files can be obtained by
entering the following command:
pdfstatfs -d name-of-HiRDB-file-system-area-for-work-tables

-d
Specifies that the maximum utilization value for the allocated HiRDB file
system area is to be displayed. The peak capacity display that is output is this
value. The maximum utilization value is cleared by entering the following
pdfstatfs command:

pdfstatfs -c name-of-HiRDB-file-system-area-for-work-table
-c

Specifies that the maximum utilization value for the allocated HiRDB file
system area is to be cleared to 0.

9.2.4 Designing HiRDB file system areas for utilities
This section discusses the design considerations for HiRDB file system areas in which
utility files (backup files, unload data files, and unload log files) are created. Use the
HiRDB file system areas for utilities to create the following files:

• Backup files

9. Designing a HiRDB/Single Server

318

• Unload data files
• Unload log files
• Differential backup management files

(1) Design considerations
1. If you are creating a HiRDB file system area for backup files, allocate it to

character special files.
2. The amount of space required for a HiRDB file system area for backup files must

be greater than the total size of the RDAREAs that will be backed up. For details
about the sizes of RDAREAs, see 17. Determining RDAREA Size.

3. If you use the system switchover facility, create unload log files on a shared disk
(character special files).

4. If you are creating a HiRDB file system area for unload log files, specify the
following options in the pdfmkfs command:

• -k option: Specify UTL (HiRDB file system area for utilities) as the usage.
• -n option: For the size of the HiRDB file system area, specify the value

obtained from the following formula:
Total number of records in system log files to be unloaded record length
of system log files number of unload log files to be created 1.2
1048576

• -l option: For the maximum number of files, specify the number of unload
log files to be created.

• -e option: For the maximum number of extensions, specify the number of
unload log files to be created times 10.

(2) Checking the peak capacity
You can obtain the peak capacity of a HiRDB file system area for utilities by entering
the following command:
pdfstatfs -d name-of-HiRDB-file-system-area-for-utilities

-d
Specifies that the maximum utilization value for the allocated HiRDB file
system area is to be displayed. The peak capacity display that is output is this
value. You can clear the maximum utilization value by entering the
following pdfstatfs command:

pdfstatfs -c name-of-HiRDB-file-system-area-for-utilities
-c

9. Designing a HiRDB/Single Server

319

Specifies that the maximum utilization value for the allocated HiRDB file
system area is to be cleared to 0.

9.2.5 Designing HiRDB file system areas for list RDAREAs
This section discusses the design considerations for HiRDB file system areas in which
list RDAREAs are to be created.

(1) Design considerations
1. A list is used to store temporary intermediate results of search processing;

therefore, it does not need to be as reliable as other RDAREAs. You can create
HiRDB file system areas for list RDAREAs in regular files.

2. If you use the system switchover facility, you can save disk space by allocating
HiRDB file system areas for list RDAREAs to character special files because the
files can then be shared.

(2) Design for improved performance
1. If you are creating HiRDB file system areas for list RDAREAs on RAID, you

should use character special files to reduce processing time. If you are creating
them on any other disk, you should use regular files to reduce processing time.

2. You should create HiRDB file system areas for list RDAREAs on a hard disk
separate from the ones used for the following HiRDB file system areas. In this
way, you can distribute input/output operations when searching a list, thereby
reducing the processing time.

• HiRDB file system areas for user RDAREAs
• HiRDB file system areas for user LOB RDAREAs
• HiRDB file system areas for work table files

9.2.6 Maximum sizes of HiRDB file system areas
Table 9-2 shows the maximum sizes of HiRDB file system areas.

Table 9-2: Maximum sizes of HiRDB file system areas

HiRDB type Conditions Maximum size of HiRDB file
system area (MB)

HP-UX Large file not used Regular file 2,047

Character special file

Large file used Regular file 131,071

Character special file

9. Designing a HiRDB/Single Server

320

Solaris Large file not used Regular file 2,047

Character special file

Large file used Regular file 1,048,575

Character special file

AIX 5L Large file not used Regular file 2,047

Character special file

Large file used Regular file(JFS) 65,411

Regular file(JFS2) 1,048,575

Character special file

Linux Large file not used Regular file 2,047

Character special file

Large file used Regular file 1,048,575

Character special file

HiRDB type Conditions Maximum size of HiRDB file
system area (MB)

9. Designing a HiRDB/Single Server

321

9.3 Designing system files

This section describes the design considerations for system files.

9.3.1 Designing system log files
When system log files need to be swapped, HiRDB will terminate abnormally if there
are no swappable target system log files. To prevent this, HiRDB has a facility for
monitoring the free area for system log files (monitoring free area for system log files
facility). This facility operates when the percentage of available free area for the
system log files reaches a warning value. Select one of the following two levels:
Level 1:

Output the KFPS01162-W warning message when the percentage of free area for
system log files reaches the warning level.

Level 2:

When the percentage of free area for the system log files reaches the warning
level, suppress all further scheduling of new transactions, terminate forcibly all
transactions in the server, and output the KFPS01160-E message. This controls
the output volume of the system logs.

If level 2 is selected, all transactions in the server are terminated forcibly when there
becomes insufficient free space in the system log files. Because of the severity of this
action, the system log files should be designed quite carefully.
The following explains some of the design considerations for system log files.

(1) Design considerations
1. System log files are not required for a utility special unit.
2. Specify the same record length and number of records for all system log files.
3. The number of system log files that can be created is 6 to 200 groups.

If HiRDB is restarting after an abnormal termination due to insufficient space for
the system log files, the number of system log files to be added must be the same
as the number that were already created. For example, if 50 groups of 50 system
log files had been created, each of the maximum size (2 gigabyte), then 50 groups
of 50 system log files of the maximum size should now be added. Therefore, it is
recommended that system log files always be created in units of 100 groups.

4. The maximum total size of the system log files is 400 gigabytes.
5. To reduce the number of unload operations, it is advisable to create many large

system log files.

9. Designing a HiRDB/Single Server

322

6. A file that is involved in many input/output operations (such as a log unload file)
should not be created on the same disk that contains HiRDB directory.

7. The amount of space required for one system log file must satisfy the condition
shown following.

a: Value of pd_log_max_data_size operand
b: Value of pd_log_sdinterval operand
c: Value of pd_log_rec_leng operand
d: Value of pd_spd_assurance_count operand

8. The total amount of space required for system log files (if dual system log files
are used, the total amount of space for one version) must satisfy the condition
shown in Formula 1 and 2 below.
Formula 1

a: Output system log size
For details about determining this value, see 18.1.1(2) Determining the size
of system log information.

b: Record length of system log files specified in the pd_log_rec_leng operand
c: Substitute the following values:

If pd_log_rec_leng = 1024: 1000
If pd_log_rec_leng = 2048: 2000
If pd_log_rec_leng = 4096: 4000

Formula 2

a:
Size of system log information that may be output at the corresponding
server while executing the database updating transaction with the longest
execution time.
For details about the formula for estimating the size of system log
information, see 18.1 Determining the size of system log files.

Size of one system log file (bytes) (a + 368) c c b d

Total size of all system log files (bytes) a c 3 b

Total size of all system log files (bytes) 3 a (b + 1)

9. Designing a HiRDB/Single Server

323

b: Value of pd_spd_assurance_count operand
Number of guaranteed-valid generations for synchronization point dump
files.

(a) Effects on operations of the number of generations of system log files
If the total size of the system log files is unchanged, the size of each generation will
depend on how many generations of system log files are being maintained. Table 9-3
shows the effects of the number of generations of system log files on operations. The
total size of the system log files is unchanged.

Table 9-3: Effects on operations of the number of generations of system log files

In normal operations, the lower the number of generations of system log files, the more
advantageous the swapping interval and the unload frequency will become. However,
if there is a failure, the effects on operations will be reduced with a larger number of
log file generations.

(2) Design for improved reliability
(a) System log file duplexing

When system log file duplexing is used, HiRDB acquires the same system log

Comparison item System log file configuration

Small number of generations Large number of generations

Size of each generation of
system log files

Becomes larger. Becomes smaller.

Swap interval Because the size of each generation of
system log files becomes larger, the
swap interval becomes longer.

Because the size of each generation
of system log files becomes smaller,
the swap interval becomes shorter.

Unload frequency Because the swap interval becomes
longer, the unload frequency becomes
lower.

Because the swap interval becomes
shorter, the unload frequency
becomes higher.

Effects on the system log size
when something such as a disk
failure makes several
generations of system log files
unusable

• Because the size of each
generation of system log files
becomes larger, the log volume
used for database recovery in the
event of a disk failure increases,
and the time required for database
recovery increases.

• If the decrease in the system log
volume is large, the effects of the
decrease in system log volume
will have increasing effects on
HiRDB operations.

• Because the size of each
generation of system log files
becomes smaller, the log volume
used for database recovery in the
event of a disk failure decreases,
and the time required for
database recovery decreases.

• If the decrease in the system log
volume is small, the effects of the
decrease in system log volume
will have decreasing effects on
HiRDB operations.

9. Designing a HiRDB/Single Server

324

information in both versions. In the event of an error on one of the versions, the system
log can be read from the other version, thereby improving system reliability. When
dual system log files are used, they must be used under the management of HiRDB
rather than using a mirror disk. When using dual system log files, create the files for
each system on a separate hard disk.
To use dual system log files, specify the following operands in the server definition:

• pd_log_dual=Y
• -b option in the pdlogadpf operand (to specify the name of the B version of

system log file)
(b) Single operation of system log files

Single operation of system log files is employed when dual system log files are used.
In the event of an error in a system log file, processing can continue using the normal
version of the system log file without having to terminate the HiRDB unit abnormally
even if neither system has a usable system log file. This is called single operation of
system log files. To perform single operation of system log files, specify
pd_log_singleoperation=Y in the server definition.
As opposed to single operation of system log files, continuing processing using both
versions of system log files (normal processing mode) is called double operation of
system log files.

(c) Automatic opening of system log files
If there is no overwrite-enabled system log file at the time of a HiRDB restart, but a
reserved file is available, then HiRDB continues processing by opening the reserved
file and placing it in overwrite-enabled status. This is called automatic opening of
system log files.
To perform automatic opening of system log files, specify
pd_log_rerun_reserved_file_open=Y in the server definition.

(3) Facility for parallel output of system logs (AIX 5L only)
When dual system log files are used, a facility for simultaneous output of system log
information to both files using the Asynchronous I/O Subsystem,* which is an AIX 5L
function, is called the facility for parallel output of system logs. By processing the
output of system log information to both files in parallel, the time required for log
output can be reduced.
* The Asynchronous I/O Subsystem must be installed and enabled in advance. If the
Asynchronous I/O Subsystem is not enabled, HiRDB cannot start, resulting in
abnormal termination. For AIX 5L V5.2 or later, there are legacy and POSIX versions
of the Asynchronous I/O Subsystem; you should enable the legacy version of the
Asynchronous I/O Subsystem, because that is the version that HiRDB uses. For details

9. Designing a HiRDB/Single Server

325

about the Asset Information Manager, see the AIX 5L documentation.
For details about the Asset Information Manager settings for using the facility for
parallel output of system logs, see (d) Tuning the Asynchronous I/O Subsystem.

(a) Recommended configuration
Although you can define for each server whether or not the facility for parallel output
of system logs is to be used, we recommend that you apply this facility to all servers.
We also recommend that you place the primary and secondary files on separate devices
in order to further reduce the time required for output of log information.

(b) Definition method
In the server definition, specify pd_log_dual_write_method=parallel.

• Dual system log files are not used (the value of the pd_log_dual operand is not
Y).

• The system log files are not placed in character special files.
(c) Notes

1. If the Asynchronous I/O Subsystem is not enabled, HiRDB cannot start, resulting
in abnormal termination. Either enable the Asynchronous I/O Subsystem, omit
the pd_log_dual_write_method operand, or specify serial, and then restart
HiRDB. If the Asynchronous I/O Subsystem parameter is set to STATE to be
configured at system restart = available, HiRDB starts
automatically.

2. The facility for parallel output of system logs is not applicable to system log files
placed in regular files. If you add system log files, place them in character special
files.

3. The facility for parallel output of system logs is applied only when both primary
and secondary current files are placed in character special files and system log
information can be output to those current files (they are not in closed, reserved,
or error status). Parallel output of system logs does not take place, regardless of
the system definition, if the current file satisfies either of the following
conditions:

• The primary or secondary current file is placed in a regular file.
• The primary or secondary current file is in a status such that no log

information can be output to it.
4. When the servers using the facility for parallel output of system logs are run on

multiple server machines, such as when the system switchover facility is used,
and the Asynchronous I/O Subsystem is not enabled at any of those server
machines, startup of a standby unit or system switchover fails. Make sure that
Asset Information Manager is enabled at all server machines.

9. Designing a HiRDB/Single Server

326

(d) Tuning the Asynchronous I/O Subsystem
To use the facility for parallel output of system logs, you must set the following
parameters after installing Asset Information Manager:

* This is the default value; there is no need to change it. If the value is changed,
performance is degraded.
No other parameters require tuning.

(4) Record length of a system log file
Use the pdloginit command's -l option to specify the record length of a system log
file. You can select 1024, 2048, or 4096 as the record length. By changing the record
length, you may be able to reduce the size of system log file.

(a) When constructing a new HiRDB
When constructing a new HiRDB, you should select 1024 as the record length. To do
this, specify a value of 1024 in the pd_log_rec_leng operand in the server
definition.

(b) When already running a HiRDB
Change the record length of system log files on the basis of the average block length
that is output to the system log file (OUTPUT BLOCK LENGTH), which is obtained from
the statistical information about system activity by the statistics analysis utility
(pdstedit). You should change the record length as follows:

• If the average block length is 1024 bytes or less, change the record length to 1024.
• If the average block length is 1025 to 2048 bytes, change the record length to

2048.
• If the average block length is 2049 bytes or greater, change the record length to

4096.
Notes about changing the record length:

• If records are short, the number of input/output operations in the file
increases for large amounts of data; however, the amount of free space is
reduced due to rounding up to the next HiRDB record unit, resulting in
higher file utilization efficiency.

• If records are long, the number of input/output operations in the file
decreases for large amounts of data; however, the amount of free space is

Parameter name Recommended value

STATE to be configured at system restart available

STATE of FastPath enable*

9. Designing a HiRDB/Single Server

327

increased due to rounding up to the next HiRDB record unit, resulting in
lower file utilization efficiency.

How to change the record length:
For details about how to change the record length of system log files, see the
manual HiRDB Version 8 System Operation Guide.

(5) Defining the system log files
The pdlogadfg and pdlogadpf operands are used to define the correspondence
between file groups and the created system log files.

9.3.2 Designing synchronization point dump files
This section describes the design considerations for synchronization point dump files.

(1) Design considerations
1. Synchronization point dump files are not required for a utility special unit.
2. Between 2 and 60 groups (if ONL is specified, 2 and 30 groups) of synchronization

point dump files can be created per server.
3. HiRDB uses synchronization point dump files in the order specified in the

pdlogadfg -d spd operand.
4. You should create at least four synchronization point dump files.
5. If a shortage of space occurs in a synchronization point dump file, HiRDB cannot

be restarted. For this reason, the size of a synchronization point dump file should
be set to be greater than the value specified for the maximum number of
concurrent connections (pd_max_users) in the system common definition. For
details about the calculation of synchronization point dump file size, see 18.2
Determining the size of synchronization point dump files.

(2) Design for improved reliability
(a) Example of file organization

As a safeguard against the possibility of hard disk failures, you should create the
synchronization point dump files on separate hard disks. If this is not possible, you
should create adjacent generations of files on separate hard disks, as shown in the
example in Figure 9-3.

9. Designing a HiRDB/Single Server

328

Figure 9-3: Example of creating adjacent generations on separate hard disks
(HiRDB/Single Server)

(b) Duplexing of the synchronization point dump file
When the synchronization point dump file is duplexed, HiRDB collects the same
synchronization point dump on both system A and system B. This increases system
reliability, because when a collected synchronization point dump is read and there is
an abnormality in the file, the synchronization point dump can still be read from the
other file. Duplexing also enables the number of guaranteed-valid generations to be set
to one generation, yet reliability is not compromised and the number of
synchronization point dump files in overwrite disabled status is reduced.
Specify the following operands in the server definition to enable duplexing of
synchronization point dump files:

• pd_spd_dual = Y
• -b option in the pdlogadpf operand (specifies the system log file name on

system B)
(c) Number of guaranteed-valid generations for synchronization point dump

files
Each synchronization point dump acquired by HiRDB is stored in a separate
synchronization point dump file. HiRDB uses the generation concept to manage
synchronization point dump files. The HiRDB administrator specifies the number of
generations of synchronization point dump files, and the corresponding system log
files, that are to be placed in overwrite-disabled status. This concept is called the
number of guaranteed-valid generations for synchronization point dump files, and it is
illustrated in Figure 9-4.

9. Designing a HiRDB/Single Server

329

Figure 9-4: Number of guaranteed-valid generations for synchronization point
dump files

Explanation
If there are two guaranteed-valid generations, the synchronization point dump
files up to the second generation, and the system log files relevant to those
synchronization point dump files, are in overwrite disabled status. The
synchronization point dump files prior to the third generation, and the system log
files relevant to those synchronization point dump files, are in overwrite enabled
status.

The required number of synchronization point dump files is the number of
guaranteed-valid generations + 1. Specify the number of guaranteed-valid generations
for synchronization point dump files in the pd_spd_assurance_count operand in
the server definition.
If synchronization point dump files are to be duplexed, it is recommended that only
one guaranteed-valid generation be required. If duplexing is not to be used, two
generations are recommended.

(d) Reduced mode operation for synchronization point dump files
If the number of synchronization point dump files available for use is reduced to the
number of guaranteed-valid generations + 1 because of errors in synchronization point

9. Designing a HiRDB/Single Server

330

dump files, processing can continue with a minimum of two files. This is called the
reduced mode operation for synchronization point dump files.
To perform reduced mode operation for synchronization point dump files, specify the
pd_spd_reduced_mode operand in the server definition.

(e) Automatic opening of synchronization point dump files
When the number of synchronization point dump files available for use is reduced to
the number of guaranteed-valid generations + 1 because of errors in synchronization
point dump files, processing can continue by opening a reserved file and placing it in
overwrite-enabled status (assuming that such a reserved file is available). This is called
automatic opening of synchronization point dump files.
To perform automatic opening of synchronization point dump files, specify the
pd_spd_reserved_file_auto_open=Y in the server definition.

(3) Defining the synchronization point dump files
The pdlogadfg and pdlogadpf operands are used to define the correspondence
between file groups and the created synchronization point dump files.
If only the pdlogadfg operand is specified, synchronization point dump files can be
added during HiRDB operation.

9.3.3 Designing status files
This section describes the design considerations for status files.

(1) Design considerations
1. Create the primary and secondary files on separate disks in order to avoid errors

on both files.
2. To prevent abnormal termination of HiRDB as a result of a shortage of status file

space, create several spare files whose size is greater than the estimated value.
When a status file becomes full, file swapping occurs in order to use a spare file.
If the size of the spare file is the same as the full status file, a space shortage also
occurs on the spare file, resulting in abnormal termination of HiRDB. For
example, if you create six sets of status files, we recommend that you make the
file size for two of the sets larger than for the other sets.

3. Server status files are not required for a utility special unit. Create only unit status
files.

4. Make sure that the primary and secondary files have the same record length and
the same number of records.

5. Specify the same record length and number of records for both versions (A and
B) of the status files.

6. File versions A and B must be created on separate hard disks.

9. Designing a HiRDB/Single Server

331

7. You can create 1-7 sets of unit status files.
8. You can create 1-7 sets of server status files.

(2) Design for improved reliability
1. Provide at least three sets of status files (dual files 3 = 6 files) and place them

in such a manner that corruption of all status files by disk errors is unlikely.
2. To prevent abnormal termination of HiRDB resulting from a space shortage, we

recommend that you set the size of a status file to at least 1.2 times the estimated
value.

3. A status file contains information that will be needed in order to restore the system
status during HiRDB restart processing. If an error occurs in such a file and no
spare file is available, the system status cannot be restored. Therefore, make sure
that spare files are always available as a safeguard in the event of errors on the
current files.

(a) Recommended configuration
In order to provide a safety margin until a disk becomes operational after it has been
recovered from a disk failure, we recommend that you provide six sets of status files
on four sets of disks (dual files 6 = 12 files) and place them as shown in Figure 9-5.
If an error occurs on the normal system during single operation, HiRDB cannot be
restarted; therefore, we recommend that you do not apply single operation to status
files (specify stop in pd_syssts_singleoperation and
pd_sts_singleoperation).
Figure 9-5 shows an example of placing six sets of status files on four sets of disks.

9. Designing a HiRDB/Single Server

332

Figure 9-5: Example of placing six sets of status files on four sets of disks

Explanation:
With this arrangement, if an error occurs on a disk, and then another error occurs
on another disk, the remaining two disks still contain intact primary and
secondary files, and HiRDB can continue operation using the status files on the
error-free disks as the current files. For example, if an error occurs on disk A and
then an error occurs on disk B, HiRDB continues operation using as the current
files the primary and secondary status files on disks C and D (sts-3a and
sts-3b). In this status, if another error occurs on one of the current files, HiRDB
terminates abnormally; however, because one of the current files is normal,
HiRDB can be restarted after one of the disks is recovered from its error.

(3) Defining the status files
The pd_syssts_file_name_1 to pd_syssts_file_name_7 and the
pd_sts_file_name_1 to pd_sts_file_name_7 operands are used to define the
correspondence between the status files created by the pdstsinit command and the
logical files.
The pd_syssts_file_name_1 to pd_syssts_file_name_7 operands are for unit
status files, and the pd_sts_file_name_1 to pd_sts_file_name_7 operands are
for server status files.
If the names of imaginary logical files or status files are defined in the
pd_syssts_file_name2 to pd_syssts_file_name7 operands or in the
pd_sts_file_name2 to pd_sts_file_name7 operands, status files can be added
during HiRDB operation. In such a case, the following operands must be specified.

9. Designing a HiRDB/Single Server

333

Unit status files
pd_syssts_initial_error
pd_syssts_last_active_file

Server status files
pd_sts_initial_error
pd_sts_last_active_file

(4) Single operation of status files
If an error occurs on one of the current files while there is no available spare file,
continuing operation using only the normal file (either the primary or secondary file)
is called status-file single operation. When status files are placed in the single
operation mode, the KFPS01044-I message is displayed.
If an error occurs on the current file in the single operation mode, HiRDB can no longer
be restarted. Therefore, status-file single operation is not recommended. Increase the
number of status file sets to avoid a situation where no spare file is available.
As opposed to status-file single operation, continuing operation using both status files
(normal processing mode) is called status-file double operation.

(a) Advantages and disadvantages of status-file single operation
Advantages

Processing can continue even if an error occurs on one of the current files while
no spare file is available. This reduces the adverse consequences of HiRDB
shutdown resulting from a status file error.

Disadvantages

If an error occurs on the normal file during single operation or HiRDB terminates
abnormally while the status file is being updated, the contents of the current file
are lost, disabling HiRDB restart.

(b) Specification method
To use unit status-file single operation, specify pd_syssts_singleoperation =
continue in the unit control information definition file. To use server status-file
single operation, specify pd_sts_singleoperation = continue in the server
definition. Make sure that pd_syssts_singleoperation and
pd_sts_singleoperation have the same value.

Relationship with other operands
The combination of the pd_syssts_singleoperation and
pd_syssts_initial_error operand values or the
pd_sts_singleoperation and pd_sts_initial_error operand values
determines the HiRDB operation that is to take place if an error is detected in a
status file during HiRDB startup. Therefore, determine the values of these

9. Designing a HiRDB/Single Server

334

operands together. For details about the HiRDB operation that is to take place if
an error is detected in a status file during HiRDB startup, see the description of
the pd_syssts_initial_error or pd_sts_initial_error operand in the
manual HiRDB Version 8 System Definition.

(c) Notes about using single operation
Table 9-4 describes the HiRDB operation and HiRDB administrator's action that
depend on whether or not single operation is used. For details about how to handle
status file errors, see the manual HiRDB Version 8 System Operation Guide.

Table 9-4: HiRDB operation and HiRDB administrator's action that depend on
whether or not single operation is used

Condition Status-file single operation
(pd_syssts_singleoperation or pd_sts_singleoperation

operand value)

Used (continue specified) Not used (omitted or stop
specified)

There are spare
files

Error occurred in
the current file

HiRDB operation:
Swaps status files.
HiRDB administrator's action:
Handle the error in the applicable status file.

Error occurred on
both current files
simultaneously

HiRDB operation:
Terminates abnormally. HiRDB cannot be restarted.
HiRDB administrator's action:
See Handling of status file errors in the manual HiRDB Version 8
System Operation Guide.

There is no spare
file

Error occurred in
one of the current
files

HiRDB operation:
Resumes processing using single
operation.
HiRDB administrator's action:
Create spare files immediately and
return HiRDB to the double
operation mode.

HiRDB operation:
Terminates abnormally.
HiRDB administrator's action:
Create spare files, and then
restart HiRDB.

Error occurred on
both current files
simultaneously

HiRDB operation:
Terminates abnormally. HiRDB cannot be restarted.
HiRDB administrator's action:
See Handling of status file errors in the manual HiRDB Version 8
System Operation Guide.

9. Designing a HiRDB/Single Server

335

Legend:
: Not applicable

(5) Notes on status file errors (important)
• If errors occur on both current files simultaneously, HiRDB terminates

abnormally and HiRDB can no longer be restarted. A possible measure for
avoiding this situation is to use multiple physical disks (mirroring).

• If the current file (existing during termination) is deleted or initialized by the
pdstsinit command prior to HiRDB startup, HiRDB can no longer be
restarted.

Error occurred in
the normal file
during single
operation

HiRDB operation:
Terminates abnormally. HiRDB
cannot be restarted.
HiRDB administrator's action:
See Handling of status file errors
in the manual HiRDB Version 8
System Operation Guide.

Condition Status-file single operation
(pd_syssts_singleoperation or pd_sts_singleoperation

operand value)

Used (continue specified) Not used (omitted or stop
specified)

9. Designing a HiRDB/Single Server

336

9.4 Placing RDAREAs

This section discusses considerations concerning placement of the following types of
RDAREAs:

• System RDAREAs
• Data dictionary LOB RDAREAs
• User RDAREAs
• User LOB RDAREAs

• List RDAREAs

9.4.1 Placing system RDAREAs
System RDAREAs should be placed taking into account the placement of user
RDAREAs. Points to be considered when a system RDAREA is placed are discussed
as follows.
A system RDAREA should not be placed on the same disk with user RDAREAs.
Among the system RDAREAs, data dictionary RDAREAs and data directory
RDAREAs are accessed frequently by HiRDB for SQL statement analysis, etc. If they
are placed on the same disk as user RDAREAs, contention may occur between an
access request for the purpose of SQL statement analysis and a table access request, in
which case one of the requests will be placed on hold until the other request has been
processed.
Figure 9-6 shows an example of system RDAREA placement that can avoid
contention among disk accesses.

9. Designing a HiRDB/Single Server

337

Figure 9-6: Example of system RDAREA placement (HiRDB/Single Server)

9.4.2 Placing data dictionary LOB RDAREAs
To avoid contention among disk accesses, a data dictionary LOB RDAREA should not
be placed on the same disk as any other RDAREA.
Figure 9-7 shows an example of data dictionary LOB RDAREA placement.

Figure 9-7: Example of data dictionary LOB RDAREA placement (HiRDB/
Single Server)

Relationship with data dictionary RDAREAs
A dictionary table used to manage stored procedures or stored functions can be
placed in a separate data dictionary RDAREA from other dictionary tables.

9. Designing a HiRDB/Single Server

338

9.4.3 Placing user RDAREAs
(1) Relationship with system log files

A user RDAREA should not be placed on the same disk as a system log file. When this
rule is observed, input/output operations on HiRDB files that constitute system log
files and on user RDAREAs can be distributed to multiple disks when a
synchronization point dump is collected, thereby reducing the amount of time required
for synchronization point dump processing.

(2) Relationship with system RDAREAs
A user RDAREA should not be placed on the same disk as a system RDAREA.

(3) Row-partitioned tables
If you have partitioned a table by row, place the RDAREAs storing the row-partitioned
table on separate disks. Figure 9-8 shows an example of user RDAREA placement.

Figure 9-8: Example of user RDAREA placement (HiRDB/Single Server)

9.4.4 Placing user LOB RDAREAs
To avoid contention among disk accesses, a user LOB RDAREA should not be placed
on the same disk as any other RDAREA.
If you have partitioned a table by row, place the RDAREAs storing the row-partitioned
table on separate disks. Figure 9-9 shows an example of user LOB RDAREA
placement.

9. Designing a HiRDB/Single Server

339

Figure 9-9: Example of user LOB RDAREA placement (HiRDB/Single Server)

9.4.5 Placing list RDAREAs
To avoid contention among disk accesses, you should place list RDAREAs on a
separate disk from any other RDAREAs.
Creating one list RDAREA lets you create lists for the tables that are stored in all user
RDAREAs.
Figure 9-10 shows an example of list RDAREA placement.

Figure 9-10: Example of list RDAREA placement (HiRDB/Single Server)

341

Chapter

10. Designing a HiRDB/Parallel
Server

This chapter describes the design considerations for a HiRDB/Parallel Server, its
HiRDB file system areas, and its system files, and provides notes on the placement of
RDAREAs.
This chapter contains the following sections:

10.1 System design for a HiRDB/Parallel Server
10.2 Designing HiRDB file system areas
10.3 Designing system files
10.4 Placing RDAREAs
10.5 Heterogeneous system configuration for HiRDB/Parallel Server

10. Designing a HiRDB/Parallel Server

342

10.1 System design for a HiRDB/Parallel Server

This section describes the system design considerations and the system configuration
for a HiRDB/Parallel Server.
If the HiRDB External Data Access facility is being used, also see the manual HiRDB
External Data Access Version 7.

10.1.1 System design
(1) Server configuration

The basic configuration of a HiRDB/Parallel Server consists of a front-end server,
dictionary server, and back-end server on the same server machine.
If the CPU workload of the server machine is low, multiple servers may be placed on
one server machine. In such a case, more shared memory is required. If there is not
enough shared memory, unit startup fails; for this reason, sufficient memory must be
allocated.
Table 10-1 shows the permitted number of servers you can install.

Table 10-1: Number of permitted servers

(2) Placement of system manager
The server machine on which the system manager is defined should be at a location
that is easily accessible by the HiRDB administrator for the following reasons:

• The HiRDB administrator uses operation commands to operate HiRDB, and most
operation commands must be entered from the server machine on which the
system manager is defined.

• When HiRDB system definition files are shared, they should be placed on the
server machine on which the system manager is defined. For details about how to
share HiRDB system definition files, see 5.2.3 Sharing HiRDB system definition
files (HiRDB/Parallel Server).

Item Number of permitted servers

Number of system managers 1

Number of front-end servers 1 to 1,024

Number of dictionary servers 1

Number of back-end servers 1 to 16,382

Number of servers per unit 1 to 34

10. Designing a HiRDB/Parallel Server

343

(3) Placement of floating server
When a complicated retrieval such as join processing is executed, it is better for
HiRDB to use a back-end server that does not have a database in order to improve
performance. If the server machine has sufficient space and complicated retrieval
processing is to be performed, installation of a floating server should be considered.
When a floating server is installed, a HiRDB file system area for work table files must
be created. The name of this HiRDB file system area is specified in the pdwork
operand of the back-end server definition.

(4) Using multiple front-end servers
If the CPU workload for SQL processing is too high to be processed on the front-end
server, multiple front-end servers can be set up. This is called multiple front-end
servers; for details, see 10.1.3 Setting up multiple front-end servers.

(5) Storage requirements
The storage space required by the HiRDB/Parallel Server must be estimated for each
server machine. For details about how to estimate the storage requirements, see 16.2
Estimating the memory size required for a HiRDB/Parallel Server.

10.1.2 System configuration of HiRDB/Parallel Server
Figure 10-1 shows an example of a HiRDB/Parallel Server system configuration. The
system configuration of a HiRDB/Parallel Server is defined in the HiRDB system
definition. For a definition example of the HiRDB system configuration shown in
Figure 10-1, see the manual HiRDB Version 8 System Definition.

10. Designing a HiRDB/Parallel Server

344

Figure 10-1: System configuration for a HiRDB/Parallel Server

10.1.3 Setting up multiple front-end servers
A HiRDB/Parallel Server uses multiple back-end servers to process multiple SQL
processing in parallel. The front-end server is responsible for executing SQL analysis
and SQL optimization, sending instructions to the back-end servers, editing retrieval
results, etc. In a system with heavy traffic, the front-end server's workload may be very
high, resulting in adverse effects on processing performance. In such a case, multiple
front-end servers can be installed in order to distribute the workload. This is called
multiple front-end servers.
Advantages

Throughput bottlenecks are resolved for each server machine where a front-end

10. Designing a HiRDB/Parallel Server

345

server is running, and its scalability is improved.
Criteria

The CPU workload in SQL processing is too high to be processed by one server
machine.

Rules
A maximum of 1,024 front-end servers can be installed.

Relationship to server machine
Only one front-end server can be installed on a server machine. Figure 10-2 shows
an example of a configuration that uses multiple front-end servers.
Figure 10-2: System configuration for a HiRDB/Parallel Server with multiple
front-end servers

(1) Selecting a front-end server to be connected
When there are multiple front-end servers, the front-end server that is to be connected
to a UAP is determined as follows.

• Client user
The client user can specify the front-end server to be connected to a UAP using
the PDFESHOST operand, etc., in the client environment definition.

10. Designing a HiRDB/Parallel Server

346

• HiRDB
HiRDB automatically determines the front-end server to be connected to a UAP.
If no particular front-end server is specified in the client environment definition,
HiRDB selects an appropriate front-end server for connection of the UAP.

(2) Environment setup
Because there are multiple front-end servers executing, no special specifications are
usually required.
However, appropriate values must be specified in the following operands (for details
about the standard values for these operands, see the manual HiRDB Version 8 System
Definition):

• pd_max_dic_process
• pd_max_bes_process

(3) HiRDB administrator operation
The operating procedures are the same, but there are differences in the operands that
are specified in the HiRDB system definition and in the environment setup procedures,
such as the number of system files to be created.

(4) Sorting by insertion or update time in a configuration of multiple front-end
servers

If a table contains a timestamp-type column for which the DEFAULT clause with
CURRENT_TIMESTAMP as the default value was specified during table definition, you
must take precautions when you sort the table by row insertion or update time in a
configuration of multiple front-end servers.
In the case of multiple front-end servers, the front-end server connected to the UAP
acquires the current timestamp and sets that value as the default value for the
timestamp column. Note that the system time may not match between the units
containing the front-end servers. If the system time does not match, the sort order
based on the timestamp column and the sort order based on the actual row insertion or
update time will not match.
To match the sort order, specify the DEFAULT clause with CURRENT_TIMESTAMP
USING BES as the default value for the timestamp column during table definition. If
you specify USING BES, the back-end server that manages the RDAREA storing the
row to be inserted or updated is used to acquire the current timestamp, and then that
value is inserted in the row or the row is updated by that value. As a result, the sort
order based on the timestamp-type column matches the sort order based on the actual
row insertion or update time for each unit that contains the back-end server managing
the RDAREA that stores the row.
Table 10-2 describes the server that acquires the current timestamp depending on

10. Designing a HiRDB/Parallel Server

347

whether or not USING BES is specified.
Table 10-2: Server that acquires the current timestamp depending on whether or
not USING BES is specified

Notes

• If a table is partitioned and the table storage RDAREA is managed by
multiple back-end servers located on different units, the sort order based on
the value of the timestamp-type column may not match the sort order based
on the actual row insertion or update time.

• In the case of a shared table, you cannot insert the default value in a
timestamp-type column or update it by the default value unless the table is
locked.

• If the database load utility (pdload) is used to store data in a table, the time
the utility was started by the activated unit is set as the timestamp value.

(5) Client user operation
To enable a client user to select the front-end server for connection, the desired
front-end server must be specified in the client environment definition. The client
environment definition varies depending on whether the high-speed connection
facility or the FES host direct connection facility is used. Table 10-3 lists the required
client environment definitions. For details about the client environment definitions,
see the manual HiRDB Version 8 UAP Development Guide.

Table 10-3: Client environment definitions required for multiple front-end
servers

USING BES Server that acquires the current timestamp

HiRDB/Single HiRDB/Parallel Server

Not specified Single server Front-end server that connected to the UAP

Specified Back-end server that manages the RDAREA
containing the row to be inserted or updated

Client environment
definition operand

Not specifying a front-end
server to be connected

Specifying a front-end server
to be connected

FES host direct
connection

High-speed
connection

PDHOST M M M

PDFESHOST M M

PDNAMEPORT M M M

10. Designing a HiRDB/Parallel Server

348

M: Must be specified.
: Need not be specified.

(a) Guidelines for determining the front-end server to be specified
• You should specify the front-end server on the server machine where the back-end

server that manages the RDAREA to be accessed is also located.
• You should select an appropriate front-end server according to its processing

purposes. For example, separate front-end servers may be used for general
information retrieval processing, batch UAP processing, UAP processing under
OLTP, etc.

(b) HiRDB server connection time
The HiRDB server connection time increases from 1 to 3 as follows (with 1 being the
shortest):
1. High-speed connection facility
2. FES host direct connection facility

3. No front-end server specified for connection

10.1.4 Recovery-unnecessary front-end server
If the unit containing the front-end server terminates abnormally due to an error, the
transaction that was being executed from that front-end server may be placed in
uncompleted status. Because uncompleted transactions lock the database, some
database referencing or updating may be limited. To resolve an uncompleted
transaction, normally the front-end server must be recovered from the error and then
restarted. If the abnormally terminated front-end server is a recovery-unnecessary
front-end server, HiRDB automatically resolves the uncompleted transaction. This
enables you to use another front-end or back-end server to restart database update
processing. A unit that contains a recovery-unnecessary front-end server is called a
recovery-unnecessary front-end server unit. Figure 10-3 shows the operation
depending on whether or not a recovery-unnecessary front-end server is used.

PDSERVICEPORT M

PDSERVICEGRP M M

PDSRVTYPE

Client environment
definition operand

Not specifying a front-end
server to be connected

Specifying a front-end server
to be connected

FES host direct
connection

High-speed
connection

10. Designing a HiRDB/Parallel Server

349

Figure 10-3: Operation based on whether or not a recovery-unnecessary
front-end server is used

Note that HiRDB Non Recover FES is required in order to use recovery-unnecessary
front-end servers.
Advantages

You can continue online operation using the remaining front-end servers without
having to restart the erroneous front-end server.

Criteria

We recommend that you use recovery-unnecessary front-end servers in a system
that requires non-stop operation 24 hours a day.

Relationship with other front-end servers

• Place a recovery-unnecessary front-end server on an independent unit.
• A recovery-unnecessary front-end server cannot support a UAP that uses the

X/Open XA interface for connection. Specify PDFESHOST and
PDSERVICEGRP in the client environment definition and connect such a
UAP to a non-recovery-unnecessary front-end server.

• You can execute the pdrplstart and pdrplstop commands even when
the recovery-unnecessary front-end server and recovery-unnecessary
front-end server unit are inactive.

Figure 10-4 shows an example of a system configuration using a
recovery-unnecessary front-end server.

10. Designing a HiRDB/Parallel Server

350

Figure 10-4: Example of a system configuration using a recovery-unnecessary
front-end server

• A recovery-unnecessary front-end server cannot execute import processing
using the two-phase commitment method for the synchronization point
processing method (enabled when fxa_sqle is specified in the import
system definition commitment_method operand) of the target
Datareplicator. To use the two-phase commitment method for the
synchronization point processing method of the target Datareplicator, you
need to place one or more front-end servers other than the
recovery-unnecessary front-end server at the target HiRDB. You also need to
set the client environment variables PDFESHOST and PDSERVICEGRP at the
target Datareplicator to connect to a front-end server other than a
recovery-unnecessary front-end server.

Relation with other facilities

• Recovery-unnecessary front-end servers cannot use the system switchover
facility. To use the system switchover facility with the system, you must
specify nouse in the pd_ha_unit operand in the unit control information
definitions of the recovery-unnecessary front-end server unit.

10. Designing a HiRDB/Parallel Server

351

(1) Setup method
To use a recovery-unnecessary front-end server, specify stls in the -k option of the
pdstart operand.

(2) Notes
1. If the recovery-unnecessary front-end server does not start during HiRDB startup,

HiRDB continues startup processing excluding the corresponding unit, regardless
of the value specified in the pd_start_level operand. If all front-end servers
in use are recovery-unnecessary front-end servers, HiRDB system startup cannot
be completed unless at least one front-end server starts successfully.

2. Recovery-unnecessary front-end servers are independently subject to reduced
activation. HiRDB ignores the name of a recovery-unnecessary front-end server
in the pd_start_skip_unit operand, if specified.

3. If a recovery-unnecessary front-end server terminates abnormally, the status
information for the front-end server and unit is STOP(A). Unlike the normal
STOP(A), this status allows the pdstop command to perform normal termination
or planned termination on HiRDB's system manager and other units. If a
recovery-unnecessary front-end server is terminated forcibly, the status
information for the front-end server and unit is STOP(F). However, this status
allows the pdstop command to perform normal termination or planned
termination on HiRDB's system manager and other units.

4. A recovery-unnecessary front-end server always starts the unit normally except
in the following case:

• The unit was terminated by a method other than normal termination, and
stls was not specified in the -k option of the pdstart operand during the
previous session.

5. If the status information for a recovery-unnecessary front-end server is STOP(A),
HiRDB stops accepting SQL requests from a UAP that has established connection
with that recovery-unnecessary front-end server. In this case, the KFPS01820-E
message displays c800 as the process termination status of the
recovery-unnecessary front-end server. For the back-end server or dictionary
server that contains the data whose manipulation was attempted by the SQL
request, c900 may be displayed as the process termination status in the
KFPS01820-E message. If the KFPS01820-E message is displayed, use pdstop
-z to terminate the unit containing the front-end server whose process
termination status is c800, eliminate the cause of the status STOP(A), and then
restart.

6. If the status information for a recovery-unnecessary front-end server unit is
STOP(A) due to a network error even though the unit is not running, the system
manager automatically terminates that unit forcibly and then restarts it once the
error has been recovered and the system manager can communicate with the unit.

10. Designing a HiRDB/Parallel Server

352

If the unit is terminated before communication between the system manager and
the unit becomes available, the system manager does not attempt forced
termination nor does it restart the unit. If necessary, use the pdstart command
to start the unit. In the following cases, take appropriate action depending on the
situation:

• When an error message has been displayed for the applicable unit
Before starting the unit, check the message to determine the cause of the
error and then take appropriate action. If the unit is stopped, the
KFPS01841-I or KFPS01821-E message is displayed in the syslogfile. The
KFPS01853-W, KFPS01863-E, or KFPS05619-E message is not displayed
when the pdstart command is executed.

• When the system manager's attempt to restart the unit failed and the unit
remained in terminated status
Check the message to determine the cause of the start error, and take
appropriate action. After that, start the applicable unit with the pdstart
command, if necessary.

7. For a transaction that is processed at the back-end server or dictionary server
branched out from the recovery-unnecessary front-end server, its completion is
synchronized with the target back-end server or dictionary server when the
transaction is committed. If the target back-end server or dictionary server cannot
execute transaction processing at the time of synchronization (because system
switchover is underway, the server is stopped, the server is not ready for start, or
the server is not ready for termination), processing may be queued with the first
transaction status set to READY or COMMIT. If this happens, check the server to
determine the cause of the queuing of transaction processing and take appropriate
action so that the transaction resolution processing can be resumed.

8. You may not be able to use the pdcmt, pdrbk, or pdfgt command to forcefully
terminate a transaction for which processing was performed by connection to a
front-end server that uses the recovery-unnecessary FES facility, regardless of
whether the transaction is in first or second status. In such a case, see Forcing
determination of uncompleted transactions in the manual HiRDB Version 8
System Operation Guide for details about how to automatically resolve an
uncompleted transaction.

10. Designing a HiRDB/Parallel Server

353

10.2 Designing HiRDB file system areas

When a HiRDB system is constructed, areas for HiRDB-specific files (HiRDB files)
must be created. This section discusses the design considerations for creating HiRDB
file system areas.
Separate HiRDB file system areas should be created for the types of items listed below,
so that contention between input/output operations on files with different purposes or
access characteristics can be avoided. If regular files are used, write performance can
be improved by specifying the purpose explicitly, and an appropriate device can be
allocated according to the purpose. Separate file system areas should be created for:

• RDAREAs
• Shared RDAREAs
• System files
• Work table files
• Utilities
• RDAREAs for lists (list RDAREAs)

10.2.1 Designing HiRDB file system areas for RDAREAs
This section discusses the design considerations for HiRDB file system areas in which
RDAREAs are to be created.

(1) Design for improved reliability
1. For purposes of update processing, character special files are more reliable than

regular files. Regular files may become inaccessible if the OS terminates
abnormally. Thus, character special files should be used for HiRDB file system
areas for user RDAREAs that satisfy the following characteristics:

• User RDAREAs for storing tables that are used primarily for update
processing.

• User RDAREAs for storing particularly important data.
2. The amount of space required for a HiRDB file system area is displayed when the

system generator (pdgen) is executed. At least the displayed amount of space
should be allocated to the HiRDB file system area.

3. HiRDB file system areas for RDAREAs must be created on a server machine
where the following servers are defined:

• Dictionary server
• Back-end server

10. Designing a HiRDB/Parallel Server

354

4. HiRDB file system areas for the following RDAREAs can be created only on a
server machine where a dictionary server is defined:

• System RDAREAs
• Data dictionary LOB RDAREAs
• Registry RDAREA
• Registry LOB RDAREA

5. HiRDB file system areas for the following RDAREAs can be created only on a
server machine where back-end servers are defined:

• User RDAREAs
• User LOB RDAREAs

6. If the system switchover facility is to be used, the HiRDB file system areas for
user RDAREAs should be allocated as character special files.

(2) Design for improved performance
1. You should create separate HiRDB file system areas for the following types of

RDAREAs:
• System RDAREAs
• Data dictionary LOB RDAREAs
• User RDAREAs
• User LOB RDAREAs
• Registry RDAREAs
• Registry LOB RDAREAs

2. You should create HiRDB file system areas for system files on separate hard disks
separately from the ones used for HiRDB file system areas for RDAREAs. In this
way, you can distribute input/output operations when collecting a synchronization
point dump, thereby reducing the amount of time required to collect the
synchronization point dump.

3. If you are not using the prefetch facility, the sequential read speed is faster with
regular files than with character special files.

4. For random one-page reads, processing speed is faster with character special files
than with regular files.

5. For write processing, the speed is faster with character special files than with
regular files.

6. Regular files have a hierarchical structure; therefore, as files become larger, the
hierarchical levels increase. When you access such files with many hierarchical

10. Designing a HiRDB/Parallel Server

355

levels, the number of input/output operations increases, adversely affecting the
access efficiency.

7. The HiRDB file system areas should be allocated as shown in Table 10-4, so that
input/output time can be reduced.
Table 10-4: Allocation of HiRDB file system areas to improve performance

10.2.2 Designing HiRDB file system areas for system files
This section discusses the design considerations for HiRDB file system areas in which
system files are to be created.

(1) Design for improved reliability
1. For update processing, character special files are more reliable than regular files.

Regular files may become inaccessible after a system shutdown. Thus, character
special files should be used for HiRDB file system areas for system files.

2. Create at least two HiRDB file system areas for system files. If there is only one
HiRDB file system area for system files, HiRDB cannot continue operating in the
event of a hard disk failure at the disk containing the system files.

3. Create HiRDB file system areas for system files on separate hard disks. In this
way, in the event of a hard disk error, you can restart HiRDB using the other hard
disk.

4. The amount of space required for a HiRDB file system area is displayed when the
system generator (pdgen) is executed. At least the displayed amount of space
should be allocated to the HiRDB file system area.

Type of HiRDB file system area File to be
allocated

HiRDB file system area for system RDAREAs Character special file

HiRDB file system area for dictionary LOB RDAREAs

HiRDB file system area for user LOB RDAREAs

HiRDB file system area for user RDAREAs that store frequently updated tables or tables
primarily subject to retrieval of small amounts of data

HiRDB file system area for user RDAREAs that store tables with a large amount of data
that are primarily subject to retrieval of all entries or retrieval of large amounts of data by
key using the cluster key (but with data that is rarely updated)

• Regular file
(when not using
the prefetch
facility)

• Character special
file (when using
the prefetch
facility)

10. Designing a HiRDB/Parallel Server

356

(2) Design for improved performance
You should create HiRDB file system areas for system files on separate hard disks
separately from the ones used for HiRDB file system areas for RDAREAs. In this way,
you can distribute input/output operations when collecting a synchronization point
dump, thereby reducing the amount of time required to collect the synchronization
point dump.

10.2.3 Designing HiRDB file system areas for work table files
This section discusses the design considerations for HiRDB file system areas in which
work table files are to be created.

(1) Design for improved reliability
1. Work table files can be allocated to regular files. However, if the system

switchover facility is used, disk space can be saved by allocating work table files
to character special files because the files can then be shared.

2. The amount of space required for a HiRDB file system area for work table files
must be greater than the total size of the work table files to be created in the area.
For details about the sizes of work table files, see 19. Determining Work Table
File Size.

3. A HiRDB file system area for work table files must be created at the server
machines where the following servers are defined:

• Dictionary server
• Back-end server

4. With Linux, the file system area for work table files cannot be created in character
special files.

(2) How to check the peak capacity
You can use the following command to obtain the peak capacity of a HiRDB file
system area for work table files:
pdfstatfs -d name-of-HiRDB-file-system-area-for-work-tables

-d
Specifies that the maximum utilization value for the allocated HiRDB file
system area is to be displayed. The peak capacity display that is output is this
value. The maximum utilization value is cleared by entering the following
pdfstatfs command:

pdfstatfs -c name-of-HiRDB-file-system-area-for-work-tables
-c

Specifies that the maximum utilization value for the allocated HiRDB file

10. Designing a HiRDB/Parallel Server

357

system area is to be cleared to 0.

10.2.4 Designing HiRDB file system areas for utilities
This section discusses the design considerations for HiRDB file system areas in which
utility files (backup files, unload data files, and unload log files) are created. Use the
HiRDB file system areas for utilities to create the following files:

• Backup files
• Unload data files
• Unload log files
• Differential backup management files

(1) Design considerations
1. If you are creating a HiRDB file system area for backup files, allocate it to

character special files.
2. The amount of space required for a HiRDB file system area for backup files must

be greater than the total size of the RDAREAs that will be backed up. For details
about the sizes of RDAREAs, see 17. Determining RDAREA Size.

3. Create a HiRDB file system area for differential backup management files on the
server machine where the system manager is located.

4. If you use the system switchover facility, create unload log files on a shared disk
(character special files).

5. If you are creating a HiRDB file system area for unload log files, specify the
following options in the pdfmkfs command:

• -k option: Specify UTL (HiRDB file system area for utilities) as the usage.
• -n option: For the size of the HiRDB file system area, specify the value

obtained from the following formula:
Total number of records in system log files to be unloaded record length
of system log files number of unload log files to be created 1.2
1048576

• -l option: For the maximum number of files, specify the number of unload
log files to be created.

• -e option: For the maximum number of extensions, specify the number of
unload log files to be created times 10.

(2) How to check the peak capacity
You can use the following command to obtain the peak capacity of a HiRDB file
system area for utilities:

10. Designing a HiRDB/Parallel Server

358

pdfstatfs -d name-of-HiRDB-file-system-area-for-utilities
-d

Specifies that the maximum utilization value for the allocated HiRDB file
system area is to be displayed. The peak capacity display that is output is this
value. You can clear the maximum utilization value by entering the
following pdfstatfs command:

pdfstatfs -c name-of-HiRDB-file-system-area-for-utilities
-c

Specifies that the maximum utilization value for the allocated HiRDB file
system area is to be cleared to 0.

10.2.5 Designing HiRDB file system areas for list RDAREAs
This section discusses the design considerations for HiRDB file system areas in which
list RDAREAs are to be created.

(1) Design considerations
1. A list is used to store temporary intermediate results of search processing.

therefore, it does not need to be as reliable as other RDAREAs. You can create
HiRDB file system areas for list RDAREAs in regular files.

2. If you use the system switchover facility, you can save disk space by allocating
HiRDB file system areas for list RDAREAs to character special files because the
files can then be shared.

3. Create a HiRDB file system area for list RDAREAs on the same back-end server
that contains the base table.

(2) Design for improved performance
1. If you are creating HiRDB file system areas for list RDAREAs on RAID, you

should use character special files to reduce processing time. If you are creating
them on any other disk, you should use regular files to reduce processing time.

2. You should create HiRDB file system areas for list RDAREAs on a separate hard
disk separately from the ones used for the following HiRDB file system areas. In
this way, you can distribute input/output operations when searching a list, thereby
reducing the processing time.

• HiRDB file system areas for user RDAREAs
• HiRDB file system areas for user LOB RDAREAs
• HiRDB file system areas for work table files

10. Designing a HiRDB/Parallel Server

359

10.2.6 Maximum sizes of HiRDB file system areas
Table 10-5 shows the maximum sizes of HiRDB file system areas.

Table 10-5: Maximum sizes of HiRDB file system areas

HiRDB type Conditions Maximum size of HiRDB file
system area (MB)

HP-UX Large file not used Regular file 2,047

Character special file

Large file used Regular file 131,071

Character special file

Solaris Large file not used Regular file 2,047

Character special file

Large file used Regular file 1,048,575

Character special file

AIX 5L Large file not used Regular file 2,047

Character special file

Large file used Regular file (JFS) 65,411

Regular file (JFS2) 1,048,575

Character special file

Linux Large file not used Regular file 2,047

Character special file

Large file used Regular file 1,048,575

Character special file

10. Designing a HiRDB/Parallel Server

360

10.3 Designing system files

This section discusses design considerations for various system files.

10.3.1 Designing system log files
When system log files need to be swapped, HiRDB (the unit) will terminate
abnormally if there are no swappable target system log files. To prevent this, HiRDB
has a facility for monitoring the free area for system log files (monitoring free area for
system log files facility). This facility operates when the percentage of available free
area for the system log files reaches a warning value. Select one of the following two
levels.
Level 1:

Output the KFPS01162-W warning message when the percentage of free area for
the system log files reaches the warning level.

Level 2:

When the percentage of free area for the system log files reaches the warning
level, suppress all further scheduling of new transactions, terminate forcibly all
transactions in the server, and output the KFPS01160-E message. This controls
the output volume of the system logs.

If level 2 is selected, all transactions in the server are terminated forcibly when there
becomes insufficient free space in the system log files. Because of the severity of this
action, the system log files should be designed quite carefully.
The following explains some of the design considerations for system log files.

(1) Design considerations
1. System log files are required for each server, except for the system manager.
2. Specify the same record length and number of records for all system log files on

the same server.
3. The number of system log files that can be created for each server is 6-200 groups.

If HiRDB is restarting after an abnormal termination due to insufficient space for
the system log files, the number of system log files to be added must be the same
as the number that were already created. For example, if 50 groups of 50 system
log files had been created, each of the maximum size (2 gigabyte), then 50 groups
of 50 system log files of the maximum size should now be added. Therefore, it is
recommended that system log files always be created in units of 100 groups.

4. The maximum total size of the system log files is 400 gigabytes per server.
5. To reduce the number of unload operations, it is advisable to create many large

10. Designing a HiRDB/Parallel Server

361

system log files.
6. If the system switching facility is used, a file that is involved in many input/output

operations (such as a log unload file) should not be created on the same disk that
contains $PDDIR%PDDIR%.

7. The amount of space required for one system log file must satisfy the condition
shown following:

a: Value of pd_log_max_data_size operand
b: Value of pd_log_sdinterval operand
c: Value of pd_log_rec_leng operand
d: Value of pd_spd_assurance_count operand

8. The total amount of space required for system log files (if dual system log files
are used, the total amount of space for one version) must satisfy the condition
shown in Formula 1 and 2 below.
Formula 1

a: Output system log size
For details about determining this value, see 18.1.1(2) Determining the size
of system log information.

b: Record length of system log files specified in the pd_log_rec_leng operand
c: Substitute the following values:

If pd_log_rec_leng = 1024: 1000
If pd_log_rec_leng = 2048: 2000
If pd_log_rec_leng = 4096: 4000

Formula 2

a:
Size of system log information that may be output at the corresponding
server while executing the database updating transaction with the longest
execution time.

Size of one system log file (bytes) (a + 368) c c b d

Total size of all system log files (bytes) a c 3 b

Total size of all system log files (bytes) 3 a (b + 1)

10. Designing a HiRDB/Parallel Server

362

For details about the formula for estimating the size of system log
information, see 18.1 Determining the size of system log files.

b: Value of pd_spd_assurance_count operand
Number of guaranteed-valid generations for synchronization point dump
files.

(a) Effects on operations of the number of generations of system log files
If the total size of the system log files is unchanged, the size of each generation will
depend on how many generations of system log files are being maintained. Table 10-6
shows the effects of the number of generations of system log files on operations. The
total size of the system log files is unchanged.

Table 10-6: Effects on operations of the number of generations of system log
files

In normal operations, the lower the number of generations of system log files, the more
advantageous the swapping interval and the unload frequency will become. However,
if there is a failure, the effects on operations will be reduced with a larger number of
log file generations.

Comparison item System log file configuration

Small number of generations Large number of generations

Size of each generation of
system log files

Becomes larger. Becomes smaller.

Swap interval Because the size of each generation of
system log files becomes larger, the
swap interval becomes longer.

Because the size of each generation
of system log files becomes smaller,
the swap interval becomes shorter.

Unload frequency Because the swap interval becomes
longer, the unload frequency becomes
lower.

Because the swap interval becomes
shorter, the unload frequency
becomes higher.

Effects on the system log size
when something such as a disk
failure makes several
generations of system log files
unusable

• Because the size of each
generation of system log files
becomes larger, the log volume
used for database recovery in the
event of a disk failure increases,
and the time required for database
recovery increases.

• If the decrease in the system log
volume is large, the effects of the
decrease in system log volume
will have increasing effects on
HiRDB operations.

• Because the size of each
generation of system log files
becomes smaller, the log volume
used for database recovery in the
event of a disk failure decreases,
and the time required for
database recovery decreases.

• If the decrease in the system log
volume is small, the effects of the
decrease in system log volume
will have decreasing effects on
HiRDB operations.

10. Designing a HiRDB/Parallel Server

363

(2) Design for improved reliability
(a) System log file duplexing

When system log file duplexing is used, HiRDB acquires the same system log
information in both versions. In the event of an error on one of the versions, the system
log can be read from the other version, thereby improving system reliability. When
dual system log files are used, they must be used under the management of HiRDB
rather than using a mirror disk. When using dual system log files, create the files for
each system on a separate hard disk.
To use dual system log files, specify the following operands in the server definition:

• pd_log_dual=Y
• -b option in the pdlogadpf operand (to specify the name of the B version of

system log file)
(b) Single operation of system log files

Single operation of system log files is employed when dual system log files are used.
In the event of an error in a system log file, processing can continue using the normal
version of the system log file without having to terminate the HiRDB unit abnormally
even if neither system has a usable system log file. This is called single operation of
system log files. To perform single operation of system log files, specify
pd_log_singleoperation=Y in the server definition.
As opposed to single operation of system log files, continuing processing using both
versions of system log files (normal processing mode) is called double operation of
system log files

(c) Automatic opening of system log files
If there is no overwrite-enabled system log file at the time of a HiRDB restart, but a
reserved file is available, then HiRDB continues processing by opening the reserved
file and placing it in overwrite-enabled status. This is called automatic opening of
system log files.
To perform automatic opening of system log files, specify
pd_log_rerun_reserved_file_open=Y in the server definition.

(3) Facility for parallel output of system logs (AIX 5L only)
When dual system log files are used, a facility for simultaneous output of system log
information to both files using the Asynchronous I/O Subsystem,* which is an AIX 5L
function, is called the facility for parallel output of system logs. By processing the
output of system log information to both files in parallel, the time required for log
output can be reduced.
* The Asynchronous I/O Subsystem must be installed and enabled in advance. If the

10. Designing a HiRDB/Parallel Server

364

Asynchronous I/O Subsystem is not enabled, HiRDB cannot start, resulting in
abnormal termination. For AIX 5L V5.2 or later, there are legacy and POSIX versions
of the Asynchronous I/O Subsystem; you should enable the legacy version of the
Asynchronous I/O Subsystem, because that is the version that HiRDB uses. For details
about Asset Information Manager, see the AIX 5L documentation.
For details about Asset Information Manager settings for using the facility for parallel
output of system logs, see (d) Tuning the Asynchronous I/O Subsystem.

(a) Recommended configuration
Although you can define for each server whether or not the facility for parallel output
of system logs is to be used, we recommend that you apply this facility to all servers.
We also recommend that you place the primary and secondary files on separate devices
in order to further reduce the time required for output of log information.

(b) Definition method
In the server definition, specify pd_log_dual_write_method=parallel. In the
following cases, the facility for parallel output of system logs is not applied, regardless
of the specified value:

• Dual system log files are not used (the value of the pd_log_dual operand is not
Y).

• The system log files are not placed in character special files.
(c) Notes

1. If the Asynchronous I/O Subsystem is not enabled, HiRDB cannot start, resulting
in abnormal termination. Either enable the Asynchronous I/O Subsystem, omit
the pd_log_dual_write_method operand, or specify serial, and then restart
HiRDB. If the Asynchronous I/O Subsystem parameter is set to STATE to be
configured at system restart = available, HiRDB starts
automatically.

2. The facility for parallel output of system logs is not applicable to system log files
placed in regular files. If you add system log files, place them in character special
files.

3. The facility for parallel output of system logs is applied only when both primary
and secondary current files are placed in character special files and system log
information can be output to those current files (they are not in closed, reserved,
or error status). Parallel output of system logs does not take place, regardless of
the system definition, if the current file satisfies either of the following
conditions:

• The primary or secondary current file is placed in a regular file.
• The primary or secondary current file is in a status such that no log

information can be output to it.

10. Designing a HiRDB/Parallel Server

365

4. When the servers using the facility for parallel output of system logs are run on
multiple server machines, such as when the system switchover facility is used,
and the Asynchronous I/O Subsystem is not enabled at any of those server
machines, startup of a standby unit or system switchover fails. Make sure that
Asset Information Manager is enabled at all server machines.

(d) Tuning the Asynchronous I/O Subsystem
To use the facility for parallel output of system logs, you must set the following
parameters after installing Asset Information Manager:

* This is the default value; there is no need to change it. If the value is changed,
performance degraded.
No other parameters require tuning.

(4) Record length of a system log file
Use the pdloginit command's -l option to specify the record length of a system log
file. You can select 1024, 2048, or 4096 as the record length. By changing the record
length, you may be able to reduce the size of system log file.

(a) When constructing a new HiRDB
When constructing a new HiRDB, you should select 1024 as the record length. To do
this, specify a value of 1024 in the pd_log_rec_leng operand in the server
definition.

(b) When already running a HiRDB
Change the record length of system log files on the basis of the average block length
that is output to the system log file (OUTPUT BLOCK LENGTH), which is obtained from
the statistical information about system activity by the statistics analysis utility
(pdstedit). You should change the record length as follows:

• If the average block length is 1024 bytes or less, change the record length to 1024.
• If the average block length is 1025 to 2048 bytes, change the record length to

2048.
• If the average block length is 2049 bytes or greater, change the record length to

4096.
Notes about changing the record length:

• If records are short, the number of input/output operations in the file

Parameter name Recommended value

STATE to be configured at system restart available

STATE of FastPath enable*

10. Designing a HiRDB/Parallel Server

366

increases for large amounts of data; however, the amount of free space is
reduced due to rounding up to the next HiRDB record unit, resulting in
higher file utilization efficiency.

• If records are long, the number of input/output operations in the file
decreases for large amounts data; however, the amount of free space is
increased due to rounding up to the next HiRDB record unit, resulting in
lower file utilization efficiency.

How to change the record length:
For details about how to change the record length of system log files, see the
manual HiRDB Version 8 System Operation Guide.

(5) Defining the system log files
The pdlogadfg and pdlogadpf operands are used to define the correspondence
between file groups and the created system log files.

10.3.2 Designing synchronization point dump files
This section describes the design considerations for synchronization point dump files.

(1) Design considerations
1. Synchronization point dump files are required for each server, except for the

system manager.
2. You can create 2-60 groups of synchronization point dump files per server. (If ONL

is specified, 2-30 groups per server.)
3. You should create at least four synchronization point dump files per server.
4. HiRDB uses synchronization point dump files in the order specified in the

pdlogadfg -d spd operand.
5. If a shortage of space occurs in a synchronization point dump file, HiRDB cannot

be restarted. For this reason, the size of a synchronization point dump file should
be set to be greater than the value specified for the maximum number of
concurrent connections (pd_max_users) in the system common definition. For
details about the calculation of synchronization point dump file size, see 18.2
Determining the size of synchronization point dump files.

(2) Design for improved reliability
(a) Example of file organization

As a safeguard against the possibility of hard disk failures, the synchronization point
dump files should be created on separate hard disks. If this is not possible, adjacent
generations of files should be created on separate hard disks, as shown in the example
in Figure 10-5.

10. Designing a HiRDB/Parallel Server

367

Figure 10-5: Example of creating adjacent generations on separate hard disks
(HiRDB/Parallel Server)

(b) Duplexing of the synchronization point dump file
When the synchronization point dump file is duplexed, HiRDB collects the same
synchronization point dump on both system A and system B. This increases system
reliability, because when a collected synchronization point dump is read and there is
an abnormality in the file, the synchronization point dump can still be read from the
other file. Duplexing also enables the number of guaranteed-valid generations to be set
to one generation, yet reliability is not compromised and the number of
synchronization point dump files in overwrite disabled status is reduced.
Specify the following operands in the server definition to enable duplexing of
synchronization point dump files:

• pd_spd_dual = Y
• -b option in the pdlogadpf operand (specifies the system log file name on

system B)
(c) Number of guaranteed-valid generations for synchronization point dump

files
Each synchronization point dump acquired by HiRDB is stored in a separate
synchronization point dump file. HiRDB uses the generation concept to manage
synchronization point dump files. The HiRDB administrator specifies the number of
generations of synchronization point dump files, and the corresponding system log
files, that are to be placed in overwrite-disabled status. This concept is called the
number of guaranteed-valid generations for synchronization point dump files, and it is
illustrated in Figure 10-6.

10. Designing a HiRDB/Parallel Server

368

Figure 10-6: Number of guaranteed-valid generations for synchronization point
dump file (HiRDB/Parallel Server)

Explanation
If there are two guaranteed-valid generations, the synchronization point dump
files up to the second generation, and the system log files relevant to those
synchronization point dump files, are in overwrite disabled status. The
synchronization point dump files prior to the third generation, and the system log
files relevant to those synchronization point dump files, are in overwrite enabled
status.

The required number of synchronization point dump files is the number of
guaranteed-valid generations + 1. Specify the number of guaranteed-valid generations
for synchronization point dump files in the pd_spd_assurance_count operand in
the server definition.
If synchronization point dump files are to be duplexed, it is recommended that only
one guaranteed-valid generation be required. If duplexing is not to be used, two
generations are recommended.

(d) Reduced mode operation for synchronization point dump files
If the number of synchronization point dump files available for use is reduced to the
number of guaranteed-valid generations + 1 because of errors in synchronization point

10. Designing a HiRDB/Parallel Server

369

dump files, processing can continue with a minimum of two files. This is called the
reduced mode operation for synchronization point dump files.
To perform reduced mode operation for synchronization point dump files, specify the
pd_spd_reduced_mode operand in the server definition.

(e) Automatic opening of synchronization point dump files
When the number of synchronization point dump files available for use is reduced to
the number of guaranteed-valid generations + 1 because of errors in synchronization
point dump files, processing can continue by opening a reserved file and placing it in
overwrite-enabled status (assuming that such a reserved file is available). This is called
automatic opening of synchronization point dump files.
To perform automatic opening of synchronization point dump files, specify the
pd_spd_reserved_file_auto_open=Y in the server definition.

(3) Defining the synchronization point dump files
The pdlogadfg and pdlogadpf operands are used to define the correspondence
between file groups and the created synchronization point dump files.
If only the pdlogadfg operand is specified, synchronization point dump files can be
added during HiRDB operation.

10.3.3 Designing status files
This section describes the design considerations for status files.

(1) Design considerations
1. Create the primary and secondary files on separate disks in order to avoid errors

on both files.
2. To prevent abnormal termination of HiRDB as a result of a shortage of status file

space, create several spare files whose size is greater than the estimated value.
When a status file becomes full, file swapping occurs in order to use a spare file.
If the size of the spare file is the same as the full status file, a space shortage also
occurs on the spare file, resulting abnormal termination of HiRDB. For example,
if you create six sets of status files, we recommend that you make the file size for
two of the sets larger than the other sets.

3. Unit status files are required for each server machine.
4. Server status files are required for all servers except for the system manager.
5. Make sure that the primary and secondary files have the same record length and

the same number of records.
6. You can create 1-7 sets of unit status files per unit.
7. You can create 1-7 sets of server status files per server.

10. Designing a HiRDB/Parallel Server

370

(2) Design for improved reliability
1. Provide at least three sets of status files (dual files 3 = 6 files) and place them

in such a manner that corruption of all status files by disk errors is unlikely.
2. To prevent abnormal termination of HiRDB resulting from a space shortage, we

recommend that you set the size of a status file to at least 1.2 times the estimated
value.

3. A status file contains information that will be needed in order to restore the system
status during HiRDB restart processing. If an error occurs in such a file and no
spare file is available, the system status cannot be restored. Therefore, make sure
that spare files are always available as a safeguard in the event of errors on the
current files.

(a) Recommended configuration
In order to provide a safety margin until a disk becomes operational after it has been
recovered from a disk failure, we recommend that you provide six sets of status files
on four sets of disks (dual files x 6 = 12 files) and place them as shown in Figure 10-7.
If an error occurs on the normal system during single operation, HiRDB cannot be
restarted; therefore, we recommend that you do not apply single operation to status
files (specify stop in pd_syssts_singleoperation and
pd_sts_singleoperation).
Figure 10-7 shows an example of placing six sets of status files on four sets of disks.

Figure 10-7: Example of placing six sets of status files on four sets of disks

Explanation:

10. Designing a HiRDB/Parallel Server

371

With this arrangement, if an error occurs on a disk and then another error occurs
on another disk, the remaining two disks still contain intact primary and
secondary files, and HiRDB can continue operation using the status files on the
error-free disks as the current files. For example, if an error occurs on disk A and
then an error occurs on disk B, HiRDB continues operation using as the current
files the primary and secondary status files on disks C and D (sts-3a and
sts-3b). In this status, if another error occurs on one of the current files, HiRDB
terminates abnormally; however, because one of the current files is normal,
HiRDB can be restarted after one of the disks is recovered from its error.

(3) Defining the status files
The pd_syssts_file_name_1 to pd_syssts_file_name_7 and the
pd_sts_file_name_1 to pd_sts_file_name_7 operands are used to define the
correspondence between the status files created by the pdstsinit command and the
logical files.
The pd_syssts_file_name_1 to pd_syssts_file_name_7 operands are for unit
status files, and the pd_sts_file_name_1 to pd_sts_file_name_7 operands are
for server status files.
If the names of imaginary logical files or status files are defined in the
pd_syssts_file_name_2 to pd_syssts_file_name_7 operands or in the
pd_sts_file_name_2 to pd_sts_file_name_7 operands, status files can be
added during HiRDB operation. In this case, the following operands must be specified.
Unit status files

pd_syssts_initial_error
pd_syssts_last_active_file

Server status files
pd_sts_initial_error
pd_sts_last_active_file

(4) Single operation of status files
If an error occurs on one of the current files while there is no available spare file,
continuing operation using only the normal file (either the primary or secondary file)
is called status-file single operation. When status files are placed in the single
operation mode, the KFPS01044-I message is displayed.
If an error occurs on the current file in the single operation mode, HiRDB can no longer
be restarted. Therefore, status-file single operation is not recommended. Increase the
number of status file sets to avoid a situation where no spare file is available.
As opposed to status-file single operation, continuing operation using both status files
(normal processing mode) is called status-file double operation.

10. Designing a HiRDB/Parallel Server

372

(a) Advantages and disadvantages of status-file single operation
Advantages

Processing can continue even if an error occurs on one of the current files while
no spare file is available. This reduces the adverse consequences of HiRDB
shutdown resulting from a status file error.

Disadvantages

If an error occurs on the normal file during single operation or HiRDB terminates
abnormally while the status file is updated, the contents of the current file are lost,
disabling HiRDB restart.

(b) Specification method
To use unit status-file single operation, specify pd_syssts_singleoperation =
continue in the unit control information definition file. To use server status-file
single operation, specify pd_sts_singleoperation = continue in the server
definition. Make sure that pd_syssts_singleoperation and
pd_sts_singleoperation have the same value.

Relationship with other operands
The combination of the pd_syssts_singleoperation and
pd_syssts_initial_error operand values or the
pd_sts_singleoperation and pd_sts_initial_error operand values
determines the HiRDB operation that is to take place if an error is detected in a
status file during HiRDB startup. Therefore, determine the values of these
operands together. For details about the HiRDB operation that is to take place if
an error is detected in a status file during HiRDB startup, see the description of
the pd_syssts_initial_error or pd_sts_initial_error operand in the
manual HiRDB Version 8 System Definition.

(c) Notes about using single operation
Table 10-7 describes the HiRDB operation and HiRDB administrator's action that
depend on whether or not single operation is used. For details about how to handle
status file errors, see the manual HiRDB Version 8 System Operation Guide.

10. Designing a HiRDB/Parallel Server

373

Table 10-7: HiRDB operation and HiRDB administrator's action that depend on
whether or not single operation is used

Legend:
: Not applicable

(5) Notes on status file errors (important)
• If errors occur on both current files simultaneously, HiRDB terminates

abnormally and HiRDB can no longer be restarted. A possible measure for

Condition Status-file single operation
(pd_syssts_singleoperation or pd_sts_singleoperation

operand value)

Used (continue specified) Not used (omitted or stop
specified)

There are spare
files

Error occurred in
the current file

HiRDB operation:
Swaps status files.
HiRDB administrator's action:
Handle the error in the applicable status file.

Error occurred on
both current files
simultaneously

HiRDB operation:
Terminates abnormally. HiRDB cannot be restarted.
HiRDB administrator's action:
See Handling of status file errors in the manual HiRDB Version 8
System Operation Guide.

There is no spare
file

Error occurred in
one of the current
files

HiRDB operation:
Resumes processing using single
operation.
HiRDB administrator's action:
Create spare files immediately and
return HiRDB to the double
operation mode.

HiRDB operation:
Terminates abnormally.
HiRDB administrator's action:
Create spare files, and then
restart HiRDB.

Error occurred on
both current files
simultaneously

HiRDB operation:
Terminates abnormally. HiRDB cannot be restarted.
HiRDB administrator's action:
See Handling of status file errors in the manual HiRDB Version 8
System Operation Guide.

Error occurred in
the normal file
during single
operation

HiRDB operation:
Terminates abnormally. HiRDB
cannot be restarted.
HiRDB administrator's action:
See Handling of status file errors
in the manual HiRDB Version 8
System Operation Guide.

10. Designing a HiRDB/Parallel Server

374

avoiding this situation is to use multiple physical disks (mirroring).
• If the current file (existing during termination) is deleted or initialized by the

pdstsinit command prior to HiRDB startup, HiRDB can no longer be
restarted.

10. Designing a HiRDB/Parallel Server

375

10.4 Placing RDAREAs

This section discusses considerations concerning placement of the following types of
RDAREAs:

• System RDAREAs
• Data dictionary LOB RDAREAs
• User RDAREAs
• User LOB RDAREAs

• List RDAREAs

10.4.1 Placing system RDAREAs
System RDAREAs should be placed taking into account the placement of user
RDAREAs. Points to be considered when a system RDAREA is placed are discussed
below.

• Place system RDAREAs on the dictionary server.
• If both dictionary server and back-end server are located on the same server

machine, place system RDAREA areas on a separate disk from that for user
RDAREAs.

Among the system RDAREAs, data dictionary RDAREAs and data directory
RDAREAs are accessed frequently by HiRDB for SQL statement analysis. If they are
placed on the same disk as user RDAREAs, contention may occur between an access
request for the purpose of SQL statement analysis and a table access request, in which
case one of the requests is placed on hold until the other request has been processed.
Figure 10-8 shows an example of system RDAREA placement that can avoid
contention among disk accesses.

10. Designing a HiRDB/Parallel Server

376

Figure 10-8: Example of system RDAREA placement (HiRDB/Parallel Server)

10.4.2 Placing data dictionary LOB RDAREAs
To avoid contention among disk accesses, a data dictionary LOB RDAREA should not
be placed on the same disk as any other RDAREA.
Figure 10-9 shows an example of data dictionary LOB RDAREA placement.

10. Designing a HiRDB/Parallel Server

377

Figure 10-9: Example of data dictionary LOB RDAREA placement (HiRDB/
Parallel Server)

Relationship with data dictionary RDAREAs
A dictionary table used to manage stored procedures or stored functions can be
placed in a separate data dictionary RDAREA from other dictionary tables.

10.4.3 Placing user RDAREAs
(1) Relationship with system log files

A user RDAREA should not be placed on the same disk as a system log file. When this
rule is observed, input/output operations on HiRDB files that constitute system log
files and on user RDAREAs can be distributed to multiple disks when a
synchronization point dump is collected, thereby reducing the amount of time required
for synchronization point dump processing.

(2) Relationship with system RDAREAs
A user RDAREA should not be placed on the same disk as a system RDAREA.

(3) Row-partitioned tables
If you have partitioned a table by row, place the RDAREAs storing the row-partitioned
table on separate back-end servers and on separate disks. Figure 10-10 shows an
example of user RDAREA placement.

10. Designing a HiRDB/Parallel Server

378

Figure 10-10: Example of user RDAREA placement (HiRDB/Parallel Server)

(4) Placement of a floating server
If you perform complicated query processing on tables, such as join and sort
processing involving multiple back-end servers, carefully determine the placement of
user RDAREAs.
If you place user RDAREAs on all back-end servers, some back-end servers'
workloads become high because they not only access user RDAREAs but also execute
complicated query processing. This results in reduction of overall system throughput.
If you have a sufficient number of server machines, define a back-end server that has
no user RDAREA placed on it (floating server). In this way, complicated query
processing is handled by the floating server, thereby reducing each back-end server's
workload.

10.4.4 Placing user LOB RDAREAs
To avoid contention among disk accesses, a user LOB RDAREA should not be placed
on the same disk as any other RDAREA.
In the case of a table containing a LOB column in a HiRDB/Parallel Server, the user
LOB RDAREAs containing the LOB data and the user RDAREAs containing the LOB
column structure base table must be placed on the same back-end server.
Figure 10-11 shows an example of user LOB RDAREA and user RDAREA placement.

10. Designing a HiRDB/Parallel Server

379

Figure 10-11: Example of user LOB RDAREA and user RDAREA placement
(HiRDB/Parallel Server)

10.4.5 Placing list RDAREAs
Place list RDAREAs on the back-end server that contains its base table.
Creating one list RDAREA lets you create lists for all the tables that are stored in that
back-end server.
To avoid contention among disk accesses, you should place list RDAREAs on a
separate disk from any other RDAREAs. Figure 10-12 shows an example of list
RDAREA placement.

Figure 10-12: Example of list RDAREA placement (HiRDB/Parallel Server)

10. Designing a HiRDB/Parallel Server

380

10.5 Heterogeneous system configuration for HiRDB/Parallel Server

Normally, all HiRDB/Parallel Server units must be on the same platform; however,
you can configure a heterogeneous system for HiRDB/Parallel Server in which
different platforms coexist, as long as the following conditions are met:

• All front-end servers run on the same platform (Linux (IPF) or Linux (EM64T)).
• All back-end and dictionary servers run on the same platform (Linux (IPF) or

Linux (EM64T)).
• The system manager runs on the same platform as the front-end or back-end

servers
Figure 10-13 shows an example of a heterogeneous system configuration.

Figure 10-13: Example of heterogeneous system configuration for HiRDB/
Parallel Server

Explanation:
• This HiRDB/Parallel Server consists of three server machines. In this

example, server machines A and B serve as application servers and server
machine C serves as a database server.

• The platform of server machines A and B is Linux (EM64T), and the
platform of server machine C is Linux (IPF).

Note:
If a heterogeneous system configuration is used, you must abide by the following
rule when you move a back-end server or a unit containing a back-end server.

• When moving a back-end server or a unit containing a back-end server, the
platform of the server machine before and after moving must be the same.
You should not move the server to a different platform.

381

Chapter

11. Designing a Multi-HiRDB

This chapter describes the system design considerations for a multi-HiRDB.
This chapter contains the following sections:

11.1 System design for a multi-HiRDB
11.2 Notes about upgrading

11. Designing a Multi-HiRDB

382

11.1 System design for a multi-HiRDB

This section describes only those design procedures for a multi-HiRDB that differ
from an ordinary HiRDB.

11.1.1 Installing a multi-HiRDB
This section describes the points to be noted when installing a multi-HiRDB.

(1) Registering the HiRDB administrator
A different HiRDB administrator must be registered for each HiRDB. For details about
registering a HiRDB administrator, see 2.1.2 Registering the HiRDB administrator.

(2) Creating the HiRDB directories
A different HiRDB directory must be created for each HiRDB. For details about how
to create a HiRDB directory, see 2.3.1 Creating the HiRDB directory.

11.1.2 Setting the environment for a multi-HiRDB
(1) Setting environment variables

Each HiRDB administrator separately defined with a multi-HiRDB server uses the
PDDIR environment variable to identify his/her own HiRDB. Specify the HiRDB
directory in the PDDIR environment variable for each HiRDB administrator.
If you specify $PDDIR/bin in the PATH environment variable for each HiRDB, only
the previously specified HiRDB operation commands in PATH become available. To
operate each HiRDB individually, you should provide a window for each HiRDB and
define the environment variable for each window.
For details about the environment variables, see 2.3.3 Setting environment variables.

(2) Specifying HiRDB system definitions
Create a HiRDB system definition for each HiRDB. Specify the following information
appropriately to each HiRDB in the HiRDB system definition:

• HiRDB identifier (pd_system_id operand in the system common definition)
• HiRDB port number (pd_name_port operand in the system common definition)
• Unit identifier (pd_unit_id operand in the unit control information definition)

(3) Specifying client environment definitions
Use the PDNAMEPORT operand of the client environment definition to specify a HiRDB
to be accessed from a client. Specify the port number of a HiRDB to be accessed in the
PDNAMEPORT operand. For details about the client environment definition, see the
manual HiRDB Version 8 UAP Development Guide.

11. Designing a Multi-HiRDB

383

(4) Installing utility special units
When the utility special unit facility is to be provided for a multi-HiRDB, one of the
following system configurations can be selected:
1. System configuration in which one utility special unit is installed for each

HiRDB.
2. System configuration in which one utility special unit is shared among multiple

HiRDBs.
Configuration 1 should be used if different applications are to be executed by the
individual HiRDBs. Configuration 2 should be used when the system switching
facility is to be used in a mutual system switching configuration.
Figures 11-1 and 11-2 show examples of utility special unit installation for a
multi-HiRDB.

Figure 11-1: Example of utility special unit installation for a multi-HiRDB: One
utility special unit provided for each HiRDB

11. Designing a Multi-HiRDB

384

Figure 11-2: Example of utility special unit installation for a multi-HiRDB: One
utility special unit shared among multiple HiRDBs

(5) Library sharing
All HiRDBs constituting the multi-HiRDB can share a portion of a library in the
installation directory (/opt/HiRDB_S or /opt/HiRDB_P). You can save memory by
using the pdmemsv -s command to share a portion of the library.
To share a portion of a library, the following conditions must be satisfied:

• All HiRDBs constituting the multi-HiRDB must be the same version.
• All HiRDBs constituting the multi-HiRDB use the same character encoding.
• All HiRDBs constituting the multi-HiRDB use the same load type (the POSIX

library must be used with all HiRDBs).
If you share a library, place the installation directory and the HiRDB directory on
separate volumes. If you do this and a hard disk failure affects the installation
directory, you can use the pdmemsv -d command to cancel library sharing and enable
HiRDB operation. The following shows the procedure for sharing a library:
pdsetup /USERS/DB1 1
pdsetup -d /USERS/DB1 2
PDDIR="USERS/DB1" 3
export PDDIR
$PDDIR/bin/pdmemsv -s 4
pdsetup /USERS/DB1 5

11. Designing a Multi-HiRDB

385

Explanation:
This procedure must be executed by the superuser.
1. Sets up the HiRDB environment in a directory other than the installation

directory.
2. Releases the HiRDB registration from the OS. When the KFPS0036-Q

message is displayed, enter n as the response.
3. Defines the PDDIR environment variable.
4. Registers the HiRDB into the OS again.

Note
When reinstalling HiRDB, use the pdmemsv -d command to release library
sharing. Once the pdsetup -d command has executed to release registration
from the OS, reexecute the pdmemsv command according to the previous
procedure.

11. Designing a Multi-HiRDB

386

11.2 Notes about upgrading

This section describes the points to be noted when upgrading HiRDB under a
multi-HiRDB environment.

(1) Upgrading all HiRDBs at the same time
The following shows an overview of the procedure for upgrading all HiRDBs at the
same time in a multi-HiRDB environment. For details about how to upgrade, see 1.3
Upgrading HiRDB.
To upgrade all HiRDBs:

1. Delete all of the existing versions of HiRDB from the OS using the pdsetup d
command.

2. Install the new version(s) of HiRDB.
3. Register all of the new version of HiRDB in the OS using the pdsetup command.

(2) Upgrading only some of the HiRDBs
The following shows an overview of the procedure for upgrading only some of the
HiRDBs in a multi-HiRDB environment. For details about how to upgrade, see 1.3
Upgrading HiRDB.
To upgrade only some of the HiRDBs:
1. Delete the HiRDBs being upgraded from the OS using the pdsetup -d

command. For those HiRDBs that are not to be upgraded, be sure not to enter y
in response to the message that is displayed after the execution of the pdsetup
-d command.

2. Install the new version of HiRDB.
3. Register the upgraded HiRDBs in the OS using the pdsetup command.

(3) Using JP1/Software Distribution
If you are using JP1/Software Distribution to distribute HiRDB online, HiRDB cannot
be registered automatically in the OS (execution of the pdsetup command) after
HiRDB is distributed.

387

Chapter

12. Designing Global Buffers and
Local Buffers

This chapter describes global buffer and local buffer design.
This chapter contains the following sections:

12.1 Allocating global buffers
12.2 Setting the number of global buffer sectors
12.3 Specifying the prefetch facility
12.4 Specifying the asynchronous READ facility
12.5 Specifying deferred write processing
12.6 Specifying the facility for parallel writes in deferred write processing
12.7 Setting the commit-time reflection processing
12.8 Global buffer LRU management
12.9 Page access using the snapshot method
12.10 Global buffer pre-writing
12.11 Local buffers

12. Designing Global Buffers and Local Buffers

388

12.1 Allocating global buffers

Global buffers refers to a group of buffers allocated in shared memory and used to read
and write data stored in the RDAREAs on a disk. A buffer that is designed to hold data
that has been updated but not yet written to a database is called an update buffer. A
buffer that is designed for referencing data or that holds data that has already been
written to a database is called a reference buffer.
Global buffers must be allocated for RDAREAs that store data and indexes. There are
three types of global buffers:

• Index global buffers
• Data global buffers
• LOB global buffers

Addition, modification, or deletion of global buffers while HiRDB is operating is
called dynamic updating of global buffers. The pdbufmod command is used for
dynamic updating. For details about dynamic updating of global buffers, see the
manual HiRDB Version 8 System Operation Guide.
This section describes the various methods of allocating global buffers.

12.1.1 Allocating index global buffers
A dedicated global buffer should be allocated to an index that is accessed frequently,
especially an index for which a cluster key or UNIQUE is specified. This enables the
index to be made resident, thereby reducing the number of input/output operations
required to access the index.
A dedicated global buffer that is allocated to an index is managed independently of the
global buffer for the user RDAREAs that contain the table rows. This means that index
pages and data pages are not shared within a global buffer. If the same global buffer is
allocated to more than one index or table, information for one index may be swapped
out of the global buffer in the event a large amount of data for another table is placed
in it temporarily.
Figure 12-1 provides an overview of a global buffer dedicated to an index.

12. Designing Global Buffers and Local Buffers

389

Figure 12-1: Overview of global buffer for an index

12.1.2 Allocating data global buffers
(1) Multiple RDAREAs with different page lengths

If there are multiple RDAREAs with different page lengths, all RDAREAs with the
same or almost the same page length should be allocated to a single global buffer, so
that memory utilization efficiency can be improved.
If multiple RDAREAs with very different page lengths are assigned to the same global
buffer, the global buffer is allocated as appropriate for the RDAREA with the largest
page length. When data pages are input/output in this global buffer for an RDAREA
with a small page length, some of the global buffer sectors will remain unused, thereby
adversely affecting the memory utilization efficiency.
Figure 12-2 shows an example of data global buffer allocation.

12. Designing Global Buffers and Local Buffers

390

Figure 12-2: Example of data global buffer allocation

For a HiRDB/Parallel Server, global buffers are maintained for each server as
appropriate for that server's RDAREA with the largest page length. For example, if the
largest RDAREA page length on back-end server 1 is 4096 bytes and the largest
RDAREA page length on back-end server 2 is 8192 bytes, the global buffer sizes that
could be allocated would be 4096 for back-end server 1 and 8192 for back-end server
2.

(2) Allocating multiple RDAREAs to one global buffer
If a single HiRDB file system area contains a HiRDB file that consists of multiple
RDAREAs, all those RDAREAs should be allocated to the same global buffer.

(3) Multiple RDAREAs with different UAP access methods
If multiple RDAREAs have the same page length, but their UAP access methods are
different, each RDAREA should be allocated to a different global buffer. Examples of
such RDAREAs include RDAREAs with different usage, RDAREAs with frequent
sequential processing and infrequent update processing, and RDAREAs subject to
frequent addition or update processing.

(4) Addition of RDAREAs expected
The database structure modification utility (pdmod) can be used to add the following

12. Designing Global Buffers and Local Buffers

391

types of RDAREAs:
• User RDAREAs
• User LOB RDAREAs
• Data dictionary LOB RDAREAs
• Data dictionary RDAREAs for storing a dictionary table for management of

stored procedures
• List RDAREAs

For an RDAREA containing a table that uses flexible hash partitioning, ALTER
TABLE can be used to add RDAREAs.
Before an added RDAREA can be used, a global buffer must be allocated to it. Thus,
if it is expected that RDAREAs will need to be added in the future, global buffers for
which the -o option is specified in the pdbuffer operand must be provided in the
system common definition, taking into account the largest likely page length for
RDAREAs that may be added later.
If no global buffers have been allocated in advance, global buffer allocation must be
redefined in order to add an RDAREA and make it usable; the pdbuffer operand in
the system common definition is used for this purpose.

(5) Notes about allocating global buffer pools to list RDAREAs
When allocating global buffer pools to list RDAREAs, note the following, as well as
the design considerations for global buffer pool allocation to user RDAREAs:
1. If you create many lists while sharing the global buffers for list RDAREAs and

for tables and indexes, tables or indexes may be swept out of the global buffers.
Therefore, if possible allocate a global buffer that is dedicated to list RDAREAs
without sharing it.

2. For the number of global buffer sectors for list RDAREAs, specify a value that is
at least the number of concurrently accessible lists times 1.5.

3. If you want to share the global buffers for list RDAREAs and for tables and
indexes, share those RDAREAs with page lengths that are the same or close to
each other.

4. If you specify the prefetch facility for the global buffer for list RDAREAs,
executing the following SQL statements reads a page with a size of one segment
at one time:

• If you use the SELECT statement to search a table via lists, the system reads
a list page in batch mode.

• If you use the ASSIGN LIST statement to create a list, the system reads a list
page of the list specified in the FROM clause in batch mode.

12. Designing Global Buffers and Local Buffers

392

12.1.3 Allocating LOB global buffers
If any of the following conditions is applicable, a global buffer must be allocated for
the LOB RDAREA, so that the number of input/output operations on data stored in the
LOB RDAREA can be reduced:

• Plug-in index is stored
• Buffering effects can be expected because there is not much data
• LOB data that is accessed frequently is stored

A LOB global buffer should be allocated to a single RDAREA in order to avoid
buffering interference between RDAREAs. LOB global buffers can be allocated to the
following types of LOB RDAREAs:

• Data dictionary LOB RDAREAs
• User LOB RDAREAs
• Registry LOB RDAREAs

12.1.4 Global buffer allocation procedures
(1) Index global buffer

The index identifier of the index for which a global buffer is to be allocated is specified
in the -i option of the pdbuffer operand in the system common definition. In the
case of a cluster key index, the index identifier assigned by HiRDB is specified. Once
a table with a cluster key has been defined, the index identifier for the cluster key can
be obtained by retrieving from the dictionary tables the INDEX_NAME column of the
SQL_INDEXES table. In this case, the index identifier for the cluster key is displayed
as follows:
(CLUSTER table-number)

For details about dictionary table retrieval and the SQL_INDEXES table, see the manual
HiRDB Version 8 UAP Development Guide.
The number of global buffer sectors should at least equal the number of index pages
(value obtained as the index storage page count). It may be necessary to increase or
decrease this number depending on the importance of the index. The number of index
pages in use can be checked with the database condition analysis utility (pddbst).

(2) Data global buffer
The name of the RDAREA for which a global buffer is to be allocated is specified in
the -r option of the pdbuffer operand in the system common definition.

(3) LOB global buffer
To allocate a LOB global buffer, use the following procedure:

12. Designing Global Buffers and Local Buffers

393

1. Specify in the -r option of the pdbuffer operand in the system common
definition the name of the LOB RDAREA for which a global buffer is to be
allocated.

2. Specify in the -b option of the pdbuffer operand in the system common
definition the name of the LOB RDAREA for which a global buffer is to be
allocated.

(4) Example of global buffer definition
Organization of RDAREAs
The following shows the organization of the RDAREAs:

Definition example
The following shows an example of global buffer definition:

Explanation:
1. This is a definition of data global buffer. It uses the -r option to specify all

Type of RDAREA RDAREA name

Master directory RDAREA RDMAST

Data directory RDAREA RDDIR

Data dictionary RDAREA RDDIC

User RDAREAs USER01, USER02, USER03

User LOB RDAREA ULOB03

Data dictionary LOB RDAREAs DICLOB01, DICLOB02

List RDAREA LIST01

pdbuffer -a DGB1 -n 1000 -r RDMAST,RDDIR,RDDIC 1
pdbuffer -a DGB2 -n 1000 -r USER01,USER02
pdbuffer -a DGB3 -n 1000 -r USER03
pdbuffer -a DGB4 -n 1000 -r ULOB03
pdbuffer -a DGB5 -n 1000 -r DICLOB01
pdbuffer -a DGB6 -n 1000 -r DICLOB02
pdbuffer -a DGB7 -n 1000 -r LIST01

pdbuffer -a LGB1 -n 1000 -b ULOB03 2
pdbuffer -a LGB2 -n 1000 -b DICLOB01
pdbuffer -a LGB3 -n 1000 -b DICLOB02

pdbuffer -a IGB1 -n 1000 -i USER1.INDX01 3
pdbuffer -a IGB2 -n 1000 -i USER1.INDX02

12. Designing Global Buffers and Local Buffers

394

RDAREAs to be created.
2. This is a definition of LOB global buffer. The RDAREAs specified with the

-b option must also be specified with the -r option.
3. This is a definition of index global buffer. It uses the -i option to specify the

index authorization identifier and index identifier.
The following provides a brief explanation of the pdbuffer operand's options
that are used in this example:
-a: Specifies the name of the global buffer.
-n: Specifies the number of global buffer sectors.
-r: Specifies the RDAREAs to be allocated to the data global buffer.
-b: Specifies the LOB RDAREAs to be allocated to the LOB global buffer.
-i: Specifies the indexes to which the index global buffer is to be allocated.

12. Designing Global Buffers and Local Buffers

395

12.2 Setting the number of global buffer sectors

(1) Maximum value for shared memory considered
The number of global buffer sectors must be set so that the maximum value for the
shared memory is not exceeded. If the required number of global buffer sectors is
greater than the maximum value for the shared memory that is being used, the OS's
sam command must be used to reset the maximum value per shared memory segment,
and then the number of buffer sectors that fit in one shared memory segment must be
set. There is a limit to the amount of shared memory in a server machine that can be
allocated.

The amount of shared memory that can be allocated in one shared memory segment is
determined by the OS. If a defined global buffer is too large to allocate in one shared
memory segment, multiple shared memory segments are allocated, resulting in
increased overhead for shared memory accesses.

(2) Buffer hit rate considered
Global buffers are allocated in shared memory and made resident in the memory. If
more global buffer sectors are set than are actually needed, the amount of memory
space being used for shared memory increases, which can have adverse effects on the
system memory. Overhead for global buffer retrieval processing also increases. For
these reasons, global buffers must be set so that the required minimum input/output
performance is achieved.
To achieve the minimum input/output performance, global buffers should be set so that
the overall hit rate for global buffers (update buffers hit rate + reference buffers hit
rate) and the hit rate for reference buffers become high. This can be done by the
following methods:

• Increase the number of global buffer sectors.
• Allocate each RDAREA or index to a separate global buffer sector.

To improve the performance even more after setting the number of buffer sectors on
the basis of the aforementioned considerations, the pdbufls command or the statistics
analysis utility (pdstedit) can be used after the HiRDB system has been started.
If the pdbufls command is used, the number of buffer sectors must be set so that the
overall global buffers hit rate becomes high.
If the statistics analysis utility is used, the update buffers hit rate and reference buffers
hit rate should be checked, and the number of buffer sectors should be set so that the
overall global buffers hit rate becomes high.
For details about the pdbufls command and the statistics analysis utility
(pdstedit), see the manual HiRDB Version 6 Command Reference.

12. Designing Global Buffers and Local Buffers

396

(3) Setting procedure
The number of buffer sectors is set in the -n option of the pdbuffer operand in the
system common definition.

12. Designing Global Buffers and Local Buffers

397

12.3 Specifying the prefetch facility

The prefetch facility inputs multiple pages to a global buffer or local buffer in the batch
mode.

(1) Effects of the prefetch facility
When a large amount of data is to be retrieved using a character special file, the
prefetch facility can reduce the input/output time. This facility is especially effective
for retrieving data without using an index or for using an index to search a table that
contains many data items in ascending order.

(2) Criteria
The prefetch facility can be used to input multiple pages in the batch mode for the
following SQL statements and utility:

• For the SELECT, UPDATE, and DELETE statements without using an index,
multiple data pages can be input in the batch mode.

• For the SELECT, UPDATE, and DELETE statements (excepting the = and IN
conditions) for a search in ascending order using an index, multiple index leaf
pages can be input in the batch mode.

• For the SELECT, UPDATE, and DELETE statements (excepting the = and IN
conditions) for a search in ascending order using a cluster key, multiple index leaf
pages and data pages can be input in batch mode.

• For the database reorganization utility's (pdrorg) unload processing without
using a local buffer, multiple index leaf pages and data pages can be input in the
batch mode.

(3) Specification
(a) Global buffers

To use the prefetch facility, specify 1 or a greater value in the pdbuffer operand's -m
option in the system common definition. Specify the number of pages to be read in
batch mode in the pdbuffer operand's -p option.

(b) Local buffers
To use the prefetch facility, use the -p option of the pdlbuffer operand to specify the
number of pages for batch input.

(4) Considerations
• When the prefetch facility is used, a buffer dedicated to batch input is obtained

separately from the global buffers or local buffers. This results in an increase in
the amount of shared memory required for global buffers. For details about the

12. Designing Global Buffers and Local Buffers

398

formula for calculating the amount of shared memory used by global buffers, see
16. Storage Requirements for HiRDB.

• Whether or not the prefetch facility is operating effectively can be determined by
checking the prefetch hit rate with the statistics analysis utility (pdstedit) or
with the pdbufls command.

12. Designing Global Buffers and Local Buffers

399

12.4 Specifying the asynchronous READ facility

When the prefetch facility is used with batch input of multiple pages into global
buffers, synchronous processing is used for batch input to pre-read from the database
process into the batch input buffers. With the asynchronous READ facility, when the
prefetch facility is used two batch input buffers are prepared, and while database
processing uses one of the buffers, the READ process pre-reads asynchronously into
the other buffer. By executing the database processing concurrently with the pre-read
input, processing time is reduced. For a HiRDB/Parallel Server, thread switchover
processing reduces the input/output wait time.

The asynchronous READ facility cannot be used with local buffers. It is also not
applicable to RDAREAs for which the SCHEDULE attribute is set. It operates using
the prefetch facility.

(1) Effectiveness of the asynchronous READ facility
Although it is the same as the prefetch facility, compared to use of the prefetch facility
alone, the asynchronous READ facility is effective for such processing as high
processing-load joins. The asynchronous READ facility is particularly effective when
used with character special files, for which the processing time is high. On the other
hand, there is little benefit for operations that require little input/output time, such as
normal files or Lightning/Thunder disks.

(2) Specification
You must declare use of the prefetch facility by specifying 1 or greater in the -m option
of the pdbuffer operand.
Use the pd_max_ard_process operand to specify the number of asynchronous
READ processes. If 0 is specified, or if the operand is omitted, the asynchronous
READ facility will not operate.

(3) Considerations
When the prefetch facility is used, two dedicated batch input buffers are used in
addition to the global buffers. This increases the global buffer shared memory. For
details about the formula for calculating the shared memory used by the global buffers,
see 16. Storage Requirements for HiRDB.

12. Designing Global Buffers and Local Buffers

400

12.5 Specifying deferred write processing

Deferred write processing is a type of processing in which data is written to disk only
when the number of updated pages reaches a specified value, instead of data being
written each time a COMMIT statement is issued. The point when the number of updated
pages reaches the specified value (as determined by HiRDB) is called the deferred
write trigger. HiRDB determines the number of updated pages to be written to disk on
the basis of the updated output page rate for deferred write trigger that is specified with
the -w option of the pdbuffer operand in the system common definition. Deferred
write processing cannot be performed for the following RDAREAs:

• Data dictionary LOB RDAREAs
• User LOB RDAREAs
• Registry LOB RDAREAs
• List RDAREAs

(1) Effect of deferred write processing
Overloading caused by input/output processing can be reduced because data is not
written to disk each time a COMMIT statement is issued.

(2) Specification
Either specify sync or nothing in the pd_dbsync_point operand. In addition,
specify the updated output page rate for the deferred write trigger in the -w option of
the pdbuffer operand.

(3) Considerations
1. If a table or index in an RDAREA allocated to a global buffer is updated

frequently, a low value should be set as the updated output page rate for deferred
write trigger.

2. If a global buffer is updated frequently but the same data is rarely updated, a high
value should be set as the updated output page rate for deferred write trigger.

3. After the HiRDB system has been started, the pdbufls command can be used to
improve performance even further. In other words, each global buffer's update
request hit rate, which is an edit item, should be checked and set as follows:

• If the update request buffer hit rate is high, set the updated output page rate
for deferred write trigger to a low value.

• If the update request buffer hit rate is low, set the updated output page rate
for deferred write trigger to a high value.

12. Designing Global Buffers and Local Buffers

401

(4) Notes
If the updated output page rate for deferred write trigger is set to a higher value than is
necessary, disk write operations occur more frequently during deferred write
processing. This may cause a concurrently executing transaction to be placed in input/
output wait status, with adverse effects on the response time.
On the other hand, if the updated output page rate for deferred write trigger is set too
low, the number of pages to be written to the database increases, which may cause a
concurrently executing transaction to be placed in input/output wait status, with
adverse effects on the response time.

12. Designing Global Buffers and Local Buffers

402

12.6 Specifying the facility for parallel writes in deferred write
processing

The facility for parallel writes in deferred write processing executes multiple processes
of deferred write processing in parallel. Figure 12-3 provides an overview of the
processing when the facility for parallel writes in deferred write processing is and is
not used.

Figure 12-3: Overview of the facility for parallel writes in deferred write
processing

(1) Effects of the facility for parallel writes in deferred write processing
The time required for writing data to disk is reduced because write processing is
executed as multiple processes.

(2) Specification
Specify the number of write processes in the pd_dfw_awt_process operand. Also
specify the deferred write trigger request ratio in the pd_dbbuff_rate_updpage
operand. If the pd_dfw_awt_process operand is omitted, the facility for parallel
writes in deferred write processing is disabled.

(3) Considerations
When the facility for parallel writes in deferred write processing is specified, the
number of processes increases, thereby increasing the CPU usage.

12. Designing Global Buffers and Local Buffers

403

12.7 Setting the commit-time reflection processing

Commit-time reflection processing is a type of processing that involves writing the
pages updated in a global buffer to disk whenever a COMMIT statement is issued.

(1) Effects of commit-time reflection processing
The contents of the database are guaranteed upon completion of a transaction because
the updated database contents are written to disk when the COMMIT statement is issued.
Therefore, there is no need to recover the database from a synchronization point during
full recovery processing, thereby reducing the time required for full recovery
processing.

(2) Specification
Specify commit in the pd_dbsync_point operand.
LOB RDAREAs are not affected by this operand. Directories are reflected at the point
that the COMMIT statement is issued. How data is processed depends on whether or not
a LOB global buffer was allocated. If a LOB global buffer was not allocated, data is
reflected immediately upon issuance of the update request. If a LOB global buffer was
allocated, data is reflected at the point that the COMMIT statement is issued. However,
data is also reflected whenever the global buffer becomes full.

(3) Considerations
If the information obtained by the pdbufls command indicates that there are many
output operations to disk and that the update request hit rate is low, the number of
global buffer sectors should be set to a large value.

12. Designing Global Buffers and Local Buffers

404

12.8 Global buffer LRU management

A global buffer LRU management method appropriate to the type of application
(online or batch) can be selected.

12.8.1 LRU management methods
There are two LRU management methods:

• Independent LRUs for management of reference buffers and update buffers.
• Batch LRU management of global buffers.

(1) Independent LRUs for management of reference buffers and update buffers
With this method, reference buffers and update buffers are managed by independent
LRUs.
If a shortage occurs in the global buffers, the least recently accessed reference buffer
from among the global buffers is removed from the memory.

(a) Criteria
In the following case, it is preferable for the reference buffer and the update buffer to
be managed in separate LRUs:

• There is a relatively small amount of update processing compared to retrieval
processing, and the update buffer hit rate is high (the number of reference or
update operations per transaction is relatively small, such as in the case of online
applications).

(b) Notes
If a large amount of update processing occurs, the reference buffer hit rate drops,
slowing down retrieval processing.

(c) Specification
SEPARATE is specified in pd_dbbuff_lru_option in the system common
definition.

(2) Batch LRU management of global buffers
With this method, the global buffers are managed collectively by one LRU.
If a shortage occurs in the global buffers, the least recently accessed buffer from among
the global buffers is removed from the memory.

(a) Criteria
It is beneficial to employ batch LRU management of global buffers in the following
case:

12. Designing Global Buffers and Local Buffers

405

• There is more update processing than retrieval processing, or a large amount of
data is retrieved or updated sporadically (both retrieval processing and update
processing involving a large amount of data occur, such as when online
applications and batch applications co-exist).

(b) Notes
• If the update buffer hit rate is high, update buffers may be removed temporarily

from memory due to retrieval of a large amount of data. In such a case, file read
operations may occur as an extension of update processing, slowing down the
processing.

• If pd_dbsync_point=sync is specified or omitted, file write operations may
occur as an extension of retrieval processing, slowing down the retrieval
processing.

(c) Specification
MIX is specified in pd_dbbuff_lru_option in the system common definition.
The updated output page rate for deferred write trigger is specified in the -w option of
the pdbuffer operand in the system common definition.

12.8.2 LRU management suppression settings for a UAP
In an OLTP environment, the data recently cached in the global buffer may be removed
from memory due to a UAP that searches and updates a large amount of data, resulting
in a temporary reduction in OLTP performance. If it is possible to identify the UAP
that searches and updates a large amount of data, this reduction in OLTP performance
can be prevented by suppressing LRU management for the UAP.

(1) Criteria
We recommend that you apply LRU management suppression when you execute a
UAP that searches and updates a large amount of data using the global buffer.

(2) Effects
A page accessed by a UAP for which LRU management has been suppressed is cached
in the global buffer as the oldest page accessed, regardless of the access frequency.
This means that the pages accessed by this UAP are removed from memory before
pages accessed by any UAP to which URL management is being applied, thereby
retaining the latter in memory.

(3) Notes
1. If a buffer shortage occurs, the pages accessed by a UAP for which LRU

management has been suppressed are removed from memory regardless of the
access frequency. Therefore, the response performance for such a UAP may
decrease as the input/output count increases due to reduction in the buffer hit rate.

12. Designing Global Buffers and Local Buffers

406

2. A UAP allocates 1-4 buffer sectors simultaneously. Therefore, even if LRU
management suppression has been set, 1-4 cached pages may be removed from
the global buffer per UAP.

3. If LRU management is suppressed for a UAP that executes update processing,
more log information is output than when LRU management is not suppressed,
because more write operations occur on the database and log output occurs
frequently. To avoid space shortages, you should take the following steps:

• Re-evaluate the sizes of the system log files.
• If the UAP can be executed in the no-log mode, specify NO in PDDBLOG in

the client environment definition.
Use the formula shown below to determine the amount of log information when
LRU management is suppressed. If you specify 1024 in the pd_log_rec_leng
operand, you can minimize the amount of log information that is output when
LRU management is suppressed.

* To determine the update-get-count, check the value of DIDUC in the UAP
statistical report or in the UAP statistical information.

(4) Specification
Specify NO in the PDDBBUFLRU operand in the client environment definition.

update-get-count* x pd_log_rec_leng-operand-value

12. Designing Global Buffers and Local Buffers

407

12.9 Page access using the snapshot method

When retrieval is performed but facilities designed to improve performance (such as
the rapid grouping facility) cannot be applied, the global buffers are accessed several
times to retrieve rows that satisfy the retrieval conditions. With the snapshot method,
all rows in the buffer that match the retrieval conditions are copied into the process
private memory the first time they are accessed, and when the same pages are accessed
subsequently the retrieval result is returned by referencing the process private memory.
Figure 12-4 provides an overview of the snapshot method.

Figure 12-4: Overview of the snapshot method

(1) Effectiveness of accesses using the snapshot method
Because the rows that match the conditions of a retrieval request are copied into the
process private memory at the time of the first access, retrieval time for subsequent
accesses is reduced. The number of times that the global buffers are accessed is also
reduced, preventing a concentration of accesses on the global buffer.

(2) Specification
Specify SNAPSHOT (the default value) in the pd_pageaccess_mode operand.

(3) Considerations
When the snapshot method is specified for use, the process private memory is
maintained automatically on the basis of the page size of the RDAREA where the table
or index is stored. For details about calculating the size of the maintained process
private memory for a HiRDB/Single Server, see 16.1.6(4) Procedure for obtaining the

12. Designing Global Buffers and Local Buffers

408

size of the memory required when the snapshot method is used; for a HiRDB/Parallel
Server, see 16.2.6(5) Procedure for obtaining the size of the memory required when the
snapshot method is used.

(4) Snapshot method applicability
Table 12-1 describes the applicability of the snapshot method for retrievals.

Table 12-1: Applicability of the snapshot method for retrievals

Legend:
Yes: Applicable.
No: Not applicable.
Key: Applicable when the retrieval type is a key scan (KEY SCAN, MULTI
COLUMNS KEY SCAN).
N/R: Not relevant or condition does not apply.

Condition Applicability

Tables Indexes

Retrievals for which pd_indexlock_mode=KEY is specified in the system
common definition, yet the following conditions are not satisfied:
• WITHOUT LOCK NOWAIT specified for retrieval
• LOCK TABLE required for retrieval

N/R No

Retrievals using a holdable cursor No No

Retrievals for which the retrieval method is an
index scan (INDEX SCAN, MULTI COLUMNS INDEX
SCAN)

WITHOUT LOCK
WAIT is specified

No No

Other than above No Yes

Retrievals for which the retrieval method is ROWID FETCH No N/R

Retrievals with the following columns specified:
• VARCHAR, MVARCHAR, NVARCHAR columns

with a defined length greater than 256 bytes
• Recursive columns
• Columns with abstract data types
• LOB columns
• Binary columns with a defined length greater

than 256 bytes

WITHOUT LOCK
WAIT is specified

No Key

Other than above No Yes

Retrievals for which retrieval conditions specify a hit rate of 1 hit per page No No

Retrievals using a plug-in index No No

Retrievals in a dictionary table No No

12. Designing Global Buffers and Local Buffers

409

12.10 Global buffer pre-writing

Global buffer pre-writing is a function for reading data from a specified table or index
in advance and placing it in the global buffer. Figure 12-5 provides an overview.

Figure 12-5: Overview of global buffer pre-writing

Explanation:
• When global buffer pre-writing is not performed

When a UAP accesses a table immediately after HiRDB has started, the UAP
reads data from the table because there is no data in the global buffer
(physical input/output operations occur). Thereafter, when the UAP accesses
this table data, no read operation occurs on those pages that have been
written into the global buffer. To access other pages, read operations occur.

• When global buffer pre-writing is performed
The UAP can access the table without having to read data from it because the
table data has already been written into the global buffer in advance (no
physical input/output operations occur). Thereafter, when the UAP accesses
this table, no read operation on the table occurs.

(1) Effects of global buffer pre-writing
The buffer hit rate improves because data is read from a specified table or index in
advance. By pre-reading a table or index on which many input/output operations are
expected immediately after HiRDB starts and prior to starting online applications, you
can expect a high buffer hit rate.

12. Designing Global Buffers and Local Buffers

410

(2) Execution method
Specify the table and index to be pre-read and execute the global buffer residence
utility (pdpgbfon).

(3) Considerations
• You need more global buffer sectors than the actual number of pages that contain

the table or index to be pre-read.
• If there are not enough global buffer sectors, the LRU management method

removes the oldest page information from the global buffer (the oldest page in the
global buffer accessed according to the pd_dbbuff_lru_option operand value
in the system definition). Therefore, executing pdpgbfon serves no purpose
when there are not enough global buffer sectors.

• When the global buffer residence utility (pdpgbfon) is used, the prefetch facility
takes effect because data is pre-read in the order the pages were stored. When you
define the database, you can reduce the execution time by specifying a prefetch
count.

12. Designing Global Buffers and Local Buffers

411

12.11 Local buffers

Local buffers are maintained in the process private memory and are used for input/
output of data that is stored in an RDAREA on disk. The types of local buffers are as
follows:

• Index local buffers
These buffers are used for input/output of index data. Index local buffers are
allocated in units of indexes.

• Data local buffers

These buffers are used for input/output of data. Data local buffers are allocated in
units of RDAREAs.

Local buffers are defined for each UAP in the UAP environment definition. By
allocating a dedicated local buffer to a UAP, it is possible to avoid global buffer
contention with other UAPs or waiting for buffer locks. For details about UAP
environment definition, see the manual HiRDB Version 8 System Definition.
You should define local buffers when both of the following conditions apply:

• A large amount of data is to be retrieved or updated
• The RDAREA to be accessed should not be accessed by other UAPs

Because a UAP with an enduring connection to HiRDB has a large influence on the
system (memory pressure, process contention, etc.), definition of local buffers in such
a case is not appropriate.

12.11.1 Allocating index local buffers
If data local buffers and index local buffers are defined separately, data retrieval and
index retrieval will be conducted independently even if they are performed
concurrently. Therefore, even if a large amount of data is to be retrieved under all
conditions, the frequency of index input/output can be reduced and processing time
can be shortened.
Figure 12-6 provides an overview of index local buffers where local buffers are
allocated for both table data and index data.

12. Designing Global Buffers and Local Buffers

412

Figure 12-6: Overview of index local buffers

12.11.2 Allocating data local buffers
(1) Multiple RDAREAs with different page lengths

If there are multiple RDAREAs with different page lengths, all RDAREAs with the
same or almost the same page length should be allocated to a single local buffer, so that
memory utilization efficiency can be improved.
If multiple RDAREAs with very different page lengths are assigned to the same local
buffer, the local buffer is allocated as appropriate for the RDAREA with the largest
page length. When data pages are input/output on an RDAREA with a small page
length, some areas in a single local buffer sector will remain unused, thereby adversely
affecting the efficiency of memory usage.

(2) Multiple RDAREAs with different UAP access methods
If multiple RDAREAs have the same page length, but their UAP access methods are
different, each RDAREA should be allocated to a different local buffer. Examples of
such RDAREAs include RDAREAs with different usage, RDAREAs with frequent
sequential processing and infrequent update processing, and RDAREAs subject to
frequent addition or update processing.

12.11.3 Allocating local buffers
To allocate index local buffers, you specify in the -i option of the pdlbuffer
operand the name of the index (authorization-identifier.index-identifier) for which the
index local buffer is to be allocated.
To allocate data local buffers, you specify in the -r option of the pdlbuffer operand
the name of the RDAREA for which the data local buffer is to be allocated.
The following are examples of local buffer definitions:

12. Designing Global Buffers and Local Buffers

413

pdlbuffer -a localbuf01 -r RDAREA01,RDAREA02 -n 1000 1
pdlbuffer -a localbuf02 -i USER01.INDX01 -n 1000 2

Explanation:
1. Allocates data local buffers to two RDAREAs, RDAREA01 and RDAREA02.
2. Allocates an index local buffer to index USER01.INDX01.

12.11.4 Considerations about local buffers
If a server process terminates abnormally when a local buffer is being used, abort code
Phb3008 is output and HiRDB (the unit in the case of a HiRDB/Parallel Server)
terminates abnormally. If pages have been updated at the time the server process
terminates abnormally, it may not be possible to recover with a rollback. In such a case,
you must perform recovery processing when HiRDB restarts. For details about the
measures for HiRDB processing when a failure occurs while local buffers are being
used, see the manual HiRDB Version 8 System Operation Guide.

415

Chapter

13. Designing Tables

This chapter explains items that should be examined during table design.
This chapter contains the following sections:

13.1 Items to be examined during table design
13.2 Normalizing a table
13.3 Table row partitioning
13.4 Table matrix partitioning
13.5 Defining a trigger
13.6 Creating a view table
13.7 Specifying the FIX attribute
13.8 Specifying a primary key
13.9 Specifying a cluster key
13.10 Specifying the suppress option
13.11 Specifying the no-split option
13.12 Specifying a binary data column
13.13 Specifying the WITHOUT ROLLBACK option
13.14 Specifying the falsification prevention facility
13.15 Table containing a repetition column
13.16 Table containing an abstract data type
13.17 Shared tables
13.18 Referential constraints
13.19 Check constraints

13. Designing Tables

416

13.1 Items to be examined during table design

A HiRDB database is a relational database. The user must examine the design of a
table, which is the logical structure of the database.
To begin with, tables must be normalized. Even among tables normalized in the same
manner, table processing performance may vary depending on the method used to store
the table in user RDAREAs. In some cases, operability may be more important than
processing performance; therefore, tables must be designed to achieve expected
results. Table 13-1 lists the items that should be examined when designing a table.

Table 13-1: Items to be examined for database table design

Design task and items to
be examined

Advantages Disadvantages Section

Table normalization Table storage efficiency and
processing efficiency improve.

Processing performance may
be reduced if join retrieval of
normalized tables is necessary
during table retrieval.

13.2

13. Designing Tables

417

Table row
partitioning

Specification
of table row
partitioning

• Operations can be
performed in units of
RDAREAs.

• For HiRDB/Parallel
Server, high-speed table
access and workload
distribution can be
achieved because table
access processing can be
executed concurrently on
multiple RDAREAs.

• The number of RDAREAs
increases.

• If an index for this table is
not row-partitioned, the
level of concurrent
executions is reduced due
to index locking.

