
OpenTP1 Version 7
TP1/Client User's Guide
TP1/Client/W, TP1/Client/P

3000-3-D58-20(E)

Relevant program products
Note: In the program products listed below, those marked with an asterisk (*) might be released later than the other program
products.
For AIX 5L V5.1, AIX 5L V5.2, AIX 5L V5.3, and AIX 6.1
P-1M64-2531 uCosminexus TP1/Client/W 07-02
For HP-UX 11i and HP-UX 11i V2 (PA-RISC)
R-18451-41K uCosminexus TP1/Client/W 07-02*
For HP-UX 11i V2 and HP-UX 11i V3 (IPF)
R-18451-21J uCosminexus TP1/Client/W 07-02*
For Solaris 8, Solaris 9, and Solaris 10
R-19451-216 uCosminexus TP1/Client/W 07-02*
For Red Hat Enterprise Linux 5.1 Advanced Platform and Red Hat Enterprise Linux 5.1 (x86, AMD64, or Intel EM64T)
P-9S64-2561 uCosminexus TP1/Client/W 07-02*
For Red Hat Enterprise Linux 5.1 Advanced Platform and Red Hat Enterprise Linux 5.1 (IPF)
P-9V64-2531 uCosminexus TP1/Client/W 07-02*
For Windows Vista, Windows Server 2003 x64 Editions, Windows Server 2003, Windows XP, and Windows 2000 (32-bit edition)
P-2464-2144 uCosminexus TP1/Client/P 07-02*
This manual can be used for other products, in addition to the products shown above. For details, see the Release Notes.
This product has been developed in accordance with a quality system approved under ISO 9001 and TickIT.

Trademarks
AIX is a registered trademark of the International Business Machines Corp. in the U.S.
COBOL/2 is a trademark of the International Business Machines Corp. in the U.S.
HP-UX is a product name of Hewlett-Packard Company.
Itanium is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft is a registered trademark of Microsoft Corp. in the U.S. and other countries.
MS-DOS is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other countries.
Solaris is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Windows is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Windows NT is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Windows Server is a registered trademark of Microsoft Corporation in the United States and/or other countries.
Windows Vista is a registered trademark of Microsoft Corporation in the United States and/or other countries.
X/Open is a registered trademark of X/Open Company Limited in the U.K. and other countries.
Portions of this document are extracted from X/Open CAE Specification System Interfaces and Headers, Issue4,(C202 ISBN
1-872630-47-2) Copyright (C) July 1992, X/Open Company Limited with the permission of X/Open; part of which is based on IEEE
Std 1003. 1-1990, (C) 1990 Institute of Electrical and Electronics Engineers, Inc. and IEEE std 1003.2/D12, (C) 1992 Institute of
Electrical and Electronics Engineers, Inc.
No further reproduction of this material is permitted without the prior permission of the copyright owners.
Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used
by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use
of a trademark in this document should not be regarded as affecting the validity of the trademark.

Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The

software described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of
the terms and conditions governing your use of the software and documentation, including all warranty rights, limitations of liability,
and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your country.
No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.
Printed in Japan.

Edition history
Edition 1 (3000-3-D58(E)): June 2006
Edition 2 (3000-3-D58-20(E)): March 2009

Copyright
All Rights Reserved. Copyright (C) 2006, 2009, Hitachi, Ltd.

Summary of amendments
The following table lists changes in this manual (3000-3-D58-20(E)) and product
changes related to this manual for uCosminexus TP1/Client/W 07-02 and
uCosminexus TP1/Client/P 07-02.

Changes Location

A facility that assembles messages and a facility for checking whether
a message has been delivered have been added.
With this addition, the following functions have been added:
• dc_clt_assem_send_s

• dc_clt_assem_receive_s

• CBLDCCLS('ASMSEND')

• CBLDCCLS('ASMRECV')

The following operand has been added to the client environment
definition:
• DCCLTDELIVERYCHECK

The description of the following message has been changed:
• KFCA02447-E

The following messages have been added:
• KFCA02485-E
• KFCA02486-E

2.5.1, 2.5.2, 2.5.3, 2.5.4, 2.5.5, 3.1.1,
4.6.4, 4.6.5, 5.1.1, 6.6.5, 6.6.6, 7.2.1,
7.2.2, 7.2.5, 8.2.1(4), 8.2.1(5), and 10.3

Identification information for performance verification set by TP1/
Client can now be included in the TP1/Server performance verification
trace.
With this change, the DCCLTPRFINFOSEND operand has been added to
the client environment definition.

2.11.5, 7.2.1, 7.2.2, and 7.2.5

A facility that specifies the sending host for a TP1/Client CUP has been
added.
With this addition, the DCCLTCUPSNDHOST operand has been added to
the client environment definition.

2.12.3, 2.13, 7.2.1, 7.2.2, and 7.2.5

An explanation of the facility that fixes the receive port has been added. 2.14

Notes on using functions and request statements have been added. 4.1 and 6.1

The explanation of the file loading order used when a path name is
specified in the defpath argument has been changed for the following
functions:
• dc_clt_cltin_s function
• dc_clt_accept_notification_s function
• dc_clt_cancel_notification_s function
• dc_clt_open_notification_s function

4.2.1(3), 4.7.1(3), 4.7.2(3), and 4.7.3(3)

The explanation of the file loading order used when a path name is
specified as a data name has been changed for the following request
statements:
• CBLDCCLS('CLTIN ')

• CBLDCCLS('EXCLTIN ')

• CBLDCCLS('NOTIFY ')

• CBLDCCLS('EXNACPT ')

• CBLDCCLS('CANCEL ')

• CBLDCCLS('EXNCANCL')

• CBLDCCLS('O-NOTIFY')

6.2.1(3), 6.2.2(3), 6.7.1(3), 6.7.2(3),
6.7.3(3), 6.7.4(3), and 6.7.5(3)

The explanation of the library name to be specified as a linkage option
has been changed.

5.2.2

data-name-C has been added to the explanation of data areas to which
CBLDCRPS('GETWATCH') returns values.

6.3.5(4)

CBLDCCLS('STCONIF ') has been added as a request statement for
setting terminal identification information.

6.4.5

The notes on the following functions have been changed:
• dc_clt_send_s function
• CBLDCCLS('SEND ')

• CBLDCCLS('EXSEND ')

4.6.1(5), 6.6.1(6), and 6.6.2(6)

An explanation that applies when a value from 1 to 65535 is set has
been added for data-name-E of CBLDCCLS('RECEIVE2').

6.6.4(3)

An explanation that request statements provided by the character code
converter can operate correctly in a multi-thread environment has been
added.

6.8 and 6.9

A list of client environment definition items has been added. 7.1

The range of specifiable values for the DCSCDMULTICOUNT operand in
the client environment definition has been changed to 1 to 4096, and
the default value for the operand has been changed to 1.

7.2.5

Version changes for the following versions have been added:
• TP1/Client/W 07-02
• TP1/Client/P 07-02

B.1

Changes Location

The following table lists changes in this manual (3000-3-D58-20(E)) and product
changes related to this manual for uCosminexus TP1/Client/W 07-01 and
uCosminexus TP1/Client/P 07-01.

Changes Location

The dc_clt_receive2_s function has been added to the functions
that can be executed from a CUP to receive messages from an MHP.

2.5.3

An explanation of executing functions that are not suitable for a
multi-thread environment has been added.

2.9.2 and 2.9.3

XATMI interface functions are no longer able to operate in a
multi-thread environment.

3.1.1, 4, and 4.8

For the dc_clt_cltin_s function, how the following arguments are
specified has been changed:
• logname

• passwd

4.2.1(3)

An explanation that a client environment definition can be specified
each time for each function call has been added for the following
functions:
• dc_clt_cltin_s function
• dc_clt_accept_notification_s function
• dc_clt_cancel_notification_s function
• dc_clt_open_notification_s function

4.2.1, 4.7.1, 4.7.2, 4.7.3, 7.2.8, and
7.2.9

The directory of COBOL templates for TP1/Client/W has been
changed.

5.3

The following operands have been added to the client environment
definition to prevent data transmission delays between TP1/Client and
TP1/Server Base:
• DCCLTRECVBUFSIZE

• DCCLTSENDBUFSIZE

• DCCLTTCPNODELAY

7.2.1, 7.2.2, and 7.2.5

If the name of the service group called by the dc_rpc_call_s
function has not been defined in the file specified in the
DCCLTSERVICEGROUPLIST operand, the DCCLTNOSERVER operand in
the client environment definition determines how TP1/Client operates.
An explanation to this effect has been added for the
DCCLTSERVICEGROUPLIST operand.

7.2.5

In addition to the above changes, minor editorial corrections have been made.

An explanation stating the following has been added: If TP1/Client
connects to a RAP-processing server, the operands in the
RAP-processing listener service definition take precedence for the
following operands:
• DCCLTTREXPTM

• DCCLTTREXPSP

• DCCLTTRCPUTM

• DCCLTINQUIRETIME

• DCCLTTRSTATISITEM

• DCCLTTROPTIITEM

• DCCLTTRWATCHTIME

• DCCLTTRRBINFO

• DCCLTTRLIMITTIME

• DCCLTTRRBRCV

• DCCLTTRRECOVERYTYPE

7.2.5

An explanation stating that the following functions read definitions
from the file specified in the defpath argument has been added:
• dc_clt_cltin_s function
• dc_clt_accept_notification_s function
• dc_clt_cancel_notification_s function
• dc_clt_open_notification_s function

7.2.8 and 7.2.9

Messages have been added. KFCA02445-E, KFCA02446-E,
KFCA02447-E, KFCA02450-W, and
KFCA02451-W

An explanation of changes made to functions, definitions, and
messages when the TP1/Client version was updated has been added.

Appendix B

Changes Location

i

Preface

This manual describes the functionality and use of the program products listed below:

• P-1M64-2532 uCosminexus TP1/Client/W 07-00

• P-2464-2147 uCosminexus TP1/Client/P 07-00

Products described in this manual, other than those for which the manual is released,
may not work with OpenTP1 Version 7 products. You need to confirm that the products
you want to use work with OpenTP1 products.

Intended readers
This manual is intended for system managers, system designers, programmers, and
operators.

Readers should first look at the manual OpenTP1 Description which introduces
OpenTP1.

Organization of this manual
This manual is organized as follows:

1. Overview
Outlines OpenTP1 Client features.

2. Facilities
Describes OpenTP1 client facilities.

3. User Application Program Interface (C Language)
Describes the user application program interface in C.

4. TP1/Client Functions (C Language)
Describes the functions that can be used in TP1/Client.

5. User Application Program Interface (COBOL Language)
Describes the user application program interface in COBOL.

6. Request Statements Available for TP1/Client (COBOL Language)
Describes the request statements that can be used in TP1/Client.

7. Definition
Explains the client environment definition.

ii

8. Operating Commands
Explains how to enter, code, and use TP1/Client operating commands.

9. Error Recovery
Explains how to deal with errors.

10. Messages
Explains TP1/Client messages.

A. Code Conversion Specifications
Explains the specifications of the code conversion performed by the character
code converter.

B. Version Changes
Explains the changes to functions, definitions, and messages made when the TP1/
Client version was updated.

Related publications
This manual is part of a related set of manuals. The manuals in the set, including this
manual, are listed below. The manual numbers follow the manual titles.
OpenTP1 products

• OpenTP1 Version 7 Description (3000-3-D50(E))

• OpenTP1 Version 7 Programming Guide (3000-3-D51(E))

• OpenTP1 Version 7 System Definition (3000-3-D52(E))

• OpenTP1 Version 7 Operation (3000-3-D53(E))

• OpenTP1 Version 7 Programming Reference C Language (3000-3-D54(E))

• OpenTP1 Version 7 Programming Reference COBOL Language
(3000-3-D55(E))

• OpenTP1 Version 7 Messages (3000-3-D56(E))

• OpenTP1 Version 7 Tester and UAP Trace User's Guide (3000-3-D57(E))

• OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/W, TP1/Client/P
(3000-3-D58(E))

• OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/J (3000-3-D59(E))

• OpenTP1 Version 7 Protocol TP1/NET/TCP/IP (3000-3-D70(E))
Other OpenTP1 products

• TP1/Web User's Guide and Reference (3000-3-D62(E))1

iii

Other related products

• VOS3 Data Management System XDM E2 Description (6190-6-620(E))
• VOS3 Data Management System XDM E2 System Definition (6190-6-625(E))

Note
You must check and confirm that the products described in these manuals will run
on your operating system.
1 If you want to use this manual, confirm that it has been published. (Some of
these manuals might not have been published yet.)

Conventions: Abbreviations
This manual uses the following abbreviations for product names:

Full name Abbreviation

AIX 5L V5.1 AIX

AIX 5L V5.2

AIX 5L V5.3

AIX 6.1

HP-UX 11i (PA-RISC) HP-UX

HP-UX 11i V2 (IPF)

HP-UX 11i V2 (PA-RISC)

HP-UX 11i V3 (IPF)

Itanium(R) Processor Family IPF

Red Hat Enterprise Linux 5.1 (AMD64) Linux

Red Hat Enterprise Linux 5.1 (Intel EM64T)

Red Hat Enterprise Linux 5.1 (IPF)

Red Hat Enterprise Linux 5.1 (x86)

Red Hat Enterprise Linux 5.1 Advanced Platform

Microsoft(R) MS-DOS(R) MS-DOS

Solaris 8 Solaris

Solaris 9

Solaris 10

iv

uCosminexus TP1/Client/P TP1/Client/P TP1/Client

uCosminexus TP1/Client/W TP1/Client/W

uCosminexus TP1/Extension 1 TP1/Extension 1

uCosminexus TP1/NET/TCP/IP TP1/NET/TCP/IP

uCosminexus TP1/Online Tester TP1/Online Tester

uCosminexus TP1/LiNK TP1/LiNK TP1/Server

uCosminexus TP1/Server Base TP1/Server Base

Microsoft(R) Windows(R) 2000 Advanced Server Operating System Windows 2000

Microsoft(R) Windows(R) 2000 Datacenter Server Operating System

Microsoft(R) Windows(R) 2000 Professional Operating System

Microsoft(R) Windows(R) 2000 Server Operating System

Microsoft(R) Windows(R) Software Development Kit Windows SDK

Microsoft(R) Windows Server(R) 2003, Datacenter Edition Windows Server
2003

Microsoft(R) Windows Server(R) 2003, Datacenter x64 Edition

Microsoft(R) Windows Server(R) 2003, Enterprise Edition

Microsoft(R) Windows Server(R) 2003, Enterprise x64 Edition

Microsoft(R) Windows Server(R) 2003 R2, Enterprise Edition

Microsoft(R) Windows Server(R) 2003 R2, Enterprise x64 Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard x64 Edition

Microsoft(R) Windows Server(R) 2003, Standard Edition

Microsoft(R) Windows Server(R) 2003, Standard x64 Edition

Microsoft(R) Windows Vista(R) Business (x86) Windows Vista
(32bit)

Windows
Vista

Microsoft(R) Windows Vista(R) Enterprise (x86)

Full name Abbreviation

v

• In this manual, Windows 2000, Windows Server 2003, Windows XP, and
Windows Vista are generally referred to as Windows.

• In this manual, AIX, HP-UX, Linux, and Solaris are generally referred to as
UNIX.

Abbreviations used in this manual are listed below.

Microsoft(R) Windows Vista(R) Ultimate (x86)

Microsoft(R) Windows Vista(R) Business (x64) Windows Vista
(64bit)

Microsoft(R) Windows Vista(R) Enterprise (x64)

Microsoft(R) Windows Vista(R) Ultimate (x64)

Microsoft(R) Windows(R) XP Home Edition Operating System Windows XP

Microsoft(R) Windows(R) XP Professional Operating System

Abbreviation Full name

API Application Programming Interface

CUP Client User Program

DAM Direct Access Method

DLL Dynamic Linking Library

EBCDIC Extended Binary Coded Decimal Interchange Code

ID Identifier

JIS Japanese Industrial Standard

KEIS Kanji Processing Extended Information System Code

MHP Message Handling Program

MTU Maximum Transmission Unit

OLTP Online Transaction Processing

PC Personal Computer

PRF PeRFormance

RPC Remote Procedure Call

Full name Abbreviation

vi

Conventions: Diagrams
The components of the diagrams in this manual have the following meanings unless
otherwise specified:

Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

SPP Service Providing Program

TCP/IP Transmission Control Protocol/Internet Protocol

UAP User Application Program

WAN Wide Area Network

WS Workstation

Abbreviation Full name

vii

• 1 TB (terabyte) is 1,0244 bytes.

Conventions: Platform-specific notational differences
For the Windows version of OpenTP1, there are some notational differences from the
description in the manual. The following table describes these differences.

Conventions: Version numbers
Note that the version numbers of Hitachi program products are often written as two
sets of two digits separated by a hyphen. For example:

• version 1.00 (or version 1.0) is written as 01-00

• version 2.05 is written as 02-05

• version 2.50 (or version 2.5) is written as 02-50

• version 12.25 is written as 12-25

So, for example, the version number written on the spine of a manual might take the
form Ver. 2.00 but the version number written in the program might take the form
02-00. These numbers indicate the same version.

Acknowledgements
Quotations from X/Open CAE Specification Distributed Transaction Processing:
The XATMI Specification published by X/Open Company Limited

The following section comes from Chapter 5 COBOL Reference Manual Pages of the
above document.

Chapter 4. User Application Program Interface (C Language)

Item Description in the manual Change to:

Environment variable $aaaaaa
Example: $DCDIR

%aaaaaa%
Example: %DCDIR%

Path name separator Colon (:) Semicolon (;)

Directory name separator Slash (/) Backslash (\)

Absolute path name A path from the root directory
Example: /tmp

A path name from a drive letter and the
root directory
Example: C:\tmp

Executable file name File name only (without an
extension)
Example: mcfmngrd

File name with an extension
Example: mcfmngrd.exe

make command make nmake

viii

4.8 XATMI interface facility (tp~)
COBOL acknowledgments

COBOL was developed by CODASYL (the Conference on Data Systems Languages).
The publisher of this manual expresses acknowledgment to the original developer and
presents the following acknowledgment statement as requested by CODASYL. This
statement is quoted from the acknowledgment in the original CODASYL COBOL
specification titled COBOL Journal of Development 1984.

Any organization interested in reproducing the COBOL report and specifications in
whole or in part, using ideas from this report as the basis for an instruction manual or
for any other purpose, is free to do so. However, all such organizations are requested
to reproduce the following acknowledgment paragraphs in their entirety as part of the
preface to any such publication. Any organization using a short passage from this
document, such as in a book review, is requested to mention "COBOL" in
acknowledgment of the source, but need not quote the acknowledgment.

COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL
COBOL Committee as to the accuracy and functioning of the programming system
and language. Moreover, no responsibility is assumed by any contributor, or by the
committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the Univac
(R) I and II, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand
Corporation; IBM Commercial Translator From No. F28-8013, copyrighted 1959 by
IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar publications.

