
OpenTP1 Version 7
TP1/Client User's Guide
TP1/Client/J

3000-3-D59-20(E)

Relevant program product
P-2464-7394 uCosminexus TP1/Client/J 07-02
P-2464-73A4 uCosminexus TP1/Client/J 07-02
This manual can be used for other products, in addition to the product shown above. For details, see the Release Notes.
This product has been developed in accordance with a quality system approved under ISO 9001 and TickIT.

Trademarks
The right to use the trademark DCE in Japan is sub-licensed from OSF.
Internet Explorer is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries.
JDK is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
Microsoft is a registered trademark of Microsoft Corp. in the U.S. and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Windows is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Microsoft, Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.
Windows Vista is a registered trademark of Microsoft Corporation in the United States and/or other countries.
Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing names with the capitalization used by
the manufacturers or by writing names with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use of a
trademark in this document should not be regarded as affecting the validity of the trademark.

Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The
software described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of
the terms and conditions governing your use of the software and documentation, including all warranty rights, limitations of liability,
and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your country.
No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.
Printed in Japan.

Edition history
Edition 1 (3000-3-D59(E)): October 2006
Edition 2 (3000-3-D59-20(E)): March 2009

Copyright
All Rights Reserved. Copyright (C) 2006, 2009, Hitachi, Ltd.

Summary of amendments
The following table lists changes in this manual (3000-3-D59-20(E)) and the product
changes related to uCosminexus TP1/Client/J 07-02.

Changes Location

Parallel processing of receipt of service request messages is now
supported in order to prevent scheduling delays (multi-scheduler
facility).
Due to this change, the following operands have been added to the TP1/
Client/J environment definition:
• dcscdmulti

• dcscdmulticount

2.2.13, 5.2.1, 5.2.2

An operation similar to batch terminal startup provided by
conventional mainframe OLTP is now supported (unidirectional server
message reception function).
Due to this change, the following methods have been added to the
TP1Client class:
• acceptNotification

• cancelNotification

• openNotification

• acceptNotificationChained

• closeNotification

In addition, the following classes have been added:
• ErrAcceptCanceledException

• ErrVersionException

2.5, 2.11.2, 3.1, 4. Class TP1Client, 4.
Class ErrAcceptCanceledException, 4.
Class ErrVersionException

UAP traces are now acquired from the following methods of the
TP1Client class:
• setUapTraceMode

• setErrorTraceMode

• setMethodTraceMode

• setDataTraceMode

2.11.2

Performance analysis trace identification information is now output to
UAP traces.

2.11.2, 2.11.7(5)

When an RPC is issued to TP1/Server version 07-02 or later using the
remote API facility, identification information such as an IP address
can now be added to the RPC message that is sent to the scheduler.

2.11.7(2)

When connection establishment is requested by an RPC or TCP/IP
communication, the source host can now be specified (source host
specification facility).
Due to this change, the dccltcupsndhost operand has been added to
the TP1/Client/J environment definition.

2.13, 5.2.1, 5.2.2

The following table lists changes in this manual (3000-3-D59-20(E)) and the product
changes related to uCosminexus TP1/Client/J 07-01.

In addition to the above changes, minor editorial corrections have been made.

The receive port can now be fixed for RPCs that use the scheduler
direct facility and the name service (receive port fixing facility).
Due to this change, the dccltcuprcvport operand has been added to
the TP1/Client/J environment definition.

2.14, 5.2.1, 5.2.2

A list of the TP1/Client/J environment definition operands has been
added.

5.1.1

The maximum execution time from startup to termination of a
transaction branch that is executed by the RAP-processing server can
now be specified.
Due to this change, the dcclttrcmplmttm operand has been added to
the TP1/Client/J environment definition.

5.2.1, 5.2.2

Notes have been added about the dcrcvport operand of the TP1/
Client/J environment definition.

5.2.2

Changes to the API, definitions, commands, and default values during
upgrading have been described.

Appendix A

Changes Location

Information has been added about the files provided by DTP1/Client/J
and the directories for storing the files.

1.3.1(1)

A facility for setting terminal identification information has been added
in order to fix a DCCM3 logical terminal that is allocated to a CUP
when communication is established with a DCCM3 logical terminal by
means of a permanent connection.
Due to this change, the setConnectInformation method has been
added to the TP1Client class.
In addition, the dccltconnectinf operand has been added to the
TP1/Client/J environment definition.

2.9.1(6), 2.9.3, Table 2-29, Table 3-2, 4.
Class TP1Client, 5.2.1, 5.2.2

A data compression facility has been added in order to compress user
data that is sent over the network by RPC.
Due to this change, the dccltdatacomp operand has been added to the
TP1/Client/J environment definition.

Table 2-42, 2.12, 5.2.1, 5.2.2

Notes have been added about the execution of methods of instances of
the same TP1Client class.

3.2

Changes Location

i

Preface

This manual describes the functionality and usage of the following program products:

• P-2464-7394 uCosminexus TP1/Client/J

• P-2464-73A4 uCosminexus TP1/Client/J

These products can be used on operating systems that support Java(TM)2 Software
Development Kit, Standard Edition, Version 5.0 or later.

For details about products described in this manual other than the above program
product, check the release schedule for the OpenTP1 Version 7 compliant version of
the product in question.

Intended readers
This manual is intended for system designers, programmers, and operators, as well as
system administrators.

Organization of this manual
This manual consists of the following chapters and an appendix:

1. Overview
Chapter 1 provides a functional overview of TP1/Client/J and describes its
features.

2. Functionality
Chapter 2 describes the functionality of TP1/Client/J.

3. Program Interface
Chapter 3 describes the program interface for using TP1/Client/J.

4. Classes Used with TP1/Client/J
Chapter 4 describes the classes that are used with TP1/Client/J.

5. Definitions
Chapter 5 describes the TP1/Client/J environment definitions.

6. Error Handling
Chapter 6 describes the procedures for handling errors.

ii

Appendix A. Changes During Upgrading
Appendix A describes the changes to APIs, definitions, and commands from
version to version.

Related publications
This manual is part of a related set of manuals. The manuals in the set, including this
manual, are listed below (with the manual numbers):
OpenTP1 products

• OpenTP1 Version 7 Description (3000-3-D50(E))

• OpenTP1 Version 7 Programming Guide (3000-3-D51(E))

• OpenTP1 Version 7 System Definition (3000-3-D52(E))

• OpenTP1 Version 7 Operation (3000-3-D53(E))

• OpenTP1 Version 7 Programming Reference C Language (3000-3-D54(E))

• OpenTP1 Version 7 Programming Reference COBOL Language
(3000-3-D55(E))

• OpenTP1 Version 7 Messages (3000-3-D56(E))

• OpenTP1 Version 7 Tester and UAP Trace User's Guide (3000-3-D57(E))

• OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/W, TP1/Client/P
(3000-3-D58(E))

• OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/J (3000-3-D59(E))

• OpenTP1 Version 7 TP1/LiNK User's Guide (3000-3-D60(E))#1

• OpenTP1 Version 7 Protocol TP1/NET/TCP/IP (3000-3-D70(E))

• OpenTP1 Version 7 TP1/Message Queue User's Guide (3000-3-D90(E))#1

• OpenTP1 Version 7 TP1/Message Queue Messages (3000-3-D91(E))#1

• OpenTP1 Version 7 TP1/Message Queue Application Programming Guide
(3000-3-D92(E))#1

• OpenTP1 Version 7 TP1/Message Queue Application Programming Reference
(3000-3-D93(E))#1

Other OpenTP1 products

• TP1/Web User's Guide and Reference (3000-3-D62(E))#1

Other related products

• VOS3 Data Management System XDM Description (6190-6-620(E))

iii

• VOS3 Data Management System XDM E2 System Definition (6190-6-625(E))

Note

You must check and confirm that the products described in these manuals will run
on your operating system.

#1: If you want to use this manual, confirm that it has been published. (Some of
these manuals might not have been published yet.)

Conventions: Abbreviations
This manual uses the following abbreviations for product names:

Full name or meaning Abbreviation

uCosminexus Application Server Enterprise Cosminexus Application Server

uCosminexus Application Server Standard

VOS1 DCCM3 DCCM3

VOS3 XDM/DCCM3

Java(TM) Java

Java(TM)2 Software Development Kit, Standard Edition JDK

uCosminexus TP1/Client/J TP1/Client/J

uCosminexus TP1/Client/P TP1/Client/P

uCosminexus TP1/Client/W TP1/Client/W

uCosminexus TP1/NET/TCP/IP TP1/NET/TCP/
IP

uCosminexus TP1/LiNK TP1/LiNK TP1/Server

uCosminexus TP1/Server Base TP1/Server Base

uCosminexus TP1/Web TP1/Web

Microsoft(R) Windows(R) 2000 Advanced Server Operating System Windows 2000

Microsoft(R) Windows(R) 2000 Datacenter Server Operating System

Microsoft(R) Windows(R) 2000 Professional Operating System

Microsoft(R) Windows(R) 2000 Server Operating System

Microsoft(R) Windows(R) Software Development Kit Windows SDK

iv

• Unless functional differences exist, Windows Server 2003, Windows XP and
Windows Vista are referred to collectively as Windows.

This manual also uses the following abbreviations:

Microsoft(R) Windows Server(R) 2003, Datacenter Edition Windows Server
2003 (32bit)

Windows
Server 2003

Microsoft(R) Windows Server(R) 2003, Datacenter x64 Edition

Microsoft(R) Windows Server(R) 2003, Enterprise Edition

Microsoft(R) Windows Server(R) 2003, Enterprise x64 Edition

Microsoft(R) Windows Server(R) 2003 R2, Enterprise Edition

Microsoft(R) Windows Server(R) 2003 R2, Enterprise x64 Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard x64 Edition

Microsoft(R) Windows Server(R) 2003, Standard Edition

Microsoft(R) Windows Server(R) 2003, Standard x64 Edition

Microsoft(R) Windows Server(R) 2003, Enterprise Edition for
Itanium-based systems

Windows Server
2003 (64bit)

Microsoft(R) Windows Vista(R) Business (x86) Windows
Vista(32bit)

Windows
Vista

Microsoft(R) Windows Vista(R) Enterprise (x86)

Microsoft(R) Windows Vista(R) Ultimate (x86)

Microsoft(R) Windows Vista(R) Business (x64) Windows
Vista(64bit)

Microsoft(R) Windows Vista(R) Enterprise (x64)

Microsoft(R) Windows Vista(R) Ultimate (x64)

Microsoft(R) Windows(R) XP Professional Operating System Windows XP

Abbreviation Full name or meaning

API Application Programming Interface

Full name or meaning Abbreviation

v

CGI Common Gateway Interface

CUP Client User Program

DCE Distributed Computing Environment

EJB Enterprise Java Beans(TM)

FD Floppy Disk

HTTP Hyper Text Transfer Protocol

J2EE Java 2 Enterprise Edition

JDK Java(TM) Development Kit

JSP JavaServer Pages(TM)

MHP Message Handling Program

OLTP Online Transaction Processing

OS Operating System

PC Personal Computer

PRF PeRFormance

RAP Remote Application Programming Interface

RPC Remote Procedure Call

SPP Service Providing Program

TCP/IP Transmission Control Protocol / Internet Protocol

TMS-4V/SP Transaction Management System-4V/System Product

UAP User Application Program

VM Virtual Machine

WS Workstation

WWW World Wide Web

Abbreviation Full name or meaning

vi

Conventions: Diagrams
This manual uses the following conventions in diagrams:

Conventions: Fonts and symbols
Font and symbol conventions are classified as:

• General font conventions

• Conventions in syntax explanations

These conventions are described below.
General font conventions

The following table lists the general font conventions:

Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes menus,
menu options, buttons, radio box options, or explanatory labels. For example, bold is used in
sentences such as the following:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

vii

Examples of coding and messages appear as follows (although there may be some
exceptions, such as when coding is included in a diagram):
MakeDatabase
...
StoreDatabase temp DB32

In examples of coding, an ellipsis (...) indicates that one or more lines of coding are not
shown for purposes of brevity.
Conventions in syntax explanations

Syntax definitions appear as follows:

StoreDatabase [temp|perm] (database-name ...)
The following table lists the conventions used in syntax explanations:

Italics Italics are used to indicate a placeholder for some actual text provided by the user or system.
Italics are also used for emphasis. For example:
• Write the command as follows:

copy source-file target-file
• Do not delete the configuration file.

Code font A code font indicates text that the user enters without change, or text (such as messages) output
by the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:

The password is incorrect.

Example font or symbol Convention

StoreDatabase Code-font characters must be entered exactly as shown.

database-name This font style marks a placeholder that indicates where appropriate characters are
to be entered in an actual command.

SD Bold code-font characters indicate the abbreviation for a command.

perm Underlined characters indicate the default value.

[] Square brackets enclose an item or set of items whose specification is optional.

| Only one of the options separated by a vertical bar can be specified at the same
time.

... An ellipsis (...) indicates that the item or items enclosed in () or [] immediately
preceding the ellipsis may be specified as many times as necessary.

Font Convention

viii

Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of
two digits each, separated by a hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00

• Version 2.05 is written as 02-05

• Version 2.50 (or 2.5) is written as 02-50

• Version 12.25 is written as 12-25

The version number might be shown on the spine of a manual as Ver. 2.00, but the same
version number would be written in the program as 02-00.

Important note on this manual
Please check the availability of the products and manuals for HAmonitor,
ServerConductor/DeploymentManager, Cosminexus, and Job Management Partner 1/
Automatic Job Management System 2.

() Parentheses indicate the range of items to which the vertical bar (|) or ellipsis (...)
is applicable.

Example font or symbol Convention

ix

Contents

Preface i

Intended readers ...i
Organization of this manual ...i
Related publications ..ii
Conventions: Abbreviations .. iii
Conventions: Diagrams ..vi
Conventions: Fonts and symbols..vi
Conventions: KB, MB, GB, and TB ... viii
Conventions: Version numbers.. viii
Important note on this manual... viii

1. Overview 1

1.1 Features of the client ..2
1.2 Mechanism of TP1/Client/J operation..5
1.3 Environment of TP1/Client/J..8

1.3.1 Installation...8
1.3.2 Development environment ..9
1.3.3 Execution environment ...10

2. Functionality 11

2.1 Permanent connection ..12
2.1.1 Establishing and releasing a permanent connection......................................12
2.1.2 Definitions related to the use of a permanent connection14
2.1.3 Note about using a permanent connection ..14

2.2 Remote procedure calls ..15
2.2.1 Implementing RPCs ..15
2.2.2 Data transfer with an RPC...15
2.2.3 RPC modes ..15
2.2.4 Scheduling facility...18
2.2.5 Inter-node load-balancing facility ...18
2.2.6 Time monitoring of RPCs ...19
2.2.7 RPCs that use the remote API facility...19
2.2.8 RPCs that use the scheduler direct facility..21
2.2.9 RPCs that use the name service...22
2.2.10 RPCs with a communication destination specified27
2.2.11 Reduction of server workload in the event of synchronous-response RPC

timeout ..29
2.2.12 Use of ServerSocket for RPCs ..30

x

2.2.13 RPCs using the multi-scheduler facility ... 31
2.3 Transaction control .. 35

2.3.1 Start and synchronization point acquisition of transactions 35
2.3.2 Synchronization point acquisition .. 37
2.3.3 Relationship between mode of remote procedure calls and synchronization

point.. 41
2.3.4 Acquiring the current transaction identifiers .. 42
2.3.5 Reporting information about the current transaction.................................... 42
2.3.6 Verifying the transaction synchronization point in the event of an error 42
2.3.7 Definitions for TP1/Server ... 44

2.4 TCP/IP communication facility ... 46
2.4.1 Unidirectional sending of messages ... 46
2.4.2 Unidirectional receiving of messages... 47
2.4.3 Bidirectional sending and receiving of messages... 50
2.4.4 Received message assembly facility... 52
2.4.5 Notes about using the TCP/IP communication facility 53

2.5 Unidirectional server message reception facility... 55
2.5.1 Flow of unidirectional message reception facility processing...................... 55
2.5.2 Flow of unidirectional message consecutive reception facility processing.. 56
2.5.3 Notes about using the unidirectional message consecutive reception

facility... 57
2.5.4 Releasing the unidirectional message reception wait status 57

2.6 TP1/Web connection facility.. 59
2.6.1 Connecting to TP1/Web (starting a session)... 59
2.6.2 Service requests to TP1/Web .. 59
2.6.3 Releasing a connection to TP1/Web (ending a session) 60
2.6.4 RPC facilities for connecting to TP1/Web.. 60

2.7 Dynamic definition changing facility .. 65
2.8 Facility for monitoring TCP/IP connection establishment 66

2.8.1 API that uses the connect method internally .. 66
2.8.2 Exceptions that occur when the connect method times out.......................... 67

2.9 DCCM3 connection facility... 70
2.9.1 Issuing an ROC to DCCM3.. 70
2.9.2 TCP/IP communication with DCCM3 ... 75
2.9.3 Sending terminal identification information to a DCCM3 logical terminal. 75

2.10 XA resource service facility .. 80
2.11 Troubleshooting facility ... 82

2.11.1 Contents of trace files ... 82
2.11.2 UAP trace.. 83
2.11.3 Data trace .. 105
2.11.4 Error trace and memory trace ... 105
2.11.5 Method trace ..114
2.11.6 Debug trace ..114
2.11.7 Performance analysis trace ..115

xi

2.12 Data compression facility ...128
2.12.1 Effects of the data compression facility ..129
2.12.2 Notes about using the data compression facility129

2.13 Source host specification facility..131
2.14 Receive port fixing facility ...133

3. Program Interface 139

3.1 List of APIs...140
3.2 How to use APIs ...144

3.2.1 Execution order of APIs ..144
3.2.2 Adjustment during TP1/Client/J execution ...148
3.2.3 Collecting error information and adjusting facilities149
3.2.4 Instructing trace output..150

4. Classes Used with TP1/Client/J 153

Class TP1Client ...154
Class DCRpcBindTbl ..223
Class ErrAcceptCanceledException ..224
Class ErrBufferOverflowException ..225
Class ErrCollisionMessageException ...226
Class ErrClientTimedOutException ..227
Class ErrConnfreeException ...228
Class ErrConnRefusedException ..229
Class ErrFatalException ..230
Class ErrHazardException...231
Class ErrHazardNoBeginException ..232
Class ErrHeuristicException ...233
Class ErrHeuristicNoBeginException ...234
Class ErrHostUndefException...235
Class ErrInitializingException...237
Class ErrInvalidArgsException ...238
Class ErrInvalidMessageException...239
Class ErrInvalidPortException ..240
Class ErrInvalidReplyException ...242
Class ErrIOErrException...243
Class ErrMessageTooBigException ..244
Class ErrNetDownAtClientException...245
Class ErrNetDownAtServerException ..246
Class ErrNetDownException...247
Class ErrNoBeginException..248
Class ErrNoBufsAtServerException ...249
Class ErrNoBufsException..250
Class ErrNoSuchServiceException ...251
Class ErrNoSuchServiceGroupException ...252

xii

Class ErrNotTrnExtendException... 253
Class ErrNotUpException... 254
Class ErrProtoException... 255
Class ErrReplyTooBigException .. 256
Class ErrRMException ... 257
Class ErrRollbackException ... 258
Class ErrRollbackNoBeginException... 259
Class ErrSecchkException.. 260
Class ErrSecurityException .. 261
Class ErrServerBusyException... 262
Class ErrServerTimedOutException... 263
Class ErrServiceClosedException .. 264
Class ErrServiceNotUpException... 265
Class ErrServiceTerminatedException ... 266
Class ErrServiceTerminatingException .. 267
Class ErrSyserrAtServerException... 268
Class ErrSyserrException ... 269
Class ErrTestmodeException .. 270
Class ErrTimedOutException ... 271
Class ErrTMException ... 273
Class ErrTrnchkException .. 274
Class ErrTrnchkExtendException... 275
Class ErrVersionException ... 276
Class TP1ClientException .. 277

5. Definitions 279

5.1 Overview of definitions ... 280
5.1.1 List of TP1/Client/J environment definitions ... 280
5.1.2 Rules for definitions ... 284
5.1.3 Format of path names ... 286

5.2 Details of TP1/Client/J environment definitions ... 287
5.2.1 Format... 287
5.2.2 Operands... 288
5.2.3 Notes about specifying the TP1/Client/J environment definition 315

6. Error Handling 317

6.1 Collecting trace information .. 318
6.2 Handling network errors .. 319
6.3 Validity of timer values.. 320
6.4 Handling other errors ... 321

Appendix 323

A. Changes During Upgrading .. 324
A.1 Changes in 07-02 .. 324

xiii

A.2 Changes in 07-01...325
A.3 Changes in 07-00...326

Index 329

xiv

List of figures

Figure 1-1: Relationships between TP1/Server and TP1/Client/J (for a CUP created by a Java
applet) ... 2

Figure 1-2: Relationship between TP1/Server and TP1/Client/J (for a CUP created by a Java
application) ... 3

Figure 1-3: Relationships between TP1/Server and TP1/Client/J (for a CUP created by a Java
servlet) .. 4

Figure 1-4: Mechanism of TP1/Client operation (1/2) .. 6
Figure 1-5: Mechanism of TP1/Client operation (2/2) .. 7
Figure 2-1: Establishing and releasing a permanent connection.. 13
Figure 2-2: Data transfer with an RPC... 15
Figure 2-3: Processing flow of a synchronous-response RPC ... 16
Figure 2-4: Processing flow of a non-response type RPC ... 17
Figure 2-5: Flow of a service request when the remote API facility is used 20
Figure 2-6: Flow of an RPC service request using the scheduler direct facility...................... 21
Figure 2-7: Flow of a service request when the name service is used 23
Figure 2-8: Example of issuing an RPC to TP1/Server in the multi-homed host environment26
Figure 2-9: Flow of a service request when an RPC with a communication destination specified

is used ... 28
Figure 2-10: Overview of processing by the server-load reduction facility in the event of a

synchronous-response RPC timeout... 30
Figure 2-11: Relationships between a transaction and an RPC (when Y is specified for the

dcrapautoconnect operand)... 36
Figure 2-12: Chained and unchained modes of transactions ... 38
Figure 2-13: Rollback of a transaction (when an error occurs in TP1/Server processing) 39
Figure 2-14: Rollback of a transaction (when a rollback request method is called)................ 40
Figure 2-15: Relationship between a synchronous-response RPC and the synchronization

point .. 41
Figure 2-16: Relationship between a non-response type RPC and the synchronization point 42
Figure 2-17: Method for verifying the transaction synchronization point in the event of an

error .. 44
Figure 2-18: Unidirectional sending of a message... 47
Figure 2-19: Unidirectional receiving of a message .. 49
Figure 2-20: Unidirectional receiving of a message when an error occurs.............................. 50
Figure 2-21: Bidirectional sending and receiving of messages ... 51
Figure 2-22: Flow of unidirectional message reception facility processing 55
Figure 2-23: Flow of unidirectional message consecutive reception facility processing 56
Figure 2-24: Flow of releasing unidirectional message reception wait status 58
Figure 2-25: Connecting by specifying dcrapautoconnect=Y ... 61
Figure 2-26: Connecting by specifying dcrapautoconnect=N and defining the dcweburl

operand ... 62

xv

Figure 2-27: Connecting by using an openConnection method in which a URL is specified..63
Figure 2-28: Flow of service execution when using the DC_JGW service set63
Figure 2-29: Flow of service execution when using the DC_JUSR service set64
Figure 2-30: Issuing an RPC to a DCCM3 server ..73
Figure 2-31: Relationship between CUP and DCCM3 logical terminal (when the terminal

identification information setting facility is not used) ..76
Figure 2-32: Relationship between CUP and DCCM3 logical terminal (when the terminal

identification information setting facility is used) ..77
Figure 2-33: Trace collection points in establishing or terminating connection with the

RAP-processing listener..119
Figure 2-34: Trace collection points that are used when an API surrogate execution request is

issued by the remote API facility ..121
Figure 2-35: Trace collection points that are used when issuing an RPC to the schedule

server ...123
Figure 2-36: Trace collection points that are used when issuing a service information inquiry to

the name server..124
Figure 2-37: Overview of database adapter ..128
Figure 2-38: When the source host specification facility is not used and when the facility is

used..132
Figure 2-39: When the receive port fixing facility is not used (RPC using the scheduler direct

facility) ..134
Figure 2-40: When the receive port fixing facility is not used (RPC using the name

service) ..135
Figure 2-41: When the receive port fixing facility is used (RPC using the scheduler direct

facility) ..136
Figure 2-42: When the receive port fixing facility is used (RPC using the name service)137

xvi

List of tables

Table 1-1: TP1/Client/J files and storage directories ... 8
Table 1-2: Files used by TP1/Client/J and the required access authorities 9
Table 2-1: Relationship between operand definitions in the TP1/Client/J environment definition

and scheduler daemon (RPCs using the scheduler direct facility) 33
Table 2-2: Relationship between operand definitions in the TP1/Client/J environment definition

and scheduler daemon (RPCs using the name service) .. 34
Table 2-3: APIs (methods) that use the connect method internally ... 66
Table 2-4: Exceptions returned by the API (method) when the connect method times out..... 68
Table 2-5: Communication method supported by TP1/Client/J... 80
Table 2-6: Connection modes supported by TP1/Client/J.. 80
Table 2-7: RPC call modes supported by TP1/Client/J.. 80
Table 2-8: Options and names for trace files.. 82
Table 2-9: Information for the openConnection() method and the openConnection(host, port)

method .. 84
Table 2-10: Information for the openConnection(url, flags) method....................................... 86
Table 2-11: Information for the rpcCall method .. 86
Table 2-12: Information for the rpcCallTo method .. 88
Table 2-13: Information for the closeConnection method ... 90
Table 2-14: Information for the setDcwatchtim method.. 90
Table 2-15: Information for the setDccltinquiretime method .. 91
Table 2-16: Information for the setDccltdelay method .. 91
Table 2-17: Information for the setDcselint method .. 91
Table 2-18: Information for the setDccltextend method .. 91
Table 2-19: Information for the setRpcextend method .. 92
Table 2-20: Information for the setDchost method .. 92
Table 2-21: Information for the rpcOpen method .. 93
Table 2-22: Information for the trnBegin method.. 93
Table 2-23: Information for the trnInfo method... 95
Table 2-24: Information for the getTrnID method ... 95
Table 2-25: Information for the cltReceive method ... 96
Table 2-26: Information for the cltSend method.. 97
Table 2-27: Information for the cltAssemSend method ... 97
Table 2-28: Information for the cltAssemReceive method .. 98
Table 2-29: Information for the setConnectInformation method ... 98
Table 2-30: Information for the acceptNotification method .. 99
Table 2-31: Information for the cancelNotification method .. 100
Table 2-32: Information for the openNotification method... 100
Table 2-33: Information for the acceptNotificationChained method 101
Table 2-34: Information for the setUapTraceMode method .. 101
Table 2-35: Information for the setErrorTraceMode method... 102

xvii

Table 2-36: Information for the setMethodTraceMode method ...102
Table 2-37: Information for the setDataTraceMode method ..103
Table 2-38: Information for the trnChainedCommit method..104
Table 2-39: Information for the trnUnchainedCommit method..104
Table 2-40: Information for the trnChainedRollback method ..104
Table 2-41: Information for the trnUnchainedRollback method ..104
Table 2-42: Messages collected in error and memory traces ..106
Table 2-43: Correspondence of codes to method names ..108
Table 2-44: Correspondence of codes to exception names...112
Table 2-45: Details of the trace collection points when establishing or terminating connection

with the RAP-processing listener..117
Table 2-46: Details of the trace collection points when an API surrogate execution request is

issued by the remote API facility ..119
Table 2-47: Details of the trace collection points when issuing an RPC to the schedule

server ...121
Table 2-48: Details of the trace collection points during API execution................................124
Table 3-1: List of APIs (package and classes) ..140
Table 3-2: List of APIs (methods) ..140
Table 5-1: List of TP1/Client/J environment definitions ..280
Table 5-2: Operation of various methods based on the connection establishment mode295
Table 5-3: Action of the rpcCall method when 2 or more is specified in the dccltrpcmaxmsgsize

operand ..309
Table A-1: Additions/deletions to APIs, definitions, and commands in TP1/Client/J 07-02 .324
Table A-2: Changes to operation in TP1/Client/J 07-02...324
Table A-3: Additions/deletions to APIs, definitions, and commands in TP1/Client/J 07-01 .325
Table A-4: Changes to operation in TP1/Client/J 07-01...325
Table A-5: Additions/deletions to APIs, definitions, and commands in TP1/Client/J 07-00 .326
Table A-6: Changes to operation in TP1/Client/J 07-00...326

1

Chapter

1. Overview

This chapter provides an overview of OpenTP1 client and describes its features.

1.1 Features of the client
1.2 Mechanism of TP1/Client/J operation
1.3 Environment of TP1/Client/J

1. Overview

2

1.1 Features of the client

TP1/Client/J makes it possible for Java applets running on a Web browser, Java
applications, and Java servlets running on an application server to use remote
procedure calls (RPCs) to request services from an OpenTP1 server UAP. A program
that is created by a Java applet, Java application, or a Java servlet to request services
is called a CUP (client user program). A server UAP from which a CUP can request
services is called an OpenTP1 service-providing program (SPP).

TP1/Client/J enables you to start a transaction from the SPP that was started by a CUP.
When you do this, you can apply a distributed OLTP environment to application
systems on the Internet or on an intranet. You can also support a variety of platforms
with a single CUP because you use Java applets, applications, and servlets to create
CUPs. There is no need to create a separate CUP for each platform.

In this manual, TP1/Server Base and TP1/LiNK are referred to collectively as TP1/
Server. The TP1/Server Base versions that can process requests from TP1/Client/J are
03-05 and later; earlier versions of TP1/Server Base will not run.

The following figures show the relationships between TP1/Server and TP1/Client/J
when a CUP is created by a Java applet, a Java application, or a Java servlet.

Figure 1-1: Relationships between TP1/Server and TP1/Client/J (for a CUP
created by a Java applet)

1. Overview

3

When you create a CUP with a Java applet, you can centralize management of the CUP
via the Web server; there is no need to distribute the CUP to clients.

Figure 1-2: Relationship between TP1/Server and TP1/Client/J (for a CUP
created by a Java application)

1. Overview

4

Figure 1-3: Relationships between TP1/Server and TP1/Client/J (for a CUP
created by a Java servlet)

1. Overview

5

1.2 Mechanism of TP1/Client/J operation

When the facilities indicated below execute, TP1/Client/J uses a specific TP1/Server
as a gateway. This is called a remote procedure call (RPC). For details about RPCs, see
the manual OpenTP1 Programming Guide. TP1/Client/J supports four types of RPCs:

• RPCs that use the remote API facility

• RPCs that use the scheduler direct facility

• RPCs that use the name service

• RPCs with a communication destination specified

You use the dchost operand of the TP1/Client/J environment definition to define a
TP1/Server as a gateway.

The following figures show the mechanism of TP1/Client/J operation.

1. Overview

6

Figure 1-4: Mechanism of TP1/Client operation (1/2)

1. Overview

7

Figure 1-5: Mechanism of TP1/Client operation (2/2)

1. Overview

8

1.3 Environment of TP1/Client/J

TP1/Client/J provides the OpenTP1 server with a class library file for calling
applications. This section describes the installation target, development environment,
and execution environment of TP1/Client/J.

1.3.1 Installation
(1) Provided medium and format

To support multiple platforms, TP1/Client/J is provided as a Joliet-format CD-ROM.
To install the product on a non-PC machine, you must first install it on a PC and then
install it on the target machine using a method such as a file transfer in the binary
mode.

Because the TP1/Client/J files are stored in long-file-name format, the OS on the target
PC must support this file name format.

The TP1/Client/J files are stored in the two directories described below.

Table 1-1: TP1/Client/J files and storage directories

(2) Installation target of the class library file
This section describes the installation target of the class library file.

For developing and executing a Java applet

Save the TP1Client.jar file in a desired directory and specify it with the
applet HTML tag.

For executing a Java application

To use JDK, save the TP1Client.jar file in a desired directory and specify the
CLASSPATH environment variable.

Storage
directory

TP1/Client/J file Description

LIB TP1Client.jar Stores the class libraries of TP1/Client/J in jar
format.

SAMPLES AppletSample.html Stores sample source codes for applets,
applications, and servlets that use TP1/Client/J.

AppletSample.java

ApplicationSample.java

betran.ini

ServletSample.java

1. Overview

9

For executing a Java servlet

Save the TP1Client.jar file according to the specifications of the Java servlet
to be used.

(3) Specifying the file access authority
The following table shows the files that are accessed by TP1/Client/J and the required
access authorities.

Table 1-2: Files used by TP1/Client/J and the required access authorities

To apply the security manager to the Java VM on which a client program using TP1/
Client/J is running, specify appropriate permissions for the security policy file so that
the TP1/Client/J class library can access these files. In the case of Java servlets and
EJB, some application server products with these containers may be using the security
manager by default for security purposes. Check the specifications of the application
server you are using and specify appropriate permissions.

1.3.2 Development environment
To run TP1/Client/J, your environment must support development of Java applets,
applications, and servlets (such as by providing a Java compiler).

JDK version

File type Access type Storage location

TP1/Client/J class
library

Read Any location.

TP1/Client/J
environment definition

Read Any location.

UAP trace file Write Directory specified in the dcuaptracepath operand of the TP1/
Client/J environment definition or in the path argument of the
setUapTraceMode method.

Data trace file Write Directory specified in the dcdatatracepath operand of the TP1/
Client/J environment definition or in the path argument of the
setDataTraceMode method.

Method trace file Write Directory specified in the dcmethodtracepath operand of the
TP1/Client/J environment definition or in the path argument of the
setMethodTraceMode method.

Error trace file Write Directory specified in the dcerrtracepath operand of the TP1/
Client/J environment definition or in the path argument of the
setErrorTraceMode method.

Debug trace file Write TP1clientJ directory under the home directory of the user
executing the Java VM.

1. Overview

10

Java(TM)2 Software Development Kit, Standard Edition, Version 5.0 (JDK 5.0) or
later is supported.

1.3.3 Execution environment
TP1/Server server version

TP1/Server Base version 03-05 or later can process requests from TP1/Client/J.

Cosminexus Application Server

To use TP1/Client/J from a Java servlet, EJB, or JSP in the J2EE server mode# of
Cosminexus Application Server, you must have specified the following settings
in advance:

1. Edit the option definition file of the J2EE server# and specify the following
character string:

add.class.path=<TP1/Client/J-installation-directory>/
TP1Client.jar

2. Edit the option definition file of the server management command# and
specify the following character string:

In Windows

set USRCONF_JVM_CLASSPATH=<TP1/Client/J-installation-directory>/
TP1Client.jar

In UNIX

set USRCONF_JVM_CLPATH=<TP1/Client/J-installation-directory>/
TP1Client.jar

Specify the path name of the installation directory in the format supported by
the operating system being used.

#

For details about the J2EE server mode, option definition of the J2EE server,
and option definition of the server management commands, see the manuals
Cosminexus Function Description and Cosminexus Reference - Definition.

11

Chapter

2. Functionality

This chapter describes the OpenTP1 client.

2.1 Permanent connection
2.2 Remote procedure calls
2.3 Transaction control
2.4 TCP/IP communication facility
2.5 Unidirectional server message reception facility
2.6 TP1/Web connection facility
2.7 Dynamic definition changing facility
2.8 Facility for monitoring TCP/IP connection establishment
2.9 DCCM3 connection facility
2.10 XA resource service facility
2.11 Troubleshooting facility
2.12 Data compression facility
2.13 Source host specification facility
2.14 Receive port fixing facility

2. Functionality

12

2.1 Permanent connection

TP1/Client/J enables you to send and receive messages while a connection is
established between a CUP (Java applet, application, or servlet using TP1/Client/J)
and a RAP-processing server. Such a connection is called a permanent connection.
When you execute RPCs that use the remote API facility, chained RPCs, or the
transaction facility, you much ensure that a permanent connection has been
established.

By establishing a permanent connection, you minimize the number of control packets
for establishing and releasing connection, thereby improving communications
efficiency.

2.1.1 Establishing and releasing a permanent connection
You call the openConnection method to establish a permanent connection. You
specify the location of the target RAP-processing server in an argument of the
openConnection method or in the dchost operand in the TP1/Client/J environment
definition and the dcrapport operand. If there is a firewall between the CUP and the
RAP-processing listener and server, you must specify the location of the firewall
instead of the RAP-processing server.

If the openConnection method returns an exception, the permanent connection has
not been established.

TP1/Client/J can establish only one permanent connection per CUP at a time. TP1/
Client/J supports two permanent connection modes, depending on the management
method:

Non-auto connect mode

In the non-auto connect mode, TP1/Client/J calls explicitly the
openConnection method with a CUP and establishes a connection with the
RAP-processing server or RAP-processing listener of TP1/Server. If the
rpcCall method is called before the openConnection method is called, the
rpcCall method returns ErrProtoException. To release the connection, call
the closeConnection method with CUP.

Auto connect mode

The auto connect mode manages the connection with TP1/Client/J. If TP1/Client/
J determines that a connection has not been established when the first rpcCall
or trnBegin method is called, it automatically establishes a permanent
connection with the RAP-processing listener and server. In this case, there is no
need to call the openConnection method. If the openConnection method is
called, the method returns ErrProtoException. You can release the connection
within the rpcClose method. To forcibly release a TP1/Client/J-managed

2. Functionality

13

connection, call the closeConnection method.

You use the dcrapautoconnect operand in the TP1/Client/J environment definition
or the setRpcextend method to specify the mode that is to be used (non-auto connect
mode or auto connect mode).

TP1/Client/J uses a permanent connection for message transmission until the
permanent connection is released by the closeConnection method. However, some
errors will also cause the permanent connection to be released.

The following figure shows the procedure for establishing and releasing a permanent
connection.

Figure 2-1: Establishing and releasing a permanent connection

2. Functionality

14

2.1.2 Definitions related to the use of a permanent connection
To use a permanent connection, you must specify the following definitions as
necessary:

TP1/Client/J environment definition

• dccltinquiretime

• dchost

• dcrapautoconnect

• dcrapdirect

• dcrapport

RAP-processing listener service definition

For details about the RAP-processing listener service definition, see the manual
OpenTP1 System Definition.

2.1.3 Note about using a permanent connection
You cannot establish a permanent connection from within a transaction. You can
generate transactions only after you have established a permanent connection.

2. Functionality

15

2.2 Remote procedure calls

This section describes remote procedure calls (RPCs) from a CUP to an SPP.

For details about RPCs, see the manual OpenTP1 Programming Guide.

2.2.1 Implementing RPCs
You use the user service structure definition of TP1/Server or the dcsvstart
command to start an SPP.

The procedure is to call a method that requests service from the CUP and issue a
request to the SPP. To request service, you use the rpcCall method, which specifies
in its parameters the service group name and service name of the SPP.

2.2.2 Data transfer with an RPC
To transfer data with an RPC, you call the rpcCall method specifying the SPP service
group name, service name, input parameters, input parameters length, service response
storage area, and response length. The maximum response length that can be specified
with the rpcCall method is 1 MB. You can change this value using the
dccltrpcmaxmsgsize operand of the TP1/Client/J environment definition.

The following figure shows data transfer with an RPC.

Figure 2-2: Data transfer with an RPC

2.2.3 RPC modes
TP1/Client/J supports three RPC modes: synchronous-response RPC, non-response
type RPC, and chained RPC.

2. Functionality

16

(1) Synchronous-response RPC
In this mode, a CUP sends an inquiry message to an SPP and receives a response
message. The CUP waits for the processing results to be returned from the SPP before
executing the next processing. If the same service is called more than once, the server
process is scheduled each time.

The following figure shows the processing flow of a synchronous-response RPC.

Figure 2-3: Processing flow of a synchronous-response RPC

(2) Non-response type RPC
In this mode, a CUP sends an inquiry message to an SPP but does not receive a
response message. Once it has sent an inquiry message to the SPP, the CUP
immediately executes the next processing without waiting for the processing results
from the SPP.

In the case of a non-response type RPC, you cannot receive an error in the event of a
communication error or service error.

The following figure shows the processing flow of a non-response type RPC.

2. Functionality

17

Figure 2-4: Processing flow of a non-response type RPC

(3) Chained RPC
In this mode, a CUP that uses the remote API facility sends an inquiry message to an
SPP and receives a response message. The CUP waits for the processing results to be
returned from the SPP before executing the next processing. The difference from a
synchronous-response RPC is that a chained RPC can fix the server process. This
means that when multiple inquiry messages are sent to the same service by means of
chained RPCs, the server process is not rescheduled.

Chained RPCs require fewer user processes per transaction, thereby reducing the
workload of transaction processing. A chained RPC used as a transaction functions in
a single global transaction.

Starting chained RPCs

To issue a service request for chained RPCs, specify DCRPC_CHAINED in the
flags parameter of the rpcCall method that requests the service. When a
service is requested with this value specified, the SPP identifies it for chained
RPCs and acquires a process. For the second and subsequent service requests, you
must also specify DCRPC_CHAINED in the flags argument.

Terminating chained RPCs

The following methods are provided for terminating chained RPCs:

• Execute the rpcCall method (synchronous-response RPC) with
DCNOFLAGS specified in the flags parameter for the service group that has
been executing the chained RPCs.

• Complete the global transaction that has been executing the chained RPCs
by synchronization point processing (commit or rollback).

Note

2. Functionality

18

If you call the closeConnection or rpcClose method without executing
a synchronous-response RPC, the following occurs:

• Outside the global transaction range

The process executing the service is locked until the chained RPC
timeout occurs.

• Within the global transaction range

Implicit commit occurs and the chained RPC is terminated.

Time monitoring of chained RPCs

A UAP whose service is requested with a chained RPC monitors the time until the
next service request arrives or until transaction synchronization point processing
occurs after a response is returned to the CUP. If no service request or
synchronization point processing request is received within this monitoring
interval, the UAP determines that an error has occurred in the CUP and terminates
the SPP abnormally. You specify the monitoring interval in the
watch_next_chain_time operand of the user service definition.

2.2.4 Scheduling facility
The scheduling facility of TP1/Server is also applicable to service requests from a CUP
to an SPP. TP1/Server creates a schedule queue for each service group of an SPP and
schedules the service requests.

2.2.5 Inter-node load-balancing facility
OpenTP1 provides a facility for distributing the workload among nodes to prevent
RPC requests from becoming concentrated on a specific node. This is called the
inter-node load-balancing facility.

To use the inter-node load-balancing facility, the following conditions must be
satisfied:

A user server is active that provides the same service to multiple nodes.

Each OpenTP1 node defines the other nodes in the all_node operand in the
system common definition and shares information about the user server (name
information) that is active in each OpenTP1 node.

This section describes the definitions, processing, and RPC processing related to the
use of the inter-node load-balancing facility of OpenTP1 for TP1/Client/J and TP1/
Server. Note that the TP1/Client/J facility balances workloads based only on TP1/
Server-side determination.

(1) Load balancing based on a TP1/Server determination
The schedule service of TP1/Server distributes the workload to appropriate nodes on
the basis of the status of node schedules.

2. Functionality

19

(a) Definitions for TP1/Client/J
Specify dcscddirect=Y in the TP1/Client/J environment definition.

This enables TP1/Client/J to issue a load-balancing request to the schedule service of
TP1/Server. In the definitions for TP1/Client/J, specify the OpenTP1 node whose
schedule service is to make the determination.

If there are multiple OpenTP1 nodes that can issue a scheduling request, scheduling is
requested in the order specified in the dchost operand. To randomly select a TP1/
Server that is to issue a scheduling request, instead of following the order specified in
the dchost operand, specify dchostselect=Y in the TP1/Client/J environment
definition.

(b) Definitions for TP1/Server
In the definitions for TP1/Server, do one of the following:

Specify the following operands in the schedule service definition:

scd_this_node_first = N (default)

scd_announce_server_status = Y (default)

Omit the schedule service definition.

2.2.6 Time monitoring of RPCs
When you issue a synchronous-response RPC, you can monitor the length of time until
a response message is received.

You use the dcwatchtim operand in the TP1/Client/J environment definition to
specify a monitoring interval.

You can also specify the monitoring interval by calling the setDcwatchtim method
from the CUP. To change the monitoring interval as appropriate for the service to be
requested, you must set a new monitoring interval before issuing the RPC. If no
response message is received within the specified monitoring interval, the RPC returns
an error.

2.2.7 RPCs that use the remote API facility
TP1/Client/J enables you to establish a permanent connection between a CUP and the
TP1/Server, transfer an API issued by the CUP to the TP1/Server, and have it executed
by a TP1/Server process. This functionality is called the remote API facility. When you
use the remote API facility, you can also issue service requests to UAPs inside the
firewall. In the case of a Java applet, because of Java security limitations, connection
can be established only with a RAP-processing server that is active in the TP1/Server
on the Web server to which the Java applet belongs. If an attempt is made to establish
connection with a RAP-processing server that is active outside the TP1/Server on the
Web server to which the Java applet belongs, the security manager returns

2. Functionality

20

SecurityException. An RPC that uses the remote API facility can use DCCM3 and
TMS-4V/SP, as well as TP1/Server.

The following figure shows the flow of a service request when the remote API facility
is used.

Figure 2-5: Flow of a service request when the remote API facility is used

1. Create an instance of the TP1Client class that is provided by TP1/Client/J.

2. Call the openConnection method to establish connection with the TP1/Server's
RAP-processing server.

3. Call the rpcCall method to issue a service request to the specified SPP via the
RAP-processing server.

You can call the rpcCall method as many times as necessary while the
connection is established.