13.3

Key range
partitioning

• RDAREAs that contain
specific table data are
known.

• Data for each application
can be stored in a separate
RDAREA.

Data cannot be stored
uniformly without knowing
the key ranges.

Flexible hash
partitioning*

• Data can be stored
uniformly without having
to know the key ranges.

• RDAREAs and hash
function can be changed
easily.

• It is easy to cope with the
addition of CPUs or disks.

• It is difficult to know
which table data is stored
in which RDAREA.

• If a specific key is heavily
weighted or duplicated,
data cannot be stored
uniformly.

• Uniqueness of the key
cannot be checked.

FIX hash
partitioning*

• The RDAREAs to be used
to store data are determined
by the key values.

• Data can be stored
uniformly in RDAREAs
without having to know the
key ranges.

• It is easy to add CPUs or
disks.

• Input data can be stored in
the RDAREAs by creating
a UAP that uses the hash
function for table
partitioning.

Once data is stored in a table,
user RDAREAs cannot be
added, nor can the hash
function be changed.

Design task and items to
be examined

Advantages Disadvantages Section

13. Designing Tables

418

Table matrix partitioning • Compared to normal key
range partitioning,
high-speed SQL processing
and reduced operation time
can be expected because
data partitioned by key
ranges can be partitioned
further on the basis of the
values in a different
column.

• This method is applicable
to a wider range of
applications because key
range partitioning can be
combined with hash
partitioning.

• ALTER TABLE cannot be
used to change table
definitions.

• Compared to normal row
partitioning, operation and
management become
complex because this
method allows more
detailed partitioning of
RDAREAs.

13.4

Defining a trigger SQL can execute automatically
in response to an operation on a
table.

None 13.5

Creation of view table • If other users are given
access privileges only for
the view table but not the
base table, the accessible
range of the base table can
be restricted on a row or
column basis.

• If a view table is created
beforehand using data that
can be retrieved by a
complicated query, the
table referencing operation
is simplified.

• A base table can be
referenced or updated via
its view table.

• Foreign tables can be
referenced or updated via
their view tables.

None 13.6

Design task and items to
be examined

Advantages Disadvantages Section

13. Designing Tables

419

Specification of FIX attribute • If row-by-row interface is
used, access performance
can be improved, even
when there are many
columns.

• Null value can be
prohibited as input data for
a table with the FIX
attribute.

• If a table contains many
columns, the disk space
required can be reduced.

None 13.7

Specification of primary key Uniqueness constraint and NOT
NULL constraint apply to a
column for which a primary
key is defined.

None 13.8

Specification of cluster key • Input/output time can be
reduced when retrieving,
updating, or deleting a row
with a range specified, or
when retrieving or updating
data on the basis of a cluster
key value.

• If UNIQUE is specified for
the cluster key, all the
values in the cluster key
column must be unique.

• The database load utility
(pdload) can be used to
determine whether input
data for a table is sorted in
ascending or descending
order of the cluster key
values.

• When a table is being
reorganized, the database
reorganization utility
(pdrorg) can be used to
determine whether the
cluster key for the unloaded
row matches the cluster key
to be reloaded.

• Values in the column that
constitutes the cluster key
cannot be updated.

• The null value cannot be
inserted in the column that
constitutes the cluster key.

• When an attempt is made
to add data to a table for
which a cluster key is
specified, there is
overhead for retrieving the
page that has the key value
adjacent to the specified
key value.

13.9

Design task and items to
be examined

Advantages Disadvantages Section

13. Designing Tables

420

Specification of suppress
option

• Disk space required can be
reduced.

• Input/output time for
retrieval processing can be
reduced, such as retrieval
of all entries.

None 13.10

Specification of no-split
option

Data storage efficiency can be
improved, thereby reducing the
disk space required.

None 13.11

Specification of a binary data
column

Variable-length large object
data can be specified, such as
document, image, and audio
data

None 13.12

Specification of WITHOUT
ROLLBACK option

Occurrences of locking can be
reduced because the rows
subject to update processing are
unlocked automatically when
table update processing is
completed (such as when
defining a table used for
numbering applications).

None 13.13

Specification of the
falsification prevention
facility

Prevents table data errors or
invalid updates.

There are restrictions on the
facilities, SQL, utilities, and
commands that can be
executed on an RDAREA that
contains a falsification
prevented table.

13.14

Table with repetition column • There is no need to join
multiple tables.

• The disk space required can
be reduced because
duplicated information is
eliminated.

• Better access performance
can be achieved than when
a separate table is used
because related data items
(repetition columns) are
placed adjacent to each
other.

None 13.15

Design task and items to
be examined

Advantages Disadvantages Section

13. Designing Tables

421

* You should use the hash facility for hash row partitioning in the following cases:
• Hash row partitioning is to be used with the table.
• The amount of data is expected to increase.

If you add RDAREAs to handle an increase of data for a hash row partitioning
table (if you increase the number of table row partitions), data may become
uneven among the existing RDAREAs and newly added RDAREAs. The
rebalancing facility for hash row partitioning can correct such unevenness of data
when you increase the number of table row partitions. For details about the
rebalancing facility for hash row partitioning, see the manual HiRDB Version 8
System Operation Guide.

Table with abstract data type Data with a complicated
structure can be stored in a
table to process it as normal
table data.

None 13.16

Shared table • Overhead caused by
connection and data
transfer between multiple
back-end servers can be
reduced.

• Efficiency of parallel
processing improves, such
as when multiple
transactions are executed
concurrently.

When a shared table is
updated, all back-end servers
lock the RDAREA that
contains the shared table. If
another application accesses
another table in the same
shared RDAREA, deadlock
may occur.

13.17

Referential constraints Integrity checking and data
manipulation on data in
multiple tables can be
automated.

When referenced tables and
referencing tables are updated,
processing time increases
because data integrity is
checked.

13.18

Check constraints Data checking can be
automated when data is added
or updated.

When a table for which a
check constraint has been
defined is updated, processing
time increases because data
integrity is checked.

13.19

Design task and items to
be examined

Advantages Disadvantages Section

13. Designing Tables

422

13.2 Normalizing a table

It is important in terms of table storage efficiency and processing efficiency to
normalize tables. The columns that constitute a table should be examined during table
normalization.
This section describes the following normalization topics:

• Normalization for improved table storage efficiency
• Normalization for improved table processing efficiency

(1) Normalization for improved table storage efficiency
If a table has multiple columns that contain similar data, the table should be normalized
so that all the columns contain unique data. Such normalization improves the
efficiency of data storage for the table. Figure 13-1 shows an example.

13. Designing Tables

423

Figure 13-1: Multiple columns in a table containing similar data

The PCODE and PNAME columns in the STOCK table have a one-to-one correspondence

13. Designing Tables

424

before normalization, which means that the data in these columns is redundant. For this
case, another table called PRODUCT can be created that consists of the STOCK table's
PCODE and PNAME columns. The PRODUCT table is created so that the PCODE and
PNAME columns do not contain duplicative data.

(2) Normalization for improved table processing efficiency
(a) Same table used by multiple applications

If the same table is used by multiple applications, normalization can result in a separate
table for each application. This can improve the level of concurrent execution for each
table. Figure 13-2 shows an example.

Figure 13-2: Same table used by multiple applications

The PMANAGE (product management) table is used by the inventory management

13. Designing Tables

425

application and the orders management application. The PMANAGE table can be
normalized to the STOCK table that is used only by the inventory management
application and the ORDERS table that is used only by the orders management
application.

(b) Columns with different access frequencies
If some of a table's columns are accessed frequently and some are not, normalization
can result in a table consisting of the columns that are accessed frequently and a table
consisting of the columns that are accessed infrequently. Figure 13-3 shows an
example.

13. Designing Tables

426

Figure 13-3: Columns with different access frequencies

Taking the STOCK table shown in Figure 13-3, if the retrieval frequency ratio of the
PNO and SQUANTITY columns to the PNAME and PRICE columns is 9:1, normalization
of the STOCK table should result in a table (STOCK2) consisting of the columns that are
retrieved frequently and a table (PRODUCT) consisting of the columns that are retrieved
infrequently.
Assume that 10,000 physical input/output operations are required in order to retrieve
all entries in the STOCK table. When the STOCK table is divided into the two tables
STOCK2 and PRODUCT, the numbers of physical input/output operations required in

13. Designing Tables

427

order to retrieve all entries in these two tables drops to 4,500 (5,000 0.9) and 500
(5,000 0.1), respectively. As a result, only 5,000 physical input/output operations
are required to retrieve all entries, thereby improving the overall table processing
efficiency.

13. Designing Tables

428

13.3 Table row partitioning

This section describes the design method for partitioning a table by rows.
HiRDB/Workgroup Server does not support the row-partitioning of a table or an index.

13.3.1 Table row partitioning
Dividing a table and storing it in multiple user RDAREAs is called table row
partitioning. A table partitioned by rows is called a row-partitioned table.
The RDAREAs used to store a row-partitioned table must be on different disks.

(1) Criteria
You should employ table row partitioning in the following circumstances:

• There is a large amount of data.
• Data access is concentrated at specific time periods.
• User RDAREAs are managed in units of table partitions (such as for data storage

in tables, table reorganization, and making backups).
(2) Definition procedure

You define table row partitioning with the CREATE TABLE definition SQL statement.
For details about how to define the table row partitioning, see 7.2 Creating a row
partitioned table.

13.3.2 Types of table row partitioning
There are two ways to partition a table by rows:

• Key range partitioning
• Hash partitioning (flexible hash partitioning or FIX hash partitioning)

These two methods of table row partitioning are explained as follows.
(1) Key range partitioning

Key range partitioning divides a table into groups of rows on the basis of ranges of
values in a specific column in the table. The column used as the condition for table row
partitioning is called the partitioning key.
When this method is used, it is possible to tell which table data is stored in which
RDAREA.
Row partitioning can be specified in two ways:

13. Designing Tables

429

(a) By specifying storage conditions
Comparison operators are used to specify conditions for determining which table data
is to be stored in each RDAREA. Only one range of storage condition values can be
specified for each RDAREA.

(b) By specifying boundary values
Literals are used to specify the boundary values of the data to be stored in each
RDAREA. Multiple ranges determined by boundary values can be specified for one
RDAREA. Boundary values can also be specified with matrix partitioning. For details
about matrix partitioning, see 13.4 Table matrix partitioning.

(2) Hash partitioning
Hash partitioning uses the values of a table column as a hash function for dividing the
table and storing it uniformly in RDAREAs. The column specified for partitioning the
table is called the partitioning key. This method is used to distribute the table data
uniformly among the RDAREAs without having to deal with key ranges. Hash
partitioning can be combined with key range partitioning with boundary values
specified to achieve matrix partitioning. For details about matrix partitioning, see 13.4
Table matrix partitioning.
The two types of hash partitioning are flexible hash partitioning and FIX hash
partitioning.
When a table is divided and stored in multiple RDAREAs using flexible hash
partitioning, there is no way to know which data is stored in which RDAREA.
Therefore, in order to search for particular data in the table, all back-end servers
containing the table are subject to search processing.
When a table is partitioned using FIX hash partitioning, HiRDB identifies which table
data is stored in which RDAREA. Therefore, only the back-end server believed to
contain the desired data is subject to search processing.

(a) Selecting the partitioning key
The key selected as the partitioning key should satisfy the following conditions:

• The key values are evenly distributed.
• There are few duplicated key values.

For hash partitioning, either a single column or multiple columns can be selected as the
partitioning key. If a single column is specified and there are too few different values
in the column for purposes of partitioning or the key values are unevenly distributed,
data may not be divided uniformly. In this case, more than one column on which
partitioning can be based should be specified in order to distribute the data more
uniformly among the RDAREAs.

13. Designing Tables

430

(b) Types of hash functions
Twelve hash functions are available for hash partitioning, as listed in Table 13-2.

Table 13-2: Hash functions

Hash function Explanation

HASH0 This hash function can be used with data types DATE, TIMESTAMP, CHAR(8) #1or
CHAR(6)#1 in the columns specified for partitioning. It uses year and month values to hash
data and allocate, by circulating on a monthly basis, the RDAREAs in which the data is
stored. You need to specify a single column for partitioning keys.

HASH1 This hash function can be used with all data types in the columns specified for partitioning.
It hashes all bytes#2 of the data from all columns specified for partitioning. This hash
function can be specified for columns whose data length is 0 or more bytes.

HASH2 This hash function can be used with all data types in the columns specified for partitioning.
It hashes all bytes#2 of the data from all columns specified for partitioning. This hash
function can be specified for columns whose data length is 0 or more bytes.
You use this hash function when HASH1 is unable to store the data uniformly among the
RDAREAs.

HASH3 Use this hash function when the data type of the columns to be partitioned is INTEGER or
SMALLINT. It hashes the final 2 bytes#2 of all partitioned columns. This hash function can
be specified only for columns whose data length is at least 2 bytes.

HASH4 Use this hash function when the data type of the columns to be partitioned is DATE. It hashes
the initial 4 bytes#2 of all partitioned columns. This hash function can be specified only for
columns whose data length is at least 4 bytes.

HASH5 Use this hash function when the data type of the columns to be partitioned is TIME. It hashes
the initial 3 bytes#2 of all partitioned columns. This hash function can be specified only for
columns whose data length is at least 3 bytes.

HASH6 This hash function can be used with all data types in the columns specified for partitioning.
The most appropriate type is DECIMAL. It hashes all bytes#2 of the data from all columns
specified for partitioning. This hash function can be specified for columns whose data
length is 0 or more bytes.

HASHA This hash function can be used with all data types in the columns specified for partitioning.
It hashes all bytes#2 of the data from all columns specified for partitioning. This hash
function can be specified for columns whose data length is 0 or more bytes.

HASHB This hash function can be used with all data types in the columns specified for partitioning.
It hashes all bytes#2 of the data from all columns specified for partitioning. This hash
function can be specified for columns whose data length is 0 or more bytes.
You use this hash function when HASHA is unable to store the data uniformly among the
RDAREAs.

13. Designing Tables

431

Note 1

• If the table is not a rebalancing table, specify one of HASH0-HASH6. HASH6
provides the most uniform hashing result, so normally you should specify
HASH6. However, depending on the data in the partitioning key, the hashing
result may not be uniform. In such a case, specify one of the other hash
functions.

• If the table is a rebalancing table, specify one of HASHA-HASHF. HASHF
provides the most uniform hashing result, so normally you should specify
HASHF. However, depending on the data in the partitioning key, the hashing
result may not be uniform. In such a case, specify one of the other hash
functions.

Note 2

A LOB column cannot be specified as the partitioning key.
#1: When the data type is CHAR(8) or CHAR(6), use the following format:

• For CHAR(8): 'YYYYMMDD'
• For CHAR(6): 'YYYYMM'

YYYY: 0001 to 9999 (Year)
MM: 01 to 12 (month)
DD: 01 to 31 (date)

#2: For the VARCHAR, MVARCHAR, and NVARCHAR types, hashing ignores any trailing
spaces. For the DECIMAL, INTERVAL YEAR TO DAY, and INTERVAL HOUR TO

HASHC Use this hash function when the data type of the columns to be partitioned is INTEGER or
SMALLINT. It hashes the final 2 bytes#2 of all partitioned columns. This hash function can
be specified only for columns whose data length is at least 2 bytes.

HASHD Use this hash function when the data type of the columns to be partitioned is DATE. It hashes
the initial 4 bytes#1 of all partitioned columns. This hash function can be specified only for
columns whose data length is at least 4 bytes.

HASHE Use this hash function when the data type of the columns to be partitioned is TIME. It hashes
the initial 3 bytes#2 of all partitioned columns. This hash function can be specified only for
columns whose data length is at least 3 bytes.

HASHF This hash function can be used with all data types in the columns specified for partitioning.
The most appropriate type is DECIMAL. It hashes all bytes#2 of all data of all partitioned
columns. This hash function can be specified for columns whose data length is 0 or more
bytes.

Hash function Explanation

13. Designing Tables

432

SECOND types, if the sign is F, it must be changed to C for hashing.
(c) Selecting a hash function

Selecting an appropriate hash function by actually storing data in a database
To select a hash function, use the following procedure:
1. Specify a hash function appropriate to the partitioning key.
2. Use the database condition analysis utility (pddbst) to check the number of

rows stored in each RDAREA.
3. If there is an uneven distribution in the number of rows stored in the

RDAREAs, change the hash function so that a uniform number of rows is
stored in each RDAREA.

Selecting an appropriate hash function by creating a UAP that uses a hash
function for table partitioning

To select a hash function, use the following procedure:
1. Create an application program that locates an uneven distribution in the

number of data items in each RDAREA by using the hash functions for table
partitioning (function that outputs a partitioning condition specification
sequence from the data values for the partitioning key), available from a
HiRDB library.

2. For each hash function, obtain the number of data items in the partitioning
condition specification sequence that is output by the hash function for table
partitioning, then select the most evenly distributed hash function.

For details about how to create a UAP for using a hash function for table partitioning,
see the manual HiRDB Version 8 UAP Development Guide.

(d) Times when hash functions are used
Hash functions are used at the following times:

• When data is loaded in units of tables
• When data is added
• When data is reloaded in units of tables

(3) Differences among key range partitioning, flexible hash partitioning, and FIX
hash partitioning

Table 13-3 shows the differences among key range partitioning, flexible hash
partitioning, and FIX hash partitioning.

13. Designing Tables

433

Table 13-3: Differences among key range partitioning, flexible hash
partitioning, and FIX hash partitioning

Difference Key range
partitioning

Flexible hash
partitioning

FIX hash partitioning

Database design Key ranges must be
taken into account when
database is designed.

There is no need to take key
ranges into account when
database is designed.

There is no need to take key
ranges into account when
database is designed.

Retrieval Only back-end servers
that may contain the
applicable data
according to the search
condition are subject to
retrieval processing.

All back-end servers
containing the table are
subject to retrieval
processing.

Only back-end servers that
may contain the applicable
data according to the search
condition are subject to
retrieval processing (= and IN
predicates only).1

Support for
increasing the
amount of data

If keys increase, data
may be concentrated in
some RDAREAs.

Data is already stored
uniformly in RDAREAs
even if data increases.

Data is already stored
uniformly in RDAREAs even
if data increases.

Handling of
RDAREA
shutdown

SQLs can be executed if
their search condition is
specified so that no
shutdown RDAREA is
accessed.

If even one of the RDAREAs
containing the table subject
to retrieval is shut down,
SQLs cannot be executed
regardless of their search
condition.

SQLs can be executed if their
search condition is specified so
that no shutdown RDAREA is
accessed.2

Change in number
of table partitions

Table must be re-created
and reorganized.

ALTER TABLE can be used to
add RDAREAs, and
reorganization of the table is
not required.

Table must be re-created and
reorganized. ALTER TABLE
can be used to add RDAREAs
only if the table contains no
data.

Data loading and
reloading in units
of RDAREAs

Data is checked to see if
it is the correct data to be
stored in the
corresponding
RDAREAs.

Data is not checked to see if
it is the correct data to be
stored in the corresponding
RDAREAs.

Data is checked to see if it is
the correct data to be stored in
the corresponding RDAREAs.

Method for
creating an input
data file by
RDAREA during
data loading

Input data is classified
by RDAREA taking into
account the key ranges.

Input data is classified so
that the number of data items
per RDAREA becomes
uniform.

An application is created using
a hash function for table
partitioning,3 and input data is
classified by RDAREA.

Updating of
partitioning key

Updating must use
existing values.

Can be updated. Updating must use existing
values.

13. Designing Tables

434

1 The ASSIGN LIST statement results in a workload on the back-end servers to which
the search condition is not applied.
2 The ASSIGN LIST statement handles the entire table as being shut down.
3 For details about how to create a UAP for using a hash function for table partitioning,
see the manual HiRDB Version 8 UAP Development Guide.

(4) Specification rules when table row partitioning is defined
When table row partitioning is defined, the following specification rules apply:

For key range partitioning

• You can specify only one partitioning key.1 The partitioning key cannot be
updated.

• If you specify a storage condition,2 you cannot specify the same RDAREA
more than once. Although you can specify the same RDAREA more than
once in an environment variable specification,3 you cannot specify the same
RDAREA two or more times in succession.

For hash partitioning

• You can specify a maximum of 16 partitioning keys.1 The same partitioning
key cannot be specified more than once. Flexible hash partitioning allows
updating of partitioning keys, but FIX hash partitioning does not.

• The same RDAREA cannot be specified more than once.

UNIQUE definition
for cluster key and
index definition
with UNIQUE
specified

UNIQUE cannot be
specified.

UNIQUE cannot be specified. UNIQUE can be specified.

Changing the
partition storage
conditions by
ALTER TABLE

Partitioning storage
conditions can be
changed for the
following method:
• Boundary value

specification
Storage condition
specification (only = is
used for the storage
condition comparison
operator)

Partition storage conditions
cannot be changed.
RDAREAs can be added by
ALTER TABLE.

Partition storage conditions
cannot be changed. RDAREAs
cannot be added by ALTER
TABLE.

Difference Key range
partitioning

Flexible hash
partitioning

FIX hash partitioning

13. Designing Tables

435

1 A column or repetition column of any of the following data types cannot be specified
as the partitioning key:

• CHAR, VARCHAR, MCHAR, or MVARCHAR type whose defined length is 256
bytes or greater

• NCHAR or NVARCHAR type whose defined length is 28 characters or greater
• BLOB type
• BINARY type
• Abstract data type
• TIMESTAMP type whose decimal places precision is greater than 0
• TIMESTAMP type whose default value is CURRENT_TIMESTAMP USING

BES
2 When multiple storage conditions are specified, the conditions are evaluated in the
order they were specified, and data is stored in the RDAREA that is specified in the
first storage condition whose evaluation result is true. If none of the conditions results
in true, the system stores data in the RDAREA for which no storage condition was
specified. If there is no such RDAREA, data is not stored in any of the RDAREAs. The
table definition is invalid if it contains an RDAREA in which no row is stored as a
result of evaluating the conditions.
3 A literal is specified for a boundary value. A character string literal with a length of
0 is not permitted. If you specify multiple boundary values, they must be specified in
ascending order. Also, you must specify at the end an RDAREA for which no
boundary value is specified.

(5) Examples of key range partitioning (with storage condition specified)
Figure 13-4 shows an example of key range partitioning (with storage condition
specified).

13. Designing Tables

436

Figure 13-4: Example of key range partitioning with storage condition specified

Explanation:
The STOCK table is partitioned and stored in two user RDAREAs (USR01 and
USR02) using ranges of values in the product code (PCODE) column as the
condition; the specified ranges are 100L-399S and 400L-699S.

13. Designing Tables

437

(6) Example of key range partitioning (with boundary values specified)
Figure 13-5 shows an example of key range partitioning (with boundary value
specified).

Figure 13-5: Example of key range partitioning with boundary values specified

Explanation:

13. Designing Tables

438

The STOCK table is partitioned and stored in two user RDAREAs (USR01 and
USR02) using values in the product code (PCODE) column as boundary values; the
specified boundary values are 302S and 591S.

(7) Example of flexible hash partitioning and FIX hash partitioning
Figure 13-6 shows an example of flexible hash partitioning and FIX hash partitioning.

Figure 13-6: Example of flexible hash partitioning and FIX hash partitioning

Explanation:

13. Designing Tables

439

The STOCK table is partitioned and stored in two user RDAREAs (USR01 and
USR02) using the product code (PCODE) column as the partitioning key and using
hash function 6.
The target RDAREAs for storage of actual data may differ from this example.

13.3.3 Forms of table row partitioning
Following are the basic forms of table row partitioning:

• Row partitioning within a server (applicable to a HiRDB/Single Server)
• Row partitioning among servers (applicable to a HiRDB/Parallel Server)

Figures 13-7 and 13-8 show these forms.
Figure 13-7: Table row partitioning form for a HiRDB/Single Server

13. Designing Tables

440

Figure 13-8: Table row partitioning form for a HiRDB/Parallel Server

13.3.4 Effects of table row partitioning
The effects obtained when a table is row-partitioned are discussed below.

(1) HiRDB/Single Server
Improved operability

Data storage in table, table reorganization, making backups, etc., are available for
each user RDAREA.

Key range partitioning
The user RDAREAs that contain particular table data can be determined by
searching the SQL_DIV_TABLE dictionary table. This means that if an error
occurs in a user RDAREA, the unavailable data can be identified. For details
about dictionary table retrieval and the SQL_DIV_TABLE table, see the manual
HiRDB Version 8 UAP Development Guide.

13. Designing Tables

441

(2) HiRDB/Parallel Server
Improved performance

High-speed table access processing can be achieved, because table access
processing can be handled in parallel over multiple user RDAREAs.
Workload of table access processing can be distributed to multiple back-end
servers.

Improved operability
Same as for a HiRDB/Single Server.

13.3.5 Design considerations
(1) Considerations common to both HiRDB/Single Server and HiRDB/Parallel
Server

Following are the design considerations that are common to HiRDB/Single Servers
and HiRDB/Parallel Servers:

(a) Row partitioning taking into account contention among disk accesses
If multiple UAPs access separate tables concurrently, these tables should be partitioned
and stored in separate user RDAREAs on separate disks.
Figure 13-9 provides an overview of row partitioning taking into account contention
among disk accesses.

13. Designing Tables

442

Figure 13-9: Overview of row partitioning taking into account contention
among disk accesses

Explanation:
Tables A and B are partitioned and stored in two sets of user RDAREAs,
USR01-USR02 and USR03-USR04, which are on separate disks. If UAP1 and UAP2
attempt to access tables A and B concurrently, no contention occurs, thereby
reducing their wait time.
If these tables are stored in user RDAREAs on the same disk, access contention
occurs on the disk when multiple UAPs attempt to access the tables concurrently.
In this case, one of the UAPs is placed in wait status until the other UAP
completes its access processing, resulting in an increase in wait time.

(b) Row partitioning taking into account operability
Figure 13-10 provides an overview of row partitioning taking into account operability.

13. Designing Tables

443

Figure 13-10: Overview of row partitioning taking into account operability

Explanation:
• Storing table and index in the same user RDAREAs

If operability for table creation, table reorganization, backing up of user
RDAREAs, RDAREA recovery, etc., is more important than retrieval
performance, a row-partitioned table and its indexes should be stored in the
same user RDAREAs. Operations on individual user RDAREAs become
easy.
In the example shown in Figure 13-10, the portion of table AB for application
A is stored together with its index in dedicated user RDAREA USR01. This
enables the pdhold command (for shutting down RDAREAs) to be used to
terminate application A. Additionally, it simplifies backup processing for
each application that uses the database copy utility (pdcopy).

• Placing related user RDAREAs on the same disk
If a row-partitioned table and its indexes are stored in multiple user
RDAREAs, the related user RDAREAs should be placed on the same disk.
This enables user RDAREAs to be used individually by disk.

13. Designing Tables

444

In the example shown in Figure 13-10, the portion of table CD for application
D is stored together with its index in user RDAREAs USR04 and USR06 on
the same disk. This enables applications to be executed by disk.

(2) HiRDB/Parallel Server
Following are the design considerations for HiRDB/Parallel Servers:

(a) Row partitioning taking into account workload for disk accesses
• Row partitioning over multiple back-end servers

If multiple user RDAREAs are placed on the disk at one back-end server and the
portions of a table stored in individual RDAREAs all have high access frequency,
the workload for disk accesses becomes high at this back-end server.
Therefore, a frequently accessed table should be partitioned and stored in user
RDAREAs on different disks at multiple back-end servers. In this case, the table
should be partitioned so that the table access frequency becomes uniform among
all the back-end servers containing the table.

• Parallel disk accesses over multiple server machines
If a table stored in a user RDAREA at a back-end server in a server machine with
a low CPU workload is accessed mostly for input/output operations, the workload
of disk accesses is not uniform among the multiple servers, thereby affecting
adversely the efficiency of parallel processing.
If there is capacity in the CPU, more back-end servers and user RDAREAs should
be installed in this server to improve the degree of parallel disk access processing.

(b) Row partitioning taking into account the degree of parallel input/output
processing
If a table is partitioned and stored in as many server machines as possible, the input/
output processing time can be reduced by parallel processing. If there is a limit to the
number of server machines available for table row partitioning, the same effects can
be achieved by increasing the number of back-end servers and disks for each server
machine. Figure 13-11 provides an overview of input/output processing performance
based on the number of back-end servers used for table row partitioning.

13. Designing Tables

445

Figure 13-11: Overview of input/output processing performance based on
number of back-end servers used for table row partitioning

If a table is partitioned and stored in too many back-end servers, there is an increase in
the amount of communication required to return each back-end server's processing
results to the front-end server. Therefore, the appropriate number of back-end servers
must be determined, taking into account the type of database operation and SQL
processing (whether SQLs are used to retrieve a large amount of data from a large
table).

(c) Row partitioning taking into account table access frequency
A table must be partitioned so that table access frequency becomes uniform at each
back-end server.
To do this, the considerations discussed below should be taken into account.
Key range partitioning

13. Designing Tables

446

• When table row partitioning is defined, specify UNIQUE for the partitioning
key so that the amount of data becomes uniform.

• When a table is partitioned and the number of accesses to the data in a
specific key range is expected to be higher than in the other key ranges,
divide the data in the heavy-accesses key range by finer key ranges.

Flexible hash partitioning or FIX hash partitioning
• Change the hash function so that the data is distributed uniformly.
• Select a partitioning key without uneven distribution or duplication so that

the data is distributed uniformly.
Even when a table is partitioned and stored in multiple back-end servers, the
performance of parallel processing of the table can vary depending on whether the
table is partitioned so that uniform access frequency can be achieved.
Figure 13-12 shows the performance of parallel processing depending on the table
access frequency.

Figure 13-12: Performance of parallel processing depending on table access
frequency

Explanation:

13. Designing Tables

447

The processing time that can be saved depends on whether or not the table is
partitioned so that uniform access frequency is achieved. If the access frequency
is not uniform, table processing does not terminate until processing at back-end
server BES2 is completed, so the benefit of parallel processing is not obtained.

(d) Row partitioning taking into account complicated retrieval processing
For purposes of table partitioning taking into account complicated retrieval processing,
such as retrieving or joining a large amount of data, the table should be designed using
the following procedure:
1. Determining the disk processing time and the number of disks to be used

Obtain the disk access frequency (utilization factor) from the size of the data and
the processing patterns, distribute data to disks on the basis of this value, and
determine the object value for disk processing time. If join processing is to be
executed, exclude the work disk required for join processing (the number of
HiRDB file system areas where work table files are created for sort/merge
processing) when distributing data. Exclude the time required for join processing
from the object value of disk processing time. Determine the number of disks on
the basis of data distribution to disks.

2. Determining the number of server machines
Obtain the overhead time for processing at the server machines on the basis of the
data processing patterns. Determine the number of server machines (where
back-end servers are installed) so that the disk processing time and overhead time
at the server machines become uniform.

3. Determining the number of server machines used for join processing
Obtain the overhead time for join processing at the server machines on the basis
of the data processing patterns. Then, determine the number of floating machines
on the basis of this value and the disk processing time.
A floating machine is a server machine where a floating server is installed, which
is a back-end server dedicated to complicated retrieval processing such as join
processing. User RDAREAs cannot be allocated to a back-end server defined as
a floating server.

4. Determining the number of work disks
The data subject to join processing is distributed uniformly from each back-end
server to the floating server. Determine the number of work disks (number of
HiRDB file system areas used to create work table files) on the basis of the
expected amount of this data.

5. Determining the system configuration
Determine the overall system configuration on the basis of the numbers of server
machines and disks determined above.

13. Designing Tables

448

Figure 13-13 shows the concept of a system configuration involving table row
partitioning taking into account complicated retrieval processing.

Figure 13-13: System configuration involving table row partitioning taking into
account complicated retrieval processing

Explanation:
Back-end servers BES1-BES3 and BES4-BES6 read the data subject to join
processing from Tables A and B, respectively. Floating servers BES7-BES9 receive
data from back-end servers BES1-BES6 and execute parallel match processing.
This type of system configuration can reduce the workload of back-end servers
BES1-BES6 and reduce processing time. If no floating server is installed, one of
the back-end servers BES1-BES6 must execute the join processing.

13.3.6 Notes on table row partitioning
1. When a table is row-partitioned, its indexes must also be row-partitioned. If a

table is partitioned and stored in multiple RDAREAs while an index is stored in
a single user RDAREA, the level of concurrent execution may be reduced due to
locking on the index. For details about index row partitioning, see 14.3 Index row
partitioning.

2. You should use the hash facility for hash row partitioning in the following cases:
• Hash row partitioning is to be used with the table.

13. Designing Tables

449

• The amount of data is expected to increase.
If you add RDAREAs to handle an increase of data for a hash row partitioning
table (if you increase the number of table row partitions), data may become
uneven among the existing RDAREAs and newly added RDAREAs. The
rebalancing facility for hash row partitioning can correct such unevenness of data
when you increase the number of table row partitions. For details about the
rebalancing facility for hash row partitioning, see the manual HiRDB Version 8
System Operation Guide.

13. Designing Tables

450

13.4 Table matrix partitioning

Partitioning a table by a combination of partitioning methods using two of the table
columns as the partitioning key is called matrix partitioning. The first column used as
the partitioning key is called the first dimension partitioning column, and the second
column used as the partitioning key is called the second dimension partitioning
column. Matrix partitioning involves key range partitioning with boundary values
specified for the first dimension partitioning column and then partitioning the resulting
data further by the second dimension partitioning column. The following partitioning
methods can be specified for the second dimension partitioning column:

• Key range partitioning with boundary values specified

• Flexible hash partitioning#

• FIX hash partitioning#

#
You can specify hash functions HASH0 to HASH6. You cannot specify HASHA
to HASHF.

A table that has been matrix partitioned is called a matrix-partitioned table.
In order to matrix partition tables, HiRDB Advanced Partitioning Option is required.

(1) Effects of table matrix partitioning
The effectiveness of partitioning on the basis of partitioning keys formed from
multiple columns is as follows:

• High-speed SQL processing
High-speed SQL processing can be obtained by parallel execution of SQL
processing and by maximizing the retrieval range by retrieving on the basis of
multiple keys.

• Reduced operating time
More precise partitioning makes it possible to reduce the size of an RDAREA.
This reduces the time required for reorganization, for making backups, and for
error recovery.

(2) Criteria
We recommend using key range partitioning with boundary values specified for both
partitioning columns when the following conditions are met:

• Partitioning by the first dimension partitioning column results in a vast amount of
data within each set of boundary values.

13. Designing Tables

451

• Multiple columns need to be specified in the search condition for a UAP that
accesses the table and you wish to limit the RDAREAs that are accessed by
multiple columns. Alternatively, you wish to limit the RDAREAs that are
accessed only by column n specified in the SQL statement.

We recommend that you combine key range partitioning with boundary values
specified and hash partitioning when the following conditions are met:

• Partitioning by the first dimension partitioning column results in a vast amount of
data within each set of boundary values.

• You wish to uniformly segment the range of data that was partitioned by the first
dimension partitioning column.

(3) Specification
You use the CREATE TABLE definition SQL statement with the PARTITIONED BY
MULTIDIM operand to specify the following:

• The table's allocation to RDAREAs
• The matrix partitioning parameters (partitioning key, partitioning method)

The definition rules are as follows:
When key range partitioning with boundary values specified is specified for the
second dimension partitioning column

• You can specify two partitioning keys (partitioning key for the first
dimension partitioning column + partitioning key for the second dimension
partitioning column). The partitioning keys for the first and second
dimension partitioning columns cannot be the same.

• You can make multiple specifications for a single RDAREA, but you cannot
make all specified RDAREAs into one RDAREA.

When hash partitioning is specified for the second dimension partitioning column
• You can specify 2-16 partitioning keys. When flexible hash partitioning is

used, only the partitioning key for the second dimension partitioning column
can be updated. When FIX hash partitioning is used, the partitioning keys
cannot be updated.

• The list of matrix partitioning RDAREAs cannot contain the same RDAREA
more than once (you cannot specify the same RDAREA for multiple
RDAREAs that store the range of data partitioned by the first dimension
partitioning column).

For an example definition, see (4) Matrix partitioning example.

13. Designing Tables

452

(4) Matrix partitioning example
(a) Combination of key range partitioning with boundary values specified

Boundary values are specified for the registration_date and store_number
columns of the CUSTOMER_TABLE, and the table is matrix-partitioned by
registration_date and store_number. The customer data is stored in user
RDAREAs (USR01 to USR06) as shown below. The number of user RDAREAs
required for storage, based on the formula (number-of-boundary-values + 1)
(number-of-boundary-values + 1), is 3 2 = 6 in this example:

The following is the SQL statement to define this matrix-partitioned table:

CREATE FIX TABLE CUSTOMER_TABLE
 (registration_date DATE, store_number INT, customer_name
NCHAR(10))
 PARTITIONED BY MULTIDIM(
 registration_date (('2000-12-31'),
 ('2001-12-31')), 1.
 store_number ((100)) 2.
)IN ((USR01,USR02),(USR03,USR04),(USR05,USR06))

Explanation
1. Specifies the name of the first dimension partitioning column (name of the

first column that is used as the partitioning key) and its list of boundary
values.

2. Specifies the name of the second dimension partitioning column (name of
the second column that is used as the partitioning key) and its list of
boundary values.

Figure 13-14 provides an example of matrix partitioning.

Registration date Store number

100 or below Above 100

2000 or earlier USR01 USR02

2001 USR03 USR04

2002 or later USR05 USR06

13. Designing Tables

453

Figure 13-14: Matrix partitioning example (combination of key range
partitioning with boundary values specified)

(b) Combination of key range partitioning with boundary values specified
and hash partitioning
This subsection describes an example of applying FIX hash partitioning to a second
dimension partitioning column.
This example matrix-partitions the CUSTOMER_TABLE by specifying boundary values
for registration_date and using a hash function to partition store_number and
region_code into three segments. The customer data is stored in user RDAREAs
(USR01 to USR09) as shown below. The number of RDAREAs needed for storage is
(number of boundary values + 1) (desired partitions to be obtained by hash
function); therefore, 3 3 = 9 RDAREAs are needed for this example.

13. Designing Tables

454

The following SQL statement defines the table to be matrix-partitioned:

CREATE FIX TABLE CUSTOMER_TABLE
 (registration_date DATE, store_number INT, region_code INT,
customer_name NCHAR(10))
 PARTITIONED BY MULTIDIM
 (registration_date (('2002-12-31'),('2003-12-31')), ...1.
 FIX HASH HASH6 BY store_number, region_code ...2.
)IN ((USR01,USR02,USR03),
 (USR04,USR05,USR06),
 (USR07,USR08,USR09))

Explanation:
1. Specifies the name of the first dimension partitioning column (name of the

first column to be used as the partitioning key) and its list of boundary
values.

2. Specifies the name of the second dimension partitioning column (name of
the second column that is used as the partitioning key) and the hash function
name.

Figure 13-15 shows an example of matrix partitioning.

Registration date Store number and region code (divided into 3 partitions by hash
function)

2002 or earlier USR01 USR02 USR03

2003 USR04 USR05 USR06

2004 or later USR07 USR08 USR09

13. Designing Tables

455

Figure 13-15: Example of matrix partitioning (combination of key range
partitioning with boundary values specified and hash partitioning)

13. Designing Tables

456

13. Designing Tables

457

13.5 Defining a trigger

By defining a trigger, an SQL statement can be executed automatically in response to
some operation on a table (updating, insertion, deletion). A trigger specification
involves a table, an SQL statement that serves as the event to activate the trigger (the
trigger event), an automatically executed SQL statement (trigger event SQL), and the
conditions under which the trigger is activated (the trigger action search conditions).
When an SQL statement that matches the trigger action search conditions is executed
on a table for which a trigger has been defined, the triggered SQL statement executes
automatically. Figure 13-16 provides an overview of triggers.

Figure 13-16: Overview of triggers

Explanation:
When the UAP executes a trigger event SQL statement, triggers defined for Table
A are called. If trigger action search conditions are satisfied, triggered SQL
statements are executed automatically (in this case, a row is inserted into Table B
and a row is updated in Table C).

Prerequisite:

Before you define a trigger, you need to create an RDAREA for the data
dictionary LOB. Use the database structure modification utility (pdmod) to create
the RDAREA for the data dictionary LOB.

When a trigger is defined for a table, all existing functions, procedures, and trigger
SQL objects that the table uses become invalid and have to be re-created. The trigger
SQL object will also become invalid and will have to be re-created if any of the
resources used by the trigger (such as tables or indexes) are defined, modified, or
deleted. For details, see 13.5.4 Trigger management.

13. Designing Tables

458

13.5.1 Application standards
Triggers are recommended when a UAP performs the following processing:

• A table must be updated whenever another table is updated
• Whenever a table is updated, columns in the updated row must be updated (the

columns are related)
For example, assume that whenever a price is updated in the product management table
the change has to be recorded also in the product management history table. If a trigger
were not used, it would be up to the UAP to always update the product management
history table whenever it updates the product management table. If a trigger is used,
however, the product management history table would be updated automatically,
which means that the UAP that updates the product management table does not have
to even be aware of the product management history table. In this way, when triggers
are applied appropriately, the burden on UAP developers is lessened.

13.5.2 Defining a trigger
(1) Preparation for definition

When a trigger is defined, the SQL objects of the trigger action are created
automatically on the basis of the triggered SQL statement and are stored in a data
dictionary LOB RDAREA. Therefore, when triggers are to be defined, sufficient space
must be available in the data dictionary LOB RDAREA. For details about estimating
the size of the data dictionary LOB RDAREA, see 17.5 Determining the size of a data
dictionary LOB RDAREA.
In order to execute a trigger event SQL statement, you must take into account the
triggered SQL objects when you specify the SQL object buffer length. For details
about estimating the buffer length used by SQL objects, see the manual HiRDB Version
8 System Definition.

(2) Definition method
The following definition SQLs are used to define triggers and to re-create and delete
SQL objects.

CREATE TRIGGER
This statement defines a trigger. Triggers can be defined only for tables that are
owned by the definer; they cannot be created for tables that are owned by other
users. This statement specifies the following items:

• Timing of the trigger action
You can execute the trigger action either before (BEFORE) or after (AFTER)
table manipulation. A trigger whose trigger action time is BEFORE is called
a BEFORE trigger, and a trigger whose trigger action is AFTER is called an
AFTER trigger.

13. Designing Tables

459

• Trigger event
The events that can cause a trigger action are the INSERT, DELETE, and
UPDATE statements.

• Table for which trigger is defined
A trigger can be defined only for a base table.

• Row alias before and after execution of the trigger event SQL statement (old
or new values alias)
For the row that is updated by the trigger event SQL statement, specify the
name before SQL statement execution (old correlation name) or the name
after SQL statement execution (new values correlation name). You can use
these aliases to specify the details of the trigger action.

• Trigger action
There are three factors of the trigger action:

 The triggered SQL statement (the SQL statement that executes
automatically)

 The trigger action search conditions (the conditions under which the
triggered SQL statement is executed)

 Whether the action is executed at the row level or the statement level
A triggered SQL statement is executed only when the trigger action search
conditions are satisfied. If no conditions are provided, the triggered SQL
statement is executed every time the trigger event SQL statement executes.

ALTER TRIGGER
This statement re-creates the SQL object for a trigger that has already been
defined. The ALTER ROUTINE definition SQL statement can also be used for
re-creation.
DROP TRIGGER
This statement deletes a trigger.

(3) Trigger definition example
(a) Example of using a trigger

The following is an example of defining a trigger for the product management table so
that if there is an increase in the value of the Price column that exceeds 10,000 yen, the
pre-update and post-update prices will be inserted into the product management
history table.
CREATE TRIGGER TR1 ... Trigger name
 AFTER ... Timing of the trigger action

13. Designing Tables

460

 UPDATE OF price ... Triggering event
 ON product_management_table... Table the trigger is defined for
 REFERENCING OLD ROW AS X1 ... Pre-update row alias
 NEW ROW AS Y1 ... Post-update row alias
 FOR EACH ROW ... Whether for the entire statement or for each row
 WHEN(Y1.price - X1.price > 10000)
 ... Trigger action search condition
 INSERT INTO product_management_history_table VALUES ...
Triggered SQL statement
 (X1.item_no, X1.price, Y1.price)

(b) Example of a trigger action that uses an SQL control statement
(assignment statement)
An assignment statement is an SQL statement that assigns a specified value to a
specified column. A trigger can use an assignment statement before executing its
action on a table. When an assignment statement is used in a trigger action, a
relationship can be established between columns.

13. Designing Tables

461

The following example shows two trigger definitions and their actions of updating the
value of the Bonus column in response to updates of the value in the Position column
of the staff table.

• A trigger that sets a salary bonus value for a row that is inserted into the staff table;
the bonus is set at 8% if the Position is A, 10% if the Position is B, and 0%
otherwise.
CREATE TRIGGER bonus_trigger_1
 BEFORE
 INSERT
 ON staff_table
 REFERENCING NEW ROW AS X1
 FOR EACH ROW
 SET X1.bonus=CASE X1.position
 WHEN 'A' THEN X1.salary*0.08
 WHEN 'B' THEN X1.salary*0.1
 ELSE 0 END

• A trigger that sets a salary bonus value for a row in the staff table in response to
a change in the Position or Salary column; the bonus is set at 8% if the Position
is A, 10% if the Position is B, and 0% otherwise
CREATE TRIGGER bonus_trigger_2
 BEFORE
 UPDATE OF position, salary
 ON staff_table
 REFERENCING NEW ROW AS X1
 FOR EACH ROW
 SET X1.bonus=CASE X1.position
 WHEN 'A' THEN X1.salary*0.08
 WHEN 'B' THEN X1.salary*0.1
 ELSE 0 END

13. Designing Tables

462

Explanation
The INSERT statement acts as a triggering event, bonus_trigger_1 is
executed, and then a row is added. The INSERT statement causes the data in
Bonus to be set to 0, and then the result of the assignment is stored.
Next, the UPDATE statement acts as a triggering event, bonus_trigger_2 is
executed, and the data in Bonus is updated to 0.

(c) Example where the triggering action uses SQL control statements (a
compound statement)
A compound statement is an SQL statement that executes multiple SQL statements
within a single statement. An update to a table can act as a triggering event, such that
the triggered SQL statement is a compound statement that enables the single trigger to
update multiple tables.
The following example defines a trigger that enables updates to the master inventory
table to be reflected in the Glasgow inventory table and the Edinburgh inventory table.
If a compound statement were not used, it would be necessary to define two separate
triggers.
CREATE TRIGGER local_stock_table_update_trigger
 AFTER
 UPDATE OF stock_count
 ON inventory_master
 REFERENCING NEW ROW post_update
 OLD ROW pre_update

13. Designing Tables

463

 BEGIN
 UPDATE Glasgow_stock SET
stock_count=post_update.stock_count
 WHERE product_code=pre_update.product_code;
 UPDATE Edinburgh_stock SET
stock_count=post_update.stock_count
 WHERE product_code=pre_update.product_code;
 END

(d) Example where the trigger action contains an SQL diagnostic statement
(SIGNAL statement)
The SIGNAL statement causes an error to occur. If, before the action on a table, a
trigger action is executed that specifies the SIGNAL statement, then if the action is
invalid the SIGNAL statement will execute to prevent the action.
The following example defines a trigger where there is an attempt to update
information for someone else, and before the staff information table is updated the
SIGNAL statement issues an error and the update is prevented.
CREATE TRIGGER update_prevention_trigger
 BEFORE
 UPDATE
 ON staff_information
 REFERENCING OLD ROW AS X1
 WHEN(X1.employee_name<>USER) SIGNAL SQLSTATE '99001'

13.5.3 Trigger considerations
Depending on the definition of row-level triggers, when a trigger event SQL statement
is executed, the result may vary according to the internal HiRDB processing (different
contents after an update).

Explanation

13. Designing Tables

464

When row 1 of Table A is updated, a trigger causes a row to be updated, deleted,
or inserted in Table B. When row 2 is updated, a trigger causes the same row in
Table B to be referenced, updated, or deleted (there is an overlapping portion).
The update sequence between row 1 and row 2 depends on internal HiRDB
processing, such that a different result may occur.

13.5.4 Trigger management
(1) Trigger definition

When a trigger is defined, all existing functions, procedures, and trigger SQL objects
that the table uses become invalid and have to be re-created. By referencing the
SQL_ROUTINE_RESOURCES dictionary table before a trigger is defined, you can check
the functions, procedures, and trigger SQL objects that will become invalid. Check the
SQL objects that will become invalid so that you can re-create them.

(a) Checking the functions, procedures, and trigger SQL objects that will
become invalid when a trigger is defined
The following example shows how to check the functions, procedures, and trigger
SQL objects that will become invalid when a trigger definition is defined. In the case
of a trigger, what will become invalid is the trigger identifier (TRIGGER_NAME). In the
case of functions and procedures, TRIGGER_NAME becomes NULL.
SELECT DISTINCT B.ROUTINE_SCHEMA, B.ROUTINE_NAME,
B.SPECIFIC_NAME, A.TRIGGER_NAME
FROM MASTER.SQL_ROUTINE_RESOURCES B LEFT JOIN
MASTER.SQL_TRIGGERS A
ON B.ROUTINE_SCHEMA=A.TRIGGER_SCHEMA
AND B.SPECIFIC_NAME=A.SPECIFIC_NAME
WHERE B.BASE_TYPE='R'
AND
B.BASE_OWNER='authorization-identifier-of-owner-of-table-for-which-trigger-is-de
fined'
AND B.BASE_NAME='table-for-which-trigger-is-defined'
AND (B.column-name* ='Y'
 OR (B.INSERT_OPERATION IS NULL
 AND B.UPDATE_OPERATION IS NULL
 AND B.DELETE_OPERATION IS NULL))
* To retrieve the SQL objects that will become invalid when a trigger is defined with
INSERT as the triggering event, specify INSERT_OPERATION as the column name;
when UPDATE is the triggering event, specify UPDATE_OPERATION; and when
DELETE is the triggering event, specify DELETE_OPERATION.

(2) Re-creating a trigger SQL object
When a table, index, or other resource already used by a trigger is defined, modified,
or deleted, the trigger SQL objects become invalid. Also, defining or deleting indexes

13. Designing Tables

465

for a table that a trigger is using will cause the index information for the trigger SQL
objects to become invalid.
If a trigger SQL object becomes invalid, or if the SQL object's index information
becomes invalid, the trigger event SQL statement cannot be executed. To prevent a
trigger SQL object or the SQL object's index information from becoming invalid, the
trigger SQL objects must be re-created with the ALTER TRIGGER or ALTER ROUTINE
definition SQL statements.

(a) How to check the resources used by a trigger
You can check information on the resources that a trigger is using by referencing the
SQL_ROUTINE_RESOURCES, SQL_TRIGGER_USAGE, and SQL_ROUTINE_PARAMS
dictionary tables.

• SQL example for checking the resources used by a trigger action condition
SELECT B.* FROM MASTER.SQL_TRIGGERS A,
MASTER.SQL_TRIGGER_USAGE B
WHERE A.TRIGGER_SCHEMA='schema-name'
 AND A.TRIGGER_NAME='trigger-identifier'
 AND A.TRIGGER_SCHEMA=B.TRIGGER_SCHEMA
 AND A.TRIGGER_NAME=B.TRIGGER_NAME

• SQL example for checking the column resources used by a trigger in specifying
old and new value aliases
SELECT B.* FROM MASTER.SQL_TRIGGERS A,
MASTER.SQL_ROUTINE_PARAMS B
WHERE A.TRIGGER_SCHEMA='schema-name'
 AND A.TRIGGER_NAME='trigger-identifier'
 AND A.TRIGGER_SCHEMA=B.ROUTINE_SCHEMA
 AND A.SPECIFIC_NAME=B.SPECIFIC_NAME

• SQL example for checking resources other than the above used by a trigger
SELECT B. * FROM MASTER.SQL_TRIGGERS A,
MASTER.SQL_ROUTINE_RESOURCES B
WHERE A.TRIGGER_SCHEMA='schema-name'
 AND A.TRIGGER_NAME='trigger-identifier'
 AND A.TRIGGER_SCHEMA=B.ROUTINE_SCHEMA
 AND A.SPECIFIC_NAME=B.SPECIFIC_NAME

(b) How to check triggers that will be deleted before deleting columns in a
table
If all columns that act as triggering events are deleted, the trigger will be deleted. The
following is an example of an SQL for checking the triggers that will be deleted before
deleting columns from a table:
SELECT A.TRIGGER_SCHEMA, A.TRIGGER_NAME
 FROM MASTER.SQL_TRIGGERS A

13. Designing Tables

466

WHERE A.N_UPDATE_COLUMNS>0
 AND
A.TABLE_SCHEMA='authorization-identifier-of-owner-of-table-from-which-columns
-will-be-deleted'
 AND
A.TABLE_NAME='table-identifier-of-table-from-which-columns-will-be-deleted'
 AND NOT EXISTS(SELECT * FROM MASTER.SQL_TRIGGER_COLUMNS B
 WHERE B.TRIGGER_SCHEMA=A.TRIGGER_SCHEMA
 AND B.TRIGGER_NAME=A.TRIGGER_NAME
 AND B.TABLE_SCHEMA=A.TABLE_SCHEMA
 AND B.TABLE_NAME=A.TABLE_NAME
 AND B.COLUMN_NAME NOT
IN('name-of-column-to-be-deleted', ...))

(c) How to check the functions, procedures, and trigger SQL objects or SQL
object index information that will become invalid before defining,
modifying, or deleting a table or index
The following is an SQL example of checking for the functions, procedures, and
trigger SQL objects or SQL object index information that will become invalid before
defining, modifying, or deleting a table or index. If a trigger will become invalid, the
trigger identifier (TRIGGER_NAME) is obtained. If it is a function or a procedure, the
value of TRIGGER_NAME becomes NULL.

Table (including view table) modification or deletion, or index definition (specify
the schema name and identifier of the table that defines the index)
SELECT DISTINCT B.ROUTINE_SCHEMA, B.ROUTINE_NAME,
B.SPECIFIC_NAME, A.TRIGGER_NAME
 FROM MASTER.SQL_ROUTINE_RESOURCES B LEFT JOIN
MASTER.SQL_TRIGGERS A
 ON B.ROUTINE_SCHEMA=A.TRIGGER_SCHEMA
 AND B.SPECIFIC_NAME=A.SPECIFIC_NAME
WHERE B.BASE_TYPE IN('R','V')
 AND B.BASE_OWNER='table(view-table)-owner-authorization-identifier'
 AND B.BASE_NAME='table(view-table)-identifier'

Index deletion
SELECT DISTINCT B.ROUTINE_SCHEMA, B.ROUTINE_NAME,
B.SPECIFIC_NAME, A.TRIGGER_NAME
 FROM MASTER.SQL_ROUTINE_RESOURCES B LEFT JOIN
MASTER.SQL_TRIGGERS A
 ON B.ROUTINE_SCHEMA=A.TRIGGER_SCHEMA
 AND B.SPECIFIC_NAME=A.SPECIFIC_NAME
WHERE B.BASE_TYPE ='I'
 AND B.BASE_OWNER='index-owner-authorization-identifier'
 AND B.BASE_NAME='index-identifier'

Function or procedure deletion

13. Designing Tables

467

SELECT DISTINCT B.ROUTINE_SCHEMA, B.ROUTINE_NAME,
B.SPECIFIC_NAME, A.TRIGGER_NAME
 FROM MASTER.SQL_ROUTINE_RESOURCES B LEFT JOIN
MASTER.SQL_TRIGGERS A
 ON B.ROUTINE_SCHEMA=A.TRIGGER_SCHEMA
 AND B.SPECIFIC_NAME=A.SPECIFIC_NAME
WHERE B.BASE_TYPE ='P'
 AND B.BASE_OWNER='function(procedure)-owner-authorization-identifier'
 AND B.BASE_NAME='routine-identifier'

Trigger deletion
SELECT DISTINCT B.ROUTINE_SCHEMA, B.ROUTINE_NAME,
B.SPECIFIC_NAME, A.TRIGGER_NAME
 FROM MASTER.SQL_ROUTINE_RESOURCES B LEFT JOIN
MASTER.SQL_TRIGGERS A
 ON B.ROUTINE_SCHEMA=A.TRIGGER_SCHEMA
 AND B.SPECIFIC_NAME=A.SPECIFIC_NAME
WHERE B.BASE_TYPE ='T'
 AND B.BASE_OWNER='trigger-owner-authorization-identifier'
 AND B.BASE_NAME='trigger-identifier'

Schema deletion
SELECT DISTINCT B.ROUTINE_SCHEMA, B.ROUTINE_NAME,
B.SPECIFIC_NAME, A.TRIGGER_NAME
 FROM MASTER.SQL_ROUTINE_RESOURCES B LEFT JOIN
MASTER.SQL_TRIGGERS A
 ON B.ROUTINE_SCHEMA=A.TRIGGER_SCHEMA
 AND B.SPECIFIC_NAME=A.SPECIFIC_NAME
WHERE B.BASE_OWNER='schema-name'

Deletion of user-defined type
SELECT B.ROUTINE_SCHEMA, B.ROUTINE_NAME, B.SPECIFIC_NAME,
A.TRIGGER_NAME
 FROM MASTER.SQL_ROUTINE_RESOURCES B LEFT JOIN
MASTER.SQL_TRIGGERS A
 ON B.ROUTINE_SCHEMA=A.TRIGGER_SCHEMA
 AND B.SPECIFIC_NAME=A.SPECIFIC_NAME
WHERE B.BASE_NAME='identifier-of-data-type-to-be-deleted'
 AND B.BASE_TYPE='D'
UNION
SELECT B.ROUTINE_SCHEMA, B.ROUTINE_NAME, B.SPECIFIC_NAME,
A.TRIGGER_NAME
 FROM MASTER.SQL_ROUTINES C INNER JOIN
MASTER.SQL_ROUTINE_RESOURCES B
 ON C.SPECIFIC_NAME=B.BASE_NAME
 LEFT JOIN MASTER.SQL_TRIGGERS A
 ON B.ROUTINE_SCHEMA=A.TRIGGER_SCHEMA
 AND B.SPECIFIC_NAME=A.SPECIFIC_NAME

13. Designing Tables

468

WHERE
C.ROUTINE_ADT_OWNER='owner-authorization-identifier-of-user-defined-type
-to-be-deleted'
AND
C.ROUTINE_ADT_NAME='type-identifier-of-user-defined-type-to-be-deleted'
AND B.BASE_TYPE='P'

(d) How to check the functions, procedures, and trigger SQL objects or SQL
object index information that has become invalid as a result of defining,
modifying, or deleting a table or index
To check the trigger SQL objects or SQL object index information that have become
invalid because of definition, modification, or deletion of a table or index, refer to the
TRIGGER_VALID and INDEX_VALID columns of the SQL_TRIGGER dictionary table.
If the entry in the TRIGGER_VALID column is N, the trigger SQL object has become
invalid. If the entry in the INDEX_VALID column is N, the index information of that
trigger SQL object has become invalid.
The following is an SQL example of checking for the functions, procedures, and
trigger SQL objects and SQL object index information that has become invalid
because of definition, modification, or deletion of a table or index. If a trigger has
become invalid, the trigger identifier (TRIGGER_NAME) is obtained. For functions and
procedures, the value of TRIGGER_NAME becomes NULL.
SELECT 'TRIGGER', TRIGGER_SCHEMA AS "SCHEMA", TRIGGER_NAME AS
"NAME",
 TRIGGER_VALID AS "OBJECT_VALID", INDEX_VALID
 FROM MASTER.SQL_TRIGGERS
WHERE TRIGGER_VALID='N' OR INDEX_VALID='N'
UNION
SELECT 'ROUTINE', ROUTINE_SCHEMA, ROUTINE_NAME, ROUTINE_VALID,
INDEX_VALID
 FROM MASTER.SQL_ROUTINES
WHERE ROUTINE_VALID='N' OR INDEX_VALID='N'

13.5.5 Error recovery
Trigger source code is stored in a data dictionary RDAREA, and trigger SQL objects
are stored in a data dictionary LOB RDAREA. The log collection mode for the data
dictionary RDAREA is ALL, and the log collection mode for the data dictionary LOB
RDAREA is PARTIAL. Therefore, if an error occurs, the source code can be recovered
to its most recent status from the backup and the log. The SQL objects, however, can
only be recovered to their status at the time of the most recent backup. Therefore, the
following considerations are important:

Always have a recent backup on hand
Make frequent backups of the data dictionary LOB AREA, so that if an error
occurs you can recover from a recent backup. Use the pdcopy command with -M

13. Designing Tables

469

x or -M r specified.
Re-create the trigger SQL objects
If you do not have a recent backup of the data dictionary LOB RDAREA, use the
pdmod command to reinitialize the data dictionary LOB RDAREA. Then execute
ALTER ROUTINE with ALL specified, which will re-create all trigger SQL objects.

13. Designing Tables

470

13.6 Creating a view table

Tables can be classified into base tables and view tables. A base table is an actual table.
A view table is a virtual table defined by selecting rows and columns from the base
table. The HiRDB External Data Access facility can be used to create view tables from
foreign tables.

(1) Relationship between base tables and view tables
Figure 13-17 shows the relationship between a base table and a view table.

Figure 13-17: Relationship between base table and view table

Explanation:
This example uses base table STOCK to create view table VSTOCK, which consists
of the product code (PCODE), stock quantity (SQUANTITY), and unit price
(PRICE) columns for those rows with SOCKS in the product name (PNAME)
column.
Let's assume that a branch office needs to reference only the three data items
product code, stock quantity, and unit price for the products whose
product name is SOCKS. For this purpose, base table STOCK is set to be
inaccessible, and view table VSTOCK is set to be accessible for referencing
purposes only (SELECT privilege). In this way, data can be protected while
allowing necessary information to be referenced.

 HiRDB External Data Access facility

You can create view tables from foreign tables in the same manner as from base
tables. You can also refresh view tables created from foreign tables.

13. Designing Tables

471

(2) Effects of creating view tables
The effects of creating view tables are discussed as follows.
Improved security

To improve security for a specific table, the table should be used as a base table
and view tables should be created from it. Doing this enables only selected
columns and rows to be disclosed. Row and column levels of security can be
achieved by granting access privileges to the view tables only.

Improved operability
• If a table is retrieved on the basis of specifying a complicated query, a view

table that contains the data obtained from that query should be created, so
that there is no need to issue the complicated query again. This simplifies
table referencing operations.

• A view table can be used to reference or update its base table. As a result,
when the base table definition is modified, there is no need to modify the
SQL statements or the view table definition depending on the nature of the
modification.

(3) How to create view tables
View tables are created with the CREATE VIEW definition SQL statement. The CREATE
VIEW statement can define the following view tables:

• View tables made from selected rows and columns of base tables and foreign
tables

• View tables with columns determined from set functions, date operations, time
operations, concatenation operations, scalar functions, or arithmetic operations
performed on values from columns of base tables and foreign tables

• View tables that combine a maximum of 15 base tables or foreign tables
• View tables based on the result of grouping retrieval
• View tables based on base tables or foreign tables that are owned by other users

(limited to base tables or foreign tables owned by other users and for which the
SELECT privilege has been granted)

Rules

1. A single view table can be defined with up to 30,000 columns.
2. Columns cannot be added to a view table, and indexes cannot be defined.
3. The owner of a view table defined from base tables owned by that user holds

all privileges (row retrieval, add, delete, update) to that view table.
4. The owner of a view table defined from base tables or foreign tables owned

13. Designing Tables

472

by another user holds the same privileges that he or she holds for those base
tables or foreign tables. However, if the view table definition has any of the
following definitions, only row retrieval is allowed, regardless of whether or
not the security facility is used:

• View tables for which the columns contain multiple specifications of the
same columns from base tables or foreign tables

• View tables for which the columns contain the results of literals, USER,
CURRENT_DATE, CURRENT_TIME, arithmetic operations, date operations,
time operations, concatenation operations, or scalar functions

• Multiple base tables or foreign tables have been specified
• DISTINCT, set functions (COUNT(*), AVG, MAX, MIN, SUM), grouping

(GROUP BY clause), or group conditions (HAVING clause) have been
specified
If the security facility has not been used, view tables other than those noted
above can be freely updated by other users. However, read-only view tables
(READ ONLY specification) cannot be updated by other users regardless of
the security facility.

(4) Deleting view tables
You use the DROP VIEW definition SQL statement to delete view tables. When a view
table is deleted, all related access privileges are also deleted.

13. Designing Tables

473

13.7 Specifying the FIX attribute

The FIX attribute is an attribute assigned to a table whose row length is fixed.
(1) Effects of specifying the FIX attribute

The effects of specifying the FIX attribute for a table are discussed as follows.
Improved performance

• The performance of retrieving a specific column becomes constant
regardless of the order of the column definitions. Additionally, the column
retrieval time is reduced, compared to when the FIX attribute is not specified.

• Access performance is improved even when there are many columns because
a UAP can use an interface for each row.

Improved operability
If the null value is found in the input data when a column of a table with the FIX
attribute is being updated, it can be excluded as an error.

Reduction of required disk space
The physical row length is 2 bytes shorter per column than when the FIX attribute
is not specified. If a table contains many columns, disk space is saved.

(2) Criteria
The FIX attribute should be specified during table definition when all the following
conditions are satisfied:

• No columns will be added to the table
• There will be no null values in any column
• No column is variable length

When these conditions are not satisfied, the following should be evaluated:
• Use the 0 (numeric data) or the space (character data) instead of the null value.

Note that the null value is treated differently in search conditions and set functions
than other values.

• Change variable-length data with a small maximum value or small range of actual
lengths to fixed-length data. Note that variable-length data is handled differently
in search conditions.

(3) Specification
To assign the FIX attribute to a table, FIX is specified in the CREATE TABLE definition
SQL (i.e., CREATE FIX TABLE is specified).

13. Designing Tables

474

13.8 Specifying a primary key

A primary key is used to identify a unique table row. If you define a primary key, an
index is created for the specified column.

(1) Effects of defining a primary key
The uniqueness constraint and NOT NULL constraint apply to a column for which a
primary key is defined. The uniqueness constraint does not allow a duplication of data
in the key (a column or a group of columns). That is, all data in the key is always
unique. The NOT NULL constraint does not allow a null value in any of the columns in
the key.

(2) Criteria
Define a primary key for a column that can identify a unique row. If there is more than
one column that can identify a unique row (candidate key), select one of the candidate
keys as the primary key. Among the keys in the table, define the one that is most
important and that is to be controlled by the uniqueness and NOT NULL constraints as
the primary key.

(3) Specification
To define a primary key, specify the PRIMARY KEY option in the CREATE TABLE SQL
definition statement.

13. Designing Tables

475

13.9 Specifying a cluster key

A cluster key is a column that is specified as the key for storing rows in ascending or
descending order of the specified column values. If a cluster key is specified for one
or more columns in a table, the table rows can be stored in ascending or descending
order of the values in the cluster key column(s).
When a cluster key is specified for a table, an index is created automatically for the
specified column(s).

(1) Effects of specifying a cluster key
The effects of specifying a cluster key for a table are discussed as follows.
Improved performance

Input/output time can be saved when retrieving, updating, or deleting rows with
a range specified or when retrieving or updating rows on the basis of the cluster
key values.

Improved operability
• If you define a cluster key with UNIQUE specified, the uniqueness and NOT

NULL constraints apply to the cluster key. In this case, when rows are
inserted, no duplicated value is allowed in any row in the cluster key column.
Note that you cannot define a cluster key with UNIQUE specified for a table
partitioned by flexible hash partitioning.

• If you define a cluster key with PRIMARY specified, the uniqueness and NOT
NULL constraints apply to the cluster key. In this case, when rows are
inserted, no duplicated value is allowed in any row in the cluster key column.
Additionally, no null value can be stored in any of the columns that constitute
the cluster key. Note that you cannot define a cluster key with PRIMARY
specified for a table partitioned by flexible hash partitioning.

• When creating a table, you can use the database load utility (pdload) to
determine whether or not the input data is arranged in ascending or
descending order of the cluster key values.

• When reorganizing a table, you can use the database reorganization utility
(pdrorg) to determine whether or not the unloaded cluster key matches the
cluster key to be reloaded.

(2) Criteria
The cluster key should be specified in the following cases:

• Many applications accumulate and access data in ascending or descending order
of the key values.

13. Designing Tables

476

• Then table's keys will not be changed.
• The table has fixed-length rows.

(3) Specification
To define a cluster key for a table, specify the CLUSTER KEY option in the CREATE
TABLE definition SQL statement.

(4) Design considerations
To improve retrieval efficiency after data is added, some unused space should be set in
the pages containing the table. For details about how to set space in the pages
containing the table, see 15.3 Pages.

(5) Notes
• The values in a column that constitutes the cluster key cannot be updated.
• The null value cannot be inserted in a column that constitutes the cluster key.
• When data is added to a table with a cluster key specified, there is overhead

involved in searching for the page with the key values that are adjacent to the key
value being added. Figure 13-18 provides an overview of such a situation.
Figure 13-18: Overview of overhead when data is added to a table with a cluster
key specified

Explanation:
1. Data with C in the cluster key column is added.
2. There is overhead involved in searching for the key values on either side of

the C column.

13. Designing Tables

477

13.10 Specifying the suppress option

The option for omitting part of the data in a table in order to reduce the data length for
storage is called the suppress option.
When the suppress option is specified, only the significant digits of the table's decimal
data (excluding leading zeros) and the storage data length are stored when the data is
stored.

(1) Effects of specifying the suppress option
The effects of specifying the suppress option are discussed as follows.

Improved performance
• The amount of disk space that is required is reduced because the stored data is

shorter than the actual data.
• Reducing the required amount of disk space results in a reduction in the input/

output time for retrieval processing, such as retrieval of all entries, etc.
(2) Criteria

The suppress option should be specified in the following cases:
• When a table contains much decimal data and there are many significant digits.
• When the table will be accessed by many retrieval applications, such as for

retrieval of all entries, but few updating applications.
(3) Specification

To specify the suppress option, enter the SUPPRESS option in the CREATE TABLE
definition SQL statement.

(4) Notes
• If the number of significant digits in decimal data equals the defined length or

equals 1, the data is stored with a length of defined length + 1. In this case, the
length of the stored data is greater than when the suppression option is not
specified.

• The suppression option cannot be specified for a table with the FIX attribute.

13. Designing Tables

478

13.11 Specifying the no-split option

If any of the following data types is defined for a table and the actual data length of
that data type is 256 bytes or greater, the system stores a row of data in multiple pages.
Figure 13-19 shows this data storage method.

• VARCHAR
• MVARCHAR
• NVARCHAR

Figure 13-19: Data storage method when actual variable-length character string
data is 256 bytes or greater

Explanation:
The variable-length character string data is stored in a page separate from the
remaining data, adversely affecting the data storage efficiency. In these cases, use
the no-split option to improve the data storage efficiency.

(1) Criteria
If you specify the no-split option, the system stores one row of actual variable-length
character string data in one page, even if the data length is 256 bytes or greater. Figure
13-20 shows the data storage method when the no-split option is specified.

13. Designing Tables

479

Figure 13-20: Data storage method when the no-split option is specified

Explanation:
An entire row of data is stored in the same page. Therefore, the data storage
efficiency is better than when the no-split option is not specified.

(2) Specification
To specify the no-split option, specify the NO SPLIT option in the ALTER TABLE,
CREATE TABLE, or CREATE TYPE SQL definition statement.

(3) Notes
• If the total length of a row of data exceeds the page length, data is split (one row

of data is stored in multiple pages) even when the no-split option is specified.
• If you specify the no-split option when the actual variable-length character string

data is 255 bytes or less, the column data becomes longer by one byte than when
the no-split option is not specified.

• If the no-split option is specified, variable-length character columns will not be
split even if the actual data length exceeds 256 bytes. In such a case, a page will
be able to store fewer rows than if the no-split option were not specified. For this
reason, if a retrieval does not collect column data from variable-length character
columns for which an index scan determined the no-split option was appropriate,
more pages may be accessed than if the no-split option were specified, and
retrieval performance may be deteriorate. However, there is no effect when key
scans and table scans are performed.

13. Designing Tables

480

13.12 Specifying a binary data column

There are two data types for defining columns that store documents, images, audio, and
other variable-length binary data:

• BLOB type (columns specified as the BLOB type are called LOB columns)
• BINARY type

A comparison of how these types store data follows.
Data length (base row + binary data length) does not exceed 1 page

Data length (base row + binary data length) does exceed 1 page

13. Designing Tables

481

Explanation:
A column for which the BLOB type is specified differs from a column with other
attributes in that it is stored in a user LOB RDAREA whose page length is fixed
at 8 kilobytes.
In the case of a column for which the BINARY type is specified, if all of the
column data that composes the table can be stored on one page, then each row is
stored on one page regardless of the actual data length. However, if one row
cannot be stored on one page, it is stored on multiple pages in a dedicated BINARY
segment.

13.12.1 BLOB type
(1) Design considerations

• If the BLOB type is to be used, you must create a user LOB RDAREA.
• BLOB data is stored at an 8-kilobyte boundary, giving BINARY-type data better

storage efficiency. However, if there is large object data, such that the 8-kilobyte
boundary can be ignored, there is not much difference.

(2) Specification
Specify the BLOB type as the data type for the column when you use the CREATE
TABLE definition SQL statement.

13. Designing Tables

482

(3) Notes
The BLOB type cannot be used with the following items:

• Tables with the FIX attribute
• Index definitions
• Partitioning keys

13.12.2 BINARY type
(1) Design considerations

Fewer rows of BINARY-type data can be stored on a page than is the case with
BLOB-type data. Because of this, if search conditions are specified on some columns
where the BINARY type cannot be retrieved, the BINARY type will require more
frequent input/output operations than the BLOB type, thus reducing retrieval
performance. However, if indexes are defined for columns that are not the BINARY
type and an index scan is performed, the performance difference between the BINARY
and BLOB types disappears.

(2) Specification
Specify the BINARY type as the data type for the column when you use the CREATE
TABLE definition SQL statement.

(3) Notes
• The BINARY type cannot be used with the following items:

• Tables with the FIX attribute
• Index definitions
• Partitioning keys
• Columns that make external references

• If the binary data length exceeds one page, the data is stored in dedicated BINARY
segments, which are different from the segments that store the base rows. When
binary data exceeds one page, even if the database analysis utility (pddbst)
determines that there are unused pages, if there are no unused pages in the
dedicated BINARY segment there may be insufficient space in the RDAREA.

13.12.3 BLOB type and BINARY type usage
Table 13-4 lists the recommended data types for each usage of binary data.

13. Designing Tables

483

Table 13-4: Recommended data type for each binary data usage

Binary data usage Average size of
recommended data type

Explanation

32,000
bytes or

less

More than
32,000 bytes

Frequency of binary
data specification in
projection columns

High BINARY BLOB • For 32,000 bytes or less, BINARY type
can also use block transfer. A row's
entire data is together, yielding better
performance.

• For more than 32,000 bytes, BLOB type
can use less memory processing large
object data, yielding better
performance.

Low BLOB* BLOB BLOB type requires a smaller data size for
base rows than BINARY type, so if there are
many pieces of data, BLOB will yield better
performance. However, if indexes are
defined for the non-BINARY columns,
index scans will eliminate the difference
between BINARY and BLOB types. Index
scans are recommended, but the larger the
segment size the smaller the performance
difference.

SQL descriptor flexibility BINARY Equal For 32,000 bytes or less, if there are no
index definitions, BINARY type SQL
descriptors can be roughly the same as the
VARCHAR descriptor. Therefore, the SQL
descriptor range is broader than for the
BLOB type. For details, see the manual
HiRDB Version 8 SQL Reference.

Data storage efficiency BINARY BINARY type has better storage efficiency.
However, for large data objects, for which
the 8-kilobyte boundary can be ignored,
there is little difference.

Frequent additions/updates BLOB The larger the concatenation data size, the
better the performance of BLOB type.

Frequent partial extractions Equal BLOB If partial extraction is done on a BINARY
type with a large stored data size, the
performance will be very poor. Further, the
greater the frequency of partial extraction,
the poorer the performance. If partial
extraction will be required frequently
against large data, BLOB type is
recommended.

13. Designing Tables

484

* If the data size is near to the page size, and if the BINARY type is used with a large
number of table scans, performance will be much poorer than for the BLOB type. To
avoid this, change from a table scan to an index scan. Index scans are recommended,
and even with a large segment size the performance difference is small.

Operability is emphasized BINARY BLOB type requires special operations, such
as backing up the user LOB RDAREA.

If you cannot determine from
the above methods or for a
possible future policy change

BINARY* BLOB If data of more than 32,000 bytes is
handled, BLOB type is recommended. If the
data size is relatively small, BINARY type is
recommended.

Binary data usage Average size of
recommended data type

Explanation

32,000
bytes or

less

More than
32,000 bytes

13. Designing Tables

485

13.13 Specifying the WITHOUT ROLLBACK option

When a table is updated (including addition and deletion processing) while the
WITHOUT ROLLBACK option is in effect, the updated rows are released immediately
from locked status, so that the rows become no longer subject to rollback.

(1) Effects of specifying the WITHOUT ROLLBACK option
The effects of specifying the WITHOUT ROLLBACK option for a table are discussed as
follows.
Improved performance

There are fewer occurrences of locked status because lock control is released
upon completion of update processing.

(2) Criteria
This option is suitable for a table that is subject to concentrated update processing,
such as when numbering is performed.
A numbering application, such as one that handles form numbers, document numbers,
etc., may manage a table by assigning numbers and incrementing the assigned
numbers. If processing is concentrated, such an application may be placed frequently
in lock-release wait status because the lock status cannot be released until COMMIT is
issued. If the WITHOUT ROLLBACK option is specified for the table in this case, the lock
status is released when increment processing is completed, thereby reducing
occurrences of lock-release wait status. Figure 13-21 shows an example of a
numbering application.

13. Designing Tables

486

Figure 13-21: Example of a numbering application

This example manages one type of numbers with one row.
Following is an example of defining the numbering management table shown in Figure
13-21:
CREATE TABLE numbering-management-table (type NCHAR(4),
 numbering INT)
 :
 WITHOUT ROLLBACK

Because a missing number may occur for the following reason, this option should be
used only with applications that can handle missing numbers:

• A table defined with the WITHOUT ROLLBACK option specified is no longer
subject to rollback once its rows are updated. If the UAP or HiRDB is restarted
after abnormal termination, a table for an application that uses the assigned
numbers can be rolled back correctly, but it is impossible to know how far back
the table with the WITHOUT ROLLBACK option specified has been rolled back. In
this case, assigned numbers may not be used by the application.

13. Designing Tables

487

(3) Notes
• If the database load utility (pdload) or database reorganization utility (pdrorg)

is executed with the log acquisition mode specified, a table with the WITHOUT
ROLLBACK option specified is also rolled back in the same manner as with normal
tables.

• If update processing is concentrated, such as in the case of a numbering
application, a dedicated RDAREA and global buffer should be allocated.

• In the case of a table for which the WITHOUT ROLLBACK option is specified, you
can create an index only when a row update on the index component column is a
same-value update. Because lock is not released during row insertion or deletion,
rollback occurs in the same manner as for a normal table.

13. Designing Tables

488

13.14 Specifying the falsification prevention facility

The falsification prevention facility provides a means for prohibiting all users,
including the table owner, from updating table data. This facility protects important
data from accidental modification or unauthorized tampering. Tables to which this
facility has been applied are called falsification prevented tables. Table 13-5 lists the
operations that are permitted on falsification prevented tables.

Table 13-5: Operations permitted on falsification prevented tables

Legend:
Yes: Can be executed.
No: Cannot be executed.

1 Only updatable columns can be updated.
2 Only data that has passed the deletion prevented duration can be deleted. If no
deletion prevented duration is specified, the table data cannot be deleted.
Applicability standards

The falsification prevention facility is recommended for use with tables when it
is important to prevent the table data from accidental modification or
unauthorized tampering.

13.14.1 Specification
Specify the CREATE TABLE definition SQL with the INSERT ONLY operand

Operation Falsification prevented table

Deletion prevented duration
specified

Deletion prevented duration
not specified

Insert (INSERT) Yes Yes

Retrieve (SELECT) Yes Yes

Update by column (UPDATE) Yes1 Yes1

Update by row (UPDATE) No No

Delete (DELETE) Yes2 No

Delete all rows (PURGE TABLE) No No

Data manipulation SQL other
than the above

Yes Yes

13. Designing Tables

489

(falsification prevention option) specified. Alternatively, you can change the definition
of an existing table to a falsification prevented table by specifying the INSERT ONLY
option in ALTER TABLE.
When you are defining a table or changing a table's definition, you can define the
following types of columns:

• Updatable column
If you define an updatable column, you can update data for each column as
follows:

• Always updatable (UPDATE specified)
• Updatable from null value to a non-null value only once (UPDATE ONLY

FROM NULL specified)
You can define updatable columns at the following times:

• When CREATE TABLE is executed
• Before ALTER TABLE (CHANGE INSERT ONLY) is executed
• When ALTER TABLE (ADD column-name) or ALTER TABLE (CHANGE

column-name)* is executed
* ALTER TABLE (CHANGE column-name) cannot be executed on falsification
prevented tables. If you are changing the definition of an existing table to a
falsification prevented table, you must have executed this statement in advance.

• Insert history maintenance column
If you define an insert history maintenance column, you can specify a deletion
prevented duration. Because the DROP TABLE statement cannot be executed if
there is data in such a table (see 13.14.2(1) Definition SQL), the table and its data
are both protected from deletion when the deletion prevented duration is omitted.
Therefore, you should specify a deletion prevented duration only if the period
over which the data needs to be maintained has been clearly determined or can be
determined.

Because there are limitations* on the operations that can be performed on RDAREAs
by the database reorganization utility or the pdrels command, it is recommended that
you store each falsification prevented table in a single RDAREA.
* You must execute a command shutdown on the RDAREA in order to use the database
reorganization utility to reorganize a falsification prevented table. If the database
reorganization utility terminates abnormally, then if there are any other tables or
indexes defined in the RDAREA they will become unavailable, because you cannot
release the shutdown until the reorganization has been completed. For details, see
13.14.2 Restrictions.

13. Designing Tables

490

13.14.2 Restrictions
Data in a falsification prevented table cannot be updated or deleted. Therefore, there
are restrictions on the SQL statements, utilities, and commands that can be executed
on a falsification prevented table and any RDAREA in which it is stored.

(1) Definition SQL
Some definition SQL statements cannot be executed on falsification prevented tables.
Table 13-6 lists these definition SQL statements and their restrictions.

Table 13-6: Restricted definition SQL statements and the restrictions

* To specify an updatable column for an existing table and apply the falsification
prevention facility, you must execute ALTER TABLE on the column and the table. To
apply the falsification prevention facility:

1. Use ALTER TABLE to change the attribute of a desired column to updatable.
2. Use ALTER TABLE (CHANGE INSERT ONLY) to apply the falsification

prevention facility to the table.
(2) Utilities

The operation of utilities is restricted on falsification prevented tables and the
RDAREAs that store them. Table 13-7 lists the restricted utilities and their restrictions.
There are no restrictions on utilities not listed in the table.

SQL statement Restrictions

CREATE TABLE If all columns have the updatable column attribute, the falsification prevention option
cannot be specified.

ALTER TABLE • Table names and column names cannot be changed.
• The falsification prevention facility cannot be applied to a table containing data.

For details about how to apply the falsification prevention facility to an existing
table, see 13.14.3 Changing a falsification-unprevented table to a falsification
prevented table.

• The falsification prevention facility cannot be released.
• No existing column can be changed to an updatable column, or no updatable

column can be changed to a normal column.
• Updatable columns must be defined before the falsification prevention facility is

applied.*
• Setting, releasing, and duration of deletion prevented duration cannot be changed.
• If a deletion prevented duration is specified for a falsification prevented table, the

insert history maintenance column that specifies the deletion prevented duration
cannot be deleted.

• Partition storage conditions cannot be changed.

DROP TABLE Cannot be executed if there is data in a falsification prevented table.

13. Designing Tables

491

Table 13-7: Restricted utilities and the restrictions

Utility Restrictions

Database creation utility (pdload) • Cannot be used in the creation mode (-d option specified).
• Cannot be executed if the table is in reload-not-completed data

status.*

Database structure modification utility
(pdmod)

• Cannot re-initialize a falsification prevented table's storage
RDAREA (initialize rdarea).

• The following facilities cannot be used:
Registering a generation in the HiRDB file system area
(create generation)
Deleting a generation from the HiRDB file system area
(remove generation)
Defining an RDAREA replica (replicate rdarea)
Copying RDAREA configuration information (define copy
rdarea)
Integrating RDAREAs (recast rdarea)

Database reorganization utility (pdrorg) Table reorganization (-k rorg)
• Cannot execute if the related table storage RDAREA is not in

command shutdown status.
• Cannot perform reorganization using a UOC (unlduoc

statement).
• Cannot reorganize the synchronization point specification

(option job statement).
• Cannot execute if related tables are in reload-not-completed

data status.*
Table unload (-k unld)
• Cannot be executed unless the -W option is specified.

Table reload (-k reld)
• Cannot execute if the related table storage RDAREA is not in

command shutdown status.
• Can execute if the related table is in reload-not-completed data

status* (can only re-execute if table reloading terminates
abnormally during table reorganization)

• Cannot reorganize the synchronization point specification
(option job statement).

• Cannot reload to another table (for details, see Figure 13-22).
Batch index creation (-k ixmk), re-creation (-k ixrc),
reorganization (-k ixor)
• Cannot execute if related tables are in reload-not-completed

data status.*

Rebalance utility (pdrbal) Cannot execute if related tables are in reload-not-completed data
status.*

13. Designing Tables

492

* If reorganization is executed for a falsification prevented table, but because of an
error or some other reason the reload is not completed, the table is placed in a status
called reload-not-completed data status, which status is also applied to the storage
RDAREAs of the falsification prevented table. You can check whether an RDAREA
is in reload-not-completed data status with the database condition analysis utility, the
RDAREA unit analysis utility (logical analysis), or by means of a table unit status
analysis. Reload-not-completed data status can be released when table reorganization
(table reloading) completes normally. For details about the reload-not-completed data
status, see the manual HiRDB Version 8 Command Reference.

Figure 13-22: Reloading to another table

Explanation:
1. Falsification prevented table T1 can be reloaded to non-falsification

prevented table T3, because falsification prevented table T1 loses its
restrictions.

2. Non-falsification prevented table T3 cannot be reloaded to falsification
prevented table T1, because the data in falsification prevented table T1 is
protected.

3. Falsification prevented table T1 cannot be reloaded to falsification prevented
table T2, because the data in falsification prevented table T2 is protected.

4. Falsification prevented table T1 can be reloaded back into itself, because
falsification prevented table T1 loses its protection.

5. Falsification prevented table T1 on HiRDB system 1 cannot be reloaded into
falsification prevented table T1 on HiRDB system 2, because the data in

13. Designing Tables

493

falsification prevented table T1 on HiRDB system 1 loses its protection
when it is in falsification prevented table T1 on HiRDB system 2.

(3) Operation commands
There are restrictions on the commands that can be used on falsification prevented
tables and the RDAREAs in which falsification prevented tables are stored. Table 13-8
lists the restricted commands.

Table 13-8: Restricted commands and their restrictions

(4) Restrictions on related products
Restrictions on related products include the following:

• Inner replica facility
The inner replica facility cannot be used with RDAREAs that store falsification
prevented tables. The falsification prevention facility cannot be applied to a table
that is stored in an RDAREA using the inner replica facility.

• Replication facility
For falsification prevented tables, do not use the replication facilities (HiRDB
Dataextractor and HiRDB Datareplicator) to copy data and reflect the result. An
attempt to do so could result in a mismatch in the data in the reflection source and
the reflection result, causing an error.

13.14.3 Changing a falsification-unprevented table to a falsification
prevented table

If a table contains no data, you can use the ALTER TABLE definition SQL statement to
change its definition to a falsification prevented table. If the table contains data, ALTER
TABLE cannot be used to change it to a falsification prevented table. In such a case, you
must first unload the data, change the table to a falsification prevented table, and then
load the data back into the table. The following example describes how to change an
existing falsification-unprevented table containing data to a falsification prevented

Operation command Restrictions

RDAREA shutdown (pdhold) If you cannot execute a reload in order to complete the reorganization of
a falsification prevented table so that the status of the RDAREA that
stores the table can be changed from reload-not-completed data status,
the following options cannot be executed:
• Reference-possible shutdown: -i
• Backup shutdown: -b

RDAREA shutdown release
(pdrels)

If you do not reload an RDAREA that stores a falsification prevented
table that is in reload-not-completed data status, you cannot release the
shutdown before the table reorganization is completed, because that
would leave 0 records of data.

13. Designing Tables

494

table:
To change a falsification-unprevented table to a falsification prevented table:

This example changes the existing falsification-unprevented table T1 that is
stored in RDAREA RDAREA01 to a falsification prevented table.
1. Use the pdhold command to shut down the RDAREA that contains the

falsification-unprevented table.

2. Use the database reorganization utility (pdrorg) to unload data from the
falsification-unprevented table. Make sure that you specify the -W option so
that the unloaded data can be used as input data for the database load utility
(pdload).

3. Use PURGE TABLE to delete all data from the falsification-unprevented
table.

4. If you want to make some columns updatable, use ALTER TABLE to change
their column attribute to updatable column.

5. Use ALTER TABLE with the falsification prevention option specified to
change the table to a falsification prevented table.

6. Use the database load utility (pdload) to load the data that was unloaded in
step 2.

pdhold -r RDAREA01 -c

pdrorg -k unld -t T1 -W bin control_file

PURGE TABLE T1

ALTER TABLE T1 CHANGE COLUMNA UPDATE

ALTER TABLE T1 CHANGE INSERT ONLY WHILE 10 YEARS BY COLUMNB

pdload -b -W T1 control_file

13. Designing Tables

495

7. Because the database load utility (pdload) was executed, use the database
copy utility (pdcopy) to make a backup.

8. Use the pdrels command to release the RDAREA from shutdown status.

To determine the timing of setting the falsification prevention option, check the values
in the SQL_TABLES data dictionary table. Table 13-9 lists and describes the values in
the SQL_TABLES table.

Table 13-9: Meanings of values in the SQL_TABLES table

13.14.4 Error operation
Because RDAREAs that store falsification prevented tables cannot be reinitialized
(initialize rdarea), these RDAREAs cannot be recovered using reinitialization
recovery. Recovery must be with the database recovery utility (pdrstr). If the
RDAREA is full, expand it with the expand rdarea statement.

pdcopy -m /hirdb/rdarea/mast/mast01 -M r -p /usr/hirdb/pdcopy/list/list01
-b /usr/hirdb/pdcopy/backup/backup01 -r RDAREA01

pdrels -r RDAREA01 -o

Falsification prevention
option setting

SQL_TABLES

Value of INSERT_ONLY
column

Value of
CHANGE_TIME_INSERT_ONLY

Not specified Null Null

Specified during execution of
CREATE TABLE

Y Null

Specified during execution of
ALTER TABLE

Y Date and time the table was changed to
falsification prevented table

13. Designing Tables

496

13.15 Table containing a repetition column

HiRDB permits definition of a table that contains a column in which multiple elements
can be stored in each row. In other words, a table can be defined with repetition
columns.
Elements are the items that are repeated in the rows of a repetition column. To define
such a table, it must be created conventionally as shown in Figure 13-23. Figure 13-23
shows an example of tables defined without repetition columns.

Figure 13-23: Example of tables defined without repetition columns

To access these two tables, they must first be joined. Joining tables results in
disadvantages, such as complicating the SQL syntax. If repetition columns are used,
one table containing all the information in two tables can be created without having to
join them.
Figure 13-24 shows an example of a table containing repetition columns.

13. Designing Tables

497

Figure 13-24: Example of table containing repetition columns

Explanation:
QUALIFICATION, FAMILY, RELATIONSHIP, and SUPPORT are repetition
columns.

(1) Effects of defining repetition columns
A table with multiple values and multiplicity can be expressed in rows. Therefore, the
following effects can be expected:

• There is no need to join multiple tables.
• Disk space can be saved because no information is duplicated.
• Because related data items (repeated data) are stored adjacent to each other,

higher access performance can be achieved than when separate tables are used.
(2) Specification

To specify a repetition column, specify the ARRAY option in the CREATE TABLE
definition SQL statement.
An example of defining a table containing repetition columns is shown as follows. This
definition is based on the STAFF_TABLE shown in Figure 13-24. This example
assumes that a multicolumn index has been defined for RELATIONSHIP and SUPPORT.
Example

CREATE TABLE STAFF_TABLE
(NAME NVARCHAR(10),

13. Designing Tables

498

 QUALIFICATION NVARCHAR(20) ARRAY[10],
 SEX NCHAR(1),
 FAMILY NVARCHAR(5) ARRAY[10],
 RELATIONSHIP NVARCHAR(5) ARRAY[10],
 SUPPORT SMALLINT ARRAY[10]);

CREATE INDEX SUPPORTIDX ON STAFF_TABLE
(RELATIONSHIP,SUPPORT);

Note
SUPPORTIDX is an index name assigned to STAFF_TABLE.

(3) Notes
• A repetition column cannot be specified for the following data types:

• CHAR or MCHAR with a defined length of 256 bytes or greater
• NCHAR with a defined length of 128 characters or greater
• BLOB type
• BINARY type
• Abstract data type

• A repetition column cannot be specified for a column for which a cluster key is
specified.

• If FIX is specified for a table, repetition columns cannot be specified.
• Neither storage conditions, hash partitioning, nor the suppress option can be

specified for a repetition column.
• If key range partitioning is used, a repetition column cannot be specified as the

column for which boundary values are specified.
• The NOT NULL constraint cannot be specified for a repetition column.

13. Designing Tables

499

13.16 Table containing an abstract data type

An abstract data type can be defined as the data type of a column in a table. Tables
containing abstract data types can be created.
An abstract data type provides a structure that enables complicated data that cannot be
handled at all by existing data types to be handled easily. HiRDB allows users to define
such a data type as an abstract data type. Creating an abstract data type involves using
the definition SQL to define attributes indicating the structure and to define the
operations to be performed on the values.

An abstract data type can be treated as a data type of a table, in the same manner as any
other data type provided by the HiRDB system, such as the numeric and character
types.
Figure 13-25 shows the data structure of a table containing an abstract data type. In this
figure, the EMPLOYEE column of the STAFF_TABLE is set to abstract data type
t_EMPLOYEE.

Figure 13-25: Data structure of a table containing an abstract data type

(1) Effects of defining an abstract data type
• Data with a complicated structure can be treated as a single value.
• Mapping with an object-oriented application is simplified by combining data and

its manipulation procedure.
• By combining data and its manipulation procedure and using the manipulation

procedure as an external interface, data can be handled without having to know
the internal information about the data.

13. Designing Tables

500

(2) Overview of inheritance
(a) Inheritance

A new abstract data type can be derived from an existing abstract data type by
inheriting attributes and the manipulation procedure. When this is done, the base type
is called the supertype and the derived type is called a subtype. Transferring a
supertype's attributes and function to a subtype is called inheritance.
The relationship between a supertype and a subtype can be expressed as a hierarchy.
Therefore, a complicated concept model can also be expressed as a hierarchy using an
abstract data type.
Figure 13-26 shows a hierarchical structure based on the relationship between a
supertype abstract data type and a subtype. In this figure, the subtype OPERATOR is
derived from the abstract data type EMPLOYEE.

13. Designing Tables

501

Figure 13-26: Hierarchical structure based on the relationship between
supertype and subtype abstract data types

(b) Substitutability
The values of a subtype can be treated as values of its supertype. This is called
substitutability. Figure 13-27 shows the data structure of a table containing an abstract
data type in which values are inserted using substitutability.

13. Designing Tables

502

Figure 13-27: Data structure of a table containing an abstract data type (using
substitutability)

(c) Override
A routine defined as a high-order abstract data type (supertype) can be overwritten
with a low-order abstract data type (subtype) that has the same name. Defining a
routine by overwriting in such a manner is called override. When override is used, the
name of a routine called need not be changed depending on its type.

(3) Effects of using inheritance
When inheritance is used, the following effects can be expected:

• The characteristics of the high-order abstract data type (data and manipulation
procedure) can be used by a low-order abstract data type.

• The subtype enables a data definition to be shared without having to define from
the beginning. This simplifies database definition.

• When override is used, the name of a routine called need not be changed
depending on its type.

(4) Defining an abstract data type
The CREATE TYPE definition SQL is used to define an abstract data type. CREATE

13. Designing Tables

503

TYPE defines the attributes indicating the structure of the abstract data type and defines
the procedure for manipulating the values. If inheritance is used, the subtype clause of
CREATE TYPE is specified. For an example of a CREATE TYPE definition, see 7.5
Creating a table containing a user-defined abstract data type.

(a) Defining a constructor function
A constructor function to be used to generate values for an abstract data type can be
defined. The HiRDB system provides a default constructor function that can be used
when an abstract data type is defined. The default constructor function generates
values whose attributes are all the null value.

(b) Defining a routine
A routine can be defined in an abstract data type definition as an interface for
manipulating the values of an attribute.

(c) Specifying an encapsulation level
An encapsulation level can be specified to control accesses to the attributes comprising
an abstract data type and a routine. An encapsulation level can be specified for a
routine that is used to manipulate attributes and the abstract data type's values. There
are three encapsulation levels:

• PUBLIC
This encapsulation level is used in the definition of an abstract data type other
than the applicable abstract data type or its subtypes or to allow accesses to
attribute values from an application or to allow a routine to be used.

• PRIVATE
To prevent internal information from being modified directly by an application,
this encapsulation level is used to allow accesses to attribute values only in the
definition of the applicable abstract data type or to allow a routine to be used. To
use an SQL to access an attribute value or to use a routine, functions must be
defined.

• PROTECTED
To protect information from being referenced directly by an application for
security purposes, this encapsulation level is used to allow accesses to attribute
values only within the definition of the applicable abstract data type and its
subtypes or to allow a routine to be used.

Once an encapsulation level is specified within the definition of an abstract data type,
the encapsulation level remains in effect until another encapsulation level is specified.
If no encapsulation level is specified, PUBLIC is assumed. The range of data access and
routine usage privilege depends on the encapsulation level. Table 13-10 shows the
encapsulation levels and privileges.

13. Designing Tables

504

Table 13-10: Encapsulation levels and privileges

P: Accesses to attribute values and use of routines are permitted.
: Accesses to attribute values and use of routines are not permitted (if violated, an

SQL error results).

Encapsulation
level

Access source

Within the
definition of the

abstract data
type

Within the
definition of its

subtype abstract
data types

Within the
definition of

another abstract
data type than

those on the left

Application

PUBLIC P P P P

PRIVATE P

PROTECTED P P

13. Designing Tables

505

13.17 Shared tables

In the case of a HiRDB/Parallel Server, when multiple tables are joined, table data is
read from the back-end servers where individual tables are located and then matching
is performed at a separate back-end server. This means that multiple servers are
connected to transfer data. If the range of data to be searched for matches is located on
a single back-end server, matching can be completed at a single back-end server by
creating that data as a shared table. A shared table is a table stored in a shared
RDAREA that can be referenced by all back-end servers. An index defined for a
shared table is called a shared index. Only an updatable back-end server can update
shared tables. Other back-end servers are referred to as reference-only back-end
servers. Because there are limitations on updating a shared table, it is important that
you do not update shared tables during online operations. For details about updating
shared tables, see 13.17.3 Manipulating shared tables. Figure 13-28 shows join
processing without using a shared table, and Figure 13-29 shows join processing using
a shared table.

Figure 13-28: Join processing without using a shared table

Explanation:
This example joins tables A and B.
BES1, BES2: Retrieve data from table A and transfer it to BES5 and BES6 for
matching.

13. Designing Tables

506

BES3, BES4: Retrieve data from table B and transfer it to BES5 and BES6 for
matching.
BES5, BES6: Perform matching and join processing and then transfer data to the
FES.
FES: Merges the joined data and sends the result to the user.
Figure 13-29: Join processing using a shared table

Explanation:
This example joins tables A and B. Table B is a shared table that contains shared
data. The search ranges are located in back-end servers BES2 and BES3.
BES1, BES4, BES5, BES6: No processing.
BES2, BES3: Retrieve data from tables A and B, perform merge processing, and
then transfer the data to the FES.
FES: Sends the results to the user.

Shared tables and shared indexes can also be defined for a HiRDB/Single Server. This
provides SQL and UAP compatibility with a HiRDB/Parallel Server. Shared tables and

13. Designing Tables

507

shared indexes are usually used with a HiRDB/Parallel Server because they are
especially effective in HiRDB/Parallel Servers. The following subsections describe
the use of shared tables with a HiRDB/Parallel Server. For details about using shared
tables with a HiRDB/Single Server, see 13.17.7 Using shared tables with a HiRDB/
Single Server.

13.17.1 Effects and criteria
(1) Effects of shared tables

Because join processing can be completed by a single back-end server, the overhead
associated with connecting between back-end servers and transferring data is reduced.
Additionally, the number of back-end servers required for each transaction can be
reduced, thereby improving the efficiency of parallel processing, particularly in the
event of multiple executions.

(2) Criteria
We recommend that you create as a shared table a table that typically involves minor
update processing but which is referenced by multiple transactions, such as for join
processing.

13.17.2 Definition method
Specify SHARE in the CREATE TABLE definition SQL statement (specify as CREATE
SHARE FIX TABLE). Note that the shared table must satisfy the following conditions:

• The shared table is a non-partitioned FIX table.
• The RDAREA for storing the shared table and shared index is a shared RDAREA

(SDB is specified in the -k option of the pdfmkfs command).
• The WITHOUT ROLLBACK option is not specified.

• It is not a referencing table for which a referential constraint has been defined.

13.17.3 Manipulating shared tables
(1) Searching

Because a shared table can be referenced by all back-end servers, HiRDB selects the
back-end server that is most suitable for searching the shared table. When a shared
table is updated, deadlock may occur between the search and update processing
because all back-end servers apply lock. To avoid deadlock, we recommend that you
search a shared table as follows:

• Specify WITHOUT LOCK or WITHOUT LOCK NOWAIT as the lock option.
• When you search a shared table for updating purposes, specify the FOR UPDATE

clause.
If a LOCK statement with IN EXCLUSIVE MODE specified is executed on a shared

13. Designing Tables

508

table, the RDAREA containing the target shared table and shared index is locked. If
the same RDAREA is accessed, this lock occurs even if the table to be searched is not
the target of the LOCK statement. Therefore, if another transaction is executing a LOCK
statement with IN EXCLUSIVE MODE specified, the shared table cannot be accessed
even when WITHOUT LOCK NOWAIT is specified. This means that the shared table
cannot be searched while the LOCK statement with IN EXCLUSIVE MODE specified is
executing.

(2) Updating
To update a shared table, you must specify IN EXCLUSIVE MODE in the LOCK
statement to lock the shared RDAREAs of all back-end servers. In the case of an
UPDATE statement that does not change index key values, there is no need to issue the
LOCK statement. An update to the shared table and shared index is written to the disk
when the COMMIT statement is issued.
If you are using a local buffer to update a shared table, make sure that you issue the
LOCK statement. If the shared table is updated without issuance of the LOCK statement
and the server process terminates abnormally, the abort code Phb3008 is output (the
unit may terminate abnormally).

(a) Updating involving LOCK statement issuance
To update a shared table with issuance of a LOCK statement:
1. Issue the LOCK statement with IN EXCLUSIVE MODE specified.

The LOCK statement locks not only the specified shared table but also the shared
RDAREAs that contain the shared table and shared index. The global buffer for
the shared RDAREA is disabled at the reference-only back-end server.

2. Execute the INSERT, UPDATE, or DELETE statement for the shared table.
The updatable back-end server applies the update information to the file.
Because the shared RDAREA is locked until the LOCK statement is released, all
accesses to other shared tables in the same shared RDAREA are placed in wait
status.

3. Release the LOCK statement.
Notes

• Issue the LOCK statement at the beginning of the UAP. If any local process
has an open cursor to a table in the related shared RDAREAs, the LOCK
statement results in an error.

• When you create a procedure and trigger to update a shared table, specify the
LOCK statement. If you execute the LOCK statement from a procedure and
trigger, locking does not take place at the point where the transaction starts.
This may result in an error.

13. Designing Tables

509

• The shared table, the shared RDAREA containing the shared table, and the
shared RDAREA containing the shared index are locked at all back-end
servers. If any application accesses a table or index in the corresponding
RDAREA, deadlock or server-to-server global deadlock may occur.

• If the unit for an updatable back-end server terminates abnormally and does
not restart before a shared table updating transaction is completed, and the
following search is executed, a lock timeout error occurs (KFPA11770-I
message is displayed):

 A reference-only back-end server on another unit searches a table in the
RDAREA that contains the shared table being updated or an index defined
for that table.

(b) Updating without LOCK statement issuance
If you do not issue a LOCK statement, you can execute only an UPDATE statement that
does not change index key values. Use this method only for minor changes.
To update a shared table without issuing a LOCK statement:
1. To place all back-end servers in the same status, distribute the update information

to all back-end servers.
2. The updatable back-end server applies the update information to the database.

The reference-only back-end server updates information in the global buffer and
retains the update information without applying it to the file until the COMMIT
statement is issued. If the transaction rolls back, the data is restored in the global
buffer.

Notes

• At a reference-only back-end server, if all global buffers are under update
processing and there is no available page before the COMMIT statement is
issued, the transaction rolls back. Therefore, when you are not issuing a
LOCK statement, do not update a large amount of data.

• The rows to be updated are locked at all back-end servers. If any application
accesses the corresponding table at the same time, deadlock or
server-to-server global deadlock may occur. To avoid deadlock, we
recommend that you use the UPDATE statement to update only one row per
transaction.

• If the unit for an updatable back-end server terminates abnormally and does
not restart before a shared table updating transaction is completed, and the
following search is executed, a lock timeout error occurs (KFPA11770-I
message is displayed):

 A reference-only back-end server on another unit searches a table in the
RDAREA that contains the shared table being updated or an index defined

13. Designing Tables

510

for that table.

13.17.4 Limitations on shared tables
• A shared table cannot be searched while a LOCK statement with IN EXCLUSIVE

MODE specified is executing.
• The ASSIGN LIST statement cannot create a list for shared tables.
• A shared table cannot be specified as a replication target.

13.17.5 Notes about execution of definition SQL statements,
utilities, and operation commands

When definition SQL statements, utilities, and operation commands are used to
process a shared table or shared index, HiRDB may internally issue the LOCK
statement with IN EXCLUSIVE MODE specified and lock the target table and
RDAREAs at all back-end servers. If any application accesses a table or index in a
corresponding RDAREA, deadlock or server-to-server global deadlock may occur.
HiRDB internally issues the LOCK statement for the following definition SQL
statements:

• CREATE TABLE, DROP TABLE, and PURGE TABLE for a shared table
• CREATE INDEX and DROP INDEX for a shared index
• DROP SCHEMA for a schema containing a shared table
• Change to the free space reusage facility for a shared table (ALTER TABLE)

HiRDB internally issues the LOCK statement for the following utilities:
• Database load utility (pdload)
• Database reorganization utility (pdrorg -k reld, rorg, ixrc, ixmk, ixor)
• Free page release utility (pdreclaim)
• Database definition utility (pddef)
• Data dictionary import/export utility (pdexp)
• Database structure modification utility (pdmod -a initialize rdarea)

HiRDB internally issues the LOCK statement for the following operation command:
• pdorend

For details about the utilities and operation commands that cannot be executed on
shared RDAREAs, see 15.6(8) Notes about using shared RDAREAs.

13.17.6 Notes about using Real Time SAN Replication
If Real Time SAN Replication employs the hybrid processing method and any of the

13. Designing Tables

511

SQL statements listed in Table 13-11 is executed on a shared table, a synchronization
wait occurs on the database for the remote site. This may result in an overhead of 2 or
more seconds per SQL statement.

Table 13-11: SQL statements associated with synchronization wait at the remote
site

For details about how to restore the database at the remote site in the event that
synchronization wait on the database fails at the remote site, see Error handling in the
HiRDB Version 8 Disaster Recovery System Configuration and Operation Guide.

13.17.7 Using shared tables with a HiRDB/Single Server
This subsection describes for a HiRDB/Single Server the differences from using
shared tables with a HiRDB/Parallel Server.
About notes

The notes about using shared tables with a HiRDB/Single Server (manipulation
of shared tables, limitations on shared tables, and notes during execution of
definition SQL statements, utilities, and operation commands) are basically the
same as for a HiRDB/Parallel Server. The principal difference is that with a
HiRDB/Single Server, deadlock between servers does not occur because there is
only one server. Additionally, the notes about execution of operation commands
for a HiRDB/Parallel Server and the notes about using Real Time SAN
Replication do not apply to a HiRDB/Single Server.

About the RDAREAs for storing shared tables and shared indexes

In the case of a HiRDB/Single Server, you store shared tables and shared indexes
in normal user RDAREAs because shared RDAREAs cannot be defined. You

Target SQL statement Condition

LOCK TABLE EXCLUSIVE mode

COMMIT None

ROLLBACK

DISCONNECT

CREATE TABLE

CREATE INDEX

DROP TABLE

DROP INDEX

ALTER TABLE Changing the number of reused segments

13. Designing Tables

512

must provide separate user RDAREAs for storing shared tables and indexes from
the user RDAREAs for storing non-shared tables and indexes. If the same user
RDAREA contains both shared and non-shared tables or indexes, deadlock may
occur (while a shared table is being updated, the RDAREAs containing the shared
table and shared index are locked. If any application accesses a table or index in
these RDAREAs, the application is placed in lock-release wait status).

About the use of local buffers

If a shared table or shared index is updated using local buffers on a HiRDB/Single
Server without issuing a LOCK statement and the server process terminates
abnormally, HiRDB does not terminate abnormally with abort code Phb3008.

About migrating from HiRDB/Single Server to HiRDB/Parallel Server

If you are migrating from a HiRDB/Single Server to a HiRDB/Parallel Server,
make sure that you do not use the database structure modification utility (pdmod)
while shared tables and shared indexes are still defined in the HiRDB/Single
Server system. The migration procedure is as follows:
1. Check the HiRDB/Single Server for any defined shared tables or shared

indexes.
Execute the SQL statement shown below (search the SQL_TABLES data
dictionary table to check for the names of any defined shared tables in the
system). If no table names are displayed, no shared tables are defined. If table
names are displayed, those tables are defined.

2. Delete all shared tables and shared indexes that are defined in the HiRDB/
Single Server.

3. Use the database structure modification utility (pdmod) to migrate the
HiRDB/Single Server to a HiRDB/Parallel Server.

4. Define shared RDAREAs in the HiRDB/Parallel Server, check and, if
necessary, revise the shared tables and shared indexes, then store them in
shared RDAREAs.

SELECT TABLE_NAME
FROM MASTER.SQL_TABLES
WHERE SHARED='S'
WITHOUT LOCK NOWAIT

13. Designing Tables

513

13.18 Referential constraints

13.18.1 About referential constraints
The tables in a database may not all be independent, because some tables may be
related to one another. Some data in a table may serve no purpose if related data does
not exist in another table. To maintain referential conformity in data between tables, a
referential constraint can be defined for a particular column (called a foreign key)
when the table is defined. A table in which a referential constraint and a foreign key
are defined is called a referencing table, while a table that is referenced from a
referencing table by means of such a foreign key is called a referenced table. A
primary key, which is referenced by one or more foreign keys, must be defined in the
referenced table.
Execution of SQL code or utilities may cause loss of guaranteed data integrity between
referenced and referencing tables. In such cases, the referencing table is placed in
check pending status. For details about check pending status, see 13.18.3 Check
pending status. For details about operations that cause loss of guaranteed data integrity,
see 13.18.4 Data manipulation and integrity.
Figure 13-30 shows an example of a referenced table and a referencing table. In this
example, PRODUCT_TABLE is the referencing table and MANUFACTURER_TABLE is the
referenced table. The primary key is referenced by a foreign key in the referencing
table to obtain the name of a manufacturer.

Figure 13-30: Example of referenced and referencing tables

When you define a referential constraint, defining an index for the foreign key
improves throughput. However, if the primary key values in the referenced table are
not updated, updating performance may be affected adversely due to the overhead
associated with the index updating that results when a foreign key value is updated.

13. Designing Tables

514

Effects of referential constraints

When you define a referential constraint, the workload associated with UAP
creation can be reduced because checking of data integrity on tables and data
manipulation can be automated. However, if the referenced and referencing tables
are updated, the processing time required for checking increases because data
integrity is also checked.

13.18.2 Defining referential constraints
To enable one or more referential constraints, you must first define in the referenced
table the primary key that is to be referenced by the foreign key (or keys). To do so,
use the CREATE TABLE definition SQL statement to specify PRIMARY KEY in the
referenced table. To use check pending status, specify USE in the
pd_check_pending operand or do not specify (omit) the operand.
For the referencing table, you specify FOREIGN KEY along with the following
information in the FOREIGN KEY clause:

• Referencing column
• Referenced table
• Referential constraint action

For the referential constraint action, use CASCADE or RESTRICT to specify the
action that is to be taken on the referencing table or referenced table when an
operation such as insertion, updating, or deletion is performed.

The following subsections explain the actions in the referenced and referencing tables
when CASCADE or RESTRICT is specified.

(1) If CASCADE is specified
If CASCADE is specified and a change is executed on a primary key value of a
referenced table, the referencing foreign key value will also be changed in the same
manner. In this case, a check is performed to determine if the updated primary key
value is the same as a value in a foreign key. The related value in the referencing
foreign key is not changed if such a change would result in a referential constraint
violation.
Figures 13-31 and 13-32 show examples of the actions that occur if CASCADE is
specified when SQL code is executed on a referenced table and on a referencing table.

13. Designing Tables

515

Figure 13-31: Example of the actions that occur when update SQL code is
executed on a referenced table (with CASCADE specified)

Explanation:
If there is a value in a foreign key that is the same as the value in the primary key,
to maintain constraints, the foreign key value is changed in the same way that the
primary key value is changed. In the above case, updating of the referenced table
is performed. Insertion and deletion are handled in the same manner.
Figure 13-32: Example of the actions that occur when update SQL code is
executed on a referencing table (with CASCADE specified)

Explanation:
If there is a value in the primary key that is the same as the value in the foreign
key after it is updated, updating of the foreign key value is performed. Updating
of the foreign key value is also performed if any foreign key in the referencing
table contains a null value, even if no value exists in the primary key that is the
same as the updated foreign key value. If neither of the above is true, a referential
constraint violation results. If this occurs, there is no effect on the referenced
table. Insertion and deletion are handled in the same manner.

13. Designing Tables

516

Table 13-12 lists primary key operations and describes the resulting actions that occur
in the referencing table when CASCADE is specified. Table 13-13 lists foreign key
operations and describes the resulting actions that occur in the referenced table when
CASCADE is specified.

Table 13-12: Primary key operations and the resulting actions that occur in the
referencing table (with CASCADE specified)

Legend:
Y: Executed normally.
Table 13-13: Foreign key operations and the resulting actions that occur in the
referenced table (with CASCADE specified)

Primary key
manipulation

Relationship between rows in referenced
and referencing tables

Result of
primary key
operation

Action in
referencing

table

Insert (INSERT
statement)

None Y None

Update (UPDATE
statement), delete
(DELETE statement)

The referencing table has a value in a foreign key
that is the same as a value in the primary key before
the update is performed.

Y The update is
performed with
the same value
as that in the
primary key, or
the rows are
deleted.

The referencing table does not have a value in a
foreign key that is the same as a value in the primary
key before the update is performed.

Y None

Foreign key
manipulation

Relationship between rows in referenced
and referencing tables

Result of
foreign key
operation

Action in
referenced

table

Insertion (INSERT
statement)

The referenced table has a value in its primary key
that is the same as a value in a foreign key of the
rows to be inserted.

Y None

The referenced table
does not have a value in
its primary key that is
the same as a value in a
foreign key of the rows
to be inserted.

A foreign key contains
a null value.

Y

A foreign key does not
contain a null value.

N

Update (UPDATE
statement)

The referenced table has a value in its primary key
that is the same as the updated foreign key value.

Y None

13. Designing Tables

517

Legend:
Y: Executed normally.
N: A constraint violation error occurs.

Note that when you specify CASCADE, HiRDB internally generates a trigger during
table definition to update the foreign key value with the change made in the primary
key value. For details about triggers for referential constraint actions and about
user-defined triggers, see 13.18.6 Referential constraints and triggers.

(2) If RESTRICT is specified
If RESTRICT is specified and a change is executed on a primary key value of a
referenced table, a referential constraint violation occurs if there is a value in a foreign
key that is the same as the value in the primary key after it has been updated. In this
case, the primary key value is not changed. If a change is executed on a foreign key
value, a check is performed to determine if there is a value in the primary key that is
the same as the updated foreign key value. If a referential restraint violation error
occurs, updating is not performed on the foreign key value.
Figure 13-33 shows an example of the actions that occur if RESTRICT is specified
when SQL code is executed on a referenced table. The actions in a referencing table
are the same as those when CASCADE is specified (see Figure 13-32).

The referenced table
does not have a value in
its primary key that is
the same as the updated
foreign key value.

A foreign key contains
a null value.

Y

A foreign key does not
contain a null value.

N

Delete (DELETE
statement)

None Y None

Foreign key
manipulation

Relationship between rows in referenced
and referencing tables

Result of
foreign key
operation

Action in
referenced

table

13. Designing Tables

518

Figure 13-33: Example of the actions that occur when update SQL code is
executed on a referenced table (with RESTRICT specified)

Explanation:
If there is a value in a foreign key that is the same as a value in the primary key,
a referential constraint violation error occurs, and updating of the primary key
value is not performed. If there is no foreign key value that is the same, updating
of the referenced table is performed. Insertion and deletion are handled in the
same manner.

Table 13-14 lists primary key operations and describes the resulting actions that occur
in the referenced table when RESTRICT is specified. Foreign key operations and
describes the resulting actions that occur in the referenced table are the same as those
when CASCADE is specified (see Table 13-13).

Table 13-14: Primary key operations and the resulting actions that occur in
referenced and referencing tables

Legend:
Y: Executed normally.

Primary key
manipulation

Relationship between rows in referenced
and referencing tables

Result of
primary key
operation

Action in
referencing

table

Insertion (INSERT
statement)

None Y None

Update (UPDATE
statement), delete
(DELETE statement)

The referencing table has a value in a foreign key
that is the same as a value in the primary key before
the update is performed.

N None

The referencing table does not have a value in a
foreign key that is the same as a value in the
primary key before the update is performed.

Y

13. Designing Tables

519

N: A constraint violation error occurs.
(3) Constraint items in defining referenced and referencing tables

The following notes explain constraint items in table definition, table definition
change, and table deletion performed on referenced and referencing tables.

(a) Defining tables (CREATE TABLE)
• In a single table, a foreign key cannot be defined for a column for which a primary

key is defined.
• A foreign key cannot be defined in the following cases:

• When WITHOUT ROLLBACK is specified for the table, or the table is a shared
table or falsification prevented table.

• When a primary key is defined in a table for which WITHOUT ROLLBACK is
specified, and that primary key is referenced.

• A maximum of 255 foreign keys can be defined in one table.
• A maximum of 255 foreign keys can be defined to reference a single primary key.
• Only tables of the same schema can be referenced when a referencing table is

defined.
• When both of the following conditions are met, you can define a referencing table

for which ON UPDATE CASCADE (referential constraint action during updating is
CASCADE) that references the same primary key in one table is specified.

• There are no duplicated foreign key columns.
• No check constraint or referential constraint related to multiple foreign key

columns is defined.
(b) Changing table definitions (ALTER TABLE)

• Table definitions cannot be changed using the DROP or RENAME clause for a
referenced or referencing table.

• When you change the definition in a referenced table for the primary key and
foreign key columns, the following restrictions apply:

• The CHANGE clause cannot be used to change data type or data length.
• The RENAME clause cannot be used to change the column name.

• Specification of WITH PROGRAM invalidates SQL object functions, procedures
and triggers. You need to re-create them using ALTER ROUTINE, ALTER
PROCEDURE, or ALTER TRIGGER.