Important note
Please check the availability of the products and manuals for HAmonitor,
ServerConductor/DeploymentManager, Cosminexus, and Job Management Partner 1/
Automatic Job Management System 2.

ix

Contents

Preface i

Intended readers ...i
Organization of this manual ...i
Related publications ..ii
Conventions: Abbreviations .. iii
Conventions: Diagrams ..vi
Conventions: KB, MB, GB, and TB ..vi
Conventions: Platform-specific notational differences ...vii
Conventions: Version numbers..vii
Acknowledgements ...vii
Important note ... viii

1. Overview 1

1.1 TP1/Client features ...2
1.2 TP1/Client operation ..4

2. Facilities 7

2.1 User authentication ...8
2.1.1 Implementing user authentication ...8
2.1.2 Specifying TP1/Server for authentication request ..8
2.1.3 Suppressing user authentication ..9
2.1.4 Communicating with a server other than TP1/Server9

2.2 Permanent connection ..10
2.2.1 Establishing and releasing the permanent connection...................................10
2.2.2 Definitions needed for permanent connection ..11
2.2.3 Reporting terminal identification information to the DCCM3 logical

terminal ...12
2.2.4 Notes on using permanent connection ..13

2.3 Remote procedure calls ..14
2.3.1 RPC initiation..14
2.3.2 RPC data transfer ..14
2.3.3 RPC types..14
2.3.4 Chained RPC...15
2.3.5 Scheduler ...16
2.3.6 Inter-node load-balancing facility ...17
2.3.7 RPC time monitoring ..20
2.3.8 Authentication RPC...20
2.3.9 RPC to servers other than OpenTP1 ...21

x

2.3.10 RPC using the name service ... 23
2.3.11 RPC using the multi-scheduler facility... 23
2.3.12 Switching facility of TP1/Server as a gateway... 27
2.3.13 Load distribution for TP1/Server as a gateway .. 28
2.3.14 Data compression ... 29
2.3.15 Remote API facility .. 31
2.3.16 Reducing server loads during timeout at synchronous response type PRC 34

2.4 Transaction control .. 36
2.4.1 Starting a transaction and acquiring a synchronous point 36
2.4.2 Acquiring a synchronous point... 38
2.4.3 Relationship between remote procedure call modes and synchronous

points .. 41
2.4.4 Collecting identifiers for current transactions .. 45
2.4.5 Posting information for current transactions .. 45
2.4.6 Detecting the synchronous point of a transaction when an error occurs 46
2.4.7 Notes on transaction control ... 47

2.5 TCP/IP communication function ... 49
2.5.1 Send-only messages.. 49
2.5.2 Receive-only messages... 50
2.5.3 Sending and receiving messages .. 53
2.5.4 Message assembly facility and delivery confirmation facility 55
2.5.5 Notes on using the TCP/IP communication facility 64

2.6 Facility for receiving one-way messages from the server 67
2.6.1 Overview of the facility for receiving one-way messages from the server .. 67
2.6.2 Overview of the continuous reception function for one-way messages 68
2.6.3 Notes on using the continuous reception function for one-way messages ... 69

2.7 XATMI interface facility ... 71
2.7.1 Interactive service... 72
2.7.2 Interactive service time monitoring.. 75
2.7.3 Receiving events... 77
2.7.4 Communication data type... 77
2.7.5 Notes on using the XATMI interface facility ... 77

2.8 Character code converter ... 79
2.8.1 When not using a code mapping table.. 79
2.8.2 When using a code mapping table .. 80

2.9 Multi-threading .. 82
2.9.1 Overview of a CUP suitable for multi-threading.. 82
2.9.2 Execution of functions not suited to multi-threading 82
2.9.3 Notes on using multi-threading .. 84

2.10 Online tester ... 85
2.11 Troubleshooting ... 86

2.11.1 Error logging... 86
2.11.2 UAP trace collection... 86
2.11.3 Socket trace collection .. 87

xi

2.11.4 Module trace collection ...87
2.11.5 TP1/Server performance verification trace ...88
2.11.6 Note on using the troubleshooting facility ..90

2.12 Host name extension...91
2.12.1 Host name length and host name storage area length that can be specified in

the arguments of C functions ..91
2.12.2 COBOL-UAP creation programs when the host name extension function is

used ...92
2.12.3 Number of characters that can be specified in an operand in the client

environment definition..93
2.12.4 Notes on using the host name extension function94

2.13 Send-host specification facility ..95
2.14 Fixed receive-port facility ..97

3. User Application Program Interface (C Language) 101

3.1 Function interface ...102
3.1.1 Table of functions..102
3.1.2 Format of function descriptions ..106

3.2 Compiling and linking user application programs ...108
3.2.1 Compiling and linking in UNIX environment ..108
3.2.2 Compiling and linking in Windows environments......................................109

3.3 Example of user application program development ...114
3.3.1 Creating CUPs and SPPs...114
3.3.2 Creating a user application program that supports a multi-thread

environment ..120

4. TP1/Client Functions (C Language) 123

4.1 Notes on using functions ..124
4.2 User authentication ...125

4.2.1 dc_clt_cltin_s - client user authentication request125
4.2.2 dc_clt_cltout_s - release of client user authentication130

4.3 Remote procedure calls ..131
4.3.1 dc_rpc_open_s - UAP startup ...131
4.3.2 dc_rpc_close_s - UAP termination ...132
4.3.3 dc_rpc_call_s - remote service request ...133
4.3.4 dc_rpc_call_to_s - Request a remote service with the communication

destination specified..142
4.3.5 dc_rpc_set_watch_time_s - Updating the wait time for service response ..149
4.3.6 dc_rpc_get_watch_time_s - Referencing the wait time for service

response...150
4.3.7 DCRPC_DIRECT_SCHEDULE - Create a DCRPC_BINDING_TBL

structure...151
4.4 Permanent connection ..153

4.4.1 dc_clt_connect_s - Establish permanent connection...................................153

xii

4.4.2 dc_clt_disconnect_s - Release permanent connection................................ 155
4.4.3 dc_clt_set_raphost_s - Set the destination of a request to establish a permanent

connection .. 157
4.4.4 dc_clt_get_raphost_s - Acquire the destination of a request to establish a

permanent connection .. 159
4.4.5 dc_clt_set_connect_inf_s - Set terminal identification information........... 162

4.5 Transaction control .. 165
4.5.1 dc_trn_begin_s - Transaction startup.. 165
4.5.2 dc_trn_chained_commit_s - Commit in chained mode.............................. 167
4.5.3 dc_trn_chained_rollback_s - Rollback in chained mode............................ 169
4.5.4 dc_trn_unchained_commit_s - Commit in unchained mode...................... 171
4.5.5 dc_trn_unchained_rollback_s - Rollback in unchained mode.................... 173
4.5.6 dc_clt_get_trnid_s - Collection of identifiers for current transaction 175
4.5.7 dc_trn_info_s - Post information about current transaction 177

4.6 TCP/IP communication function ... 179
4.6.1 dc_clt_send_s - Sending messages ... 179
4.6.2 dc_clt_receive_s - Receiving messages.. 181
4.6.3 dc_clt_receive2_s - Receiving messages (messages receivable even if an error

occurs) .. 184
4.6.4 dc_clt_assem_send_s - Sending assembled messages................................ 187
4.6.5 dc_clt_assem_receive_s - Receiving assembled messages 191

4.7 Facility for receiving one-way messages from the server 195
4.7.1 dc_clt_accept_notification_s - One-way message reception...................... 195
4.7.2 dc_clt_cancel_notification_s - Canceling one-way message wait 200
4.7.3 dc_clt_open_notification_s - Start reception of one-way messages........... 203
4.7.4 dc_clt_close_notification_s - Terminate reception of one-way messages.. 207
4.7.5 dc_clt_chained_accept_notification_s - Receive a one-way message 208

4.8 XATMI interface facility ... 212
4.8.1 tpalloc - Allocate typed buffer .. 212
4.8.2 tpfree - Release typed buffer... 213
4.8.3 tpconnect - Establish connection with interactive service.......................... 214
4.8.4 tpdiscon - Disconnect connection with interactive service 218
4.8.5 tpsend - Send message to interactive service.. 219
4.8.6 tprecv - Receive message from interactive service 222

4.9 Character code converter (When not using a code mapping table) 227
4.9.1 dc_clt_code_convert - Converting character codes.................................... 227

4.10 Character code converter (When using a code mapping table) 231
4.10.1 dc_clt_codeconv_open - Starting character code conversion................... 231
4.10.2 dc_clt_codeconv_close - Terminating character code conversion 233
4.10.3 dc_clt_codeconv_exec - Executing character code conversion 234

5. User Application Program Interface (COBOL Language) 239

5.1 COBOL-UAP creation program features .. 240
5.1.1 Correspondence between UAPs and facilities.. 240

xiii

5.1.2 Format of COBOL-UAP creation program descriptions243
5.2 Compiling and linking user application programs ...246

5.2.1 Compiling and linking in a UNIX environment..246
5.2.2 Compiling and linking in a Windows environment247

5.3 COBOL language template ..250
5.3.1 COBOL language template files ...250
5.3.2 Using COBOL language template...250
5.3.3 Notes on using COBOL language template ..251

5.4 Example of user application program development ...252
5.4.1 Creating CUPs and SPPs...252
5.4.2 Creating a user application program that can run in a multi-thread

environment ..258

6. Request Statements Available for TP1/Client (COBOL Language) 267

6.1 Notes on using request statements..268
6.2 User authentication ...269

6.2.1 CBLDCCLS('CLTIN ') - Client user authentication request.....................269
6.2.2 CBLDCCLS('EXCLTIN ') - Client user authentication request (for an

extended host name) ...273
6.2.3 CBLDCCLS('CLTOUT ') - Release of client user authentication278

6.3 Remote procedure calls ..281
6.3.1 CBLDCRPS('OPEN ') - UAP startup...281
6.3.2 CBLDCRPS('CLOSE ') - UAP termination..283
6.3.3 CBLDCRPS('CALL ') - Remote service request285
6.3.4 CBLDCRPS('SETWATCH') - Service response wait time update293
6.3.5 CBLDCRPS('GETWATCH') - Service response wait time reference.........294

6.4 Permanent connection ..297
6.4.1 CBLDCCLS ('CONNECT ') - Establish permanent connection.................297
6.4.2 CBLDCCLS ('DISCNCT ') - Release permanent connection.....................300
6.4.3 CBLDCCLS('STRAPHST') - Set the destination of a request to establish a

permanent connection ...302
6.4.4 CBLDCCLS('GTRAPHST') - Acquire the destination of a request to establish

a permanent connection ..305
6.4.5 CBLDCCLS('STCONINF') - Set terminal identification information........307

6.5 Transaction control ...310
6.5.1 CBLDCTRS('BEGIN ') - Transaction startup ...310
6.5.2 CBLDCTRS('C-COMMIT') - Commit in chained mode............................312
6.5.3 CBLDCTRS('C-ROLL ') - Rollback in chained mode315
6.5.4 CBLDCTRS('U-COMMIT') - Commit in unchained mode........................317
6.5.5 CBLDCTRS('U-ROLL ') - Rollback in unchained mode319
6.5.6 CBLDCTRS('INFO ') - Post information for current transaction321
6.5.7 CBLDCCLS('GETTRNID') - Collection of identifiers for current

transaction ...323
6.6 TCP/IP communication function..325

xiv

6.6.1 CBLDCCLS('SEND ') - Sending messages ... 325
6.6.2 CBLDCCLS('EXSEND ') - Sending messages (for an extended host

name) .. 328
6.6.3 CBLDCCLS('RECEIVE ') - Receiving messages...................................... 331
6.6.4 CBLDCCLS('RECEIVE2') - Receiving messages (messages receivable even

if an error occurs) ... 334
6.6.5 CBLDCCLS('ASMSEND ') - Send assembled messages 337
6.6.6 CBLDCCLS('ASMRECV ') - Receiving assembled messages.................. 341

6.7 Facility for receiving one-way messages from the server 346
6.7.1 CBLDCCLS('NOTIFY ') - Receiving one-way messages 346
6.7.2 CBLDCCLS('EXNACPT ') - Receiving one-way messages (for an extended

host name) .. 350
6.7.3 CBLDCCLS('CANCEL ') - Canceling one-way message wait state 355
6.7.4 CBLDCCLS('EXNCANCL') - Canceling one-way message wait state (for an

extended host name)... 359
6.7.5 CBLDCCLS('O-NOTIFY') - Start reception of one-way messages........... 363
6.7.6 CBLDCCLS('C-NOTIFY') - Terminate reception of one-way messages .. 366
6.7.7 CBLDCCLS('A-NOTIFY') - Receive a one-way message 368
6.7.8 CBLDCCLS('EXNCACPT') - Receive a one-way message (for an extended

host name) .. 371
6.8 Character code converter (When a code mapping table is not used)..................... 375

6.8.1 CBLDCUTL ('CODECNV ') - Converting character codes...................... 375
6.9 Character code converter (When a code mapping table is used) 378

6.9.1 CBLDCUTL('CNVOPN ') - Starting character code conversion............. 378
6.9.2 CBLDCUTL('CNVCLS ') - Terminating character code conversion........ 380
6.9.3 CBLDCUTL('CNVEXEC') - Executing character code conversion.......... 381

7. Definition 385

7.1 Overview.. 386
7.1.1 List of client environment definition operands... 386
7.1.2 Definition conventions ... 392

7.2 Definition details.. 394
7.2.1 TP1/Client/W format .. 394
7.2.2 TP1/Client/P format.. 397
7.2.3 TP1/Client/W.. 399
7.2.4 TP1/Client/P ... 400
7.2.5 Operands common to TP1/Client/W and TP1/Client/P.............................. 400
7.2.6 TP1/Client/W-specific operands... 430
7.2.7 Operands for TP1/Client/P only ... 431
7.2.8 Notes on TP1/Client/W .. 431
7.2.9 Notes on TP1/Client/P .. 432

8. Operating Commands 433

8.1 Operating command syntax ... 434

xv

8.2 Operating command descriptions ...436
8.2.1 cltdump (edit and output a trace)...436

9. Error Recovery 459

9.1 Communication errors ..460
9.2 Client errors ..461
9.3 Errors in a remote operation request to XDM/DCCM3 ...462

10. Messages 463

10.1 Format of output messages ...464
10.2 Format of message descriptions ...465
10.3 List of messages ...467

Appendixes 487

A. Code Conversion Specifications..488
A.1 Codes supported by TP1/Client/P ...488
A.2 Conversion of shift-JIS codes and KEIS codes...490
A.3 Code conversion examples ..503
A.4 Notes on code conversion..505

B. Version Changes ..506
B.1 Changes made in 07-02 ...506
B.2 Changes made in 07-01 ...507
B.3 Changes made in 07-00 ...508

Index 511

xvi

List of figures

Figure 1-1: Relationship between TP1/Server and TP1/Client.. 3
Figure 1-2: TP1/Client operation (1/2) .. 5
Figure 1-3: TP1/Client operation (2/2) .. 6
Figure 2-1: Establishing and releasing permanent connection ...11
Figure 2-2: RPC data transfer .. 14
Figure 2-3: Process flow of a synchronous response type RPC... 15
Figure 2-4: Process flow of a no-response type RPC .. 15
Figure 2-5: RPC processing for a non-OpenTP1 server .. 22
Figure 2-6: Overview of data compression .. 30
Figure 2-7: Remote API facility... 32
Figure 2-8: Overview of processing by function for reducing server loads during timeout of

synchronous response type RPC ... 35
Figure 2-9: Relationship between transactions and RPCs .. 37
Figure 2-10: Transactions in chained and unchained modes ... 38
Figure 2-11: Rollback of transaction (when an error occurs in OpenTP1 processing) 39
Figure 2-12: Rollback of transaction (when a rollback request function is issued)................. 40
Figure 2-13: Synchronous-response type RPCs and synchronous points 42
Figure 2-14: No-response type RPCs and synchronous points ... 43
Figure 2-15: Chained RPCs and synchronous points (transactional chained RPC)................. 44
Figure 2-16: Chained RPCs and synchronous points (non-transactional chained RPC when

no-release is specified) ... 45
Figure 2-17: Detection method for synchronous point of transaction in the event of error 47
Figure 2-18: Processing of send-only messages ... 50
Figure 2-19: Processing of receive-only messages .. 52
Figure 2-20: Processing of receive-only messages if an error occurs...................................... 53
Figure 2-21: Sending and receiving a message.. 55
Figure 2-22: Format of messages sent or received when the message assembly facility is

used... 57
Figure 2-23: Format of messages sent or received when the message delivery confirmation

facility is used... 57
Figure 2-24: Format of response-only data .. 58
Figure 2-25: Flow of sending a message when the message assembly facility is used 59
Figure 2-26: Flow of receiving a message when the message assembly facility is used......... 60
Figure 2-27: Flow of sending a message when the message delivery confirmation facility is

used... 61
Figure 2-28: Flow of receiving a message when the message delivery confirmation facility is

used... 62
Figure 2-29: Flow of processing when send and receive messages collide 63
Figure 2-30: Processing flow for facility for receiving one-way messages from the server ... 68
Figure 2-31: Processing flow for the continuous reception function for one-way messages .. 69

xvii

Figure 2-32: Process flow of communication by interactive service..72
Figure 2-33: Communication mode of interactive service ...75
Figure 2-34: Overview of the character code converter ...80
Figure 2-35: Execution of functions not suited to a multi-thread environment (example 1) ...82
Figure 2-36: Execution of functions not suited to a multi-thread environment (example 2) ...83
Figure 2-37: Difference when the send-host specification facility is used and when it is not

used..96
Figure 2-38: Processing when the fixed receive-port facility is not used (for RPCs that use the

scheduler direct facility)..98
Figure 2-39: Processing when the fixed receive-port facility is used (for RPCs that use the

scheduler direct facility)..99
Figure 3-1: Procedure for creating a CUP ..110
Figure 3-2: Example of CUP and SPP structure .. 114
Figure 5-1: Creating a new COBOL CUP ..248
Figure A-1: Character code correspondence when DCCLT_CNV_SPCHAN is specified....504
Figure A-2: Character code correspondence when DCCLT_CNV_TAB is specified............504
Figure A-3: Character code correspondence when DCCLT_CNV_CNTL is specified505

xviii

List of tables

Table 2-1: Operations when the load-balancing facility is used with other facilities 20
Table 2-2: Client environment definition and scheduler daemon .. 26
Table 2-3: Function settings, definition specification and permanent connection destinations33
Table 2-4: Relationship between the facility to be used and the DCCLTDELIVERYCHECK

specification of the client environment definition.. 56
Table 2-5: Handling of an error detected by the validity check for message length................ 63
Table 2-6: Handling of an error detected by the validity check for response-only data 64
Table 2-7: Handling of an error detected by the validity check for a received message 64
Table 2-8: Transaction generation time.. 74
Table 2-9: Host name lengths that can be specified in the arguments of C functions.............. 91
Table 2-10: Host name storage area lengths that can be specified in the arguments of C

functions ... 92
Table 2-11: COBOL-UAP creation program that is called by the CALL statement used with the

host name extension function ... 93
Table 3-1: Table of functions ... 102
Table 3-2: Required compiler options (in HI-UX/WE2, HP-UX, and non-Windows

environments) ... 108
Table 3-3: Required compiler options (Windows environment and normal object libraries).111
Table 3-4: Required compiler options (Windows environment and DLLs)111
Table 5-1: TP1/Client functions and corresponding COBOL-UAP creation programs......... 240
Table 7-1: Client environment definition operands.. 386
Table 8-1: Call information for the dc_rpc_open_s function (function code: 1) 440
Table 8-2: Call information for the dc_rpc_close_s function (function code: 2)................... 441
Table 8-3: Call information for the dc_rpc_call_s function (function code: 3) 441
Table 8-4: Call information for the dc_clt_cltin_s function (function code: 4) 442
Table 8-5: Call information for the dc_clt_cltout_s function (function code: 5) 442
Table 8-6: Call information for the dc_clt_send_s function (function code: 6)..................... 443
Table 8-7: Call information for the dc_clt_receive_s function (function code: 7)................. 443
Table 8-8: Call information for the dc_trn_begin_s function (function code: 8)................... 444
Table 8-9: Call information for the dc_trn_chained_commit_s function (function code: 9) . 444
Table 8-10: Call information for the dc_clt_set_raphost_s function (function code: 1a) 445
Table 8-11: Call information for the dc_clt_get_raphost_s function (function code: 1b)...... 445
Table 8-12: Call information for the dc_clt_assem_send_s function (function code: 1c) 445
Table 8-13: Call information for the dc_clt_assem_receive_s function (function code: 1d). 446
Table 8-14: Call information for the dc_trn_chained_rollback_s function (function code:

a) ... 447
Table 8-15: Call information for the dc_trn_unchained_commit_s function (function code:

b)... 447
Table 8-16: Call information for the dc_trn_unchained_rollback_s function (function code:

c) ... 448

xix

Table 8-17: Call information for the dc_trn_info_s function (function code: d)448
Table 8-18: Call information for the dc_clt_get_trnid_s function (function code: e).............448
Table 8-19: Call information for the dc_rpc_get_watch_time_s function (function code: f).449
Table 8-20: Call information for the dc_rpc_set_watch_time_s function (function code:

10)..449
Table 8-21: Call information for the dc_clt_connect_s function (function code: 13)450
Table 8-22: Call information for the dc_clt_disconnect_s function (function code: 14)........450
Table 8-23: Call information for the dc_clt_receive2_s function (function code: 17)451
Table 8-24: Call information for the dc_clt_set_connect_inf_s function (function code: 18)451
Table 8-25: Call information for the dc_rpc_call_to_s function (function code: 19).............452
Table 8-26: Call information for the dc_clt_accept_notification_s function (function code:

100)..453
Table 8-27: Call information for the dc_clt_cancel_notification_s function (function code:

101)..454
Table 8-28: Call information for the dc_clt_open_notification_s function (function code:

102)..455
Table 8-29: Call information for the dc_clt_close_notification_s function (function code:

103)..455
Table 8-30: Call information for the dc_clt_chained_accept_notification_s function (function

code: 104)..456
Table 8-31: Call information for the tpalloc function (function code: 200)456
Table 8-32: Call information for the tpfree function (function code: 201).............................457
Table 8-33: Call information for the tpconnect function (function code: 202).......................457
Table 8-34: Call information for the tpdiscon function (function code: 203).........................457
Table 8-35: Call information for the tpsend function (function code: 204)............................458
Table 8-36: Call information for the tprecv function (function code: 205)458
Table 10-1: Message types..465
Table 10-2: Message output destinations..466
Table A-1: The character code sets supported by TP1/Client/P ...488
Table A-2: Specifications for conversion of Shift-JIS and KEIS codes491
Table A-3: Conversion from shift-JIS to KEIS83...491
Table A-4: Conversion from KEIS83 to shift-JIS...493
Table A-5: Code mappings between shift-JIS, KEIS78, and KEIS83 (1)494
Table A-6: Code mappings between shift-JIS, KEIS78, and KEIS83 (2)495
Table A-7: Code conversion from JIS to EBCDIK (1)...496
Table A-8: Code conversion from JIS to EBCDIK (2)...497
Table A-9: Code conversion from EBCDIK to JIS (1)...498
Table A-10: Code conversion from EBCDIK to JIS (2)...499
Table A-11: Code conversion from JIS to EBCDIC (1) ...500
Table A-12: Code conversion from JIS to EBCDIC (2) ...501
Table A-13: Code conversion from EBCDIC to JIS (1) ...502
Table A-14: Code conversion from EBCDIC to JIS (2) ...503
Table B-1: Addition and deletion of functions, definition operands, and commands made in

TP1/Client/W 07-02 and TP1/Client/P 07-02 ...506

xx

Table B-2: Operation changes made in TP1/Client/W 07-02 and TP1/Client/P 07-02 506
Table B-3: Default-value changes made in TP1/Client/W 07-02 and TP1/Client/P 07-02 ... 507
Table B-4: Addition and deletion of functions, definition operands, and commands made in

TP1/Client/W 07-01 and TP1/Client/P 07-01 .. 507
Table B-5: Addition and deletion of functions, definition operands, and commands made in

TP1/Client/W 07-00 and TP1/Client/P 07-00 .. 508
Table B-6: Operation changes made in TP1/Client/W 07-00 and TP1/Client/P 07-00 508

1

Chapter

1. Overview

This chapter contains the following sections:

1.1 TP1/Client features
1.2 TP1/Client operation

1. Overview

2

1.1 TP1/Client features

OpenTP1 Client (TP1/Client) allows a workstation (WS) or personal computer (PC) to
request services from an OpenTP1 server UAP using remote procedure calls. The WS
or PC program that requests a service is called a CUP. The server UAP is called an
OpenTP1 service providing program (SPP).