4. Call the closeConnection method to release the connection with the TP1/
Server's RAP-processing server.

Note

2. Functionality

21

If you issue a service request to a server that is managed by the security facility
of DCE using the RAP-processing server, ErrSecchkException is returned.

When using the remote API facility with the dccltrpcmaxmsgsize operand
specified in the TP1/Client/J environment definition, if you issue a service request
to the SPP of a TP1/Server for which the rpc_max_message_size operand is
not specified in the system common definition, an RPC error is returned.

2.2.8 RPCs that use the scheduler direct facility
An RPC that uses the scheduler direct facility constitutes a service request that can be
executed from a Java application or servlet. It cannot be executed from a Java applet
due to security limitations.

This section explains the RPC flow that uses the scheduler direct facility and the
definition necessary for distributing the service request destination schedulers among
RPCs.

(1) RPC flow using the scheduler direct facility
To issue an RPC that uses the scheduler direct facility, specify dcscddirect=Y in the
TP1/Client/J environment definition. Also specify the dchost and dcscdport
operands in the JP1/Software Distribution Client environment definition or specify the
SCD server (schedule server) using the setDchost method. Before calling an
rpcCall method, you must call an rpcOpen method. At the end of the CUP, you must
call an rpcClose method.

The following figure shows the flow of an RPC service request using the scheduler
direct facility.

Figure 2-6: Flow of an RPC service request using the scheduler direct facility

1. Create an instance of the TP1Client class that is provided by TP1/Client/J.

2. Functionality

22

2. Call the rpcOpen method to initialize the RPC environment of the CUP.

3. Call the rpcCall method to issue a service request to the specified SPP via the
TP1/Server's SCD server.

You can call the rpcCall method as many times as necessary while the
connection is established (until an rpcClose method is called after the rpcOpen
method was called).

4. Call the rpcClose method to release the RPC environment.

When you use this facility, you cannot issue an RPC to an SPP that receives requests
from a socket. Furthermore, if you use this facility with the dccltrpcmaxmsgsize
operand specified in the TP1/Client/J environment definition, an error may occur at the
communication destination TP1/Server node.

(2) Definition for distributing the service request destination schedulers among
RPCs

When RPCs use the scheduler direct facility, you can distribute the service request
destination schedulers among RPCs by switching the RPC in the round-robin mode.
To distribute the service request destination schedulers among RPCs, specify
dcscdhostchange=Y in the TP1/Client/J environment definition.

2.2.9 RPCs that use the name service
An RPC that uses the name service constitutes a service request that can be executed
from a Java application or servlet. It cannot be executed from a Java applet due to
security limitations.

This section explains the RPC flow that uses the name service and the definition
necessary for distributing the service request destination schedulers among RPCs.

(1) RPC flow using the name service
To issue an RPC that uses the name service, specify dcnamuse=Y in the TP1/Client/J
environment definition. Also specify the dchost and dcnamport operands in the
TP1/Client/J environment definition or specify the nam server with the setDchost
method. Before calling an rpcCall method, you must call an rpcOpen method. At
the end of the CUP, you must call an rpcClose method.

The following figure shows the flow of a service request when the name service is
used.

2. Functionality

23

Figure 2-7: Flow of a service request when the name service is used

1. Create an instance of the TP1Client class that is provided by TP1/Client/J.

2. Call the rpcOpen method to initialize the RPC environment of the CUP.

3. Call the rpcCall method to issue a service request to the specified SPP.#

4. Call the rpcClose method to release the RPC environment.
#

The internal processing of the rpcCall method is as follows:

1. Establishes connection with the nam server that is defined with the dchost
and dcnamport operands.

2. Sends a request to acquire service information and release connection with
the nam server.

3. After receiving a connection establishment request from the nam server to
send a response message, establishes connection and receives the service
information.

4. Releases connection with the nam server and uses the service information in
the response message from the nam server to establish connection with the
SCD server on the TP1/Server that is executing the service.

2. Functionality

24

5. After establishing connection with the SCD server, sends the service request
and releases the connection.

6. After receiving a connection establishment request from an SPP to send a
response message, establishes the connection and receives the response
message.

7. Releases the connection with the SPP.

When you use this facility, you cannot issue an RPC to an SPP that receives requests
from a socket. If you specify a value of 2 or greater for the dccltrpcmaxmsgsize
operand of the TP1/Client/J environment definition, an RPC using the name service
collects information only from services that are running on a TP1/Server that supports
the rpc_max_message_size operand of the system common definition. Even when
the input parameter length for the service exceeds the value in the
rpc_max_message_size operand of the system common definition at the service
request destination, the service request is executed. You cannot issue an RPC to an SPP
on a TP1/Server that does not support the rpc_max_message_size operand of the
system common definition.

(2) Definition for distributing the service request destination schedulers among
RPCs

When RPCs use the name service, you can store the information on the service request
destination schedulers from the name server into the cache, and distribute the service
request destination schedulers among RPCs by referencing the information in the
cache. To distribute the service request destination schedulers among RPCs, the
following definitions are necessary for TP1/Client/J and TP1/Server.

(a) Definition for TP1/Client/J
To distribute the service request destination schedulers among RPCs, specify
dccltloadbalance=Y in the TP1/Client/J environment definition.

With this setting, TP1/Client/J acquires information on multiple service request
destination schedulers from the name server and stores the information on the service
request destination scheduler having the lowest load level in the cache. One or more
service request destination schedulers may be stored in the cache.

If multiple service request destination schedulers are stored in the cache, the first
service request destination scheduler is selected at random. If the service request from
an RPC is the second or subsequent one, the cache is referenced to obtain information
on service request destination schedulers, and service request destination schedulers
are switched in the round-robin mode and distributed among the RPCs.

Specifying a time limit for the cache

Using the dccltcachetim operand of the TP1/Client/J environment definition,
you can specify a time limit for retaining the information on the service request
destination schedulers in the cache.

2. Functionality

25

After storing information on the service request destination schedulers in the
cache, if the cache expiration date is reached, the information on the service
request destination schedulers in the cache is discarded. The cache is updated
when information on the service request destination schedulers is subsequently
acquired and stored in the cache.

The dccltcachetim operand of the TP1/Client/J environment definition is
valid only when dccltloadbalance=Y is specified in the TP1/Client/J
environment definition.

(b) Definition for TP1/Server
When operands are specified in the TP1/Server definitions listed below, the scheduler
load information is also acquired when information on the service request destination
schedulers is acquired from the name server.

Schedule service definition

• scd_announce_server_status=Y (default)#1

User service definition or user service default definition

• loadcheck_interval

• levelup_queue_count#2

• leveldown_queue_count#2

#1

If N is specified in this operand, the load level of the scheduler is always set to
LEVEL0 (low load level). If a scheduler whose load level is always LEVEL0
becomes a service request destination scheduler of TP1/Client/J, it is always
selected, regardless of its actual load condition.

#2

Specify this operand if the Specify scheduler's load level is to be determined by
the number of remaining service requests.

(3) Definition for issuing an RPC to TP1/Server in the multi-homed host
environment

If the communication destination TP1/Server is in the multi-homed host environment,
an RPC that uses the name service may encounter a communication error. This is
caused when the network where the CUP resides cannot communicate with the
network adapter that corresponds to the host name (IP address) specified by the
my_host operand in the system common definition of the communication destination
TP1/Server.

To avoid this problem, specify dccltnammlthost=Y in the TP1/Client/J

2. Functionality

26

environment definition. The following figure shows two network configuration
examples and shows whether the dccltnammlthost operand of TP1/Client/J
environment definition is required in each of these network configurations.

Figure 2-8: Example of issuing an RPC to TP1/Server in the multi-homed host
environment

For the CUP in network configuration example 2 to be able to communicate with IP
address 4, dccltnammlthost=Y must be specified in the TP1/Client/J environment
definition. Without this specification, a communication error occurs between the CUP
and IP address 4.

2. Functionality

27

If the communication destination TP1/Server is in the multi-homed host environment,
and the service request destination SPP resides on the same TP1/Server, specifying
dccltnammlthost=Y in the TP1/Client/J environment definition enables the
issuance of an RPC. If a TP1/Server residing on a network to which no CUP is
connected is specified in the all_node operand of the system common definition of
the communication destination TP1/Server, an attempt to issue an RPC to an SPP on
the first TP1/Server causes an error. If the communication destination TP1/Server is
not in the multi-homed host environment, you can issue an RPC regardless of the
specification in the dccltnammlthost operand of the TP1/Client/J environment
definition.

2.2.10 RPCs with a communication destination specified
An RPC with a communication destination specified enables you to specify explicitly
the server that is to execute the service request (target OpenTP1 node).

When an RPC with a communication destination specified is used, a service request is
executed at the target OpenTP1 node specified as the server that executes the service
request. The service request will not be transferred to any other OpenTP1 node even if
the specified OpenTP1 node is inactive or shut down. You cannot use the inter-node
load-balancing facility with this type of RPC.

To use an RPC with a communication destination specified, call the rpcCallTo
method. The rpcCallTo method executes the service request directly on the TP1/
Server schedule service under the host name that is contained in the DCRpcBindTbl
object.

Note that you cannot use this facility together with an RPC that uses the remote API
facility.

The following figure shows the flow of a service request when an RPC with a
communication destination specified is used.

2. Functionality

28

Figure 2-9: Flow of a service request when an RPC with a communication
destination specified is used

1. Create an instance of the TP1Client class that is provided by TP1/Client/J.

2. Call the rpcOpen method to initialize the RPC environment of the CUP.

3. Call the rpcCallTo method and issue a service request to the specified SPP via
the TP1/Server's SCD server.

The service request is processed by the SPP in the same node, regardless of the
status of the SPP at the communication destination.

You can call the rpcCallTo method as many times as necessary until the
rpcClose method is called after the rpcOpen method.

4. Call the rpcClose method to release the RPC environment.

When you use this facility, you cannot issue an RPC to an SPP that receives requests
from a socket. Furthermore, when you use this facility with the
dccltrpcmaxmsgsize operand specified in the TP1/Client/J environment
definition, an error may occur at the communication destination TP1/Server node.

2. Functionality

29

2.2.11 Reduction of server workload in the event of
synchronous-response RPC timeout

When an rpcCall method is called from a TP1/Client/J CUP, the TP1/Server accepts
a service request.

Because this request may be delayed for some reason, such as SPP execution wait time,
execution time, or communication error, TP1/Client/J monitors for errors by setting a
maximum response wait time.

On the other hand, TP1/Server does not recognize the maximum response time of TP1/
Client/J. Even if TP1/Client/J detects a timeout, TP1/Server may be continuing with
service processing.

By using the server-load reduction facility in the event of a synchronous-response RPC
timeout, you can reduce unneeded TP1/Server processing as mentioned above. You
use the dcwatchtimrpcinherit operand in the TP1/Client/J environment
definition to specify whether or not the server-load reduction facility is to be used in
the event of a synchronous-response RPC timeout.

The following figure provides an overview of processing by the server-load reduction
facility in the event of a synchronous-response RPC timeout.

2. Functionality

30

Figure 2-10: Overview of processing by the server-load reduction facility in the
event of a synchronous-response RPC timeout

2.2.12 Use of ServerSocket for RPCs
ServerSocket is used to issue an RPC that uses the scheduler direct facility or the
name service or an RPC with a communication destination specified in conjunction
with TP1/Client/J. To apply the security manager to the Java VM on which a client
program using TP1/Client/J is running, specify appropriate permissions to the security
policy file so that the class library of TP1/Client/J can use the ServerSocket

2. Functionality

31

functions (connect, listen, and accept). In the case of Java servlets and EJB,
some application server products with these containers may be using the security
manager by default for security purposes. Check the specifications of the application
server you are using and specify appropriate permissions.

2.2.13 RPCs using the multi-scheduler facility
When a service request is issued from a CUP to an SPP that uses a schedule queue
(queue-receiving server), the scheduler daemon at the node where the target SPP is
located receives the service request message and stores it in the corresponding SPP's
schedule queue. A scheduler daemon is a system daemon that provides schedule
service.

A large service request message is divided into multiple segments of a specific length
and is then sent to the scheduler daemon. The scheduler daemon assembles the service
request message and stores it in the queue-receiving server's schedule queue. Because
there can be only one scheduler daemon process per OpenTP1 system, the scheduler
daemon cannot receive another service request message until it completes reception
processing on the current segmented service request message. If a large service request
message is sent over a low-speed line, scheduling of other service requests may be
delayed. As the system size increases and machine and network performance improve,
efficient scheduling may become a problem. If this occurs, you can prevent scheduling
delays by starting multiple service request reception-dedicated daemon processes
separately from the conventional scheduler daemon, and by performing multiple
service request message reception processes concurrently. This is called the
multi-scheduler facility. Hereafter, the conventional scheduler daemon is called the
master scheduler daemon, and the service request reception-dedicated daemon is
called the multi-scheduler daemon.

For details about the system configuration that must be evaluated in order to use the
multi-scheduler facility, see the manual OpenTP1 Version 7 Programming Guide.

(1) How to select a multi-scheduler daemon at random
Using the multi-scheduler facility enables random selection of an available
multi-scheduler daemon from the multiple active multi-scheduler daemons that have
been provided; a service request can then be sent. You can select a multi-scheduler
daemon at random and execute the scheduler direct facility or an RPC using the name
service.

(a) RPCs using the scheduler direct facility
This subsection describes execution of RPCs using the scheduler direct facility when
y is specified in the dcscddirect operand in the TP1/Client/J environment
definition.

TP1/Client/J enables you to randomly select a multi-scheduler daemon without having
to send a query to the name service of TP1/Server as a gateway. This reduces the

2. Functionality

32

amount of communication and the workload of the name service.

To randomly select a multi-scheduler daemon, specify the following port number in
the dchost or dcscdport operand in the TP1/Client/J environment definition:

Port number of the schedule service that has been specified in the scd_port
operand in the schedule service definition

Port number specified in the -p option of scdmulti in the schedule service
definition

You must also specify in the dcscdmulticount operand in the TP1/Client/J
environment definition the number of multi-scheduler daemon processes that can be
started by TP1/Server. The port number of the multi-scheduler daemon that is to send
the service request is selected randomly from within the following range of values:

• Minimum value: Port number specified in the dchost or dcscdport operand in
the TP1/Client/J environment definition

• Maximum value: Minimum value + number of processes specified in the
dcscdmulticount operand in the TP1/Client/J environment definition - 1

Note that the value specified in scdmulti in the schedule service definition must be
the same among all gateway TP1/Servers that are specified in the dchost operand in
the TP1/Client/J environment definition.

(b) RPCs using the name service
This subsection describes the issuance of RPCs using the name service and
multi-scheduler facility. If there is no corresponding service information in the area
where the service information is stored temporarily, the service information is queried
to the name service. Based on the obtained service information, a multi-scheduler
daemon is selected randomly and then a service request is sent.

(2) Relationship between TP1/Client/J environment definition and the scheduler
daemon that sends a service request

When the multi-scheduler facility is used, the scheduler daemon that is used to send a
service request depends on the specification of the TP1/Client/J environment
definition.

The following table shows the relationship between the operand definitions in the TP1/
Client/J environment definition and scheduler daemon for the RPCs that use the
scheduler direct facility.

2. Functionality

33

Table 2-1: Relationship between operand definitions in the TP1/Client/J
environment definition and scheduler daemon (RPCs using the scheduler direct
facility)

Legend:

Y: Operand value is Y.

N: Operand value is N.

S: Operand value is specified.

--: Operand value is not specified.

#

The port number for the multi-scheduler daemon is selected from within the
following range of values:

Minimum value: Port number specified in the dchost or dcscdport operand in
the TP1/Client/J environment definition

Maximum value: Minimum value + number of processes specified in the
dcscdmulticount operand in the TP1/Client/J environment definition - 1

The following table shows the relationship between operand definitions in the TP1/
Client/J environment definition and the scheduler daemon for the RPCs that use the
name service.

Operand specifications in the TP1/Client/J
environment definition

Scheduler daemon that sends service
request

dcscddirect dcscdmulti dcscdmulticount

Y Y S Multi-scheduler daemon that was selected
randomly#

-- Scheduler daemon that has been started with the port
number specified in the dchost or dcscdport
operand in the TP1/Client/J environment definition

N Invalid Scheduler daemon that has been started with the port
number specified in the dchost or dcscdport
operand in the TP1/Client/J environment definition

2. Functionality

34

Table 2-2: Relationship between operand definitions in the TP1/Client/J
environment definition and scheduler daemon (RPCs using the name service)

Legend:

Y: Operand value is Y.

N: Operand value is N.

#

A query to the name service occurs.

Operand specifications in the TP1/Client/J
environment definition

Scheduler daemon that sends service
request

dcnamuse dcscdmulti dcscdmulticoun
t

Y Y Invalid Multi-scheduler daemon selected randomly on the
basis of the service information#

N Master scheduler daemon#

2. Functionality

35

2.3 Transaction control

This facility is applicable only when the remote API facility is used and the version of
the request destination TP1/Server Base is 05-00 or later.

You can call a method that controls transactions from a CUP. To do this, you must
specify in advance atomic_update=Y in the user service definition for an SPP that
is executed as a transaction.

For details about transaction control, see the manual OpenTP1 Programming Guide.

2.3.1 Start and synchronization point acquisition of transactions
You can start a transaction by calling the trnBegin method from a CUP.

The range of a global transaction is from the time the trnBegin method is called to
the time a synchronization point is acquired (commit). Once you call the trnBegin
method, you cannot call another trnBegin method within the same global
transaction. When an RPC is issued to an SPP from a CUP, the CUP becomes a root
transaction branch and the SPP to which the RPC was issued is executed as a
transaction branch. The following figure shows the relationships between a transaction
and an RPC when Y is specified for the dcrapautoconnect operand of the TP1/
Client/J environment definition.

2. Functionality

36

Figure 2-11: Relationships between a transaction and an RPC (when Y is
specified for the dcrapautoconnect operand)

2. Functionality

37

2.3.2 Synchronization point acquisition
(1) Commit

When a transaction terminates normally, a synchronization point (commit) is acquired
by calling a commit request method from the CUP. The global transaction terminates
normally when all of its transaction branches terminate normally.

(a) Commit in chained and unchained modes
The two modes of synchronization point acquisition for transaction processing are the
commit in chained mode, in which a synchronization point is acquired after a
transaction ends and then the next transaction is started immediately, and the commit
in unchained mode, in which no new transaction is started after a synchronization point
is acquired at the end of a transaction.

To request a commit in the chained mode, call the trnChainedCommit method.

To request a commit in the unchained mode, call the trnUnchainedCommit method.

The following figure shows the chained and unchained modes of transactions.

2. Functionality

38

Figure 2-12: Chained and unchained modes of transactions

(b) Processing when no commit request method is called
If a CUP terminates without calling a commit request method or a CUP terminates
abnormally before calling a commit request method, the corresponding transaction is
rolled back.

(2) Rollback
(a) When TP1/Server processing results in an error

If an error occurs in a transaction, the commit request method is returned with an error.
The corresponding transaction is rolled back for partial recovery. If an error occurs on
one of the transaction branches of a global transaction, the entire global transaction
becomes subject to rollback. In such a case, TP1/Server executes partial recovery to
roll back the transaction branches.

The following figure shows rollback of a transaction when an error occurs in TP1/

2. Functionality

39

Server processing.

Figure 2-13: Rollback of a transaction (when an error occurs in TP1/Server
processing)

(b) Calling a rollback request method
To roll back a transaction based on a determination by the CUP, call a rollback request
method from the CUP.

The two modes of rollback are rollback in chained mode and rollback in unchained
mode.

To request a rollback in the chained mode, call the trnChainedRollback method.
A CUP process that has called the trnChainedRollback method for rollback
remains in the global transaction range.

To request a rollback in the unchained mode, call the trnUnchainedRollback
method. A CUP process that has called the trnUnchainedRollback method is
placed outside the global transaction range after the rollback processing.

The following figure shows rollback of a transaction when a rollback request method
is called.

2. Functionality

40

Figure 2-14: Rollback of a transaction (when a rollback request method is
called)

(3) Handling of heuristic situations
If a heuristic situation occurs during transaction processing, an error is returned during
CUP synchronization point acquisition. The exceptions are as follows:

• The result of heuristic decision-making does not match the result of the
synchronization point of the global transaction: ErrHeuristicException

• The result of the synchronization point of the transaction that was heuristically
completed is unknown due to an error: ErrHazardException

For details about the causes of these exceptions and the synchronization point result
for the global transaction, see the TP1/Server's message log file.

For details about how to handle heuristic situations, see the manual OpenTP1
Programming Guide.

(4) Processing time of transactions
You can specify the following transaction-related times in the TP1/Client/J
environment definition; for details, see 5.2 Details of TP1/Client/J environment
definitions:

• Expiry time in transaction branch

2. Functionality

41

• Whether or not the transaction branch monitoring interval is to include the time
needed by the transaction branch being monitored to call another transaction
branch using the RPC facility and wait for completion of its processing

• Maximum time of transaction inquiry interval

• Transaction branch CPU monitoring interval

(5) Types of statistical information to be acquired for transaction branches
You can specify in the TP1/Client/J environment definition the types of transaction
statistical information that are to be acquired for each transaction branch. For details,
see 5.2 Details of TP1/Client/J environment definitions.

2.3.3 Relationship between mode of remote procedure calls and
synchronization point
(1) Relationship between a synchronous-response RPC and the synchronization
point

A transaction with a synchronous-response RPC ends when the processing result is
returned to the CUP and synchronization point processing is completed.

The following figure shows the relationship between a synchronous-response RPC and
the synchronization point.

Figure 2-15: Relationship between a synchronous-response RPC and the
synchronization point

(2) Relationship between a non-response type RPC and the synchronization
point

A transaction with a non-response type RPC is synchronized at the end of the CUP and

2. Functionality

42

SPP processing.

The following figure shows the relationship between a non-response type RPC and the
synchronization point.

Figure 2-16: Relationship between a non-response type RPC and the
synchronization point

2.3.4 Acquiring the current transaction identifiers
By calling the getTrnID method from a CUP, you can obtain the current transaction
global identifier and transaction branch identifier.

In the event of an error, you need the transaction global identifier to determine whether
or not the transaction started from the CUP has been committed. To protect against
possible errors, you should always call the getTrnID method after calling any of the
following methods:

• trnBegin method

• trnChainedCommit method

• trnChainedRollback method

2.3.5 Reporting information about the current transaction
By calling the trnInfo method from a CUP, you can determine from its return value
whether or not a TP1Client object is running as a transaction.

2.3.6 Verifying the transaction synchronization point in the event of
an error

If an error occurs on a transaction that was started by a CUP, you can verify whether

2. Functionality

43

or not its transaction branch has been committed. To do this, you must obtain the
current transaction global identifier and transaction branch identifier by calling the
getTrnID method before the transaction is started.

You can determine whether or not the transaction started by the CUP has been
committed by comparing the transaction global identifier obtained from the CUP
beforehand with the transaction result output to TP1/Server's message log file.

You use the logcat command to display the contents of TP1/Server's message log
file. For details about the logcat command, see the manual OpenTP1 Operation.

The following figure shows the method for verifying the transaction synchronization
point in the event of an error.

2. Functionality

44

Figure 2-17: Method for verifying the transaction synchronization point in the
event of an error

2.3.7 Definitions for TP1/Server
You should note the following points about specifying the rpc_extend_function
operand in the TP1/Server definitions in order to link transactions between TP1/Client/
J and TP1/Server:

• For the rpc_extend_function operand in the user service default definition,
do not set bit 00000002 to on. If bit 00000002 is on, operations cannot be

2. Functionality

45

guaranteed.

• If bit 00000002 in the rpc_extend_function operand in the user service
default definition is on, define the rpc_extend_function operand in the
RAP-processing listener service definition so that bit 00000002 is turned off, and
use the rapdfgen command to re-create the user service definitions for the
RAP-processing listener and RAP-processing server. After re-creating the
definitions, restart the RAP-processing listener and RAP-processing server.

2. Functionality

46

2.4 TCP/IP communication facility

The communication method used by the TCP/IP communication facility provided by
TP1/Client/J differs depending on whether the CUP is operating as a client-type or a
server-type program. If the CUP is operating as a client-type program, the TCP/IP
communication facility establishes a connection from the CUP to the remote system as
specified by definitions and parameters. If the CUP is operating as a server-type
program, the facility waits for a remote system to establish a connection on the port
that is defined in the definitions before initiating communication. Once a connection
has been established, the facility sends and receives data in the area specified by the
parameter.

Note:

Use of the TCP/IP communication facility enables communication with MHPs.
In this manual, the remote system is referred to as an MHP, but the user is free
to select anything, not only an MHP.

Communication of messages using the TCP/IP communication facility can take any of
the following three forms:

• Unidirectional sending of messages from a CUP to an MHP

• Unidirectional receiving of messages from an MHP to a CUP

• Bidirectional sending and receiving of messages between an MHP and a CUP

2.4.1 Unidirectional sending of messages
Messages can be unilaterally sent from a CUP to an MHP. This is called unidirectional
sending of messages.

A CUP executes the cltSend method to send a message to an MHP.

To enable unidirectional sending of messages, you must preset the following
specifications in the TP1/Client/J environment definition:

• Specify the host name of the node on which the MHP resides in the dcsndhost
operand.

• Specify the port number of the MHP in the dcsndport operand (this is the port
number specified with the portno operand of the mcftalccn definition
command in the MCF communication configuration definition).

• Specify DCCLT_ONEWAY_SND in the dcsndrcvtype operand.

The following figure shows unidirectional sending of a message.

2. Functionality

47

Figure 2-18: Unidirectional sending of a message

2.4.2 Unidirectional receiving of messages
A CUP can receive messages sent from an MHP. This is called unidirectional receiving
of messages.

To use the TCP/IP protocol to receive a message from an MHP, the CUP executes the
cltReceive method.

The TCP/IP protocol separates each message into multiple packets and packs multiple
messages into a single packet. This means that the end of the received message must
be determined based on the message length the user specifies. A user initially receives
a fixed-length header that includes the message length, and then specifies the message
length included in the header to receive the actual message.

When a message whose length is less than the specified message length is received,
TP1/Client/J assumes that the message has been segmented, and does not return

2. Functionality

48

control to the CUP until it receives the portion of the message that remains as specified
by the message length. If a timeout or error occurs, the message can be recovered up
to the point of the error, even if the length of the message received is less than the
specified message length. However, the user is responsible for assembly of the
message from that point.

To enable unidirectional receiving of messages, you must preset the following
specifications in the TP1/Client/J environment definition:

• Specify in the dcrcvport operand the CUP port number (port number specified
in the oportno operand of the mcftalccn definition command in the MCF
communication configuration definition).

• Specify DCCLT_ONEWAY_RCV in the dcsndrcvtype operand.

The following figure shows unidirectional message reception.

2. Functionality

49

Figure 2-19: Unidirectional receiving of a message

The following figure shows unidirectional message reception in the event of a failure.

2. Functionality

50

Figure 2-20: Unidirectional receiving of a message when an error occurs

2.4.3 Bidirectional sending and receiving of messages
Messages can be bidirectionally sent and received between a CUP and an MHP.

The CUP executes a cltSend method to send messages to an MHP, and the CUP
executes a cltReceive method to receive messages from an MHP.

To enable bidirectional sending and receiving of messages, you must preset the
following specifications in the TP1/Client/J environment definition:

When MHP is a server

• Specify in the dcsndhost operand the host name of the node that contains
the MHP.

• Specify in the dcsndport operand the port number of the MHP (port
number specified in the portno operand of the mcftalccn definition
command in the MCF communication configuration definition).

• Specify DCCLT_SNDRCV in the dcsndrcvtype operand.

When MHP is a client

2. Functionality

51

• Specify in the dcrcvport operand the port number of the CUP (port
number specified in the oportno operand in the mcftalccn definition
command in the MCF communication configuration definition).

• Specify DCCLT_SNDRCV in the dcsndrcvtype operand.

Although unidirectional sending of messages and unidirectional receiving of messages
can be used to send and receive messages by operating over separate connections,
bidirectional sending and receiving of messages sends and receives messages using the
same connection.

The following figure shows bidirectional sending and receiving of messages.

Figure 2-21: Bidirectional sending and receiving of messages

2. Functionality

52

2.4.4 Received message assembly facility
The received message assembly facility carries out TCP/IP communication using the
first 4 bytes of a sent or received message as the message length area. If you use this
facility when the remote system is using the TP1/NET/TCP/IP received message
assembly facility, you can perform communication without being concerned about the
message length area in a CUP.

(1) Sending messages
When a CUP uses the cltAssemSend method to send a message, TP1/Client/J adds
a 4-byte message length area to the beginning of the message and sends it to the remote
system. The message length added by TP1/Client/J is set as the network byte order. To
use the cltAssemSend method, specify either DCCLT_ONEWAY_SND or
DCCLT_SNDRCV in the dcsndrcvtype operand of the TP1/Client/J environment
definition.

(2) Receiving messages
When a CUP uses the cltAssemReceive method to make a message-receiving
request, TP1/Client/J treats the first 4 bytes of the received message as the message
length and assembles or disassembles the message and reports it to the CUP. The value
set as the message length is processed as the network byte order. The remote system
that sends the message must set the message length as a network byte order. To use the
cltAssemReceive method, specify either DCCLT_ONEWAY_RCV or DCCLT_SNDRCV
in the dcsndrcvtype operand of the TP1/Client/J environment definition.

2. Functionality

53

2.4.5 Notes about using the TCP/IP communication facility
This subsection provides notes about using the TCP/IP communication facility.

(1) Notes on sending messages
(a) Losing a message when an error occurs

If either of the errors described below occurs, TP1/Client/J and the MHP cannot detect
that a message has been lost. Therefore, the user must assign a sequential number in
the message or use some other means to be prepared for these types of errors:

• Immediately after TP1/Client/J wrote the message to the socket buffer and the
transmission ended normally, a communication error occurs or the connection is
dropped.

• Immediately before the MHP writes a message sent from TP1/Client/J to its
receive buffer, a communication error occurs or the connection is dropped.

(b) Establishing a connection
TP1/Client/J can become a client and send messages to an MHP. This means that TP1/
Client/J establishes a connection to the MHP. If the MHP is using TP1/NET/TCP/IP,
the connection is a server-type connection.

(2) Notes on receiving of messages
(a) Losing a message when an error occurs

If either of the errors described below occurs, TP1/Client/J and the MHP cannot detect
that a message has been lost. Therefore, the user must assign a sequential number in
the message or use some other means to be prepared for these types of errors:

• Immediately after the MHP wrote the message to the socket buffer and the
transmission ended normally, a communication error occurs or the connection is

2. Functionality

54

dropped.

• Immediately before TP1/Client/J writes a message sent from the MHP to its
receive buffer, a communication error occurs or the connection is dropped.

(b) Checking received messages
Messages can be received from any MHP. Therefore, if a connection establishment
request is received, accept the request unconditionally and receive the message. The
user must determine if the message is directed to the CUP by checking if the message
identifier included in the header is the one included in the message body.

(c) Message length
Messages are received using the TCP/IP protocol. The TCP/IP protocol separates each
message into multiple packets and packs multiple messages into a single packet. This
means that the end of the received message must be determined based on the message
length the user specifies. The user initially receives a fixed-length header that includes
the message length, and then specifies the message length included in the header to
receive the actual message.

When a message whose length is less than the specified message length is received,
TP1/Client/J assumes that the message has been segmented. Therefore, it does not
return control to the CUP until it receives the portion of the message that remains as
specified by the message length.

(d) Establishing a connection
TP1/Client/J can become a server and receive messages from an MHP. This means that
the MHP establishes a connection to TP1/Client/J. If the MHP is using TP1/NET/TCP/
IP, the connection is a client-type connection.

2. Functionality

55

2.5 Unidirectional server message reception facility

This section describes the facility for receiving unidirectional messages from server to
client.

2.5.1 Flow of unidirectional message reception facility processing
The unidirectional message reception facility enables you to use the batch mode to
distribute to clients a notification of startup of online operations, which is similar to
batch startup of terminals in OLTP in a conventional mainframe system.

To use the unidirectional message reception facility, you execute the
acceptNotification method. The client waits for a message from the server for
the amount of time specified in the method, regardless of the server's status (active or
inactive). If a message is sent when the server starts, the client can detect startup of the
server and subsequently start user applications (CUPs).

The following figure shows the flow of unidirectional message reception facility
processing.

Figure 2-22: Flow of unidirectional message reception facility processing

2. Functionality

56

2.5.2 Flow of unidirectional message consecutive reception facility
processing

The unidirectional message consecutive reception facility allows you to receive
consecutively unidirectional messages from the server after execution of the
openNotification method; receipt of such messages continues until the
closeNotification method is executed. If this facility is used but the client is not
ready to receive unidirectional messages from the server, transmission of the
unidirectional messages from the server does not result in an error. The client can
retrieve the messages subsequently from the receive queue by executing the
acceptNotificationChained method for receiving unidirectional messages.

The following figure shows the flow of unidirectional message consecutive reception
facility processing.

Figure 2-23: Flow of unidirectional message consecutive reception facility
processing

2. Functionality

57

1. Waits for a unidirectional message.

2. Sends a unidirectional message to notify that TP1/Server has started and client
applications can now be executed. The unidirectional message from the server is
stored in the TCP/IP receive queue.

3. Retrieves the unidirectional message from the TCP/IP receive queue and returns
control to the CUP.

4. Issues the acceptNotificationChained method to retrieve from the TCP/IP
receive queue the unidirectional message sent from the server, then returns
control to the CUP.

2.5.3 Notes about using the unidirectional message consecutive
reception facility

There is a limit to the number of messages that can be retained in the TCP/IP receive
queue. This limit depends on a JavaVM maximum value. If the number of messages
received exceeds the maximum value, the dc_rpc_cltsend function executed at the
server results in an error with DCRPCER_SERVICE_NOT_UP.

2.5.4 Releasing the unidirectional message reception wait status
If a CUP issues the acceptNotification or acceptNotificationChained
method and is placed in unidirectional server message reception wait status, and then
receives a cancellation message from another CUP, the unidirectional message
reception wait status is released. You can send a cancellation message by issuing the
cancelNotification method. The following figure shows the flow of releasing the
unidirectional message reception wait status.

2. Functionality

58

Figure 2-24: Flow of releasing unidirectional message reception wait status

2. Functionality

59

2.6 TP1/Web connection facility

The TP1/Web connection facility provides a communication service based on the
HTTP protocol by connecting a CUP created as a Java applet with TP1/Web.

By connecting with TP1/Web, you can perform communication using the HTTP
protocol, which allows you to establish links to previously unconnectable sessions,
enabling you to establish continuous interactive operations.

You use the openConnection method to connect to TP1/Web. For details about the
openConnection method, see 4. Classes Used with TP1/Client/J.

However, note that, if you use the TP1/Web connection facility, you cannot use the
transaction control facility. When you use the TP1/Web connection facility with the
dccltrpcmaxmsgsize operand specified in the TP1/Client/J environment
definition, an error may occur at the communication destination TP1/Server node.

2.6.1 Connecting to TP1/Web (starting a session)
A connection to TP1/Web (a session) is started by calling the
openConnection(String url, short flags) method. A session continues until
closeConnection() is called.

A session can be started with any of the three ways described below:

• By specifying, in the TP1/Client/J environment definition, the URL of the service
request destination in the dcweburl operand and Y in the dcrapautoconnect
operand, calling the rpcOpen method, and then calling the rpcCall method.
This causes TP1/Client/J to automatically establish a session with TP1/Web.

• By specifying the URL of the service request destination in the dcweburl
operand of the TP1/Client/J environment definition, calling the rpcOpen method,
and then calling the openConnection method with no parameters.

• By calling the openConnection(String url, short flags) method of the
TP1/Client/J API.

2.6.2 Service requests to TP1/Web
Service requests to TP1/Web are performed by calling the rpcCall method.

If the TP1/Web Java to SPP gateway facility (DC_JGW facility) is used, TP1/Web sends
the service request to the SPP on the backend OpenTP1 based on the message sent by
the rpcCall method. TP1/Web answers response messages from the OpenTP1 SPP
using the HTTP protocol.

If the TP1/Web Java to User Service facility (DC_JUSR facility) is used, user services
running on TP1/Web can be called. You can freely describe processes with the user
services running on TP1/Web. TP1/Web returns responses using the HTTP protocol.

2. Functionality

60

If the TP1/Web connection facility provided by TP1/Client/J is used, there are two
service request modes: synchronous response mode and chained mode. However, the
chained mode uses the TP1/Web static session schedule facility, which can be used
only when the DC_JGW facility is being used.

For details about the synchronous response mode and the chained mode, see 2.2.3 RPC
modes.

(1) Synchronous response mode
In this mode, a CUP (Java applet) that uses TP1/Client/J sends a query message to TP1/
Web and receives a response message. With synchronous response mode RPC, the next
process does not execute until the CUP receives the response from TP1/Web.

(2) Chained mode
In this mode, a CUP (Java applet) that uses TP1/Client/J sends a query message to TP1/
Web and receives a response message. With chained mode RPC, the next process does
not execute until the CUP receives the response from TP1/Web. To use chained mode
RPC, TP1/Web must be set to use the static session schedule facility, and the TP1/Web
service set requested by the openConnection method must be DC_JGW.

2.6.3 Releasing a connection to TP1/Web (ending a session)
A connection to TP1/Web is released by calling the closeConnection method.

The TP1/Web process that receives a closeConnection method ends the session
with the connected client and releases TP1/Web resources.

2.6.4 RPC facilities for connecting to TP1/Web
The following lists the TP1/Web service sets that can be used from TP1/Client/J:

• Java to SPP gateway facility (DC_JGW facility)

• Java to user service facility (DC_JUSR facility)

For details about these service sets, see the manual OpenTP1 TP1/Web User's Guide.

Figures 2-25 to 2-29 show the flow of service requests issued by the RPC facility
linked with TP1/Web.

2. Functionality

61

Figure 2-25: Connecting by specifying dcrapautoconnect=Y

2. Functionality

62

Figure 2-26: Connecting by specifying dcrapautoconnect=N and defining the
dcweburl operand

2. Functionality

63

Figure 2-27: Connecting by using an openConnection method in which a URL
is specified

Figure 2-28: Flow of service execution when using the DC_JGW service set

2. Functionality

64

Figure 2-29: Flow of service execution when using the DC_JUSR service set

2. Functionality

65

2.7 Dynamic definition changing facility

TP1/Client/J analyzes the TP1/Client/J environment definition within the rpcOpen
method and keeps it as unique information in the CUP.

The dynamic definition changing facility enables you to specify operands that are not
currently defined in the TP1/Client/J environment definition and to change
dynamically operand values that are specified in the TP1/Client/J environment
definition. Once you change an operand value by calling the dynamic definition
changing method, the new value remains in effect until the CUP is terminated (until
the rpcClose method is called) unless the dynamic definition changing method is
called to change the same operand value again.

Whether the value in the TP1/Client/J environment definition or the value set by the
dynamic definition changing facility is in effect depends on the order in which the
methods are called.

When the dynamic definition changing method is called after the rpcOpen method

The operand value changed by the dynamic definition changing method is in
effect.

When the rpcOpen method is called after the dynamic definition changing method

The operand value defined in the TP1/Client/J environment definition is in effect.

2. Functionality

66

2.8 Facility for monitoring TCP/IP connection establishment

In the facility for monitoring TCP/IP connection establishment, you can specify the
maximum amount of time to monitor for the establishment of a TCP/IP connection for
sending data, and monitor for connection establishment.

To establish connection, the java.net.Socket.connect method (hereafter
referred to as connect method), which is a JavaAPI inside the API of TP1/Client/J, is
used. The time-out monitoring time for the connect method is uniquely set in each
platform. By monitoring connection establishment by specifying the maximum
monitoring time in the TP1/Client/J environment definition, you can make the API of
TP1/Client/J return an error earlier than the connect method time-out monitoring
time unique to the platform. You specify the maximum monitoring time for connection
establishment in the connect method using the dccltconnecttimeout operand of
the TP1/Client/J environment definition.

2.8.1 API that uses the connect method internally
Whether an API uses the connect method internally depends on the operand
specification in the TP1/Client/J environment definition. The table below shows the
APIs (methods) that internally use the connect method and the conditions for the
operands of the TP1/Client/J environment definition inside which the connect
method is used. If two or more conditions are listed for an API (method), at least one
of the conditions must be satisfied for the connect method to be used internally.

Table 2-3: APIs (methods) that use the connect method internally

Item
No.

Methods that use the connect
method internally

Conditions for the operands of the TP1/Client/J
environment definition inside which the connect

method is used

1 cltAssemSend(byte[] buff, int
sendleng, String hostname, int
portnum, int timeout, int flags)

• dcsndrcvtype=DCCLT_ONEWAY_SND

• dcsndrcvtype=DCCLT_SNDRCV

2 cltSend(byte[] buff, int
sendleng, String hostname, int
portnum, int flags)

• dcsndrcvtype=DCCLT_ONEWAY_SND

• dcsndrcvtype=DCCLT_SNDRCV

3 openConnection(String host, int
port)

dcrapdirect=Y and dcrapautoconnect=N

4 openConnection() dcrapdirect=Y and dcrapautoconnect=N

2. Functionality

67

2.8.2 Exceptions that occur when the connect method times out
The API of TP1/Client/J returns different exceptions depending on whether the
connect method time-out monitoring time unique to each platform or the time
specified in the dccltconnecttimeout operand expires. This is because the
difference in the monitoring time that expires affects the exceptions that occur in the
connect method.

If a value greater than the time-out monitoring time unique to each platform is
specified in the dccltconnecttimeout operand, the time-out monitoring time
unique to each platform expires first. Consequently, the specification of the
dccltconnecttimeout operand becomes invalid. If the specification of the
dccltconnecttimeout operand is omitted, the connect method time-out
monitoring time becomes unique to each platform.

The following table shows the exceptions that the API of TP1/Client/J returns when
the connect method time-out monitoring time unique to each platform expires or
when the time specified in the dccltconnecttimeout operand expires.

5 rpcCall(String group, String
service, byte[] in_data, int[]
in_len, byte[] out_data, int[]
out_len, int flags)

• dcscddirect=Y

• dcnamuse=Y

or
• dcrapdirect=Y and dcrapautoconnect=Y

6 rpcCall(String group, String
service, byte[] in_data, byte[]
out_data, int flags)

7 rpcCallTo(DCRpcBindTbl
direction, String group, String
service, byte[] in_data, int[]
in_len, byte[] out_data, int[]
out_len, int flags)

• dcscddirect=Y

• dcnamuse=Y

8 trnBegin() dcrapdirect=Y and dcrapautoconnect=Y

Item
No.

Methods that use the connect
method internally

Conditions for the operands of the TP1/Client/J
environment definition inside which the connect

method is used

2. Functionality

68

Table 2-4: Exceptions returned by the API (method) when the connect method
times out

#1

Exceptions that occur when the connect method time-out monitoring time
unique to each platform expires.

Item
No.

Method Unique to each platform#1 dccltconnecttimeout
operand#2

1 cltAssemSend(byte[
] buff, int
sendleng, String
hostname, int
portnum, int
timeout, int flags)

ErrNetDownAtClientException ErrClientTimedOutException

2 cltSend(byte[]
buff, int sendleng,
String hostname,
int portnum, int
flags)

ErrNetDownAtClientException ErrClientTimedOutException

3 openConnection(Str
ing host, int port)

ErrNetDownAtClientException ErrClientTimedOutException

4 openConnection() ErrNetDownAtClientException ErrClientTimedOutException

5 rpcCall(String
group, String
service, byte[]
in_data, int[]
in_len, byte[]
out_data, int[]
out_len, int flags)

ErrNetDownAtClientException ErrClientTimedOutException

6 rpcCall(String
group, String
service, byte[]
in_data, byte[]
out_data, int
flags)

ErrNetDownAtClientException ErrClientTimedOutException

7 rpcCallTo(DCRpcBin
dTbl direction,
String group,
String service,
byte[] in_data,
int[] in_len,
byte[] out_data,
int[] out_len, int
flags)

ErrConnRefusedException ErrNetDownAtClientException

8 trnBegin() ErrConnRefusedException ErrClientTimedOutException

2. Functionality

69

#2

Exceptions that occur when the time specified in the dccltconnecttimeout
operand expires.

2. Functionality

70

2.9 DCCM3 connection facility

TP1/Client/J can use an RPC or a TCP/IP communication facility to connect to
DCCM3 on VOS3 or VOS1.

2.9.1 Issuing an ROC to DCCM3
TP1/Client/J can use an RPC to communicate with an OpenTP1 server as well as with
a DCCM3 server. To use an RPC to communicate with a DCCM3 server, a function
for interpreting an OpenTP1 RPC must be installed on the DCCM3 server. When the
following products are installed on the DCCM3 server, you can use an RPC to
communicate with the DCCM3 server.

When the OS on the DCCM3 server is VOS3:

DCCM3/Internet

When the OS on the DCCM3 server is VOS1:

DCCM3/SERVER/TP1

Note the following when the remote server is DCCM3:

• The RPC modes that can be used are synchronous-response RPC and
non-response type RPC. Chained RPC cannot be used.

• The transaction control facility cannot be used.

• When using a permanent connection to issue an RPC to a DCCM3 logical
terminal, you can use the load distribution facility. For details, see 2.9.1(4) Load
distribution when issuing an RPC to a DCCM3 logical terminal.

• When an RPC is issued to DCCM3, the service name is evaluated as the
transaction name.

(1) Specifying the remote server
To use an RPC to communicate with a DCCM3 server, use a service group name and
a service name to specify the remote server. This specification method is the same as
that used when issuing an RPC to an OpenTP1 server.

• Service group name

For the service group name, specify a valid dummy character string. Specify an
identifier consisting of between 1 and 31 characters.