(c) Deleting tables (DROP TABLE)
• A table that is referenced by a foreign key cannot be deleted.

13. Designing Tables

520

(4) Notes on defining referential constraints
Deadlock between a referenced and referencing table
If both of the following conditions are met, deadlock may occur between a
referenced and referencing table. These conditions are the same regardless of
whether the referential constraint action is RESTRICT or CASCADE.

• Two separate transactions occur: one that updates rows in the referencing
table and the other that updates the referenced table, and both transactions
are executed simultaneously.

• A value in the primary key of the rows to be updated in the referencing table
is the same as a value in a foreign key of the rows to be updated in the
referenced table.

When you manipulate referenced and referencing tables, make sure that at least
one of the above conditions is not true. You can also guarantee data integrity by
using the LOCK statement's lock mode to lock the target table. Doing so, however,
may somewhat degrade concurrent execution efficiency.
Estimating the size of the SQL object buffer length
When you specify a referential constraint action, HiRDB internally generates a
trigger to check constraint conditions or execute a referential constraint action.
Therefore, you must take these SQL objects into account when specifying the
SQL object buffer length. For details about how to estimate the SQL object buffer
length (pd_sql_object_cache_size), see the manual HiRDB Version 8
System Definition.
Estimating the size of the data dictionary LOB RDAREA
When you specify CASCADE for a referential constraint action, HiRDB generates
a trigger to execute the action. The SQL object that defines the trigger action
procedure of this trigger is stored in the data dictionary LOB RDAREA.
Therefore, when you specify CASCADE for a referential constraint action, you
need to allocate sufficient space for the data dictionary LOB RDAREA. For
details about estimating the size of the data dictionary LOB RDAREA, see 17.5
Determining the size of a data dictionary LOB RDAREA.
Backup data
You must back up data at the same time for all RDAREAs in which referenced
tables and referencing tables are stored. If you use the inner replica facility,
acquire backup for the generation number of all RDAREAs as well. If you use the
inner replica facility, back up the generation number of all RDAREAs as well.
The extent of the data that is backed up depends on the check pending status at
the time of backup. For details about the backup time and the extent of the data
that is backed up, see RDAREAS to be backed up together in the manual HiRDB

13. Designing Tables

521

Version 8 System Operation Guide.
(5) Referential constraint definition examples

The following section provides examples of how to define referential constraints.
(a) Example of defining a referential constraint with a 1-to-1 correspondence

This example defines a referential constraint where the referenced and referencing
tables have a 1-to-1 correspondence.

Definition example of a referential constraint (1)
CREATE TABLE MANUFACTURER
 (MNO CHAR(4),MNAME NCHAR(6),TELEPHONE CHAR(12))
 PRIMARY KEY(MNO) ...Specification of the primary key
CREATE TABLE PRODUCT
 (PNO CHAR(4),MNO CHAR(4),PNAME NCHAR(10),QTY INTEGER)
 CONSTRAINT PRODUCT_FK ...Specification of the constraint name
 FOREIGN KEY(MNO) ...Specification of the foreign key
 REFERENCES MANUFACTURER ... Specification of the referenced table name

Details of the referential constraint action

Because this example omits specification of a referential constraint action,
RESTRICT is assumed during updating or deletion. If the
MANUFACTURER_NO (primary key) of the MANUFACTURER_TABLE is

13. Designing Tables

522

updated or deleted and there is a row corresponding to the
MANUFACTURER_NO (foreign key) of the PRODUCT_TABLE, a referential
constraint violation error occurs. As a result, updating or deletion of the
MANUFACTURER_NO of the MANUFACTURER_TABLE is suppressed.

Definition example of a referential constraint (2)
CREATE TABLE MANUFACTURER
 (MNO CHAR(4),MNAME NCHAR(6),TELEPHONE CHAR(12))
 PRIMARY KEY(MNO) ...Specification of the primary key
CREATE TABLE PRODUCT
 (PNO CHAR(4),MNO CHAR(4),PNAME NCHAR(10),QTY INTEGER)
 CONSTRAINT PRODUCT_FK ... Specification of the constraint name
 FOREIGN KEY(MNO) ... Specification of the foreign key
 REFERENCES MANUFACTURER ... Specification of the referenced table name
 ON UPDATE CASCADE ...Specification of a referential constraint action on update
 ON DELETE CASCADE ... Specification of a referential constraint action on deletion

Details of the referential constraint action

If the MANUFACTURER_NO (primary key) of the MANUFACTURER_TABLE is
updated, the MANUFACTURER_NO (foreign key) of the corresponding
PRODUCT_TABLE is also updated to the same value as for the primary key. If
a row is deleted from the MANUFACTURER_TABLE, the row corresponding to
the PRODUCT_TABLE is also deleted.

(b) Example of defining a referential constraint with a 1-to-2 correspondence
This example defines a referential constraint where there is one referenced table and
two referencing tables.

13. Designing Tables

523

Definition example of a referential constraint
CREATE TABLE PRODUCT
 (PNO CHAR(4),MNO CHAR(4),PNAME NCHAR(10),QTY INTEGER)
 PRIMARY KEY(PNO) ...Specification of the primary key
CREATE TABLE PURCHASE
 (PNO CHAR(4),PNAME NCHAR(10),PQTY INTEGER)
 CONSTRAINT PURCHASE_FK ... Specification of the constraint name
 FOREIGN KEY(PNO) ... Specification of the foreign key
 REFERENCES PRODUCT ... Specification of the referenced table name
 ON UPDATE CASCADE ... Specification of a referential constraint action on update
 ON DELETE CASCADE ... Specification of a referential constraint action on
deletion
CREATE TABLE SALES
 (FNO CHAR(4),CNO CHAR(4),PNO CHAR(4),SQTY INTEGER)
 CONSTRAINT SALES_FK ... Specification of the constraint name
 FOREIGN KEY(PNO) ... Specification of the foreign key

 REFERENCES PRODUCT ... Specification of the referenced table name
 ON UPDATE RESTRICT Specification of a referential constraint action on update

13. Designing Tables

524

 ON DELETE RESTRICT ... Specification of a referential constraint action on
deletion

Details of the referential constraint action

If the PRODUCT_NO (primary key) of the PRODUCT_TABLE is to be updated
and the SALES_TABLE contains a row whose PRODUCT_NO (foreign key) is
the same as the primary key before updating, a referential constraint
violation error occurs, in which case update processing is suppressed. If the
SALES_TABLE contains no row that has the same value as the primary key
before updating, the corresponding PRODUCT_NO in the PURCHASE_TABLE
is also updated to the same value as the primary key.
If a row is to be deleted from the PRODUCT_TABLE and the SALES_TABLE
contains a row that has the same value as the primary key before updating, a
referential constraint violation error occurs, in which case the deletion
processing is suppressed. If the SALES_TABLE contains no row that has the
same value as the primary key, the corresponding row is also deleted from
the PURCHASE_TABLE.

(c) Example of defining a referential constraint with a 2-to-1 correspondence
This example defines a referential constraint where there are two referenced tables and
one referencing table.

13. Designing Tables

525

Definition example of a referential constraint
CREATE TABLE PRODUCT
 (PNO CHAR(4),MNO CHAR(4),PNAME NCHAR(10),QTY INTEGER)
 PRIMARY KEY(PNO) ...Specification of the primary key
CREATE TABLE CUSTOMER
 (CNO CHAR(4),CNAME NCHAR(8),ADDR NCHAR(24))
 PRIMARY KEY(CNO) ...Specification of the primary key
CREATE TABLE SALES
 (FNO CHAR(4),CNO CHAR(4),PNO CHAR(4),SQTY INTEGER)
 CONSTRAINT SALES_PRODUCT_FK ... Specification of the constraint name
 FOREIGN KEY(PNO) ... Specification of the foreign key
 REFERENCES PRODUCT ... Specification of the referenced table name
 ON UPDATE CASCADE Specification of a referential constraint action on update
 ON DELETE CASCADE ... Specification of a referential constraint action on deletion
 CONSTRAINT SALES_CUSTOMER_FK
 FOREIGN KEY(CNO) ... Specification of the foreign key

13. Designing Tables

526

 REFERENCES CUSTOMER ... Specification of the referenced table name
 ON UPDATE CASCADE ... Specification of a referential constraint action on update
 ON DELETE CASCADE ... Specification of a referential constraint action on deletion

Details of the referential constraint action

If the PRODUCT_NO (primary key) of the PRODUCT_TABLE is updated, the
PRODUCT_NO (foreign key) of the SALES_TABLE is also updated to the same
value. If a row is deleted from the PRODUCT_TABLE, the corresponding row
is also deleted from the SALES_TABLE.
If the CUSTOMER_NO (primary key) of the CUSTOMER_TABLE is updated, the
CUSTOMER_NO (foreign key) of the SALES_TABLE is also updated to the
same value. If a row is deleted from the CUSTOMER_TABLE, the
corresponding row is also deleted from the SALES_TABLE.

13.18.3 Check pending status
If data integrity between tables can no longer be guaranteed due to execution of an
SQL statement or of a utility, HiRDB restricts data manipulation in the referencing
table. The status in which data manipulation is restricted due to loss of guaranteed data
integrity is called check pending status. To place a referencing table in check pending
status for the purpose of restricting data manipulation, you must either specify USE in
the pd_check_pending operand or do not specify (omit) the operand. You can use
the integrity check utility (pdconstck) to clear the check pending status of a table.
You can also use the integrity check utility to forcibly place a table into check pending
status.
If you have specified NOUSE in the pd_check_pending operand, data manipulation
is not restricted even when data integrity between tables cannot be guaranteed. In this
case, if you execute an SQL statement or a utility that nullifies the guarantee of data
integrity, you can use the integrity check facility to forcibly place the table into check
pending status, and then check data integrity.
For details about operations that cause loss of guaranteed data integrity, see 13.18.4
Data manipulation and integrity. For details about how to check data integrity, see
13.18.5 Procedure for checking table integrity.

(1) Trigger for setting or clearing check pending status
In addition to the integrity check utility, you can also use the following utilities,
commands, and SQL statements to place a referencing table into check pending status
or to clear a check pending status that has been applied to a referencing table.

• The constraint statement of the database load utility (pdload)
• The constraint statement of the database reorganization utility (pdrorg)

(reload, reorganization)
• The database structure modification utility (pdmod) (re-initialization of

13. Designing Tables

527

RDAREA)
• Reflection processing of updatable online reorganization (pdorend -p

command)
• The PURGE TABLE statement
• The ALTER TABLE (CHANGE RDAREA) statement

For details about utilities and commands, see the manual HiRDB Version 8 Command
Reference. For details about SQL, see the manual HiRDB Version 8 SQL Reference.

(2) Managing check pending status
Check pending status is managed based on dictionary tables and on the table
information of the RDAREAs in which the tables are stored. In dictionary tables,
check pending status is managed for each table and constraint. In table information,
check pending status is managed for each RDAREA if the table is a partitioned table,
and for each table if the table is not a partitioned table.
Table 13-15 lists the storage locations of check pending status information and their
contents.

Table 13-15: Storage locations of check pending status information and contents
(referential constraint)

(3) Operations that are restricted for tables in check pending status
Table 13-16 lists operations that are disabled for tables in check pending status. When
a target table is accessed by a trigger action, restricted operations depend on the
availability of SQL operations specified in the triggered SQL statement. If a target
table is a view table, the restricted operations depend on the availability of operations
on the base table that is the source of the view table.

Storage location Stored information

Dictionary
table

SQL_TABLES table CHECK_PEND column Check pending status of referential constraint
for each table

SQL_REFERENTIAL_
CONSTRAINTS table

CHECK_PEND column Check pending status of referential constraint
for each constraint

RDAREA table information For non-partitioned
table

Check pending status of referential constraint
or check constraint for each table

For partitioned table Check pending status of referential constraint
or check constraint for each RDAREA

13. Designing Tables

528

Table 13-16: Availability of operations on tables in check pending status

Legend:
Y: The operation cannot be performed in certain cases.
N: The operation cannot be performed.

#1
The operation can be performed only when both of the following conditions are
met:

• The target table is a partitioned table, and the partitioning condition is key
range partitioning or FIX hash partitioning.

• The target RDAREA is not in check pending status.
#2

Reorganizing a table partitioned using flexible hash partitioning may not be
possible. For details, see Rules and notes in the Database Reorganization Utility
(pdrorg) chapter of the manual HiRDB Version 8 Command Reference.

(4) Operations restricted for tables that are related to a table in check pending
status

In this example, tables have the following referential relationship; only tables T2 and
T3 are in check pending status.

Operation on check pending status tables Availability

Data
manipulation
SQL

SELECT statement Searches the target table Y#1

Searches a list created from the target table

INSERT statement Inserts data into the target table

UPDATE statement Updates the target table

DELETE statement Deletes a row from the target table

ASSIGN LIST statement Creates a list from the target table

Utility Rebalancing utility (pdrbal) N

Database reorganization
utility (pdrorg)

Reorganizes Y#2

13. Designing Tables

529

The following subsections explain operations restricted for each table when either
table T2 or T3 or both tables are in check pending status.

(a) When only table T2 is in check pending status
Table 13-17 lists operations restricted for each table when only table T2 is in check
pending status.

Table 13-17: Restricted operations when table T2 is in check pending status

Target
table

Restricted operation Contents

Table T1 UPDATE (updates the target
table)

Restrictions depend on the referential constraint action
specification defined in table T2.
• If CASCADE is specified:

These operations cannot be performed if the table
information of the RDAREA that is the target of
referential constraint action is in check pending status.
However, update operations can be performed if the
values are the same.

• If RESTRICT is specified:
These operations can be performed. Referencing table T2
is referenced to perform data integrity checking.

DELETE (deletes rows from the
target table)

Table T2 SELECT statement (searches the
target table or a list created from
the target table)

These operations can be performed only when both of the
following conditions are met:
• The target table is a partitioned table and the partitioning

condition is key range partitioning or FIX hash
partitioning.

• The target RDAREA is not in check pending status.
INSERT statement (inserts data
into the target table)

UPDATE statement (updates the
target table)

DELETE statement (deletes rows
from the target table)

ASSIGN LIST statement
(creates a list from the target
table)

Rebalancing utility (pdrbal) This operation cannot be performed.

13. Designing Tables

530

(b) When only table T3 is in check pending status
Table 13-18 lists operations restricted for each table when only T3 is in check pending
status.

Table 13-18: Restricted operations when table T3 is in check pending status

Reorganization by the database
reorganization utility (pdrorg)

Reorganization may not be possible for a table partitioned
using flexible hash partitioning. For details, see Database
Reorganization Utility (pdrorg) in the manual HiRDB
Version 8 Command Reference.

Table T3 There is no restricted operation. For INSERT and DELETE, referenced table T2 is referenced to
perform data integrity checking.

Target
table

Restricted operation Contents

Table T1 UPDATE (updates the target
table)

When the referential constraint action defined for table T2
and T3 is CASCADE, these operations cannot be performed if
the table information of the RDAREA that is the target of
referential constraint action is in check pending status.
However, update operations can be performed if the values
are the same.

DELETE (deletes rows from the
target table)

Table T2 UPDATE (updates the target
table)

Restrictions depend on the referential constraint action
specification defined for tables T2 and T3.
• If CASCADE is specified:

These operations cannot be performed if the table
information of the RDAREA that is the target of
referential constraint action is in check pending status.
However, update operations can be performed if the
values are the same.

• If RESTRICT is specified:
These operations can be performed. Referencing table T3
is referenced to perform data integrity checking.

DELETE (deletes rows from the
target table)

Target
table

Restricted operation Contents

13. Designing Tables

531

(c) When both tables T2 and T3 are in check pending status
Table 13-19 lists operations restricted for each table when tables T2 and T3 are in
check pending status.

Table 13-19: Restricted operations when tables T2 and T3 are in check pending
status

Table T3 SELECT statement (searches the
target table or a list created from
the target table)

These operations can be performed only when both of the
following conditions are met:
• The target table is a partitioned table and the partitioning

condition is key range partitioning or FIX hash
partitioning.

• The target RDAREA is not in check pending status.
INSERT statement (inserts data
into the target table)

UPDATE statement (updates the
target table)

DELETE statement (deletes rows
from the target table)

ASSIGN LIST statement
(creates a list from the target
table)

Rebalancing utility (pdrbal) The operation cannot be performed.

Reorganization by the database
reorganization utility (pdrorg)

Reorganization may not be possible for a table partitioned
using flexible hash partitioning. For details, see Database
Reorganization Utility (pdrorg) in the manual HiRDB
Version 8 Command Reference.

Target
table

Restricted operation Contents

Table T1 UPDATE (updates the target
table)

If the referential constraint action defined for table T2 and T3
is CASCADE, these operations cannot be performed if the table
information of the RDAREA that is the target of referential
constraint action is in check pending status. However, update
operations can be performed if the value are the same.
These operations can be performed if the referential
constraint action specification defined for tables T2 and T3 is
RESTRICT. Referencing table T2 is referenced to perform
data integrity checking.

DELETE (deletes rows from the
target table)

Target
table

Restricted operation Contents

13. Designing Tables

532

Table T2 SELECT statement (searches the
target table or a list created from
the target table)

These operations can be performed only when both of the
following conditions are met:
• The target table is a partitioned table and the partitioning

condition is key range partitioning or FIX hash
partitioning.

• The target RDAREA is not in check pending status.
INSERT statement (inserts data
into the target table)

UPDATE statement (updates the
target table)

DELETE statement (deletes rows
from the target table)

ASSIGN LIST statement
(creates a list from the target
table)

Rebalancing utility (pdrbal) This operation cannot be performed.

Reorganization by the database
reorganization utility (pdrorg)

Reorganization may not be possible for a table partitioned
using flexible hash partitioning. For details, see Database
Reorganization Utility (pdrorg) in the manual HiRDB
Version 8 Command Reference.

Table T3 SELECT statement (searches the
target table or a list created from
the target table)

These operations can be performed only when both of the
following conditions are met:
• The target table is a partitioned table and the partitioning

condition is key range partitioning or FIX hash
partitioning.

• The target RDAREA is not in check pending status.
INSERT statement (inserts data
into the target table)

UPDATE statement (updates the
target table)

DELETE statement (deletes rows
from the target table)

ASSIGN LIST statement
(creates a list from the target
table)

Rebalancing utility (pdrbal) This operation cannot be performed.

Reorganization by the database
reorganization utility (pdrorg)

Reorganization may not be possible for a table partitioned
using flexible hash partitioning. For details, see Database
Reorganization Utility (pdrorg) in the manual HiRDB
Version 8 Command Reference.

Target
table

Restricted operation Contents

13. Designing Tables

533

(5) When a partitioned table or the inner replica facility is used
Since the check pending status is managed for each RDAREA, if a partitioned table or
the inner replica facility is used, and the table information in the RDAREA actually
used is in check pending status, operation on the partitioned table or generation may
be restricted. The following subsections explain these cases.

(a) For partitioned tables
Figure 13-34 shows an example wherein part of an RDAREA that stores data in a
partitioned table is in check pending status.

Figure 13-34: Data manipulation availability when managing check pending
status for each RDAREA in a partitioned table

Explanation:
When you execute a SELECT statement for partitioned table A, if data actually
manipulated is in RDAREA 2 (whose table information is in check pending
status), a SELECT statement error occurs. When manipulating data in RDAREAs
1 and 3, the SELECT statement can be executed normally.

Notes on partitioned table

If you specify USE in the pd_check_pending operand and re-initialize the
RDAREA where referencing table data is partitioned and stored, use the integrity
check utility to check the data integrity of each table.

(b) When the inner replica facility is used
Figure 13-35 shows an example in which the inner replica facility is used, and, in one
of the generations of an RDAREA, a part of it is in check pending status.

13. Designing Tables

534

Figure 13-35: Data manipulation availability when using the inner replica
facility and managing check pending status by RDAREA

Explanation:
When manipulating data of generation 1 (the generation that includes the
RDAREA whose table information is in check pending status), if the data that is
actually being manipulated is in replica RDAREA 2-1, the SQL code results in an
error.

(6) Notes on using check pending status
If you change the value specified in the pd_check_pending operand from
NOUSE to USE, you must use the integrity check utility to check the data integrity
of the referencing table. For details about how to check data integrity, see 13.18.5
Procedure for checking table integrity.
Even if you have specified USE in the pd_check_pending operand and
manipulated a table, causing loss of guaranteed data integrity, depending on the
RDAREA status, you may not be able to set check pending status. For that reason,

13. Designing Tables

535

if you change the value specified in the pd_check_pending operand from
NOUSE to USE, operations that can normally be performed when check pending
status is not used could cause an error. The following explains the status of an
RDAREA where the check pending status can be set when executing PURGE
TABLE statement or ALTER TABLE (CHANGE RDAREA).
When the open trigger attribute is INITIAL:

• RDAREA is not in hold and is in open status
• RDAREA is in updatable backup hold status and also in open status
• RDAREA is in online reorganization hold status and also in open status
• When RDAREA is in synchronous hold status and also open status, check

pending status can be set after the hold status is cleared.
When the open trigger attribute is DEFER or SCHEDULE:

• RDAREA is not in hold status
• RDAREA is in updatable backup hold status
• RDAREA is in online reorganization hold status
• When RDAREA is in synchronous hold status, check pending status can be

set after the hold status is cleared.
For details about RDAREAs on which check pending status can be set when the
utility is executed, see Whether or not the check pending status can be set of
RDAREA Status During Command Execution in the manual HiRDB Version 8
Command Reference.
If you specify USE in the pd_check_pending operand, since lock is applied to
referencing tables and RDAREAs that are set to check pending status, locked
resources when a utility or SQL code is executed are different from those when
check pending status is not used.

13.18.4 Data manipulation and integrity
When a referenced or referencing table is updated, added to, or deleted by a data
manipulation SQL statement (excluding the PURGE TABLE statement), HiRDB
performs checking during execution to guarantee data integrity. However, if the
operations described in Tables 13-20 and 13-21 are executed, data integrity may no
longer be guaranteed. If you specify USE in the pd_check_pending operand and
perform these operations, the referencing table is placed in check pending status.

13. Designing Tables

536

Table 13-20: Operations on referenced tables that nullify the guarantee of data
integrity and the conditions under which loss of data integrity occurs

Operation on table or RDAREA Condition for loss of data integrity

Database load utility
(pdload)

Data load of creation mode
(-d option)

The loaded primary key column does not contain a
value that is the same as a value in a foreign key
column of the referencing table.

Database reorganization
utility (pdrorg)

Reload (-k reld) The reloaded primary key column does not contain a
value that is the same as a value in a foreign key
column of the referencing table.

Reorganization (-k rorg) UOC was used to delete a row that contains a value
that is the same as a value in a foreign key column of
the referencing table.

Database structure
modification utility
(pdmod)

Reinitialization of RDAREA
(initialize rdarea)

The referencing table is stored in an RDAREA that is
different from the re-initialized RDAREA.

13. Designing Tables

537

#
For details about using updatable online reorganization, see the manual HiRDB

Reflection processing of updatable online re-organization
(pdorend command)

You perform any of operations (1) to (4) below on the
replica RDAREA and original RDAREA in the
current database during operation of updatable online
reorganization# on tables having a referential
relationship (data mismatch occurs after reflection
processing):
(1) When you perform operations in the following
order:

1. Insert data into the referencing table in the
replica RDAREA.
2. From the referenced table in the original
RDAREA, delete a row that has a value that is the
same as one of the foreign key values inserted in
step 1.

(2) When you perform operations in the following
order:

1. Update foreign key data in the referencing
table in the replica RDAREA.
2. From the referenced table in the original
RDAREA, delete a row that has a value that is the
same as one of the foreign key values updated in
step 1.

(3) When you perform operations in the following
order:

1. Delete data from the referenced table in the
replica RDAREA.
2. In the referencing table in the original
RDAREA, insert a row that has a value that is the
same as one of the primary key values deleted in
step 1.

(4) When you perform operations in the following
order:

1. Update data in the referenced table in the
replica RDAREA.
2. In the referencing table in the original
RDAREA, insert a row that has a value that is the
same as one of the primary key values that
existed before it was updated in step 1.

PURGE TABLE statement Data exists in the referencing table.

Modification of table partition storage conditions by the
ALTER TABLE

As a result of partitioning or integration of
RDAREAs, a row that contains a value that is the
same as a value in the foreign key column of the
referencing table is not included.

Operation on table or RDAREA Condition for loss of data integrity

13. Designing Tables

538

Staticizer Option Version 7 Description and User's Guide.
Table 13-21: Operations on referencing tables that nullify the guarantee of data
integrity and the conditions under which loss of data integrity occurs

Operation on table or RDAREA Condition for loss of data integrity

Database load utility
(pdload)

Data load The loaded foreign key column does not contain a
value that is the same as a value in the primary key
column of the referenced table.

Database reorganization
utility (pdrorg)

Reload (-k reld) The reloaded foreign key column does not contain a
value that is the same as a value in the primary key
column of the referenced table.

13. Designing Tables

539

#
For details about using updatable online reorganization, see the manual HiRDB
Staticizer Option Version 7 Description and User's Guide.

Reflection processing of updatable online
re-organization
(pdorend command)

You perform any of operations (1) to (5) on the replica
RDAREA and original RDAREA in the current
database during operation of updatable online
reorganization# on tables having a referential
relationship (data mismatch occurs after reflection
processing):
(1) When you perform operations in the following
order:

1. Insert data into the referencing table in the
replica RDAREA.
2. From the referenced table in the original
RDAREA, delete a row that has a value that is the
same as one of the foreign key values inserted in
step 1.

(2) When you perform operations in the following
order:

1. Update foreign key data in the referencing table
in the replica RDAREA.
2. From the referenced table in the original
RDAREA, delete a row that has a value that is the
same as one of the foreign key values updated in
step 1.

(3) When you perform operations in the following
order:

1. Delete data from the referenced table in the
replica RDAREA.
2. In the referencing table in the original
RDAREA, insert a row that has a value that is the
same as one of the primary key values deleted in
step 1.

(4) When you perform operations in the following
order:

1. Update data in the referenced table in the
replica RDAREA.
2. In the referencing table in the original
RDAREA, insert a row that has a value that is the
same as one of the primary key values that existed
before it was updated in step 1.

(5) When you perform the following operation:
Use the database load utility (pdload) to perform
operation on the referencing table in the replica
RDAREA, which causes loss of data integrity.

Operation on table or RDAREA Condition for loss of data integrity

13. Designing Tables

540

(1) When the target table is a partitioned table
If the target table is a partitioned table and the table contains mismatched data,
execution of a utility may move the RDAREA in which the mismatched data is stored.
For example, assume there is mismatched data in RDAREA 1 for a table that is
partitioned and stored in RDAREAs 1, 2 and 3. Executing a utility could cause the
mismatched data to be moved to RDAREA 3. Table 13-22 lists conditions that cause
moving of mismatched data between RDAREAs.

Table 13-22: Conditions that cause moving of mismatched data in a table
between RDAREAs when the target table is a partitioned table

#
You cannot execute the utility when you specify USE in the pd_check_pending
operand if the target table is in check pending status.

(2) Other conditions under which loss of data integrity may occur
When all of the following conditions are met, data mismatch may occur; therefore, you
need to check data integrity. For details about how to check data integrity, see 13.18.5
Procedure for checking table integrity. These conditions are the same regardless of
whether the referential constraint action is RESTRICT or CASCADE.

• There are two transactions, one for deleting rows from the referencing table and
the other for updating or deleting the referenced table, and these transactions are
executed at the same time.

• A value in the primary key column of a row that is to be deleted from the
referencing table is the same as a value in a foreign key column of a row that is to
be updated or deleted in the referenced table.

• The transaction for updating or deleting rows in the referencing table is

Operation on table or RDAREA Conditions that cause moving of mismatched
data in a table between RDAREAs

Database reorganization
utility (pdrorg)

Reorganization (-k
rorg)

You perform the following steps in the order listed below
on a table partitioned using flexible hash partitioning or a
matrix-partitioned table whose second dimension
partitioning column is partitioned using flexible hash
partitioning:
1. Perform data load for each RDAREA.
2. In HiRDB/Single Server, execute reorganization for

each table.#
In HiRDB/Parallel Server, specify the -g option to
execute reorganization for each table.#

Rebalancing utility (pdrbal) You add an RDAREA for a table that has mismatched data
to execute the rebalancing utility (pdrbal).#

13. Designing Tables

541

committed, and the transaction for deleting rows from the referenced table is
rolled back.

When you manipulate referenced tables and referencing tables, make sure that all the
above conditions are not true at the same time. You can guarantee data integrity by
locking the target table with the LOCK statement's shared mode or lock mode. Note that
there are some adverse effects on concurrent execution efficiency.

13.18.5 Procedure for checking table integrity
Figure 13-36 shows the procedure for checking data integrity.

Figure 13-36: Overview of procedure for checking data integrity (referential
constraint)

When the value specified in the pd_check_pending operand is USE, or the operand
is omitted:
1. Identify tables in check pending status

Search SQL_TABLES of the dictionary table to detect the names of tables in check
pending status.

13. Designing Tables

542

The owners and names of tables in check pending status are returned in the search
result. If no rows are returned in the search result, no tables are in check pending
status.
To check whether each generation table is in check pending status when the inner
replica facility is used, you can use the condition analysis utility (pddbst).

2. Use the integrity check utility to check data integrity.
Use the integrity check utility to check the data integrity of each table and to
correct any data that violates constraint conditions. Repeat the procedure until no
table remains in check pending status. For details about how to use the integrity
check utility to check data integrity, see 13.18.5(1) Procedure for checking data
integrity when check pending status is used (referential constraint).

When the value specified in the pd_check_pending operand is NOUSE:
1. Identify the tables for which you want to check data integrity, and forcibly place

these tables into check pending status.
To identify tables on which to check data integrity, check the following items:

• Whether a referencing table references a table on which an operation was
performed that caused loss of data integrity

• Whether a referential constraint has been defined in the table on which an
operation was performed that caused loss of data integrity

The following is an example SQL execution to check these items:

The following search result is returned:
• The number of foreign keys defined in the target table
• The number of foreign keys that reference the primary key defined in the

target table
If N_PARENTS is a null value, no referential constraint is defined in the target
table.
If N_CHILDREN is a null value, no referencing table exists that references the

SELECT TABLE_SCHEMA, TABLE_NAME FROM MASTER.SQL_TABLES
 WHERE CHECK_PEND = 'C' OR CHECK_PEND2 = 'C'

SELECT N_PARENTS, N_CHILDREN FROM MASTER.SQL_TABLES
 WHERE TABLE_SCHEMA = 'name-of-the-owner-of-the-target-table' AND TABLE_NAME =
'name-of-the-target-table'

13. Designing Tables

543

target table as a referenced table.
If the N_CHILDREN value is not null, execute the following SQL to check the
name of the referencing table that references the target table.

The owners, names, and referential constraint names of referencing tables that
reference a target table as a referenced table are returned in the search results. If
no rows are returned in the search result, no referencing table that references a
target table as a referenced table exists.
When one or more tables are identified, use the integrity check utility to forcibly
place the tables into check pending status (the integrity check utility cannot be
used to check tables that are not in check pending status).

2. Use the integrity check utility to check data integrity.
This step is the same as the step 2 used when the value specified in the
pd_check_pending operand is USE, or the operand is omitted. For details about
using the integrity check utility to check data integrity, see 13.18.5(2) Procedure
for checking data integrity when check pending status is not used.

(1) Procedure for checking data integrity when check pending status is used
(referential constraint)

Figure 13-37 shows how to use the integrity check utility to check data integrity when
the value specified in the pd_check_pending operand is USE, or the operand is
omitted.

SELECT TABLE_SCHEMA, TABLE_NAME, CONSTRAINT_NAME
 FROM MASTER.SQL_REFERENTIAL_CONSTRAINTS
 WHERE R_OWNER = 'name-of-the-owner-of-the-target-table' AND R_TABLE_NAME =
'name-of-the-target-table'

13. Designing Tables

544

Figure 13-37: Procedure for checking data integrity when check pending status
is used (referential constraint)

1. Check the data integrity of the next table to be checked.
Check the data integrity for each table and constraint.
If you use the inner replica facility, specify the generation numbers of the tables
to be checked. If you do not use the inner replica facility or if you plan to check
the data integrity of all generations, you do not need to specify the generation
numbers.

13. Designing Tables

545

2. Identify constraint violations.
Based on the results of the data integrity check performed in step 1, determine
whether any data violates constraint conditions.

3. Correct data that violates constraints.
Decide whether to use the utility or SQL code to correct the violating data. If you
choose the utility, proceed to step 6.

4. Stop operations on the table being checked.
Stop performing tasks that use the table for which data integrity cannot be
guaranteed.

5. Forcibly cancel the check pending status of the table being checked.
Before taking action to resolve constraint violations, forcibly cancel the check
pending status.

6. Take action to resolve constraint violations.
Using the utility:

The following table lists actions. After taking action, return to step 1 to
perform data integrity checking, confirm that no violating data remains, and
complete the procedure.

Using SQL code:

The following table lists actions. After taking action, proceed to step 7.

#1

Condition Action

The primary key does not
contain the required data

Load correct data using the addition mode of the database load utility
(pdload).

The foreign key contains
constraint violation data

• Load correct data using the addition mode of the database load utility
(pdload).

• Use UOC for the database reorganization utility (pdrorg) to delete
unnecessary data.

Condition Action

The primary key does not
contain the required data

Use the INSERT statement to insert the required data in the primary key#1, or
use the UPDATE statement to update existing data in the referenced table#2.

The foreign key contains
constraint violation data

Use the DELETE statement to delete the constraint violation data in the foreign
key, or use the UPDATE statement to change the data to the correct value#1.

13. Designing Tables

546

If a foreign key is also a primary key, and a referencing table has a referenced
table for which action is to be taken, you must be careful about the order in
which the corrections are performed. For example, assume the following
referential relationship exists:

 Notes when taking action for REF1 constraint violations

If you use the DELETE statement to correct the data in table T2, if ON
DELETE RESTRICT is specified in REF2, first delete the corresponding data
in table T3 and then delete the data in table T2. If you use the UPDATE
statement to correct the data, if ON UPDATE RESTRICT is specified in REF2,
first delete the data in table T3 that corresponds to the pre-update data, and
then update the data in table T2.

 Notes when taking action for REF2 constraint violations

If you use the INSERT statement to correct the data in table T2, check for
insertion target data in table T1. If there is no such data, first insert the data
into table T1 and then insert the data into table T2. If you use the UPDATE
statement to correct the data, check whether post-update data exists in table
T1. If there is no such data, first insert the data into table T1 and then update
the data in table T2.

#2
About a constraint other than one for which an action is to be taken, if there
is a referencing table that references that table as a referenced table, you must
be careful about the order of corrections. For example, assume the following
referential relationship exists:

 Notes when taking action for REF1 constraint violations

If you use an UPDATE statement to correct the data in table T1, if ON UPDATE
RESTRICT is specified in REF2, first delete the data in table T3 that
corresponds to the pre-update date and then update the data in table T2.

13. Designing Tables

547

7. Forcibly place the violated constraint into check pending status.
Execute the integrity check utility on each constraint, and forcibly place each
constraint for which an action was taken into check pending status.

8. Release the stopped operations.
Resume performance of stopped tasks. Return to step 1 to perform data integrity
checking and to check for violating data.

9. Determine if there is another generation to be checked.
When you have created replica RDAREAs of multiple generations or have
performed data integrity checking for each generation, return to step 1 to check
the data integrity of each generation.

(2) Procedure for checking data integrity when check pending status is not used
Figure 13-38 shows how to use the integrity check utility to check data integrity when
the value specified in the pd_check_pending operand is NOUSE.

13. Designing Tables

548

Figure 13-38: Procedure for checking data integrity when check pending status
is not used

1. Stop operations on the tables to be checked.
Stop performing tasks that use tables for which data integrity cannot be
guaranteed.

2. Forcibly place the tables into check pending status.
Forcibly place the tables to be checked into check pending status. If you perform
data integrity checking for each constraint in step 3, this step is not necessary.

3. Check the data integrity of the next table to be checked.
Check the data integrity of each table and constraint.
If you use the inner replica facility, specify the generation numbers of the tables

13. Designing Tables

549

to be checked. If you do not use the inner replica facility or if you plan to check
the data integrity of all generations, you do not need to specify the generation
numbers.

4. Identify constraint violations.
Based on the results of the data integrity check performed in step 3, determine
whether any data violates constraint conditions.

5. Correct data that violates constraints.
See step 6 in 13.18.5(1) Procedure for checking data integrity when check
pending status is used (referential constraint) to correct data that violates
constraints.

6. Determine if there is another generation to be checked.
When you have created replica RDAREAs of multiple generations or have
performed data integrity checking for each generation, return to step 1 and check
the data integrity of each generation.

7. Release the stopped operations.
Resume performance of stopped tasks.

13.18.6 Referential constraints and triggers
(1) Triggers for referential constraint actions

If you specify CASCADE for a referential constraint action, HiRDB internally generates
a trigger that updates the referencing table for the referenced table. Triggers generated
internally by HiRDB become disabled in the following cases. In such a case, you need
to re-create the trigger. You may need to create other triggers in addition to those that
were generated by HiRDB. Use ALTER ROUTINE to re-create all triggers that have
been disabled.

For update processing
• The definition of the referencing table was changed.
• An index was defined for the referencing table.
• An index of the referencing table was dropped.
• A trigger whose timing is UPDATE was created for the referencing table.
• For the referencing table, a trigger whose timing is UPDATE was deleted.
• For the table that is referenced by the referencing table, change was made to

the table definition of the primary key column.
For deletion

• The table definition of the referencing table was changed.

13. Designing Tables

550

• An index was defined for the referencing table.
• An index of the referencing table was dropped.
• A trigger whose timing is DELETE was created for the referencing table.
• For the referencing table, a trigger whose timing is DELETE was deleted.

The triggers internally created by HiRDB are deleted when the referencing table is
dropped (by DROP TABLE or DROP SCHEMA).

(2) Relationship between referential constraints and user-defined triggers
The following explains the order of the operation of triggers, integrity checking for
referential constraints, and referential constraint operations (triggers generated
internally by HiRDB when a referential constraint is defined) when a trigger and
referential constraint are defined for a table, and an update SQL (INSERT statement,
UPDATE statement, or DELETE statement) is to be executed. There are two operation
order patterns, which depend on the following conditions:
Condition for pattern 1:

The update target is the referenced table and only RESTRICT is specified for the
referential constraint action, or the update target is the referencing table.

Condition for pattern 2:
The update target is the referenced table and the referential constraint action is not
RESTRICT.

If the update target is the referencing table and is also the referenced table, the
condition for the referenced table takes precedence.
The order of the actions for each of the patterns is described below.

13. Designing Tables

551

Pattern 1

* All data integrity checking for the referential constraint takes place at this point.
Following are the details of data integrity checking:

1. When the update target is the referencing table
Checking for whether or not the update (INSERT, UPDATE) data is contained
in the referenced table

2. When the update target is the referenced table
Checking for whether or not the update (UPDATE, DELETE) data is contained
in the referencing table

3. When the update target is the referencing table and is also the referenced
table
Checking of both 1 and 2 above

13. Designing Tables

552

Pattern 2

* All data integrity checking for the referential constraint takes place at this point.
Details of the integrity checking are the same as for pattern 1.

13.18.7 Notes about linkage with related products
The following notes explain restrictions when linking with related products.

When the inner replica facility is used
• When you create an inner replica of an RDAREA in which a referenced or

referencing table is stored, use the same generation number for all
RDAREAs used to store table data having a referential relationship. If
indexes are defined for the referenced or referencing table, use the same
generation number for the index storage RDAREA and LOB RDAREA as is
used for the RDAREAs that store the tables.

• If the referencing table in the original RDAREA is in check pending status,
do not create an entity of the replica RDAREA. Cancel the check pending
status of the referencing table in the original RDAREA and then create an

13. Designing Tables

553

entity for the replica RDAREA.
• When check pending status is set or canceled for all generations, the

generations in command hold and in closed status are handled as not having
an entity of the replica RDAREA. Therefore, these areas are excluded as
targets for setting or canceling check pending status. If an RDAREA is
excluded as a target for setting or canceling check pending status even
though it has an entity, first cancel the hold status of the RDAREA and then
use the integrity check utility to update the table information in the
RDAREA.

• After executing the following operations, use the integrity check utility,
specifying all generations to execute data integrity checking for each table.

 PURGE TABLE statement
 Re-initialize RDAREA
 Delete replica RDAREA
 Integrate inner replica group

When performing updatable online reorganization
Data integrity is not guaranteed when updatable online reorganization and
database updating are performed in batch mode. This means that, if you have set
USE in the pd_check_pending operand, the referencing table might be in check
pending status. In this case, use the integrity check utility to cancel check pending
status. If NOUSE is specified in the pd_check_pending operand, use the
integrity check utility to forcibly place the table into check pending status and
then check data integrity. For details about how to check data integrity, see
13.18.5 Procedure for checking table integrity.
Using HiRDB Datareplicator
Make sure that no referential constraint has been defined for the target table.
Changing partitioning storage conditions
If you change the partition storage conditions for the referenced table or integrate
or partition RDAREAs in such a manner that existing data is deleted, data
integrity is not guaranteed after the partition storage conditions have been
changed; in such a case, the user must check data integrity. For details about how
to check data integrity, see 13.18.5 Procedure for checking table integrity.

13. Designing Tables

554

13.19 Check constraints

13.19.1 About check constraints
In many cases, there are restrictions on table data in a database, such as with respect to
value ranges and conditions. For example, when product information is stored in a
database, a price cannot be a negative value. This means that no negative value can
exist in such a database and values should be checked for this constraint when data is
inserted or updated. The purpose of check constraints is to maintain data integrity in
the table by checking constraint conditions during data insertion or updating and
suppressing the operation if checked data does not satisfy conditions. In this manual,
a table for which a check constraint has been defined is called a check constraint table.
Execution of a utility or other operation may cause loss of guaranteed data integrity. In
such a case, the check constraint table is placed in check pending status. For details
about check pending status, see 13.19.3 Check pending status; for details about
operations that cause the loss of guaranteed data integrity, see 13.19.4 Data
manipulation and integrity.
Effects of check constraints

When check constraints are defined, the workload of UAP creation is reduced
because checking can be automated during data insertion or updating. However,
when a check constraint table is updated, the processing time required for
checking increases because data integrity is checked.

13.19.2 Defining check constraints
You can define a check constraint by specifying CHECK in the CREATE TABLE
definition SQL statement and the constraint condition for table values as a search
condition. Also, to use the check pending status, specify USE in the
pd_check_pending operand, or do not specify (omit) the operand.

(1) Limitations on tables for which check constraints are defined
This subsection describes limitations that apply to the definition of tables for which
check constraints are defined and to modification of the definitions of such tables.

(a) During table definition (CREATE TABLE)
• Check constraints cannot be defined for a falsification prevented table.
• You can define a maximum of 254 check constraints per table; you must be

careful not to define more than 254 check constraints. The following shows an
example of a table definition that is not valid:

13. Designing Tables

555

This definition is invalid because there are more than 254 check constraints. This
example would result in an error during table definition.

• For each table, you can define a maximum of 254 check constraints separated by
ANDs and ORs, including the ANDs and ORs of search conditions in the individual
check constraints (this number does not include ANDs and ORs for search
conditions in CASE expressions and in those search conditions). The following
shows an example of a table definition that is not valid:

This example contains two check constraints, plus there are 200 ANDs in the
search conditions in the constraint named CHECK_T1_C1 and 53 ANDs in the
search conditions in the constraint named CHECK_T1_C2. The sum of the number
of check constraints and the number of ANDs and ORs in the search conditions in
the check constraints is 255 (2 + 200 + 53), which is greater than 254. Therefore,
this definition is invalid and would result in an error during table definition.
The sum of the number of check constraints defined for the table and the number
of ANDs and ORs in the search conditions in each check constraint is stored in the
N_CHECK_LIMIT column of the SQL_TABLE data dictionary table.

(b) During table modification (ALTER TABLE)
• You cannot use the DROP and RENAME clauses in modifying the table definition of

a check constraint table.
• You cannot use the CHANGE clause to modify a constraint table in the following

ways:
• Changing the data type and data length
• Changing SPLIT
• Setting and releasing the default value
• Setting WITH DEFAULT

13. Designing Tables

556

• The RENAME clause cannot be used to rename columns of a check constraint table.
(2) Notes when defining a check constraint

Estimating the size of the SQL object buffer length
When you perform operations on a check constraint table, HiRDB generates
triggers to check constraint conditions. Therefore, you must take into account the
SQL objects of the constraint conditions generated by HiRDB when you specify
the SQL object buffer. For details about how to estimate the SQL object buffer
length (pd_sql_object_cache_size), see the manual HiRDB Version 8
System Definition.
Backing up data
The extent of data that is backed up differs depending on the check pending status
at backup time. For details about the backup time and extent, see RDAREAs to be
backed up together in the manual HiRDB Version 8 System Operation Guide.
Reorganizing data dictionary RDAREAs
When you repeat definition and deletion of check constraint tables, storage
efficiency of the data dictionary RDAREA decreases. In such a case, use the
database condition analysis utility (pddbst) to check the storage efficiency of the
data dictionary RDAREA and reorganize the area as necessary.

13.19.3 Check pending status
If data integrity can no longer be guaranteed due to execution of a utility or some other
operation, HiRDB restricts data manipulation in the check constraint table. The status
in which data manipulation is restricted due to loss of guaranteed data integrity is
called check pending status. To place a check constraint table in check pending status
for the purpose of restricting data manipulation, you must either specify USE in the
pd_check_pending operand or do not specify (omit) the operand. You can use the
integrity check utility (pdconstck) to clear the check pending status of a table. You
can also use the integrity check utility to forcibly place a table into check pending
status.
If you have specified NOUSE in the pd_check_pending operand, data manipulation
is not restricted even when data integrity between tables cannot be guaranteed. In this
case, if you execute an SQL statement or a utility that nullifies the guarantee of data
integrity, you can use the integrity check facility to forcibly place the table into check
pending status, and then check data integrity.
For details about operations that cause loss of guaranteed data integrity, see 13.19.4
Data manipulation and integrity. For details of how to check data integrity, see 13.19.5
Procedure for checking table integrity.

13. Designing Tables

557

(1) Managing check pending status
Check pending status is managed based on dictionary tables and on the table
information of the RDAREAs in which the tables are stored. In dictionary tables,
check pending status is managed for each table and constraint. In table information,
check pending status is managed for each RDAREA if the table is a partitioned table
and for each table if the table is not a partitioned table.
Table 13-23 lists the storage locations of check pending status information and their
contents.

Table 13-23: Storage locations of check pending status information and their
contents (check constraint)

(2) Operations that are restricted for tables in check pending status
These restrictions are the same as those for the referential constraint. See 13.18.3(3)
Operations that are restricted for tables in check pending status.

(3) When a partitioned table or the inner replica facility is used
These restrictions are the same as those for the referential constraint. See 13.18.3(5)
When a partitioned table or the inner replica facility is used. However, replace the
term referencing table with check constraint table.

(4) Notes on using check pending status
If you change the value specified in the pd_check_pending operand from
NOUSE to USE, you must use the integrity check utility to check the data integrity
of the check constraint table. For details about how to check data integrity, see
13.19.5 Procedure for checking table integrity.
If you specify USE in the pd_check_pending operand, referencing tables and
RDAREAs placed in check pending status are locked, and locked resources when
a utility or an SQL statement is executed are different from those when check
pending status is not used.

Storage location Stored information

Dictionary
table

SQL_TABLES table CHECK_PEND2
column

Check pending status of check constraint for
each table

SQL_CHECKS table CHECK_PEND2
column

Check pending status of check constraint for
each constraint

RDAREA table information For non-partitioned
table

Check pending status of check constraint or
check constraint for each table

For partitioned table Check pending status of referential constraint
or check constraint for each RDAREA

13. Designing Tables

558

13.19.4 Data manipulation and integrity
When a check constraint table is updated, added to, or deleted by a data manipulation
SQL statement, HiRDB performs checking during execution to guarantee data
integrity. However, if the table is manipulated by the utilities listed in Table 13-24, data
integrity may not be guaranteed because HiRDB does not perform integrity checking.
If you specify USE in the pd_check_pending operand and perform these operations,
the check constraint table is placed in check pending status.

Table 13-24: Operations on check constraint tables that nullify the guarantee of
data integrity and the conditions under which loss of data integrity occurs

#
For details about operating updatable online reorganization, see the manual
HiRDB Staticizer Option Version 7 Description and User's Guide.

13.19.5 Procedure for checking table integrity
Figure 13-39 shows the procedure for checking data integrity.

Operation on table or RDAREA Condition for loss of data integrity

Database load utility
(pdload)

Data reload Data that does not satisfy search conditions specified
in the check constraint definition is loaded.

Database reorganization
utility (pdrorg)

Reload (-k reld) Data that does not satisfy search conditions specified
in the check constraint definition is reloaded.

Updatable online reorganization reflection processing
(pdorend)

During operation of updatable online reorganization#,
in a replica RDAREA in the current database, you
used the database load utility (pdload) to perform an
operation on a check constraint table of the replica
RDAREA, which caused a loss of data integrity (loss
of data integrity occurs after reflection processing).

13. Designing Tables

559

Figure 13-39: Overview of the procedure for checking data integrity (check
constraint)

When the value specified in the pd_check_pending operand is USE, or the operand
is omitted:
1. Identify tables in check pending status.

Search SQL_TABLES of the dictionary table to detect the names of tables in check
pending status.

The owners and names of tables in check pending status are returned in the search
result. If no rows are returned in the search result, no tables are in check pending
status.
To check whether each generation table is in check pending status when the inner
replica facility is used, you can use the condition analysis utility (pddbst).

SELECT TABLE_SCHEMA, TABLE_NAME FROM MASTER.SQL_TABLES
 WHERE CHECK_PEND = 'C' OR CHECK_PEND2 = 'C'

13. Designing Tables

560

2. Use the integrity check utility to check data integrity.
Use the integrity check utility to check the data integrity of each table and to
correct any data that violates constraint conditions. Repeat the procedure until no
table remains in check pending status. For details about how to use the integrity
check utility to check data integrity, see 13.19.5(1) Procedure for checking data
integrity when check pending status is used (check constraint).

When the value specified in the pd_check_pending operand is NOUSE:
1. Identify the tables for which you want to check data integrity, and forcibly place

these tables into check pending status.
Check whether a check constraint is defined for a table on which an operation that
causes loss of guaranteed data integrity was performed. The following shows an
example of SQL code for checking this.

The following search result is returned:
• The number of check constraint definitions

When N_CHECK is a null value, no check constraint is defined for the target table.
After identifying the tables, use the integrity check utility to forcibly place the
tables into check pending status (you cannot use the integrity check utility to
check tables that are not in check pending status).

2. Use the integrity check utility to check integrity.
This step is the same as the step 2 used when the value specified in the
pd_check_pending operand is USE, or the operand is omitted. The procedure
for checking data integrity is the same as that used for a referential constraint; for
details, see 13.18.5(2) Procedure for checking data integrity when check pending
status is not used.

(1) Procedure for checking data integrity when check pending status is used
(check constraint)

Figure 13-40 shows how to use the integrity check utility to check data integrity when
the value specified in the pd_check_pending operand is USE, or the operand is
omitted.

SELECT N_CHECK FROM MASTER.SQL_TABLES
 WHERE TABLE_SCHEMA = 'name-of-the-owner-of-the-target-table' AND TABLE_NAME =
'name-of-the-target-table'

13. Designing Tables

561

Figure 13-40: Procedure for checking data integrity when check pending status
is used (check constraint)

1. Check the data integrity of the tables to be checked.
Check the data integrity for each table and constraint.
If you use the inner replica facility, specify the generation numbers of the tables
to be checked. If you do not use the inner replica facility or if you plan to check
the data integrity of all generations, you do not need to specify the generation
numbers.

2. Identify constraint violations.

13. Designing Tables

562

Based on the results of the data integrity check performed in step 1, determine
whether any data violates constraint conditions.

3. Correct data that violates constraints.
Decide whether to use the utility or SQL code to correct the violating data. If you
choose the utility, proceed to step 6.

4. Stop operations on the tables to be checked.
Stop performing tasks that use tables for which data integrity cannot be
guaranteed.

5. Forcibly cancel the check pending status of the tables to be checked.
Before taking action to resolve constraint violations, forcibly cancel the check
pending status.

6. Take action to resolve constraint violations.
Using the utility:

The following table lists actions. After taking action, return to step 1 to
perform data integrity checking, confirm that no violating data remains, and
complete the procedure.

Using SQL code:

The following table lists actions. After taking action, proceed to step 7.

Condition Action

When correcting search
conditions specified in the
check constraint

To correct search conditions:
1. Unload all data in the table.
2. Use DROP TABLE to delete the table definition.
3. Use CREATE TABLE to redefine the table. At this time, specify the correct

check constraint search conditions.
4. Load the data that was unloaded in step 1.

When there is constraint
violation data in the table

• Use the database load utility (pdload) to load data in creation mode.
• Use UOC for the database reorganization utility (pdrorg) to delete

unnecessary data.

Condition Action

When correcting search
conditions specified in the
check constraint

Same as the action when the utility is used.

When there is constraint
violation data in the table

Use the DELETE statement to delete the constraint violation data, or use the
UPDATE statement to update it to the correct value.#

13. Designing Tables

563

#
If a referencing table references the table for which an action is to be taken,
as a referenced table, you must follow a specific order of corrections. For
example, assume the following referential relationship exists:

 Notes when taking action for CHK1 constraint violations

If you use the DELETE statement to correct the data in table T1, if ON
DELETE RESTRICT is specified in REF1, first delete the corresponding data
in table T2 and then delete the data in table T1. If you use the UPDATE
statement to correct the data, if ON UPDATE RESTRICT is specified in REF1,
first delete the data in table T2 that corresponds to the pre-update date and
then update the data in T1.

7. Forcibly place the violated constraint into check pending status.
Execute the integrity check utility on each constraint, and forcibly place each
constraint for which an action was taken into check pending status.

8. Release the stopped operations.
Resume performance of stopped jobs. Return to step 1 to perform data integrity
checking and to check for violating data.

9. Check for the existence of more generations to be checked.
When you have created replica RDAREAs of multiple generations or have
performed data integrity checking for each generation, return to step 1 to check
the data integrity of each generation.

13.19.6 Notes about linkage with related products
When the inner replica facility is used

• If the referencing table in the original RDAREA is in check pending status,
do not create an entity of the replica RDAREA. Cancel the check pending
status of the referencing table in the original RDAREA and then create an
entity for the replica RDAREA.

• When check pending status is set or canceled for all generations, the
generations in command hold and in closed status are handled as not having
an entity of the replica RDAREA. Therefore, these areas are excluded as
targets for setting or canceling check pending status. If an RDAREA is

13. Designing Tables

564

excluded as a target for setting or canceling check pending status even
though it has an entity, first cancel the hold status of the RDAREA and then
use the integrity check utility to update the table information in the
RDAREA.

• After executing the following operations, use the integrity check utility,
specifying all generations to execute data integrity checking for each table.

 PURGE TABLE statement
 Re-initialize RDAREA
 Delete replica RDAREA
 Integrate inner replica group

When performing updatable online reorganization
• Data integrity is not guaranteed when updatable online reorganization and

database updating are performed in batch mode. This means that, if you have
set USE in the pd_check_pending operand, the check constraint table
might be in check pending status. In this case, use the integrity check utility
to cancel check pending status. If NOUSE is specified in the
pd_check_pending operand, use the integrity check utility to forcibly
place the table into check pending status and then check data integrity. For
details about how to check data integrity, see 13.19.5 Procedure for checking
table integrity.

Using HiRDB Datareplicator
When you use HiRDB Datareplicator, there is no need to define check constraints
for a target table because only conforming data is applied.

13.19.7 Migrating check constraint tables to 64-bit mode (HP-UX,
Solaris, and AIX 5L versions only)

When you have migrated HiRDB from 32-bit mode to 64-bit mode, an attempt to insert
or update data in a check constraint table that was defined in the 32-bit mode will result
in an error. To enable insertion and updating of data in such a table in the 64-bit mode,
you must restart HiRDB in the 64-bit mode and then re-define the check constraint
table. Figure 13-41 shows the basic procedure for migrating a check constraint table
from 32-bit mode to 64-bit mode.

13. Designing Tables

565

Figure 13-41: Basic procedure for migrating a check constraint table to 64-bit
mode

To migrate a check constraint table to 64-bit mode:

13. Designing Tables

566

1. Check for any check constraint tables.
To determine whether or not there are any check constraint tables, execute the
following SQL statement:

SELECT TABLE_SCHEMA,TABLE_NAME FROM MASTER.SQL_TABLES WHERE
N_CHECK > 0

If the number of resulting rows is 1 or greater, there is a check constraint table. In
the search results, TABLE_SCHEMA indicates the owner of each check constraint
table and TABLE_NAME indicates the name of each check constraint table.

2. Check for a view table.
If a check constraint table is dropped, the view tables that used the check
constraint table are also dropped. Therefore, you must check for any view tables
that used a check constraint table. To check for any view tables that used a check
constraint table, execute the following SQL statement:

SELECT VIEW_SCHEMA,VIEW_NAME FROM
MASTER.SQL_VIEW_TABLE_USAGE
 WHERE BASE_OWNER=owner-of-check-constraint-table AND
TABLE_NAME=name-of-check-constraint table

If the number of resulting rows is 1 or greater, there is a view table that used the
check constraint table. In the search results, VIEW_SCHEMA indicates the owner
of a view table and VIEW_NAME indicates the name of a view table.

3. Create a view definition statement.
Use the pddefrev command (create a definition SQL statement) to create a view
definition statement.

4. Check for a referencing table.
If a primary key has been defined for a check constraint table and a referencing
table that references that primary key has been defined, that check constraint table
cannot be dropped. The referencing table referencing that primary key must be
dropped. To check for any referencing table that references the primary key of a
check constraint table, execute the following SQL statement:

SELECT CONSTRAINT_SCHEMA,TABLE_NAME
 FROM MASTER.SQL_REFERENTIAL_CONSTRAINTS
 WHERE R_OWNER= owner-of-check-constraint-table AND
R_TABLE_NAME=name-of-check-constraint table

13. Designing Tables

567

If the number of resulting rows is 1 or greater, there is an applicable referencing
table. In the search results, CONSTRAINT_SCHEMA indicates the owner of a
referencing table and TABLE_NAME indicates the name of a referencing table.

5. Check for a view table.
If the referencing table is dropped, any view tables that used the referencing table
are also dropped. Therefore, you must check for any view tables that used the
referencing table. To check for any view table that used a referencing table,
execute the following SQL statement:

SELECT VIEW_SCHEMA,VIEW_NAME FROM
MASTER.SQL_VIEW_TABLE_USAGE
 WHERE BASE_OWNER=owner-of-referencing-table AND
TABLE_NAME=name-of-referencing-table

If the number of resulting rows is 1 or greater, there is a view table that used the
referencing table. In the search results, VIEW_SCHEMA indicates the owner of a
view table and VIEW_NAME indicates the name of a view table.

6. Create a view definition statement.
Use the pddefrev command (create a definition SQL statement) to create a view
definition statement using the referencing table that references the check
constraint table.

7. Create a table definition statement, unload data, and drop the referencing table.
Use the pddefrev command (create a definition SQL statement) to create a table
definition statement for the referencing table. After the table definition statement
has been created, unload data from the referencing table that is to be dropped, then
drop the referencing table.

8. Create a table definition statement, unload data, and drop the check constraint
table.
Use the pddefrev command (create a definition SQL statement) to create a table
definition statement for the check constraint table. After the table definition
statement has been created, unload data from the check constraint that is to be
dropped, then drop the check constraint table.

9. Re-define the check constraint table and index.
Use the table definition statement created in step 8 to re-define the check
constraint table and index.

10. Check for a referencing table.
In the same manner as in step 4, check for any referencing table that references
the check constraint table re-defined in step 9.

13. Designing Tables

568

11. Re-define the referencing table and index.
If there is a referencing table that references the check constraint table re-defined
in step 9, re-define the referencing table and index using the table definition
statement created in step 7.

12. Re-define the view table.
If there is a view table that used the check constraint table or that used the
referencing table, re-define the view table using the view table definition
statement created in steps 3 and 6.

13. Execute ALTER ROUTINE.
Execute the ALTER ROUTINE definition SQL statement because the function may
have been disabled due to dropping of tables and view tables.

14. Reload data into the referencing table and check constraint table.
Reload data to the re-defined tables.

569

Chapter

14. Designing Indexes

This chapter explains items that should be examined during design of an index with a
B-tree structure or a plug-in index.
This chapter contains the following sections:

14.1 Items to be examined during index design
14.2 Index
14.3 Index row partitioning
14.4 Plug-in index
14.5 Plug-in index row partitioning

14. Designing Indexes

570

14.1 Items to be examined during index design

An index is created to improve table processing performance. However, a poorly
designed index can have an adverse effect on performance. You should examine the
methodology for creating effective indexes. Also, table processing performance and
operability vary depending on the method used to store indexes in user RDAREAs.
You should take these points into account when designing an index.
Table 14-1 lists the items to be examined during index design.

Table 14-1: Items to be examined during index design

Design task and
items to be
examined

Advantages Disadvantages Section

Index creation Table search performance is
improved.

As the number of indexes created
increases, overhead for index
update processing also increases.

14.2

Index row
partitioning

Table storage RDAREAs and index
storage RDAREAs can be managed
on a one-by-one basis, thereby
improving utilities' operability.

If a non-partitioning key index is
partitioned, the performance of a
search using an index is reduced.

14.3

Creation of plug-in
index

If a plug-in index is created in a
column defined as an abstract data
type using the index type provided by
a plug-in, table search performance is
improved.

As the number of indexes created
increases, overhead for index
update processing also increases.

14.4

Plug-in index row
partitioning

User LOB RDAREAs can be
handled independently during batch
index creation.

Row partitioning results in an
increase in RDAREAs. When
backing up a database with
RDAREAs specified or when
reorganizing the database, note that
the table and index have a
one-to-one correspondence.

14.5

14. Designing Indexes

571

14.2 Index

This section describes the design of an index that has a B-tree structure.

14.2.1 Creating an index
(1) Effects of indexes

Improved performance
Table retrieval performance improves when an index is created for a column that
is used as the key for table retrieval.

(2) Criteria
An index should be created for the following columns:

• Column used as a condition for narrowing the data to be retrieved
• Column used as a condition for table join processing
• Column used as a condition for data sorting or grouping
• Component column for which a referential constraint has been defined (foreign

key)
An index should not be created for the following columns (if an index is created for
such a column, retrieval performance will be degraded):

• Column that is updated frequently
• Column that contains many duplicated values

(3) Creation procedure
The CREATE INDEX definition SQL is used to create an index for a table.

(4) Common rules
1. A maximum of 255 indexes can be defined per table.
2. Indexes can be defined for columns with null values or columns with no rows.
3. Indexes cannot be created for view tables.
4. When optimizing indexes based on cost, use the optimizing information

collection utility (pdgetcst command) to collect optimizing information as
necessary to improve the accuracy of optimization. For details about the necessity
of executing this utility, see Optimizing information collection levels in the
manual HiRDB Version 8 Command Reference.

14. Designing Indexes

572

(5) Data types for which indexes cannot be defined
Indexes cannot be specified for columns of the following types:

• DECIMAL with a precision greater than 20 digits
• BLOB
• BINARY
• BOOLEAN
• Abstract data types

(6) Maximum index key length
The length of an index key must satisfy the following condition; if this condition is not
satisfied, the index cannot be defined:

If the page size of the index storage RDAREA is 4096 bytes, the maximum key length
that can be specified for an index is 806 bytes. For details about index key length, see
Table 17-5 List of index key lengths.
For a multicolumn index, the total index key length is the total of the key lengths of
the columns that make up the index.

(7) Notes
The same index cannot be created more than once for the same table. The following
examples show how indexes can be regarded as being the same index in spite of having
different index names.

 Single-column index

In this case, index-2 is treated as the same index as index-1. Therefore, index-1,
which was defined first, is the valid one.

 Multicolumn index

or

Index key length (bytes)
 MIN { (index-storage-RDAREA-page-size 2) - 1242, 4036}

CREATE INDEX index-1 ON table-1 (column-1 ASC)
CREATE INDEX index-2 ON table-1 (column-1 DESC)

CREATE INDEX index-1 ON table-1 (column-1 ASC, column-2 ASC)
CREATE INDEX index-2 ON table-1 (column-1 DESC, column-2 DESC)

CREATE INDEX index-1 ON table-1 (column-1 ASC, column-2 DESC)
CREATE INDEX index-2 ON table-1 (column-1 DESC, column-2 ASC)

14. Designing Indexes

573

In this case, index-1 and index-2 are treated as the same index. Therefore, index-1,
which was defined first, is the valid one. In the following case, on the other hand,
the indexes are treated as different indexes:

14.2.2 Index creation taking into account optimizing based on cost
If a table has multiple indexes, HiRDB selects for use the index with the lowest access
cost based on the search conditions specified for the table retrieval. This index
selection process is called optimizing based on cost.
HiRDB takes into account the following factors in estimating access cost:

• Hit rate based on the specified search conditions
• Number of input/output operations required for SQL processing
• CPU workload required for SQL processing

HiRDB provides better table retrieval performance because it optimizes processing
based on cost. Table retrieval performance will not be reduced even when an SQL
statement that specifies complicated search conditions is executed.

(1) Index creation criteria taking into account optimizing based on cost
Because HiRDB optimizes processing based on cost, the user can create a UAP
without having to prioritize the indexes to be used by HiRDB. However, the user
should examine beforehand how an index should be created for a table that is to be
accessed by UAPs.
To take advantage of optimizing based on cost, an index that is to be used by HiRDB
should be created taking into account its priority. Consideration should also be given
to the difference between a single-column index and a multicolumn index, the use of
multiple indexes, and performance depending on the number of indexes.
Table 14-2 shows the priority order of index usage by HiRDB.

Table 14-2: Priority order of index usage by HiRDB

CREATE INDEX index-1 ON table-1 (column-1 DESC, column-2 DESC)
CREATE INDEX index-2 ON table-1 (column-1 ASC, column-2 DESC)

Priority Index used by HiRDB Example of condition specification for
index column (C1)

1
Always used1

Plug-in index specified for the column in the
first argument of an index type plug-in
function whose condition is IS TRUE.

contains(C1,'...') IS TRUE

Index that contains as its index component
columns all the columns in the search
condition in a structured repetition predicate.

ARRAY(C1,C2)[ANY]
(C1='ABC' and C2=10)
C1 and C2 define a multi-column index.

14. Designing Indexes

574

2 Plug-in index specified for the column in the
first argument of a plug-in-provided function
whose condition is IS TRUE.

within(C1,'...') IS TRUE

3 Index with UNIQUE specified for a column
that is subject to the = limitation condition.

C1=100

4 Index for a column subject to the = limitation
condition.

C1=100

5 Index for a column subject to the IS NULL
limitation condition2.

C1 IS NULL

6 Index for a column specified for a prefix
search using a literal (%) in the LIKE or
SIMILAR predicate pattern character string.

C1 LIKE 'ABC%'
C1 SIMILAR TO 'ABC%'

7 Index for a column specified for a prefix
search other than the above using a literal in
the LIKE or SIMILAR predicate pattern
character string.

C1 LIKE 'ABC_'
C1 SIMILAR TO 'ABC_'

8 Index for a column subject to a limitation
condition in the IN predicate.

C1 IN(10, 20, 30)

9 Index for a column subject to a limitation
condition in the BETWEEN predicate.

C1 BETWEEN 20 AND 40

Index for a column for which a range
condition is specified.

20<=C1 AND C1<=40

10 Single-column index for a column subject to
a limitation condition in the IN predicate
using a subquery that has no external
reference.

C1 IN(SELECT C1 FROM T2)

Single-column index for a column subject to
a limitation condition in the =ANY or =SOME
quantified predicate using a subquery that
has no external reference.

C1=ANY(SELECT C1 FROM T2)
C1=SOME(SELECT C1 FROM T2)

11 Index for a column subject to the >, >=, <, or
<= limitation condition.

C1>50
C1<=200

123 Index for a column specified for a scalar
operation (system-defined scalar function,
other than
IS_USER_CONTAINED_IN_HDS_GROUP)2.

length(C1)=10

Priority Index used by HiRDB Example of condition specification for
index column (C1)

14. Designing Indexes

575

Legend:
: Indexes that are not used.

Notes
1. The contains function call is a function provided by the HiRDB Text

Search Plug-in.
2. The within function call is a function provided by the HiRDB Spatial

Search Plug-in.
3. An index cannot be used if it is for a column subject to a limitation condition

that contains a subquery involving external referencing.
4. If indexes can be used in the conditional expressions on both the terms of the

OR operator, the priority depends on the predicate used in the conditional
expressions.

5. A limitation condition refers to a search condition other than the join
condition.

13 Index for a column subject to a limitation
condition in the NOT BETWEEN predicate.

C1 NOT BETWEEN 10 AND 30

14 Index for a column subject to a limitation
condition in the XLIKE predicate, or in LIKE
or SIMILAR predicates other than the above.

C1 XLIKE '%ABC%'
C1 LIKE '%ABC%'
C1 SIMILAR TO '%ABC%'

15 Index for a column specified in an argument
of the set function (MIN or MAX)4.

MIN(C1)
MAX(C1)

16 Index for a join condition column or in a
column subject to grouping or sorting.

ORDER BY C1

Index for a column subject to a negation
limitation condition (except NOT BETWEEN).

C1 NOT LIKE '%ABC%' C1 IS NOT NULL

Index for a column subject to a limitation
condition in the quantified predicate ANY or
SOME other than the above.

C1>=ANY(SELECT C1 FROM T2)
C1>SOME(SELECT C1 FROM T2)

Index for a column subject to a limitation
condition in the quantified predicate ALL.

C1>ALL(SELECT C1 FROM T2)

Plug-in index specified for the column in the
first argument of a plug-in-provided function
whose condition is IS FALSE or IS
UNKNOWN.

within(C1,'...') IS FALSE

Priority Index used by HiRDB Example of condition specification for
index column (C1)

14. Designing Indexes

576

6. HiRDB may not use a defined index if it determines that the index cannot be
used effectively.

1 The index indicated as Always used in the Priority column must be defined;
otherwise, an error results.
2 For the following types of columns, do not create an index whose exception key is
the null value:

• Column for which the IS NULL limitation condition is specified.
• Column for which a limitation condition includes VALUE and CASE

expressions.
• Column with the BIT_AND_TEST limitation condition for which IS

UNKNOWN, IS NOT TRUE, or IS NOT FALSE is specified.
You can create indexes with limitation conditions other than as indicated above.
Table 14-3 shows whether or not HiRDB uses an index whose exception key is
the null value.

3 Only when Key conditions that include a scalar operation is selected as an SQL
optimization option does an index have this usage priority. For details about SQL
optimization options, see the manual HiRDB Version 8 UAP Development Guide.
Depending on the predicate, an index may have a better priority. If negation is not
included, the priority order is in the range of 12-14; if negation is included, the priority
order is 12 or up.
4 In the case of an SQL statement specifying one table without specifying GROUP BY,
the index for the column specified in the argument is used if only one set function (MIN
or MAX) is specified and one of the following conditions is satisfied:

• The component column of a single-column index is specified in the set
function's argument.

• The column specified in the set function's argument is component column n
of a multicolumn index without an exception key value and = or IS NULL is
specified in component columns 1 through n-1.

• The column specified in the set function's argument is component column n
of a multicolumn index with an exception key value and = is specified in
component columns 1 through n-1.

14. Designing Indexes

577

Table 14-3: Whether or not HiRDB uses an index whose exception key value is
the null value

1 Applicable to the limitation conditions for priority levels 3-14 shown in Table 14-2.
2 HiRDB may not use the index if it determines that the index cannot be used
effectively.
3 The index is used for retrieval if all the following conditions are satisfied:

• The selection expression consists of only set functions that use the index
component column as the argument.

• Only one table is specified in the FROM clause.
• The WHERE clause is not specified.

If indexes are created consistent with the priorities shown in Table 14-2, favorable
results can be obtained in narrowing the search conditions specified in the SQL
statement. However, an index with a high priority may not be used if HiRDB
determines as a result of cost-based optimization that its use would not be effective.

14.2.3 Single-column index vs. multicolumn index
The two types of indexes are single-column indexes and multicolumn indexes. A
single-column index is an index based on the values in one column of a table. A
multicolumn index is an index based on the values in multiple columns of a table.

(1) Creating a single-column index
A single-column index should be created when retrieval will be executed using one
column only as the key.

(2) Creating a multicolumn index
A multicolumn index should be created in the cases discussed below.

Limitation condition specified in the component
column

Whether or not index is used

IS NULL, VALUE, CASE
expression, and
BIT_AND_TEST

Other than IS NULL,
VALUE, CASE

expression, and
BIT_AND_TEST1

Specified Specified Used

Specified Not specified Not used

Not specified Specified Used2

Not specified Not specified Not used3

14. Designing Indexes

578

(a) Retrieval of data that satisfies multiple conditions
A multicolumn index should be created when data satisfying multiple conditions is to
be retrieved, such as when a complex-condition retrieval using the AND operator with
multiple columns as the key is executed.
For example, suppose that a complex-condition search is to be executed using table
columns C1, C2, and C3 as the key items:
SELECT retrieval-column FROM retrieval-table WHERE C1=10 AND C2=20 AND
C3=30

In this case, a multicolumn index consisting of the three columns C1, C2, and C3
should be created instead of creating three separate single-column indexes. In this way,
overhead for index and row accesses can be reduced.
When a complex-condition retrieval is to be executed, it is important that the column
for which the equals (=) condition is specified be defined as the first component
column of the multicolumn index. Then the column that is next most likely to have the
equals condition should be specified, followed by the third column, and so on. As a
result, the retrieval range can be reduced within the index, thereby reducing the
retrieval time. If the equals condition is not specified for the first component column
of a multicolumn index, appropriate retrieval results may not be obtained from the
index. In this case, better results may be achieved by using a single-column index.

(b) Grouping or sorting data after narrowing the data with a search condition
A multicolumn index should be created using the columns specified as the search
condition then the columns to be grouped or sorted, in this order.
Suppose that a complex condition retrieval is executed using table columns C1 and C2
as the key, and then the retrieval results are sorted in descending order of C3 and
ascending order of C4, as shown as follows:
SELECT retrieval-column FROM retrieval-table WHERE C1=10 AND C2=20
 ORDER BY C3 DESC,C4 ASC

In this case also, a multicolumn index consisting of columns C1, C2, C3, and C4 should
be created, instead of creating two single-column indexes in columns C1 and C2. The
data in column C3 should be sorted in descending order, and the data in column C4
should be sorted in ascending order, so that overhead for index and row accesses is
reduced.

(c) Duplicated multicolumn indexes created for one table
If a multicolumn index consisting of columns C1 and C2 is created for a table together
with another multicolumn index consisting of columns C1 and C3, overhead increases
when the duplicated column, C1, is updated. To reduce this overhead, one multicolumn
index consisting of C1, C2, and C3 should be created.
Note that if the table is retrieved using columns C1 and C3 as the search conditions,

14. Designing Indexes

579

retrieval performance may be reduced.
(d) Priority between single-column and multicolumn indexes

If both single-column and multicolumn indexes are created for the same table, HiRDB
uses the indexes in the priority order shown in Table 14-4. This table assumes that
search condition C1=10 AND C2=20 is specified for table retrieval.

Table 14-4: Priority among single-column and multicolumn indexes

14.2.4 Using multiple indexes
More than one index can be created for a table. It is more effective for purposes of
narrowing the rows to be retrieved to use multiple indexes than to use a single index
(single-column or multicolumn index).

14.2.5 Using an index with an exceptional key value set
When an index is defined for a column, all the data in the column is loaded into the
index as the index values. Sometimes an index will contain unused values, such as the
null value. In this case, the null value can be specified as an exceptional key value so
that its occurrences will be excluded from the index. This is appropriate for an index
that contains many occurrences of the null value in all its component columns.

(1) Effects of setting an exceptional key value for an index
The following are the effects of setting an exceptional key value for an index:
1. The size of the index is reduced because the null value key is not created in the

index.
2. Overhead for index maintenance during row insertion, deletion, and update

processing (CPU time, number of input/output operations, number of lock
requests, and frequency of deadlock) is reduced, in addition to the amount of log
information being reduced.

3. When the null value is specified as the exceptional key value and IS NULL,
VALUE, or CASE expression is specified as the search condition for the index

Columns constituting the index Priority

Component column 1 Component column 2 Component column 3

C1 C2 None 1

C1 C3 C2 2

C1 None None 3

C1 C3 None 4

C3 C2 None 5

14. Designing Indexes

580

component column, then the index is not used for the retrieval processing. As a
result, the retrieval performance is improved in the following case:

• Input/output operations occur on the same page because the index contains
many occurrences of the null value and the data page is accessed at random.

(2) Setting procedure
An exception value is set by specifying EXCEPT VALUES in the CREATE INDEX
definition SQL.

(3) Notes
• The only key value that can be specified as an exceptional key value is the null

value.
• An exceptional key value cannot be specified for an index that contains a column

with the NOT NULL constraint.
• An exceptional key value cannot be specified for an index for which a cluster key

is specified.
• An index with an exceptional key value cannot be specified for unloading in index

order.

14.2.6 Effects on performance of the number of indexes
When rows are added to or deleted from a table, all indexes created for the table are
updated. Therefore, as the number of indexes increases, the overhead for index
updating increases. Thus, the following considerations should be taken into account
when indexes are created:

• Do not define an index for a column that is updated frequently.
• Create multicolumn indexes to reduce the number of indexes.
• In the case of a HiRDB/Parallel Server, create the minimum number of indexes

required in order to improve the effects of parallel processing, especially when
retrieving all entries.

14. Designing Indexes

581

14.3 Index row partitioning

If you partition a table, you can also partition and store its index in multiple user
RDAREAs.

(1) Partitioning key index and non-partitioning key index
Before designing a row-partitioned index, you need to understand a partitioning key
index and a non-partitioning key index.
An index that satisfies a specified condition is a partitioning key index, while an index
that does not satisfy a specified condition is a non-partitioning key index. This
condition depends on whether the table is a single-column partitioning or multicolumn
partitioning table.
Note

A table partitioning condition based on only one column corresponds to
single-column partitioning, and a table partitioning condition based on multiple
columns corresponds to multicolumn partitioning.

(a) Single-column partitioning
An index that satisfies one of the following conditions is a partitioning key index:
Conditions:

• Single-column index defined for a column for which storage conditions were
specified when partitioning the table (partitioning key)

• Multicolumn index with a component column 1 for which storage conditions
were specified when partitioning the table (partitioning key)

Figure 14-1 shows an example of a partitioning key index based on the STOCK table.
Figure 14-1: Partitioning key index (single-column partitioning)

Explanation:
CREATE INDEX A12 ON STOCK (PCODE ASC) ...1
CREATE INDEX A12 ON STOCK (PCODE ASC,PRICE DESC) ...2

14. Designing Indexes

582

CREATE INDEX A12 ON STOCK (PRICE DESC,PCODE ASC) ...3

1. If the partitioning key column PCODE is specified as an index, it becomes a
partitioning key index. If any other column is specified as an index, it
becomes the non-partitioning key index.

2. If the partitioning key column PCODE is specified as component column 1 of
a multicolumn index, the multicolumn index becomes a partitioning key
index.

3. If the partitioning key column PCODE is specified as a component column
other than component column 1, the multicolumn index becomes a
non-partitioning key index.

(b) Multicolumn partitioning
An index that satisfies the following condition is a partitioning key index:
Condition:

• Index created on multiple columns that includes all columns specified for
partitioning in the same order, beginning with the partitioning key

Figure 14-2 shows an example of a partitioning key index based on the STOCK table.
Figure 14-2: Partitioning key index (multicolumn partitioning)

Explanation:
CREATE INDEX A12 ON STOCK (PCODE ASC,PRICE DESC) ...1
CREATE INDEX A12 ON STOCK (PCODE ASC,PRICE DESC,
 SQUANTITY ASC) ...2
CREATE INDEX A12 ON STOCK (PRICE DESC,PCODE ASC) ...3
CREATE INDEX A12 ON STOCK (PCODE ASC,SQUANTITY
 DESC,PRICE ASC) ...4

1. This multicolumn index becomes a partitioning key index because it
specifies all partitioning keys (columns PCODE and PRICE), and the order of
these partitioning keys is the same as when the table was defined.

14. Designing Indexes

583

2. This multicolumn index becomes a partitioning key index because it
specifies all partitioning keys (columns PCODE and PRICE), and the order of
these partitioning keys is the same as when the table was defined.

3. This multicolumn index becomes a non-partitioning key index because it
specifies all partitioning keys (columns PCODE and PRICE), but the order of
these partitioning keys is not the same as when the table was defined.

4. This multicolumn index becomes a non-partitioning key index because it
specifies all partitioning keys (columns PCODE and PRICE), but the order of
these partitioning keys is not the same as when the table was defined.

(2) Index partitioning guidelines
Guidelines for index partitioning depend on whether the index is a partitioning key
index or a non-partitioning key index, as shown in Table 14-5.

Table 14-5: Index partitioning guidelines

* You should not row-partition a non-partitioning key index. Row-partitioning the
index may result in poor performance during a search using the index. Specifically, a
search using any of the following paths is disabled, adversely affecting the search
performance:

• KEY SCAN MERGE JOIN
• LIST SCAN MERGE JOIN
• L-KEY R-LIST MERGE JOIN
• L-KEY R-SORT MERGE JOIN
• L-LIST R-KEY MERGE JOIN
• L-LIST R-SORT MERGE JOIN

Type of index HiRDB/Single Server HiRDB/Parallel Server

Table partitioned by
rows within one server

Table partitioned
by rows among
multiple servers

Partitioning key index Index is also row-partitioned
according to its
row-partitioned table.

Index is also row-partitioned
according to its
row-partitioned table.

Index is also
row-partitioned
according to its
row-partitioned
table.Non-partitioning key

index
Index should not be
row-partitioned.
Row-partitioning the index
may result in poor
performance during a search
using the index.*

Index should not be
row-partitioned.
Row-partitioning the index
may result in poor
performance during a search
using the index.*

14. Designing Indexes

584

• L-SORT R-KEY MERGE JOIN
• L-SORT R-LIST MERGE JOIN

For details about these access paths, see the access path display utility (pdvwopt
command) in the manual HiRDB Version 8 Command Reference.
However, if there is a large amount of table data, you should consider index row
partitioning. Row-partitioning an index enables table storage RDAREAs and
index storage RDAREAs to be managed on a one-by-one basis, thereby
improving utilities' operability. For example, when the index is not
row-partitioned, if you load data in units of RDAREAs or reorganize each
RDAREA, you need to create an index in batch mode after data loading or
reorganization is completed. If you row-partition the index, there is no need to
execute such batch index creation after loading data in units of RDAREAs or
reorganizing each RDAREA.
If an index is defined for a matrix-partitioned table, row partitioning is required
just as with partitioning keys even if there is a non-partitioning key index.

(3) Design considerations
• You should use separate user RDAREAs for a row-partitioned table and for its

index. This improves the utilization efficiency of the user RDAREAs.
• If a table contains a key that is to be made unique, you should define a partitioning

key index with UNIQUE specified for this key, or you should specify a cluster key
for the partitioning key. UNIQUE cannot be specified for the index of a table
partitioned using flexible hash partitioning.

(4) Example of index row partitioning (HiRDB/Single Server)
Figure 14-3 shows an example of index row partitioning (HiRDB/Single Server).

Figure 14-3: Example of index row partitioning (HiRDB/Single Server)

14. Designing Indexes

585

Explanation:
• To avoid disk access contention, place the RDAREAs storing the partitioned

table on a disk separate from the RDAREAs storing its index.
• Row-partition the partitioning key index.
• If performance is more important than operability, do not row-partition the

non-partitioning key index.
• If operability is more important than performance, row-partition the

non-partitioning key index.
(5) Example of index row partitioning (HiRDB/Parallel Server)

(a) Partitioning a table within one server
Figure 14-4 shows an example of index row partitioning (within one server).

Figure 14-4: Example of index row partitioning (within one server)

Explanation:
• To avoid disk access contention, place the RDAREAs storing the partitioned

table on a disk separate from the RDAREAs storing its index.
• Row-partition the partitioning key index.
• If performance is more important than operability, do not row-partition the

non-partitioning key index.
• If operability is more important than performance, row-partition the

non-partitioning key index.

14. Designing Indexes

586

(b) Partitioning a table among multiple servers
Figure 14-5 shows an example of index row partitioning (among multiple servers).

Figure 14-5: Example of index row partitioning (among multiple servers)

Explanation:
• To avoid disk access contention, place the RDAREAs storing the partitioned

table on a disk separate from the RDAREAs storing its index.
• Row-partition the partitioning key index as well as the non-partitioning key

index.

14. Designing Indexes

587

14.4 Plug-in index

This section describes plug-in indexes.
(1) Effects of plug-in indexes

Improved performance
When a plug-in is used, table retrieval performance can be improved by creating
a plug-in index. The user can execute complicated retrieval processing at high
speed by using the index types provided by plug-ins.

(2) Creation procedure
The CREATE INDEX definition SQL is used to create a plug-in index for a table.

(3) Notes
Some plug-ins require definition of a plug-in index. If a function that uses a plug-in
index is specified without the plug-in index having been defined, an error may result
during execution.

(4) Batch creation of plug-in index
You can use the database load utility (pdload) to create a plug-in index in the batch
mode. For details about batch creation of a plug-in index, see 7.4 Creating a table
containing a plug-in-provided abstract data type.

14. Designing Indexes

588

14.5 Plug-in index row partitioning

When you partition a table, you also need to partition its plug-in index and store it in
multiple user LOB RDAREAs.

(1) Effects of plug-in row partitioning
Improved operability

When a plug-in index is created in the batch mode, the portion of the plug-in index
in each user LOB RDAREA is processed independently.

(2) Definition procedure
For details about how to define plug-in index row partitioning, see 7.4 Creating a table
containing a plug-in-provided abstract data type.

(3) Forms of plug-in index row partitioning
The forms of plug-in index row partitioning are described below for a HiRDB/Single
Server and for a HiRDB/Parallel Server.

(a) HiRDB/Single Server
For a HiRDB/Single Server, a plug-in index can be partitioned and stored in multiple
user LOB RDAREAs on multiple disks on the same basis as the row-partitioned table.
Figure 14-6 shows a form of plug-in index row partitioning. Figure 14-7 shows an
example of plug-in index row partitioning based on the form shown in Figure 14-6.

Figure 14-6: Form of plug-in index row partitioning (HiRDB/Single Server)

14. Designing Indexes

589

Figure 14-7: Example of plug-in index row partitioning (key range partitioning)
(HiRDB/Single Server)

Explanation:
The example assumes that a plug-in index is defined for the
INSTRUCTIONS_FOR_USE column.
The MEDICAL_MANAGEMENT_TABLE is partitioned and stored in user LOB

14. Designing Indexes

590

RDAREAs LOBSGML1 and LOBSGML2 using the MEDICINE_ID column as the
condition. The plug-in index is stored in LOBNGRAM1 and LOGNGRAM2.

(b) HiRDB/Parallel Server
For a HiRDB/Parallel Server, a plug-in index can be partitioned and stored in multiple
user LOB RDAREAs located in multiple server machines or back-end servers, on the
same basis as its row-partitioned table.
Figure 14-8 shows a form of plug-in index row partitioning. Figure 14-9 shows an
example of plug-in index row partitioning based on the form shown in Figure 14-8.

14. Designing Indexes

591

Figure 14-8: Form of plug-in index row partitioning (HiRDB/Parallel Server)

14. Designing Indexes

592

Figure 14-9: Example of plug-in index row partitioning (key range partitioning)
(HiRDB/Parallel Server)

14. Designing Indexes

593

Explanation:
The example assumes that a plug-in index is defined for the OPERATION_MANUAL
column.
MEDICAL_MANAGEMENT_TABLE is partitioned and stored in user LOB
RDAREAs LOBSGML1-LOBSGML3 using the MEDICINE_ID column as the
condition. The plug-in index is stored in LOBNGRAM1, LOBNGRAM2, and
LOBSGML3.

(4) Design considerations
Separate user LOB RDAREAs should be used for a row-partitioned table and for its
plug-in index.

(5) Notes
Row partitioning results in an increase in the number of RDAREAs; therefore, when
the database is backed up with RDAREA specified, the table and its index will have a
one-to-one correspondence.

595

Chapter

15. Designing RDAREAs

This chapter explains items that should be examined while designing the segments and
pages that constitute RDAREAs.
This chapter contains the following sections:

15.1 Items to be examined during RDAREA design
15.2 Segments
15.3 Pages
15.4 Designing list RDAREAs
15.5 Free space reusage facility
15.6 Shared RDAREAs (HiRDB/Parallel Server only)

15. Designing RDAREAs

596

15.1 Items to be examined during RDAREA design

The amount of disk space required depends on the sizes of segments and pages that
constitute RDAREAs. You should take this point into account when designing
RDAREAs. Table 15-1 lists the items to be examined during RDAREA design, and
Table 15-2 lists the maximum and minimum values for RDAREAs.

Table 15-1: Items to be examined during RDAREA design

Design task and items
to be examined

Advantages Disadvantages Section

Segment
size

Size
increased

If a row length changes as a
result of update processing or if a
row is added to a table for which
a cluster key is specified, unused
pages can be allocated that are
adjacent to the page containing
the specified row, thereby
reducing the data input/output
time.

Because the number of segments
is reduced, the number of tables
and indexes that can be stored per
user RDAREA is also reduced.

15.2.1

Size reduced If many tables, each of which
contains a small amount of data,
are stored in one user RDAREA,
wasted space caused by unused
pages can be minimized.

• If a large amount of data is
added to a user RDAREA,
the number of segment
allocations increases,
resulting in an increase in
overhead.

• Because the number of
segments increases, the
amount of locked resources
also increases when a table is
deleted or all rows are
deleted from a table.

15. Designing RDAREAs

597

Per-cent-ag
e of free
space in
segment

Specified When data is added to a table for
which a cluster key is specified,
data can be stored in the page
close to the cluster key value,
thereby reducing the number of
data input/output operations.

As the value becomes larger,
more disk space is required.

15.2.2

Set to 0 The disk space required can be
reduced.

When data is added to a table for
which a cluster key is specified,
data cannot be stored in the page
close to the cluster key value,
resulting in poor storage status;
therefore, reduction in the
number of data input/output
operations is no longer
beneficial.

Page length Percent-age
of unused
space in
page
specified

• If a row becomes longer as a
result of UPDATE statement
processing, and the
contiguous free space is
longer than the updated row,
the corresponding line fits in
the page.

• When rows are added
repeatedly by the INSERT
statement, rows can be
added until the page located
close to the cluster key value
becomes full.

For a table with the FIX attribute,
storage efficiency is poor.

15.3.2

Percent-age
of unused
space in
page set to 0

For a table with the FIX
attribute, storage efficiency is
improved if the data is placed in
ascending order.

If a row becomes longer than
before as a result of update
processing, the row spans
multiple pages, resulting in
overhead in row accesses.

Free space
reusage

Used • Free space in the used
segments can be used
effectively.

• The performance of free
space search after the
RDAREA is full is
improved.

If there is insufficient free space
for reuse, the overhead for free
space search increases.

15.5

Not used If there is adequate free space,
rapid insertion processing is
possible.

RDAREA storage efficiency is
reduced. Performance of free
space search after the RDAREA
is full is degraded.

Design task and items
to be examined

Advantages Disadvantages Section

15. Designing RDAREAs

598

Table 15-2: Maximum and minimum values for RDAREAs

Estimating the size of index storage RDAREAs

Shared
RDAREA

Used If a heavily accessed table that is
difficult to partition is stored in a
shared RDAREA, the efficiency
of parallel processing improves
because the table can be
referenced by all back-end
servers.

When a shared table is updated,
the shared RDAREA containing
the table is locked, and deadlock
may occur if an application
accesses another table in the
shared RDAREA.

15.6

Not used Deadlock and server-to-server
global deadlock, which
sometimes result from use of a
shared RDAREA, are avoided.

For complex search processing,
such as join processing, overhead
associated with connection
establishment between multiple
back-end servers and with data
transfer increases.

Item Maximum and minimum values

Total number of RDAREAs 3 to 8,388,592

Number of master directory RDAREAs 1

Number of data directory RDAREAs 1

Number of data dictionary RDAREAs 1 to 41

Number of user RDAREAs 1 to 8,388,589

Number of data dictionary LOB RDAREAs 1 to 2

Number of user LOB RDAREAs 0 to 8,388,325

Number of registry RDAREAs 0 to 1

Number of registry LOB RDAREAs 0 to 1

Number of list RDAREAs 0 to 8,388,588

Number of HiRDB files per RDAREA 1 to 16

Number of base tables per RDAREA 0 to 500

Number of indexes per RDAREA 0 to 500

Number of lists per RDAREA 0 to 50,000

Total number of HiRDB files 1 to 134,217,728

Design task and items
to be examined

Advantages Disadvantages Section

15. Designing RDAREAs

599

For details about how to estimate the size of index storage RDAREAs, see 17.1
Determining the size of a user RDAREA. The following lists notes about size
estimation:
1. Data is stored orderly immediately after an index is created in the batch mode

using the database load utility or database reorganization utility. The size of
the index continues to increase thereafter due to index page splitting unless
all keys are inserted in ascending order during data insertion.

2. In general, index pages do not reuse used free pages. Therefore, if there is an
update or deletion that changes a key value, the page where the key was
stored before the update or deletion cannot be reused. For this reason, there
are used free pages that are wasted and are not reused. However, there are
operations that can reuse used free pages. For details see the manual HiRDB
Version 8 System Operation Guide.

3. The structure of an index depends on whether or not there are duplicated key
values. You need an accurate number of duplicate values to estimate the
accurate size of an index. The ratio of this error to the size of the index
becomes greater as the number of index records decreases.

15. Designing RDAREAs

600

15.2 Segments

Table 15-3 shows the various segments statuses.
Table 15-3: Segment statuses

* Used segments can be used only by tables or indexes that have data stored in them.
Other tables or indexes cannot use such segments.

15.2.1 Determining the segment size
The segment size for RDAREAs should be approximately 10-20 pages per segment.
This section describes the implications of segment size and considerations that should
be taken into account when the segment size is selected.

(1) Selecting a large segment size
Improved performance

• If row length changes as a result of update processing or if rows are added to a
table for which a cluster key is specified, the data input/output time can be
reduced because unused pages can be acquired adjacent to the particular page that
contains the rows.

• The effects of batch input can be achieved by the prefetch facility because the data
in a table is stored in consecutive pages. When the prefetch facility is used, the
segment size should be the same as the maximum number of pages for batch input
that is specified with the -p option of the pdbuffer operand in the system
common definition.

Note:
• The number of tables and indexes that can be stored per user RDAREA is

reduced because the number of segments per RDAREA is reduced.

Segment status Explanation

Used segment* This is a segment that stores table or index data. A segment that is full, such that no
more data can be added, is called a full segment. A segment from which all the data
has been deleted, such that all pages are free pages (used free pages or unused
pages), is called a used free segment.

Unused segment This is a segment that has never been used. Such a segment can be used by all tables
(or indexes) in the RDAREA.

Free segment This is a segment that does not store any data. Used free segments and unused
segments are free segments.

15. Designing RDAREAs

601

(2) Selecting a small segment size
Reduction in required disk space

• The number of unused pages can be reduced because many tables, each
containing a small amount of data, can be stored in one user RDAREA.

Notes
• If a large amount of data is added to a user RDAREA that is based on a small

segment size, the segment allocations count increases, thereby increasing
overhead.

• Because the number of segments increases, the amount of locked resources
also increases when a table is deleted or all rows are deleted from a table.

Figure 15-1 provides an overview of user RDAREAs depending on the segment size.
Figure 15-1: Overview of RDAREAs depending on segment size

(3) Setting procedure
The create rdarea statement of the database initialization utility (pdinit) or the

15. Designing RDAREAs

602

database structure modification utility (pdmod) is used to set the segment size.

15.2.2 Setting the percentage of free pages in a segment
The percentage of unused pages allocated in a segment when a table is defined is called
the percentage of free pages in a segment. Free pages here refers to unused pages.
Figure 15-2 provides an overview of the percentage of free pages in a segment.

Figure 15-2: Overview of percentage of free pages in a segment

(1) Effects of specifying a percentage of free pages in a segment
Improved performance:

When data is added to a table for which a cluster key is specified, the data is stored
in a page close to the cluster key value, which means that the number of data
input/output operations is reduced.

(2) Criteria
• A percentage of free pages in a segment should be set if a large amount of data

will be added to a table for which a cluster key is specified after data has been
stored by the database load utility (pdload), etc.

• The percentage of free pages in a segment should be set at 0 if data addition or
update processing on the table will occur rarely.

(3) Specification
To specify the percentage of free pages in a segment, use the PCTFREE operand of the
CREATE TABLE definition SQL statement.

(4) Notes
If the percentage of free pages in a segment is set to 0 for a table for which a cluster
key is specified, it will not be possible to store added data close to the cluster key
values. As a result, the data storage condition becomes poor and reduction in the
number of data input/output operations can no longer be expected.

15. Designing RDAREAs

603

15.2.3 Allocating and releasing segments
When a table is defined, segments are not allocated. Segments are allocated as needed
when data is to be stored in the table. Once a segment has been allocated (once a
segment has been used), no other table or index can use that segment until the segment
has been released. With repeated additions and deletions of data, an RDAREA may run
out of space even though the data volume has not increased. To avoid this, you should
perform the following operations periodically in order to release segments:

• Use the database reorganization utility (pdrorg command) to reorganize the
tables or indexes

• Release used free segments with the free page release utility (pdreclaim
command)

For details about table reorganization, index reorganization, and releasing used free
segments, see the manual HiRDB Version 8 System Operation Guide.
Segments are released if you perform the following types of operations in addition to
table reorganization:

• Execution of the PURGE TABLE statement
• Reinitialization of RDAREAs
• Deletion of table or index definitions
• Deletion of index definitions
• Execution of data loading in the creation mode (-d option specified)

15. Designing RDAREAs

604

15.3 Pages

Table 15-4 shows the page statuses.
Table 15-4: Page statuses

15.3.1 Determining the page length
(1) Considerations in determining the page length

The considerations that should be taken into account in determining the page length
are discussed as follows.
1. A large page size should be used for an RDAREA when a table or index satisfying

the following conditions is to be stored by an application that retrieves or updates
all entries or a large amount of data:

• RDAREA stores tables that do not have indexes
• RDAREA stores tables with a cluster key specified and their indexes
• RDAREA stores indexes used for range condition retrieval or updating of a

large amount of data
2. The page length should be set on the basis of the row length of the tables stored

in the RDAREA so that invalid space can be eliminated as much as possible:
Page length - length of control information section number of rows that can be
stored per page.

3. The following formula should be used as a guideline to setting the percentage of
unused space in a page:
(Page length percentage of unused space in a page) 100 - row length
number of rows that can be stored in unused space in a page.
A meaningless value that does not allow even one row to be stored in the unused
space in a page should not be specified.

4. For a page used to store an index, approximately 4,096 to 8,192 bytes is an

Page status Explanation

Used page This is a page that stores table or index data. A page that is full, such that no more
data can be added, is called a full page. A page from which all the data has been
deleted, such that there is no data on the page, is called a used free page.

Unused page This is a page that has never been used.

Free page This is a page that does not store any data. Used free pages and unused pages are free
pages.

15. Designing RDAREAs

605

appropriate size in terms of input/output efficiency.
5. If a column's data type is VARCHAR, NVARCHAR, or MVARCHAR and its definition

length is at least 256 bytes, its data will be branched onto another page. If there is
variable-length character string data with a length of at least 256 bytes, the page
length should be set to the smallest value that is at least the average length of the
data.

6. In the case of a column whose data type is VARCHAR, NVARCHAR, or MVARCHAR,
if a row of null values is inserted by the INSERT statement, the column's data may
be branched onto another page depending on the length of the updated data when
the UPDATE statement is used subsequently to update the null-value data to real
data. If character string data is often set initially to the null value and then updated
later to real data, the page length should be determined taking into account the
length of the updated rows.

7. HiRDB allows locking control in units of pages or rows. If row-level locking
control is to be used, the page length should be set on the basis of the row length
so that as many rows as possible can be stored per page. The following should be
taken into account in this case:

• Minimize the percentage of unused space in a page.
• Define the page length to minimize the global buffer lock-release waits count

for page input/output requests. In the case of a frequently updated table,
small pages should be used; otherwise, the lock-release waits count may
increase.

• Define the page length to lower the page input/output waits count becomes
low for the number of page input/output requests. If the application uses
mainly random accesses, the page length should be small; otherwise, the
actual input/output units become too large for the row length, which is the
access unit, resulting in unneeded data transfers.

If the UPDATE statement is used frequently to update data in a column whose data
type is VARCHAR, NVARCHAR, or MVARCHAR and this updating results in a change
in the row length, the percentage of unused space in a page should be set to a
slightly higher value when the table is defined. For details about how to set the
percentage of unused space in a page, see 15.3.2 Setting the percentage of unused
space in a page.

(2) Specification
To specify a page length, use the create rdarea statement of the database
initialization utility (pdinit) or database structure modification utility (pdmod).

(3) Notes on determining the page length
An error results when a row is added to a table and as a result the actual row length
exceeds the page length (except in the case of columns whose data type is VARCHAR,

15. Designing RDAREAs

606

NVARCHAR, or MVARCHAR). The actual row length is obtained using the formula for
required disk space that is provided in 17. Determining RDAREA Size. If the obtained
row length is greater than the page length of the user RDAREA to be used, the user
RDAREA must be reinitialized and then the page size must be redefined. The database
structure modification utility (pdmod) is used to reinitialize RDAREAs. For details
about how to reinitialize RDAREAs, see the manual HiRDB Version 8 System
Operation Guide.

15.3.2 Setting the percentage of unused space in a page
The percentage of unused space allocated in a page when a table or index is defined is
called the percentage of unused space in a page. When an unused space value is set,
the database load utility (pdload) and database reorganization utility (pdrorg) will
not normally store data in the specified amount of space.
However, if the database load utility is executed with the -y option specified and no
new page can be allocated, it will store data in the specified unused space.
Figure 15-3 shows an overview of unused space in pages.

Figure 15-3: Overview of unused space in pages

(1) Effects of setting a percentage of unused space in a page
• If the length of contiguous free space is longer than the row length after update

processing, the corresponding row can fit in the page even if it has become longer
than its original length as a result of UPDATE statement processing.

• When the INSERT statement is used to add rows repeatedly, the pages close to the
cluster key value can become filled with rows.

(2) Criteria
1. You should specify a percentage of unused space in a page if rows will be added

to a table for which a cluster key is specified.
2. For a table with the FIX attribute, if data will be sorted in ascending order, you

15. Designing RDAREAs

607

can improve the storage efficiency by setting the percentage of unused space in a
page to 0.

3. You should specify a percentage of unused space in a page if rows will become
longer as a result of update processing.

4. Rows become longer when the following types of update processing are executed:
• The null value is updated to real data.
• A column with the VARCHAR, NVARCHAR, MVARCHAR or BINARY data type is

updated so that the value becomes longer.
(3) Specification

To specify the percentage of unused space in a page, use the PCTFREE option of the
CREATE TABLE or CREATE INDEX definition SQL statement.

(4) Notes
If the set amount of unused space is too small and a row becomes longer as a result of
update processing, the number of input/output operations increases because a single
row spans multiple pages.

(5) Obtaining the percentage of unused space in a page
Generally, the value obtained from the following formula is used as the
percentage of unused space (where the length of the first row stored is L1 and
becomes L2 after processing):
Percentage of unused space in a page = ((L2-L1) L2) 100 (%)
The following procedure should be used when a cluster key is specified for a
table:
1. Obtain the number of data items per page that are stored in the table by the

database load utility (pdload); assume that this value is m.
2. Obtain the number of data items that will be stored later; assume that this

value is n.
3. Use the following formula to obtain the percentage of unused space in a page

from m and n obtained in steps 1 and 2:
Percentage of unused space in a page = (n (m + n)) 100 (%)

15.3.3 Allocating and releasing pages
(1) Allocating pages

When a table is defined, pages are not allocated. Pages are allocated as needed when
data is to be stored in the table. Once a page has been allocated (once a page has been
used), the page cannot be reused until it has been released.

15. Designing RDAREAs

608

If an index is defined, the system allocates pages according to the number of data
items. If there is no data item, the system allocates only one page (root page). If you
specify the EMPTY option in the CREATE INDEX statement (so as not to create the
index entity), the system does not allocate any page.
Notes

1. If you update data in such a manner that the row length of a non-FIX table
changes, the space created by the reduced row length cannot be reused.

2. An index page cannot be reused until a key value that is identical to a key
value that was stored in the deleted page is added.

3. Reusing a page freed up by deletion of data is subject to the following
restrictions:

• The page cannot be used for rows that contain a repetition column or a
column whose type is VARCHAR of at least 256 bytes, BINARY type, or
abstract data type.

• Until a segment's usage reaches 100%, the page cannot be used for insertion
of data.

• Until a transaction that issued a DELETE has been committed, the free space
generated by the deletion cannot be used.

(2) Releasing pages
• When a segment is released, the pages in the segment are also released.
• When a table has been locked with the LOCK statement with EXCLUSIVE

specified, pages will be released when the UAP deletes all rows on the pages. The
index pages are not released.

• When the PURGE TABLE statement is executed, the pages and segments of the
tables and indexes are released. However, the root pages of the indexes remain.

• You release used free pages with the free page release utility (pdreclaim
command). For details about releasing used free pages, see the manual HiRDB
Version 8 System Operation Guide.

15. Designing RDAREAs

609

15.4 Designing list RDAREAs

(1) Number of required list RDAREAs
You can use the following operands to specify the maximum number of lists that can
be created per list RDAREA:

• create rdarea statement's max entries operand in the database
initialization utility (pdinit)

• create rdarea statement's max entries operand in the database structure
modification utility (pdmod)

• initialize rdarea statement's max entries operand in the database
structure modification utility (pdmod)

The permitted range of maximum values is 500 to 50000.
(2) How to obtain a page length and a segment size

A list contains its base table's row identifiers. Unlike in tables, no data is stored directly
in the list; therefore, a comparatively large number of rows can be stored in one page.
Note that if the specified page length and segment size are too large for the actual
number of rows to be stored in the list, unneeded free space is created in the RDAREA.
To determine the page length and segment size for a list RDAREA, estimate the
average number of rows in the list that may be created within the server, then specify
the appropriate page length and segment size based on one of the following cases:

(a) Obtaining the page length when the average number of rows in a list is
more than 6000
Specify the page length in the range of 4096 to 8192. If you want to reduce the list
input/output time by reducing the number of list input/output operations, a larger page
size may be specified. If the page length is large, the required size of the global buffer
also increases, thereby requiring a large amount of shared memory.
Specify the page length that satisfies the following condition:
Condition:

Condition Page length Segment size

Average number of rows in a list created within the server is less than
3000

4096 1

Average number of rows in a list created within the server is 3000 to 6000 4096 2

Average number of rows in a list created within the server is more than
6000

See (a) See (b)

15. Designing RDAREAs

610

To obtain the number of rows that can be stored in one list page, use the following
formula:
Number of rows that can be stored in one list page = {page
length - 70 - (a 8) 4

a: Total number of HiRDB files in the RDAREAs that contain the list's base table
within the server

(b) Obtaining the segment size when the average number of rows in a list is
more than 6000
The segment size is a unit size of space in an RDAREA that can be allocated to a single
list. This means that one segment is the smallest size that can be allocated to a list.
Following are the guidelines for the segment size:

• To reduce the overhead of segment allocation, increase the segment size.
• If you use the prefetch facility with the global buffer for a list RDAREA, specify

a value of at least 2 for the segment size. Otherwise, the prefetch facility will not
function.

• If the segment size increases, the possibility of creating unneeded unused pages
in a segment also increases. To reduce such unneeded unused pages, specify a
small segment size.

• Specify the segment size that satisfies the following condition:
Number of rows that can be stored per list segment average number of rows
in list within the server 2
To obtain the number of rows that can be stored in one list segment, use the
following formula:
Number of rows that can be stored per list segment = number of rows that can be
stored in one list page segment size

(3) How to obtain the number of segments
You can use the following formula to obtain the number of segments required for a list
RDAREA:
Formula

a: Number of lists within the server

Number of rows that can be stored in one list page average number of rows in the
list created within the server 2

Number of segments required for a list RDAREA = { a b (c + 0.5)}

15. Designing RDAREAs

611

b: Number of list RDAREAs within the server
c: Average number of segments that are used per list

Obtain this value using the following formula:

average number of rows in list within the server number of rows that can be
stored per list segment

If a segment shortage occurs, the system can no longer create a list. Therefore, specify
a sufficient value based on the number of segments obtained from the previous
formula.

15. Designing RDAREAs

612

15.5 Free space reusage facility

The free space reusage facility makes free space reusable once the data it stores has
been deleted. This section explains the following items:

• Data storage search modes
• Free space reusage facility
• Effects and applicability
• Considerations

• Environment settings
• Checking execution status
• Notes

15.5.1 Data storage search modes
Once data has been stored in a table, either of the following two page search modes
can be used to search the storage area:

New page allocation mode
When the final page of a used segment becomes full, a new unused segment is
allocated. If no unused pages remain in the RDAREA, free space to store the data
is searched for in used pages from the beginning of the used segments.
Free page reuse mode
When the final page of a used segment becomes full, free space is searched for in
the used pages of the used segments before any unused segments are allocated.
The search start position is then remembered for next search, and the subsequent
search for free space begins from that point.

15.5.2 Free space reusage facility
The free space reusage facility uses the free space on used pages by switching the page
search mode to the free page reuse mode once the number of a table's used segments
reaches the number of user-specified segments and those segments have all become
full. If there is no free space in any of the specified number of segments, it switches to
the new page allocation mode for allocation of a new unused segment.
If the number of segments is not specified, free space is not reused until there are no
more unused pages in an RDAREA. When the free space reusage facility is not used,
free space is searched for each time from the beginning of the used segments. When
the facility is used, the search efficiency is better than when it is not used, because after
switching to the free page reuse mode the first time, the search start position is

15. Designing RDAREAs

613

remembered for the subsequent search.
Figure 15-4 provides an overview of the free space reusage facility.

Figure 15-4: Overview of the free space reusage facility

15. Designing RDAREAs

614

Explanation:
• When the free space reusage facility is not used

When there are no more unused pages in the RDAREA, free space to store
the data each subsequent time that data is inserted is searched for on used
pages from the beginning of the used segments.

• When the free space reusage facility is used and the number of segments is
specified
If there is an attempt to insert data into a table once the specified number of
segments has been reached, an unused segment is not allocated, but instead
free space to store the data is searched for in used pages from the beginning
of the used segments. The search start position is then remembered for the
subsequent search, and searching begins at that position the next time.

• When the free space reusage facility is used and the number of segments is
not specified
When there is an attempt to insert data when there are no unused pages in the
RDAREA, free space to store the data is searched for in used pages from the
beginning of the used segments. The search start position is then
remembered for the subsequent search, and searching begins at that position
the next time.

15.5.3 Effects and applicability
(1) Effects

The following effects can be expected with the use of this facility:
• Effective reuse of free space

15. Designing RDAREAs

615

By reusing the free space of used pages, operations can be performed using a
minimum amount of RDAREA space, thereby minimizing the frequency of
database reorganization. If multiple tables and indexes are stored in the same
RDAREA, the insertions and deletions for some tables can be combined, such that
occupied area can be recovered.

• Recovery from an insufficient pages error for variable-length columns and
BINARY type columns
Normally, if the no-split option is not specified, unused pages are allocated
whenever a variable-length character column of at least 256 bytes is inserted or a
BINARY type column that does not fit on one page is inserted. Even if used free
pages are available, an error will result if an unused page cannot be allocated. If
the free space reusage facility is being used, however, errors can be avoided
because used free pages will be allocated if no unused free pages are available.

• Reduction in overhead during a search for free space on used pages
In the free page reuse mode, high-speed processing is possible due to the reduced
overhead because the search start position is remembered and is used for the
subsequent search.

(2) Applicability
• If you have an application that performs frequent deletions or insertions, such that

the amount of data results in use of a large number of segments and frequent need
for reorganization, and you would like to minimize the number of reorganizations,
you should use the free space reusage facility. This section describes the
application characteristics and the circumstances under which this facility is
recommended.

• When there is no increase in data volume, including deletions (updates) and
insertions
If the maximum size of the data to be stored is specified with the free space
reusage facility, the area from deleted data will later have priority for reuse.
The application can then continue without having to add new area, so
reorganization will not be necessary.

Example: Electronic administrative window

An application that receives data from an electronic window must be a
24-hour system. When an application is received, the data is inserted and
later, once the storage period has passed, it is deleted. If the maximum
segment size for the data to be received within the storage period is specified,
then the space from deleted data can be reused. The application can then
continue without having to add additional space. Reorganization then
becomes unnecessary, the application will never need to stop, and it can
provide 24-hour service.

15. Designing RDAREAs

616

• When there is a steady increase in data volume, including deletions (updates)
and insertions
Steadily increasing data is stored not only in new space, but also in deleted
space, increasing storage efficiency.

Example: Customer management

This application requires inserting new customer data, and deleting old
customer data as it becomes no longer needed. Once the initial customer data
has been entered in full, if the segment size is specified before starting a
transaction to add or delete a customer, customer data added later will reuse
the space from any deleted customer data.

• For insertion processing, performance is best if data is stored in unused pages and
unused segments. Therefore, if the database reorganization utility (pdrorg) can
be executed quickly, the free space reusage facility would not be appropriate, and
database reorganization would provide better performance.

15.5.4 Considerations
The free space reusage facility is effective when deletion processing ensures that there
is always sufficient free space. If there is a search for space when there is not sufficient
free space or when there is none at all, the search for free space will constitute a waste
of time and resources. It is then necessary to specify more pages per segment, and the
facility will have to be stopped. Because a change in the specification of the number
of pages per segment requires re-creation (deletion or addition) of the RDAREA, you
should consider carefully the number of segments and the segment size when you
make your initial design.

In the following case, the number of segments can be omitted from the SEGMENT
REUSE option:

• There is one table in the RDAREA, no indexes are mixed in, and automatic
extension is not specified

In the following cases, the number of segments cannot be omitted from the
SEGMENT REUSE option:

• There is one table in the RDAREA, no indexes are mixed in, and automatic
extension is specified

• There is one table in the RDAREA, with indexes mixed in
• There are multiple tables in the RDAREA

If the amount of data will increase, specify the number of segments and specify
the segment size to be large enough so that deletion will take place in each
segment until it becomes full. If the amount of data will not increase, specify the
number of segments by estimating the total number of segments that the table will

15. Designing RDAREAs

617

need; there is no need to consider the segment size. However, within the same
RDAREA, keep the total number of segments to be reused (if indexes are mixed
in, the number of segments to be reused by the tables and the number of segments
estimated for the indexes in the same RDAREA) to less than the total number of
segments in the RDAREA.

If the free space reusage facility is used on tables for which automatic extension is
specified, space extension has priority, and free space reusage is executed once the
extended space has reached the specified number of segments.

15.5.5 Environment settings
The environment settings for use of the free space reusage facility are explained in this
section.
1. Use the pd_assurance_table_no operand to specify the number of tables that

will use the free space reusage facility.
For partitioning tables, calculate one table per partition. If the inner replica facility
is being used, also calculate the table stored in the replica RDAREA as one table.
For a HiRDB/Parallel Server, make the calculation separately for each back-end
server, and specify the highest number in this operand.
The free space reusage facility can be used for tables defined by CREATE TABLE
or modified by ALTER TABLE up to the number of times (number reserved)
specified in the pd_assurance_table_no operand. If an insert is executed on
a table for which the number reserved has been reached, the KFPH22030-W
message is output, and the free space reusage facility is not applied. In such a case,
the free space reusage facility will be applied for all defined tables if you increase
the value of the pd_assurance_table_no operand. If the ALTER TABLE
statement is specified with ADD RDAREA to add table storage RDAREAs such that
the defined number exceeds the reserved number or the number defined for the
HiRDB/Parallel Server exceeds the reserved number, free space reusage may or
may not be applied to each RDAREA by partitioning tables for which free space
reusage is defined.

2. Estimate the number of segments to be used for free space reusage (estimate the
total number of segments from the total amount of data in the tables; see 17.1
Determining the size of a user RDAREA), and specify the estimated number of
segments in the CREATE TABLE definition SQL statement with the SEGMENT
REUSE option specified. For tables already created, use the ALTER TABLE
statement with the SEGMENT REUSE option specified. The number of segments
specified here is applicable to all RDAREAs.

3. To change the number of segments once it has been specified, you can specify the
number of segments again using ALTER TABLE with the SEGMENT REUSE option
specified. HiRDB will process as follows, depending on the page search mode
and the value specified for the number of segments:

15. Designing RDAREAs

618

• When in the new page allocate mode
If the specified number of segments is fewer than the number of used
segments, free space reusage will be executed once all free space has
disappeared from the last allocated segment.

• When in the free page reuse mode
If the number of segments specified is not greater than the number of used
segments, nothing changes. If the number of segments specified is greater
than the number of used segments, then once all free space has been used free
space reusage will stop briefly, at which point new unused pages will be
allocated.

4. If there is temporarily a large amount of addition due to such as batch processing,
and you want to temporarily stop the free space reusage facility, specify ALTER
TABLE with SEGMENT REUSE NO specified. When this is done, the free space
reusage facility will stop immediately, and unused segments will be newly
allocated.

15.5.6 Checking execution status
You can check whether the free space reusage facility is effective from the items in the
table below. This checking can be made with the database condition analysis utility,
the statistics analysis utility, or the UAP statistical report facility. If this fails, the
KFPH22031-W message is output to the message log for each table (for the partitioning
RDAREA in the case of a partitioned table). The items and their explanation follow:

Item Explanation Measure

Number of page search
mode switchovers

This is the number of times the search mode
switches from the new page allocate mode to
the free page reusage mode, or vice versa.
Frequent switchover during allocation of
reused and unused segments means that there
is more added space than available space due
to deletions and that the segment size (number
of pages) is too small.

Consider changing the segment
size or the timing of deletion
execution.

15. Designing RDAREAs

619

Legend:
: Not applicable.

15.5.7 Notes
• In the following cases, the free space reusage facility will not function:

• When data is stored using the hash facility for hash row partitioning
• When data dictionary tables are stored
• When data is stored in tables by means of data loading or by the database

reorganization facility (pdrorg)
• When the free space reusage facility is used, page search processing is slower

when free space due to deletions is not contiguous than when free space due to
deletions is contiguous. In such a case, consider stopping the free space reusage
facility or consider reorganizing the data with the database reorganization utility
(pdrorg).

• When the free space reusage facility is used with variable-length rows (including
BINARY type), even if there is the same volume of additions and deletions, the
number of segments used may increase.

• Even when searching is executed in the free page reuse mode, deleted space
cannot be reused within the same transaction.

Number of failed page
searches by the free space
reusage facility

The number of used segments reaches the
number of specified segments, but even upon
switchover to the free page reuse mode, there
are no free pages available. In such a case, the
number of search failures increases. Because a
search is conducted even though there is no
free space, pointless search processing is
performed.
If the number of failed page searches by the
free space reusage facility and the number of
page search mode switchovers both increase,
then free page reusage is being executed when
there is absolutely no free space.

Re-evaluate the specified number
of segments and the segment size,
or consider stopping the free space
reusage facility.

Number of used segments If there is no free space in the segments used
by a table, unused segments will be allocated,
causing the number of the table's used
segments to increase. If the increase exactly
matches the number of failed free space
reusage page searches, search processing to
find free space will continue even though there
is none.