WS: Workstation

PC: Personal Computer

CUP: Client User Program

SPP: Service Providing Program

By using TP1/Client, transactions can be started from a SPP activated by a CUP. This
enables construction of a distributed OLTP environment using LAN-connected WSs
or PCs as clients.

This manual refers to TP1/Client/W and TP1/Client/P when describing the WS and PC
versions of TP1/Client, respectively.

The manual also uses TP1/Server as a generic name for TP1/Server Base and TP1/
LiNK.

The following figure shows the relationship between TP1/Server and the two TP1/
Client versions.

1. Overview

3

Figure 1-1: Relationship between TP1/Server and TP1/Client

1. Overview

4

1.2 TP1/Client operation

When executing the following facilities, TP1/Client uses a specific TP1/Server as a
gateway.

• User authentication facility

• Remote procedure call (RPC)

• RPC without the name service

• RPC for allocating a process that manages transactions

RPC: Remote Procedure Call

Specify the gateway TP1/Server using DCHOST in the client environment definition or
using a function argument when requesting user authentication.

The following figures show how TP1/Client operates.

1. Overview

5

Figure 1-2: TP1/Client operation (1/2)

1. Overview

6

Figure 1-3: TP1/Client operation (2/2)

7

Chapter

2. Facilities

This chapter describes the client facilities of OpenTP1.

In this chapter, C functions (dc_xxx_xxx_s) are used to call the DLL for a facility. If
you use functions of the normal object library (dc_xxx_xxx) or COBOL, replace the C
function names with the corresponding function or facility names.

This chapter contains the following sections:

2.1 User authentication
2.2 Permanent connection
2.3 Remote procedure calls
2.4 Transaction control
2.5 TCP/IP communication function
2.6 Facility for receiving one-way messages from the server
2.7 XATMI interface facility
2.8 Character code converter
2.9 Multi-threading
2.10 Online tester
2.11 Troubleshooting
2.12 Host name extension
2.13 Send-host specification facility
2.14 Fixed receive-port facility

2. Facilities

8

2.1 User authentication

User authentication is a TP1/Client facility for restricting the client users that receive
services from TP1/Server. To receive TP1/Server services, the user must be registered
at the TP1/Server host.

User authentication can be used only when the version of TP1/Server Base is 01-02 or
later.

2.1.1 Implementing user authentication
Before requesting a service from TP1/Client to TP1/Server, you need to let the CUP
execute the dc_clt_cltin_s function. Specify the user name and password to
authenticate the user for receiving services from TP1/Server.

This server authenticates the client user based on the OpenTP1 security server or user
management information for UNIX, Windows NT or Windows 2000.

To use user authentication, preparation is required on the server side. The preparation
differs depending on whether the security server is used.

When the security server is used for authentication:

Register the user name, group name, and password in the OpenTP1 registry.

When you want to use the same authentication as for a login to the system where TP1/
Server is running without using the security server:

Client user authentication is performed based on the user management
information. In a UNIX system, register the login name and password in /etc/
passwd. In a Windows NT 4.0 system or Windows 2000 system, use User
Manager to register the users.

Note that when client_uid_check=N is specified in the system common definition
of TP1/Server, the users not registered in the user management information can also
be authenticated.

In a Windows environment, more than one CUP can run concurrently. Therefore, user
authentication is required for each CUP. To perform user authentication for each CUP,
TP1/Client provides API functions for user authentication. Before a CUP executes the
dc_rpc_open_s function, the CUP executes the dc_clt_cltin_s function to be
permitted to execute dc_rpc_open_s.

2.1.2 Specifying TP1/Server for authentication request
Evaluate and determine TP1/Server for which you request authentication in the
following preferences.

1. Node specified for an argument of the dc_clt_cltin_s function

2. Facilities

9

2. Node specified for DCHOST in the client environment definition

3. Node that first returns a response to the inquiry issued to TP1/Server

2.1.3 Suppressing user authentication
You may want to suppress user authentication (prevent communication from
occurring) when you use the remote API facility, for example. To suppress user
authentication, specify DCCLTAUTHENT=N in the client environment definition or
specify DCCLT_NO_AUTHENT in the flags argument of the dc_clt_cltin_s
function.

You must issue the dc_clt_cltin_s function even when suppressing user
authentication.

2.1.4 Communicating with a server other than TP1/Server
In an environment where TP1/Server does not exist, you can communicate with a
DCCM3 logical terminal or another server by specifying DCCLTNOSERVER=Y in the
client environment definition.

You must issue the dc_clt_cltin_s function even when communicating with a
server other than TP1/Server. In the logname argument of the dc_clt_cltin_s
function, specify a value other than NULL. If you specify NULL, the
dc_clt_cltin_s function will return with the DCCLTER_INVALID_ARGS error.

2. Facilities

10

2.2 Permanent connection

TP1/Client allows the message exchange by maintaining connection between a CUP
and the server. This connection method is called permanent connection. You can
specify logical terminals for TP1/Server and VOS3 XDM/DCCM3 as remote servers
for which you request to establish a permanent connection. The permanent connection
decreases control packets for establishing and releasing connection, providing
effective communication.

For brevity, this manual calls VOS3 XDM/DCCM3 simply DCCM3.

2.2.1 Establishing and releasing the permanent connection
Using the dc_clt_connect_s function, a CUP requests the server's client extended
service to establish permanent connection. When the process accepts an establishment
request, it passes that request to the CUP execution process. When the CUP receives
an establishment acknowledgment message from the CUP execution process,
permanent connection is established between the CUP and the CUP execution process.

A one-to-one correspondence is established between a CUP and a CUP execution
process. One OpenTP1 node can simultaneously accept as many CUPs as the
maximum number of processes for the CUP execution process (the specification of
cup_parallel_count in the client service definition).

Then the succeeding messages are transferred through the permanent connection until
the CUP releases it using the dc_clt_disconnect_s function. An error also
releases the permanent connection. The following figure shows how permanent
connection is established and released.

2. Facilities

11

Figure 2-1: Establishing and releasing permanent connection

2.2.2 Definitions needed for permanent connection
When you use permanent connection, you need the following definitions.

• Client environment definition

DCCLTINQUIRETIME

DCCLTPORT

DCCLTDCCMHOST

DCCLTDCCMPORT

2. Facilities

12

• Client service definition

clt_inquire_time

clt_port

clt_cup_conf

cup_parallel_count

cup_balance_count

2.2.3 Reporting terminal identification information to the DCCM3
logical terminal

When you use a permanent connection to communicate with a DCCM3 logical
terminal, you can report the terminal identification information that you specify on the
client (TP1/Client) to the DCCM3 logical terminal. Therefore, you can use the
DCCM3's function for allocating a fixed terminal.

(1) Exchanging messages at the DCCM3 logical terminal
A DDCM3 logical terminal exchanges messages with another logical terminal. When
a DCCM3 logical terminal communicates with a CUP of TP1/Client, the DCCM3
logical terminal uses the IP address and the DCCM3 logical terminal's port number to
identify the CUP as a logical terminal.

When a DCCM3 logical terminal communicates with a multi-thread CPU, a service
request from any thread has the same IP address and port number. Therefore, if several
DCCM3 logical terminals that communicate with a multi-thread CUP are defined on
the DCCM3 side, the combination of the CUP and the DCCM3 logical terminal is not
unique. This may cause problems to some applications since the sequence of DCCM3
server processing is not guaranteed when different DCCM3 logical terminals receive
service requests.

(2) Reporting terminal identification information
When you use a permanent connection to communicate with a DCCM3 logical
terminal, you can report the terminal identification information that you specify on
TP1/Client to the DCCM3 logical terminal. Therefore, you can use the DCCM3's
function for allocating a fixed terminal. Use the logical terminal name of the DCCM3
logical terminal as the terminal identification information.

By reporting the terminal identification information to the DCCM3 logical terminal,
the CUP is always allocated to the same logical terminal. Therefore, you can identify
the combination of the CUP and the logical terminal.

To report the terminal identification information to the DCCM3 logical terminal,
specify the terminal identification information in DCCLTCONNECTINF of the client
environment definition. Alternatively, execute the dc_clt_set_connect_inf_s
function to set the terminal identification information.

2. Facilities

13

When you use a permanent connection to communicate with the DCCM3 logical
terminal, the following two methods are available. However, only method 2 can report
terminal identification information to the DCCM3 logical terminal.

1. Specify the host name of the DCCM3 logical terminal in the DCCLTDCCMHOST
client environment definition and the port number of the DCCM3 logical terminal
in DCCLTDCCMPORT. Specify DCCLT_DCCM3 in the flags argument of the
dc_clt_connect_s function.

2. Specify the host name and the port number of the DCCM3 logical terminal in the
DCCLTRAPHOST client environment definition and specify DCNOFLAGS in the
flags argument of the dc_clt_connect_s function.

(3) Notes on reporting terminal identification information to the DCCM3 logical
terminal

• Reporting terminal identification information enables you to use DCCM3's
function for allocating a fixed terminal only when you use DCCM3 version 09-03
and later. For details about the function for allocating a fixed terminal, see the
manual VOS3 Data Management System XDM E2 Description.

• If DCCM3 does not define the logical terminal name of the DCCM3 logical
terminal that matches the terminal identification information specified on TP1/
Client, the dc_clt_connect_s function returns a DCCLTER_NET_DOWN error.

2.2.4 Notes on using permanent connection
• You cannot establish permanent connection from within a transaction. After

establishing permanent connection, generate a transaction. When you specify a
DCCM3 logical terminal as the destination of a request to establish permanent
connection, you cannot generate transactions from a CUP.

• When the facility for establishing permanent connection is used, if a
communication error or timeout occurs on the client, the permanent connection
will be released.

• If any timer used for monitoring on the server side expires during establishment
of a permanent connection, the server may fail. If the server fails, a function
issued by a CUP may be placed in a wait state until a timeout occurs (until the
maximum time to wait for a response expires). This phenomenon occurs because
the server cannot recognize the packets sent from the client. To prevent this
phenomenon from occurring, set appropriate values in all the timers.

2. Facilities

14

2.3 Remote procedure calls

This section describes the process of a remote procedure call (RPC) from a CUP to a
SPP.

For details of RPCs, see the manual OpenTP1 Programming Guide.

2.3.1 RPC initiation
To request an SPP service, execute a service-requesting function from the CUP.
Specifically execute the dc_rpc_call_s function whose arguments specify the SPP
service group name and service name.

The SPP is activated by the TP1/Server user service configuration definition or the
dcsvstart command.

2.3.2 RPC data transfer
To pass data in an RPC, specify the following arguments when executing the
dc_rpc_call_s function: SPP service group name, service name, input parameter,
input parameter length, service response storage area, and response length.

The following figure shows RPC data transfer.

Figure 2-2: RPC data transfer

2.3.3 RPC types
TP1/Client can execute synchronous response type RPCs or no-response type RPCs.

(1) Synchronous response type RPC
The CUP sends an inquiry message to an SPP and receives a response message.

2. Facilities

15

Subsequent CUP processing waits until the SPP returns the processing result.

The following figure shows the process flow of a synchronous response type RPC.

Figure 2-3: Process flow of a synchronous response type RPC

(2) No-response type RPC
The CUP sends an inquiry message to an SPP but does not receive a response message.
Subsequent CUP processing is executed without receiving the processing result from
the SPP.

The following figure shows the process flow of a no-response type RPC.

Figure 2-4: Process flow of a no-response type RPC

2.3.4 Chained RPC
A multi-server environment can concurrently activate multiple instances of the same

2. Facilities

16

SPP for multiple processes. In this environment, an SPP execution process is started
every time a service is requested. When a CUP calls the same service group more than
once, the SPPs of the service group are not always executed with the same process.
However, if you use synchronous-response RPCs to request more than one service of
the same service group, the services can be executed with the same process. This
execution method is called a chained RPC.

A chained RPC can be used only when a transaction is started from a CUP or a
permanent connection has been established.

Using a chained RPC reduces the number of user processes required for processing one
transaction, leading to a lower load on the transaction processing. If used as a
transaction, the chained RPC works on one global transaction.

The chained RPC is assured on a CUP process basis. However, note that, if a different
client UAP is used even within the same global transaction, it is not assured that the
service called several times is started in the same process.

(1) Starting a chained RPC
To request a service that will work in chained-RPC mode, specify 'DCRPC_CHAINED'
in the flags of the dc_rpc_call_s function. Requesting the service with this value
specified lets the SPP recognize the chained RPC and reserves a process. Specify
'DCRPC_CHAINED' in the flags for the second or subsequent service requests.

(2) Terminating a chained RPC
A chained RPC can be terminated by either

• Issuing the dc_rpc_call_s function whose flags is DCNOFLAGS to the service
group working in the chained-RPC mode,

or

• Performing synchronous-point processing (commit or rollback) to complete the
global transaction executing in chained-RPC mode.

(3) Watching chained RPC time
The UAP requested to provide a service in chained-RPC mode watches the time
between returning a response to the CUP and requesting the next service or the
synchronous-point process of a transaction. If the next service or synchronous-point
processing request does not arrive within the watching time, the system assumes a
CUP error and terminates the SPP abnormally. The watching time must be specified
in 'watch_next_chain_time' of the user service definition.

2.3.5 Scheduler
The TP1/Server Base scheduler is valid as well for a service request from the CUP to
an SPP. TP1/Server Base creates a schedule queue for each SPP service group and
schedules a service request. If the SPP is specified as a server that receives requests

2. Facilities

17

from socket ('receive_from=socket' specified by the TP1/Server Base user
service definition), the SPP can directly receive a service request from the CUP, not
via the schedule queue.

Multiple nodes can activate the server that processes the same service group. This
server is called a multi-node server. It can distribute service requests from the client
to each node, decreasing the processing load. This facility is called the internode
load-balancing. However, distributing requests requires extra memory for storing
server information. When you are sure the single server is operating, you can maintain
improved performance by not distributing service requests.

DCCLTLOADBALANCE in the client environment definition specifies whether to use the
internode load-balancing.

Specify the memory size for storing server information using DCCACHE in the client
definition. When you specify a larger memory size, you can store more server
information, distributing service requests to many servers. If you do not use the load
distributing function, allocating more memory speeds up the service information
retrieval, thus improving the performance.

When you use the load distributing function, you can specify an effective period for
retaining the server information in memory. The shorter the effective period is, the
more often the server load information is retrieved, distributing the load based on the
most recent state. Because this frequently causes an overhead for load information
retrieval, however, the performance may degrade. To specify the effective period, use
DCCLTCACHETIM in the client environment definition.

2.3.6 Inter-node load-balancing facility
OpenTP1 has the inter-node load-balancing facility that distributes the load across
nodes so that the RPC-based requests do not concentrate on a specific node.

To use the inter-node load-balancing facility, a load-balancing environment must
satisfy the following conditions:

• A user server for providing the same services to more than one node is running.

• For the OpenTP1 nodes to exchange their user server information (name
information) with each other, in each node, the other nodes are specified in the
all_node clause in the system common definition.

This subsection explains the related definitions, processing, and RPC handling of the
client side and the server side when using the inter-node load-balancing facility.

(1) Server-centric load balancing
The schedule service of TP1/Server distributes the load to the nodes that can execute
more efficiently according to the schedule status of the nodes.

2. Facilities

18

(a) Definition on the client side
Specify dcscddirect=Y in the client environment definition. By this specification,
the clients request the load-balancing from the schedule service of TP1/Server.
Therefore, the OpenTP1 node containing the governing schedule service must be
defined on the client side.

The OpenTP1 nodes request scheduling in the order in which they are specified in the
dchost operand. To make the OpenTP1 nodes request scheduling at random, you
must also add dchostselect=Y in the definition.

(b) Definition on the server side
On the server side, configure either of the following settings:

• In the schedule service definition, set the following operands:

scd_this_node_first=N (default)

scd_announce_server_status=Y (default)

• Omit the schedule service definition.

(2) Client-centric load balancing by using the load information from the server
To use this feature, define the following:

• Definition on the client side

Specify DCCLTLOADBALANCE=Y in the client environment definition.

• Definition on the server side

Specify scd_announce_server_status=Y (default value) in the schedule
service definition.

With this specification, the client acquires the server's load level from the server to
determine the OpenTP1 node from which the client requests a service. The client then
executes an RPC.

The client asks the name service of TP1/Server, which functions as a gateway for
clients, for the information about the service. The client then temporarily stores the
service information, including the server load level, in a cache area whose size is
specified in the DCCACHE operand in the client environment definition.

If the applicable service information exists in the cache area when the client executes
the RPC, the client does not ask the name service of TP1/Server that is used as a
gateway for service information.

Since clients manage the cache using the Least Recently Used (LRU) method, service
information is deleted starting from the least referenced information when the cache
areas run short. Also, service information that has exceeded its effective period
specified in the DCCLTCACHETIM operand in the client environment definition is

2. Facilities

19

deleted from the cache areas when RPCs are executed. When this happens, the clients
ask the name service for service information.

When you increase the value specified for the DCCACHE operand in the client
environment definition, a large amount of service information can be stored. This
reduces the number of communications with the TP1/Server name service that is used
as a gateway. However, since service information is retrieved from many cache areas,
more overhead is required.

When you decrease the value specified for the DCCACHE operand in the client
environment definition, the information about the services provided by applicable SPP
on multiple nodes may exceed the cache areas. In such a case, even if you re-execute
an RPC from the client, the RPC-based request is not sent to the SPP on the node
whose service information is not stored in a cache area.

When you decrease the value specified for the DCCLTCACHETIM operand in the client
environment definition, old service information is immediately deleted and the client
asks the TP1/Server name service that is used as a gateway for new service
information. Since new service information is always stored in the cache areas,
RPC-based requests can be distributed in accordance with the load of the servers.
However, the number of communications with the name service increases and the
overhead for rewriting the cache areas also increases.

When you increase the value specified for the DCCLTCACHETIM operand in the client
environment definition, the number of communications with the TP1/Server name
service that is used as a gateway can be reduced. However, the reaction to status
changes of SPPs is delayed, and RPC-based requests may be sent to an inactive SPP.
In this case, TP1/Client deletes the applicable service information from the cache areas
before you send an RPC-based request to another SPP. Then, TP1/Client sends a
request to the TP1/Server name service that is used as a gateway to delete the
applicable service information.

In a multi-node server configuration with 129 or more servers, when
nam_service_extend=1 is specified in the name service definition for the TP1/
Server that is used as a gateway, specify DCCLTNAMEXTEND=1 in the client
environment definition. By doing so, you can increase the maximum number of
service information items that a client can acquire at a time from the name service,
from 128 to 512.

(3) Operations when the load-balancing facility is used with other facilities
Table 2-1 shows the operations when the load-balancing facility is used with other
facilities.

2. Facilities

20

Table 2-1: Operations when the load-balancing facility is used with other
facilities

2.3.7 RPC time monitoring
When you use a synchronous-response type RPC, you can monitor the time until a
response message is received. Specify the monitoring time using DCWATCHTIM in the
client environment definition.

You can also set the monitoring time by letting the CUP execute the
dc_rpc_set_watch_time_s function.

To change the monitoring time depending on services you request, set the monitoring
time before executing the RPC. You can reference the specified monitoring time by
executing the dc_rpc_get_watch_time_s function.

When no response message returns after the specified monitoring time, the RPC
returns control with an error.

2.3.8 Authentication RPC
You can execute an RPC for the server that is protected by the OpenTP1 security
service. When executing the RPC, check to see if the user authenticated by the user
authentication function has the right to request the service.

Using the authentication RPC function requires more memory to execute the CUP.
When the memory usage is limited for CUP execution, or the RPC is executed for a
server not protected by the security service, disabling the authentication RPC increases
the free memory size. Specify DCCLTSECURITY in the client environment definition
not to use the authentication RPC.

The authentication RPC function is unavailable if no security function is installed on
TP1/Server that authenticated the user. No extra area is allocated in memory. You
need not explicitly disable the use of the authentication RPC.

Condition Operation

When a permanent connection is used in the client The CUP executing process on the server side issues RPCs
on the node to which a permanent connection is established.
In this case, the load-balancing facility operates in the same
way as in (2)(b) above.

When the transaction control API is used in the
client

The alternate transaction-executing process on the server
side issues RPCs. In this case, the load-balancing facility
operates in the same way as in (2)(b) above.

When the remote API facility is used The RAP-processing server on the server side issues RPCs.
In this case, the load-balancing facility operates in the same
way as in (2)(b) above.

2. Facilities

21

2.3.9 RPC to servers other than OpenTP1
TP1/Client can issue an RPC to non-OpenTP1 servers such as DCCM3. To implement
this feature, the server needs a function that interprets OpenTP1 RPC requests.

(1) Specifying the remote server
For issuing an RPC, specify the remote server using the service group name and the
service name in the same manner as RPCs for the OpenTP1 server. Since the client
calls a server that is not controlled by the OpenTP1 name service, the client needs a
feature that is equivalent to the name service for interpreting addresses.

(2) Address definition for the remote server
At the client side, create a text file for a list of RPC entry points (host computer names
and port numbers) corresponding to the service group name. Declare this text file in
DCCLTSERVICEGROUPLIST of the client environment definition.

At RPC execution, TP1/Client checks this list for the specified service group name. If
a match is found, TP1/Client issues the RPC to the corresponding RPC entry point.

(3) RPC function overview
Available RPCs are of synchronous-response and non-response types. If an RPC is
executed under transaction control, an OpenTP1 transaction does not process it.
Because the service group name and the server makes a pair, the load distributing
function is also unavailable. However, if you use a permanent connection to execute
an RPC to a DCCM3 logical terminal, the load distributing function is available. For
details on the load distribution when executing an RPC to a DCCM3 logical terminal,
see (4).