• Service name

Specify the transaction name of the DCCM3 server. The characters that can be
used are letters (A-Z and a-z) and numbers (0-9). The total number of characters
must be between 1 and 8.

2. Functionality

71

(2) Defining an address of the remote server
When an RPC is used to communicate with a DCCM3 server, a server not managed by
the OpenTP1 name service must be called. Therefore, TP1/Client/J must define server
addresses separately for individual service names. To define a server address, specify
the host name and port number of the RPC-accepting gateway in the dchost operand
of the TP1/Client/J environment definition.

(3) Executing the RPC
After defining the address of the remote server, execute the RPC. The procedure for
executing the RPC differs depending on the specification content of the TP1/Client/J
environment definition as shown below.

(a) When Y is specified for the dcrapautoconnect operand
1. Execute the rpcOpen method and load the definition.

2. Execute the rpcCall method.

Connection is established at the RPC-accepting gateway specified in the dchost
operand of the TP1/Client/J environment definition. After the connection is
established, the RPC is issued.

(b) When N is specified for the dcrapautoconnect operand or when the
specification is omitted
1. Execute the rpcOpen method and load the definition.

2. Execute the openConnection method without any arguments.

Connection is established at the RPC-accepting gateway specified in the dchost
operand of the TP1/Client/J environment definition.

3. After the connection is established, execute the rpcCall method to issue the
RPC.

(c) To communicate with a server not specified in the dchost operand
1. Execute the rpcOpen method and load the definition.

This step may be omitted. Even if it is omitted, steps 2 and 3 can be executed.

2. Execute the openConnection method with the RPC-accepting gateway (host
name and port number) specified in its arguments.

3. After the connection is established, execute the rpcCall method to issue the
RPC.

(4) Load distribution when issuing an RPC to a DCCM3 logical terminal
When TP1/Client/J uses permanent connection to issue an RPC to DCCM3 logical
terminals, the connection targets can be allocated to multiple DCCM3 servers during
connection establishment to distribute load. From the host names and port numbers of

2. Functionality

72

the multiple DCCM3 logical terminals specified in the dchost operand of the TP1/
Client/J environment definition, TP1/Client/J randomly selects a connection target and
attempts a connection. If TP1/Client/J fails to connect to a DCCM3 logical terminal, it
randomly selects another DCCM3 logical terminal and attempts a connection. This
process is repeated, and only after all attempts to connect to the DCCM3 logical
terminals specified in the dchost operand of the TP1/Client/J environment definition
have failed, is an error detected.

One of the following two API execution procedures can be used to establish
communication between TP1/Client/J and a DCCM3 logical terminal:

• Specify the host name and port number of the DCCM3 logical terminal in the
dchost operand of the TP1/Client/J environment definition and execute the
openConnection method without any arguments.

In this case, a permanent connection is used.

• Specify the host name and port number of the DCCM3 logical terminal in the
dchost operand of the TP1/Client/J environment definition and specify Y in the
dchostselect operand.

If Y is specified for the dcrapautoconnect operand of the TP1/Client/J
environment definition, execute the rpcCall method. Executing the rpcCall
method automatically establishes a connection if none has been established.

If N is specified for the dcrapautoconnect operand of the TP1/Client/J
environment definition or if specification is omitted, execute the
openConnection method without any arguments. Executing the
openConnection method without any arguments establishes a connection.

(5) TP1/Client/J environment definition example
The following figure shows an example of TP1/Client/J environment definition used
for connecting to a DCCM3 server:

2. Functionality

73

Figure 2-30: Issuing an RPC to a DCCM3 server

1. In the TP1/Client/J environment definition, define in separate definition files the
addresses (RPC-accepting gateways) of the servers that process transactions in
the dchost operand.

2. Functionality

74

2. When an RPC is to be issued, the address of an RPC-accepting gateway is
determined from the definition file and an RPC message is sent.

3. The RPC message is interpreted and the requested service is executed.

4. For a synchronous-response RPC, a response message from the server is received.

Example of the definition file tran1.ini:
dcrapdirect=Y
dcwatchtim=180
dcrapautoconnect=Y
dchostselect=Y
#Defines the address of the server that can process the "TRAN1" transaction.
dchost=xxx.xxx.xxx.xxx:10020,zzz.zzz.zzz.zzz:10022

Example of the definition file tran2.ini:
dcrapdirect=Y
dcwatchtim=180
dcrapautoconnect=Y
dchostselect=Y
#Defines the address of the server that can process the "TRAN2" transaction.
dchost=yyy.yyy.yyy.yyy:10021,zzz.zzz.zzz.zzz:10022

A program example that uses the above TP1/Client/J environment definition follows.

Program example

import JP.co.Hitachi.soft.OpenTP1.*;
public class DCCM3Caller
{
 ...
 public void Function1(){
 TP1Client clt = new TP1Client();

 // RPC that calls the TRAN1 transaction
 clt.rpcOpen("tran1.ini");
 ...
 // Synchronous-response RPC
 clt.rpcCall("dummysvg", "TRAN1", ...,
TP1Client.DCNOFLAGS);
 ...
 clt.rpcClose();

 // RPC that calls the TRAN2 transaction
 // Reloads the definition for acquiring the request target server address.
 clt.rpcOpen("tran2.ini");
 ...
 // Non-response type RPC
 clt.rpcCall("dummysvg", "TRAN2", ...,

2. Functionality

75

TP1Client.DCRPC_NOREPLY);
 ...
 clt.rpcClose();
 }
}

(6) Notes about issuing an RPC to a DCCM3 logical terminal
• Only RPCs that use the remote API facility can be used.

• Chained RPCs cannot be used.

• The transaction control facility cannot be used.

• Before sending or receiving a message containing character string data, the
character code to be used inside the message must be agreed upon with the
communication-target system, and character conversion must be carried out by a
UAP if necessary. In Java, Unicode is used as the internal expression of character
strings inside memory.

• Specification of the dccltinquiretime operand of the TP1/Client/J
environment definition is ignored. To specify a maximum time interval from CUP
to server, use DCCM3's Unattended terminal monitoring time.

• For details about notes on DCCM3 servers, see the manuals VOS3 Data
Management System XDM E2 System Description and VOS1 Data
Communication Management System DCCM3 Description.

2.9.2 TCP/IP communication with DCCM3
Note the following when TCP/IP is used to communicate with a DCCM3 logical
terminal:

Before sending or receiving a message containing character string data, the character
code to be used inside the message must be agreed upon with the
communication-target system, and character conversion must be carried out by a UAP
if necessary. In Java, Unicode is used as the internal expression of character strings
inside memory.

2.9.3 Sending terminal identification information to a DCCM3 logical
terminal

When you wish to use a permanent connection to communicate with a DCCM3 logical
terminal, you can send terminal identification information to a DCCM3 logical
terminal and fix the DCCM3 logical terminal that is to be allocated to the CUP.

(1) How to send and receive messages at a DCCM3 logical terminal
To use a DCCM3 logical terminal, the communication target TP1/Client/J is defined
as a logical terminal that is identified by the IP address and port number of a DCCM3

2. Functionality

76

logical terminal; messages are sent and received on the basis of logical terminals.

When multiple CUPs are started from the same machine, requests from all these CUPs
have the same IP address. This means that if multiple CUPs issue service requests to
the same DCCM3 logical terminal port, identification of the CUPs by the DCCM3
definition is not possible. Therefore, if multiple corresponding DCCM3 logical
terminals are defined, the DCCM3 logical terminal to which a CUP is allocated
becomes undefined. If the DCCM3 logical terminal that is to accept a service request
changes, the order of server processing at DCCM3 cannot be guaranteed. This may
cause problems with some applications.

(2) Notifying the terminal identification information
When a CUP establishes permanent connection with a DCCM3 logical terminal, the
DCCM3 logical terminal to be allocated to the CUP can be fixed by reporting the
terminal identification information to the DCCM3 logical terminal. This is called the
terminal identification information setting facility. This facility enables you to always
allocate a CUP to the same DCCM3 logical terminal. DCCM3 calls this the function
for allocating a fixed terminal.
The following figures show the relationship between a CUP and a DCCM3 logical
terminal when the terminal identification information setting facility is not used and
when it is used.

Figure 2-31: Relationship between CUP and DCCM3 logical terminal (when
the terminal identification information setting facility is not used)

2. Functionality

77

Figure 2-32: Relationship between CUP and DCCM3 logical terminal (when
the terminal identification information setting facility is used)

You can use the terminal identification information setting facility by one of the
following methods:

Method 1

1. Specify DCCM3 logical terminal host name in the dchost operand of the
TP1/Client/J environment definition.

2. Specify the port number of the DCCM3 logical terminal in the dchost or
dcrapport operand of the TP1/Client/J environment definition.

3. Set the terminal identification information in the
setConnectInformation method, and then call the method.

4. Establish a permanent connection with the DCCM3 logical terminal using
one of the following methods:

 Call the openConnection method. If the method has parameters, specify
DCCM3 logical terminal host name in the host parameter and the port
number of the DCCM3 logical terminal in the port parameter.

 Specify Y in the dcrapautoconnect operand of the TP1/Client/J
environment definition, and then call the rpcCall method.

Method 2

1. Specify DCCM3 logical terminal host name in the dchost operand of the
TP1/Client/J environment definition.

2. Functionality

78

2. Specify the port number of the DCCM3 logical terminal in the dchost or
dcrapport operand of the TP1/Client/J environment definition.

3. Set the terminal identification information in the dccltconnectinf
operand of the TP1/Client/J environment definition.

4. Establish a permanent connection with the DCCM3 logical terminal using
one of the following methods:

 Call the openConnection method. If the method has parameters, specify
DCCM3 logical terminal host name in the host parameter and the port
number of the DCCM3 logical terminal in the port parameter.

 Specify Y in the dcrapautoconnect operand of the TP1/Client/J
environment definition and then call the rpcCall method.

Note:

If you set the terminal identification information in the dccltconnectinf
operand of the TP1/Client/J environment definition and also in the
setConnectInformation method, the setting in the
setConnectInformation method takes effect, and the value set in the
dccltconnectinf operand is ignored until the rpcOpen method is called
again after the setConnectInformation is called.

(3) Notes about reporting the terminal identification information to the DCCM3
logical terminal

• If the logical terminal name of a DCCM3 using the function for allocating a fixed
terminal does not match the terminal identification information defined in TP1/
Client/J, and the following methods are called, an
ErrNetDownAtClientException exception is returned:

• openConnection method

• rpcCall method (applicable when Y is specified in the
dcrapautoconnect operand in the TP1/Client/J environment definition)

• If terminal identification information is not set in TP1/Client/J for the logical
terminal DCCM3 that uses the function for allocating a fixed terminal, but the
following methods are called, an ErrNetDownAtClientException exception
is returned:

• openConnection method

• rpcCall method (applicable when Y is specified in the
dcrapautoconnect operand in the TP1/Client/J environment definition)

• If terminal identification information is set and establishment of a permanent
connection is requested from TP1/Client/J for the logical terminal of a DCCM3

2. Functionality

79

that does not use the function for allocating a fixed terminal, DCCM3 ignores the
terminal identification information set by TP1/Client/J.

• If terminal identification information is set and a permanent connection with the
RAP-processing server of TP1/Server is established from TP1/Client/J, the
RAP-processing server ignores the terminal identification information set by
TP1/Client/J. If TP1/Client/J issues an RPC to DCCM3 via the RAP-processing
server, the terminal identification information set by TP1/Client/J is not
transmitted to DCCM3.

• The terminal identification information is applicable only to RPCs that use the
remote API facility. For an RPC that uses the name service or the scheduler direct
facility, the terminal identification information is ignored, if set.

2. Functionality

80

2.10 XA resource service facility

You must have uCosminexus TP1 Connector or Cosminexus TP1 Connector to use the
XA resource service facility. Operations with TP1/Client/J alone are not guaranteed.

This section describes the facilities that are made available to TP1/Client/J when the
XA resource service facility is used.

The following table shows the communication method supported by TP1/Client/J.

Table 2-5: Communication method supported by TP1/Client/J

Legend:

Y: Supported

N: Not supported

The following table shows the connection modes supported by TP1/Client/J.

Table 2-6: Connection modes supported by TP1/Client/J

Legend:

Y: Supported

N: Not supported

The following table shows the RPC call modes supported by TP1/Client/J.

Table 2-7: RPC call modes supported by TP1/Client/J

TP1/Client/J
communication method

Use of the remote
API facility

Use of the scheduler
direct facility

Use of the name
service

Supported Y N N

Connection mode Supported

Non-auto connect mode N

Auto connect mode Y

RPC call mode Supported

Synchronous-response RPC Y

Asynchronous-response RPC Y

Chained RPC Y

2. Functionality

81

Legend:

Y: Supported

Note that you can specify in the dchost operand of the TP1/Client/J environment
definition only one TP1/Server as a gateway. If you specify more than one, operations
cannot be guaranteed.

2. Functionality

82

2.11 Troubleshooting facility

TP1/Client/J provides a troubleshooting facility that enables you to collect UAP, data,
error, memory, method, debug, performance analysis, and performance verification
traces.

The facility outputs UAP, data, error, and method traces to files. A memory trace is
stored in the String-type array provided by the CUP. A debug trace is collected in the
memory of TP1/Client/J. When a method provided by TP1/Client/J returns an
exception, its trace is output to a file or to the standard output. A performance analysis
trace is output on the Cosminexus Application Server and a performance verification
trace is output on the TP1/Server.

For Java applets, the UAP, data, error, method, and performance verification traces are
not available due to Java security limitations. Furthermore, a performance analysis
trace cannot be collected.

For Java servlets, some traces are not available to some application servers due to
security limitations. For details about the security limitations for Java servlets, see the
documentation for the applicable application server.

To output traces, you must set the time zone in the TZ environment variable. If this
environment variable is not set, the correct time will not be output for trace
information.

2.11.1 Contents of trace files
The following table lists the options that can be specified for the trace files and the
output file names.

Table 2-8: Options and names for trace files

Trace file Options Where to specify the file
destination

Output file
name

UAP trace • File output directory
• Size of trace file

TrcPath argument of the
setUapTraceMode method or
dcuaptracepath operand

DCUAP1.TRC

DCUAP2.TRC

Data trace • File output directory
• Size of trace file
• Maximum size of data

TrcPath argument of the
setDataTraceMode method or
dcdatatracepath operand

DCDAT1.TRC

DCDAT2.TRC

Error trace • File output directory
• Size of trace file

TrcPath argument of the
setErrorTraceMode method
or dcerrtracepath operand

DCERR1.TRC

DCERR2.TRC

2. Functionality

83

TP1/Client/J cannot output a trace file if the specified directory does not exist or if
there is no write authority for the specified directory. If the specified target directory
does not contain a file with the predefined output file name, TP1/Client/J creates the
trace file in the applicable directory. Data is written into a file in the addition mode.
TP1/Client/J uses two trace files with the round robin method. When the amount of
data exceeds the specified trace file size, TP1/Client/J swaps the files and restarts the
write operation from the beginning of the other file.

If you output the trace files for multiple CUPs to the same directory, the trace
information for the various CUPs is intermingled, making troubleshooting difficult.
For this reason, you should output the trace files for each CUP to a separate directory.
Note that the actual size of a trace file may be larger than the specified value depending
on the output size of one trace data item.

2.11.2 UAP trace
TP1/Client/J outputs UAP trace information to the directory specified in the TrcPath
argument of the setUapTraceMode method or the directory specified in the
dcuaptracepath operand of the TP1/Client/J environment definition; the file names
are DCUAP1.TRC and DCUAP2.TRC. You specify the file size with the size argument
of the setUapTraceMode method or the dcuaptracesize operand of the TP1/
Client/J environment definition.

For a UAP trace, TP1/Client/J collects the following information at the start and end
of the method provided by TP1/Client/J:

• Date

• Time

• Name of the executing thread

• Name of the called method

• Exception that occurred

• Information about specified arguments

• Information about the called method

• Contents of transferred data

If the transferred data exceeds 60 bytes, only the first 60 bytes of data are obtained.

Method trace • File output directory
• Size of trace file

TrcPath argument of the
setMethodTraceMode method
or dcmethodtracepath
operand

DCMTD1.TRC

DCMTD2.TRC

Trace file Options Where to specify the file
destination

Output file
name

2. Functionality

84

The output format of a UAP trace file is as follows:

yyyy/mm/dd hh:mm:ss.uuu Location = lll ThreadName = ttt
MethodName = nnnnnnnnnnnnnnnnnnnn
Exception = eeeeeeeeeeeeeeeeeeee
ADDRESS +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +a +b +c +d +e +f
0123456789abcdef
00000000 73 61 69 73 70 70 00 00 00 00 00 00 00 00 00 00
saispp..........
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
00000020 73 61 69 73 76 72 30 31 00 00 00 00 00 00 00 00
saisvr01........
: : :

• yyyy/mm/dd hh:mm:ss.uuu: Date and time the UAP trace was collected

• lll: Type of entry or exit point

• ttt: Name of the executing thread

• nnnnnnnnnnnnnnnnnnnn: Name of the called method

• eeeeeeeeeeeeeeeeeeee: Exception that occurred

• Character string following ADDRESS: Various items of information (information
about the specified arguments, information about the called method, and the
contents of transferred data)

The information that is output depends on the method and collection timing. The
following tables show the information that is output for each method.

Table 2-9: Information for the openConnection() method and the
openConnection(host, port) method

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Connection-target
host name

0 0 64 Connection-target host name
specified in the argument.
If the argument is not
specified, this information is
not collected, in which case
this field is cleared to zeros.

2. Functionality

85

Connection-target
port number

40 64 4 Connection-target port
number specified in the
argument.
If the argument is not
specified, this information is
not collected, in which case
a UAP trace is obtained with
-1 set.

Maximum time of
inquiry interval

44 68 4 Maximum time of inquiry
interval used during method
execution.
This is the value specified in
the dccltinquiretime
operand of the TP1/Client/J
environment definition or in
the
setDccltinquiretime
method.

Maximum time to
wait for a response

48 72 4 Maximum time to wait for a
response during method
execution.
This is the value specified in
the dcwatchtim operand of
the TP1/Client/J
environment definition or in
the setDcwatchtim
method.

Input stream
checking interval

4C 76 4 Input stream checking
interval used during method
execution.
This is the value specified in
the dcselint operand of
the TP1/Client/J
environment definition or in
the setDcselint method.

Exit point Performance
analysis trace
identification
information

0 0 26 Performance analysis trace
identification information

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

2. Functionality

86

Table 2-10: Information for the openConnection(url, flags) method

N/A: Not applicable

Table 2-11: Information for the rpcCall method

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Connection
destination URL

0 0 128 TP1/Web URL specified by
the url parameter.

Option flags 0 0 2 Value specified by the
openConnection flags
parameter. The following
value is set:
• DCSESSION 0x0001

Maximum time to
wait for a response

0 0 4 The maximum time to wait
for a response specified by
the setDcwatchtim
method.

Exit point None N/A N/A N/A N/A

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Service group
name

0 0 32 Service group name of the
called service

Service name 20 32 32 Name of the called service

Send data length 40 64 4 Length of send data

Send data 44 68 60 Data to be sent

Receive data
length

80 128 4 Length of data to be received

2. Functionality

87

Option flag 84 132 4 Value specified for the
flags argument of the
rpcCall method. One of
the following values is set:
• DCNOFLAGS

0x00000000

• DCRPC_NOREPLY
0x00000001

• DCRPC_CHAINED
0x00000004

• DCRPC_TPNOTRAN
0x00000020

Maximum time to
wait for a response

88 136 4 Maximum time to wait for a
response during method
execution.
This is the value specified in
the dcwatchtim operand of
the TP1/Client/J
environment definition or in
the setDcwatchtim
method.

Server
communication
delay time

8C 140 4 Server communication delay
time used during method
execution.
This is the value specified in
the dccltdelay operand of
the TP1/Client/J
environment definition or in
the setDccltdelay
method. 0 is set if the remote
API facility is not used.

Input stream
checking interval

90 144 4 Input stream checking
interval used during method
execution.
This is the value specified in
the dcselint operand of
the TP1/Client/J
environment definition or in
the setDcselint method.

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

2. Functionality

88

#: In the case of a no-response-type service request, the exit point information consists
of performance analysis trace identification information only.

Table 2-12: Information for the rpcCallTo method

Exit point# Receive data
length

0 0 4 Length of the received
response

Receive data 4 4 60 Received data

Performance
analysis trace
identification
information

40 64 26 Performance analysis trace
identification information

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Connection-target
host name

0 0 64 Target host name used
during method execution.
This is the value specified in
DCRpcBindTbl.

Connection-target
port number

40 64 4 Port number of the target
host that was used during
method execution.
This is the value specified in
DCRpcBindTbl.

Connection-target
option flag

44 68 4 Communication protocol
flag of the rpcCallTo
method:
• DCRPC_SCDPORT

0x00000002

Service group
name

48 72 32 Service group name of the
called service

Service name 68 104 32 Name of the called service

Send data length 88 136 4 Length of send data

Send data 8C 140 60 Data to be sent

Receive data
length

C8 200 4 Length of data to be received

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

2. Functionality

89

Option flag CC 204 4 Value specified in the flags
argument of the rpcCallTo
method. One of the
following values is set:
• DCNOFLAGS

0x00000000

• DCRPC_NOREPLY
0x00000001

Maximum time to
wait for a response

D0 208 4 Maximum time to wait for a
response during method
execution.
This is the value specified in
the dcwatchtim operand of
the TP1/Client/J
environment definition or in
the setDcwatchtim
method.

Server
communication
delay time

D4 212 4 Server communication delay
time used during method
execution.
This is the value specified in
the dccltdelay operand of
the TP1/Client/J
environment definition or in
the setDccltdelay
method. 0 is set if the remote
API facility is not used.

Input stream
checking interval

D8 216 4 Input stream checking
interval used during method
execution.
This is the value specified in
the dcselint operand of
the TP1/Client/J
environment definition or in
the setDcselint method.

Exit point# Receive data
length

0 0 4 Length of the received
response

Receive data 4 4 60 Received data

Performance
analysis trace
identification
information

40 64 26 Performance analysis trace
identification information

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

2. Functionality

90

#: In the case of a no-response-type service request, the exit point information consists
of performance analysis trace identification information only.

Table 2-13: Information for the closeConnection method

Table 2-14: Information for the setDcwatchtim method

N/A: Not applicable

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Maximum time to
wait for a response

0 0 4 Maximum time to wait for a
response during method
execution.
This is the value specified in
the dcwatchtim operand of
the TP1/Client/J
environment definition or in
the setDcwatchtim
method.

Input stream
checking interval

4 4 4 Input stream checking
interval used during method
execution.
This is the value specified in
the dcselint operand of
the TP1/Client/J
environment definition or in
the setDcselint method.

Exit point Performance
analysis trace
identification
information

0 0 26 Performance analysis trace
identification information

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Maximum time to
wait for a response

0 0 4 Maximum time to wait for a
response

Exit point None N/A N/A N/A N/A

2. Functionality

91

Table 2-15: Information for the setDccltinquiretime method

N/A: Not applicable

Table 2-16: Information for the setDccltdelay method

N/A: Not applicable

Table 2-17: Information for the setDcselint method

N/A: Not applicable

Table 2-18: Information for the setDccltextend method

N/A: Not applicable

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Maximum time of
inquiry interval

0 0 4 Maximum value of inquiry
interval

Exit point None N/A N/A N/A N/A

Collectio
n

location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry
point

Server
communication
delay time

0 0 4 Server communication delay
time

Exit point None N/A N/A N/A N/A

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Input stream
checking interval

0 0 4 Input stream checking
interval

Exit point None N/A N/A N/A N/A

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Level of extended
facility

0 0 4 Extension level of the TP1/
Client/J facility

Exit point None N/A N/A N/A N/A

2. Functionality

92

Table 2-19: Information for the setRpcextend method

N/A: Not applicable

Table 2-20: Information for the setDchost method

N/A: Not applicable

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Level of RPC
extended facility

0 0 4 Extension level of the RPC
facility of TP1/Client/J.
Disjunction of the following
values is set:
• DCRPC_SCD_LOAD_PRIOR

ITY 0x00000008

• DCRPC_WATCHTIMINHERI
T 0x00000010

• DCRPC_RAP_AUTOCONNEC
T 0x00000020

• DCRPC_WATCHTIMRPCINH
ERIT 0x00000040

Exit point None N/A N/A N/A N/A

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Connection-target
host name

0 0 64 Host name specified in the
host argument

Connection-target
port number

40 64 4 Port number specified in the
port argument

Exit point None N/A N/A N/A N/A

2. Functionality

93

Table 2-21: Information for the rpcOpen method

N/A: Not applicable

Table 2-22: Information for the trnBegin method

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Name of the TP1/
Client/J
environment
definition file

0 0 256 TP1/Client/J environment
definition file name
specified in the
deffilename argument.
If the argument is not
specified, this information
is not collected, in which
case this field is cleared to
zeros.

Exit point None N/A N/A N/A N/A

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Expiry time in
transaction branch

0 0 4 Value specified in the
dcclttrexptm operand of
the TP1/Client/J
environment definition

Transaction
branch CPU
monitoring
interval

4 4 4 Value specified in the
dcclttrcputm operand of
the TP1/Client/J
environment definition

Object of
transaction branch
monitoring
interval

8 8 1 Value specified in the
dcclttrexpsp operand of
the TP1/Client/J
environment definition:
• Y 89

• N 78

• F 70

2. Functionality

94

Statistical
information
collection item

9 9 4 Value specified in the
dcclttrstatisitem
operand of the TP1/Client/J
environment definition:
• base 0x80000000

• executiontime
0x40000000

• cputime 0x20000000

• function
0x10000000

Transaction
optimization item

D 13 4 Value specified in the
dcclttroptiitem
operand of the TP1/Client/J
environment definition:
• nothing 0

• base 0x00000003

• asyncprepare
0x00000004

• recursivemigrate
0x00000008

Maximum
communication
wait time during
transaction
synchronization
point processing

11 17 4 Value specified in the
dcclttrwatchtime
operand of the TP1/Client/J
environment definition

Value for rollback
information
acquisition

15 21 4 Value specified in the
dcclttrrbinfo operand
of the TP1/Client/J
environment definition:
• no 0

• self 0x00000001

• remote 0x00000002

• all 0x00000003

Maximum
executable value
for transaction
branch

19 25 4 Value specified in the
dcclttrlimittime
operand of the TP1/Client/J
environment definition

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

2. Functionality

95

Table 2-23: Information for the trnInfo method

N/A: Not applicable

Table 2-24: Information for the getTrnID method

Value for rollback
completion report

1D 29 4 Value specified in the
dcclttrrbrcv operand of
the TP1/Client/J
environment definition:
• Y 89

• N 78

Value for
synchronization
point processing
method in the
event of a UAP
error

21 33 4 Value specified in the
dcclttrrecoverytype
operand of the TP1/Client/J
environment definition:
• type1 0x00000001

• type2 0x00000002

• type3 0x00000004

Exit point Performance
analysis trace
identification
information

0 0 26 Performance analysis trace
identification information

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point None N/A N/A N/A N/A

Exit point Under-transaction
flag

0 0 1 • 1: Under transaction
• 0: Not under transaction

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point None N/A N/A N/A N/A

Exit point Transaction global
identifier

0 0 16 This information is acquired
only if the method
terminates normally.

Transaction
branch identifier

10 16 16 This information is acquired
only if the method
terminates normally.

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

2. Functionality

96

N/A: Not applicable

Table 2-25: Information for the cltReceive method

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Receive data
length

0 0 4 Length of data to be received

Timeout set time 4 4 4 Time interval specified for
timeout

Option flags 8 8 4 Value specified by the
flags parameter of the
cltReceive method. One
of the following values is
set:
• DCNOFLAGS

0x00000000

• DCCLT_RCV_CLOSE
0x00000002

Exit point Receive data
length

0 0 4 Length of data to be received

Receive data 4 4 60 Received data

2. Functionality

97

Table 2-26: Information for the cltSend method

N/A: Not applicable

Table 2-27: Information for the cltAssemSend method

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Send data 0 0 60 Data to be sent

Send data length 3C 60 4 Length of data to be sent

Name of
connected host

40 64 64 Name of remote host
specified by the hostname
parameter.

Connection
destination port
number

80 128 4 Port number of remote
system specified by the
portnum parameter.

Option flags 84 132 4 Value specified by the
flags parameter of the
cltSend method. One of
the following values is set:
• DCNOFLAGS

0x00000000

• DCCLT_SND_CLOSE
0x00000001

Exit point None N/A N/A N/A N/A

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Send data 0 0 60 Data to be sent

Send data length 3C 60 4 Length of data to be sent

Name of
connected host

40 64 64 Name of remote host
specified by the hostname
parameter.

Connection
destination port
number

80 128 4 Port number of remote
system specified by the
portnum parameter.

Time-out setting 84 132 4 Time-out setting

2. Functionality

98

N/A: Not applicable

Table 2-28: Information for the cltAssemReceive method

Table 2-29: Information for the setConnectInformation method

Option flags 88 136 4 Value specified by the
flags parameter of the
cltAssemSend method.
One of the following values
is set:
• DCNOFLAGS

0x00000000

• DCCLT_SND_CLOSE
0x00000001

Exit point None N/A N/A N/A N/A

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Time-out setting 0 0 4 Time-out setting

Option flags 4 4 4 Value specified by the
flags parameter of the
cltAssemReceive method.
One of the following values
is set:
• DCNOFLAGS

0x00000000

• DCCLT_RCV_CLOSE
0x00000002

Exit point Receive data
length

0 0 4 Length of response received

Receive data 4 4 60 Received data

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Logical terminal
name of the
DCCM3 logical
terminal

0 0 64 Logical terminal name of the
DCCM3 logical terminal, as
specified in the inf
parameter

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

2. Functionality

99

N/A: Not applicable

Table 2-30: Information for the acceptNotification method

Length of terminal
identification
information

40 64 2 Length of terminal
identification information,
as specified in the inf_len
parameter

Exit point None N/A N/A N/A N/A

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Length of area for
storing a
notification
message from the
server

0 0 4 Length of area for storing a
notification message from
the server, as specified in the
inf_len parameter

Port number for
receiving a
notification
message from the
server

4 4 4 Port number for receiving a
notification message from
the server, as specified in the
port parameter

Timeout value 8 8 4 Timeout value specified in
the timeout parameter

Exit point Notification
message from the
server

0 0 60 Notification message from
the server that was stored in
the inf parameter

Length of
notification
message from the
server

3C 60 4 Length of notification
message from the server, as
specified in the inf_len
argument

Host name of the
server

40 64 64 Server's host name stored in
the hostname parameter

Node identifier of
the server

80 128 8 Server's node identifier
specified in the nodeid
parameter

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

2. Functionality

100

Table 2-31: Information for the cancelNotification method

N/A: Not applicable

Table 2-32: Information for the openNotification method

N/A: Not applicable

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Message to be sent
to CUP

0 0 60 Message to be sent to the
CUP, as specified in the inf
parameter

Length of message
to be sent to CUP

3C 60 4 Length of the message to be
sent to CUP, as specified in
the inf_len parameter

Host name of CUP
waiting to receive
unidirectional
message

40 64 64 Host name of the CUP
waiting to receive the
unidirectional message, as
specified in the hostname
parameter

Port number of
CUP waiting to
receive
unidirectional
message

80 128 4 Port number of the CUP
waiting to receive the
unidirectional message, as
specified in the port
parameter

Exit point None N/A N/A N/A N/A

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Port number for
receiving a
notification
message from the
server

0 0 4 Port number for receiving a
notification message from
the server, as specified in the
port parameter

Exit point None N/A N/A N/A N/A

2. Functionality

101

Table 2-33: Information for the acceptNotificationChained method

Table 2-34: Information for the setUapTraceMode method

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Length of area for
storing a
notification
message from the
server

0 0 4 Length of area for storing a
notification message from
the server, as specified in the
inf_len parameter

Timeout value 4 4 4 Timeout value specified in
the timeout parameter

Exit point Notification
message from the
server

0 0 60 Notification message from
the server, as stored in the
inf parameter

Length of
notification
message from the
server

3C 60 4 Length of the notification
message from the server, as
specified in the inf_len
argument

Host name of the
server

40 64 64 Server's host name stored in
the hostname argument

Node identifier of
the server

80 128 8 Server's node identifier
specified in the nodeid
parameter

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point UAP trace output
directory

0 0 256 UAP trace output directory
specified in the TrcPath
parameter

Size of UAP trace
file to be output

100 256 4 Size of the output UAP trace
file, as specified in the size
parameter

Flag indicating
whether or not
UAP trace is to be
acquired

104 260 4 Flag indicating whether or
not UAP trace is to be
acquired, as specified in the
flag parameter (if the flag
parameter is set to true, 1 is
output; if it is set to false, 0
is output)

2. Functionality

102

N/A: Not applicable

Table 2-35: Information for the setErrorTraceMode method

N/A: Not applicable

Table 2-36: Information for the setMethodTraceMode method

Exit point None N/A N/A N/A N/A

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Error trace output
directory

0 0 256 Error trace output directory
specified in the TrcPath
parameter

Size of error trace
file to be output

100 256 4 Size of the output error trace
file, as specified in the size
parameter

Flag indicating
whether or not
error trace is to be
acquired

104 260 4 Flag indicating whether or
not error trace is to be
acquired, as specified in the
flag parameter (if the flag
parameter is set to true, 1 is
output; if it is set to false, 0
is output)

Exit point None N/A N/A N/A N/A

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Method trace
output directory

0 0 256 Method trace output
directory specified in the
TrcPath parameter

Size of method
trace file to be
output

100 256 4 Size of the output method
trace file, as specified in the
size parameter

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

2. Functionality

103

N/A: Not applicable

Table 2-37: Information for the setDataTraceMode method

N/A: Not applicable

Flag indicating
whether or not
method trace is to
be acquired

104 260 4 Flag indicating whether or
not method trace is to be
acquired, as specified in the
flag parameter (if the flag
parameter is set to true, 1 is
output; if it is set to false, 0
is output)

Exit point None N/A N/A N/A N/A

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point Data trace output
directory

0 0 256 Data trace output directory
specified in the TrcPath
parameter

Size of data trace
file to be output

100 256 4 Size of the output data trace
file, as specified in the size
parameter

Size of data to be
output to the data
trace

104 260 4 Size of the data to be output
to the data trace, as specified
in the DataSize parameter

Flag indicating
whether or not
data trace is to be
acquired

108 264 4 Flag indicating whether or
not data trace is to be
acquired, as specified in the
flag parameter (if the flag
parameter is set to true, 1 is
output; if it is set to false, 0
is output)

Exit point None N/A N/A N/A N/A

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

2. Functionality

104

Table 2-38: Information for the trnChainedCommit method

N/A: Not applicable

Table 2-39: Information for the trnUnchainedCommit method

N/A: Not applicable

Table 2-40: Information for the trnChainedRollback method

N/A: Not applicable

Table 2-41: Information for the trnUnchainedRollback method

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point None N/A N/A N/A N/A

Exit point Performance
analysis trace
identification
information

0 0 26 Performance analysis trace
identification information

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point None N/A N/A N/A N/A

Exit point Performance
analysis trace
identification
information

0 0 26 Performance analysis trace
identification information

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point None N/A N/A N/A N/A

Exit point Performance
analysis trace
identification
information

0 0 26 Performance analysis trace
identification information

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

Entry point None N/A N/A N/A N/A

2. Functionality

105

N/A: Not applicable

2.11.3 Data trace
TP1/Client/J outputs data trace information to the directory specified in the TrcPath
argument of the setDataTraceMode method or the directory specified in the
dcdatatracepath operand of the TP1/Client/J environment definition; the file
names are DCDAT1.TRC and DCDAT2.TRC. You specify the file size with the size
argument of the setDataTraceMode method or the dcdatatracesize operand of
the TP1/Client/J environment definition. To specify the data size of trace 1, use the
DataSize argument of the setDataTraceMode method or the
dcdatatracemaxsize operand of the TP1/Client/J environment definition.

For a data trace, TP1/Client/J collects descriptions of the messages transferred
between the CUP and the TP1/Server.

The output format of a data trace file is as follows:

yyyy/mm/dd hh:mm:ss.uuu Event = eeee ThreadName = ttt
ADDRESS +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +a +b +c +d +e +f
0123456789abcdef
00000000 07 70 c0 00 00 00 00 5c 00 00 00 00 00 06 00 05
.p.....\........
00000010 00 00 00 10 00 00 00 00 00 00 00 00 15 bf 00 00
................
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 01 01 00
................
: : :

• yyyy/mm/dd hh:mm:ss.uuu: Date and time the data trace was collected

• eeee: Send/receive type

• ttt: Name of the executing thread

• Character string following ADDRESS: Data

2.11.4 Error trace and memory trace
TP1/Client/J outputs error trace information to the directory specified in the TrcPath

Exit point Performance
analysis trace
identification
information

0 0 26 Performance analysis trace
identification information

Collection
location

Item Location Length
(bytes)

Description

Hexadecimal Decimal

2. Functionality

106

argument of the setErrorTraceMode method or the directory specified in the
dcerrtracepath operand of the TP1/Client/J environment definition; the file names
are DCERR1.TRC and DCERR2.TRC. You specify the file size with the size argument
of the setErrorTraceMode method or the dcerrtracesize operand of the TP1/
Client/J environment definition.

For an error trace, the errors detected by TP1/Client/J are recorded in the files in
message format. If an error occurs during method execution, its cause is reported as an
exception, but this information may not be sufficient to identify the cause. An error
trace provides detailed error information in the file; you can use this information to
determine the cause of an error.

A memory trace is a facility for storing error information in the String array specified
in the setTraceArray method when you use a Java applet for which an error trace
cannot be collected. In the event of an error, you can obtain error information by
referencing the String array.

The output format of an error trace file or the format of data stored in a String array
for a memory trace is as follows:

(ttt)yyyy/mm/dd hh:mm:ss.uuu eeeeeeeeeeee

• ttt: Name of the executing thread

• yyyy/mm/dd hh:mm:ss.uuu: Date and time the error trace or memory trace was
collected

• eeeeeeeeeeee: Message

The following table lists the messages that are collected.

Table 2-42: Messages collected in error and memory traces

Message Description

Invalid message received.

method=aaaaaaaa
An invalid message was received from the TP1/Server.
aaaaaaaa: Name of the method that issued this message.

For a memory trace, this is a code corresponding to the name of
the method that issued this message.

Error reply received.

inf=aaaaaaaa,
method=bbbbbbbb

An error reply was received from the TP1/Server.
aaaaaaaa: Received error code
bbbbbbbb: Name of the method that issued this message.

For a memory trace, this is a code corresponding to the name of
the method that issued this message.

2. Functionality

107

Exception occurred.

inf=aaaaaaaa,
exception=bbbbbbbb(cc...cc),
method=dddddddd

An exception was received from the Java system in the TP1Client
class. Or, an exception was returned to the Java applet, application,
or servlet from the TP1Client class.
aaaaaaaa: Maintenance information when the exception occurred.
bbbbbbbb: Name of the exception that was received from Java or
that was returned to the Java applet, application, or servlet.

For a memory trace, this is a code corresponding to the name of
the exception.

cc...cc: Detailed message for the exception.
This information is output only when there is a detailed
message.

dddddddd: Name of the method that issued this message.
For a memory trace, this is a code corresponding to the method
name.

Invalid data received.

(aa...aa), method=bbbbbbbb
The cltAssemReceive method received invalid data from the
remote system.
aa...aa: Invalid data

When the message length is invalid
receive message length=message-length (decimal)

bbbbbbbb: Name of the method that issued this message.
For a memory trace, this is a code corresponding to the name of
the method that issued this message.

Receiving message was canceled.

aaaaaaaa (bb...bb) method=cccccccc
The message received by the cltAssemReceive method from the
remote system was discarded.
aaaaaaaa: Reason for discarding the message
bb...bb: Data detail

When the receive buffer overflowed
receive buffer overflowed.

(receive buffer size=receive-buffer-size (decimal),
receive message body
length=receive-message-body-length (decimal)

cccccccc: Name of the method that issued this message.
For a memory trace, this is a code corresponding to the name of
the method that issued this message.

Message Description

2. Functionality

108

The following table lists the method names that correspond to the codes that are output
to a memory trace.

Table 2-43: Correspondence of codes to method names

User data did not compress,

group=aa...aa,
service=bb...bb,
reason= cc...cc

User data was not compressed. The service request is issued
without compressing the user data.
aa...aa: Target service group name
bb...bb: Target service name
cc...cc: Reason why the user data was not compressed:

NO EFFECT: Compressing the user data would have no effect.
NOT SUPPORT VERSION: The target TP1/Server version does
not support the data compression facility.

If NO EFFECT is displayed, the size of the data obtained after
compression exceeds the size of the uncompressed data. In such a
case, check to see if this message has been output more than once
for the same CUP, and re-evaluate the use of the data compression
facility for each CUP.
If NOT SUPPORT VERSION is displayed, check whether the target
TP1/Server version supports the data compression facility (TP1/
Server Base 03-03 or later).

Code Method name

1 TP1Client.openConnection

2 TP1Client.closeConnection

3 TP1Client.rpcCall

4 TP1Client.setDccltinquiretime

5 TP1Client.setDccltdelay

6 TP1Client.setDcwatchtim

7 TP1Client.setDcselint

8 TP1Client.setDccltextend

9 TP1Client.rpcOpen

10 TP1Client.rpcClose

11 TP1Client.setRpcextend

12 TP1Client.setDchost

13 TP1Client.rpcCallTo

Message Description

2. Functionality

109

14 TP1Client.trnBegin

15 TP1Client.trnChainedCommit

16 TP1Client.trnChainedRollback

17 TP1Client.trnUnchainedCommit

18 TP1Client.trnUnchainedRollback

19 TP1Client.trnInfo

20 TP1Client.getTrnID

37 TP1Client.cltAssemSend

38 TP1Client.cltAssemReceive

100 TP1ClientSocketCommunicator.openConnection

101 TP1ClientSocketCommunicator.closeConnection

102 TP1ClientSocketCommunicator.sendData

103 TP1ClientSocketCommunicator.sendData

104 TP1ClientSocketCommunicator.recvData

105 TP1ClientSocketCommunicator.recvData

106 TP1ClientSocketCommunicator.recvDummyData

107 TP1ClientSocketCommunicator.flush

108 TP1ClientSocketCommunicator.recvSelect

109 TP1ClientSocketCommunicator.openServerSocket

110 TP1ClientSocketCommunicator.acceptServerSocket

111 TP1ClientSocketCommunicator.closeServerSocket

112 TP1ClientSocketCommunicator.getServerPort

113 TP1ClientSocketCommunicator.getLocalIPAddress

114 TP1ClientSocketCommunicator.getLocalPort

300 TP1ClientProperties.TP1ClientProperties

301 TP1ClientProperties.TP1ClientProperties

302 TP1ClientProperties.getValue

Code Method name

2. Functionality

110

400 TP1ClientRpc.rpcOpen

401 TP1ClientRpc.cltConnect

402 TP1ClientRpc.rpcCall

403 TP1ClientRpc.rpcClose

404 TP1ClientRpc.cltDisconnect

405 TP1ClientRpc.defAnalyze

406 TP1ClientRpc.rapConnect

407 TP1ClientRpc.rapDisconnect

408 TP1ClientRpc.rapRpcCall

409 TP1ClientRpc.scdRpcCall

410 TP1ClientRpc.setDccltextend

411 TP1ClientRpc.rapMngConnect

412 TP1ClientRpc.rapMngDisconnect

413 TP1ClientRpc.setRpcextend

414 TP1ClientRpc.setDchost

415 TP1ClientRpc.namRpcCall

416 TP1ClientRpc.getHostEntry

417 TP1ClientRpc.getNextEntry

500 TP1ClientConManage.openMngConnection

501 TP1ClientConManage.closeMngConnection

502 TP1ClientConManage.changeMngConnection

503 TP1ClientConManage.getConnection

504 TP1ClientConManage.putConnection

505 TP1ClientConManage.cancelConnection

506 TP1ClientConManage.registCheck

507 TP1ClientConManage.getMngConInfo

512 TP1ClientConManage.getSync

Code Method name

2. Functionality

111

513 TP1ClientConManage.registConnNum

600 TP1ClientConnectionHost.addTP1ClientConnectionHost

601 TP1ClientConnectionHost.removeTP1ClientConnectionHost

602 TP1ClientConnectionHost.removeTP1ClientConnectionHostAll

603 TP1ClientConnectionHost.changeTP1ClientConnectionHost

604 TP1ClientConnectionHost.getConnection

605 TP1ClientConnectionHost.putConnection

606 TP1ClientConnectionHost.addConnection

700 TP1ClientNam.Lookup

900 TP1ClientTrn.trnBegin

901 TP1ClientTrn.trnChainedCommit

902 TP1ClientTrn.trnChainedRollback

903 TP1ClientTrn.trnUnchainedCommit

904 TP1ClientTrn.trnUnchainedRollback

905 TP1ClientTrn.conTrnCall

1001 Socket.Socket

1002 Socket.getInputStream

1003 Socket.getOutputStream

1004 Socket.close

1005 DataInputStream.read

1006 DataInputStream.available

1007 DataInputStream.close

1008 DataOutputStream.write

1009 DataOutputStream.close

1010 InetAddress.getLocalHost

1013 InputStream.read

1014 InputStream.close

Code Method name

2. Functionality

112

The following table lists the exception names that correspond to the codes that are
output to a memory trace.