Item Explanation Measure

15. Designing RDAREAs

620

15.6 Shared RDAREAs (HiRDB/Parallel Server only)

Normally, a back-end server can access only those RDAREAs that are located under
that back-end server. By partitioning a table, parallel processing can be applied to table
search or update operations, thereby improving the processing efficiency. In the case
of a table that is heavily accessed by multiple transactions and that is difficult to
partition, you can improve the efficiency of parallel processing by storing the table in
a shared RDAREA. A shared RDAREA is a user RDAREA that can be accessed by all
back-end servers. A table stored in a shared RDAREA is called a shared table and its
index is called a shared index. Shared tables and indexes can be referenced by all
back-end servers. Only shared tables and indexes can be stored in a shared RDAREA.
Figure 15-5 provides an overview of a shared RDAREA.
Only a HiRDB/Parallel Server can define shared RDAREAs.

Figure 15-5: Overview of a shared RDAREA

Explanation:
The shared RDAREA RDSHR01 can be referenced by all back-end servers, BES1
to BES3. Note that only the updatable back-end server (BES3) can update the
shared table; BES1 and BES2 are reference-only back-end servers.

(1) Effects
The efficiency of parallel processing improves because all back-end servers can access
the shared RDAREA.

(2) Criteria
We recommend that you use shared RDAREAs in the following cases:

15. Designing RDAREAs

621

• A table is heavily accessed by multiple transactions, but it is difficult to partition
the table.

• Complex search processing, such as join processing, is executed.
(3) Definition method

Specify a shared RDAREA as follows:
• Specify Y in the pd_shared_rdarea_use operand.
• Specify SDB in the -k option (purpose) of the pdfmkfs command and specify the

name of a character special file. Also set the access path so that all back-end
servers will use the same path name to access the shared RDAREA.

• Specify shared in the create rdarea statement of the database initialization
utility (pdinit) or database structure modification utility (pdmod) to define a
user RDAREA. Also specify an updatable back-end server in the server name
operand. Any back-end server that is not specified in the server name operand
becomes a reference-only back-end server.

Notes about definition

• You can define as many shared RDAREAs as the value specified in the
pd_max_rdarea_no operand, which is the maximum number of
RDAREAs. Note that the number of shared RDAREAs is added to the
number of RDAREAs for each back-end server.

• A shared RDAREA cannot be defined in the HiRDB file system area for a
back-end server that is not an updatable back-end server for the shared
RDAREA.

• A shared RDAREA is defined in the HiRDB file system area for shared
RDAREAs. To define a shared RDAREA, specify SDB in the pdfmkfs -k
command. Only shared RDAREAs can be defined in a HiRDB file system
area for shared RDAREAs.

The following shows an example of a control statement of the database structure
modification utility (pdmod) for the shared RDAREA shown in Figure 15-5:

(4) Updating a shared RDAREA
To update a shared RDAREA, you must specify IN EXCLUSIVE MODE in the LOCK
statement to lock the shared RDAREA for all back-end servers. In the case of an

create shared rdarea RDSHR01 globalbuffer buf01 for user used by PUBLIC
 server name BES3 ...Specification of updatable back-end server
 open attribute INITIAL
 page 4096 characters
 storage control segment 20 pages
 file name "/HiRDB/DATABASE/SHR1/rdshr01_f01" ...file name
 initial HiRDB 10000 segments;

15. Designing RDAREAs

622

UPDATE statement that does not change index key values, there is no need to issue the
LOCK statement. For details about updating shared tables, see 13.17.3 Manipulating
shared tables. Updates to a shared table or shared index are written to the disk when
the COMMIT statement is issued.

(5) Managing the shutdown status of a shared RDAREA
Accesses to a shared RDAREA are managed independently by each back-end server.
Therefore, in the event of an error, the shutdown status may vary from one back-end
server to another. When you execute the database structure modification utility
(pdmod) or database recovery utility (pdrstr), you must use the pdhold command
to match the shutdown status of the shared RDAREA among all back-end servers. You
can use the pddbls -m command to display the status of the shared RDAREA for all
the back-end servers.

(6) Setting system switchover
To use a shared RDAREA, you must activate the shared disks that store the shared
RDAREAs for all units in which a back-end server is installed. Therefore, in cases in
which both an updatable back-end server and reference-only back-end server are
installed on the same host, if the updatable back-end server performs system
switchover to switch the shared disks, the reference-only back-end server is no longer
able to reference the shared RDAREAs. For that reason, to perform system switchover
for units on which a back-end server is installed, the method used to set system
switchover differs depending on the system switchover system configuration. For
details about how to set up system switchover, see the manual HiRDB Version 8 System
Operation Guide.

(a) When the standby system switchover configuration is used
• For a 1-to-1 system switchover configuration:

Since the updatable back-end server and reference-only back-end server do not
exist on the same host, no special settings are required for a 1-to-1 system
switchover configuration. For details about how to set up system switchover, see
Shared disk access control by the cluster software in the manual HiRDB Version
8 System Operation Guide.

• For a mutual system switchover or 2-to-1 system switchover configuration:
For a mutual system switchover configuration, no special settings are required
unless system switchover is performed for systems other than the updatable
back-end server and reference-only back-end server (for example, the system
manager, front-end server, or dictionary server). For details about how to set up
system switchover, see Shared disk access control by the cluster software in the
manual HiRDB Version 8 System Operation Guide.
For mutual system switchover between an updatable back-end server and
reference-only back-end server, switching of shared disks cannot be performed.

15. Designing RDAREAs

623

For details about how to set up system switchover, see Shared disk access control
by HiRDB in the manual HiRDB Version 8 System Operation Guide.

(b) When a 1-to-1 standby-less system switchover configuration is used
When a 1-to-1 standby-less system switchover configuration is used with an updatable
back-end server, the system is switched to the reference-only back-end server, but the
shared disks cannot be switched. For details about how to set the system switchover,
see Shared disk access control by HiRDB in the manual HiRDB Version 8 System
Operation Guide.

(c) When the standby-less system switchover configuration (effects
distributed) is used
When a 1-to-1 standby-less system switchover configuration is used with an updatable
back-end server, the system is switched to the reference-only back-end server, but the
shared disks cannot be switched. For details about how to set system switchover, see
Shared disk access control by HiRDB in the manual HiRDB Version 8 System
Operation Guide.
Note:

Make sure that, for the shared RDAREAs, no reference-only back-end server uses
shared disks as a cluster software management resource.

(7) Executing utilities and operation commands on a shared RDAREA
When a utility or operation command is used to process a shared RDAREA, shared
table, or shared index, HiRDB may internally issue LOCK TABLE to lock the shared
RDAREA for all the back-end servers. If an application is accessing a table or index
in the shared RDAREA, deadlock or server-to-server global deadlock may occur.
When you execute a utility or operation command, make sure that you place the target
shared RDAREA in command shutdown status.

(8) Notes about using shared RDAREAs
1. To back up a shared RDAREA, you must use the reference/update-impossible

mode or reference-possible mode. The following specifications are not permitted:
• pdcopy -M s (updatable mode)
• pdhold -bu (updatable backup-hold)
• pdhold -buw (updatable backup-hold (WAIT mode))

2. If you use the system switchover facility, place the unit containing the updatable
back-end server as follows:

• Place it on a separate host from a reference-only back-end server.
• Place the target system in such a manner that the updatable back-end server

does not coexist with a reference-only back-end server on the same host

15. Designing RDAREAs

624

when system switchover occurs.
Make sure that no reference-only back-end server uses the disk volume for the
shared RDAREA as the cluster software's management resources.

3. No floating servers can be installed because a shared RDAREA is placed in all
back-end servers.

4. A shared table cannot be the replication target.
5. Updatable online reorganization of shared RDAREAs cannot be executed for

each server (-s option). However, if some of the back-end servers are inactive
and cannot be started immediately, the following actions can be taken for each
server:

• Forcibly cancel online reorganization hold (committing the database for
online reorganization) only by the active back-end servers (pdorbegin -u).

• Forcibly cancel reflection processing for updatable online reorganization
only by the active back-end servers (pdorend -u).

After the inactive back-end servers have started, place them in the same status as
the other back-end servers.

6. When you use local buffers to update a table and index in a shared RDAREA, first
issue the LOCK TABLE statement. If a shared table or index is updated without
issuing the LOCK TABLE statement, and the server process terminates abnormally,
it may not be possible to restore the updated pages from the global buffer when
rollback processing executes restore processing. If the updated pages cannot be
retained, they cannot be restored; therefore, the unit terminates abnormally with
abort code Phb3008. If this happens, restart HiRDB.

625

Chapter

16. Storage Requirements for HiRDB

This chapter explains the HiRDB storage requirements.
This chapter contains the following sections:

16.1 Estimating the memory size required for a HiRDB/Single Server
16.2 Estimating the memory size required for a HiRDB/Parallel Server

16. Storage Requirements for HiRDB

626

16.1 Estimating the memory size required for a HiRDB/Single Server

This section explains how to estimate the size of the memory required for a HiRDB/
Single Server. The topics covered include:

• Memory allocation
• Calculation of required memory
• Formulas for shared memory used by a unit controller
• Formulas for shared memory used by a single server

• Formulas for size of shared memory used by global buffers
• Formulas for size of memory required during SQL execution
• Formula for size of memory required during SQL preprocessing
• Formula for size of memory required during BLOB-type data retrieval or

updating
• Formula for size of memory required during block transfer or array FETCH

16.1.1 Memory allocation
Figure 16-1 shows the memory allocation for a HiRDB/Single Server.

Figure 16-1: Memory allocation for a HiRDB/Single Server

Table 16-1 provides the details of the shared memories for a HiRDB/Single Server.

16. Storage Requirements for HiRDB

627

Table 16-1: HiRDB/Single Server shared memory details

Item Type of shared memory

Unit
controller

shared
memory

Global buffer
shared memory

Utility
shared

memory

Security
monitoring
information

buffer shared
memory

Inter-process
memory

communication
shared memory

Purpose System
control

Global buffers Communicatio
n between the
unit controller
and utilities

Security
monitoring
information
buffer

Client-server
inter-process
memory
communication

Processes All HiRDB
processes

Single Server Utility
processes

Single server Single Server, client
processes

Number of
segments

1 • When the global
buffer dynamic
update facility is
not used: 1-16

• When the global
buffer dynamic
update facility is
used:
32-bit mode:
1-516
64-bit mode:
1-1,016

1 1 Number of clients
connected using the
PDIPC=MEMORY
environment
variable (0-2000)

 2

Maximum
value per
segment

See Table
16-2 Size of
memory
required for
a HiRDB/
Single
Server.
Value of the
shmmax
operating
parameter
must be
equal to or
greater than
the
calculation
value.

Divide the segment
by the SHMMAX
operand value.
Value of the shmmax
operating parameter
must be equal to or
greater than the
SHMMAX operand
value.

See Table 16-2
Size of memory
required for a
HiRDB/Single
Server. Value
of the shmmax
operating
parameter must
be equal to or
greater than the
calculation
value.

See Table 16-2
Size of memory
required for a
HiRDB/Single
Server. Value of
the shmmax
operating
parameter must
be equal to or
greater than the
calculation
value.

See Table 16-2 Size
of memory required
for a HiRDB/Single
Server. Value of the
shmmax operating
parameter must be
equal to or greater
than the calculation
value.

16. Storage Requirements for HiRDB

628

Allocation
conditions

None There must be a
global buffer
definition

Specify
pd_utl_exec
_mode=1

Specify the
pd_aud_file_
name operand
as the HiRDB
file system area
name for the
audit trail file.

There are clients
connected using the
PDIPC=MEMORY
environment
variable

Creation
timing

At unit
activation
(including
standby unit
activation
when the
rapid system
switchover
facility is
used)

• At server
activation
(including
standby unit
activation when
the rapid system
switchover
facility is used)

• When
pdbufmod -k
{add|upd} is
executed

When utilities
are executed

When a
HiRDB/Single
Server starts up

When client and
server are connected

Deletion
timing

At next unit
activation
(including
standby unit
activation
when the
rapid system
switchover
facility is
used)

• When
pdbufmod -k
del is executed

• For normal
termination or
planned
termination:
When the server
is terminated

• For forced
termination,
abnormal
termination, or
termination of
standby unit
when the rapid
system
switchover
facility is used:
When the unit is
next activated

10 minutes
after the utility
terminates

When a HiRDB
Single Server
quits

When client and
server are
disconnected

Item Type of shared memory

Unit
controller

shared
memory

Global buffer
shared memory

Utility
shared

memory

Security
monitoring
information

buffer shared
memory

Inter-process
memory

communication
shared memory

16. Storage Requirements for HiRDB

629

Legend:
: Not applicable.

#
For details, see the manual HiRDB Version 8 System Definition.

16.1.2 Calculation of required memory
The size of the memory required for a HiRDB/Single Server is the sum of the items
listed in Table 16-2.
For details about the value specified in the shmmax operating system parameter (for
Solaris, shmsys:shminfo_shmmax; for Linux, SHMMAX), see 21. Specifying OS

Indication
by pdls
-d mem

Indicated Indicated Indicated Indicated Not indicated

SHM-OWNE
R of pdls
-d mem

MANAGER Server name UTILITY AUDDEF Not indicated

Related
operands

• pd_shmpo
ol_att
ribute

• pd_sds_s
hmpool
_size

• pd_dbbuff_attr
ibute

• pd_dbbuff_modi
fy

• pdbuffer
• SHMMAX

• pd_utl_exe
c_mode

• Operands
related to
the security
audit
facility#

• PDIPC
• PDSENDMEMSIZE
• PDRECVMEMSIZE

Remarks Can be created
only when
pd_utl_exec
_mode=1
(when
pd_utl_exec
_mode=0, the
relevant space
is allocated in
the unit
controller
shared
memory).

Item Type of shared memory

Unit
controller

shared
memory

Global buffer
shared memory

Utility
shared

memory

Security
monitoring
information

buffer shared
memory

Inter-process
memory

communication
shared memory

16. Storage Requirements for HiRDB

630

Parameters.
Table 16-2: Size of memory required for a HiRDB/Single Server

Item Required memory (KB)

Process
private area

Process private area used by all
unit controller processes

• 32-bit mode
E + {(64 + 48 (u + 1)) (value of
pd_max_server_process - b - 3) + w } 1024
• 64-bit mode

E + {(64 + 64 (u + 1)) (value of
pd_max_server_process - b - 3) + w } 1024

• When using plug-ins, add:
 + 1400
• When using the asynchronous READ facility, add:

 + r
• When using Real Time SAN Replication, add:

 + 425 (2 b + 7) 1024
• When fixed was specified in the

pd_process_terminator operand, add:
 + F (value of pd_process_terminator_max - 1)

Process
private
area used
by single
server
process1

pd_work_buff_
mode=each
specified

• 32-bit mode
{G + g + (a + 9) c + h + i + m + p + q + s} (b + 3) +

(64 + 48 (b + 1)) 1024 (v + 3)
• 64-bit mode

{G + g + (a + 9) c + h + i + m + p + q + s} (b + 3)
+ (64 + 64 (b + 1)) 1024 (v + 3)

pd_work_buff_
mode=pool
specified or omitted

• 32-bit mode
(G + g + a + 9 + a 128 0.1 + 11 + h + i + m
+ p + q + s) (b + 3) + n + (64 + 48 (b + 1))
1024 (v + 3)
• 64-bit mode

(G + g + a + 9 + a 128 0.1 + 15 + h + i + p +
q + s) (b + 3) + n + (64 + 64 (b + 1)) 1024

 (v + 3)

16. Storage Requirements for HiRDB

631

1 Add a value of 300 per process if you use plug-ins.
2 Add this value if you have specified PDIPC=MEMORY in the client environment
definition. For details about the inter-process memory communication facility and
client environment definitions, see the manual HiRDB Version 8 UAP Development
Guide. If either the HiRDB server or the HiRDB client is in 32-bit mode, the system
allocates the shared memory for the inter-process memory communication facility in
the 32-bit address space.
a: Value of pd_work_buff_size operand
b: Value of pd_max_users operand + value of pd_max_reflect_process_count
operand
c: Maximum number of work tables

Obtain the number of work tables for each SQL statement from Table 16-3
Procedure for obtaining the number of work tables for each SQL statement. Use
the largest value obtained from Table 16-3 as the maximum number of work
tables.

d: Value obtained from 16.1.3 Formulas for shared memory used by a unit controller.
e: Value obtained from 16.1.4 Formulas for shared memory used by a single server.
f: Value obtained from 16.1.5 Formula for size of shared memory used by global
buffers.
g: Size of memory required during SQL execution

Shared
memory

Space used by the unit controller in
the unit controller shared memory

d 1024

Space used by the Single Server in
the unit controller shared memory

e

Global buffer shared memory f

Utility shared memory t

Security audit information buffer
shared memory

 For automatic calculation by the system:

0.3 + MAX{(H + 100) , (H 1.2)} 0.25
 For user -specified values (specify the

pd_audit_def_buffer_size operand):

0.3 + H 0.25

Inter-process memory
communication shared memory2

j k

Item Required memory (KB)

16. Storage Requirements for HiRDB

632

For details about the formula, see 16.1.6 Formulas for size of memory required
during SQL execution.

h: Size of memory required during SQL preprocessing
For details about the formula, see 16.1.7 Formula for size of memory required
during SQL preprocessing.

i: LOB buffer batch input/output work memory
Add 62 KB if a LOB global buffer is specified in the global buffer definition (-b
specified in the pdbuffer operand of the system common definition).

j: Maximum number of concurrently executable clients that use the inter-process
memory communication facility.

If you are not sure about the value, specify the number of all clients that use the
inter-process memory communication facility or the value of the pd_max_users
operand.

k: Average memory size for data transfer performed by all clients that use the
inter-process memory communication facility (value of PDSENDMEMSIZE + value of
PDRECVMEMSIZE in the client environment definition).
m: Memory requirement for Java virtual machine

If you use Java stored procedures or Java stored functions, add the size of memory
used by the Java virtual machine. This value depends on the Java virtual
machine's options (-Xms, -Xmx, and -Xmn options for Hewlett-Packard JRE
1.2.2.04) and version. For details about the memory requirement for your Java
virtual machine, see the applicable manual. Following are the guidelines for the
memory required for HP-UX:

• Eight MB of memory is required to start a Java virtual machine.
• Add the maximum memory size for the Java virtual machine (value of the

-Xmx option). Note that some Java virtual machines may use more memory
than the size specified in the -Xmx option.

n: Work table extended memory size
When the pd_work_buff_expand_limit operand is specified, add the work
table extended memory size. The work table extended memory size is determined
from the following formula:
Work table extended memory size (kilobytes) = work table extended buffer size
+ (work table extended buffer size 128) 0.1

• Work table extended buffer size (kilobytes) = MAX(0, work table extended
buffer size based on hash join, subquery hash execution) + MAX(0, work
table extended buffer size based on the increase in the number of work

16. Storage Requirements for HiRDB

633

tables)
• Work table extended buffer size based on hash join, subquery hash execution

= MIN{ (work table extended buffer size based on hash join, subquery hash
execution - value of the pd_work_buff_size operand), (value of the
pd_work_buff_expand_limit operand - value of the
pd_work_buff_size operand) } number of concurrently executing
users executing hash join, subquery hash execution
For details about determining the work table extended buffer size when
executing hash join, subquery hash execution, see the manual HiRDB
Version 8 UAP Development Guide.

• Work table extended buffer size based on the increase in the number of work
tables = MIN{ (number of work tables used 128 - value of the
pd_work_buff_size operand), (value of
pd_work_buff_expand_limit operand - value of
pd_work_buff_size operand) } (number of users such that the number
of work tables is greater than the value of the pd_work_buff_size
operand 128)
Number of work tables used = MAX(number of work table files used per
SQL statement, number of work table files used by the ASSIGN LIST
statement)
For details about determining the number of work table files used per SQL
statement and the number of work table files used by the ASSIGN LIST
statement, see 19.3 Determining the maximum number of files (pdfmkfs -l
command).

p: Memory requirements required for BLOB data type
For details about the formula, see 16.1.8 Formula for size of memory required
during BLOB data retrieval or updating (HiRDB/Single Server).

q: Memory requirements required for server-side block transfer or array FETCH
For details about the formula, see 16.1.9 Formula for size of memory required
during block transfer or array FETCH.

r: Memory size used by asynchronous READ
This is applicable when the asynchronous READ facility is used; use the following
formula (in kilobytes) for the calculation:

(90 +
90

 Memory used by the RDAREA for management of the HiRDB file system area)
i=1

value of pd_max_ard_process

16. Storage Requirements for HiRDB

634

For the memory used by the RDAREA for management of the HiRDB file system
area, use 90 areas as the maximum in the calculation. If the number of areas used
by the server is fewer than 90, assume that amount anyway.
The memory used by the RDAREA for management of the HiRDB file system
area (in kilobytes) is calculated from the following formula based on the initial
settings:

1 Value specified by pdfmkfs -l.
2 Value specified by pdfmkfs -e.
3 Multiply when the area size (value specified in pdfmkfs -n) is at least 2048.

s: HiRDB file system memory size
Determine with the following formula (in kilobytes):

The memory used by the HiRDB file system area for management of work tables
and system logs uses the maximum value calculated for the memory used by the
HiRDB file system area for management used by the server. For RDAREAs, use
90 areas as the maximum calculation value. If the number of areas used by the
server is fewer than 90, assume that amount anyway.
The memory used by the RDAREA for management of the HiRDB file system
area (in kilobytes) is calculated with the following formula based on the initial
settings:

1 Value specified by pdfmkfs -l.
2 Value specified by pdfmkfs -e.
3 Multiply when the area size (value specified in pdfmkfs -n) is at least 2048.

t: When value of pd_utl_exec_mode is 0: 0

When value of pd_utl_exec_mode is 1: {(b 2000 + 136) 1024} 1024

{(Number of files1 + number of extensions2) 64} 1.53

347 + Memory used by the work tables for management of the HiRDB file system area + Memory used by the
system logs for management of the HiRDB file system area +
90

 Memory used by the RDAREA for management of the HiRDB file system area
i=1

{(Number of files1 + number of extensions2) 64} 1.53

16. Storage Requirements for HiRDB

635

u: Valid value of pd_module_trace_max for the unit control information definition
v: Valid value of pd_module_trace_max for the single server definition
w: Memory size for restarting HiRDB

If this memory size cannot be allocated, HiRDB restart fails. Use the following
formula to determine the size (in bytes):

Use the following variables in the formula to calculate the size of memory used
by HiRDB to restart:

A + B

 If commit is specified in the pd_dbsync_point operand, add:
 + 112 (value of pd_max_users 2 + 7)

 If 1 or a greater value is specified in the pd_inner_replica_control operand, add:
 + C

 If the number of RDAREA storage areas created in a character special file is 1001 or greater, add:
 + D

Variable Value

A • 32-bit mode
291722 + 4 value of pd_max_rdarea_no
 + {48 (value of pd_max_rdarea_no + number of tables) + 304} (value of pd_max_users

 2 + 7)
• 64-bit mode

370682 + 8 value of pd_max_rdarea_no
 + {64 (value of pd_max_rdarea_no + number of tables) + 512} (value of pd_max_users

 2 + 7)

Number of tables: Number of data dictionary tables + MAX {value of pd_max_access_tables,
500}

16. Storage Requirements for HiRDB

636

B b1 X + b2 Y

b1: When the record length of the server status file < 4096

 MAX(((3400 ((((record length - 40) - 308) 20)

 + ((record length - 40) 20) (MAX(4096 record length ,2) - 1))

 + 0.7)),1) MAX(4096 record length ,2) (record length - 40)
 When 4096 record length of server status file < 12288

 MAX((3400 ((((record length - 40) - 308) 20)) + 0.7) ,1)
 (record length - 40)
 When 12288 record length of server status file

 MAX((3400 ((((record length - 40) - 836) 20)) + 0.7) ,1)
 (record length - 40)
X: When the number of RDAREAs 3400: 1
 When 3401 number of RDAREAs 6800: 2
 When 6801 number of RDAREAs: 3
b2: When the record length of the server status file < 4096

 ((5662310 ((((record length - 40) - 308) 20)

 + ((record length - 40) 20) (MAX(4096 record length ,2) - 1))

 + 0.7)) MAX(4096 record length ,2) (record length - 40)
 When 4096 record length of server status file < 12288

 (5662310 ((((record length - 40) - 308) 20)) + 0.7)
 (record length - 40)
 When 12288 record length of server status file

 (5662310 ((((record length - 40) - 836) 20)) + 0.7)
 (record length - 40)
Y: When the number of RDAREAs 10200: 0
 When 10201 number of RDAREAs 5672510: 1
 When 5672511 number of RDAREAs 11334820: 2
 When 11334821 number of RDAREAs: 3

C • 32-bit mode
(48 value of pd_inner_replica_control + 80) (value of pd_max_users 2 + 7)
• 64-bit mode

(64 value of pd_inner_replica_control + 160) (value of pd_max_users 2 + 7)

D • 32-bit mode
12012 ((number of RDAREA storage areas created in a character special file - 1000)
1000)
• 64-bit mode

16016 ((number of RDAREA storage areas created in a character special file - 1000)
1000)

Variable Value

16. Storage Requirements for HiRDB

637

E, F, G: Fixed value
These values depend on the OS being used. The following table presents the
values for each OS (in kilobytes):

H: The number of objects specified in a narrowed search using the security audit
facility audit trail

OS Value of E Value of F Value of G

HP-UX (32-bit mode) 84,100 2,700 4,800

HP-UX (32-bit-mode POSIX library version) 129,600 2,800 4,900

HP-UX (64-bit mode) 86,800 2,800 5,300

HP-UX (IPF) 161,300 2,800 5,100

AIX 5L (32-bit mode) 71,800 2,200 5,100

AIX 5L (32-bit-mode POSIX library version) 131,400 4,900 8,000

AIX 5L (64-bit mode) 82,100 2,700 6,700

Solaris (32-bit mode) 74,800 1,500 3,100

Solaris (32-bit-mode POSIX library version) 12,200 1,700 3,300

Solaris (64-bit mode) 86,600 1,900 3,800

Linux (32-bit mode) 96,300 3,300 5,100

Linux (IPF) 168,800 4,600 6,900

Linux (EM64T) 150,500 8,000 11,200

16. Storage Requirements for HiRDB

638

Table 16-3: Procedure for obtaining the number of work tables for each SQL
statement

16.1.3 Formulas for shared memory used by a unit controller
(1) 32-bit mode HiRDB

The size of the memory required for the unit controller from startup to termination of
a HiRDB/Single Server is the sum of the process items listed as follows:
Ensure that the size of the shared memory for the entire unit controller does not exceed
2 gigabytes.

SQL statement Procedure for obtaining the number of work tables

SELECT statement
INSERT(-SELECT)
statement

When none of 1-8 as follows are applicable: 0
When any of 1-8 as follows are applicable: Sum of the applicable values from 1-8
1. When multiple tables are joined for retrieval

Number of additional work tables = (Number of joined tables - 1) 2 + 1
2. When specifying the ORDER BY clause

Number of additional work tables = 2
3. When specifying the GROUP BY clause

Number of additional work tables = Number of GROUP BY clauses specified
4. When specifying the DISTINCT clause

Number of additional work tables = Number of DISTINCT clauses specified
5. When specifying the UNION, UNION ALL, or EXCEPT[ALL] clause

Number of additional work tables = (Number of UNION or UNION ALL clauses
specified) 2 + 1

6. When search condition contains columns with index defined
Number of additional work tables = Number of columns with index defined in the
search condition

7. When specifying the FOR UPDATE or FOR READ ONLY clause
Number of additional work tables = 1

8. When specifying a subquery (quantified predicate)
Number of additional work tables = Number of subqueries specified

UPDATE statement
DELETE statement

Number of columns with index defined in the search condition + 1

DROP SCHEMA
statement
DROP TABLE statement
DROP INDEX statement
CREATE INDEX
statement
REVOKE statement to
revoke access privilege

2

16. Storage Requirements for HiRDB

639

Process item Shared memory calculation formula (bytes)

Scheduler Value of pd_utl_exec_mode set to 0:
{ (432 + 304 n) 1024 + 338 + x} 1024

Value of pd_utl_exec_mode set to 1:
{ (432 + 304 n) 1024 + (m 2000 + 136) 1024 + y } 1024

x: Single server: a + 5 (m + 3) + 14
Utility special unit: 0

y: Single server: 5 (m + 3) + 14
Utility special unit: 0

a: For HP-UX, Solaris, and AIX 5L: 116
For Linux: 35

m: Value of pd_max_users + value of pd_max_reflect_process_count
n: Number of servers in unit + number of utility servers in unit + 1

Number of utility servers in the unit: 26 +
: For HP-UX, Solaris, and AIX 5L, with Single Server in the unit: 12. For Linux,

with Single Server in the unit: 3.

Lock server • For a unit other than a utility special unit
192 + 48 + c + d + 48 + 4096 + g + 48 + i + 48 + 4096 + 48 + n + 16 + t + u + 16
c: When pd_lck_hash_entry is omitted or 0 is specified:

 ((8 + 4 MAX(((p + 3) (value of pd_max_access_tables + 4 + 5 2)

 + value of pd_lck_pool_size 6) 10,11261)) 16 + 1) 16
 When 2 or a greater non-prime number is specified for pd_lck_hash_entry:

 ((8 + 4 largest prime number that is less than the value of pd_lck_hash_entry)
 16 + 1)

 16
 When 1 or a prime number is specified for pd_lck_hash_entry:

 ((8 + 4 value of pd_lck_hash_entry) 16 + 1) 16
d: ((p + 3) (value of pd_max_access_tables + 4 + 5 2) +
 value of pd_lck_pool_size 6) 96
g: When value of pd_utl_exec_mode = 1 and p > 32:
 ((p + 3) 3 + p) 256
 When value of pd_utl_exec_mode = 0 or p 32:
 ((p + 3) 3 + 32) 256

16. Storage Requirements for HiRDB

640

i: When value of pd_utl_exec_mode = 1 and p > 32:
 ((value of pd_lck_pool_size 8 + ((p + 3)
 (value of pd_max_access_tables + 4)) 2)
 + p (value of pd_max_rdarea_no + 1) + (p + 3) 2 2 5)
 rounded up to the next even value 64
 When value of pd_utl_exec_mode = 0 or p 32:
 ((value of pd_lck_pool_size 8 + ((p + 3)
 (value of pd_max_access_tables + 4)) 2)
 + 32 (value of pd_max_rdarea_no + 1) + (p + 3) 2 2 5)
 rounded up to the next even value 64
n: When value of pd_utl_exec_mode = 1 and p > 32:
 ((p + 3) 3 + p) 48
 When value of pd_utl_exec_mode = 0 or p 32:
 ((p + 3) 3 + 32) 48

p: value of pd_max_users + value of pd_max_reflect_process_count
t: When value of pd_utl_exec_mode = 1 and p > 32:
 32 + ((p + 3) 3 + p) value of pd_max_open_holdable_cursors 16

 4
 When value of pd_utl_exec_mode = 0 or p 32:
 32 + ((p + 3) 3 + 32) value of pd_max_open_holdable_cursors 16

 4
u: When value of pd_utl_exec_mode = 1 and p > 32:
 32 + ((value of pd_lck_pool_size 8 + ((p + 3)
 (value of pd_max_access_tables + 4)) 2)
 + p (value of pd_max_rdarea_no + 1) + (p + 3) 2 2 5)
 rounded up to the next even value value of pd_max_open_holdable_cursors

 16 4
 When value of pd_utl_exec_mode = 0 or p 32:
 32 + ((value of pd_lck_pool_size 8 + ((p + 3)
 (value of pd_max_access_tables + 4)) 2)
 + 32 (value of pd_max_rdarea_no + 1) + (p + 3) 2 2 5)
 rounded up to the next even value value of pd_max_open_holdable_cursors

 16 4
• For a utility special unit

8416

Transaction
manager

288 + 32 + 192 m 2 + 1028
 + (420 + 528 + 256 + 384 2 + 128) m 2 + 7) + 256 2
m: Value of pd_max_users + value of pd_max_reflect_process_count

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

641

Timer server 32 (value of pd_max_users + value of pd_max_reflect_process_count + 3)
(1 + number of utility servers in unit + 1) + 1440

Number of utility servers in unit is 26 +
: For HP-UX, Solaris, and AIX 5L, with Single Server in the unit: 12. For Linux, with

Single Server in the unit: 3.

Statistics log server 384 + 128 16 + 32 + 288 2 + 1024 + 128 3
 + value of pd_stj_buff_size 1024 3 + 64 + 4096 + 8192

Process server 160 + 512 a + 80 + 256 + (value of pd_max_server_process + 50) (256 + 144)
+ 16 + 1 34 + 16

a: For a single server: 112. For a utility special unit: 100.

System manager 640 + (44 + 4) a 2 + (100 + 4) (b + 30 + 2) + (100 + 4) (c + 1) + 40 b
14 + 256 + 256 + 36 d + 12 e + 8 + 5844 + 212 + f + 16 + 1024

a: Number of single server definitions
b: Number of single servers in unit
c: Number of units
d: Number of -c options specified in pdunit operand
e: Number of pdcltgrp operands specified
f: 2052 + 128 (g + 3)
g: For a single server: 91. For a utility special unit: 74.

Name server 169984

Node manager (1152 + 288 total number of units + 80 total number of servers + 1536 + 800 +
56 number of servers in unit + 240 A + 44 A + 28 A + 16 B + 32)

 1024 1024

A: pd_utl_exec_mode = 0: 1024
pd_utl_exec_mode = 1 and the unit contains a single server: Value of
pd_max_users 10 + 400
pd_utl_exec_mode = 1 and the unit contains no single server: Value of
pd_max_users 7
If the value of A does not exceed 1024, use 1024 as the value of A.

B: pdcltgrp operand not specified: 0
pdcltgrp operand specified: Number of pdcltgrp operands specified + 1

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

642

I/O server (28 + ((32 + A) 32 32)) 128 128
A: pd_large_file_use = N specified (or omitted):

3248 + (14+16) 808 + 1 272 + 534 272 + 16 272 + value of
pd_max_file_no 808
For utility special unit, the size is (3248 + (14+16) 808 + 1 272) bytes.
pd_large_file_use = Y specified:
3248 + (14+16) 972 + 1 276 + 534 276 + 16 276 + value of
pd_max_file_no 972
For utility special unit, the size is (3248 + (14+16) 972 + 1 276) bytes.

Log server 32 + 48 + 128 19 + 384 + 128 7 + 1024 + 512
 + (128 + 256 + 160 + 8 + 64) value of pd_log_rec_leng

 value of pd_log_rec_leng + 64 + 4096 2 + (256 + 480) B + 128
 value of pd_log_write_buff_count

 + (value of pd_log_write_buff_count + A)
 {value of pd_log_max_data_size + (68 + 44 + 96 + 160)} 4096 4096

 + C + (512 + 256 + 128 B + 464 B) (8192 - 128) 8192
Add this when the pd_max_reflect_process_count operand is specified.
128 + 704

A: 16
B: Number of pdlogadfg -d sys operands specified
C: 0

Synchronization
point dump server

 (368 + 1456 2) 1024 1024
 + {(96 + 80 + 208 + 208) + 192 (number of pdlogadfg -d spd operands
specified)
 + 416 (number of pdlogadpf -d spd operands specified) + 1023}

 1024 1024

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

643

Common to all units a + b + 64 + (m + 3) c + 64 + 48 + d + e
 + (value of pd_max_server_process + 100) (48 + 16) + 32
 + (value of pd_max_server_process + 100 + 384) 32 + f + g + h
 + (value of pd_max_server_process + 127) 32 + 32

a: 26560
b: 2988
c: 1956
d: 32 32
e: 64 + 64 {(m + 3) 2

 + MAX (5, (m + 3] 10) + 7}
f: 512 (13 + 3) 2
g: {(96 + value of pd_lck_until_disconnect_cnt 112 + 4095) 4096} 4096

 2
h: (number of port numbers specified with pd_registered_port 16 + 32 + 1023)

 1024 1024
If pd_registered_port is omitted: 0

m: Value of pd_max_users + value of pd_max_reflect_process_count

Transaction log
server

1024 + 512 A
 + {

128 B + 128
 + [F + 512 value of pd_log_lec_leng value of pd_log_rec_leng
 + (value of pd_log_max_data_size + 68 + 44 + 96 + 160) value of
pd_log_lec_leng value of pd_log_rec_leng] D 2
 + E + (48 + 8) B 2

 } D
 + 584 B + 128 B + 64 B C + 128
 + {

F + 512 value of pd_log_lec_leng value of pd_log_rec_leng
 + (value of pd_log_max_data_size + 68 + 44 + 96 + 160)

 value of pd_log_lec_leng value of pd_log_rec_leng
 } D
 + E + (48 + 8) (B 2 + 2)
A: 2
B: 7 + (value of pd_max_users + value of pd_max_reflect_process_count) 2
C: 1
D: Single server: 1

Utility special unit: 0
E: 0
F: 60

Status server 64 32 32

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

644

(2) 64-bit mode HiRDB
The size of the memory required for the unit controller from startup to termination of
a HiRDB/Single Server is the sum of the process items listed as follows:

Security audit A 1024 1024
A: 560 if the pd_aud_file_name operand is omitted
 456 + (304 200) + B if the pd_aud_file_name operand is specified
B: 0 if the pd_aud_async_buff_size operand value is 0
 The following value if the pd_aud_async_buff_size operand value is 4096 or
greater:
 For Linux:
 (160 value of pd_aud_async_buff_count operand)
 +{(value of pd_aud_async_buff_size operand 4096 4096)
 value of pd_aud_async_buff_count operand} + 4096
 For a system other than Linux:
 (160 value of pd_aud_async_buff_count operand)
 +{(value of pd_aud_async_buff_size operand 4096 4096)
 value of pd_aud_async_buff_count operand}

Process item Shared memory calculation formula (bytes)

Scheduler Value of pd_utl_exec_mode set to 0:
 { (432 + 304 n) 1024 + 338 + x} 1024
Value of pd_utl_exec_mode set to 1:
 { (432 + 304 n) 1024 + (m 2000 + 136) 1024 + y} 1024
x: Single server: a + 5 (m + 3) + 14

Utility special unit: 0
y: Single server: 5 (m + 3) + 14

Utility special unit: 0
a: For HP-UX, Solaris, and AIX 5L: 116

For Linux: 35
m: Value of pd_max_users + value of pd_max_reflect_process_count
n: Number of servers in unit + number of utility servers in unit + 1

Number of utility servers in the unit: 26 +
: For HP-UX, Solaris, and AIX 5L, if the unit has a Single Server: 12. For Linux, if

the unit has a Single Server: 3.

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

645

Lock server • For a unit other than a utility special unit
272 + 80 + c + d + 64 + 8192 + g + 80 + i + 64 + 8192 + 64 + n + 16 + t + u + 16
c: When pd_lck_hash_entry is omitted or 0 is specified:

 ((8 + 8 MAX(((p + 3) (value of pd_max_access_tables + 4 + 5 2)

 + value of pd_lck_pool_size 4) 10,11261)) 16 + 1) 16
 When 2 or a greater non-prime number is specified for pd_lck_hash_entry:

 ((8 + 8 largest prime number that is less than the value of pd_lck_hash_entry)
 16 + 1)

 16
 When 1 or a prime number is specified for pd_lck_hash_entry:

 ((8 + 8 value of pd_lck_hash_entry) 16 + 1) 16
d: ((p + 3) (value of pd_max_access_tables + 4 + 5 2) +
 value of pd_lck_pool_size 4) 128
g: When value of pd_utl_exec_mode = 1 and p > 32:
 ((p + 3) 3 + p) 320
 When value of pd_utl_exec_mode = 0 or p 32:
 ((p + 3) 3 + 32) 320

i: When value of pd_utl_exec_mode = 1 and p > 32:
 ((value of pd_lck_pool_size 5 + ((p + 3)
 (value of pd_max_access_tables + 4)) 2)

 + value of pd_lck_pool_size 3 + p (value of pd_max_rdarea_no + 1)
 + (p + 3) 2 2 5)
 rounded up to the next even value 112
 When value of pd_utl_exec_mode = 0 or p 32:
 ((value of pd_lck_pool_size 5 + ((p + 3)
 (value of pd_max_access_tables + 4)) 2)

 + value of pd_lck_pool_size 3 + 32 (value of pd_max_rdarea_no +
1)
 + (p + 3) 2 2 5)
 rounded up to the next even value 112
n: When value of pd_utl_exec_mode = 1 and p > 32:
 ((p + 3) 3 + p) 80
 When value of pd_utl_exec_mode = 0 or p 32:
 ((p + 3) 3 + 32) 80
p: value of pd_max_users + value of pd_max_reflect_process_count

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

646

t: When value of pd_utl_exec_mode = 1 and p > 32:
 32 + ((p + 3) 3 + p) value of pd_max_open_holdable_cursors 16

 4
 When value of pd_utl_exec_mode = 0 or p 32:
 32 + ((p + 3) 3 + 32) value of pd_max_open_holdable_cursors 16

 4
u: When value of pd_utl_exec_mode = 1 and p > 32:
 32 + ((value of pd_lck_pool_size 5 + ((p + 3)
 (value of pd_max_access_tables + 4)) 2)

 + value of pd_lck_pool_size 3 + p (value of pd_max_rdarea_no + 1)
 + (p + 3) 2 2 5)
 rounded up to the next even value value of pd_max_open_holdable_cursors

 16 4
 When value of pd_utl_exec_mode = 0 or p 32:
 32 + ((value of pd_lck_pool_size 5 + ((p + 3)
 (value of pd_max_access_tables + 4)) 2)

 + value of pd_lck_pool_size 3 + 32 (value of pd_max_rdarea_no +
1)
 + (p + 3) 2 2 5)
 rounded up to the next even value value of pd_max_open_holdable_cursors

 16 4
• For a utility special unit

16688

Transaction
manager

304 + 32 + 192 m 2 + 1048
 + (416 + 688 + 256 + 392 2 + 128) (m 2 + 7) + 256 2
m: Value of pd_max_users + value of pd_max_reflect_process_count

Timer server 32 (value of pd_max_users + value of pd_max_reflect_process_count + 3)
(1 + number of utility servers in unit + 1) + 1440 + (48 - 32) 2

Number of utility servers in unit is 26 +
: For HP-UX, Solaris, and AIX 5L, with Single Server in the unit: 12. For Linux, with

Single Server in the unit: 3.

Statistics log server 424 + 128 16 + 32 + 288 2 + 1168 + 144 3
 + value of pd_stj_buff_size 1024 3 + 64 + 4096 + 8192

Process server 176 + 528 a + 80 + 256 + (value of pd_max_server_process + 50) (256 + 160)
+ 16 + 1 34 + 16

a: For a single server: 112. For a utility special unit: 100.

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

647

System manager 544 + 40 a 2 + 104 {b + (26 + b
672 + (48 + 8) a 2 + (112 + 8) (b + 30 + 2) + (104 + 8) (c + 1) + 40 b
14 + 256 + 256 + 40 d + 16 e + 8 + 5864 + 236 + f + 16 + 1024

a: Number of single server definitions
b: Number of single servers in unit
c: Number of units
d: Number of -c options specified in pdunit operand
e: Number of pdcltgrp operands specified
f: 2056 + 128 (g + 3)
g: For a single server: 91. For a utility special unit: 74.

Name server 169984

Node manager (1312 + 320 total number of units in HiRDB system
 + 96 total number of servers in HiRDB system + 2048 + 960
 + 72 number of HiRDB servers in the unit + 240 A + 44 A + 28 A + 16 B + 48)

 1024 1024
A: pd_utl_exec_mode = 0: 1024

pd_utl_exec_mode = 1 and the unit contains a single server: value of
pd_max_users 10 + 400
pd_utl_exec_mode = 1 and the unit contains no single server: value of
pd_max_users 7
If the value of A does not exceed 1024, use 1024 as the value of A.

B: pdcltgrp operand not specified: 0
pdcltgrp operand specified: Number of pdcltgrp operands specified + 1

I/O server (56 + ((56 + A) 32 32)) 128 128
A: pd_large_file_use = N specified (or omitted):

3248 + (14 + 16) 808 + 1 272 + 534 272 + 16 272 + value of
pd_max_file_no 808 + (48 - 32) 3
For a utility special unit: 3248 + (14 + 16) 808 + 1 272) + (48 - 32) 3 bytes

pd_large_file_use = Y specified:
3248 + (14+16) 972 + 1 276 + 534 276 + 16 276 + value of
pd_max_file_no 972 + (48 - 32) 3
For a utility special unit: (3248 + (14+16) 972 + 1 276) + (48 - 32) 3 bytes

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

648

Log server 32 + 48 + 128 19 + 432 + 128 7 + 1168 + 512
 + (128 + 256 + 160 + 8 + 64) value of pd_log_rec_leng value of
pd_log_rec_leng
 + 64 + 4096 2 + (256 + 480) B
 + 144 value of pd_log_write_buff_count
 + (value of pd_log_write_buff_count + A)
 {value of pd_log_max_data_size + (68 + 44 + 96 + 160)} 4096 4096
 + C + (512 + 256 + 128 B + 464 B) (8192 - 128) 8192
Add this when the pd_max_reflect_process_count operand is specified.
128 + 704

A: 16
B: Number of pdlogadfg -d sys operands specified
C: 0

Synchronization
point dump server

 (384 + 1536 2) 1024 1024
 + {(128 + 80 + 240 + 240) + 192 (number of pdlogadfg -d spd operands
specified)
 + 416 (number of pdlogadpf -d spd operands specified) + 1023}

 1024 1024

Common to all units a + b + 80 + (m + 3) c + 64 + 48 + d + e
 + (value of pd_max_server_process + 100) (64 + 16) + 32
 + (value of pd_max_server_process + 100 + 384) 32 + 32 + f + g + h
 + (value of pd_max_server_process + 127) 48 + 32

a: 35968
b: 3480
c: 2760
d: 48 32
e: 80 + 96 {(m + 3) 2

 + MAX (5, (m + 3] 10) + 7}
f: 512 (13 + 3) 2
g: {(128 + value of pd_lck_until_disconnect_cnt 112 + 4095) 4096} 4096

 2
h: (number of port numbers specified with pd_registered_port 16 + 32 + 1023)

 1024 1024
If pd_registered_port is omitted: 0
m: Value of pd_max_users + value of pd_max_reflect_process_count

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

649

16.1.4 Formulas for shared memory used by a single server
This subsection lists and describes the formulas used for calculating the shared
memory used by a HiRDB/Single Server.
For 32-bit mode (KB):

Formula 1 + {((40 + (value obtained by adding Formulas 2 through 6))

Transaction log
server

1168 + 688 A
 + {

128 B + 144
 + [G + 256 value of pd_log_lec_leng value of pd_log_rec_leng
 + (value of pd_log_max_data_size + 68 + 44 + 96 + 160) value of
pd_log_lec_leng

 value of pd_log_rec_leng] D 2
 + E + (48 + 8) B 2
 } D

 + 600 B + 128 B + 64 B C + 144
 + {

G + 256 value of pd_log_lec_leng value of pd_log_rec_leng
 + (value of pd_log_max_data_size + 68 + 44 + 96 + 160)

 value of pd_log_lec_leng value of pd_log_rec_leng
 } D

 + E + (48 + 8) (B 2 + 2)
A: 2
B: 7 + (value of pd_max_users + value of pd_max_reflect_process_count) 2
C: 1
D: Single server: 1

Utility special unit: 0
E: 0
G: 64

Status server 64 32 32

Security audit A 1024 1024
A: 624 if the pd_aud_file_name operand is omitted
 520 + (320 200)+ B if the pd_aud_file_name operand is specified
B: 0 if the pd_aud_async_buff_size operand value is 0
 The following value if the pd_aud_async_buff_size operand value is 4096 or
greater:
 (176 value of pd_aud_async_buff_count operand)
 +{(value of pd_aud_async_buff_size operand 4096 4096)
 value of pd_aud_async_buff_count operand}

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

650

512 512)} 1024
For 64-bit mode (KB):

Formula 1 + {((72 + (value obtained by adding Formulas 2 through 6))
512 512)} 1024

Notes on Formulas 1 to 7:

• If Y is specified in the pd_rdarea_open_attribute_use or
pd_lv_mirror_use operand, add Formula 3.

• If commit is specified in either the pd_dbsync_point operand or the
pd_system_dbsync_point operand, add Formula 4. The default for the
pd_system_dbsync_point operand is commit.

• If the pd_inner_replica_control operand is specified, add Formula 5.
• If the pd_dfw_awt_process operand is specified, add Formula 6.
• If you omit the pd_sds_shmpool_size operand, the following value is set:

For 32-bit mode:

 {((40 + (total of Formulas 2 through 6)) 512 512)} 1024
For 64-bit mode:

 {((72 + (total of Formulas 2 through 6)) 512 512)} 1024
• If you omit the pd_max_commit_write_reclaim_no operand (except

cases in which v6compatible or v7compatible is specified in the
pd_sysdef_default_option operand), or you specify a value other than
0 in the pd_max_commit_write_reclaim_no operand, add Formula 7.
However, if you have already added Formula 4, you do not need to add this
formula.

The following table shows Formulas 1 through 7.

16. Storage Requirements for HiRDB

651

Formula Shared memory calculation formula

Formula 1 (KB) 32-bit mode
b 1.3 + c + d + f + 1.6 m + q + r + 4
 + { [(a + 12) 13] 1.1 + [(a + 62) 63] + 3.7} (e + 3) + 3.5
 + {

 ((b 64)) (8 16) 4 4
 + 12 {(b 3) + 1 - mod (b 3, 2)}
 + 8 a {(e + 3) 2 + 1 + MAX (e 10, 5)} + 32
 + {(c 8) + 7} 64 8 + {(f 8) + 7} 64 8
 + MAX {a (e + 3), c 8} 88 + MAX {a (e + 3), f 8} 24
 + {(q 4) + 7} 64 8
 + {[(r - (s 592 + t 916 + u 172)) 2] + 7} 64 8
 + MAX {13 (e + 3), q 4} 88
 + MAX {21 (e + 3), [r - (s 592 + t 916 + u 172)] 2} 60
 + 44 + 256 + 1024 + 512#1

 } 1024 + y + 7.5
 + {248 v w + 47 v + 72} 1024
 + { (28 + ((32 + ((g 127 + 1) 2048 + 128)) 32 32))
 128 128
 } 1024
 D
 + (Ei)
 i=1

Add this if the pd_def_buf_control_area_assign operand is specified as INITIAL
or if the operand is omitted.
 + {[(a + 12) 13] 1.1 + [(a + 62) 63] + 3.7} (e + 7)

16. Storage Requirements for HiRDB

652

64-bit mode
b 1.3 + c + d + f + 1.6 m + q + r + 5
 + { [(a + 12) 13] 1.2 + [(a + 62) 63] 1.5 + 4.1} (e + 3) + 3.5
 + {

 ((b 64)) (8 16) 4 4 + 12
 {(b 3) + 1 - mod (b 3, 2)}

 + 8 a {(e + 3) 2 + 1 + MAX (e 10, 5)} + 48
 + {(c 8) + 7} 64 8 + {(f 8) + 7} 64 8
 + MAX {a (e + 3),c 8} 104 + MAX {a (e + 3), f 8} 40
 + {(q 4) + 7} 64 8
 + {[(r - (s 600 + t 936 + u 182)) 2] + 7} 64 8
 + MAX {13 (e + 3), q 4} 104
 + MAX {21 (e + 3), [r - (s 600 + t 936 + u 184)] 2} 72
 + 72 + 256 +1536 + 512#1

 } 1024 + y + 7.5
 + {248 v w + 64 v + 72} 1024
 + { (56 + ((56 + ((g 127 + 1) 2048 + 128)) 32 32))
 128 128
 } 1024
 D
 + (Ei)
 i=1

Add this if the pd_def_buf_control_area_assign operand is specified as INITIAL
or if the operand is omitted.
 + {[(a + 12) 13] 1.2 + [(a + 62) 63] 1.5 + 4.1} (e + 7)

Formula 2 (bytes) 32-bit mode
500 1024
 5072 (e + 15) + (372 g 16 16) + 48#1 g + 328 h
 + 112 (p + 240)#6

 + 96 x + 32 j + 132 {19 + (e + 3) 3}
 + 48 n + 48 {(e + 3) 2 + 1 + MAX(5,(e + 3) 10)}
 + 68 B + 144 A + 80 + 32 g + 64#2 + 96#3 + 368#4

 + ((((g 8) + 3) 4) 4) j

Formula Shared memory calculation formula

16. Storage Requirements for HiRDB

653

a: Value of pd_max_access_tables operand
b: Value of pd_sql_object_cache_size operand
c: Value of pd_table_def_cache_size operand
d: Value of pd_auth_cache_size operand
e: Value of pd_max_users operand
f: Value of pd_view_def_cache_size operand

64-bit mode
500 1024
 9416 (e + 15) + (472 g 16 16)
 + (56#1 g 16 16) + 344 h
 + (136 (p + 240) 16 16)#7

 + 144 x + 48 j + 240 {19 + (e + 3) 3}
 + 64 n + 96 {(e + 3) 2 + 1 + MAX(5,(e + 3) 10)}
 + 68 B + 160 A + 96 + 48 g + 64#2 + 128#3 + 448#4

 + ((((g 8) + 7) 8) 8) j

Formula 3 (bytes) 32-bit mode
{[(g 8 4) 4] + 8} {(e + 3) 2 + 12}

64-bit mode
{[(g 8 8) 8] + 8} {(e + 3) 2 + 12}

Formula 4 (bytes) 32-bit mode
(32 + 16 x) (e 2 + 7 + 1) + 16

64-bit mode
(48 + 32 x) (e 2 + 7 + 1) + 16

Formula 5 (bytes) 56 z + 16

Formula 6 (bytes) 32-bit mode
88 + 52 C + 3400

64-bit mode
112 + 56 C + 7200

Formula 7 (bytes) 32-bit mode
(32 + 16 q) F + 16

64-bit mode
(48 + 32 q) F + 16

Formula Shared memory calculation formula

16. Storage Requirements for HiRDB

654

g: Value of pd_max_rdarea_no operand
h: Value of pd_max_file_no operand
i: Total number of indexes in the server (for a partitioning key index, this is the number
of partitions in the server)
j: Number of global buffers for indexes

If Y is specified in the pd_dbbuff_modify operand, add the
pd_max_add_dbbuff_no operand value to the number of pdbuffer
commands that have been specified.

m: Value of pd_alias_cache_size operand
n: Value of pd_lck_until_disconnect_cnt operand
p: Value of pd_assurance_index_no operand
q: Value of pd_type_def_cache_size operand
r: Value of pd_routine_def_cache_size operand
s: Number of plug-ins installed

t: Total number of plug-in functions used with DML#5

u: Total number of parameters for the plug-in functions used with DML#5

v: Value of pd_max_list_users operand
w: Value of pd_max_list_count operand
x: Total number of global buffers (number specified in the pdbuffer operand)

If Y is specified in the pd_dbbuff_modify operand, add the
pd_max_add_dbbuff_no operand value to the number of pdbuffer
commands that have been specified.

y: Value of pd_registry_cache_size operand
z: Value of the pd_inner_replica_control operand
A: Value of the pd_assurance_table_no operand
B: Maximum number of transactions in the server (2 e + 7)
C: Value of the pd_dfw_awt_process operand
D: Total number of specified pdplgprm operands

Ei: Size of the shared memory specified by the ith pdplgprm operand.

F: Value of the pd_max_commit_write_reclaim_no operand
#1: Add this value if neither the pd_max_list_users nor pd_max_list_count

16. Storage Requirements for HiRDB

655

operand is 0.
#2: Add this value if at least 1 is specified in the pd_max_ard_process operand.
#3: Add this value if at least 1 is specified in the pd_max_reflect_process_count
operand.
#4: Add this value if the facility for predicting reorganization time is used.
#5: You can use the following SQL statement to obtain the total number of plug-in
functions and the total number of parameters for the plug-in functions used with DML:
SELECT COUNT(*),SUM(N_PARAM) FROM MASTER.SQL_PLUGIN_ROUTINES
WHERE PLUGIN_NAME = 'plug-in-name'
AND (TIMING_DESCRIPTOR = 'ADT_FUNCTION'
 OR TIMING_DESCRIPTOR IS NULL
 OR TIMING_DESCRIPTOR = 'BEFORE_INSERT'
 OR TIMING_DESCRIPTOR = 'AFTER_INSERT'
 OR TIMING_DESCRIPTOR = 'BEFORE_UPDATE'
 OR TIMING_DESCRIPTOR = 'AFTER_UPDATE'
 OR TIMING_DESCRIPTOR = 'BEFORE_DELETE'
 OR TIMING_DESCRIPTOR = 'AFTER_DELETE'
 OR TIMING_DESCRIPTOR = 'BEFORE_PURGE_TABLE'
 OR TIMING_DESCRIPTOR = 'AFTER_PURGE_TABLE'
 OR TIMING_DESCRIPTOR = 'INDEX_SEARCH'
 OR TIMING_DESCRIPTOR = 'INDEX_COUNT'
 OR TIMING_DESCRIPTOR = 'INDEX_INSERT'
 OR TIMING_DESCRIPTOR = 'INDEX_BEFORE_UPDATE'
 OR TIMING_DESCRIPTOR = 'INDEX_AFTER_UPDATE'
 OR TIMING_DESCRIPTOR = 'INDEX_DELETE'
 OR TIMING_DESCRIPTOR = 'PURGE_INDEX'
 OR TIMING_DESCRIPTOR = 'INDEX_MAINTENANCE_DEFERRED'
 OR TIMING_DESCRIPTOR = 'BEFORE_INSERT_DC'
 OR TIMING_DESCRIPTOR = 'BEFORE_UPDATE_DC'
 OR TIMING_DESCRIPTOR = 'BEFORE_DATA_CHECK'
 OR TIMING_DESCRIPTOR = 'AFTER_DATA_CHECK')

#6: When you specify v6compatible or v7compatible in the
pd_sysdef_default_option operand, use 112 MAX(p, i 1.2) for calculating
instead of 112 (p + 240).
#7: When you specify v6compatible or v7compatible in the
pd_sysdef_default_option operand, use (136 MAX(p, (i 1.2)) 16

 16) for calculating instead of (136 (p + 240) 16 16).

16.1.5 Formula for size of shared memory used by global buffers
The size of the shared memory used by the global buffers is calculated for each
pdbuffer statement using Formula 1. If Y is specified in the pd_dbbuff_modify
operand, add Formula 2. The total value obtained from Formulas 1 and 2 is the

16. Storage Requirements for HiRDB

656

memory size required for use by the global buffers.
If the pdbuffer operand is omitted, HiRDB will automatically calculate the shared
memory size, so it need not be estimated.

n: Number of global buffer pools
i: Global buffer pool definitions to be calculated
P: Number of global buffer sectors
A: If the asynchronous READ facility is used, 2; if it is not used, 1.
M: Maximum number of batch input pages

If at least 1 is specified in the pd_max_ard_process operand, this is twice the
specified value.

U: Maximum number of concurrently executable prefetch operations
S: Maximum page length of the RDAREAs allocated to global buffer

Formula Shared memory calculation formula (KB)

Formula 1 32-bit mode
 n

{
i=1
 {672 + 64 + (280 + 56#1) (Pi + 4)
 + (124 + 80#2 + 96 A Mi) Ui} 4096 4096
 + Si {Pi + 4 + (Ui Mi A)}
 } 1024

64-bit mode
 n

{
i=1
 {864 + 64 + (464 + 96#1) (Pi + 4)
 + (176 + 96#2 + 136 A Mi) Ui} 4096 4096
 + Si {Pi + 4 + (Ui Mi A)}
 } 1024

Formula 2 32-bit mode
{ [((s 1024 4) 8) + 112] 4096 4096 a (s 1024)
} 1024

64-bit mode
{ [((s 1024 4) 8) + 144] 4096 4096 a (s 1024)
} 1024

16. Storage Requirements for HiRDB

657

s: SHMMAX specified value
a: Total from Formula 1
#1: Add this value for the LOB global buffer.
#2: Add this value if at least 1 is specified in the pd_max_ard_process operand.

16.1.6 Formulas for size of memory required during SQL execution
(1) Procedure for obtaining the size of the memory required during execution of
rapid grouping facility

If PDSQLOPTLVL is specified in the client environment definition,
pd_optimize_level is specified in the system common definition, or this operand
is omitted, executing an SQL statement that satisfies the applicable conditions will
activate the rapid grouping facility. In such a case, HiRDB allocates process private
memory on the basis of the value of PDAGGR in the client environment definition. The
size of the memory can be obtained from the following formula (in bytes).
Formula:

a: Number of columns subject to grouping
b: Number of operations by set functions

Each of COUNT, SUM, MAX, and MIN is counted as 1.
Each of AVG (COUNT) and AVG (SUM) is counted as 2.

c: Length of rows subject to grouping (see Table 16-4)
d: Length of operation area for set functions (see Table 16-4)
e: 32-bit mode: MAX (4 N 24, 16408)

64-bit mode: MAX (8 N 40, 32808)
N: Value of PDAGGR operand in the client environment definition

Table 16-4: Length of column subject to grouping and length of operation area
for set functions

e + d 4 4 + (17 + 4 a + 4 b + c + d) 4 4 (N + 1)
 (bytes)

Column's data type Column length Length of operation area for
set function1

INTEGER 4 6

SMALLINT 2 42

16. Storage Requirements for HiRDB

658

Legend:
: Not applicable

1 If the set function is COUNT, the length of the operation area is always 6, regardless
of the data type.
2 If the set function is AVG or SUM, the length of the operation area is 6.
3 If the set function is AVG or SUM, the length of the operation area is 18.

(2) Procedure for obtaining the size of the memory required when data
suppression by column is specified

The following formula can be used to obtain the size of the memory (in bytes) required
to access a table for which data suppression by column is specified (table for which
SUPPRESS is specified in the column definition of CREATE TABLE):
Formula:

DECIMAL(p,s) (p + 1) 2 (p + 7) 2 3

FLOAT 8 10

SMALLFLT 4 6

INTERVAL YEAR TO DAY 5 8

INTERVAL HOUR TO SECOND 4 6

CHAR(n) n n + 3

VARCHAR(n) n + 2 n + 5

NCHAR(n) 2 n 2 n + 2

NVARCHAR(n) 2 n + 2 2 n + 4

MCHAR(n) n n + 3

MVARCHAR(n) n + 2 n + 5

DATE 4 6

TIME 3 6

BLOB(n)

BINARY(n) n + 2 n + 5

Column's data type Column length Length of operation area for
set function1

16. Storage Requirements for HiRDB

659

a: Sum of the lengths of columns in the table for which data suppression by column is
specified

(3) Procedure for obtaining the size of the memory required during hash join and
subquery hash execution

If you specify the PDADDITIONALOPTLVL operand in the client environment
definition or the pd_additional_optimize_level operand in the HiRDB system
definition, the SQL extension optimizing option becomes available. If you specify an
application of "hash join, subquery hash execution (APPLY_HASH_JOIN)" with this
SQL extension optimizing option, the system allocates the following size of process
private area when a table join or subquery SQL statement is executed:
Formula

a: Maximum number of hash joins in the SELECT statement
For details about the maximum number of hash joins in the SELECT statement,
see the manual HiRDB Version 8 UAP Development Guide.

b: Obtain the hash join processing to be applied on the basis of the number of hash table
rows, and then determine this value from the following table:

Number of hash table rows: For join, it is the inner table count; for subquery, it is the
subquery search count excluding the predicates that contain external reference rows in

a + 128 (bytes)

32-bit mode
a

 (13 1024 + 6 1024 b + c)
i = 1
64-bit mode
a

 (13 1024 + 7 1024 b + c)
i = 1
 (bytes)

Guidelines for the number
of hash table rows

Hash join processing
to be applied

Value of b

1500 or less Batch hash join 0.5

1500 (packet split count 3) or less Packet split
hash join

1-level packet split 1

1500 (packet split count 3)2 or less 2-level packet split 2

Greater than 1500 (packet split count 3)2 3-level packet split 3

16. Storage Requirements for HiRDB

660

the search condition.

Packet split count: MIN { (size of hash table 2) page length of hash table ,
64}
Hash table size: Value of the pd_hash_table_size operand specified in the HiRDB
system definition or the value of the PDHASHTBLSIZE operand specified in the client
environment definition.
Page length of hash table: Select the page length of the hash table corresponding to c
(maximum length of hash table row) from the following table:

c: Maximum length of hash table row
For details about the length of a hash table row, see the manual HiRDB Version 8
UAP Development Guide.

(4) Procedure for obtaining the size of the memory required when the snapshot
method is used

If the pd_pageaccess_mode operand is omitted, or if SNAPSHOT is specified, then
the page access method for data retrieval uses the snapshot method when an SQL
statement for which the snapshot method is applicable is executed. At this time,
memory in the process private area is allocated automatically, as shown below, based
on the page size of the table or index storage RDAREA.
Formula

a: Maximum page length in the RDAREA where the relevant table or index is stored
However, LOB RDAREAs are excluded.

Maximum length of hash
table row

Page length of hash table (bytes)

0 to 1012 4096

1013 to 2036 8192

2037 to 4084 16384

4085 to 16360 32768

16361 to 32720 (maximum length of hash table row + 48) 2048 2048

a 2 (bytes)

16. Storage Requirements for HiRDB

661

(5) Determining the size of the memory required to retrieve the first n records
If the function for retrieving n rows of search results from the top is used, you can
retrieve n rows from the top of the search results (or from the location resulting from
skipping as many rows from the top as specified by the user as an offset).
If the number of rows specified in the LIMIT clause is 1 or greater and the value of
(number of offset rows + number of rows specified in the LIMIT clause) is 32,767 or
less, as many rows are retained in memory as will fit in (number of offset rows +
number of rows specified in the LIMIT clause). The size of the process private area to
be allocated can be determined by the formula shown below. If the value of (number
of offset rows + number of rows specified in the LIMIT clause) is 32,768 or greater,
see 19. Determining Work Table File Size because a work table is created.
Formula

a: Row length
The row length cannot exceed 32,720 bytes. The row length is calculated with the
following formula:

m: Number of rows specified in the selection formula, GROUP BY clause, or ORDER
BY clause

Add 1 if the FOR UPDATE clause is specified. However, if ROW is specified in
the selection formula, this becomes the total number of rows in the table.

Ai: Data length of the ith column of the records stored in the first n records of the
allocation area

For details about column data length, see Table 17-1 List of data lengths, and
determine the length beginning by assigning the defined length to d.
However, for BLOB data, character data with a fixed length of at least 256
bytes (including National character data and mixed character string data), or
BINARY data of columns without the following attributes, the value is 12:

• Columns specified in a selection formula with the DISTINCT clause
specified

{100 + (a + 2) (number of offset rows + number of rows specified in the LIMIT clause)} b
 (bytes)

m

(Ai) + 2 m + 4 + c
i=1
 (bytes)

16. Storage Requirements for HiRDB

662

• A query specification selection formula using a concatenation operation
based on UNION [ALL]

• Columns specified in the ORDER BY clause
Also, if the FOR UPDATE clause is specified and 1 is added for m, use 12 bytes
for Ai.

c: 8
However, in the following cases, use 0:

• There is an exclusive lock in the EX mode on the retrieval table
• WITHOUT LOCK is specified
• The rapid grouping facility is specified
• Multiple tables are combined

b: Number of allocated areas for the first n records
The number of allocated areas for the first n records is calculated with the
following formula:

(6) Determining the size of the memory required for executing SQL statements
specifying an index-type plug-in function as search condition

To determine the size of memory that is allocated in the process private area when an
SQL statement specifying an index-type plug-in function as search condition is
executed, use the following formula:
Formula

a: Row length. To determine the row length, use the following formula:

m: Number of columns specified in the selection formula, join condition, GROUP

1 + number of UNION [ALL] clause specifications

a 500 + (20 + 6) 800 + 16 (bytes)

 m

(Ai) + 4 (m + 2) + 12 + 4 + 8
i=1
 (bytes)

16. Storage Requirements for HiRDB

663

BY clause, or ORDER BY clause
If you specified the FOR UPDATE clause, add 1. If ROW is specified in the
selection formula, the total number of rows in the table is assumed.

Ai: Length of column data i in the row to be retrieved
For details about column data length, see Table 17-1 List of data lengths, and
determine the length beginning by assigning the defined length to d.
A length of 12 bytes is assumed for a column with BLOB data or character
string data with a defined length of 256 bytes or greater (including national
character data and mixed character string data) that is none of the following:

• Column specified in a join condition (join column)
• Column specified in a selection formula specifying the DISTINCT

clause
• Column specified in a selection formula in a subquery of a quantified

predicate
• Column specified in the selection formula in a subquery of IN predicate
• Selection formula in a subquery that is the target of Set Operation due

to UNION [ALL] or EXCEPT [ALL]
• Column specified in an ORDER BY clause

If the FOR UPDATE clause is specified, Ai corresponding to 1 that was added
to m is 12 bytes.

(7) Determining the size of the memory required to use the facility for output of
extended SQL error information

When the facility for output of extended SQL error information is used, a process
private area is allocated in the following cases:

(a) When the OPEN statement is executed
Formula

a: Total data length of ? parameters or embedded variables
m
a= (ai)

32-bit mode
(16 + 16 m) + a
64-bit mode
(24 + 24 m) + a
 (bytes)

16. Storage Requirements for HiRDB

664

i=1
m: Number of ? parameters or embedded variables in the SQL statement

ai: Data length of the ith ? parameter or the embedded variable

Table 16-5 shows the data length of embedded variables and ? parameters.
Table 16-5: Data length of embedded variables and ? parameters

Data type Column length (without
indicator variable)

Column length (with
indicator variable,

embedded variable, and
? parameter)

INTEGER 4 6

SMALLINT 2 4

DECIMAL(p,s) (p + 1) 2 (p + 5) 2

FLOAT 8 10

SMALLFLT 4 6

INTERVAL YEAR TO DAY 5 7

INTERVAL HOUR TO SECOND 4 6

CHAR(n) n n + 2

VARCHAR(n) n + 2 n + 4

NCHAR(n) 2 n 2 n + 2

NVARCHAR(n) 2 n + 2 2 n + 4

MCHAR(n) n n + 4

MVARCHAR(n) n + 2 n + 4

DATE 4 6

TIME 3 5

BLOB(n) n + 4 n + 8

TIMESTAMP(p) 7 + (p 2) 9 + (p 2)

BINARY(n) n + 4 n + 8

16. Storage Requirements for HiRDB

665

(b) When the PREPARE statement of the definition SQL is executed
Formula

16.1.7 Formula for size of memory required during SQL
preprocessing
(1) Size of memory required when no stored procedure is used

If no stored procedure is used, the following formula can be used to obtain the size of
the memory that is allocated during SQL preprocessing (KB).
Formula

Si: Number of items to be retrieved in SQL statements
Pi: Number of embedded variables, ? parameters, or SQL parameters in SQL
statements
Ti: Number of table names in SQL statements
Ci: Number of column names in SQL statements
Wi: Number of predicates used in Boolean operators (AND and OR) in SQL statements
Ki: Number of literals in SQL statements
Li: Total length of literals in SQL statements (bytes)
Di: Total number of storage conditions defined in SQL statements
Ari: Number of arithmetic operations and concatenation operations in SQL statements
Gi: Number of columns specified in GROUP BY clause of SQL statements
Ori: Number of column specification or sort item specification numbers in ORDER BY
clause of SQL statements
Fi: Total number of set functions and scalar functions in SQL statements

SQL statement length + 20
 (bytes)

{
 2586 + Si 60 + Pi 20 + Ti 1424 + Ci Ti 72 + Wi 776 + Ti Wi 72
 + Ki 276 + Ki Ti 72 + Li 3 + Li Ti + Di Ti 134 + Ari 108
 + Gi 44 + Sli 40 + Upi 110
 + Fi 90 + Ti Cwi 48
 + MAX(Pi, Wpi) 60
 } 1.2 1024
 (KB)

16. Storage Requirements for HiRDB

666

Sli: Number of queries specified in SQL statements
Upi: Number of columns to be updated in SQL statements
Cwi: Number of WHENs in CASE expression of SQL statements
Wpi: Number of variables corresponding to WITH clause of SQL statements
Note

If SELECT_APSL is applied, this value is 3; otherwise, it is 1. The access path
display utility (pdvwopt) can be used to determine whether or not SELECT_APSL
is applied. For details about the access path display utility (pdvwopt), see the
manual HiRDB Version 8 Command Reference.

(2) Procedure for obtaining the size of the memory required when using stored
procedures

If stored procedures are used, the size of the memory (in KB) to be allocated during
SQL preprocessing is the value obtained from the formula shown in (1) above plus the
length of the procedure control object for each stored procedure. For details about the
formula for obtaining the length of a procedure control object, see the section on the
pd_sql_object_cache_size operand of the system common definition. For
details about the length of the procedure control object per stored procedure, see
Formula for determining the size of the routine control object of a routine in the
manual HiRDB Version 8 System Definition.

16.1.8 Formula for size of memory required during BLOB data
retrieval or updating (HiRDB/Single Server)

Use the following formula to determine the size of the memory required during BLOB
data retrieval or updating.
Formula

a: Maximum value from the following formula for BLOB input variables or output
variables specified in one SQL statement:

a + b + 17 (KB)

16. Storage Requirements for HiRDB

667

1 This is the actual length of BLOB data passed as embedded variables from the UAP
to the HiRDB server.
2 This is the declared length of the UAP embedded BLOB data type variables received
from the UAP and returned from HiRDB to the UAP. If it is an INSERT or SELECT
statement, the BLOB type reflected from the SELECT side is an output variable.
b: Maximum value from the following formula for a combination of SQL statements
performing join retrieval with simultaneously open cursors:

c: Number of input variables
d: Number of output variables
e: Number of simultaneously open cursors

16.1.9 Formula for size of memory required during block transfer or
array FETCH

To determine the size of the memory required for block transfer or array FETCH, use
the formulas below.

{
 c

(actual length of BLOB input variable i1 + 118) +
i=1
 d

(specified length of BLOB output variable j2 + 86)
j=1

} 1024

{
 e

{
i=1
 d

(defined length of BLOB output variable j + 18)}
j=1

} 1024

16. Storage Requirements for HiRDB

668

Legend:
: Not applicable

Formula 1

a: Number of retrieved items specified in the SELECT clause
b: Data length per row in the retrieval results obtained by the FETCH statement (sum
of the maximum length of each column, in bytes)
c: Value of the PDBLKF operand or number of arrays
d: Number of selection formulas with BINARY type specified in the search item
specified in the SELECT clause
Formula 2

X1: (864 + 22 a + 2 c + b) 1024

X2: Value of the PDBLKBUFFSIZE operand

a: Number of retrieved items specified in the SELECT clause
b: Data length per row in the retrieval results obtained by the FETCH statement (sum
of the length of each column that is actually obtained, in bytes)

Condition Value specified in the PDBLKBUFFSIZE
operand

Omitted or 0 1 or greater

An array-type embedded variable is specified in the INTO
clause of the FETCH statement

Formula 1

An array-type embedded
variable is not specified
in the INTO clause of the
FETCH statement

PDBLKF operand is omitted
or is set to 1

Formula 2

PDBLKF operand is set to 2 or
greater

Formula 1

{864 + 16 a + (6 a + 2 d + b) c} 1024
 (kilobytes)

MAX(X1,X2)
 (kilobytes)

16. Storage Requirements for HiRDB

669

c: Number of selection formulas with BINARY type specified in the search item
specified in the SELECT clause

16. Storage Requirements for HiRDB

670

16.2 Estimating the memory size required for a HiRDB/Parallel
Server

This section explains how to estimate the size of the memory required for each unit
constituting a HiRDB/Parallel Server. The topics covered include:

• Memory allocation
• Calculation of required memory
• Formulas for shared memory used by a unit controller
• Formulas for shared memory used by each server
• Formulas for size of shared memory used by global buffers
• Formulas for size of memory required during SQL execution
• Formula for size of memory required during SQL preprocessing
• Formula for size of memory required during BLOB data retrieval or updating (for

front-end servers)
• Formula for size of memory required during block transfer or array FETCH (for

front-end servers)
• Formula for size of memory required during BLOB data retrieval or updating (for

back-end servers or dictionary servers)

16.2.1 Memory allocation
Figure 16-2 shows the memory allocation for each unit of a HiRDB/Parallel Server.

16. Storage Requirements for HiRDB

671

Figure 16-2: Memory allocation for each unit of a HiRDB/Parallel Server

Table 16-6 provides the details of the shared memories for a unit of a HiRDB/Parallel
Server.

Table 16-6: HiRDB/Parallel Server shared memory details per unit

Item Type of shared memory

Unit
controller

shared
memory

Global buffer
shared memory

Utility
shared

memory

Security
audit

information
buffer shared

memory

Inter-process
memory

communication
shared memory

Purpose System
control

Global buffers Communicatio
n between the
unit controller
and utilities

Security audit
information
buffer

Client-server
inter-process
communication

Processes All HiRDB
processes

Back-end servers,
dictionary servers

Utility
processes

Front-end
servers

Front-end servers,
client processes

16. Storage Requirements for HiRDB

672

Number of
segments

1 • When the global
buffer dynamic
update facility is
not used: 1-16#1

• When the global
buffer dynamic
update facility is
used:
32-bit mode:
1-516#1

64-bit mode:
1-1,016#1

1 1 Number of clients
connected using the
PDIPC=MEMORY
environment
variable (0-2000)

 2

Maximum
value per
segment

See Table
16-7 Size of
memory
required for
each unit of
a HiRDB/
Parallel
Server.
Value of the
shmmax
operating
parameter
must be
equal to or
greater than
the
calculation
value.

Divide the segment
by the SHMMAX
operand value.
Value of the shmmax
operating parameter
must be equal to or
greater than the
SHMMAX operand
value.

See Table 16-7
Size of memory
required for
each unit of a
HiRDB/
Parallel
Server. Value
of the shmmax
operating
parameter must
be equal to or
greater than the
calculation
value.

See Table 16-7
Size of memory
required for
each unit of a
HiRDB/
Parallel Server.
Value of the
shmmax
operating
parameter must
be equal to or
greater than the
calculation
value.

See Table 16-7 Size
of memory required
for each unit of a
HiRDB/Parallel
Server. Value of the
shmmax operating
parameter must be
equal to or greater
than the calculation
value.

Allocation
conditions

None There must be a
global buffer
definition

Specify
pd_utl_exec
_mode=1

Specify the
pd_aud_file_
name operand
as the HiRDB
file system area
name for the
audit trail.

There are clients
connected using the
PDIPC=MEMORY
environment
variable

Item Type of shared memory

Unit
controller

shared
memory

Global buffer
shared memory

Utility
shared

memory

Security
audit

information
buffer shared

memory

Inter-process
memory

communication
shared memory

16. Storage Requirements for HiRDB

673

Creation
timing

At unit
activation
(including
standby unit
activation
when the
rapid system
switchover
facility is
used)

• At server
activation
(including
standby unit
activation when
the rapid system
switchover
facility is used)

• When
pdbufmod -k
{add|upd} is
executed

When utilities
are executed

When a
front-end server
starts up

When client and
server are connected

Deletion
timing

At next unit
activation
(including
standby unit
activation
when the
rapid system
switchover
facility is
used)

• When
pdbufmod -k
del is executed

• For normal
termination or
planned
termination:
When the server
is terminated

• For forced
termination,
abnormal
termination, or
termination of
standby unit
when the rapid
system
switchover
facility is used:
When the unit is
next activated

10 minutes
after the utility
terminates

When a
front-end server
quits

When client and
server are
disconnected

Indication
by pdls
-d mem

Indicated Indicated Indicated Indicated Not indicated

SHM-OWNE
R of pdls
-d mem

MANAGER Server name UTILITY AUDDEF Not indicated

Item Type of shared memory

Unit
controller

shared
memory

Global buffer
shared memory

Utility
shared

memory

Security
audit

information
buffer shared

memory

Inter-process
memory

communication
shared memory

16. Storage Requirements for HiRDB

674

Legend:
: Not applicable.

#1: Number of global buffers allocated per back-end server or dictionary server.
#2: For details, see the manual HiRDB Version 8 System Definition.

16.2.2 Calculation of required memory
The size of the memory required for each unit of a HiRDB/Parallel Server is the sum
of the items listed in Table 16-7.
For details about the value specified in the shmmax operating system parameter (for
Solaris, shmsys:shminfo_shmmax; for Linux, SHMMAX), see 21. Specifying OS
Parameters.

Related
operands

• pd_shmpo
ol_att
ribute

• pd_dic_s
hmpool
_size

• pd_bes_s
hmpool
_size

• pd_dbbuff_attr
ibute

• pd_dbbuff_modi
fy

• pdbuffer
• SHMMAX

• pd_utl_exe
c_mode

• Operands
related to
the security
audit
facility#2

• PDIPC
• PDSENDMEMSIZE
• PDRECVMEMSIZE

Remarks Can be created
only when
pd_utl_exec
_mode=1
(when
pd_utl_exec
_mode=0, the
relevant space
is allocated in
the unit
controller
shared
memory).

Item Type of shared memory

Unit
controller

shared
memory

Global buffer
shared memory

Utility
shared

memory

Security
audit

information
buffer shared

memory

Inter-process
memory

communication
shared memory

16. Storage Requirements for HiRDB

675

Table 16-7: Size of memory required for each unit of a HiRDB/Parallel Server

Item Required memory (KB)

Process
private
area

Process private area used by all unit controller
processes

• 32-bit mode
J + K Number of FESs in unit + L (Number
of BESs in unit + Number of DSs in unit) + {(64
+ 48 (v + 1)) (value of
pd_max_server_process - w) + z} 1024
• 64-bit mode

J + K Number of FESs in unit + L (Number
of BESs in unit + Number of DSs in unit) + {(64
+ 64 (v + 1)) (value of
pd_max_server_process - w) + z} 1024

• If a plug-in is used, add:
 + 1400
• If the asynchronous READ facility is used,

add:
 + s
• If Real Time SAN Replication is used, add:

 + (A + B + C) 1024
• If fixed is specified in the

pd_process_terminator operand, add:
 + M (value of
pd_process_terminator_max - 1)

16. Storage Requirements for HiRDB

676

1 If the unit contains multiple servers (excluding the system manager), obtain the value
for each server.
2 If plug-ins are used, add 300 per process.

Process
private
area used
by each
server
process1, 2

Front-end server (N + h + m + p + q) (b + 3) + 100 + y

Dictionary
server

pd_work_buff
_mode=each
specified

{(P + i + m + r + t) (b + 3)} +
(a + 9) 2 + 100 + y

pd_work_buff
_ mode=pool
specified or
omitted

{(P + i + m + r + t) (b + 3)}
 + a + 9 + a 128 0.1 + 100 + n + y

Back-end
server

pd_work_buff
_ mode=each
specified

{Q + g + (a + 9) c + i + m + r + t}
 (b + 3) + 100 + y

pd_work_buff
_ mode=pool
specified or
omitted

• 32-bit mode
(Q + g + a + 9
 + a 128 0.1 + 11 + i + m + r + t)
 (b + 3) + 100 + n + y
• 64-bit mode

(Q + g + a + 9
 + a 128 0.1 + 15 + i + r + t)
 (b + 3) + 100 + n + y

Shared
memory

Space used by the unit controller in the unit
controller shared memory

d 1024

Space used by each server in the unit
controller shared memory1

e

Global buffer shared memory f

Utility shared memory u

Security audit information buffer shared
memory

 For automatic calculation by the system:

 0.3 + MAX{(R + 100), (R 1.2)} 0.25
 For user-specified values (specify the

pd_audit_def_buffer_size operand):

 0.3 + R 0.25

Inter-process memory communication shared
memory3

j k

Item Required memory (KB)

16. Storage Requirements for HiRDB

677

3 Add this value if you have specified PDIPC=MEMORY in the client environment
definition. For details about the inter-process memory communication facility and
client environment definitions, see the manual HiRDB Version 8 UAP Development
Guide. If either the HiRDB server or the HiRDB client is in 32-bit mode, the system
allocates the shared memory for the inter-process memory communication facility in
the 32-bit address space.
a: Value of pd_work_buff_size operand
b: Value of pd_max_users operand + value of pd_max_reflect_process_count
operand

• For a dictionary server, the value is (value of the pd_max_dic_process
operand + value of the pd_max_reflect_process_count operand).

• For a back-end server, the value is (value of the pd_max_bes_process
operand + value of the pd_max_reflect_process_count operand).

• If the pd_max_dic_process or pd_max_bes_process operand is
omitted, the value is (value of the pd_max_users operand + value of the
pd_max_reflect_process_count operand).

c: Maximum number of work tables
From Table 16-8, obtain the number of work tables per SQL statement. Use the
largest number of work tables obtained from Table 16-8 as the maximum number
of work tables.

d: Value obtained from 16.2.3 Formulas for shared memory used by a unit controller.
e: Value obtained from 16.2.4 Formulas for shared memory used by each server.
f: Value obtained from 16.2.5 Formula for size of shared memory used by global
buffers.
g: Size of memory required during SQL execution

For details about the formula, see 16.2.6 Formulas for size of memory required
during SQL execution.

h: Size of memory required during SQL preprocessing
For details about the formula, see 16.2.7 Formula for size of memory required
during SQL preprocessing.

i: LOB buffer batch input/output work memory
Add 62 KB if LOB global buffer is specified for the LOB RDAREA for the
corresponding server (-b specified in the pdbuffer operand of the system
common definition).

j: Maximum number of concurrently executable clients that use the inter-process

16. Storage Requirements for HiRDB

678

memory communication facility.
If you are not sure about the value, specify the number of all clients that use the
inter-process memory communication facility or the value of the pd_max_users
operand.

k: Average memory size for data transfer performed by all clients that use the
inter-process memory communication facility (value of PDSENDMEMSIZE + value of
PDRECVMEMSIZE in the client environment definition).
m: Memory requirement for a Java virtual machine

If you use Java stored procedures or Java stored functions, add the size of memory
used by the Java virtual machine. This value depends on the Java virtual
machine's options (-Xms, -Xmx, and -Xmn options for Hewlett-Packard JRE
1.2.2.04) and version. For details about the memory requirement for your Java
virtual machine, see the applicable manual. Following are the guidelines for the
memory required for HP-UX:

• Eight MB of memory is required to start a Java virtual machine.
• Add the maximum memory size for the Java virtual machine (value of the

-Xmx option). Note that some Java virtual machines may use more memory
than the size specified in the -Xmx option.

n: Work table extended memory size
When the pd_work_buff_expand_limit operand is specified, add the work
table extended memory size. The work table extended memory size is determined
from the following formula:
Work table extended memory size (kilobytes) = work table extended buffer size
+ (work table extended buffer size 128) 0.1

• Work table extended buffer size (kilobytes) = MAX(0, work table extended
buffer size based on hash join, subquery hash execution) + MAX(0, work
table extended buffer size based on the increase in the number of work
tables)

• Work table extended buffer size based on hash join, subquery hash execution
= MIN{ (work table extended buffer size based on hash join, subquery hash
execution - value of the pd_work_buff_size operand), (value of the
pd_work_buff_expand_limit operand - value of the
pd_work_buff_size operand) } number of concurrently executing
users executing hash join, subquery hash execution
For details about determining the work table extended buffer size when
executing hash joins, subquery hash executions, see the manual HiRDB
Version 8 UAP Development Guide.

16. Storage Requirements for HiRDB

679

• Work table extended buffer size based on the increase in the number of work
tables = MIN{ (number of work tables used 128 - value of the
pd_work_buff_size operand), (value of
pd_work_buff_expand_limit operand - value of
pd_work_buff_size operand) } (number of users such that the number
of work tables is greater than the value of the pd_work_buff_size
operand 128)
Number of work tables used = MAX(number of work table files used per
SQL statement, number of work table files used by the ASSIGN LIST
statement)
For details about determining the number of work table files used per SQL
statement and the number of work table files used by the ASSIGN LIST
statement, see 19.3 Determining the maximum number of files (pdfmkfs -l
command).

p: Memory requirements required for BLOB data type
For details about the formula, see 16.2.8 Formula for size of memory required
during BLOB data retrieval or updating (front-end server).

q: Memory requirements required for server-side block transfer or array FETCH
For details about the formula, see 16.2.10 Formula for size of memory required
during block transfer or array FETCH (front-end server).

r: Memory requirements required for BLOB data type
For details about the formula, see 16.2.9 Formula for size of memory required
during BLOB data retrieval or updating (back-end server or dictionary server).

s: Memory size used by asynchronous READ
This is applicable when the asynchronous READ facility is used; use the following
formula (in kilobytes) for the calculation:

For the memory used by the RDAREA for management of the HiRDB file system
area, use the largest 90 areas in descending order of the values. If the number of
areas used by the server is fewer than 90, assume that amount anyway.
The memory used by the RDAREA for management of the HiRDB file system
area (in kilobytes) is calculated from the following formula based on the initial
settings:

(90 +
90

 Memory used by the RDAREA for management of the HiRDB file system area)
i=1

value of pd_max_ard_process

16. Storage Requirements for HiRDB

680

1 Value specified by pdfmkfs -l.
2 Value specified by pdfmkfs -e.
3 Multiply when the area size (value specified in pdfmkfs -n) is at least 2048.

t: HiRDB file system memory size
Determine with the following formula (in kilobytes):

The memory used by the HiRDB file system area for management of work tables
and system logs uses the maximum value calculated for the memory used by the
HiRDB file system area for management used by the server. For RDAREAs, use
the largest 90 areas in descending order of the values. If the number of areas used
by the server is fewer than 90, use as many areas as are used for the calculation.
The memory used by the RDAREA for management of the HiRDB file system
area (in kilobytes) is calculated with the following formula based on the initial
settings:

1 Value specified by pdfmkfs -l.
2 Value specified by pdfmkfs -e.
3 Multiply when the area size (value specified in pdfmkfs -n) is at least 2048.

u: When value of pd_utl_exec_mode is 0: 0

When value of pd_utl_exec_mode is 1: {(b 2000 + 136) 1024} 1024
v: Value of pd_module_trace_max that is valid as the unit control information
definition
w: Sum of (maximum number of processes that can be started + 3) for all server
processes in the unit

For details about the maximum number of processes that can be started, see the
manual HiRDB Version 8 System Definition.

{(Number of files1 + number of extensions2) 64} 1.53

347 + Memory used by the work tables for management of the HiRDB file system area + Memory used by the
system logs for management of the HiRDB file system area +
90

 memory used by the RDAREA for management of the HiRDB file system area
i=1

{(Number of files1 + number of extensions2) 64} 1.53

16. Storage Requirements for HiRDB

681

y: Sum of the values obtained by the following formula for each server process in the
unit:

In the 32-bit mode:

{(64 + 48 (value of pd_module_trace_max + 1)) (maximum number
of processes that can be started + 3)} 1024
In the 64-bit mode:

{(64 + 64 (value of pd_module_trace_max + 1)) (maximum number
of processes that can be started + 3)} 1024
For details about the maximum number of processes that can be started, see the
manual HiRDB Version 8 System Definition.

z: Memory size for restarting HiRDB
If this memory size cannot be allocated, HiRDB restart fails. Use the following
formula to determine the size (in bytes):

Use the following variables for the formula to calculate the size of memory used
by HiRDB to restart:

(D + E + F) number of dictionary servers + (D + E + F + G) number of back-end servers + H

Variable Value

D • 32-bit mode
291722 + 4 value of pd_max_rdarea_no
 + {48 (value of pd_max_rdarea_no + number of tables) + 304} (value of pd_max_users

 2 + 7)
• 64-bit mode

370682 + 8 value of pd_max_rdarea_no
 + {64 (value of pd_max_rdarea_no + number of tables) + 512} (value of pd_max_users

 2 + 7)

Number of tables: Number of data dictionary tables + MAX {value of pd_max_access_tables,
500}

16. Storage Requirements for HiRDB

682

E b1 X + b2 Y

b1: When the record length of the server status file < 4096

 MAX(((3400 ((((record length - 40) - 308) 20)

 + ((record length - 40) 20) (MAX(4096 record length ,2) - 1))

 + 0.7)),1) MAX(4096 record length ,2) (record length - 40)
 When 4096 record length of server status file < 12288

 MAX((3400 ((((record length - 40) - 308) 20)) + 0.7) ,1)
 (record length - 40)
 When 12288 record length of server status file

 MAX((3400 ((((record length - 40) - 836) 20)) + 0.7) ,1)
 (record length - 40)
X: When the number of RDAREAS in server 3400: 1
 When 3401 number of RDAREAS in server 6800: 2
 When 6801 number of RDAREAS in server: 3
b2: When the record length of the status file for server < 4096

 ((5662310 ((((record length - 40) - 308) 20)

 + ((record length - 40) 20) (MAX(4096 record length ,2) - 1))

 + 0.7)) MAX(4096 record length ,2) (record length - 40)
 When 4096 record length of server status file < 12288

 (5662310 ((((record length - 40) - 308) 20)) + 0.7)
 (record length - 40)
 When 12288 record length of server status file

 (5662310 ((((record length - 40) - 836) 20)) + 0.7)
 (record length - 40)
Y: When the number of RDAREAS in server 10200: 0
 When 10201 number of RDAREAS in server 5672510: 1
 When 5672511 number of RDAREAS in server 11334820: 2
 When 11334821 number of RDAREAS in server: 3

F If commit is specified in the pd_dbsync_point operand, add:
 + 112 (value of pd_max_users 2 + 7)

G If 1 or a greater value is specified in the pd_inner_replica_control operand, add:
• 32-bit mode

(48 value of pd_inner_replica_control + 80) (value of pd_max_users 2 + 7)
• 64-bit mode

(64 value of pd_inner_replica_control + 160) (value of pd_max_users 2 + 7)

Variable Value

16. Storage Requirements for HiRDB

683

A: 425 (2 b + 7) Number of FESs in unit
B: 425 (2 b + 7) Number of DSs in unit
C: 425 (2 b + 7) Number of BESs in unit
J, K, L, M, N, P, Q: Fixed value

These values depend on the OS being used. The following table presents the
values for each OS (in kilobytes):

H For a back-end server, if the number of RDAREA storage areas created in a character special file is
1001 or greater in the server, add:
• 32-bit mode

12012 ((number of RDAREA storage areas created in a character special file - 1000)
1000)
• 64-bit mode

16016 ((number of RDAREA storage areas created in a character special file - 1000)
1000)

OS Value of
J

Value
of K

Value
of L

Value
of M

Value
of N

Value
of P

Value
of Q

HP-UX (32-bit mode) 74,300 9,300 12,10
0

2,700 4,100 3,500 4,200

HP-UX (32-bit-mode POSIX
library version)

120,700 9,700 12,30
0

2,800 4,200 3,600 4,300

HP-UX (64-bit mode) 75,800 10,200 13,00
0

2,800 4,400 3,900 5,400

HP-UX (IPF) 154,300 10,300 13,10
0

2,700 4,700 5,300 7,400

AIX 5L (32-bit mode) 64,200 8,500 10,80
0

2,200 4,800 4,300 5,100

AIX 5L (32-bit-mode POSIX
library version)

116,900 16,700 19,20
0

5,000 7,600 7,400 8,300

AIX 5L (64-bit mode) 72,100 10,300 13,20
0

2,800 6,300 5,700 7,300

Solaris (32-bit mode) 69,600 6,000 7,500 1,400 2,600 2,100 4,100

Solaris (32-bit-mode POSIX
library version)

117,800 6,700 6,100 1,600 2,800 2,300 4,200

Solaris (64-bit mode) 80,100 7,500 9,500 1,900 3,300 2,700 6,100

Variable Value

16. Storage Requirements for HiRDB

684

R: The number of objects specified in a narrowed search using the security audit
facility audit trail

Table 16-8: Procedure for obtaining the number of work tables for each SQL
statement

Linux (32-bit mode) 84,400 11,500 15,00
0

3,300 4,400 3,900 3,800

Linux (IPF) 151,600 151,600 20,50
0

4,700 6,300 6,800 7,300

Linux (EM64T) 121,100 26,300 35,20
0

7,600 11,100 12,900 12,500

SQL statement Procedure for obtaining the number of work tables

SELECT statement
INSERT(-SELECT)
statement

When none of 1-8 as follows are applicable: 0
When any of 1-8 as follows are applicable: Sum of the applicable values from 1-8
1. When multiple tables are joined for retrieval

Number of additional work tables = (Number of joined tables - 1) 2 + 1
2. When specifying the ORDER BY clause

Number of additional work tables = 2
3. When specifying the GROUP BY clause

Number of additional work tables = Number of GROUP BY clauses specified
4. When specifying the DISTINCT clause

Number of additional work tables = Number of DISTINCT clauses specified
5. When specifying the UNION, UNION ALL, or EXCEPT[ALL] clause

Number of additional work tables = (Number of UNION or UNION ALL clauses
specified) 2 + 1

6. When search condition contains columns with index defined
Number of additional work tables = Number of columns with index defined in
the search condition

7. When specifying the FOR UPDATE or FOR READ ONLY clause
Number of additional work tables = 1

8. When specifying a subquery (quantified predicate)
Number of additional work tables = Number of subqueries specified

UPDATE statement
DELETE statement

Number of columns with index defined in the search condition + 1

DROP SCHEMA statement
DROP TABLE statement
DROP INDEX statement
CREATE INDEX statement
REVOKE statement to
revoke access privilege

2

OS Value of
J

Value
of K

Value
of L

Value
of M

Value
of N

Value
of P

Value
of Q

16. Storage Requirements for HiRDB

685

16.2.3 Formulas for shared memory used by a unit controller
(1) 32-bit mode HiRDB

The size of memory required for the unit controller in each server machine from startup
to termination of the unit is the sum of the items listed as follows:
Ensure that the size of the shared memory within the entire controller does not exceed
2 gigabytes.

16. Storage Requirements for HiRDB

686

Process item Shared memory calculation formula (bytes)

Scheduler Value of pd_utl_exec_mode set to 0:
 { (432 + 304 n) 1024 + 289 + x + z} 1024

Value of pd_utl_exec_mode set to 1:
 { (432 + 304 n) 1024 + (s 2000 + 136) 1024 + y + z}
1024

x: Unit contains MGR: 37
Unit contains FES: 57 + 1 (s + 3) + 14
Unit contains DS: 102 + 5 (t + 3) + 14
Unit contains BES: {a + 9 (u + 3) + 14} (number of BESs + +)

y: Unit contains MGR: 0
Unit contains FES: 1 (s + 3) + 14
Unit contains DS: 5 (t + 3) + 14
Unit contains BES: {9 (u + 3) + 14} (number of BESs + +)

z: Unit subject to standby-less system switchover (effects distributed):
64 + {(Number of BESs in unit + number of acceptable BESs) 48} 1024

Other unit: 0
n: Number of servers in unit + + + number of utility servers in unit + 1

: If the unit controller has a MGR: 2
 If the unit controller contains a FES: 3
 If the unit controller contains a DS: 7
 If the unit controller contains BESs: (number of BESs +) b
b: For HP-UX, Solaris, and AIX 5L: 15
 For Linux: 6

a: For HP-UX, Solaris, and AIX 5L: 192
For Linux: 111

s: Value of pd_max_users + value of pd_max_reflect_process_count
t: Value of pd_max_dic_process + value of pd_max_reflect_process_count
u: Value of pd_max_bes_process + value of pd_max_reflect_process_count

: Unit subject to standby-less system switchover (effects distributed):
Number of acceptable BESs
Other unit: 0

:Unit subject to standby-less system switchover (1:1):
Number of alternate BESs
Other unit: 0

16. Storage Requirements for HiRDB

687

Lock server • When there is a server (FES, BES, or DS) in the unit:
For the values of the operands that are used for each server to determine the value for guest
BESs in the unit subject to standby-less system switchover (effects distributed) (such as
pd_lck_pool_size, pd_lck_hash_entry, and pd_max_bes_process), use the
maximum value among those specified for all guest BESs in that unit, not the operand
values for a particular guest BES. In the unit that is subject to standby-less system
switchover (effects distributed), servers in the unit means all host BESs + all guest BESs.
In a unit subject to standby-less system switchover (1:1), servers in the unit means all
accepted BESs + all alternate BESs.

 y
{

x=1
 192 + 48 + cx + dx + 48 + 4096 + gx + 48 + ix
 + 48 + 12252 + 48 + nx + px + tx + ux + 16
 }

x: Server serial number in the unit
y: Number of servers in the unit

cx: When pd_lck_hash_entry is omitted or 0 is specified:
 For FES with pd_fes_lck_pool_size omitted:

 ((8 + 4 MAX((p + 3) (value of pd_max_access_tables + 4)

 10 ,11261)) 16 + 1) 16
 For FES with pd_fes_lck_pool_size specified:

 ((8 + 4 MAX((value of pd_fes_lck_pool_size 6) 10 ,11261))

 16 + 1) 16
 For BES or DS:

 ((8 + 4 MAX(((p + 3) 2 5 + value of pd_lck_pool_size 6)

 10 ,11261)) 16 + 1) 16
 When 2 or a greater non-prime number is specified for pd_lck_hash_entry:

 ((8 + 4 largest prime number that is less than the value of pd_lck_hash_entry)
 16 + 1)

 16
 When 1 or a prime number is specified for pd_lck_hash_entry:

 ((8 + 4 value of pd_lck_hash_entry) 16 + 1) 16

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

688

dx: For FES with pd_fes_lck_pool_size omitted:
 ((p + 3) (value of pd_max_access_tables + 4)) 96
 For FES with pd_fes_lck_pool_size specified:
 Value of pd_fes_lck_pool_size 6 96
 For BES or DS:
 ((p + 3) 2 5 + value of pd_lck_pool_size 6) 96
gx: For FES:
 (p + 3) 2 256
 For BES with the value of pd_utl_exec_mode = 1 and s > 32:
 ((p + 3) 2 + s) 256
 For BES with the value of pd_utl_exec_mode = 0 or s 32:
 ((p + 3) 2 + 32) 256
 For DS with the value of pd_utl_exec_mode == 1 and s > 16:
 ((p + 3) 2 + s) 256
 For DS with the value of pd_utl_exec_mode = 0 or s 16:
 ((p + 3) 2 + 16) 256

ix: For FES with pd_fes_lck_pool_size omitted:
 ((p + 3) (value of pd_max_access_tables + 4)) 2 64
 For FES with pd_fes_lck_pool_size specified:
 (value of pd_fes_lck_pool_size 8) rounded up to the next even value 64
 For BES with the value of pd_utl_exec_mode = 1 and s > 32:
 (value of pd_lck_pool_size 8 + (p + 3) 2 2 5 + s
 (value of pd_max_rdarea_no + 1))
 rounded up to the next even value 64
 For BES with the value of pd_utl_exec_mode = 0 or s 32:
 (value of pd_lck_pool_size 8 + (p + 3) 2 2 5 + 32
 (value of pd_max_rdarea_no + 1))
 rounded up to the next even value 64
 For DS with the value of pd_utl_exec_mode = 1 and s > 16:
 (value of pd_lck_pool_size 8 + (p + 3) 2 2 5 + s + 4)
 rounded up to the next even value 64
 For DS with the value of pd_utl_exec_mode = 0 or s 16:
 (value of pd_lck_pool_size 8 + (p + 3) 2 2 5 + 20)
 rounded up to the next even value 64

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

689

nx: For FES:
 (p + 3) 2 48
 For BES with the value of pd_utl_exec_mode = 1 and s > 32:
 ((p + 3) 2 17 + s) 48
 For BES with the value of pd_utl_exec_mode = 0 or s 32:
 ((p + 3) 2 17 + 32) 48
 For DS with the value of pd_utl_exec_mode = 1 and s > 16:
 ((p + 3) 2 17 + s) 48
 For DS with the value of pd_utl_exec_mode = 0 or s 16:
 ((p + 3) 2 17 + 16) 48
px: For FES with the number of FESs in the HiRDB system > 1: s + 1
 For FES with the number of FESs in the HiRDB system = 1: s
 For BES with s > value of pd_max_bes_process: s
 For BES with s value of pd_max_bes_process: Value of pd_max_bes_process
 For DS with s > value of pd_max_dic_process: s
 For DS with s value of pd_max_dic_process: Value of pd_max_dic_process
s: value of pd_max_users + value of pd_max_reflect_process_count
tx: For FES:

 32 + (p + 3) 2 value of pd_max_open_holdable_cursors 16 4
 For BES with the value of pd_utl_exec_mode = 1 and s > 32:
 32 + ((p + 3) 2 + s) value of pd_max_open_holdable_cursors 16

 4
 For BES with the value of pd_utl_exec_mode = 0 or s 32:
 32 + ((p + 3) 2 + 32) value of pd_max_open_holdable_cursors 16

 4

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

690

 For DS with the value of pd_utl_exec_mode = 1 and s > 16:
 32 + ((p + 3) 2 + s) value of pd_max_open_holdable_cursors 16

 4
 For DS with the value of pd_utl_exec_mode = 0 or s 16:
 32 + ((p + 3) 2 + 16) value of pd_max_open_holdable_cursors 16

 4
ux: For FES with pd_fes_lck_pool_size omitted:
 32 + ((p + 3) (value of pd_max_access_tables + 4)) 2
 value of pd_max_open_holdable_cursors 16 4
 For FES with pd_fes_lck_pool_size specified:
 32 + (value of pd_fes_lck_pool_size 8) rounded up to the next even value
 value of pd_max_open_holdable_cursors 16 4
 For BES with the value of pd_utl_exec_mode = 1 and s > 32:
 32 + (value of pd_lck_pool_size 8 + (p + 3) 2 2 5
 + s (value of pd_max_rdarea_no + 1))
 rounded up to the next even value value of pd_max_open_holdable_cursors

 16 4
 For BES with the value of pd_utl_exec_mode = 0 or s 32:
 32 + (value of pd_lck_pool_size 8 + (p + 3) 2 2 5
 + 32 (value of pd_max_rdarea_no + 1)) rounded up to the next even value
 value of pd_max_open_holdable_cursors 16 4
 For DS with the value of pd_utl_exec_mode = 1 and s > 16:
 32 + (value of pd_lck_pool_size 8 + (p + 3) 2 2 5 + s + 4)
 rounded up to the next even value value of pd_max_open_holdable_cursors

 16 4
 For DS with the value of pd_utl_exec_mode = 0 or s 16:
 32 + (value of pd_lck_pool_size 8 + (p + 3) 2 2 5 + 20)
 rounded up to the next even value value of pd_max_open_holdable_cursors

 16 4

• When there is no server (FES, BES, or DS) in the unit

8416

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

691

Transaction manager 288 + 32 B + 192 s 2
If the unit contains FES, add the following value:*

 + 1028 + (420 + 528 + 256 + 384 2) (A 2 + 7) + 256 2
 + 128 (number of BESs in the system 4 + number of DSs in the system 2
 + number of FESs in the system) (A 2 + 7)
 + C

If the unit contains BES, add the following value:*

 + 1028 + (420 + 528 + 256 + 384 2)
 (u 2 + 7) + 256 2

 + 128 (number of BESs in the system 4 + number of DSs in the system 2
 + number of FESs in the system) (A 2 + 7)
 + D

If the unit contains DS, add the following value:*

 + 1028 + (420 + 528 + 256 + 384 2)
 (t 2 + 7) + 256 2

 + 128 (number of BESs in the system 4 + number of DSs in the system 2
 + number of FESs in the system) (A 2 + 7)
 + E

s: Value of pd_max_users + value of pd_max_reflect_process_count
t: Value of pd_max_dic_process + value of pd_max_reflect_process_count
u: Value of pd_max_bes_process + value of pd_max_reflect_process_count
A: For a multi-FES system: s + 1
 If not a multi-FES system: s
B: Unit subject to standby-less system switchover (effects distributed):
 Number of host BESs + pd_ha_max_act_guest_servers operand correction value
 Other unit: Number of servers in the unit
C: If the unit meets one condition in Conditions below:
 128 (number of BESs in the system 4 + number of DSs in system 2
 + number of FESs in the system) (A 2 + 7)
 If the unit does not match both of the conditions in Conditions below: 0
D: If the unit meets one condition in Conditions below:
 128 (number of BESs in the system 4 + number of DSs in the system 2
 + number of FESs in the system) (u 2 + 7)

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

692

 If the unit does not meet both conditions in Conditions below: 0
E: If the unit meets one condition in Conditions below:
 128 (number of BESs in the system 4 + number of DSs in the system 2
 + number of FESs in the system) (t 2 + 7)
 If the unit does not meet both conditions in Conditions below: 0
Conditions
• uap is specified in the pd_rpl_reflect_mode operand.
• The pdstart -k stls operand is specified for a front-end server in the system.

* Add the value obtained from the above formula as many times as the value of B.
For units subject to standby-less system switchover (1:1):

Number of accepted BESs + Number of alternate BESs
Other than the above, the number of the servers in the unit.

Timer server 32 (value of pd_max_users + value of pd_max_reflect_process_count + 3)
 (number of BESs in system + 1 + number of utility servers in unit + 1)

 + 1440

Number of utility servers in unit is 23 +
: When there is MGR in the unit: 2

 When there is FES in the unit: 3
 When there is DS in the unit: 7
 When there is BES in the unit: Number of BESs b
b: For HP-UX, Solaris, and AIX 5L: 15
 For Linux: 6

Statistics log server 384 + 128 16 + 32 + 288 2 + 1024 + 128 3
 + value of pd_stj_buff_size 1024 3 + 64 + 4096 + 8192

Process server 160 + 512 MAX(c,256) + 80 + 256 + (value of pd_max_server_process + 50)
(256 + 144) + 16 + 1 34 + 16

c: (45 + d + e + f + (g number of BESs in the unit*) + h + i) 16 16
d: If the unit contains MGR, 46; if not, j.
e: If the unit contains DS, 15; if not, 0.
f: If the unit contains FES, 9; if not, 0.
g: If the unit contains BES, 24; if not, 0.
h: If the standby-less system switchover (1:1) facility is used, 9; if not, 0.
i: If the unit is subject to standby-less system switchover (effects distributed), 1; if not, 0.
j: If manager is specified in the pd_mlg_msg_log_unit operand, 1; if local is
specified, 2.
* If the unit is subject to standby-less system switchover (1:1), the value is (number of
BESs 2). If the unit is subject to standby-less system switchover (effects distributed),
the value includes the pd_ha_max_act_guest_servers operand correction value.

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

693

System manager 640 + (44 + 4) (g + h + i) + (100 + 4) {(p + q + 2) + u (15 + 1)} + (92 + 4)
c + 40 (k + m + n o + u) 14 + 256 m + 128 c + 36 d + 12 e + 96
o + v (16 34 (k + u) + 15 + 36 z + 15) + w (48 + 15 + 4 z + 15 + 4
y + 15) + v (132 + 15) + 8 + 5844 + s + s o + 16 + 96 o + 1024

c: Number of units
d: Number of -c options specified in pdunit operand
e: Number of pdcltgrp operands specified
g: Number of FESs in the system
h: Number of BESs in the system
i: Number of DSs in the system
j: Number of FESs in unit
k: Number of BESs in unit
m: Number of DSs in the unit
n: Number of alternate BESs in the unit
o: If the unit is subject to standby-less system switchover (1:1), 1; if not 0
p: i + k + m + n
q: 24 + t + j 3 + k 15 + m 7
r: 14 (k + m + u) + p + q + u 15 + 2 + 38 + 4 + p 4
s: 212 + 2052 + 128 (r + 3) + v (40 (k + u) + 72 (k + u))
t: If the unit contains MGR, 2; if not, 0
u: Number of acceptable BESs (value of the pd_ha_max_act_guest_servers
operand)
v: If the unit is subject to standby-less system switchover (effects distributed), 1; if not, 0
w: If there is a unit that is subject to standby-less system switchover (effects distributed),
1; if not, 0
y: Number of units in the HA group
z: Number of servers in the HA group

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

694

Name server X + Y + 1024 + Z

X: MAX(65536,{ ((4096 + 5808 + (total number of nodes in the system 72) + a + b)

 1024) + 2} 1024)

Y: MAX(16384,{ (c + d + e) 1024 + 5} 1024)
Z: (total number of BESs in the unit + j + g + k) 1024
a: When the unit contains MGR: 1056
 When the unit contains no MGR: 0
b: (total number of BESs in the unit + j + g + k) 528
c: When the unit contains MGR:
 {(total number of units in the system - 1) + (total number of units in the system - 1)
 15} 244,
 When the unit contains no MGR: 488
d: When the unit contains FES:
 (number of BESs in other units + number of DSs in other units) 244,
 When the unit contains no FES: 0
e: When the unit contains BES and DS:
 Number of BESs in other units 244
 When the unit does not contain BES nor DS: 0
f: When the unit contains FES: 3
 When the unit contains no FES: 0
g: 24 + f + h + i
h: When the unit contains DS: 7
 When the unit contains no DS: 0
i: When the unit contains BES: 6 (total number of BESs in the unit + j)
 When the unit contains no BES: 0
j: Unit subject to standby-less system switchover (effects distributed):
 Number of acceptable BESs
 Other unit: 0
k: Unit subject to standby-less system switchover (1:1):
 Number of alternate BESs
 Other unit: 0

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

695

Node manager Unit contains MGR:
 (1152 + 416 total number of units in the system + 80 total number of servers in
the system
 + 1536 + 928 + 56 C + 240 A + 44 A + 28 A
 + 16 B + 16 total number of BESs in the system + 8 total number of units in
the system + 32)
 1024 1024
Unit contains no MGR:
 (928 + 56 C + 240 A + 44 A + 28 A
 + 16 B + 16 total number of BESs in the system + 8 total number of units in
the system + 32)
 1024 1024

A: Value of pd_utl_exec_mode = 0: 1024
Value of pd_utl_exec_mode = 1: value of pd_max_users total number of BESs
in system 3
If the unit contains MGR, add: Value of pd_max_users 4 + 200
If the unit contains DS, add: Value of pd_max_users 3 + 200
If the unit contains BESs, add: Value of pd_max_users D
If the value of A obtained from the previous formula is not greater than 1024, use
1024.

B: pdcltgrp operand not specified: 0
pdcltgrp operand specified: Number of pdcltgrp operands specified + 1

C: Number of servers in the unit + E
D: Number of BESs in unit + E
E: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the
unit

Unit subject to standby-less system switchover (effects distributed): Number of
acceptable BESs
Other unit: 0

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

696

I/O server (28 + ((32 + A) 32 32)) 128 128
When the unit is not subject to standby-less system switchover (effects distributed):
A:When pd_large_file_use=N is specified (or omitted)

3248 + (14 + 16) 808 + 1 272 + (534 272)1

 + {(534 272 + 16 272 + value of pd_max_file_no 808) number of
BESs}2

 + {534 272 + 16 272 + value of pd_max_file_no 808}3

 When pd_large_file_use=Y is specified:
3248 + (14 + 16) 972 + 1 276 + (534 276)1

 + {(534 276 + 16 276 + value of pd_max_file_no 972) number of
BESs}2

 + {534 276 + 16 276 + value of pd_max_file_no 972}3

1 Add this value if there are FESs.
2 Add this value if there are BESs.
3 Add this value if there are DSs.
In a unit subject to standby-less system switchover (1:1), double the value obtained in the
above formula.
When the unit is subject to standby-less system switchover (effects distributed):
A:When pd_large_file_use=N is specified (or omitted)

48 + 24 number of BESs4 16 16
 + (3248 + 16 808 + 534 272 + 16 272 + value of pd_max_file_no
808) 16 16 number of BESs4

 + (3248 + (14 + 16) 808 + 1 272) 16 16
 When pd_large_file_use=Y is specified

48 + 24 number of BESs4 16 16
 + (3248 + 16 972 + 534 276 + 16 276 value of pd_max_file_no
972) 16 16 number of BESs4

 + (3248 + (14 + 16) 972 + 1 276) 16 16

4 Includes the value of pd_ha_max_act_guest_servers.

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

697

Log server 32 + 48 + 128 37
 + {

384 + 128 7 + 1024 + 512
 + (128 + 256 + 160 + 8 + 64) value of pd_log_rec_leng*

 value of pd_log_rec_leng*

 + 64 + 4096 2 + (256 + 480) B
 + {(512 + 256) + 128 B + 256 B} (8192 - 128) 8192
 + 128 value of pd_log_write_buff_count*

 + (value of pd_log_write_buff_count* + A)
 {value of pd_log_max_data_size* + (68 + 44 + 96 + 160)} 4096
 4096 + C

 } number of servers in the unit + D + 128 number of FESs in the unit
Add this if the pd_max_reflect_process_count operand is specified.
(128 + 704) (number of BESs in the unit + D)

A: 16
B: Number of pdlogadfg -d sys operands specified*

C: 0
D: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the
unit
 Unit subject to standby-less system switchover (effects distributed):
 pd_ha_max_act_guest_servers operand correction value
* Of the values specified for all servers in the unit, specify the maximum value. If the unit
is subject to standby-less system switchover (1:1), specify the maximum value of all the
values specified for all servers and the alternate BESs in the unit.
If the unit is subject to standby-less system switchover (effects distributed), specify the
maximum value of all the values specified for all servers in the unit and all BESs in the
HA group.

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

698

Synchronization
point dump server

{
 (368 + 1456 2) 1024 1024

 + {(96 + 80 + 208 + 208) + 192 (number of pdlogadfg -d spd operands
specified*)
 + 416 (number of pdlogadpf -d spd operands specified*) + 1023} 1024

 1024
 } (total number of servers + A)
A: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the
unit
 Unit subject to standby-less system switchover (effects distributed):
 pd_ha_max_act_guest_servers operand correction value
* Of the values specified for all servers in the unit, specify the maximum value. If the unit
is subject to standby-less system switchover (1:1), specify the maximum value of all the
values specified for all servers and the alternate BESs in the unit.
If the unit is subject to standby-less system switchover (effects distributed), specify the
maximum value of all the values specified for all servers in the unit and all BESs in the
HA group.

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

699

Common to all units a + {b + 64 + (s + 3) c + 64 + 48 + d + e}
 (total number of FESs, BESs, and DSs in unit + i)

 + (g (total number of BESs and DSs in unit + i)) + f
 + (value of pd_max_server_process + 100) (48 + 16) + 32
 + (value of pd_max_server_process + 100 + 384) 32 + 32 + h
 + (value of pd_max_server_process + 127) 32 + 32
If the standby-less system switchover (effects distributed) facility is used, add:
((28 + ((56 + 72584) 32 32)) 128 128)

a: 28864
b: 2988
c: 1956
d: 32 32
e: 64 + 64 {(s + 3) 2

 + MAX(5, (s + 3) 10) + 7}
f: 512 (13 + total number of FESs, BESs, and DSs in unit 3) 2
g: {(96 + value of pd_lck_until_disconnect_cnt 112 + 4095) 4096} 4096

 2
h: (number of port numbers specified with pd_registered_port 16 + 32 + 1023)

 1024 1024
If pd_registered_port is omitted: 0

i: Unit subject to standby-less system switchover (1:1): Number of alternate BESs
 Unit subject to standby-less system switchover (effects distributed):
pd_ha_max_guest_servers operand correction value
s: Value of pd_max_users + value of pd_max_reflect_process_count
t: Value of pd_max_dic_process + value of pd_max_reflect_process_count
u: Value of pd_max_bes_process + value of pd_max_reflect_process_count
s is t for a DS and u for a BES. If pd_max_dic_process or pd_max_bes_process is
omitted, use s.