When you issue an RPC to DCCM3, the service name is assumed to be a transaction
name.

The following figure illustrates RPC processing for non-OpenTP1 server.

2. Facilities

22

Figure 2-5: RPC processing for a non-OpenTP1 server

(4) Load distribution when executing an RPC for a DCCM3 logical terminal
When TP1/Client and the DCCM3 logical terminal use a permanent connection to
execute an RPC, the load can be distributed to multiple DCCM3s. The system selects
the connection destinations at random from the host names and port numbers of
multiple DCCM3 logical terminals specified in the client environment definition, and
the system attempts to connect the selected destinations. If an attempt to connect the
selected DCCM3 logical terminals fails, those DCCM3 logical terminals are
eliminated from the options. Then, the system re-selects some of the remaining
DCCM3 logical terminals specified in the client environment definition at random,
and the system attempts to connect the selected destinations. This step will be
repeated. If all the attempts to connect the DCCM3 logical terminals specified in the
definition fail, the system assumes an error.

2. Facilities

23

The methods of communication possible between TP1/Client and the DCCM3 logical
terminal are as follows. However, only methods 1 and 2 can perform load distribution
since they use a permanent connection.

1. Specify the host name of the DCCM3 logical terminal in the DCCLTDCCMHOST
client environment definition and the port number of the DCCM3 logical terminal
in DCCLTDCCMPORT. Specify DCCLT_DCCM3 in the flags argument of the
dc_clt_connect_s function. A permanent connection is used in this case.

2. Specify the host name and the port number of the DCCM3 logical terminal in the
DCCLTRAPHOST client environment definition and DCNOFLAGS in the flags
argument of the dc_clt_connect_s function. A permanent connection is used
in this case.

3. Specify the file that specifies the host name and the port number of the DCCM3
logical terminal for each service group in the DCCLTSERVICEGROUPLIST client
environment definition. A permanent connection is not used in this case.

2.3.10 RPC using the name service
TP1/Client performs RPCs using the name service function of TP1/Server. TP1/Client
manages OpenTP1 system service information using the name service function.

Since TP1/Client uses the cache for service information, it minimizes inquiries into the
TP1/Server name service. If the cache contains no service information or the effective
cache period expires, TP1/Client communicates with the TP1/Server name service.

To minimize communications between TP1/Client and the server, you can disable the
TP1/Server name service function. In this case, an RPC generates no name service
inquiry, decreasing communication load between TP1/Client and the server. This is
useful when TP1/Client is connected to the server via WAN.

Specify whether to perform the RPC without the name service using DCSCDDIRECT of
the client environment definition.

The name service function directly allows a remote service request such as the
schedule service for DCHOST in the client environment definition or the host computer
specified when the user authentication is executed. When this function is used, RPCs
are unavailable for the socket-receiving type server SPP.

2.3.11 RPC using the multi-scheduler facility
When a CUP requests, a service of the SPP that uses the schedule queue
(queue-receiving server), the scheduler daemon of the node that has the requested SPP
receives the service request message and stores the message into the schedule queue
of the requested SPP. The scheduler daemon is a system daemon that provides
schedule services.

When a long service request is sent to the scheduler daemon, the request is divided into
parts of a fixed length. The scheduler daemon then assembles the parts into the original

2. Facilities

24

request, and stores the assembled message in the schedule queue of the
queue-receiving server. In an OpenTP1 system, multiple scheduler daemon processes
cannot be executed concurrently. Therefore, while the scheduler daemon is receiving
a service request message, the scheduler daemon cannot receive any other service
request messages. If a long service request is sent over a slow line, scheduling of other
service request messages might be delayed, hindering the streamlining of the
scheduling in a large-scale system made up of high-performance machines and
networks. To prevent scheduling delays, in addition to the scheduler daemon, you can
start multiple daemon processes dedicated to receiving service requests to receive
service request messages in parallel. This functionality is called the multi-scheduler
facility. Hereafter, the ordinary scheduler daemon is called the master scheduler
daemon, and the daemons dedicated to receiving service requests are called
multi-scheduler daemons.

For details about system configurations that might require the multi-scheduler facility,
see the manual OpenTP1 Version 7 Programming Guide.

(1) Selecting a multi-scheduler daemon at random
The multi-scheduler facility randomly selects one of the active multi-scheduler
daemons to send service requests.

A multi-scheduler daemon can be selected at random to execute the following RPCs:

(a) RPCs that do not use the name service
When you specify Y in the DCSCDDIRECT client environment definition to execute an
RPC that does not use the name service, the daemon selection method differs
depending on whether DCSCDPORT is specified in the client environment definition.

DCSCDPORT is specified

When either of the following port numbers is specified in DCSCDPORT, the system
can randomly select a multi-scheduler daemon without inquiring the service
information from the name service of the TP1/Server that is assigned as a
gateway. This eliminates the communication with the name server, thus reducing
the load on the name service.

• Port number of the schedule service specified in the scd_port operand in
the schedule service definition

• Port number specified in the -p option of the scdmulti schedule service
definition

Beforehand, you must specify the number of multi-scheduler daemon processes
started on TP1/Server in DCSCDMULTICOUNT of the client environment
definition. The port number of a multi-scheduler daemon used to send service
requests is selected at random from the following range of port numbers:

• Lower limit: Port number value specified in DCSCDPORT of the client

2. Facilities

25

environment definition

• Upper limit: Lower limit value + the number of processes specified in
DCSCDMULTICOUNT of the client environment definition - 1

Note that the value specified in the scdmulti schedule service definition must
be consistent with TP1/Server gateways that are specified in the DCHOST client
environment definition.

DCSCDPORT is not specified

The system requests the authentication of the client user. After the client user is
authenticated, the system obtains the service information from the name service
of TP1/Server which is assigned as a gateway at the first service request. The
system uses this information to select multi-scheduler daemons at random and
sends the service requests. The service information is valid until either of the
following conditions applies:

• The authentication of the client user is disabled (by executing the
dc_clt_cltout_s function).

• The gateway TP1/Server is switched.

The range of port numbers of multi-scheduler daemons for sending service
requests is determined based on the port number specified in the -p option which
is specified first in the scdmulti schedule service definition. Therefore,
consider the sequence of specifying the schedule service definition.

(b) Regular RPCs
This subsection applies when the multi-scheduler facility is used to execute regular
RPCs (RPCs that use the name service). In this case, if the temporary storage area for
service information does not contain the desired service information, the system asks
the name service for the service information. The system uses the service information
to select multi-scheduler daemons at random and sends service requests.

(2) Client environment definition and scheduler daemon for sending service
requests

When you use the multi-scheduler facility, the scheduler daemon for sending service
requests differs depending on the specification in the client environment definition.

Table 2-2 shows the relationship between the client environment definition and the
scheduler daemon.

2. Facilities

26

Table 2-2: Client environment definition and scheduler daemon

Legend:

Y: Y is specified for the operand.

N: N is specified for the operand.

V: A value is specified for the operand.

Operand values in the client environment definition Scheduler daemon for
sending service requests

DCSCDMULTI DCSCDDIRE
CT

DCSCDPORT DCSCDMULTI
-COUNT

Y Y V V Multi-scheduler daemon selected
at random#1

-- Scheduler daemon started with the
port number specified in
DCSCDPORT

-- V Multi-scheduler daemons
randomly selected from the
multi-scheduler daemons that are
determined based on the port
number specified in the -p option
defined first in the scdmulti
schedule service definition#2

--

N V V Multi-scheduler daemon
randomly selected based on the
service information#2--

-- V

--

N Y V V Scheduler daemon started with the
port number specified in
DCSCDPORT--

-- V Master scheduler daemon#2

--

N V V Server that receives requests from
a socket or master scheduler
daemon#2--

-- V

--

2. Facilities

27

--: No value is specified for the operand.

#1:

The port number of a multi-scheduler daemon is selected from the following
range:

Lower limit: Schedule service port number specified in DCSCDPORT of the client
environment definition

Upper limit: Lower limit value + the DCSCDMULTICOUNT value in the client
environment definition - 1

#2:

Inquiries to the name service occur.

2.3.12 Switching facility of TP1/Server as a gateway
If an error occurs in TP1/Server as a gateway, after the error is returned, the definition
of TP1/Server as the gateway needs to be changed. However, if multiple TP1/Servers
are specified as gateways, TP1/Client switches to the next specified TP1/Server if an
error occurs.

When CUPs request service at the same time, inquires will become concentrated on
the name service of a single gateway TP1/Server, thus increasing the load. The
random selection of multiple TP1/Servers distributes the load on the gateway TP1/
Server. For details on the load distribution by random selection of multiple TP1/
Servers, see Subsection 2.3.13 Load distribution for TP1/Server as a gateway.

(1) TP1/Server switches because of the following conditions.
• If an error is detected in TP1/Server as a gateway when performing user

authentication.

• If the communication fails with the name service of TP1/Server, which is used as
a gateway when issuing RPCs.

• If the communication fails with the schedule service of TP1/Server, which is used
as a gateway when issuing the RPC without the name service.

• If the communication fails between the transaction accept service of TP1/Server
when issuing the RPC that allocates the transaction management process.

• If the client receives an error response from TP1/Server used as a gateway while
a service is being requested, a schedule service is being started, or a schedule
service is being terminated.

(2) How to specify the switch destination OpenTP1
• Specify multiple TP1/Servers, which are used as gateways, in the target_host

argument of the user authentication function.

2. Facilities

28

• Specify multiple TP1/Servers, which are used as gateways, in DCHOST of the
client environment definition.

• In addition to the above specifications, specify DCHOSTCHANGE=Y in the client
environment definition to switch TP/Server when:

The client receives an error response from TP1/Server used as a gateway while a
service is being requested, a schedule service is being started, or a schedule
service is being terminated.

(3) Sequence of switching
• When target_host is specified as an argument of the user authentication

function, TP1/Servers switch in the sequence they are specified in
target_host.

• If target_host is not specified as an argument of the user authentication
function, TP1/Servers switch in the sequence specified in DCHOST in the client
environment definition.

2.3.13 Load distribution for TP1/Server as a gateway
When CUPs request service at the same time, inquires will become concentrated on
the name service of a single gateway TP1/Server, thus increasing the load. If TP1/
Client can select multiple TP1/Servers at random as gateways, the load on the gateway
TP1/Server can be distributed.

(1) Selecting gateway TP1/Servers at random
To select gateway TP1/Servers at random, specify Y in the DCHOSTSELECT client
environment definition.

When a CUP requests service, the CUP inquires the node that has the desired service
from the name service of the gateway TP1/Server which is specified in the DCHOST
client environment definition.

When multiple gateway TP1/Servers are specified, TP1/Client first inquires of the
name service of the gateway TP1/Server that is specified at the beginning. If the
service request is not accepted since TP1/Server specified at the beginning is not
started or for other reasons, an attempt is made to switch to the next TP1/Server which
is specified as the next gateway. This is the only case where a TP1/Server switch is
attempted.

(2) Distributing the load on the gateway TP1/Server with priority
TP1/Server distributes the service requests to multiple nodes to distribute the load on
the nodes. The schedule service of a node that receives service requests may
sometimes transfer the service requests to TP1/Server on a different node to distribute
the load. However, if TP1/Client has selected gateway TP1/Servers at random, the
service requests are distributed from the already-selected gateway TP1/Server to a

2. Facilities

29

different TP1/Server in a different node. This may cause some overhead.

To prevent the above situation, you can distribute the load on the gateway TP1/Server
selected by TP1/Client with priority. To distribute the load on the gateway TP1/Server
with priority, specify Y in the DCSCDLOADPRIORITY client environment definition.

This definition is valid only when you execute RPCs without using the name service
(specify Y in the DCSCDDIRECT client environment definition).

Note
When you distribute the load on the gateway TP1/Server of a node with priority
and the gateway TP1/Server stops due to an error, TP1/Client switches the failed
gateway TP1/Server to a different gateway TP1/Server. Even if the previous TP1/
Server is restarted, TP1/Client uses the current gateway TP1/Server with priority.
Therefore, the restarted TP1/Server may not receive as many service requests as
before from TP1/Client even though its load is low.

To change the gateway TP1/Server, reexecute the canceling of the authentication
of the client user (dc_clt_cltout function or dc_clt_cltout_s function)
and the requesting of the authentication of the client user (dc_clt_cltin_s
function). By doing so, the restarted TP1/Server may be assigned as the gateway
TP1/Server .

2.3.14 Data compression
The data compression compresses the user data sent to the network by RPCs.
Compression reduces the number of packets sent to the network, easing congestion in
the network.

(1) Specification method
Specify data compression using DCCLTDATACOMP in the client environment definition.

(2) Scope
The data compression can be used if the service-requested TP1/Server Base is version
03-03 or later.

(3) Overview of the facility
Using this facility, TP1/Client compresses the value of the input parameter (in) set by
the dc_rpc_call_s function which is issued from the CUP and sends it to the
network. For this inquiry, the value of the response (out) returned from the SPP is
also compressed by TP1/Server and sent to the network. TP1/Client that receives the
response decompresses the compressed data and passes it to the CUP.

The compression depends on the version of the service-requested TP1/Server Base as
follows.

2. Facilities

30

(a) Version 03-05 or earlier
When the input parameter value is not compressed, TP1/Server Base does not
compress the response value even if compressing it will be effective.

(b) Version 03-06 or later
Even if the input parameter value is not compressed, TP1/Server Base compresses the
response value if compressing it will be effective.

The following figure gives an overview of the data compression.

Figure 2-6: Overview of data compression

(4) Effect of the data compression
The effect of the data compression depends on the contents of the user data. The data
compression is effective when the user data contains many consecutive identical
characters. For some types of user data, it is hardly effective at all. When executing
the dc_rpc_call_s function more than once from the same CUP, consider the effect
of the data compression for each CUP.

Because compressing and decompressing data requires much overhead, consider the
effect of the data compression and evaluate its performance before using it.

2. Facilities

31

2.3.15 Remote API facility
TP1/Client provides permanent connection between a CUP and the server. Using this
connection, the CUP can transfer an API to the server, allowing a server process to
execute that API. This capability is called the remote API facility. You can also use
the remote API facility to issue a service request to a UAP inside a firewall. A firewall,
which is located between a shared network and a restricted network, is hardware and
software for preventing a third party from illegally entering the network.

When passing through the firewall using the remote API facility, the CUP issues the
dc_clt_cltin_s (DCCLT_NO_AUTHENT specified in flags) function to send a
request for establishing a permanent connection to the RAP-processing listener in TP1/
Server.

Upon the reception of a response for establishing the permanent connection, the
permanent connection with the RAP-processing server is established. After the
establishment of a permanent connection, any request to the RAP-processing server is
sent using the permanent connection. After disconnection, however, the system sends
a request to the RAP-processing listener.

When using this function, specify DCCLTRAPHOST for the client environment
definition.

The remote API facility is also available for requesting services to DCCM3 logical
terminal.

When Y is specified in DCCLTRAPAUTOCONNECT of the client environment definition,
a permanent connection is automatically established between the CUP and the
RAP-processing server or between the CUP and the DCCM3 logical terminal. In this
case, the dc_clt_connect_s function and the dc_clt_disconnect_s function do
not need to be executed.

The following figure illustrates the remote API facility.

2. Facilities

32

Figure 2-7: Remote API facility

(1) Prerequisites
The remote API facility is available for service-requested TP1/Server Base with
version 03-05 or later.

To use the remote API facility to control transactions, service-requested TP1/Server
Base must be version 03-06 or later.

You can request services to DCCM3 logical terminals with version 09-02 or later as
well as:

• TP1/Client/W 03-04 or later

• TP1/Client/P 03-04 or later

(2) Scope
When using this facility to execute an RPC for DCCM3, you cannot generate a
transaction for which the CUP is the root transaction. Also, you cannot concurrently
establish a permanent connection with two or more remote systems.

This facility cannot access the XATMI interface.

(3) Selecting a permanent connection destination
The destination of a permanent connection varies with the flags set by the
dc_clt_connect_s function, and with specified DCCLTDCCMHOST and
DCCLTRAPHOST in the client environment definitions. When passing through the
firewall using the remote API facility, specify DCCLTRAPHOST in the client

2. Facilities

33

environment definition.

Table 2-3 lists relationships between the function settings, definition specification and
permanent connection destinations.

Table 2-3: Function settings, definition specification and permanent connection
destinations

Legend:

Y: Specified

-: Not specified

1

Establish permanent connection for a DCCM3 logical terminal specified by
DCCLTRAPHOST.

2

Establish permanent connection for a DCCM3 logical terminal specified by
DCCLTDCCMHOST.

(4) Notes on controlling transactions by using the remote API facility
The permanent connection destination you specify in the DCCLTRAPHOST client
environment definition must be TP1/Server Base 03-06 or later. If you use a
version earlier than this, the dc_trn_begin_s function returns a
DCCLTER_PROTO error. This is also the same when the DCCM3 logical terminal
is specified as the permanent connection destination. In this case, or the

Argument flags Client environment definition Establishing
permanent

connection for:DCCLTDCCMHOST DCCLTRAPHOST

DCNOFLAGS Y Y RAP-processing server or
DCCM3 logical terminal1

 - CUP execution process

 - Y RAP-processing server or
DCCM3 logical terminal1

 - CUP execution process

DCCLT_DCCM3 Y Y DCCM3 logical terminal2

 - DCCM3 logical terminal2

 - Y Error return

 - Error return

2. Facilities

34

dc_trn_begin_s function returns a DCCLTER_PROTO error.

The online tester facility of TP1/Server is unavailable. If you specify a test user
ID in the DCUTOKEY client environment definition, the dc_trn_begin_s
function returns an error with DCCLTER_PROTO.

2.3.16 Reducing server loads during timeout at synchronous
response type PRC

When you execute the dc_rpc_call_s function from the TP1/Client CUP, TP1/
Server accepts a service request. Since execution wait time, execution time,
communication error or other causes may delay this request. TP1/Client sets the limit
of response wait time to monitor errors.

TP1/Server does not have a way to handle the maximum response wait time for TP1/
Client. TP1/Server may, therefore, continue processing even if TP1/Client has
detected a timeout.

A function for reducing server loads during the timeout of a synchronous response type
RPC allows TP1/Server to remove the above unnecessary processing.

(1) Specification
Use DCWATCHTIMERPCINHERIT in the client environment definition to specify
whether to use the function for reducing server loads during the timeout of a
synchronous response type RPC.

(2) Scope
You can use this function when a 03-05 or later version of TP1/Server Base is the
receiver of a service request.

(3) Function overview
The following figure gives an overview of the processing by the function for reducing
server loads during the timeout of a synchronous response type RPC.

2. Facilities

35

Figure 2-8: Overview of processing by function for reducing server loads
during timeout of synchronous response type RPC

2. Facilities

36

2.4 Transaction control

The CUP can issue the function that controls a transaction. The SPP to be executed as
a transaction must have "atomic_update=Y" specified in the user service definition.

For details of transaction control, see the manual OpenTP1 Programming Guide.

This facility can be used when the version of TP1/Server Base is 03-00 or later.

2.4.1 Starting a transaction and acquiring a synchronous point
The CUP issues the dc_trn_begin_s function to start a transaction.

The range of a global transaction is from issuing the dc_trn_begin_s function to
acquisition of a synchronous point (commit).

Once the dc_trn_begin_s function has been issued, another issuance of that
function is unavailable within the global transaction.

If an RPC is executed from the CUP to an SPP, the CUP becomes a route transaction
branch and the SPP a transaction branch.

The following figure shows the relation between transactions and RPCs.

2. Facilities

37

Figure 2-9: Relationship between transactions and RPCs

2. Facilities

38

2.4.2 Acquiring a synchronous point
(1) Commit

Synchronous point acquisition (commit) at the normal transaction termination is
activated by the issuance of commit request functions. The global transaction is
normally terminated when all transaction branches terminate normally.

(a) Commit in chained/unchained mode
There are two modes where a synchronous point is acquired in transaction processing.
In chained mode, one transaction terminates, followed by startup of another
transaction at an acquired synchronous point. In unchained mode, one transaction
terminates and a synchronous point is acquired but no new transaction takes place.

A commit in chained mode is called by the dc_trn_chained_commit_s function.
A commit in unchained mode is called by the dc_trn_unchained_commit_s
function.

The following figure shows transactions in chained and unchained modes.

Figure 2-10: Transactions in chained and unchained modes

2. Facilities

39

(b) Processing where no commit request function is issued
If either of the following occurs, the transaction is rolled back:

• The program terminates without calling a commit request function and without
issuing the dc_rpc_close_s function or dc_clt_cltout_s function.

• The CUP terminates abnormally before issuing a commit request function.

(2) Rollback
(a) Transaction errors in OpenTP1 processing

If an error occurs in a transaction, the commit request function is returned with an error
and the transaction is rolled back for partial recovery. If an error occurs in any
transaction branch of a global transaction, the entire global transaction is rolled back.
Assuming that the transaction branch is to be rolled back, OpenTP1 executes partial
recovery processing.

The following figure shows a transaction that is rolled back when an error occurs in
OpenTP1 processing.

Figure 2-11: Rollback of transaction (when an error occurs in OpenTP1
processing)

2. Facilities

40

(b) Issuing a rollback request function
To roll back a transaction at CUP's discretion, issue a rollback request function from
the CUP.

There are two modes of rollback: rollback in chained mode and rollback in unchained
mode.

A rollback in chained mode is requested by issuing the
dc_trn_chained_rollback_s function. In this rollback, the process of the CUP
that issued the function remains in the global transaction after the rollback processing.

A rollback in unchained mode is requested by issuing the
dc_trn_unchained_rollback_s function. In this rollback, the process that issued
the function comes out of the global transaction after the rollback processing.

The following figure shows a transaction that is rolled back by a rollback request
function.