Table 2-44: Correspondence of codes to exception names

1015 OutputStream.write

1016 OutputStream.close

1019 Socket.setTcpNoDelay

1102 TP1ClientSndRcv.cltAssemSend

1103 TP1ClientSndRcv.cltAssemReceive

Code Exception name

1 ErrInvalidArgsException

2 ErrProtoException

3 ErrNoBufsException

4 ErrNetDownException

5 ErrTimedOutException

6 ErrMessageTooBigException

7 ErrReplyTooBigException

8 ErrNoSuchServiceGroupException

9 ErrNoSuchServiceException

10 ErrServiceClosedException

11 ErrServiceTerminatingException

12 ErrServiceNotUpException

13 ErrNotUpException

14 ErrSyserrAtServerException

15 ErrNoBufsAtServerException

16 ErrSyserrException

17 ErrInvalidReplyException

18 ErrInitializingException

Code Method name

2. Functionality

113

19 ErrServerBusyException

20 ErrTestmodeException

21 ErrSecchkException

22 ErrServiceTerminatedException

23 ErrIOErrException

24 ErrHostUndefException

25 ErrInvalidPortException

26 ErrConnfreeException

29 ErrFatalException

30 ErrSecurityException

31 NumberFormatException

32 EOFException

33 FileNotFoundException

34 SocketException

35 InterruptedIOException

36 ErrNotPoolingException

45 ErrTrnchkException

76 ErrServerTimedOutException

77 ErrClientTimedOutException

78 ErrNotTrnExtendException

79 ErrTrnchkExtendException

80 ErrNetDownAtServerException

81 ErrNetDownAtClientException

84 ErrInvalidMessageException

85 ErrBufferOverflowException

86 ErrCollisionMessageException

1001 IOException

Code Exception name

2. Functionality

114

2.11.5 Method trace
TP1/Client/J outputs method trace information to the directory specified in the
TrcPath argument of the setMethodTraceMode method or the directory specified
in the dcmethodtracepath operand of the TP1/Client/J environment definition; the
file names are DCMTD1.TRC and DCMTD2.TRC. You specify the file size with the size
argument of the setMethodTraceMode method or the dcmethodtracesize
operand of the TP1/Client/J environment definition.

Many methods are executed within a TP1Client class. A method trace outputs to the
file the execution order and times of these internal methods. In a Java environment,
only a limited amount of information can be obtained in the event of an error. You can
use the method trace information about the internal processing resulting in an error to
determine the cause of an error.

The output format of a method trace file is as follows:

yyyy/mm/dd hh:mm:ss.uuu Location = lll ThreadName = ttt
MethodName = nnnnnnnnnnnnnnnnnnnn
ADDRESS +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +a +b +c +d +e +f
0123456789abcdef
00000000 00 00 00 00 c7 0b 49 17 00 00 00 00 00 06 00 05
......|.........

• yyyy/mm/dd hh:mm:ss.uuu: Date and time the method trace was collected

• lll: Type of entry or exit point

• ttt: Name of the executing thread

Character string following ADDRESS: Name of the method that was called

2.11.6 Debug trace
TP1/Client/J normally collects debug trace information in its memory buffer and
outputs the information to a debug trace file only when an exception occurs. TP1/
Client/J outputs a debug trace to the TP1ClientJ directory under the home directory
of the user executing the Java VM; the file name is dcCltXXXXXXXXXXXX.dmp
(where XXXXXXXXXXXX is a time stamp).

When a debug trace file is to be output, if the total number of debug trace files exceeds
the file count specified in the dccltdbgtrcfilecount operand of the TP1/Client/J
environment definition, the file with the oldest update date is deleted. The existing
debug trace files are deleted until the total number of debug trace files reaches

1002 UnknownHostException

Code Exception name

2. Functionality

115

(file-count-specified-in-the dccltdbgtrcfilecount-operand - 1).

If debug traces cannot be output to files, such as when a CUP is operated as a Java
applet or when the deletion of old debug trace files fails, debug traces are output to the
standard output. When debug trace files are output to the standard output, you can view
the debug trace information by opening the Java console using a browser facility, for
example.

The output format of a debug trace is as follows:

(ttt)yyyy/mm/dd hh:mm:ss.uuu MethodName = nnnnnnnnnnnnnnnnnnnn(ii)
Location = lll
ADDRESS +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +a +b +c +d +e +f
0123456789abcdef
00000000 00 00 00 00 c7 0b 49 17 00 00 00 00 00 06 00 05
......|.........

• ttt: Thread ID

• yyyy/mm/dd hh:mm:ss.uuu: Date and time the debug trace was collected

• nnnnnnnnnnnnnnnnnnnn: Name of the executing thread

• ii: Instance ID

• lll: Type of entry or exit point

Character string following ADDRESS: Debug trace information

2.11.7 Performance analysis trace
Performance analysis trace (PRF trace) information is the trace information of the
Cosminexus Application Server. By collecting the performance analysis trace, you can
determine the flow of the series of processes that occurred during UAP execution and
the time that was taken, and collect the information necessary for analyzing
performance. Furthermore, when an error occurs, you can determine how far the
process had reached.

For an overview of performance analysis traces and details on how to use them, see the
manuals Cosminexus Function Description and Cosminexus System Operation Guide.
This section explains how to use performance analysis traces when you run TP1/
Client/J on Cosminexus Application Server, the information collected in performance
analysis traces, and trace collection points.

(1) Outputting the performance analysis trace on Cosminexus Application
Server

When you run TP1/Client/J on Cosminexus Application Server, you can output the
performance analysis trace on Cosminexus Application Server. The performance
analysis trace is collected at the TP1/Client/J trace collection point. To collect the

2. Functionality

116

performance analysis trace, specify dccltprftrace=Y in the TP1/Client/J
environment definition.

When outputting the performance analysis trace on Cosminexus Application Server,
the information collected by TP1/Client/J increases the size of the performance
analysis trace that is output. Therefore, you must take this increase into consideration
when specifying a size for the performance analysis trace.

(2) Collating Cosminexus Application Server with OpenTP1 trace
When you issue to TP1/Server an RPC that uses the name service or an RPC that uses
the scheduler direct facility, you can add to the RPC message to be sent to the scheduler
identification information (an IP address, for example) that is essentially unique to
each TP1/Client/J instance. The added information is output to the performance
verification trace of OpenTP1. By collating this OpenTP1 performance verification
trace with the performance analysis trace of Cosminexus Application Server, you can
identify the series of operational flow between Cosminexus Application Server and
OpenTP1. When you issue to a TP1/Server whose version is 07-02 or later an RPC that
uses the remote API facility, you can add identification information (an IP address, for
example) to the RPC message to be sent to the scheduler.

To add identification information to the OpenTP1 performance verification trace,
specify dccltprfinfosend=Y in the TP1/Client/J environment definition. For
details about the OpenTP1 performance verification trace, see the manual OpenTP1
Description.

(3) Information collected in the performance analysis trace
Information collected by TP1/Client/J is output as added information to the
performance analysis trace. The information collected in the performance analysis
trace and a trace output example are described below.

Information collected in the performance analysis trace

Node ID: _Jaa (4-byte alphanumeric character)

aa: Randomly chosen two alphanumeric characters (numbers (0-9) or letters
(A-Z or a-z))

Root communication serial number: bbbbbbbb (4-byte hexadecimal number)

bbbbbbbb: IP address

RPC communication serial number: ccccdddd (4-byte hexadecimal number)

cccc: Randomly chosen 2-byte hexadecimal number

dddd: Communication serial number

Example of outputting performance analysis trace on Cosminexus Application
Server

... OPT ASCII

2. Functionality

117

... Hexadecimal display _Jaa/0xbbbbbbbb/0xccccdddd...

Output example in which identification information is added to the performance
verification trace of OpenTP1

(4) Performance analysis trace collection point
This subsection explains the details of the trace collection point for the performance
analysis trace of TP1/Client/J for each type of processing.

(a) Establishing and terminating connection with the RAP-processing
listener
The following table shows the event IDs, trace collection points, additional
information, and PRF trace collection levels used when establishing or terminating
connection with the RAP-processing listener.

Table 2-45: Details of the trace collection points when establishing or
terminating connection with the RAP-processing listener

Event ID Number
in the

figure#1

Trace collection point Additional
information#2

Level

0x9180 1 Before establishing connection to
the RAP-processing listener

Information on the
request destination
(host name, port
number)

A

0x9181 2 After establishing connection to the
RAP-processing listener (collected
only when an error occurs)

Internal return code A

0x9182#3 3 After sending or receiving
RAP-processing listener connection
request data

Internal return code A

0x9183 4 Before sending or receiving
RAP-processing listener
disconnection request data

N/A A

2. Functionality

118

Legend:

A: Standard

N/A: Not applicable

#1

Corresponds to the number inside Figure 2-28.

#2

Information to be added to the performance analysis trace of Cosminexus
Application Server

#3

A trace with this event ID is not collected if an error occurs in the connection
establishment process and the event ID 0x9181 is collected.

The following figure shows the trace collection points in establishing or terminating
connection with the RAP-processing listener:

0x9184 5 After sending or receiving
RAP-processing listener
disconnection request data

Internal return code A

Event ID Number
in the

figure#1

Trace collection point Additional
information#2

Level

2. Functionality

119

Figure 2-33: Trace collection points in establishing or terminating connection
with the RAP-processing listener

(b) API surrogate execution request by the remote API facility
The following table shows the event IDs, trace collection points, additional
information, and PRF trace collection levels when an API surrogate execution request
is issued by the remote API facility.

Table 2-46: Details of the trace collection points when an API surrogate
execution request is issued by the remote API facility

Event ID Number
in the

figure#1

Trace collection point Additional
information#2

Level

0x9190 1 Before processing a request for surrogate
execution of dc_rpc_call

N/A A

2. Functionality

120

Legend:

A: Standard

N/A: Not applicable

#1

Corresponds to the number inside Figure 2-29.

#2

Information to be added to the performance analysis trace of Cosminexus
Application Server

The following figure shows the trace collection points that are used when an API
surrogate execution request is issued by the remote API facility:

0x9191 2 After processing a request for surrogate execution
of dc_rpc_call

Internal return
code

A

0x9192 1 Before processing a request for surrogate
execution of dc_trn_begin

N/A A

0x9193 2 After processing a request for surrogate execution
of dc_trn_begin

Internal return
code

A

0x9194 1 Before processing a request for surrogate
execution of dc_trn_chained_commit

N/A A

0x9195 2 After processing a request for surrogate execution
of dc_trn_chained_commit

Internal return
code

A

0x9196 1 Before processing a request for surrogate
execution of dc_trn_chained_rollback

N/A A

0x9197 2 After processing a request for surrogate execution
of dc_trn_chained_rollback

Internal return
code

A

0x9198 1 Before processing a request for surrogate
execution of dc_trn_unchained_commit

N/A A

0x9199 2 After processing a request for surrogate execution
of dc_trn_unchained_commit

Internal return
code

A

0x919A 1 Before processing a request for surrogate
execution of dc_trn_unchained_rollback

N/A A

0x919B 2 After processing a request for surrogate execution
of dc_trn_unchained_rollback

Internal return
code

A

Event ID Number
in the

figure#1

Trace collection point Additional
information#2

Level

2. Functionality

121

Figure 2-34: Trace collection points that are used when an API surrogate
execution request is issued by the remote API facility

(c) Issuing an RPC to the schedule server
The following table shows the event IDs, trace collection points, additional
information, and PRF trace collection levels used when issuing an RPC to the schedule
server:

Table 2-47: Details of the trace collection points when issuing an RPC to the
schedule server

Event ID Number
in the

figure#1

Trace collection point Additional
information#2

Level

0x91C0 1 Before establishing connection to
the schedule server

Information on the
host at the service
request destination
(host name, port
number)

A

0x91C1 2 Before processing a service request
to issue an RPC to the schedule
server

Internal return code A

0x91C2#3 3 After accepting a connection request
to receive response from the SPP or
schedule server

Internal return code#4 A

2. Functionality

122

Legend:

A: Standard

B: Detail

#1

Corresponds to the number inside Figures 2-30 and 2-31.

#2

Information to be added to the performance analysis trace of Cosminexus
Application Server

#3

A trace with this event ID is collected when the transmission of the requested data
is normally terminated.

#4

When accepting of the connection request to receive response data from the SPP
or schedule server is terminated normally, the connection source information (IP
address and port number) is also added.

#5

When accepting of the connection request to receive response data from the name
server is terminated normally, the connection source information (IP address and
port number) is also added.

The following figure shows the trace collection points that are used when issuing an
RPC to the schedule server:

0x91C3 4 Before establishing connection to
the name server

Information on the
host at the service
request destination
(host name, port
number)

B

0x91C4 5 After executing a service
information inquiry to the name
server

Internal return code B

0x91C5#3 6 After accepting a connection request
to receive response data from the
name server

Internal return code#5 B

Event ID Number
in the

figure#1

Trace collection point Additional
information#2

Level

2. Functionality

123

Figure 2-35: Trace collection points that are used when issuing an RPC to the
schedule server

The following figure shows the trace collection points that are used when issuing a
service information inquiry to the name server:

2. Functionality

124

Figure 2-36: Trace collection points that are used when issuing a service
information inquiry to the name server

(d) API execution
The following table shows the event IDs, trace collection points, additional
information, and PRF trace collection levels used during API execution.

Table 2-48: Details of the trace collection points during API execution

Event ID Trace collection point Additional
information#1

Level

0x91D0 Entry point to the openConnection method N/A A

0x91D1 Exit point from the openConnection method Internal return code A

2. Functionality

125

Legend:

A: Standard

N/A: Not applicable

#1

Information to be added to the performance analysis trace of Cosminexus
Application Server

#2

At the start of a transaction, the transaction global identifier and the transaction
branch identifier are also added.

0x91D2 Entry point to the closeConnection method N/A A

0x91D3 Exit point from the closeConnection method Internal return code A

0x91D4 Entry point to the rpcCall method inlen A

0x91D5 Exit point from the rpcCall method outlen, Internal
return code

A

0x91D6 Entry point to the rpcCallTo method inlen A

0x91D7 Exit point from the rpcCallTo method outlen, Internal
return code

A

0x91D8 Entry point to the trnBegin method N/A A

0x91D9 Exit point from the trnBegin method Internal return code#2 A

0x91DA Entry point to the trnChainedCommit method N/A A

0x91DB Exit point from the trnChainedCommit method Internal return code#2 A

0x91DC Entry point to the trnChainedRollback method N/A A

0x91DD Exit point from the trnChainedRollback method Internal return code#2 A

0x91DE Entry point to the trnUnchainedCommit method N/A A

0x91DF Exit point from the trnUnchainedCommit method Internal return code A

0x91E0 Entry point to the trnUnchainedRollback method N/A A

0x91E1 Exit point from the trnUnchainedRollback method Internal return code A

Event ID Trace collection point Additional
information#1

Level

2. Functionality

126

(5) Performance analysis trace identification information that is output to a UAP
trace

TP1/Client/J outputs performance analysis trace identification information at the end
of the UAP trace exit-point information in order to connect performance analysis trace
information of TP1/Server and Cosminexus with the trace information of TP1/Client/J.

The following methods are provided for outputting performance analysis trace
identification information to a UAP trace:

• openConnection()

• openConnection(String host, int port)

• closeConnection()

• rpcCall(String group, String service, byte[] in_data, int[]
in_len, byte[] out_data, int[] out_len, int flags)

• rpcCall(String group, String service, byte[] in_data, byte[]
out_data, int flags)

• rpcCallTo(DCRpcBindTbl direction, String group, String
service, byte[] in_data, int[] in_len, byte[] out_data,
int[] out_len, int flags)

• trnBegin()

• trnChainedCommit()

• trnUnchainedCommit()

• trnChainedRollback()

• trnUnchainedRollback()

Note that the performance analysis trace identification information is output regardless
of the value of the dccltprfinfosend operand in the TP1/Client/J environment
definition.

An example of a UAP trace to which performance analysis trace identification
information is output is shown below. Bold type indicates the performance analysis
trace identification information.

2008/09/01 16:37:24.698 Location = Out ThreadName = main
MethodName = TP1Client.rpcCall
Exception =
ADDRESS +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +a +b +c +d +e +f
0123456789abcdef
00000000 00 00 00 1c 53 75 7a 75 6b 69 00 00 00 00 00 00
....Suzuki......
00000010 00 00 00 00 00 00 00 00 00 00 00 00 51 00 00 00
............Q...

2. Functionality

127

00000020 5f 4a 30 6d 2f 30 78 30 61 64 31 30 66 37 63 2f _J0m/
0x0ad10f7c/
00000030 30 78 32 62 35 64 30 30 30 31 0x2b5d0001

2. Functionality

128

2.12 Data compression facility

The data compression facility enables you to compress user data that is sent over the
network by an RPC. You can use this facility to reduce the number of packets that are
sent over the network, thereby reducing network congestion.

You use the dccltdatacomp operand in the TP1/Client/J environment definition to
specify whether or not the data compression facility is used.

When this facility is used, TP1/Client/J compresses the value of the input parameter
(in_data) set by the rpcCall method that is executed from a CUP. If compression
is effective, the compressed data is then sent out over the network. The value of the
response (out_data) to the query from SPP is also compressed by TP1/Server and
then sent over the network. TP1/Client/J receives the response, restores the
compressed data, and then passes it to the CUP.

The following figure provides an overview of the data compression facility.

Figure 2-37: Overview of database adapter

This facility is applicable when the version of TP1/Server at the service request
destination is 03-03 or later.# It supports the RPC communication mode and all RPC

2. Functionality

129

interfaces. However, the following differences apply, depending on the TP1/Server
version at the service request destination:

• For a TP1/Server version earlier than 03-06

If the input parameter value is not compressed, the response value is not
compressed by TP1/Server even if compression would be effective.

• For a TP1/Server version 03-06 or later

The response value is compressed by TP1/Server if compression would be
effective, even if the input parameter value was not compressed.

#

For an RPC using the remote API facility, the data compression facility is
supported if the TP1/Server version is 03-05 or later.

The data compression facility cannot be used if the XA transaction linkage facility
is used from uCosminexus TP1 Connector or Cosminexus TP1 Connector and if
the TP1/Server version is 07-00 or earlier.

2.12.1 Effects of the data compression facility
The effects of the data compression facility depend on the contents of the user data.
Use of this function is most effective when the user data contains many occurrences of
the same characters in the same order. With some user data, use of the function has
almost no effect.

Because there is some overhead associated with data compression and decompression,
you should evaluate the advantages of data compression in light of its associated costs
before you decide whether or not to use the data compression facility.

2.12.2 Notes about using the data compression facility
This subsection provides notes about using the data compression facility.

• If an RPC using the scheduler direct facility is issued and the TP1/Server version
at the service request destination is earlier than 03-03, invalid data may be passed
to SPP's service function. In such a case, do not issue to TP1/Server a service
request that uses the data compression facility (specify N in the dccltdatacomp
operand).

If an RPC using the name service facility is issued and the TP1/Server version at
the service request destination is earlier than 03-03, the data compression facility
cannot be used even when it is set to be used, because this setting is ignored.

• If the size of the data obtained after compression would be greater than the size
of the data before compression, or if the TP1/Server at the service request
destination does not support the data compression facility, a message indicating
that the data was not compressed is output to the error trace file of TP1/Client/J,

2. Functionality

130

and processing continues. In such a case, the data has not been compressed.

• The data compression facility cannot be used when you establish a permanent
connection with a DCCM3 logical terminal and then issue a service request.

• If the rpcCall method returns an error, the service's response (out_data) is not
guaranteed.

• The maximum length of an RPC message (maximum length of a user message
that can be sent or received by the rpcCall method) is always the value set in the
dccltrpcmaxmsgsize operand or the default value (1 megabyte), regardless of
whether or not the data compression facility is used.

• If the XA transaction linkage facility is used from uCosminexus TP1 Connector
or Cosminexus TP1 Connector, and if the version of the target TP1/Server is
07-00 or earlier, TP1/Client/J cannot use the data compression facility. If an
attempt is made to use the data compression facility in such a case, the
KFCA32042-W message may be output.

2. Functionality

131

2.13 Source host specification facility

When you issue a connection establishment request using an RPC or the TCP/IP
communication facility, TP1/Client/J enables you to specify the transmission source
host for the CUP. This is called the source host specification facility.

If multiple network adapters are connected on the host where the CUP is running, the
transmission source host to be used by the CUP when connection establishment is
requested is determined by TCP/IP control. However, if you use the source host
specification facility, you can fix the transmission source host to be used when the
following connection establishment requests are issued:

RPC using the scheduler direct facility

RPC using the name service

RPC using the remote API facility

RPC specifying the communication destination

TCP/IP communication facility

To specify the transmission source host for a CUP, use the dccltcupsndhost
operand in the TP1/Client/J environment definition.

The following figure shows connection establishment when the source host
specification facility is not used and when it is used.

2. Functionality

132

Figure 2-38: When the source host specification facility is not used and when
the facility is used

2. Functionality

133

2.14 Receive port fixing facility

TP1/Client/J allows you to fix the receive port for an RPC that uses the scheduler direct
facility and an RPC that uses the name service. This is called the receive port fixing
facility.
When you send an RPC's response from TP1/Server to TP1/Client/J, you use this
facility to filter out notifications other than those approved for the receive port of TP1/
Client/J by means of a firewall positioned between TP1/Server and TP1/Client/J.

To use this facility, specify the dccltcuprcvport operand in the TP1/Client/J
environment definition.

The following describes when the receive port fixing facility is not used and when this
facility is used.

(1) When the receive port fixing facility is not used
There is no filtering for the receive port in the RPC's response communication. The OS
automatically allocates an undefined port as the receive port for the RPC in TP1/
Client/J.

The following figures show when the receive port fixing facility is not used.

2. Functionality

134

Figure 2-39: When the receive port fixing facility is not used (RPC using the
scheduler direct facility)

2. Functionality

135

Figure 2-40: When the receive port fixing facility is not used (RPC using the
name service)

(2) When the receive port fixing facility is used
The port specified in the dccltcuprcvport operand in the TP1/Client/J environment
definition is used as the receive port for response communication to the RPC, and other
communication is subject to filtering. This method enables you to use the firewall to
filter response communications from TP1/Server for unauthorized service requests.

The following figures show when the receive port fixing facility is used.

2. Functionality

136

Figure 2-41: When the receive port fixing facility is used (RPC using the
scheduler direct facility)

2. Functionality

137

Figure 2-42: When the receive port fixing facility is used (RPC using the name
service)

139

Chapter

3. Program Interface

This chapter describes the program interface for using TP1/Client/J.

3.1 List of APIs
3.2 How to use APIs

3. Program Interface

140

3.1 List of APIs

The following tables list the APIs that are used by TP1/Client/J.

Table 3-1: List of APIs (package and classes)

Table 3-2: List of APIs (methods)

Classification Name Description or function

Package JP.co.Hitachi.soft.Ope
nTP1

Package name of the TP1/Client/J classes

Class TP1Client Class name of TP1/Client/J

DCRpcBindTbl DCRpcBindTbl class

Classification Method Description or function

Execution acceptNotification(byt
e[] inf,int[]
inf_len,int port,int
timeout,byte[]
hostname,byte[]
nodeid)

Receives messages that are sent by server's function
(dc_rpc_cltsend function).

acceptNotificationChai
ned(byte[] inf,int[]
inf_len,int
timeout,byte[]
hostname,byte[]
nodeid)

cancelNotification(byt
e[] inf,int
inf_len,String
hostname,int port)

Releases the unidirectional server message reception
wait status (issuance of the acceptNotification or
acceptNotificationChained method).

closeConnection() Releases a permanent connection between a CUP and a
RAP-processing listener and server.

closeNotification() Deletes an environment for using the unidirectional
message consecutive reception facility.

cltAssemSend(byte[]
buff, int sendleng,
String hostname, int
portnum, int timeout,
int flags)

Uses the receive message assembly facility to send a
message.

3. Program Interface

141

cltAssemReceive(byte[]
buff, int[] recvleng,
int timeout, int flags)

Uses the receive message assembly facility to receive a
message.

closeConnection() Releases a permanent connection between a CUP and a
RAP-processing listener and server.

cltReceive(byte[]
buff, int[] recvleng,
int timeout, int flags)

Receives a message sent by an MHP.

cltSend(byte[] buff,
int sendleng, String
hostname, int portnum,
int flags)

Sends a message to an MHP.

getTrnID(byte[] gid,
byte[] bid)

Obtains the transaction global identifier and transaction
branch identifier.

openConnection() Establishes a permanent connection with a
RAP-processing server or connects to TP1/Web and
starts a virtual session.openConnection(String

host, int port)

openConnection(String
url, short flags)

openNotification(int
port)

Creates an environment for using the unidirectional
message consecutive reception facility.

rpcCall(String group,
String service, byte[]
in_data, int[] in_len,
byte[] out_data, int[]
out_len, int flags)

Issues an RPC to the specified service-group-name +
service-name.

rpcCall(String group,
String service, byte[]
in_data, byte[]
out_data, int flags)

rpcCallTo(DCRpcBindTbl
direction, String
group, String service,
byte[] in_data, int[]
in_len, byte[]
out_data, int[]
out_len, int flags)

Issues an RPC to the service-group-name + service-name
of the specified communication-target node.

rpcClose() Releases the environment for calling a TP1/Server SPP.

Classification Method Description or function

3. Program Interface

142

rpcOpen() Initializes the environment for calling a TP1/Server SPP.

rpcOpen(String
deffilename)

trnBegin() Starts a global transaction.

trnChainedCommit() Acquires the synchronization point of a transaction.

trnChainedRollback() Rolls back a transaction.

trnInfo() Determines whether or not the TP1Client object is
running as a transaction.

trnUnchainedCommit() Acquires the synchronization point of a transaction.

trnUnchainedRollback() Rolls back a transaction.

Definition setConnectInformation(
byte[] inf, short
inf_len)

Sets terminal identification information.

setDataTraceMode(Strin
g TrcPath, int size,
int Datasize, boolean

flag)#

Specifies whether or not to output to a file a data trace
when an RPC is issued from a Java application or servlet.

setDccltdelay(int sec) Sets the communication delay time between a CUP and a
RAP-processing listener and server.

setDccltextend(int
flags)

Sets the extension level of the TP1/Client/J facility. The
user can specify multiple extension levels by specifying
the disjunction of each value.

setDccltinquiretime(in
t sec)

Sets the maximum time for the inquiry interval that is
monitored from the RAP-processing server (if no service
request is received from the client within this period, the
connection is released).

setDchost(String host,
int port)

Sets the host name and port number of the TP1/Server as
a gateway.

setDcselint(int msec) This method serves no purpose.
It is retained only to provide compatibility with the
source of the previous version.

setDcwatchtim(int sec) For a synchronous-response RPC, sets the maximum
time to wait for a response from the service since a
service request was issued from the CUP to the SPP.

Classification Method Description or function

3. Program Interface

143

#
Only Java applications and servlets can use this method. If an attempt is made to use
this method with a Java applet, SecurityException occurs.

setErrorTraceMode(Stri
ng TrcPath, int size,

boolean flag)#

Specifies whether or not to output to a file information
about connection establishment with the server,
disconnection from the server, and error trace when the
TP1Client class is called from a Java application or
servlet.

setMethodTraceMode(Str
ing TrcPath, int size,

boolean flag)#

Specifies whether or not to output to a file a method trace
when the TP1Client class is called from a Java
application or servlet.

setRpcextend(int
extendoption)

Changes RPC-related settings.

setScdDirectObject(Str
ing scdhost, int
scdport, int flags)

Sets the host name and port number of the
communication-target scheduler.

setTraceArray(String[]
array)

Specifies the array (memory trace) for storing
information about connection establishment with the
server, disconnection from the server, and error trace
when the TP1Client class is called from a Java
application, servlet, or applet. To view the error
information, you must use a Java application, servlet, or
applet to reference the contents of this array.

setUapTraceMode(String
TrcPath, int size,

boolean flag)#

Specifies whether or not to output to a file a UAP trace
when the TP1Client class is called from a Java
application or servlet.

Classification Method Description or function

3. Program Interface

144

3.2 How to use APIs

After creating a Java applet, application, or servlet using the class library provided by
TP1/Client/J, you can manipulate TP1/Client/J, mainly by using five APIs.

1. Preparing to use TP1/Client/J

2. Creating an instance of the TP1Client class

3. Initializing the RPC environment

4. Connecting to TP1/Server's RAP-processing server (applicable if RPCs are
issued using the remote API facility)

5. Calling a remote service (RPC)

6. Releasing the permanent connection with the RAP-processing listener or server
(applicable if RPCs are issued using the remote API)

7. Releasing the RPC environment

This section provides an overview and examples of the APIs in the order they are
executed. For details about the classes, see 4. Classes Used with TP1/Client/J.

Note:

Methods of the TP1Client class are not thread-safe. If you execute a method
of an instance of the same TP1Client class from multiple threads, make sure
that you apply a lock so that they will not be executed concurrently. If an
attempt is made to execute a method of an instance of the same TP1Client
class from multiple threads, the corresponding method may return an
unexpected error.

3.2.1 Execution order of APIs
(1) Preparing to use TP1/Client/J

Declare import of the TP1/Client/J package in the program.

Import the TP1/Client/J package in the same manner as when the package of each Java
facility is imported.

import java.applet.*; // Import java.applet package
import java.awt.*; // Import java.awt package
import JP.co.Hitachi.soft.OpenTP1.*; // Import TP1Client package

(2) Creating an instance of the TP1Client class>
The class name of TP1/Client/J is TP1Client. Create an instance of the TP1Client

3. Program Interface

145

class when you need to access TP1/Server.

TP1Client stock; // Declare the instance variable named stock
stock = new TP1Client(); // Create an instance of the TP1Client class
 // (constructor call)

(3) Initializing the RPC environment
Initialize the RPC environment to call TP1/Server's SPP. To initialize the RPC
environment, call the rpcOpen method.

If an error occurs during the call, the rpcOpen method returns an exception. Execute
exception processing, if necessary.

If you are issuing an RPC that uses the scheduler direct facility, an RPC that uses the
name service, or an RPC specifying the communication target, be sure to call the
rpcOpen method. If you are issuing an RPC that uses the remote API facility, you need
not call the rpcOpen method.

When acquiring the TP1/Client/J environment definition from the system
properties

try {
 stock.rpcOpen(); // Initialize the RPC environment
} catch(ErrFatalException e) { // Occurrence of RPC environment
 // initialization error
 System.out.println("CUP Initialize error");
} catch (TP1ClientException e) { // Occurrence of other error
 System.out.println("error occured");
}

When acquiring the TP1/Client/J environment definition from a file

try {
 stock.rpcOpen("C:\\Clt4J\\conf\\clt4j.ini");
 // Initialize the RPC environment
} catch(ErrFatalException e) { // Occurrence of RPC environment
 // initialization error
 System.out.println("CUP Initialize error");
} catch (TP1ClientException e) { // Occurrence of other error
 System.out.println("error occured");
}

3. Program Interface

146

(4) Connecting to TP1/Server's RAP-processing server (applicable if RPCs are
issued using the remote API facility)

To issue an RPC that uses the remote API facility, connection is established with TP1/
Server's RAP-processing listener and server. A dedicated TCP/IP connection is
established between the Java applet, application, or servlet and the RAP-processing
server until the connection is released.

To establish a connection, call the openConnection method of the TP1Client class.
If an error occurs during the call, the openConnection method returns an exception.
Execute exception processing, if necessary.

If you are issuing an RPC that uses the scheduler direct facility, an RPC that uses the
name service, an RPC specifying the communication target, or an RPC that uses the
auto connect mode, do not call the openConnection method.

try {
 stock.openConnection("stocksv",12000);
 // Establish connection with RAP-processing
 // listener and server
} catch(ErrTimedOutException e) { // Occurrence of connection timeout
 System.out.println("server inactive");
} catch (TP1ClientException e) { // Occurrence of other error
 System.out.println("error occured");
}

The CUP may not be able to detect release of the permanent connection if the
RAP-processing listener, RAP-processing server, or OpenTP1 system terminates
abnormally while the permanent connection is established. In such a case, the next
method issued (rpcCall or closeConnection) may return
ErrTimedOutException.

(5) Calling a remote service (RPC)
If connection is established successfully with the RAP-processing server, you can call
(RPC) a remote service (SPP). To issue an RPC, call the rpcCall method. In the
arguments of the rpcCall method, specify the service group name for the service, the
service name, inquiry data, inquiry data length, response data reception area, response
data reception area size, and RPC execution mode.

If an error occurs during the call, the rpcCall method returns an exception. Execute
exception processing, if necessary.

int in_len[] = new int[1];
int out_len[] = new int[1];
byte in_data[];
byte out_data[];
String in = "PN=0012-2456-12"; // Inquiry data (fixed character string

3. Program Interface

147

 // for convenience)
in_len[0] = 16; // Inquiry data length (fixed string for convenience)
out_len[0] = 16; // Response data area size (fixed for convenience)
in_data = new byte[in_len[0]]; // Create inquiry data area
in.getBytes(0, in.length(), in_data, 0); // Set inquiry data
out_data = new byte[out_len[0]]; // Create response data area
try {
 stock.rpcCall("group", "service", // Execute RPC (inquiry
 // response type)
 in_data, in_len, out_data, out_len, stock.DCNOFLAGS);
} catch (ErrTimedOutException e) { // RPC request timeout
 System.out.println("RPC timedout");
} catch (TP1ClientException e) { // Occurrence of other error
 System.out.println("error occured");
}

There are three types of RPCs, as listed in the table below; specify the desired type in
the flags argument:

Note

When you have used DCRPC_CHAINED to call services, you must execute an RPC
specifying DCNOFLAGS when calling the last service to indicate the end of the
chained RPCs.

(6) Releasing permanent connection with the RAP-processing listener or server
(applicable if RPCs are issued using the remote API)

Once an online application with TP1/Server has been completed, call the
closeConnection method to release the permanent connection from the

RPC type Function Specification method

Inquiry
response

Without
chain

A response is returned after a service request is issued to
the server. The next time an inquiry is sent to the same
server, the same server process as the previous one may
not be used.

DCNOFLAGS

With
chain

A response is returned after a service request is issued to
the server. The next time an inquiry is sent to the same
server, the same server process as the previous one is
used (the server process is locked). This is not
applicable to RPCs that use the scheduler direct facility
or name service.

DCRPC_CHAINED

No response No response can be received after a service request is
issued to the server. The client does not know whether
the service executed successfully. Because the RPC
does not wait for a response, the client's execution
performance is high.

DCRPC_NOREPLY

3. Program Interface

148

RAP-processing listener and server. This method has no arguments.

If an error occurs during the call, the closeConnection method returns an
exception. Execute exception processing, if necessary.

try {
 stock.closeConnection();
 // Release permanent connection from RAP-processing listener and server
} catch (TP1ClientException e) { // Occurrence of error
 System.out.println("error occured");
}

(7) Releasing the RPC environment
At the end of the CUP, call the rpcClose method to release the RPC environment of
the CUP. This method has no arguments.

If an error occurs during the call, the rpcClose method returns an exception. Execute
exception processing, if necessary.

try {
 stock.rpcClose(); // Release RPC environment
} catch (TP1ClientException e) { // Occurrence of error
 System.out.println("error occured");
}

3.2.2 Adjustment during TP1/Client/J execution
Normally, method monitoring intervals are set in the TP1/Client/J environment
definition. These specifications in the TP1/Client/J environment definition apply to all
methods. If a particular method requires a considerable amount of processing time on
the TP1/Server system, you will have to specify large values, making it impossible to
adjust the execution time according to the processing.

To solve this problem, TP1/Client/J provides methods that enable you to adjust the
method monitoring intervals dynamically. When one of these methods is executed, the
value specified in its argument is set as the applicable value during execution and
remains in effect as long as the instance of the TP1Client class exists (until the
rpcClose method is called) or until the same method is called with a different
argument value specified. For details about these methods, see 4. Classes Used with
TP1/Client/J.

(1) Adjusting the time monitoring
Three methods are provided for adjusting time monitoring: setDcwatchtim,
setDccltinquiretime, and setDccltdelay. The time monitoring that can be
specified with each method is described below.

3. Program Interface

149

setDcwatchtim method

Sets the response monitoring interval. When the openConnection, rpcCall,
and closeConnection methods are called, inquiry response takes place
between the CUP and the RAP-processing listener and server. A timeout occurs
if no response is returned within the specified response monitoring interval since
the inquiry began. Specify an appropriate value taking into account the duration
of service execution and the communication speed.

setDccltinquiretime method

The permanent connection between a CUP and a RAP-processing listener and
server that is established by calling the openConnection method remains
established until the closeConnection method is called. If TP1/Client/J cannot
call the closeConnection method due to an error, the RAP-processing listener
and server will not be released. To avoid this, you use this method to set the length
of time allowed for a response from TP1/Client/J before connection with the
RAP-processing listener and server is released forcibly.

Note that if the connection-target RAP-processing server is DCCM3, the value set
in the setDccltinquiretime method is ignored.

setDccltdelay method

When the rpcCall method is called, the TP1/Client/J system monitors the
response time based on the value specified in the setDcwatchtim method. The
RAP-processing server that relays RPC requests from TP1/Client/J monitors for
a response for the specified amount of time (i.e., the value specified in the
setDcwatchtim method minus the value specified in the setDccltdelay
method). The value specified in the setDccltdelay method is a delay time for
communication between TP1/Client/J and TP1/Server. If the monitoring interval
is the same for both TP1/Client/J and the RAP-processing server, a timeout occurs
at TP1/Client/J before a timeout occurs at the RAP-processing server because
TP1/Client/J starts response monitoring before the RAP-processing server starts
response monitoring. If the RAP-processing server sends a response just in time,
a timeout may have already occurred at TP1/Client/J and the response may not be
received. To prevent such an event, this method is used to force a timeout at the
RAP-processing server. To put the value specified in this method into effect,
either specify dcwatchtiminherit=Y in the TP1/Client/J environment
definition or specify the DRPC_WATCHTIMINHERIT argument in the
setRpcextend method.

3.2.3 Collecting error information and adjusting facilities
Three methods are provided for collecting error information and adjusting facilities:
setTraceArray, setDccltextend, and setRpcextend. The value specified in
each method takes effect when the method is called. When these methods are called,
the values specified in their arguments take effect during execution and remain in

3. Program Interface

150

effect as long as the instance of the TP1Client class exists (until the rpcClose
method is called) or until the same method is called with a different argument value
specified.

setTraceArray method

For Java applets, you cannot create a file in its execution environment due to Java
security limitations. This makes it impossible to collect error information as trace
information in files. In such a case, use the memory trace facility to collect trace
information. If you specify a String type array with the setTraceArray
method, the TP1Client class stores error information in the specified array. In
the event of a Java applet or application error, you can view the contents of the
String array with a browser in order to determine the cause of the error and take
appropriate action. For details about memory traces, see 2.11.4 Error trace and
memory trace.

setDccltextend method

Specifies whether or not you wish to use a facility that depends on the execution
environment. You specify whether or not the dc_rpc_get_callers_address
function of the SPP in the TP1/Server system is to be used to view the IP address
of TP1/Client/J. With Microsoft Internet Explorer 3.0J, you cannot check the
local IP in the TP1/Client/J system. In a Windows 95 multi-homed host
environment, this operation results in an internal OS error. Therefore, the default
is that the local IP is not checked.

setRpcextend method

Specifies functional extension options of RPCs that are issued from TP1/Client/
J. To specify multiple extension levels of the RPC facility, specify the disjunction
of each value.

3.2.4 Instructing trace output
To obtain various traces, specify necessary information either in the TP1/Client/J
environment definition or in the applicable methods during execution.

In the case of Java applets, you cannot collect traces due to security limitations. In the
case of Java servlets, security limitations depend on the application server being used;
for details, see the documentation for your application server. The four methods for
changing the settings for whether or not traces are to be obtained during execution are
setUapTraceMode, setDataTraceMode, setErrorTraceMode, and
setMethodTraceMode.

For details about the contents of the trace files, see 2.11.1 Contents of trace files. The
specified traces are output when the following methods are executed.

setUapTraceMode method

Specifies that information about the call to each method of the TP1Client class

3. Program Interface

151

is to be output to a file.

setDataTraceMode method

Specifies that data on communication with TP1/Server is to be output to a file.

setErrorTraceMode method

Specifies that information on errors is to be output to a file.

setMethodTraceMode method

Specifies that activities of internal methods of the TP1Client class are to be
output to a file. Because there is little available error information in a Java
environment, this information is used to determine the processing that resulted in
an error.

153

Chapter

4. Classes Used with TP1/Client/J

This chapter describes the classes that are used with TP1/Client/J.

Class TP1Client

154

Class TP1Client

public final class TP1Client
extends java.lang.Object

This class issues a service request to the TP1/Server server.

Related item
TP1ClientException

Fields
DCNOFLAGS
public static final int DCNOFLAGS = 0x00000000

Specifies synchronous-response RPC as the RPC mode.

DCRPC_NOREPLY
public static final int DCRPC_NOREPLY = 0x00000001

Specifies non-response type RPC as the RPC mode.

DCRPC_CHAINED
public static final int DCRPC_CHAINED = 0x00000004

Specifies chained RPC as the RPC mode.

DCRPC_SCD_LOAD_PRIORITY
public static final int DCRPC_SCD_LOAD_PRIORITY = 0x00000008

Specifies whether or not the TP1/Server that is the gateway that accepts a service
request has priority for load balancing.

DCRPC_WATCHTIMINHERIT
public static final int DCRPC_WATCHTIMINHERIT = 0x00000010

Specifies whether or not the RAP-processing server is to inherit the CUP's maximum
time to wait for a response when an RPC is issued using the remote API facility.

DCRPC_RAP_AUTOCONNECT
public static final int DCRPC_RAP_AUTOCONNECT = 0x00000020

Class TP1Client

155

Specifies whether or not TP1/Client/J is to implement automatic connection
establishment when an RPC is issued using the remote API facility.

DCRPC_TPNOTRAN
public static final int DCRPC_TPNOTRAN = 0x00000020

Specifies RPC that does not inherit transactions as the RPC mode.

DCRPC_WATCHTIMRPCINHERIT
public static final int DCRPC_WATCHTIMRPCINHERIT = 0x00000040

Specifies whether or not the server is to inherit the CUP's maximum time to wait for a
response.

DCRPC_MAX_MESSAGE_SIZE
public static final int DCRPC_MAX_MESSAGE_SIZE = 1048576

Specifies the maximum RPC message length. The permitted maximum value is
1048576 bytes. However, when the dccltrpcmaxmsgsize operand is used, the
maximum RPC message length is the value specified by the dccltrpcmaxmsgsize
operand rather than the value specified in DCRPC_MAX_MESSAGE_SIZE.

Constructors
TP1Client
public TP1Client()

Creates an instance of the TP1Client class that issues an RPC to the TP1/Server
server. Use this constructor to create a CUP as a Java application or servlet.

TP1Client
public TP1Client(Applet app)

Creates an instance of the TP1Client class that issues an RPC to the TP1/Server
server. Use this constructor to create a CUP as a Java applet.

Parameter

app

Specifies an instance object of a Java applet.

Methods
setDccltinquiretime
public void setDccltinquiretime(int sec)
 throws ErrInvalidArgsException

Sets the maximum time from one inquiry to another that is issued by a CUP to the
server. This is the timer value that is monitored by the RAP-processing server. If there
is no inquiry within the specified time, the RAP-processing server forcibly releases the

Class TP1Client

156

permanent connection. You can call this method while an instance of the TP1Client
class exists.

Parameter

sec

Specifies the maximum time of the inquiry interval that is to be monitored
by the RAP-processing server, expressed in the range from 0 to 1048575
(seconds). If you specify 0, the RAP-processing server waits indefinitely for
an inquiry from the CUP.

Return value

None.

Exception

ErrInvalidArgsException

The value specified in the sec argument is not within the range from 0 to
1048575.

setDccltdelay
public void setDccltdelay(int sec)
 throws ErrInvalidArgsException

Sets the delay time for communication between the RAP-processing server and the
CUP. By specifying this method, you can end monitoring of the maximum time to wait
for a response in the RAP-processing server system early by the specified amount of
time and avoid missing a message that may arrive after a timeout occurs in the CUP
system.

If you specify 0 in the setDcwatchtim method as the maximum time to wait for a
response, the communication delay time specified in this method is ignored. If the
maximum time to wait for a response minus the RAP-processing server's
communication time is 0 or a negative value, the RAP-processing server assumes 1 as
the maximum time value for waiting for a response in the RAP-processing server
system.

To use the value specified in this method, specify either dcwatchtiminherit=Y in
the TP1/Client/J environment definition or the DRPC_WATCHTIMINHERIT argument
in the setRpcextend method.

Parameter

sec

Specifies the delay time for communication between the RAP-processing
server and the CUP, expressed in the range from 0 to 65535 (seconds).

Class TP1Client

157

Return value

None.

Exception

ErrInvalidArgsException

The value specified in the sec argument is not within the range from 0 to
65535.

setDcwatchtim
public void setDcwatchtim(int sec)
 throws ErrInvalidArgsException

For synchronous-response RPCs, this method sets the maximum time to wait for a
response from the service since a service request was sent from the CUP to the SPP.
The value specified with this method is also used as the maximum time to wait for a
response for internal communications of TP1/Client/J.

Parameter

sec

Specifies the maximum time to wait for a response, expressed in the range
from 0 to 65535 (seconds). If you specify 0, the CUP waits for a response
indefinitely. Depending on the Java environment in use, release of a TCP/IP
connection may not be detected even if the server is shut down. If this value
were set to 0 in such a case, the CUP would wait indefinitely for a response
from the nonexistent server; for this reason, you should specify an
appropriate wait time.

Return value

None.

Exception

ErrInvalidArgsException

The value specified in the sec argument is not within the range from 0 to
65535.

setDcselint
public void setDcselint(int msec)
 throws ErrInvalidArgsException

Use of this method is not recommended. It is retained only to provide compatibility
with the source of the previous version. This method serves no purpose.