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

700

Transaction log
server

{1024 + 512 A} (number of servers in unit + H)
 + {

128 B + 128
 + [F + 256 value of pd_log_rec_leng* value of pd_log_rec_leng*

 + (value of pd_log_max_data_size* + 68 + 44 + 96 + 160)
 value of pd_log_rec_leng* value of pd_log_rec_leng*]
 D 2 + E + (48 + 8) B 2

 } (number of BESs and DSs in unit + H)
 + {

584 B + 128 B + 64 B C + 128 + F
 + 512 value of pd_log_rec_leng* value of pd_log_rec_leng*

 + (value of pd_log_max_data_size* + 68 + 44 + 96 + 160)
 value of pd_log_rec_leng* value of pd_log_rec_leng

 + E + (48 + 8) (B 2 + 2)
 } (number of servers in unit + H)

A: 2
B: 7 + J 2
C: Number of BESs in the entire system 4 + number of DSs in the entire system 2
+ number of FESs in the entire system
D: Number of servers in unit
E: 0
F: 60
H: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the
unit
 Unit subject to standby-less system switchover (effects distributed):
 pd_ha_max_act_guest_servers operand correction value
J: Maximum value of s, t, and u in the servers in the unit
s: Value of pd_max_users + value of pd_max_reflect_process_count
t: Value of pd_max_dic_process + value of pd_max_reflect_process_count
u: Value of pd_max_bes_process + value of pd_max_reflect_process_count
* Of the values specified for all servers in the unit, specify the maximum value. If the unit
is subject to standby-less system switchover (1:1), specify the maximum value of all the
values specified for all servers and the alternate BESs in the unit.
If the unit is subject to standby-less system switchover (effects distributed), specify the
maximum value of all the values specified for all servers in the unit and all BESs in the
HA group.

Status server 64 32 32 (number of servers in unit + A)
A: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the
unit
 Unit subject to standby-less system switchover (effects distributed):
 pd_ha_max_act_guest_servers operand correction value

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

701

Explanation:
MGR: System manager
FES: Front-end server
DS: Dictionary server
BES: Back-end server

(2) 64-bit mode
The size of memory required for the unit controller in each server machine from startup
to termination of the unit is the sum of the following items:

Security audit A 1024 1024
A: 560 if the pd_aud_file_name operand is omitted
 456 + (304 200) + B if the pd_aud_file_name operand is specified
B: 0 if the pd_aud_async_buff_size operand value is 0
 The following value if the pd_aud_async_buff_size operand value is 4096 or
greater:
 For Linux:
 (160 value of pd_aud_async_buff_count operand)
 +{(value of pd_aud_async_buff_size operand 4096 4096)
 value of pd_aud_async_buff_count operand} + 4096
 For a system other then Linux:
 (160 value of pd_aud_async_buff_count operand)
 +{(value of pd_aud_async_buff_size operand 4096 4096)
 value of pd_aud_async_buff_count operand}
If the unit uses the standby-less system switchover facility, the size of memory required
for security audit at the target unit must be added to the size of memory for the local unit.

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

702

Process item Shared memory calculation formula (bytes)

Scheduler Value of pd_utl_exec_mode set to 0:
 { (432 + 304 n) 1024 + 289 + x + z} 1024Value of pd_utl_exec_mode
set to 1:
 { (432 + 304 n) 1024 + (s 2000 + 136) 1024 + y + z} 1024

x: Unit contains MGR: 37
Unit contains FES: 57 + 1 (s + 3) + 14
Unit contains DS: 102 + 5 (t + 3) + 14
Unit contains BES: {a + 9 (u + 3) + 14} (number of BESs + +)

y: Unit contains MGR: 0
Unit contains FES: 1 (s + 3) + 14
Unit contains DS: 5 (t + 3) + 14
Unit contains BES: {9 (u + 3) + 14} (number of BESs + +)

z: Unit subject to standby-less system switchover (effects distributed):
64 + {(Number of BESs in unit + number of acceptable guest BESs) 48}

1024
Other unit: 0

n: Number of servers in unit + + + number of utility servers in unit + 1
: If there is a MGR in the unit: 2

 If there is a FES in the unit: 3
 If there is a DS in the unit: 7
 If there are BESs in the unit: (number of BESs +) b
b: For HP-UX, Solaris, and AIX 5L: 15
 For Linux: 6

a: For HP-UX, Solaris, and AIX 5L:192
For Linux: 111

s: Value of pd_max_users + value of pd_max_reflect_process_count
t: Value of pd_max_dic_process + value of pd_max_reflect_process_count
u: Value of pd_max_bes_process + value of pd_max_reflect_process_count

: Unit subject to standby-less system switchover (effects distributed):
Number of acceptable BESs
Other unit: 0

:Unit subject to standby-less system switchover (1:1):
Number of alternate BESs
Other unit: 0

16. Storage Requirements for HiRDB

703

Lock server • When there is a server (FES, BES, or DS) in the unit:
For the values of the operands that are used for each server to determine the value for guest
BESs in the unit subject to standby-less system switchover (effects distributed) (such as
pd_lck_pool_size, pd_lck_hash_entry, and pd_max_bes_process), use the
maximum value among those specified for all guest BESs in that unit, not the operand
values for a particular guest BES. In the unit that is subject to standby-less system
switchover (effects distributed), servers in the unit means all host BESs + all guest BESs.
In the unit subject to standby-less system switchover (1:1), servers in the unit means all
accepted BESs + all alternate BESs.

 y
{

x=1
 272 + 80 + cx + dx + 64 + 8192 + gx + 80 + ix
 + 64 + 16336 + 64 + nx + px + tx + ux + 16
 }

x: Server serial number in the unit
y: Number of servers in the unit

cx: When pd_lck_hash_entry is omitted or 0 is specified:
 For FES with pd_fes_lck_pool_size omitted:

 ((8 + 8 MAX((p + 3) (value of pd_max_access_tables + 4)

 10 ,11261)) 16 + 1) 16
 For FES with pd_fes_lck_pool_size specified:

 ((8 + 8 MAX((value of pd_fes_lck_pool_size 4) 10 ,11261))

 16 + 1) 16
 For BES or DS:

 ((8 + 8 MAX(((p + 3) 2 5 + value of pd_lck_pool_size 4)

 10 ,11261)) 16 + 1) 16
 When 2 or a greater non-prime number is specified for pd_lck_hash_entry:

 ((8 + 8 largest prime number that is less than the value of pd_lck_hash_entry)
 16 + 1)

 16
 When 1 or a prime number is specified for pd_lck_hash_entry:

 ((8 + 8 value of pd_lck_hash_entry) 16 + 1) 16

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

704

dx: For FES with pd_fes_lck_pool_size omitted:
 ((p + 3) (value of pd_max_access_tables + 4)) 128
 For FES with pd_fes_lck_pool_size specified:
 Value of pd_fes_lck_pool_size 4 128
 For BES or DS:
 ((p + 3) 2 5 + value of pd_lck_pool_size 4) 128
gx: For FES:
 (p + 3) 2 320
 For BES with the value of pd_utl_exec_mode = 1 and s > 32:
 ((p + 3) 2 + s) 320
 For BES with the value of pd_utl_exec_mode = 0 or s 32:
 ((p + 3) 2 + 32) 320
 For DS with the value of pd_utl_exec_mode = 1 and s > 16:
 ((p + 3) 2 + s) 320
 For DS with the value of pd_utl_exec_mode = 0 or s 16:
 ((p + 3) 2 + 16) 320

ix: For FES with pd_fes_lck_pool_size omitted:
 ((p + 3) (value of pd_max_access_tables + 4)) 2 112
 For FES with pd_fes_lck_pool_size specified:

 (value of pd_fes_lck_pool_size 5 + value of pd_lck_pool_size 3)
 rounded up to the next even value 112
 For BES with the value of pd_utl_exec_mode = 1 and s > 32:

 (value of pd_lck_pool_size 5 + value of pd_lck_pool_size 3
 + (p + 3) 2 2 5 + s (value of pd_max_rdarea_no + 1))
 rounded up to the next even value 112
 For BES with the value of pd_utl_exec_mode = 0 or s 32:

 (value of pd_lck_pool_size 5 + value of pd_lck_pool_size 3 + (p
+ 3)
 2 2 5 + 32 (value of pd_max_rdarea_no + 1))
 rounded up to the next even value 112
 For DS with the value of pd_utl_exec_mode = 1 and s > 16:

 (value of pd_lck_pool_size 5 + value of pd_lck_pool_size 3
 + (p + 3) 2 2 5 + s + 4)
 rounded up to the next even value 112
 For DS with the value of pd_utl_exec_mode = 0 or s 16:

 (value of pd_lck_pool_size 5 + value of pd_lck_pool_size 3
 + (p + 3) 2 2 5 2 2 5 + 20)
 rounded up to the next even value 112

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

705

nx: For FES:
 (p + 3) 2 80
 For BES with the value of pd_utl_exec_mode = 1 and s > 32:
 ((p + 3) 2 17 + s) 80
 For BES with the value of pd_utl_exec_mode = 0 or s 32:
 ((p + 3) 2 17 + 32) 80
 For DS with the value of pd_utl_exec_mode = 1 and s > 16:
 ((p + 3) 2 17 + s) 80
 For DS with the value of pd_utl_exec_mode = 0 or s 16:
 ((p + 3) 2 17 + 16) 80
p: For FES, when the number of FESs in the HiRDB system > 1: s + 1
 For FES, when the number of FESs in the HiRDB system = 1: s
 For BES with s > value of pd_max_bes_process: s
 For BES with s value of pd_max_bes_process: Value of pd_max_bes_process
 For DS with s > value of pd_max_dic_process: s
 For DS with s value of pd_max_dic_process: Value of pd_max_dic_process

s: Value of pd_max_users + value of pd_max_reflect_process_count
tx: For FES:

 32+(p + 3) 2 value of pd_max_open_holdable_cursors 16 4
 For BES with the value of pd_utl_exec_mode = 1 and s > 32:
 32 + ((p + 3) 2 + s) value of pd_max_open_holdable_cursors 16

 4
 For BES with the value of pd_utl_exec_mode = 0 or s 32:
 32 + ((p + 3) 2 + 32) value of pd_max_open_holdable_cursors 16

 4
 For DS with the value of pd_utl_exec_mode = 1 and s > 16:
 32 + ((p + 3) 2 + s) value of pd_max_open_holdable_cursors 16

 4
 For DS with the value of pd_utl_exec_mode = 0 or s 16:
 32 + ((p + 3) 2 + 16) value of pd_max_open_holdable_cursors 16

 4

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

706

ux: For FES with pd_fes_lck_pool_size omitted:
 32 + ((p + 3) (value of pd_max_access_tables + 4)) 2
 value of pd_max_open_holdable_cursors 16 4
 For FES with pd_fes_lck_pool_size specified:

 32 + (value of pd_fes_lck_pool_size 5 + value of pd_lck_pool_size
3)
 rounded up to the next even value value of pd_max_open_holdable_cursors

 16 4
 For BES with the value of pd_utl_exec_mode = 1 and s > 32:

 32 + (value of pd_lck_pool_size 5 + value of pd_lck_pool_size 3
 + (p + 3) 2 2 5 + s (value of pd_max_rdarea_no + 1))
 rounded up to the next even value value of pd_max_open_holdable_cursors

 16 4

 For BES with the value of pd_utl_exec_mode = 0 or s 32:

 32+(value of pd_lck_pool_size 5 + value of pd_lck_pool_size 3
 + (p + 3) 2 2 5 + 32 (value of pd_max_rdarea_no + 1))
 rounded up to the next even value value of pd_max_open_holdable_cursors

 16 4
 For DS with the value of pd_utl_exec_mode = 1 and s > 16:

 32 + (value of pd_lck_pool_size 5 + value of pd_lck_pool_size 3
 + (p + 3) 2 2 5 + s + 4) rounded up to the next even value
 value of pd_max_open_holdable_cursors 16 4
 For DS with the value of pd_utl_exec_mode = 0 or s 16:

 32 + (value of pd_lck_pool_size 5 + value of pd_lck_pool_size 3
 + (p + 3) 2 2 5 2 2 5 + 20) rounded up to the next even value
 value of pd_max_open_holdable_cursors 16 4
• When there is no server (FES, BES, or DS) in the unit

16688

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

707

Transaction manager 304 + 32 B + 192 s 2
If the unit contains FES, add the following value:*

 + 1048 + (416 + 688 + 256 + 392 2) (A 2 + 7) + 256 2
 + 128 (number of BESs in the system 4 + number of DSs in the system 2
 + number of FESs in the system) (A 2 + 7)
 + C

If the unit contains BES, add the following value:*

 + 1048 + (416 + 688 + 256 + 392 2) (u 2 + 7)
 + 256 2
 + 128 (number of BESs in the system 4 + number of DSs in the system 2
 + number of FESs in the system) (A 2 + 7)
 + D

If the unit contains DS, add the following value:*

 + 1048 + (416 + 688 + 256 + 392 2) (t 2 + 7)
 + 256 2
 + 128 (number of BESs in the system 4 + number of DSs in the system 2
 + number of FESs in the system) (A 2 + 7)
 + E

s: Value of pd_max_users + value of pd_max_reflect_process_count
t: Value of pd_max_dic_process + value of pd_max_reflect_process_count
u: Value of pd_max_bes_process + value of pd_max_reflect_process_count
A: For a multi-FES system: s + 1; if not a multi-FES system: s
B: Unit subject to standby-less system switchover (effects distributed):
 Number of host BESs + value of pd_ha_max_act_guest_servers operand
 Other unit: Number of servers in the unit
C: If the unit meets one condition in Conditions below: 0
 128 (number of BESs in the system 4 + number of DSs in the system 2
 + number of FESs in the system) (A 2 + 7)
 If the unit does not meet both conditions in Conditions below: 0
D: If the unit meets one condition in Conditions below:
 128 (number of BESs in the system 4 + number of DSs in the system 2
 + number of FESs in the system) (u 2 + 7)

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

708

 If the unit does not meet both conditions in Conditions below: 0
E: If the unit meets one condition in Conditions below:
 128 (number of BESs in the system 4 + number of DSs in the system 2
 + number of FESs in the system) (t 2 + 7)
 If the unit does not meet both conditions in Conditions below: 0

Conditions:
• uap is specified in the pd_rpl_reflect_mode operand.
• The pdstart -k stls operand is specified for a front-end server in the system.

* Add the value obtained from the above formula as many times as the value of B.
For units subject to standby-less system switchover (1:1):

Number of accepted BESs + Number of alternate BESs
Other than the above, the number of the servers in the unit

Timer server 32 (value of pd_max_users + value of pd_max_reflect_process_count + 3)
 (number of BESs in system + 1 + number of utility servers in unit + 1)

 + 1440 + (48 - 32) 2

Number of utility servers in unit is 23 +
: When there is MGR in the unit: 2

 When there is FES in the unit: 3
 When there is DS in the unit: 7
 When there is BES in the unit: number of BESs b
b: For HP-UX, Solaris, and AIX 5L: 15
 For Linux: 6

Statistics log server 424 + 128 16 + 32 + 288 2 + 1168 + 144 3
 + value of pd_stj_buff_size 1024 3 + 64 + 4096 + 8192

Process server 176 + 512 MAX(c,256) + 80 + 256 + (value of pd_max_server_process + 50)
(256 + 160) + 16 + 1 34 + 16
c: (45 + d + e + f + (g number of BESs in the unit*) + h + i) 16 16
d: If the unit contains MGR, 46; if not, j.
e: If the unit contains DS, 15; if not, 0.
f: If the unit contains FES, 9; if not, 0.
g: If the unit contains BES, 24; if not, 0.
h: If the standby-less system switchover (1:1) facility is used, 9; if not, 0.
i: If the unit is subject to standby-less system switchover (effects distributed), 1; if not, 0.
j: If manager is specified in the pd_mlg_msg_log_unit operand, 1; if local is
specified, 2.
* If the unit is subject to standby-less system switchover (1:1), the value is (number of
BESs 2). If the unit is subject to standby-less system switchover (effects distributed),
the value includes the pd_ha_max_act_guest_servers operand correction value.

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

709

System manager 672 + (48 + 8) (g + h + i) + (108 + 8) {(p + q + 2) + u (15 + 1)} + (104 + 8)
c + 40 (k + m + n o + u) 14 + 256 m + 128 c + 40 d + 16 e + 96
o + v (16 34 (k + u) + 15 + 44 z + 15) + w (48 + 15 + 4 z + 15 + 4
y + 15) + v (144 + 15) + 8 + 5864 + s + s o + 16 + 96 o + 1024

c: Number of units
d: Number of -c options specified in pdunit operand
e: Number of pdcltgrp operands specified
g: Number of FESs in the system
h: Number of BESs in the system
i: Number of DSs in the system
j: Number of FESs in unit
k: Number of BESs in unit
m: Number of DSs in the unit
n: Number of alternate BESs in the unit
o: If the unit is subject to standby-less system switchover, 1; if not, 0
p: i + k + m + n
q: 24 + t + j 3 + k 15 + m 7
r: 14 (k + m + u) + p + q + u 15 + 2 + 38 + 4 + p 4
s: 236 + 2052 + 148 (r + 3) + v (40 (k + u) + 72 (k + u))
t: If the unit contains MGR, 2; if not, 0
u: Number of acceptable BESs (value of the pd_ha_max_act_guest_servers
operand)
v: If the unit is subject to standby-less system switchover (effects distributed), 1; if not, 0
w: If there is a unit that is subject to standby-less system switchover (effects distributed),
1; if not, 0
y: Number of units in the HA group
z: Number of servers in the HA group

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

710

Name server X + Y + 1024 + Z

X: MAX(65536,{ ((4096 + 5808 + (total number of nodes in the system 72) + a + b)

 1024) + 2} 1024)

Y: MAX(16384,{ (c + d + e) 1024 + 5} 1024)
Z: (total number of BESs in the unit + j + g + k) 1024
a: When the unit contains MGR: 1056
 When the unit contains no MGR: 0
b: (total number of BESs in the unit + j + g + k) 528
c: When the unit contains MGR:
 {(total number of units in the system - 1) + (total number of units in the system - 1)
 15} 244,
 When the unit contains no MGR: 488
d: When the unit contains FES:
 (number of BESs in other units + number of DSs in other units) 244,
 When the unit contains no FES: 0
e: When the unit contains BES and DS:
 Number of BESs in other units 244
 When the unit does not contain BES nor DS: 0
f: When the unit contains FES: 3
 When the unit contains no FES: 0
g: 24 + f + h + i
h: When the unit contains DS: 7
 When the unit contains no DS: 0
i: When the unit contains BES: 6 (total number of BESs in the unit + j)
 When the unit contains no BES: 0
j: Unit subject to standby-less system switchover (effects distributed):
 Number of acceptable BESs
 Other unit: 0
k: Unit subject to standby-less system switchover (1:1):
 Number of alternate BESs
 Other unit: 0

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

711

Node manager Unit contains MGR:
 (1312 + 448 total number of units in the system + 96 total number of servers
in the system
 + 2048 + 1104 + 72 C + 240 A + 44 A + 28 A
 + 16 B + 16 total number of BESs in the system + 8 total number of units in
the system + 48)
 1024 1024
Unit contains no MGR:
 (1104 + 72 C + 240 A + 44 A + 28 A
 + 16 B + 16 total number of BESs in the system + 8 total number of units in
the system + 48)
 1024 1024

A: Value of pd_utl_exec_mode = 0: 1024
Value of pd_utl_exec_mode = 1: value of pd_max_users total number of BESs
in system 3
If the unit contains MGR, add: Value of pd_max_users 4 + 200
If the unit contains DS, add: Value of pd_max_users 3 + 200
If the unit contains BES, add: Value of pd_max_users D
If the value of A obtained from the previous formula is not greater than 1024, use
1024.

B: pdcltgrp operand not specified: 0
pdcltgrp operand specified: Number of pdcltgrp operands specified + 1

C: Number of servers in the unit + E
D: Number of BESs in unit + E
E: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the
unit

Unit subject to standby-less system switchover (effects distributed): Number of
acceptable BESs
Other unit: 0

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

712

I/O server (56 + ((56 + A) 32 32)) 128 128
When the unit is not subject to standby-less system switchover (effects distributed):
A:When pd_large_file_use=N is specified (or omitted)

3248 + (14 + 16) 808 + 1 272 + (534 272)1

 + {(534 272 + 16 272 + value of pd_max_file_no 808) number of
BESs}2

+ {534 272 + 16 272 + value of pd_max_file_no 808}3

 + (48 - 32) 3
 When pd_large_file_use=Y is specified

3248 + (14 + 16) 972 + 1 276 + (534 276)1

 + {(534 276 + 16 276 + value of pd_max_file_no 972) number of
BESs}2

 + {534 276 + 16 276 + value of pd_max_file_no 972}3

 + (48 - 32) 3

1 Add this value if there are FESs.
2 Add this value if there are BESs.
3 Add this value if there are DSs.
For a standby-less system switchover configuration (1:1) target unit, double the value
obtained in the above formula.
When the unit is subject to standby-less system switchover (effects distributed):
A:When pd_large_file_use=N is specified (or omitted)

64 + 24 number of BESs4 16 16
 + 3296 + 16 808 +534 272 + 16 272 + value of pd_max_file_no
808) 16 16 number of BESs4

 + (3296 + (14 + 16) 808 + 1 272) 16 16
 When pd_large_file_use=Y is specified

64 + 24 number of BESs4 16 16
 + (3296 + 16 972 + 534 276 + 16 276 + value of pd_max_file_no
972) 16 16 number of BESs4

 + (3296 + (14 + 16) 972 + 1 276) 16 16

4 Includes the value of pd_ha_max_act_guest_servers.

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

713

Log server 32 + 48 + 128 37
 + {

432 + 128 7 + 1168 + 512
 + (128 + 256 + 160 + 8 + 64) value of pd_log_rec_leng*

 value of pd_log_rec_leng*

 + 64 + 4096 2 + (256 + 480) B
 + {(512 + 256) + 128 B + 464 B} (8192 - 128) 8192
 + 144 value of pd_log_write_buff_count*

 + (value of pd_log_write_buff_count* + A)
 {value of pd_log_max_data_size* + (68 + 44 + 96 + 160)} 4096

4096
 + C

} number of servers in the unit + D + 128 number of FESs in the unit
Add this if the pd_max_reflect_process_count operand is specified.
(128 + 704) (number of BESs in the unit + D)

A: 16
B: Number of pdlogadfg -d sys operands specified*

C: 0
D: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the
unit
 Unit subject to standby-less system switchover (effects distributed):
 pd_ha_max_act_guest_servers operand correction value
* Of the values specified for all servers in the unit, specify the maximum value. If the unit
is subject to standby-less system switchover (1:1), specify the maximum value of all the
values specified for all servers and the alternate BESs in the unit.
If the unit is subject to standby-less system switchover (effects distributed), specify the
maximum value of all the values specified for all servers in the unit and all BESs in the
HA group.

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

714

Synchronization
point dump server

{
 (384 + 1536 2) 1024 1024

 + {(128 + 80 + 240 + 240) + 192 (number of pdlogadfg -d spd operands
specified*)
 + 416 (number of pdlogadpf -d spd operands specified*) + 1023} 1024

 1024
 } (total number of servers + A)
A: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the
unit
 Unit subject to standby-less system switchover (effects distributed):
 pd_ha_max_act_guest_servers operand correction value
* Of the values specified for all servers in the unit, specify the maximum value. If the unit
is subject to standby-less system switchover (1:1), specify the maximum value of all the
values specified for all servers and the alternate BESs in the unit.
If the unit is subject to standby-less system switchover (effects distributed), specify the
maximum value of all the values specified for all servers in the unit and all BESs in the
HA group.

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

715

Common to all units a + {b + 80 + (s + 3) c + 64 + 48 + d + e}
 (total number of FESs, BESs, and DSs in the unit + i)

 + (g (total number of BESs and DSs in the unit + i)) + f
 + (value of pd_max_server_process + 100) (64 + 16) + 32
 + (value of pd_max_server_process + 100 + 384) 32 + 32 + h
 + (value of pd_max_server_process + 127) 48 + 32
If the standby-less system switchover (effects distributed) facility is used, add:
((56 + ((56 + 88560) 32 32)) 128 128)

a: 38272
b: 3480
c: 2760
d: 48 32
e: 80 + 96 {(s + 3) 2

 + MAX(5, [s + 3] 10) + 7}
f: 512 (13 + (total number of FESs, BESs and DSs in unit + i) 3) 2
g: {(128 + value of pd_lck_until_disconnect_cnt 112 + 4095) 4096}
 4096 2
h: (number of port numbers specified by pd_registered_port 16 + 32 + 1023)
 1024 1024
 0 if pd_registered_port is not specified
i: Unit subject to standby-less system switchover (1:1): Number of alternate BESs
 Unit subject to standby-less system switchover (effects distributed):
pd_ha_max_guest_servers operand correction value
s: Value of pd_max_users + value of pd_max_reflect_process_count
t: Value of pd_max_dic_process + value of pd_max_reflect_process_count
u: Value of pd_max_bes_process + value of pd_max_reflect_process_count
s is t for a DS and u for a BES. If pd_max_dic_process or pd_max_bes_process is
omitted, use s.

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

716

Transaction log
server

{1168 + 688 A} (number of servers in unit + H)
 + {

128 B + 144
 + [G + 256 value of pd_log_rec_leng* value of pd_log_rec_leng*

 + (value of pd_log_max_data_size* + 68 + 44 + 96 + 160)
 value of pd_log_rec_leng* value of pd_log_rec_leng*]
 D 2 + E + (48 + 8) B 2

 } (number of BESs and DSs in unit + H)
 + {

600 B + 128 B + 64 B C + 144 + G
 + 512 value of pd_log_rec_leng* value of pd_log_rec_leng*

 + (value of pd_log_max_data_size* + 68 + 44 + 96 + 160)
 value of pd_log_rec_leng* value of pd_log_rec_leng*

 + E + (48 + 8) (B 2 + 2)
 } (number of servers in unit + H)
A: 2
B: 7 + J 2
C: Number of BESs in the entire system 4 + number of DSs in the entire system 2
+ number of FESs in the entire system
D: Number of servers in unit
E: 0
G: 64
H: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the
unit
 Unit subject to standby-less system switchover (effects distributed):
 pd_ha_max_act_guest_servers operand correction value
J: Maximum value of s, t, and u in the servers in the unit
s: Value of pd_max_users + value of pd_max_reflect_process_count
t: Value of pd_max_dic_process + value of pd_max_reflect_process_count
u: Value of pd_max_bes_process + value of pd_max_reflect_process_count
* Of the values specified for all servers in the unit, specify the maximum value. If the unit
is subject to standby-less system switchover (1:1), specify the maximum value of all the
values specified for all servers and the alternate BESs in the unit.
If the unit is subject to standby-less system switchover (effects distributed), specify the
maximum value of all the values specified for all servers in the unit and all BESs in the
HA group.

Status server 64 32 32 (number of servers in unit + A)
A: Unit subject to standby-less system switchover (1:1): Number of alternate BESs in the
unit
 Unit subject to standby-less system switchover (effects distributed):
 pd_ha_max_act_guest_servers operand correction value

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

717

Explanation:
MGR: System manager
FES: Front-end server
DS: Dictionary server
BES: Back-end server

16.2.4 Formulas for shared memory used by each server
(1) Formula for the shared memory used by a front-end server

Following is the formula for calculating the size of the shared memory that is used by
a front-end server. For the variables used in this formula, see (4) below.

32-bit mode

Security audit A 1024 1024
A: 624 if the pd_aud_file_name operand is omitted
 520 + (320 200) + B if the pd_aud_file_name operand is specified
B: 0 if the pd_aud_async_buff_size operand value is 0
 The following value if the pd_aud_async_buff_size operand value is 4096 or
greater:
 (176 value of pd_aud_async_buff_count operand)
 +{(value of pd_aud_async_buff_size operand 4096 4096)
 value of pd_aud_async_buff_count operand}

If the unit uses the standby-less system switchover facility, the size of memory required
for security audit at the target unit must be added to the size of memory for the local unit.

Process item Shared memory calculation formula (bytes)

16. Storage Requirements for HiRDB

718

40 + b 1.3 + c + d + k + 1.6 n + x + y + 4
 + {[(a + 12) 13] 1.1 + [(a + 62) 63] + 3.7} (e + 3)
 + {
 b 64 (8 16) 4 4
 + 12 {(b 3) + 1 - mod(b 3, 2)}
 + 4 a {(e + 3) 2 + 1 + MAX(e 10, 5)}
 + 32 + {16 (f + 1) g} + 112 B
 + {(c 8) + 7} 64 8 + {(k 8) + 7} 64 8
 + MAX{a (e + 3), c 8} 88 + MAX{a (e + 3), k 8}
 24
 + {(x 4) + 7} 64 8
 + {[(y - (s 592 + t 916 + u 172)) 2] + 7} 64
 8
 + MAX{13 (e + 3), x 4} 88
 + 60 MAX{21 (e + 3), (y - (s 592 + t 916 + u
 172)) 2}
 + 44 + 256 + 1024
 } 1024 + A + 7
 I
 + (Ji)
 i=1
• Add this value if you specified INITIAL in the pd_def_buf_control_area_assign operand or omitted

this operand.
 + {[(a + 12) 13] 1.1 + [(a + 62) 63] + 3.7} (e + 7)

• Add this when the HiRDB External Data Access facility is used.
 + { (40 + (32 + 144 C + D)) 512 512 } 1024 + (B 3616) 1024

 (KB)

16. Storage Requirements for HiRDB

719

64-bit mode

(2) Formulas for the size of the shared memory used by a dictionary server
This subsection lists and describes the formulas used for calculating the shared
memory used by a dictionary server.
For 32-bit mode (KB):

Formula 1 + {((40 + (value obtained by adding Formulas 2 through 4)) 512
 512)} 1024

For 64-bit mode (KB):

Formula 1 + {((72 + (value obtained by adding Formulas 2 through 4)) 512
 512)} 1024

For the variables used in the formulas, see (4).
Notes

• Add 3 to the formula if commit is specified in either the pd_dbsync_point
operand or the pd_system_dbsync_point operand. The default for the
pd_system_dbsync_point operand is commit.

40 + b 1.3 + c + d + k + 1.6 n + x + y + 5
 + {[(a + 12) 13] 1.2 + [(a + 62) 63] 1.5 + 4.1} (e + 3)
 + {
 b 64 (8 16) 4 4
 + 12 {(b 3) + 1-mod(b 3, 2)}
 + 4 a {(e + 3) 2 + 1 + MAX(e 10, 5)}
 + 48 + {16 (f + 1) g}
 + {(c 8) + 7} 64 8 + {(k 8) + 7} 64 8
 + MAX(a (e + 3), c 8) 104 + MAX{a (e + 3), k 8} 40
 + {(x 4) + 7} 64 8
 + {[(y-(s 600 + t 936 + u 184)) 2] + 7} 64 8
 + MAX{13 (e + 3), x 4} 104
 + 72 MAX{21 (e + 3), (y-(s 600 + t 936 + u 184)) 2}
 + 72 + 256 + 1536
 } 1024 + A + 7
 I
 + (Ji)
 i=1
• Add this value when INITIAL is specified in the pd_def_buf_control_area_assign operand or the

operand is omitted.
 + {[(a + 12) 13] 1.2 + [(a + 62) 63] 1.5 + 4.1} (e + 7)
 (KB)

16. Storage Requirements for HiRDB

720

• Add Formula 4 if the pd_dfw_awt_process operand is specified.
• If you omit the pd_max_commit_write_no operand (except cases in

which v6compatible or v7compatible is specified in the
pd_sysdef_default_option operand), or you specify a value other than
0 in the pd_sysdef_default_option operand, add Formula 5. However,
if you have already added Formula 3, you do not need to add this formula.

• If you omit the pd_sds_shmpool_size operand, the following value is set:
For 32-bit mode:

 {((40 + (total of Formulas 2 through 4)) 512 512)} 1024
For 64-bit mode:

 {((72 + (total of Formulas 2 through 4)) 512 512)} 1024

16. Storage Requirements for HiRDB

721

Condition Shared memory calculation formula (KB)

Formula 1
(KB)

32-bit mode
b 1.3
 + {
 b 64 (8 16) 4 4
 + 12 {(b 3) + 1-mod(b 3, 2)}
 + 8 a {(e + 3) 2 + 1 + MAX(e 10, 5)}
 + 512
 } 1024
 + 3.5 + (224 v w) 1024 + 0.5
 + {
 (28 + ((32 + ((g 127 + 1) 2048 + 128)) 32 32))
 128 128
 } 1024
 K
 + (Li)
 i=1
64-bit mode
b 1.3
 + {
 b 64 (8 16) 4 4
 + 12 {(b 3) + 1-mod(b 3, 2)}
 + 8 a {(e + 3) 2 + 1 + MAX(e 10, 5)}
 + 1024
 } 1024
 + 3.5 + (224 v w) 1024 + 0.5
 + {
 (56 + ((56 + ((g 127 + 1) 2048 + 128)) 32 32))
 128 128
 } 1024
 K
 + (Li)
 i=1

16. Storage Requirements for HiRDB

722

1 Add this if the pd_max_ard_process operand is specified with a value of at least 1.
2 Add this value if the facility for predicting reorganization time is used.
3 When you specify v6compatible or v7compatible in the
pd_sysdef_default_option operand, use 112 MAX(r, i 1.2) for calculating
instead of 112 240.
4 When you specify v6compatible or v7compatible in the

Formula 2
(bytes)

32-bit mode
500 1024

 + (372 g 16 16) + 328 h + 112 2403

 + 5072 (e + 15) + 96 z
 + 32 m + 172 {a (e + 3) + (e + 3) 2 + 22} + 16
 + 48 p + 36 {(e + 3) 2 + 1 + MAX(5, [e + 3] 10)}
 + 68 G + 641 + 3682

 + ((((g 8) + 3) 4) 4) m
 } 1024
64-bit mode
500 1024

 + (472 g 16 16) + 344 h
 + (136 240 16 16)4

 + 9424 (e + 15) + 144 z
 + 48 m + 336 {a (e + 3) + (e + 3) 2 + 22} + 16
 + 32 p + 72 {(e + 3) 2 + 1 + MAX(5, [e + 3] 10)}
 + 68 G + 641 + 4482

 + ((((g 8) + 7) 8) 8) m

Formula 3
(bytes)

32-bit mode
(32 + 16 z) (G + 1) + 16
64-bit mode
(48 + 32 z) (G + 1) + 16

Formula 4
(bytes)

32-bit mode
88 + 52 H + 3400
64-bit mode
112 + 56 H + 7200

Formula 5
(bytes)

32-bit mode
(32 + 16 z) P + 16
64-bit mode
(48 + 32 z) P + 16

Condition Shared memory calculation formula (KB)

16. Storage Requirements for HiRDB

723

pd_sysdef_default_option operand, use (136 MAX(r, (i 1.2)) 16
 16) for calculating instead of (136 240 16 16).

(3) Formulas for the size of the shared memory used by a back-end server
This subsection lists and describes the formulas used for calculating the shared
memory used by a back-end server.
For 32-bit mode (KB):

Formula 1 + {((40 + (value obtained by adding Formulas 2 through 4, and
Formula 7)) 512 512)} 1024 + {((40 + Formula 6) 512

 512)} 1024
For 64-bit mode (KB):

Formula 1 + {((72 + (value obtained by adding Formulas 2 through 5, and
Formula 7)) 512 512)} 1024 + {((72 + Formula 6) 512

 512)} 1024
For details about the variables used in these formulas, see (4) below.
Notes on Formulas 1 through 8

• If any of the following conditions is satisfied, add Formula 3:
 Y is specified in the pd_rdarea_open_attribute_use operand
 Y is specified in the pd_lv_mirror_use operand
 The rapid switchover facility is used

• If either of the following conditions is satisfied, add Formula 4:
 commit is specified in the pd_dbsync_point operand
 Y is specified in the pd_shared_rdarea_use operand

• If commit is specified in the pd_inner_replica_control operand, add
Formula 5.

• If HiRDB External Data Access is installed, add Formula 5.
• If you omit the pd_max_commit_write_no operand (except cases in

which v6compatible or v7compatible is specified in the
pd_sysdef_default_option operand), or you specify a value other than
0 in the pd_sysdef_default_option operand, add Formula 8. However,
if you have already added Formula 4, you do not need to add this formula.

• If you omit the pd_bes_shmpool_size operand, the following value is set:
For 32-bit mode:

16. Storage Requirements for HiRDB

724

 {((40 + (total of Formulas 2 through 5, 6, and 7)) 512 512)}
 1024 + {((40 + Formula 5) 512 512)} 1024

For 64-bit mode:

 {((72 + (total of Formulas 2 through 5, 6, and 7)) 512 512)}
 1024 + {((72 + Formula 5) 512 512)} 1024

Condition Shared memory calculation formula

Formula 1
(KB)

32-bit mode
b 1.3
 + {

 b 64 (8 16) 4 4
 + 12 {(b 3) + 1 - mod(b 3, 2)}
 + 8 a {(e + 3) 2 + 1 + MAX(e 10, 5)} +512 +5121

 } 1024
 + {72 + 8 v (8 + 3 w)} 1024
 + {(g 127 + 1) 2048 + 128} 1024
 + {

(28 + ((32 + ((g 127 + 1) 2048 + 128)) 32 32))
 128 128}

} 1024
 M
 + (Ni)
 i=1
64-bit mode
b 1.3
 + {

 b 64 (8 16) 4 4
 + 12 {(b 3) + 1 - mod(b 3, 2)}
 + 8 a {(e + 3) 2 + 1 + MAX(e 10, 5)} +1024 +5121

 } 1024
+ {72 + 24 v (2 + w)} 1024
 + {

(56 + ((56 + ((g 127 + 1) 2048 + 128)) 32 32))
 128 128

} 1024
 M
+ (Ni)
 i=1

16. Storage Requirements for HiRDB

725

1 Add this value if neither pd_max_list_user nor pd_max_list_count operand

Formula 2
(bytes)

32-bit mode
500 1024

 + (308 + 481) g + 328 h + 112 r4

 + 5072 (e + 15) + 96 z
 + 32 m + 172 {a (e + 3) + (e + 3) 2 + 22} + 16
 + 48 p + 48 {(e + 3) 2 + 1 + MAX(5, [e + 3] 10)}
 + 68 G + 144 F + 80 + 32 g + 642 + 963

 + ((((g 8) + 3) 4) 4) m
64-bit mode
500 1024

 + (400 + 561) g + 344 h + 136 r5

 + 9424 (e + 15) + 144 z
 + 48 m + 336 {a (e + 3) + (e + 3) 2 + 22} + 16
 + 64 p + 96 {(e + 3) 2 + 1 + MAX(5, [e + 3] 10)}
 + 68 G + 160 F + 96 + 48 g + 642 + 1283

 + ((((g 8) + 7) 8) 8) m

Formula 3
(bytes)

32-bit mode
{{[(g 8 4) 4] + 8} (a [[e + 3] + e + 15)}
64-bit mode
{([(g 8 8) 8] + 8} (a [e + 3] + e + 15)}

Formula 4
(bytes)

32-bit mode
(32 + 16 z) (e 2 + 7 + 1) + 16
64-bit mode
(48 + 32 z) (e 2 + 7 + 1) + 16

Formula 5
(bytes)

32-bit mode
32 + 144 C + (6160 + 112 + 48 e) B

Formula 6
(bytes)

56 E + 16

Formula 7
(bytes)

32-bit mode
88 + 52 H + 3400
64-bit mode
112 + 56 H + 7200

Formula 8 32-bit mode
(32 + 16 z) P + 16
64-bit mode
(48 + 32 z) P + 16

Condition Shared memory calculation formula

16. Storage Requirements for HiRDB

726

is 0.
2 Add this if the value of the pd_max_ard_process operand is at least 1.
3 Add this if the value of the pd_max_reflect_process_count operand is at least
1.
4 When you specify v6compatible or v7compatible in the
pd_sysdef_default_option operand, use 112 MAX((i 1.2), r) for
calculating instead of 112 r.
5 When you specify v6compatible or v7compatible in the
pd_sysdef_default_option operand, use 136 MAX((i 1.2), r) for
calculating instead of 136 r.

(4) Variables used in the formulas
a: Value of pd_max_access_tables operand
b: Value of pd_sql_object_cache_size operand
c: Value of pd_table_def_cache_size operand
d: Value of pd_auth_cache_size operand

e: Value of pd_max_users operand1

f: Total number of back-end servers
g: Value of pd_max_rdarea_no operand
h: Value of pd_max_file_no operand
i: Total number of indexes in the server (for a partitioning key index, this is the number
of partitions in the server)
k: Value of pd_view_def_cache_size operand
m: Number of global buffers for index

If Y is specified in the pd_dbbuff_modify operand, add the
pd_max_add_dbbuff_no operand value of the server definition to the number
of pdbuffer statements related to the server.

n: Value of pd_alias_cache_size operand
p: Value of pd_lck_until_disconnect_cnt operand
q: MIN (e + 3, p)
r: Value of pd_assurance_index_no operand
s: Number of plug-ins installed

16. Storage Requirements for HiRDB

727

t: Total number of plug-in functions used with DML2

u: Total number of parameters for the plug-in functions used with DML2

v: Value of pd_max_list_users operand
w: Value of pd_max_list_count operand
x: Value of pd_type_def_cache_size operand
y: Value of pd_routine_def_cache_size operand
z: Total number of global buffers (number of pdbuffer operands specified)

If Y is specified in the pd_dbbuff_modify operand, add the
pd_max_add_dbbuff_no operand value of the server definition to the number
of pdbuffer statements related to the server.

A: Value of pd_registry_cache_size operand

B: Value of the pd_max_foreign_server operand
C: Total number of DBMSs supported by HiRDB External Data Access Adapters

• HiRDB External Data Access Adapters for HiRDB or XDM/RD E2
connection: 3

• HiRDB External Data Access Adapters for ORACLE connection: 1
• HiRDB External Data Access Adapters for DDB2 connection: 1

If all HiRDB External Data Access Adapters are installed, the total number of
supported DBMSs is 5.

D: Total number of HiRDB External Data Access Adapters for SQL exchanges
• HiRDB External Data Access Adapters for HiRDB or XDM/RD E2

connection: 512
• HiRDB External Data Access Adapters for ORACLE connection: 2048
• HiRDB External Data Access Adapters for DB2 connection: 512

E: Value of the pd_inner_replica_control operand
F: Value of the pd_assurance_table_no operand
G: Maximum number of transactions in the server (2 e + 7)
H: Value of the pd_dfw_awt_process operand
I: Total number of pdplgprm operands specified in the front-end server

Ji: Size of the shared memory specified in the ith pdplgprm operand specified in the
front-end server

16. Storage Requirements for HiRDB

728

K: Total number of pdplgprm operands specified in the dictionary server

Li: Size of the shared memory specified in the ith pdplgprm operand specified in the
dictionary server
M: Total number of pdplgprm operands specified in the back-end server

Ni: Size of the shared memory specified in the ith pdplgprm operand specified in the
back-end server
P: Value of the pd_max_commit_write_reclaim_no operand
1 For a dictionary server, use the value of the pd_max_dic_process operand. For a
back-end server, use the value of the pd_max_bes_process operand. If the
pd_max_dic_process or pd_max_bes_process operand is omitted, use the value
of the pd_max_users operand.
2 You can use the following SQL statement to obtain the total number of plug-in
functions and the total number of parameters for the plug-in functions used with DML:

SELECT COUNT(*),SUM(N_PARAM) FROM
MASTER.SQL_PLUGIN_ROUTINES
WHERE PLUGIN_NAME = 'plug-in-name'
AND (TIMING_DESCRIPTOR = 'ADT_FUNCTION'
 OR TIMING_DESCRIPTOR IS NULL
 OR TIMING_DESCRIPTOR = 'BEFORE_INSERT'
 OR TIMING_DESCRIPTOR = 'AFTER_INSERT'
 OR TIMING_DESCRIPTOR = 'BEFORE_UPDATE'
 OR TIMING_DESCRIPTOR = 'AFTER_UPDATE'
 OR TIMING_DESCRIPTOR = 'BEFORE_DELETE'
 OR TIMING_DESCRIPTOR = 'AFTER_DELETE'
 OR TIMING_DESCRIPTOR = 'BEFORE_PURGE_TABLE'
 OR TIMING_DESCRIPTOR = 'AFTER_PURGE_TABLE'
 OR TIMING_DESCRIPTOR = 'INDEX_SEARCH'
 OR TIMING_DESCRIPTOR = 'INDEX_COUNT'
 OR TIMING_DESCRIPTOR = 'INDEX_INSERT'
 OR TIMING_DESCRIPTOR = 'INDEX_BEFORE_UPDATE'
 OR TIMING_DESCRIPTOR = 'INDEX_AFTER_UPDATE'
 OR TIMING_DESCRIPTOR = 'INDEX_DELETE'
 OR TIMING_DESCRIPTOR = 'PURGE_INDEX'
 OR TIMING_DESCRIPTOR = 'INDEX_MAINTENANCE_DEFERRED'
 OR TIMING_DESCRIPTOR = 'BEFORE_INSERT_DC'
 OR TIMING_DESCRIPTOR = 'BEFORE_UPDATE_DC'
 OR TIMING_DESCRIPTOR = 'BEFORE_DATA_CHECK'
 OR TIMING_DESCRIPTOR = 'AFTER_DATA_CHECK')

16. Storage Requirements for HiRDB

729

16.2.5 Formula for size of shared memory used by global buffers
(1) When the standby-less system switchover (effects distributed) facility is not
used

The size of the shared memory used by global buffers is calculated for each dictionary
server and back-end server, using Formula 1. If the calculations are made for each
server machine, the values can differ depending on the options specified in the
pdbuffer statement, as shown in Table 16-9.

Table 16-9: Calculation conditions depending on the options specified in the
pdbuffer statement (when the standby-less system switchover (effects distributed)
facility is not used)

If Y is specified in the pd_dbbuff_modify operand, add Formula 2. The total value
determined from Formulas 1 and 2 is the required shared memory area for the server's
global buffers.
If the pdbuffer operand is omitted, HiRDB calculates the shared memory area
automatically, so it need not be estimated.

pdbuffer statement
option

Calculation condition

-r If the server has an RDAREA for which -r is specified, that RDAREA is used
in the calculation.

-i If the server has an RDAREA that stores an index for which -i is specified, that
server is used in the calculation.

-b If the server has an RDAREA for which -b is specified, that server is used in the
calculation.

-o If there are any RDAREAs in the server that are not specified with pdbuffer
-r, they are used in the calculation.

16. Storage Requirements for HiRDB

730

n: Number of global buffer pools
i: Global buffer pool definitions to be calculated
P: Number of global buffer sectors
A: If the asynchronous READ facility is used, 2; if it is not used, 1
M: Maximum number of batch input pages

If at least 1 is specified in the pd_max_ard_process operand, this is twice the
specified value.

U: Maximum number of concurrently executable prefetch operations
S: Maximum page length of the RDAREAs allocated to global buffer
s: Value of SHMMAX
a: Total from Formula 1
1 Add this value in the case of a global buffer for LOB.

Formulas Shared memory calculation formula (KB)

Formula 1 32-bit mode
 n

{
i=1
 {736 + 64 + (280 + 561) (Pi + 4)
 + (124 + 802 + 96 A Mi) Ui} 4096 4096
 + Si {Pi + 4 + (Ui Mi A)}
 } 1024
64-bit mode
 n

{
i=1
 {928 + 64 + (464 + 961) (Pi + 4)
 + (176 + 962 + 136 A Mi) Ui} 4096 4096
 + Si {Pi + 4 + (Ui Mi A)}
 } 1024

Formula 2 32-bit mode
{ [((s 1024 4) 8) + 112] 4096 4096 a (s 1024)
} 1024
64-bit mode
{ [((s 1024 4) 8) + 144] 4096 4096 a (s 1024)
} 1024

16. Storage Requirements for HiRDB

731

2 Add this value if at least 1 is specified in the pd_max_ard_process operand.
(2) When the standby-less system switchover (effects distributed) facility is used

When the standby-less system switchover (effects distributed) facility is used, the size
of the shared memory used by global buffers is obtained for each unit using the
formula. If the calculations are made for each unit, the values can differ depending on
the options specified in the pdbuffer statement, as shown in Table 16-10.

Table 16-10: Calculation conditions depending on the options specified in the
pdbuffer statement (when the standby-less system switchover (effects distributed)
facility is used)

If the pdbuffer operand is omitted, HiRDB calculates the shared memory area
automatically, so it need not be estimated.

n: Number of global buffer pools allocated to this unit

pdbuffer statement
option

Calculation condition

-r, -b If the unit has an RDAREA for which -r is specified and which belongs to the
same HA group, that RDAREA is used in the calculation.

-i If an RDAREA that contains the index specified with -i belongs to the same HA
group, that RDAREA is used in the calculation.

-o If there are any RDAREAs in the same HA group that are not specified with
pdbuffer -r, they are used in the calculation.

Shared memory calculation formula (KB)

32-bit mode
 n

{
i=1
 (96 + ((736 (A + B)) + (272 (F + (8 (A + B))))
 + 8 F (A + B) + 16) + H + D)
 + 2048 + G + (E F + (8 (A + B)))
 } 1024

64-bit mode
 n

{
i=1
 ((144 + ((928 (A + B)) + (448 (F + (8 (A + B))))
 + (16 F (A + B))))+16 + H + D)
 + 2048 + G + (E F + (8 (A + B)))
 } 1024

16. Storage Requirements for HiRDB

732

i: Global buffer pool definitions to be calculated
A: Number of host BESs
B: Maximum number of acceptable guest BESs
C: Number of batch input pages (value specified in pdbuffer -p)
D: Add this value if the prefetch facility is used (pdbuffer -m specified):

In the 32-bit mode:
2 (((80 U C) + (80 U) + (124 U) + (8 U C)) (A + B))
In the 64-bit mode:
2 (((112 U C) + (96 U) + (176 U) + (16 U C)) (A + B))

E: The value depends on the options specified in the pdbuffer statement. The
following table lists and describes the options and formulas:

F: Number of buffer sectors (value of pdbuffer -n)
G: Add this value if the prefetch facility is used (pdbuffer -m specified):

2 ((E U C) (A + B))
H: Add this value if LOB RDAREA is specified (pdbuffer -b specified):

In the 32-bit mode:
56 (F + (8 (A + B)))
In the 64-bit mode:
96 (F + (8 (A + B)))

U: Maximum concurrent prefetch count (value of pdbuffer -m)

pdbuffer statement
option

Formula for the maximum value

-r, -b (MAX ((buffer size (value of pdbuffer -l), MAX (page size of the specified
RDAREA that belongs to the same HA group)))

-i (MAX (buffer size (value of pdbuffer -), MAX (page size of the RDAREA
that stores the index specified with -i and that belongs to the same HA group)))

-o (MAX (buffer size (value of pdbuffer -l), MAX (page size of the RDAREA
in the same HA group that is not specified with pdbuffer -r)))

16. Storage Requirements for HiRDB

733

16.2.6 Formulas for size of memory required during SQL execution
(1) Procedure for obtaining the size of the memory required during execution of
rapid grouping facility

If PDSQLOPTLVL is specified in the client environment definition,
pd_optimize_level is specified in the system common definition or front-end
server definition, or this operand is omitted, executing an SQL statement that satisfies
the applicable conditions will activate the rapid grouping facility. In such a case,
HiRDB allocates process private memory on the basis of the value of PDAGGR in the
client environment definition. The size of the memory can be obtained from the
following formula (in bytes). The size of the memory required during execution of
rapid grouping facility should be calculated for the server machine defining the
back-end server only.
Formula

a: Number of columns subject to grouping
b: Number of operations by set functions

Each of COUNT, SUM, MAX, and MIN is counted as 1.
Each of AVG (COUNT) and AVG (SUM) is counted as 2.

c: Length of rows subject to grouping (see Table 16-11)
d: Length of operation area for set functions (see Table 16-11)
e: 32-bit mode: MAX (4 N 24, 16408)

64-bit mode: MAX (8 N 40, 32808)
N: Value of the PDAGGR operand in the client environment definition

Table 16-11: Length of column subject to grouping and length of operation area
for set functions

e + d 4 4 + (17 + 4 a + 4 b + c + d) 4 4 (N + 1)
 (bytes)

Column's data type Column length Length of operation area
for set function1

INTEGER 4 6

SMALLINT 2 42

DECIMAL(p,s) (p + 1) 2 (p + 7) 2 3

FLOAT 8 10

16. Storage Requirements for HiRDB

734

Legend:
: Not applicable

1 If the set function is COUNT, the length of the operation area is always 6 regardless of
the data type.
2 If the set function is AVG or SUM, the length of the operation area is 6.
3 If the set function is AVG or SUM, the length of the operation area is 18.

(2) Procedure for obtaining the size of the memory required when data
suppression by column is specified

The following formula can be used to obtain the size of the memory (in bytes) required
to access a table for which data suppression by column is specified (table for which
SUPPRESS is specified in the column definition of CREATE TABLE).
Formula

a: Sum of the lengths of columns in the table for which data suppression by column is

SMALLFLT 4 6

INTERVAL YEAR TO DAY 5 8

INTERVAL HOUR TO SECOND 4 6

CHAR(n) n n + 3

VARCHAR(n) n + 2 n + 5

NCHAR(n) 2 n 2 n + 2

NVARCHAR(n) 2 n + 2 2 n + 4

MCHAR(n) n n + 3

MVARCHAR(n) n + 2 n + 5

DATE 4 6

TIME 3 6

BLOB(n)

BINARY(n) n + 2 n + 5

a + 128 (bytes)

Column's data type Column length Length of operation area
for set function1

16. Storage Requirements for HiRDB

735

specified
(3) Procedure for obtaining the size of the memory required during hash join and
subquery hash execution

If you specify the PDADDITIONALOPTLVL operand in the client environment
definition or the pd_additional_optimize_level operand in the HiRDB system
definition, the SQL extension optimizing option becomes available. If you specify an
application of "hash join, subquery hash execution (APPLY_HASH_JOIN)" with this
SQL extension optimizing option, the system allocates the following size of process
private area when a table join or subquery SQL statement is executed:
Formula

a: Maximum number of hash joins in the SELECT statement
For details about the maximum number of hash joins in the SELECT statement,
see the manual HiRDB Version 8 UAP Development Guide.

b: Obtain the hash join processing to be applied on the basis of the number of hash table
rows, then determine the this value from the following table:

Number of hash table rows: For join, it is the inner table count; for subquery, it is the
subquery search count excluding the predicates that contain external reference rows in
the search condition.

Packet split count: MIN { (size of hash table 2) page length of hash table ,
64}

32-bit mode
a

 (13 1024 + 6 1024 b + c)
i = 1
64-bit mode
a

 (13 1024 + 7 1024 b + c)
i = 1
 (bytes)

Guidelines for the number of hash table rows Hash join processing to be
applied

Value of b

1500 or less Batch hash join 0.5

1500 (packet split count 3) or less Packet split
Hash join

1-level packet split 1

1500 (packet split count 3)2 or less 2-level packet split 2

Greater than 1500 (packet split count 3)2 3-level packet split 3

16. Storage Requirements for HiRDB

736

Hash table size: Value of the pd_hash_table_size specified in the HiRDB system
definition or the value of the PDHASHTBLSIZE operand specified in the client
environment definition.
Page length of hash table: Select the page length of hash table corresponding to c
(maximum length of hash table row) from the following table:

c: Maximum length of hash table row
For details about the length of a hash table row, see the manual HiRDB Version 8
UAP Development Guide.

(4) Procedure for obtaining the size of the memory required for foreign table
retrieval

The following formula is used to determine the size of the memory required for foreign
table retrieval (when the HiRDB External Data Access facility is used). You can check
the SQL statements that retrieve from foreign tables with the access path display
facility (pdvwopt command). When an SQL statement is executed on a foreign table,
the memory requirement is 2,147,483,647 bytes.
Formula

a: Length of the SQL statement retrieving from the foreign table
b: Number of columns in the foreign table to be retrieved
c: If the foreign server's information definition contains the pd_hb_ary_fec_num
operand:

• When the pd_hb_ary_fec_num operand is specified

Maximum length of hash
table row

Page length of hash table (bytes)

0 to 1012 4096

1013 to 2036 8192

2037 to 4084 16384

4085 to 16360 32768

16361 to 32720 (maximum length of hash table row + 48) 2048 2048

a + 16 + 16 b + c
This is calculated when there are embedded variables or ? parameters in the SQL statement used for foreign table
retrieval.
 + 16 + 16 e + d
 (bytes)

16. Storage Requirements for HiRDB

737

Total column length of the foreign table (see Table 16-5) value of the
pd_hb_ary_fec_num operand

• When the pd_hb_ary_fec_num operand is not specified
MAX{total column length of the foreign table (see Table 16-5), value of the
pd_sql_send_buff_size operand 2048}

If the foreign server's information definition does not contain the
pd_hb_ary_fec_num operand:
Total column length of the foreign table (see Table 16-5)

d: Total array length of embedded variables or ? parameters in the SQL statement that
performs the foreign table retrieval (see Table 16-5)
e: Number of embedded variables or ? parameters in the SQL statement that performs
the foreign table retrieval

(5) Procedure for obtaining the size of the memory required when the snapshot
method is used

If the pd_pageaccess_mode operand is omitted, or if SNAPSHOT is specified, then
the page access method for data retrieval uses the snapshot method when an SQL
statement for which the snapshot method is applicable is executed. At this time,
memory in the process private area is allocated automatically, as shown below, based
on the page size of the table or index storage RDAREA.
Formula

a: Maximum page length in the RDAREA where the relevant table or index is stored
However, LOB RDAREAs are excluded.

(6) Determining the size of the memory required to retrieve the first n records
If the function for retrieving n rows of search results from the top is used, you can
retrieve n rows from the top of the search results (or from the location resulting from
skipping as many rows from the top as specified by the user as an offset).
If the number of rows specified in the LIMIT clause is 1 or greater and the value of
(number of offset rows + number of rows specified in the LIMIT clause) is 32,767 or
less, as many rows are retained in memory as will fit in (number of offset rows +
number of rows specified in the LIMIT clause). The size of the process private area to
be allocated can be determined by the formula shown below. If the value of (number
of offset rows + number of rows specified in the LIMIT clause) is 32,768 or greater,
see 19. Determining Work Table File Size because a work table is created.

a 2 (bytes)

16. Storage Requirements for HiRDB

738

Formula

a: Row length
The row length cannot exceed 32,720 bytes. The row length is calculated with the
following formula:

m: Number of rows specified in the selection formula, GROUP BY clause, or ORDER
BY clause

Add 1 if the FOR UPDATE clause is specified. However, if ROW is specified in
the selection formula, this is the total number of rows in the table.

Ai: Data length of the ith column of the records stored in the first n records of the
allocation area

For details about column data length, see Table 17-1 List of data lengths, and
determine the length beginning by assigning the defined length to d.
The data length is set to 12 bytes for a column whose data type is BLOB,
character string whose defined length is 256 bytes or greater (including
national and mixed character strings), or BINARY that does not belong to any
of the following:

• Columns specified in a selection formula with the DISTINCT clause
specified

• A query specification selection formula using a concatenation operation
based on UNION [ALL]

• Columns specified in the ORDER BY clause
Also, if the FOR UPDATE clause is specified and 1 is added for m, use 12
bytes for Ai.

c: 8
However, in the following cases, use 0.

• There is an exclusive lock in the EX mode on the retrieval table

{100 + (a + 2) (number of offset rows + number of rows specified in the LIMIT clause)} b
 (bytes)

m

(Ai) + 2 m + 4 + c
i=1
 (bytes)

16. Storage Requirements for HiRDB

739

• WITHOUT LOCK is specified
• The rapid grouping facility is specified
• Multiple tables are combined

b: Number of maintenance areas for the first n records
The number of maintenance areas for the first n records is calculated with the
following formula:

(7) Determining the size of the memory required for executing SQL statements
specifying an index-type plug-in function as a search condition

To determine the size of memory that is allocated in the process private area when an
SQL statement specifying an index-type plug-in function as a search condition is
executed, use the following formula:
Formula

a: Row length. To determine the row length, use the following formula:

m: Number of columns specified in the selection formula, join condition, GROUP
BY clause, or ORDER BY clause

If you specified the FOR UPDATE clause, add 1. If ROW is specified in the
selection formula, the total number of rows in the table is assumed.

Ai: Length of column data i in the row to be retrieved
For details about column data length, see Table 17-1 List of data lengths, and
determine the length beginning by assigning the defined length to d.
A length of 12 bytes is assumed for a column with BLOB data or character
string data with a defined length of 256 bytes or greater (including national
character data and mixed character string data) that is none of the following:

1 + number of UNION [ALL] clause specifications

a 500 + (20 + 6) 800 + 16 (bytes)

 m

(Ai) + 4 (m + 2) + 12 + 4 + 8
i=1
 (bytes)

16. Storage Requirements for HiRDB

740

• Column specified in the join condition (join column)
• Column specified in the selection formula with the DISTINCT clause

specified
• Column specified in the selection formula in a subquery of a quantified

predicate
• Column specified in the selection formula in a subquery of an IN

predicate
• Selection formula in the subquery that is the target of Set Operation due

to UNION [ALL] or EXCEPT [ALL]
• Column specified in the ORDER BY clause

If the FOR UPDATE clause is specified, Ai corresponding to 1 that was added
to m is 12 bytes.

(8) Determining the size of the memory required to use the facility for output of
extended SQL error information

When the facility for output of extended SQL error information is used, a process
private area is allocated in the following cases:

(a) When the OPEN statement is executed
Formula

a: Total data length of ? parameters or embedded variables
m
a = (ai)

 i=1
m: Number of ? parameters or embedded variables in the SQL statement

ai: Data length of the ith ? parameter or the embedded variable

For details about the data length, see Table 16-5.

32-bit mode
(16 + 16 m) + a
64-bit mode
(24 + 24 m) + a
 (bytes)

16. Storage Requirements for HiRDB

741

(b) When the PREPARE statement of the definition SQL is executed
Formula

16.2.7 Formula for size of memory required during SQL
preprocessing
(1) Size of memory required when no stored procedure is used

If no stored procedure is used, the following formula can be used to obtain the size of
the memory that is allocated during SQL preprocessing (KB).
Formula

Si: Number of items to be retrieved in SQL statements
Pi: Number of embedded variables, ? parameters, or SQL parameters in SQL
statements
Ti: Number of table names in SQL statements
Ci: Number of column names in SQL statements
Wi: Number of predicates used in Boolean operators (AND and OR) in SQL statements
Ki: Number of literals in SQL statements
Li: Total length of literals in SQL statements (bytes)
Di: Total number of storage conditions defined in SQL statements
Ari: Number of arithmetic operations and concatenation operations in SQL statements
Gi: Number of columns specified in GROUP BY clause of SQL statements
Ori: Number of column specification or sort item specification numbers in ORDER BY
clause of SQL statements
Fi: Total number of set functions and scalar functions in SQL statements

SQL statement length + 20
 (bytes)

{
 (2539 + Si 70 + Pi 20 + Ti 980 + Ci 68 + Wi 818 + Ki 416 + Li 5
 + Di 116 + Ari 108 + Gi 44 + Ori 10 + Sli 40 + Upi 96 + Fi 90
 + Ti Cwi 48 + MAX(Pi, Wpi) 52 + MAX(Ti, Sli - 1) 96
 + MAX(Ti 2, Wi) 24 + MAX(Ti 3, Wi) 24
 + MAX{MAX(Ti, Ori + Gi + Si + Fi), Sli - 1} 24
 } 1.2 1024 CLS
 (KB)

16. Storage Requirements for HiRDB

742

Sli: Number of queries specified in SQL statements
Upi: Number of columns to be updated in SQL statements
Cwi: Number of WHENs in CASE expression of SQL statements
Wpi: Number of variables corresponding to WITH clause of SQL statements

CLS: Number of areas generated per access path in an SQL object*

* The following formula can be used to obtain the number of areas where one access
path is generated in an SQL object.
Formula

a: Number of front-end servers
Specify 1 for the number of front-end servers.

b: Number of tables
Use the following formula to obtain the number of tables:
Number of base tables + number of correlation names

c: Number of set operation servers
If a set function is specified, specify 1; otherwise, specify 0.

d: Number of queries specifying GROUP BY, DISTINCT, or ORDER BY clause
e: Number of join servers

Use the following formula to obtain the number of join servers:
b - number of queries in SQL statement

* The access path display utility (pdvwopt) can be used to determine whether or not
SELECT_APSL is applied. For details about the access path display utility (pdvwopt),
see the manual HiRDB Version 8 Command Reference.

(2) Procedure for obtaining the size of the memory required when using stored
procedures

If stored procedures are used, the size of the memory (in KB) to be allocated during
SQL preprocessing is the value obtained from the formula shown in (1) above plus the
length of the procedure control object for each stored procedure. For the formula for
obtaining the length of a procedure control object, see the section on the

When SELECT_APSL is applied*

a + b 4 + c + d + e 2
When SELECT_APSL is not applied*

a + b + c + d + e

16. Storage Requirements for HiRDB

743

pd_sql_object_cache_size operand of the system common definition. For
details about the length of the procedure control object per stored procedure, see
Formula for determining the size of the routine control object of a routine in the
manual HiRDB Version 8 System Definition.

16.2.8 Formula for size of memory required during BLOB data
retrieval or updating (front-end server)

Use the following formula to determine the size of the memory required during BLOB
data retrieval or updating.
Formula

a: Maximum value from the following formula for BLOB input variables or output
variables specified in one SQL statement.

1 This is the actual length of BLOB data passed as embedded variables from the UAP
to the HiRDB server.
2 This is the declared length of the UAP embedded BLOB data type variables received
from the UAP and returned from HiRDB to the UAP. If it is an INSERT or SELECT
statement, the BLOB type reflected from the SELECT side is an output variable.
b: Maximum value from the following formula for a combination of SQL statements
performing join retrieval with simultaneously open cursors:

256 number of concurrently open cursors
c: Number of input variables
d: Number of output variables

a + b + 7 (KB)

{
 c

(actual length of BLOB input variable i1 2 + 58) +
i=1
 d

(specified length of BLOB output variable j2 + 26)
j=1

} 1024

16. Storage Requirements for HiRDB

744

16.2.9 Formula for size of memory required during BLOB data
retrieval or updating (back-end server or dictionary server)

Use the following formula to determine the size of the memory required during BLOB
data retrieval or update.
Formula

a: Maximum value from the following formula for BLOB input variables or output
variables specified in one SQL statement:

* This is the actual length of BLOB data passed as embedded variables from the UAP
to the HiRDB server.
This is the actual length of BLOB data passed as embedded variables from the UAP to
the HiRDB server.

c: Number of input variables
d: Number of cursors

16.2.10 Formula for size of memory required during block transfer or
array FETCH (front-end server)

To determine the size of the memory required for block transfer or array FETCH, use
the following formulas:

a + b
 (KB)

{
 c

(actual length of BLOB input variable i* + 118 + 70 number of output variables)
i=1

} 1024

d
{280 + 184 (number of tables specified in SQLi + 1)}

i=1

Condition Value specified in the PDBLKBUFFSIZE
operand

Omitted or 0 1 or greater

An array-type embedded variable is specified in the INTO
clause of FETCH statement

Formula 1

16. Storage Requirements for HiRDB

745

Legend:
: Not applicable

Formula 1

a: Number of retrieval items specified in the SELECT clause
b: Data length per row in the retrieval result obtained by the FETCH statement (sum of
the maximum length of each column in bytes)
c: Value specified by the PDBLKF operand or the number of array columns
d: Number of selection formulas with BINARY type specified in the search item
specified in the SELECT clause
Formula 2

X1: (864 + 22 a + 2 c + b) 1024

X2: Value of the PDBLKBUFFSIZE operand

a: Number or retrieved items that is specified in the SELECT clause
b: Data length per row in the retrieval results obtained by the FETCH statement (sum
of the length of each column that is actually obtained, in bytes)
c: Number of selection formulas with BINARY type specified in the search item
specified in the SELECT clause

An array-type embedded
variable is not specified
in the INTO clause of
FETCH statement

PDBLKF operand is omitted
or set to 1

Formula 2

PDBLKF operand is set to 2 or
greater

Formula 1

{864 + 16 a + (6 a + 2 d + b) c} 1024
 (KB)

MAX(X1,X2)
 (kilobytes)

Condition Value specified in the PDBLKBUFFSIZE
operand

Omitted or 0 1 or greater

747

Chapter

17. Determining RDAREA Size

This chapter explains how to determine the size of each type of RDAREA.
This chapter contains the following sections:

17.1 Determining the size of a user RDAREA
17.2 Determining the size of a data dictionary RDAREA
17.3 Determining the size of the master directory RDAREA
17.4 Determining the size of the data directory RDAREA
17.5 Determining the size of a data dictionary LOB RDAREA
17.6 Determining the size of a user LOB RDAREA
17.7 Determining the size of the registry RDAREA
17.8 Determining the size of the registry LOB RDAREA
17.9 Determining the size of the list RDAREA

17. Determining RDAREA Size

748

17.1 Determining the size of a user RDAREA

This section explains how to determine the size of a user RDAREA.

17.1.1 Calculating the size of a user RDAREA
(1) Formula for calculating the size of a user RDAREA

The following formula is used to calculate the size of a user RDAREA.
Formula

1 This is the page length specified in the create rdarea statement for the database
initialization utility or database structure modification utility.
2 See (2) as follows.

(2) Formula for calculating the total number of pages in a user RDAREA
The following formula is used to calculate the total number of pages in a user
RDAREA.

a: Number of HiRDB files constituting the user RDAREA
b: Page length of the user RDAREA (bytes)
c: Total number of tables in the user RDAREA
d: Total number of indexes to be stored in the user RDAREA
e: Segment size specified in the create rdarea statement for the database initialization
utility (pdinit) or database structure modification utility (pdmod)

f: {b - 20} {(e 32 8) + 56}

Size of user RDAREA (bytes)
= Page length of the user RDAREA1 total number of pages in the user RDAREA2

Total number of pages in a user RDAREA =
 a
 { Si f + Si g }
 i=1
 c
 + { Ti e e}
 i=1
 d
 + { (Ii + 1) e e} + 6 (a + 1) + 2 20480 b
 i=1

17. Determining RDAREA Size

749

g: (125 b) (16 f) f
Si: Number of segments in each HiRDB file that is specified in the create rdarea
statement for the database initialization utility (pdinit) or database structure
modification utility (pdmod)
Ti: Number of pages required to store each table (see 17.1.2 Calculating the number of
table storage pages)
Ii: Number of pages required to store each index (see 17.1.3 Calculating the number
of index storage pages)

17.1.2 Calculating the number of table storage pages
The procedure used to calculate the number of pages required to store a table depends
on whether or not FIX is specified for the table in CREATE TABLE. The procedures are
explained in (1) and (2) as follows. The variables used in the formulas are explained
in (3), and examples of calculating the number of pages needed to store a table are
presented in (7). Estimating the RDAREA size when the rebalancing facility is used is
explained in (6).
If a table is row-partitioned, the number of pages for the table in each storage
RDAREA must be obtained.

(1) FIX not specified
When FIX is not specified, the following formula is used to calculate the number of
pages needed to store a table.
Formula

(a) How to obtain the value of P
Use the following formula to obtain the value of P. The denominator enclosed in
parentheses indicates the number of rows stored per page; its minimum and maximum
values are 1 and 255, respectively.
Formula

17. Determining RDAREA Size

750

(b) How to obtain the value of PSi
Use the following formula to obtain the value of each PSi and then obtain their sum,
where n indicates the number of columns to which Table 17-2 Data lengths for the
variable-length character string type (except abstract data type and repetition
columns) is applicable.

(2) FIX specified
When FIX is specified, the following formula is used to calculate the number of pages
needed to store a table.
Formula

(a) How to obtain the value of Q
Use the following formula to obtain the value of Q, in which the denominator enclosed
in parentheses indicates the number of rows stored per page; its minimum and
maximum values are 1 and 255, respectively.

PSi = a ei/(b - 62)

17. Determining RDAREA Size

751

(3) Variables used in formulas
a: Total number of rows stored in table
b: Page length of user RDAREA (bytes)
c: Percentage of unused area specified with CREATE TABLE (%)

If you omit the percentage of unused area, the system assumes 30%.
di: Data length of a column (bytes)

Obtain the values for all columns from Table 17-1 List of data lengths.
For a column with an abstract data type, see (4) How to obtain the data lengths of
abstract data type columns.
For a repetition column, see (5) How to obtain the data lengths of repetition
columns.

ei: Average column data length (bytes)

• For columns defined as a provided data type, see Table 17-2 Data lengths for
the variable-length character string type (except abstract data type and
repetition columns) and obtain the values only for the columns with data
types listed in this table.

• For columns defined as an abstract data type, see Table 17-3 Data lengths for
the variable-length character string type (abstract data type) and obtain the
values only for the columns with data types listed in this table.

• For repetition columns, see Table 17-4 Data lengths for the variable-length

17. Determining RDAREA Size

752

character string type (repetition columns) and obtain the values only for the
columns with data types listed in this table.

f: Total number of columns defined for table
g: Segment size of RDAREA for storing table (pages)
h: Percentage of free pages in segment specified with CREATE TABLE (%)

If you omit the percentage of free pages in segment, the system assumes 10%.
Here, free pages refers to unused pages.
Table 17-1: List of data lengths

Classification Data type Data length (bytes)

Numeric data INTEGER 4

SMALLINT 2

LARGE DECIMAL(m,n)1 m/2 + 1 2

FLOAT or DOUBLE PRECISION 8

SMALLFLT or REAL 4

Character data CHARACTER(n) n 3

VARCHAR(n)
(variable-length
character string)

d 255 Element of repetition
column

d + 2

Other d + 1

d 256 6

VARCHAR (n)
with no-split
option specified

n 255 Attribute of abstract data
type

d + 3

Element of repetition
column

d + 2

Other d + 1

n 256 Branching 5 6

Not
branching
5

Attribute of
abstract
data type

d + 3

Element of
repetition
column

d + 2

Other d + 3

17. Determining RDAREA Size

753

National character
data

NCHAR(n) or NATIONAL CHARACTER(n) 2 n 4

NVARCHAR(n) d 127 Element of repetition
column

2 d + 2

Other 2 d + 1

d 128 6

NVARCHAR(n)
with no-split
option specified

n 127 Attribute of abstract data
type

2 d + 3

Element of repetition
column

2 d + 2

Other 2 d + 1

n 128 Branching 5 6

Not
branching
5

Attribute of
abstract
data type

2 d + 3

Element of
repetition
column

2 d + 2

Other 2 d + 3

Classification Data type Data length (bytes)

17. Determining RDAREA Size

754

d: Actual data length (in characters)
m, n: Positive integer

Mixed character
string data

MCHAR(n) n 3

MVARCHAR(n) d 255 Element of repetition
column

d + 2

Other d + 1

d 256 6

MVARCHAR(n)
with no-split
option specified

n 255 Attribute of abstract data
type

d + 3

Element of repetition
column

d + 2

Other d + 1

n 256 Branching 5 6

Not
branching
5

Attribute of
abstract
data type

d + 3

Element of
repetition
column

d + 2

Other d + 3

Date data DATE 4

Time data TIME 3

Date interval data INTERVAL YEAR TO DAY 5

Time interval data INTERVAL HOUR TO SECOND 4

Timestamp data TIMESTAMP(n) 7 + (n 2)

Large object data BLOB 9

Binary data BINARY(n) n 255 d + 3

n 256 Branching 5 15

Not branching 5 d + 3

Classification Data type Data length (bytes)

17. Determining RDAREA Size

755

1 This is a fixed decimal number consisting of a total of m digits and n decimal places.
If m is omitted, 15 is assumed.
2 If the SUPPRESS DECIMAL table option is specified in the table definition, the data
length will be " k / 2 + 2", where k is the number of significant digits during
storage (excluding leading zeros). If the condition shown as follows is satisfied,
SUPPRESS DECIMAL should not be used (a in the condition is the total data lengths of
the columns in the table when SUPPRESS DECIMAL or column data suppression is not
used):
32717 < (a + number of columns in table 2 + 8)
3 If column data suppression is specified and data suppression actually occurs, the
value of n is n - b + 4. Data suppression occurs only when column data suppression is
specified, the column data ends with the blank character, and this blank character is
immediately followed by at least four single-byte blank characters. b is the number of
blank characters following the last character of the column data.

If column data suppression is specified but data suppression does not actually
occur, one byte of information is added to each column. However, if the condition
shown below is satisfied, column data suppression should not be specified (a in
the condition is the total data lengths of the columns in the table when SUPPRESS
DECIMAL or column data suppression is not used):
32717 < (a + number of columns in table 2 + 8)

4 If column data suppression is specified and data suppression actually occurs, 2 n
becomes 2 n - 2 b + 5. Data suppression occurs only when column data
suppression is specified, the column data ends with the blank character, and this blank
character is immediately followed by at least three double-byte blank characters. b is
the number of blank characters following the last character of the column data.

However, if the condition shown below is satisfied, column data suppression
should not be specified (a in the condition is total data lengths of the columns in
the table when SUPPRESS DECIMAL or column data suppression is not used):
32717 < (a + number of columns in table 2 + 8)

5 Normally the calculation assumes that there is no branching. Branch only when the
following condition is satisfied:

If this branch condition is satisfied, recalculate the value of BL assuming that each

BL > page length - 50
 f
BL (bytes) = di + 2 f + 6
 i=1

17. Determining RDAREA Size

756

column branches, starting with the column having the smallest column number
until the column no longer satisfies the branch condition. Furthermore, add the
value obtained from the following formula to the value of P:

The formula for A is as follows:

f: Number of branch columns
SF: 1.3

Use a value greater than 1.3 in the following cases:
• A large number of columns with the abstract data type will be updated.

SPN=SPN1 + SPN2 + SPN3 + SPN4

 Columns other than BINARY type
SPN1=
 f
 value of branch di (b - 61) a SF
 i=1

 BINARY type columns
 Number of page branches due to INSERT

 SPN2=
 f
 { value of branch di (b - 59) a + A} SF
 i=1

 Number of page branches due to pdload or pdrorg
 When value of branch di > (b - 2853) 255
 SPN3 =
 f
 { (value of branch di + 11) a} (b - 48) SF
 i=1
 When value of branch di (b - 2853) 255
 SPN4 =
 a 255 SF

17. Determining RDAREA Size

757

• A large number of repetition columns will be updated in such a manner that
the elements' data lengths increase or the number of elements increases.

• A large number of VARCHAR, NVARCHAR, MVARCHAR, or BINARY columns
will be updated in such a manner that the updates will increase the data
length.

• A large number of BINARY columns will be updated in such a manner that
the updates will increase the data length.

• A large number of columns with data suppressed will be updated in such a
manner that their data lengths increase.

• A large number of columns other than those above will be updated in such a
manner that the NULL values are changed to non-NULL values.

Table 17-2: Data lengths for the variable-length character string type (except
abstract data type and repetition columns)

d: Actual data length (in characters)
(4) How to obtain the data lengths of abstract data type columns

Use the following formula to obtain data length di of an abstract data type column.

Formula

h: Inheritance count for the abstract data type
If there is no inheritance, this value is 1.
If you have specified the UNDER operand in the CREATE TYPE statement to inherit
another abstract data type, the highest abstract data type is h and the lowest
abstract data type is 1.

Data type Data length (bytes)

VARCHAR (n) d 256 d + 2

No-split option specified 0

NVARCHAR (n) d 128 2 d + 2

No-split option specified 0

MVARCHAR (n) d 256 d + 2

No-split option specified 0

 h
di = ADTk + 5
 k=1

17. Determining RDAREA Size

758

ADTk: Data length of the abstract data type (bytes)

Use the following formula to obtain this value:

m: Total number of attributes of the abstract data type
attj: Data length for each attribute of the abstract data type (bytes)

If there is no inheritance, m = 1; therefore, calculate the value of ADT1.

For the data lengths for each attribute, see Table 17-1 List of data lengths. If the data
type satisfies the condition shown in Table 17-3 Data lengths for the variable-length
character string type (abstract data type), calculate the data according to Table 17-3.
Assign the value of the corresponding attej to the following formula and add branch
row storage pages ADTLS to P:

When attributes are defined as an abstract data type, use the following formula to
obtain their data length:

Table 17-3: Data lengths for the variable-length character string type (abstract
data type)

 m
ADTk= attj + 10 + 2 m
 i=1

 h
ADTLS= attej (b - 62) a
 I=1

 h
attj(bytes)= ADTk + 5
 k=1

Data type Condition Data length attj
(bytes)

Data length of
branch section

attej (bytes)

VARCHAR (n) d 256 8 d + 2

No-split option
specified

d + 3 0

NVARCHAR (n) d 128 8 2 d + 2

No-split option
specified

2 d + 3 0

17. Determining RDAREA Size

759

d: Actual data length (in characters)
(5) How to obtain the data lengths of repetition columns

Use the following formula to obtain the data length of a repetition column:
Formula

eli: Data length of a repetition column

Obtain the data length from Table 17-1 List of data lengths.
For the variable-length character string type, obtain the data length from Table
17-4 Data lengths for the variable-length character string type (repetition
columns).

eni: Average number of elements for a repetition column

Table 17-4: Data lengths for the variable-length character string type (repetition
columns)

MVARCHAR (n) d 256 8 d + 2

No-split option
specified

d + 3 0

di = 4 + (eli + 1) eni

Data type Condition Data length eli
(bytes)

Data length of
branch section

esj (bytes)

VARCHAR (n) d 256 5 d + 2

No-split option
specified

d + 2 0

NVARCHAR (n) d 128 5 2 d + 2

No-split option
specified

2 d + 3 0

MVARCHAR (n) d 256 5 d + 2

No-split option
specified

d + 2 0

Data type Condition Data length attj
(bytes)

Data length of
branch section

attej (bytes)

17. Determining RDAREA Size

760

d: Actual data length (in characters)
If a repetition column with the variable-length character string type satisfies the value
of eli shown in Table 17-4, add the value obtained from the following formula to P:

m: Number of repetition columns with the variable-length character string type that
satisfy the condition shown in Table 17-4.
esi: Average value of the actual data length per element

Apply the data length shown in Table 17-2 Data lengths for the variable-length
character string type (except abstract data type and repetition columns).

(6) How to estimate the area when the rebalancing facility is used
If there are partitioning tables that use any one of the HASHA through HASHF hash
functions, the data is divided into 1,024 hash element values, each of which is stored
in a separate segment.
An average of (1024 number of partitions) hash elements of data is stored in each
partitioned RDAREA. Therefore, at a minimum, enough segments must be allocated
to each RDAREA to store the number of elements.
When the rebalancing facility is used, the RDAREA size can be estimated as follows:
1. The total number of segments Sn that will be required is estimated from the

number of items of data N, row length L, and page length P.
2. Estimate the number of segments Ssn required per RDAREA.

Ssn = Sn Srn Srn

Srn: 1024 Dvn
Dvn: Number of RDAREA partitions

3. Estimate the number of segments S used per RDAREA, making provision for a
surplus.

S = (Ssn K) Srn Srn
K: Coefficient (Example: 20% surplus, 1.2)

(7) Examples of calculating the number of table storage pages
(a) Example

Obtain the number of table storage pages for the following STOCK table:

 m
 { esi eni + 14 (eni - 1)} (b - 62) a

 i=1

17. Determining RDAREA Size

761

Conditions:
1. Total number of rows stored in the table: 10,000
2. Page length of user RDAREA: 8,192 bytes
3. Percentage of unused space specified with CREATE TABLE: 30%
4. Number of columns: 6
5. Segment size for storing table: 100 pages
6. Percentage of free pages in a segment specified in CREATE TABLE: 40%
7. Columns' data types:

PCODE PNAME STANDARD PRICE QUANTITY COST

20180 CLEANER C20 20000 26 15000

20190 CLEANER C77 28000 105 23000

20130 REFRIGERATOR P10 30000 70 25000

20220 TV K18 35000 12 30000

20200 CLEANER C89 35000 30 30000

20140 REFRIGERATOR P23 35000 60 30000

20280 AMPLIFIER L10 38000 200 33000

20150 REFRIGERATOR P32 48000 50 43000

20290 AMPLIFIER L50 49800 260 45000

20230 TV K20 50000 15 45000

20160 REFRIGERATOR P35 55800 120 50000

Column Data type

PCODE CHARACTER(5)

PNAME CHARACTER(4)

STANDARD CHARACTER(3)

PRICE INTEGER

QUANTITY INTEGER

COST INTEGER

17. Determining RDAREA Size

762

FIX not specified
1. Calculation of row length

5(PCODE) + (2 4)(PNAME) + 3(STANDARD) + 4(PRICE) + 4(QUANTITY) +
4(COST) = 28 bytes

2. Calculation of P

3. Calculation of the number of table storage pages

FIX specified
1. Calculation of row length

5(PCODE) + (2 4)(PNAME) + 3(STANDARD) + 4(PRICE) + 4(QUANTITY) +
4(COST) = 28 bytes

2. Calculation of Q

17. Determining RDAREA Size

763

3. Calculation of the number of table storage pages

17.1.3 Calculating the number of index storage pages
The procedure used to calculate the number of pages required to store an index is
explained in (1) as follows. The variables used in the formulas are explained in (2), and
examples of calculating the number of pages needed to store an index are presented in
(3).
If cluster key is specified with CREATE TABLE, the number of cluster key storage
pages should be obtained in the same manner as for the number of index storage pages.
If an index is row-partitioned, the number of pages for the index in each storage
RDAREA must be obtained.
Note

When an index page split occurs, the storage ratio of the keys in the index is
50:50, and the index is divided into two indexes. Therefore, if there are many
additions or updates to an index, make the estimate for the maximum number of
index storage pages double the calculated value. Also, even if there are inserts
from the UAP, the index page split of the leaf page that stores the largest key
considers the value of the PCTFREE operand.
One method to reduce the frequency of index page splits is unbalanced index
splits. For details about index page splits and unbalanced index splits, see the
manual HiRDB Version 8 System Operation Guide.

(1) Calculation procedure
The following formula is used to calculate the number of pages needed to store an
index.
Formula

The recursive formula shown in Formula 1 as follows is used to obtain Pi. Pi + 1 must
be calculated until Pn = 1, then the sum of the results must be obtained.

 n
Number-of-index-storage-pages = Pi + Pd
 i=1

17. Determining RDAREA Size

764

The value of Pd must be obtained if the number of duplicated key values exceeds 200.
The formula for obtaining the value of Pd is shown in Formula 2 as follows:

Formula 1

17. Determining RDAREA Size

765

Formula 2

Number of duplicated elements per row when the index contains repetition columns
If the index contains repetition columns, the number of duplicated elements per
row must not exceed the following value:

(2) Variables used in formulas
a: Page length of user RDAREA (bytes)

b: Percentage of unused space specified with CREATE TABLE1(%)

c: Number of keys with up to 200 duplicated key values#2, #3, #4

d: Average number of duplicates for keys with up to 200 duplicated key values#3, #5

e: Number of keys with more than 200 duplicated key values,#3, #4

f: Average number of duplicates for keys with more than 200 duplicated key values#3,

#5

g: DB storage key length#6 (bytes)
h: One of the following:

• For a unique index: Number of keys not containing a null value
For a multicolumn index, the total number of keys not containing a null value
in its component columns.

• For other than unique index: 0
#1

If no percentage of unused space is specified, 30% should be used in the
calculation. If a cluster key is specified, the percentage of unused space specified
with CREATE TABLE should be used.

Number of duplicated elements = (a 0.95 - 82) 4 - 1

17. Determining RDAREA Size

766

#2
Non-duplicated keys in unique indexes must be included.

#3
Calculate so that the value of c d + e f is larger than the total number of index
keys.

#4
Duplicate keys in unique indexes must be included (keys that are duplicate due to
the fact that the key contains a null value).

#5
Round up fractions to an integer value.

#6
See Table 17-5 List of index key lengths. The length of the DB storage key can be
obtained from the following formula:

• For single column indexes and fixed-size multicolumn indexes

key-length 4 4
• For variable-size multicolumn indexes with a key length of 255 bytes or less

(key-length + 1) 4 4
• For variable-size multicolumn indexes with a key length of 256 bytes or

more

(key-length + 2) 4 4
The key length of a multicolumn index is the sum of the key lengths of its
component columns based on the key lengths shown in Table 17-5 List of index
key lengths.

17. Determining RDAREA Size

767

Table 17-5: List of index key lengths

Classifi-
cation

Data type Data length (bytes)

Key length less than 256 Key length 256 or greater

Single-
column
index

Multicolumn index Single-
column
index

Multicolumn index

Fixed
length1

Variable
length2

Fixed
length1

Variable
length2

Numeric
data

INTEGER 4 5 6 N 5 7

SMALLINT 2 3 4 N 3 5

LARGE
DECIMAL(m,n)3

 m 2
 + 1

 m
2 + 2

 m
2 + 3

N m
2 + 2

 m
2 + 4

FLOAT or
DOUBLE
PRECISION

8 E E E E

SMALLFLT or
REAL

4 E E E E

Character
data

CHARACTER(n) n n + 1 n + 2 n n + 1 n + 3

VARCHAR(n) a + 1 N a + 2 a + 2 N a + 3

National
character
data

NCHAR(n) or
NATIONAL
CHARACTER(n)

2 n 2 n + 1 2 n + 2 2 n 2 n + 1 2 n + 3

NVARCHAR(n) 2 b + 1 N 2 b + 2 2 b + 2 N 2 b + 3

Mixed
character
data

MCHAR(n) n n + 1 n + 2 n n + 1 n + 3

MVARCHAR(n) a + 1 N a + 2 a + 2 N a + 3

Date data DATE 4 5 6 5 7

Time data TIME 3 4 5 4 6

Date
interval
data

INTERVAL
YEAR TO DAY

5 6 7 6 8

Time
interval
data

INTERVAL
HOUR TO
SECOND

4 5 6 5 7

Timestam
p data

TIMESTAMP(p) 7 + (p 2) 8 +
(p 2)

9 +
(p 2)

8 +
(p 2)

10 +
(p 2)

17. Determining RDAREA Size

768

Legend:
a: Actual data length
b: Actual number of characters
m, n, p: Positive integer
E: Error occurs during index definition

: Not applicable
Note

Begin calculation with a key length less than 255 bytes. If it turns out that the key
length is 256 bytes or greater, recalculate at a key length of 256 bytes or greater.

1 Key length of an index that contains only fixed-length component columns.
2 Key length of an index that contains variable-length component columns.
3 This is a fixed decimal number consisting of a total of m digits and n decimal places.
If m is omitted, 15 is assumed.

(3) Examples of calculating the number of index storage pages
(a) Example 1

Obtain the number of index storage pages for a unique index (no duplicated key
values) of the PCODE column for the following STOCK table:

PNO PNAME STANDARD PRICE QUANTITY COST

20180 CLEANER C20 20000 26 15000

20190 CLEANER C77 28000 105 23000

20130 REFRIGERATOR P10 30000 70 25000

20220 TV K18 35000 12 30000

20200 CLEANER C89 35000 30 30000

20140 REFRIGERATOR P23 35000 60 30000

20280 AMPLIFIER L10 38000 200 33000

20150 REFRIGERATOR P32 48000 50 43000

20290 AMPLIFIER L50 49800 260 45000

20230 TV K20 50000 15 45000

20160 REFRIGERATOR P35 55800 120 50000

17. Determining RDAREA Size

769

Conditions:
1. Total number of index keys: 10,000
2. Page length of user RDAREA: 8,192 bytes
3. Percentage of unused space specified with CREATE TABLE: 30%
4. Data type of index: CHARACTER
5. Index key length: 5 bytes
6. Number of key duplicates: 1

17. Determining RDAREA Size

770

Formula

(b) Example 2
Obtain the number of index storage pages for the STOCK table shown in Example 1
when the PNAME column is used as the index (with duplicated key values).
Conditions:

17. Determining RDAREA Size

771

1. Total number of index keys: 10,000
2. Page length of user RDAREA: 8,192 bytes
3. Percentage of unused space specified with CREATE TABLE: 30%
4. Data type of index: NCHAR
5. Index key length: 4 characters (Kanji characters)
6. Number of keys with more than 200 duplicated key values: 1

(Average number of duplicates: 250)
7. Number of keys with up to 200 duplicated key values: (10000 - 250)/5 =

1950 (Average number of duplicates: 5)

17. Determining RDAREA Size

772

Formula

17. Determining RDAREA Size

773

Obtain the number of index storage pages for the following MEMBERSHIP_TABLE
using the SEX and YEAR_JOINED columns as a multicolumn index:

Conditions:
1. Total number of index keys: 10,000
2. Page length of user RDAREA: 8,192 bytes
3. Percentage of unused space specified with CREATE INDEX: 30%
4. Number of members joined in 1964: 1,000
5. Number of members joined in any other year: 200 or fewer
6. Period covered: 31 years from 1965 to 1995
7. The same numbers of male and female members are assumed to have joined

each year.
8. Data types of columns:

Formula:
1. The number of keys (c) for members who joined within 31 years after 1965

(no more than 200 per year including both male and female members): c =
31 2 = 62

2. The average number of duplicates (d) is: d=(10000-1000) 62=146.

MNO NAME AGE SEX YEAR_JOINED

0001
0002
0003
0004

1000

Lisa Roberts
John Anderson

Jane Wood
Mark Wood

Joe Young

18
25
24
25

30

F
M
F
M

M

1983
1967
1987
1964

1995

Column Data type

MNO CHARACTER(5)

NAME NCHAR(4)

AGE INTEGER

SEX CHARACTER(4)

YEAR_JOINED INTEGER

17. Determining RDAREA Size

774

3. Number of keys (e) for members who joined in 1964 (1,000 members
including both male and female members): e = 2

4. Average number of duplicates (f): f = 1000/2 = 500
5. DB storage key length (g) of the SEX and YEAR_JOINED columns:

g = (4 + 1 + 5)/4 4 = 12

17. Determining RDAREA Size

775

17. Determining RDAREA Size

776

17.2 Determining the size of a data dictionary RDAREA

You can use the create rdarea statement of the database structure modification
utility (pdmod) to create the following two types of data dictionary RDAREA:

• Normal data dictionary RDAREA
Specify datadictionary or datadictionary of routines in the create
rdarea statement.

• Data dictionary RDAREA for storing database state analyzed tables and database
management tables

Specify datadictionary of dbmanagement in the create rdarea
statement.

You must determine the size of each RDAREA of either of these types.

17.2.1 Determining the size of a normal data dictionary RDAREA
(1) Formula for calculating the size of a data dictionary RDAREA

Use the following formula to determine the size of a data dictionary RDAREA that will
be created by the create rdarea statement with datadictionary or
datadictionary of routines specified:
Formula

a: Page length of the data dictionary RDAREA1

b: Total number of pages in the data dictionary RDAREA2

c: Segment size of the data dictionary RDAREA3

1 This is the page length specified in the create rdarea statement of the database
initialization utility (pdinit) or database structure modification utility (pdmod).
2 This is the number of table storage pages + number of index storage pages (see (2)
and (3) as follows).
3 This is the segment size specified in the create rdarea statement of the database
initialization utility (pdinit) or database structure modification utility (pdmod).

Size of a data dictionary RDAREA (bytes)
= a b 1.3 + c 125 + 1600000
Size of data dictionary RDAREA = a b 1.3 + c 125 + 1600000
(bytes)

17. Determining RDAREA Size

777

(2) Calculating the number of table storage pages
The number of pages required to store tables is the sum of the values obtained from
Formulas 1 through 22.

(a) Formula 1

a: Total number of tables
b: Page length of data dictionary RDAREA (bytes)

Dictionary
table name

Formula

SQL_TABLES

SQL_COLUMN
S

SQL_DIV_TA
BLE

17. Determining RDAREA Size

778

c: Average length of column names (bytes)
d: Average length of the names of the RDAREAs for storing the tables
e: Average length of the comments in the tables (bytes)
f: Average length of the names of the columns for which table partitioning conditions
are specified (bytes)
g: Average number of table columns
h: Average length of the authorization identifiers (bytes)
i: Average length of the table identifiers (bytes)
j: Average length of the comments on the columns (bytes)
k: Average length of the authorization identifiers of the base tables used to create view
tables (bytes)
m: Average length of the column names in the base tables used to create view tables
(bytes)
n: Average length of the table identifiers of the base tables used to create view tables
(bytes)
p: Average length of the names of user-defined data types (bytes)
q: Average number of table row partitioning conditions
t: Average length of PLUGIN clauses (bytes)
u: Average length of foreign server name (bytes)
w: Average value for the name of the insert history maintenance column (bytes)
y: Average base length of constants specified in the DEFAULT clause (bytes)

For details on how to calculate the base length, see the section on data codes and
data lengths set in the SQL descriptor area in the manual HiRDB Version 8 UAP
Development Guide.

A: Average length of constants specified in the DEFAULT clause (bytes)
If the specified constant is a literal, this is the apparent length of the literal. If there
is a possibility that the length of the constant will increase, keep the post-update
length in mind when making the calculation. Character literals are indicated by
notations, such as N for National character column literals, M for mixed character
column literals, X for hexadecimal character literals, and single quotation marks
('). Constant specification is in bytes.
Example:

'HiRDB': 7 bytes

17. Determining RDAREA Size

779

X'4869524442': 13 bytes
CURRENT_TIME: 12 bytes
100: 3 bytes

B: Average length of table row partitioning conditions (bytes)
C: Specified number of table storage RDAREAs

(b) Formula 2
Dictionary table name Formula

SQL_INDEXES

SQL_INDEX_COLINF

SQL_DIV_INDEX

SQL_EXCEPT

17. Determining RDAREA Size

780

a: Page length of the data dictionary RDAREA (bytes)
b: Average length of table identifiers (bytes)
c: Total number of indexes
d: Average length of index identifiers (bytes)
e: Average number of index exception key values per index
f: Average length of index identifiers (bytes)
g: Average length of column names (bytes)
i: Average number of table row partitioning conditions
j: Average length of the names of the RDAREAs for storing indexes (bytes)
k: Average number of columns constituting indexes
m: Average length of the index type names (bytes)
n: Average length of PLUGIN clause specifications (bytes)
p: Average length of plug-in index application function names (bytes)
q: Average length of abstract data type names (bytes)
r: Average length of attribute names (bytes)
s: Number of application functions per plug-in index
t: Total number of plug-in indexes

SQL_INDEX_DATATYPE

SQL_INDEX_FUNCTION

Dictionary table name Formula

17. Determining RDAREA Size

781

(c) Formula 3

a: Page length of the data dictionary RDAREA (bytes)
b: Average length of authorization identifiers (bytes)
c: Average length of table identifiers (bytes)

Dictionary table name Formula

SQL_TABLE_ PRIVILEGES

SQL_RDAREA_ PRIVILEGES

SQL_VIEW_ TABLE_USAGE

SQL_VIEWS

SQL_VIEW_DEF*

17. Determining RDAREA Size

782

d: Number of access privileges defined
• If you have granted the privilege to n users per table, the value is the number

of tables for which the privilege is granted times n.
• If you have granted the privilege to PUBLIC, the value is one (user).
• If you have granted the privilege to a group, one group ID is treated as one

(user).
e: Total number of RDAREAs
f: Average length of the names of RDAREAs for storing tables (bytes)
g: Average length of SQL statements for defining view tables (bytes)
h: Total number of view definitions
i: Average number of columns for a view table
* These tables are used by the system.

(d) Formula 4

E: {e h + 2 h + (h - 1)} + 1
F: {e i + 2 i + (i- 1)} + 1
G: {2 h + (h - 1)} + 1
H: {2 i + (i - 1)} + 1
a: Page length of the data dictionary RDAREA (bytes)
b: Average length of the constraint names (bytes)
c: Average length of the authorization identifiers (bytes)
d: Average length of the table identifiers (bytes)
e: Average length of the column names for which a foreign key has been defined
(bytes)

Data dictionary table
name

Formula

SQL_REFERENTIAL_
CONSTRAINTS

17. Determining RDAREA Size

783

f: Average length of the column names for which a primary key has been defined
(bytes)
h: Average number of columns constituting the foreign keys
i: Average number of columns constituting the primary keys

(e) Formula 5

a: Page length of the data dictionary RDAREA (bytes)
b: Total number of RDAREAs

c: Average length of RDAREA names (bytes)
d: Average length of schema authorization identifiers (bytes)
e: Total number of schemas
f: Total number of HiRDB files constituting all RDAREAs
g: Average length of the names of HiRDB files constituting all RDAREAs (bytes)
h: Average length of a password (bytes)

Dictionary table name Formula

SQL_PHYSICAL_FILES

SQL_RDAREAS

SQL_USERS

17. Determining RDAREA Size

784

(f) Formula 6

a: Total number of row-partitioned tables
b: Page length of the data dictionary RDAREA (bytes)
c: Average length of the names of the RDAREAs for storing tables (bytes)
d: Average number of table row partitioning conditions
e: Average length of authorization identifiers (bytes)
f: Average length of table identifiers (bytes)
g: Average length of the condition values for character-string columns for which table
partitioning conditions are specified (bytes)
h: Average length of the condition values for numeric columns for which table
partitioning conditions are specified (bytes)
* These tables are used by the system.

(g) Formula 7

Dictionary table name Formula

SQL_DIV_TABLE_REGULARSIZE*

Dictionary table name Formula

SQL_TABLE_STATISTICS1

SQL_COLUMN_STATISTICS1

17. Determining RDAREA Size

785

a: Total number of tables for which optimizing information is to be collected
b: Page length of the data dictionary RDAREA (bytes)
c: Average length of column names (bytes)
e: Average length of authorization identifiers (bytes)
f: Average length of table identifiers (bytes)
g: Total number of indexes defined for tables for which optimizing information is
collected
h: Average length of index identifiers (bytes)
i: Number of index key column values for tables for which optimizing information is
collected2

1 These tables are used by the system.
2 If the number of key column values < 100, then i = number of key column values.

If the number of key column values 100, then i = 100.
(h) Formula 8

a: Total number of BLOB column storage RDAREAs
b: Page length of the data dictionary RDAREA (bytes)
c: Average length of column names (bytes)

SQL_INDEX_STATISTICS1

Dictionary table name Formula

SQL_DIV_COLUMN

Dictionary table name Formula

17. Determining RDAREA Size

786

d: Average length of the names of the RDAREAs for storing tables (bytes)
e: Average length of authorization identifiers (bytes)
f: Average length of table identifiers (bytes)
h: Average length of component names (bytes)

(i) Formula 9
Dictionary table name Formula

SQL_ROUTINES

SQL_ROUTINE_RESOURCES

SQL_ROUTINE_PARAMS

17. Determining RDAREA Size

787

a: Total number of routines
b: Page length of the data dictionary RDAREA (bytes)
c: Average length of routine names (bytes)
d: Average length of authorization identifiers (bytes)

e: Average length of specified names1 (bytes)
f: Average length of parameter names (bytes)

g: Average length of authorization identifiers of resource2 owners (bytes)

h: Average length of resource2 names (bytes)

i: Average number of resources2 per routine
j: Average number of parameters per routine
k: Average length of abstract data type names (bytes)
m: Average length of user-defined data type names (bytes)
n: Average length of external routine names (bytes)
p: Average length of Java class name (bytes)
q: Average length of Java archive name (bytes)
r: Average length of data type name for Java return value (bytes)
s: Average length of name with Java parameter data type (bytes)
t: Average length of column names specified by old or new value correlation names
(bytes)
1 Indicates authorization-identifier.routine-identifier.
2 Resources include tables and indexes.

(j) Formula 10
Dictionary table name Formula

SQL_ALIASES

17. Determining RDAREA Size

788

a: Total number of tables for which aliases are defined
b: Page length of the data dictionary RDAREA (bytes)
c: Average length of authorization identifiers of tables for which aliases are defined
(bytes)
d: Average length of table aliases (bytes)
e: Average length of RD-node names (bytes)
f: Average length of base table names (bytes)

(k) Formula 11

a: Total number of user-defined data types
b: Page length of the data dictionary RDAREA (bytes)
c: Average length of attribute or field names (bytes)
d: Average length of user-defined data type comments (bytes)
e: Average number of attributes per data type
f: Average length of authorization identifiers (bytes)
g: Average length of data type identifiers (bytes)
h: Average length of authorization identifiers for supertype abstract data types (bytes)
i: Average length of data identifiers for supertype abstract data types (bytes)
j: Number of attributes defined for user-defined data types
k: Average length of authorization identifiers of abstract data types for attributes

Dictionary table name Formula

SQL_DATATYPES

SQL_DATATYPE_DESCRI
PTORS

17. Determining RDAREA Size

789

defined for user-defined data types (bytes)
m: Average length of data identifiers of abstract data types for attributes defined for
user data types (bytes)

(l) Formula 12

a: Average number of plug-in routines per plug-in
b: Page length of the data dictionary RDAREA (bytes)
c: Average length of routine names (bytes)

d: Average length of authorization identifiers (bytes)

e: Average length of specified names* (bytes)
f: Average length of parameter names per plug-in (bytes)
i: Average number of resources per routine
k: Total number of plug-ins
m: Average length of plug-in names (bytes)
n: Average length of abstract data type/index type names (bytes)

Dictionary table name Formula

SQL_PLUGINS

SQL_PLUGIN_ROUTINES

SQL_PLUGIN_ROUTINE_
PARAMS

17. Determining RDAREA Size

790

o: Average length of plug-in library path names (bytes)
p: Average length of plug-in comments (bytes)
q: Average length of timing indicators (bytes)
r: Average length of operation qualifiers (bytes)
s: Average length of operation qualifier code (bytes)
t: Average length of parameter qualifier information (bytes)
u: Average length of bind operation name (bytes)
v: Average length of parameter modifier information code (bytes)
* This means the authorization-identifier.routine-identifier.

(m) Formula 13

a: Total number of index types
b: Page length of the data dictionary RDAREA (bytes)
c: Average length of authorization identifiers (bytes)
d: Average length of index type identifiers (bytes)
e: Average length of abstract data type names (bytes)
f: Number of application functions per index type

Dictionary table name Formula

SQL_INDEX_TYPES

SQL_INDEX_TYPE_FUNCTION

17. Determining RDAREA Size

791

(n) Formula 14

a: Total number of plug-in indexes
b: Page length of the data dictionary RDAREA (bytes)
c: Average length of authorization identifiers (bytes)
d: Average length of index type identifiers (bytes)
e: Average length of abstract data type names (bytes)

g: Total number of attributes defined for abstract data types
h: Total number of abstract data types defined as subtypes
i: Total number of abstract data types
j: Average length of table identifier (bytes)

Dictionary table name Formula

SQL_INDEX_RESOURCES

SQL_TYPE_RESOURCES

SQL_TABLE_RESOURCES

17. Determining RDAREA Size

792

(o) Formula 15

a: Data dictionary RDAREA page length (bytes)
b: Number of files that compose the replica RDAREAs
c: Average length of names of HiRDB files that compose the RDAREAs (bytes)

(p) Formula 16

Dictionary table name Formula

SQL_IOS_GENERATIONS

Dictionary table name Formula

SQL_TRIGGERS

SQL_TRIGGER_COLUMNS

17. Determining RDAREA Size

793

a: Data dictionary RDAREA page length (bytes)
b: Total number of trigger definitions
c: Average length of trigger authorization identifiers (bytes)
d: Average length of trigger names (bytes)
e: Average length of authorization identifiers of tables defined by triggers (bytes)
f: Average length of names of tables defined by triggers (bytes)
g: Average length of old value correlation names (bytes)
h: Average length of new value correlation names (bytes)
i: Average length of specified names of trigger action procedures (bytes)
j: Average length of SQL statements when triggers were defined (bytes)
k: Number of triggers defined with UPDATE statement as the triggering event
m: Average length of column names specified in trigger events (bytes)
n: Average number of columns specified as trigger events
p: Number of resources in trigger action retrieval conditions

SQL_TRIGGER_DEF_SOURCE

SQL_TRIGGER_USAGE

Dictionary table name Formula

17. Determining RDAREA Size

794

q: Average length of authorization identifiers of resources in trigger action retrieval
conditions (bytes)
r: Average length of resource table names used in trigger retrieval action conditions
(bytes)
s: Average length of specified names used in trigger action retrieval conditions (bytes)

(q) Formula 17

a: Number of matrix partitions created

b: Data dictionary RDAREA page length (bytes)
c: Average number of table row partitioning conditions
d: Average length of column names specified in table row partitioning conditions
(bytes)
f: Average length of authorization identifiers (bytes)
g: Average length of table identifiers (bytes)
h: Average length of table row partitioning conditions (bytes)

Dictionary table name Formula

SQL_PARTKEY

SQL_PARTKEY_DIVISION

SQL_DIV_TYPE

17. Determining RDAREA Size

795

n: Number of matrix partitioning tables that combine hash partitioning and key range
partitioning with boundary values specified

(r) Formula 18

a: Data dictionary RDAREA page length (bytes)
b: Number of HiRDB files that compose duplicated RDAREAs
c: Average length of event type names (bytes)
d: Average length of event subtype names (bytes)
e: Average length of object type name (bytes)
f: Average length of object owner name (bytes)
g: Average length of object name (bytes)

(s) Formula 19

a: Data dictionary RDAREA page length (bytes)
b: Number of HiRDB files that compose duplicated RDAREAs
c: Average length of object type name (bytes)
d: Average length of object owner name (bytes)
e: Average length of object name (bytes)

Dictionary table name Formula

SQL_AUDITS

Dictionary table name Formula

SQL_AUDITS_REGULARIZE

17. Determining RDAREA Size

796

(t) Formula 20

a: Page length of the data dictionary RDAREA (bytes)
b: Total number of constraint definitions
c: Average length of the constraint authorization identifiers (bytes)
d: Average length of the constraint names (bytes)
e: Average length of the authorization identifiers for a table for which constraints have
been defined (bytes)
f: Average length of the names of tables for which constraints have been defined
(bytes)
g: Average length of the constraint type names (bytes)

(u) Formula 21

Data dictionary table name Formula

SQL_KEYCOLUMN_USAGE

Data dictionary table
name

Formula

SQL_TABLE_CONSTRAIN
TS

17. Determining RDAREA Size

797

a: Page length of the data dictionary RDAREA (bytes)
b: Total number of constraint definitions
c: Average length of the constraint authorization identifiers (bytes)
d: Average length of the constraint names (bytes)
e: Average length of the authorization identifiers for tables for which constraints have
been defined (bytes)
f: Average length of the names of tables for which constraints have been defined
(bytes)
g: Average length of the constraint type names (bytes)
h: Average length of SQL statements during check constraint definition (bytes)
i: Number of check constraint definitions
j: Average length of the column names specified for the columns for which check
constraints have been defined (bytes)
k: Average number of columns specified for the columns for which check constraints
have been defined
m: Average number of binary data items (check constraint search conditions and
analysis tree for check constraints) whose length is 256 or greater and that are subject
to branching.

SQL_CHECKS

SQL_CHECK_COLUMNS

Data dictionary table
name

Formula

17. Determining RDAREA Size

798

For details about the conditions for branching the number of binary storage pages,
see 17.1.2 Calculating the number of table storage pages.

X: Value obtained from the formula shown below, where all the variables are specified
in the check constraint search conditions:

In 32-bit mode: S 36 + T + (U1 + U2 + U3) 48 + V 128 + 1000
In 64-bit mode: S 72 + T + (U1 + U2 + U3) 96 + V 184 + 1400
S: Total number of Boolean operators, arithmetic operators (+ , -,*, /, and ||), and
system built-in scalar functions
T: Total length of literals (data type handled by HiRDB) (bytes)
U1: Number of CASE expressions and value expressions in CAST specification
U2: Number of value expressions in scalar functions (VALUE, SUBSTR,
BIT_AND_TEST, POSITION, TIMESTAMP, VARCHAR_FORMAT,
TIMESTAMP_FORMAT)
U3: Number of datetime formats
V: Number of column specifications

(v) Formula 22

(w) Formula 23

a: Page length of the data dictionary RDAREA (bytes)
b: Total number of public view table definitions

Data dictionary table
name

Formula

SQL_SYSPARAMS

Data dictionary table
name

Formula

SQL_PUBLICVIEW_
SAME_USERS

17. Determining RDAREA Size

799

c: Average number of duplicate names for each public view table* (bytes)
d: Average length of the table identifiers of public view tables (bytes)
e: Average length of the authorization identifiers (bytes)
* Average number of rows with the same TABLE_NAME column value in the
SQL_TABLES table per public view table identifier

(x) Formula 24

a: Number of foreign servers
b: Data dictionary RDAREA page length (bytes)
c: Average length of authorization identifiers (bytes)
d: Average length of foreign server names (bytes)
e: Average length of DBMS names used in foreign servers (bytes)
f: Average length of version identifiers of DBMSs used in foreign servers (bytes)
g: Total number of user mappings

Dictionary table name Formula

SQL_FOREIGN_SERVERS

SQL_USER_MAPPINGS

SQL_USAGE_PRIVILEGES*

17. Determining RDAREA Size

800

h: Average length of user passwords used by foreign servers (bytes)
k: Number of USAGE privilege definitions

If n people are granted this privilege for a foreign server, this would be the number
of foreign servers n.

* These are tables used by the system.
(3) Calculating the number of index storage pages

The following formula is used to calculate the number of pages required to store
indexes.
Formula

* See 17.1.3 Calculating the number of index storage pages to calculate the number of
index storage pages for dictionary tables; the following conditions apply:

1. The variables listed in Table 17-6 Variables used in the formulas for
obtaining the number of index storage pages must be used.

2. 30 must be used as the value for variable b (percentage of unused space
specified with CREATE INDEX).

3. 12 must be used as the value of variables e (number of keys with at least dx
+ 1 duplicated key values) and f (average number of key duplicates).

Table 17-6: Variables used in the formulas for obtaining the number of index
storage pages

Number of pages needed to store indexes
= number of index storage pages for dictionary tables* + 12

Table name Type Key length3

(Variable g1)

Number of key
types (Variable c1)

Average number of key
duplicates (Variable d1)

SQL_PHYSICAL_FIL
ES

1 8 Number of servers Average number of HiRDB files
in server

2 g + 1 Number of
RDAREAs

Average number of HiRDB files
constituting an RDAREA

SQL_RDAREAS 3 g + 1 Number of
RDAREAs

1

4 4

SQL_TABLES 5 d + e + 2 Total number of tables
+ 80

1

6 4

17. Determining RDAREA Size

801

SQL_COLUMNS 7 d + e + f + 3 a b 1

8 d + e + 6

9 4 b

SQL_INDEXES 10 d + e + 2 a h a

11 d + i + 2 h 1

12 4

SQL_USERS 13 d + 1 Number of
authorization
identifiers

1

SQL_RDAREA_
PRIVILEGES

14 d + 1 Number of unique
authorization
identifiers specified in
the USER USED BY
operand of the
database initialization
utility (pdinit)

Average number of RDAREA
access privileges used per user

15 g + 1 Number of
RDAREAs specified
in the USER USED BY
operand of the
database initialization
utility (pdinit)

Average number of users for
each RDAREA

SQL_TABLE_PRIVIL
EGES

16 d + 1 a y a

17 2 d + e + 3 y 1

SQL_DIV_TABLE 18 d + e + 6 Total number of table
partitions

1

19 g + 1 Number of unique
RDAREAs specified
when partitioning
table

Average number of tables stored
in RDAREAs

20 4

SQL_DIV_TABLE_RE
GULARSIZE

21 d + e + 6 Total number of table
partitions

1

22 4 Number of
row-partitioned tables

Average number of table
partitions

Table name Type Key length3

(Variable g1)

Number of key
types (Variable c1)

Average number of key
duplicates (Variable d1)

17. Determining RDAREA Size

802

SQL_INDEX_COLINF 23 d + e + 6 Number of unique
tables with index
definitions

Average number of columns
constituting an index

24 d + i + 6 Number of columns
constituting an index

1

SQL_TABLE_STATIS
TICS

25 d + e + 2 Total number of tables
(including dictionary
tables)

1

SQL_COLUMN_STATI
STICS

26 d + e + f + 3 h 1

SQL_INDEX_STATIS
TICS

27 d + e + 2 Total number of tables
for which an index is
defined

 h a

28 d + i + 2 h 1

SQL_VIEW_TABLE_U
SAGE

29 d + e + 2 z 1

30 d + e + 2 Total number of base
tables for which a
view is defined

Average number of view
definitions for a table

31 4 z 1

SQL_VIEWS 32 d + e + 2 z 1

33 4

SQL_VIEW_DEF 34 d + e + 2 z 1

35 10

SQL_REFERENTIAL_
CONSTRAINTS

39 d + e + 2 Total number of
referential constraints

1

40 d + e + 2 Total number of
referencing tables

Average number of referencing
tables per table

41 d + e + 2 Total number of
referenced table

Average number of referenced
tables per table

Table name Type Key length3

(Variable g1)

Number of key
types (Variable c1)

Average number of key
duplicates (Variable d1)

17. Determining RDAREA Size

803

SQL_EXCEPT 86 d + e + 2 Number of indexes
for which an
exception value is
specified

Number of indexes with an
exception value specified for a
single table

87 d + i + 2 1

88 4 Number of unique
tables with an index
for which an
exception value is
specified

Number of indexes for which an
exception value is specified for a
single table

SQL_DIV_INDEX 36 d + e + 6 Number of
row-partitioned
indexes number of
partitions

Average number of partitions
per table

37 d + i + 2 Total number of
row-partitioned
indexes

1

SQL_DIV_COLUMN 38 d + e + f + 3 Number of LOB
column definitions

Average number of partitions
per table

52 d + e + 9 Number of LOB
attribute definitions

1

SQL_ALIASES 42 d + v + 4 Total number of table
aliases to be created

1

SQL_ROUTINES 43 d + MAX (q, 7) p + 174 1

44 d + MAX (t, 18) u + 65 1

45 4 p + 174 1

53 d + UDT Number of abstract
data types + 1 (NULL
value)

Average number of routines per
abstract data type + number of
NULL

SQL_ROUTINE_RESO
URCES

46 d + q p s Average number of resources
used per routine

47 d + t

48 d + q

49 4

Table name Type Key length3

(Variable g1)

Number of key
types (Variable c1)

Average number of key
duplicates (Variable d1)

17. Determining RDAREA Size

804

SQL_ROUTINE_PARA
MS

50 d + MAX (q, 8) p r + 347 Average number of parameters
per routine

51 d + MAX (t, 19) Number of routines Average number of parameters
per specific name (if less than 3,
use 3)

106 e + 4 + 2 Number of trigger
SQL objects r + 1
(NULL values)

Average number of parameters
per specified name (if less that 3,
use 3) + number of NULL values

SQL_DATATYPES 54 d + UDT Number of abstract
data types

1

55 4

56 d + UDT Number of abstract
data types that have
subtypes + 1 (NULL
value)

Average number of subtypes per
abstract data type + number of
NULL values

SQL_DATATYPE_DES
CRIPTORS

57 d + UDT + ATT NUDT NATT 1

58 4 Number of abstract
data types

Average number of attributes
per abstract data type

SQL_TABLE_RESOUR
CES

59 d + e Total number of tables
that use user-defined
data types

Average number of user-defined
data types used per table

60 d + UDT UDT Average number of tables used
per user-defined data type

61 4

SQL_PLUGINS 62 d + PLG Number of plug-ins 1

63 4

64 {(d + UDT)
IXT} + 2

Number of data type
plug-ins + number of
index-type plug-ins

SQL_PLUGIN_ROUTI
NES

65 t NPLG NFPLG 1

66 PLG + TMD + 2 Number of operations Number of plug-ins

67 PLG + 4

68 POPR + 1

Table name Type Key length3

(Variable g1)

Number of key
types (Variable c1)

Average number of key
duplicates (Variable d1)

17. Determining RDAREA Size

805

SQL_PLUGIN_ROUTI
NE_PARAMS

69 t + PRM NPLG NPPAR 1

70 PLG NPLG Average number of parameters
per plug-in

71 t + 4 NPLG NPPAR 1

SQL_REGISTRY_CON
TEXT

72 CNM + 1 Number of contexts 1

SQL_REGISTRY_KEY 73 KNM + 6 Number of keys 1

SQL_INDEX_TYPES 74 d + IXT Number of index
types to be created

1

75 4

SQL_INDEX_RESOUR
CES

76 d + IXT Number of plug-in
indexes

Average number of index
definitions that use index type

77 4

SQL_INDEX_DATATY
PE

78 d + e Number of table
definitions for which
plug-in index is
defined

Average number of plug-in
indexes for the same table

79 d + i Number of plug-in
indexes

1

SQL_INDEX_FUNCTI
ON

80 d + e Number of table
definitions for which
plug-in index is
defined

Average number of plug-in
indexes per table average
number of functions to which
plug-in index is applied

81 d + i Number of plug-in
indexes

Average number of functions to
be applied per plug-in index

SQL_TYPE_RESOURC
ES

82 d + e Number of
user-defined data
types that use a
user-defined data type

Average number of user-defined
data types that are specified as
an attribute of a user-defined
data type

83 d + UDT Number of
user-defined data
types

Average number of user-defined
data types that use a
user-defined data type84 4

SQL_INDEX_TYPE_F
UNCTION

85 d + IXT Number of index
types

Average number of functions to
be applied per index

SQL_UER_MAPPINGS 89 d + FSRV Number of user
mappings

1

Table name Type Key length3

(Variable g1)

Number of key
types (Variable c1)

Average number of key
duplicates (Variable d1)

17. Determining RDAREA Size

806

SQL_TRIGGERS 90 d + e + 2 + 16 Number of triggers 1

91 d + TRIG + 2

92 d + t + 2

93 4

SQL_TRIGGER_COLU
MNS

96 d + TRIG + 2 Number of triggers
that use the UPDATE
statement as the
triggering event

Average column length
specified per trigger

97 d + e + f + 3 Number of columns
specified that use the
UPDATE statement as
the triggering event

1

SQL_TRIGGER_DEF_
SOURCE

98 d + TRIG + 2 + 4 Number of triggers 1

99 d + e + 2 Number of tables
defined with triggers

Average number of triggers per
table

SQL_TRIGGER_USAG
E

100 d + TRIG + 2 Number of triggers
that reference
resources while
performing the trigger
action search
condition

Average number of resources
referenced per trigger

101 d + e + 2 Number of tables that
define triggers that
reference resources
while performing the
trigger action search
conditions

Average number of resources
referenced per table

102 d + e + (t or e) +
2

Number of resources
used

1

103 8

SQL_PARTKEY 104 d + e + f + 3 Number of matrix
partitioning tables
number of
partitioning keys

1

Table name Type Key length3

(Variable g1)

Number of key
types (Variable c1)

Average number of key
duplicates (Variable d1)

17. Determining RDAREA Size

807

SQL_PARTKEY_DIVI
SION

105 d + e + 6 Number of matrix
partitioning tables
number of boundary
values number of
partitioning keys

1

SQL_AUDITS 107 ETP + EST + 2 Number of monitored
events

1

108 OTP + OSC +
ONM + 3

Number of monitored
objects

Average number of events
monitored per object

109 d Number of monitored
users

Average number of events
monitored per user

SQL_AUDITS_REGUL
ARIZE

110 OTP + OSC +
ONM + 3

Number of monitored
objects

Average number of events
monitored per object

111 d Number of monitored
users

Average number of events
monitored per user

SQL_KEYCOLUMN_US
AGE

112 d + CNS + 2 Number of constraints 1

113 d + e + 2 Number of tables for
which constraints
have been defined

Average number of constraints
per table

SQL_TABLE_CONSTR
AINTS

114 d + CNS + 2 Number of constraints 1

115 d + e + 2 Number of tables for
which constraints
have been defined

Average number of constraints
per table

SQL_CHECKS 116 d + CNS + 2 Number of check
constraints

1

117 d + e + 2 Number of tables for
which check
constraints have been
defined

Average number of check
constraints per table

SQL_CHECK_COLUMN
S

118 d + CNS + 2 Number of check
constraints

Average number of columns
specified per check constraint

119 d + e + f + 3 Number of columns
used in the check
constraints

Average number of duplicate
columns used in check
constraints per table

SQL_SYSPARAMS 121 8 2 1

Table name Type Key length3

(Variable g1)

Number of key
types (Variable c1)

Average number of key
duplicates (Variable d1)

17. Determining RDAREA Size

808

a: Total number of tables
b: Average number of table columns
c: Page length of the data dictionary RDAREA (bytes)
d: Average length of authorization identifiers (bytes)
e: Average length of table identifiers (bytes)
f: Average length of column names (bytes)
g: Average length of RDAREA names (bytes)
h: Total number of indexes
i: Average length of index identifiers (bytes)
n: Average length of HiRDB file names constituting RDAREAs (bytes)
p: Number of routines to be created
q: Average length of routine names (bytes)
r: Average number of parameters per routine
s: Average number of resources used per routine

t: Average length of specific names2 (bytes)

u: Total number of specific names2

v: Average length of table aliases (bytes)
y: Number of access privileges defined

If the privilege is granted to n users per table, then the value of this variable would
be the number of tables n.

z: Total number of view definitions
NUDT: Number of user-defined data types to be created
UDT: Average length of user-defined data type names (bytes)
NATT: Average number of attributes per user-defined data type

SQL_PUBLICVIEW_S
AME_USERS

124 d + e + 2 Number of public
view tables
number of
authorization
identifiers

1

Table name Type Key length3

(Variable g1)

Number of key
types (Variable c1)

Average number of key
duplicates (Variable d1)

17. Determining RDAREA Size

809

ATT: Average length of attributes with user-defined data type (bytes)
PLG: Average length of plug-in names (bytes)
NPLG: Number of plug-ins to be created
IXT: Average length of index type names (bytes)
NFPLG: Average number of plug-in functions
POPR: Average length of plug-in function names (bytes)
NPPAR: Average number of parameters per plug-in function
PRM: Average length of parameter names per plug-in function (bytes)
TMD: Average length of timing description (bytes)
CNM: Average length of context name (bytes)
KNM: Average length of key name (bytes)
FSRV: Average length of foreign server names (bytes)
TRIG: Average length of trigger names (byte)
ETP: Average length of event type names (bytes)
EST: Average length of event subtype names (bytes)
OTP: Average length of object type names (bytes)
OSC: Average length of object owner names (bytes)
ONM: Average length of object names (bytes)
CNS: Average length of constraint names (bytes)
1 Variables shown in (2) Variables used in formulas in 17.1.3 Calculating the number
of index storage pages.
2 Indicates authorization-identifier.routine-identifier.
3 The key length is rounded up in units of four bytes. Use the following formula to
obtain the key length:

• key-length 4 4

17.2.2 Determining the size of a data dictionary RDAREA for storing
database state analyzed tables and database management tables

You can use the following formula to determine the size of a data dictionary RDAREA
for which datadictionary of dbmanagement is specified in the create
rdarea statement:

17. Determining RDAREA Size

810

Formula

a: Total number of pages in the data dictionary RDAREA#1

b: Segment size of the data dictionary RDAREA#2

#1
Number of table storage pages + Number of index storage pages. For details, see
(1) and (2) below.