Figure 2-12: Rollback of transaction (when a rollback request function is
issued)

(3) Disposal in case of heuristic situation
If a heuristic situation occurs in transaction processing, an error return takes place

2. Facilities

41

when the CUP acquires a synchronous point. The return values are:

• DCTRNER_HEURISTIC (-3403) if the result of deciding the heuristic situation
does not match the result of the synchronous point of the global transaction

• DCTRNER_HAZARD (-3404) if a fault makes it impossible to identify the result
of the synchronous point of the heuristically completed transaction branch

For the cause of sending back these return values and the result of the synchronous
point of a global transaction, see the message log file.

For details of the disposal to be taken in the case of a heuristic situation, see the manual
OpenTP1 Programming Guide.

(4) Transaction processing times
The following times regarding transactions can be specified by the client environment
definition. For details, see Section 7.2 Definition details.

• Expiry time in transaction branch

• Whether the following time is to be included in the monitoring time in transaction
branch: the time required for the transaction branch being monitored to wait until
the processing of another transaction branch called by the RPC function is
completed

• Maximum time interval in transaction inquiry response

• CPU monitoring time in transaction branch

(5) Collection type for statistics of transaction branch
The client environment definition can specify the collection type for the statistics of a
transaction branch. For details, see Section 7.2 Definition details.

2.4.3 Relationship between remote procedure call modes and
synchronous points
(1) Relationship between synchronous-response type RPCs and synchronous
points

A synchronous-response type RPC transaction terminates when the result of its
processing returns to the CUP and synchronous-point-acquisition processing ends.

The following figure shows the relationship between synchronous-response type RPCs
and synchronous points.

2. Facilities

42

Figure 2-13: Synchronous-response type RPCs and synchronous points

(2) Relationship between no-response type RPCs and synchronous points
In a transaction using a no-response type RPC, the CUP waits at a synchronous point
until the SPP terminates, and then performs synchronous point processing.

The following figure shows the relationship between no-response type RPCs and
synchronous points.

2. Facilities

43

Figure 2-14: No-response type RPCs and synchronous points

(3) Relationship between chained RPCs and synchronous points
A chained RPC is executed with one SPP process. Therefore, the number of
transaction branches is 1 regardless of how many times a chained RPC is used.

A transaction using a chained RPC terminates and the SPP process that executed the
chained RPC is released when synchronous point processing finishes.

If a non-transactional chained RPC is used during a transaction, normally, the SPP
process that executed the chained RPC is released when synchronous point processing
finishes. If you want to release the SPP process with a synchronous-response type
RPC without releasing it when synchronous point processing finishes, specify
00000002 in the rpc_extend_function operand of the user service definition.

The following figures show the relationship between chained RPCs and synchronous
points.

2. Facilities

44

Figure 2-15: Chained RPCs and synchronous points (transactional chained
RPC)

2. Facilities

45

Figure 2-16: Chained RPCs and synchronous points (non-transactional chained
RPC when no-release is specified)

2.4.4 Collecting identifiers for current transactions
By issuing the dc_clt_get_trnid_s function, the CUP can collect the current
transaction global identifiers and transaction branch identifiers.

A transaction global identifier is needed to check whether the transaction started from
the CUP has been committed when an error occurs. After any of the following
functions is issued for possible errors, the dc_clt_get_trnid_s function must be
issued:

• dc_trn_begin_s function

• dc_trn_chained_commit_s function

• dc_trn_chained_rollback_s function

2.4.5 Posting information for current transactions
The dc_trn_info_s function issued from the CUP makes it possible to use a return

2. Facilities

46

value for checking whether a transaction is active.

2.4.6 Detecting the synchronous point of a transaction when an
error occurs

If an error occurs in a transaction started from the CUP, it can be detected whether its
transaction branch has been committed. To detect whether the transaction branch has
been committed, you must execute the dc_clt_get_trnid_s function to acquire the
current transaction global identifier and transaction branch identifier after the
transaction has started.

The transaction global identifier collected by the CUP is compared with the result of
the transaction output to the server-side message log file to detect whether the
transaction started from the CUP has been committed. The contents of the message
log file can be displayed by the 'logcat' command. For the 'logcat' command,
see the manual OpenTP1 Operation.

The following figure shows the detection method for the synchronous point of a
transaction in the event of an error.

2. Facilities

47

Figure 2-17: Detection method for synchronous point of transaction in the event
of error

2.4.7 Notes on transaction control
• If a timeout occurs within the scope of the transaction, the next function may

return with a DCCLTER_OLTF_NOT_UP or DCRPCER_OLTF_NOT_UP error. This
phenomenon occurs when a timeout occurs on the client side while the server is
executing the function, and the client is disconnected from the server.

This phenomenon does not occur when the value of DCWATCHTIM in the client
environment definition is larger than the watch_time value of the transactional
RPC executing process.

The method of specifying the watch_time value differs depending on the

2. Facilities

48

version of TP1/Server Base as shown below:

• TP1/Server Base 03-02 or earlier:

Use the watch_time operand in the system common definition or user
service default definition.

• TP1/Server Base 03-03 or later:

Use the watch_time operand in the client service definition.

You can also prevent this phenomenon from occurring by specifying
DCWATCHTIMINHERIT and DCCLTDELAY in the client environment definition.

• If a transaction is started from a CUP, always commit the transaction in the
unchained mode or issue a rollback request before terminating the CUP. If you
terminate the CUP without terminating the transaction, you cannot check the
result of the transaction at a synchronous point. In this case, the transactional
RPC executing process is placed in a running state until a timeout for the
transaction branch or a timeout for transaction inquiry occurs. When a timeout
occurs, the transaction is rolled back.

If you terminate the CUP or execute the dc_clt_cltout_s function without
requesting a commit in the unchained mode or without requesting a rollback, a
commit in the unchained mode is automatically performed. If this occurs, the
CUP is not notified of the result at a synchronous point.

• After a timeout for real-time monitoring occurs, if you execute the
dc_rpc_call_s function from a CUP, the function may return with a
DCRPCER_SYSERR error.

• If any of the timers used for monitoring on the server side expires, the server may
fail. If the server fails, a function issued by a CUP may be placed in a wait state
until a timeout occurs (until the maximum time to wait for a response expires).
This phenomenon occurs because the server cannot recognize the packets sent
from the client. To prevent this phenomenon from occurring, set appropriate
values in all the timers.

2. Facilities

49

2.5 TCP/IP communication function

This section explains the sending and receiving of messages through the use of the
TCP/IP communication function.

Note:

By using the TCP/IP communication function, you can communicate with
MHPs. In this section, the remote system you communicate with is referred to
as MHP. However, you can also freely select remote systems other than MHPs.

There are three types of message transmission by the TCP/IP communication function:

• Send-only messages from the CUP to the MHP

• Receive-only messages from the MHP to the CUP

• Send and receive messages between the MHP and the CUP

When a message is sent or received, automatic addition of the message length or
confirmation of message delivery can be specified.

2.5.1 Send-only messages
The CUP can send a message to the MHP in send-only mode. This is called a
send-only message.

To send a message to the MHP, the CUP issues the dc_clt_send_s function. To use
the message assembly facility or message delivery confirmation facility, the CUP
issues the dc_clt_assem_send_s function.

Before sending a send-only message, the following must be specified in the client
environment definition.

• Specify the node name of the connection destination in DCSNDHOST.

• Specify the port number (port number specified in the portno operand of the
mcftalccn definition command in the MCF communication configuration
definition) of the connection destination in DCSNDPORT.

It is also necessary to issue the dc_rpc_open_s function with DCCLT_ONEWAY_SND
specified in the flags.

The following figure shows the processing of a send-only message.

2. Facilities

50

Figure 2-18: Processing of send-only messages

2.5.2 Receive-only messages
A CUP receives messages sent from an MHP. This type of message is called a
receive-only message.

The CUP issues the dc_clt_receive_s function to receive messages from the MHP
using the TCP/IP protocol. The CUP issues the dc_clt_assem_receive_s function
to use the message assembly facility or message delivery confirmation facility.

The TCP/IP protocol divides a single message into multiple packages or packs

2. Facilities

51

multiple messages into a single packet. TP1/Client determines the end of a received
message based on the message length specified by the user. The user must receive the
header containing the message length and, on the basis of it, receive the actual message
length. Note that the CUP does not need to implement these operations when using the
message assembly facility or message delivery confirmation facility.

If the received message is shorter than the specified message length, TP1/Client
considers the message is divided. TP1/Client does not return control to the CUP until
the specified length of message data has been received. However, if a timeout or error
occurs before the specified length of message data can be received and the
dc_clt_receive_s function is issued, TP1/Client discards the message data that has
been received. On the other hand, if the dc_clt_receive2_s or
dc_clt_assem_receive_s function is issued, TP1/Client can return control to the
CUP without discarding the message data that has been received so far. Using these
functions, you can reserve a received message that does not reach the specified length
due to an error. You are responsible for reconstructing incompletely received
messages.

Before receive-only messages can be received, the applicable CUP port number (port
number specified in the oportno operand of the mcftalccn definition command in
the MCF communication configuration definition) must be specified in DCRCVPORT of
the client environment definition. It is also necessary to issue the dc_rpc_open_s
function with DCCLT_ONEWAY_RCV specified in the flags.

The following figure shows the processing of receive-only messages.

2. Facilities

52

Figure 2-19: Processing of receive-only messages

The following figure shows the processing of receive-only messages if an error occurs.

2. Facilities

53

Figure 2-20: Processing of receive-only messages if an error occurs

2.5.3 Sending and receiving messages
Messages can be sent and received between the CUP and MHP. The CUP issues the

2. Facilities

54

dc_clt_send_s function to send a message to the MHP, and issues the
dc_clt_receive_s or dc_clt_receive2_s function to receive a message from
the MHP. When the message assembly facility or message delivery confirmation
facility is used, the CUP issues the dc_clt_assem_send_s function to send a
message to the MHP, and issues the dc_clt_assem_receive_s function to receive
a message from the MHP.

Before sending or receiving a message, the following must be specified in the client
environment definition:

When the MHP type is server:

• Specify the node name of the connection destination in DCSNDHOST.

• Specify the port number (port number specified in the portno operand of
the mcftalccn definition command in the MCF communication
configuration definition) of the connection destination in DCSNDPORT.

When the MHP type is client:

Specify the CUP port number (port number specified in the oportno operand of
the mcftalccn definition command in the MCF communication configuration
definition) in DCRCVPORT.

It is also necessary to issue the dc_rpc_open_s function with DCCLT_SNDRCV
specified in the flags.

In send-only or receive-only mode, messages are sent or received through independent
connections. However, in send and receive mode, all messages are transmitted through
the same connection.

The following figure shows the processing of sending and receiving a message.

2. Facilities

55

Figure 2-21: Sending and receiving a message

2.5.4 Message assembly facility and delivery confirmation facility
TP1/Client includes functionality that automatically prefixes four-byte message length
information to a message when the message is sent and automatically deletes the
information when the message is received. This functionality is called the message
assembly facility. If you use this facility, you do not need to take the message length
into account when creating a CUP.

In addition to the four-byte message length information, you can send a message with
one-byte segment information and a six-byte message ID added so that response-only

2. Facilities

56

data can be received to confirm delivery of the message. This functionality is called
the message delivery confirmation facility. If you use this facility, you do not need to
take into account the validity of a message and whether a message that has been sent
is delivered when you create a CUP.

The message assembly facility and message delivery confirmation facility are
implemented by using the following functions to send and receive messages:

• dc_clt_assem_send_s function

• dc_clt_assem_receive_s function

Whether the message assembly facility or message delivery confirmation facility is
used when these functions are issued is specified by using DCCLTDELIVERYCHECK of
the client environment definition as shown in the following table.

Table 2-4: Relationship between the facility to be used and the
DCCLTDELIVERYCHECK specification of the client environment definition

(1) Conditions for using the facilities
Both facilities require issuing of the dc_rpc_open_s function with
DCCLT_ONEWAY_SND, DCCLT_ONEWAY_RCV, or DCCLT_SNDRCV specified in the
flags argument.

In addition, TP1/NET/TCP/IP in the remote system must be set to use the message
assembly facility or message delivery confirmation facility. For details about how to
set TP1/NET/TCP/IP, see the manual OpenTP1 Version 7 Protocol TP1/NET/TCP/IP.
Note, however, that the remote system need not use TP1/NET/TCP/IP if send
messages and receive messages have the same format.

(2) Message formats
The following explains the format of messages sent or received when the message
assembly facility and the message delivery confirmation facility are used.

(a) Format of messages sent or received when the message assembly
facility is used
The following figure shows the format of messages sent or received when the message
assembly facility is used.

Facility to be used DCCLTDELIVERYCHECK specification of the
client environment definition

Message assembly facility Specify N or omit DCCLTDELIVERYCHECK.

Message delivery confirmation facility Specify Y.

2. Facilities

57

Figure 2-22: Format of messages sent or received when the message assembly
facility is used

Note that the message length indicates the length of the assembled message.

(b) Format of messages sent or received when the message delivery
confirmation facility is used
This subsection explains the format of messages sent or received when the message
delivery confirmation facility is used, and the format of response-only data.

Format of messages sent or received

The following figure shows the format of messages sent or received between TP1/
Client and TP1/NET/TCP/IP.

Figure 2-23: Format of messages sent or received when the message delivery
confirmation facility is used

The following explains the items in the above figure.

• Message length information

This field contains the length of the assembled message.

• Segment information

This field contains information that indicates the segment type and a
response request. The value set here is 0x18, which indicates a single
segment and an automatic-response request.

• Message ID

This field contains information that is used to check the combination of

2. Facilities

58

message and response-only data. A unique value is set in this field each time
a message is sent.

Format of response-only data

The following figure shows the format of response-only data sent or received
when the message delivery confirmation facility is used.

Figure 2-24: Format of response-only data

The following explains the items in the above figure.

• Message length information

This field contains the length of the assembled message.

• Segment information

This field contains information that indicates the segment type and a
response request. The value set here is 0x10, which indicates a single
segment and response-only data.

• Message ID

This field contains information that is used to check the combination of
message and response-only data. The message ID added to the received
message is set in this field. TP1/Client compares the message ID that it added
when it sent the message with the message ID that TP1/NET/TCP/IP added
to the response-only data. If these message IDs match, TP1/Client closes the
connection.

(3) Flow of sending and receiving a message when the message assembly
facility is used

This subsection explains how a message is assembled and disassembled when the
message assembly facility is used.

(a) When a message is sent
When TP1/Client uses the message assembly facility to send a message, the
dc_clt_assem_send_s function is issued. Four-byte message length information is
prefixed to the message.

The following figure shows the flow of sending a message when the message assembly

2. Facilities

59

facility is used.

Figure 2-25: Flow of sending a message when the message assembly facility is
used

If you want to release a connection immediately after a message is sent, specify
DCCLT_SND_CLOSE in the flags argument of the dc_clt_assem_send_s function.
If you specify DCNOFLAGS, the connection is not released until the dc_rpc_close_s
function is issued (except when an error has occurred).

The host name of TP1/NET/TCP/IP with which TP1/Client communicates is specified
in DCSNDHOST of the client environment definition. The port number is specified in
DCSNDPORT of the client environment definition. You can also specify the host name
and port number in arguments of the dc_clt_assem_send_s function.

(b) When a message is received
When TP1/Client uses the message assembly facility to receive a message, the
dc_clt_assem_receive_s function is issued. TP1/Client receives message data for
the message length prefixed to the message body when the message was sent.

The following figure shows the flow of receiving a message when the message
assembly facility is used.

2. Facilities

60

Figure 2-26: Flow of receiving a message when the message assembly facility
is used

If you want to release a connection immediately after a message is received, specify
DCCLT_RCV_CLOSE in the flags argument of the dc_clt_assem_receive_s
function. If you specify DCNOFLAGS, the connection is not released until the
dc_rpc_close_s function is issued (except when an error has occurred).

The CUP port number is specified in DCRCVPORT of the client environment definition.

(4) Flow of sending and receiving a message when the message delivery
confirmation facility is used

This subsection explains how a message is assembled and disassembled, and the flow
of sending and receiving response-only data when the message delivery confirmation
facility is used.

(a) Sending a message and confirming delivery
When TP1/Client uses the message delivery confirmation facility to send a message,
the dc_clt_assem_send_s function is issued. After sending the message, TP1/
Client waits for response-only data from TP1/NET/TCP/IP. When it receives the
response-only data, TP1/Client returns control to the CUP. The received response-only
data is not reported to the CUP.

The following figure shows the flow of sending a message when the message delivery
confirmation facility is used.

2. Facilities

61

Figure 2-27: Flow of sending a message when the message delivery
confirmation facility is used

When the message delivery confirmation facility is used, you can monitor the
sequence of sending a message from the time the message is sent until response-only
data is received. If the monitoring times out, TP1/Client releases the connection with
TP1/NET/TCP/IP, and returns DCCLTER_TIMED_OUT.

TP1/Client receives response-only data over the same connection it used to send the
message. If you want the connection to be released as soon as the response-only data
is received, specify DCCLT_SND_CLOSE in the flags argument of the
dc_clt_assem_send_s function. If you specify DCNOFLAGS, the connection is not
released until the dc_rpc_close_s function is issued (except when an error has
occurred).

The host name of TP1/NET/TCP/IP with which TP1/Client communicates is specified
in DCSNDHOST of the client environment definition. The port number is specified in
DCSNDPORT of the client environment definition. You can also specify the host name
and port number in arguments of the dc_clt_assem_send_s function.

(b) Receiving a message and confirming delivery
When TP1/Client uses the message delivery confirmation facility to receive a
message, the dc_clt_assem_receive_s function is issued. After receiving the
message, TP1/Client sends response-only data to TP1/NET/TCP/IP and returns
control to the CUP.

The following figure shows the flow of receiving a message when the message
delivery confirmation facility is used.

2. Facilities

62

Figure 2-28: Flow of receiving a message when the message delivery
confirmation facility is used

TP1/Client sends response-only data over the same connection that it used to receive
the message. If you want the connection to be released as soon as response-only data
is sent, specify DCCLT_RCV_CLOSE in the flags argument of the
dc_clt_assem_receive_s function. If you specify DCNOFLAGS, the connection is
not released until the dc_rpc_close_s function is issued (except when an error has
occurred).

(c) Collision between send and receive messages
If a message from TP1/Client collides with a message from TP1/NET/TCP/IP, TP1/
Client discards the received message, releases the connection with TP1/NET/TCP/IP,
and then returns DCCLTER_COLLISION_MESSAGE.

The following figure shows the flow of processing when send and receive messages
collide.

2. Facilities

63

Figure 2-29: Flow of processing when send and receive messages collide

(5) Validity checking
When the message assembly facility or message delivery confirmation facility is used,
TP1/Client automatically checks the validity of sent and received messages.

(a) Validity check for message length (message assembly facility)
When the message assembly facility is used and TP1/Client receives a message, TP1/
Client checks the validity of the message length. The following table shows the
handling if an error is found.

Table 2-5: Handling of an error detected by the validity check for message
length

(b) Validity check for response-only data (message delivery confirmation
facility)
When the message delivery confirmation facility is used and TP1/Client sends a
message, TP1/Client receives response-only data and checks the validity of the data.
The following table shows the handling of an error if detected.

No. Error System User response

1 An invalid message is received
(the message length is 0 to 4
bytes).

Stops processing. Review the remote system settings.

2 The receive buffer is insufficient
(the message length minus four
bytes is longer than the value of
the recvleng argument).

Stops processing. Check whether a valid value is specified
in the recvleng argument of the
dc_clt_assem_receive_s function.
Alternatively, review the MHP.

2. Facilities

64

Table 2-6: Handling of an error detected by the validity check for response-only
data

(c) Validity check for a received message (message delivery confirmation
facility)
When the message delivery confirmation facility is used and TP1/Client receives a
message, TP1/Client checks the validity of the message. If TP1/Client finds an error,
it stops processing. The following table shows the handling of an error if detected.

Table 2-7: Handling of an error detected by the validity check for a received
message

2.5.5 Notes on using the TCP/IP communication facility
This subsection provides notes on using the TCP/IP communication facility.

(1) Sending messages
(a) Loss of a message in the event of an error

If an error event as described below occurs, the TP1/Client cannot detect a message

No. Error System User response

1 Any of the following invalid messages is
received:
• Message whose length is 0 to 10 bytes
• Message whose length is 11 bytes and

whose segment information is not
0x10

• Message whose segment information
is not 0x10 or 0x18

Stops processing. Review the remote system
settings.

2 Messages collide. Stops processing. Try again, if necessary.

3 Message IDs do not match. Retries reception. None

No. Error System User response

1 Any of the following invalid messages is
received:
• Message whose length is 0 to 11 bytes
• Message whose segment information

is not 0x10 or 0x18

Stops processing. Review the remote system settings.

2 The receive buffer is insufficient (the
message length minus 11 bytes is longer
than the value of the recvleng argument).

Stops processing. Check whether a valid value is
specified in the recvleng argument
of the dc_clt_assem_receive_s
function. Alternatively, review the
MHP.

2. Facilities

65

loss. The user should assign serial numbers to messages so that any message loss can
be detected. However, if the message delivery confirmation facility is used, processing
in the CUP that assigns serial numbers is not required because TP1/Client manages
message serial numbers.

• A communication error occurs or the connection is freed immediately after the
message sent from TP1/Client is written in the buffer of the socket and is normally
terminated.

• A communication error occurs or the connection is freed immediately before the
message sent from TP1/Client is written in the receive buffer of the MHP.

(b) Establishing a connection
TP1/Client acts as a client and sends a message to an MHP. TP1/Client establishes a
connection to the MHP. When the MHP uses TP1/NET/TCP/IP, a server type
connection is established.

(2) Receiving messages
(a) Loss of a message in the event of an error

If an error event as described below occurs, the TP1/Client cannot detect a message
loss. The user should assign serial numbers to messages so that any message loss can
be detected. However, if the message delivery confirmation facility is used, processing
in the CUP that assigns serial numbers is not required because TP1/Client manages
message serial numbers.