Class TP1Client

158

setDccltextend
public void setDccltextend(int flags)

Specifies the extension level of TP1/Client/J facilities. To specify multiple extension
levels, specify the disjunction of each value.

Parameter

flags

Specifies the extension level of the following facility:

0x00000000: Does not extend the TP1/Client/J facility.

0x00000001: Extends the TP1/Client/J facility. When the rpcCall method
is called, the IP address of the local CUP is reported to the service. Specify
this value if you need to obtain the address of the CUP by using the called
service to execute the dc_rpc_get_callers_address() function.

Return value

None.

setRpcextend
public void setRpcextend(int extendoption)
 throws ErrInvalidArgsException

Specifies functional extension options of RPCs that are issued from TP1/Client/J. To
specify multiple extension levels of the RPC facility, specify the disjunction of each
value.

Parameter

extendoption

Specifies the following extension level of the RPC facility:

DCRPC_SCD_LOAD_PRIORITY: Specifies whether or not a TP1/Server that
is the gateway that accepts a service request has priority for load balancing.
If this option is true, the operation is the same as when
dcscdloadpriority=Y is specified in the TP1/Client/J environment
definition. If this option is false, the operation is the same as when
dcscdloadpriority=N is specified in the TP1/Client/J environment
definition.

DCRPC_WATCHTIMINHERIT: Specifies whether or not the RAP-processing
server is to inherit the CUP's maximum time to wait for a response when an
RPC is issued using the remote API facility. If this option is true, the
operation is the same as when dcwatchtiminherit=Y is specified in the
TP1/Client/J environment definition. If this option is false, the operation is
the same as when dcwatchtiminherit=N is specified in the TP1/Client/J

Class TP1Client

159

environment definition.

DCRPC_RAP_AUTOCONNECT: Specifies whether or not TP1/Client/J is to
establish connection automatically when an RPC is issued using the remote
API facility. If this option is true, the operation is the same as when
dcrapautoconnect=Y is specified in the TP1/Client/J environment
definition. If this option is false, the operation is the same as when
dcrapautoconnect=N is specified in the TP1/Client/J environment
definition. This option is ignored if connection has already been established
by calling the openConnection method in the non-auto connect mode.

DCRPC_WATCHTIMRPCINHERIT: Specifies whether or not the server is to
inherit the CUP's maximum time to wait for a response. If this option is true,
the operation is the same as when dcwatchtimrpcinherit=Y is specified
in the TP1/Client/J environment definition. If this option is false, the
operation is the same as when dcwatchtimrpcinherit=N is specified in
the TP1/Client/J environment definition.

Return value

None.

Exception

ErrInvalidArgsException

The specified extendoption argument is invalid.

setDchost
public void setDchost(String host, int port)
 throws ErrHostUndefException,
 ErrInvalidPortException,
 ErrProtoException

Sets the host name and port of the TP1/Server as a gateway.

Parameters

host

Specifies the host name of the TP1/Server as a gateway. If you are issuing
RPCs that use the remote API facility, specify the host name of the
communication-target RAP-processing listener. If there is a firewall between
the CUP and the TP1/Server, specify the host name of the firewall.

port

Specifies the port number of the scheduler server running on the TP1/Server
as a gateway and the port number of the name server. If you are issuing RPCs
that use the remote API facility, specify the port number of the
communication-target RAP-processing listener. Express the port number in

Class TP1Client

160

the range from 5001 to 65535.

Return value

None.

Exceptions

ErrHostUndefException

The specified host argument is invalid.

ErrInvalidPortException

The specified port argument is invalid.

ErrProtoException

The method issuance order is invalid. This method was called when an RPC
was issued using the remote API facility and a permanent connection had
already been established with the RAP-processing server.

setTraceArray
public void setTraceArray(String[] array)

Specifies whether or not an error trace is to be acquired in the array specified in the
argument. You can call this method whether the CUP is a Java applet, application, or
servlet.

Parameter

array

Specifies the String array for storing an error trace. If you specify null,
error trace is not acquired.

Return value

None.

setUapTraceMode
public void setUapTraceMode(String TrcPath,
 int size,
 boolean flag)
 throws ErrInvalidArgsException

Specifies whether or not a UAP trace is to be acquired when the CUP is a Java
application or servlet. If the CUP is a Java applet, do not call this method.

Parameters

TrcPath

Specifies the directory in which the UAP trace is to be output. This parameter

Class TP1Client

161

is ignored if false is specified in the flag argument.

size

Specifies the size of the UAP trace file that is to be output, in the range from
4096 to 1048576. This parameter is ignored if false is specified in the flag
argument.

flag

Specifies whether or not a UAP trace is to be acquired:

true: Acquire UAP trace.

false: Do not acquire UAP trace.

Return value

None.

Exception

ErrInvalidArgsException

The specified argument is invalid.

Note

You cannot use this method with a Java applet. If used, operations cannot be
guaranteed.

setMethodTraceMode
public void setMethodTraceMode(String TrcPath,
 int size,
 boolean flag)
 throws ErrInvalidArgsException

Specifies whether or not a method trace is to be acquired when the CUP is a Java
application or servlet. If the CUP is a Java applet, do not call this method.

Parameters

TrcPath

Specifies the directory in which the method trace is to be output. This
parameter is ignored if false is specified in the flag argument.

size

Specifies the size of the method trace file that is to be output, in the range
from 4096 to 1048576. This parameter is ignored if false is specified in the
flag argument.

Class TP1Client

162

flag

Specifies whether or not a method trace is to be acquired:

true: Acquire method trace.

false: Do not acquire method trace.

Return value

None.

Exception

ErrInvalidArgsException

The specified argument is invalid.

Note

You cannot use this method with a Java applet. If used, operations cannot be
guaranteed.

setDataTraceMode
public void setDataTraceMode(String TrcPath,
 int size,
 int DataSize,
 boolean flag)
 throws ErrInvalidArgsException

Specifies whether or not a data trace is to be acquired when the CUP is a Java
application or servlet. If the CUP is a Java applet, do not call this method.

Parameters

TrcPath

Specifies the directory in which the data trace is to be output. This parameter
is ignored if false is specified in the flag argument.

size

Specifies the size of the data trace file that is to be output, in the range from
4096 to 1048576. This parameter is ignored if false is specified in the flag
argument.

DataSize

Specifies the size of the data that is to be output, in the range from 16 to
1048576. This parameter is ignored if false is specified in the flag
argument.

flag

Specifies whether or not a data trace is to be acquired:

Class TP1Client

163

true: Acquire data trace.

false: Do not acquire data trace.

Return value

None.

Exception

ErrInvalidArgsException

The specified argument is invalid.

Note

You cannot use this method with a Java applet. If used, operations cannot be
guaranteed.

setErrorTraceMode
public void setErrorTraceMode(String TrcPath,
 int size,
 boolean flag)
 throws ErrInvalidArgsException

Specifies whether or not an error trace is to be acquired when the CUP is a Java
application or servlet. If the CUP is a Java applet, do not call this method.

Parameters

TrcPath

Specifies the directory in which the error trace is to be output. This parameter
is ignored if false is specified in the flag argument.

size

Specifies the size of the error trace file that is to be output, in the range from
4096 to 1048576. This parameter is ignored if false is specified in the flag
argument.

flag

Specifies whether or not an error trace is to be acquired:

true: Acquire error trace.

false: Do not acquire error trace.

Return value

None.

Class TP1Client

164

Exception

ErrInvalidArgsException

The specified argument is invalid.

Note

You cannot use this method with a Java applet. If used, operations cannot be
guaranteed.

rpcOpen
public void rpcOpen()
 throws ErrIOErrException,
 ErrProtoException,
 ErrFatalException,
 ErrSecurityException,
 ErrSyserrException

Initializes the environment required to call TP1/Server's SPP. To execute a CUP, you
must call this method first.

Parameter

None.

Return value

None.

Exceptions

ErrIOErrException

An I/O exception occurred.

ErrProtoException

The method issuance order was invalid. The rpcOpen method was called
again before the rpcClose method was called.

ErrFatalException

There is an error in a TP1/Client/J environment definition specification, or
initialization of the environment for communication with TP1/Server failed.

ErrSyserrException

A system error occurred.

ErrSecurityException

A security exception occurred.

Class TP1Client

165

Notes

• To use this method with a Java application or servlet, acquire the TP1/Client/
J environment definition from the system properties.

• To use this method with a Java applet, acquire the TP1/Client/J environment
definition from the applet's param tag.

• To use this method with a Java applet, use TP1Client(Applet app) in
the constructor that instantiates the TP1Client class.

rpcOpen
public void rpcOpen(String deffilename)
 throws ErrIOErrException,
 ErrProtoException,
 ErrFatalException,
 ErrSyserrException,
 ErrInvalidArgsException,
 ErrSecurityException

Initializes the environment for calling TP1/Server's SPP. To execute a CUP, you must
call this method first.

Parameter

deffilename

Specifies the complete path name of the file that contains the TP1/Client/J
environment definition.

Return value

None.

Exceptions

ErrIOErrException

An I/O exception occurred.

ErrProtoException

The method issuance order was invalid. The rpcOpen method was called
again before the rpcClose method was called.

ErrFatalException

There is an error in the TP1/Client/J environment definition, or initialization
of the environment for communication with TP1/Server failed.

ErrSyserrException

A system error occurred.

Class TP1Client

166

ErrInvalidArgsException

A specified argument is invalid.

ErrSecurityException

A security exception occurred.

Note

You cannot use this method with a Java applet. When using a Java applet, use the
rpcOpen method described before this method.

rpcClose
public void rpcClose()
 throws ErrIOErrException,
 ErrSyserrException,
 ErrNetDownException

Releases the environment for calling TP1/Server's SPP. To call the service again for
TP1/Server's SPP, call the rpcOpen method. Call this method at the end of CUP
execution.

Parameter

None.

Return value

None.

Exceptions

ErrIOErrException

An I/O exception occurred.

ErrSyserrException

A system error occurred.

ErrNetDownException

A network error occurred.

openConnection
public void openConnection()
 throws ErrIOErrException,
 ErrHostUndefException,
 ErrTimedOutException,
 ErrNetDownException,
 ErrNoBufsException,
 ErrNotUpException,
 ErrSyserrException,

Class TP1Client

167

 ErrProtoException,
 ErrInvalidArgsException

Establishes a permanent connection with the RAP-processing server specified by the
dchost operand and dcrapport operand in the TP1/Client/J environment definition,
or connects to the server (TP1/Web) that uses the OpenTP1 Web session management
facility specified by the dcweburl operand, and starts a virtual session.

You cannot establish multiple concurrent permanent connections from a single CUP.

Note, also, if a firewall is located between the CUP and the RAP-processing listener
to which the connection request is directed, you must specify to the target
RAP-processing listener the host name and the port number of the firewall.

Parameter

None.

Return value

None. If the method does not return an exception, it has terminated normally or a
permanent connection had already been established.

Exceptions

ErrIOErrException

An I/O exception occurred.

ErrHostUndefException

The host name of a RAP-processing listener is not specified in the dchost
operand of the TP1/Client/J environment definition.

Another possibility is that the URL (information such as the protocol, Web
server, CGI name of the prompter, or TP1/Web service name) specified in the
dcweburl operand of the TP1/Client/J environment definition is invalid.

ErrTimedOutException

A timeout occurred while a connection with a RAP-processing listener was
being established.

Another possibility is that a timeout occurred while a virtual session with
TP1/Web was being started.

ErrNetDownException

A network error occurred during communication with a RAP-processing
listener or TP1/Web.

Another possibility is that the communication target TP1/Server is not
running.

Class TP1Client

168

ErrNoBufsException

A memory shortage occurred on the RAP-processing listener or
RAP-processing server.

Another possibility is that a memory shortage occurred on TP1/Web.

ErrNotUpException

The RAP-processing listener or RAP-processing server is not running.

Another possibility is that TP1/Web is not running.

ErrSyserrException

A system error occurred.

ErrProtoException

The method issuance order was invalid. Connection had already been
established, but the openConnection method was called again.

ErrInvalidArgsException

A parameter is invalid.

Note

If the connection-target RAP-processing listener is inactive,
ErrIOErrException or ErrNetDownException is returned.

When this method returns an exception, the permanent connection has not been
established.

openConnection
public void openConnection(String host,
 int port)
 throws ErrIOErrException,
 ErrHostUndefException,
 ErrTimedOutException,
 ErrNoBufsException,
 ErrNotUpException,
 ErrSyserrException,
 ErrInvalidPortException,
 ErrProtoException,
 ErrInvalidArgsException,
 ErrNetDownException

Establishes a permanent connection between a CUP and a RAP-processing listener or
server in order to issue an RPC that uses the remote API facility. The method
determines the target with which permanent connection is to be established from the
specified parameter values.

Class TP1Client

169

Parameters

host

Specifies the host name of the RAP-processing listener or firewall.

port

Specifies the port number of the RAP-processing listener or firewall,
expressed in the range from 5001 to 65535.

Return value

None. If the method returns no exception, it has terminated normally or a
permanent connection had already been established.

Exceptions

ErrIOErrException

An I/O exception occurred.

ErrHostUndefException

The specified host argument is invalid.

ErrTimedOutException

A timeout occurred while connection with the RAP-processing listener was
being established.

ErrNoBufsException

A memory shortage occurred in the RAP-processing listener or server.

ErrNotUpException

The RAP-processing listener or server is not running.

ErrSyserrException

A system error occurred.

ErrInvalidPortException

The specified port argument is invalid.

ErrProtoException

The method issuance order was invalid. Connection had already been
established, but the openConnection method was called again.

ErrInvalidArgsException

A specified argument is invalid.

Class TP1Client

170

ErrNetDownException

A network error occurred during communication with the RAP-processing
listener, or the communication-target TP1/Server is not active.

Note

If the connection-target RAP-processing listener is inactive,
ErrIOErrException or ErrNetDownException is returned. If this method
returns an exception, the permanent connection has not been established.

openConnection
public void openConnection(String url,
 short flags)
 throws ErrIOErrException,
 ErrHostUndefException,
 ErrTimedOutException,
 ErrNetDownException,
 ErrNoBufsException,
 ErrNotUpException,
 ErrSyserrException,
 ErrProtoException,
 ErrInvalidArgsException

Connects to a server (TP1/Web) that uses the OpenTP1 Web session management
facility, and starts a virtual session. Subsequently, communication services based on
the HTTP protocol can be performed.

Parameters

url

Specifies the protocol, Web server, CGI name of the prompter, TP1/Web
service name, and other information in the syntax of a URL.

flags

Specifies DCSESSION.

Return value

None

Exceptions

ErrIOErrException

An I/O exception occurred.

ErrHostUndefException

The URL (protocol, Web server, CGI name of the prompter, TP1/Web
service name, and other information) specified by the url parameter is

Class TP1Client

171

invalid.

ErrTimedOutException

A timeout occurred while the virtual session with TP1/Web was starting.

ErrNetDownException

A network error occurred.

ErrNoBufsException

A memory shortage occurred on TP1/Web.

ErrNotUpException

TP1/Web is not running.

ErrSyserrException

A system error occurred.

ErrProtoException

The issuing sequence of the method is invalid.

dcrapautoconnect=Y or dcrapdirect=N was specified in the TP1/
Client/J environment definition when a permanent connection had already
been established with a RAP-processing server.

ErrInvalidArgsException

A parameter specification is invalid.

closeConnection
public void closeConnection()
 throws ErrIOErrException,
 ErrSyserrException,
 ErrProtoException,
 ErrTimedOutException,
 ErrNetDownException

Releases the permanent connection between the CUP and the RAP-processing listener
or server.

Parameter

None.

Return value

None.

Class TP1Client

172

Exceptions

ErrIOErrException

An I/O exception occurred.

ErrSyserrException

A system error occurred.

ErrProtoException

The method issuance order was invalid. The connection had already been
released, but the closeConnection method was called again.

ErrTimedOutException

A timeout occurred while a virtual session with TP1/Web or a connection
with the RAP-processing listener or RAP-processing server was being
released.

ErrNetDownException

A network error occurred during communication with the RAP-processing
listener.

Note

Even if this method returns an exception, the permanent connection has been
released.

rpcCall
public void rpcCall(String group,
 String service,
 byte[] in_data,
 int[] in_len,
 byte[] out_data,
 int[] out_len,
 int flags)
 throws ErrInvalidArgsException,
 ErrProtoException,
 ErrNoBufsException,
 ErrNetDownException,
 ErrTimedOutException,
 ErrMessageTooBigException,
 ErrReplyTooBigException,
 ErrNoSuchServiceGroupException,
 ErrNoSuchServiceException,
 ErrServiceClosedException,
 ErrServiceTerminatingException,
 ErrServiceNotUpException,
 ErrNotUpException,

Class TP1Client

173

 ErrSyserrAtServerException,
 ErrSyserrException,
 ErrNoBufsAtServerException,
 ErrInvalidReplyException,
 ErrInitializingException,
 ErrTrnchkException,
 ErrServerBusyException,
 ErrSecchkException,
 ErrServiceTerminatedException,
 ErrIOErrException,
 ErrTestmodeException,
 ErrConnfreeException,
 ErrHostUndefException,
 ErrInvalidPortException

Issues an SPP service request. This method calls the service function that is identified
by the service group name and service name and receives its response. If the specified
service group is shut down when this method is called, the method returns
ErrServiceClosedException.

By specifying DCRPC_TPNOTRAN in the flags argument, you can treat an RPC from
transaction processing as a service request that is not transaction processing.

If the specified service group is under termination processing by a command such as
dcsvstop or has already been terminated when this method is called,
ErrServiceTerminatingException, ErrServiceClosedException, or
ErrNoSuchServiceGroupException is returned. The actual exception that is
returned depends on the timing of this method call.

The server that receives requests from a socket uses the values of the
max_socket_msg and max_socket_msglen operands in the user service definition
to execute congestion control on messages. Therefore, the server may not be able to
receive service requests. In such a case, calling the method returns
ErrServerBusyException. When this exception is returned, you may be able to
issue a service request by calling this method again after waiting a while.

Parameters

group

Specifies the service group name, expressed as an identifier of a maximum
of 31 characters.

service

Specifies the service name, expressed as an identifier of a maximum of 31
characters.

Class TP1Client

174

in_data

Specifies input parameters for the service.

in_len

Specifies the length of the input parameter for the service, in the range from
1 to the value of DCRPC_MAX_MESSAGE_SIZE.# Store the length of the input
parameter in in_len[0].

#

When the dccltrpcmaxmsgsize operand is used, the size of the input
parameter response area is the value specified by the
dccltrpcmaxmsgsize operand rather than the value specified in
DCRPC_MAX_MESSAGE_SIZE.

out_data

Specifies the area in which the response specified in the service function is
to be returned.

For a non-response type RPC, specify null. Even if a non-null value is
specified for a non-response type RPC, nothing will be stored.

out_len

Specifies the length of the service's response, expressed in the range from 1
to the value of DCRPC_MAX_MESSAGE_SIZE#. Store the length of the
response in out_len[0].

When the service request is terminated, the length of the response specified
in the service function of the SPP is set in out_len[0].

For a non-response type RPC, the length of response is ignored, if specified,
in which case nothing is set in out_len[0] when the service request is
terminated.

#

When the dccltrpcmaxmsgsize operand is used, the length of the
service's response is the value specified by the dccltrpcmaxmsgsize
operand rather than the value specified in DCRPC_MAX_MESSAGE_SIZE.

flags

Specifies one of the following flags as the RPC mode:

DCNOFLAGS: Synchronous-response RPC

DCRPC_NOREPLY: Non-response type RPC

DCRPC_CHAINED: Chained RPC

Class TP1Client

175

DCRPC_TPNOTRAN: RPC that does not inherit transactions

If you specify DCNOFLAGS or DCRPC_CHAINED, the method does not return
control until the server returns a response, or the maximum time to wait for
a response specified in the dcwatchtim operand of the TP1/Client/J
environment definition is reached and a timeout occurs. If the SPP to which
the service request was issued terminates abnormally, the method returns an
exception immediately. In this case, the exception returned by the method
depends on the value of the dcwatchtim operand specified in the TP1/
Client/J environment definition:

• When a value in the range from 1 to 65535 is specified

ErrTimedOutException

• When 0 is specified

ErrServiceNotUpException

If DCRPC_NOREPLY is specified, the method assumes that the requested
service does not return a response. In such a case, the method returns control
immediately without waiting for the service to end its execution. When you
specify this flag, you cannot reference the response (value specified in the
out_data argument) or the length of the response (value specified in the
out_len argument). Additionally, the CUP cannot determine whether or not
the service function was executed.

If DCRPC_CHAINED is specified and a service belonging to the same service
group is requested more than once, the same process as for the first request
is used for execution.

When a chained RPC is used, the following limitations apply:

• The second or subsequent call to this method cannot detect a shutdown
of the user server or service.

• If an error occurs in service function processing during the second or
subsequent call to this method, the entire user server is shut down, not
just the applicable service.

• If you use the remote API facility, you can specify DCRPC_CHAINED in
the flags parameter.

• In the case of a chained RPC, use one of the following methods to
terminate it:

 Execute the rpcCall method specifying DCNOFLAGS in the flags
parameter (synchronous-response RPC) on the service group that is
executing the chained RPC.#

 Complete the global transaction executing the chained RPC by

Class TP1Client

176

synchronization point processing (commit or rollback).

#

If you call the closeConnection or rpcClose method without
executing a synchronous-response RPC, the API of TP1/Client/J
terminates normally, but the following status results:

 Outside the global transaction range

 The process executing the service is locked until a chained RPC
timeout occurs.

 Within the global transaction range

 Implicit commit occurs and the chained RPC is terminated.

By specifying DCRPC_TPNOTRAN, you can treat an RPC from transaction
processing as a service request that is not transaction processing. You can
specify DCRPC_TPNOTRAN only from transaction processing. You can
specify DCRPC_TPNOTRAN with DCNOFLAGS, DCRPC_NOREPLY, or
DCRPC_CHAINED.

Example: flags =
TP1Client.DCNOFLAGS|TP1Client.DCRPC_TPNOTRAN;

Return value

None.

Exceptions

ErrInvalidArgsException

A specified argument is invalid. In this case, the invalid argument name is set
in the detail message.

ErrProtoException

The method issuance order was invalid. The openConnection method has
not been called.

ErrNoBufsException

A memory shortage occurred.

ErrNetDownException

A network error occurred, or the communication-target TP1/Server is not
active.

ErrTimedOutException

A timeout occurred in this method processing, or the SPP whose service was
requested terminated abnormally before completing the processing.

Class TP1Client

177

ErrMessageTooBigException

The length of input parameters specified in the in_len argument exceeds
the maximum value.

ErrReplyTooBigException

The response returned form the server is larger than the area provided by the
CUP (value specified for the out_data argument).

ErrNoSuchServiceGroupException

The service group name specified in the group argument is undefined.

ErrNoSuchServiceException

The service name specified in the service argument is undefined.

ErrServiceClosedException

The service group containing the service name specified in the service
argument is shut down.

ErrServiceTerminatingException

The service specified in the service argument is under termination
processing.

ErrServiceNotUpException

The SPP specified in the service request has not started, or the SPP specified
in the service request terminated abnormally before completing its
processing. This exception is returned when dcwatchtim=0 is specified (to
wait for a response indefinitely) in the TP1/Client/J environment definition.

ErrNotUpException

The TP1/Server is not active at the node that contains the specified service.
In this case, the TP1/Server may have terminated abnormally, may have been
shut down, may be under termination processing, or a network error may
have occurred.

ErrSyserrAtServerException

A system error occurred in the specified service.

ErrSyserrException

A system error occurred.

ErrNoBufsAtServerException

A memory shortage occurred in the specified service.

ErrInvalidReplyException

Class TP1Client

178

The length of the response returned from the service function is not within
the range from 1 to the value specified for DCRPC_MAX_MESSAGE_SIZE#.

#

When the dccltrpcmaxmsgsize operand is used, the value specified in the
dccltrpcmaxmsgsize operand is used rather than the value specified in
DCRPC_MAX_MESSAGE_SIZE.

ErrInitializingException

The TP1/Server at the node specified in the service request is under start
processing.

ErrTrnchkException

In the environment using the inter-node load-balancing facility, the
transaction attributes of multiple SPPs do not match. Alternatively, the
inter-node load-balancing facility cannot be executed because the version of
the TP1/Server at the target node is older than the TP1/Client/J version. This
exception is returned only when a service request is issued to the SPP using
the inter-node load-balancing facility.

ErrServerBusyException

The target server that receives requests from a socket cannot receive service
requests.

ErrSecchkException

The SPP to which the service request was issued is protected by the security
facility. The CUP that called the rpcCall method does not have access
authority to the SSP.

ErrServiceTerminatedException

The SPP specified in the service request terminated abnormally before
completing the processing. This exception is returned only when 00000001
is specified in the rpc_extend_function operand of the RAP-processing
listener service definition. If you specified 00000000 in the
rpc_extend_function operand or omitted the operand,
ErrTimedOutException or ErrServiceNotUpException is returned.

ErrIOErrException

An I/O exception occurred. The RAP-processing server may have timed out
while monitoring the inquiry interval and released the connection.

ErrTestmodeException

A service request was issued to an SPP in the test mode.

Class TP1Client

179

ErrConnfreeException

The permanent connection with the RAP-processing server was released.
Another possibility is that the virtual session with TP1/Web ended.

ErrHostUndefException

Possible causes are as follows:

• Either the host name of the communication target TP1/Server is not
specified in the dchost operand of the TP1/Client/J environment
definition, or the specification is invalid.

• The URL (protocol, Web server, CGI name of the prompter, TP1/Web
service name, and other information) specified in the dcweburl
operand of the TP1/Client environment definition is invalid.

ErrInvalidPortException

Possible causes are as follows:

• An RPC was issued using the remote API facility, but the dcrapport
operand was not specified in the TP1/Client/J environment definition.

• An RPC was issued using the scheduler direct facility, but the
dcscdport operand was not specified in the TP1/Client/J environment
definition.

Notes

• Do not specify the same area for the input parameters (value of the in_data
argument) and for the service function's response (value of the out_data
argument).

• If you specify DCRPC_NOREPLY in the flags argument, the following
exceptions will not be returned:

Exceptions that will not occur:

• ErrReplyTooBigException

• ErrInvalidReplyException

Exceptions that cannot be detected, if thrown:

• ErrNoSuchServiceException

• ErrServiceClosedException

• ErrServiceTerminatingException

• ErrSyserrAtServerException

• ErrNoBufsAtServerException

Class TP1Client

180

• ErrNotUpException

• The possible causes of ErrTimedOutException are as follows:

- The maximum time to wait for a response specified in the TP1/Client/J
environment definition or TP1/Server definition is too short.

- The service function issued by the target SPP terminated abnormally.

- An error occurred at the node that contains the target SPP.

- The target SPP terminated abnormally before completing its processing.

- A network error occurred.

If any of these events occurs, the transaction started by the target SPP may
have been committed and the database may have been updated. Check to see
if the database has been updated.

• If an error occurs when this method is called, an exception is returned, but
whether or not the permanent connection with the RAP-processing listener
or server was released as a result of the error cannot be determined at this
point. If the permanent connection with the RAP-processing listener or
server has in fact been released, calling this method again returns
ErrConnfreeException.

• If the permanent connection with the RAP-processing listener or server is
released as a result of an error when this method is called, you need to call
the openConnection method again to establish permanent connection with
the RAP-processing listener or server.

• In the case of a permanent connection while the auto connect mode is in
effect, if a network error occurs in communication with the RAP-processing
server during transmission of the service request, the method retries only
once. If the connection is not established by this retry, the method returns
ErrNetDownException.

• In the case of an RPC that uses the scheduler direct facility or name service,
you cannot specify DCRPC_CHAINED in the flags argument. If you use the
remote API facility, you can specify DCRPC_CHAINED in the flags
parameter.

rpcCall
public void rpcCall(String group,
 String service,
 byte[] in_data,
 byte[] out_data,
 int flags)
 throws ErrInvalidArgsException,
 ErrProtoException,
 ErrNoBufsException,

Class TP1Client

181

 ErrNetDownException,
 ErrTimedOutException,
 ErrMessageTooBigException,
 ErrReplyTooBigException,
 ErrNoSuchServiceGroupException,
 ErrNoSuchServiceException,
 ErrServiceClosedException,
 ErrServiceTerminatingException,
 ErrServiceNotUpException,
 ErrNotUpException,
 ErrSyserrAtServerException,
 ErrSyserrException,
 ErrNoBufsAtServerException,
 ErrInvalidReplyException,
 ErrInitializingException,
 ErrTrnchkException,
 ErrServerBusyException,
 ErrSecchkException,
 ErrServiceTerminatedException,
 ErrIOErrException,
 ErrTestmodeException,
 ErrConnfreeException,
 ErrHostUndefException,
 ErrInvalidPortException

Issues an SPP service request. This method calls the service function that is identified
by the service group name and service name and receives its response. If the specified
service group is shut down when this method is called, the method returns
ErrServiceClosedException.

By specifying DCRPC_TPNOTRAN in the flags argument, you can treat an RPC from
transaction processing as a service request that is not transaction processing.

If the specified service group is under termination processing by a command such as
dcsvstop or has already been terminated when this method is called,
ErrServiceTerminatingException, ErrServiceClosedException, or
ErrNoSuchServiceGroupException is returned. The actual exception that is
returned depends on the timing of this method call.

The server that receives requests from a socket uses the values of the
max_socket_msg and max_socket_msglen operands in the user service definition
to execute congestion control on messages. Therefore, the server may not be able to
receive service requests. In such a case, calling the method returns
ErrServerBusyException. If this exception is returned, you may be able to issue
a service request by calling this method again after waiting a while.

Parameters

group

Class TP1Client

182

Specifies the service group name, expressed as an identifier of a maximum
of 31 characters.

service

Specifies the service name, expressed as an identifier of a maximum of 31
characters.

in_data

Specifies input parameters for the service.

out_data

Specifies the area in which the response specified in the service function is
to be returned.

For a non-response type RPC, specify null. Even if a non-null value is
specified for a non-response type RPC, nothing will be stored.

flags

Specifies one of the following flags as the RPC mode:

DCNOFLAGS: Synchronous-response RPC

DCRPC_NOREPLY: Non-response type RPC

DCRPC_CHAINED: Chained RPC

DCRPC_TPNOTRAN: RPC that does not inherit transactions

If you specify DCNOFLAGS or DCRPC_CHAINED, the method does not return
control until the server returns a response, or the maximum time to wait for
a response specified in the dcwatchtim operand of the TP1/Client/J
environment definition is reached and a timeout occurs. If the SPP to which
the service request was issued terminates abnormally, the method returns an
exception immediately. In this case, the exception returned by the method
depends on the maximum time to wait for a response that was specified in
the dcwatchtim operand of the TP1/Client/J environment definition:

• When a value in the range from 1 to 65535 is specified

ErrTimedOutException

• When 0 is specified

ErrServiceNotUpException

If DCRPC_NOREPLY is specified, the method assumes that the requested
service does not return a response. In such a case, the method returns control
immediately without waiting for the service to end its execution. When you
specify this flag, you cannot reference the response (value specified in the
out_data argument) or the response length (value specified in the

Class TP1Client

183

out_len argument). Additionally, the CUP cannot determine whether or not
the service function was executed.

If DCRPC_CHAINED is specified and a service belonging to the same service
group is requested more than once, the same process as for the first request
is used for execution.

When a chained RPC is used, the following limitations apply:

• The second or subsequent call to this method cannot detect a shutdown
of the user server or service.

• If an error occurs in service function processing during the second or
subsequent call to this method, the entire user server is shut down, not
just the applicable service.

• If you specified DCRPC_CHAINED in the flags argument to call a
service, execute an RPC specifying DCNOFLAGS during the last service
request. If you call the closeConnection method without specifying
DCNOFLAGS during the last service request, the method returns
ErrTimedOutException or some other exception. The process
executing the service is locked until a timeout occurs in the chained
RPCs.

• If you use the remote API facility, you can specify DCRPC_CHAINED in
the flags parameter.

• In the case of a chained RPC, use one of the following methods to
terminate it:

 Execute the rpcCall method specifying DCNOFLAGS in the flags
parameter (synchronous-response RPC) on the service group that is
executing the chained RPC.#

 Complete the global transaction executing the chained RPC by
synchronization point processing (commit or rollback).

#

If you call the closeConnection or rpcClose method without
executing a synchronous-response RPC, the API of TP1/Client/J
terminates normally, but the following status results:

 Outside the global transaction range

 The process executing the service is locked until a chained RPC
timeout occurs.

 Within the global transaction range

 Implicit commit occurs and the chained RPC is terminated.

Class TP1Client

184

By specifying DCRPC_TPNOTRAN, you can treat an RPC from transaction
processing as a service request that is not transaction processing. You cannot
specify DCRPC_TPNOTRAN from processing outside the transaction. You can
specify DCRPC_TPNOTRAN with DCNOFLAGS, DCRPC_NOREPLY, or
DCRPC_CHAINED.

Example: flags =
TP1Client.DCNOFLAGS|TP1Client.DCRPC_TPNOTRAN;

Return value

None.

Exceptions

ErrInvalidArgsException

A specified argument is invalid. In this case, the invalid argument name is set
in the detail message.

ErrProtoException

The method issuance order was invalid. The openConnection method has
not been called.

ErrNoBufsException

A memory shortage occurred.

ErrNetDownException

A network error occurred, or the communication-target TP1/Server is not
active.

ErrTimedOutException

A timeout occurred in this method processing, or the SPP whose service was
requested terminated abnormally before completing the processing.

ErrMessageTooBigException

The input parameters length specified in the in_len argument exceeds the
maximum value.

ErrReplyTooBigException

The response returned form the server is larger than the area provided by the
CUP (value specified for the out_data argument).

ErrNoSuchServiceGroupException

The service group name specified in the group argument is undefined.

ErrNoSuchServiceException

Class TP1Client

185

The service name specified in the service argument is undefined.

ErrServiceClosedException

The service group containing the service name specified in the service
argument is shut down.

ErrServiceTerminatingException

The service specified in the service argument is under termination
processing.

ErrServiceNotUpException

The SPP specified in the service request has not started, or the SPP specified
in the service request terminated abnormally before completing its
processing. This exception is returned when dcwatchtim=0 is specified (to
wait for a response indefinitely) in the TP1/Client/J environment definition.

ErrNotUpException

The TP1/Server is not active at the node that contains the specified service.
In this case, the TP1/Server may have terminated abnormally, may have been
shut down, may be under termination processing, or a network error may
have occurred.

ErrSyserrAtServerException

A system error occurred in the specified service.

ErrSyserrException

A system error occurred.

ErrNoBufsAtServerException

A memory shortage occurred in the specified service.

ErrInvalidReplyException

The length of the response returned from the service function is not within
the range from 1 to the value specified for DCRPC_MAX_MESSAGE_SIZE#.

#

When the dccltrpcmaxmsgsize operand is used, the value specified in the
dccltrpcmaxmsgsize operand is used rather than the value specified in
DCRPC_MAX_MESSAGE_SIZE.

ErrInitializingException

The TP1/Server at the node specified in the service request is under start
processing.

Class TP1Client

186

ErrTrnchkException

In the environment using the inter-node load-balancing facility, the
transaction attributes of multiple SPPs do not match, or the inter-node
load-balancing facility cannot be executed because the version of the TP1/
Server at the target node is older than the TP1/Client/J version. This
exception is returned only when a service request is issued to the SPP using
the inter-node load-balancing facility.

ErrServerBusyException

The target server that receives requests from a socket cannot receive service
requests.

ErrSecchkException

The SPP to which the service request was issued is protected by the security
facility. The CUP that called the rpcCall method does not have access
authority to the SSP.

ErrServiceTerminatedException

The SPP specified in the service request terminated abnormally before
completing the processing. This exception is returned only when 00000001
is specified in the rpc_extend_function operand of the RAP-processing
listener service definition. If you specified 00000000 in the
rpc_extend_function operand or omitted the operand,
ErrTimedOutException or ErrServiceNotUpException is returned.

ErrIOErrException

An I/O exception occurred. The RAP-processing server may have timed out
while monitoring the inquiry interval and released the connection.

ErrTestmodeException

A service request was issued to an SPP in the test mode.

ErrConnfreeException

The permanent connection with the RAP-processing server was released.
Another possibility is that the virtual session with TP1/Web ended.

ErrHostUndefException

Possible causes are as follows:

• Either the host name of the communication target TP1/Server is not
specified in the dchost operand of the TP1/Client/J environment
definition, or the specification is invalid.

• The URL (protocol, Web server, CGI name of the prompter, TP1/Web
service name, and other information) specified in the dcweburl

Class TP1Client

187

operand of the TP1/Client/J environment definition is invalid.

ErrInvalidPortException

Possible causes are as follows:

• An RPC was issued using the remote API facility, but the dcrapport
operand was not specified in the TP1/Client/J environment definition.

• An RPC was issued using the scheduler direct facility, but the
dcscdport operand was not specified in the TP1/Client/J environment
definition.

Notes

• Do not specify the same area for the input parameters (value of the in_data
argument) and for the response of the service function (value of the
out_data argument).

• If you specify DCRPC_NOREPLY in the flags argument, the following
exceptions will not be returned:

Exceptions that will not occur:

• ErrReplyTooBigException

• ErrInvalidReplyException

Exceptions that cannot be detected, if thrown:

• ErrNoSuchServiceException

• ErrServiceClosedException

• ErrServiceTerminatingException

• ErrSyserrAtServerException

• ErrNoBufsAtServerException

• ErrNotUpException

• The possible causes of ErrTimedOutException are as follows:

- The maximum time to wait for a response specified in the TP1/Client/J
environment definition or TP1/Server definition is too short.

- The service function issued by the target SPP terminated abnormally.

- An error occurred at the node that contains the target SPP.

- The target SPP terminated abnormally before completing its processing.

- A network error occurred.

If any of these events occurs, the transaction started by the target SPP may

Class TP1Client

188

have been committed and the database may have been updated. Check to see
whether or not the database has been updated.

• If an error occurs when this method is called, an exception is returned, but
whether or not the permanent connection with the RAP-processing listener
or server was released as a result of the error cannot be determined at this
point. If the permanent connection with the RAP-processing listener or
server has in fact been released, calling this method again returns
ErrConnfreeException.

• If the permanent connection with the RAP-processing listener or server is
released as a result of an error when this method is called, you need to call
the openConnection method again to establish permanent connection with
the RAP-processing listener or server.

• In the case of a permanent connection when the auto connect mode is being
used, if a network error occurs in communication with the RAP-processing
server during transmission of the service request, the method retries only
once. If the connection is not established by this retry, the method returns
ErrNetDownException.

• In the case of an RPC that uses the scheduler direct facility or name service,
you cannot specify DCRPC_CHAINED in the flags argument. If you use the
remote API facility, you can specify DCRPC_CHAINED in the flags
parameter.

rpcCallTo
public void rpcCallTo(DCRpcBindTbl direction,
 String group,
 String service,
 byte[] in_data,
 int[] in_len,
 byte[] out_data,
 int[] out_len,
 int flags)
 throws ErrInvalidArgsException,
 ErrProtoException,
 ErrNoBufsException,
 ErrNetDownException,
 ErrTimedOutException,
 ErrMessageTooBigException,
 ErrReplyTooBigException,
 ErrNoSuchServiceGroupException,
 ErrNoSuchServiceException,
 ErrServiceClosedException,
 ErrServiceTerminatingException,
 ErrServiceNotUpException,
 ErrNotUpException,

Class TP1Client

189

 ErrSyserrAtServerException,
 ErrSyserrException,
 ErrNoBufsAtServerException,
 ErrInvalidReplyException,
 ErrInitializingException,
 ErrTrnchkException,
 ErrServerBusyException,
 ErrSecchkException,
 ErrServiceTerminatedException,
 ErrIOErrException,
 ErrTestmodeException,
 ErrConnfreeException,
 ErrHostUndefException,
 ErrInvalidPortException

Similarly to the rpcCall method, this method issues an SPP service request. The
rpcCallTo method uses a host name in addition to a service group name and service
name as the search key for determining the target service function.

Before calling this method, you need to call the setScdDirectObject method and
create a DCRpcBindTbl instance. The other interfaces are the same as for the
rpcCall method.

Parameters

direction

Specifies the DCRpcBindTbl object. Before calling this method, call the
setScdDirectObject method to set the communication-target
information.

group

Specifies the service group name, expressed as an identifier of a maximum
of 31 characters.

service

Specifies the service name, expressed as an identifier of a maximum of 31
characters.

in_data

Specifies input parameters for the service.

in_len

Specifies the length of the input parameter for the service, in the range from
1 to the value of DCRPC_MAX_MESSAGE_SIZE.# Store the length of the input
parameter in in_len[0].

Class TP1Client

190

#

When the dccltrpcmaxmsgsize operand is used, the size of the input
parameter response area is the value specified by the
dccltrpcmaxmsgsize operand rather than the value specified in
DCRPC_MAX_MESSAGE_SIZE.

out_data

Specifies the area in which the response specified in the service function is
to be returned.

For a non-response type RPC, specify null. Even if a non-null value is
specified for a non-response type RPC, nothing will be stored.

out_len

Specifies the length of the service's response, expressed in the range from 1
to the value of DCRPC_MAX_MESSAGE_SIZE#. Store the length of the
response in out_len[0].

#

When the dccltrpcmaxmsgsize operand is used, the length of the
service's response is the value specified by the dccltrpcmaxmsgsize
operand rather than the value specified in DCRPC_MAX_MESSAGE_SIZE.

flags

Specifies one of the following flags as the RPC mode:

DCNOFLAGS: Synchronous-response RPC

DCRPC_NOREPLY: Non-response type RPC

Return value

None.

Exception

Exceptions are the same as for the rpcCall method.

Notes

• If you issue a service request to a user server that receives requests from a
socket, this method returns ErrServiceNotUpException.

• The version of the target TP1/Server whose service is requested must be
03-03 or later. If a service request is issued to an earlier version of TP1/
Server, operations cannot be guaranteed.

• This method is not applicable to an RPC that uses the remote API facility. If
this method is issued when the remote API facility is used, the method

Class TP1Client

191

returns ErrProtoException.

• This method is not applicable to a chained RPC. If you specify
DCRPC_CHAINED in the flags argument, this method returns
ErrInvalidArgsException.

• During a call to the rpcCallTo method, the following operands in the TP1/
Client/J environment definition are not referenced:

- dchost

- dcscdport

- dcnamport

- dcscdloadpriority

Neither the host name nor the port number specified in the setDchost
method is referenced. The specified values take effect the next time the
rpcCall method is called.

• If the specified target host name is invalid, this method returns
ErrHostUndefException.

• If the specified target port number is invalid, this method returns
ErrInvalidPortException.

setScdDirectObject
public DCRpcBindTbl setScdDirectObject(String scdhost,
 int scdport,
 int flags)

Sets the host name and port number of the communication-target scheduler.

Parameters

scdhost

Specifies the host name of the communication-target schedule server. If the
specified host name is invalid or NULL is specified, the rpcCallTo method
that is called after this method returns ErrHostUndefException.

scdport

Specifies the port number of the communication-target schedule server.
Express the port number in the range from 5001 to 65535. If the specified
port number is invalid, the rpcCallTo method that is called after this
method returns ErrInvalidPortException.

flags

Specifies DCNOFLAGS.

Return value

Class TP1Client

192

DCRpcBindTbl object

trnBegin
public void trnBegin()
 throws ErrProtoException,
 ErrTMException,
 ErrRMException,
 ErrNoBufsException,
 ErrNotUpException,
 ErrTimedOutException,
 ErrIOErrException,
 ErrConnfreeException,
 ErrSyserrException,
 ErrNetDownException,
 ErrHostUndefException,
 ErrInvalidPortException

Starts a global transaction from the TP1Client object that calls the trnBegin
method.

This method is applicable only when the remote API facility is used and the version of
the target TP1/Server Base is 05-00 or later.

Parameter

None.

Return value

None.

Exceptions

ErrProtoException

The trnBegin method was called from an invalid context.

ErrTMException

The method was unable to start the transaction because an error occurred in
the transaction service. When this exception is returned, calling this method
again after waiting a while may start the transaction successfully.

ErrRMException

An error occurred in the resource manager. The transaction was not started.

ErrNoBufsException

A memory shortage occurred.

ErrNotUpException

TP1/Server is not active.

Class TP1Client

193

ErrTimedOutException

A timeout occurred.

ErrIOErrException

An I/O exception occurred.

ErrConnfreeException

The permanent connection was released from the CUP executing process.

ErrSyserrException

A system error occurred.

ErrNetDownException

A network error occurred.

ErrHostUndefException

Either the host name of the communication target TP1/Server is not specified
in the dchost operand of the TP1/Client/J environment definition, or the
specification is invalid.

ErrInvalidPortException

The communication-target port is invalid or has not been set.

trnChainedCommit
public void trnChainedCommit()
 throws ErrProtoException,
 ErrRollbackException,
 ErrHeuristicException,
 ErrHazardException,
 ErrNoBeginException,
 ErrRollbackNoBeginException,
 ErrHeuristicNoBeginException,
 ErrHazardNoBeginException,
 ErrNoBufsException,
 ErrNotUpException,
 ErrTimedOutException,
 ErrIOErrException,
 ErrConnfreeException,
 ErrNetDownException,
 ErrSyserrException

Acquires a transaction synchronization point.

When the trnChainedCommit method terminates normally, a new global transaction
occurs and the subsequent methods that are executed belong to the range of the new
global transaction.

Class TP1Client

194

Parameter

None.

Return value

None.

Exceptions

ErrProtoException

The trnChainedCommit method was called from an invalid context.