#2
Segment size specified in the create rdarea statement of the database
structure modification utility (pdmod).

(1) How to determine the number of table storage pages
The number of table storage pages is the sum of Formula 1 and Formula 2:

a: Number of tables to be created + 61
b: Average number of partitions in the table storage RDAREA

If the RDAREA is not partitioned, the value is 1. The average value is rounded up.
c: Number of indexes to be created + 124
e: Total number of BLOB columns defined for the tables to be created + 3
g: Total number of BLOB attributes defined for the tables to be created

Size of data dictionary RDAREA = ((a 1.3) b) b 4096
(bytes)

Formula 1

Formula 2

17. Determining RDAREA Size

811

(2) How to determine the number of index storage pages
Use the following formula to determine the number of index storage pages:

* See 17.1.3 Calculating the number of index storage pages to determine the number
of pages for index storage for the data dictionary tables. The following is the
calculation condition:

1. The ratio of unused space specified in CREATE INDEX is 0.
2. Use the following variables in the formula:

a: Number of tables to be created
b: Average number of partitions in the table storage RDAREA
c: Number of indexes to be created
e: Total number of BLOB columns defined for the tables to be created
g: Total number of BLOB attributes defined for the tables to be created
* Variables shown in (2) Variables used in formulas in 17.1.3 Calculating the number
of index storage pages.

Number of pages for index storage for the data dictionary tables* 2

Key length
(variable g*)

Number of key types
(variable c*)

Average number of duplicate
keys

(variable d*)

12 (a + c + e + g) (b + 1) + 120 30

17. Determining RDAREA Size

812

17.3 Determining the size of the master directory RDAREA

The following formula is used to determine the size of the master directory RDAREA.
Formula

a: Total number of data dictionary RDAREAs + total number of user RDAREAs

When the inner replica facility is used, also calculate the total number of replica
RDAREAs.

b: Total number of tables to be defined
c: Total number of indexes to be defined
d: Total number of view tables to be defined
e: Total number of data types and index types to be defined
f: Number of HiRDB files that compose the original RDAREAs and the replica
RDAREAs

If the inner replica facility is not being used: 0
The information on the HiRDB files that compose the original RDAREAs is not
deleted even if all replica RDAREAs are deleted (this information is not deleted
until the original RDAREAs are deleted).

n: Number of HiRDB files that constitute the master directory RDAREA
1 Indicates the total number of pages in the master directory RDAREA.
2 Indicates the page length of the master directory RDAREA.

Size of master directory RDAREA (bytes)
= {

(a + 2) 800 51 + (b + 120) 6000 51 + (c + 240) 6000 51
 + (d + 240) 6000 51 + e 6400 51 + f 50 51 + 2 + 6 n
}1 40962

17. Determining RDAREA Size

813

17.4 Determining the size of the data directory RDAREA

The following formula is used to determine the size of the data directory RDAREA.
Formula

ai: Number of columns constituting indexes

bi: Number of RDAREAs storing indexes

ci: Number of RDAREAs storing tables for which an index is defined

dj: Number of RDAREAs storing tables

e: Total number of indexes to be defined
f: Total number of tables to be partitioned
n: Number of HiRDB files that constitute the data directory RDAREA
1 Indicates the total number of pages in the data directory RDAREA.
2 Indicates the page length of the data directory RDAREA.

Size of data directory RDAREA (bytes)
 e f
={ (gi + pj + 86) 3000 51 + 6 n + 1 }1 40962

 i=1 j=1
gi= (5 ai + 2 bi + 2 ci + 48) 32

pj= (dj + 12) 16

17. Determining RDAREA Size

814

17.5 Determining the size of a data dictionary LOB RDAREA

(1) Estimating the size of the data dictionary LOB RDAREA for storing sources
The following formula is used to determine the size of the data dictionary LOB
RDAREA for storing sources.
Formula

a: Number of HiRDB files that constitute the data dictionary LOB RDAREA for
storing sources
b: Total number of procedures (CREATE PROCEDURE), functions and procedures in
abstract data types (each FUNCTION (excluding plug-in functions) and PROCEDURE),
and user-defined functions (CREATE FUNCTION)
Si: Number of segments for each HiRDB file specified with the create rdarea
statement of the database initialization utility or database structure modification utility.
Cj: Length of each procedure (length of each CREATE PROCEDURE), function and
procedure in abstract data types (length of each FUNCTION (excluding plug-in
functions) and PROCEDURE), and user-defined function (length of CREATE
FUNCTION)
1 Total number of pages in the directory pages part.
2 Total number of pages in the data pages part.
3 Indicates the total number of pages in the data dictionary LOB RDAREA for storing
sources.
4 Indicates the page length of the data dictionary LOB RDAREA for storing sources.

(2) Estimating the size of the data dictionary LOB RDAREA for storing objects
The following formula is used to estimate the size of the data dictionary LOB

Size of data dictionary LOB RDAREA for source storage (bytes)
={
 a
 [Si 64000 96 + 7 + 3 (a - 1)]1

 i=1
 +
 b
 [(Cj + 1024) 8192]2

 j=1
 }3 81924

17. Determining RDAREA Size

815

RDAREA for storing objects:
Formula

a: Number of HiRDB files that constitute the data dictionary LOB RDAREA for
storing objects
b: Total number of procedures (CREATE PROCEDURE), functions and procedures in
abstract data types (FUNCTION (excluding plug-in functions), PROCEDURE),
user-defined functions (CREATE FUNCTION), and trigger definitions (CREATE
TRIGGER).
Si: Number of segments for each HiRDB file specified with the create rdarea
statement of the database initialization utility (pdinit) or database structure
modification utility (pdmod).
Cj: QOi + PR (The formula for QOi is shown in (3), and the formula for PR is shown
in (4). The variables used in these formulas are shown in (5).)
1 Total number of pages in the directory pages part.
2 Total number of pages in the data pages part.
3 Indicates the total number of pages in the data dictionary LOB RDAREA for storing
objects.
4 Indicates the page length of the data dictionary LOB RDAREA for storing objects.
5 This is added when an abstract data type or plug-in function is used.

Size of data dictionary LOB RDAREA for object storage (bytes)
={
 a
 [Si 64000 96 + 7 + 3 (a - 1)]1

 i=1
 +
 b
 [(Cj + 1024) 8192]2

 j=1
 }3 81924 + 5000005

17. Determining RDAREA Size

816

(3) QOi (SQL object size) formula

a: Number of SQL statements in stored procedures
1 Add this formula if you specify foreign tables.
2 Add this formula if you use triggers.
3 Add this formula if you use referential constraints.
4 This is the formula for determining the length of the Column Name Descriptor Area
(SQLCNDA). Add it for dynamic SQL statements.
5 This is the formula for determining the length of the Type Name Descriptor Area
(SQLTNDA). Add it for dynamic SQL statements.

(4) PR (routine control object size) formula
(a) When defined by the user

If you have defined a stored procedure, stored function, or trigger, use the following
formula to determine the size of the routine control object:

QOi (bytes) =
 a

{
i=1

 1840 + 46 RCN + 298 Si + 20 Pi + 1138 Ti + 76 Ti Di + 80 Ci + 40 Ii + 534 Wi
 + 20 Ki + Li + 8 TCi + 656 Di + 48 nFF + 100 nFP + 148 nFC + 696 nPFF
 + 16 (nAT + nPAT) + 20 nCAT + 28 (nAF + nCAF) + 20 (nAA + nPAA + nCAA)
 + 1057 nSPA + 120 nSPP + 287 nSFF + 8 nSFP + 813 nJFC + 20 nJFP
 [+ 60 nFT + nFTS + 32 nFTQ]1

 [+ 1057 nTR + 120 (nTSN + nTSO) + 20 (nTCN + nTCO)]2

 [+ 760 + 376 RCC + 1880 RCT]3

 [+ 32 Si + 16]4

 [+ (42 SiT) + {52 + 152 (SiTA + SiSA + SiNA) (SiT + SiS + SiN)}]5

 }

17. Determining RDAREA Size

817

a: Number of the following SQL statements:
• Procedures (CREATE PROCEDURE)
• Functions and procedures in abstract data types (each FUNCTION (excluding

plug-in functions), PROCEDURE)
• User-defined functions (CREATE FUNCTION)
• Trigger definitions (CREATE TRIGGER)

* Add this formula if you use triggers.
(b) When HiRDB creates automatically

If you specified CASCADE during table definition, use the following formula to
determine the size of the routine control object when HiRDB creates triggers for
constraint control:

a: Number of the following SQL statements:
• Procedures (CREATE PROCEDURE)
• Functions and procedures in abstract data types (FUNCTION (excluding

plug-in functions), PROCEDURE)
• User defined functions (CREATE FUNCTION)
• Trigger definitions (CREATE TRIGGER)

PR (bytes) =
 a

{
i=1

 600 + 28 sRi + 32 (sRUi + sDi) + 56 sSXi + sCUi + sSi + sPi + sLA
 + sKi + sL + 80 sWi + 24 sCM + 32 sCCR + 2 sDCR + 60 sCHD + 72 sDHD + 64 sHCN
 + 8 sCHD sHCN + 48 nRFF + 100 nRFP + 148 nRFC + 200 nPRFF + 8 nPRFP
 + 196 nPA + 64 nPP + 36 nPPI + 20 nPPO + 200 nPPA + 8 nPPP + 20 nAR + 48 nARA
 + 16 nRPAT + 20 nCAT + 28 (nRPAF + nRCAF) + 20 (nRPAA + nRCAA) + 287 nRSFF
 + 8 nRSFP + 813 nPJA + 20 nPJP + 813 nRJFC + 20 nRJFP
 [+ 28 (nTSN 2 + nTSO)]*

 }

PR (bytes) =
 a

{240 + 608 RCC + (5120 + 100 RDi + 256 RIi) RCP RCT}
i=1

17. Determining RDAREA Size

818

(5) Variables used in the calculation of PR and QOi

Variable
name

Explanation

RCN Total number of tables and indexes used by SQL objects

Si Number of retrieval items in SQL statements (if the columns specified by SQL statements are
index columns, the number of those columns)

Pi Number of embedded variables or parameters in SQL statements

Ti Number of table names in SQL statements

Ci Number of column names in SQL statements

TCi Number of table composition columns in SQL statements

Wi Number of logical operators in SQL statements1

Ki Number of literals in SQL statements1

Li Total length of literals in SQL statements1 (bytes)

Ii Number of indexes used during SQL statement execution (of the tables specified by SQL
statements, the number of indexes specified in retrieval conditions)

Di Total number of storage conditions defined by tables used in SQL statements (count matrix
partitioning tables twice)

SiT Number of abstract data types in queries in SQL statements

SiS Number of supertypes of abstract data types in queries in SQL statements

SiN Number of subtypes of abstract data types in queries in SQL statements

SiTA Number of attributes of abstract data types in queries in SQL statements

SiSA Number of supertype attributes of abstract data types in queries in SQL statements

SiNA Number of component specifications of abstract data types that are query subtypes in SQL
statements

nSPA Number of procedure calls in SQL statements

nSPP Total number of procedure call parameters in SQL statements

nFF Number of function calls in SQL statements1

nFP Number of function call parameters in SQL statements1

17. Determining RDAREA Size

819

nFC Total number of function definition candidates among the functions in the SQL statements (to the
number of function calls nFF, add the number of function definitions that have subtypes as
arguments for which the arguments are abstract data types)

nPFF Number of plug-in function calls used by SQL objects (number of plug-in function calls in SQL
statements + 1 for SELECT and 6 for INSERT, UPDATE, or DELETE)

nSFF Number of system definition scalar function calls in SQL statements1

nSFP Total number of system definition scalar function arguments in SQL statements1

nJFC Number of Java function calls in SQL statements

nJFP Total number of Java function arguments in SQL statements

nAT Number of abstract data types used by component specifications in SQL statements (excluding
supertypes and abstract data types that emerge depending on the abstract data type attributes)

nAA Number of abstract data types used by component specifications in SQL statements (including
supertypes and abstract data types that emerge depending on the abstract data type attributes)

nAF Total number of attributes used by component specifications in SQL statements

nPAT Number of abstract data types of plug-in function arguments used by SQL objects (excluding
supertypes and abstract data types that emerge depending on the abstract data type attributes)

nPAA Number of abstract data types of plug-in function arguments used by SQL objects (including
supertypes and subtypes)

nCAT Number of constructor function calls in SQL statements

nCAA Number of constructor function abstract data types in SQL statements (including supertypes)

nCAF Total number of constructor function abstract data type attributes in SQL statements

nFT Number of foreign tables in SQL statements

nFTS Length of SQL statements that retrieve from foreign tables2

nFTQ Number of embedded variables or ? parameters in SQL statements that retrieve from foreign
tables2

nTR Number of triggers activated by the execution of SQL statements

nTSN Total number of columns modified by new value correlation names in SQL statements that are
triggered by the execution of SQL statements

nTSO Total number of columns modified by old value correlation names in SQL statements that are
triggered by the execution of SQL statements

Variable
name

Explanation

17. Determining RDAREA Size

820

nTCN Total number of columns modified by new value correlation names in the trigger action conditions
of triggers that are activated by the execution of SQL statements

nTCO Total number of columns modified by old value correlation names in the trigger action conditions
of triggers that are activated by the execution of SQL statements

RCC Total number of foreign key component columns and primary key component columns of the
tables that reference update-target tables in SQL statements

RCT Sum of the number of tables that reference update-target tables and the number of tables that are
referenced by update-target tables in SQL statements

RCP Total number of CASCADEs specified for referencing action when referencing tables are defined

RIi Total number of indexes defined for referenced tables with reference specified when referencing
tables are defined

RDi Total number of partition storage conditions defined for referenced tables with reference specified
when referencing tables are defined (double the value for matrix partitioning tables)

sRi Number of SQL parameters in procedures and functions (count SQL parameters specified with
INOUT twice)

sRUi Total number of SQL parameters in procedures and functions (or total number of columns
modified by new or old value correlation names in the triggered SQL statements defined by
triggers)

sDi Total number of SQL variables (declare) in procedures, functions, and triggered SQL statements

sSXi Total number of SQLCODE and SQLCOUNT variables in procedures, functions, and triggered SQL
statements

sCUi Total number of CURRENT_TIME and CURRENT_DATE variables in procedures, functions, and
triggered SQL statements

sSi Number of data manipulation SQLs in procedures and triggered SQL statements (excluding cursor
declarations: OPEN, FETCH, CLOSE, UPDATE, DELETE, INSERT, etc.)

sPi Number of routine control SQL statements in procedures, functions, and triggered SQL statements
(BEGIN, SET, IF, ELSEIF, WHILE, etc.)

sLA Number of labels in procedures, functions, and triggered SQL statements

sKi Number of literals in procedures, functions, and triggered SQL statements (excluding data
manipulation SQL literals described in procedures and triggered SQL statements)

sL Total length of constants in procedures, functions, and triggered SQL statements (excluding data
manipulation SQL literals described in procedures and triggered SQL statements)

sWi Number of conditional predicates in procedures, functions, and triggered SQL statements

Variable
name

Explanation

17. Determining RDAREA Size

821

sCM Number of compound statements in procedures, functions, and triggered SQL statements

sCCR Number of compound statements that describe cursor declarations in procedures and triggered
SQL statements

sDCR Number of cursor declarations in procedures and triggered SQL statements

sCHD Number of compound statements that specify handler declarations in procedures, functions, and
triggered SQL statements

sDHD Number of handler declarations in procedures, functions, and triggered SQL statements

sHCN Number of condition values specified in handler declarations in procedures, functions, and
triggered SQL statements

nRFF Number of function calls in routines

nRFP Total number of function arguments in routines

nRFC Total number of function definition candidates among the routines in the SQL statements (to the
number of function calls nFF, add the number of function definitions that have subtypes as
arguments for which the arguments are abstract data types)

nPRFF Number of plug-in function calls used by routine SQL objects

nPRFP Total number of plug-in parameters of plug-in function calls used by routine SQL objects

nPA Number of procedure calls in routines

nPP Total number of procedure parameters in routines

nPPI Total number of input parameters in routine procedures (including input/output parameters)

nPPO Total number of output parameters in routine procedures (including input/output parameters)

nPPA Number of plug-in procedure calls in routine SQL objects

nPPP Total number of plug-in parameters of plug-in procedures used by routine SQL objects

nRSFF Number of system defined scalar function calls in routines

nRSFP Total number of system defined scalar function call arguments in routines

nPJA Number of Java procedure calls in routines

nPJP Total number of Java procedure call arguments in routines

nRJFC Number of Java function calls in routines

nRJFP Total number of Java function call arguments in routines

Variable
name

Explanation

17. Determining RDAREA Size

822

1 When triggers are used, all of the trigger activation conditions of the triggers
activated by execution of SQL statements must be counted.
2 SQL statements that retrieve from foreign tables can be checked with the access path
display utility (pdvwopt command).

nAR Number of abstract data types used by component specifications in routines (excluding supertypes
and abstract data types that emerge depending on the abstract data type attributes)

nARA Total number of attributes used by component specifications in routines

nRPAT Total number of abstract data types used as parameters of plug-in routines used by routine SQL
objects (excluding abstract data types that are supertypes or abstract data type attributes)

nRPAA Number of abstract data types used as parameters of plug-in routines used by routine SQL objects
(including supertypes)

nRPAF Total number of attributes of abstract data types used as parameters of plug-in routines used by
routine SQL objects

nRCAT Number of constructor function calls in routines

nRCAA Number of abstract data types of constructor functions in routines (including supertypes)

nRCAF Total number of abstract data type attributes of constructor functions in routines

Variable
name

Explanation

17. Determining RDAREA Size

823

17.6 Determining the size of a user LOB RDAREA

The following formula is used to determine the size of a user LOB RDAREA.
Formula

a: Number of HiRDB files that constitute the user LOB RDAREA
b: Total number of rows in LOB columns

Count rows with a data length of 0, but do not count rows with the NULL value.
Si: Number of segments for each HiRDB file specified with the create rdarea
statement of the database initialization utility (pdinit) or database structure
modification utility (pdmod)
Cj: Length of each BLOB data (bytes)
1 Total number of pages in the directory pages part.
2 Total number of pages in the data pages part.
3 Total number of pages in the user LOB RDAREA.
4 Page length of the user LOB RDAREA.

Size of user LOB RDAREA (bytes)
={
 a
 [Si 64000 96 + 7 + 3 (a - 1)]1

 i=1
 b
 + [(Cj + 1024) 8192]2

 j=1
 }3 81924

17. Determining RDAREA Size

824

17.7 Determining the size of the registry RDAREA

The following formula is used to determine the size of the registry RDAREA.
Formula

Each table or index is allocated in segments. The value obtained for each table or index
is rounded up in segments.

(1) Number of pages storing registry management tables
Formula

a: Number of contexts for registry management tables
b: Number of pages for registry management tables
c: Length of registry context names
d: Length of access passwords

(2) Number of pages storing registry management table indexes
Formula

(Number of pages storing registry management tables + number of pages storing registry management table
indexes) 1.3

Name of table Type Key length Key type Average
duplication

level

SQL_REGISTRY_CONTEXT 1 a + 1 Number of context
names + 1

1

SQL_REGISTRY_KEY 2 b + 6 Number of key values 1

17. Determining RDAREA Size

825

a: Length of registry contexts
b: Length of registry key names

17. Determining RDAREA Size

826

17.8 Determining the size of the registry LOB RDAREA

The following formula is used to determine the size of the registry LOB RDAREA.
Formula

a: Number of HiRDB files that constitute the registry LOB RDAREA
b: Number of registry key values that exceed 32000 bytes
Si: Number of segments for the registry LOB RDAREA

Cj: Length of registry key values that exceed 32000 bytes

1 Total number of pages in the directory pages part.
2 Total number of pages in the data pages part.
3 Total number of pages in the registry RDAREA
4 Page length of the registry LOB RDAREA

Size of registry LOB RDAREA (bytes)
={
 a
 [Si 64000 96 + 7 + 3 (a - 1)]1

 i=1
 b
 + [(Cj + 1024) 8192]2

 j=1
 }3 81924

17. Determining RDAREA Size

827

17.9 Determining the size of the list RDAREA

Use the following formula to determine the size of the list RDAREA:
Formula

a: Number of HiRDB files that constitute the list LOB RDAREA

b: Page length of the list RDAREA* (bytes)
c: Number of segments for the list RDAREA

e: Size of a segment for the list RDAREA*

f: {b - 20} { e 32 8} + 56}

g: (125 b) (16 f) f

n: Maximum number of lists that can be created in one list RDAREA*

Si: Number of HiRDB file segments that constitute the list RDAREA*

* This value is specified with the create rdarea statement of the database
initialization utility (pdinit) or database structure modification utility (pdmod).

Size of list RDAREA (bytes)
={
 a
 (Si f + Si g)
 i=1
 + 6 (a + 1) + (1024 n) (25 b) + 20480 b + c e
 } b

829

Chapter

18. Determining System File Size

This chapter explains how to determine the sizes of system files, including system log
files, synchronization point dump files, and status files.
This chapter contains the following sections:

18.1 Determining the size of system log files
18.2 Determining the size of synchronization point dump files
18.3 Determining the size of status files

18. Determining System File Size

830

18.1 Determining the size of system log files

This section describes the methods for determining the size of system log files. The
topics covered include:

• Total size of system log files
• Amount of system log information that is output during table definition
• Amount of system log information that is output during index definition
• Amount of system log information that is output during table data updating

• Amount of system log information that is output during database creation by a
utility

• Amount of system log information that is output depending on the SQL
manipulation

• Amount of system log information that is output during the execution of the
RDAREA automatic extension facility

• Amount of system log information that is output during execution of the PURGE
TABLE statement

• Amount of system log information that is output during execution of the free page
release utility

• Amount of system log information that is output during execution of the facility
for predicting reorganization time

For details about estimating the size of the system log files and notes on the usage of
updatable online reorganization, see the manual HiRDB Staticizer Option Version 7
Description and User's Guide.

18.1.1 Total size of system log files
(1) How to obtain the total size of system log files

The following formula is used to obtain the total size of all system log files.
Formula

a: Amount of system log information to be output
For the procedure for obtaining this value, see (2), as follows.

b: System log file record length that is specified in the pd_log_rec_leng operand

Total size of all system log files (bytes) = (a c 3)* b

18. Determining System File Size

831

c: Use one of the following values:
pd_log_rec_leng = 1024: 1000
pd_log_rec_leng = 2048: 2000
pd_log_rec_leng = 4096: 4000

Notes
• Because there may be unused space in system log files, it is recommended

that the allocation size be at least 1.2 times the value obtained.
• Because extension information is added when the inner replica facility is

used, allocate 1.1 times the value obtained.
• The value obtained is converted to a size per unit of time, and then an

estimate is made of the size of one system log file and the number of system
log files. The unload intervals for the system log files must be taken into
account.

* This is the formula for obtaining the total number of system log file records.
(2) Determining the size of system log information

The following formula is used to obtain the amount of system log information that will
be output.
Formula

 refers to the total for each transaction. However, if an executing transaction
satisfies all the following conditions, that part will not be output to the system log:

• The transaction is performing a retrieval, and it ends with the COMMIT
statement.

• The server that is executing the transaction is a Single Server, a dictionary
server, or a back-end server.

a: Value of the pd_log_max_data_size operand
b: 1328 + amount of system log information that is output depending on the database
manipulation

Note that the value is 0 for a recovery-unnecessary front-end server.
This is the total amount of system log information that is obtained for each
transaction, as explained in 18.1.2 Amount of system log information output
during table definition through 18.1.5 Amount of system log information output
during database creation by a utility.

Amount of system log information to be output (bytes) = {b + e + b (a - 256) 256 + d} + c
 For a recovery-unnecessary front-end server only, add:

+ f

18. Determining System File Size

832

c: Amount of system log information that is output depending on the SQL
manipulation

See 18.1.6 Amount of system log information that is output depending on the SQL
manipulation.

d: Value calculated using the following formula for each server type
• For HiRDB/Single Server

2 pd_log_rec_leng operand value
• For HiRDB/Parallel Server

 For a front-end server

 For a back-end server or a dictionary server

e:

Execution of UAP using the
HiRDB library to implement a

connection method that supports
multi-threading and complies with

X/Open, and use of the
transaction transfer facility

Use of
recovery-unnecessary

front-end server

Formula

Used Not used (cannot be used) (1328 pd_log_rec_leng
operand value + 3)
pd_log_rec_leng operand value

Not used Used 0

Not used Not used 2 pd_log_rec_leng operand
value

The system includes a
front-end server that uses
a recovery-unnecessary

front-end server

pd_rpl_reflect_mode
operand specification

value

Formula

Yes uap 2 pd_log_rec_leng operand value +
128 (all BESs + all FESs)

pd_log_rec_leng operand value
pd_log_rec_leng operand value

server

No uap

server 2 pd_log_rec_leng operand value

18. Determining System File Size

833

• For a HiRDB/Parallel Server
For a front-end server: 56 total number of back-end servers
Other than a front-end server: 0

• For a HiRDB/Single Server: 0
f: 10 value of pd_log_rec_leng
Notes

The system log is output when any of the following operations takes place:
• Table definition
• Index definition
• Table data updating
• Database creation by a utility

If rollback occurs while the database is being updated during any of these
operations, the amount of system log information applicable to the part of the
database updated up to that point is added and output; this must be taken into
account in estimating the size of system log information.

18.1.2 Amount of system log information output during table
definition

The formulas used to obtain the amount of system log information that is output during
table definition are presented as follows.

(1) HiRDB/Single Server

a: Total number of tables to be defined
b: Average number of columns in tables to be defined
c: Average number of partitions in tables to be defined
d: Number of RDAREAs for storing LOB columns
* Add this value if a LOB column is defined in any of the tables.

Condition Amount of system log information (bytes)

Table not partitioned (794 b + 2331) a + (632 a d)*

Table partitioned (794 b + 2447 c + 3087) a + (632 a d)*

18. Determining System File Size

834

(2) HiRDB/Parallel Server

a: Total number of tables to be defined
b: Average number of columns in tables to be defined
c: Average number of partitions in tables to be defined
d: Number of partitions in the back-end server for tables to be defined
e: Number of RDAREAs for storing LOB columns in the back-end server
* Add this value if a LOB column is defined in any of the tables that are defined in the
back-end server.

18.1.3 Amount of system log information output during index
definition

The formulas used to obtain the amount of system log information that is output during
index definition are presented as follows.

(1) HiRDB/Single Server

a: Number of partitions for table for which index is defined

Condition Amount of system log information (bytes)

Amount of system log information output by
dictionary server

(794 b + 1535 c + 3087) a

Amount of system log information output by
back-end server

912 a d + (632 a e)*

Condition Amount of system log information (bytes)

Indexes not partitioned n
 {600 bi + Wi (Xi (100 - f) 100 + 132)

i = 1
 + 272 Wi + 1940 Wi Vi
 }

Indexes partitioned N
 {611 ai + 600 bi + 5016 +

i = 1
a

 {Wij (Xij (100 - f) 100 + 132)
j = 1
 + 272 Wij + 1940 Wij Vij }
 }

18. Determining System File Size

835

f: Value (%) of the PCTFREE operand specified during index definition
This is the percentage of unused space in a page.

n: Total number of indexes to be defined
b: Number of index component columns
V: Segment size of user RDAREA used to store index (pages)
W: Number of index storage pages

For details, see 17.1.3 Calculating the number of index storage pages.
X: Page length of user RDAREA used to store index (bytes)

(2) HiRDB/Parallel Server

ai: Number of partitions for table for which index is defined

bi: Number of index component columns

ci: Number of RDAREAs used to store index

n: Total number of indexes to be defined
f: Value (%) of the PCTFREE operand specified during index definition

This is the percentage of unused space in a page.
Vi: Segment size of user RDAREA used to store index (pages)

Wi: Number of index storage pages

For details, see 17.1.3 Calculating the number of index storage pages.
Xi: Page length of user RDAREA used to store index (bytes)

Condition Amount of system log information (bytes)

Amount of system log information output by
dictionary server

n
 {8 ai + 600 bi + 611 ci + 5016 }

i = 1

Amount of system log information output by
back-end server

n
 {Wi (Xi (100 - f) 100 + 132)

i = 1
 + 272 Wi + 1940 Wi Vi
 }

18. Determining System File Size

836

18.1.4 Amount of system log information output during table data
updating

If you manipulate rows in a table, the system outputs the system log information listed
in Table 18-1.

Table 18-1: Types of system log information that are output when table rows are
manipulated

1 Branch row log information is output if either one of the following conditions is
satisfied:

• The no-split option is not specified and the actual data length is 256 bytes or
greater.

• The no-split option is specified and the actual total length of data per row
exceeds the page length.

2 Branch row log information is output if either one of the following conditions is
satisfied:

• The no-split option is not specified and the actual data length is 128 bytes or
greater.

• The no-split option is specified and the actual total length of data per row
exceeds the page length.

Type of system log
information

Description

Base row log information This log information is output when a table's row data is added, deleted, or
updated.

Branch row log information This log information is output when row data is manipulated in columns with
the following data types:
• VARCHAR1

• NVARCHAR2

• MVARCHAR1

• Repetition columns
• Abstract data type
• BINARY type3

Index log information This log information is output when index keys are added, deleted, or
updated. Determine the amount of index log information on the basis of the
type of database manipulation (INSERT, DELETE, or UPDATE statement), as
shown in Table 18-2.

Event log This log information is output when HiRDB Datareplicator is used or when
row data containing repetition columns is added, deleted, or updated.

18. Determining System File Size

837

3 If the actual total length of data per row exceeds the page length, branch row log
information is output.

Table 18-2: Amount of log information depending on type of database
manipulation

The amount of system log information that is output when a database is updated
(INSERT, DELETE, or UPDATE) can be obtained from Formulas 1 and 2 as follows,
depending on the type of operation (INSERT, DELETE, or UPDATE).
The amount of system log information that is output during UAP execution that does
collect log is 460 bytes, which is based on the fact that segment allocations occur.

a: Amount of base row log information (bytes)
b: Total amount of all branch row log information (bytes)
c: Total amount of all index log information (bytes)
d: Total amount of all branch row log information subject to update processing (bytes)
e: Total amount of all index log information subject to update processing (bytes)
n: Number of rows manipulated
1 This value is added when the column value to be updated (UPDATE) is in the base row.
2 This value is added when the column value to be updated (UPDATE) is in the branch
row.
3 This value is added when an index is defined for the column being updated (UPDATE).

Type of data manipulation (SQL
statement)

Amount of log information

Key addition (INSERT statement) Amount of addition log information

Key deletion (DELETE statement) Amount of deletion log information

Key updating (UPDATE statement) Amount of deletion log information for the key before updating
+ amount of addition log information for the key after updating

Condition Formula (bytes)

Amount of system log information that is output to add (INSERT) or
delete (DELETE) n rows in a table

(a + b + c) n

Amount of system log information that is output to update (UPDATE) n
rows in a table

(a1 + d2 + e3) n

18. Determining System File Size

838

(1) Determining the amount of base row log information
Table 18-3 shows the formulas for determining the amount of base row log information
per data item.

Table 18-3: Formulas for determining the amount of base row log information
per data item

k: Length of row to be added or deleted
k1: Length of row before updating

k2: Length of row after updating

f: Number of columns to be updated
di: Data length of column before updating

dj: Data length of column after updating

Note 1
The values of k, k1, and k2 depend on the specification of FIX, as shown as
follows.

• Table 17-1 List of data lengths
• Table 17-2 Data lengths for the variable-length character string type (except

abstract data type and repetition columns)

Type of data manipulation (SQL statement) Amount of log information output
(bytes)

Data addition (INSERT statement) k + 152

Data deletion (DELETE statement)

Data updating (UPDATE
statement)

FIX table with f 12 f
 di +

i=1
 f

 dj + 4 f + 152
j=1

Non-FIX table or f > 12 k1 + k2 + 160

 If LOCK is specified in the
pd_nowait_scan_option operand, add:
314 2

Row interface used 2 k1 + 160

18. Determining System File Size

839

• Table 17-3 Data lengths for the variable-length character string type
(abstract data type)

• Table 17-4 Data lengths for the variable-length character string type
(repetition columns)

• FIX specified
Total data length of all columns in table + 4.

• FIX not specified
Total data length of all columns in table + 6 + 2 total number of columns
in table.

Note 2
If HiRDB Datareplicator is being used, or if updatable online reorganization is
executing, then the same amount will be output to the log file for updating 12 or
fewer columns of the FIX table as for updating 13 or more columns.

Note 3
If a BLOB column is defined for the table, 9 bytes must be used as the row length
shown in Table 18-3 for a BLOB column, and the amount of log information
shown in Table 18-4 must be added.
Table 18-4: Formulas for determining the amount of log information per BLOB
column data item

Type of data manipulation
(SQL statement)

Specification of recovery Amount of log information output
(bytes)

Data addition
(INSERT statement)

Not specified or partial specified 1176

All specified 2348 + p1 + 8340 p2
 + (148 + lt) p3

Not specified 300

Data deletion
(DELETE statement)

Not specified or partial specified 1052

All specified

Not specified 468

Data updating
(UPDATE statement)

Not specified or partial specified 1324

All specified 2496 + p1 + 8334 p2
 + (148 + lt) p3

Not specified 312

18. Determining System File Size

840

Bi: BLOB data length (bytes)
Ba: One of the following values:

• Bb > 7168: 8192-{(Bb - 7168)- (Bb - 7168) 8192 8192}
• Bb 7168: 0

Bb: BLOB data length before update (bytes)
Bc: BLOB added data length (bytes)
lt: One of the following values:

• Bi > 7168: Bi - 7168- (Bi - 7168) 8192 8192
• Bi 7168: 0

lt2: One of the following values:

• Bc + Bb > 7168: (Bc + Bb - Ba - 7168)- (Bc + Bb - Ba - 7168) 8192
 8192

• Bc + Bb 7168: 0
p1: One of the following values:

• Bi > 7168: 7168
• Bi 7168: Bi

p2: One of the following values:

• Bi > 7168: (Bi - 7168) 8192
• Bi 7168: 0

p3: One of the following values:

Data concatenation operation
(UPDATE statement)
Bb 7168

Not specified or partial specified 2344

All specified 8340 a + 1600 + d + 8340 p4 + (148
+ lt2) p3

Not specified 428

Data concatenation operation
(UPDATE statement)
Bb>7168

Not specified or partial specified 2772

All specified 2772 + Ba + 8340 p4 + (148 + lt2)
p3

Not specified 428

Type of data manipulation
(SQL statement)

Specification of recovery Amount of log information output
(bytes)

18. Determining System File Size

841

• lt = 0 or lt2 = 0: 0
• lt > 0 or lt2 > 0: 1

p4: One of the following values:

• Bc + Bb > 7168: (Bc + Bb - Ba - 7168) 8192
• Bc + Bb 7168: 0

a: One of the following values:
• Bb > 0: 1
• Bb = 0: 0

d: One of the following values:
• Bc + Bb 7168: Bc + Bb
• Bc + Bb > 7168: 7168

(2) Determining the amount of branch row log information
(a) Branch row log information for VARCHAR, NVARCHAR, and MVARCHAR,

when the no-split option is not specified
Calculate the amount of branch row log information that will be generated. Table 18-5
shows the formulas for determining the amount of log information per branch row.

Table 18-5: Formulas for determining the amount of log information per branch
row (1)

k: Length of one branch row to be added or deleted
k1: Length of one branch row before updating

k2: Length of one branch row after updating

Note

Type of data manipulation (SQL statement) Amount of log information
output (bytes)

Data addition (INSERT statement) k + 152

Data deletion (DELETE statement)

Data updating
(UPDATE statement)

Creating a new branch row by update
processing

k2 + 160

Updating a branch row k1 + k2 + 160

Deleting a branch row by update
processing

k1 + 160

18. Determining System File Size

842

The following formula is used to obtain the row lengths k, k1, and k2:
8 + MIN (average length of actual data, page length of RDAREA - 48)

(b) Branch row log information for abstract data columns, repetition
columns, BINARY columns, and VARCHAR, NVARCHAR, and
MVARCHAR when the no-split option is specified
Calculate the amount of branch row log information that will be generated. Table 18-6
shows the formulas for obtaining the amount of log information for one branch row.
If there is more than one table storage RDAREA and the page length varies from one
RDAREA to another, obtain the amount of branch row log information for each
RDAREA with the same page length, then use their sum as the amount of branch row
log information.

Table 18-6: Formulas for determining the amount of log information per branch
row (2)

* For BINARY type columns only.
b: Page length of an RDAREA
SPN: The following shows how to obtain this value:

If there is a branch row (for the branch condition, see 5 in Table 17-1 List of data
lengths), obtain the value of SPN for all columns that constitute the table for the
INSERT and DELETE statements and the value for the columns subject to updating
for the UPDATE statement. However, for concatenation operations on BINARY
columns, calculate di as the length of data to be added.

Type of data manipulation (SQL statement) Amount of log information output
(bytes)

Data addition (INSERT statement) SPN (b + 152)

Data deletion (DELETE statement)

Data updating (UPDATE statement) SPN (b + 160)

Data concatenation operation (UPDATE statement) * (b + 160) + (SPN - 1) (b + 152)
 If the pd_rpl_hdepath operand is

specified, add:
160

18. Determining System File Size

843

f: Number of branch columns
SF: 1.3

Use a value greater than 1.3 in the following cases:
• A large number of columns with the abstract data type will be updated.
• A large number of repetition columns will be updated in such a manner that

the elements' data lengths increase or the number of elements increases.
• A large number of columns with VARCHAR, NVARCHAR, MVARCHAR, or

BINARY data type will be updated in such a manner that the elements' data
lengths increase

• A large number of columns with BINARY data type will be updated in such a
manner that the elements' data lengths increase

• A large number of columns with data suppressed will be updated in such a
manner that their data lengths increase.

• A large number of columns other than the above will be updated in such a
manner that the NULL values are changed to non-NULL values.

SPN = SPN1 + SPN2 + SPN3 + SPN4

 Other than BINARY columns
SPN1 =
 f
 Value of branch di (b - 61) SF
 i=1
SPN1 =

 BINARY columns
 Number of branch pages due to INSERT

 SPN2 =
 f
 { Value of branch di (b - 59) + 1} SF
 i=1

 Number of branch pages due to pdload or pdrorg
 When value of branch di > (b - 2853) 255
 SPN3 =
 f
 { (branch di + 11) } (b - 48) SF
 i=1
 When value of branch di (b - 2853) 255
 SPN4 = SF

18. Determining System File Size

844

(c) Additional log information output with updatable online reorganization
Estimation of the log information output during UAP access to an RDAREA subject
to updatable online reorganization (online reorganization shutdown status) must
consider not only the normal log information, but in addition the event log information
for the target online reorganization process. This section explains the additional log
information.

During updatable online reorganization, each time a row is updated, a row update
start event and a row update completion event are output to the log. In addition,
in the event of rollback, for each row recovered a row recovery start event and a
row recovery completion event are output to the log. Therefore, when estimating
the size of the system log, add to the formula in Table 18-3 Formulas for
determining the amount of base row log information per data item the size for the
system log explained in Table 18-7.
Table 18-7: System log information added per item of data with updatable
online reorganization

#
c is added when the -e option of the commit a database for online reorganization
command (pdorbegin) is specified. The formula for c is as follows:

(((a - b + 1) 8) + 6) 4) 4 2
a: ID of the largest column of the columns to be updated
b: ID of the smallest column of the columns to be updated
If a BLOB column is defined for a table during updatable online reorganization, a
BLOB update event log is added. For this, when estimating the size of the system
log, add the size for the system log explained in Table 18-8 to the formula in Table
18-4 Formulas for determining the amount of log information per BLOB column
data item.

Type of data manipulation (SQL
statement)

Additional log information output (bytes)

INSERT 320

DELETE

UPDATE 320 + c#

INSERT rollback 320

DELETE rollback

UPDATE rollback 496 + pre-update row data length + c*

18. Determining System File Size

845

Table 18-8: System log information added per item of BLOB data with updatable
online reorganization

* For details about variables p1, p2, p3, and lt, see Table 18-4 Formulas for
determining the amount of log information per BLOB column data item. In these
variables, substitute the length of the BLOB data to be deleted.
During updatable online reorganization, a new repetition column update event log
is output in the cases listed below. For this, when estimating the size of the system
log, add the size for the system log explained in Table 18-9 to the formula in Table
18-13 Amount of event log information that is output when a single row is
manipulated.

• When a row containing repetition columns is deleted
• When an entire repetition column is specified for update processing
• When elements in a repetition column are specified for update processing
• When elements in a repetition column are specified for deletion processing
• When specified elements in a repetition column are specified for update

processing
Table 18-9: System log information added per item of data that includes a
repetition column with updatable online reorganization

Type of data manipulation (SQL
statement)

Additional log information output (bytes)

INSERT 0

DELETE 224

UPDATE

INSERT rollback 0

DELETE rollback 148 + p1 + 8340 p2 + (148 + lt) p3*

UPDATE rollback

Type of data manipulation (SQL
statement)

Additional log information output (bytes)

UPDATE-SET (column specification) 164

UPDATE-ADD (element specification)
(when new elements are added by updating)

n
 164

i=1

18. Determining System File Size

846

n: Number of repetition columns to be updated
m: Number of elements to be deleted

p4: { (Average of the largest subscript number that is specified - average of
the smallest subscript number that is specified + 1) 8 } 4 4

(3) Determining the amount of index log information
Table 18-10 shows the formulas for determining the amount of index log information
that is output per index when manipulating a row.

Table 18-10: Amount of index log information per index

UPDATE-DELETE (element specification)
(when new elements are deleted by updating)

m
 (p4 + 160)

i=1

UPDATE-SET (element specification)
(when only the specified elements are updated)

n
 ((p4 + 160) 2)

i=1

DELETE 156

UPDATE-SET (column specification) rollback 156

Rollback of UPDATE-ADD (element specification)
(when new elements are deleted by updating)

n
 (p4 + 180)

i=1

Rollback of UPDATE-DELETE (element
specification)
(when new elements are added by updating)

m
 184

i=1

Rollback of UPDATE-SET (element specification)
(when only the specified elements are updated)

n
 (p4 + 180)

i=1

DELETE rollback 156

Type of data manipulation (SQL statement) Amount of log information
output (bytes)

Key addition
(INSERT statement)

Adding a new key k1 + 156 or (k1 + 156) 2*

Adding the same key as for
existing row

d 200 k1 + 156

d > 200 k1 + 292

Type of data manipulation (SQL
statement)

Additional log information output (bytes)

18. Determining System File Size

847

d: Number of duplicated key values
k1: Length of key to be added (bytes)

k2: Length of key to be deleted (bytes)

* Use this formula for indexes with UNIQUE specified using the index key no-lock
option.

(a) Determining the amount of index log information for index page splitting
Figure 18-1 shows the concept of index page splitting.

Figure 18-1: Concept of index page splitting

Explanation:
1. Splitting a page in two by adding a key to the rightmost leaf page (containing

the maximum key value in the figure) is called page splitting containing the
maximum key value.

2. Splitting a page in two by adding a key to any other leaf page is called page
splitting without the maximum key value.

Key deletion
(DELETE statement)

Deleting a key value k2 + 156

Deleting the same key value
as for existing row

d 200 k2 + 156

d > 200 k2 + 292

Key updating (UPDATE statement) Amount of log information for
key deletion + amount of log
information for key addition

Type of data manipulation (SQL statement) Amount of log information
output (bytes)

18. Determining System File Size

848

When a page that stores an index is split, HiRDB uses one of the two methods
explained below to store the key value.

Page splitting without the maximum key value
When a key value is added or deleted, HiRDB stores the key value by splitting the
key and the unused area at a ratio of approximately 50:50. Page splitting without
the maximum key value occurs in the following cases:

• The index storage page is too small to store the key value.
• a rows with the same key value are added while there are more than 200

duplicated key values (the value of a can be obtained from the formula
shown below; in this case, page splitting occurs at every a rows).

Formula

a = Page length of RDAREA for storing index (bytes) 4

Page splitting containing the maximum key value
If a key value is added or updated in an index storage page containing the
maximum key value, HiRDB stores the key value by splitting the key and the
unused area at the ratio specified by the PCTFREE operand of CREATE INDEX.
For example, if PCTFREE = 30 is specified, HiRDB stores the key value by
splitting the key and unused area at a ratio of approximately 70:30.
Page splitting containing the maximum key value occurs if it is impossible to
acquire as much free space as specified in the PCTFREE operand of CREATE
INDEX when a key value is to be added. However, this does not apply to an
upper-level page.

Table 18-11 shows the formulas for determining by split type the amount of index log
information that is output at any one time.

Table 18-11: Amount of index log information by split type

Split type Condition Amount of log
information output (bytes)

Page splitting
containing the
maximum key
value

Adding a key
value that is
different from
any key value
already in the
index

There is enough
unused area to add
the key in
upper-level page

2 k1 + a + 8
(m + 1) 31516

2 k1 + 472 + a + 8
 (m + 1)

2 k1 + a + 8
(m + 1) > 31516

2 k1 + 632 + a + 8
 (m + 1)

18. Determining System File Size

849

There is not
enough unused
area to add the key
in upper-level
page

2 k1 + a + 8
(m + 1) 31516

n-1
 (288 + a)

i=2
 + 2 k1 + 472 + a +
8 (m + 1)

2 k1 + a + 8
(m + 1) > 31516

n-1
 (288 + a)

i=2
 + 2 k1 + 628 + a +
8 (m + 1)

Adding the same
key value as one
already in the
index

d1 200 There is enough
unused area to add
the key in
upper-level page

2 k1 + 472 + a + 8
 (m + 1)

There is not
enough unused
area to add the key
in upper-level
page

n-1
 (288 + a)

i=2
 + 2 k1 + 472 + a +
8 (m + 1)

d1 > 200 There is enough
unused area to add
the key in
lower-level page

k1 + 472 + a

There is not
enough unused
area to add the key
in lower-level
page

k1 + 462 + 2 a

Split type Condition Amount of log
information output (bytes)

18. Determining System File Size

850

a: Page length of RDAREA storing the index (bytes)
d1: Number of duplicated key values

k1: Length of key value to be added (bytes)

m: Number of index levels where split occurred
n: Number of upper page levels affected by splitting

If an upper-level page affected by leaf page splitting is also split, the value of n is
3 (n 3).

Note
These formulas are used to estimate the amount of update log information for
each row and index part. The derived value does not include the amount of log
information related to system management that is output when a new page or
segment is allocated during addition or update processing. Therefore, if a large
amount of data is handled, the amount of log information shown in Table 18-12
must be added.

Page splitting
without the
maximum key
value

There is not
enough unused
area to add the
key

There is enough
unused area to add
the key in
upper-level page

2 k1 + a + 8
(m + 1) 31516

2 k1 + 332 + a + 8
 (m + 1)

2 k1 + a + 8
(m + 1) > 31516

2 k1 + 492 + a + 8
 (m + 1)

There is not
enough unused
area to add the key
in upper-level
page

2 k1 + a + 8
(m + 1) 31516

n-1
 (288 + a)

i=2
 + 2 k1 + 332 + a +
8 (m + 1)

2 k1 + a + 8
(m + 1) > 31516

n-1
 (288 + a)

i=2
 + 2 k1 + 492 + a +
8 (m + 1)

Split type Condition Amount of log
information output (bytes)

18. Determining System File Size

851

Table 18-12: Amount of log information for page allocation and segment
allocation

n
Number of index levels when page splitting occurred

(4) Determining the size of event log information
The event log information is output when row data containing repetition columns is
added, deleted, or updated using HiRDB Datareplicator. Table 18-13 shows the
amount of event log information that is output when a single row is manipulated.

Table 18-13: Amount of event log information that is output when a single row
is manipulated

n: Number of repetition columns being updated

p5: { (average of the largest subscript number that is specified - average of the
smallest subscript number that is specified + 1) 8 } 4 4

Condition Amount of log
information output

(bytes)

Allocation of a new page for storing rows resulting from data addition (INSERT)
or updating (UPDATE)

440

Index page splitting resulting from data addition (INSERT) or updating (UPDATE) 544 n + 272

Segment allocation resulting from the above page allocation (each time as many
pages are allocated as the segment size)

1940

Type of data manipulation Amount of event log
information (bytes)

Data addition (INSERT statement) 156 n

Data updating (UPDATE
statement)

New elements added by updating (UPDATE
ADD)

164 n

Elements deleted by updating
(UPDATE DELETE)

n
 (p5 +160)i

i = 1

Only specified elements updated
(UPDATE SET)

n
 (p5 +160)

i = 1

Specified repetition columns updated
(UPDATE SET)

164 n

18. Determining System File Size

852

18.1.5 Amount of system log information output during database
creation by a utility

When you execute the following utilities, the system outputs the system log
information shown in Table 18-14.

• Database load utility (pdload command)
• Database reorganization utility (pdrorg command)
• Rebalancing facility (pdrbal command)

The system log size is calculated by adding the value shown in Table 18-15 to the value
obtained in Table 18-14. For row partitioned tables and indexes, the amount of system
log information is calculated for each RDAREA in which tables and indexes are
stored.

• For HiRDB/Single Server:
Obtain the total amount of system log information calculated for each RDAREA.

• For HiRDB/Parallel Server:
Obtain the total amount of system log information calculated for each RDAREA
for each server.
Table 18-14: Formulas for determining the amount of system log information
output during database creation by a utility

Number Condition Amount of system log information output (bytes)

a specified in -l option p specified in -l option

1 Batch index
creation performed
(c or n specified in
-i option)

 n
{

 i=1
 [132 + (100 - f) 100 Xi]
 Wi
 + 280 Wi + 1940 Wi Vi

 }
 + 280 m + 1940 m s
+ a r

 n
{

 i=1
 280 Wi + 1940 Wi
Vi
 }
 + 280 m + 1940 m s

 + c r

18. Determining System File Size

853

Note:
The amount of system log information when indexes are created in batch or
singularly needs to be calculated for the number of indexes.

a: Amount of log information output when one data item is added, as obtained from
Tables 18-3 Formulas for determining the amount of base row log information per
data item and 18-4 Formulas for determining the amount of log information per BLOB
column data item.
b: Amount of log information output when one data item is added, as obtained from
Table 18-10 Amount of index log information per index.
c: Amount of log information output when one data item is added, as obtained from
Table 18-4 Formulas for determining the amount of log information per BLOB column
data item.
d: Amount of system log information output during index splitting

See Tables 18-11 Amount of index log information by split type and 18-12 Amount
of log information for page allocation and segment allocation.

2 Batch index
creation not
performed (s
specified in -i
option)

 n
{

 i=1
 280 Wi + 1940 Wi Vi
 + b r + e d
 }
 + 280 m + 1940 m s
+ a r

 n
{

 i=1
 280 Wi + 1940 Wi Vi

 + b r + e d
 }
 + 280 m + 1940 m s

 + c r

3 Index creation or
regeneration
performed (nothing
loaded with
pdload, or ixrc or
ixor specified in
pdrorg -k option)

Add the following amount to the
system log:
• 18.1.3 Amount of system log

information output during index
definition

• Table 18-12 Amount of log
information for page allocation
and segment allocation

• Table 18-17 Amount of system log
information output during
execution of the PURGE TABLE
statement

Add the following amount to the
system log:
• Table 18-12 Amount of log

information for page
allocation and segment
allocation

• Table 18-17 Amount of system
log information output during
execution of the PURGE
TABLE statement

Number Condition Amount of system log information output (bytes)

a specified in -l option p specified in -l option

18. Determining System File Size

854

e: Number of times index splitting occurs
f: Value (%) of the PCTFREE operand specified during index definition (percentage of
unused space in a page)
m: Number of table storage pages

See 17.1.2 Calculating the number of table storage pages.
n: Total number of indexes defined for table
r: Number of rows to be stored in table (rows)
s: Segment size of user RDAREA used to store table (pages)
Vi: Segment size of user RDAREA used to store index (pages)

Wi: Number of index storage pages

See 17.1.3 Calculating the number of index storage pages.
Xi: Page length of user RDAREA used to store index (bytes).

For items 1 and 2 in Table 18-14, the following table lists the values that are added
when calculating the amount of system log information, and the conditions required to
perform this addition.

Table 18-15: Values added when calculating the amount of system log
information, and conditions required to perform this addition

Conditions for addition Values added to the amount of system log information

When LOB columns are
defined

Add the following amount of log information for (the number of LOB columns
 the number of rows):

• See Data addition (INSERT statement) in Table 18-4 Formulas for
determining the amount of log information per BLOB column data item

• When the recovery attribute of the LOB column is not recovery no
3544 (LOB data length 31744) (bytes)

When the database load
utility (pdload) is executed
with the -d option specified,
or the database
reorganization utility
(pdrorg) is executed

Add the amount of log information of all indexes and all LOB columns (or LOB
attributes) defined in Tables or Rebalancing tables in Table 18-17 Amount of
system log information output during execution of the PURGE TABLE statement
and target tables.

When a table having a LOB
column or LOB attribute is
reorganized using the
database reorganization
utility (pdrorg), if the
following two conditions are
met:

Add the following log amount of information for each LOB RDAREA
configuration file:

 {17000 (the number of HiRDB file segments 64000) 95}

18. Determining System File Size

855

18.1.6 Amount of system log information that is output depending
on the SQL manipulation

If -k cnc is specified in the pdhibegin operand of the system common definition,
system log information is output when CONNECT, DISCONNECT, or set session
authorization is executed. Following is the formula for obtaining the amount of
system log information that is output depending on the SQL manipulation.
Formula

18.1.7 Amount of system log information that is output during the
execution of the RDAREA automatic extension facility

When you use the RDAREA automatic extension facility, the system outputs log
information during the execution of automatic extension. Table 18-16 shows the
formula for obtaining the amount of system log information that is output:

Table 18-16: Amount of system log information that is output during the
execution of the RDAREA automatic extension facility

p: Page size of RDAREA subject to automatic extension

• The table is reorganized
without the -j option
specified

• The LOB column does
not specify recovery
no and n is not specified
for the -l option

Add the following amount of log information for each item (the number of LOB
columns or LOB attributes the number of rows).

 LOB column is recovery all specification and also -l a specification
17600 sr sr
 Other than the above

 3200 sr sr
sr: Record length of the system log file specified in the pd_log_rec_leng
operand.

The HiRDB Datareplicator
linkage facility is used (the
pd_rpl_hdepath operand is
specified) and the table
contains repetition columns

Add the log information shown in Table 18-13 Amount of event log information
that is output when a single row is manipulated for each added row.

Amount of system log information (bytes)
 = 568 (CONNECTs count + "set session authorization" executions count)

Type of RDAREA Amount of system log information (bytes)

LOB RDAREA 1956

Other than LOB RDAREA 1372 + (144 + p) 2

Conditions for addition Values added to the amount of system log information

18. Determining System File Size

856

18.1.8 Amount of system log information output when the PURGE
TABLE statement is executed

The amount of log information output when the PURGE TABLE statement is executed
is determined from the total log information calculated for the table from all indexes,
LOB columns, and LOB attributes. For partitioning tables and partitioning indexes,
determine the total amount of log information for each RDAREA. Table 18-17 shows
the formulas for calculating the amount of system log information when the PURGE
TABLE statement is executed. In the formulas, calculate the variables A, B, and C for
each RDAREA configuration file.

Table 18-17: Amount of system log information output during execution of the
PURGE TABLE statement

A: (number of segments used by HiRDB files 64000) 95

B: (number of segments used by HiRDB files 64000)

C: (number of segments used by HiRDB files 64000) 8150
* For plug-ins, the initialization log for each plug-in is output. For details, see the
documentation for each plug-in.

18.1.9 Amount of system log information output when the free page
release utility (pdreclaim) is executed

Information is output to the system log when the free page release utility (pdreclaim)
is used to release the free pages of tables or indexes. Table 18-18 shows the formulas
for determining the amount of log output. If row partitioning is used with the tables or
indexes, this calculation must be performed for each partitioned RDAREA. For a
HiRDB/Single Server, determine the total amount of log information calculated from
each row partitioned RDAREA. For a HiRDB/Parallel Server, determine the total
amount of log information calculated from each row partitioned RDAREA for each
server.

Type Amount of system log information (bytes)

Tables 1000 + 1100 number of allocated segments

Rebalancing tables 1000 + 1100 number of allocated segments + 400
1024 number of partitioning RDAREAS

Indexes* 1000 + 1100 number of allocated segments

LOB columns or LOB attributes* 1000 + 17000 A + 160 B + 2 C

18. Determining System File Size

857

Table 18-18: Amount of system log information output when the free page
release utility is executed

h: Index levels
j: Page size (bytes)
k: Index key length (bytes)
m: Number of used pages (excluding full pages)
n: Number of used free pages
p: Number of used free segments

18.1.10 Amount of system log information that is output during
execution of the facility for predicting reorganization time

If you use the facility for predicting reorganization time, you must add the amount of
log information obtained from the following formula to the amount of log information
that is output by the dictionary server for a HiRDB/Parallel Server (or that is output by
the single server for a HiRDB/Single Server):
Formula

A: Number of tables that have been created + 61

Type Amount of system log information (bytes)

Tables 140 n
 Calculate when the -o option is not specified.

504 m

Indexes {((k + 14) (j - 68)) 1408 + k + 12 h + 906} n
 When the -x option is specified, the amount of system log information is

added when the free page release index is a unique index, a primary key, or a
cluster key that specifies UNIQUE or PRIMARY.
{m - n - (((k + 14) n) ((j - 68) 2))} (j - 56) 0.7

Segments 2380 p

Amount of system log information (bytes) =
 n {1604 (A + B + C + D) (E + 1)}
 + m {872 (a + b + c + 1)}
 + 11680 {(A + B + C + D) (E + 1)} 30 540
 + 332 {(A + B + C + D) (E + 1)} 30
 + 7760

18. Determining System File Size

858

B: Number of indexes that have been created + 124
C: Total number of BLOB columns defined for the tables that have been created + 3
D: Total number of BLOB attributes defined for the tables that have been created
E: Average number of partitions in the table storage RDAREA

If the RDAREA is not partitioned, the value is 1. The average value is rounded up.
a: Number of RDAREAs storing tables processed by SQL statements or commands
b: Number of RDAREAs storing indexes processed by SQL statements or commands
c: Number of LOB RDAREAs storing tables processed by SQL statements or
commands
n: Number of times the condition analysis result accumulation facility (pddbst -k
logi -e) executed
m: Number of SQL statements or commands executed to update the database
management table

For details about the SQL statements and commands for updating the database
management table, see the manual HiRDB Version 8 System Operation Guide.

18. Determining System File Size

859

18.2 Determining the size of synchronization point dump files

(1) Determining the size of a synchronization point dump file
The following formula is used to determine the size of a synchronization point dump
file.
Formula

1 See (2) as follows; the obtained value is specified in the -n option of the pdloginit
command.
2 This is the record length of a synchronization point dump file.

(2) Determining the number of records in a synchronization point dump file

a: Value of the pd_max_users operand + value of the
pd_max_reflect_process_count operand

For multi-front-end servers, (value of the pd_max_users operand + value of the
pd_max_reflect_process_count operand) + 1

b: Number of back-end servers
c: Value of the pd_lck_until_disconnect_cnt operand
d: Value of the pd_max_bes_process operand + value of the
pd_max_reflect_process_count operand

Size of synchronization point dump file (bytes)
 = Number of records in synchronization point dump file1 40962

Condition Formula for determining the number of records

HiRDB/Single Server {1520 (2 a + 7)} 4096
 + (96 + 112 c) 4096 + 3

HiRDB/Parallel Server Front-end server (320 b + 840) (2 a + 7) 4096 + 4

Back-end server {1456 (2 d + 7) + 64 (2 d + 7) (b 4 + f +
2)} 4096
 + (96 + 112 c) 4096 + 3

Dictionary server {1456 (2 e + 7) + 64 (2 e + 7) (b 4 + f +
2)} 4096
 + (96 + 112 c) 4096 + 3

18. Determining System File Size

860

e: Value of the pd_max_dic_process operand + value of the
pd_max_reflect_process_count operand
f: Number of front-end servers

18. Determining System File Size

861

18.3 Determining the size of status files

(1) Determining the size of a status file
The following formula is used to determine the size of a status file.
Formula

a: Number of records in the status file.
See (2) as follows; the obtained value is specified in the -c option of the
pdstsinit command.

b: Record length of the status file. This value is specified in the -l option of the
pdstsinit command.

(2) Determining the number of records in a status file
The following formula is used to determine the number of records in a status file.
Formula

See (3) as follows for the value of S.
(3) Determining the value of S

(a) HiRDB/Single Server

Size of status file (bytes) = a b

Number of records
 = { S (record length - 40) + S 100 + S + 2} 1.2

Type Formula for S

Unit (2056 + 128 d) g + 2512 g + 40 g
 + 308 g + 32 g + 4000 g

18. Determining System File Size

862

a: Number of specified pdlogadfg operands
b: Number of specified pdlogadfg -d spd operands
c: Value of pd_max_rdarea_no operand
d: 90 (single server) or 69 (utility special unit)

Server 128 g + 32801 g + (5922 + j b) g
 + 8192 g + (8192 - 128) g {((a + m) k) - 1}
 + [{(c 127 + 1) 2048} 8192 8192] g
 + 2048 g + {244 + 64 (2 h + 7)} g
 + 96 g + {48 + 68 (2 h + 7)} g
 + {8192 + (e 98 8192) 8192 + (f 80 8192) 8192} g
 + (8 c + 4) g + 256 g
 + w

 If the status file record length < 4096, add:

 + MAX{3400 r + 0.7,1} MAX(4096 s ,2) n
 + 5662310 r + 0.7 MAX(4096 s ,2) p
 + MAX{MAX(51200 t ,1) 8 + 0.7,1} MAX(4096 s ,2) 8 2

 If 4096 status file record length < 12288, add:

 + MAX{(3400 (s - 348) 20) + 0.7,1} n
 + (5662310 (s - 348) 20) + 0.7 p
 + MAX{(MAX(u,1) 8) + 0.7,1} 8 2

 If 12288 status file record length, add:

 + MAX{(3400 (s - 876) 20) + 0.7,1} n
 + (5662310 (s - 876) 20) + 0.7 p
 + MAX{(MAX(u,1) 8) + 0.7,1} 8 2

 Add when the pd_log_auto_unload_path operand is specified.
 + 20848 g

 Add when the rapid system switchover facility and the standby-less system switchover facility
are used.
 + (256 i + 4096) g

 Add when Y is specified in the pd_dbbuff_modify operand.
 + v

 If HiRDB Staticizer Option has been set up and the pd_max_reflect_process_count operand
is specified, add:
 + (128 + 704) g

Type Formula for S

18. Determining System File Size

863

e: Number of specified pdbuffer operands
f: Number of -i options specified in the pdbuffer operand
g: Record length of status file minus 40
h: Value of pd_max_users + value of pd_max_reflect_process_count
i: When the inner replica facility is used, the value of the pd_max_file_no operand

When the inner replica facility is not used, the value of the pd_max_rdarea_no
operand

j: 736
k: 11
m: 1
n: If the number of RDAREAs in the server 3400, the value is 1.

If 3401 number of RDAREAs in the server 6800, the value is 2.
If 6801 number of RDAREAs in the server, the value is 3.

p: If the number of RDAREAs in the server 10200, the value is 0.
If 10201 number of RDAREAs in the server 5672510, the value is 1.
If 5672511 number of RDAREAs in the server 11334820, the value is 2.
If 11334821 number of RDAREAs in the server, the value is 3.

r: (s - 348) 20 + g 20 (MAX(4096 s ,2) - 1)
s: Status file record length

t: (s - 68) 20 + (s - 44) 20 (MAX(4096 s ,2) - 1)

u: 51200 { (s - 72) 20 }

v: In 32-bit mode: (24 + 28 x + 32 + 112 y) g

In 64-bit mode: (32 + 32 x + 32 + 128 y) g
x: Value of pd_max_add_dbbuff_shm_no operand
y: Value of pd_max_add_dbbuff_no operand
z: Value obtained by adding the pd_max_add_dbbuff_no operand value to the total
number of -i options specified in the pdbuffer operand (if a value other than Y is
specified in the pd_dbbuff_modify operand, 0 is used)
1 For the 64-bit mode, use a value of 3456.
2 For the 64-bit mode, use a value of 688.

18. Determining System File Size

864

(b) HiRDB/Parallel Server
Type Formula for S

Unit [2056 + 128 {14 (p + q) + (p + q + r)
 + (24 + s 2 + q 7 + r 3 + p 15 + 2)
 + (38 + (p + q + r) 4 + z + d) + 3}] j
 + 944 j + 4816 j + 40 j + 372 j
 + 32 j + 4000 j + 43456 j

 If the unit contains the system manager, add:
 + (32 + 16 number of units) j
 + (72 + 24 (the total number of units in the system - 1)) j

 If the standby-less system switchover (effects distributed) facility is used, add:
 + {8192 + (f 98 8192) 8192 + (g 80 8192) 8192} j

Front-end server 128 j + 32801 j + (5922 + A b) j
 + 8192 j + (8192 - 128) j { (a + C) B - 1}
 + 8192 j + 2048 j
 + {244 + 64 (2 e + 7)} j + 96 j

 Add when the pd_log_auto_unload_path operand is specified.
 + 20848 j

18. Determining System File Size

865

Dictionary
server

128 j + 32801 j + (5922 + A b) j
 + 8192 j + 8192 j { (a + C) B - 1}
 + [{(c 127 + 1) 2048} 8192 8192] j
 + 2048 j + {244 + 64 (2 h + 7)} j + 96 j
 + {48 + 68 (2 h + 7)} j
 + {8192 + (f 98 8192) 8192 + (g 80 8192) 8192} j
 + (8 c + 4) j
 + H

 If the status file record length < 4096, add:

 + MAX{3400 D + 0.7,1} MAX(4096 n ,2)

 + MAX{MAX(51200 E ,1) 8 + 0.7,1} MAX(4096 n ,2) 8
 2
 If 4096 status file record length < 12288, add:

 + MAX{(3400 (n - 348) 20) + 0.7,1}

 + MAX{(MAX(F,1) 8) + 0.7,1} 8 2
 If 12288 status file record length, add:

 + MAX{(3400 (n - 876) 20) + 0.7,1}

 + MAX{(MAX(F,1) 8) + 0.7,1} 8 2
 Add when the system switchover facility is used.

 + (256 c + 4096) j
 Add when the pd_log_auto_unload_path operand is specified.

 + 20848 j
 Add when HiRDB External Data Access is used.

 + {128 (v + w + 1)} j
 Add when Y is specified in the pd_dbbuff_modify operand.

 + G

Type Formula for S

18. Determining System File Size

866

a: Number of specified pdlogadfg operands
b: Number of specified pdlogadfg -d spd operands
c: Value of pd_max_rdarea_no operand

Back-end server 128 j + 32801 j + (5922 + A b) j
 + 8192 j + 8192 j { (a + C) B - 1}
 + [{(c 127 + 1) 2048} 8192 8192] j
 + 2048 j + {244 + 64 (2 i + 7)} j + 96 j
 + {48 + 68 (2 i + 7)} j + (8 c + 4) j + 256 j
 + {8192 + (f 98 8192) 8192 + (g 80 8192) 8192} j 4

 + H
 If the status file record length < 4096, add:

 + MAX{3400 D + 0.7,1} MAX(4096 n ,2) k
 + 5662310 D + 0.7 MAX(4096 n ,2) m
 + MAX{MAX(51200 E ,1) 8 + 0.7,1} MAX(4096 n ,2) 8

 2
 If 4096 status file record length < 12288, add:

 + MAX{(3400 (n - 348) 20) + 0.7,1} k
 + (5662310 (n - 348) 20) + 0.7 m
 + MAX{(MAX(F,1) 8) + 0.7,1} 8 2

 If 12288 status file record length, add:

 + MAX{(3400 (n - 876) 20) + 0.7,1} k
 + (5662310 (n - 876) 20) + 0.7 m
 + MAX{(MAX(F,1) 8) + 0.7,1} 8 2

 Add when the system switchover facility is used.
 + (256 y + 4096) j

 Add when the pd_log_auto_unload_path operand is specified.
 + 10608 j

 Add when HiRDB External Data Access is used.
 + {128 (t + u + 1)} j

 Add when Y is specified in the pd_dbbuff_modify operand.
 + G

 If HiRDB Staticizer Option has been set up and the pd_max_reflect_process_count
operand is specified, add:
 + (128 + 704) j

Type Formula for S

18. Determining System File Size

867

d: 3
For a HiRDB/Parallel Server on a single server machine, the value is 2.

e: (value of pd_max_users operand + value of pd_max_reflect_process_count
operand) + 1

However, if a HiRDB/Parallel Server is used with a single server machine, (value
of pd_max_users operand + value of pd_max_reflect_process_count
operand)

f: Number of specified pdbuffer operands
g: Number of -i options specified in the pdbuffer operand
h: Value of pd_max_dic_process operand + value of
pd_max_reflect_process_count operand
i: Value of pd_max_bes_process operand + value of
pd_max_reflect_process_count operand
j: Record length of status file minus 40
k: If the number of RDAREAs in the server 3400, the value is 1.

If 3401 number of RDAREAs in the server 6800, the value is 2.
If 6801 number of RDAREAs in the server, the value is 3.

m: If the number of RDAREAs in the server 10200, the value is 0.
If 10201 number of RDAREAs in the server 5672510, the value is 1.
If 5672511 number of RDAREAs in the server 11334820, the value is 2.
If 11334821 number of RDAREAs in the server, the value is 3.

n: Status file record length
p: Number of back-end servers in unit
q: 1 if there is a dictionary server in the unit; otherwise, 0
r: 1 if there is a front-end server in the unit; otherwise, 0
s: 1 if there is a system manager in the unit; otherwise, 0
t: Number of foreign servers defined to link to this back-end server
u: Number of user mappings defined for foreign servers to link to this back-end server
v: Total number of foreign server definitions
w: Total number of user mapping definitions
y: When the inner replica facility is used, value of the pd_max_file_no operand

18. Determining System File Size

868

When the inner replica facility is not used, value of the pd_max_rdarea_no
operand

z: 1 in the following cases:
• When there is a system manager in the unit
• When there is no system manager in the unit and local is specified in the

pd_mlg_msg_log_unit operand
0 when there is no system manager in the unit and manager is specified in the
pd_mlg_msg_log_unit operand or specification is omitted

A: 736
B: 11
C: 1

D: (n - 348) 20 + j 20 (MAX(4096 n ,2) - 1)

E: (n - 68) 20 + (n - 44) 20 (MAX(4096 n ,2) - 1)

F: 51200 { (n - 72) 20 }

G: In 32-bit mode: (24 + 28 I + 32 + 112 J) g

In 64-bit mode: (32 + 32 I + 32 + 128 J) g

H: In 32-bit mode: ((((c 8) + 3) 4) 4) K) g

In 64-bit mode: ((((c 8) + 7) 8) 8) K) g
I: Value of pd_max_add_dbbuff_shm_no operand
J: Value of pd_max_add_dbbuff_no operand
K: Value obtained by adding the pd_max_add_dbbuff_no operand value to the total
number of specified -i options in the pdbuffer operand (if a value other than Y is
specified in the pd_dbbuff_modify operand, 0 is used)
1 For the 64-bit mode, use a value of 3456.
2 For the 64-bit mode, use a value of 688.
3 Do not add this value if you use the standby-less system switchover (effects
distributed) facility.

869

Chapter

19. Determining Work Table File Size

This chapter explains how to determine the size of a work table file.
This chapter contains the following sections:

19.1 Overview of determining the size of a work table file
19.2 Determining the size of a HiRDB file system area (pdfmkfs -n command)
19.3 Determining the maximum number of files (pdfmkfs -l command)
19.4 Determining the maximum number of extensions (pdfmkfs -e command)

19. Determining Work Table File Size

870

19.1 Overview of determining the size of a work table file

This section describes the estimation of the size of a work table file that is used to
temporarily store information needed to execute SQL statements.
When you perform any of the following operations, the system creates a work table file
to store temporary information:

• Execution of SQL statements
• Batch index creation

• Index re-creation
• Index reorganization
• Execution of the rebalancing utility

HiRDB creates a work table file in a HiRDB file system area. The HiRDB
administrator must do the following:

• Use the pdfmkfs command to initialize HiRDB file system areas for creation of
work table files.

• Use the pdwork operand of the system definition to specify the name of the HiRDB
file system area that is to be used.

This section explains how to determine the values to be specified in options of the
pdfmkfs command options; these options are listed in Table 19-1.

Table 19-1: Options for which values need to be specified

Option Description

-n Size of HiRDB file system area in which work table files are to be created

-l Maximum number of HiRDB files (work table files) that can be created in the HiRDB file
system area

-e Maximum number of secondary allocations for the HiRDB file system area

19. Determining Work Table File Size

871

19.2 Determining the size of a HiRDB file system area (pdfmkfs -n
command)

Use the pdfmkfs command's -n option to specify the size of a HiRDB file system area
in which a work table file is created.
The following formula is used to obtain the size of a HiRDB file system area in which
work table files are to be created.
Formula

A
Size of a work table file to be used by an SQL statement. For details about how
to obtain this value, see 19.2.1 Size of a work table file used by an SQL statement.

B
Size of a work table file used by the database load utility (pdload), database
reorganization utility (pdrorg), and rebalancing utility (pdrbal). For details
about how to obtain this value, see 19.2.2 Size of a work table file used by a utility.

If you do not execute an SQL statement that uses a work table file concurrently with a
utility that also uses a work table file, specify either A or B, whichever is larger, as the
size of the HiRDB file system area.
Notes

If the size of the HiRDB file system area obtained with this formula is too large
for one HiRDB file system area, initialize multiple HiRDB file system areas with
the pdfmkfs command and specify the pdwork operand in the HiRDB system
definition. In this case, note the following:

• Set the size of each HiRDB file system area to the same value.
• Make the size of each HiRDB file system area larger than the size of a work

table (for storing column information).
• If you divide a HiRDB file system area into too many segments, unused area

is distributed among multiple HiRDB file system areas, and a shortage of
space may occur because the space is not used efficiently.

• If the size of a single work table file exceeds 2 gigabytes, use large files. A
single work table file cannot be partitioned among multiple HiRDB file
system areas.

Size of HiRDB file system area (bytes) = A + B

19. Determining Work Table File Size

872

19.2.1 Size of a work table file used by an SQL statement
To determine the size of a work table file used by an SQL statement, use the following
formula:

a: Maximum size of a work table file that is used by one SQL statement
Calculate the size of a work table file for each SQL statement and use the largest
such size as the value of a. For details about how to obtain this value, see (1)
Formula for calculating the size of the work table file to be used by one SQL as
follows.

b: Maximum size of a work table file that is used by an ASSIGN LIST statement.
Calculate the size of a work table file for each ASSIGN LIST statement and use
the largest such size as the value of b. For details about how to obtain this value,
see (2) Formula for calculating the size of the work table file to be used by the
ASSIGN LIST statement as follows.

c: Value of the pd_max_users operand + value of the
pd_max_reflect_process_count operand

However, when multiple front-end servers are being used, the back-end servers
are (value of the pd_max_bes_process operand + value of the
pd_max_reflect_process_count operand).

(1) Formula for calculating the size of the work table file to be used by one SQL
The following formula is used to calculate the size of the work table file that is to be
used by one SQL statement.
Formula

a: Size of a column information work table
b: Maximum number of column information work tables
c: Size of a location information work table
d: Maximum number of location information work tables

(a) Obtaining the size of a column information work table
To obtain the size of a column information work table, use the following formula:
Formula

Size of a work table file used by an SQL statement (bytes) = MAX (a, b) c

Size of work table file to be used by one SQL statement (bytes) = a b + c d

19. Determining Work Table File Size

873

a: Number of rows in the column information work table (see Table 19-2)
b: Page length of the work table (use Formula 1 as follows)
c: Row length of the work table (use Formula 2 as follows)
Formula 1

#: The page length of a work table must be no greater than 32,768 bytes.
Formula 2

Ai:

Data length for each column in work table (see Table 19-3 for the calculation
procedure)

n:
Number of columns in work table (see Table 19-3 for the calculation procedure)

* The row length of a work table must be no greater than 32,720 bytes.
If the LIMIT clause is specified and the value of (number of offset rows + number
of rows specified in the LIMIT clause) is 32,768 or greater, add 12 to the row
length of the work table obtained from Formula 2. However, addition of 12 is not
necessary in the following cases:

• The table to be searched is locked in the EX mode.
• WITHOUT LOCK was specified.
• The rapid grouping facility was specified.
• Multiple tables are to be joined.

Size of a column information work table (bytes)

 = a MIN{ (b - 48) c , 255 } b 2

Page length for a work table# = MAX { (row length for work table + 48) 2048 2048, 4096}

Row length for a work table* =
 n

 Ai + 2 n + 6
 i=1

19. Determining Work Table File Size

874

Table 19-2: Obtaining the number of rows in a column information work table

Table 19-3: Obtaining the data length for each column and the number of
columns in a work table

Note

SQL statement Number of rows in column information work table

SELECT statement This is the total number of rows subject to retrieval in individual tables. If
multiple tables are joined, then use the resulting number of rows, if it is
greater.

CREATE INDEX statement This is the number of rows in a table. For an index for repetition columns,
use the total number of elements per repetition column among the index
component columns.

SQL statement n Ai

SELECT statement Number of columns specified in
selection expression + number of
columns specified in GROUP BY
clause + number of columns
specified in ORDER BY clause +
number of columns specified in
HAVING clause + 1 if the FOR
UPDATE clause is specified
If ROW is specified in the selection
expression, specify the total
number of rows in the table.

Data length for each column
However, in the case of large object
data (BLOB), character data with a
defined length of 256 or greater
(including National and mixed
character data), or binary data for
columns that do not have the
following attributes or for location
information columns: 12
• Column specified in a join

condition(join column)
• Selection expression with

DISTINCT clause specified
• Column specified in the

subquery selection expression
with a quantified predicate

• Column specified in the
subquery selection expression
with the IN predicate

• Selection expression in a query
specification subject to set
operation with UNION[ALL] or
EXCEPT[ALL]

• Column specified in the ORDER
BY clause

CREATE INDEX statement 1 (index information column) +
1(positional information column)

• For an index information
column, specify the sum of the
data lengths for index
component columns

• 12 for a positional information
column

19. Determining Work Table File Size

875

For details about the data lengths of columns, see the following tables:
• Table 17-1 List of data lengths
• Table 17-2 Data lengths for the variable-length character string type (except

abstract data type and repetition columns)
• Table 17-3 Data lengths for the variable-length character string type

(abstract data type)
• Table 17-4 Data lengths for the variable-length character string type

(repetition columns)
(b) Obtaining the maximum number of column information work tables

Table 19-4 shows the procedure for obtaining the maximum number of column
information work tables.

19. Determining Work Table File Size

876

Table 19-4: Obtaining the maximum number of column information work tables

* Applicable only to a HiRDB/Parallel Server.

SQL statement Maximum number of work tables for storing column information

SELECT statement When none of 1-10 as follows is applicable: 0
When any of 1-10 as follows is applicable: Sum of all the applicable values from
1-10
1. When multiple tables are joined for retrieval

Number of additional work tables (HiRDB/Single Server) = number of joined
tables + 1
Number of additional work tables (HiRDB/Parallel Server) = number of joined
tables 2
If the join key column has an index and there is a limitation condition, the
number of work tables is 0.

2. When specifying the ORDER BY clause
Number of additional work tables = 2
For a non-partitioned table, if the column with the ORDER BY clause specified
has an index, the number of work tables is 0.

3. When specifying a value expression containing a set function in the selection
expression without specifying the GROUP BY clause*

Number of additional work tables = 1
4. When specifying the GROUP BY clause

Number of additional work tables = number of GROUP BY clauses specified 2
5. When specifying the DISTINCT clause

Number of additional work tables = number of DISTINCT clauses specified 2
6. When specifying the UNION[ALL] or EXCEPT[ALL] clause

Number of additional work tables (HiRDB/Single Server) = number of
UNION[ALL] or EXCEPT[ALL] clauses specified + 2
Number of additional work tables (HiRDB/Parallel Server) = (number of
UNION[ALL] or EXCEPT[ALL] clauses specified + 1) 2

7. When specifying the FOR UPDATE clause or when using this cursor for updating
purposes and specifying a search condition for a column with the index defined*

Number of additional work tables = 2
8. When specifying the FOR READ ONLY clause

Number of additional work tables = 1
9. When specifying a subquery (quantified predicate)
Number of additional work tables = number of subqueries specified + (number of
=ANY quantified predicates for a column with the index defined) + (number of IN
predicate subqueries specified for a column with the index defined) + (number of
=SOME quantified predicates for a column with the index defined)
1. When specifying the window function COUNT(*) OVER() in a selection

expression
Number of increased work tables = number of query specifications in which the
window function is specified in the selection expression

CREATE INDEX statement 2

19. Determining Work Table File Size

877

(c) Obtaining the size of a location information work table
To obtain the size of a location information work table, use the following formula:
Formula

* If an index-type plug-in function is specified as the search condition, use the value
155.
a: Number of rows in the location information work table

The following shows the procedure for obtaining the number of rows in the
location information work table:

(d) Obtaining the maximum number of location information work tables
Table 19-5 shows the procedure for obtaining the maximum number of location
information work tables.

Table 19-5: Obtaining the maximum number of location information work
tables

Size of a location information work table (bytes)
 = a 184* 4096 2

SQL statement Obtaining the number of rows in the location information work table

SELECT statement
UPDATE statement
DELETE statement

If the search condition contains one predicate that includes a column with the index
defined, use the number of rows for which the predicate is true. If there is more than
one predicate, use the sum of the following values:
• If OR operation is conducted on the predicates, the total number of rows for

which at least one predicate is true.
• If AND operation is conducted on the predicates, sum of the larger numbers of

rows for which the predicates are true.

SQL statement Maximum number of location information work tables

SELECT statement Number of indexes to be used during search + 1 in either of the following cases:
1. Search condition is specified for multiple columns with index defined.
2. The FOR UPDATE clause is specified or this cursor is used for updating

purposes and a search condition is specified for the column with index
defined.*

3. Search condition is specified for a column for which a repetition column
index is defined.

4. Facility for batch acquisition from functions provided by plug-ins is
specified as the SQL optimization option and a function provided by a
plug-in that uses a plug-in index is specified as a search condition.

In all these cases, the value is the number of indexes used during a search + 1.

19. Determining Work Table File Size

878

* This is applicable to a HiRDB/Single Server only.
(2) Formula for calculating the size of the work table file to be used by the
ASSIGN LIST statement

To obtain the size of a work table file used by the ASSIGN LIST statement, use the
following formula:
Formula

n: Number of predicates in the selection condition of the ASSIGN LIST statement
Bi: Size of the work table used to process predicate i in the search condition. Use the
following formula to obtain this value:

Bi = number of rows for which predicate i is true in the
base table for the list* 504 4096 1.5 (bytes)

* If the predicate is a condition for a repetition column, this value is the total number
of elements that are true.

19.2.2 Size of a work table file used by a utility
If you create an index in batch mode, re-create an index, reorganize an index, or
reorganize data using the rebalancing utility, you need the following size of work table
file:
Formula

A: Number of rows in the work table required for index creation 1
B: Number of rows in the work table required for index creation 2
C: Number of rows per work table page
D: Page length of work table
Notes

UPDATE statement
DELETE statement

If the search condition contains a column with an index defined, use the number
of indexes used during search processing + 1.

Size of work table file to be used by the ASSIGN LIST statement (bytes) =
 n

 (Bi 2)
 i = 1

Size of a work table file used by a utility (bytes) = {A + B} 2 D} C

SQL statement Maximum number of location information work tables

19. Determining Work Table File Size

879

• If you create multiple indexes in batch mode or re-create multiple indexes
using one utility, obtain the size for the index with the longest index key.

• If you execute batch index creation and re-creation concurrently, obtain the
size of work table file for each operation and add the sizes.

• If you execute multiple utilities concurrently, obtain the total of the sizes of
the work table files calculated for each utility.

(1) Obtaining the number of rows in the work table required for index creation 1
To obtain the number of rows in the work table required for index creation 1, use the
following formula:
Formula

a: Page size of a user RDAREA used to store the index
b: Percentage of unused area specified in the PCTFREE operand of the CREATE INDEX
statement
c: Number of data items

For the index for repetition columns, use the sum of the elements of each row per
repetition column among the index component columns.

d: Length of index key
For details about the length of the index key, see Table 17-5 List of index key
lengths. Because the key lengths stored in the database are based on a 4-byte
boundary, it becomes key length 4 4.
For multiple indexes, add the key lengths of all component columns on the basis
of Table 17-5 List of index key lengths.

(2) Obtaining the number of rows in the work table required for index creation 2
To obtain the number of rows in the work table required for index creation 2, use the
following formula:
Formula

a: Page size of a user RDAREA used to store the index
b: Percentage of unused area specified in the PCTFREE operand of the CREATE INDEX

Number of rows in work table 1

= c { a (100 - b) 0.01 (d + 22) }

Number of rows in work table 2

= c { a (100 - b) 0.01 (d + 14) }

19. Determining Work Table File Size

880

statement
c: Number of rows in the work table required for index creation 1

Use the value obtained at (1) previously.
d: Length of index key

For details about the length of the index key, see Table 17-5 List of index key
lengths. Because the key lengths stored in the database are based on a 4-byte
boundary, it becomes key length 4 4.
For multiple indexes, add the key lengths of all component columns on the basis
of Table 17-5 List of index key lengths.

(3) Obtaining the number of rows per work table page
To obtain the number of rows per work table page, use the following formula:
Formula

a: Length of row in the work table (index key length + 18)
For details about the length of the index key, see Table 17-5 List of index key
lengths. The key length is key length 4 4.
For multiple indexes, add the key lengths of all component columns on the basis
of Table 17-5 List of index key lengths.

b: Page length of the work table
See (4) as follows.

(4) Obtaining the page length of a work table
To obtain the page length of a work table, use the following formula:
Formula

a: Length of row in the work table (index key length + 18)
For details about the length of the index key, see Table 17-5 List of index key
lengths. The key length is key length 4 4.
For multiple indexes, add the key lengths of all component columns on the basis
of Table 17-5 List of index key lengths.

Number of rows per work table page = MIN{ (b - 48) a 255}

Page length of work table = MIN{ (a + 4) 2048 2048, 2048}

19. Determining Work Table File Size

881

19.3 Determining the maximum number of files (pdfmkfs -l
command)

To specify the maximum number of work table files to be created in a HiRDB file
system area, use the pdfmkfs command's -l option.
You can use the following formula to determine the maximum number of work table
files that need to be created in a HiRDB file system area:
Formula

a: Number of work table files to be used by one SQL statement
Calculate the number of work table files to be used by each SQL statement and
specify the largest such value for a in the formula; see (1) as follows.

b: Number of work table files to be used by an ASSIGN LIST statement
Calculate the number of work table files to be used by each ASSIGN LIST
statement and specify the largest such value for b in the formula; see (2) as
follows.

c: Value of the pd_max_users operand + value of the
pd_max_reflect_process_count operand

However, when multiple front-end servers are being used, the back-end servers
are (value of the pd_max_bes_process operand + value of the
pd_max_reflect_process_count operand).

* Add this value if you execute an SQL statement that uses a work table file
concurrently with a utility that also uses a work table file (database load utility or
database reorganization utility).

(1) Obtaining the number of work table files to be used by one SQL statement
To obtain the number of work table files to be used by one SQL statement, use the
following formula:
Formula

For details about the maximum numbers of column information work tables and
location information work tables, see 19.2.1 Size of a work table file used by an SQL

Maximum number of files = MAX(a, b) c + 20 + 2*

Number of work table files to be used by one SQL statement =
maximum number of column information work tables + maximum number
of location information work tables

19. Determining Work Table File Size

882

statement.
(2) Obtaining the number of work table files to be used by an ASSIGN LIST
statement

To obtain the number of work table files to be used by an ASSIGN LIST statement,
use the following formula:
Formula

(3) Note
When specifying multiple HiRDB file system areas to create work table files, note the
following:

• If the value obtained is greater than 4096, specify a value of 4096 in the -l option.

Number of work table files to be used by an ASSIGN LIST statement =
number of predicates in the search condition of ASSIGN LIST
statement 2

19. Determining Work Table File Size

883

19.4 Determining the maximum number of extensions (pdfmkfs -e
command)

To specify the maximum number of extensions for a work table file in a HiRDB file
system area, use the -e option in the pdfmkfs command.
You can use the following formula to determine the maximum number of extensions
for the HiRDB file system area:
Formula

Note
For details about how to obtain the maximum number of files, see 19.3
Determining the maximum number of files (pdfmkfs -l command).

Maximum number of extensions
= MIN(maximum number of files 23, 60000)

885

Chapter

20. Storage Requirements for Utility
Execution

This chapter explains how to determine the file sizes and storage requirements for
execution of utilities.
This chapter contains the following sections:

20.1 Determining the file sizes required for utility execution
20.2 Determining the memory size required for utility execution

20. Storage Requirements for Utility Execution

886

20.1 Determining the file sizes required for utility execution

20.1.1 File sizes required for the execution of the database load
utility (pdload)

The following table shows the formulas for determining the file sizes required for the
execution of the database load utility (pdload):

File type Formula (bytes)

Input data file h b

Index information file B-tree index:
(d + y) (b + e) + 512

Plug-in index:
(12 + q) p + 1024

These formulas are for the size of one index. If there are multiple indexes,
determine the size of each index.

Error information file k f + s 200

Temporary file for creating
error information file

If the following condition is true, the size obtained from the formula number of key
duplicate errors 8 + number of errors detected by plug-in function 200 is
also required for the temporary file storage area (either /tmp, /usr/tmp, or /
var/tmp).
Condition: For each server that contains table storage RDAREAs:
• For a HiRDB/Single Server, a utility special unit contains the input files.
• For a HiRDB/Parallel Server, the server that contains the input files is different

from the server containing the table storage RDAREAs.

LOB input file EasyMT used to create the LOB input file:
a

 (LOB data length + 400)
i = 1
LOB input file by column:
b

 (LOB data length + 4)i
i = 1

LOB middle file B
{

i = 1
c

 (LOB file name length-ij + 36) + 24} + 1024 + c 84
j = 1

Error data file MIN(f, g) h

20. Storage Requirements for Utility Execution

887

a: Number of input rows number of LOB columns
b: Number of input rows (for a repetition column, number of input rows number of
elements)
c: Number of LOB columns
d: Index key length

See Table 17-5 List of index key lengths. For variable-length data, treat a single
column as multicolumn and use the largest defined length.

e: Number of existing rows (for a repetition column, number of existing rows
number of elements)
f: Number of error data items
g: Number of output rows specified in the errdata operand of the source statement
h: Average source record length
k: If there is a column with an abstract data type, the value is 300; otherwise, it is 120.
m: For a DAT-format file or a binary-format file output by pdrorg, the value is 0.

For any other file, the value is (record length of one row in the input file 4).
p: If index storage RDAREAs are initialized, the value is (b + e); otherwise, the value
is b.

Process results file 1500 + number of servers storing table 500

Work file for sorting Condition 1:
Size of index information file + 4 (b + e)
Condition 2:
{Size of index information file + 4 (b + e)} 2

• Condition 1
When the work buffer size specified in the sort statement E

• Condition 2
When the work buffer size specified in the sort statement < E

E: Buffer size
The buffer size obtained according to buffer-size-for-sorting in Database Load
Utility (pdload) of the manual HiRDB Version 8 Command Reference.

File type Formula (bytes)

20. Storage Requirements for Utility Execution

888

q: Value as follows
• For abstract data type

27 for the abstract data type stored in the LOB RDAREA
Key length + 2 for the abstract data type of a maximum of 255 bytes of
definition length 2 for the abstract data type of 256 bytes or more of
definition length

• 27 for the SGMLTEXT type
• 2 for FREEWORD and GEOMETRY types

s: Number of servers
y: If all key component columns are fixed length, the value is 10; if they include a
variable length, the value is 12.
Note

When calculating the size of index information files and sort work files, if the
index configuration columns are repetition columns, b and e do not refer to the
number of rows but to (number of rows number of elements).

20.1.2 File sizes required for the execution of the database
reorganization utility (pdrorg)

The following table shows the formulas for determining the file sizes required for the
execution of the database reorganization utility (pdrorg):

File type Formula (bytes)

Unload data file1 (no
options specified)

n
 (Li + Pi) + 1200 + A + B + c 96 + D + I + F

i = 1

20. Storage Requirements for Utility Execution

889

Unload data file1 (-w
option specified)

DAT or extended DAT format:
c

 (maximum length of converted character string in column I2 + 1) n
i = 1
FIX table in binary format:
c

 (column data length i3) n
i = 1
Non-FIX table in binary format:
{
c

 (column data length i3 + G) + 4 (c + 1)
i = 1
} n
Fixed-length character format:
 c

 (maximum length of converted character string for column i4 + crlf) n
i = 1

Unload data file1 (-j
option specified or
during reorganization
in units of schemas)5

n
 (Li + Pi) +

i = 1
n

{
i = 1
m

 (Oij + 44)
j = 1
} + 1200 + A + B + c 96 + D + I + F

LOB data unload
file1

n
{

i = 1
m

 (Oij + 44)
j = 1
} + 1200 + A + B + c 96 + D + I + F

Index information
file

B-tree index:
(K + p) n + 512
Plug-in index:
(12 + X) n + 1024
These formulas are for the size of one index. If there are multiple indexes, determine the
size of each index.

File type Formula (bytes)

20. Storage Requirements for Utility Execution

890

A: For key range partitioning: 48 + number of partitioning conditions 284
For hash partitioning: 40 + a 60
For matrix partitioning (combination of key range partitioning of the boundary
value specification and hash partitioning): 48 + (number of partitioning
conditions 284) + (40 + a 60)

B: n 36 (for FIX table) or (44 + c 4) n (for non-FIX table)
D: 16 + (number of LOB columns a 80)

Add the value of D only if there are LOB columns.
F: Use the following value:

G: Number of attributes for which the return value of the reverse generation function
on column I is BLOB 4
I: 136 + number of index partitions 60

Add this value when including the index.

Process results file 1700 + number of servers storing table 500 + number of tables in schema 1000 +
total number of storage RDAREAs in schema 100

Work file for sorting Condition 1:
Size of index information file + 4 n
Condition 2:
{Size of index information file + 4 n} 2

• Condition 1
When the work buffer size specified in the sort statement E

• Condition 2
When the work buffer size specified in the sort statement < E

E: Buffer size
The buffer size obtained according to buffer-size-for-sorting for Database
Reorganization Utility (pdrorg) in the manual HiRDB Version 8 Command Reference.

d
{(number of abstract-data-type attributes provided by plug-in in column i 84) +

i = 1
(number of abstract-data-type LOB attributes provided by plug-in in column i a 72)}

 + 64 +
d

 (84 + number of reverse generation functions i 60)
i = 1

File type Formula (bytes)

20. Storage Requirements for Utility Execution

891

K: Index key length
See Table 17-5 List of index key lengths. For variable-length data, keep in mind
when defining the maximum length that single columns are also handled as
multicolumns.

Li: Actual length of row

Add the data length of each column to obtain the row length. If the data type of a
column is BLOB, use 16 as the column length for calculating. If the data type of a
column is the abstract data type provided by a plug-in, use 2 as the column length
for calculating.

Pi: Data length of the abstract data type provided by a plug-in

Oij: LOB data length

X: Value is as follows
• For abstract data type

27 for the abstract data type stored in the LOB RDAREA
Key length + 2 for the abstract data type of a maximum of 255 bytes of
definition length
2 for the abstract data type of 256 bytes or more of definition length

• 27 for the SGMLTEXT type
• 2 for FREEWORD and GEOMETRY types

a: Number of partitioned RDAREAs
c: Number of column definitions
d: Number of columns for which the abstract data type provided by a plug-in is defined
m: Number of LOB columns
n: Number of rows (for a repetition column, number of rows number of elements)
p: If all key component columns are fixed length, the value is 10; if they include a
variable length, the value is 12.
crlf: Length of linefeed characters added when cr or crlf is specified in the -W option

Determine the length of linefeed characters from the following table:

20. Storage Requirements for Utility Execution

892

Note
When calculating the size of index information files and sort work files, if the
index configuration columns are repetition columns, the number of rows to reload
and n do not refer to the number of rows but to (number of rows number of
elements).

1 If the file is larger than 2 GB, take one of the following actions:
• Create multiple files, each of which is no larger than 2 GB.
• Use large files. For details about how to create large files, see 5.3 Creating

HiRDB file system areas.
2 Table 20-1 lists the maximum lengths of converted character strings for columns in
DAT format (-W dat) or extended DAT format (-W extdat).

Table 20-1: Maximum lengths of converted character strings for columns (in
DAT or extended DAT format)

-W option value Value to be added

-W dat or -W extdat ,cr 1

,crlf 2

Not specified 1

-W fixtext ,cr 1

,crlf 2

Not specified 0

Data type Maximum length of converted
character string (bytes)

Numeric data INTEGER 11

SMALLINT 11

DECIMAL 31

FLOAT 23

SMALLFLT 23

Character string data1 CHARACTER Defined length + 22

VARCHAR Actual length + 22

20. Storage Requirements for Utility Execution

893

1 If data in extended DAT format contains a double quotation mark ("), the length
of the converted character string becomes longer by the number of double
quotation marks.
2 Two bytes are added for the enclosing brackets.

If -W dat or -W extdat is specified and sup is specified in the operand,
the maximum lengths of converted character strings take effect on the
columns as shown below. Note that the actual length indicates the length
without the trailing consecutive spaces. For details about the
space-compressed output format, see the -W option of the database
reorganization utility (pdrorg) in the manual HiRDB Version 8 Command
Reference.

Mixed character string data1 MCHAR Defined length + 22

MVARCHAR Actual length + 22

National character data1 NCHAR Defined length + 22

NVARCHAR Actual length + 22

Date data DATE 10

Time data TIME 8

Date interval data INTERVAL YEAR TO DAY 9

Time interval data INTERVAL HOUR TO SECOND 7

Time stamp data TIMESTAMP 19
If the number of digits for fractions of a second
is not 0, add the number of digits for fractions
of a second + 1.

Binary data1 BINARY Actual length + 22

Data type Maximum lengths of converted character string
(bytes)

Character string data CHARACTER Actual length + 2

Mixed character string
data

MCHAR Actual length + 2

National character data NCHAR Actual length + 2

Data type Maximum length of converted
character string (bytes)

20. Storage Requirements for Utility Execution

894

3 For details about the data length, see the following tables:
• Table 17-1 List of data lengths
• Table 17-2 Data lengths for the variable-length character string type (except

abstract data type and repetition columns)
• Table 17-3 Data lengths for the variable-length character string type

(abstract data type)
• Table 17-4 Data lengths for the variable-length character string type

(repetition columns)
4 Table 20-2 shows the maximum lengths of converted character strings for columns
of the fixed-length character format (-W fixtext).

Table 20-2: Maximum lengths of converted character strings for columns
(fixed-length character format)

Data type Maximum lengths of converted character
string (bytes)

Numeric data INTEGER 11

SMALLINT 6

DECIMAL Number of digits + 2

FLOAT 23

SMALLFLT 23

Character string data CHARACTER
VARCHAR

Defined
length

If fixtext_option is specified in
the enclose operand, add 2 to the
output length.

Mixed character string
data

MCHAR
MVARCHAR

Defined
length

National character data NCHAR
NVARCHAR

Defined
length 2

Date data DATE 10

Time data TIME 8

Date interval data INTERVAL YEAR TO DAY 10

Time interval data INTERVAL HOUR TO
SECOUND

8

Time stamp data TIMESTAMP Decimal part
0:19 2:22 4:24 6:26

20. Storage Requirements for Utility Execution

895

5 If you are reorganizing files in units of schemas (including unload files), use the sum
of the values obtained for individual tables.

20.1.3 File sizes required for the execution of the statistics analysis
utility (pdstedit)

The following table shows the formulas for determining the file sizes required for the
execution of the statistics analysis utility (pdstedit):

Large object data BLOB 0

Binary data BINARY 0

Abstract data type ADT 0

File type Formula (bytes)

Work file Statistical information about
system activity

4096 collection count* 2

Statistical information about
system activity per server

4096 collection count* number of servers 2

Statistical information about
UAPs

800 number of UAPs to be executed or number of transactions
to be executed 2

Statistical information about
SQL

512 number of SQLs to be executed 2

Statistical information about
SQL static optimization

512 SQL object cache mishit count

Statistical information about
SQL dynamic optimization

8192 number of SELECT statements issued by OPEN or
EXECUTE (including INSERT SELECT)

Statistical information about
SQL object execution

512 number of SQLs to be executed number of servers

Statistical information about
SQL object transfer

256 number of SQLs to be executed number of servers

Statistical information about
the history of SQL
statements

(1024 + average SQL length) number of SQLs to be executed

Statistical information about
CONNECT/DISCONNECT

256 number of CONNECTs and DISCONNECTs

Data type Maximum lengths of converted character
string (bytes)

20. Storage Requirements for Utility Execution

896

Statistical information about
global buffer

512 number of synchronization points 2

Statistical information about
database manipulation for
HiRDB files

512 number of synchronization points 2

Statistical information about
deferred write processing

512 number of deferred write operations 2

Statistical information about
indexes (input: STJ)

128 number of synchronization points 2

Statistical information about
indexes (input: FJ)

128 number of page splits 2

Statistical information about
foreign server activity

512 number of transactions that accessed foreign servers

Statistical information about
foreign server utilization
status

512 number of SQL statements executed on foreign servers

Work file
for sorting

Work area for sorting the
above work files for analysis

Maximum size of the above work files for analysis

DAT-
format file

Statistical information about
system activity

3262 collection count*

Statistical information about
system activity per server

3262 collection count* number of servers

Statistical information about
UAPs

1410 number of UAPs to be executed or number of
transactions to be executed

Statistical information about
SQL

447 number of SQLs to be executed

Statistical information about
SQL static optimization

646 SQL object cache mishit count

Statistical information about
SQL dynamic optimization

380 number of SELECT statements issued by OPEN or
EXECUTE (including INSERT SELECT)

Statistical information about
SQL object execution

520 number of SQLs to be executed number of servers

Statistical information about
SQL object transfer

389 number of SQLs to be executed number of servers

File type Formula (bytes)

20. Storage Requirements for Utility Execution

897

* Collection count = (pdstend command input time - pdstbegin command input
time) interval specified with the -m option

20.1.4 File sizes required for the execution of the database condition
analysis utility (pddbst)

The following table shows the formulas for determining the file sizes required for the
execution of the database condition analysis utility (pddbst):

Statistical information about
the history of SQL
statements

(240 + average SQL length) number of SQLs to be executed

Statistical information about
CONNECT/DISCONNECT

278 number of CONNECTs and DISCONNECTs

Statistical information about
global buffer

567 number of synchronization points

Statistical information about
database manipulation for
HiRDB files

356 number of synchronization points

Statistical information about
deferred write processing

300 number of deferred write operations

Statistical information about
foreign server activity

374 number of transactions that accessed foreign servers

Statistical information about
foreign server utilization
status

389 number of SQL statements executed on foreign servers

File type Formula (bytes)

Work file Physical analysis in units of
RDAREAs

60

Logical analysis in units of
RDAREAs

1 + 3.6 {(number of tables and indexes in the RDAREA)
+ number of LOB RDAREAs}

Accumulating condition
analysis result or reorganization
time prediction*

1 + 3.6 {(number of tables and indexes in the RDAREA)
+ number of LOB RDAREAs}

Status analysis in units of tables 1 + 3.6 (number of storage RDAREAs)

Status analysis in units of
indexes

1 + 3.6 (number of storage RDAREAs)

File type Formula (bytes)

20. Storage Requirements for Utility Execution

898

* When pddbst -r ALL is specified, the number of resources in the dictionary
RDAREAs as well as in the user RDAREAs must be added. For partitioned tables and
indexes, add the number for each RDAREA.

20.1.5 File sizes required for the execution of the database copy
utility (pdcopy)

The following table shows the formulas for determining the file sizes required for the
execution of the database copy utility (pdcopy):

* If the backup file is larger than 2 GB, take one of the following actions:
• Use large files for backup files. For details about how to create large files,

see 5.3 Creating HiRDB file system areas.
• Create multiple partitions, each of which is no larger than 2 GB, and specify

multiple backup files.
a: Number of RDAREAs being backed up
b: Total number of HiRDB files in RDAREA being backed up
ci: Number of unused pages in RDAREA being backed up

Assume 0 if you build the system before estimating.
• User RDAREAs

Determine after executing RDAREA unit status release (physical release)
with the database release utility (pddbst command). The value is the

Cluster key status analysis 1 + 3.6 (number of storage RDAREAs)

Work file
for sorting

Work area for sorting the above
work files

Value obtained from the above formula 2

File type Formula (bytes)

Backup file*

Full backup file*

a
{28 ci + (di + 28) (ei + qi)}

i = 1
 + 88 a + 220 b

Differential backup file* w size of full backup file

Differential backup management file (1 + j + m) 32768

Log point information file 1024

File type Formula (bytes)

20. Storage Requirements for Utility Execution

899

resulting Total number of pages - number of used pages of the RDAREA page
information.

• User LOB RDAREAs
Determine after executing RDAREA unit status release (physical release)
with the database release utility (pddbst command). The value is the
resulting Total number of segments - number of used segments of the
RDAREA segment information.

di: Page length of RDAREA being backed up

ei: Number of pages used in RDAREA being backed up

Assume (number of segments in the RDAREAs being backed up segment size)
if you build the system before estimating.

• User RDAREAs
Determine after executing RDAREA unit status release (physical release)
with the database release utility (pddbst command). The value is the
resulting Total number of pages - number of used pages of the RDAREA page
information.

• User LOB RDAREAs
Determine after executing RDAREA unit status release (physical release)
with the database release utility (pddbst command). The value is the
resulting Total number of segments - number of used segments of the
RDAREA segment information.

g: Length of a backup file name that is specified in the -b option (bytes)
If multiple backup files are specified, this is the total length of the specified file
names.

h: Number of backup files specified in the -b option

j: (512 + 128 a) 32700 k: Number of consecutive differential backup
operations

m: { (256 + 128 a + g + 8 h} 256 k} 100
qi: Number of directory pages in the RDAREAs being backed up

• User RDAREAs

6 (ti + 1) + 2 (20480 di) + { (si ui) + (si vi) + 2
 ti}

• User LOB RDAREA

7 + 3 (ti - 1) + { (si 64000) + ti} 96

20. Storage Requirements for Utility Execution

900

ri: Segment size of RDAREAs being backed up
si: Total number of segments in RDAREAs being backed up

This is the total number of segments for HiRDB files specified by the database
initialization utility (pdinit command) or the create rdarea statement of the
database configuration utility (pdmod command). If automatic extension is
specified for the RDAREAs, add the number of extended segments.

ti: Number of HiRDB files of RDAREAs being backed up

ui: {di - 20} {(ri 32 8) + 56}

vi: (125 di) (16 ui) ui
w: Percentage of all pages that are being updated on the RDAREAs being backed up

Determine w from the following formula (user RDAREA):

Xi: Number of updated pages in RDAREAs being backed up
The number of updated pages refers to the number of pages that have been
updated since the last time a differential backup was made. Calculate the number
of updated pages for the tables and indexes stored in the RDAREAs being backed
up based on the type of update SQL statements and the number of updated items,
subject to the following conditions:

• INSERT
Based on 17.1 Determining the size of a user RDAREA, calculate the number
of storage pages from the number of inserts, and add it to Xi. Calculate
PCTFREE as 0.

• DELETE
Increase the value of Xi based on the following conditions:

w = {
 a

 Xi
i=1
 a

 ei} 1.2
i=1

20. Storage Requirements for Utility Execution

901

: Number of duplicate keys in excess of 200
• UPDATE

Calculate the value to add to Xi based on the following conditions:

: Number of duplicate keys in excess of 200
• After regenerating

Condition Value added to Xi

Tables Row
length<di

Deleted rows are
distributed over the entire
table

MIN(number of deleted rows, number of table
pages used)

Deleted rows are
concentrated on a few
pages

MIN(number of deleted rows number of rows
that can be stored on 1 page, number of table pages
used)

Row length>di MIN(number of deleted rows number of pages
required to store 1 row, number of table pages
used)

Indexes Updated keys are distributed over the
entire index

MIN(number of update keys + , number of
index pages used)

Updated keys are concentrated on a few
pages

MIN(number of update keys number of keys
that can be stored on 1 page + , number of index
pages used)

Condition Value added to Xi

Tables Update
column
length<di

Updated rows are
distributed over the entire
table

MIN(number of updated rows, number of table
pages used)

Updated rows are
concentrated on a few
pages

MIN(number of updated rows number of rows
that can be stored on 1 page, number of table pages
used)

Update column length>di MIN(number of updated rows number of pages
required to store updated columns, number of
table pages used)

Indexes Updated keys are distributed over the
entire index

MIN(number of update keys 2 + 2,
number of index pages used)

Updated keys are concentrated on a few
pages

MIN(number of update keys 2 number of
keys that can be stored on 1 page + 2,
number of index pages used)

20. Storage Requirements for Utility Execution

902

Calculate as the regenerated tables or indexes that are stored on
RDAREAs being backed up.

 = number of used pages of regenerated tables or indexes + number of used
segments of regenerated tables or indexes ui + number of used segments
of regenerated tables or indexes vi

Calculate only for regenerated tables and indexes, and add the value to Xi.
• PURGE

Calculate as the tables or indexes on which PURGE was performed that are
stored in RDAREAs being backed up.

 = number of used segments of purged tables or indexes ui + number of
used segments of purged tables or indexes vi
Calculate only for regenerated tables and indexes, and add the value to Xi.

20.1.6 File sizes required for the execution of the dictionary import/
export utility (pdexp)

The following table shows the formulas for determining the file sizes required for the
execution of the dictionary import/export utility (pdexp):

a: Number of columns in table to be exported
b: Number of partitioning conditions for table to be exported

c: Number of index storage RDAREAs defined for table to be exported
d: Number of indexes defined for table to be exported
e: Length of the source during view table definition (KB)
f: If a LOB column is defined in the table to be exported, this is the number of user
LOB RDAREAs storing the LOB data.

g: Number of resources used by a stored procedure that is exported*

This is the value of the N_RESOURCE column in the SQL_ROUTINES table.
h: Length of the source of a stored procedure (KB)

This is the value of the SOURCE_SIZE column in the SQL_ROUTINES table.

File type Formula (bytes)

Export file Base table 0.8 + 0.4 (a + b) + (0.8 + 0.1 c) d + 0.1 f

View table 0.5 + 0.4 a + e

Procedure 1.0 + 0.1 g + h

20. Storage Requirements for Utility Execution

903

* If exporting multiple tables, determine the previously described sizes for each table.
The sum of the sizes obtained is the size of the export file.

20.1.7 File sizes required for the execution of the optimizing
information collection utility (pdgetcst)

The following table shows the formulas for determining the file sizes required for the
execution of the optimizing information collection utility (pdgetcst):

a: Number of specified indexes
b: Number of specified columns
c: Number of indexes defined in table
d: Number of intervals
e: Number of tables
f: Number of columns in table

20.1.8 File sizes required for the execution of the access path
display utility (pdvwopt)

The following table shows the formulas for determining the file sizes required for the
execution of the access path display utility (pdvwopt):

File type Formula (bytes)

Parameter file that contains
optimized information

162 + 405 a + 567 b

Output results file Collecting optimizing information by retrieval (-c lvl1 specified):
202 + 131 e
Collecting optimizing information by retrieval (-c lvl2 specified):
370 + 561 d + 196 d
Registering optimizing information using the parameter file that
contains optimized information:
370 + 235 c + 387 f

20. Storage Requirements for Utility Execution

904

a: Number of retrieval SQLs
bi: Number of queries in SQL

cij: Number of tables in query

dij: Number of join processes in query

eijk: Number of table storage RDAREAs

fijk: Number of table index definitions

20.1.9 File sizes required for execution of the rebalancing utility
(pdrbal)

The following table shows the formulas for determining the file sizes required for the
execution of the rebalancing utility (pdrbal):

File type Formula (bytes)

Access path
information
file

20. Storage Requirements for Utility Execution

905

d: If all key component columns are fixed-length, the value is 10; if they include a
variable-length column, the value is 12.
K: Index key length

See Table 17-5 List of index key lengths. For variable-length data, keep in mind
when defining the maximum length that single columns are also handled as
multicolumns.

N: Number of rows to be moved by rebalancing (for a repetition column, number of
rows number of elements)
Y: Value as follows

• For abstract data type
27 for the abstract data type stored in the LOB RDAREA
Key length + 2 for the abstract data type of a maximum of 255 bytes of
definition length
2 for the abstract data type of 256 bytes or more of definition length

• 27 for the SGMLTEXT type
• 2 for FREEWORD and GEOMETRY types

File type Formula (bytes)

Index information file B-tree index:
(K + d) N + 512
Plug-in index:
(12 + Y) N + 1024
These formulas are for the size of one index. If there are multiple indexes, determine
the size of each index.

Work file for sorting* Condition 1:
Size of index information file + 4 N
Condition 2:
{Size of index information file + 4 N} 2

• Condition 1
When the work buffer size specified in the sort statement E

• Condition 2
When the work buffer size specified in the sort statement < E

E: Buffer size
The buffer size obtained according to buffer-size-for-sorting for Rebalancing Utility
(pdrbal) in the manual HiRDB Version 8 Command Reference.

Execution results output
file

1000 + number of table storage RDAREAs 200

20. Storage Requirements for Utility Execution

906

* This file is not needed for a plug-in index.

20.1.10 File sizes required for execution of the integrity check utility
(pdconstck)

The following table shows the formulas for determining the file sizes required for
execution of the integrity check utility (pdconstck).