• A communication error occurs or the connection is freed immediately after the
message sent from the MHP is written in the buffer of the socket and is normally
terminated.

• A communication error occurs or the connection is freed immediately before the
message sent from the MHP is written in the receive buffer of TP1/Client.

(b) Checking received messages
A message from any MHP can be received. When receiving a request to establish a
connection, a CUP accepts it unconditionally and receives a message. By including a
header with the message identifier in each message, the user must check whether the
message is to be received by the CUP.

(c) Message length
Messages are received using the TCP/IP protocol.

The TCP/IP protocol divides a single message into multiple packages or packs
multiple messages into a single packet. TP1/Client determines the end of a received
message based on the message length specified by the user. The user must receive the
header containing the message length and, on the basis of it, receive the actual message
length. However, if the message assembly facility or message delivery confirmation

2. Facilities

66

facility is used, this processing need not be implemented in the CUP because TP1/
Client manages the message length.

If the received message is shorter than the specified message length, TP1/Client
considers the message is divided. Therefore, it does not return control to the CUP until
the message of the specified length is received.

(d) Establishing a connection
TP1/Client acts as a server and receives a message from an MHP.

The MHP establishes a connection to TP1/Client. When the MHP uses TP1/NET/
TCP/IP, a client type connection is established.

(3) Other notes
The following provides notes on using the message assembly facility and the message
delivery confirmation facility in TP1/NET/TCP/IP. If you use the message assembly
facility and message delivery confirmation facility in TP1/Client, you can skip these
notes.

For details about the protocol-specific definitions for TP1/NET/TCP/IP, see the
manual OpenTP1 Protocol TP1/NET/TCP/IP.

(a) Message assembly facility in TP1/NET/TCP/IP
In TP1/NET/TCP/IP, when you use the message assembly facility, a four-byte message
length is added to the beginning of the data sent by an MHP. When you send data to
an MHP, you must specify the message length in the first four bytes. The message
length must be in the network byte order. The message length is deleted when the
MHP receives the message. Note that you must mind the message length when
sending or receiving messages to or from CUPs.

(b) Message delivery confirmation facility in TP1/NET/TCP/IP
When the message delivery confirmation facility is used in TP1/NET/TCP/IP, 11-byte
message information is prefixed to data sent by the MHP. When TP1/Client receives
the data, it sends response-only data. (Note that 11-byte message information must also
be prefixed to the data to be sent to the MHP.) After the MHP sends the data, it waits
to receive the response-only data.

Ensure that the network byte order is used for the message length information in the
message information prefixed to the send data. When the MHP receives a message, the
message length information is deleted. However, the CUP must set the message
information while sending and receiving data.

2. Facilities

67

2.6 Facility for receiving one-way messages from the server

This section describes the facility for receiving one-way messages (messages sent
from the server to clients).

2.6.1 Overview of the facility for receiving one-way messages from
the server

The facility for receiving one-way messages from the server can be used to deliver
online start signals concurrently to the client. This is analogous to OLTP of a
mainframe starting all terminals at one time.

To use the facility for receiving one-way messages from the server, issue the
dc_clt_accept_notification_s function. This function allows the client to wait
for a message from the server within the time specified for API regardless of the server
state whether it is active or inactive.

When the server sends a message at startup, the client detects the server startup and is
ready for starting a user job (CUP). The following figure illustrates the one-way
message reception function.

The following figure shows the processing flow for the facility for receiving one-way
messages from the server.

2. Facilities

68

Figure 2-30: Processing flow for facility for receiving one-way messages from
the server

2.6.2 Overview of the continuous reception function for one-way
messages

The continuous reception function for one-way messages allows the client to receive
continuous one-way messages from the server. This function starts when the
dc_clt_open_notification_s function is executed and terminates when the
dc_clt_close_notification_s function is executed. Ordinarily, if the server
sends a one-way message to the client when the client is not ready to receive one-way
messages from the server, an error is returned. However, if the continuous reception
function for one-way messages is used, no error is returned because the messages are
stored in the TCP/IP queue. The messages leave the queue when the client issues the
function that receives one-way messages. The following figure shows the processing
flow for the continuous reception function for one-way messages.

2. Facilities

69

Figure 2-31: Processing flow for the continuous reception function for one-way
messages

2.6.3 Notes on using the continuous reception function for one-way
messages

The following provides notes on using the continuous reception function for one-way

2. Facilities

70

messages:

• In the client environment definition, if DCSELINT is set to 0, control is not
returned to the operating system.

• The maximum number of messages that the TCP/IP queue can contain depends
on the maximum defined in the operating system. If more messages than the
maximum arrive at the queue, the dc_rpc_cltsend function executed on the
server side returns a DCRPCER_SERVICE_NOT_UP error.

• With TP1/Client/P, a problem exists such that even if you specify an already used
port number, an error will not be detected. Since TP1/Client/P does not check for
duplicated port number specifications, make sure that you do not specify the
number of an already used port.

2. Facilities

71

2.7 XATMI interface facility

An RPC can send and receive a limited length of data. Large data such as images may
exceed the specified RPC data length. TP1/Client uses the interactive service, an
XATMI interface facility, for sending and receiving data.

Communication by the interactive service divides large data into units called packets.
Thus, the complete data is sent by sending these packets.

To start the interactive service communication, issue the tpalloc function to allocate
typed buffer. When the buffer is allocated, issue the tpconnect function to establish
connection the same way as for normal message exchange. Issue the tprecv function
and tpsend function of the XATMI interface facility to send and receive messages.
To terminate message exchange, issue the tpdiscon function to disconnect the
connection, and then issue the tpfree function to release the typed buffer. A return
value is sent if an error occurred during interactive service.

The interactive service communication is the only XATMI interface facility available
for TP1/Client.

The following figure shows the process flow of communication by the XATMI
interface facility interactive service.

2. Facilities

72

Figure 2-32: Process flow of communication by interactive service

2.7.1 Interactive service
(1) Establishing connection

The CUP establishes connection with the interactive service by issuing the
tpconnect function. The UAP process that has established connection by the
tpconnect function is called an originator. The other UAP process at the end of
connection is called a subordinator.

The descriptor that identifies the established connection is returned upon normal

2. Facilities

73

termination of the tpconnect function. Set this descriptor for each of the functions
used during the communication.

Issuing the tpreturn function to terminate processing under the interactive service
disconnects the connection.

The flags argument of the tpconnect function allows you to specify whether to give
control. A process specified to have control can issue the tpsend function to send
data. The process specified to have no control passes control to the remote process in
communication. The process that calls the tpconnect function can issue the tprecv
function to receive data.

(2) Sending data
Issue the tpsend function for sending data. To issue this function, the descriptor
returned by the tpconnect function must be set in the argument to specify which
connection is to be used.

Only the process that has control of connection can issue the tpsend function. The
tpsend function issued by the process that has no control will return an error.

If you want to pass control of connection to the remote process, specify the tpsend
function argument.

(3) Receiving data
Issue the tprecv function for receiving data. Data is received asynchronously. Only
a process that has no control of connection can issue the tprecv function.

You can specify the argument to have the tprecv function wait for receiving data.
When the process that calls the tprecv function is under a transaction, the maximum
waiting time is the value specified in the DCCLTTREXPTM of the client environment
definition or in the trn_expiration_time operand of the client service definition.
In this case, the CUP execution process terminates abnormally when the maximum
waiting time is expired; the tprecv function does not return an error.

When the process that calls the tprecv function is not under a transaction, the
maximum waiting time is the value specified in the watch_time operand of the client
service definition. In this case, the tprecv function returns an error when the
maximum waiting time is expired.

(4) Disconnecting the connection
After termination of the interactive service, issuing the tpreturn function
disconnects the connection normally. Connection may also be disconnected if a
communication error occurred.

(5) Forcibly disconnecting the connection
Issue the tpdiscon function for forcibly disconnecting the connection. The
descriptor set in the tpdiscon function is no longer effective in processing. The

2. Facilities

74

transaction is rolled back.

(6) Generating a transaction
Issue the dc_trn_begin_s function for generating a transaction by the CUP that uses
the XATMI interface for communication.

Table 2-4 shows when a transaction is generated.

Table 2-8: Transaction generation time

Legend:

Y: A transaction can be generated and communication with the interactive service
via the XATMI interface is available.

No: A transaction can be generated, but communication with the interactive
service via the XATMI interface is unavailable.

(7) Operating with the OpenTP1 dc_rpc_call_s function
The dc_rpc_call_s function can still be issued after the tpconnect function has
established connection with the interactive service.

The following figure shows the communication mode of the interactive service.

The dc_clt_connect_s function is issued. The dc_clt_connect_s function is not
issued.

The tpconnect function
is issued.

The tpconnect function
is not issued.

The tpconnect
function is issued.

The tpconnect
function is not

issued.

Y Y Y No

2. Facilities

75

Figure 2-33: Communication mode of interactive service

2.7.2 Interactive service time monitoring
Any time monitoring for interactive service communication must follow the value
specified in the OpenTP1 definitions.

A timeout error of interactive service occurs when any of the following is expired:

• Maximum response waiting time

• Maximum time interval in permanent connection

• Transaction branch expiration time

2. Facilities

76

(1) Timeout of maximum response waiting time
The CUP and the CUP execution process detect expiration of the maximum response
waiting time. For the CUP, specify the value for monitoring in DCWATCHTIM of the
client environment definition. For the CUP execution process, specify the
watch_time operand of the client service definition.

The value of DCWATCHTIM in the client environment definition must be greater than
the value of the watch_time operand of the client service definition to keep
consistency of the system. If the CUP detects a timeout error earlier than the CUP
execution process, communication is disabled until the dc_rpc_close_s function is
issued. In this case, the CUP execution process forcibly rolls back the transaction
(only when the transaction is active) after the timeout of maximum time interval in
inquiry response, and then disconnects the connection with the CUP.

(2) Timeout of maximum time interval in permanent connection
The CUP execution process detects expiration of the maximum time interval in
permanent connection. Specify the value for monitoring in the DCCLTINQUIRETIME
of the client environment definition, or in the clt_inquire_time of the client
service definition. The priority of the definitions is as follows:

Client environment definition > Client service definition

The maximum time interval in permanent connection means the maximum time
interval between inquiries (including the tpsend function) from the CUP to the CUP
execution process.

The CUP execution process that detects a timeout error forcibly rolls back the
transaction (only when the transaction is active), and then disconnects the connection
with the CUP.

(3) Timeout of transaction branch expiration time
The CUP execution process detects the transaction branch expiration time. Specify the
value for monitoring in the DCCLTTREXPTM of the client environment definition, or in
the trn_expiration_time of the client service definition. The priority of the
definitions is as follows:

Client environment definition > Client service definition

The transaction branch expiration time means the time between generation of a
transaction and synchronous point acquisition.

The CUP execution process that detects a timeout error terminates abnormally. In this
case, all connections are forcibly disconnected and the transaction is rolled back.

2. Facilities

77

You can specify to have the system wait infinitely without detecting timeout except for
the transaction branch expiration time. The timeout error due to expiration of the
transaction branch expiration time will occur regardless of specification in the
definitions.

2.7.3 Receiving events
When an event is set in the descriptor that identifies the connection, that event can be
received using the tpsend and tprecv functions of the interactive service.
Information about data exchange is set in the event.

See Section 3.1 Function interface for details on events.

2.7.4 Communication data type
The data type available for the TP1/Client interactive service is X_OCTET.

X_OCTET means a byte (character) array whose contents and operation are completely
defined by the application. Therefore, the parameter that indicates the data length must
be specified for X_OCTET to make it clear the length of the character array to be sent
by communication management. The specified data length is provided as the len
parameter for input of the interactive service, and is collected as the len parameter for
output. The typed buffer specified here does not encode or decode data even when data
is exchanged between machines of different models. X-OCTEX used for TP1/Client
has no subtype.

2.7.5 Notes on using the XATMI interface facility
The following shows notes on using the XATMI interface for TP1/Client.

• Be sure to specify the following values in the definitions when using the XATMI
interface under transactions:

Specify a value other than zero for the DCCLTTREXPTM or
trn_expiration_time.

Specify Y for the DCCLTTREXPSP or trn_expiration_time_suspend.

• If the blocking status that occurred during data transmission by the tpconnect
or tpsend function is not canceled after a certain period of time, TPESYSTEM is
returned regardless of whether blocking is specified.

• If the timeout error occurred for the transaction branch expiration time, the CUP
execution process terminates abnormally without returning TPETIME. In this
case, all the connections established before the timeout error are disconnected and
no longer available.

• If a timeout error occurred for the maximum time interval in permanent
connection, all the connections established before the timeout error are
disconnected and no longer available.

2. Facilities

78

• If a communication error occurred in the connection between the CUP and the
CUP execution process, the CUP execution process terminates abnormally. All
the connections established before the timeout error are disconnected and no
longer available.

• Specify DCCLTXATMI=Y in the client environment definition.

2. Facilities

79

2.8 Character code converter

This feature is only available for TP1/Client/P.

When using the mainframe computer as the server, the server and the client may use
different character code systems. In that case, code conversion must be performed
before RPCs. A code can be converted with or without using a code mapping table.

2.8.1 When not using a code mapping table
When TP1/Client/P (Windows environment) issues the dc_clt_code_convert
function by specifying DCCLT_JISSJIS_TO_EBCKEIS for the request code, the
character strings consisting of JIS code or Shift JIS code can be converted to the
character strings consisting of EBCDIC/EBCDIK code or KEIS code. The client
passes the converted character strings to the server to make requests using the
dc_rpc_call_s function.

When the dc_clt_code_convert function is issued with DCCLT_EBCKEIS_
TO_JISSJIS for the request code to the response message after the dc_rpc_call_s
function is executed, the character strings consisting of EBCDIC/EBCDIK code or
KEIS code are converted to character strings consisting of JIS code or Shift JIS code.

The following figure gives an overview of the character code converter.

2. Facilities

80

Figure 2-34: Overview of the character code converter

2.8.2 When using a code mapping table
Code conversion using a code mapping table links to CommuniNet to convert gaiji and
other codes into specific code character strings. Those codes are converted in the same
way as performing conversion without using a code mapping table.

If a code mapping table does not contain a code to be converted, processing is
performed in the same way as performing conversion without a code mapping table.
An illegal code detected is considered as an error.

(1) Scope
The character code converter can convert character codes covered in CommuniNet.

(2) Usage
When using the converter, issue and call functions in the following order.

1. Start of character code conversion

dc_clt_codeconv_open()

2. Execution of character code conversion (Conversion can be executed two or more
times)

2. Facilities

81

dc_clt_codeconv_exec()

3. Termination of character code conversion

dc_clt_codeconv_close()

Once character code conversion is started (dc_clt_codeconv_open()), you can
execute character code conversion (dc_clt_codeconv_exec()) two or more times
until you terminate the conversion (dc_clt_codeconv_close()).

(3) Notes on using a code mapping table
The use of this converter requires a CommuniNet code mapping table. Use the
CommuniNet code mapping utility to create a code mapping table, then use the
converter.

You cannot use a code mapping table unless you first save the table using the
CommuniNet code mapping utility after the installation of CommuniNet. Before
using the converter, use the CommuniNet code mapping utility to save a code
mapping table.

The filename of a CommuniNet code mapping table must be CMAPEX.TBL.
Before using the converter, store the code mapping table under a Windows
directory.

The processing by the character code converter does not reflect any changes made
in a code mapping table by the CommuniNet code mapping utility during
processing.

You cannot save error logs and UAP trace information for the character code
convert.

Issue the function for starting character code conversion
(dc_clt_codeconv_open() or CBLDCUTL('CNVOPN ')) only once and then
execute character code conversion (dc_clt_codeconv_exec() or
CBLDCUTL('CNVEXEC ')). Do not issue the function for starting character code
conversion more than once to prevent memory shortage. If you issue two or more
functions, issue one function for terminating character code conversion
(dc_clt_codeconv_close() or CBLDCUTL('CNVCLS ') for each of the
issued functions.

2. Facilities

82

2.9 Multi-threading

2.9.1 Overview of a CUP suitable for multi-threading
All service calls are executed serially. If a service that requires a long period of
processing is called, the subsequent service calls will be placed in a wait state.

If you need to call a time-consuming service, multi-threading is useful.
Multi-threading allows you to allocate an exclusive thread for a time-consuming
service call. While executing a time-consuming service call with the thread, you can
execute other service calls with another thread.

2.9.2 Execution of functions not suited to multi-threading
In a multi-thread environment, if the dc_rpc_call_s function and the
dc_clt_cltin_s function are issued in different threads, they might operate
incorrectly.

The following figures show examples of executing functions not suited to a
multi-thread environment.

Figure 2-35: Execution of functions not suited to a multi-thread environment
(example 1)

2. Facilities

83

Figure 2-36: Execution of functions not suited to a multi-thread environment
(example 2)

To ensure suitability when executing functions in a multi-thread environment, keep the
following points in mind:

• In each thread, always issue the dc_clt_cltin_s function to receive a
descriptor called a client ID. For all functions issued in all threads, specify the
received client ID.

A client ID that a process or thread has acquired through user authentication
cannot be used in another process or thread.

• To execute RPCs concurrently in a multi-thread environment, an RPC must be
executed from the dc_clt_cltin_s function for each thread.

For the client ID argument of a function provided by TP1/Client, specify a client
ID returned by the dc_clt_cltin_s function in the same thread. A client ID
cannot be used across threads.

2. Facilities

84

2.9.3 Notes on using multi-threading
• To execute a CUP in a multi-thread environment, use a function whose name ends

with _s.

• While a function of TP1/Client is being executed (before the function returns) in
a thread, do not execute another function of TP1/Client in the same thread.

• In each thread, always issue the dc_clt_cltin_s function to acquire a
descriptor called a client ID, and specify the acquired client ID in all the functions
issued in the thread.

The client ID that a process or thread acquired by executing user authentication
cannot be used in another process or thread.

• To execute multiple RPCs in a multi-thread environment concurrently, you must
first issue the dc_clt_cltin_s function in each thread.

In a thread, when you need to specify a client ID in an argument of a function
provided by TP1/Client, specify the client ID returned by the dc_clt_cltin_s
function issued in the thread. The client ID acquired in a thread is valid in the
thread only.

• To create a client environment definition for each thread, specify a different file
name in the defpath argument of the dc_clt_cltin_s function for each
thread.

If you want to use the facility for using a fixed reception port, a reception function
of TCP/IP communication, or the facility for receiving one-way messages from
the server, you must specify a different port number for each thread.

• If trace information for all threads is output to the same file, the CPU usage rate
will increase, and the RPC throughput may degrade. Avoid this by using a
different trace file for each process or thread.

2. Facilities

85

2.10 Online tester

The user can use the online tester of TP1/Server Base. This function enables an SPP
started from the CUP to be executed in test mode.

Before using the online tester, a test user ID must be specified in DCUTOKEY of the
client environment definition. Also, the SPP started from the CUP must have a value
other than 'no' specified in test_mode of the user service definition.

Using the online tester function requires TP1/Online Tester. For details of this
function, see the manual OpenTP1 Tester and UAP Trace User's Guide.

When using the facility for establishing a permanent connection, you can use the
online tester only within a transaction of a permanent connection established with the
CUP executing process.

2. Facilities

86

2.11 Troubleshooting

The troubleshooting functionality provides error logging, UAP trace collection, socket
trace collection, and module trace collection. The information obtained is output to
files. You must edit the information that is acquired using UAP trace collection, socket
trace collection, and module trace collection, since it is output in binary format.

2.11.1 Error logging
Messages are output to an error log. There are situations in which the return value of
a function is not enough to determine the cause of an error and resolve the problem. In
such a case, examine the error log, as it may contain messages that will allow you to
determine the cause of the error.

An error log is usually output to the CUP executing directory. However, when you
specify DCTRCPATH in the client environment definition, the error log is output to the
directory specified by DCTRCPATH. No error log is output when the specified directory
does not exist.

Whether error logging is used depends on the specification of DCTRCERR in the client
environment definition. If you omit the specification of DCTRCERR, or specify
DCTRCERR to output an error log, two files (dcerr1.trc and dcerr2.trc) are
created. When there is no information to be output, no file is created.

The two files are switched in accordance with the round-robin method, and are output
chronologically. Thus, old information is deleted in units of files. If a write exceeds
the file size specified for DCTRCERR in the client environment definition, the files are
switched. If a write does not exceed the specified file size at the beginning of the write,
the information is output. Thus, the actual file size may be greater than the specified
file size.

Note that the character string output at the beginning of a file is maintenance
information.

2.11.2 UAP trace collection
The information about the functions issued by users is output to a UAP trace. The
UAP trace lets you check the sequence of the functions issued, the specified values of
arguments, and the return values of functions.

A UAP trace is usually output to the CUP executing directory. However, when you
specify DCTRCPATH in the client environment definition, the UAP trace is output to the
directory specified by DCTRCPATH. No UAP trace is output when the specified
directory does not exist.

Whether UAP trace collection is used depends on the specification of DCTRCUAP in the
client environment definition. If you specify DCTRCUAP to output a UAP trace, two

2. Facilities

87

files (dcuap1.trc and dcuap2.trc) are created. If there is no information to be
output, no file is created.

The two files are switched in accordance with the round-robin method, and are output
chronologically. Thus, old information is deleted in units of files. If a write exceeds
the file size specified for DCTRCUAP in the client environment definition, the files are
switched. If a write does not exceed the specified file size at the beginning of the write,
the information is output. Thus, the actual file size may be greater than the specified
file size.

UAP traces are output in binary format. You must use the command for editing traces
(cltdump command or cltdmp32 command) to edit the UAP traces in text format.