ErrRollbackException

The current transaction was rolled back without being committed. Even after
this exception is returned, this process is still under the transaction and
within the range of the global transaction.

ErrHeuristicException

For heuristic determination purposes, some of the transaction branches in the
global transaction that executed the dc_trn_chained_commit function
were committed and some were rolled back. This exception is returned when
the result of heuristic determination does not match the result of the
synchronization point of the global transaction. For the result of the
synchronization point of the global transaction, resource manager, and UAP
that caused this exception, see TP1/Server's message log file. Even after this
exception is returned, this process is still under the transaction and within the
range of the global transaction.

ErrHazardException

A transaction branch of the global transaction was completed heuristically.
However, the result of the synchronization point of the transaction branch
that was completed heuristically was unknown due to an error. For the result
of the synchronization point of the global transaction, resource manager, and
UAP that caused this exception, see TP1/Server's message log file. Even
after this exception is returned, this process is still under the transaction and
within the range of the global transaction.

ErrNoBeginException

Commit or rollback processing terminated normally, but the method was
unable to start a new transaction. Once this exception has been returned, this
process is no longer under the transaction.

ErrRollbackNoBeginException

The transaction that was to be committed was rolled back without being
committed. The method was unable to start a new transaction. Once this

Class TP1Client

195

exception has been returned, this process is no longer under the transaction.

ErrHeuristicNoBeginException

For heuristic determination purposes, some of the transaction branches in the
global transaction that executed the dc_trn_chained_commit function
were committed and some were rolled back. This exception is returned when
the result of the heuristic determination does not match the result of the
synchronization point of the global transaction. For the result of the
synchronization point of the global transaction, resource manager, and UAP
that caused this exception, see TP1/Server's message log file. The method
was unable to start a new transaction. Once this exception has been returned,
this process is no longer under the transaction.

ErrHazardNoBeginException

A transaction branch of the global transaction was completed heuristically.
However, the result of the synchronization point of the transaction branch
that was completed heuristically was unknown due to an error. For the result
of the synchronization point of the global transaction, resource manager, and
UAP that caused this exception, see TP1/Server's message log file. The
method was unable to start a new transaction. Once this exception has been
returned, this process is no longer under the transaction.

ErrNoBufsException

A memory shortage occurred.

ErrNotUpException

TP1/Server is not active.

ErrTimedOutException

A timeout occurred.

ErrIOErrException

An I/O exception occurred.

ErrConnfreeException

The permanent connection was released from the CUP executing process.

ErrNetDownException

A network error occurred.

ErrSyserrException

A system error occurred.

Class TP1Client

196

trnChainedRollback
public void trnChainedRollback()
 throws ErrProtoException,
 ErrHeuristicException,
 ErrHazardException,
 ErrNoBeginException,
 ErrHeuristicNoBeginException,
 ErrHazardNoBeginException,
 ErrNoBufsException,
 ErrNotUpException,
 ErrTimedOutException,
 ErrIOErrException,
 ErrConnfreeException,
 ErrNetDownException,
 ErrSyserrException

Rolls back a transaction.

When the trnChainedRollback method terminates normally, a new global
transaction occurs and the subsequent methods that are called belong to the range of
the new global transaction.

Parameter

None.

Return value

None.

Exceptions

ErrProtoException

The trnChainedRollback method was called from an invalid context.

ErrHeuristicException

For heuristic determination purposes, some of the transaction branches in the
global transaction that executed the dc_trn_chained_rollback function
were committed and some were rolled back. This exception is returned when
the result of the heuristic determination does not match the result of the
synchronization point of the global transaction. For the result of the
synchronization point of the global transaction, resource manager, and UAP
that caused this exception, see TP1/Server's message log file. Even after this
exception is returned, this process is still under the transaction and within the
range of the global transaction.

ErrHazardException

A transaction branch of the global transaction was completed heuristically.

Class TP1Client

197

However, the result of the synchronization point of the transaction branch
that was completed heuristically was unknown due to an error. For the result
of the synchronization point of the global transaction, resource manager, and
UAP that caused this exception, see TP1/Server's message log file. Even
after this exception is returned, this process is still under the transaction and
within the range of the global transaction.

ErrNoBeginException

Commit or rollback processing terminated normally, but the method was
unable to start a new transaction. Once this exception has been returned, this
process is no longer under the transaction.

ErrHeuristicNoBeginException

For heuristic determination purposes, some of the transaction branches in the
global transaction that executed the dc_trn_chained_rollback function
were committed and some were rolled back. This exception is returned when
the result of the heuristic determination does not match the result of the
synchronization point of the global transaction. For the result of the
synchronization point of the global transaction, resource manager, and UAP
that caused this exception, see TP1/Server's message log file. The method
was unable to start a new transaction. Once this exception has been returned,
this process is no longer under the transaction.

ErrHazardNoBeginException

A transaction branch of the global transaction was completed heuristically.
However, the result of the synchronization point of the transaction branch
that was completed heuristically was unknown due to an error. For the result
of the synchronization point of the global transaction, resource manager, and
UAP that caused this exception, see TP1/Server's message log file. The
method was unable to start a new transaction. Once this exception has been
returned, this process is no longer under the transaction.

ErrNoBufsException

A memory shortage occurred.

ErrNotUpException

TP1/Server is not active.

ErrTimedOutException

A timeout occurred.

ErrIOErrException

An I/O exception occurred.

Class TP1Client

198

ErrConnfreeException

The permanent connection was released from the CUP executing process.

ErrNetDownException

A network error occurred.

ErrSyserrException

A system error occurred.

trnUnchainedCommit
public void trnUnchainedCommit()
 throws ErrProtoException,
 ErrRollbackException,
 ErrHeuristicException,
 ErrHazardException,
 ErrNoBufsException,
 ErrNotUpException,
 ErrTimedOutException,
 ErrIOErrException,
 ErrConnfreeException,
 ErrNetDownException,
 ErrSyserrException

Acquires a transaction synchronization point.

When the trnUnchainedCommit method terminates normally, the global transaction
ends. You cannot execute an SPP as a transaction from outside the range of the global
transaction.

Parameter

None.

Return value

None.

Exceptions

ErrProtoException

The trnUnchainedCommit method was called from an invalid context.

ErrRollbackException

The current transaction was rolled back without being committed. The
process is outside the range of the transaction.

ErrHeuristicException

For heuristic determination purposes, some of the transaction branches in the

Class TP1Client

199

global transaction that executed the dc_trn_unchained_commit function
were committed and some were rolled back. This exception is returned when
the result of the heuristic determination does not match the result of the
synchronization point of the global transaction. For the result of the
synchronization point of the global transaction, resource manager, and UAP
that caused this exception, see TP1/Server's message log file. Once this
exception has been returned, this process is no longer under the transaction.
The process is outside the range of the global transaction.

ErrHazardException

A transaction branch of the global transaction was completed heuristically.
However, the result of the synchronization point of the transaction branch
that was completed heuristically was unknown due to an error. For the result
of the synchronization point of the global transaction, resource manager, and
UAP that caused this exception, see TP1/Server's message log file. Once this
exception has been returned, this process is no longer under the transaction.
The process is outside the range of the global transaction.

ErrNoBufsException

A memory shortage occurred.

ErrNotUpException

TP1/Server is not active.

ErrTimedOutException

A timeout occurred.

ErrIOErrException

An I/O exception occurred.

ErrConnfreeException

The permanent connection was released from the CUP executing process.

ErrNetDownException

A network error occurred.

ErrSyserrException

A system error occurred.

trnUnchainedRollback
public void trnUnchainedRollback()
 throws ErrProtoException,
 ErrHeuristicException,
 ErrHazardException,
 ErrNoBufsException,

Class TP1Client

200

 ErrNotUpException,
 ErrTimedOutException,
 ErrIOErrException,
 ErrConnfreeException,
 ErrNetDownException,
 ErrSyserrException

Rolls back a transaction.

When the trnUnchainedRollback method is called, the global transaction ends.
You cannot execute an SPP as a transaction from outside the range of the global
transaction.

Parameter

None.

Return value

None.

Exceptions

ErrProtoException

The trnUnchainedRollback method was called from an invalid context.

ErrHeuristicException

For heuristic determination purposes, some of the transaction branches in the
global transaction that executed the dc_trn_unchained_rollback
function were committed and some were rolled back. This exception is
returned when the result of the heuristic determination does not match the
result of the synchronization point of the global transaction. For the result of
the synchronization point of the global transaction, resource manager, and
UAP that caused this exception, see TP1/Server's message log file. Once this
exception has been returned, this process is no longer under the transaction.
The process is outside the range of the global transaction.

ErrHazardException

A transaction branch of the global transaction was completed heuristically.
However, the result of the synchronization point of the transaction branch
that was completed heuristically was unknown due to an error. For the result
of the synchronization point of the global transaction, resource manager, and
UAP that caused this exception, see TP1/Server's message log file. Once this
exception has been returned, this process is no longer under the transaction.
The process is outside the range of the global transaction.

ErrNoBufsException

A memory shortage occurred.

Class TP1Client

201

ErrNotUpException

TP1/Server is not active.

ErrTimedOutException

A timeout occurred.

ErrIOErrException

An I/O exception occurred.

ErrConnfreeException

The permanent connection was released from the CUP executing process.

ErrNetDownException

A network error occurred.

ErrSyserrException

A system error occurred.

trnInfo
public boolean trnInfo()

Reports whether or not the TP1Client object that called the trnInfo method is
currently running as a transaction. This method only references internal variables; it
does not communicate with the RAP-processing server.

Parameter

None.

Return value

true

The TP1Client object that called the trnInfo method is within the range
of a transaction.

false

The TP1Client object that called the trnInfo method is outside the range
of a transaction.

Exception

None.

getTrnID
public void getTrnID(byte[] gid,byte[] bid)
 throws ErrInvalidArgsException,
 ErrProtoException

Class TP1Client

202

Acquires the current transaction global identifier and transaction branch identifier.
This method only references internal variables; it does not communicate with the
RAP-processing server.

The current transaction global identifier and transaction branch identifier were
assigned by TP1/Server when the following methods were called and a transaction was
started:

• trnBegin method

• trnChainedCommit method

• trnChainedRollback method

Parameter

gid

Specifies a minimum of 16 bytes of the byte type array that stores the
transaction global identifier.

bid

Specifies a minimum of 16 bytes of the byte type array that stores the
transaction branch identifier.

Return value

None.

Exceptions

ErrInvalidArgsException

A specified argument is invalid.

ErrProtoException

The getTrnID method was called from an invalid context.

cltReceive
public void cltReceive(byte[] buff,
 int[] recvleng,
 int timeout,
 int flags)
 throws ErrInvalidArgsException,
 ErrProtoException,
 ErrNetDownException,
 ErrTimedOutException,
 ErrSyserrException,
 ErrInvalidPortException,
 ErrConnfreeException

Receives a message sent from an MHP.

Class TP1Client

203

Before executing the cltReceive method, you must have specified either
DCCLT_ONEWAY_RCV or DCCLT_SNDRCV in the dcsndrcvtype operand of the TP1/
Client/J environment definition, and executed the rpcOpen method.

Parameters

buff

Specifies the area in which to store the received message. Make sure to
specify an area that is at least the size specified in recvleng. The received
message is returned after the method finishes executing.

recvleng

Specifies the length of the message to be received in recvleng[0]. The
length of the received message is returned after the method finishes
executing.

timeout

Specifies the maximum wait time when a message is being received,
expressed as an integer from -1 to 65535 in units of seconds.

If you specify -1, cltReceive waits until the message is received without
any timeout limitations.

If you specify 0, cltReceive does not wait for the message to be received.
If there is no message to be received, it returns an
ErrTimedOutException.

If you specify an integer between 1 and 65535, cltReceive waits for the
specified number of seconds for the message to be received. If the specified
number of seconds is exceeded before the message can be received,
cltReceive returns an ErrTimedOutException.

flags

Specifies whether or not to release the connection after the message is
received.

DCNOFLAGS: Does not release the connection after the message is received.

If DCNOFLAGS is specified, unless there is an error, the connection is not
released until the rpcClose method is executed.

DCCLT_RCV_CLOSE: Releases the connection after the message is received.

Return value

None

Class TP1Client

204

Exceptions

ErrInvalidArgsException

The parameter specification is invalid.

ErrProtoException

The rpcOpen method did not execute. Another possibility is that, although
the rpcOpen method did execute, neither DCCLT_ONEWAY_RCV nor
DCCLT_SNDRCV is specified in the dcsndrcvtype operand of the TP1/
Client/J environment definition.

ErrNetDownException

A network error occurred.

ErrTimedOutException

A timeout occurred while the message was being received.

ErrSyserrException

A system error occurred.

ErrInvalidPortException

This exception occurs when Y is specified in the dcsockopenatrcv
operand of the TP1/Client/J environment definition, and the port specified in
the dcrcvport operand is already in use. If N is specified in the
dcsockopenatrcv operand, the rpcOpen method returns
ErrFatalException.

ErrConnfreeException

The connection was released from the MHP.

Notes

The cltReceive method returns control to the CUP at the following times:

• When a message of the length specified by the recvleng parameter is
received from the MHP

• When a timeout occurs while a message is being received from the MHP

• When the connection is released from the MHP

• When a network error occurs

If the MHP drops the connection when a cltReceive method is issued, an
ErrConnfreeException error is returned.

Class TP1Client

205

cltSend
public void cltSend(byte[] buff,
 int sendleng,
 String hostname,
 int portnum,
 int flags)
 throws ErrInvalidArgsException,
 ErrProtoException,
 ErrNetDownException,
 ErrSyserrException,
 ErrHostUndefException,
 ErrInvalidPortException,
 ErrConnRefusedException

Sends a message to an MHP.

Before executing the cltSend method, you must have specified either
DCCLT_ONEWAY_SND or DCCLT_SNDRCV in the dcsndrcvtype operand of the TP1/
Client/J environment definition, and executed the rpcOpen method.

Parameters

buff

Specifies the area in which to store the message to be sent. Make sure to
specify an area that is at least the size specified in sendleng.

sendleng

Specifies the length of the message to be sent.

hostname

Specifies the host name of the node on which the MHP to be connected
exists, in case the connection cannot be established.

If you specify null, cltSend references the dcsndhost operand of the
TP1/Client/J environment definition that is obtained when the rpcOpen
method is executed.

You can also specify an IP address, following the decimal-plus-dot
convention, as the host name.

This parameter is ignored if the connection is established.

portnum

Specifies an integer for the port number of the MHP to be connected of
between 0 and 65535, if the connection is not established.

If you specify 0, cltSend references the dcsndport operand of the TP1/
Client/J environment definition that is obtained when the rpcOpen method

Class TP1Client

206

is executed.

This parameter is ignored if the connection is established.

flags

Specifies whether or not to release the connection after the message is sent.

DCNOFLAGS: Does not release the connection after the message is sent.

If DCNOFLAGS is specified, unless there is an error, the connection is not
released until the rpcClose method is executed.

DCCLT_SND_CLOSE: Releases the connection after the message is sent.

Return value

None

Exceptions

ErrInvalidArgsException

The parameter specification is invalid.

ErrProtoException

The rpcOpen method did not execute. Another possibility is that, although
the rpcOpen method did execute, neither DCCLT_ONEWAY_SND nor
DCCLT_SNDRCV is specified in the dcsndrcvtype operand of the TP1/
Client/J environment definition.

ErrNetDownException

A network error occurred.

ErrSyserrException

A system error occurred.

ErrHostUndefException

The hostname parameter specification is invalid. Another possibility is that
the host name is not specified in either the hostname parameter or in the
dcsndhost operand in the TP1/Client/J environment definition.

ErrInvalidPortException

The portnum parameter specification is invalid.

ErrConnRefusedException

The connection establishment request to the MHP was denied (an attempt
was made to establish a connection through a port that is not waiting for a
connection).

Class TP1Client

207

Notes

If the MHP drops the connection after the cltSend method is executed and a
message is being sent, the cltSend method next executed ends normally or
abnormally. If the cltSend method next executed ends normally, the cltSend
method following that one ends abnormally. We recommend that you take the
above into consideration when creating a CUP.

cltAssemSend
public void cltAssemSend(byte[] buff,
 int sendleng,
 String hostname,
 int portnum,
 int timeout,
 int flags)
 throws ErrInvalidArgsException,
 ErrProtoException,
 ErrNetDownException,
 ErrSyserrException,
 ErrHostUndefException,
 ErrInvalidPortException,
 ErrConnRefusedException,
 ErrTimedOutException,
 ErrConnfreeException,
 ErrInvalidMessageException,
 ErrCollisionMessageException

Uses the receive message assembly facility to send a message.

To execute the cltAssemSend method, you must first specify DCCLT_ONEWAY_SND
or DCCLT_SNDRCV in the dcsndrcvtype operand of the TP1/Client/J environment
definition and execute the rpcOpen method.

When the receive message assembly facility is used, message length (4 + specification
value of the sendleng argument) is added to the first 4 bytes of the message, and a
message having a length of between buff[0] and buff[sendleng - 1] is sent.

If the connection with the remote system is not established, connection is established
according to the values specified in the hostname and portnum arguments, and a
message is sent.

Parameters

buff

Specifies the area where the message to be sent is stored. Specify an area that
is longer than the value specified by the sendleng argument.

sendleng

Specifies the length of the message to be sent.

Class TP1Client

208

hostname

Specifies the host name of the remote system to be connected if no
connection has been established.

If null is specified, the content of the dcsndhost operand of the TP1/
Client/J environment definition acquired by executing the rpcOpen method
is referenced.

For the host name, you can also specify an IP address expressed in the
decimal dot method. If connection has been established, this argument is
ignored.

portnum

Specifies the port number of the remote system to be connected, expressed
as an integer of between 0 and 65535, if no connection has been established.

If 0 is specified, the content of the dcsndport operand of the TP1/Client/J
environment definition acquired by executing the rpcOpen method is
referenced. If connection has been established, this argument is ignored.

timeout

A reserved argument. Specify 0.

flags

Specifies whether to release the connection after the message is sent.

DCNOFLAGS: Does not release the connection after the message is sent.

If DCNOFLAGS is specified, the connection is not released until the
rpcClose method is executed, except when an error occurs.

DCCLT_SND_CLOSE: Releases the connection after the message is sent.

Return value

None

Exceptions

ErrInvalidArgsException

The specified argument is invalid.

ErrProtoException

The rpcOpen method has not been executed. Another possibility is that,
although the rpcOpen method has been executed, DCCLT_ONEWAY_SND or
DCCLT_SNDRCV has not been specified in the dcsndrcvtype operand of
the TP1/Client/J environment definition.

Class TP1Client

209

ErrNetDownException

A network error occurred.

ErrSyserrException

A system error occurred.

ErrHostUndefException

The name of the remote host to be connected is invalid. Another possibility
is that no host name is specified in either the hostname argument or the
dcsndhost operand of the TP1/Client/J environment definition.

ErrInvalidPortException

The specified portnum argument is invalid.

ErrConnRefusedException

The request to establish connection to the remote system was denied (an
attempt was made to establish a connection through a port that is not waiting
for a connection).

ErrTimedOutException

A timeout occurred while receiving a response message. The connection is
released.

ErrConnfreeException

The connection was released by the remote system.

ErrInvalidMessageException

An invalid message was received.

ErrCollisionMessageException

A send/receive message collision occurred.

Note

If the remote system releases the connection when you are sending a message by
executing the cltAssemSend method, the cltAssemSend method that is
executed next is terminated either normally or abnormally. If it is terminated
normally, abnormal termination occurs with the cltAssemSend method that is
executed next. Therefore, take note of this fact when creating a CUP.

cltAssemReceive
public void cltAssemReceive(byte[] buff,
 int[] recvleng,
 int timeout,
 int flags)
 throws ErrInvalidArgsException,

Class TP1Client

210

 ErrProtoException,
 ErrNetDownException,
 ErrTimedOutException,
 ErrSyserrException,
 ErrInvalidPortException,
 ErrConnfreeException,
 ErrInvalidMessageException,
 ErrBufferOverflowException

Uses the receive message assembly facility to receive a message.

To execute the cltAssemReceive method, you must first specify
DCCLT_ONEWAY_RCV or DCCLT_SNDRCV in the dcsndrcvtype operand of the TP1/
Client/J environment definition and execute the rpcOpen method.

When the receive message assembly facility is used, the first 4 bytes of the message
are not stored in the buffer specified by the buff argument.

When this method terminates normally, a message containing user data having the
length of recvleng[0] is received, and the user data is stored in buff[0] through
buff[recvleng[0]-1].

Parameters

buff

Specifies the area in which to store the received message. Specify an area
that is longer than the message to be received.

recvleng

After the method is executed, the length of the received message is returned
to recvleng[0].

timeout

Specifies the maximum amount of time to wait to receive a message,
expressed as an integer of between -1 and 65535 (seconds).

If -1 is specified, the system waits indefinitely until a message is received.

If 0 is specified, the system does not wait to receive a message. If there is no
message to be received, ErrTimedOutException is returned.

If a value between 1 and 65535 is specified, the system waits to receive a
message for the number of seconds specified. If a message cannot be
received within the specified period, ErrTimedOutException is returned.

flags

Specifies whether to release the connection after the message is received.

DCNOFLAGS: Does not release the connection after the message is received.

Class TP1Client

211

If DCNOFLAGS is specified, the connection is not released until the
rpcClose method is executed, except when an error occurs.

DCCLT_RCV_CLOSE: Releases the connection after the message is received.

Return value

None

Exceptions

ErrInvalidArgsException

The specified argument is invalid.

ErrProtoException

The rpcOpen method has not been executed. Another possibility is that,
although the rpcOpen method has been executed, DCCLT_ONEWAY_RCV or
DCCLT_SNDRCV has not been specified in the dcsndrcvtype operand of
the TP1/Client/J environment definition.

ErrNetDownException

A network error occurred.

ErrTimedOutException

A timeout occurred while receiving a message.

ErrSyserrException

A system error occurred.

ErrInvalidPortException

This exception occurs when Y is specified in the dcsockopenatrcv
operand of the TP1/Client/J environment definition, and the port specified in
the dcrcvport operand is already in use. If N is specified for the
dcsockopenatrcv operand, the rpcOpen method returns
ErrFatalException.

ErrConnfreeException

The connection was released by the remote system.

ErrInvalidMessageException

An invalid message was received.

ErrBufferOverflowException

A message whose length exceeds the value specified in the buff argument
was received.

Class TP1Client

212

Notes

The cltAssemReceive method returns control to the CUP in the following
cases:

• Message receiving is completed.

• A message whose length exceeds the value specified in the buff argument
is received.

• A network error occurred.

• A timeout occurred while receiving a message.

• The connection is released by the remote system.

• A message with an invalid message length is received.

• A message with invalid segment information is received.

If the remote system releases the connection when the cltAssemReceive
method is issued, the method returns the ErrConnfreeException error.

setConnectInformation
public void setConnectInformation(byte[] inf,
 short inf_len)
 throws ErrInvalidArgsException

Sets the terminal identification information.

The terminal identification information specified in this method takes effect when you
specify the host name of a DCCM3 logical terminal in the dchost operand and the
port number of the DCCM3 logical terminal in the dchost or dcrapport operand in
the TP1/Client/J environment definition, and when you use one of the following
methods to establish a permanent connection with the DCCM3 logical terminal:

• Call the openConnection method. If the openConnection method has
parameters, specify DCCM3 logical terminal host name in the host parameter
and the port number of the DCCM3 logical terminal in the port parameter.

• Specify Y in the dcrapautoconnect operand in the TP1/Client/J environment
definition and then call the rpcCall method.

When this method is called, the terminal identification information specified in the
dccltconnectinf operand in the TP1/Client/J environment definition is ignored
until the rpcOpen method is called again.

The terminal identification information specified in this method is recognized when a
permanent connection is established with the DCCM3 logical terminal. If this method
is called more than once, the terminal identification information specified immediately
before the permanent connection was established with the DCCM3 logical terminal
takes effect.

Class TP1Client

213

The terminal identification information specified by this method is ignored for an RPC
using the name service or scheduler direct facility.

Parameters

inf

Specifies the logical terminal name of the DCCM3 logical terminal as
terminal identification information consisting of up to 64 bytes of EBCDIK
codes. Note that DCCM3 uses only the first 8 bytes and ignores the rest.

inf_len

Specifies the length of the terminal identification information, in the range
from 1 to 64 bytes.

Return value

None.

Exception

ErrInvalidArgsException

A specified parameter is invalid.

acceptNotification
public void acceptNotification(
 byte[] inf,
 int[] inf_len,
 int port,
 int timeout,
 byte[] hostname,
 byte[] nodeid)
 throws ErrInvalidArgsException,
 ErrProtoException,
 ErrIOErrException,
 ErrSecurityException,
 ErrInvalidPortException,
 ErrTimedOutException,
 ErrNetDownException,
 ErrInvalidMessageException,
 ErrAcceptCanceledException,
 ErrReplyTooBigException,
 ErrVersionException,
 ErrSyserrException

Waits for a message sent by the server's function (dc_rpc_cltsend) for up to the
amount of time specified in the timeout parameter. When the method receives the
message, it returns control to the CUP and returns the notification message, length of
the notification message, and the host name and node identifier of the server that sent

Class TP1Client

214

the message.

Parameters

inf

Specifies the area for storing the notification message from the server.

When the method terminates normally, the notification message from the
server is stored.

inf_len

Specifies the length of the area for storing the notification message from the
server (length of the area in the inf parameter). The value must be in the
range from 0 to DCRPC_MAX_MESSAGE_SIZE.

If the dccltrpcmaxmsgsize value specified in the TP1/Client/J
environment definition is 2 or greater, the permitted maximum value is that
dccltrpcmaxmsgsize value, not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

When the method terminates normally, the length of the notification message
from the server is stored.

port

Specifies the port number that is to be used to receive notification messages
from the server. Specify a value in the range from 5001 to 65535. If you
execute multiple processes or threads concurrently on the same machine,
specify different port numbers in the port parameters. This port number
must be unique from port numbers used by the OS or other programs. If a
port number that is already in use is specified, response data may not be
received correctly. For details about the port numbers used by the OS, see the
OS-related documentation.

timeout

Specifies the timeout value, in the range from 0 to 65535 (seconds). If 0 is
specified, the method waits indefinitely.

hostname

Specifies the area for storing the host name of the notifying server. This size
of this area must at least 256 bytes.

When the method terminates normally, the host name of the notifying server
is stored in this area. TP1/Client/J acquires the host name from the IP address
of the notifying server using the getHostName method of the
java.net.InetAddress class and then converts the acquired host name
to a byte array using the platform's default character set. TP1/Client/J then
stores the result in hostname. If the conversion from IP address to host

Class TP1Client

215

name fails, TP1/Client/J stores the IP address in hostname in decimal dot
notation (example: 10.209.15.124).

If null is specified, the method does not store the host name of the notifying
server.

nodeid

Specifies the area for storing the node identifier of the notifying server. The
size of this area must be at least 8 bytes.

When the method terminates normally, the node identifier of the notifying
server is stored in this area. The format of a node identifier is as follows:

Return value

None.

Exception

ErrInvalidArgsException

A parameter specified in the method is invalid.

ErrProtoException

The rpcOpen method has not been executed.

ErrIOErrException

An I/O exception occurred.

ErrSecurityException

A security exception occurred.

ErrInvalidPortException

The port number specified in the port parameter is in use.

ErrClientTimedOutException

A timeout occurred on TP1/Client/J.

ErrNetDownAtClientException

A network error occurred between TP1/Server and CUP.

ErrInvalidMessageException

An invalid message was received.

ErrAcceptCanceledException

Class TP1Client

216

The unidirectional message reception wait status was released by the
cancelNotification method. In this case, values have already been set
in the inf, inf_len, and hostname parameters. In the nodeid parameter,
a value whose leading 8 bytes are initialized to 0 is set.

ErrReplyTooBigException

The received message cannot fit in the area provided by the CUP. The excess
portion of the message was discarded. In this case, values have already been
set in the hostname and nodeid parameters.

ErrVersionException

The version of the notifying server is invalid.

ErrSyserrException

A system error occurred.

cancelNotification
public void cancelNotification(
 byte[] inf,
 int inf_len,
 String hostname,
 int port)
 throws ErrInvalidArgsException,
 ErrProtoException,
 ErrIOErrException,
 ErrInvalidPortException,
 ErrTimedOutException,
 ErrNetDownException,
 ErrHostUndefException,
 ErrSyserrException

Releases the unidirectional server message reception wait status (issuance of the
acceptNotification or acceptNotificationChained method). Once this
wait status is released, you can send messages specified in the inf parameter to the
CUP in the unidirectional message reception wait status.

Parameters

inf

Specifies the message to be sent to the CUP.

inf_len

Specifies the length of the message that is sent to the CUP (length of message
set in the inf parameter). The value must be in the range from 0 to
DCRPC_MAX_MESSAGE_SIZE. If 0 is specified, no message is sent to the
CUP.

Class TP1Client

217

If the dccltrpcmaxmsgsize value specified in the TP1/Client/J
environment definition is 2 or greater, the permitted maximum value is that
dccltrpcmaxmsgsize value, not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

hostname

Specifies the name of the host where the CUP in the unidirectional message
reception wait status is located. For the host name, you can also specify the
IP address in decimal dot notation (example: 10.209.15.124).

port

Specifies the port number, in the range from 5001 to 65535, of the CUP that
is in the unidirectional message reception wait status.

Return value

None.

Exception

ErrInvalidArgsException

A parameter specified in the method is invalid.

ErrProtoException

The rpcOpen method has not been executed.

ErrIOErrException

An I/O exception occurred.

ErrInvalidPortException

The port number specified in the port parameter is invalid.

ErrClientTimedOutException

A timeout occurred on TP1/Client/J.

ErrNetDownAtClientException

A network error occurred between CUPs.

ErrHostUndefException

The host name specified in the hostname parameter is invalid.

ErrSyserrException

A system error occurred.

openNotification
public void openNotification(int port)

Class TP1Client

218

 throws ErrInvalidArgsException,
 ErrProtoException,
 ErrInvalidPortException,
 ErrNetDownException,
 ErrSyserrException

Creates an environment for using the unidirectional message consecutive reception
facility. Issue this method as a pair with the closeNotification method. Once this
method terminates normally, make sure that you issue the closeNotification
method.

Parameters

port

Specifies the port number, in the range from 5001 to 65535, that is to be used
to receive notification messages from the server.

If you execute multiple processes or threads concurrently on the same
machine, specify different port numbers in the port parameters. This port
number must be unique from port numbers used by the OS or other
programs. If a port number that is already in use is specified, response data
may not be received correctly. For details about the port numbers used by the
OS, see the OS-related documentation.

Return value

None.

Exception

ErrInvalidArgsException

A parameter specified in the method is invalid.

ErrProtoException

The rpcOpen method has not been executed or the openNotification
method has already been executed.

ErrInvalidPortException

The port number specified in the port parameter is already in use.

ErrNetDownAtClientException

A network error occurred between TP1/Server and CUP.

ErrSyserrException

A system error occurred.

acceptNotificationChained
public void acceptNotificationChained(

Class TP1Client

219

 byte[] inf,
 int[] inf_len,
 int timeout,
 byte[] hostname,
 byte[] nodeid)
 throws ErrInvalidArgsException,
 ErrProtoException,
 ErrIOErrException,
 ErrSecurityException,
 ErrTimedOutException,
 ErrNetDownException,
 ErrInvalidMessageException,
 ErrAcceptCanceledException,
 ErrReplyTooBigException,
 ErrVersionException,
 ErrSyserrException

Waits for a message sent by the server's function (dc_rpc_cltsend) until the amount
of time specified in the timeout parameter is reached. When the method receives the
message, it returns control to the CUP and returns the notification message, the length
of the notification message, and the host name and node identifier of the server that
sent the message. In order to issue this method, you must have already issued the
openNotification method. You must issue this method after the
openNotification method has been issued but before the closeNotification
method is issued.

Parameters

inf

Specifies the area for storing the notification message from the server.

When the method terminates normally, the notification message from the
server is stored.

inf_len

Specifies the length of the area for storing the notification message from the
server (length of the area in the inf parameter). The value must be in the
range from 0 to DCRPC_MAX_MESSAGE_SIZE.

If the dccltrpcmaxmsgsize value specified in the TP1/Client/J
environment definition is 2 or greater, the permitted maximum value is that
dccltrpcmaxmsgsize value, not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

When the method terminates normally, the length of the notification message
from the server is stored.

timeout

Class TP1Client

220

Specifies the timeout value, in the range from 0 to 65535 (seconds). If 0 is
specified, the method waits indefinitely.

hostname

Specifies the area for storing the host name of the notifying server. This size
of this area must be at least 256 bytes.

When the method terminates normally, the host name of the notifying server
is stored in this area.

TP1/Client/J acquires the host name from the IP address of the notifying
server using the getHostName method of the java.net.InetAddress
class and then converts the acquired host name to a byte array using the
platform's default character set. TP1/Client/J then stores the result in
hostname. If the conversion from IP address to host name fails, TP1/Client/
J stores the IP address in hostname in decimal dot notation (example:
10.209.15.124).

If null is specified, the method does not store the host name of the notifying
server.

nodeid

Specifies the area for storing the node identifier of the notifying server. The
size of this area must be at least 8 bytes.

When the method terminates normally, the node identifier of the notifying
server is stored in this area. The format of a node identifier is as follows:

Return value

None.

Exception

ErrInvalidArgsException

A parameter specified in the method is invalid.

ErrProtoException

The openNotification method has not been executed.

ErrIOErrException

An I/O exception occurred.

ErrSecurityException

A security exception occurred.

Class TP1Client

221

ErrClientTimedOutException

A timeout occurred on TP1/Client/J.

ErrNetDownAtClientException

A network error occurred between TP1/Server and CUP.

ErrInvalidMessageException

An invalid message was received.

ErrAcceptCanceledException

The unidirectional message reception wait status was released by the
cancelNotification method. In this case, values have already been set
in the inf, inf_len, and hostname parameters. In the nodeid parameter,
a value whose leading 8 bytes are initialized to 0 is set.

ErrReplyTooBigException

The received message cannot fit in the area provided by the CUP. The excess
portion of the message was discarded. In this case, values have already been
set in the hostname and nodeid parameters.

ErrVersionException

The version of the notifying server is invalid.

ErrSyserrException

A system error occurred.

closeNotification
public void closeNotification()
 throws ErrNetDownException,
 ErrSyserrException

Deletes the environment for using the unidirectional message consecutive reception
facility. Issue this method as a pair with the openNotification method. Once the
openNotification method has terminated normally, make sure that you issue this
method.

Parameters

None.

Return value

None.

Exception

ErrNetDownAtClientException

Class TP1Client

222

A network error occurred between TP1/Server and CUP.

ErrSyserrException

A system error occurred.

Class DCRpcBindTbl

223

Class DCRpcBindTbl

public class DCRpcBindTbl
extends java.lang.Object

This class manages communication-target information. It is used with the rpcCallTo
method.

Constructor
DCRpcBindTbl
public DCRpcBindTbl()

Creates an instance of the class that manages communication-target information.

Class ErrAcceptCanceledException

224

Class ErrAcceptCanceledException

public class ErrAcceptCanceledException
extends TP1ClientException

This class is an exception returned by TP1/Client/J. It represents the following event:

The unidirectional message reception wait status was released.

Constructor
ErrAcceptCanceledException
public ErrAcceptCanceledException()

Creates an instance of the ErrAcceptCanceledException class without a detail
message.

Class ErrBufferOverflowException

225

Class ErrBufferOverflowException

public class ErrBufferOverflowException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

The receive buffer overflowed because a message whose length exceeds the receive
buffer size specified in the cltAssemReceive method was received.

Constructor
ErrBufferOverflowException
public ErrBufferOverflowException()

Creates an instance of the ErrBufferOverflowException class without a detail
message.

Class ErrCollisionMessageException

226

Class ErrCollisionMessageException

public class ErrCollisionMessageException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

A send/receive message collision occurred.

Constructor
ErrCollisionMessageException
public ErrCollisionMessageException()

Creates an instance of ErrCollisionMessageException without a detail
message.

Class ErrClientTimedOutException

227

Class ErrClientTimedOutException

public class ErrClientTimedOutException
extends ErrTimedOutException

This is an exception class returned by TP1/Client/J. It indicates the following event:

A timeout occurred in the TP1/Client/J system.

Related items
TP1Client, TP1ClientException, ErrTimedOutException

Constructor
ErrClientTimedOutException
public ErrClientTimedOutException()

Creates an instance of ErrClientTimedOutException without a detail message.

Class ErrConnfreeException

228

Class ErrConnfreeException

public class ErrConnfreeException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

If an rpcCall method returned this exception:

A permanent connection with the RAP-processing server was disconnected.
Another possibility is that the virtual session with TP1/Web ended.

If a trnBegin method, trnChainedCommit method, trnChainedRollback
method, trnUnchainedCommit method, or trnUnchainedRollback method
returned this exception:

A permanent connection was dropped by the CUP execution process side.

If a cltReceive method returned this exception:

The connection was released from the MHP.

If a cltAssemSend method or cltAssemReceive method returned this
exception:

The connection was released by the remote system.

Related items
TP1Client, TP1ClientException

Constructor
ErrConnfreeException
public ErrConnfreeException()

Creates an instance of ErrConnfreeException without a detail message.

Class ErrConnRefusedException

229

Class ErrConnRefusedException

public class ErrConnRefusedException
extends Exception

This is an exception class returned by TP1/Client/J.

This exception indicates that an error occurred while an attempt was being made to
establish a socket connection to a remote address and port.

Generally, this is caused by a connection being denied by the remote side (there is no
standby process on the remote address and port).

Related items
TP1Client, TP1ClientException

Constructor
ErrConnRefusedException
public ErrConnRefusedException()

Creates an instance of ErrConnRefusedException without a detail message.

Class ErrFatalException

230

Class ErrFatalException

public class ErrFatalException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

Initialization of a channel failed; or there is a specification error in the TP1/Client/J
environment definition.

Related items
TP1Client, TP1ClientException

Constructor
ErrFatalException
public ErrFatalException()

Creates an instance of ErrFatalException without a detail message.

Class ErrHazardException

231

Class ErrHazardException

public class ErrHazardException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

A transaction branch of the global transaction was completed heuristically. However,
the result of the synchronization point of the transaction branch that was completed
heuristically was unknown due to an error. For the result of the synchronization point
of the global transaction, resource manager, and UAP that caused this exception, see
TP1/Server's message log file. Even after this exception has been returned, this process
is still under the transaction and within the range of the global transaction.

Related items
TP1Client, TP1ClientException

Constructor
ErrHazardException
public ErrHazardException()

Creates an instance of ErrHazardException without a detail message.

Class ErrHazardNoBeginException

232

Class ErrHazardNoBeginException

public class ErrHazardNoBeginException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

A transaction branch of the global transaction was completed heuristically. However,
the result of the synchronization point of the transaction branch that was completed
heuristically was unknown due to an error. For the result of the synchronization point
of the global transaction, resource manager, and UAP that caused this exception, see
TP1/Server's message log file. The method was unable to start a new transaction. Once
this exception has been returned, this process is no longer under the transaction.

Related items
TP1Client, TP1ClientException

Constructor
ErrHazardNoBeginException
public ErrHazardNoBeginException()

Creates an instance of ErrHazardNoBeginException without a detail message.

Class ErrHeuristicException

233

Class ErrHeuristicException

public class ErrHeuristicException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

For heuristic determination purposes, some of the transaction branches in the global
transaction were committed and some were rolled back. This exception is returned
when the result of the heuristic determination does not match the result of the
synchronization point of the global transaction. For the result of the synchronization
point of the global transaction, resource manager, and UAP that caused this exception,
see TP1/Server's message log file. Even after this exception has been returned, this
process is still under the transaction and within the range of the global transaction.

Related items
TP1Client, TP1ClientException

Constructor
ErrHeuristicException
public ErrHeuristicException()

Creates an instance of ErrHeuristicException without a detail message.

Class ErrHeuristicNoBeginException

234

Class ErrHeuristicNoBeginException

public class ErrHeuristicNoBeginException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

For heuristic determination purposes, some of the transaction branches in the global
transaction were committed and some were rolled back. This exception is returned
when the result of the heuristic determination does not match the result of the
synchronization point of the global transaction. For the result of the synchronization
point of the global transaction, resource manager, and UAP that caused this exception,
see TP1/Server's message log file. For the result of the synchronization point of the
global transaction, resource manager, and UAP that caused this exception, see TP1/
Server's message log file. The method was unable to start a new transaction. Once this
exception has been returned, this process is no longer under the transaction.

Related items
TP1Client, TP1ClientException

Constructor
ErrHeuristicNoBeginException
public ErrHeuristicNoBeginException()

Creates an instance of ErrHeuristicNoBeginException without a detail
message.

Class ErrHostUndefException

235

Class ErrHostUndefException

public class ErrHostUndefException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

If a setDchost method returned this exception:

The host parameter specification is invalid.

If an openConnection method returned this exception:

• The RAP-processing listener host name is not specified in the dchost
operand of the TP1/Client/J environment definition.

• The URL (information such as the protocol, Web server, CGI name of the
prompter, or TP1/Web service name) specified in the url parameter or in the
dcweburl operand of the TP1/Client/J environment definition is invalid.

• The host parameter specification is invalid.

If an rpcCall method returned this exception:

• Either the host name of the communication target TP1/Server is not specified
in the dchost operand of the TP1/Client/J environment definition, or the
specification is invalid.

• The URL (information such as the protocol, Web server, CGI name of the
prompter, or TP1/Web service name) specified in the dcweburl operand of
the TP1/Client/J environment definition is invalid.

If a trnBegin method returned this exception:

Either the host name of the communication target TP1/Server is not specified in
the dchost operand of the TP1/Client/J environment definition, or the
specification is invalid.

Class ErrHostUndefException

236

If a cltSend method or cltAssemSend method returned this exception:

The hostname parameter specification is invalid. Another possibility is that the
host name is not specified in either the hostname parameter or in the dcsndhost
operand in the TP1/Client/J environment definition.

Related items
TP1Client, TP1ClientException

Constructor
ErrHostUndefException
public ErrHostUndefException()

Creates an instance of ErrHostUndefException without a detail message.

Class ErrInitializingException

237

Class ErrInitializingException

public class ErrInitializingException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

The TP1/Server at the node specified in the service request is under start processing.

Related items
TP1Client, TP1ClientException

Constructor
ErrInitializingException
public ErrInitializingException()

Creates an instance of ErrInitializingException without a detail message.

Class ErrInvalidArgsException

238

Class ErrInvalidArgsException

public class ErrInvalidArgsException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

An argument specified in the method is invalid.

Related items
TP1Client, TP1ClientException

Constructors
ErrInvalidArgsException
public ErrInvalidArgsException()

Creates an instance of ErrInvalidArgsException without a detail message.

ErrInvalidArgsException
public ErrInvalidArgsException(String msg)

Creates an instance of TP1ClientException with a detail message. You can use the
getMessage method to retrieve the detail message.

Class ErrInvalidMessageException

239

Class ErrInvalidMessageException

public class ErrInvalidMessageException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

If a cltAssemReceive method returned this exception:

The message length of the received message was not found between
0x00000005 and 0x7FFFFFFF.

The segment information is invalid.

If a cltAssemSend method returned this exception:

The message length of the message received during receiving of a response is
between 0x0000000B and 0x7FFFFFFF, or the segment information is invalid.

Constructor
ErrInvalidMessageException
public ErrInvalidMessageException()

Creates an instance of the ErrInvalidMessageException class without a detail
message.

Class ErrInvalidPortException

240

Class ErrInvalidPortException

public class ErrInvalidPortException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

If a setDchost method, openConnection method, or trnBegin method
returned this exception:

The port parameter specification is invalid.

If an rpcCall method returned this exception:

• If an RPC that uses a remote API function was executed, the dcrapport
operand of the TP1/Client/J environment definition is not specified.

• If an RPC that uses a scheduler direct function was executed, the
dcscdport operand of the TP1/Client/J environment definition is not
specified.

If a cltSend method or cltAssemSend method returned this exception:

The portnum parameter specification is invalid.

If a cltReceive method or cltAssemReceive method returned this exception:

This exception occurs when Y is specified in the dcsockopenatrcv operand of
the TP1/Client/J environment definition, and the port specified in the dcrcvport
operand is already in use. If N is specified for the dcsockopenatrcv operand,
the rpcOpen method returns ErrFatalException.

Related items
TP1Client, TP1ClientException

Class ErrInvalidPortException

241

Constructor
ErrInvalidPortException
public ErrInvalidPortException()

Creates an instance of ErrInvalidPortException without a detail message.

Class ErrInvalidReplyException

242

Class ErrInvalidReplyException

public class ErrInvalidReplyException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

The length of the response returned from the service function is not within the range
from 1 to the value specified in DCRPC_MAX_MESSAGE_SIZE#.

#

When the dccltrpcmaxmsgsize operand is used, the value specified in the
dccltrpcmaxmsgsize operand is used rather than the value specified in
DCRPC_MAX_MESSAGE_SIZE.

Related items
TP1Client, TP1ClientException

Constructor
ErrInvalidReplyException
public ErrInvalidReplyException()

Creates an instance of ErrInvalidReplyException without a detail message.

Class ErrIOErrException

243

Class ErrIOErrException

public class ErrIOErrException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

An I/O exception occurred. For details, see the exceptions and notes for each method.

Related items
TP1Client, TP1ClientException

Constructor
ErrIOErrException
public ErrIOErrException()

Creates an instance of ErrIOErrException without a detail message.

Class ErrMessageTooBigException

244

Class ErrMessageTooBigException

public class ErrMessageTooBigException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

The input parameters length specified in the in_len argument of the rpcCall
method exceeds the maximum value.