REF: Number of referential constraints defined for the table
CHK: Number of check constraints defined for the table
RC: Number of referential constraint columns containing foreign keys
CC: Number of column in the search condition of check constraint
GEN: 1 if the inner replica facility is not used

If the inner replica facility is used, the number of generations (1 to 10) + 1 in
which the replica RDAREA of the table exists

ROW: Upper limit of the number of outputs of the key value that caused a constraint
error (value specified by the -w option)

File type Formula (bytes)

Process result file -k set/release
560 + (REF + 1) 70 + (CHK + 1) 70
-k check
700 + (REF + 1) 70 + (CHK + 1) 70
 REF
+ (490+ (RCn 70)
 n=1
 GEN ROW
+ ((RCnml 70)))
 m=1 l=1
 CHK
+ (490+ (CCn 70)
 n=1
 GEN ROW
+ ((CCnml 70)))
 m = 1 l = 1

20. Storage Requirements for Utility Execution

907

20.2 Determining the memory size required for utility execution

20.2.1 Memory size required for the execution of the database
initialization utility (pdinit)

The following tables show the formulas for determining the memory sizes required for
the execution of the database initialization utility (pdinit).

(1) HiRDB/Single Server

a: Total number of RDAREAs
b: Number of HiRDB files in all RDAREAs
c: Sum of the lengths of all HiRDB file names
d: Total number of authorization identifiers
e: Number of RDAREAs for dictionary server

(2) HiRDB/Parallel Server

Condition Formula for determining memory size (KB)

32-bit mode {
61440 (140 a + 20 b + c) 61432 + 6004 d 500
 + 36008 a 1000 + 468 e + 403888
} 1024 + 267

64-bit mode {
61448 (144 a + 24 b + c) 61436 + 8004 d 500
 + 36016 a 1000 + 468 e + 405888
} 1024 + 267

Condition Formula for determining memory size (KB)

32-bit mode DS {
 { 61440 (140 a + 20 b + c)} 61432 + (6004 d) 500
 + (36008 a) 1000 + 468 e + 403888 + 348 f + 344 g
} 1024 + 268

BES (4 b + 237220) 1024 + 268

MGR 10

20. Storage Requirements for Utility Execution

908

a: Total number of RDAREAs
b: Number of HiRDB files in all RDAREAs
c: Sum of the lengths of all HiRDB file names
d: Total number of authorization identifiers
e: Number of RDAREAs for dictionary server
f: Total number of back-end servers
g: Sum of the values of (144 a + 24 b + c) 7780 for all back-end servers

20.2.2 Memory size required for the execution of the database
definition utility (pddef)

The following table shows the formulas for determining the memory size required for
the execution of the database definition utility (pddef):

20.2.3 Memory size required for the execution of the database load
utility (pdload)

The following tables show the formulas for determining the memory size required for
the execution of the database load utility (pdload). For details about the variables, see
(3) as follows.

64-bit mode DS {
 {61448 (144 a + 24 b + c)} 61436 + (8004 d) 500
 + (36016 a) 1000 + 468 e + 405888 + 348 f + 344 g
} 1024 + 268

BES (4 b + 245744) 1024 + 268

MGR 10

Condition Formula for determining memory size (KB)

HiRDB/Single Server 1956 (or 1957 in the 64-bit mode)

HiRDB/Parallel Server 1956 (or 1957 in the 64-bit mode)

Condition Formula for determining memory size (KB)

20. Storage Requirements for Utility Execution

909

(1) HiRDB/Single Server

* If no utility special unit is being used, use the value for Single Server.
(2) HiRDB/Parallel Server

* If a Single Server machine has multiple back-end servers, add into the calculation
only for the number of back-end servers.

(3) Variables used in the formulas
 (bytes):

{3056 + A + B + (516 a) + (572 b) + (312 c) + (144 d) + (8 e) +
(1032 f) + (44 g) + (272 h) + (224 i) + (44 j) + (60 k) + (260
m) + (56 n) + (196 p) + (236 q) + (744 r) + (620 s)} 2

 (bytes):
{6908 + + (C t) + K + (48 a) + (22 b) + (8 e) + (240 i) + (48
j) + (4 k) + (224 m) + (47416 t) + (1032 u) + (4 v)}

 (bytes):

Condition Formula for determining memory size (KB)

32-bit mode Single server 6352 + {(+) 1024}

Utility special unit* 1968 + {(+) 1024}

64-bit mode Single server 12172 + {(+) 1024}

Utility special unit* 2423 + {(+) 1024}

Condition Formula for determining memory size (KB)

32-bit mode MGR 2255 + { 1024}

Server machine containing input
files

2045 + {(+) 1024}

BES* 3762 + { 1024}

64-bit mode MGR 2575 + { 1024}

Server machine containing input
files

2406 + {(+) 1024}

BES* 8247 + { 1024}

20. Storage Requirements for Utility Execution

910

{37700 + (2) + C + D + F + H + P + Q + (80 a) + (1871 b) + (120
c) + (26 g) + (1532 i) + (36 j) + (44 k) + (1212 m) + (40 n) + (344

 p) + (30 q) + (16 u) + (88 v) + (20 w)}

 (bytes):
{69436 + + D + K + E + L + M + N + (32 a) + (88 c) + (4 g) + (2156

 k) + (24 t) + (1024 u) + (4 v) + (50 y) + (50 z)}
a: Number of columns
b: Number of columns with abstract data type
c: Number of parameters in constructor or reverse constructor function
d: Number of file path names specified in command line or control information file
e: Number of LOB middle files
f: Number of LOB files by the column that are specified

g: Number of table storage RDAREAs
h: Number of table row partitioning conditions
i: Number of indexes
j: Number of index storage RDAREAs
k: Number of BLOB-type columns
m: Number of plug-in indexes
n: Number of user LOB RDAREAs storing LOB-attribute abstract data type
p: Number of functions provided by plug-in
q: Number of function parameters provided by plug-in
r: Number of data-type plug-ins
s: Number of index-type plug-ins
t: Number of servers storing tables
u: Number of BLOB-type parameters among the constructor function parameters used
v: Number of user LOB RDAREAs storing LOB columns
w: Number of user LOB RDAREAs storing plug-in indexes
y: Number of BINARY columns

This is the BINARY-data columns in input data that have been excluded from
processing by the skipdata control statement plus the number of columns
actually defined in the tables.

20. Storage Requirements for Utility Execution

911

z: Number of BINARY-attribute parameters for plug-in-provided functions
This is the BINARY-data columns in input data that have been excluded from
processing by the skipdata control statement plus the number of columns
actually defined in the tables.

A: Total file size specified in the command line
B: Total length of file path names specified in the command line and control
information file
C: If the following condition is satisfied, the value is (pd_utl_buff_size 1024
+ 4096) 2; otherwise, the value is 0:

• HiRDB/Single Server
A utility special unit is used.

• HiRDB/Parallel Server
The pdload command is executed with a back-end server name containing
the table storage RDAREA that is different from the server name specified
in the source statement; or, the pdrorg command specifying the -g option
is executed.

D: Row length
This is the sum of the defined lengths of all columns that constitute the table. The
length of a BINARY-type row is the defined length for pdload plus MIN(defined
length,32500) for pdrorg (in bytes). For a non-FIX table, add (a + 1) 4.

E: Memory required for EasyMT
Add this value if you have specified easymt in the -f option.

F: 550 1024 + work buffer size specified in the sort statement 1024 + G
Add this value if you have specified c in the -i option.

G: 256 (32-bit mode) or 512 (64-bit mode)
H: Value specified for the batch input/output local buffers RDAREA page length
J + value specified for the random access local buffers RDAREA page length

Add this value if you have specified the -n option. If an RDAREA's page length
varies from one partitioned RDAREA to another, use the longest page length for
this calculation.

J: Determine from the following table:

20. Storage Requirements for Utility Execution

912

K: Parameter length
Sum of the lengths of arguments in the constructor function that is used to
generate values for the abstract data type. For a BLOB-type parameter, the
parameter length is 8 bytes.

L: If all the following conditions are satisfied, add 1 or 2; otherwise, the value is 0:
• The errdata operand is specified in the source statement.
• A utility special unit is used (HiRDB/Single Server), or the server name

specified in the source statement is not the name of the back-end server that
contains the table storage RDAREA (HiRDB/Parallel Server).

• The table contains an abstract data type column, or a unique index is defined.
1. errwork operand specified: Value of errwork operand 1024
2. errwork operand omitted: Value of pd_utl_buff_size 1024 3 t

M: Memory required for UOC
Add this value if you use UOC.

N: When the maxreclen operand is specified, calculate the following value:
When the input data file is in DAT format:

Value specified in maxreclen operand 1024
When the table has BINARY type columns, or when the input data files are in
binary format:

Value specified
with -n option

Table partition type

Non-
partitioning

table

Key range
partitioning

table

Hash partitioning table

Rebalancing hash
(HASHA-HASHF)

Non-
rebalancing

hash
(HASH0-
HASH6)

FIX hash Flexible
hash

div specified 1 Number of
row partitions
in the server
for the table

HiRDB/Single
Server: 1024
HiRDB/Parallel
Server: (1024

 g)
(number of

table storage
RDAREAs on the
server)

Number of
row partitions
in the server
for the table

Number of row
partitions in the
server for the
table

div not specified 1 1

20. Storage Requirements for Utility Execution

913

Add the smaller of the following to the calculation:
• Value specified in maxreclen operand 1024
• Variable D (row length)

When other than the above:
0

P: Memory required for plug-ins
Add this value if there is an abstract data type column provided by a plug-in. For
details about the size of memory required by plug-ins, see the applicable plug-in
documentation.
If the constructor functions' arguments are BLOB or BINARY type, add (actual
parameter length stored in all abstract data types 2) that is defined per row.

Q: Memory requirement for output buffer
If the specified index creation method is the batch index creation mode or the
index information output mode and the following condition is satisfied, add 2
megabytes:

• Number of table partitions number of index definitions > maximum
number of processes that can be open - 576

20.2.4 Memory size required for the execution of the database
reorganization utility (pdrorg)

The following tables show the formulas for determining the memory size required for
the execution of the database reorganization utility (pdrorg). For details about the
variables, see (3) Variables used in the formulas as follows.

(1) HiRDB/Single Server

* If no utility special unit is being used, use the value for Single Server.

Condition Formula for determining memory size (KB)

32-bit mode Single server 7536 + {(+) 1024}

Utility special unit* 2119 + {(+) 1024}

64-bit mode Single server 13196 + {(+) 1024}

Utility special unit* 2593 + {(+) 1024}

20. Storage Requirements for Utility Execution

914

(2) HiRDB/Parallel Server

1 If dictionary tables are regenerated, add to the calculation the server machines that
have dictionary servers.
2 If a Single Server machine has multiple back-end servers, add into the calculation
only for the number of back-end servers.

(3) Variables used in the formulas
 (bytes):

{2592 + A + B + (116 a) + (260 b) + (6 c) + (272 d) + (44 g) + (272
 h) + (224 i) + (44 j) + (60 k) + (260 m) + (56 n) + (196 p) +

(236 q) + (744 r) + (620 s) + (24 t)} 2

 (bytes):
{40940 + + (C t) + (D t) + (136 a) + (56 g) + (2200 j) + (4 k)
+ (548 t)}

 (bytes):
{101140 + (2) + C + D + F + H + P + Q + (128 a) + (1949 b) + (120

 c) + (154 g) + (336 i) + (216 j) + (32056 k) + (1212 m) + (131224

Condition Formula for determining memory size
(KB)

32-bit mode MGR 2200 + { 1024}

-g option
omitted

DS 1940 + { 1024}

BES1,2 4976 + {(+) 1024}

-g option
specified

Server machine containing
unload data file

1940 + {(+) 1024}

BES2 4976 + { 1024}

64-bit mode MGR 2569 + { 1024}

-g option
omitted

DS 2294 + { 1024}

BES1,2 9441 + {(+) 1024}

-g option
specified

Server machine containing
unload data file

2294 + {(+) 1024}

BES1 9441+ { 1024}

20. Storage Requirements for Utility Execution

915

 n) + (344 p) + (30 q) + (20 w)}

 (bytes):
{33104 + + (K 2) + E + R + (204 a) + (688 b) + (306 c) + (44 g)
+ (272 h) + (224 i) + (44 j) + (56 n) + (716 r) + (152 v)}

R: Depends on the specified -W option value:
• When -W dat is specified:

Total length of all columns obtained in Table 20-1 Maximum lengths of
converted character strings for columns (in DAT or extended DAT format)

• When -W extdat is specified:
Total length of all columns obtained in Table 20-1 Maximum lengths of
converted character strings for columns (in DAT or extended DAT format)

 2
• When -W fixtext is specified:

Total length of all columns obtained in Table 20-2 Maximum lengths of
converted character strings for columns (fixed-length character format)

• When -W bin is specified or the -W option is omitted: 0
Notes

• The other variables are explained in 20.2.3 Memory size required for the
execution of the database load utility (pdload) and in (3) Variables used in
the formulas.

• If one command is used to process multiple tables for the purpose of
reorganizing dictionaries or reorganizing tables in units schemas, use the
total size of all such tables for variables a through z.

20.2.5 Memory size required for the execution of the database
structure modification utility (pdmod)

The following tables show the formulas for determining the memory size required for
the execution of the database structure modification utility (pdmod).

(1) HiRDB/Single Server
Condition Formula for determining memory size (KB)

32-bit mode {
 4 a + 56016 b + 53016 c + 2440 d + 1724 e
 + (94008 f) 500 + (4008 g) 1000 + 440720 + h + i + j + k
 } 1024 + 9.8

20. Storage Requirements for Utility Execution

916

a: Value of pd_max_rdarea_no
b: Number of indexes in local RDAREAs during the execution of initialize
rdarea statement + number of indexes in remote RDAREAs
c: Total number of LOB columns during the execution of initialize rdarea
statement
d: Total number of LOB-attribute abstract data types during the execution of
initialize rdarea statement
e: Total number of plug-in columns and plug-in indexes during the execution of
initialize rdarea statement
f: Total number of abstract data types during the execution of initialize rdarea
statement
g: Total number of ASSIGN LISTs for the tables stored in the local RDAREAs during
the execution of initialize rdarea statement
h: 8 a + 30720

Add this value if the alter HiRDB mode to parallel statement is used to
migrate from a HiRDB/Single Server to a HiRDB/Parallel Server.

i: 46744
Add this value if the create rdarea statement is used to add a data dictionary
LOB RDAREA.

j: 88064
Add this value if the alter system statement is used to change the dictionary
table's reference privilege.

k: 54732
Add this value if the alter system statement is used to change the dictionary
table's column attribute to MCHAR.

64-bit mode {
 4 a + 56024 b + 53024 c + 3040 d + 1736 e
 + (100016 f) 500 + (4012 g) 1000 + 450720 + h + i + j + k
 } 1024 + 9.8

Condition Formula for determining memory size (KB)

20. Storage Requirements for Utility Execution

917

(2) HiRDB/Parallel Server

a: Value of pd_max_rdarea_no
b: Number of indexes in local RDAREAs during the execution of initialize
rdarea statement + number of indexes in remote RDAREAs
c: Total number of LOB columns during the execution of initialize rdarea
statement
d: Total number of LOB-attribute abstract data types during the execution of
initialize rdarea statement
e: Total number of plug-in columns and plug-in indexes during the execution of
initialize rdarea statement
f: Total number of abstract data types during the execution of initialize rdarea
statement
g: Total number of ASSIGN LISTs for the tables stored in the local RDAREAs during
the execution of initialize rdarea statement
h: 46744

Condition Formula for determining memory size (KB)

32-bit mode DS {
 4 a + 56016 b + 53016 c + 2440 d + 1724 e
 + (94008 f) 500 + (4008 g) 1000 + 440720 + h + i + j
 + 108428 m
 } 1024

BES (4 a + 252755 + k) 1024

FES 0.52

MGR 9.8

64-bit mode DS {
 4 a + 56024 b + 53024 c + 3040 d + 1736 e
 + (100016 f) 500 + (4012 g) 1000 + 450720 + h + i + j
 + 108432 m
 } 1024

BES (4 a + 261112 + k) 1024

FES 0.53

MGR 9.8

20. Storage Requirements for Utility Execution

918

Add this value if the create rdarea statement is used to add a data dictionary
LOB RDAREA.

i: 88064
Add this value if the alter system statement is used to change the dictionary
table's reference privilege.

j: 54732
Add this value if the alter system statement is used to change the dictionary
table's column attribute to MCHAR.

k: 2200
Add this value if the initialize rdarea statement is executed.

m: If the move rdarea statement is executed, add the following to the calculation (if
move rdarea is not executed, use 0):

(192 number of moved RDAREAs + 160 total number of HiRDB files on
moved RDAREAs + 136 total number of HiRDB files on moved RDAREAs
that are replica RDAREAs + 8 total number of tables stored on moved
RDAREAs + 8 total number of indexes stored on moved RDAREAs + 8 total
number of LOB columns stored on moved RDAREAs) 102400

20.2.6 Memory size required for the execution of the statistics
analysis utility (pdstedit)

The following table shows the formulas for determining the memory size required for
the execution of the statistics analysis utility (pdstedit).

* For the 64-bit mode, the value is 18432.

20.2.7 Memory size required for the execution of the database
condition analysis utility (pddbst)

The following subsections show the formulas for determining the memory size
required for the execution of the database condition analysis utility (pddbst). For
details about the variables used in the formulas, see (3) Variables used in the formulas.

Condition Formula for determining memory size (KB)

HiRDB/Single Server 16384* + 1.5 number of hosts number of HiRDB servers number of
UAPs

HiRDB/Parallel Server

20. Storage Requirements for Utility Execution

919

(1) For a HiRDB/Single Server

(2) For a HiRDB/Parallel Server

* The value must be obtained for each back-end server that contains the tables and
indexes subject to analysis.

(3) Variables used in the formulas
 (bytes):

{28000 + A + (10592 a) + (10592 b) + (10592 c) + (2264 d) + (848
e) + (272 f) + (432 g) + (304 h)}

 (bytes):
{100000 + (1024 d) + (2784 i) + (2784 j) + (2784 k)}

Note
• For details about other variables, see (3) Variables used in the formulas in

20.2.3 Memory size required for the execution of the database load utility
(pdload).

20.2.8 Memory size required for the execution of optimizing the
information collection utility (pdgetcst)

The following table shows the formulas for determining the memory size required for
the execution of the optimizing information collection utility (pdgetcst).

Condition Formula for determining memory size (KB)

32-bit mode 9425 + {(+) 1024}

64-bit mode 15311 + {(+) 1024}

Condition Formula for determining memory size (KB)

32-bit mode MGR 5117 + { 1024 }

DS 4177 + { 1024 }

BES*

64-bit mode MGR 5645 + { 1024}

DS 8329 + { 1024}

BES*

20. Storage Requirements for Utility Execution

920

Note
Other than these sizes, add the memory size used by the following SQL:
SELECT internal-information*, index-first-configuration-column-name FROM
authorization-identifier, table-identifier ORDER BY
primary-index-component-column-name WITHOUT LOCK NOWAIT;

SELECT FLOAT (COUNT(*)) FROM authorization-identifier.table-identifier
WITHOUT LOCK NOWAIT;
SELECT FLOAT (COUNT(primary-index-component-column-name)) FROM
authorization-identifier.table-identifier WITHOUT LOCK NOWAIT;
ALTER TABLE authorization-identifier.table-identifier CHANGE LOCK ROW;
* The internal information is 12 bytes. Therefore, estimate as though an SQL
statement were issued to retrieve a 12-byte character column (CHAR(12)), in
addition to the index first configuration column name.
For details about the size of memory required by SQL, see the following sections:

• For a HiRDB/Single Server
16.1.6 Formulas for size of memory required during SQL execution
16.1.7 Formula for size of memory required during SQL preprocessing

• For a HiRDB/Parallel Server
16.2.6 Formulas for size of memory required during SQL execution
16.2.7 Formula for size of memory required during SQL preprocessing

Condition Formula for determining memory size (KB)

HiRDB/Single Server 6060 + 0.1 number of table storage RDAREAs + 0.07 number of
index storage RDAREAs + 1.0 number of indexes + 0.04 number
of tables in schema + 1.0 number of servers + 11 number of
columns

HiRDB/Parallel Server BES 1813 + 0.06 number of table storage RDAREAs + 0.05 number of
index storage RDAREAs + 0.03 number of indexes

MGR 3336 + 0.1 number of table storage RDAREAs + 0.07 number of
index storage RDAREAs + 1.0 number of indexes + 0.04 number
of tables in schema + 1.0 number of servers + 11 number of
columns

DS 16402

20. Storage Requirements for Utility Execution

921

20.2.9 Memory size required for the execution of the database copy
utility (pdcopy)

The following tables show the formulas for determining the memory size required for
the execution of the database copy utility (pdcopy).

(1) HiRDB/Single Server

a: Length of the backup file name specified in the -b option (bytes). If multiple backup
files are specified, this value is the total length of the file names.
b: Number of backup files specified in the -b option

(2) HiRDB/Parallel Server

Condition Formula for determining memory size (KB)

Single
server

88 + number of backup files 2 MAX(32, value of pd_utl_buff_size)
 + number of backup files {(number of RDAREAs subject to backup + 9) 10} 6
 + {(total number of RDAREA component files subject to backup + 25) 16} 8 + 100
 + 49 + number of backup files 2 MAX(32, value of pd_utl_buff_size) + 64
 + number of backup files {(number of RDAREAs subject to backup + 9) 10} 6
 + {(total number of RDAREA component files subject to backup + 25) 16} 8 + 100
Add the following value if this server machine contains backup files:
 + 63 + number of backup files (2 MAX(32, value of pd_utl_buff_size) 2
 + number of backup files {(number of RDAREAs subject to backup + 9) 10} 6
 + {(total number of RDAREA component files subject to backup + 25) 16} 8 + 100
Add the following value if differential backup files are to be collected:
 + 32 2 + (512 + 128 number of RDAREAs subject to backup) 32768 32
 + (256 + 128 number of RDAREAs subject to backup + a + 8 b) 32768 32 2

Utility
special unit

63 + number of backup files (2 MAX(32, value of pd_utl_buff_size) 2
 + number of backup files {(number of RDAREAs subject to backup + 9) 10} 6
 + {(total number of RDAREA component files subject to backup + 25) 16} 8 + 100

Condition Formula for determining memory size (KB)

MGR 88 + number of backup files 2 MAX(32, value of pd_utl_buff_size)
 + number of backup files {(number of RDAREAs subject to backup + 9) 10} 6
 + {(total number of RDAREA component files subject to backup + 25) 16} 8 + 100
Add the following value if differential backup files are to be collected:
 + 32 2 + (512 + 128 number of RDAREAs subject to backup) 32768 32
 + (256 + 128 number of RDAREAs subject to backup + a + 8 b) 32768 32

 2

DS 49 + number of backup files 2 MAX(32, value of pd_utl_buff_size) + 64
 + number of backup files {(number of RDAREAs subject to backup + 9) 10} 6
 + {(total number of RDAREA component files subject to backup + 25) 16} 8 + 100

20. Storage Requirements for Utility Execution

922

a: Length of the backup file name specified in the -b option (bytes). If multiple backup
files are specified, this value is the total length of the file names.
b: Number of backup files specified in the -b option

20.2.10 Memory size required for the execution of the database
recovery utility (pdrstr)

The following tables show the formulas for determining the memory size required for
the execution of the database recovery utility (pdrstr).

BES Add the following value if this server machine contains backup files:
 + 63 + number of backup files 2 MAX(32, value of pd_utl_buff_size)

 (number of servers subject to backup + 1)
 + number of backup files {(number of RDAREAs subject to backup + 9) 10} 6
 + {(total number of RDAREA component files subject to backup + 25) 16} 8 + 100

Server
machine
containing
backup files

63 + number of backup files 2 MAX(32, value of pd_utl_buff_size)
 (number of servers subject to backup + 1)

 + number of backup files {(number of RDAREAs subject to backup + 9) 10} 6
 + {(total number of RDAREA component files subject to backup + 25) 16} 8 + 100

Condition Formula for determining memory size (KB)

20. Storage Requirements for Utility Execution

923

(1) HiRDB/Single Server

a: Length of the backup file name specified in the -b option (bytes). If multiple backup
files are specified, this value is the total length of the file names.
b: Number of backup files specified in the -b option
c: If the write buffer size is specified, this value is MAX(64, write buffer size). If not,
this value is 60.

The write buffer size is the value specified by the -Y option.

Condition Formula for determining memory size (KB)

Single server 65 + {(number of RDAREAs subject to recovery + 9) 10} 6
 + {(number of RDAREA component files subject to recovery + 25) 16} 8 + 50
 + 98 + 2 MAX(32, value of pd_utl_buff_size)
 + {(number of RDAREAs subject to recovery + 9) 10} 6 + c

 + {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100
 + {(number of RDAREAs subject to recovery + 99) 100} 5
Add the following value if this server contains backup files:
 + 100 + 2 MAX(32, value of pd_utl_buff_size)
 + {(number of RDAREAs subject to recovery + 9) 10} 6
 + {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100
Add the following value if unload log files are to be input:
 + 57 + 2 MAX(32, value of pd_utl_buff_size)
 + {(number of RDAREAs subject to recovery + 9) 10} 6 + 64
 + {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100
 + {(maximum number of concurrently executable transactions + 99) 100} 5
 + (maximum page size for RDAREA subject to recovery) 50
 + 0.6 number of RDAREAs subject to recovery + size of work buffer for sorting (value of
-y option)
Add the following value if differential backup files are used for recovery:
 + 32 2 + (512 + 128 number of RDAREAs subject to backup) 32768 32
 + (256 + 128 number of RDAREAs subject to backup + a + 8 b) 32768 32
 + (32 differential backup count) 1024

Utility special
unit

100 + 2 MAX(32, value of pd_utl_buff_size)
 + {(number of RDAREAs subject to recovery + 9) 10} 6
 + {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100

20. Storage Requirements for Utility Execution

924

(2) HiRDB/Parallel Server
Condition Formula for determining memory size (KB)

MGR 65 + {(number of RDAREAs subject to recovery + 9) 10} 6
 + {(number of RDAREA component files subject to recovery + 25) 16} 8 + 50
Add the following value if differential backup files are used for recovery:
 + 32 2 + (512 + 128 number of RDAREAs subject to backup) 32768 32
 + (256 + 128 number of RDAREAs subject to backup + a + 8 b) 32768 32
 + (32 differential backup count) 1024

DS 35 + 2 MAX(32, value of pd_utl_buff_size) + 100
 + 98 + 2 MAX(32, value of pd_utl_buff_size)
 + {(number of RDAREAs subject to recovery + 9) 10} 6 + c

 + {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100
 + {(number of RDAREAs subject to recovery + 99) 100} 5
Add the following value if this server contains backup files:
 + 100 + 2 MAX(32, value of pd_utl_buff_size)
 + {(number of RDAREAs subject to recovery + 9) 10} 6
 + {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100
Add the following value if unload log files are to be input:
 + 57 + 2 MAX(32, value of pd_utl_buff_size)
 + {(number of RDAREAs subject to recovery + 9) 10} 6 + 64
 + {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100
 + {(maximum number of concurrently executable transactions + 99) 100} 5
 + (maximum page size for RDAREAs subject to recovery) 50
 + 0.6 number of RDAREAs subject to recovery + size of work buffer for sorting (value of
-y option)

BES 98 + 2 MAX(32, value of pd_utl_buff_size)
 + {(number of RDAREAs subject to recovery + 9) 10} 6 + c

 + {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100
 + {(number of RDAREAs subject to recovery + 99) 100} 5
Add the following value if this server contains backup files:
 + 100 + 2 MAX(32, value of pd_utl_buff_size)
 + {(number of RDAREAs subject to recovery + 9) 10} 6
 + {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100
Add the following value if unload log files are to be input:
 + 57 + 2 MAX(32, value of pd_utl_buff_size)
 + {(number of RDAREAs subject to recovery + 9) 10} 6 + 64
 + {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100
 + {(maximum number of concurrently executable transactions + 99) 100} 5
 + (maximum page size for RDAREAs subject to recovery) 50
 + 0.6 number of RDAREAs subject to recovery + size of work buffer for sorting (value of
-y option)

20. Storage Requirements for Utility Execution

925

a: Length of the backup file name specified in the -b option (bytes). If multiple backup
files are specified, this value is the total length of the file names.
b: Number of backup files specified in the -b option
c: If the write buffer size is specified, this value is MAX(64, write buffer size). If not,
this value is 60.

The write buffer size is the value specified by the -Y option.

20.2.11 Memory size required for the execution of the dictionary
import/export utility (pdexp)

The following tables show the formulas for determining the memory size required for
the execution of the dictionary import/export utility (pdexp).

(1) HiRDB/Single Server

a: Number of columns in the table to be imported
b: Number of partitions for the table to be imported
c: If a LOB column is defined for the table being imported, number of LOB RDAREAs

Server
machine
containing
backup files

100 + 2 MAX(32, value of pd_utl_buff_size) number of servers subject to recovery
 + {(number of RDAREAs subject to recovery + 9) 10} 6
 + {(number of RDAREA component files subject to recovery + 25) 16} 8 + 100

Location Type Value (KB)

Single server Exporting table definition
information

11600

Importing table definition
information

10500 + 0.4 (a + b) + 0.1 c

Exporting procedure 11600 + d

Importing procedure 10500 + 0.1 e

Utility special unit Exporting table definition
information

5000

Importing table definition
information

6400 + 0.4 (a + b) + 0.1 c

Exporting procedure 5000 + d

Importing procedure 6400 + 0.1 e

Condition Formula for determining memory size (KB)

20. Storage Requirements for Utility Execution

926

containing LOB data

d: Length of source of stored procedure1 (KB)

e: Number of resources used by stored procedure being imported2

1 Value of the SOURCE_SIZE column in the SQL_ROUTINES table.
2 Value of the N_RESOURCE column in the SQL_ROUTINES table.

(2) HiRDB/Parallel Server

a: Number of columns in table to be imported
b: Number of partitions for the table to be imported
c: If a LOB column is defined for the table being imported, number of LOB RDAREAs
containing LOB data

d: Length of source of stored procedure1 (KB)

e: Number of resources used by stored procedure being imported2

f: Number of partitions with boundary value specified for the table being imported
1 Value of the SOURCE_SIZE column in the SQL_ROUTINES table.
2 Value of the N_RESOURCE column in the SQL_ROUTINES table.

Location Type Value (KB)

MGR 4100

DS Exporting table definition
information

7500

Importing table definition
information

6400 + 0.4 (a + b) + 0.1 c + 0.25 f

Exporting procedures 7500 + d

Importing procedures 6400 + 0.1 e

BES Exporting table definition
information

7600

Importing table definition
information

6500 + 0.4 (a + b) + 0.1 c + 0.25 f

Exporting procedures 7600 + d

Importing procedures 6500 + 0.1 e

20. Storage Requirements for Utility Execution

927

20.2.12 Memory size required for the execution of the access path
display utility (pdvwopt)

The following table shows the formulas for determining the memory size required for
the execution of the access path display utility (pdvwopt).

a: Number of queries in SQL
bi: Number of tables in query

20.2.13 Memory size required for the execution of the rebalancing
utility (pdrbal)

The following table shows the formulas for determining the memory size required for
the execution of the rebalancing utility (pdrbal).

(1) For a HiRDB/Single Server

Condition Formula for determining
memory size (KB)

HiRDB/Single Server a
 bi 0.7 + 200

i = 1HiRDB/Parallel Server FES

Formula for determining memory size (KB)

87563 + 536 + 0.02 number of columns + 0.2 number of target RDAREAs
 + 1.7 number of source RDAREAs + 0.26 number of target RDAREAs number of indexes
 + (0.09 + average index statement file length 1024) number of index statements
 + (0.02 + average directory length 1024) (number of idxwork statements + number of sort
statements)
 + (length of control information file + length of execution results file) 1024
 + 0.05 number of columns + 0.05 number of RDAREAs + 0.15 number of indexes
 + 0.05 number of index storage RDAREAs
 + 550 1024 + size of work file for sorting1

-n option specified:
 + page length of RDAREA2 number of batch input/output buffer sectors y
Applicable table containing LOB columns:
 + 64 + 0.01 number of LOB columns + 0.18 number of target RDAREAs
 + 0.09 number of source RDAREAs + 0.08 number of LOB storage RDAREAs

20. Storage Requirements for Utility Execution

928

y: Use one of the following values:
• When the rebalancing facility is used with a FIX hash-partitioned table

(1024 number of storage RDAREAs for the entire table) number
of table storage RDAREAs in the corresponding server

• Other than the above
1

1 Add this value during batch index creation (-ic specified or omitted).
2 If the page length varies from one RDAREA to another for a row-partitioned table,
use the longest page length for this calculation.
3 For the 64-bit mode, the value is 9764.

When the target table contains BINARY columns:
 + 33 (number of BINARY columns number of target RDAREAs number of source RDAREAs)
Applicable table containing an abstract data type provided by plug-in:
 + 40 + (0.27 + 2 length of abstract data type) number of abstract data-type columns
 + 0.3 number of unld_func statements
 + (128 + 0.11 number of LOB attributes + 0.1 number of functions specifying unld_func
 + 0.07 number of abstract data type attributes) number of abstract data-type columns
 + (33 number of BINARY attributes number of target RDAREAs number of source RDAREAs) 2
 + 0.01 number of plug-in indexes + 0.19 number of unld_func statements
 + (average length of unld_func statements 1024 number of unld_func statements)
 + (average length of reld_func statements 1024 number of reld_func statements)
 + number of abstract data-type columns 1 + (number of LOB attributes 0.05) number of RDAREAs
 + number of data type plug-ins 10 + number of plug-in indexes 10
 + memory required for plug-ins

When the specified index creation method is the batch index creation mode or the index information output
mode and the following condition is satisfied:
Number of table partitions number of index definitions > maximum number of processes that can be open - 576
+ 2048

Formula for determining memory size (KB)

20. Storage Requirements for Utility Execution

929

(2) For a HiRDB/Parallel Server
Condition Formula for determining memory size (KB)

MGR 14983 + 2 + 0.05 number of columns + 0.05 number of RDAREAs + 0.15 number of
indexes
 + 0.05 number of index storage RDAREAs
 + (0.09 + average index statement file length 1024) number of index statements)
 + (0.02 + average directory length 1024) (number of idxwork statements + number
of sort statements)
 + (length of control information file + length of execution results file) 1024

Applicable table containing LOB columns:
 + 0.08 number of LOB storage RDAREAs

Applicable table containing an abstract data type provided by plug-in:
 + 0.19 number of unld_func statements
 + (average length of unld_func statement 1024 number of unld_func statements)
 + (average length of reld_func statement 1024 number of reld_func statements)

DS 14554 + 32 + 0.33 number of target BESs + 0.3 number of source BESs
 + 0.2 number of target RDAREAs + 0.22 number of source RDAREAs + 0.34 number
of FESs
 + (0.09 + average index statement file length 1024) number of index statements
 + (0.02 + average directory length 1024) (number of idxwork statements + number
of sort statements) + 0.05 number of columns + 0.05 number of RDAREAs + 0.15
number of indexes
 + 0.05 number of index storage RDAREAs

Applicable table containing LOB columns:
 + 0.08 number of LOB storage RDAREAs

When the target table contain BINARY columns:
 + 33 (number of BINARY columns number of target RDAREAs number of source
RDAREAs)
Applicable table containing an abstract data type provided by plug-in:
 + 0.01 number of target BESs + 0.19 number of unld_func statements
 + (average length of unld_func statements 1024 number of unld_func
statements)
 + (average length of reld_func statements 1024 number of reld_func
statements)
 + number of abstract data type columns 1 + (number of LOB attributes 0.05) number
of RDAREAs
 + number of data type plug-ins 10 + number of plug-in indexes 10

20. Storage Requirements for Utility Execution

930

BES 66015 + 50 + (517 + 0.01 number of columns) number of target BESs
 + (33 + 0.01 number of columns) number of source BESs + 0.2 number of target
RDAREAs
 + 1.7 number of source RDAREAs + 0.01 number of columns
 + 0.26 number of target RDAREAs number of indexes
 + (0.09 + average index statement file length 1024) number of index statements
 + (0.02 + average directory length 1024) (number of idxwork statements +
number of sort statements)
 + 0.05 number of columns + 0.05 number of RDAREAs + 0.15 number of indexes
 + 0.05 number of index storage RDAREAs
 + 550 1024 + size of work file for sorting1

-n option specified:
 + page length of RDAREA2 number of batch input/output buffer sectors y

Applicable table containing LOB columns:
 + 32 + 0.01 number of LOB columns + (32 + 0.01 number of LOB columns) number
of target BESs
 + 0.18 number of target RDAREAs + 0.1 number of source RDAREAs
 + 0.08 number of LOB storage RDAREAs
When the target table contain BINARY columns:
 + 33 (number of BINARY columns number of target RDAREAs number of source
RDAREAs)

When the target table contains abstract data types provided by plug-ins:
 + 40 + (0.27 + 2 length of abstract data type) number of abstract data-type columns
 + 0.3 number of unld_func statements
 + {(64 + 0.05 number of LOB attributes) number of abstract data-type columns}
number or target BESs
 + {(64 + 0.01 number of functions specifying unld_func + 0.07 number of abstract data
type attributes
 + 0.05 number of LOB attributes) number of abstract data-type columns} number of
source BESs
 + (33 number of BINARY attributes number of target RDAREAs number of source
RDAREAs) 2
 + 0.01 number of plug-in indexes + 0.19 number of unld_func statements
 + (average length of unld_func statements 1024 number of unld_func statements)
 + (average length of reld_func statements 1024 number of reld_func statements)
 + number of abstract data-type columns 1 + (number of LOB attributes 0.05) number
of RDAREAs
 + number of data type plug-ins 10 + number of plug-in indexes 10
 + memory required for plug-ins

Condition Formula for determining memory size (KB)

20. Storage Requirements for Utility Execution

931

y: Use one of the following values:
• When the rebalancing facility is used for FIX hash partitioning tables

(1024 number of storage RDAREAs for the entire table) number
of table storage RDAREAs in the corresponding server

• Other than the above
1

1 Add this value during batch index creation (-ic specified or omitted).
2 If the page length varies from one RDAREA to another for a row-partitioned table,
use the longest page length for this calculation.
3 For the 64-bit mode, the value is 1790.
4 For the 64-bit mode, the value is 1671.
5 For the 64-bit mode, the value is 6908.

20.2.14 Memory size required for execution of the free page release
utility (pdreclaim) and global buffer residence utility (pdpgbfon)

Use the following formulas to determine the memory size required for execution of the
free page release utility (pdreclaim) and global buffer residence utility (pdpgbfon):

When the specified index creation method is the batch index creation mode or the index
information output mode and the following condition is satisfied:
Number of table partitions number of index definitions > maximum number of processes that
can be open - 576 + 2048

Condition Formula for the memory
requirement

(KB)

HiRDB/Single Server (32-bit mode) 800 + W

HiRDB/Single Server (64- bit mode) 800 + W

HiRDB/Parallel Server (32-bit
mode)

MGR 800 + X

Servers specified with the -s option1 Y

BES2 Z

Condition Formula for determining memory size (KB)

20. Storage Requirements for Utility Execution

932

1 If the -s option is omitted, the table storage RDAREA used for processing is at the
first defined server.
2 If there are multiple back-end servers, add this memory size for each back-end server.
W: Memory required for a Single Server when the database reorganization utility
(pdrorg) is executing.
X: Memory required for a MGR when the database reorganization utility (pdrorg) is
executing.
Y: Memory required for a DS when the database reorganization utility (pdrorg) is
executing.
Z: Memory required for a BES when the database reorganization utility (pdrorg) is
executing.
For details about the size of the memory required when the database reorganization
utility (pdrorg) is executing, see 20.2.4 Memory size required for the execution of the
database reorganization utility (pdrorg).

20.2.15 Memory size required for execution of the integrity check
utility (pdconstck)

Use the following formulas to determine the size of the memory required to execute
the integrity check utility (pdconstck).

HiRDB/Parallel Server (64-bit
mode)

MGR 850 + X

Servers specified with the -s option1 Y

BES2 Z

Condition Formula for the
memory requirement

(KB)

HiRDB/Single Server 32-bit mode 13995 +

64-bit mode 14766 +

HiRDB/Parallel Server 32-bit mode MGR 6675 +

DS 5910 +

64-bit mode MGR 7252 +

Condition Formula for the memory
requirement

(KB)

20. Storage Requirements for Utility Execution

933

: The value obtained by the following formula:
2175
+ 0.14 number of columns
+ 0.09 number of table storage RDAREAs
+ 0.23 number of indexes
+ 0.09 number of index storage RDAREAs
+ 0.09 number of LOB storage RDAREAs
Number of foreign keys
+ (42 + 0.47 number of foreign key component columns r)
 r=1
Number of foreign keys
+ (5+ 0.29 number of columns in the search condition c + 0.85
 c=1

 number of ANDs and ORs in the search condition c + length of the search
condition c)

: The value obtained from the following formula
0.2
+ 0.02 number of table storage RDAREAs
+ 0.02 number of index storage RDAREAs
+ 0.02 number of LOB column storage RDAREAs

DS 8740 +

Condition Formula for the
memory requirement

(KB)

935

Chapter

21. Specifying OS Parameters

This chapter describes the procedures for estimating the OS parameter values (or
kernel parameter values).
This chapter contains the following sections:

21.1 Estimating HP-UX OS parameter values
21.2 Estimating Solaris OS parameter values
21.3 Estimating AIX 5L OS parameter values
21.4 Estimating Linux kernel parameter values
21.5 Estimating the sizes of message queues and semaphores
21.6 Listen queue specified values

21. Specifying OS Parameters

936

21.1 Estimating HP-UX OS parameter values

This section describes the procedures for estimating the HP-UX OS parameter values
(or kernel parameter values). If OS parameter values are too small, HiRDB may not
function correctly. Table 21-1 shows the guidelines for the HP-UX OS parameter
values.
If you are using HP-UX 11i, do not change the OS parameter values while HiRDB is
running. Even an OS parameter that can be adjusted automatically, if changed may
affect HiRDB operations.

Table 21-1: Guidelines for the HP-UX OS parameter values

OS parameter Guideline for value

maxdsiz
(32-bit-mode)
maxdsiz_64bi
t (64-bit mode)

 HiRDB/Single Server
The target value should satisfy the following two conditions; however, if the value is less than
(process private area used by the Single Server process#1) g, specify a value greater than
this:
32-bit mode
• Memory size for restarting HiRDB#2 + 52428800 (bytes) or greater
• Value of pd_work_buff_size 1024 + 134217728 (bytes) or greater

64-bit mode
• Memory size for restarting HiRDB#2 + 52428800 (bytes) or greater
• Value of pd_work_buff_size 1024 + 134217728 (bytes) or greater

 HiRDB/Parallel Server
The target value should satisfy the following two conditions; however, if the value is less than
(process private area using by each server process#3) g, specify a value greater than this:
32-bit mode
• Memory size for restarting each server's HiRDB#2 + 52428800 (bytes) or greater
• Value of pd_work_buff_size 1024 + 134217728 (bytes) or greater

64-bit mode
• Memory size for restarting each server's HiRDB#2 + 52428800 (bytes) or greater
• Value of pd_work_buff_size 1024 + 134217728 (bytes) or greater

maxssiz Specify 80 MB or greater. Note that the unit for this value is MB. If this value is less than the
value required by another program that is run on the server machine, specify the latter, which
is greater.

maxfiles HiRDB calculates and sets this value, so you do not need to specify it.

maxfiles_lim Specify at least MAX(1344,value of pd_max_open_fds, n).

21. Specifying OS Parameters

937

nfile Specify at least MAX{1600,320 (h - g) + [a + (b c) + 320] g + 848 i + h 2 + 227 +
k m}.
If the value determined from this formula exceeds the system maximum, use the system
maximum value.

nflocks Specify at least a + (b c) + 3 + (320 d).

maxuprc Specify at least MAX(value of pd_max_server_process + e, 512).
However, if this value is less than the value required by another program that runs on the server
machine, specify the higher value.

maxusers Recommended value is 128 or greater.

nproc Specify at least the value of MAX (pd_max_server_process + 20, 576).

msgmni Specify the number of message queue identifiers required by all programs that are run on the
server machine. For details about the number of message queue identifiers required by HiRDB,
see 21.5 Estimating the sizes of message queues and semaphores. Add the values obtained.

msgtql Specify at least MAX(k value of msgmni, total specified by pdbuffer with -m option).

semmni Specify the number of semaphore identifiers required by all programs that are run on the server
machine. For details about the number of semaphore identifiers required by HiRDB, see 21.5
Estimating the sizes of message queues and semaphores. Add the values obtained. The
recommended value is 1024 or greater.

semmns Specify the number of semaphores required by all programs that are run on the server machine.
For details about the number of semaphores required by HiRDB, see 21.5 Estimating the sizes
of message queues and semaphores. Add the values obtained. The recommended value is 7200
or greater.

semmnu Specify a value of 512 or greater.

semume Specify a value of 512 or greater.

shmmax Specify at least MAX(p + q, r, s, t), and at least 200000000.
If the global buffer dynamic update facility is used, consider the size of the global buffers to
be added; if there is a possibility that the size of the added part will become greater than the
specified value, specify the anticipated size of the added part.
However, if the inter-process memory communication facility is used (PDIPC=MEMORY is
specified in the client environment definition), specify a size of at least MAX(p + q, r, s, value
of PDSENDMEMSIZE, value of PDRECVMEMSIZE).
Specify in the HiRDB system definition's SHMMAX operand a value no greater than the value
for shmmax determined here.

OS parameter Guideline for value

21. Specifying OS Parameters

938

a: Number of input data files used by the database load utility or the number of unload
data files used by the database reorganization utility
b: Maximum number of index partitions (subject to processing by the database load
utility or database reorganization utility)
c: Number of indexes (subject to processing by the database load utility or database
reorganization utility)
d: One of the following values:

• HiRDB/Single Server
Value of pd_max_users operand + value of
pd_max_reflect_process_count operand

• HiRDB/Parallel Server
Value of pd_max_bes_process operand + value of
pd_max_reflect_process_count operand

e: Maximum number of concurrently executable commands (including utilities)
f: One of the following values:

• HiRDB/Single Server, with pd_lck_release_detect=pipe: 1

shmmni Specify a value of 1000 or greater.
If the global buffer dynamic update facility is used, add the following value. Add 1 when the
security audit facility is used.
• HiRDB/Single Server

Value of pd_max_add_dbbuff_shm_no
• HiRDB/Parallel Server

n
 Value of the pd_max_add_dbbuff_shm_no operand specified in each server

definition
i=1
n: Number of back-end servers in the server machine + number of dictionary servers

If the inter-process memory communication facility is used (PDIPC=MEMORY is specified in the
client environment definition), add the value obtained from the following formula:
A 2 1.2
A indicates the maximum number of concurrently executable clients that use the inter-process
memory communication facility. If the value of A is unknown, use the total number of clients
that use the inter-process memory communication facility or the value of k.

shmseg Specify a value of 120 or greater.
To dynamically change the global buffer, add the maximum value of the
pd_max_add_dbbuff_shm_no operand value defined in each server.
Also add 1 when the security audit facility is used.

OS parameter Guideline for value

21. Specifying OS Parameters

939

• HiRDB/Parallel Server, with pd_lck_release_detect=pipe: 16
• Neither of the above: 0

g: One of the following values:
• HiRDB/Single Server: Value of pd_max_users operand + value of

pd_max_reflect_process_count operand
• HiRDB/Parallel Server: Total of the following values for all back-end and

dictionary servers in the unit:
Value of pd_max_bes_process operand + value of
pd_max_reflect_process_count operand
Value of pd_max_dic_process operand + value of
pd_max_reflect_process_count operand

h: Value of pd_max_server_process operand
i: Number of servers in the unit
j: One of the following values:

• HiRDB/Single Server, with pd_lck_release_detect=pipe: 4
• HiRDB/Parallel Server, with pd_lck_release_detect=pipe: 35
• Neither of the above: 0

k: Value of pd_max_users operand + value of pd_max_reflect_process_count
operand
m: One of the following values:

• HiRDB/Parallel Server, with front-end servers in the unit, and
pd_lck_release_detect=pipe: 2

• Other than the above: 0
n: If you specify the batch index creation mode or index information output mode as
the index creation mode with the database load utility, database reorganization utility,
or rebalancing utility, use the value obtained from the following formula:

MIN (576 + b c, maximum value of the pd_max_open_fds operand)
For details about the maximum value of the pd_max_open_fds operand, see the
manual HiRDB Version 8 System Definition.

p: Size of the shared memory used by the unit controller
q: Size of the shared memory used by the Single Server or each server
r: Value specified in the HiRDB system definition's SHMMAX operand

21. Specifying OS Parameters

940

s: Estimated value for shared memory used by the global buffers#4

t: Estimated value for shared memory used by the security audit information buffer#5

#1: For details about the process private area used by a single server process, see 16.1.2
Calculation of required memory.
#2: For details about estimating the memory size for restarting HiRDB, see 16.1.2
Calculation of required memory for a HiRDB/Single Server, and 16.2.2 Calculation of
required memory for a HiRDB/Parallel Server.
#3: For details about the process private area used by each server process, see 16.2.2
Calculation of required memory.
#4: For details about estimating the shared memory used by the global buffers, see
16.1.5 Formula for size of shared memory used by global buffers for a HiRDB/Single
Server, and see 16.2.5 Formula for size of shared memory used by global buffers for a
HiRDB/Parallel Server.
#5: For details about estimating the size of shared memory used by the security audit
information, for HiRDB/Single Server, see 16.1.2 Calculation of required memory for
a HiRDB/Parallel Server and 16.2.2 Calculation of required memory for a HiRDB/
Parallel Server.

21. Specifying OS Parameters

941

21.2 Estimating Solaris OS parameter values

This section describes the procedures for estimating the Solaris OS parameter values
(or kernel parameter values). If OS parameter values are too small, HiRDB may not
function correctly. Table 21-2 shows the guidelines for the Solaris OS parameter
values.

Table 21-2: Guidelines for the Solaris OS parameter values

OS parameter Guideline for value

rlim_fd_cur HiRDB calculates and sets this value, so you do not need to specify it.

rlim_fd_max Specify at least MAX(1344,value of pd_max_open_fds, n).

maxuprc Specify at least MAX(d + e, 1024).
However, if the default values calculated from maxusers and max_nproc are
greater, do not change those values.

maxusers Specify at least 128.

max_nprocs#1 Specify at least MAX(d + 20, 1000).
However, if the default value calculated from maxusers is greater, do not change
that value.

msgsys:msginfo_msgm
ni
(project.max-msg-ids
)#1, #4

Specify the number of message queue identifiers required by all programs that are
run on the server machine. For details about the number of message queue identifiers
required by HiRDB, see 21.5 Estimating the sizes of message queues and
semaphores. Add the values obtained.

msgsys:msginfo_msgt
ql
(process.max-msg-mes
sages)#1, #4

Specify at least MAX(k value of msgmni, total specified by pdbuffer with -m
option).

semsys:seminfo_semm
ni
(project.max-sem-ids
)#4

Specify the number of semaphore identifiers required by all programs that are run
on the server machine. For details about the number of semaphore identifiers
required by HiRDB, see 21.5 Estimating the sizes of message queues and
semaphores. Add the values obtained. The recommended value is 1024 or greater.

semsys:seminfo_semm
ns#1, #3

Specify the number of semaphores required by all programs that are run on the
server machine. For details about the number of semaphores required by HiRDB,
see 21.5 Estimating the sizes of message queues and semaphores. Add the values
obtained. The recommended value is 7200 or greater.

semsys:seminfo_semm
nu#1, #3

Specify a value of 1024 or greater.

21. Specifying OS Parameters

942

semsys:seminfo_semu
me#1, #3

Specify a value of 512 or greater.

semsys:seminfo_semm
sl
(process.max-sem-nse
ms)#4

Specify a value of 128 or greater.

semsys:seminfo_semo
pm
(process.max-sem-ops
)#4

Specify a value of 128 or greater.

semsys:seminfo_semm
ap#1, #2, #3

Specify a value of 1024 or greater.

shmsys:shminfo_shmm
ax
(project.max-shm-mem
ory)#1, #4

Specify at least MAX(p + q, r, s, t), and at least 200000000.
If the global buffer dynamic update facility is used, consider the size of the global
buffers to be added; if there is a possibility that the size of the added part will become
greater than the specified value, specify the anticipated size of the added part.
However, if the inter-process memory communication facility is used
(PDIPC=MEMORY is specified in the client environment definition), specify a size of
at least MAX(p + q, r, s, value of PDSENDMEMSIZE, value of PDRECVMEMSIZE).
Specify in the HiRDB system definition's SHMMAX operand a value no greater than
the value for shmmax determined here.

shminfo_shmmni
(project.max-shm-ids
)#1, #4

Specify a value of 2000 or greater.
If the global buffer dynamic update facility is used, add the following value. Add 1
when the security audit facility is used.
• HiRDB/Single Server

Value of pd_max_add_dbbuff_shm_no
• HiRDB/Parallel Server

n
 Value of the pd_max_add_dbbuff_shm_no operand specified in each

server definition
i=1
n: Number of back-end servers in the server machine + number of dictionary
servers

If the inter-process memory communication facility is used (PDIPC=MEMORY is
specified in the client environment definition), add the value obtained from the
following formula:
A 2 1.2
A indicates the maximum number of concurrently executable clients that use the
inter-process memory communication facility. If the value of A is unknown, use the
total number of clients that use the inter-process memory communication facility or
the value of k.

OS parameter Guideline for value

21. Specifying OS Parameters

943

e: Maximum number of command processes that the HiRDB administrator can execute
concurrently
k: Value of pd_max_users operand + value of pd_max_reflect_process_count
operand
n: If you specify the batch index creation mode or index information output mode as
the index creation mode with the database load utility, database reorganization utility,
or rebalancing utility, use the value obtained from the following formula:

MIN (576 + b c, maximum value of the pd_max_open_fds operand)
For details about the maximum value of the pd_max_open_fds operand, see the
manual HiRDB Version 8 System Definition.

p: Size of the shared memory used by the unit controller
q: Size of the shared memory used by the Single Server or each server
r: Value specified in the HiRDB system definition's SHMMAX operand
s: Estimated value for shared memory used by the global buffers

For details about estimating the shared memory used by the global buffers, see
16.1.5 Formula for size of shared memory used by global buffers for a HiRDB/
Single Server, and see 16.2.5 Formula for size of shared memory used by global
buffers for a HiRDB/Parallel Server.

#1: This parameter is not required for Solaris 8.
#2: This parameter is not required for Solaris 9.
#3: This parameter is not required for Solaris 10.
#4: For Solaris 10, use Solaris' resource control to specify the parameter inside the
parenthesis () for adjustment.

shminfo_shmseg#2, #3 Specify a value of 240 or greater.
To dynamically change the global buffer, add the maximum value of the
pd_max_add_dbbuff_shm_no operand value defined in each server.
Also add 1 when the security audit facility is used.

OS parameter Guideline for value

21. Specifying OS Parameters

944

21.3 Estimating AIX 5L OS parameter values

This section describes the procedures for estimating the HP-UX OS parameter values
(or kernel parameter values). If OS parameter values are too small, HiRDB may not
function correctly. Table 21-3 shows the guidelines for the HP-UX OS parameter
values.

Table 21-3: Guidelines for the AIX 5L OS parameter values

e: Maximum number of concurrently executable commands (including utilities)
Note

• The maximum number of files that can be opened in the system concurrently
can be controlled by maxuproc nofiles number of fixed licenses.

• The maximum number of users who can log in to the system can be
controlled by the number of fixed licenses.

• The maximum number of processes that can execute concurrently in the
entire system can be controlled by maxuproc number of fixed licenses.

(1) Specifying parameters unique to AIX 5L
(a) Specifying environment variables

For AIX 5L, you need to specify the following environment variables in the system
common definition.

EXTSHM

OS parameter Guideline for value

data_hard The parameter default value is -1 (unlimit). Do not specify this if there is no particular
reason to do so.

stack_hard The parameter default value is -1 (unlimit). Do not specify this if there is no particular
reason to do so.

nofiles HiRDB calculates and sets this value, so you do not need to specify it.

nofiles_hard The parameter default value is -1 (unlimit). Do not specify this if there is no particular
reason to do so.

maxuproc Specify at least MAX(value of pd_max_server_process + e, 512).
However, if this value is less than the value required by another program that runs on the server
machine, specify the higher value.

EXTSHM
environment
variable

For the 32-bit mode, specify ON. For the 64-bit mode, specification of this parameter is not
needed.

21. Specifying OS Parameters

945

In 32-bit mode, you must set ON, which indicates an unlimited number of shared
memory areas in processing space. For 64-bit mode, you do not specify (you
omit) putenv EXTSHM ON to enable the page fix functionality of the OS when
you use the page fix facility of shared memory. The following table lists the
EXTSHM environment variable specification formats for address mode.

#
The page fix facility of shared memory is used when you specify fixed in the
pd_shmpool_attribute operand or pd_dbbuff_attribute operand. For
details, see pd_shmpool_attribute operand or pd_dbbuff_attribute operand in the
manual HiRDB Version 8 System Definition.
PSALLOC
Specify early, which indicates that the required paging space is to be allocated
immediately. You also need to specify NODISCLAIM at the same time. However,
useless paging space might still occur.
NODISCLAIM
Specify true, which prevents nodisclaim() from being issued as the method
of processing a free() call.
LDR_CNTRL
For 32-bit mode, specify this variable so that a larger data area than the standard
kernel partitioning can be handled. Specify MAXDATA=0x40000000. This
variable is not required for 64-bit mode.
CORE_NOSHM
Specify "" to exclude the shared memory area in the core file, which is output
when a process failure occurs. For details, see (d) Restricting the core file output
information.

(b) Notes on the /etc/security/limits file specification values
Root users and HiRDB administrators must pay attention to the following specification
values:

Address mode Page fix facility of shared memory# Specification format for
EXTSHM environment

variables

32-bit mode --
(not supported)

putenv EXTSHM ON

64-bit mode Used Not specified

Not used --
(does not need to be specified)

21. Specifying OS Parameters

946

data
An error occurs when the process heap area exceeds the limit value. If this limit
value is not required, specify -1 (unlimited).
fsize, fsize_hard
An error occurs when the file size exceeds this limit value. If this limit value is
not required, specify -1 (unlimited).

(c) Specifying the Virtual Memory Manager (VMM) tuning parameters
Specify the following parameters when using specific facilities. You can set the VMM
parameters using the vmo command (AIX 5L 5.2 and later) or vmtune command (AIX
5L 5.1) of AIX 5L. For details about the vmo and vmtune commands, see the
documentation for AIX.

v_pinshm
This parameter enables page fixing for shared memory segments. To fix shared
memory pages used by HiRDB, specify 1 for this parameter. For details about
how to fix shared memory pages used by HiRDB, see pd_shmpool_attribute
operand or pd_dbbuff_attribute operand in the manual HiRDB Version 8 System
Definition.
maxpin
This parameter specifies the maximum percentage of page-fixed real memory.
When you fix shared memory pages used by HiRDB, specify this parameter so
that the real memory size within the percentage specified in this parameter is
larger than the total size (including the size of paged memory fixed by the OS) of
all page-fixed memory on the machine, including the size of the page-fixed
HiRDB shared memory. For details about how to fix shared memory pages used
by HiRDB, see pd_shmpool_attribute operand or pd_dbbuff_attribute operand in
the manual HiRDB Version 8 System Definition.

(d) Restricting the core file output information
In AIX 5L V5.2 or AIX 5L V5.3, specify the following parameters to exclude the
shared memory area in the core file that is output when a process failure occurs.

Setting contents
HiRDB administrator's environment variable (k shell)

$ export CORE_NOSHM=
System common definition

putenv CORE_NOSHM ""
Assumptions

21. Specifying OS Parameters

947

• The OS used is AIX 5L V5.2 ML4 (IY56578) or later or AIX 5L V5.3.
• The fullcore parameter of the system attribute (sys0) is true.

Notes
• HiRDB automatically sets fullcore to true during registration to the OS

(when the pdsetup command is entered).
The fullcore parameter may have later been be reset to false with an OS
command; make sure that the current fullcore parameter is true.

• Do not specify this environment variable CORE_NOSHM setting in /etc/
environment.

(e) Notes on bogging down of programs due to high I/O load on the JFS/
JFS2 file system
Execution of programs that send requests to the JFS/JFS2 file system for large output
can cause the performance of system disk I/O to degrade. Programs such as pdcopy,
or the compress, cp, and dd commands for large size files can cause programs
running on the same system to stall for up to 20 to 30 seconds.
In particular, if the system operates with a cluster configuration that uses HA monitor
or HACMP to monitor system response time, system switchover might occur.
To minimize this problem, you can equalize the write request frequency from
application programs by setting an OS parameter for the system parameter (sys0). By
specifying the following OS parameters, you can control I/O requests so that large
numbers of I/O requests not completed for writing to the disk device do not accumulate
in the file cache.

#
The optimum setting value of the maxpout/minpout parameter depends on the
system configuration or I/O characteristics of applications.
Therefore, it is effective to set a value listed in the above table and increase the
value until application I/O performance is acceptable.
For details about the maxpout/minpout parameter setting values, see
thedocumentation for the OS.

OS parameters Guide to specification value#

maxpout 33

minpout 16

21. Specifying OS Parameters

948

21.4 Estimating Linux kernel parameter values

This section describes the procedures for estimating the Linux kernel parameter values
(or kernel parameter values). If kernel parameter values are too small, HiRDB may not
function correctly. Table 21-4 shows the guidelines for the Linux kernel parameter
values.

Table 21-4: Guidelines for the Linux kernel parameter values

Kernel
parameter

Guideline for value Example of
option settings

file*

NR_OPEN Specify at least MAX(1344,value of pd_max_open_fds, n). /etc/security/
limits.confnof
ile

NR_FILE Specify at least MAX{1600, 320 (h - g) + [a + (b c) + 320] g + 848
i + h 2 + 227 + k m}.

If the value determined from this formula exceeds the system maximum, use
the system maximum value.

/proc/sys/fs/
file-max

nproc Specify at least (value of pd_max_server_process + e, 512).
If the value required by another program running on the server machine is
greater than this value, use that value.

/etc/security/
limits.confnpr
oc

threads-m
ax

Specify at least MAX((value of pd_max_server_process + 20)
number of units that operate on the server machine, 576).

/proc/sys/
kernel/
threads-max

MSGMNI Specify the number of message queue identifiers required by all programs
that are run on the server machine. For details about the number of message
queue identifiers required by HiRDB, see 21.5 Estimating the sizes of
message queues and semaphores. Add the values obtained.

/proc/sys/
kernel/msgmni

SEMMNI Specify the number of semaphore identifiers required by all programs that
are run on the server machine. For details about the number of semaphore
identifiers required by HiRDB, see 21.5 Estimating the sizes of message
queues and semaphores. Add the values obtained. The recommended value
is 1024 or greater.

Parameter 4 in /
proc/sys/
kernel/sem

SEMMNS Specify the number of semaphores required by all programs that are run on
the server machine. For details about the number of semaphores required by
HiRDB, see 21.5 Estimating the sizes of message queues and semaphores.
Add the values obtained. The recommended value is 7200 or greater.

Parameter 2 in /
proc/sys/
kernel/sem

21. Specifying OS Parameters

949

* The file depends on the OS and kernel versions being used. See the applicable OS
documentation and set appropriate values, using the values provided in the table as
guidelines. With some OS versions, parameter settings may not be necessary. If a
kernel parameter is not supported by the OS being used, its setting is not needed.
a: Number of input data files used by the load creation utility or the number of unload
data files used by the database reorganization utility
b: Maximum number of index row partitions (subject to processing by the database
load utility or database reorganization utility)
c: Number of indexes (subject to processing by the database load utility or database
reorganization utility)
e: Maximum number of concurrently executable commands (including utilities)

SHMMAX Specify at least MAX(p + q, r, s, t), and at least 200000000.
If the global buffer dynamic update facility is used, consider the size of the
global buffers to be added; if there is a possibility that the size of the added
part will become greater than the specified value, specify the anticipated
size of the added part.
Specify in the HiRDB system definition's SHMMAX operand a value no
greater than the value for shmmax determined here.

/proc/sys/
kernel/shmmax

SHMMNI Specify a value of 2000 or greater.
If the global buffer dynamic update facility is used, add the following value.
Add 1 when the security audit facility is used.
• HiRDB/Single Server

Value of pd_max_add_dbbuff_shm_no
• HiRDB/Parallel Server

n
 Value of the pd_max_add_dbbuff_shm_no operand specified in

each server definition
i=1
n: Number of back-end servers in the server machine + number of
dictionary servers

/proc/sys/
kernel/shmmni

SHMSEG Specify a value of 240 or greater.
If the global buffer dynamic update facility is used, add the maximum value
of the pd_max_add_dbbuff_shm_no operand specified in each server
definition.
Also, add 1 when the security audit facility is used.

/proc/sys/
kernel/shmseg

SHMALL Specify the value obtained by adding the size of shared memory required for
other programs running on the same server machine to si, which is the size
of shared memory allocated by HiRDB on the server.

/proc/sys/
kernel/shmall

Kernel
parameter

Guideline for value Example of
option settings

file*

21. Specifying OS Parameters

950

g: One of the following values:
• HiRDB/Single Server: Value of pd_max_users operand + value of

pd_max_reflect_process_count operand
• HiRDB/Parallel Server: Total of the following values for all back-end and

dictionary servers in the unit:
Value of pd_max_bes_process operand + value of
pd_max_reflect_process_count operand
Value of pd_max_dic_process operand + value of
pd_max_reflect_process_count operand

h: Value of pd_max_server_process operand
i: Number of servers in the unit
k: Value of pd_max_users operand + value of pd_max_reflect_process_count
operand
m: One of the following values:

• HiRDB/Parallel Server, with front-end servers in the unit, and
pd_lck_release_detect=pipe: 2

• Other than the above: 0
n: If you specify the batch index creation mode or index information output mode as
the index creation mode with the database load utility, database reorganization utility,
or rebalancing utility, use the value obtained from the following formula:

MIN (576 + b c, maximum value of the pd_max_open_fds operand)
For details about the maximum value of the pd_max_open_fds operand, see the
manual HiRDB Version 8 System Definition.

p: Size of the shared memory used by the unit controller
q: Size of the shared memory used by the Single Server or each server
r: Value specified in the HiRDB system definition's SHMMAX operand
s: Estimated value for shared memory used by global buffers

For details about estimating the shared memory used by global buffers, see 16.1.5
Formula for size of shared memory used by global buffers for a HiRDB/Single
Server, and see 16.2.5 Formula for size of shared memory used by global buffers
for a HiRDB/Parallel Server.

si: Shared memory allocated by HiRDB at the corresponding server machine
• For a HiRDB/Single Server

Value obtained in 16.1.3 Formulas for shared memory used by a unit

21. Specifying OS Parameters

951

controller
+ value obtained in 16.1.4 Formulas for shared memory used by a single
server
+ value obtained in 16.1.5 Formula for size of shared memory used by global
buffers

• For a HiRDB/Parallel Server
Value obtained in 16.2.3 Formulas for shared memory used by a unit
controller
+ value obtained in 16.2.4 Formulas for shared memory used by each server
+ value obtained in 16.2.5 Formula for size of shared memory used by global
buffers

t: Estimated value for shared memory used by the security audit information buffer
For details about estimating the size of shared memory used by the security audit
information buffer, see 16.1.2 Calculation of required memory for a HiRDB/
Single Server, and see 16.2.2 Calculation of required memory for a HiRDB/
Parallel Server.

(1) Linux-specific specifications
With the Linux version, if the extended internet service daemon (referred to hereafter
as xinetd) is active, the values set in its settings file xinetd.conf may require
adjustment. Therefore, we recommend that you adjust parameters in the settings file.
1. For the settings for the shell service, set the first argument of the cps attribute

(number of connections that can be processed per second) to at least number of
BESs to be started at the machine times 10.

2. For the settings for the shell service, set the instances attribute (maximum
number of services that can be executed concurrently) to at least value set in 1
above times 2.

For details about xinetd and xinetd.conf, see the OS documentation.

21. Specifying OS Parameters

952

21.5 Estimating the sizes of message queues and semaphores

This section presents the formulas for determining the sizes of message queues and
semaphores required for one server machine.

(1) HiRDB/Single Server

a: 1 (single server) or 0 (utility special unit)
b: Value of pd_max_users operand + value of pd_max_reflect_process_count
operand.
c: Number of pdbuffer operands specified (number of global buffers)
d: Add when the system switchover facility is being used; determine the value from
the table below.
e: Add when the system switchover facility is being used; determine the value from the
following table:

f: 1 (if 1 or greater is specified in the pd_max_ard_process operand) or 0
g: 2 (if a value is specified in the pd_dfw_awt_process operand) or 0
h: Value of the pd_dfw_awt_process operand + 1 (if a value is specified in the
pd_dfw_awt_process operand) or 0

Type Formula

Number of message queue
identifiers

(7 + f) a + 25

Number of semaphore identifiers { { 2 (b + 3) + 12} 64 + c 64 + g + 5 } a + 2 + d

Number of semaphores(Total
number of semaphores per identifier)

{2 (b + 3) + c + h + 37} a + 3 + e

Condition Value
of d

Value
of e

pd_ha_acttype=monitor (or default) 0 0

pd_ha_acttype=
server

pd_ha_agent=standbyunit 1 7

pd_ha_agent
omitted

pd_ha_server_process_standby=Y
(or default)

1 2

pd_ha_server_process_standby=N 0 1

21. Specifying OS Parameters

953

(2) HiRDB/Parallel Server
For details about the variables used in the formulas, see (c) Variables used in the
formulas.

(a) When the standby-less system switchover (effects distributed) facility is
not used

(b) When the standby-less system switchover (effects distributed) facility is
used

(c) Variables used in the formulas
a: Number of front-end servers in the server machine
b: Number of dictionary servers and back-end servers in the server machine
c: 2 (front-end server) or 0 (other server)
d: 5 (dictionary server) or 0 (other server)

Type Formula

Number of message
queue identifiers

b
 Vi + 2 a + 3 b + c + d + e + 24

i = 1

Number of semaphore
identifiers

b
{ (Si + Ti + Ui) 64 + Wi} + 6 b + 2 + f

i = 1

Number of semaphores
(total number of
semaphores per
identifier)

b
(Si + Ti + Ui + Xi) + 26 b + 3 + g

i = 1

Type Formula

Number of message
queue identifiers

 b
 Vi + 2 a + 3 b + c + d + e + 24

i = 1

Number of semaphore
identifiers

 b
{ {Yi (j + k)} 64 + Wi} + 6 b + 2 + f

i = 1

Number of semaphores
(total number of
semaphores per
identifier)

 b
{Yi (j + k) + Xi} + 26 b + 3 + g

i = 1

21. Specifying OS Parameters

954

e: 5 (back-end server) or 0 (other server)
f: Add when the system switchover facility is being used; determine the value from the
table below.
g: Add when the system switchover facility is being used; determine the value from
the table below.

h: 6 + 2 (total number of front-end servers, dictionary servers, and back-end servers
in the server machine)
i: 1 + (total number of front-end servers, dictionary servers, and back-end servers in
the server machine)
j: Number of host BESs
k: Number of guest BESs
Si: Number of pdbuffer -r operands defined for RDAREAs placed in each server

Ti: Number of pdbuffer -i operands defined for RDAREAs placed in each server

Ui: Number of -o options specified in the pdbuffer operand

Vi: 1 (if 1 or greater is specified in the pd_max_ard_process operand) or 0

Wi: 2 (if a value is specified in the pd_dfw_awt_process operand) or 0

Xi: Value of the pd_dfw_awt_process operand + 1 (if a value is specified in the
pd_dfw_awt_process operand) or 0
Yi: Number of -c options specified in the pdbuffer operand

Condition Value
of f

Value
of g

pd_ha_acttype=monitor (or omitted) 0 0

pd_ha_acttype=se
rver

pd_ha_agent=standbyunit 1 h

pd_ha_agent
omitted

pd_ha_server_process_standby=Y
(or omitted)

1 i

pd_ha_server_process_standby=N 0 1

21. Specifying OS Parameters

955

21.6 Listen queue specified values

If HiRDB receives many connection requests simultaneously, the Listen queue used
by the HiRDB server may become insufficient to handle them, in which case the
KFPA11723-E message is displayed to the client-side applications to notify them of
the error. When this occurs, use an OS command to determine whether or not the
Listen queue is insufficient. You can determine that the Listen queue is insufficient if
the frequency of insufficient Listen queuing is greater than before the errors began and
the errors continue to increase. For details about making this determination, refer to the
OS documentation.

If you have determined that the Listen queue is insufficient, enlarge the Listen queue
on the HiRDB server machine. To enlarge the Listen queue, have it steadily increase
to the 200 level each. However, if the OS cannot enlarge the Listen queue, or if
increasing up to the specified maximum number of concurrent connections does not
stop the errors, take a measure such as increasing the HiRDB connection processing
power by increasing the processing power of the server machine (such as by adding
CPUs) or reduce the number of connection requests to HiRDB by reducing the
maximum number of concurrent connections.
Table 21-5 shows the parameters (for Linux, option settings file) that are to be changed
when the value for the Listen queue is changed. For details about the commands whose
parameters are to be changed and how to use them, see the applicable OS
documentation.

Table 21-5: Parameters for changing the value for the Listen queue

* The file depends on the OS and kernel versions being used. See the applicable OS
documentation and set appropriate values, using the values provided in the table as
guidelines. With some OS versions, parameter settings may not be necessary. If a
kernel parameter is not supported by the OS in use, its setting is not needed.

OS Parameter to be changed*

HP-UX /dev/tcp tcp_conn_request_max

Solaris /dev/tcp tcp_conn_req_max_q, /dev/tcp tcp_conn_req_max_q0

AIX 5L somaxconn

Linux /proc/sys/net/ ipv4.tcp_max_syn_backlog

957

Chapter

22. Simple Installation of a HiRDB/
Single Server

This chapter describes the procedures from HiRDB/Single Server installation, to
database construction, and to utilization of SQL to conduct a simple search. Note that
the information provided here is for HP-UX.
This chapter contains the following sections:

22.1 Overview of simple installation
22.2 Setting a HiRDB environment
22.3 Using the system generator to construct a HiRDB system
22.4 Registering a plug-in into HiRDB (to extend database facilities)
22.5 Defining a table and index
22.6 Storing SGML documents in the table
22.7 Making retrievals from the SGML documents

22. Simple Installation of a HiRDB/Single Server

958

22.1 Overview of simple installation

There are many items that must be taken into consideration when a HiRDB database
is designed in detail.
Before proceeding to detailed design of a database, this chapter enables the reader to
become familiar with simplified procedures for the tasks from HiRDB system
construction to data retrieval.
Note

In this chapter, the installation directory is assumed to be the HiRDB directory.
However, when HiRDB is actually operating, you should not use the HiRDB
directory as the installation directory.

22.1.1 What can be done with simple installation
Simple installation enables the following:
1. Construction of a simple HiRDB system.
2. Construction of a database (called a manual database) and use of the HiRDB Text

Search Plug-in that enables easy execution of a simple keyword search of SGML
document data. Sample files of SGML document data are provided during simple
installation for use with the HiRDB Text Search Plug-in.

22.1.2 Hardware environment for simple installation
A UNIX server machine on which HP-UX is operating is required.

22.1.3 Storage requirements for simple installation
Table 22-1 shows the storage requirements for simple installation.

Table 22-1: Storage requirements for simple installation

22.1.4 Sample files provided for simple installation
Sample files of SGML data and SGML definitions (the DTD file) are provided with
the HiRDB Text Search Plug-in as part of simple installation.
Table 22-2 lists the sample files provided for simple installation.

Item Area size

Size of shared memory 50 [MB]

Size of HiRDB directory 500 [MB]

22. Simple Installation of a HiRDB/Single Server

959

Table 22-2: Sample files provided for simple installation

22.1.5 HiRDB system configuration for simple installation
Figure 22-1 shows the HiRDB system configuration that is provided by simple
installation.

Sample file Contents

/opt/TSPlugin/_phsgml
/sample/MAN.DTD

SGML definition information file (DTD file)

/opt/TSPlugin/_phsgml
/sample/file01

SGML data for Chapter 21 of this manual

/opt/TSPlugin/_phsgml
/sample/file02

SGML data for Chapter 22 of this manual

22. Simple Installation of a HiRDB/Single Server

960

Figure 22-1: HiRDB system configuration provided by simple installation

Explanation
1. System files and RDAREAs are created in a file system area dedicated to

HiRDB (called the HiRDB file system area). System files and system
RDAREAs are omitted from Figure 22-1, because the user does not need to
know about them in simple installation. For an overview of system files, see
(1) as follows; for an overview of RDAREAs, see (2) as follows.

2. A table and index are defined in the RDAREAs created in step 1 above, and
then data is stored in them. For details about table and index definition, see
22.5 Defining a table and index.

The system files and RDAREAs that are important components of a HiRDB system
are explained briefly as follows.

22. Simple Installation of a HiRDB/Single Server

961

(1) System files
A file used by a HiRDB system to recover the system status in the event of an error is
called a system file. Table 22-3 lists the types of HiRDB system files.

Table 22-3: Types of HiRDB system files

(2) RDAREAs
The unit of storage for database information is called an RDAREA. One RDAREA may
consist of multiple HiRDB-dedicated files in a HiRDB file system area. Table 22-4
lists the principal types of RDAREAs.

Table 22-4: Principal types of RDAREAs

22.1.6 Simple installation procedure
To install a HiRDB single server, use the following simple installation procedure:
1. Setting a HiRDB environment

Setting up an environment on the OS prior to HiRDB system construction is
explained in 22.2 Setting a HiRDB environment.

2. Using the system generator to construct a HiRDB system
The procedure for using the system generator to construct a HiRDB system
interactively is explained in 22.3 Using the system generator to construct a
HiRDB system.

3. Extending database facilities by registering a plug-in into HiRDB
The procedure for setting up and registering the HiRDB Text Search Plug-in that
enables high-speed retrievals from SGML documents is explained in 22.4
Registering a plug-in into HiRDB (to extend database facilities). After

Type of file Role

System log file Stores historical information about database updating.

Synchronization point dump file Stores HiRDB management information. Can be used with system
log files during error recovery.

Status file Stores system status information needed in order to restart HiRDB.

RDAREA Role

System RDAREA Stores system information, such as dictionary tables.

User RDAREA Stores tables and indexes that are created by a user.

User LOB RDAREA Stores in units of KB, MB, or GB large amounts of table and index
data (as binary data) created by a user.

22. Simple Installation of a HiRDB/Single Server

962

performing step 2 previously, use the system generator to register this plug-in into
HiRDB.

4. Defining a table and index
Definition of a table for storing the SGML document data and creation of the
sample database, as well as definition of an index that is necessary for data
retrieval, are explained in 22.5 Defining a table and index.

5. Storing SGML documents in the table
Storing the SGML statements in the table defined in step 4 and creation of the
manual database are explained in 22.6 Storing SGML documents in the table.

6. Making retrievals from SGML documents
Using the registered plug-in to execute a simple data retrieval from SGML
documents is explained in 22.7 Making retrievals from the SGML documents.

22. Simple Installation of a HiRDB/Single Server

963

22.2 Setting a HiRDB environment

This section describes how to set up the environment on the OS. This must be
performed prior to HiRDB system construction.

22.2.1 Setting information (superuser's task)
To construct a HiRDB system, the superuser must do the following using the root
directory:
1. Customize OS parameters.
2. Set IP addresses.
3. Create a HiRDB administrator group.
4. Register the HiRDB administrator.

(1) Customizing OS parameters
To construct a HiRDB system, the superuser must customize OS parameters. To
customize the OS parameters:
1. Log in as the superuser.
2. Set the OS parameters to values that are greater than the recommended values

shown in Table 22-5. For HP-UX, use the HP-UX System Administration
Manager (SAM) to change parameter values. For details about using SAM and
about the OS parameters, see the appropriate HP-UXdocumentation.

For simple installation, you need to specify the values listed in Table 22-5. For details
about how to design databases, see 21. Specifying OS Parameters.

Table 22-5: Values of OS parameters

OS parameter Recommended value

maxuprc 512

maxusers 64

nfile 1600

nproc 576

shmmax 200 MB

shmmni 1000

shmseg 120

semume 128

22. Simple Installation of a HiRDB/Single Server

964

(2) Setting IP addresses
To access a HiRDB on a network, set the IP addresses and host names (such as hostA)
of all machines that will be used in the hosts file. This step is not required if these
settings have already been made or DNS is used.
For details about the hosts file settings, see the applicable OS documentation.

(3) Creating a HiRDB administrator group
To register the HiRDB administrator group into the OS, the superuser must add the
information listed in Table 22-6 to the /etc/group file in the server machine.
For details about the /etc/group file, see the applicable OS documentation.

Table 22-6: Information to be set in /etc/group file

(4) Registering the HiRDB administrator
To register information about the HiRDB administrator into the OS, the superuser must
set the information listed in Table 22-7 in the /etc/passwd file in the server machine.
For details about the /etc/passwd file, see the applicable OS documentation.

Table 22-7: Information to be set in /etc/passwd file

semmns 3600

semmnu 512

semmni 512

Information to be added Example

Group name hirdb

Encrypted password or its substitute *

Group ID 300

List of user names that belong to the group manager

Information to be registered Example

Log-in name manager

Password manager

User ID 110

Group ID for the user 300

OS parameter Recommended value

22. Simple Installation of a HiRDB/Single Server

965

22.2.2 Preparing for a HiRDB file system area
Executor: HiRDB administrator
The HiRDB administrator must prepare for creation of a HiRDB file system area that
will be used to store HiRDB-specific files.
For simple installation, the procedure that is explained is for creating a HiRDB file
system area as a regular file area.
If reliability is important during detailed design, the HiRDB administrator should
allocate the file system area as a character special file area.
To create a HiRDB file system area:
1. Initialize the hard disk on which the HiRDB file system area is to be created (if it

has not been initialized already).
2. Set partitions.
3. Initialize the partitions as a UNIX file system.
For details about how to initialize the hard disk and setting partitions, see the
applicable OS documentation.

22.2.3 Installing HiRDB, and the HiRDB Text Search Plug-in
This section provides an overview of the installation of HiRDB, and the HiRDB Text
Search Plug-in.

(1) Installing HiRDB
Executor: Superuser
The superuser creates /opt/HiRDB_S by installing the HiRDB. This is the HiRDB
directory that is used to operate HiRDB.

(2) Installing the HiRDB Text Search Plug-in
Executor: Superuser
The superuser uses the OS installer to install the HiRDB Text Search Plug-in; for
details about how to install the HiRDB Text Search Plug-in, see the documentation
provided with the software.

User's home directory /users/hirdb

Shell to be executed when user logs in /bin/sh
(for Bourne shell)

Information to be registered Example

22. Simple Installation of a HiRDB/Single Server

966

22.2.4 Specifying information in the OS (superuser's task)
This section describes how the superuser changes the HiRDB directory privileges and
registers the changes into the OS.

(1) Changing HiRDB directory privileges
Executor: Superuser
To make changes to HiRDB directory privileges, the superuser must use the following
procedure:
1. Enter the chown OS command, shown as follows, to change the directory owner

to the HiRDB administrator:
 chown manager /opt/HiRDB_S

2. Enter the chgrp OS command to change the directory group to the HiRDB group:
 chgrp hirdb /opt/HiRDB_S

3. Enter the chmod OS command to change the directory mode:
 chmod 0755 /opt/HiRDB_S

(2) Registering the HiRDB directory into the OS
Executor: Superuser
The superuser enters the following pdsetup HiRDB command to register the HiRDB
directory into the OS:

• /opt/HiRDB_S/bin/pdsetup /opt/HiRDB_S
The superuser enters the following pdopsetup HiRDB command to register the
HiRDB directory into the OS:

• /opt/HiRDB_S/bin/pdopsetup /opt/HiRDB_S
22.2.5 Setting the environment (HiRDB administrator's task)

Once the superuser has changed the HiRDB directory owner to the HiRDB
administrator and registered the directory into the OS, the HiRDB administrator can
set the environment.
This section describes how the HiRDB administrator sets OS environment variables
and creates HiRDB file system areas in order to construct the HiRDB system.

(1) Setting HiRDB environment variables
Executor: HiRDB administrator
The HiRDB administrator must set the environment variable file shown in (a) as
follows with the values shown in (b) as follows.

22. Simple Installation of a HiRDB/Single Server

967

(a) File to be used
The HiRDB administrator sets the environment variables in one of the following files,
depending on the type of shell used:

• Bourne shell: $HOME/.profile
• C shell: $HOME/.cshrc or $HOME/.login

(b) Information to be set
The HiRDB administrator uses an OS command to set the environment variables listed
in Table 22-8 in the appropriate file (as indicated previously).
For details about the command to be used, see the applicable OS documentation.

Table 22-8: Information to be set in environment variables

1 HiRDB client's environment variable.
2 If HiRDB server and client are installed on separate server machines, set the server
value at the destination. If the host name and port number are already set in the server
machine before HiRDB is used, set those values.

Variable Information to be set Description

PDDIR /opt/HiRDB_S Absolute path of the HiRDB directory

PDCONFPATH $PDDIR/conf Directory for storing HiRDB system
definitions

PATH $PDDIR/bin Directory for storing HiRDB commands
and utilities

$PDDIR/client/utl Directory for storing HiRDB client
libraries

$PDDIR/plugin/_phsgml/bin Directory for storing SGML plug-in
commands and utilities of the HiRDB
Text Search Plug-in

SHLIB_PATH $PDDIR/lib Directory for storing HiRDB programs,
etc.

PDHOST Example: hostA1, 2 Server machine's host name

PDUSER "manager"1 Schema owner

PDNAMEPORT Example: 200001, 2 Server machine's port number

22. Simple Installation of a HiRDB/Single Server

968

(2) Setting environment variables to use the interactive SQL execution utility
(HiRDB SQL Executor)

The interactive SQL execution utility (HiRDB SQL Executor) enables retrievals to be
made interactively from SGML documents in a UNIX environment.
For details about the environment variable settings for the interactive SQL execution
utility, see the documentation or document files provided with the corresponding
software.

22. Simple Installation of a HiRDB/Single Server

969

22.3 Using the system generator to construct a HiRDB system

The system generator is the facility that enables the user to construct interactively a
HiRDB system environment.
The system generator provides default values for the HiRDB system environment
information. This makes it possible to construct a HiRDB system quickly when a test
environment is being constructed because only applicable items need be set.
Note

The settings provided by the system generator are based on the system that is
constructed by simple installation. The only items that are explained here are
those that must be set by the user. However, these default values may not be
suitable for the actual application environment that results from a detailed design.

Figure 22-2 shows the system generator's screen display transitions.
Figure 22-2: System generator's screen display transitions

(1) Setting the HiRDB directory as the current directory
The OS's cd command is used to set the HiRDB directory as the current directory:

• cd /opt/HiRDB_S

22. Simple Installation of a HiRDB/Single Server

970

(2) Starting the system generator (pdgen)
HiRDB's pdgen command is used to start the system generator. The type specification
screen is displayed.

(3) Specifying the license selection
Specify your HiRDB license selection.

HiRDB/Single Server License selection menu screen

To specify the necessary information on the HiRDB/Single Server License selection
menu screen, use the following procedure:
1. On the HiRDB/Single Server License selection menu screen, at the last line,

Select 1/2 or q >, enter either 1 or 2 whatever corresponds to your license
selection and then press the ENTER key.
The Master menu is displayed.

(4) Setting main information for the HiRDB system
The Master menu is used to set main information for HiRDB system construction.

Master menu screen

22. Simple Installation of a HiRDB/Single Server

971

Following is the setup procedure on the Master menu screen:
(a) Specify the number of concurrently executable users

1. At Enter 1-12 or o-q > on the last line of the Master menu screen, enter 3.
3: Number of concurrently execute user: is displayed on the last line.

2. Enter 60, then press the Enter key (for simple installation, the number of
concurrently executable users is preset to 60).

(b) Specify the volume of database updating per day
1. At Enter 1-12 or o-q > on the last line of the Master menu screen, enter 5.

5: Database update size per day: is displayed on the last line.
2. Enter 10, then press the Enter key (for simple installation, the volume of database

updating per day is preset to 10 MB).
(c) Set the size of the HiRDB file system area for system files

This specification sets the size of the HiRDB file system area that is to be used to store
system files, such as files for HiRDB database log information.
To set the size of the HiRDB file system area for system files:
1. At Enter 1-12 or i-q > on the last line of the Master menu screen, enter 8.

22. Simple Installation of a HiRDB/Single Server

972

The message shown below is displayed.
2. At Enter file name with completely path > on the second line from the bottom

of the message, enter /opt/HiRDB_S/sysfiles, then press the Enter key.
3. At Enter HiRDB-file-system-area size [MB] > on the last line of the message,

enter the value displayed as xxxx in the message, The size of
HiRDB-file-system-area will more than xxxx [MB], then press the
Enter key.
A HiRDB file system area for system files of the specified size is registered, and
the cursor is placed on the line Enter 1-12 or o-q >.
Message (In this example, 150 is displayed)

(d) Specify the size of the HiRDB file system area for RDAREAs
This specification sets the size of the HiRDB file system area that is to be used for
system RDAREAs, user RDAREAs, and user LOB RDAREAs.
To set the size of the HiRDB file system area for RDAREAs:
1. At Enter 1-12 or i-q > on the last line of the Master menu screen, enter 12, then

press the Enter key.
The message shown below is displayed.

2. At Enter file name with completely path > on the second line from the bottom
of the message, enter /opt/test/HiRDB_S/rdfiles, then press the Enter
key.

3. At Enter HiRDB-file-system-area size [MB] > on the last line of the message,
enter the value equal to the value displayed as xxxx in the message, The size of
HiRDB-file-system-area will more than xxxx [MB], plus 81 for the
area to be used for user RDAREAs and user LOB RDAREAs, plus 5 for extra
space, then press the Enter key.
A HiRDB file system area for RDAREAs of the specified size is registered, and
the cursor is placed on the line Enter 1-12 or o-q >.

Enter file name and partition size for HiRDB-file-system-area.
This HiRDB-file-system-area will be used for HiRDB system files. (log and status
etc...)

-- Attention --
Please enter file name with complete path.
If specified file are already exist pdgen will delete the file and recreate.
The size of HiRDB-file-system-area will more than 150 [MB].
The HiRDB-file-system-area creates as UNIX file with specified size.

Enter file name with completely path > /opt/HiRDB_S/sysfiles
Enter HiRDB-file-system-area size [MB] >150

22. Simple Installation of a HiRDB/Single Server

973

Message (In the following example, the area size displayed is 77)

(5) Creating the HiRDB.
To create the HiRDB:
1. At Enter 1-12 or o-q > on the last line of the Master menu screen, enter g, then

press the Enter key.
The message lines shown as follows are displayed, the HiRDB system is created
automatically, and the message, Push enter key to main menu>, is
displayed on the last line.

2. Press the Enter key.
Creation of the HiRDB system is now complete, and the Master menu is
displayed.
Message (The following is only an example; the actual message that is displayed
depends on the values that have been set)

(6) Creating user RDAREAs and user LOB RDAREAs
Next, create a user RDAREA and user LOB RDAREAs for storing the SGML
documents and plug-in index.

Enter file name and partition size for HiRDB-file-system-area.
This HiRDB-file-system-area will be used for rdarea.

-- Attention --
Please enter file name with complete path.
If specified file are already exist pdgen will delete the file and recreate. The size
of HiRDB-file-system-area will more than 77 [MB].
The HiRDB-file-system-area creates as UNIX file with specified size.

Enter file name with completely path >/opt/HiRDB_S/rdfiles
Enter HiRDB-file-system-area size [MB] >163

Start HiRDB system generation
HiRDB starting
Initializing rdareas
KFPX24000-I DB initialize ended, return code=0
Rdarea initialize completed
A...A XX:XX:XX u001 _rdm KFPS05110-I HiRDB unit u001 initialization process complete
A...A XX:XX:XX u001 _rdm KFPS05210-I HiRDB system initialization process complete
Initializing rdareas for registry
KFPX24600-I Pdreginit command start at XX:XX:XX on YYYY/YY/YY
KFPX24225-I Processing of create rdarea statement ended, RDAREA name="REG_BASE"
KFPX24225-I Processing of create rdarea statement ended, RDAREA name="REG_KEY_VALUE"
KFPX24226-I Processing of create rdarea statements ended return code=0
KFPX24200-I DB modification ended, return code=0
KFPX24601-I Pdreginit command for ended return code=0 at XX:XX:XX on YYYY/YY/YY
Rdarea(for registry) initialize completed
Push enter key to main menu >

22. Simple Installation of a HiRDB/Single Server

974

This example creates one user RDAREA and two user LOB RDAREAs.
Create new rdarea menu screen

To create a user RDAREA and user LOB RDAREAs:
1. At Enter 1-12 or o-q > on the last line of the Master menu screen, enter r, then

press the Enter key.
The Create new rdarea menu screen is displayed.

2. To create an RDAREA, enter 1 at Enter 1-7 or o-q > on the last line of the Create
new rdarea menu.
1: Rdarea name: is displayed on the last line.

3. Enter USR1 corresponding to item 1 in Table 22-9, then press the Enter key.
4. In the same manner as in steps 2 and 3 above, at Enter 1-7 or a-q > enter the

values corresponding to items 2-7 in Table 22-9.
5. When values have been set for items 1-7, enter a at Enter 1-7 or a-q > to add two

more RDAREAs, then repeat steps 2-4.
6. When one user RDAREA and two user LOB RDAREAs have been added, enter

q at Enter 1-7 or a-q >.
The following message is displayed:

Rdarea are added. You have to restart HiRDB to use the area.
Restart now?(Y/N) >

7. Enter N, then press the Enter key.
Addition of user LOB RDAREAs is now complete, and the Master menu is
displayed again.

The values listed in Table 22-9 are applicable to construction of a HiRDB system by

22. Simple Installation of a HiRDB/Single Server

975

means of the simple installation procedure. When a database is designed in detail,
reference should be made to 17. Determining RDAREA Size for the appropriate size
estimates.

Table 22-9: Information to be set for RDAREAs

No. Information to be set User RDAREA
USR1

User LOB RDAREA

1 RDAREA name USR1 ULOB1 ULOB2

2 Size of RDAREA [MB] 1 40 40

3 Segment size for RDAREA
[pages]

10 1 1

4 Page size for RDAREA [KB] 4 8 8

5 Type of RDAREA Table Blob Blob

6 Size of global buffer to be
allocated to RDAREA

350 350 350

7 Absolute path name of HiRDB
file that is a component of
RDAREA

/opt/HiRDB_S/
rdfiles

/opt/HiRDB_S/
rdfiles

/opt/HiRDB_S/
rdfiles

22. Simple Installation of a HiRDB/Single Server

976

22.4 Registering a plug-in into HiRDB (to extend database facilities)

This section describes the procedure for registering a plug-in into HiRDB and then
registering the registry information that is used by the plug-in.

22.4.1 Using the system generator to register a plug-in into HiRDB
After using the system generator to construct the HiRDB system, as described in 22.3
Using the system generator to construct a HiRDB system, it is necessary to use the
system generator's Plug-in Setup menu to register the plug-in into HiRDB:

Plug-in Setup menu screen

Shown as follows is the procedure for setting up and registering into HiRDB the
HiRDB Text Search Plug-in.
In simple installation, the HiRDB Text Search Plug-in (consisting of an index-type
plug-in and a data-type plug-in) is registered into HiRDB.
1. At Enter 1-10 or o-q > on the last line of the Master menu screen, enter p, then

press the Enter key.
The Plug-in Setup menu shown previously is displayed in order to set up and
register the plug-in.

2. At Enter 1-4 or s-q > on the last line of the Plug-in Setup menu, enter 1, then
press the Enter key.
The following message is displayed:

 Select Plugin for Setup
 1: Text Search Plug-in
 2: Image Search Plug-in
 3: Spatial Search Plug-in
 o: Other Plugin
 Enter 1 or o >

3. At Enter 1 or o >, enter 1, then press the Enter key.

22. Simple Installation of a HiRDB/Single Server

977

On the screen, _phsgml,_phngram is displayed at item 1, and Assume by
pdgen is displayed at items 2-4.

4. At Enter 1-4 or s-q >, enter s, then press the Enter key.
Plug-in setup and registration are executed.

5. At Enter 1-4 or s-q >, enter q, then press the Enter key.
The following message is displayed:

Rdarea are added. You have to restart HiRDB to use the area.
Restart now?(Y/N) >

6. Enter Y, then press the Enter key.
HiRDB is restarted so that the HiRDB system environment becomes effective.

Once the plug-in has been registered, there is a change in the locations of the sample
files indicated in 22.1.4 Sample files provided for simple installation. Table 22-10
shows the locations of the sample files before and after plug-in registration.

Table 22-10: Locations of sample files before and after plug-in registration

22.4.2 Registering registry information required for the plug-in
Registry information must be registered in order to use the HiRDB Text Search Plugin
for searching the SGML documents. The registry information is provided as a sample
file (MAN.DTD).
RDAREAs for storing the registry information (registry RDAREAs and LOB
RDAREAs) have already been created using the system generator's default values.
The registry information registration procedure is described below.
Enter the following HiRDB Text Search Plug-in commands, then press the Enter key:
phsregsetupr
phssgmlreg DTD MAN.DTD /opt/HiRDB_S/plugin/_phsgml/sample/
MAN.DTD

The registry information is now registered.

Before plug-in registration After plug-in registration

/opt/TSPlugin/_phsgml/sample/MAN.DTD /opt/HiRDB_S/plugin/_phsgml/ sample/
MAN.DTD

/opt/TSPlugin/_phsgml/sample/file01 /opt/HiRDB_S/plugin/_phsgml/ sample/
file01

/opt/TSPlugin/_phsgml/sample/file02 /opt/HiRDB_S/plugin/_phsgml/ sample/
file02

22. Simple Installation of a HiRDB/Single Server

978

The construction of the HiRDB system is now complete.

22. Simple Installation of a HiRDB/Single Server

979

22.5 Defining a table and index

This section explains the definition of a table for storing the SGML documents in order
to create a database and the definition of the index that is needed for data retrieval.
Figure 22-3 shows the table that is defined in simple installation.

Figure 22-3: Table used in the examples

1. The table called manual consists of the column num for storing manual's chapter
numbers and the column doc for storing manual's SGML documents.

2. User RDAREA USR1 is assigned to the num column for chapter numbers.
3. User LOB RDAREA ULOB1 is assigned to the doc column for the SGML

documents.
4. An index named idx for making retrievals from manual's SGML documents is

defined and then user LOB RDAREA ULOB2 is assigned to it.
To define the table and index:
1. Enter HiRDB's pddef command.
2. Enter the information shown as follows. Use the Enter key for linefeeds.
3. When step 2 is completed, press Ctrl+D to terminate the pddef command. The

22. Simple Installation of a HiRDB/Single Server

980

table is defined and the pddef command is terminated.
CREATE TABLE manual(
 num CHAR(10) NOT NULL,
 doc SGMLTEXT
 ALLOCATE(SGMLTEXT IN(ULOB1))
 PLUGIN '<DTD>MAN.DTD</DTD>'
)IN (USR1);

CREATE INDEX idx
 USING TYPE NGRAM
 ON manual(doc)
 IN(ULOB2);

22. Simple Installation of a HiRDB/Single Server

981

22.6 Storing SGML documents in the table

This section explains how SGML document data is stored in the table defined in 22.5
Defining a table and index in order to create the database called manual. The SGML
document data is provided as sample files (file01 and file02).
Use the HiRDB database load utility (pdload) to store data in the table named
manual.
Figure 22-4 provides an overview of pdload.

Figure 22-4: Overview of pdload

To store SGML documents in the table:
1. Use an OS command, such as vi, to create a DAT-format input file under the name

/opt/HiRDB_S/plugin/_phsgml/sample/input_file; this file must

22. Simple Installation of a HiRDB/Single Server

982

contain the following information:
1,file01
2,file02

2. Use an OS command, such as vi, to create a column structure information file
under the name /opt/HiRDB_S/plugin/_phsgml/sample/column_file;
this file must contain the following information:
num
doc,func=(SGMLTEXT,param=blob)

3. Use an OS command, such as vi, to create a file (control information file) under
the name /opt/HiRDB_S/plugin/_phsgml/sample/control_file; this
file must contain the following information:
source /opt/HiRDB_S/plugin/_phsgml/sample/input_file
lobdata /opt/HiRDB_S/plugin/_phsgml/sample/

4. Use HiRDB's pdload command to load the SGML document data from /opt/
HiRDB_S/plugin/_phsgml/sample/file01 and /opt/HiRDB_S/
plugin/_phsgml/sample/file02 into the manual table. Enter the command
shown as follows (in simple installation, the data is stored in the table in the
no-log mode, which means that a log of database updates is not collected):
$PDDIR/bin/pdload -l n -c /opt/HiRDB_S/plugin/_phsgml/
sample/
column_file manual /opt/HiRDB_S/plugin/_phsgml/sample/
control_file

5. Press the Enter key.
The SGML document data has been stored in the table called manual.

22. Simple Installation of a HiRDB/Single Server

983

22.7 Making retrievals from the SGML documents

There are two ways to retrieve SGML document data from a manual database:
• Using the interactive SQL execution utility
• Creating a UAP

This section explains both methods.

22.7.1 Using the interactive SQL execution utility to retrieve from
manual's SGML documents

The interactive SQL execution utility can be used to retrieve SGML document data
from the manual database.
To retrieve SGML document data, use the following procedure:
1. Enter the pdsql command shown as follows to start the interactive SQL

execution utility:
$PDDIR/bin/pdsql -u "manager"

2. Press the Enter key.
A message is displayed requesting entry of a password.

3. Enter manager, then press the Enter key.
4. Execute the SELECT statement, which is a data manipulation SQL, to retrieve

SGML document data. Enter the following SQL statement, which checks the
section headings in manual to obtain the number of instances of the keyword
plug-in:
select count(*) from manual where
contains(doc,'MAN[*[H2{"plug-in"}]]') is true;

Retrieval result:
 COUNT(*)

 2
KFPX27010-I 1 rows selected

5. To terminate pdsql, enter EXIT.
The interactive SQL execution utility is terminated.

22.7.2 Creating a UAP to retrieve from manual's SGML documents
(1) Creating a UAP

This section describes creation of a UAP for the purpose of making retrievals from

22. Simple Installation of a HiRDB/Single Server

984

manual's SGML documents.
Shown as follows is the coding of a UAP that checks the section headings in the SGML
documents in order to obtain the number of instances of the keyword plug-in; a file
containing this coding is created under the name sample.ec:

(2) Executing preprocessing
This section describes the preprocessing.
The SQL-embedded UAP source file cannot be compiled directly. The SQL
preprocessor must be started in order to convert to a post source file.
Enter the following command, then press the Enter key:

pdcpp sample.ec

A post source file named sample.ec is created.
(3) Compiling and linking

The sample.ec file created during preprocessing is used to compile and link the UAP.
Enter the following command, and then press the Enter key:
cc -o sample -I /opt/HiRDB_S/include sample.ec /opt/HiRDB_S/
client/lib -lzclt

A file named sample.out is created.
(4) Executing the UAP

To execute the UAP, use the following procedure:

#include <stdio.h>
main()
{
 EXEC SQL BEGIN DECLARE SECTION;
 char xuserid[31];
 char xpasswd[31];
 int total;
 EXEC SQL END DECLARE SECTION;
 printf("userid ?\n");
 scanf("%30s",xuserid);
 printf("passwd ?\n");
 scanf("%30s",xpasswd);
 printf("connect start,\n");
 EXEC SQL CONNECT USER: xuserid USING: xpasswd;
 printf("connected,\n")
 EXEC SQL
 SELECT COUNT(*) INTO: total FROM manual
 WHERE contains(doc,'MAN[*[H2{"plug-in"}]]') IS TRUE;
 printf("total --->%2d\n",total);
 EXEC SQL DISCONNECT;
}

22. Simple Installation of a HiRDB/Single Server

985

1. Execute sample.out, which is the execute-form file obtained after compilation
and linkage.
A message is displayed requesting entry of a user ID.

2. Enter manager, then press the Enter key.
A message is displayed requesting re-entry of the password.

3. Enter manager, then press the Enter key.
Connection is established with the HiRDB system, the SQL is executed, and the
retrieval result is displayed.

Simple installation is now complete.

987

Chapter

23. Simple Installation of a HiRDB/
Parallel Server

This chapter describes the procedures from HiRDB/Parallel Server installation, to
database construction, and to utilization of SQL to conduct a simple search. Note that
the information provided here is for HP-UX.
This chapter contains the following sections:

23.1 Overview of simple installation
23.2 Setting a HiRDB environment
23.3 Using the system generator to construct a HiRDB system
23.4 Registering a plug-in into HiRDB (to extend database facilities)
23.5 Defining a table and index
23.6 Storing SGML documents in the table
23.7 Making retrievals from the SGML document

23. Simple Installation of a HiRDB/Parallel Server

988

23.1 Overview of simple installation

There are many items that must be taken into consideration when a HiRDB database
is designed in detail.
Before proceeding to detailed design of a database, this chapter enables the reader to
become familiar with simplified procedures for the tasks from HiRDB system
construction to data retrieval.
Note

In this chapter, the installation directory is assumed to be the HiRDB directory.
However, when HiRDB is actually operating, you should not use the HiRDB
directory as the installation directory.

23.1.1 What can be done with simple installation
Simple installation enables the following:
1. Construction of a simple HiRDB system.
2. Construction of a database (called a manual database) and use of the HiRDB Text

Search Plug-in that enables easy execution of a simple keyword search of SGML
document data. Sample files of SGML document data are provided during simple
installation for use with the HiRDB Text Search Plug-in.

23.1.2 Hardware environment for simple installation
A UNIX server machine on which HP-UX is operating is required.

23.1.3 Storage requirements for simple installation
Table 23-1 shows the storage requirements for simple installation.

Table 23-1: Storage requirements for simple installation

23.1.4 Sample files provided for simple installation
Sample files of SGML data and SGML definitions (the DTD file) are provided with
the HiRDB Text Search Plug-in as part of simple installation.
Table 23-2 lists the sample files provided for simple installation.

Item Area size

Size of shared memory 50 MB

Size of HiRDB directory 500 MB

23. Simple Installation of a HiRDB/Parallel Server

989

Table 23-2: Sample files provided for simple installation

23.1.5 HiRDB system configuration for simple installation
Figure 23-1 shows the HiRDB system configuration that is provided by simple
installation.

Sample file Contents

/opt/TSPlugin/_phsgml/sample/MAN.DTD SGML definition information file (the DTD file).

/opt/TSPlugin/_phsgml/sample/file01 SGML data for Chapter 21 of this manual.

/opt/TSPlugin/_phsgml/sample/file02 SGML data for Chapter 22 of this manual.

23. Simple Installation of a HiRDB/Parallel Server

990

Figure 23-1: HiRDB system configuration provided by simple installation

Explanation
1. In simple installation, only one server machine is used in order to simplify

HiRDB system construction. However, a HiRDB/Parallel Server usually
consists of multiple server machines for purposes of achieving parallel
processing that includes data retrieval processing.

23. Simple Installation of a HiRDB/Parallel Server

991

2. A HiRDB unit is created; for an overview of a HiRDB unit, see (1) as
follows.

3. The HiRDB server configuration is set up; for an overview of the server, see
(2) as follows.

4. System files and RDAREAs are created in a file system area dedicated to
HiRDB (HiRDB file system area). System files and system RDAREAs are
omitted from Figure 23-1, because the user does not need to know about
them in simple installation. For an overview of system files, see (3) as
follows; for an overview of RDAREAs, see (4) as follows.

5. A table and index are defined in the RDAREAs created in step 4 above, and
then data is stored in them. For details about table and index definition, see
23.5 Defining a table and index.

The unit, server, system files, and RDAREAs that are important components of a
HiRDB system are explained briefly as follows.

(1) Unit
The environment element in which HiRDB operates on one HiRDB server machine is
called the unit. When there are multiple server machines, there is one unit for each
server machine.

(2) Server
The HiRDB/Parallel Server achieves parallel processing by dividing the database
management system's facilities in units of servers.
Table 23-3 lists the types of HiRDB servers.

Table 23-3: Types of HiRDB servers

(3) System files
A file used by a HiRDB system to recover the system status in the event of an error is
called a system file. Table 23-4 lists the types of HiRDB system files.

Server Role

System manager Controls HiRDB startup and termination.

Front-end server Determines from the SQL database language the database access method and
sends execution instructions.

Back-end server Accesses database according to instructions sent from the front-end server.

Dictionary server Collectively manages database definition information.

23. Simple Installation of a HiRDB/Parallel Server

992

Table 23-4: Types of HiRDB system files

(4) RDAREAs
The unit of storage for database information is called an RDAREA. One RDAREA may
consist of multiple HiRDB-dedicated files in a HiRDB file system area. Table 23-5
lists the principal types of RDAREAs.

Table 23-5: Principal types of RDAREAs

23.1.6 Simple installation procedure
To install a HiRDB parallel server, use the following simple installation procedure:
1. Setting a HiRDB environment

Setting up an environment on the OS prior to HiRDB system construction is
explained in 23.2 Setting a HiRDB environment.

2. Using the system generator to construct a HiRDB system
The procedure for using the system generator to construct a HiRDB system
interactively is explained in 23.3 Using the system generator to construct a
HiRDB system.

3. Extending database facilities by registering a plug-in into HiRDB
The procedure for setting up and registering the HiRDB Text Search Plug-in that
enables high-speed retrievals from SGML documents is explained in 23.4
Registering a plug-in into HiRDB (to extend database facilities). After
performing step 2 previously, the system generator can be used to register this
plug-in into HiRDB.

4. Defining a table and index

Type of file Role

System log file Stores historical information about database updating.

Synchronization point dump file Stores HiRDB management information. Can be used together with system
log files during error recovery.

Status file Stores system status information needed in order to restart HiRDB.

RDAREA Role

System RDAREA Stores system information such as dictionary tables.

User RDAREA Stores tables and indexes that are created by the user.

User LOB RDAREA Stores in units of KB, MB, or GB large amounts of table and index data (as
binary data) created by a user.

23. Simple Installation of a HiRDB/Parallel Server

993

Definition of a table for storing the SGML document data and creation of the
sample database, as well as definition of an index that is necessary for data
retrieval, are explained in 23.5 Defining a table and index.

5. Storing SGML documents in the table
Storing the SGML statements in the table defined in step 4 and creation of the
manual database are explained in 23.6 Storing SGML documents in the table.

6. Making retrievals from the SGML documents
Using the registered plug-in to execute a simple data retrieval from the SGML
documents is explained in 23.7 Making retrievals from the SGML document.

23. Simple Installation of a HiRDB/Parallel Server

994

23.2 Setting a HiRDB environment

This section describes the environment setup on the OS that must be performed prior
to HiRDB system construction.

23.2.1 Setting information (superuser's task)
To construct a HiRDB system, the superuser must do the following using the root
directory:
1. Customize OS parameters.
2. Set IP addresses.
3. Create a HiRDB administrator group.
4. Register the HiRDB administrator.

(1) Customizing OS parameters
To construct a HiRDB system, the superuser must customize OS parameters.
To customize the OS parameters:
1. Log in as the superuser.
2. Set the OS parameters to values that are greater than the recommended values

shown in Table 23-6. For HP-UX, use the HP-UX System Administration
Manager (SAM) to change parameter values. For details about how to use SAM
and about the OS parameters, see the appropriate HP-UX documentation.

For simple installation, you need to specify the values listed in Table 23-6. For details
about how to design databases, see 21. Specifying OS Parameters.

Table 23-6: Values of OS parameters

OS parameter Recommended value

maxuprc 512

maxusers 64

nfile 1600

nproc 576

shmmax 200 MB

shmmni 1000

shmseg 120

23. Simple Installation of a HiRDB/Parallel Server

995

(2) Setting IP addresses
To access HiRDB on a network, the IP addresses and host names (such as hostA) of all
machines that will be used must be set in the hosts file. This step is not required if
these settings have already been made or DNS is used.
For details about the hosts file settings, see the applicable OS documentation.

(3) Creating a HiRDB administrator group
To register the HiRDB administrator group into the OS, the superuser must add the
information listed in Table 23-7 to the /etc/group file in the server machine.
For details about the /etc/group file, see the applicable OS documentation.

Table 23-7: Information to be set in the /etc/group file

(4) Registering the HiRDB administrator
The superuser must register information about the HiRDB administrator into the OS.
To do this, the information listed in Table 23-8 must be set in the /etc/passwd file
in the server machine.
For details about the /etc/passwd file, see the applicable OS documentation.

Table 23-8: Information to be set in the /etc/passwd file

semume 128

semmns 3600

semmnu 512

semmni 512

Information to be added Example

Group name hirdb

Encrypted password or its substitute *

Group ID 300

List of user names that belong to the group manager

Information to be registered Example

Log-in name manager

Password manager

OS parameter Recommended value

23. Simple Installation of a HiRDB/Parallel Server

996

23.2.2 Preparing for a HiRDB file system area
Executor: HiRDB administrator
The HiRDB administrator must prepare for creation of a HiRDB file system area that
will be used to store HiRDB-specific files.
For simple installation, the procedure that is explained is for creating a HiRDB file
system area as a regular file area.
If reliability is important during detailed design, the HiRDB administrator should
allocate the file system area as a character special file area.
To create a HiRDB file system area:
1. Initialize the hard disk on which the HiRDB file system area is to be created (if it

has not been initialized already).
2. Set partitions.
3. Initialize the partitions as a UNIX file system.
For details about how to initialize the hard disk and setting partitions, see the
applicable OS documentation.

23.2.3 Installing HiRDB, and the HiRDB Text Search Plug-in
This section provides an overview of the installation of HiRDB, and the HiRDB Text
Search Plug-in.

(1) Installing HiRDB
Executor: Superuser
The superuser installs HiRDB to create /opt/HiRDB_P.
This HiRDB directory is used to operate HiRDB.

(2) Installing HiRDB Text Search Plug-in
Executor: Superuser
The superuser uses the OS installer to install the HiRDB Text Search Plug-in; for
details about how to install the HiRDB Text Search Plug-in, see the documentation

User ID 110

Group ID for the user 300

User's home directory /users/hirdb

Shell to be executed when user logs in /bin/sh (for Bourne shell)

Information to be registered Example

23. Simple Installation of a HiRDB/Parallel Server

997

provided with the software.

23.2.4 Setting environment in OS (superuser's task)
This section describes how the superuser creates the HiRDB directory and registers it
into the OS.

(1) Changing HiRDB directory privileges
Executor: Superuser
To make changes to HiRDB directory privileges, the superuser must use the following
procedure:
1. Enter the chown OS command, shown as follows, to change the directory owner

to the HiRDB administrator:
chown manager /opt/HiRDB_P

2. Enter the chgrp OS command to change the directory group to the HiRDB group:
chgrp hirdb /opt/HiRDB_P

3. Enter the chmod OS command to change the directory mode:
chmod 0755 /opt/HiRDB_P

(2) Registering the directory into the OS
Executor: Superuser
The superuser enters the following pdsetup HiRDB command to register the HiRDB
directory into the OS:

• /opt/HiRDB_P/bin/pdsetup /opt/HiRDB_P
The superuser enters the following pdopsetup HiRDB command to register the
HiRDB directory into the OS:

• /opt/HiRDB_P/bin/pdopsetup /opt/HiRDB_P
23.2.5 Setting the environment (HiRDB administrator's task)

Once the superuser has changed the HiRDB directory owner to the HiRDB
administrator and has registered the directory into the OS, the HiRDB administrator
can set the environment.
This section describes how the HiRDB administrator sets OS environment variables
and creates HiRDB file system areas in order to construct the HiRDB system.

(1) Setting HiRDB environment variables
Executor: HiRDB administrator
The HiRDB administrator must set in the environment variable file shown in (a) as

23. Simple Installation of a HiRDB/Parallel Server

998

follows the values shown in (b) as follows.
(a) File to be used

The HiRDB administrator sets the environment variables in either of the following
files, depending on the type of shell used:

• Bourne shell: $HOME/.profile
• C shell: $HOME/.cshrc or $HOME/.login

(b) Information to be set
The HiRDB administrator uses an OS command to set the environment variables listed
in Table 23-9 in the appropriate file (as indicated above).
For details about the command to be used, see the applicable OS documentation.

Table 23-9: Information to be set for environment variables

1 HiRDB client's environment variable.
2 If the HiRDB server and client are installed on separate server machines, set the
server value at the destination. If the host name and port number are already set in the
server machine before HiRDB is used, set those values.

(2) Setting environment variables to use the interactive SQL execution utility
(HiRDB SQL Executor)

The interactive SQL execution utility (HiRDB SQL Executor) enables retrievals to be

Variable Information to be set Description

PDDIR /opt/HiRDB_P Absolute path of the HiRDB directory

PDCONFPATH $PDDIR/conf Directory for storing HiRDB system
definitions

PATH $PDDIR/bin Directory for storing HiRDB commands and
utilities

$PDDIR/client/utl Directory for storing HiRDB client libraries

$PDDIR/plugin/phsgml/bin Directory for storing SGML plug-in commands
and utilities of the HiRDB Text Search Plug-in

SHLIB_PATH $PDDIR/lib Directory for storing HiRDB programs, etc.

PDHOST Example: hostA1,2 Server machine's host name

PDUSER "manager"1 Schema owner

PDNAMEPORT Example: 200001,2 Server machine's port number

23. Simple Installation of a HiRDB/Parallel Server

999

made interactively from SGML documents in a UNIX environment.
For details about the environment variable settings for the interactive SQL execution
utility, see the documentation or document files provided with the corresponding
software.

23. Simple Installation of a HiRDB/Parallel Server

1000

23.3 Using the system generator to construct a HiRDB system

The system generator enables you to set up an HiRDB system environment
interactively. The system generator provides default values for the HiRDB system
environment information. This makes it possible to construct a HiRDB system quickly
when a test environment is being constructed because only applicable items need be
set.
Note

The settings provided by the system generator are based on the system that is
constructed by simple installation. The only items that are explained here are
those that must be set by the user. However, these default values may not be
suitable for the actual application environment that results from a detailed design.

Figure 23-2 shows the system generator's screen display transitions.

23. Simple Installation of a HiRDB/Parallel Server

1001

Figure 23-2: System generator's screen display transitions

(1) Setting the HiRDB directory as the current directory
Execute the OS's cd command to set the HiRDB directory as the current directory:

• cd /opt/HiRDB_P

23. Simple Installation of a HiRDB/Parallel Server

1002

(2) Starting the system generator
Execute HiRDB's pdgen command to start the system generator. The type
specification screen is displayed.

(3) Specifying the license selection
Specify your HiRDB license selection.

HiRDB/Parallel Server License selection menu screen

To specify necessary information on the HiRDB/Single Server License selection
menu screen:
1. On the HiRDB/Single Server License selection menu screen, at the last line,

Select 1/2 or q >, enter either 1 or 2 whatever corresponds to your license
mode and then press the ENTER key.
The Master menu is displayed.

(4) Setting main information for the HiRDB system
The Master menu is used to set main information for HiRDB system construction:

Master menu screen

23. Simple Installation of a HiRDB/Parallel Server

1003

Following is the setup procedure on the Master menu screen:
(a) Specify the number of concurrently executable users

1. At Enter 1-10 or o-q > on the last line of the Master menu screen, enter 3.
3 : Number of concurrently execute user : is displayed on the last
line.

2. Enter 60, then press the Enter key (for simple installation, the number of
concurrently executable users is preset to 60).

(b) Specify the volume of database updating per day
1. At Enter 1-10 or o-q > on the last line of the Master menu screen, enter 5.

5 : Database update size per day : is displayed on the last line.
2. Enter 10, then press the Enter key (for simple installation, the volume of database

updating per day is preset to 10 MB).
(c) Specify the server machine's host name

This specification sets the server machine's host name (host name of the server
machine where the dictionary server is located).
1. At Enter 1-10 or o-q > on the last line of the Master menu screen, enter 6.