2.11.3 Socket trace collection
TP1/Client outputs information about communication to a file as a socket trace.
Although the contents of a socket trace are not disclosed, maintenance personnel may
use them for troubleshooting.

Normally, the socket trace is output to the CUP execution directory. However, you can
change the destination directory by specifying it in DCTRCPATH of the client
environment definition. If the specified directory does not exist, the socket trace is not
output.

Whether socket trace collection is used depends on the DCTRCSOC specification of the
client environment definition. The file size also depends on the DCTRCSOC
specification of the client environment definition. The data size is specified in
DCTRCSOCSIZE of the client environment definition.

When socket trace collection is enabled, two files (dcsoc1.trc and dcsoc2.trc)
are created. However, no files are created until there is information to be output.

Information is chronologically output to the two trace files on a round-robin basis.
When the current destination file becomes full, the destination file is switched to the
other. When the destination file is switched, the information existing in the new
destination file will be deleted. TP1/Client checks the file size immediately before
writing a new entry to the file. After the new entry is written, the file size may be larger
than the predefined maximum, depending on the size of the new entry.

The socket trace files are binary files. To convert them into text files, use the cltdump
or cltdmp32 command.

The DCTRCSOC entry in the client environment definition determines whether the
socket trace collection is enabled. The DCTRCSOC entry in the client environment
definition specifies the file size. The DCTRCSOCSIZE entry in the client environment
definition specifies the data size.

2.11.4 Module trace collection
TP1/Client outputs trace information about processing to a file as a module trace.

2. Facilities

88

Although the contents of a module trace are not disclosed, maintenance personnel may
use them for troubleshooting.

Normally, the module trace is output to the CUP executing directory. However, you
can change the destination directory by specifying it in DCTRCPATH of the client
environment definition. If the specified directory does not exist, the module trace is
not output.

Whether module trace collection may be used depends on the DCTRCMDL of the client
environment definition. When module trace collection is enabled, two files
(dcmdl1.trc and dcmdl2.trc) are created. However, no files are created until there
is information to be output.

Information is chronologically output to the two trace files on a round-robin basis.
When the current destination file becomes full, the destination file is switched to the
other. When the destination file is switched, the information existing in the new
destination file will be deleted. TP1/Client checks the file size immediately before
writing a new entry to the file. After the new entry is written, the file size may be larger
than the predefined maximum, depending on the size of the new entry.

The module trace files are binary files. To convert them into text files, use the
cltdump or cltdmp32 command.

The DCTRCMDL entry in the client environment definition determines whether the
module trace collection is enabled.

2.11.5 TP1/Server performance verification trace
A TP1/Server performance verification trace (PRF trace) provides trace information
about major events related to services operating on TP1/Server. Use of this trace can
improve the effectiveness of performance verification and troubleshooting.

In TP1/Client, identification information for performance verification can be preset.
TP1/Client can add the identification information to the TP1/Server performance
verification trace. The identification information for performance verification is also
added to the TP1/Client UAP trace. This information can be used to check the TP1/
Client function execution time (acquired by the UAP trace) against the TP1/Server
service execution time (acquired by the performance verification trace). The
information can also be used to determine the progress of processing.

(1) Transferring identification information for performance verification to TP1/
Server

When Y is set for DCCLTPRFINFOSEND of the client environment definition,
identification information for performance verification is transferred to TP1/Server.

However, TP1/Client might not be able to transfer the identification information
depending on the TP1/Server version. For details, see the manual OpenTP1 Operation
or the manual TP1/LiNK User's Guide.

2. Facilities

89

(2) Checking the TP1/Server trace against the TP1/Client trace
When Y is specified for DCCLTPRFINFOSEND of the client environment definition,
TP1/Client adds unique identification information (such as an IP address) to messages
sent to TP1/Server every time the dc_clt_cltin_s function is issued. The added
information is included in the TP1/Client UAP trace. The information is also included
in the TP1/Server performance verification trace.

By checking the TP1/Client UAP trace against the TP1/Server performance
verification trace, you can determine the sequence of processing between TP1/Client
and TP1/Server.

Note, however, that if the DCTRCUAP specification of the client environment definition
is disabled, the identification information for performance verification is not included
in the UAP trace (the information is transferred to TP1/Server).

(3) Identification information for performance verification
Identification information for TP1/Client performance verification is added to the
TP1/Client UAP trace and the TP1/Server performance verification trace.

(a) Items acquired as identification information for performance verification
The following explains the items acquired as identification information for
performance verification:

Node ID: aa[bb] (four-byte alphanumeric character string)

aa: Either of the following values is set:

• For TP1/Client/W: _W

• For TP1/Client/P: _P

bb: Two alphanumeric characters (0 to 9, A to Z, a to z) are randomly set.

Root communication sequence number: [xxxxxxxx] (four-byte hexadecimal data)

xxxxxxxx: IP address

RPC communication sequence number: [yyyy][zzzz] (four-byte hexadecimal data)

yyyy: Random two-byte hexadecimal numbers

zzzz: Communication sequence number (incremented every time the function is
called)

(b) Example of an output trace
The following shows an example of an output trace when the node ID is _WOX, the root
communication sequence number is f784d10a, and the RPC sequence number is
4e880002.

Example of the output of a TP1/Client UAP trace:

2. Facilities

90

Information between the function entry (EVENT=BEGIN) and exit (EVENT=END)
is acquired before a message is sent.

DATE = 2008/08/11 TIME = 05:08:35.603 PID = 2072:3152 SIZE =
26
FUNC = dc_rpc_call_s EVENT = PRF
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +a +b +c +d +e +f
 0123456789abcdef
00000000 5f 57 4f 58 2f 30 78 66 37 38 34 64 31 30 61 2f
 _WOX/0xf784d10a/
00000010 30 78 34 65 38 38 30 30 30 32
 0x4e880002

Example of the output of a TP1/Server performance verification trace:
PRF: Rec Node: smpl Run-ID: 0x4743dfcc Process: 53000
Trace: 4 Event: 0x1003 Time: 2008/08/11 05:08:36
583.000.000 Server-name: svgrp
Rc: 0 Client: - 0x4e880002 Server: **** Root: _WOX -
0xf784d10a Svc-Grp: ******************************** Svc:
****************************** Trn: *

(4) Trace information acquisition points
TP1/Client adds identification information for performance verification to the UAP
trace when any of the following functions is issued:

• dc_rpc_call_s

• dc_rpc_call_to_s

• dc_clt_connect_s

• dc_clt_disconnect_s

• dc_trn_begin_s

• dc_trn_chained_commit_s

• dc_trn_chained_rollback_s

• dc_trn_unchained_commit_s

• dc_trn_unchained_rollback_s

2.11.6 Note on using the troubleshooting facility
When you use the cltdump or cltdmp32 command for editing and outputting trace
information, make sure that the version of the command and the version of TP1/Client
are the same. If you use a command whose version differs from the version of TP1/
Client, the execution results may be incorrect.

2. Facilities

91

2.12 Host name extension

The maximum host name length that TP1/Client can handle is 63 characters. However,
you can use the host name extension function to extend the host name length to a
maximum of 255 characters. To use the function, specify 00000008 (logical addition)
in DCCLTOPTION in the client environment definition.

The header file dcvclt.h provided by TP1/Client defines MAXHOSTNAME (=64) and
DCMAXDNSNAME (=256). Use these definitions as required when creating a CUP.

2.12.1 Host name length and host name storage area length that can
be specified in the arguments of C functions

The host name extension function extends the host name length and the host name
storage area length that can be specified in the arguments of C functions.

The following table shows the host name lengths that can be specified in the arguments
of C functions.

Table 2-9: Host name lengths that can be specified in the arguments of C
functions

Legend:

Yes: Multiple hosts can be specified.

No: Multiple hosts cannot be specified.

#

Function Argument Multiple hosts
specifiable

Specifiable host name
length

 Not
extended

Extended

dc_clt_cltin_s target_host Yes 63
characters
(255
characters)#

255
characters
(1023
characters)#

dc_clt_set_raphost_s raphost

DCRPC_DIRECT_SCHEDULE hostnm No 63
characters

255
characters

dc_clt_cancel_notification_s hostname

dc_clt_send_s hostname

2. Facilities

92

A number in parentheses indicates the maximum number of characters that can be
specified in an argument (includes a port number and separators).

The following table shows the host name storage area length that can be specified in
the arguments of C functions.

Table 2-10: Host name storage area lengths that can be specified in the
arguments of C functions

Note

For the above arguments, you must prepare an area equal to or greater than the
specification shown above. If the length of the area you prepare is smaller than
the specification, the CUP may terminate abnormally.

2.12.2 COBOL-UAP creation programs when the host name
extension function is used

If you want to use the host name extension function when creating a CUP in COBOL,
use the following programs. For details about the data area length when the host name
extension function is used, see the description of the data area where the UAP of each
program sets values in 6. Request Statements Available for TP1/Client (COBOL
Language).

Function Argument Number
of hosts

to be
stored

Host name storage
area length

 Not
extended
(bytes)

Extended
(bytes)

dc_clt_get_raphost_s raphost Multiple 256 or
more

1024 or
more

dc_clt_cltin_s set_host 1 64 or more 256 or
more

dc_clt_accept_notification_s hostname

dc_clt_chained_accept_notification_s hostname

2. Facilities

93

Table 2-11: COBOL-UAP creation program that is called by the CALL
statement used with the host name extension function

#

When you specify 00000008 for DCCLTOPTION in the client environment
definition, you must increase the size of the data area.

2.12.3 Number of characters that can be specified in an operand in
the client environment definition

When using the host name extension function, you can specify a maximum of 255
characters for a host name specified in the following operands in the client
environment definition:

• DCHOST#

• DCCLTRAPHOST#

• DCCLTDCCMHOST#

Function COBOL-UAP creation program
called by the CALL statement

User authentication Requesting authentication of the
client user

CBLDCCLS('EXCLTIN ')

CBLDCCLT('EXCLTIN ')

Permanent connection Specifying the destination of a
request to establish a permanent
connection

CBLDCCLS('STRAPHST')#

CBLDCCLT('STRAPHST')#

Acquiring the destination of a request
to establish a permanent connection

CBLDCCLS('GTRAPHST')#

CBLDCCLT('GTRAPHST')#

TCP/IP communication
function

Sending messages CBLDCCLS('EXSEND ')

CBLDCCLT('EXSEND ')

Facility for receiving
one-way messages from the
server

Receiving one-way messages CBLDCCLS('EXNACPT ')

CBLDCCLT('EXNACPT ')

Canceling the one-way message wait
state

CBLDCCLS('EXNCANCL')

CBLDCCLT('EXNCANCL')

Receiving one-way messages CBLDCCLS('EXNCACPT')

CBLDCCLT('EXNCACPT')

2. Facilities

94

• DCSNDHOST

• DCCLTCUPSNDHOST

#

You can specify a maximum of 1023 characters in the operand (for other
definitions, you can specify a maximum of 255 characters in the operand).

You can specify a host name with a maximum of 255 characters in a file specified for
DCCLTSERVICEGROUPLIST in the client environment definition.

2.12.4 Notes on using the host name extension function
Note the following when specifying a host name:

• The host name cannot contain a colon (:) or a comma (,), which is used as a
separator, or a semicolon (;), which is used for comments.

• The host name must consist of alphanumeric characters, of which at least one
must be an alphabetic character.

• The host name must end with \0.

When you do not use the host name extension function, the host name can contain a
maximum of 64 characters, including \0.

2. Facilities

95

2.13 Send-host specification facility

When TP1/Client requests establishment of a connection to the server, the host that
sends the request can be specified. This functionality is called the send-host
specification facility.

If multiple network adapters are connected to the host on which the CUP is operating,
TCP/IP determines the host that the CUP uses to request establishment of its
connections. However, if you use the send-host specification facility, you can specify
the host that sends the connection establishment requests.

The sending host is specified for DCCLTCUPSNDHOST of the client environment
definition.

The following figure shows the difference when the send-host specification facility is
used and when it is not used.

2. Facilities

96

Figure 2-37: Difference when the send-host specification facility is used and
when it is not used

2. Facilities

97

2.14 Fixed receive-port facility

TP1/Client includes functionality that fixes the receive port used to receive a
connection establishment request from the server. This functionality is called the fixed
receive-port facility.

This facility is used when TP1/Server requests establishment of a connection to TP1/
Client through a firewall whose filter settings are specified to allow transmission to
only a single specified receive port.

Before this facility can be used, a receive port must be specified for
DCCLTCUPRCVPORT of the client environment definition.

The following shows the difference when the fixed receive-port facility is not used and
when it is used.

(1) When the fixed receive-port facility is not used
For communication of responses to RPCs, no filtering is performed on the receive port.
The OS automatically assigns a port as the TP1/Client RPC receive port.

The following figure shows how RPCs that use the scheduler direct facility are
processed when the fixed receive-port facility is not used.

2. Facilities

98

Figure 2-38: Processing when the fixed receive-port facility is not used (for
RPCs that use the scheduler direct facility)

(2) When the fixed receive-port facility is used
The port specified for DCCLCUPRCVPORT of the client environment definition becomes
the receive port on which the communication of responses to RPCs is allowed. All
other ports are filtered out. Accordingly, the firewall is able to block responses from
TP1/Server to illegal service requests.

The following figure shows the processing of RPCs that use the scheduler direct
facility when the fixed receive-port facility is used.

2. Facilities

99

Figure 2-39: Processing when the fixed receive-port facility is used (for RPCs
that use the scheduler direct facility)

Note that the fixed receive-port facility is not enabled in the following cases:

When the TCP/IP communication facility is used

The receive port specified for DCRCVPORT of the client environment definition is
used.

When the facility for receiving one-way messages from the server is used

The receive port specified in an argument of the
dc_clt_accept_notification_s or dc_clt_open_notification_s
function is used.

When TP1/Client communicates with a RAP-processing server

A connection established from TP1/Client is used for sending and receiving.
Messages can safely pass through the firewall even when the fixed receive-port
facility is not used.

101

Chapter

3. User Application Program
Interface (C Language)

This chapter describes the function interface in the C language for user application
programs. It also explains how to compile and link user application programs.

In this chapter, C functions (dc_xxx_xxx_s) are used to call DLLs. If you use
functions of the normal object library (dc_xxx_xxx), replace the C function names with
the corresponding function names of the normal object library.

This chapter contains the following sections:

3.1 Function interface
3.2 Compiling and linking user application programs
3.3 Example of user application program development

3. User Application Program Interface (C Language)

102

3.1 Function interface

This section describes the functions used to interface with TP1/Client.

Develop CUPs using a C language compliant with ANSI C.

Like OpenTP1 service using programs (SUPs), CUPs do not use stubs. User programs
must therefore convert data code (code structure and byte order).

SUP: Service Using Program

3.1.1 Table of functions
Table 3-1 lists TP1/Client functions.

You can use dc_xxx_xxx_s functions and character code conversion functions in a
multi-thread environment. If both function versions (dc_xxx_xxx_s and dc_xxx_xxx)
are supported, except for character code conversion functions, use the dc_xxx_xxx_s
version of functions.

Since not all functions have the dc_xxx_xxx_s version, see the Release Notes that
came with the program product to check whether the functions you want to use have
the dc_xxx_xxx_s version.

For details about each function, see 4. TP1/Client Functions (C Language).
Table 3-1: Table of functions

TP1/Client Facility Function Name

User authentication Client user authentication
requests

dc_clt_cltin_s

dc_clt_cltin

Release of client user
authentication

dc_clt_cltout_s

dc_clt_cltout

Remote procedure calls UAP startup dc_rpc_open_s

dc_rpc_open

UAP termination dc_rpc_close_s

dc_rpc_close

Remote service requests dc_rpc_call_s

dc_rpc_call

3. User Application Program Interface (C Language)

103

Requesting a remote service
with the communication
destination specified

dc_rpc_call_to_s

dc_rpc_call_to

Updating the wait time for
service response

dc_rpc_set_watch_time_s

dc_rpc_set_watch_time

Referencing the wait time
for service response

dc_rpc_get_watch_time_s

dc_rpc_get_watch_time

Creating the
DCRPC_BINDING_TBL
structure

DCRPC_DIRECT_SCHEDULE

Permanent connection Establishing permanent
connection

dc_clt_connect_s

dc_clt_connect

Releasing permanent
connection

dc_clt_disconnect_s

dc_clt_disconnect

Setting the destination of a
request to establish a
permanent connection

dc_clt_set_raphost_s

dc_clt_set_raphost

Acquiring the destination of
a request to establish a
permanent connection

dc_clt_get_raphost_s

dc_clt_get_raphost

Setting terminal
identification information

dc_clt_set_connect_inf_s

dc_clt_set_connect_inf

Transaction control Transaction startup dc_trn_begin_s

dc_trn_begin

Commit in chained mode dc_trn_chained_commit_s

TP1/Client Facility Function Name

3. User Application Program Interface (C Language)

104

dc_trn_chained_commit

Rollback in chained mode dc_trn_chained_rollback_s

dc_trn_chained_rollback

Commit in unchained mode dc_trn_unchained_commit_s

dc_trn_unchained_commit

Rollback in unchained mode dc_trn_unchained_rollback_s

dc_trn_unchained_rollback

Post information about
current transaction

dc_trn_info_s

dc_trn_info

Collection of identifiers for
current transaction

dc_clt_get_trnid_s

dc_clt_get_trnid

TCP/IP
communication
function

Sending messages dc_clt_send_s

dc_clt_send

Receiving messages dc_clt_receive_s

dc_clt_receive

Receiving messages
(messages receivable even if
an error occurs)

dc_clt_receive2_s

dc_clt_receive2

Sending assembled
messages

dc_clt_assem_send_s

dc_clt_assem_send

Receiving assembled
messages

dc_clt_assem_receive_s

dc_clt_assem_receive

TP1/Client Facility Function Name

3. User Application Program Interface (C Language)

105

Facility for receiving
one-way messages
from the server

Receiving one-way
messages from the server to
the client

dc_clt_accept_notification_s

dc_clt_accept_notification

Canceling wait for one-way
messages

dc_clt_cancel_notification_s

dc_clt_cancel_notification

Starting reception of
one-way messages

dc_clt_open_notification_s

dc_clt_open_notification

Terminating reception of
one-way messages

dc_clt_close_notification_s

dc_clt_close_notification

Receiving a one-way
message

dc_clt_chained_accept_notification_s

dc_clt_chained_accept_notification

XATMI interface
facility

Allocating typed buffer tpalloc

Releasing typed buffer tpfree

Establishing connection
with interactive service

tpconnect

Disconnecting connection
with interactive service

tpdiscon

Sending messages to
interactive service

tpsend

Receiving messages from
interactive service

tprecv

Character code
converter (When not
using a code mapping
table)#

Character code converter dc_clt_code_convert

Character code
converter (When using
a code mapping table)#

Starting character code
conversion

dc_clt_codeconv_open

TP1/Client Facility Function Name

3. User Application Program Interface (C Language)

106

This feature is only available for TP1/Client/P.

3.1.2 Format of function descriptions
TP1/Client functions are described in the following format:

Form

Shows the definition form of the TP1/Client library function and the argument
data types. Use the listed data types when setting arguments for the function.

Purpose

Describes what the function does.

Arguments set by UAPs

Shows the arguments that must be set at function execution. Set each argument
according to the given description.

Arguments that contain return values

Shows the arguments that reference the values returned by OpenTP1, server UAP,
and TP1/Client when the function was previously executed.

Return values

Table of return values indicating whether the function executed correctly. If an
error occurred, the return value indicates the error type.

When developing a UAP, always use the listed definition names rather than the
numerical values. Return value definition names are defined in the header file.

Notes

Precautions on using the function.

(1) Symbols used for describing the values specified as arguments
The following tables lists the symbols that are used for describing the values specified
as function arguments.

Terminating character code
conversion

dc_clt_codeconv_close

Executing character code
conversion

dc_clt_codeconv_exec

TP1/Client Facility Function Name

3. User Application Program Interface (C Language)

107

(2) Description of the symbols specified as arguments
The following table lists the symbols specified as arguments.

Symbol Description

{ } Select one of the items enclosed between braces.
Example:

{DCCLT_CNV_EBCDIC|DCCLT_CNV_EBCDIK}

In this case, specify either DCCLT_CNV_EBCDIC or DCCLT_CNV_EBCDIK.

[] The item enclosed between brackets can be omitted.
Example:

[DCNOFLAGS]

DCNOFLAGS can be omitted.

_ (underscore) When all the items enclosed between brackets are omitted, TP1/Client assumes the
default indicated by an underscore.
Example:

[{DCCLT_CNV_SPCHAN|DCCLT_CNV_SPCZEN}]

When both DCCLT_CNV_SPCHAN and DCCLT_CNV_SPCZEN are omitted,
DCCLT_CNV_SPCZEN is assumed.

... This symbol indicates a description is omitted. The item immediately before this
symbol can be specified more than once consecutively.
Example:

host-name [:port-number][, host-name [:port-number],...]
"host-name [:port-number]" can be specified more than once consecutively.

~ The item before this symbol conforms to the rule indicated between < > or (())
described after ~.

<character string> Any character(s)

<unsigned integer> Numbers 0 to 9

(()) The specification range of the specified value is indicated.

Symbol Description

| (Stroke) This symbol delimits the items that are specified in a single argument. Insert the
symbol between items.
Example:
{DCCLT_CNV_EBCDIC|DCCLT_CNV_EBCDIK}

[|{DCCLT_CNV_SPCHAN|DCCLT_CNV_SPCZEN}]

When specifying DCCLT_CNV_EBCDIC and DCCLT_CNV_SPCHAN, specify
"DCCLT_CNV_EBCDIC|DCCLT_CNV_SPCHAN".

3. User Application Program Interface (C Language)

108

3.2 Compiling and linking user application programs

Compiling and linking methods differ according to the operating system environment.