Related items
TP1Client, TP1ClientException

Constructor
ErrMessageTooBigException
public ErrMessageTooBigException()

Creates an instance of ErrMessageTooBigException without a detail message.

Class ErrNetDownAtClientException

245

Class ErrNetDownAtClientException

public class ErrNetDownAtClientException
extends ErrNetDownException

This is an exception class returned by TP1/Client/J. It indicates the following event:

A network error occurred during communication between TP1/Server and the CUP.

Related items
TP1Client, TP1ClientException, ErrNetDownException

Constructor
ErrNetDownAtClientException
public ErrNetDownAtClientException()

Creates an instance of ErrNetDownAtClientException without a detail message.

Class ErrNetDownAtServerException

246

Class ErrNetDownAtServerException

public class ErrNetDownAtServerException
extends ErrNetDownException

This is an exception class returned by TP1/Client/J. It indicates the following event:

A network error occurred during communication between TP1/Server and the SPP.

Related items
TP1Client, TP1ClientException, ErrNetDownException

Constructor
ErrNetDownAtServerException
public ErrNetDownAtServerException()

Creates an instance of ErrNetDownAtServerException without a detail message.

Class ErrNetDownException

247

Class ErrNetDownException

Known direct descendant subclasses:
ErrNetDownAtClientException
ErrNetDownAtServerException

public class ErrNetDownException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

A network error occurred. Another possibility is that the communication-target TP1/
Server is not running.

Related items
TP1Client, TP1ClientException

Constructor
ErrNetDownException
public ErrNetDownException()

Creates an instance of ErrNetDownException without a detail message.

Class ErrNoBeginException

248

Class ErrNoBeginException

public class ErrNoBeginException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

Commit or rollback processing terminated normally, but the method was unable to
start a new transaction. Once this exception has been returned, this process is no longer
under the transaction.

Related items
TP1Client, TP1ClientException

Constructor
ErrNoBeginException
public ErrNoBeginException()

Creates an instance of ErrNoBeginException without a detail message.

Class ErrNoBufsAtServerException

249

Class ErrNoBufsAtServerException

public class ErrNoBufsAtServerException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

A memory shortage occurred in the specified service.

Related items
TP1Client, TP1ClientException

Constructor
ErrNoBufsAtServerException
public ErrNoBufsAtServerException()

Creates an instance of ErrNoBufsAtServerException without a detail message.

Class ErrNoBufsException

250

Class ErrNoBufsException

public class ErrNoBufsException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

A memory shortage occurred.

Related items
TP1Client, TP1ClientException

Constructor
ErrNoBufsException
public ErrNoBufsException()

Creates an instance of ErrNoBufsException without a detail message.

Class ErrNoSuchServiceException

251

Class ErrNoSuchServiceException

public class ErrNoSuchServiceException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

The service name specified in the service parameter is undefined.

Related items
TP1Client, TP1ClientException

Constructor
ErrNoSuchServiceException
public ErrNoSuchServiceException()

Creates an instance of ErrNoSuchServiceException without a detail message.

Class ErrNoSuchServiceGroupException

252

Class ErrNoSuchServiceGroupException

public class ErrNoSuchServiceGroupException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

The service group name specified in the group parameter is not defined.

Related items
TP1Client, TP1ClientException

Constructor
ErrNoSuchServiceGroupException
public ErrNoSuchServiceGroupException()

Creates an instance of ErrNoSuchServiceGroupException without a detail
message.

Class ErrNotTrnExtendException

253

Class ErrNotTrnExtendException

public class ErrNotTrnExtendException
extends ErrSyserrException

This is an exception class returned by TP1/Client/J. It indicates the following event:

A service request with DCRPC_TPNOTRAN specified in the flags argument was issued
after a chained RPC had been used for transaction processing.

Related items
TP1Client, TP1ClientException, ErrSyserrException

Constructor
ErrNotTrnExtendException
public ErrNotTrnExtendException()

Creates an instance of ErrNotTrnExtendException without a detail message.

Class ErrNotUpException

254

Class ErrNotUpException

public class ErrNotUpException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

The TP1/Server at the node containing the specified service is not running.

Related items
TP1Client, TP1ClientException

Constructor
ErrNotUpException
public ErrNotUpException()

Creates an instance of ErrNotUpException without a detail message.

Class ErrProtoException

255

Class ErrProtoException

public class ErrProtoException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

The method execution order is invalid.

Related items
TP1Client, TP1ClientException

Constructor
ErrProtoException
public ErrProtoException()

Creates an instance of ErrProtoException without a detail message.

Class ErrReplyTooBigException

256

Class ErrReplyTooBigException

public class ErrReplyTooBigException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

The length of the response returned from the server exceeds the size of the area
provided by the CUP (the value specified in the out_data parameter).

Related items
TP1Client, TP1ClientException

Constructor
ErrReplyTooBigException
public ErrReplyTooBigException()

Creates an instance of ErrReplyTooBigException without a detail message.

Class ErrRMException

257

Class ErrRMException

public class ErrRMException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

An error occurred in the resource manager. The transaction was not started.

Related items
TP1Client, TP1ClientException

Constructor
ErrRMException
public ErrRMException()

Creates an instance of ErrRMException without a detail message.

Class ErrRollbackException

258

Class ErrRollbackException

public class ErrRollbackException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

The current transaction was rolled back without being committed.

When the trnChainedCommit method returns this exception, this process is within
the range of the transaction. When the trnUnchainedCommit method returns this
exception, this process is outside the range of the transaction.

Related items
TP1Client, TP1ClientException

Constructor
ErrRollbackException
public ErrRollbackException()

Creates an instance of ErrRollbackException without a detail message.

Class ErrRollbackNoBeginException

259

Class ErrRollbackNoBeginException

public class ErrRollbackNoBeginException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

A transaction that was to be committed was rolled back without being committed. The
method was unable to start a new transaction. Once this exception has been returned,
this process is no longer under the transaction.

Related items
TP1Client, TP1ClientException

Constructor
ErrRollbackNoBeginException
public ErrRollbackNoBeginException()

Creates an instance of ErrRollbackNoBeginException without a detail message.

Class ErrSecchkException

260

Class ErrSecchkException

public class ErrSecchkException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

The target SPP whose service was requested is protected by the OpenTP1 security
facility. The CUP that issued the service request does not have access authority for the
SPP.

Related items
TP1Client, TP1ClientException

Constructor
ErrSecchkException
public ErrSecchkException()

Creates an instance of ErrSecchkException without a detail message.

Class ErrSecurityException

261

Class ErrSecurityException

public class ErrSecurityException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

A security exception occurred.

Related items
TP1Client, TP1ClientException

Constructor
ErrSecurityException
public ErrSecurityException()

Creates an instance of ErrSecurityException without a detail message.

Class ErrServerBusyException

262

Class ErrServerBusyException

public class ErrServerBusyException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

The target server that receives requests from the socket cannot receive service
requests.

Related items
TP1Client, TP1ClientException

Constructor
ErrServerBusyException
public ErrServerBusyException()

Creates an instance of ErrServerBusyException without a detail message.

Class ErrServerTimedOutException

263

Class ErrServerTimedOutException

public class ErrServerTimedOutException
extends ErrTimedOutException

This is an exception class returned by TP1/Client/J. It indicates the following event:

A timeout occurred in the TP1/Server system during service execution.

Related items
TP1Client, TP1ClientException, ErrTimedOutException

Constructor
ErrServerTimedOutException
public ErrServerTimedOutException()

Creates an instance of ErrServerTimedOutException without a detail message.

Class ErrServiceClosedException

264

Class ErrServiceClosedException

public class ErrServiceClosedException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

The service group containing the specified service is shut down.

Related items
TP1Client, TP1ClientException

Constructor
ErrServiceClosedException
public ErrServiceClosedException()

Creates an instance of ErrServiceClosedException without a detail message.

Class ErrServiceNotUpException

265

Class ErrServiceNotUpException

public class ErrServiceNotUpException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

The SPP whose service was requested has not started, or the SPP whose service was
requested terminated abnormally before completing the processing.

Related items
TP1Client, TP1ClientException

Constructor
ErrServiceNotUpException
public ErrServiceNotUpException()

Creates an instance of ErrServiceNotUpException without a detail message.

Class ErrServiceTerminatedException

266

Class ErrServiceTerminatedException

public class ErrServiceTerminatedException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

The SPP whose service was requested terminated abnormally before completing the
processing.

Related items
TP1Client, TP1ClientException

Constructor
ErrServiceTerminatedException
public ErrServiceTerminatedException()

Creates an instance of ErrServiceTerminatedException without a detail
message.

Class ErrServiceTerminatingException

267

Class ErrServiceTerminatingException

public class ErrServiceTerminatingException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

The specified service is under termination processing.

Related items
TP1Client, TP1ClientException

Constructor
ErrServiceTerminatingException
public ErrServiceTerminatingException()

Creates an instance of ErrServiceTerminatingException without a detail
message.

Class ErrSyserrAtServerException

268

Class ErrSyserrAtServerException

public class ErrSyserrAtServerException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

A system error occurred in the specified service.

Related items
TP1Client, TP1ClientException

Constructor
ErrSyserrAtServerException
public ErrSyserrAtServerException()

Creates an instance of ErrSyserrAtServerException without a detail message.

Class ErrSyserrException

269

Class ErrSyserrException

Known direct descendant subclasses:
ErrNotTrnExtendException
ErrTrnchkExtendException

public class ErrSyserrException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

A system error occurred. For details, see the error trace or memory trace.

For details about the contents of error and memory traces, see 2.11.4 Error trace and
memory trace.

Related items
TP1Client, TP1ClientException

Constructor
ErrSyserrException
public ErrSyserrException()

Creates an instance of ErrSyserrException without a detail message.

Class ErrTestmodeException

270

Class ErrTestmodeException

public class ErrTestmodeException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

A service request was issued to an SPP in the test mode.

Related items
TP1Client, TP1ClientException

Constructor
ErrTestmodeException
public ErrTestmodeException()

Creates an instance of ErrTestmodeException without a detail message.

Class ErrTimedOutException

271

Class ErrTimedOutException

Known direct descendant subclasses:
ErrClientTimedOutException
ErrServerTimedOutException

public class ErrTimedOutException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

If an openConnection method returned this exception:

A timeout occurred while a virtual session with TP1/Web was being started or
while a connection was being established with a RAP-processing listener.

If a closeConnection method returned this exception:

A timeout occurred while a virtual session with TP1/Web was being disconnected
or while a connection with a RAP-processing listener or server was being
released.

If an rpcCall method returned this exception:

A timeout occurred, or the SPP whose service was requested terminated
abnormally before the processing was completed.

If a cltAssemSend method returned this exception:

A timeout occurred while receiving a response message.

If a cltAssemReceive method returned this exception:

A timeout occurred while receiving a message.

If a trnChainedCommit method, trnChainedRollback method,
trnUnchainedCommit method, trnUnchainedRollback method, or

Class ErrTimedOutException

272

cltReceive method returned this exception:

A timeout occurred.

Related items
TP1Client, TP1ClientException

Constructor
ErrTimedOutException
public ErrTimedOutException()

Creates an instance of ErrTimedOutException without a detail message.

Class ErrTMException

273

Class ErrTMException

public class ErrTMException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

Because the transaction service resulted in an error, the applicable method was unable
to start the transaction. When this exception has been returned, you may be able to start
the transaction by re-executing the method after waiting a while.

Related items
TP1Client, TP1ClientException

Constructor
ErrTMException
public ErrTMException()

Creates an instance of ErrTMException without a detail message.

Class ErrTrnchkException

274

Class ErrTrnchkException

public class ErrTrnchkException
extends TP1ClientException

This is an exception class returned by TP1/Client/J. It indicates the following event:

With the inter-node load-balancing facility being used, multiple SPPs did not have the
matching transaction attribute. Alternatively, the inter-node load-balancing facility
cannot be executed because the TP1/Server version used at the node where the
workload is to be balanced is older than the TP1/Client/J version.

This exception is returned only when a service request is issued to an SPP using the
inter-node load-balancing facility.

Related items
TP1Client, TP1ClientException

Constructor
ErrTrnchkException
public ErrTrnchkException()

Creates an instance of ErrTrnchkException without a detail message.

Class ErrTrnchkExtendException

275

Class ErrTrnchkExtendException

public class ErrTrnchkExtendException
extends ErrSyserrException

This is an exception class returned by TP1/Client/J. It indicates the following event:

Possible causes are as follows:

• No more transaction branches can be started because the number of transaction
branches that can be active at the same time has reached the maximum.

• No more transaction branches can be started because the number of child
transaction branches that can be started from a single transaction branch has
reached the maximum.

• In the case of a service request with domain qualification, DCRPC_TPNOTRAN is
not specified in the flags argument.

Related items
TP1Client, TP1ClientException, ErrSyserrException

Constructor
ErrTrnchkExtendException
public ErrTrnchkExtendException()

Creates an instance of ErrTrnchkExtendException without a detail message.

Class ErrVersionException

276

Class ErrVersionException

public class ErrVersionException
extends TP1ClientException

This class is an exception returned by TP1/Client/J. It represents the following event:

The version of the notifying server is invalid.

Constructor
ErrVersionException
public ErrVersionException()

Creates an instance of the ErrVersionException class without a detail message.

Class TP1ClientException

277

Class TP1ClientException

Known direct descendant subclasses:
ErrBufferOverflowException
ErrCollisionMessageException
ErrConnfreeException
ErrFatalException
ErrHazardException
ErrHazardNoBeginException
ErrHeuristicException
ErrHeuristicNoBeginException
ErrHostUndefException
ErrInitializingException
ErrInvalidArgsException
ErrInvalidMessageException
ErrInvalidPortException
ErrInvalidReplyException
ErrIOErrException
ErrMessageTooBigException
ErrNetDownException
ErrNoBeginException
ErrNoBufsAtServerException
ErrNoBufsException
ErrNoSuchServiceException
ErrNoSuchServiceGroupException
ErrNotUpException
ErrProtoException
ErrReplyTooBigException
ErrRMException
ErrRollbackException
ErrRollbackNoBeginException
ErrSecchkException
ErrSecurityException
ErrServerBusyException
ErrServiceClosedException
ErrServiceNotUpException

Class TP1ClientException

278

ErrServiceTerminatedException
ErrServiceTerminatingException
ErrSyserrAtServerException
ErrSyserrException
ErrTestmodeException
ErrTimedOutException
ErrTMException
ErrTrnchkException

public class TP1ClientException
extends java.lang.Exception

TP1ClientException is the superclass of all exceptions that are returned by TP1/
Client/J.

Related item
TP1Client

Constructors
TP1ClientException
public TP1ClientException()

Creates an instance of TP1ClientException without a detail message.

TP1ClientException
public TP1ClientException(String msg)

Creates an instance of TP1ClientException with a detail message.

You can use the getMessage method to retrieve the detail message.

279

Chapter

5. Definitions

This chapter describes the TP1/Client/J environment definitions.

5.1 Overview of definitions
5.2 Details of TP1/Client/J environment definitions

5. Definitions

280

5.1 Overview of definitions

This section provides a list of the TP1/Client/J environment definitions, describes the
rules for definitions, and shows the path name format.

5.1.1 List of TP1/Client/J environment definitions
The following table lists and describes the TP1/Client/J environment definitions.

Table 5-1: List of TP1/Client/J environment definitions

No. Operand Description Specification value

1 dcnamuse Specifies whether or not RPCs that use
the name service are used

Y|<<N>>

2 dcnamport Specifies the port number of the name
service

<unsigned integer>
((5001-65535)) <<10000>>

3 dchost Specifies the TP1/Server as a gateway <character string>

4 dcwatchtim Specifies the maximum time to wait for a
response

<unsigned integer>
((0-65535)) <<180>>
(seconds)

5 dccltinquiretime Specifies the maximum time interval in
permanent connection inquiry to another

<unsigned integer>
((0-1048575)) (seconds)

6 dcwatchtiminherit Specifies whether or not the
RAP-processing server inherits the CUP's
maximum time to wait for a response
when an RPC that uses the remote API
facility is issued

Y|<<N>>

7 dcwatchtimrpcinheri
t

Specifies whether or not the TP1/Server
inherits the CUP's maximum time to wait
for a response

Y|<<N>>

8 dccltdelay Specifies the maximum communication
delay time

<unsigned integer>
((0-65535)) <<0>> (seconds)

9 dcselint Specifies the reply message monitoring
interval

<unsigned integer>
((1-65535)) <<100>>
(milliseconds)

10 dccltextend Specifies the facility extension level of
TP1/Client/J

00000000|00000001

11 dccache Specifies the maximum number of entries
in the name cache

<unsigned integer> ((2-256))
<<8>>

5. Definitions

281

12 dchostselect Specifies whether or not to randomly
select a TP1/Server as a gateway

Y|<<N>>

13 dcscddirect Specifies whether or not RPCs that use
the scheduler direct facility without
querying information to the name service
of TP1/Server are used

Y|<<N>>

14 dcscdport Specifies the port number of the schedule
service

<unsigned integer>
((5001-65535))

15 dcscdloadpriority Specifies whether or not the TP1/Server
that accepts service requests as a gateway
has priority for load-balance

Y|<<N>>

16 dcrapdirect Specifies whether or not the facility for
directly querying the RAP-processing
listener without querying the information
to the TP1/Server's name service (remote
API facility) is used

<<Y>>|N

17 dcrapport Specifies the port number of the
RAP-processing listener

<unsigned integer>
((5001-65535))

18 dcrapautoconnect Specifies whether or not a permanent
connection is established automatically
between a CUP and a RAP-processing
server

Y|<<N>>

19 dcerrtrace Specifies whether or not the CUP collects
an error trace

Y|<<N>>

20 dcerrtracepath Specifies the directory for error trace files <character string>

21 dcerrtracesize Specifies the size of an error trace file <unsigned integer>
((4096-1048576)) <<4096>>
(bytes)

22 dcmethodtrace Specifies whether or not the CUP collects
a method trace

Y|<<N>>

23 dcmethodtracepath Specifies the directory for method trace
files

<character string>

24 dcmethodtracesize Specifies the size of a method trace file <unsigned integer>
((4096-1048576)) <<4096>>
(bytes)

25 dcuaptrace Specifies whether or not the CUP collects
a UAP trace

Y|<<N>>

26 dcuaptracepath Specifies the directory for UAP trace files <character string>

No. Operand Description Specification value

5. Definitions

282

27 dcuaptracesize Specifies the size of a UAP trace file <unsigned integer>
((4096-1048576)) <<4096>>
(bytes)

28 dcdatatrace Specifies whether or not the CUP collects
a data trace

Y|<<N>>

29 dcdatatracepath Specifies the directory for data trace files <character string>

30 dcdatatracesize Specifies the size of a data trace file <unsigned integer>
((4096-1048576)) <<4096>>
(bytes)

31 dcdatatracemaxsize Specifies the maximum data size for a
data trace

<unsigned integer>
((16-1048576)) <<128>>
(bytes)

32 dcclttrstatisitem Specifies the item of statistical
information to be acquired for transaction
branches

statistical-information-item[
,statistical-information-item
]...

33 dcclttroptiitem Specifies the optimization items to be
used to improve the performance of a
global transaction that consists of
multiple user servers

transaction-optimization-ite
m[,transaction-optimization
-item]...

34 dcclttrwatchtime Specifies the maximum wait time for
communications during transaction
synchronization point processing

<unsigned integer>
((1-65535)) (seconds)

35 dcclttrrbinfo Specifies whether or not information
about the cause of the rollback is logged
when a transaction branch rolls back

no|self|remote|all

36 dcclttrlimittime Specifies the maximum executable time
for a transaction branch

<unsigned integer>
((0-65535)) (seconds)

37 dcclttrrbrcv Specifies whether or not a rollback
completion report is received after
sending a rollback instruction to RPC
destination transaction branch

Y|N

38 dcclttrrecoverytype Specifies the synchronization point
processing method to use in the event of a
UAP error

type1|type2|type3

39 dcclttrexptm Specifies the expiry time in a transaction
branch

<unsigned integer>
((0-65535)) (seconds)

40 dcclttrcputm Specifies the transaction branch CPU
monitoring time

<unsigned integer>
((0-65535)) (seconds)

No. Operand Description Specification value

5. Definitions

283

41 dcclttrexpsp Specifies whether the monitoring time
includes the time of subsequent types of
processing when transaction branch
processing is monitored

Y|N|F

42 dcsndrcvtype Specifies the environment to initialize
when the TCP/IP communication facility
is used

DCCLT_ONEWAY_SND|DCCLT
_ONEWAY_RCV|DCCLT_SNDR
CV

43 dcrcvport Specifies the port number of the receiving
CUP

<unsigned integer>
((1-65535)) <<11000>>

44 dcsndhost Specifies the host name of the node on
which the MHP to be connected exists

<character string>

45 dcsndport Specifies the port number of the MHP to
be connected

<unsigned integer>
((1-65535)) <<12000>>

46 dcsockopenatrcv Specifies the trigger for opening a
reception socket (the trigger to start
waiting to receive a connection from a
remote computer) when sending and
receiving is performed over a single
connection while the TCP/IP
communication facility is being used

Y|<<N>>

47 dcweburl Specifies the URL of the TP1/Web whose
service is requested

<path-name>

48 dccltdbgtrcfilecoun
t

Specifies the maximum number of debug
trace files

<unsigned integer> ((0-256))
<<0>>

49 dccltrpcmaxmsgsize Specifies the maximum size of a message
sent or received by RPC

<unsigned integer> ((1-8))
<<1>> (megabytes)

50 dcscdhostchange Specifies whether or not to distribute to
the RPCs the service request target
schedulers specified in the dchost
operand of the TP1/Client/J environment
definition

Y|<<N>>

51 dccltloadbalance Specifies whether or not to store in cache
the information on the service request
target scheduler with the smallest
workload, from the information on
multiple service request target schedulers
obtained from the name server

Y|<<N>>

52 dccltcachetim Specifies the cache expiration time <unsigned integer>
((0-65535)) <<30>>
(seconds)

No. Operand Description Specification value

5. Definitions

284

5.1.2 Rules for definitions
This section explains the conventions used to explain the definitions.

The syntax, attribute, and element symbols explained here are not actually specified in

53 dccltconnecttimeout Specifies the maximum amount of length
of time to wait until the connection is
established

<unsigned integer>
((0-65535)) <<0>> (seconds)

54 dccltprftrace Specifies whether or not to collect a
performance analysis trace of the
Cosminexus Application Server when
TP1/Client/J is operated on a Cosminexus
Application Server

<<Y>>|N

55 dccltprfinfosend Specifies whether or not to add
identification information in TP1/Client/J
to the information that is output to the
performance verification trace of
OpenTP1, when an RPC that uses the
name service or scheduler direct facility
is issued to TP1/Server

<<Y>>|N

56 dccltnammlthost Specifies whether or not to issue an RPC
that uses the name service to a TP1/
Server in the multi-homed host
environment

Y|<<N>>

57 dccltdatacomp Specifies whether or not the data
compression facility is used

Y|<<N>>

58 dccltconnectinf Specifies (in EBCDIK codes) the logical
terminal name of the DCCM3 logical
terminal as the terminal identification
information

terminal-identification-infor
mation

59 dcscdmulti Specifies whether or not the
multi-scheduler facility is used

Y|<<N>>

60 dcscdmulticount Specifies the number of processes for the
multi-scheduler daemon

<unsigned integer>
((1-4096)) <<1>>

61 dccltcupsndhost Specifies the CUP transmission source
host

<character string>

62 dccltcuprcvport Specifies the port number of the CUP that
receives messages from the server

<unsigned integer>
((5001-65535))

63 dcclttrcmplmttm Specifies the maximum amount of time to
allow for completion of a transaction

<unsigned integer>
((0-65535)) (seconds)

No. Operand Description Specification value

5. Definitions

285

the definitions.

(1) Syntax symbols
The syntax symbols are used to explain the syntax.

(2) Attribute symbols
The attribute symbols are used to explain the attributes of user-specified values, such
as a value range.

(3) Element symbols
The element symbols are used to explain the type of a user-specified value.

Symbol Convention

[] Square brackets enclose an item or set of items whose specification is optional.
Example: host-name[:port-number]

Either host-name or host-name:port-number must be specified.

| Only one of the options separated by a vertical bar can be specified at the same time.
Example: dcnamuse=Y|N

Either dcnamuse=Y or dcnamuse=N can be specified.

... An ellipsis (...) indicates that the item or items immediately preceding the ellipsis may
be specified as many times as necessary.
Example: host-name[:port-number][,host-name[:port-number],...]

host-name[:port-number] can be specified as many times as necessary.

Attribute symbol Convention

~ This symbol is followed by the attribute of a user-specified value.

<< >> Double diamond brackets enclose the default value.

< > Single diamond brackets enclose the element symbol for a user-specified value.

(()) Double parentheses enclose the permitted range of a user-specified value.

Element symbol Convention

<alphabetic> Alphabetic characters (A-Z, a-z) and underscore (_)

<alphanumeric> Alphabetic and numeric characters (0-9)

<alphabetic symbol> Alphabetic characters (A-Z, a-z), #, @, and \

<unsigned integer> Numeric characters (0-9)

<unsigned hexadecimal
integer>

Numeric characters (0-9), A-F, a-f

5. Definitions

286

5.1.3 Format of path names
When you specify a path name in any of the following operands and you use the \ as
the file delimiter, you must specify two consecutive backslashes (\\) to represent a
single backslash:

• dcerrtracepath

• dcmethodtracepath

• dcuaptracepath

• dcdatatracepath

Example: When collecting error trace in C:\Clt4J\trace

dcerrtracepath = C:\\Clt4J\\trace

or

dcerrtracepath = C:/Clt4J/trace

<symbolic name> String of alphabetic symbols and numeric characters (beginning with an alphabetic
symbol)

<character string> String of any characters

<path name> Symbolic name, /, and . (period)
(The path name depends on the operating system being used.)

Element symbol Convention

5. Definitions

287

5.2 Details of TP1/Client/J environment definitions

For a Java application or servlet, store the TP1/Client/J environment definition in a
desired file and specify its file name in the argument of the rpcOpen method. If you
call the rpcOpen method with no argument specified, you can also specify the TP1/
Client/J environment definition as system properties.

For a Java applet, specify the TP1/Client/J environment definition using the param
tags.

The following section presents the TP1/Client/J environment definition.

5.2.1 Format

[dcnamuse=Y|N]
[dcnamport=port-number-of-name-service]
[dchost=host-name-of-TP1/Server-as-a-gateway]
[dcwatchtim=maximum-time-to-wait-for-a-response]
[dccltinquiretime=maximum-permanent-connection-inquiry-interval]
[dcwatchtiminherit=Y|N]
[dcwatchtimrpcinherit=Y|N]
[dccltdelay=maximum-communication-delay-time]
[dcselint=reply-text-monitoring-interval]
[dccltextend=facility-extension-level]
[dccache=maximum-entries-count-in-name-cache]
[dchostselect=Y|N]
[dcscddirect=Y|N]
[dcscdport=port-number-of-schedule-service]
[dcscdloadpriority=Y|N]
[dcrapdirect=Y|N]
[dcrapport=port-number-of-RAP-processing-listener]
[dcrapautoconnect=Y|N]
[dcerrtrace=Y|N]
[dcerrtracepath=directory-for-error-trace-file]
[dcerrtracesize=error-trace-file-size]
[dcmethodtrace=Y|N]
[dcmethodtracepath=directory-for-method-trace-file]
[dcmethodtracesize=method-trace-file-size]
[dcuaptrace=Y|N]
[dcuaptracepath=directory-for-UAP-trace-file]
[dcuaptracesize=UAP-trace-file-size]
[dcdatatrace=Y|N]
[dcdatatracepath=directory-for-data-trace-file]
[dcdatatracesize=data-trace-file-size]
[dcdatatracemaxsize=maximum-data-size-for-data-trace]

5. Definitions

288

[dcclttrstatisitem=statistical-information-item]
[dcclttroptiitem=transaction-optimization-item]
[dcclttrwatchtime=maximum-communication-wait-time-during-transaction-syn
chronization-point-processing]
[dcclttrrbinfo=no|self|remote|all]
[dcclttrlimittime=maximum-executable-time-for-transaction-branch]
[dcclttrrbrcv=Y|N]
[dcclttrrecoverytype=type1|type2|type3]
[dcclttrexptm=expiry-time-in-transaction-branch]
[dcclttrcputm=transaction-branch-CUP-monitoring-time]
[dcclttrexpsp=Y|N|F]
[dcsndrcvtype=DCCLT_ONEWAY_SND|DCCLT_ONEWAY_RCV|DCCLT_SNDRCV]
[dcrcvport=port-number-of-the-receiving-CUP]
[dcsndhost=host-name-of-node-on-which-the-MHP-to-be-connected-exists]
[dcsndport=port-number-of-the-MHP-to-be-connected]
[dcsockopenatrcv=Y|N]
[dcweburl=URL-of-TP1/Web-whose-service-is-requested]
[dccltdbgtrcfilecount=maximum-number-of-debug-trace-files]
[dccltrpcmaxmsgsize=maximum-size-of-messages-sent-or-received-by-RPC]
[dcscdhostchange=Y|N]
[dccltloadbalance=Y|N]
[dccltcachetim=cache-expiration-time]
[dccltconnecttimeout=maximum-time-for-monitoring-connection-establishmen
t]
[dccltprftrace=Y|N]
[dccltprfinfosend=Y|N]
[dccltnammlthost=Y|N]
[dccltdatacomp=Y|N]
[dccltconnectinf=terminal-identification-information]
[dcscdmulti=Y|N]
[dcscdmulticount=processes-count-for-multi-scheduler-daemon]
[dccltcupsndhost=transmission-source-host]
[dccltcuprcvport=port-number-used-for-reception-of-CUP]
[dcclttrcmplmttm=maximum-time-allowed-for-completion-of-transaction]

5.2.2 Operands
dcnamuse=Y|N ~<<N>>

Specifies whether or not RPCs that use the name service are used.

Y: Use RPCs that use the name service.

N: Do not use RPCs that use the name service.

The dcnamuse, dcrapdirect, and dcscddirect operands are mutually
exclusive. You cannot specify Y for more than one of these operands at the same
time; doing so results in a definition error.

5. Definitions

289

The TP1/Web connection facility can be used only if you specify Y in the
dcrapdirect operand. Defining the dcweburl operand and specifying
dcscddirect=Y and dcrapdirect=Y results in a definition error.

dcnamport=port-number-of-name-service
~<unsigned integer> ((5001~65535)) <<10000>>

Specifies the port number of the name service that was specified in the
name_port operand of the system common definition for the OpenTP1 to which
the client belongs. This value takes effect on a host for which no port number is
specified in the dchost operand.

dchost=host-name-of-TP1/Server-as-a-gateway ~<character string>

Specifies the host name of the TP1/Server as a gateway and the port number of
the RAP-processing listener, schedule service, or name service. If you use a
delimiter (,), you can specify multiple TP1/Servers. To issue RPCs via a
RAP-processing listener, specify the host name of the RAP-processing listener or
the host name of the firewall.

If both the dchost operand and the dcweburl operand are specified, the
dcweburl operand takes precedence.

Format

When dcrapdirect=Y is specified:

host-name[:port-number-of-RAP-processing-listener][,host-name[:port
-number-of-RAP-processing-listener],...]
When dcscddirect=Y is specified:

host-name[:port-number-of-schedule-service][,host-name[:port-numbe
r-of-schedule-service],...]
When dcnamuse=Y is specified:

host-name[:port-number-of-name-service][,host-name[:port-number-of
-name-service],...]

- host-name ~<character string>

- port-number ~<unsigned integer> ((5001~65535))

You can specify a maximum of 256 characters. Do not enter any blank
characters (spaces or tabs), except after a delimiter (,). For the host name,
you can also specify the IP address expressed in decimal dot format.

If you specify more than one host name for TP1/Server and a TP1/Server
error is detected, TP1/Client/J attempts swapping by referencing the next

5. Definitions

290

TP1/Server specified in the dchost operand. However, if RPCs are issued
via a RAP-processing listener, TP1/Client/J attempts swapping by
referencing the next TP1/Server specified in the dchost operand only when
dcrapautoconnect=Y is also specified in the TP1/Client/J environment
definition or DCRPC_RAP_AUTOCONNECT is specified in the
setDccltextend method.

For the port number, if you have specified dcrapdirect=Y, specify the port
number of the RAP-processing listener. If you have specified
dcscddirect=Y, specify the port number of the schedule service. If you
have specified dcnamuse=Y, specify the port number of the name service.

If the port number is omitted and dcrapdirect=Y is specified, TP1/Client/
J assumes the value of the dcrapport operand; if dcscddirect=Y is
specified, TP1/Client/J assumes the value of the dcscdport operand; if
dcnamuse=Y is specified, TP1/Client/J assumes the value of the
dcnamport operand.

dcwatchtim=maximum-time-to-wait-for-a-response
~<unsigned integer> ((0~65535)) <<180>> (seconds)

Specifies the maximum time to wait for a response from the service since a
service request was issued from the CUP to the TP1/Server.

If no response is returned within the specified time, control is returned to the CUP
with an error.

If 0 is specified, TP1/Client/J waits indefinitely for a response.

The specification of the dcwatchtim operand is applied to the following APIs
(methods):

• closeConnection method

• openConnection method

• rpcCall method (except for non-response type RPCs that use the scheduler
direct facility)

• rpcCallTo method (for synchronous-response RPCs)

• trnBegin method

• trnChainedCommit method

• trnChainedRollback method

• trnUnchainedCommit method

• trnUnchainedRollback method

dccltinquiretime=maximum-permanent-connection-inquiry-interval

5. Definitions

291

~<unsigned integer> ((0~1048575)) (seconds)

Specifies the maximum amount of time from one inquiry to another that is issued
from a CUP to the server. The maximum permanent connection inquiry interval
is the timer value that is monitored by the RAP-processing server. If there is no
inquiry within the specified time, the RAP-processing server releases the
permanent connection forcibly. If the maximum permanent connection inquiry
interval is reached within a transaction, TP1/Client/J rolls back the corresponding
transaction forcibly.

If you specify 0 in this operand, TP1/Client/J waits indefinitely for a response
from the CUP. If you omit this operand, the rap_inquire_time operand in the
RAP-processing listener service definition takes effect.

dcwatchtiminherit=Y|N ~<<N>>

Specifies whether or not the RAP-processing server is to inherit the CUP's
maximum amount of time to wait for a response when an RPC that uses the
remote API facility is issued.

Y: The RAP-processing server is to inherit the CUP's maximum time to wait for
a response.

N: The RAP-processing server is not to inherit the CUP's maximum time to wait
for a response.

dcwatchtimrpcinherit=Y|N ~<<N>>

Specifies whether or not the TP1/Server is to inherit the CUP's maximum amount
of time to wait for a response.

Y: TP1/Server is to inherit the CUP's maximum time to wait for a response.

N: TP1/Server is not to inherit the CUP's maximum time to wait for a response.

dccltdelay=maximum-communication-delay-time
~<unsigned integer> ((0~65535)) <<0>> (seconds)

Taking into account the overhead involved with communication between the CUP
and the RAP-processing server, you can specify this operand to end response
monitoring in the RAP-processing server system earlier than in the TP1/Client/J
system. This definition ends response monitoring in the RAP-processing server
system early by the specified amount of time in order to avoid missing a message
that may arrive after a timeout occurs in the TP1/Client/J system.

This definition is applicable only when dcrapdirect=Y and
dcwatchtiminherit=Y are specified in the TP1/Client/J environment
definition.

TP1/Client/J ignores the dccltdelay operand when dcwatchtim=0 is
specified in the TP1/Client/J environment definition, 0 is specified in the

5. Definitions

292

setDcwatchtim method, or dcwatchtiminherit=N is specified in the TP1/
Client/J environment definition. If the dcwatchtim operand value minus the
dccltdelay operand value equals 0 or a negative value, TP1/Client/J also
ignores the dccltdelay operand, in which case TP1/Client/J assumes a value of
1.

dcselint=reply-text-monitoring-interval ~<unsigned integer> ((1~65535))
<<100>> (milliseconds)

This operand is provided only to provide compatibility with the source of the
previous version. Currently, TP1/Client/J ignores this operand, if specified.

dccltextend=00000000|00000001

Specifies the facility extension level of TP1/Client/J.

00000000: Do not extend the TP1/Client/J facility.

00000001: Send the IP address of the local CUP to the service when the
rpcCall method is called. You specify this value if you need to obtain the
address of the CUP by having the called service execute the
dc_rpc_get_callers_address() function.

dccache=maximum-entries-count-in-name-cache ~<unsigned integer>
((2-256)) <<8>>

Specifies the maximum number of entries in the cache that is used to cache
service information used by TP1/Client/J. This cache is managed by the LRU
method. When the number of entries in cache exceeds the specified value, TP1/
Client/J deletes the oldest service information that was called in the past.

dchostselect=Y|N ~<<N>>

Specifies whether or not to randomly select a TP1/Server as a gateway. This
definition is applicable only when more than one TP1/Server is specified as a
gateway in the dchost operand.

Y: Select a TP1/Server as a gateway at random.

N: Do not select a TP1/Server as a gateway at random.

When Y is specified

If an error is detected while an inquiry is being made to the name service of
the TP1/Server as a gateway, TP1/Client/J randomly selects another TP1/
Server for swapping.

When N is specified

If an error is detected while an inquiry is being made to the name service of
the TP1/Server as a gateway, TP1/Client/J attempts to switch to the next
TP1/Server specified in the dchost operand.

5. Definitions

293

The erroneous TP1/Server becomes a candidate for a retry-target host for the next
RPC.

If dcscddirect=Y is specified in the TP1/Client/J environment definition,
swapping of gateway TP1/Servers occurs when transmission to the corresponding
port number fails.

dcscddirect=Y|N ~<<N>>

Specifies whether or not RPCs that use the scheduler direct facility without
querying information to the name service of TP1/Server are used.

Y: Use RPCs that use the scheduler direct facility.

N: Do not use RPCs that use the scheduler direct facility.

If you have specified the port number of the schedule service in the dcscdport
operand of the TP1/Client/J environment definition, TP1/Client/J uses that port
number for querying. The dcrapdirect, dcscddirect, and dcnamuse
operands are mutually exclusive. You cannot specify Y for more than one of these
operands at the same time; doing so results in a definition error.

The TP1/Web connection facility can be used only if you specify Y in the
dcrapdirect operand. Defining the dcweburl operand and specifying
dcscddirect=Y and dcrapdirect=Y results in a definition error.

dcscdport=port-number-of-schedule-service
~<unsigned integer> ((5001~65535))

Specifies the port number of the schedule service that has been specified in the
scd_port operand of the schedule service definition for the OpenTP1 to which
the client belongs. This value takes effect on a host for which no port number has
been specified with the dchost operand. This operand is applicable only when
dcscddirect=Y is specified in the TP1/Client/J environment definition. For
details, see the dcscddirect operand of the TP1/Client/J environment
definition.

dcscdloadpriority>=Y|N ~<<N>>

Specifies whether or not the TP1/Server that accepts service requests as a gateway
has priority for load balancing.

Y: The TP1/Server that accepts service requests as a gateway has priority for load
balancing.

N: The TP1/Server that accepts service requests as a gateway does not have
priority for load balancing. TP1/Server balances the workload between nodes.

This definition is applicable only when RPCs that use the scheduler direct facility
are issued (dcscddirect=Y is specified in the TP1/Client/J environment
definition).

5. Definitions

294

dcrapdirect=Y|N ~<<Y>>

Specifies whether or not the facility for directly querying the RAP-processing
listener without querying the information to the TP1/Server's name service
(remote API facility) is used.

To put this operand into effect, specify the port number of the RAP-processing
listener in the dcrapport operand of the TP1/Client/J environment definition.

The dcrapdirect, dcscddirect, and dcnamuse operands are mutually
exclusive. You cannot specify Y for more than one of these operands at the same
time; doing so results in a definition error.

dcrapport=port-number-of-RAP-processing-listener ~<unsigned integer>
((5001-65535))

Specifies the port number of the RAP-processing listener of the TP1/Server to
which the client belongs or the port number of the firewall. This operand value
takes effect on a host for which no port number has been specified with the
dchost operand.

This operand is applicable only when dcrapdirect=Y is specified in the TP1/
Client/J environment definition. For details, see the dcrapdirect operand of the
TP1/Client/J environment definition.

dcrapautoconnect=Y|N ~<<N>>

Specifies whether or not a permanent connection is established automatically
between a CUP and a RAP-processing server.

Y: Establish a permanent connection automatically the next time the method is
executed. The target to which a permanent connection establishment request is
issued is the RAP-processing listener that is specified in the dchost operand of
the TP1/Client/J environment definition.

N: Do not establish a permanent connection automatically.

Operation of various methods based on the connection establishment mode

Table 5-2 shows connection establishment processing of the non auto
connect mode and the auto connect mode.

5. Definitions

295

Table 5-2: Operation of various methods based on the connection establishment
mode

Value
specified

in the
dcrapaut
oconnect
operand

openConnection()
method is issued

openConnection
(host, port)

method is issue

openConnection
(url, flags)
method is

issued

rpcCall() is issued

N • If the dchost
operand is specified,
a connection is
established to the
RAP-processing
server specified by
the dchost
operand.

• If the dcweburl
operand is specified,
a connection is
established to the
URL specified by
the dcweburl
operand.

• If neither the
dchost nor
dcweburl operand
is specified,
ErrHostUndefExc
eption is returned.

A connection is
established to the
RAP-processing
server specified by
the host and port
parameters.

A connection is
established to the
URL specified by
the url parameter.

ErrProtoException
is returned.

5. Definitions

296

Notes

• The value of the dcrapautoconnect operand can be dynamically changed by
the setRpcextend method.

• The definition is read by the rpcOpen method.

• The definition information read by the rpcOpen method is discarded by the
rpcClose method.

• When an openConnection method that specifies a URL as an argument is
executed, the specified URL applies only to the openConnection method that
specified the URL. Once this method has executed, the URL specified in this
parameter is not used for another openConnection method (which has no
parameter specified) that executes after the closeConnection method has been
used to close the connection.

Y ErrProtoException
is returned.

ErrProtoExcept
ion is returned.

ErrProtoExcept
ion is returned.

• If the dchost
operand is
specified, a
connection is
established to the
RAP-processing
server specified by
the dchost
operand.

• If the dcweburl
operand is
specified, a
connection is
established to the
URL specified by
the dcweburl
operand.

• If neither the
dchost nor
dcweburl operand
is specified,
ErrHostUndefEx
ception is
returned.

Value
specified

in the
dcrapaut
oconnect
operand

openConnection()
method is issued

openConnection
(host, port)

method is issue

openConnection
(url, flags)
method is

issued

rpcCall() is issued

5. Definitions

297

dcerrtrace=Y|N ~<<N>>

Specifies whether or not the CUP collects an error trace.

Y: Collect error trace.

N: Do not collect error trace.

If you are using the CUP as a Java applet, do not specify Y; if Y is specified,
operations cannot be guaranteed.

dcerrtracepath=directory-for-error-trace-file ~<character string>

Specifies the path name of the directory in which error trace files are to be created.

This operand is applicable only when dcerrtrace=Y is specified in the TP1/
Client/J environment definition.

dcerrtracesize=error-trace-file-size ~<unsigned integer> ((4096-1048576))
<<4096>> (bytes)

Specifies the size of an error trace file.

dcmethodtrace=Y|N ~<<N>>

Specifies whether or not the CUP collects a method trace.

Y: Collect method trace.

N: Do not collect method trace.

If you are using the CUP as a Java applet, do not specify Y; if Y is specified,
operations cannot be guaranteed.

dcmethodtracepath=directory-for-method-trace-file ~<character string>

Specifies the path name of the directory in which method trace files are to be
created.

This operand is applicable only when dcmethodtrace=Y is specified in the TP1/
Client/J environment definition.

dcmethodtracesize=method-trace-file-size ~<unsigned integer>
((4096-1048576)) <<4096>> (bytes)

Specifies the size of a method trace file.

dcuaptrace=Y|N ~<<N>>

Specifies whether or not the CUP collects a UAP trace.

Y: Collect UAP trace.

N: Do not collect UAP trace.

If you are using the CUP as a Java applet, do not specify Y; if Y is specified,

5. Definitions

298

operations cannot be guaranteed.

dcuaptracepath=directory-for-UAP-trace-file ~<character string>

Specifies the path name of the directory in which UAP trace files are to be created.

This operand is applicable only when dcuaptrace=Y is specified in the TP1/
Client/J environment definition.

dcuaptracesize=UAP-trace-file-size ~<unsigned integer> ((4096-1048576))
<<4096>> (bytes)

Specifies the size of a UAP trace file.

dcdatatrace=Y|N ~<<N>>

Specifies whether or not the CUP collects a data trace.

Y: Collect data trace.

N: Do not collect data trace.

If you are using the CUP as a Java applet, do not specify Y; if Y is specified,
operations cannot be guaranteed.

dcdatatracepath=directory-for-data-trace-file ~<character string>

Specifies the path name of the directory in which data trace files are to be created.

This operand is applicable only when dcdatatrace=Y is specified in the TP1/
Client/J environment definition.

dcdatatracesize=data-trace-file-size ~<unsigned integer> ((4096-1048576))
<<4096>> (bytes)

Specifies the size of a data trace file.

dcdatatracemaxsize=maximum-data-size-for-data-trace ~<unsigned
integer> ((16-1048576)) <<128>> (bytes)

Specifies the maximum size of data per data trace item.

dcclttrstatisitem=statistical-information-item[,statistical-information-item
]...