23. Simple Installation of a HiRDB/Parallel Server

1004

6 : Host name of dictionary server : is displayed on the last line.
2. Enter the host name (such as hostA), then press the Enter key.

Enter 1-10 or o-q > is displayed on the last line.
3. Enter u in response to Enter 1-10 or o-q >, then press the Enter key.

The main information about HiRDB is registered, and the unit initialization
screen is displayed again.

(5) Creating a HiRDB unit
To create a HiRDB unit, the following information must be set on the unit initialization
screen:

HiRDB unit initialization screen (In the following Unit initialization screen
example, the host name is hostA)

To set up the unit initialization screen:
1. To set the host name of the HiRDB unit, enter 1 at Enter 1-5 or i-q > on the last

line of the HiRDB unit initialization screen.
1 : Host name: is displayed on the last line.

2. Enter the server machine's host name, then press the Enter key.
(a) Set the size of the HiRDB file system area for system files

This specification sets the size of the HiRDB file system area that is to be used to store
system files, such as files for HiRDB database log information.
To set the size of the HiRDB file system area for system files:
1. At Enter 1-5 or i-q > on the last line of the HiRDB unit initialization screen,

23. Simple Installation of a HiRDB/Parallel Server

1005

enter 2.
The message shown below is displayed.

2. At Enter file name with completely path > on the second line from the bottom
of the message, enter /opt/HiRDB_P/sysfiles, then press the Enter key.

3. At Enter HiRDB-file-system-area size [MB] > on the last line of the message,
enter the value displayed as xxxx in the message, The size of
HiRDB-file-system-area will more than xxxx [MB], then press the
Enter key.
A HiRDB file system area for system files of the specified size is registered, and
the unit initialization screen is displayed again.
Message (In this example, 150 is displayed)

(b) Specify the size of the HiRDB file system area for RDAREAs
This specification sets the size of the HiRDB file system area that is to be used for
system RDAREAs, user RDAREAs, and user LOB RDAREAs.
To set the size of the HiRDB file system area for RDAREAs:
1. At Enter 1-5 or i-q > on the last line of the HiRDB unit initialization screen,

enter 5, then press the Enter key.
The message shown below is displayed.

2. At Enter file name with completely path > on the second line from the bottom
of the message, enter /opt/test/HiRDB_P/rdfiles, then press the Enter
key.

3. At Enter HiRDB-file-system-area size [MB] > on the last line of the message,
enter the value equal to the value displayed as xxxx in the message, The size of
HiRDB-file-system-area will more than xxxx [MB], plus 162 for the
area to be used for user RDAREAs and user LOB RDAREAs, plus 10 for extra
space, then press the Enter key.
A HiRDB file system area for RDAREAs of the specified size is registered, and

Enter file name and partition size for HiRDB-file-system-area.
This HiRDB-file-system-area will be used for HiRDB system files. (log and status
etc...)

-- Attention --
Please enter file name with complete path.
If specified file are already exist pdgen will delete the file and recreate.
The size of HiRDB-file-system-area will more than 150 [MB].
The HiRDB-file-system-area creates as UNIX file with specified size.

Enter file name with completely path > /opt/HiRDB_P/sysfiles
Enter HiRDB-file-system-area size [MB] >150

23. Simple Installation of a HiRDB/Parallel Server

1006

the unit initialization screen is displayed again.
Message (In the following example, the area size displayed is 77)

(c) Create the HiRDB unit
To create the HiRDB unit:
1. At Enter 1-5 or i-q > on the last line of the HiRDB unit initialization screen,

enter i, then press the Enter key.
The HiRDB unit is created automatically, the message lines shown below are
displayed, and the message, Unit are initialized. enter return key
> is displayed on the last line.

2. Press the Enter key.
Automatic unit creation is now complete, and the HiRDB unit initialization
screen is displayed again.

3. At Enter 1-5 or i-q > on the last line of the HiRDB unit initialization screen,
enter q, then press the Enter key.
The creation of the HiRDB unit is now complete, and the Master menu is
displayed.
Message (The following is only an example; the actual message that is displayed
depends on the values that have been set)

Enter file name and partition size for HiRDB-file-system-area.
This HiRDB-file-system-area will be used for rdarea.

-- Attention --
Please enter file name with complete path.
If specified file are already exist pdgen will delete the file and recreate.
The size of HiRDB-file-system-area will more than 77 [MB].
The HiRDB-file-system-area creates as UNIX file with specified size.

Enter file name with completely path >/opt/test/HiRDB_P/rdfiles
Enter HiRDB-file-system-area size [MB] >249

23. Simple Installation of a HiRDB/Parallel Server

1007

(6) Creating the HiRDB
Create the HiRDB.
To create the HiRDB:
1. At Enter 1-10 or o-q > on the last line of the Master menu screen, enter g, then

press the Enter key.
The message lines shown below are displayed, the HiRDB system is created
automatically, and the message, Push enter key to main menu >, is
displayed on the last line. (This message is an example; the actual message that is
displayed depends on the values that have been set.)

2. Press the Enter key.
Creation of the HiRDB system is now complete, and the Master menu is
displayed.
Message (The following is only an example; the actual message that is displayed
depends on the values that have been set)

HiRDB unit initialization start. host name : hostA
Creating HiRDB definition files (/opt/HiRDB_P/conf)
Definition files are created
Creating HiRDB file system
HiRDB file system area for systemfiles creating (hostA:/opt/HiRDB_P /sysfiles 150[MB])
Unit status file for hostA creating
+ pdstsinit -u u001 -f /opt/HiRDB_P/sysfiles/u001st1a -c XX
 :
Server status file for f001 creating
+ pdstsinit -s f001 -f /opt/HiRDB_P/sysfiles/f001sv1a -c XX
 :
syncpoint dump file for f001 creating
+ pdloginit -d spd -s f001 -f /opt/HiRDB_P/sysfiles/f001cpd1 -n XX
 :
Log file for f001 creating
+ pdloginit -d sys -s f001 -f /opt/HiRDB_P/sysfiles/f001jn1a -n XXX
 :
 :
syncpoint dump file for dic creating
+ pdloginit -d spd -s dic -f /opt/HiRDB_P/sysfiles/diccpd1 -n XXX
 :
Log file for dic creating
+ pdloginit -d sys -s dic -f /opt/HiRDB_P/sysfiles/dicjn1a -n XXX
 :
HiRDB-file-system-area for system files created (/opt/HiRDB_P/sysfiles)
HiRDB file system area for Database creating (hostA:/opt/HiRDB_P/rdfiles 249[MB])
HiRDB-file-system-area for rdarea created (/opt/HiRDB_P/rdfiles)
HiRDB system files are initialized
Unit are initialized. enter return key >

23. Simple Installation of a HiRDB/Parallel Server

1008

(7) Creating user RDAREAs and user LOB RDAREAs
User RDAREAs and user LOB RDAREAs for storing the SGML documents and
plug-in index must be created next.
This example creates two user RDAREAs and four user LOB RDAREAs.

Create new rdarea menu screen

To create user RDAREAs and LOB RDAREAs:
1. At Enter 1-10 or o-q > on the last line of the Master menu screen, enter r, then

press the Enter key.
The Create new RDAREA menu is displayed, as shown in the above example.

2. To create an RDAREA, enter 1 at Enter 1-10 or o-q > on the last line of the
Create new RDAREA menu screen.
1 : Rdarea name: is displayed on the last line.

Start HiRDB system generation
HiRDB starting
Initializing rdareas
KFPX24000-I DB initialize ended, return code=0
Rdarea initialize completed
A...A XX:XX:XX u001 _rdm KFPS05110-I HiRDB unit u001 initialization process complete
A...A XX:XX:XX u001 _rdm KFPS05210-I HiRDB system initialization process complete
Initializing rdareas for registry
KFPX24600-I Pdreginit command start at XX:XX:XX on YYYY/YY/YY
KFPX24225-I Processing of create rdarea statement ended, RDAREA name="REG_BASE"
KFPX24225-I Processing of create rdarea statement ended, RDAREA name="REG_KEY_VALUE"
KFPX24226-I Processing of create rdarea statements ended return code=0
KFPX24200-I DB modification ended, return code=0
KFPX24601-I Pdreginit command for ended return code=0 at XX:XX:XX on YYYY/YY/YY
Rdarea(for registry) initialize completed
Push enter key to main menu >

23. Simple Installation of a HiRDB/Parallel Server

1009

3. Enter USR1 corresponding to item 1 in Table 23-10, then press the Enter key.
4. In the same manner as in steps 2-3 above, enter at Enter 1-8 or a-q > the values

corresponding to items 2-8 in Table 23-10.
5. When values have been set for items 1-8, enter a at Enter 1-8 or a-q > in order

to add five more RDAREAs, then repeat steps 2-4.
6. When two user RDAREAs and four user LOB RDAREAs have been added, enter

q at Enter 1-8 or a-q >.
The following message is displayed:
Rdarea are added. You have to restart HiRDB to use the area.
Restart now?(Y/N) >

7. Enter N, then press the Enter key.
Addition of user LOB RDAREAs is now complete, and the Master menu is
displayed again.

The values listed in Table 23-10 are applicable to construction of a HiRDB system by
means of the simple installation procedure. When a database is designed in detail,
reference should be made to 17. Determining RDAREA Size for the appropriate size
estimates.

Table 23-10: Information to be set for RDAREAs

No. Information to
be set

User RDAREAs User LOB RDAREAs

1 RDAREA name USR1 USR2 ULOB1 ULOB2 ULOB3 ULOB4

2 Size of RDAREA
[MB]

1 1 40 40 40 40

3 Segment size for
RDAREA [pages]

10 10 1 1 1 1

4 Page size for
RDAREA [KB]

4 4 8 8 8 8

5 Type of RDAREA Table Table Blob Blob Blob Blob

6 Size of global
buffer to be
allocated to
RDAREA

350 350 350 350 350 350

7 Absolute path name
of HiRDB file that
is a component of
RDAREA

/opt/
HiRDB_P/
rdfiles

/opt/
HiRDB_P
/rdfiles

/opt/
HiRDB_P
/rdfiles

/opt/
HiRDB_P
/rdfiles

/opt/
HiRDB_P
/rdfiles

/opt/
HiRDB_P
/rdfiles

23. Simple Installation of a HiRDB/Parallel Server

1010

8 Name of back-end
server to which
RDAREA is
allocated

b001 b002 b001 b002 b001 b002

No. Information to
be set

User RDAREAs User LOB RDAREAs

23. Simple Installation of a HiRDB/Parallel Server

1011

23.4 Registering a plug-in into HiRDB (to extend database facilities)

This section describes the procedure for registering a plug-in into HiRDB and then
registering the registry information that is used by the plug-in.

23.4.1 Using the system generator to register a plug-in into HiRDB
After using the system generator to construct the HiRDB system, as described in 23.3
Using the system generator to construct a HiRDB system, it is necessary to use the
system generator's Plug-in Setup menu to register the plug-in into HiRDB:

Plug-in Setup menu screen

To set up and register the HiRDB Text Search Plug-in into HiRDB, use the following
procedure:
In simple installation, the HiRDB Text Search Plug-in (consisting of an index-type
plug-in and a data-type plug-in) is registered into HiRDB.
1. At Enter 1-10 or o-q > on the last line of the Master menu screen, enter p, then

press the Enter key.
The Plug-in Setup menu shown previously is displayed in order to set up and
register the plug-in.

2. At Enter 1-4 or s-q > on the last line of the Plug-in Setup menu, enter 1, then
press the Enter key.
The following message is displayed:
 Select Plugin for Setup
 1: Text Search Plug-in
 2: Image Search Plug-in
 3: Spatial Search Plug-in
 o: Other Plugin
 Enter 1 or o >

23. Simple Installation of a HiRDB/Parallel Server

1012

3. At Enter 1 or 0 >, enter 1, then press the Enter key.
On the screen, _phsgml,_phngram is displayed at item 1, and Assume by
pdgen is displayed at items 2-4.

4. At Enter 1-4 or s-q >, enter s, then press the Enter key.
Plug-in setup and registration are executed.

5. At Enter 1-4 or s-q >, enter q, then press the Enter key.
The following message is displayed:
Rdarea are added. You have to restart HiRDB to use the area.
Restart now?(Y/N) >

6. Enter Y, then press the Enter key.
HiRDB is restarted so that the HiRDB system environment becomes effective.

Once the plug-in has been registered, there is a change in the locations of the sample
files indicated in 23.1.4 Sample files provided for simple installation. Table 23-11
shows the locations of the sample files before and after plug-in registration.

Table 23-11: Locations of sample files before and after plug-in registration

23.4.2 Registering registry information required for the plug-in
Registry information must be registered in order to use the HiRDB Text Search Plugin
for searching the SGML documents. The registry information is provided as a sample
file (MAN.DTD).
RDAREAs for storing the registry information (registry RDAREA and LOB
RDAREAs) have already been created using the system generator's default values.
The registry information registration procedure is described as follows.
Enter the following HiRDB Text Search Plug-in commands, then press the Enter key:
phsregsetup
phssgmlreg DTD MAN.DTD /opt/HiRDB_P/plugin/_phsgml/sample/
MAN.DTD

The registry information is now registered.
The construction of the HiRDB system is now complete.

Before plug-in registration After plug-in registration

/opt/TSPlugin/_phsgml/sample/MAN.DTD /opt/HiRDB_P/plugin/_phsgml/sample/MAN.DTD

/opt/TSPlugin/_phsgml/sample/file01 /opt/HiRDB_P/plugin/_phsgml/sample/file01

/opt/TSPlugin/_phsgml/sample/file02 /opt/HiRDB_P/plugin/_phsgml/sample/file02

23. Simple Installation of a HiRDB/Parallel Server

1013

23.5 Defining a table and index

This section explains the definition of a table for storing the SGML documents in order
to create a database and the definition of the index that is needed for data retrieval.
Figure 23-3 shows the table that is defined in simple installation.

Figure 23-3: Table used in the examples

1. The table called manual consists of the column num for storing manual's chapter
numbers and the column doc for storing manual's SGML documents.

2. User RDAREAs USR1 and USR2 are assigned to the num column for chapter
numbers.

3. User LOB RDAREAs ULOB1 and ULOB2 are assigned to the doc column for the
SGML documents.

4. An index named idx for making retrievals from manual's SGML documents is
defined and then user LOB RDAREAs ULOB3 and ULOB4 are assigned to it.

To define the table and index, use the following procedure:
1. Enter HiRDB's pddef command.
2. Enter the information shown as follows. Use the Enter key for linefeeds.

23. Simple Installation of a HiRDB/Parallel Server

1014

3. When step 2 is completed, press [Ctrl] + [D] to terminate the pddef command.
The table is defined and the pddef command is terminated.

CREATE TABLE manual(
 num CHAR(10) NOT NULL,
 doc SGMLTEXT
 ALLOCATE(SGMLTEXT IN((ULOB1),(ULOB2)))
 PLUGIN '<DTD>MAN.DTD</DTD>'
)IN((USR1) <= '1',
 (USR2));

CREATE INDEX idx
 USING TYPE NGRAM
 ON manual(doc)
 IN((ULOB3),(ULOB4));

23. Simple Installation of a HiRDB/Parallel Server

1015

23.6 Storing SGML documents in the table

This section explains how SGML document data is stored in the table defined in 23.5
Defining a table and index in order to create the database called manual.
The HiRDB database load utility (pdload) is used to store data in the table named
manual.
Figure 23-4 provides an overview of pdload.

Figure 23-4: Overview of pdload

To store SGML documents in the table:
1. Use an OS command, such as vi, to create a DAT-format input file under the

name /opt/HiRDB_P/plugin/_phsgml/sample/input_file; this file
must contain the following information:

23. Simple Installation of a HiRDB/Parallel Server

1016

1,file01
2,file02

2. Use an OS command, such as vi, to create a file (column structure information
file) under the name /opt/HiRDB_P/plugin/_phsgml/sample/
column_file; this file must contain the following information:
num
doc,func=(SGMLTEXT,param=blob)

3. Use an OS command, such as vi, to create a file (control information file) under
the name /opt/HiRDB_P/plugin/_phsgml/sample/control_file; this
file must contain the following information:
source f001:/opt/HiRDB_P/plugin/_phsgml/sample/input_file
lobdata /opt/HiRDB_P/plugin/_phsgml/sample/

4. Use HiRDB's pdload command to load the SGML document data from /opt/
HiRDB_P/plugin/_phsgml/sample/file01 and /opt/HiRDB_P/
plugin/_phsgml/sample/file02 into the manual table. Enter the command
shown as follows (in simple installation, the data is stored in the table in the
no-log mode, which means that a log of database updates is not collected):
$PDDIR/bin/pdload -l n -c /opt/HiRDB_P/plugin/_phsgml/sample
/column_file manual /opt/HiRDB_P/plugin/_phsgml/sample/
control_file

5. Press the Enter key.
The SGML document data has been stored in the table called manual.

23. Simple Installation of a HiRDB/Parallel Server

1017

23.7 Making retrievals from the SGML document

There are two ways to retrieve SGML document data from the manual database:
• Using the interactive SQL execution utility.
• Creating a UAP.

This section explains both methods.

23.7.1 Using the interactive SQL execution utility to retrieve from
manual's SGML documents

The interactive SQL execution utility can be used to retrieve SGML document data
from the manual database.
To retrieve SGML document data, use the following procedure:
1. Enter the pdsql command shown as follows to start the interactive SQL

execution utility:
$PDDIR/bin/pdsql -u "manager"

2. Press the Enter key.
A message is displayed requesting entry of a password.

3. Enter manager, then press the Enter key.
4. The SELECT statement, which is a data manipulation SQL, is used to retrieve

SGML document data. Enter the following SQL statement, which checks the
section headings in manual to obtain the number of instances of the keyword
plug-in:
select count(*) from manual where
contains(doc,'MAN[*[H2{"plug-in"}]]') is true;

Retrieval result:
 COUNT(*)

 2
KFPX27010-I 1 rows selected

5. To terminate pdsql, enter EXIT.
The interactive SQL execution utility is terminated.

23.7.2 Creating a UAP to retrieve from manual's SGML documents
(1) Creating a UAP

This section describes creation of a UAP for the purpose of making retrievals from

23. Simple Installation of a HiRDB/Parallel Server

1018

manual's SGML documents.
Shown as follows is the coding of a UAP that checks the section headings in the SGML
documents in order to obtain the number of instances of the keyword plug-in; a file
containing this coding is created under the name sample.ec:

(2) Executing pre-processing
This section describes the preprocessing.
The SQL-embedded UAP source file cannot be compiled directly. The SQL
preprocessor must be started in order to convert to a post source file.
Enter the following command, then press the Enter key:

pdcpp sample.ec

A post source file named sample.ec is created.
(3) Compiling and linking

The sample.ec file created during preprocessing is used to compile and link the UAP.
Enter the following command, then press the Enter key:
cc -o sample -I /opt/HiRDB_P/include sample.c -L /opt/HiRDB_P/
client/lib -lzclt

A file named sample.out is created.
(4) Executing the UAP

To execute UAP:

#include <stdio.h>
main()
{
 EXEC SQL BEGIN DECLARE SECTION;
 char xuserid[31];
 char xpasswd[31];
 int total;
 EXEC SQL END DECLARE SECTION;
 printf("userid ?\n");
 scanf("%30s",xuserid);
 printf("passwd ?\n");
 scanf("%30s",xpasswd);
 printf("connect start,\n");
 EXEC SQL CONNECT USER: xuserid USING: xpasswd;
 printf("connected,\n")
 EXEC SQL
 SELECT COUNT(*) INTO: total
 FROM manual WHERE contains(doc,'MAN[*[H2{"plug-in"}]]') IS TRUE;
 printf("total --->%2d\n",total);
 EXEC SQL DISCONNECT;
}

23. Simple Installation of a HiRDB/Parallel Server

1019

1. Execute sample.out, which is the execute-form file obtained after compilation
and linkage.
A message is displayed requesting entry of a user ID.

2. Enter manager, then press the Enter key.
A message is displayed requesting entry of a password.

3. Enter manager, then press the Enter key.
Connection is established with the HiRDB system, the SQL is executed, and the
retrieval result is displayed.

Simple installation is now complete.

1021

Chapter

24. Sample Files

This chapter describes the sample files provided by HiRDB (sample database,
configuration, and UOC).
This chapter contains the following sections:

24.1 Overview of sample files
24.2 System configuration and table definition information
24.3 Use of the sample files

24. Sample Files

1022

24.1 Overview of sample files

HiRDB provides the following sample files:
• Sample database
• Sample configuration
• Sample UOC

Figure 24-1 shows the directory structure of the sample files. All the directories
following sample are located under the installation directory. Executing the pdsetup
command does not copy them to the HiRDB directory.

Figure 24-1: Directory structure of sample files

Note
The following are the installation directories:

HiRDB/Single Server HiRDB/Parallel Server

/HiRDB_S/sample/sampleconf /HiRDB_P/sample/sampleconf

/opt/HiRDB_S/sample/sampleconf /opt/HiRDB_P/sample/sampleconf

24. Sample Files

1023

24.1.1 Names of sample files
This section describes the names of the following sample files:

• Sample database
• Sample configuration
• Sample UOC

(1) Name of sample database file
Table 24-1 lists and explains the directories and files used with the sample database.
The sample files are provided in a Japanese version (containing single-byte Kana
characters) and an English version. Unless Shift JIS is being used as the character
encoding set, the English version of the sample files should be used.

Table 24-1: Directories and files used with sample database

Legend:
: Not applicable

1 The file name of the English version is tblecreate_e.
2 The file name of the English version is loadinf_e.

(2) Names of sample configuration files
Table 24-2 lists the contents of the sample configuration.
This sample configuration uses values based on the minimum configuration in order
to simplify the relationships among parameters; these are not the optimum values.

Name of directory or file Contents Remarks

tblecreate1 Table definition statements (including schema
definitions)

pddef input format

loadinf 2 Control statements for pdload Shell

loaddata Input data for data loading Directory

CONTROL_FILE Control statements for data loading

24. Sample Files

1024

Table 24-2: Contents of sample configuration

Legend:
: Not applicable

* Can be generated by executing the control statement creation shell for the database
initialization utility (mkinit).

Classification Contents File name

HiRDB/Single
Server

HiRDB/Parallel
Server

System definitions System common definition pdsys pdsys

Unit control information definition pdutsys pdutsys1,
pdutsys2

Server common definition pdsvrc

Single server definition sds01

Front-end server definition fes1

Back-end server definition bes1, bes2

Dictionary server definition dic1

Allocation/
initialization of
HiRDB file system
areas

Shell for allocating RDAREAs fmkfile fmkfile

Shell for allocating system log,
synchronization point dump, and status
files

sysfmkfs sysfmkfs1,
sysfmkfs2

Shell for initializing system log,
synchronization point dump, and status
files

sysfinit sysfint

Log unloading Shell for unloading system log files logunld feslogunld,
bes1logunld,
bes2logunld,
diclogunld

Database
initialization utility

Shell for creating control statements mkinit mkinit

Database initialization utility control
statements

rdinit01* rdinit01*

Execution of
operation commands
under aliases

Sample of shell script for
executing operation
commands under aliases

Bourne shell aliascmdbsh aliascmdbsh

C shell aliascmdcsh aliascmdcsh

24. Sample Files

1025

(3) Sample UOC files
The UOC shown below is provided. Table 24-3 shows the contents of the sample UOC.

• Database load utility (pdload) file input example
• Database reconfiguration utility (pdrorg) file output example

For details about UOCs, see the manual HiRDB Version 8 Command Reference.
Table 24-3: Contents of sample UOC

File name Contents

sample1.c Example of UOC for entering DAT-format input files by the database load utility

sample2.c Example of UOC for entering binary-format input files

sample4.c Functions used by sample2.c

sampleA.c Example of UOC that prevents output of unneeded data to an unload file

sampleB.c Example of UOC that outputs a UOC data file

24. Sample Files

1026

24.2 System configuration and table definition information

(1) System configuration
Figure 24-2 shows the relationships between host and server for the HiRDB/Single
Server, and Figure 24-3 shows the relationships among hosts and servers for the
HiRDB/Parallel Server.

Figure 24-2: Configuration for HiRDB/Single Server

24. Sample Files

1027

Figure 24-3: Configuration for HiRDB/Parallel Server

(2) Table definition information
There is a Japanese version (containing single-byte Kana characters) and an English
version of the sample files for table definitions and data loading. Unless Shift JIS is
being used as the character encoding set, the English version should be used.
Table 24-4 lists the tables that are to be defined, Table 24-5 shows the English version
of the column attributes and indexes.
All the tables presented here have the FIX attribute.

Table 24-4: Contents of tables to be defined

Table name Contents Number of rows

CUSTOM Customer master 1001

GOODS Product master 1001

VENDOR Vendor master 501

24. Sample Files

1028

Legend:
: Not applicable

1 Data loading is not applicable in the English version.
2 Data loading is not applicable in either the Japanese or the English version.

Table 24-5: Column attributes and indexes (English version)

TAKEODR Orders received 2

STOCK Stock 100

WAREHUS Warehousing 2

SHIPMNT Shipments 2

SENDODR Orders placed 2

LAYIN Purchasing 2

Table name Column name Column attribute Index name

CUSTOM CUSTOM_CD CHAR(5) UNIQUE CLUSTER
KEY CUSTOMX

CUSTOM_NAME CHAR(30)

TELNO CHAR(12)

ZIPCD CHAR(3)

ADDRESS CHAR(30)

GOODS PRODUCT_CD CHAR(6) UNIQUE CLUSTER
KEY GOODSX

PRODUCT_NAME CHAR(30)

PRICE DECIMAL(7,0)

VENDOR_CD CHAR(5)

VENDOR VENDOR_CD CHAR(5) UNIQUE CLUSTER
KEY VENDORX

VENDOR_NAME CHAR(30)

TELNO CHAR(12)

ZIPCD CHAR(3)

ADDRESS CHAR(30)

Table name Contents Number of rows

24. Sample Files

1029

TAKEODR ORDER_ACCEPTED_CD CHAR(7) CLUSTER KEY

CUSTOM_CD CHAR(5)

PRODUCT_CD CHAR(6)

QUANTITY DECIMAL(7,0)

RESERVED_QUANTITY DECIMAL(7,0)

SURPLUS DECIMAL(7,0)

ORDER_ACCEPTED_DATE CHAR(6)

DELIVERY_DATE CHAR(6)

STOCK PRODUCT_CD CHAR(6)

STOCK DECIMAL(7,0)

RESERVED_QUANTITY DECIMAL(7,0)

ORDER DECIMAL(7,0)

VENDOR_CD CHAR(5)

WAREHUS PRODUCT_CD CHAR(6)

WAREHOUSE DECIMAL(7,0)

LAY_IN_NO INTEGER

WAREHOUSE_DATE CHAR(6)

SHIPMNT PRODUCT_CD CHAR(6)

SHIPMENT DECIMAL(7,0)

ORDER_ACCEPTED_CD CHAR(7)

ORDER_ACCEPTED_DATE CHAR(6)

SENDODR ORDER_NO INTEGER CLUSTER KEY
SENDODRX

VENDOR_CD CHAR(5)

PRODUCT_CD CHAR(6)

ORDER_QUANTITY DECIMAL(7,0)

ORDER_DATE CHAR(6)

DELIVERY_DATE CHAR(6)

Table name Column name Column attribute Index name

24. Sample Files

1030

Notes
The name of the table storage RDAREA is RDDATA10.
The name of the index storage RDAREA is RDINDX10.

LAYIN LAY_IN_NO INTEGER CLUSTER KEY
LAYINX

VENDOR_CD CHAR(5)

PRODUCT_CD CHAR(6)

LAY_IN_QUANTITY DECIMAL(7,0)

LAY_IN_DATE CHAR(6)

Table name Column name Column attribute Index name

24. Sample Files

1031

24.3 Use of the sample files

24.3.1 Creating the configuration files
Table 24-6 lists and explains the configuration files that are to be created for the
HiRDB/Single Server; Table 24-7 lists and explains the configuration files that are to
be created for the HiRDB/Parallel Server.
To use these files, they must be copied under $PDDIR/conf, then appropriate changes
must be made to them according to the notes provided in Table 23-6 or 23-7.
Specify the HiRDB directory path in the PDDIR environment variable.

• HiRDB/Single Server: /opt/HiRDB_S
• HiRDB/Parallel Server: /opt/HiRDB_P

Table 24-6: Files to be created for HiRDB/Single Server

Table 24-7: Files to be created for HiRDB/Parallel Server

File name Contents Notes

pdsys System common definition • Port number is set to 22200. Change it as
appropriate for the execution environment.

• Host name is set to host1. Change it as
appropriate for the execution environment.

pdutsys Unit control information definition None

sds01 Single server definition

sysfmkfs Command for creating HiRDB file
system areas for system files

sysfint Command for initializing system
files

logunld Command for unloading system log
files

• An unload log file storage directory (/
HiRDB_S/unloadlog) must have been
created beforehand.

• To change the unload load file storage
directory, specify -o in pdlogunld.

File name Contents Notes

pdsys System common definition • Port number is set to 22200. Change it as
appropriate for the execution environment.

• Host names are set to host1 and host2. Change
them as appropriate for the execution
environment.

24. Sample Files

1032

(1) Allocating and initializing HiRDB file system areas
(a) Creating a HiRDB file system area for the database

The following instruction must be executed to create the HiRDB file system areas:
HiRDB/Single Server

Execute the following shell script:

pdutsys1 Unit control information definition
for unt1 of host1

After copying it to host1's environment, change the
file name to pdutsys.

pdutsys2 Unit control information definition
for unt2 of host2

After copying it to host2's environment, change the
file name to pdutsys.

pdsvrc Server common definition None

fes1 Definition for front-end server fes1

bes1 Definition for back-end server bes1

bes2 Definition for back-end server bes2

dic1 Definition for dictionary server dic1

sysfmkfs1 Command for creating HiRDB file
system areas for system files to be
used by unt1 of host1

Input from host1.

sysfmkfs2 Command for creating HiRDB file
system areas for system files to be
used by unt2 of host2

Input from host2.

sysfint Command for initializing system files
to be used by host1 and host2

• Input from host1.
• Host names are host1 and host2. Change them

as appropriate for the execution environment.

Feslogunld Command for unloading system log
files for pdfes

• Unload log file storage directory /HiRDB_P/
unloadlog must have been created beforehand
for each host.

• To change the unload load file storage directory,
specify -o in pdlogunld.

bes1logunld Command for unloading system log
files for pdbes1

bes2logunld Command for unloading system log
files for pdbes2

dic1logunld Command for unloading system log
files for pddic

$PDDIR/sample/sampleconf/fmkfile

File name Contents Notes

24. Sample Files

1033

Note
Be sure to set the PDDIR environment variable.

HiRDB/Parallel Server
Execute the following shell script at each host (host1 and host2):

Note
Be sure to set the PDDIR environment variable.

(b) Allocating files such as system log files
The following instruction must be executed to allocate files such as system log files:
HiRDB/Single Server

Execute the following shell script:

Note
Be sure to set the PDDIR environment variable.

HiRDB/Parallel Server
Execute the following shell script at host1:

Note
Be sure to set the PDDIR environment variable.

Execute the following shell script at host2:

Note
Be sure to set the PDDIR environment variable.

(c) Initializing files such as system log files
The following instruction must be executed to initialize files such as system log files:
HiRDB/Single Server

Execute the following shell script:

$PDDIR/sample/sampleconf/fmkfile

$PDDIR/sample/sampleconf/sysfmkfs

$PDDIR/sample/sampleconf/sysfmkfs1

$PDDIR/sample/sampleconf/sysfmkfs2

24. Sample Files

1034

Note
Be sure to set the PDDIR environment variable.

HiRDB/Parallel Server
Execute the following shell script at the host where the system manager is defined
(host1):

Note
Be sure to set the PDDIR environment variable.

(2) Creating the initialization control statement file
The instruction shown as follows must be executed to create the initialization control
statement file.
The name of the initialization control statement file is $PDDIR/sample/
sampleconf/rdinit01.
HiRDB/Single Server

Execute the following shell script:

Note
Be sure to set the PDDIR environment variable.

HiRDB/Parallel Server
Execute the following shell script at the dictionary server:

Note
Be sure to set the PDDIR environment variable.

(3) Starting HiRDB
Use the pdstart command to start HiRDB.

(4) Table definition
The database definition utility (pddef) is executed shown as follows:

$PDDIR/sample/sampleconf/sysfint

$PDDIR/sample/sampleconf/sysfint

$PDDIR/sample/sampleconf/mkinit

$PDDIR/sample/sampleconf/mkinit

24. Sample Files

1035

Note
Set appropriate values in the PDUSER, PDDIR, PDNAMEPORT, and PDHOST
environment variables.

(5) Data loading
Execute the following shell script to load data using the database load utility (pdload).
For details about data loading, see the manual HiRDB Version 8 Command Reference.

(6) Creating a shell script for executing operation commands under aliases
It may not be possible to execute a HiRDB operation command because it has the same
name as an OS command or a command provided by another program. In this case, the
following actions can be taken:

• Make the environment variable setting that gives HiRDB commands precedence
over other commands.

• Specify the absolute path of the command to be executed.
If neither of these actions can be taken, there is a way to execute a HiRDB operation
command under a user-defined name. HiRDB provides a sample shell script for this
purpose.

(a) Names of sample files for shell script provided by HiRDB
HiRDB provides a sample shell script file appropriate to each platform. These files are
listed in Table 24-8; they are stored in the following directory:

• HiRDB/Single Server: /opt/HiRDB_S/sample/sampleconf
• HiRDB/Parallel Server: /opt/HiRDB_P/sample/sampleconf

Table 24-8: Sample shell script files for executing commands under aliases

(b) Procedure for creating an alias for a command
To create an alias for an operation command:
1. Copy the shell script sample file into a desired directory. To create aliases for

$PDDIR/bin/pddef < $PDDIR/sample/sampleDB/tblecreate_e

$PDDIR/sample/sampleDB/loadinf_e

File name Contents Notes

aliascmdbsh Sample file for Bourne shell Do not copy in the bin or lib directory under
the HiRDB directory

aliascmdcsh Sample file for C shell

24. Sample Files

1036

multiple commands, copy it once for each of the commands. Do not copy it into
the bin or lib directory under the HiRDB directory.

2. Set the copy target directory for the sample file in the PATH environment variable,
or set path as the search path.

3. Rename the file copied in step 1 to the alias of the HiRDB operation command.
For example, command name pdmod might be changed to hirmod.

4. Open the copied sample file and change cc...cc to the name of the HiRDB
operation command to be executed under the alias, as shown in Figures 24-4 and
24-5.
Figure 24-4: Sample file for Bourne shell

Figure 24-5: Sample file for C shell

This procedure enables a HiRDB operation command to be executed under any desired
name. Options can be specified in the alias command in the same manner as with the
normal HiRDB operation command.

(c) Notes
1. A name other than the HiRDB operation command name must be assigned to a

copy of the sample file.
2. It is possible that the $PDDIR/bin and $PDDIR/lib directories under the

HiRDB directory will be deleted in their entirety when the pdsetup -d

24. Sample Files

1037

command is executed. For this reason, sample files must not be copied into these
directories.

3. The contents of the sample files must not be changed, except for setting a HiRDB
operation command name.

4. To cancel execution of a created alias command during command processing, the
HiRDB command process must be terminated at an extension of the alias process.
Terminating the alias process does not automatically terminate the HiRDB
command process.

5. If a created alias command is executed and another process is terminated while
the HiRDB command is waiting for a response to be entered, HiRDB command
execution may result in an error or the response entry wait status may still be in
effect. If the response entry wait status is still in effect, the HiRDB command
process must be terminated.

24.3.2 HiRDB file system area names and user-created file names
used with sample database

This section lists the names and sizes of the HiRDB file system areas and the names of
the user-created files that are used with the sample database.
These are the names used in the provided sample database; any names could have been
used.

(1) Names and sizes of HiRDB file system areas
Table 24-9 lists the names and sizes of the HiRDB file system areas that are used with
the database for the HiRDB/Single Server. Table 24-10 lists the names and sizes of the
HiRDB file system areas that are used with the database for the HiRDB/Parallel
Server.

24. Sample Files

1038

Table 24-9: Names and sizes of HiRDB file system areas: HiRDB/Single Server

Legend:
: Not applicable

Table 24-10: Names and sizes of HiRDB file system areas: HiRDB/Parallel
Server

Legend:
: Not applicable

No. Classification Files Size
(MB)

HiRDB file system
area name

Remarks

1 System files • System log files
• Synchronization point

dump files
• Status files

74 /HiRDB_S/rdsys011
/HiRDB_S/rdsys012
/HiRDB_S/rdsys013
/HiRDB_S/rdsys014
/HiRDB_S/rdsys015
/HiRDB_S/rdsys016

Regular
files

2 System RDAREAs • Master directory
• Data directory
• Data dictionary

20 /HiRDB_S/rdsys02

3 Work table files 20 /HiRDB_S/rdsys03

4 User RDAREAs 40 /HiRDB_S/rdsys04

No. Classification Files Size
(MB)

HiRDB file system
area name

Remarks

1 System files • System log
files

• Synchronization
point dump
files

• Status files

host1 156 /HiRDB_P/rdsys011
/HiRDB_P/rdsys012
/HiRDB_P/rdsys013
/HiRDB_P/rdsys014

Regular
files

host2 74 /HiRDB_P/rdsys015
/HiRDB_P/rdsys016

2 System
RDAREAs

• Master directory
• Data directory
• Data dictionary

20 /HiRDB_P/rdsys02

3 Work table files 20 /HiRDB_P/rdsys03

4 User
RDAREAs

40 /HiRDB_P/rdsys04

24. Sample Files

1039

(2) Names of user-created files
Table 24-11 lists the names of the user-created files that are used with the sample
database for the HiRDB/Single Server. Table 24-12 lists the names of the user-created
files that are used with the sample database for the HiRDB/Parallel Server.

Table 24-11: Names of user-created files: HiRDB/Single Server

No. Type File name Remarks

1 Definition
files

System common
definition

$PDCONFPATH/pdsys The directories
have already been
created during
installation.2 Unit control

information definition
$PDDIR/conf/pdutsys

3 Single server definition $PDDIR/conf/sds01

4 System log files /HiRDB_S/rdsys011/log1
/HiRDB_S/rdsys012/log2
/HiRDB_S/rdsys013/log3
/HiRDB_S/rdsys014/log4

4 groups

5 Synchronization point dump files /HiRDB_S/rdsys014/spd1
/HiRDB_S/rdsys015/spd2
/HiRDB_S/rdsys016/spd3

3 groups

6 Status files Unit status files /HiRDB_S/rdsys011/utsts1a
/HiRDB_S/rdsys012/utsts1b
/HiRDB_S/rdsys013/utsts2a
/HiRDB_S/rdsys014/utsts2b
/HiRDB_S/rdsys015/utsts3a
/HiRDB_S/rdsys016/utsts3b

2 per unit 3

7 Server status files /HiRDB_S/rdsys011/sts1a
/HiRDB_S/rdsys012/sts1b
/HiRDB_S/rdsys013/sts2a
/HiRDB_S/rdsys014/sts2b
/HiRDB_S/rdsys015/sts3a
/HiRDB_S/rdsys016/sts3b

2 per server 3

8 System
RDAREAs

Master directory /HiRDB_S/rdsys02/rdmast RDAREA name:
RDMAST

9 Data directory /HiRDB_S/rdsys02/rddirt RDAREA name:
RDDIRT

10 Data dictionary /HiRDB_S/rdsys02/rddict RDAREA name:
RDDICT

11 Work table files /HiRDB_S/rdsys03

24. Sample Files

1040

Legend:
: Not applicable

Table 24-12: Names of user-created files: HiRDB/Parallel Server

12 RPC trace files /HiRDB_S/spool/pdrpctr

13 User
RDAREAs

Data section /HiRDB_S/rdsys04/rddata10 RDAREA name:
RDDATA10

14 Index section /HiRDB_S/rdsys04/rdindx10 RDAREA name:
RDINDX10

No. Type File name Remarks

1 Definition
files

System common
definition

$PDCONFPATH/pdsys The directories
have already been
created during
installation.2 Unit control

information
definition

$PDDIR/conf/pdutsys

3 Server common
definition

$PDCONFPATH/pdsvrc

4 Front-end server
definition

$PDDIR/conf/fes1

5 Dictionary server
definition

$PDDIR/conf/dic1

6 Back-end
server
definition

host1 $PDDIR/conf/bes1

host2 $PDDIR/conf/bes2

7 System log files host1 /HiRDB_P/rdsys011/feslog1
/HiRDB_P/rdsys012/feslog2
/HiRDB_P/rdsys013/feslog3
/HiRDB_P/rdsys014/feslog4
/HiRDB_P/rdsys011/diclog1
/HiRDB_P/rdsys012/diclog2
/HiRDB_P/rdsys013/diclog3
/HiRDB_P/rdsys014/diclog4
/HiRDB_P/rdsys011/bes1log1
/HiRDB_P/rdsys012/bes1log2
/HiRDB_P/rdsys013/bes1log3
/HiRDB_P/rdsys014/bes1log4

4 groups per
server

No. Type File name Remarks

24. Sample Files

1041

host2 /HiRDB_P/rdsys011/bes2log1
/HiRDB_P/rdsys012/bes2log2
/HiRDB_P/rdsys013/bes2log3
/HiRDB_P/rdsys014/bes2log4

8 Synchronization point
dump files

host1 /HiRDB_P/rdsys014/fesspd1
/HiRDB_P/rdsys015/fesspd2
/HiRDB_P/rdsys016/fesspd3
/HiRDB_P/rdsys014/dicspd1
/HiRDB_P/rdsys015/dicspd2
/HiRDB_P/rdsys016/dicspd3
/HiRDB_P/rdsys014/bes1spd1
/HiRDB_P/rdsys015/bes1spd2
/HiRDB_P/rdsys016/bes1spd3

3 groups per
server

host2 /HiRDB_P/rdsys014/bes2spd1
/HiRDB_P/rdsys015/bes2spd2
/HiRDB_P/rdsys016/bes2spd3

9 Status files Unit
status files

host1 /HiRDB_P/rdsys011/ut1sts1a
/HiRDB_P/rdsys012/ut1sts1b
/HiRDB_P/rdsys013/ut1sts2a
/HiRDB_P/rdsys014/ut1sts2b
/HiRDB_P/rdsys015/ut1sts3a
/HiRDB_P/rdsys016/ut1sts3b

2 per unit 3

host2 /HiRDB_P/rdsys011/ut2sts1a
/HiRDB_P/rdsys012/t2sts1b
/HiRDB_P/rdsys013/ut2sts2a
/HiRDB_P/rdsys014/ut2sts2b
/HiRDB_P/rdsys015/ut2sts3a
/HiRDB_P/rdsys016/ut2sts3b

No. Type File name Remarks

24. Sample Files

1042

10 Status files Server
status files

host1 /HiRDB_P/rdsys011/fessts1a
/HiRDB_P/rdsys012/fessts1b
/HiRDB_P/rdsys013/fessts2a
/HiRDB_P/rdsys014/fessts2b
/HiRDB_P/rdsys015/fessts3a
/HiRDB_P/rdsys016/fessts3b
/HiRDB_P/rdsys011/dicsts1a
/HiRDB_P/rdsys012/dicsts1b
/HiRDB_P/rdsys013/dicsts2a
/HiRDB_P/rdsys014/dicsts2b
/HiRDB_P/rdsys015/dicsts3a
/HiRDB_P/rdsys016/dicsts3b
/HiRDB_P/rdsys011/bes1sts1a
/HiRDB_P/rdsys012/bes1sts1b
/HiRDB_P/rdsys013/bes1sts2a
/HiRDB_P/rdsys014/bes1sts2b
/HiRDB_P/rdsys015/bes1sts3a
/HiRDB_P/rdsys016/bes1sts3b

2 per server 3

host2 /HiRDB_P/rdsys011/bes2sts1a
/HiRDB_P/rdsys012/bes2sts1b
/HiRDB_P/rdsys013/bes2sts2a
/HiRDB_P/rdsys014/bes2sts2b
/HiRDB_P/rdsys015/bes2sts3a
/HiRDB_P/rdsys016/bes2sts3b

11 System
RDAREAs

Master directory /HiRDB_P/rdsys02/rdmast RDAREA name:
RDMAST

12 Data directory /HiRDB_P/rdsys02/rddirt RDAREA name:
RDDIRT

13 Data dictionary /HiRDB_P/rdsys02/rddict RDAREA name:
RDDICT

14 Work table files /HiRDB_P/rdsys03

15 RPC trace files /HiRDB_P/spool/pdrpctr

No. Type File name Remarks

24. Sample Files

1043

Legend:
: Not applicable

16 User
RDAREAs

bes1 Data
section

/HiRDB_P/rdsys04/rddata10 RDAREA name:
RDDATA10

17 Index
section

/HiRDB_P/rdsys04/rdindx10 RDAREA name:
RDINDX10

18 bes2 Data
section

/HiRDB_P/rdsys04/rddata20 RDAREA name:
RDDATA20

19 Index
section

/HiRDB_P/rdsys04/rdindx20 RDAREA name:
RDINDX20

No. Type File name Remarks

1045

Chapter

25. Communication Between HiRDB
Servers and HiRDB Clients

This chapter explains how to connect HiRDB clients with HiRDB servers. It also
describes the settings for a DNS server and for a firewall.

25.1 Connecting to a HiRDB server with an FQDN specified
25.2 Settings for a DNS server to manage IP addresses
25.3 Settings when a firewall and NAT are installed
25.4 Port numbers used by HiRDB
25.5 HiRDB reserved port facility
25.6 Using immediate acknowledgment in HiRDB communications (AIX 5L

only)

25. Communication Between HiRDB Servers and HiRDB Clients

1046

25.1 Connecting to a HiRDB server with an FQDN specified

To connect a HiRDB client to a HiRDB server, the Hirdb system's host name (or IP
address) must be specified in the following operands of the client environment
definition:

• PDHOST
• PDFESHOST

The host name specified in these operands must be the same host name specified in the
pdunit operand of the system common definition.

With some network configurations, connection may not be established using the host
name specified in the pdunit operand. In an environment using DNS, see 25.1.1
Connection to a HiRDB server with an FQDN specified. If the network used among
HiRDB servers does not match the network used between a HiRDB client and a
HiRDB server, see 25.1.2 Using the multi-connection address facility to connect to a
HiRDB server.

25.1.1 Connection to a HiRDB server with an FQDN specified
The host name specified in the pdunit operand must be registered, together with the IP
address, in the host's file at every client machine that accesses the HiRDB server. Use
of DNS eliminates the need for registration in the hosts file, thereby eliminating the
need for modifying the hosts file that is associated with registration and IP address
changes.
Connection with a HiRDB server running on a host in a domain can be established by
specifying the server machine's fully qualified domain name (FQDN) in PDHOST and
PDFESHOST.
Table 25-1 lists the names that can be specified in the client environment definition.

Table 25-1: Names allowed in client environment definition

S: Can be specified.
: Cannot be specified.

* This is used in a large-scale network environment to avoid having to modify the
host's file when a host name or IP address is registered or when an IP address is

Name specified in client environment
definition

Version 05-02 or earlier Version 05-03 or later

Host name S S

FQDN S*

25. Communication Between HiRDB Servers and HiRDB Clients

1047

changed.
(1) Example of network configuration and definition for connecting to a HiRDB
server with an FQDN specified

Figure 25-1 provides an example of a network configuration and definition for
connecting to a HiRDB server with a fully qualified domain name (FQDN) specified.

Figure 25-1: Example of network configuration and definition for connecting to
HiRDB system with an FQDN specified

Explanation:
• The host name (HS01) in the network that is used by the HiRDB system is

specified in the -x option of the pdunit operand.
• The HiRDB system's FQDN (HS01.soft.hitachi.co.jp) is specified in

PDHOST in the client environment definition.
(2) Notes

1. An FQDN cannot be specified in PDHOST or PDFESHOST of the client
environment definition in the case of connection to a HiRDB system whose
version is earlier than 05-03. If specified, a server process may not be able to

25. Communication Between HiRDB Servers and HiRDB Clients

1048

execute cancellation processing after the maximum client wait time (value
specified in PDCWAITTIME) has elapsed.

2. An FQDN cannot be specified as a host name in a HiRDB system.
3. If the HiRDB server and HiRDB client use different networks, the

multi-connection address facility must be used to connect to the HiRDB system;
for details, see 25.1.2 Using the multi-connection address facility to connect to a
HiRDB server.

25.1.2 Using the multi-connection address facility to connect to a
HiRDB server

It may not be possible in some network configurations to connect to a HiRDB system
even though the host name is specified in the pdunit operand. This happens when the
network between the HiRDB client and HiRDB system is different from the network
connecting the HiRDB system's server machines.
In such a case, the multi-connection address facility can be used. This facility enables
connection to the HiRDB system without having to specify the same host name in the
PDHOST/PDFESHOT operand and the pdunit operand.

(1) Using the multi-connection address facility
To use the multi-connection address facility, the -m option of the pdstart operand
must be specified in the system common definition. To also use the system switchover
facility, the -n option must be specified in addition to the -m option.
The HiRDB client specifies in the -m and -n options the host name of the HiRDB
system to which connection can be established in the network; this does not have to be
the host name specified in the pdunit operand.

(2) Examples of network configurations and definitions using the
multi-connection address facility

(a) HiRDB/Single Server
Figure 25-2 provides an example of a network configuration and definition when the
multi-connection address facility is used with a HiRDB/Single Server.

25. Communication Between HiRDB Servers and HiRDB Clients

1049

Figure 25-2: Example of network configuration and definition: HiRDB/Single
Server

Explanation:
• The host name (HS01) used for the network communications between the

HiRDB systems is specified in the -x option of the pdunit operand.
• The host name (he01) in the network that is used between the HiRDB client

and the HiRDB/Single Server is specified in the -m option of the pdstart
operand.

• The host name (he01) in the network that is used between the HiRDB client
and the HiRDB/Single Server is specified in the PDHOST operand in the
client environment definition.

(b) HiRDB/Parallel Server
Figure 25-3 provides an example of a network configuration and definition when the
multi-connection address facility is used with a HiRDB/Parallel Server.

25. Communication Between HiRDB Servers and HiRDB Clients

1050

Figure 25-3: Example of network configuration and definition: HiRDB/Parallel
Server

Explanation:
• The host names (HS01 and HS02) used for the network communications

between the HiRDB systems are specified in the -x option of the pdunit
operand.

• The host name (he03) in the network that is used between the HiRDB client
and the HiRDB system is specified in the -m option of the pdstart operand
(for defining the front-end server).

• The host name (he01) where the system manager is located in the network
that is used between the HiRDB client and the HiRDB system is specified in
the PDHOST operand in the client environment definition.

(c) HiRDB/Parallel Server (with inheritance of IP addresses during system
switchover)
Figure 25-4 provides an example of a network configuration and definition when the
multi-connection address facility is used and IP addresses are inherited during system
switchover.

25. Communication Between HiRDB Servers and HiRDB Clients

1051

Figure 25-4: Example of network configuration and definition: With inheritance
of IP addresses during system switchover

Explanation:
• The host names (HS01 and HS03) used for the network communications

between the HiRDB systems are specified in the -x option of the pdunit
operand.

• The host name (he04) in the network that is used between the HiRDB client
and the HiRDB system is specified in the -m option of the pdstart operand
(for defining the front-end server). The host name of the secondary system
(he04) is specified in the -n option.

• The host name (he01) where the system manager is located in the network
that is used between the HiRDB client and the HiRDB system is specified in
the PDHOST operand in the client environment definition.

(d) HiRDB/Parallel Server (without inheritance of IP addresses during
system switchover)
Figure 25-5 provides an example of a network configuration and definition when the

25. Communication Between HiRDB Servers and HiRDB Clients

1052

multi-connection address facility is used and IP addresses are not inherited during
system switchover.

Figure 25-5: Example of network configuration and definition: Without
inheritance of IP addresses during system switchover

Explanation:
• The host names (HS01 and HS03) used for the network communications

between the HiRDB systems are specified in the -x option of the pdunit
operand. The host name of the secondary system (HS02) is specified in the
-c option.

• The host name (he04) in the network that is used between the HiRDB client
and the HiRDB system is specified in the -m option of the pdstart operand
(for defining the front-end server). The host name of the secondary system
(he03) is specified in the -n option.

• The host name (he01) where the system manager is located in the network
that is used between the HiRDB client and the HiRDB system is specified in
the PDHOST operand in the client environment definition. The host name of
the secondary system (he03) is also specified.

25. Communication Between HiRDB Servers and HiRDB Clients

1053

25.2 Settings for a DNS server to manage IP addresses

There are two ways for an HiRDB system to use a DNS server to manage IP addresses:
• The server machines reside in the same domain
• The server machines that make up a single HiRDB reside across multiple domains

This section describes how to manage each of these configurations.
(1) How to set up HiRDB in a single domain

If the server machines reside in the same domain, specify either the host name or the
FQDN (fully-qualified domain name; maximum of 32 characters) as the host name in
the pdunit and pdstart operands. In this way, a DNS server can manage IP
addresses, thereby making the hosts file unnecessary.
Basically, the host name or FQDN is specified using the following options:

• pdunit operand: -x and -c options
• pdstart operand: -x, -m, and -n options

Figure 25-6 shows an example system configuration using a single domain.
Figure 25-6: Example system configuration using a single domain

The following is an example of how to specify pdunit -x in this case:
For specifying the host name
pdunit -x hirdb01 -u unt1 -d "operating-directory-name" -p port-number
...
pdunit -x hirdb02 -u unt2 -d "directory-name" -p port-number ...
pdunit -x hirdb03 -u unt3 -d "directory-name" -p port-number ...

25. Communication Between HiRDB Servers and HiRDB Clients

1054

For specifying the FQDN
pdunit -x hirdb01.p1.ne.jp -u unt1 -d "operating-directory-name" -p
port-number ...
pdunit -x hirdb02.p1.ne.jp -u unt2 -d "directory-name" -p
port-number ...
pdunit -x hirdb03.p1.ne.jp -u unt3 -d "directory-name" -p
port-number ...

(2) How to set up HiRDB in multiple domains
If the server machines reside in multiple domains, specify the FQDN (fully-qualified
domain name; maximum of 32 characters) as the host name in the pdunit and
pdstart operands. In this way, a DNS server can manage the IP addresses, thereby
making the hosts file unnecessary.
Basically, the FQDN is specified using the following options.

• pdunit operand: -x and -c options
• pdstart operand: -x, -m, and -n options

Figure 25-7 shows an example system configuration using multiple domains.
Figure 25-7: Example system configuration using multiple domains

The following is an example of how to specify pdunit -x in this case:
Specifying the FQDN
pdunit -x hirdb01.pl1.ne.jp -u unt1 -d "operating-directory-name"
-p port-number ...
pdunit -x hirdb02.pl1.ne.jp -u unt2 -d "directory-name" -p
port-number ...
pdunit -x hirdb03.pl2.ne.jp -u unt3 -d "directory-name" -p

25. Communication Between HiRDB Servers and HiRDB Clients

1055

port-number ...

25. Communication Between HiRDB Servers and HiRDB Clients

1056

25.3 Settings when a firewall and NAT are installed

This section describes the HiRDB environment settings when a firewall and NAT are
installed between HiRDB servers and HiRDB clients.

25.3.1 When a firewall is installed on the HiRDB/Single Server side
As shown in Figure 25-8, a firewall has been installed on the HiRDB/Single Server
side, and it has been configured as follows:
Firewall settings

• Direction: Receive
• IP address: 172.16.0.10
• Port numbers: 20000, 20001

Figure 25-8: Network configuration example with a firewall installed on the
HiRDB/Single Server side

In this configuration, the settings for the server and client machines are as listed below.
If you are installing a firewall, you must specify the pd_service_port operand. If
only a firewall is installed, there is no need to specify the client environment definition
(PDSERVICEPORT operand).
Server machine settings

• System common definition file
set pd_name_port= 20000
set pd_service_port= 20001
pdunit -x hirdb01 -u unt1

25. Communication Between HiRDB Servers and HiRDB Clients

1057

pdstart -t SDS -s sds01 -u unt1
Client machine settings

• Client environment definition
PDHOST hirdb01
PDNAMEPORT 20000
PDCLTRCVPORT 30000*

• hosts file
172.16.0.10 hirdb01

* Specify this when there is a firewall on the client side.

25.3.2 When a firewall and NAT are installed on the HiRDB/Single
Server side

As shown in Figure 25-9, a firewall and NAT have been installed on the HiRDB/Single
Server side, and they have been configured as follows:
Firewall settings

• Direction: Receive
• IP address: 172.16.0.10
• Port numbers: 20000, 20001

NAT address translation

128.1.1.1 172.16.0.10
Note that HiRDB does not support a function that converts global and local IP
addresses as a pair, such as NAPT (IP masquerade). It supports only 1-to-1
conversion.

25. Communication Between HiRDB Servers and HiRDB Clients

1058

Figure 25-9: Network configuration example with a firewall and NAT installed
on the HiRDB/Single Server side

In this configuration, configure the high-speed connection facility. The settings for the
server and client machines are as follows:
Server machine settings

• System common definition file
set pd_name_port= 20000
set pd_service_port= 20001
pdunit -x hirdb01 -u unt1
pdstart -t SDS -s sds01 -u unt1

Client machine settings

• Client environment definition
PDHOST hirdb01
PDNAMEPORT 20000
PDSERVICEGRP sds01
PDSERVICEPORT 20001
PDSRVTYPE WS1

PDCLTRCVPORT 300002

• hosts file
128.1.1.1 hirdb01

25. Communication Between HiRDB Servers and HiRDB Clients

1059

1 To operate a HiRDB server on Linux, specify PC.
2 Specify this when there is a firewall on the client side.

25.3.3 When a firewall is installed on the HiRDB/Parallel Server side
As shown in Figure 25-10, a firewall has been installed on the HiRDB/Parallel Server
side, and it has been configured as follows:
Firewall settings

• Direction: Receive
• IP addresses: 172.16.0.10, 172.16.0.20
• Port numbers: 20000, 20001

Figure 25-10: Network configuration example with a firewall installed on the
HiRDB/Parallel Server side

In this configuration, the settings for the server and client machines are as listed below.
If you are installing a firewall, you must specify the pd_service_port operand. If
only a firewall is installed, there is no need to specify the client environment definition
(PDSERVICEPORT operand).
Server machine settings

25. Communication Between HiRDB Servers and HiRDB Clients

1060

• System common definition file
set pd_name_port = 20000
set pd_service_port = 20001
pdunit -x hirdb01 -u unt1
pdunit -x hirdb02 -u unt2
pdstart -t MGR -u unt1
pdstart -t FES -s fes -u unt2

Client machine settings

• Client environment definition
PDHOST hirdb01
PDNAMEPORT 20000
PDCLTRCVPORT 30000*

• hosts file
172.16.0.10 hirdb01
172.16.0.20 hirdb02

* Specify this when there is a firewall on the client side.

25.3.4 When a firewall and NAT are installed on the HiRDB/Parallel
Server side

As shown in Figure 25-11, a firewall and NAT have been installed on the HiRDB/
Parallel Server side, and they have been configured as follows:
Firewall settings

• Direction: Receive
• IP addresses: 172.16.0.10, 172.16.0.20
• Port numbers: 20000, 20001

NAT address translation

128.1.1.1 172.16.0.10

128.1.1.2 172.16.0.20
Note that HiRDB does not support a function that converts global and local IP
addresses as a pair, such as NAPT (IP masquerade). It supports only 1-to-1
conversion.

25. Communication Between HiRDB Servers and HiRDB Clients

1061

Figure 25-11: Network configuration example with a firewall and NAT
installed on the HiRDB/Parallel Server side

In this configuration, configure the high-speed connection facility. The settings for the
server and client machines are as follows:
Server machine settings

• System common definition file
set pd_name_port = 20000
set pd_service_port = 20001
pdunit -x hirdb01 -u unt1
pdunit -x hirdb02 -u unt2
pdstart -t MGR -u unt1
pdstart -t FES -s fes -u unt2

Client machine settings

• Client environment definition
PDHOST hirdb01

25. Communication Between HiRDB Servers and HiRDB Clients

1062

PDNAMEPORT 20000
PDSERVICEGRP fes
PDSERVICEPORT 20001
PDFESHOST hirdb02
PDSRVTYPE WS1

PDCLTRCVPORT 300002

• hosts file
128.1.1.1 hirdb01
128.1.1.2 hirdb02

1 To operate a HiRDB server on Linux, specify PC.
2 Specify this when there is a firewall on the client side.

25. Communication Between HiRDB Servers and HiRDB Clients

1063

25.4 Port numbers used by HiRDB

With HiRDB communication processing, if the pd_registered_port operand is
not specified, the communication port numbers allocated automatically by the
operating system are used. Increase the number of communication ports to be used in
accordance with the value of the pd_max_users operand and increases in the number
of back-end servers. If there are insufficient port numbers, processing can be
interrupted or the communication processing of other programs can be influenced.
You can use the pd_registered_port operand to specify a range of port numbers
for HiRDB to use for communication processing (reserved port facility). For details
about the HiRDB reserved port facility, see 25.5 HiRDB reserved port facility.

25.4.1 Estimating the number of ports that a unit will use
The following shows the target number of ports that a HiRDB unit will use:

(1) Single server
Formula

(2) Parallel Server
With a multi-front-end server configuration, decide the values for f and F for each
front-end server, which will become the total number of ports. Use the following
formula to calculate the target number of port numbers for each front-end server.
Formula

• For HP-UX, AIX

• For Solaris and Linux

b: Number of back-end servers inside the unit
B: Number of back-end servers outside the unit
f: Number of front-end servers inside the unit

pd_max_users 2 + 1000

{b [k (B + F) + 1]
 + f (k B + D + 2) + d (F + 1)}

pd_max_users + 1000

{b [k [(b - 1) 2 + B + 1] + 1]
 + f (k b + D + 2) + d 2}

pd_max_users + 1000

25. Communication Between HiRDB Servers and HiRDB Clients

1064

Each front-end server counts as either 1 or 0:
If the front-end server is inside the unit: 1
If the front-end server is outside the unit: 0

F: Number of front-end servers outside the unit
Each front-end server counts as either 1 or 0:
If the front-end server is inside the unit: 1
If the front-end server is outside the unit: 0

d: Number of dictionary servers inside the unit
D: Number of dictionary servers outside the unit
k: 2 3

25.4.2 Notes
• Depending on the SQL statement that is executed, more ports will be required

than the calculated target value.
• If the number of ports allocated automatically by the operating system is

insufficient, respecify the number in the pd_registered_port operand.
• When HiRDB releases port numbers, the OS does not necessarily release the

numbers immediately (TIME_WAIT status). Therefore, the system will sometimes
temporarily use a larger number of port numbers than the target number.

• If the system has a large maximum number of concurrent connections
(pd_max_users), specify 1 in the PDTCPCONOPT client environment definition
in order to reduce the number of ports that UAPs use to connect to HiRDB. For
details about the PDTCPCONOPT client environment definition, see the manual
HiRDB Version 8 UAP Development Guide.

25.4.3 Calculation examples
A 1-unit configuration of a HiRDB/Parallel Server (with a FES, a DS, and 5
BESs), where pd_max_users=1000

{5 [2 3 (0 + 0) + 1]
 + 1 (2 3 0 + 0 + 2) + 1 (0 + 1)}
 1000 + 1000=9000

The target number of ports is 9000.
A parallel unit configuration (unit 1: a FES, a DS, and 2BESs; unit 2: 3 BESs),
where pd_max_users=900
Unit 1:

25. Communication Between HiRDB Servers and HiRDB Clients

1065

{2 [2 3 (3 + 0) + 1]
 + 1 (2 3 3 + 0 + 2) + 1 (0 + 1)}
 900 + 1000=10900

Unit 2:
{3 [2 3 (2 + 1) + 1]
 + 0 (2 3 2 + 1 + 2) + 0 (1 + 1)}
 900 + 1000=9100

The target number of ports is 10,900 for unit 1 and 9,100 for unit 2.

25. Communication Between HiRDB Servers and HiRDB Clients

1066

25.5 HiRDB reserved port facility

The HiRDB reserved port facility uses the pd_registered_port operand to specify
a range of port numbers that can be used for communication. This facility prevents the
following:

• A program other than HiRDB communicates with a server using several port
numbers allocated automatically by the OS, but processing is interrupted because
there are no available port numbers

• HiRDB uses a large number of communication port numbers, which affects the
communication processing of other programs
Allocated ports that are released by HiRDB cannot be used for a period of time.
Therefore, if a large number of ports are in use, it is possible that for a brief period
there will be no available port numbers.

If the operating system is HP-UX, Solaris, or AIX 5L, there is no shortage in the
number of ports that can be automatically allocated by the OS, even if the HiRDB
reserved port facility is not used. This is because the range of port numbers that can be
automatically allocated by the OS has been extended. Consider using the HiRDB
reserved port facility in the following cases when using the HiRDB server on Linux:

• When CONNECT or DISCONNECT from HiRDB clients occur several thousand
times a minute

• When transactions occur several thousand times a minute on a HiRDB/Parallel
Server

For details about definition examples and notes about using the HiRDB reserved port
facility, see the explanation for the pd_registered_port operand in the manual
HiRDB Version 8 System Definition.

25.5.1 Estimation of the HiRDB reserved port facility
(1) Estimating from statistical information

The number of communication port numbers that HiRDB will use can be estimated
from statistical information. Using the statistical analysis utility's Statistical
information related to system moving, you can calculate the number of HiRDB
communication ports from the following statistical information (for details, see the
manual HiRDB Version 8 Command Reference):

• The number of HiRDB reserved ports in use
• When there are excess HiRDB reserved ports, the number of ports allocated

automatically by the OS that are in use
Formula

25. Communication Between HiRDB Servers and HiRDB Clients

1067

* Added as a reserve.
(2) Estimation of the recommended value

The recommended value is determined from the formula in 25.4.1 Estimating the
number of ports that a unit will use. This is the target value. During operation, use the
value from (1) Estimating from statistical information.

Number of HiRDB reserved ports in use + number of ports allocated automatically by the OS that are in use when
there are excess HiRDB reserved ports + 100*

25. Communication Between HiRDB Servers and HiRDB Clients

1068

25.6 Using immediate acknowledgment in HiRDB communications
(AIX 5L only)

When a data recipient receives packets correctly, the recipient sends a delayed
acknowledgment to the sender of the data. When AIX 5L is used, by specifying the OS
parameter (tcp_nodelayack), an acknowledgement can be sent immediately upon
receipt of packets. This setup improves the response delay situation that occurs during
communication processing. However, specifying OS parameters affects the entire
system.
Specifying the following definitions allows immediate acknowledgement to be used
only for HiRDB communications. Note however that immediate acknowledgment is
not used for communication other than HiRDB on AIX 5L.

• System common definition pd_ipc_tcp_nodelayack = Y
For communications between HiRDB server machines and between a HiRDB
server machine and HiRDB client machine, upon receiving a packet, an
acknowledgement is sent immediately by using a communication socket created
by the HiRDB server.

• Client environment definition PDNODELAYACK = YES
For communications between a HiRDB server machine and HiRDB client
machine, an acknowledgment is sent immediately by using a communication
socket created by the HiRDB client.

Specifying these definitions (pd_ipc_tcp_nodelayack=Y and
PDNODELAYACK=YES) are effective only when AIX 5L V5.2 with the IY51819 patch
applied or AIX 5L V5.3 and later are used.
Figure 25-12 shows the object of immediate acknowledgment.

25. Communication Between HiRDB Servers and HiRDB Clients

1069

Figure 25-12: Object of immediate acknowledgment

Note:

If the OS parameter (tcp_nodelayack) is specified to immediately send
acknowledgment, the entire system uses immediate acknowledgment
regardless of the specification of the pd_ipc_tcp_nodelayack operand or
PDNODELAYACK.

1071

Appendixes

A. HiRDB Maximum and Minimum Values
B. Questions and Answers

A. HiRDB Maximum and Minimum Values

1072

A. HiRDB Maximum and Minimum Values

A.1 Maximum and minimum values for the system configuration
Table A-1 lists the maximum and minimum values for the HiRDB system
configuration.

Table A-1: Maximum and minimum values for the HiRDB system configuration

Item Minimum
value

Maximum
value

Units

Number of servers that can be created per unit 1 34 Count

Number of single servers 1 1 Count

Number of system managers 1 1 Count

Number of front-end servers 1 1,024 Count

Number of dictionary servers 1 1 Count

Number of back-end servers 1 16,382 Count

Total number of RDAREAs 3 8,388,592 Count

Number of master directory RDAREAs 1 1 Count

Number of data directory RDAREAs 1 1 Count

Number of data dictionary RDAREAs 1 41 Count

Number of user RDAREAs 0 8,388,589 Count

Number of data dictionary LOB RDAREAs 0 2 Count

Number of user LOB RDAREAs 0 8,388,325 Count

Number of registry RDAREAs 0 1 Count

Number of registry LOB RDAREAs 0 1 Count

Number of list RDAREAs 0 8,388,588 Count

Number of HiRDB files per RDAREA 1 16 Count

Number of base tables per RDAREA 0 500 Count

Number of indexes per RDAREA 0 500 Count

Number of lists per RDAREA 0 50,000 Count

A. HiRDB Maximum and Minimum Values

1073

Total number of HiRDB files 1 134,217,728 Count

Number of concurrently accessible tables 4 32,000 Count

Maximum number of concurrent connections1 1 2000 Count

Maximum number of users that can be created by HiRDB2 1 Unlimited Count

Number of users who can own the same list 0 32,767 Count

Number of lists created per user 0 32,767 Count

Number of work tables created per transaction 0 255 Count

Number of global buffers per server3 1 2,000,000 Count

HiRDB file
system area

HP-U
X

Large file not
used

Regular file 1 2,047 MB

Character special
file

1 2,047 MB

Large file
used

Regular file 1 131,071 MB

Character special
file

1 131,071 MB

Solaris Large file not
used

Regular file 1 2,047 MB

Character special
file

1 2,047 MB

Large file
used

Regular file 1 1,048,575 MB

Character special
file

1 1,048,575 MB

AIX
5L

Large file not
used

Regular file 1 2,047 MB

Character special
file

1 2,047 MB

Large file
used

Regular file (JFS) 1 65,411 MB

Regular file
(JFS2)

1 1,048,575 MB

Character special
file

1 1,048,575 MB

Item Minimum
value

Maximum
value

Units

A. HiRDB Maximum and Minimum Values

1074

1 For a configuration with multiple front-end servers, the maximum for number of
front-end servers value of pd_max_users is 2,000.
2

• When the Directory Server linkage facility is not used
The value depends on the size of data dictionary RDAREAs because one row
of the data dictionary table (SQL_USERS) is used per user.

• When the Directory Server linkage facility is used
For a user with CONNECT privilege only, the value depends on the directory
server specifications. For a user with other privileges, the value is same as
when the Directory Server linkage facility is not used.

3 However, for the entire system, the maximum is 2,147,483,647.

A.2 Maximum and minimum values for databases
Table A-2 lists the maximum and minimum values for databases.

Table A-2: Maximum and minimum values for databases

Linux Large file not
used

Regular file 1 2,047 MB

Character special
file

1 2,047 MB

Large file
used

Regular file 1 1,048,575 MB

Character special
file

1 1,048,575 MB

Item Minimum
value

Maximum value Units

Length of character data (defined
length)

CHAR 1 30,000 Characters
(Bytes)

VARCHAR 1 32,000 Characters
(Bytes)

Length of national character data
(defined length)

NCHAR 1 15,000 Characters

NVARCHAR 1 16,000 Characters

Item Minimum
value

Maximum
value

Units

A. HiRDB Maximum and Minimum Values

1075

Length of mixed character data
(defined length)

MCHAR 1 30,000 Bytes

MVARCHAR 1 32,000 Bytes

Precision of packed decimal DECIMAL 1 29 Digits

Decimal places for packed decimal DECIMAL 0 29 Digits

Seconds precision for timestamp data TIMESTAMP 0 6 Digits

Length of BLOB data 0 2,147,483,647 Bytes

BINARY data length (defined length) 1 2,147,483,647 Bytes

Number of columns in a table 1 30,000 Columns

Number of indexes in a table 0 255 Count

Number of index component columns 1 16 Columns

Number of cluster key component columns 1 16 Columns

Number of RDAREAs for storing table partitions 1 1024 Count

Number of BESs where partitioned tables are placed 1 1024 Count

Total number of literals specified for storage conditions
when a row-partitioned table is defined (if storage
condition is omitted, 1 is assumed)

1 15,000 Count

Number of tables based on view tables 1 64 Count

Number of columns in a view table 1 30,000 Columns

Number of primary key component columns 1 16 Columns

Number of foreign key component columns 1 16 Columns

Number of foreign keys per table 0 255 Count

Number of foreign keys that reference a single primary
key

0 255 Count

Number of check constraints that can be specified per
table

0 254 Count

Total number of Boolean operators (AND and OR) and
check constraint definitions that can be defined per table
(excluding the Boolean operators AND and OR in WHEN
search conditions in CASE expressions)

0 254 Count

Item Minimum
value

Maximum value Units

A. HiRDB Maximum and Minimum Values

1076

1 The maximum value depends on specifications such as the pd_max_open_fds
operand value, whether or not plug-ins are used, and the number of RDAREAs in the
server. The table value is the maximum value specified in the pd_max_open_fds
operand. If plug-in index delayed batch creation uses a HiRDB file system area, the
maximum value is 4,096.
2 When the number of processed data items exceeds 4,294,967,295, the displayed row
count is reset to 0 and the count starts again from 1.

Identifier length
(Applicable to table identifier, column name, data type
identifier, index type identifier, attribute name, routine
identifier, correlation name, index identifier, cursor
name, SQL statement identifier, RDAREA name,
embedded variable name, indicator variable name,
password, constraint name, condition name, SQL
variable name, group ID, query name, trigger identifier,
table alias, statement label, loop variable name, host
identifier, list name, roll name, RD node name, SQL
parameter name)

1 30 Bytes

Row length of FIX table 1 30,000 Bytes

Number of SQL parameters in a procedure 0 30,000 Count

Number of repetition columns 2 30,000 Count

Number of index information files
created per server

HP-UX 1 7,616 to 8,0921 Count

Solaris 1 1,472 to 1,9481 Count

Solaris(64-bit
mode)

1 7,616 to 8,0921 Count

AIX 5L 1 7,616 to 8,0921 Count

Linux 1 448 to 9241 Count

Number of processed rows that can be displayed in
messages by the following utilities:
• pdload
• pdrorg
• pdrbal

0 4,294,967,2952 Count

Item Minimum
value

Maximum value Units

A. HiRDB Maximum and Minimum Values

1077

A.3 Maximum and minimum values for HiRDB file names
Table A-3 lists the maximum and minimum values for HiRDB file names.

Table A-3: Maximum and minimum values for HiRDB file names (in
characters)

Legend:
: Not applicable; the length must be the value shown in the Minimum column.

* Structure of a path name is HiRDB-file-system-area/HiRDB-file.

HiRDB file type HiRDB file name length Maximum length
of path name*

Minimum Maximum

System status file 1 30 167

Server status file 1 30 167

System log file 1 30 167

Synchronization point dump file 1 30 167

Unload log file 1 30 167

Audit trail file 16 167

Work table file 25 167

RDAREA structure file 1 30 167

Backup file 1 30 167

Unload data file 1 30 167

Index information file 30 167

Differential backup management file 1 30 167

B. Questions and Answers

1078

B. Questions and Answers

This appendix discusses in question-and-answer format some of the topics concerning
HiRDB system construction that can be easily misunderstood. The topics that are
discussed are listed as follows:

Topic Refer to

HiRDB/Developer's Kit (1)

Execution of the database definition utility (pddef) (2)

Maximum size of a database (3)

Use of regular files and character special files (4)

OpenTP1 and XA interface (5)

Performance of FIX tables (6)

Duplicate key index (7)

How to use indexes (8)

Index definition for a row-partitioned table (9)

Response to pdsetup -d command (10)

Handling of synchronization point dumps (11)

Handling of status files (12)-(15)

Peak capacity of a HiRDB file system area for work table files (16)

HiRDB cannot be started by the pdstart command (17)

Any particular unit cannot be started by the pdstart command (18)

HiRDB startup using the pdstart command is slow (19)

pdstart command results in an error (reason code=SETUP) (20)

pdstart command results in an error (reason code=TIMEOUT) (21)

A unit cannot be started by the pdstart command (22)

Database definition utility (pddef) results in an error (23)

CREATE TABLE statement LOB column definition (24)

B. Questions and Answers

1079

(1) HiRDB/Developer's Kit
Question

When do I need a HiRDB/Developer's Kit?
Answer

When creating a UAP on a machine on which a HiRDB server is installed, you do
not need a HiRDB/Developer's Kit because the HiRDB server provides its
facilities. You need a HiRDB/Developer's Kit when you create a UAP on a
machine on which a HiRDB server is not installed.
You also need a HiRDB/Developer's Kit to create a UAP for a platform that is
different from that for the HiRDB server.

(2) Execution of the database definition utility (pddef)
Question

Why didn't anything happen when I executed CREATE TABLE with the database
definition utility (pddef)?

Answer
Check for blanks after the semicolon (;) in a pddef control statement. If there is
a blank, that SQL statement will not execute.

Wrong: CREATE TABLE ; [: blank]
Correct: CREATE TABLE ;

(3) Maximum size of a database
Question

What is the maximum size of a HiRDB database?
Answer

One table can be divided and stored in a maximum of 512 RDAREAs, and one
RDAREA can consist of a maximum of 16 HiRDB files.
The maximum size of a HiRDB file is approximately 2 GB; therefore, the
maximum size of one HiRDB database is as follows:
512 16 2 = approximately 16 terabytes (TB)
A maximum of 16,000,000 RDAREAs can be used; therefore, the maximum total
size of all databases is as follows:
16,000,000 16 2 = approximately 512 petabytes (PB)
HiRDB support large files. When you use a large file, the maximum size of one
HiRDB file is 64 GB, thereby increasing the maximum size of a database.

B. Questions and Answers

1080

(4) Use of regular files and character special files
Question

What is the difference between regular files and character special files? Which
file system does HiRDB use?

Answer
A regular file uses a kernel buffer to input/output data, while a character special
file uses a HiRDB buffer for direct input/output of data.
HiRDB supports both regular files and character special files, so the user can
select the appropriate type. Character special files are usually used, but in the
following cases better performance can be achieved by using regular files:

• For files constituting an RDAREA that stores tables that are used mainly for
retrieval of a large amount of data

• For work table files
Because regular files are readily affected by system shutdown, character special
files should be used for the following:

• System log files
• Synchronization point dump files
• Status files
• HiRDB files that constitute system RDAREAs
• HiRDB files that constitute frequently updated user RDAREAs

Because HiRDB supports the prefetch facility, high-speed retrieval can be
achieved when a character special file is used for an RDAREA that stores a table
that is subject mainly to retrieval of a large amount of data.

(5) OpenTP1 and XA interface
Question

When OpenTP1 is linked to HiRDB, why does transaction commit processing for
a referencing-only SQL not seem to be passed via the XA interface?

Answer
When a referencing-only SQL is executed, the process is passed to HiRDB via the
XA interface at the time of commit processing. However, it may not be apparent
because fewer steps are required than in the case of an updating SQL.

(6) Performance of FIX tables
Question

B. Questions and Answers

1081

How much difference in terms of performance is there between FIX tables and
non-FIX tables?

Answer
It is difficult to say because performance depends on the number of columns and
rows subject to manipulation; however, there has been a case where the execution
time for retrieval of a large amount of data in one row of a FIX table was
approximately two-thirds of the execution time for a table for which FIX was not
specified.
Performance is never reduced by specifying FIX; therefore, FIX should always
be specified when all the following apply:

• There are no variable-length columns
• There are no column with the NULL value
• No columns will be added

(7) Duplicate key index
Question

Is it permissible to define an index with duplicate keys? If it's permissible, are
there any problems in doing so?

Answer
Such an index can be defined (non-UNIQUE attribute). However, an index with
many instances of keys duplicated many times (more than 200 keys) in a column
is not desirable in terms of performance because a special storage structure is
required and there are many index pages to be accessed.

(8) How to use indexes
Question

If an index is defined for a table in a configuration in which HiRDB is accessed
from DBPARTNER2, does DBPARTNER2 need to know about the index?

Answer
No. HiRDB handles DBPARTNER2 in the same manner as regular client UAPs.

(9) Index definition for a partitioned table
Question

When an index is defined for a table that is partitioned among multiple server
machines, how should the index be placed?

Answer
The index should be defined in units of table partitions, shown as follows.

B. Questions and Answers

1082

(10) Response to pdsetup -d command
Question

Which response, y or n, should be entered when pdsetup -d has been entered
and the KFPS00036-Q message is displayed requesting a response?

Answer
If you respond with y, you will delete files and directories that HiRDB requires
for execution. In such a case, the next time you execute the pdsetup command,
copy the files required for execution from the installation directory. If you
respond with n, the files and directories are not deleted.
In the following cases, you should respond with y:

• When you are replacing the currently running HiRDB with the HiRDB that
ran at the time of installation (when upgrading HiRDB, you must perform a
normal shutdown using the pdstop command)

• When you change the HiRDB administrator's authorization identifier
• When there is an error in the files in the HiRDB operation directory, with a

directory owner, or with a file mode, and they were changed or deleted
Note

If y is entered when the operation directory is different from the installation
directory, the entire set of loaded files will be deleted from the operation directory.
The set of loaded files will then be copied from the installation directory at the
next pdsetup. Therefore, it takes some time to execute the command.

(11) Handling of synchronization point dumps
Question

How many guaranteed-valid generations of synchronization point dump files
should be provided?

Answer
Information such as the read operation start location in the system log file is

B. Questions and Answers

1083

acquired in the synchronization point dump file each time a synchronization point
dump is collected in order to prepare for a full rerun. The portion of the system
log file beginning at the location indicated in the synchronization point dump file
is overwrite-protected, so that it will not be used during a full rerun.
The number of guaranteed-valid generations is the number of generations of the
synchronization point dump file that are used to overwrite-protect the system log
file. In other words, if the number of guaranteed-valid generations is 1, the system
log file beginning at the location indicated by the most recent synchronization
point dump file is placed in overwrite-protected status. If the number of
guaranteed-valid generations is 2, the system log file beginning at the location
indicated by the synchronization point dump file generation immediately
preceding the most recent synchronization point dump file will be placed in
overwrite-protected status.

(12) Handling of status files (dual status files)
Question

How is a pair of dual status files formed? In the figure below, if errors occur in
version A of logical file 1 and in version B of logical file 2, can version B of
logical file 1 and version A of logical file 2 be used to constitute a pair?

Answer
A pair of system files is never formed using different logical files. A logical file
whose versions A and B are both normal is selected. If there is no logical file with
normal versions A and B, either the unit is terminated abnormally or the system
is placed in the single operation mode in order to continue processing according
to the specification of pd_sts_singleoperation.

B. Questions and Answers

1084

(13) Handling of status files (when an error occurs)
Question

There are two operands that determine the method for handling status files in the
event there are no more logical files with normal versions A and B (either A or B
is erroneous):

• pd_syssts_singleoperation=stop|continue (for unit status file)
• pd_sts_singleoperation=stop|continue (for server status file)

Which option (stop or continue) should be specified?
Answer

If you specify stop, HiRDB (the unit for HiRDB/Parallel Server) terminates
abnormally. If you specify continue, the single operation takes effect on the
status files.
Status files are important because they contain information that is needed for a full
recovery. If you specify continue and an error occurs in the status file during
single operation, the unit is shut down because the error is on both versions. In
this case, full recovery is not possible because both versions of the current file are
inaccessible. This operand should be specified according to the following
guidelines:

• Specify stop if guaranteeing a successful full recovery is more important
than avoiding online shutdown.

• Specify continue if an application requires uninterrupted online operation
(in the worst case, the database must be rolled back to its backup copy or data
loading must be re-executed instead of executing a full recovery).

(14) Handling of status files (status file definition)
Question

You say that 1-7 logical status files can be defined, but what if there is not enough
room on the disk? What is a reasonable number of logical status files that should
be provided?

Answer
Considering maintenance of disk integrity from error to recovery, at least three
logical status files should be provided (dual files 3 = 6 files).
If there is not enough room on the disk, two logical status files are reasonable
(dual files 2 = 4 physical files). If an error occurs in such a case, it must be
recovered immediately.
If only one logical status file is provided and an error occurs in the status file, the
database will have to be re-created.

B. Questions and Answers

1085

(15) Handling of status files (status file placement)
Question

How should status files be placed on disks?
Answer

As a rule, no more than one physical status file should be placed on the same disk
(if multiple files are placed on the same disk, using dual files or multiple logical
files serves no purposes).
If two logical files are defined, the files should be distributed among four disks;
if three logical files are defined, they should be distributed among six disks.
Reliability can be achieved with fewer disks by placing physical status files in a
ring format, as shown in the following figure.
Example of placement of three logical files:

This placement configuration provides two generations with both versions
available in the event of an error on one of the volumes.

(16) Peak capacity of a HiRDB file system area for work table files
Question

How can I determine the peak capacity of a HiRDB file system area for work table
files (back-end server definition: pdwork)?

Answer
Use the pdfstatfs command:
pdfstatfs -d name-of-HiRDB-file-system-area-for-work-table-files

The -d option displays the maximum utilization value for the allocated
HiRDB file system area. The peak capacity value that is output is the
maximum utilization value.
The maximum utilization value can be cleared with the pdfstatfs -c
command:

pdfstatfs -c name-of-HiRDB-file-system-area-for-work-table-files

B. Questions and Answers

1086

The -c option sets the maximum utilization value for the allocated HiRDB
file system area to 0.

Notes
The -d and -c options of the pdfstatfs command are applicable only when the
usage of the HiRDB file system area is WORK or UTL. If the usage is SYS or DB,
this information is not displayed.
The -k option of the pdfmkfs command is used to specify the usage of a HiRDB
file system area.

(17) HiRDB cannot be started by the pdstart command
Question

What is happening when HiRDB won't start when the pdstart command is
entered and -prc results in abnormal termination with Psp4017?

Answer
Possible causes are:

• HiRDB has not been set up correctly.
• There is no access privilege to the /dev/HiRDB/pth directory or this

directory does not exist.
Set up HiRDB correctly. After setting up HiRDB, check the access privilege for
/dev/HiRDB/pth.

(18) Any particular unit cannot be started by the pdstart command
Question

The pdstart command was entered, but a unit (other than the system manager
unit) doesn't start. Why?
When ps-ef is checked on the non-MGR unit, there is only pdprcd, and no
other HiRDB daemon is started.

Answer
Check in the system common definition (pdsys) for the unit that cannot be
started. The information defined with pdunit or pdstart probably does not match
the information defined with pdsys for the MGR unit.
Correct pdsys for this unit and then restart the unit with pdstart -u.

(19) HiRDB startup using the pdstart command is slow
Question

The pdstart command terminated with the message, KFPS05078-I Unable
to recognize HiRDB initialization Completion, but why does it take

B. Questions and Answers

1087

so long time (up to two hours) for all units to start?
Answer

1. If KFPS00608-W-314 is output more than once, check that the same host
name is specified for pdunit and pdstart in pdsys for all units and that
the specified host is correct (existing).

2. Check that all the hosts and networks specified with HiRDB are active.
(20) pdstart command results in an error (reason code=SETUP)

Question
The pdstart command results in an error with the KFPS01801-E message.
Why?

Answer
Following are possible reasons:
1. A HiRDB directory set in the PDDIR environment variable was not

registered in the OS with the pdsetup command.
2. A prerequisite program process is not installed (applicable only to 02-00).
3. The process server daemon will not start due to too few semaphores in the

kernel.
Take the following action:
1. Register the HiRDB directory into the OS with the pdsetup command.
2. Install the prerequisite program process.
3. Increase the number of semaphores defined in the system. Note that the

specified value does not take effect until the system is restarted.
(21) pdstart command results in an error (reason code=TIMEOUT)

Question
The pdstart command results in an error with the KFPS01861-E message
(reason code=TIMEOUT). Why?

Answer
Following are possible reasons:
1. It took more time to start a unit than was expected.
2. There is a specification error in the server common definition or in an

individual server definition.
Take the following action:

B. Questions and Answers

1088

1. Increase the value specified in the pd_start_time_out operand, and
re-enter the pdstart command.

2. Check the HiRDB message output to syslogfile and correct the
definition. Use pdsetup -d and enter y in response to the KFPS00036-Q
message to delete HiRDB from the OS, then re-execute pdsetup.

(22) A unit cannot be started by the pdstart command
Question

When pdstart was executed, the KFPS01815-E message (errno=11, 13, 22)
was output indicating that semaphore manipulation (semop, semctl) failed,
making it impossible to start the unit. Why?

Answer
Following are possible reasons:
1. HiRDB is not installed on the corresponding machine.
2. HiRDB was not registered into the OS with the pdsetup command.
3. The installation directory is linked to a shared disk.
Take the following action:
1. Restart the machine, execute pdsetup -d to delete the machine from the

OS, then re-execute pdsetup.
2. If HiRDB is installed on that machine, execute pdsetup.
3. Place the installation directories on a local disk at the local node.

Remarks
HiRDB cannot be used simply by copying its files from another environment; it
must actually be installed.

(23) Database definition utility (pddef) results in an error
Question

pdinit (database initialization utility) executed successfully, but pddef
(definition utility) results in an error. What causes this?

Answer
Possible causes are:

• If no response or connection error results, some information is probably
missing in the environment variables.
Check the values set in PDHOST and PDNAMEPORT.

PDHOST

B. Questions and Answers

1089

Specify the name of the host where HiRDB was started. This is the host name
specified with pdstart in the HiRDB system common definition (pdsys).

PDNAMEPORT
This is the port number specified with pd_name_port in the HiRDB system
common definition (pdsys).

• If a connection error results, an invalid value may be set in the PDUSER
environment variable.
Only one authorization identifier having the DBA privilege exists
immediately after executing pdinit. Specify the authorization identifier
and password in the PDUSER environment variable as follows:

Bourne shell
PDUSER="authorization-identifier"/"password"
export PDUSER

C shell
setenv PDUSER "authorization-identifier"/"password"

Notes
1. For details about the authorization identifier and password immediately after

executing pdinit, see Options in Database Initialization Utility (pdinit) in
the manual HiRDB Version 8 Command Reference.

2. When the PDUSER environment variable is set, the authorization identifier
and password must each be enclosed in double quotation marks and the
entire string must be enclosed in apostrophes. The same applies when any
other HiRDB utility or UAP is executed.

(24) CREATE TABLE statement LOB column definition
Question

In a column definition using the CREATE TABLE statement, what is the difference
in the memory requirements of HiRDB servers and HiRDB clients and in the
volume of data transfer if you specify the LOB column maximum length (for
example, 300 megabytes) as opposed to using the default (2 gigabytes)?

Answer
Whether or not the maximum length of LOB columns is specified, the memory
requirements and the data transfer volume are the same. The memory
requirements and data transfer volume when LOB columns are used for retrieval
or updating depend not on the maximum length in the column definition, but on
the actual length and the defined length of the embedded variables during retrieval
or updating. If there is no limit on the storage of binary data, it can be limited by

B. Questions and Answers

1090

the maximum length of LOB columns.

1091

Index

A
abstract data type 499

defining 251
null value for 253

abstract data type column structure base table 255
AFTER trigger 458
AIX 5L, specifying parameters unique to 944
alias (command) 1035
ALTER TRIGGER 459
ARRAY option (CREATE TABLE) 497
Asynchronous I/O Subsystem 324, 363

tuning 326, 365
asynchronous READ facility 399
asynchronous XA call 277
automatic opening

HiRDB/Parallel Server 363, 369
HiRDB/Single Server 324, 330

B
back-end server definition, creating 158
back-end server, to be linked with foreign server 163
base row log information, determining amount of 838
basic attribute (JP1 linkage) 305
batch index creation, handling errors during 261
BEFORE trigger 458
BINARY type 480
BLOB type 480
boundary value, specifying 429
branch row log information, determining amount
of 841
buffer hit rate 395

C
candidate key 474
character encoding, specifying 56
character special file, using 169, 1080
check constraint 554

table 554

check pending status 526, 556
client environment definition

registering, in transaction manager 291
setting (database creation) 230
specifying (multi-HiRDB) 382

close character string 290
cluster key

specifying 475
CLUSTER KEY option (CREATE TABLE) 476
column information work table

obtaining maximum number of 875
obtaining size of 872

command
environment setup using 151
overview of environment setup using 152

commit-time reflection processing 403
configuration file, creating 1031
constructor function 252, 503
CREATE INDEX 571
create rdarea statement 193, 198, 621
CREATE SCHEMA 230
CREATE TRIGGER 458
CREATE TYPE 251

D
data conversion facility, specifying (database
creation) 231
data dictionary LOB RDAREA

creating 206
determining size of 814
page length of 814, 815
placing (HiRDB/Parallel Server) 376
placing (HiRDB/Single Server) 337
total number of pages in 814, 815

data dictionary RDAREA
determining size of 776
determining size of (for storing database state
analyzed tables and database management
tables) 809

Index

1092

page length of 776
total number of pages in 776

data directory RDAREA
determining size of 813
page length of 813
total number of pages in 813

data global buffer 392
allocating 389

data in table, storing 257
data integrity

check constraint 558
referential constraint 535

data length
for abstract data type 758
for repetition columns 759
for variable-length character string type 757
list of 752
of abstract data type column, obtaining 757
of repetition columns, obtaining 759

data loading
with synchronization point specification 236
with synchronization point specification
(handling utility abnormal termination
errors) 267

data local buffer 411
allocating 412

data manipulation
check constraint 558
referential constraint 535

data page 397
data storage status, checking 250, 260
data types for which indexes canifot be defined 572
database

creating 229
maximum size of 1079
maximum value for 1074
minimum value for 1074

database definition utility
execution of (pddef) 1079
results in error (pddef) 1088

database initialization utility 193
database load utility 232
database structure modification utility 198
database update log acquisition method 258

database update log acquisition mode 232
types of 232

DBPARTNER2, HiRDB accessed from 1081
deadlock between referenced and referencing
tables 520
DECIMAL signed normalized number, facility for
conversion to 231
default constructor function 253, 503
deferred write processing 400

facility for parallel writes in 402
deferred write trigger 400

updated output page rate for 400
deletion prevented duration 489
DF/UX 5
dictionary server definition, creating 158
directory

created by HiRDB 6
created by HiRDB administrator 6

Directory Server linkage facility 4
disaster recovery 4
distributed database facility 5
distributed transaction processing 275
divided-input data file 237

creating 237
DROP TRIGGER 459
DTP 275
duplicate key index 1081
dynamic registration 285
dynamic transaction registration 276
dynamic updating of global buffers 388

E
encapsulation level 252, 503
environment

overview of setting up, using command 152
setting up, using command 151
setting up, using system generator 67

environment variable
setting 58
setting (multi-HiRDB) 382

error occurs while updating to HiRDB update version,
operation when 31
event

managing by JP1/IM 307

Index

1093

monitoring by JP1/IM (overview) 307
event attribute definition file 308
event notice, sending (JP1 linkage) 304
EXCEPT VALUES option (CREATE INDEX) 580
exceptional key 579
extended attribute (JP1 linkage) 305

F
facility for parallel output of system logs 324, 363
failed page searches by free space reusage facility,
number of 619
falsification prevented table 488
falsification prevention facility 488
FES host direct connection facility 347
file

created by HiRDB 6
created by HiRDB administrator 6

file size
required for execution of access path display
utility (pdvwopt) 903
required for execution of database condition
analysis utility (pddbst) 897
required for execution of database copy utility
(pdcopy) 898
required for execution of database load utility
(pdload) 886
required for execution of database
reorganization utility (pdrorg) 888
required for execution of dictionary import/
export utility (pdexp) 902
required for execution of integrity check utility
(pdconstck) 906
required for execution of optimizing
information collection utility (pdgetcst) 903
required for execution of rebalancing utility
(pdrbal) 904
required for execution of statistics analysis
utility (pdstedit) 895
required for utility execution,
determining 886

first dimension partitioning column 450
FIX attribute, specifying 473
FIX hash partitioning 429

examples of 438

FIX table, performance of 1080
flexible hash partitioning 429

examples of 438
floating machine 447
floating server 447

placement of 343
FOREIGN KEY 514
foreign key 513
foreign server information definition, creating 160
free page reuse mode 612
free space required for upgrading 13
free space reusage facility 612
front-end server definition, creating 157

G
global buffer

allocating 388, 392
designing 387
LRU management of 404
pre-writing of 409
setting number of sectors of 395

global buffer definition, example 393
global buffer pool, notes about allocating to list
RDAREA 391
global buffer residence utility 410
guaranteed-valid generations

number of (HiRDB/Parallel Server) 367
number of (HiRDB/Single Server) 328

H
hard disk, initializing 61
hash facility for hash row partitioning 421, 448
hash functions, types of 430
hash partitioning 429
heterogeneous system configuration 380
high-speed connection facility 347
HiRDB

64-bit mode migration error of 44
64-bit mode migration method of 40
continuous 24-hour operation 2
directory organization of 6
file organization of 6
in transaction manager, registering 284
installing 45, 49

Index

1094

installing new version while retaining old
version 19
linking to other products 271
linking with OLTP system 274
maximum value of 1072
migrated to 64-bit mode 40
minimum value of 1072
notes about upgrading 386
online distribution of 34
port number used by 1063
post-installation procedure 52
registering, in operating system 55
replacing existing version with new
version 17
starting, for the first time 197
system construction procedure 2
terminating normally 15
uninstalling 63
update version 24
updating to update version of 24
upgrading 12
upgrading error 20
upgrading plug-in of 19

HiRDB administrator
registering 46
registering (multi-HiRDB) 382

HiRDB Advanced Partitioning Option 450
HiRDB client to HiRDB server, connecting 1046
HiRDB Dataextractor, linking to 273
HiRDB Datareplicator, linking to 272
HiRDB directory

backing up 54
backing up disk containing 54
backing up files in (upgrading) 17
creating 52
creating (multi-HiRDB) 382
deleting files from 53
information to be specified in 52
making backup copy of 54
notes when creating 53

HiRDB environment setup 2
HiRDB event

that can be sent 305
that can be sent to JP1/Base 305

HiRDB External Data Access facility 4, 302
HiRDB file name

maximum value for 1077
minimum value for 1077

HiRDB file system area
access privilege of 62
creating 169
creating, for list RDAREA 175
creating, for RDAREA 172
creating, for system file 173
creating, for utility 174
creating, for work table file 173
designing (HiRDB/Parallel Server) 353
designing (HiRDB/Single Server) 314
designing, for list RDAREA (HiRDB/Parallel
Server) 358
designing, for list RDAREA (HiRDB/Single
Server) 319
designing, for RDAREA (HiRDB/Parallel
Server) 353
designing, for RDAREA (HiRDB/Single
Server) 314
designing, for system file (HiRDB/Parallel
Server) 355
designing, for system file (HiRDB/Single
Server) 316
designing, for utility (HiRDB/Parallel
Server) 357
designing, for utility (HiRDB/Single
Server) 317
designing, for work table file (HiRDB/Parallel
Server) 356
designing, for work table file (HiRDB/Single
Server) 317
determining size of (work table file) 871
duplexing, using mirror disk 172
for work table files, peak capacity of 1085
maximum size of 319, 359
owner of 62
types of 169

HiRDB group, setting up 47
HiRDB reserved port facility 1066
HiRDB server

connecting HiRDB client to 1046

Index

1095

using multi-connection address facility to
connect to 1048
with FQDN specified, connecting to 1046

HiRDB setup automation shell, creating 36
HiRDB Staticizer Option 4
HiRDB status, checking (upgrading) 15
HiRDB system construction with OLTP linkage 277
HiRDB system definition

creating 154
creating (HiRDB/Parallel Server) 156
creating (HiRDB/Single Server) 154
modifying (excluding UAP environment
definitions) 165
sharing 163
specifying (multi-HiRDB) 382

HiRDB system definition file
configuring (HiRDB/Parallel Server) 160
configuring (HiRDB/Single Server) 156
sharing 163

HiRDB Text Search Plug-in 246
HiRDB XA library 275

functions supported by 276
HiRDB/Developer's kit 1079
HiRDB/Parallel Server, estimating size of memory
required for 670
HiRDB/Single Server, estimating size of memory
required for 626
host name 1046
Hub optimization information definition,
creating 160

I
immediate acknowledgment, using 1068
index 571

creating 571
defining 257
definition for partitioned table 1081
designing 569
having B-tree structure 571
how to use 1081
items to be examined during design of 570
key length, list of 767
maximum key length of 572
multicolumn 577

non-partitioning key index 581
partitioning guideline of 583
partitioning key index 581
priority order of 573
row partitioning of 581
single-column 577
storage pages, calculating number of 763,
768
storage pages, number of 800
using, with exceptional key value set 579

index global buffer 392
allocating 388

index local buffer 411
allocating 411

index log information
determining amount of 846
determining amount of, for index page
splitting 847

index page splitting 847
index storage RDAREA, notes on estimating size
of 598
inheritance 253, 500
inner replica facility 4, 301
input data file UOC 237
insert history maintenance column 489
INSERT ONLY operand (CREATE TABLE) 489
installation directory, creating 47
installer to update HiRDB, using 24
installing

multi-HiRDB 382
option program product 49
plug-in 215

InstallTiming parameter 35
inter-process memory communication shared memory

HiRDB/Parallel Server 676
HiRDB/Single Server 631

IP address 1046

J
JP1/AJS2 308
JP1/Automatic Job Management System 2 304
JP1/Automatic Operation Monitor 308
JP1/Base 304
JP1/IM 307

Index

1096

JP1/Integrated Management - Manager 304
JP1/Software Distribution 34
JP1/Software Distribution Workstation

preparation on 35
specifying registration file for 35

JP1/System Event Service 304

K
kernel parameter 46

estimating (AIX 5L) 944
estimating (HP-UX) 936
estimating (Linux) 948
estimating (Solaris) 941

key range partitioning 428
examples of (with boundary values
specified) 437
examples of (with storage condition
specified) 435

KFPS00036-Q message 1082
KFPS01801-E message 1087
KFPS01815-E message 1088
KFPS01861-E message 1087
KFPS05078-I message 1086

L
large file

creating 171
LD_LIBRARY_PATH 58
LIBPATH 58
libraries for multi-thread, notes about 299
library sharing

multi-HiRDB 384
releasing (upgrading) 15

list RDAREA
creating 210
creating HiRDB file system area for 175
designing 609
designing HiRDB file system areas for 319,
358
determining size of 827
placing (HiRDB/Parallel Server) 379
placing (HiRDB/Single Server) 339

listen queue 955
LOB column 480

LOB global buffer 392
allocating 392

local buffer 411
designing 387

location information work table
obtaining maximum number of 877
obtaining size of 877

log acquisition mode 232, 259
LRU management method 404

M
master directory RDAREA

determining size of 812
page length of 812
total number of pages in 812

matrix partitioning 450
matrix-partitioned table 450
memory

allocation of (HiRDB/Parallel Server) 670
allocation of (HiRDB/Single Server) 626

memory requirement
calculation of (HiRDB/Parallel Server) 674
calculation of (HiRDB/Single Server) 629
checking (upgrading) 15
during array FETCH (front-end server) 744
during array FETCH (HiRDB/Single
Server) 667
during BLOB data retrieval (back-end
server) 744
during BLOB data retrieval (dictionary
server) 744
during BLOB data retrieval (front-end
server) 743
during BLOB data retrieval (HiRDB/Single
Server) 666
during BLOB data updating (back-end
server) 744
during BLOB data updating (dictionary
server) 744
during BLOB data updating (front-end
server) 743
during BLOB data updating (HiRDB/Single
Server) 666
during block transfer (front-end server) 744

Index

1097

during block transfer (HiRDB/Single
Server) 667
during execution of rapid grouping facility
(HiRDB/Parallel Server) 733
during execution of rapid grouping facility
(HiRDB/Single Server) 657
during hash join 659, 735
during SQL execution (HiRDB/Parallel
Server) 733
during SQL execution (HiRDB/Single
Server) 657
during SQL preprocessing (HiRDB/Parallel
Server) 741
during SQL preprocessing (HiRDB/Single
Server) 665
during subquery hash execution 659, 735
estimating, for HiRDB/Parallel Server 670
estimating, for HiRDB/Single Server 626
for foreign table retrieval 736
for Java virtual machine (HiRDB/Parallel
Server) 678
for Java virtual machine (HiRDB/Single
Server) 632

memory size
checking (upgrading) 14
required for execution of access path display
utility (pdvwopt) 927
required for execution of database condition
analysis utility (pddbst) 918
required for execution of database copy utility
(pdcopy) 921
required for execution of database definition
utility (pddef) 908
required for execution of database
initialization utility (pdinit) 907
required for execution of database load utility
(pdload) 908
required for execution of database recovery
utility (pdrstr) 922
required for execution of database
reorganization utility (pdrorg) 913
required for execution of database structure
modification utility (pdmod) 915

required for execution of dictionary import/
export utility (pdexp) 925
required for execution of optimizing
information collection utility (pdgetcst) 919
required for execution of statistics analysis
utility (pdstedit) 918
required for utility execution,
determining 907

message queue, estimating size of 952
mirror disk, duplexing HiRDB file system area
using 172
monitoring free area for system log files facility

HiRDB/Parallel Server 360
HiRDB/Single Server 321

multi-connection facility 276
X/Open XA interface environment 286

multi-HiRDB
installing 382
setting environment for 382
system design for 382

multi-thread, XA interface supporting 277
multicolumn partitioning 581
multiple front-end server 343

example of configuration using 345
setting up 344
using 343

N
network configuration

example of (FQDN) 1047
example of (multi-connection address
facility) 1048

network definition
example of (FQDN) 1047
example of (multi-connection address
facility) 1048

new page allocation mode 612
new values correlation name 459
NFS 163
NO SPLIT option 479
no-log mode 232, 259
no-split option, specifying 478
non-UNIQUE attribute 1081
normalizing table 422

Index

1098

NOT NULL constraint 474
number reserved 617

O
old correlation name 459
old or new values alias 459
OLTP linkage support 274
OLTP products supported for linking 274
open character string 286
OpenTP1 274, 1080
OpenTP1/Server Base Enterprise Option 274
operating system parameter 46

checking (upgrading) 16
optimizing based on cost 573
option program product

installing 49
registering, in operating system 55

OS parameter 46
estimating (AIX 5L) 944
estimating (HP-UX) 936
estimating (Linux) 948
estimating (Solaris) 941
specifying 935

OTS 277
override 502

P
page 604

allocating 607
determining length of 604
free 604
full 604
releasing 608
unused 604
used 604
used free 604

page search mode switchovers, number of 618
partition, setting 61
partitioning key 428

selecting 429
password, changing (database creation) 230
PATH 58
PCTFREE option (CREATE TABLE) 602, 607
pd_assurance_table_no operand 617

pd_check_pending operand 514, 554
pd_dbbuff_lru_option operand 404
pd_dbbuff_rate_updpage operand 402
pd_dbsync_point operand 400, 403
pd_dfw_awt_process operand 402
pd_foreign_server_libpath operand 302
pd_hb_ary_fec_num operand 736
pd_inner_replica_control operand 301
pd_ipc_tcp_nodelayack operand 1068
pd_jp1_event_level operand 305
pd_jp1_use operand 304
pd_large_file_use operand 171
pd_log_dual operand 324, 363
pd_log_org_no_standby_file_opr operand 301
pd_log_org_reflected_logpoint operand 301
pd_log_rec_leng operand 326, 365
pd_log_rerun_reserved_file_open operand 324, 363
pd_log_rpl_no_standby_file_opr operand 272
pd_log_singleoperation operand 324, 363
pd_lv_mirror_use operand 301
pd_max_foreign_server operand 302
pd_max_reflect_process_count operand 301
pd_pageaccess_mode operand 407
pd_registered_port operand 1063, 1066
pd_rpl_hdepath operand 272
pd_rpl_init_start operand 272
pd_shared_rdarea_use operand 621
pd_spd_assurance_count operand 329, 368
pd_spd_dual operand 328, 367
pd_spd_reduced_mode operand 330, 369
pd_spd_reserved_file_auto_open operand 330, 369
pd_spool_cleanup operand 54
pd_spool_cleanup_interval operand 53
pd_spool_cleanup_interval_level operand 53
pd_spool_cleanup_level operand 54
pd_sts_singleoperation operand 333, 372
pd_sysdef_default_option operand 12
pd_syssts_singleoperation operand 333, 372
pdadmvr command 25
pdbuffer operand 392
pdbufmod command 388
pdchgconf command 166
pdconfchk command 154
PDCONFPATH 58

Index

1099

pdcspool command 53
pddef control statement 1079
PDDIR 58
pdfmkfs command 169, 621
pdhubopt operand 302
pdinit 193
pdload 232
pdloginit command 177, 178
pdls -d ust command

deleting registration from OS 63
when upgrading HiRDB 15

pdls command 26
pdmod 198
pdopsetup command 55
pdpgbfon 410
pdplgrgst command 217
pdplgset command 215
pdplugin operand 220
pdprgcopy command 26
pdprgrenew command 26
pdrplstart command 349
pdrplstop command 349
pdsetup -d command, response to 1082
pdsetup command 55
pdstart command

fails to start any particular unit by 1086
fails to start HiRDB by 1086
fails to start unit by 1088
results in error 1087
when HiRDB startup is slow using 1086

pdstbegin operand 302
pdstsinit command 179
peak capacity (HiRDB file system area for work table
file) 1085
percentage of free pages in a segment 602
percentage of unused space in a page 606

obtaining 607
setting 606

plug-in
canceling setup of 227
deleting 226
installing 51, 215
owner of 218
registering 217

setting up 215
uninstalling 227
upgrading 223

plug-in environment, setting up 213
plug-in index 587

defining 249
effects of row partitioning of 588
row partitioning of 588

port number 1063
POSIX library version 57
pre-update log acquisition mode 232, 259
prefetch facility 397, 600
previous version, restoring to 21
PRIMARY KEY option (CREATE TABLE) 474
primary key, specifying 474
PRIVATE 503
process private area (memory requirement) 630, 675
PROTECTED 503
Psp4017 1086
PUBLIC 503

Q
questions and answers 1078

R
RDAREA

creating HiRDB file system area for 172
deleting unneeded 237
designing 595
designing HiRDB file system areas for 314,
353
determining size of 747
items to be examined during design of 596
maximum value for 598
minimum value for 598
placing (HiRDB/Parallel Server) 375
placing (HiRDB/Single Server) 336

read only 276
Real Time SAN Replication 4
reason code=SETUP 1087
reason code=TIMEOUT 1087
rebalancing facility 421, 449
record length of system log file 326, 365
RECOVERY operand 259

Index

1100

CREATE TABLE 233
recovery-unnecessary front-end server 348
recovery-unnecessary front-end server unit 348
reduced mode operation

HiRDB/Parallel Server 369
HiRDB/Single Server 330

reference buffer 388
reference-only back-end server 505
referenced table 513
referencing table 513
referential constraint 513
registry facility, initializing 219
registry information, registering 221
registry LOB RDAREA

determining size of 826
page length of 826
total number of pages in 826

registry RDAREA, determining size of 824
registry, deleting 227
regular file, using 1080
reload-not-completed data status 492
remote installation 34
remote shell execution environment, setting 59
repetition column 496
replication facility, linking to 272
resource manager 275
RM 275
RM name 286
RM switch name 286
RM-related object name 290
RMM 298
routine 503
row partitioned table 428

creating 238

S
sample configuration file, name of 1023
sample database file, name of 1023
sample file 1021

use of 1031
sample UOC file, name of 1025
schema, defining (database creation) 230
second dimension partitioning column 450
segment 600

allocating 603
determining size of 600
free 600
full 600
number of 814, 815, 823
releasing 603
setting percentage of free pages in 602
unused 600
used 600
used free 600

SEGMENT REUSE option 617
ALTER TABLE 617

semaphore, estimating size of 952
server name operand 621
setting

when firewall is installed 1056
when NAT is installed 1056

shared directory 165
shared memory

formula for, used by each server (HiRDB/
Parallel Server) 717
formula for, used by single server (HiRDB/
Single Server) 649
memory requirement 631, 676
used by back-end server 723
used by dictionary server 719
used by front-end server 717
used by global buffers (HiRDB/Parallel
Server) 729
used by global buffers (HiRDB/Single
Server) 655
used by single server 649
used by unit controller (HiRDB/Parallel
Server) 685
used by unit controller (HiRDB/Single
Server) 638

shared RDAREA 620
shared table 505
shell script for executing operation commands under
aliases, creating 1035
SHLIB_PATH 58
simple setup tool 65
single operation

HiRDB/Parallel Server 363

Index

1101

HiRDB/Single Server 324
single server definition, creating 155, 157
single-column partitioning 581
single-phase optimization 276

notes on 299
snapshot method 407
space conversion facility 231
SQL reserved word definition

creating (HiRDB/Single Server) 156
creating (HiRDB/Parallel Server) 159

SQL, notes about (X/Open XA interface
environment) 299
static registration 285
status file

creating 179
designing (HiRDB/Parallel Server) 369
designing (HiRDB/Single Server) 330
determining number of records in 861
determining size of 861
handling of (dual status file) 1083
handling of (status file definition) 1084
handling of (status file placement) 1085
handling of (when error occurs) 1084
single operation of (HiRDB/Parallel
Server) 371
single operation of (HiRDB/Single
Server) 333

status-file double operation
HiRDB/Parallel Server 371
HiRDB/Single Server 333

status-file single operation
HiRDB/Parallel Server 371
HiRDB/Single Server 333

storage condition, specifying 429
storage requirement

for HiRDB 625
for utility execution 885

substitutability 254, 501
subtype 500
Sun Java System Directory Server 4
supertype 500
SUPPRESS option (CREATE TABLE) 477
suppress option, specifying 477
symbolically linking 61

file name 61
synchronization point dump file

automatic opening of (HiRDB/Parallel
Server) 369
automatic opening of (HiRDB/Single
Server) 330
creating 178
designing (HiRDB/Parallel Server) 366
designing (HiRDB/Single Server) 327
determining number of records in 859
determining size of 859
duplexing of 328, 367
number of guaranteed-valid generations for
(HiRDB/Parallel Server) 367
number of guaranteed-valid generations for
(HiRDB/Single Server) 328
reduced mode operation for (HiRDB/Parallel
Server) 368
reduced mode operation for (HiRDB/Single
Server) 329

synchronization point dump, handling of 1082
synchronization point, line number of 236
system common definition

creating (HiRDB/Parallel Server) 156
creating (HiRDB/Single Server) 154

system configuration
maximum value for 1072
minimum value for 1072
of HiRDB/Parallel Server 343
of HiRDB/Single Server 312
sample file 1026

system design
for HiRDB/Parallel Server 342
for HiRDB/Single Server 312
for multi-HiRDB 382

system file
creating 177
creating HiRDB file system area for 173
designing (HiRDB/Parallel Server) 360
designing (HiRDB/Single Server) 321
designing HiRDB file system areas for 316,
355
determining size of 829

Index

1102

example of creating (HiRDB/Parallel
Server) 183
example of creating (HiRDB/Single
Server) 179

system generator, setting up environment using 67
system log file

automatic opening of (HiRDB/Parallel
Server) 363
automatic opening of (HiRDB/Single
Server) 324
creating 177
designing (HiRDB/Parallel Server) 360
designing (HiRDB/Single Server) 321
determining size of 830
double operation of (HiRDB/Parallel
Server) 363
double operation of (HiRDB/Single
Server) 324
duplexing of (HiRDB/Parallel Server) 363
duplexing of (HiRDB/Single Server) 323
record length of 830
record length of (HiRDB/Parallel Server) 365
record length of (HiRDB/Single Server) 326
records, number of 831
single operation of (HiRDB/Parallel
Server) 363
single operation of (HiRDB/Single
Server) 324
total size of 830

system log information
determining size of 831
output depending on SQL manipulation,
amount of 855
output during database creation by utility,
amount of 852
output during execution of RDAREA
automatic extension facility, amount of 855
output during index definition, amount of 834
output during table data updating, amount
of 836
output during table definition, amount of 833

system manager, placement of 342
system RDAREA

backing up (upgrading) 14

creating 193
placing (HiRDB/Parallel Server) 375
placing (HiRDB/Single Server) 336

system reconfiguration command 166
system switchover facility, using 4

T
table

actual 470
containing abstract data type 499
containing repetition column 496
creating, containing plug-in-provided abstract
data type 246
creating, containing user-defined abstract data
type 251
creating, with LOB column 242
defining 255
definition information of (sample file) 1027
design method for row partitioning of 428
designing 415
effects of row partitioning of 440
forms of row partitioning of 439
items to be examined during design of 416
matrix partitioning of 450
normalizing 422
partitioning, among multiple servers 586
partitioning, within one server 585
procedure for creating, with abstract data type
(SGMLTEXT type) 246
row partitioning of 428
storage pages, calculating number of 749,
760, 777
storing data in 257
view 470

table integrity
how to check (check constraint) 558
how to check (referential constraint) 541

TIMEOUT 1087
TM 275
TMPDIR 59
TP1/Resource Manager Monitor 298
TPBroker 274
transaction completion type 299
transaction manager 275

Index

1103

example of registering in 292
information to be registered in 286
modifying registration information in 295
registering HiRDB in 284

transaction transfer 276, 281
trigger

defining 457
management of 464

trigger action search conditions 457
trigger event 457
trigger event SQL 457
trnstring operand 283
TUXEDO 274

U
UAP environment definition

creating (HiRDB/Parallel Server) 159
creating (HiRDB/Single Server) 155
modifying 167

uninstalling plug-in 227
unique index 236
uniqueness constraint 474
unit control information definition

creating (HiRDB/Parallel Server) 157
creating (HiRDB/Single Server) 154

UNIX file system, initializing 61
UOC 237
updatable back-end server 505
updatable column 489
update buffer 388
update patch to update HiRDB, using 24
upgrading

backing up files in HiRDB directory
before 17
backing up system RDAREAs before 14
before 12
checking HiRDB status before 15
checking memory requirement before 15
checking memory size before 14
checking operating system parameters
before 16
checking to see whether HiRDB is online
before 15

checking total number of records in system log
file before 16
free space checking before 12
HiRDB 12
HiRDB plug-in 19
plug-in 223
releasing library sharing before 15
terminating HiRDB normally before 15

used free pages, release of 608
user LOB RDAREA

creating 202
determining size of 823
page length of 823
placing (HiRDB/Parallel Server) 378
placing (HiRDB/Single Server) 338
total number of pages in 823

user RDAREA
creating 198
determining size of 748
formula for calculating total number of pages
in 748
placing (HiRDB/Parallel Server) 377
placing (HiRDB/Single Server) 338

user's own coding 237
utility

creating HiRDB file system area for 174
designing HiRDB file system areas for 317,
357

utility special unit
installing 312
installing (multi-HiRDB) 383

V
view table, creating 470

W
WebLogic Server 274
WITHOUT ROLLBACK option, specifying 485
work disk 447
work table file 870

creating HiRDB file system area for 173
designing HiRDB file system areas for 317,
356
determining maximum number of 881

Index

1104

determining maximum number of
extensions 883
determining size of 869
used by SQL statement, size of 872
used by utility, size of 878

X
X/Open XA interface 275
XA interface 1080

supporting multi-thread 277
xa_switch_t structure-name 286

Reader’s Comment Form
We would appreciate your comments and suggestions on this manual. We will use
these comments to improve our manuals. When you send a comment or suggestion,
please include the manual name and manual number. You can send your comments
by any of the following methods:

• Send email to your local Hitachi representative.
• Send email to the following address:

 WWW-mk@itg.hitachi.co.jp
• If you do not have access to email, please fill out the following information

and submit this form to your Hitachi representative:

Manual name:

Manual number:

Your name:

Company or
organization:

Street address:

Comment:

(For Hitachi use)