Specifies one or more of the character strings listed below to indicate the types of
statistical information to be acquired for transaction branches. This operand is
applicable only when a transaction is started from the CUP.

nothing

Do not acquire statistical information.

base

Acquire the following information as basic information:

5. Definitions

299

- Transaction branch identifier

- Transaction branch determination result

- Transaction branch execution process type

- Name of the server executing a transaction branch

- Name of the service executing a transaction branch

executiontime

Acquire the basic information and the transaction branch execution time.

cputime

Acquire the basic information and the transaction branch CPU time.

If you specify nothing, you cannot specify any other value. If you specify
nothing together with another value, nothing will be ignored.

To acquire statistical information about transactions, specify one of the following
settings:

• trn_tran_statistics=Y in the transaction service definition

• -s option in the trnstics command

If you omit this definition, the trn_statistics_item operand specification in
the RAP-processing listener service definition takes effect.

dcclttroptiitem=transaction-optimization-item[,transaction-optimization-it
em]...
Specifies one or more of the character strings listed below to indicate the
optimization items to be used to improve the performance of a global transaction
that consists of multiple user servers. This operand is applicable only when a
transaction is started from the CUP.

base

Optimize the entire synchronization point acquisition processing (prepare,
commit, and rollback processing). Because OpenTP1 uses the two-phase
commit method for transaction control, four process-to-process
communications are required for commit control between two transaction
branches.

If all of the following conditions are satisfied, the four process-to-process
communications required for commit control are eliminated by having a
parent transaction branch execute commit processing for its child transaction
branches:

- Both parent and child transaction branches are under the same OpenTP1.

5. Definitions

300

- The parent transaction branch is using a synchronous-response RPC to call
its child transaction branches.

- The object for the XA interface of the resource manager that is accessed by
a child transaction branch is also linked to its parent transaction branch.

asyncprepare

If optimization of the entire synchronization point acquisition processing is
not possible because the conditions for base are not satisfied, optimize the
prepare processing.

If all of the following conditions are satisfied, two of the process-to-process
communications are eliminated by executing preparatory processing before
an RPC is returned when a child transaction branch issues a service request
using the RPC issued by its parent transaction branch:

- Optimization with base specified is not available.

- The parent transaction branch is using a synchronous-response RPC to call
its child transaction branch.

Note that this optimization increases the response time of a
synchronous-response RPC that is issued by the parent transaction branch.
For the child transaction branch, the interval from prepare to commit
processing increases (because the transaction cannot be determined without
an instruction from the parent transaction branch). Therefore, if the OpenTP1
system of the parent transaction branch is shut down and communications
are interrupted between the transaction branches, swapping of journal files
and validation of the checkpoint dump file are delayed and the OpenTP1
system of the child transaction branch may also be shut down.

You can specify more than one transaction optimization item, in which case the
following priority rule applies:
1 > 2

1: base

2: asyncprepare

If you omit this definition, the trn_optimum_item operand specification in the
RAP-processing listener service definition takes effect.

dcclttrwatchtime=maximum-communication-wait-time-during-transaction-sy
nchronization-point-processing
~<unsigned integer> ((1~65535)) (seconds)

Specifies the maximum wait time for communications between transaction
branches (prepare, commit, or rollback instruction or response) during transaction
synchronization point processing. This operand is applicable only when a

5. Definitions

301

transaction is started from the CUP.

If no instruction or response is received within the specified time and the
corresponding transaction branch is the first phase of a two-phase commit, TP1/
Client/J rolls back the transaction branch; if the first phase has already been
completed, TP1/Client/J uses a system process of the transaction service to retry
transaction determination processing.

When this definition is omitted, the trn_watch_time operand in the
RAP-processing listener service definition takes effect.

dcclttrrbinfo=no|self|remote|all

Specifies whether or not information about the cause of the rollback is logged
when a transaction branch rolls back. This operand is applicable only when a
transaction is started from the CUP.

no

Do not acquire rollback information.

self

Log rollback information only for those transaction branches that caused
rollback.

remote

Log rollback information not only for those transaction branches applicable
to self but also for those that received rollback requests from transaction
branches in remote nodes.

all

Log rollback information not only for those transaction branches applicable
to remote but also for those that received rollback requests from transaction
branches in the local node.

When this definition is omitted, the trn_rollback_information_put in the
RAP-processing listener service definition takes effect.

dcclttrlimittime=maximum-executable-time-for-transaction-branch
~<unsigned integer> ((0~65535)) (seconds)

Specifies the maximum executable time for a transaction branch. This operand is
applicable only when a transaction is started from the CUP.

TP1/Client/J sets automatically the timeout values for the rpcCall method and
synchronization point processing as follows, so that the amount of time from the
start of a transaction branch to the end of synchronization point processing does
not exceed the time specified in this operand:

5. Definitions

302

• Timeout value for the rpcCall method

If K >= value of this operand: Timeout occurs and TP1/Client/J returns
control with an error without executing the request processing.

If K < value of this operand and (value of this operand - K) >= W: TP1/
Client/J uses W as the timeout value.

If K < value of this operand and (value of this operand - K) < W: TP1/Client/
J uses (value of this operand - K) as the timeout value.

K and W indicate the following:

K: Current time - transaction branch start time

W: dcwatchtim operand value

>=: Equal to or greater than

• Timeout value for communications within synchronization point processing

If K >= value of this operand: TP1/Client/J sets the timeout value to 1
second.

If K < value of this operand and (value of this operand - K) >= W: TP1/
Client/J uses W as the timeout value.

If K < value of this operand and (value of this operand - K) < W: TP1/Client/
J uses (value of this operand - K) as the timeout value.

K and W indicate the following:

K: Current time - transaction branch start time

W: dcclttrwatchtime operand value (if the dcclttrwatchtime
operand is omitted, the dcwatchtim operand value takes effect)

>=: Equal to or greater than

If time is used for processing other than waiting for data reception, the transaction
branch may not be terminated within the specified operand value.

If the time specified in this operand elapses before synchronization point
processing begins, the corresponding transaction is rolled back.

When 0 is specified, TP1/Client/J does not monitor the time.

When this definition is omitted, the trn_limit_time operand in the
RAP-processing listener service definition takes effect.

dcclttrrbrcv=Y|N

Specifies whether or not a rollback completion report is received after a rollback
instruction is sent to the RPC destination transaction branch. This operand is
applicable only when a transaction is started from the CUP.

5. Definitions

303

Y: Receive a rollback completion report.

N: Do not receive a rollback completion report.

When N is specified, TP1/Client/J terminates the local transaction branch without
receiving a rollback completion report from the RPC destination transaction
branch (without waiting for completion of rollback processing on the RPC
destination transaction branch).

When this definition is omitted, the trn_rollback_response_receive
operand in the RAP-processing listener service definition takes effect.

dcclttrrecoverytype=type1|type2|type3

Specifies the synchronization point processing method to use in the event of a
UAP error. This operand is applicable only when a transaction is started from the
CUP.

If an RPC results in a timeout and the address of the target process is unresolved
or the UAP executing a transaction is shut down, transaction determination may
take time because smooth communications cannot be achieved between
transaction branches.

For this operand, select one of the three transaction synchronization point
processing methods listed below as appropriate to one of the following types of
errors that may occur:

(Error 1) When an RPC results in a timeout:

In this case, the source transaction branch that issued the RPC cannot send a
transaction synchronization point message to the RPC destination
transaction branch because it does not know which process is executing the
service request. As a result, both source and target transaction branches are
placed in transaction synchronization point message wait status, requiring
time for transaction determination.

(Error 2) When the RAP-processing server shuts down before receiving a
response from the RPC:

In this case, the source transaction branch that issued the RPC cannot send a
transaction synchronization point message to the RPC destination
transaction branch because it does not know which process is executing the
service request. As a result, the RPC destination transaction branch is placed
in transaction synchronization point message wait status, requiring time for
transaction determination.

(Error 3) When the RAP-processing server and the UAP to which the RPC was
issued shut down at about the same time after a response from the UAP to which
the RPC was issued is received:

In this case, the transaction recovery process that inherited each transaction

5. Definitions

304

branch sends a transaction synchronization point message to a nonexistent
UAP because it does not know that the remote UAP process has been shut
down, requiring time for transaction determination.

The following describes the processing method indicated by each specification
value:

type1

If (Error 1) occurs, both the source transaction branch that issued the RPC
and the RPC destination transaction branch determine transactions when the
process for receiving a transaction synchronization point message time out.

If (Error 2) occurs, the source transaction branch that issued the RPC
determines the transaction without sending a transaction synchronization
point message to the RPC destination transaction branch. The RPC
destination transaction branch determines the transaction when the process
for receiving a transaction synchronization point message times out.

If (Error 3) occurs, both the source transaction branch that issued the RPC
and the RPC destination transaction branch determine transactions when the
process for receiving a transaction synchronization point message times out.

type2

Same as type1 if (Error 1) occurs and a transaction is committed.

If (Error 1) occurs and a transaction is rolled back or if (Error 2) occurs, the
source transaction branch that issued the RPC sends a transaction
synchronization point message to the transaction service process on the node
where the RPC destination transaction branch exists, and then determines the
transaction. The transaction service process that has received the transaction
synchronization point message sends a transaction synchronization point
instruction to the process that is processing the applicable transaction branch.

If (Error 3) occurs, both the source transaction branch that issued the RPC
and the RPC destination transaction branch determine transactions when the
process for receiving a transaction synchronization point message times out.

type3

Same as type1 if (Error 1) occurs and a transaction is committed.

If (Error 1) occurs and a transaction is rolled back or if (Error 2) or (Error 3)
occurs, the source transaction branch that issued the RPC sends a transaction
synchronization point message to the transaction service process on the node
where the remote transaction branch exists. The transaction service process
that has received the transaction synchronization point message sends a
transaction synchronization point instruction to the process that is processing
the applicable transaction branch.

5. Definitions

305

In the following cases, even if you specify type2 or type3 in this operand,
transaction determination processing may take time:

• The status of the UAP to which the RPC was issued changed during RPC
execution (such as an increase in the workload, UAP termination, or UAP
shutdown) and a service request was forwarded to the same UAP on another
node.

• The version of the remote OpenTP1 server does not support this option.

• The remote transaction branch is taking time for processing other than the
transaction synchronization point message reception processing.

When this definition is omitted, the trn_partial_recovery_type in the
RAP-processing listener service definition takes effect.

dcclttrexptm=expiry-time-in-transaction-branch
~<unsigned integer> ((0~65535)) (seconds)

Specifies the maximum transaction branch processing time. This operand is
applicable only when a transaction is started from the CUP.

If the transaction branch is not completed within the specified time, TP1/Client/J
terminates abnormally the process of that transaction branch and rolls it back. If
0 is specified, TP1/Client/J does not monitor the time.

When this operand is omitted, the trn_expiration_time operand in the
RAP-processing listener service definition takes effect.

To specify whether or not this value includes the processing time of transaction
branches that are executed by other processes when the RPC facility is used, use
the dcclttrexpsp operand in the TP1/Client/J environment definition.

dcclttrcputm=transaction-branch-CUP-monitoring-time
~<unsigned integer> ((0~65535)) (seconds)

Specifies the CPU time allowed for a transaction branch before synchronization
point processing starts. This operand is applicable only when a transaction is
started from the CUP.

If 0 is specified, TP1/Client/J does not monitor the CUP time.

If the specified time is exceeded, TP1/Client/J terminates abnormally the process
of the corresponding transaction branch and rolls it back.

When this operand is omitted, the trn_cpu_time operand in the
RAP-processing listener service definition takes effect.

dcclttrexpsp=Y|N|F

Specifies whether the monitoring time includes the time of the following types of

5. Definitions

306

processing when transaction branch processing is monitored:

1. Time required for a transaction branch being monitored to call another
transaction branch using the RPC facility and wait for completion of that
processing

2. Time required for a server UAP called by a chained RPC to wait for the next
service request

3. Time required for a transaction branch being monitored to execute result
reception processing after using a non-response type RPC to call another
transaction branch

The following describes each specification value:

Y: Include the monitoring time for 1, 2, and 3.

N: Include the monitoring time for 3 only.

F: Do not include the monitoring time for 1, 2, or 3.

When this operand is omitted, the trn_expiration_time_suspend operand
in the RAP-processing listener service definition takes effect.

dcsndrcvtype=DCCLT_ONEWAY_SND|DCCLT_ONEWAY_RCV|DCCLT_SNDRCV

Specifies the environment to initialize when the TCP/IP communication facility
is used.

These operands must be specified for you to use the TCP/IP communication
facility.

DCCLT_ONEWAY_SND: Environment for unidirectional sending of messages

DCCLT_ONEWAY_RCV: Environment for unidirectional receiving of messages

DCCLT_SNDRCV: Environment for bidirectional sending and receiving of
messages

dcrcvport=port-number-of-the-receiving-CUP
~<unsigned integer>((1~65535)) <<11000>>

Specifies the port number of the CUP that is receiving the message sent from the
MHP.

Specify the same value as the port number used by the MHP for sending
messages. If you are executing several processes and threads concurrently on the
same machine, specify different port numbers for each process or thread.

Do not specify a port number that is being used by the OS or by any other program
even if it is available. If such a port number is specified, correct reply data may
not be received. Note that different OSs use different port numbers; for details,
see the manual for the applicable OS manual.

5. Definitions

307

dcsndhost=host-name-of-node-on-which-MHP-to-be-connected-exists~<charact
er string>

Specifies the host name of the node on which the connection-target MHP exists
when a connection is being established for a message to be sent from a CUP.

You can also specify the host name in the form of a decimal-plus-dot IP address.

dcsndport=port-number-of-MHP-to-be-connected
~<unsigned integer> ((1~65535)) <<12000>>

Specifies the port number of the connection-target MHP when a connection is
being established for a message to be sent from a CUP. Specify a port number
different from the one specified in the dcnamport operand.

dcsockopenatrcv=Y|N ~<<N>>

Specifies the trigger for opening a reception socket (the trigger to start waiting to
receive a connection from a remote computer) when sending and receiving is
performed over a single connection while the TCP/IP communication facility is
being used.

If you do not specify this operand, the receive socket is opened when the
rpcOpen method is executed.

Y: Opens a receive socket if a connection was not established when the
cltReceive method was executed.

N: Opens a receive socket when the rpcOpen method is executed.

dcweburl=URL-of-TP1/Web-whose-service-is-requested ~<path-name>

Specifies the URL of the TP1/Web whose service is being requested.

Specify the protocol, Web server, the CGI name of the prompter, the TP1/Web
service name, and other information in the form of a URL.

If both the dchost operand and the dcweburl operand are specified, the
dcweburl operand takes precedence.

Note, also, that the dcscddirect and dcnamuse operands cannot be used if the
TP1/Web connection facility is used. If the dcweburl operand is defined, and
dcscddirect=Y and dcnamuse=Y are specified, a definition error results.

dccltdbgtrcfilecount=maximum-number-of-debug-trace-files
~<unsigned integer> ((0~256)) <<0>>

Specifies the maximum number of debug trace files allowed. If 0 is specified,
there is no limit to the number of files. If the total number of debug trace files
exceeds the value specified in this operand, the file with the oldest update date is
deleted.

5. Definitions

308

If multiple TP1Client instances for which different values are specified in the
dccltdbgtrcfilecount operand are used at the same time, the actual
maximum file count cannot be guaranteed.

If you create a TP1Client instance before issuing the rpcOpen method, you can
also define the dccltdbgtrcfilecount operand as a system property. In this
case, when the rpcOpen method is issued after the TP1Client instance is created,
the result obtained by analyzing the content of the rpcOpen method is used to
overwrite the file count. When the rpcOpen method is issued, the specification
of the dccltdbgtrcfilecount operand defined in the system property
becomes invalid.

No error message is issued even when the specification of the
dccltdbgtrcfilecount operand is invalid. In this case, the default
specification for the dccltdbgtrcfilecount operand takes effect.

dccltrpcmaxmsgsize=maximum-size-of-messages-sent-or-received-by-RPC
~<unsigned integer> ((1~8)) <<1>> (MB)

Specifies the maximum size of messages that can be sent or received by RPCs.

If this operand is omitted or if the default (1) is specified, the maximum size of
RPC messages that can be sent or received by the rpcCall method is 1 MB
(1048576 bytes). If the maximum allowable value (8) is specified for this
operand, the maximum message size is 8 MB (8388608 bytes). You cannot
specify a send or receive message size that exceeds the value specified in this
operand as an argument of the rpcCall method. If the specified send or receive
message size exceeds the value specified in this operand, the rpcCall method
returns ErrInvalidArgsException.

When you specify the dccltrpcmaxmsgsize operand, do not use the facilities
listed below. Otherwise, an error occurs at the communication target TP1/Server
node.

• RPC that uses the scheduler direct facility

• RPC that specifies the communication target

• TP1/Web connection facility

The following table shows what happens when a service request is issued to a
TP1/Server other than a TP1/Server (version 06-02 or later) that supports the
rpc_max_message_size operand of the system common definition:

5. Definitions

309

Table 5-3: Action of the rpcCall method when 2 or more is specified in the
dccltrpcmaxmsgsize operand

Legend:

Y: Can be requested.

N: Cannot be requested.

#1

Version of the node where the SPP is running and that was defined in the all_node
operand specified for the TP1/Server that acts as a gateway.

#2

When the rpc_max_message_size operand is specified in the system common
definition.

#3

When the input data exceeds 1 MB, ErrMessageTooBigException occurs;
when the input data is 1 MB or smaller and if the output area size exceeds 1 MB,
ErrInvalidArgsException occurs.

#4

ErrNoSuchServiceGroupException occurs.

dcscdhostchange=Y|N ~<<N>>

Specifies whether or not the service request target schedulers specified in the
dchost operand of the TP1/Client/J environment definition are distributed to the
RPCs.

Y: Distributes the service request target schedulers to the RPCs.

N: Does not distribute the service request target schedulers to the RPCs.

When Y is specified, the following processing occurs:

Method Definition that
specifies the RPC

type

Version of TP1/
Server that acts

as gateway

Node version#1

Before 06-02 06-02 or later#2

rpcCall dcrapdirect=Y Before 06-02 N#3 N#3

06-02 or later N#4 Y

dcnamuse=Y Before 06-02 N#4 Y

06-02 or later N#4 Y

5. Definitions

310

For the first service required by an RPC, if dchostselect=Y is specified in the
TP1/Client/J environment definition, a service request target scheduler specified
in the dchost operand of the TP1/Client/J environment definition is randomly
selected. If dchostselect=N is specified in the TP1/Client/J environment
definition, the first service request target scheduler specified in the dchost
operand of the TP1/Client/J environment definition is selected.

For the second and subsequent RPC service requests, the service request target
schedulers are selected in the round-robin mode according to the order specified
in the dchost operand, beginning with the service request target scheduler
previously selected.

dccltloadbalance=Y|N ~<<N>>

Specifies whether or not to store in cache the information on the service request
target scheduler with the smallest workload from the information on multiple
service request target schedulers obtained from the name server.

Y: Stores the information on the service request target scheduler with the smallest
workload in the cache.

N: Does not store the information on the service request target scheduler with the
smallest workload in the cache.

When Y is specified, the following processing occurs:

If multiple service request target schedulers are stored in the cache, the first
service request target scheduler is randomly selected. For the second and
subsequent RPC service requests, the service request target schedulers stored in
the cache are selected in the round-robin mode.

For details about workload levels, see the manual OpenTP1 Description.

dccltcachetim=cache-expiration-time
~<unsigned integer> ((0~65535)) <<30>> (seconds)

Specifies how long information on a service request target scheduler stored in the
cache remains valid. Information on a service request target scheduler that has
reached the cache expiration time is deleted from the cache. The cache is updated
when information on the service request target scheduler is subsequently acquired
again and stored in the cache.

This operand is valid only when dccltloadbalance=Y is specified in the TP1/
Client/J environment definition.

dccltconnecttimeout=maximum-time-for-monitoring-connection-establishme
nt
~<unsigned integer> ((0~65535)) <<0>> (seconds)

Specifies the maximum amount of monitoring time it takes to establish a

5. Definitions

311

connection during data transmission.

The value specified in this operand is not the processing time specified for the
java.net.Socket.connect method (hereafter referred to as the connect
method), but is the maximum amount of monitoring time it takes for the connect
method to establish a connection.

If a connection cannot be established because the remote system has not been
started, for example, the method issued by a CUP may return an error before the
monitoring time specified in this operand elapses. This is because the connection
establishment monitoring time by the OS takes precedence over the maximum
monitoring time specified in this operand. The connection establishment
monitoring time by the OS, the number of times connection establishment
requests can be resent, and the resend interval vary depending on the platform.
Furthermore, depending on the method or function used, the processing time of
the connect method may exceed the value specified in this operand.

If 0 is specified or this operand is omitted, the OS monitors the connection
establishment process.

dccltprftrace=Y|N ~<<Y>>

Specifies whether or not a performance analysis trace of the Cosminexus
Application Server is collected when TP1/Client/J is run on a Cosminexus
Application Server.

Y: Collects a performance analysis trace. However, no performance analysis trace
is collected if the PRF daemon has not been started.

N: Does not collect a performance analysis trace.

dccltprfinfosend=Y|N ~<<Y>>

Specifies whether or not identification information in TP1/Client/J is added to the
information output to the performance verification trace of OpenTP1 when an
RPC that uses the name service or scheduler direct facility is issued to TP1/Server.

Y: Adds identification information inside TP1/Client/J.

N: Does not add identification information inside TP1/Client/J.

dccltnammlthost=Y|N ~<<N>>

Specifies whether or not an RPC that uses the name service is issued to a TP1/
Server in the multi-homed host environment.

Y: Issues an RPC that uses the name service to a TP1/Server in the multi-homed
host environment. Specify this option when multiple RPC request targets are
defined or when there are more than one TP1/Servers in the multi-homed host
environment.

N: Does not issue an RPC that uses the name service to a TP1/Server in the

5. Definitions

312

multi-homed host environment. An error may occur if an RPC that uses the name
service is issued to a TP1/Server in the multi-homed host environment.

For details, see 2.2.9(3) Definition for issuing an RPC to TP1/Server in the
multi-homed host environment.
dccltdatacomp=Y|N ~ <<N>>

Specifies whether or not the data compression facility is used.

Y: Uses the data compression facility.

N: Does not use the data compression facility.

dccltconnectinf=terminal-identification-information
Specifies (in EBCDIK codes) the logical terminal name of the DCCM3 logical
terminal as the terminal identification information. The terminal identification
information is expressed as the value 0x followed by a maximum of 128
hexadecimal characters (0x at the beginning is not included in the 128 characters).
You can specify a maximum of 64 bytes (128 characters), where each byte
consists of 2 characters. Note that DCCM3 uses only the first 8 bytes and ignores
the remainder of the value.

You can change this operand value dynamically by calling the
setConnectInformation method. Once the setConnectInformation
method has been called, the value specified in this operand is ignored until the
rpcOpen method is called again.

The value specified in this operand takes effect when DCCM3 logical terminal
host name is specified in the dchost operand and the port number of the DCCM3
logical terminal is specified in the dchost or dcrapport operand in the TP1/
Client/J environment definition, and a permanent connection is established with
the DCCM3 logical terminal by means of one of the following methods:

• Calling the openConnection method. In the case of the openConnection
method with parameters, specify DCCM3 logical terminal host name in the
host parameter and the port number of the DCCM3 logical terminal in the
port parameter.

• Specifying Y in the dcrapautoconnect operand in the TP1/Client/J
environment definition and then call the rpcCall method.

If this operand is omitted, terminal identification information is not sent to the
DCCM3 logical terminal. However, if the setConnectInformation method is
called, the terminal identification information specified in the
setConnectInformation method is sent to the DCCM3 logical terminal when
a permanent connection with the DCCM3 logical terminal is established.

dcscdmulti=Y|N ~ <<N>>

5. Definitions

313

Specifies whether or not the multi-scheduler facility is to be used.

Y: Uses the multi-scheduler facility.

N: Does not use the multi-scheduler facility.

When you use the multi-scheduler facility, you can reduce the workload of
scheduling by randomly selecting one of the multi-scheduler daemons that have
been started.

If you specify Y in this definition, also pay attention to the dchost, dcscdport,
and dcscdmulticount TP1/Client/J environment definitions. Note that this
definition is not applicable during execution of the rpcCallTo method.

dcscdmulticount=processes-count-for-multi-scheduler-daemon ~ <unsigned
integer> ((1-4096)) <<1>>

Specifies the number of processes for the multi-scheduler daemon. This value
must be equal to or less than the number of processes specified in the -m option
of the scdmulti schedule service definition.

This definition is applicable when dcscdmulti=Y and dcscddirect=Y are
specified in the TP1/Client/J environment definition. In such a case, the port
number is selected randomly from within the following range of values:

• Minimum value: Port number specified in dchost or dcscdport

• Maximum value: Minimum value + number of processes specified in
dcscdmulticount - 1

If the maximum value for this port number exceeds 65535,
ErrFatalException occurs during definition analysis and
ErrInvalidPortException occurs during setDchost processing.

If the specified value is greater than the number of processes specified in the -m
option of scdmulti, an attempt may be made to establish connection with a port
where the multi-scheduler is not running, resulting in the
ErrNetDownAtClientException.

dccltcupsndhost=transmission-source-host ~ <character string>

Specifies the transmission source host during the following connection
establishments:

• RPC using the scheduler direct facility

• RPC using the name service

• RPC using the remote API facility

• RPC specifying the communication target

• TCP/IP communication facility

5. Definitions

314

For the host name, you can also specify an IP address in decimal dot notation.

An exception occurs on the issued method in the following cases:

• localhost was specified as the host name

• The specified IP address begins with 127

• The specified host does not exist on the system where the CUP is being
executed

If this definition is omitted, the transmission source host is allocated arbitrarily.

dccltcuprcvport=port-number-used-for-reception-of-CUP ~ <unsigned
integer> ((5001-65535))

Specifies the port number of the CUP that is to receive messages from the server.

The port number specified in this definition takes effect when the following
functions are used:

• When an RPC using the scheduler direct facility is received (receive port)

• When an RPC using the name service is received (receive port)

If this definition is omitted, a port number allocated arbitrarily by the system is
used.

If you execute multiple processes or threads concurrently within the same
machine, specify different port numbers. If a duplicated port number is specified,
correct reply data may not be received. Note that different OSs use different port
number; for details, see the manual for the applicable OS.

dcclttrcmplmttm=maximum-time-allowed-for-completion-of-transaction ~
<unsigned integer> ((0-65535)) (seconds)

Specifies the maximum execution time from startup to termination of a
transaction branch that is executed by the RAP-processing server. If the specified
time is exceeded, the transaction branch settles to either rollback or commit by the
recovery process, and then is terminated after the RAP-processing server
processing terminates abnormally.

If 0 is specified, the maximum transaction branch execution time is not
monitored.

If this specification is omitted, processing depends on the
trn_completion_limit_time operand specification in the RAP-processing
listener service definition.

If this facility is used with a TP1/Server version earlier than 07-01, the facility
runs in invalid status.

5. Definitions

315

5.2.3 Notes about specifying the TP1/Client/J environment definition
Do not specify any characters other than the settings on any of the lines containing
TP1/Client/J environment definition operands. If a specified character is not a
valid part of a setting, the rpcOpen method may return ErrFatalException.

TP1/Client/J assumes that a line beginning with a TP1/Client/J environment
definition operand (spaces and tabs at the beginning of lines are ignored) is
subject to definition analysis. TP1/Client/J regards all lines containing a character
string that is not a valid TP1/Client/J environment definition operand as comment
lines.

317

Chapter

6. Error Handling

This chapter describes how to handle errors.

6.1 Collecting trace information
6.2 Handling network errors
6.3 Validity of timer values
6.4 Handling other errors

6. Error Handling

318

6.1 Collecting trace information

The troubleshooting facility of TP1/Client/J allows you to collect the following types
of trace information:

• UAP traces

• Data traces

• Error traces

• Memory traces

• Method traces

• Debug traces

• Performance analysis traces

• Performance verification traces

The troubleshooting facility of TP1/Client/J enables you to collect UAP, data, error,
method, debug, and memory traces. To simplify troubleshooting, we recommend that
you collect trace information. In the event of an error, you can determine the cause of
the error from the trace information. If an error occurs but trace information has not
been collected, set the system to collect traces, repeat the event that resulted in the
error, and then refer to the collected trace information.

For details about trace information, see 2.11 Troubleshooting facility.

6. Error Handling

319

6.2 Handling network errors

In a JDK 5.0 environment, it is not possible to collect adequate error information for
assistance in the event of a network error. We recommend that you use a network in a
non-Java environment to check for the cause of an error.

6. Error Handling

320

6.3 Validity of timer values

In a system that uses TCP/IP for communication, you cannot detect errors in real time
due to TCP/IP limitations. Therefore, a time-monitoring timeout triggers the system to
assume that an error has been detected. The OpenTP1 system enables you to specify
timer monitoring for each type of processing. You should set an optimum value for
each setting.

If an error such as system shutdown occurs in the RAP-processing server system while
connection with the RAP-processing server is being established, Java cannot detect the
disconnection. In such a case, TP1/Client/J waits until the response wait time specified
with the setDcwatchtim method is reached, then returns an error with the exception
ErrTimedOutException.

6. Error Handling

321

6.4 Handling other errors

Errors may result from malfunctions in the RAP-processing server in the TP1/Server
system or in the target TP1/Server whose service is requested or from invalid
definition values. In such cases, you should check such information as the TP1/
Server's log files to determine the cause.

323

Appendix

A. Changes During Upgrading

324

A. Changes During Upgrading

The changes between versions are categorized as follows:

• Additions/deletions of APIs, definitions, and commands

• Changes to operation

• Changes in the default values for APIs, definitions, and commands

A.1 Changes in 07-02
The following table shows the additions and deletions that were made to APIs,
definitions, and commands in TP1/Client/J 07-02.

Table A-1: Additions/deletions to APIs, definitions, and commands in TP1/
Client/J 07-02

The following table shows the changes to operation in TP1/Client/J 07-02.

Table A-2: Changes to operation in TP1/Client/J 07-02

Classification Category Description

Addition API TP1Client class
• acceptNotification method
• cancelNotification method
• openNotification method
• acceptNotificationChained method
• closeNotification method

ErrVersionException class

ErrAcceptCanceledException class

Definition TP1/Client/J environment definition
• dcscdmulti operand
• dcscdmulticount operand
• dccltcupsndhost operand
• dccltcuprcvport operand
• dcclttrcmplmttm operand

Command None

Deletion None

Category Description

API A change was made so that UAP traces are acquired by the setUapTraceMode,
setErrorTraceMode, setMethodTraceMode, and setDataTraceMode methods.

A. Changes During Upgrading

325

There were no changes in the default values for APIs, definitions, and commands in
TP1/Client/J 07-02.

A.2 Changes in 07-01
The following table shows the additions and deletions that were made to APIs,
definitions, and commands in TP1/Client/J 07-01.

Table A-3: Additions/deletions to APIs, definitions, and commands in TP1/
Client/J 07-01

The following table shows the changes to operation in TP1/Client/J 07-01.

Table A-4: Changes to operation in TP1/Client/J 07-01

Definition None

Command None

Other A change was made so that identification information unique to each instance of TP1/Client/J
is output to the TP1/Server performance verification trace by the PRC using the remote API
facility.

A change was made so that identification information unique to each instance of TP1/Client/J
is output to UAP traces.

Classification Category Description

Addition API TP1Client class
• setConnectInformation method

Definition TP1/Client/J environment definition
• dccltdatacomp operand
• dccltconnectinf operand

Command None

Deletion None

Category Description

API None

Definition None

Command None

Category Description

A. Changes During Upgrading

326

There were no changes in the default values for APIs, definitions, and commands in
TP1/Client/J 07-01.

A.3 Changes in 07-00
The following table shows the additions and deletions that were made to APIs,
definitions, and commands in TP1/Client/J 07-00.

Table A-5: Additions/deletions to APIs, definitions, and commands in TP1/
Client/J 07-00

The following table shows the changes to operation in TP1/Client/J 07-00.

Table A-6: Changes to operation in TP1/Client/J 07-00

Other A change was made so that retry processing is performed when an error
(java.net.BindException exception) occurs due to an insufficient number of ports having
been allocated automatically in the local system when a connection is established from TP1/
Client/J to TP1/Server.

A correction was made to a problem with the ErrClientTimedOutException exception
that resulted when a temporary close request message was received from SPP during reply
message reception processing, because the temporary close request message was discarded in
order to receive the original reply message, and then reception was further attempted illegally.

A correction was made so that an invalid ErrRMErrException exception is not thrown from
TP1/Client/J when the XA resource service facility is used.

Classification Category Description

Addition API None

Definition TP1/Client/J environment definition
• dccltnammlthost operand

Command None

Deletion None

Category Description

API None

Definition None

Command None

Other The JDK versions supported by TP1/Client/J were changed to Java(TM)2 Software
Development Kit, Standard Edition, and Version 5.0 (JDK 5.0) or later.

Category Description

A. Changes During Upgrading

327

There were no changes in the default values for APIs, definitions, and commands in
TP1/Client/J 07-00.

329

Index

A
abbreviations defined iii
acceptNotification 213
acceptNotification method, information for 99
acceptNotificationChained 218
acceptNotificationChained method, information
for 101
API

how to use 144
list of 140
using connect method 66

API, execution order of 144
calling remote service (RPC) 146
connecting to TP1/Server's RAP-processing
server 146
creating instance of TP1Client class 144
initializing RPC environment 145
preparing to use TP1/Client/J 144
releasing permanent connection with RAP-
processing listener or server 147
releasing RPC environment 148

assembly facility, received message 52
auto connect mode 12

C
cache-expiration-time 310
cancelNotification 216
cancelNotification method, information for 100
chained RPC 17
closeConnection 171
closeConnection method, information for 90
closeNotification 221
cltAssemReceive 209
cltAssemReceive method, information for 98
cltAssemSend 207
cltAssemSend method, information for 97
cltReceive 202
cltReceive method, information for 96

cltSend 205
cltSend method, information for 97
code

correspondence to exception name 112
correspondence to method name 108

commit 37
in chained mode 37
in unchained mode 37

connect method 66
API using 66
exceptions when connect method times
out 67

connect mode
auto 12
non-auto 12

conventions
abbreviations iii
diagrams vi
fonts and symbols vi
KB, MB, GB, and TB viii
version numbers viii

Cosminexus Application Server
collating, with OpenTP1 trace 116
outputting performance analysis trace on 115

D
data compression facility 128, 312

effects of 129
data trace 105

collecting 298
data-trace-file-size 298
dccache 292
dccltcachetim 310
dccltconnectinf 312
dccltconnecttimeout 310
dccltcuprcvport 314
dccltcupsndhost 313
dccltdatacomp 312
dccltdbgtrcfilecount 307

Index

330

dccltdelay 291
dccltextend 292
dccltinquiretime 290
dccltloadbalance 310
dccltnammlthost 311
dccltprfinfosend 311
dccltprftrace 311
dccltrpcmaxmsgsize 308
dcclttrcmplmttm 314
dcclttrcputm 305
dcclttrexpsp 305
dcclttrexptm 305
dcclttrlimittime 301
dcclttroptiitem 299
dcclttrrbinfo 301
dcclttrrbrcv 302
dcclttrrecoverytype 303
dcclttrstatisitem 298
dcclttrwatchtime 300
DCCM3

connection facility 70
issuing ROC to 70
TCP/IP communication with 75

DCCM3 logical terminal, sending terminal
identification information to 75
dcdatatrace 298
dcdatatracemaxsize 298
dcdatatracepath 298
dcdatatracesize 298
dcerrtrace 297
dcerrtracepath 297
dcerrtracesize 297
dchost 289
dchostselect 292
dcmethodtrace 297
dcmethodtracepath 297
dcmethodtracesize 297
dcnamport 289
dcnamuse 288
dcrapautoconnect 294
dcrapdirect 294
dcrapport 294
dcrcvport 306
DCRpcBindTbl 223

dcscddirect 293
dcscdhostchange 309
dcscdloadpriority 293
dcscdmulti 312
dcscdmulticount 313
dcscdport 293
dcselint 292
dcsndhost 307
dcsndport 307
dcsndrcvtype 306
dcsockopenatrcv 307
dcuaptrace 297
dcuaptracepath 298
dcuaptracesize 298
dcwatchtim 290
dcwatchtiminherit 291
dcwatchtimrpcinherit 291
dcweburl 307
debug trace 114
definition 279

overview of 280
rules for 284

diagram conventions vi
directory-for-data-trace-file 298
directory-for-error-trace-file 297
directory-for-method-trace-file 297
directory-for-UAP-trace-file 298
dynamic definition changing facility 65

E
ErrAcceptCanceledException 224
ErrBufferOverflowException 225
ErrClientTimedOutException 227
ErrCollisionMessageException 226
ErrConnfreeException 228
ErrConnRefusedException 229
ErrFatalException 230
ErrHazardException 231
ErrHazardNoBeginException 232
ErrHeuristicException 233
ErrHeuristicNoBeginException 234
ErrHostUndefException 235
ErrInitializingException 237
ErrInvalidArgsException 238

Index

331

ErrInvalidMessageException 239
ErrInvalidPortException 240
ErrInvalidReplyException 242
ErrIOErrException 243
ErrMessageTooBigException 244
ErrNetDownAtClientException 245
ErrNetDownAtServerException 246
ErrNetDownException 247
ErrNoBeginException 248
ErrNoBufsAtServerException 249
ErrNoBufsException 250
ErrNoSuchServiceException 251
ErrNoSuchServiceGroupException 252
ErrNotTrnExtendException 253
ErrNotUpException 254
error handling 317
error information, collecting 149
error trace 105

collecting 297
error-trace-file-size 297
ErrProtoException 255
ErrReplyTooBigException 256
ErrRMException 257
ErrRollbackException 258
ErrRollbackNoBeginException 259
ErrSecchkException 260
ErrSecurityException 261
ErrServerBusyException 262
ErrServerTimedOutException 263
ErrServiceClosedException 264
ErrServiceNotUpException 265
ErrServiceTerminatedException 266
ErrServiceTerminatingException 267
ErrSyserrAtServerException 268
ErrSyserrException 269
ErrTestmodeException 270
ErrTimedOutException 271
ErrTMException 273
ErrTrnchkException 274
ErrTrnchkExtendException 275
ErrVersionException 276
exception name, correspondence to code 112
expiry-time-in-transaction-branch 305

F
facility extension level, setting 292
facility, adjusting 149
file access authority, specifying 9
firewall 19
font conventions vi
function for allocating a fixed terminal 76

G
GB meaning viii
getTrnID 201
getTrnID method, information for 95

H
heuristic situation, handling of 40
host-name-of-node-on-which-MHP-exists 307
host-name-of-TP1/Server-as-a-gateway 289

I
identifiers of current transaction, acquiring 42
important note on this manual viii
inter-node load-balancing facility 18

K
KB meaning viii

M
master scheduler daemon 31
maximum-communication-delay-time 291
maximum-communication-wait-time-during-
transaction-synchronization-point-processing 300
maximum-data-size-for-data-trace 298
maximum-entries-count-in-name-cache 292
maximum-executable-time-for-transaction-
branch 301
maximum-number-of-debug-trace-files 307
maximum-permanent-connection-inquiry-
interval 290
maximum-size-of-messages-sent-or-received-by-
RPC 308
maximum-time-allowed-for-completion-of-
transaction 314

Index

332

maximum-time-for-monitoring-connection-
establishment 310
maximum-time-to-wait-for-a-response 290
MB meaning viii
memory trace 105
message

bidirectional receiving 50
bidirectional sending 50
notes on receiving of 53
notes on sending of 53
unidirectional receiving of 47
unidirectional sending of 46

method name, correspondence to code 108
method trace 114

collecting 297
method-trace-file-size 297
multi-scheduler daemon 31
multi-scheduler facility 31, 313

N
network error, handling 319
non-auto connect mode 12
non-response type RPC 16

relationship with synchronization point 41

O
openConnection 166, 168, 170
openConnection() method, information for 84
openConnection(host, port) method, information
for 84
openConnection(url, flags) method, information
for 86
openNotification 217
openNotification method, information for 100
OpenTP1 client

feature of 2
functionality 11
overview of 1

OpenTP1, load-balancing facility 18
operand 288

P
performance analysis trace 115

collecting, of Cosminexus Application
Server 311
collection point 117
example of outputting 116
information collected in 116
outputting, on Cosminexus Application
Server 115

performance verification trace 116
adding identification information inside TP1/
Client/J as information output to 311
identification information is added to 117

permanent connection 12
automatically establishing 294
establishing 12
releasing 12

port-number-of-MHP-to-be-connected 307
port-number-of-name-service 289
port-number-of-RAP-processing-listener 294
port-number-of-schedule-service 293
port-number-of-the-receiving-CUP 306
port-number-used-for-reception-of-CUP 314
PRF trace 115
processes-count-for-multi-scheduler-daemon 313
program interface 139

R
RAP-processing listener, releasing permanent
connection with 147
RAP-processing server

connecting to TP1/Server's 146
releasing permanent connection with 147
whether or not RAP-processing server is to
inherit CUP's maximum time to wait for
response 291

receive port fixing facility 133
received message assembly facility 52
reception socket, trigger for opening 307
remote API facility 19, 294
rollback 38

completion report, receiving 302
in chained mode 39
in unchained mode 39
logging information about cause of 301

RPC 15

Index

333

calling 146
chained 17
issuing RPC using name service to TP1/Server
in multi-homed host environment 311
issuing, to TP1/Server in multi-homed host
environment 25
non-response type 16
synchronous-response 16
time monitoring of 19
using multi-scheduler facility 31
using name service 22, 288
using remote API facility 19
using scheduler direct facility 21, 293
using ServerSocket for 30
with communication destination specified 27

RPC environment
initializing 145
releasing 148

rpcCall 172, 180
rpcCall method, information for 86
rpcCallTo 188
rpcCallTo method, information for 88
rpcClose 166
rpcOpen 164, 165
rpcOpen method, information for 93

S
scheduler direct facility 21
scheduling facility 18
service request target scheduler

distributing to RPCs 309
storing in cache information on, with smallest
workload 310

setConnectInformation 212
setConnectInformation method, information for 98
setDataTraceMode 162
setDataTraceMode method, information for 103
setDccltdelay 156
setDccltdelay method, information for 91
setDccltextend 158
setDccltextend method, information for 91
setDccltinquiretime 155
setDccltinquiretime method, information for 91
setDchost 159

setDchost method, information for 92
setDcselint 157
setDcselint method, information for 91
setDcwatchtim 157
setDcwatchtim method, information for 90
setErrorTraceMode 163
setErrorTraceMode method, information for 102
setMethodTraceMode 161
setMethodTraceMode method, information for 102
setRpcextend 158
setRpcextend method, information for 92
setScdDirectObject 191
setTraceArray 160
setUapTraceMode 160
setUapTraceMode method, information for 101
source host specification facility 131
SPP 2
statistical-information-item 298
symbol conventions vi
synchronization point acquisition 37
synchronization point processing, method to be used in
the event of a UAP error 303
synchronous-response RPC 16

relationship with synchronization point 41
timeout, reduction of server workload in event
of 29

syntax conventions vii

T
TB meaning viii
TCP/IP communication facility 46

environment to initialize when being
used 306

TCP/IP connection, facility for monitoring
establishment 66
terminal identification information setting facility 76
terminal-identification-information 312
time monitoring 18, 19
timer value, validity of 320
TP1/Client/J

adjustment during execution 148
classes used with 153
development environment 9
environment definition 287

Index

334

environment definitions, list of 280
environment of 8
execution environment 10
installation 8
operation, mechanism of 5
preparing to use 144
relationship with TP1/Server 2

TP1/Server
as gateway 5
as gateway, having priority for load
balancing 293
as gateway, selecting randomly 292
connecting to RAP-processing server 146
in multi-homed host environment, issuing
RPC to 25
in multi-homed host environment, issuing
RPC using name service to 311
inheriting CUP's maximum time to wait for
response 291
relationship with TP1/Client/J 2
scheduling facility of 18

TP1/Web
connecting to (starting session) 59
connection facility 59
releasing connection (ending session) 60
RPC facility for connecting to 60
service requests to 59

TP1Client 154
TP1Client class, creating instance of 144
TP1ClientException 277
trace information, collecting 318
trace output, instructing 150
transaction

reporting information about current 42
verifying synchronization point in event of
error 42

transaction branch processing, monitoring 306
transaction branch, type of statistical information to be
acquired for 298
transaction control 35
transaction-branch-CUP-monitoring-interval 305
transaction-optimization-item 299
transmission-source-host 313
trnBegin 192

trnBegin method, information for 93
trnChainedCommit 193
trnChainedCommit method, information for 104
trnChainedRollback 196
trnChainedRollback method, information for 104
trnInfo 201
trnInfo method, information for 95
trnUnchainedCommit 198
trnUnchainedCommit method, information for 104
trnUnchainedRollback 199
trnUnchainedRollback method, information for 104
troubleshooting facility 82

U
UAP trace 83

collecting 297
UAP-trace-file-size 298
unidirectional server message reception facility 55
URL-of-TP1/Web-whose-service-is-requested 307

V
version number conventions viii

X
XA resource service facility 80

Reader’s Comment Form

We would appreciate your comments and suggestions on this manual. We will use
these comments to improve our manuals. When you send a comment or suggestion,
please include the manual name and manual number. You can send your comments
by any of the following methods:

• Send email to your local Hitachi representative.
• Send email to the following address:

 WWW-mk@itg.hitachi.co.jp
• If you do not have access to email, please fill out the following information

and submit this form to your Hitachi representative:

Manual name:

Manual number:

Your name:

Company or
organization:

Street address:

Comment:

(For Hitachi use)