3.2.1 Compiling and linking in UNIX environment
(1) Compiling

Write the CUP in an ANSI C compliant C language. Compile the CUP's C source
program to create an object file. Use the cc command for TP1/Client/W.

Table 3-2 shows the compiler options that must be set.

Table 3-2: Required compiler options (in HI-UX/WE2, HP-UX, and
non-Windows environments)

Example

C language UAP source programs:

• cupmain.c (main function)

• cupfnc1.c (internal function 1)

• cupfnc2.c (internal function 2)

Compile each source program as shown below.

TP1/Client/W

cc -c -I/usr/include -Aa cupmain.c
cc -c -I/usr/include -Aa cupfnc1.c
cc -c -I/usr/include -Aa cupfnc2.c

When the source programs contain dc_xxx_xxx_s functions that support a
multi-thread environment, enter commands as shown below.

xlc_r -c cupmain.c
xlc_r -c cupfunc1.c
xlc_r -c cupfunc2.c

Executing the above cc commands produces the following object files:

• cupmain.o (object file containing the main function)

TP1/Client version Option Meaning

TP1/Client/W -Aa Compile as ANSI C.

3. User Application Program Interface (C Language)

109

• cupfnc1.o (object file containing internal function 1)

• cupfnc2.o (object file containing internal function 2)

(2) Linking
The CUP executable file is created by linking the files shown below. Use the cc
command for TP1/Client/W.

• CUP object files (main function and internal functions)

• TP1/Client library

Example command lines for linking the above files are shown below.

Example

Creating the CUP executable file "example"

• Main function object file

cupmain.o

• Internal function object files

cupfncl.o and cupfnc2.o

Link the files as shown below.

TP1/Client/W

cc -o example cupmain.o cupfnc1.o cupfnc2.o
 -L/usr/lib -lclt

To create a CUP that supports a multi-thread environment, link the files by using
the following command:

xlc_r -o example cupmain.o cupfnc1.o cupfnc2.o -L/usr/lib
-lclt

The -L option can be omitted.

3.2.2 Compiling and linking in Windows environments
(1) Procedure

The following figure shows the procedure for creating a CUP.

3. User Application Program Interface (C Language)

110

Figure 3-1: Procedure for creating a CUP

3. User Application Program Interface (C Language)

111

(2) Compiling and linking
(a) Compiling the source program

Use the Microsoft C compiler (version 6.0 or later) to create CUP object files in the
Windows environment. Use the cc command for compilation.

The compiler options required when normal object libraries are used differ from those
required when DLLs are used. The following tables show the options required in these
two cases.

Table 3-3: Required compiler options (Windows environment and normal object
libraries)

Note
When the XATMI interface facility is used, /DDCCLTDLL must also be specified.

Table 3-4: Required compiler options (Windows environment and DLLs)

Example command lines for compiling a source program are shown below.

Example

C language UAP source programs:

• cup.c (main function)

• cupsub1.c (internal function 1)

TP1/Client version Option Meaning

TP1/Client/P /AM Specifies the memory model.
/AM: Medium memory model
(The TP1/Client/P library uses the medium memory
model for Windows environments.)

/Zp Packs structures.

/Gw Creates Windows-specific prolog and epilog.

/DDCCLTFAR Defines the pointer as a far pointer.

TP1/Client version Option Meaning

TP1/Client/P /Zp Packs the structure.

/Gw Generates the prolog and epilog dedicated to Windows.

/DDCCLTFAR Defines the pointer as a far pointer.

/DDCCLTDLL Develops a header file provided by TP1/Client/P for a
DLL.

3. User Application Program Interface (C Language)

112

• cupsub2.c (internal function 2)

Compile each source program as shown below.

Normal object library

CL /AM /Zp /Gw /DDCCLTFAR /c cup.c
CL /AM /Zp /Gw /DDCCLTFAR /c cupsub1.c
CL /AM /Zp /Gw /DDCCLTFAR /c cupsub2.c

When the XATMI interface facility is used, /DDCCLTDLL must also be
specified.

DLL

CL /Zp /Gw /DDCCLTFAR /DDCCLTDLL /c cup.c
CL /Zp /Gw /DDCCLTFAR /DDCCLTDLL /c cupsub1.c
CL /Zp /Gw /DDCCLTFAR /DDCCLTDLL /c cupsub2.c

Executing the above CL commands produces the following object files:

• cup.obj (object file containing the main function)

• cupsub1.obj (object file containing internal function 1)

• cupsub2.obj (object file containing internal function 2)

(b) Creating the resource definition file
In this example, an icon is defined as a resource. Create the resource definition file
cup.rc as follows:

CUPI ICON cup.ico

CUPI is an arbitrary name given to the icon. Use the SDKPAINT.EXE tool included in
Windows SDK to create the icon file (cup.ico).

(c) Compiling resources
Compile the resource definition file (cup.rc) as follows using the Windows SDK
resource compiler:

rc /r cup.rc

Executing the above rc command creates the resource file cup.res.

(d) Creating a module definition file
Create the example module definition file cup.def as follows:

3. User Application Program Interface (C Language)

113

NAME CUPEXEC
DESCRIPTION 'CUP SAMPLE PROGRAM'
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
CODE PRELOAD MOVEABLE
DATA PRELOAD MOVEABLE
HEAPSIZE 1024
STACKSIZE 8192

Specify 8192 or more for STACKSIZE.

(e) Linking the CUP
Use the LINK command to link the files shown below and create the CUP executable
file.

• CUP object files (main function and internal functions)

• TP1/Client/P library (CLTW32.LIB or CLTWS32.LIB)#

• Import library (provided by Windows SDK)

• Library for Windows application development (provided by Windows SDK)

• Module definition file

CLTCNV32.LIB is also required to use the character code converter.

3. User Application Program Interface (C Language)

114

3.3 Example of user application program development

This section uses examples to describe how to code CUPs and SPPs when creating a
UAP.

3.3.1 Creating CUPs and SPPs
The following figure shows the structure of the example CUP and SPP described in
this section.

This example is for a non-Windows environment.

Figure 3-2: Example of CUP and SPP structure

The following shows how the example CUP is coded.

000010 #include <stdio.h>
000020 #include <string.h>
000030 #include <dcvclt.h>
000040 #include <dcvrpc.h>
000050
000060 #define BUFSIZE 512
000070 #define SERVICE "spp01"
000080
000090 main()
000100 {
000110 char in[BUFSIZE];
000120 DCULONG in_len;
000130 char out[BUFSIZE];
000140 DCULONG out_len;
000150 char indata[BUFSIZE];
000160 DCLONG rc;
000170 DCCLT_ID cltid;

3. User Application Program Interface (C Language)

115

000180 char clt_flag = 0;
000190 char rpc_flag = 0;
000200
000210 /*
000220 * Client user authentication request
000230 */
000240 if((rc = dc_clt_cltin_s(NULL, &cltid, NULL, NULL,
"user01", "puser01",
000250 NULL, DCNOFLAGS)) != DC_OK){
000260 printf("cup01: dc_clt_cltin_s failed. CODE=%d\n",
rc);
000270 goto PROG_EXIT;
000280 }
000290 clt_flag = 1;
000300
000310 /*
000320 * RPC-OPEN(RPC-environment initialization)
000330 */
000340 if((rc = dc_rpc_open_s(cltid, DCNOFLAGS)) != DC_OK) {
000350 printf("cup01: dc_rpc_open_s failed. CODE=%d\n", rc);
000360 goto PROG_END;
000370 }
000380 rpc_flag = 1;
000390
000400 while (1) {
000410 printf("****** Messages Menu ******\n");
000420 printf("Retrieve message ... [1] Write message
... [2]\n");
000430 printf("End [9]\n");
000440 printf("Enter a number. =>");
000450 gets(indata);
000460
000470 if(indata[0] == '1') {
000480
000490 /*
000500 * RPC-CALL(RPC execution)
000510 */
000520 strcpy(in, "cup01");
000530 in_len = strlen(in) + 1;
000540 out_len = sizeof(out);
000550 if((rc = dc_rpc_call_s(cltid, SERVICE, "get", in,
&in_len, out,
000560 &out_len, DCNOFLAGS)) != DC_OK) {
000570 printf("cup01: dc_rpc_call_s failed. CODE=%d\n",
rc);
000580 goto PROG_END;
000590 }
000600 printf("Message text : %s\n", out);

3. User Application Program Interface (C Language)

116

000610 }
000620
000630 else if(indata[0] == '2') {
000640 printf("Enter the message. =>");
000650 gets(indata);
000660 if(indata[0] == '\0') {
000670 strcpy(indata, "No message was entered. \n");
000680 }
000690
000700 /*
000710 * RPC-CALL(RPC execution)
000720 */
000730 strcpy(in, indata);
000740 in_len = strlen(in) + 1;
000750 out_len = sizeof(out);
000760 if((rc = dc_rpc_call_s(cltid, SERVICE, "put", in,
&in_len, out,
000770 &out_len, DCNOFLAGS)) != DC_OK) {
000780 printf("cup01: dc_rpc_call_s failed. CODE=%d\n",
rc);
000790 goto PROG_END;
000800 }
000810 printf("%s\n", out);
000820 }
000830
000840 else if(indata[0] == '9') {
000850 break;
000860 }
000870
000880 else {
000890 continue;
000900 }
000910 }
000920
000930 PROG_END:
000940 /*
000950 * RPC-CLOSE(RPC environment release)
000960 */
000970 if(rpc_flag) {
000980 dc_rpc_close_s(cltid, DCNOFLAGS);
000990 }
001000
001010 PROG_EXIT:
001020 if(clt_flag) {
001030 dc_clt_cltout_s(cltid, DCNOFLAGS);
001040 }
001050 exit(0);
001060 }

3. User Application Program Interface (C Language)

117

The following shows how the example SPP (main function and DAM access) is coded.

000010 #include <stdio.h>
000020 #include <dcrpc.h>
000030 #include <dcdam.h>
000040 #define DAMFILE "damfile0"
000050
000060 int damfd;
000070
000080 main()
000090 {
000100 int rc;
000110
000120 /*
000130 * RPC-OPEN (UAP startup)
000140 */
000150 if ((rc = dc_rpc_open(DCNOFLAGS)) != DC_OK) {
000160 printf("spp01:dc_rpc_open failed. CODE=%d\n", rc);
000170 goto PROG_END;
000180 }
000190 /*
000200 * DAM-OPEN (Open logical file.)
000210 */
000220 if ((rc = dc_dam_open(DAMFILE,DCDAM_BLOCK_EXCLUSIVE))
< 0) {
000230 printf("spp01:dc_dam_open failed. CODE=%d\n", rc);
000240 goto PROG_END;
000250 }
000260 damfd = rc;
000270 /*
000280 * RPC-MAINLOOP (SPP service startup)
000290 */
000300 printf("spp01:Entering mainloop. \n");
000310 if ((rc = dc_rpc_mainloop(DCNOFLAGS)) != DC_OK) {
000320 printf("spp01:dc_rpc_mainloop failed. CODE=%d\n",
rc);
000330 }
000340 /*
000350 * DAM-CLOSE (Close logical file.)
000360 */
000370 if ((rc = dc_dam_close(damfd, DCNOFLAGS)) != DC_OK) {
000380 printf("spp01:dc_dam_close failed. CODE=%d\n", rc);
000390 }
000400 PROG_END:
000410 /*
000420 * RPC-CLOSE (UAP termination)

3. User Application Program Interface (C Language)

118

000430 */
000440 dc_rpc_close(DCNOFLAGS);
000450 printf("spp01:SPP service processing has finished.
\n");
000460 exit(0);
000470 }

The following shows how the example SPP (service function and DAM access) is
coded.

000010 #include <stdio.h>
000020 #include <string.h>
000030 #include <dcrpc.h>
000040 #include <dctrn.h>
000050 #include <dcdam.h>
000060 #define DAMBLKSIZE 504
000070
000080 extern int damfd;
000090 static char damblk[DAMBLKSIZE];
000100
000110 void get(in, in_len, out, out_len)
000120 char *in;
000130 unsigned long *in_len;
000140 char *out;
000150 unsigned long *out_len;
000160 {
000170 int rc;
000180 struct DC_DAMKEY keyptr;
000190 static char *service = "get";
000200
000210 printf("%s:Received a service request from %s. \n",
service, in);
000220
000230 /*
000240 * TRN-BEGIN (Transaction startup)
000250 */
000260 if ((rc = dc_trn_begin()) != DC_OK) {
000270 sprintf(out,"%s:dc_trn_begin failed.
CODE=%d\n",service,rc);
000280 printf("%s", out);
000290 goto PROG_END;
000300 }
000310 /*
000320 * DAM_READ (DAM file read)
000330 */
000340 keyptr.fstblkno = 0;
000350 keyptr.endblkno = 0;

3. User Application Program Interface (C Language)

119

000360 if ((rc = dc_dam_read(damfd, &keyptr, 1, damblk,
000370 DAMBLKSIZE, DCDAM_REFERENCE | DCDAM_NOWAIT))
!= DC_OK) {
000380 sprintf(out, "%s:dc_dam_read failed.
CODE=%d\n",service,rc);
000390 printf("%s", out);
000400 goto TRN_COMMIT;
000410 }
000420 strcpy(out, damblk);
000430
000440 TRN_COMMIT:
000450 /*
000460 * TRN_UNCHAINED_COMMIT (Unchained mode commit)
000470 */
000480 if ((rc = dc_trn_unchained_commit()) !=DC_OK) {
000490 sprintf(out, "%s:dc_trn_unchained_commit failed.
CODE=%d\n",
000500 service, rc);
000510 printf("%s", out);
000520 }
000530 PROG_END
000540 *out_len = strlen(out) + 1;
000550 return;
000560 }
000570
000580 void put(in, in_len, out, out_len)
000590 char *in;
000600 unsigned long *in_len;
000610 char *out;
000620 unsigned long *out_len;
000630 {
000640 int rc;
000650 struct DC_DAMKEY keyptr;
000660 static char *service = "put";
000670
000680 printf("%s:Received a service request. \n", service);
000690
000700 /*
000710 * TRN-BEGIN (Transaction startup)
000720 */
000730 if ((rc = dc_trn_begin()) !=DC_OK) {
000740 sprintf(out, "%s:dc_trn_begin failed.
CODE=%d\n",service,rc);
000750 printf("%s", out);
000760 goto PROG_END;
000770 }
000780 /*
000790 * DAM_WRITE (DAM file write)

3. User Application Program Interface (C Language)

120

000800 */
000810 keyptr.fstblkno = 0;
000820 keyptr.endblkno = 0;
000830 strcpy(damblk, in);
000840 if ((rc = dc_dam_write(damfd, &keyptr, 1, damblk,
000850 DAMBLKSIZE, DCDAM_WAIT)) != DC_OK) {
000860 sprintf(out, "%s:dc_dam_write failed.
CODE=%d\n",service,rc);
000870 printf("%s", out);
000880 dc_trn_unchained_rollback();
000890 goto PROG_END;
000900 }
000910 sprintf(out, "%s:Process completed normally. \n",
service);
000920 /*
000930 * TRN_UNCHAINED_COMMIT (Unchained mode commit)
000940 */
000950 if ((rc = dc_trn_unchained_commit()) != DC_OK) {
000960 sprintf(out, "%s:dc_trn_unchained_commit failed.
CODE=%d\n",
000970 service, rc);
000980 printf("%s", out);
000990 }
001000 PROG_END:
001010 *out_len = strlen(out) + 1;
001020 return;
001030 }

3.3.2 Creating a user application program that supports a
multi-thread environment

This subsection shows a coding example of a CUP that can operate in a multi-thread
environment. This coding example is a program to call an SPP that echoes back a
message sent from the CUP.

000010 #include <stdio.h>
000020 #include <dcvclt.h>
000030 #include <dcvrpc.h>
000040 #include <pthread.h>
000050 #include <sys/errno.h>
000060 #define BUFSIZE 512
000070 #define SERVICE "spp01"
000080 #define THDMAX 5
000090
000100 void *CUP_thread(void *arg)
000110 {
000120 char in[BUFSIZE];

3. User Application Program Interface (C Language)

121

000130 DCULONG in_len;
000140 char out[BUFSIZE];
000150 DCULONG out_len;
000160 int rc = DC_OK;
000170 DCCLT_ID cltid;
000180 int myid;
000190
000200 myid = (int)arg;
000210
000220 /* Client user authentication request */
000230 if ((rc = dc_clt_cltin_s(NULL, &cltid, NULL, NULL,
000240 "user01", "puser01", NULL, DCNOFLAGS))
!= DC_OK) {
000250 printf("cup%d: dc_clt_cltin failed. CODE=%d\n",
myid, rc);
000260 goto PROG_EXIT;
000270 }
000280
000290 /* RPC-OPEN (RPC environment initialization) */
000300 if ((rc = dc_rpc_open_s(cltid, DCNOFLAGS)) != DC_OK) {
000310 printf("cup%d: dc_rpc_open failed. CODE=%d\n",
myid, rc);
000320 goto PROG_END;
000330 }
000340
000350 /* RPC-CALL (RPC execution) */---*/
000360 strcpy(in, "HELLO SPP !!");
000370 in_len = strlen(in) + 1;
000380 out_len = sizeof(out);
000390 if ((rc = dc_rpc_call_s(cltid, SERVICE, "echo", in,
&in_len,
000400 out, &out_len, DCNOFLAGS)) !=
DC_OK) {
000410 printf("cup%d: dc_rpc_call failed. CODE=%d\n",
myid, rc);
000420 goto PROG_END;
000430 }
000440 printf("%s\n", out);
000450 PROG_END:
000460
000470 /* RPC-CLOSE (RPC environment release) */
000480 dc_rpc_close_s(cltid, DCNOFLAGS);
000490
000500 PROG_EXIT:
000510 /* Client user authentication release */
000520 dc_clt_cltout_s(cltid, DCNOFLAGS);
000530
000540 /* Thread termination */

3. User Application Program Interface (C Language)

122

000550 pthread_exit(arg);
000560 }
000570
000580 main()
000590 {
000600 int i;
000610 int rc;
000620 int exit_value;
000630 pthread_t threads[THDMAX];
000640
000650 /* Thread creation */
000660 for (i = 1; i < THDMAX; i++) {
000670 rc = pthread_create((pthread_t *)&threads[i],
000680 NULL,
000690 CUP_thread,
000700 (void *)i);
000710 if (rc < 0) {
000720 printf("cup0: pthread_create failed. CODE=%d\n",
errno);
000730 }
000740 }
000750
000760 /* Wait for thread termination */
000770 for (i = 1; i < THDMAX; i++) {
000780 rc = pthread_join(threads[i], (void **)&exit_value);
000790 if (rc < 0) {
000800 printf("cup0: pthread_join failed.CODE=%d\n",
errno);
000810 }
000820 }
000830 }

123

Chapter

4. TP1/Client Functions (C
Language)

This subsection describes the functions that can be used with TP1/Client.

The description in this chapter uses function names in dc_xxx_xxx_s format (_s
version), the format used to call DLL functions in C. If you use the ordinary object
library functions, replace the function names with the corresponding function names
in dc_xxx_xxx format (non-_s version).

4.1 Notes on using functions
4.2 User authentication
4.3 Remote procedure calls
4.4 Permanent connection
4.5 Transaction control
4.6 TCP/IP communication function
4.7 Facility for receiving one-way messages from the server
4.8 XATMI interface facility
4.9 Character code converter (When not using a code mapping table)
4.10 Character code converter (When using a code mapping table)

4. TP1/Client Functions (C Language)

124

4.1 Notes on using functions

The following are notes on using functions:

We recommend that you use the _s version of functions (dc_xxx_xxx_s), which
can operate in a multi-thread environment. Note, however, that some TP1/Client
program products might not support the _s version of functions. For the support
status of the _s version of functions (dc_xxx_xxx_s), see the Release Notes.

In TP1/Client/W, you do not need to specify the CLTFAR pointer (even though
specifying the pointer does not result in any problem). However, in TP1/Client/P,
you must specify the CLTFAR pointer. How the pointer operates is defined in
dcvclt.h.

For the non-_s version of functions (dc_xxx_xxx) in TP1/Client/P, you can
specify either the CLTFAR pointer or the far pointer without any problems.

The _s version of a function (dc_xxx_xxx_s) and the non-_s version of the
corresponding function (dc_xxx_xxx) do not have the same number of arguments.
In a multi-thread environment, you must use the _s version. The non-_s version
of a function (dc_xxx_xxx) will not correctly operate in a multi-thread
environment. Although the character code converter provides the non-_s version
of functions only, the functions will operate correctly in a multi-thread
environment.

4. TP1/Client Functions (C Language)

125

4.2 User authentication

4.2.1 dc_clt_cltin_s - client user authentication request
(1) Form

(a) TP1/Client/W
_s version of the function
#include <dcvclt.h>
DCLONG dc_clt_cltin_s(HWND hWnd, DCCLT_ID *cltid,
 char *defpath,
 char *target_host,
 char *logname,
 char *passwd,
 char *set_host, DCLONG flags)

Non-_s version of the function
#include <dcvclt.h>
int dc_clt_cltin(char *target_host,
 char *logname,
 char *passwd,
 char *set_host, DCLONG flags)

(b) TP1/Client/P
_s version of the function
#include <dcvclt.h>
DCLONG dc_clt_cltin_s(HWND hWnd, DCCLT_ID CLTFAR *cltid,
 char CLTFAR *defpath,
 char CLTFAR *target_host,
 char CLTFAR *logname,
 char CLTFAR *passwd,
 char CLTFAR *set_host, DCLONG flags)

Non-_s version of the function
#include <dcvclt.h>
int dc_clt_cltin(char CLTFAR *target_host,
 char CLTFAR *logname,
 char CLTFAR *passwd,
 char CLTFAR *set_host, DCLONG flags)

(2) Purpose
Requests TP1/Server as a gateway to verify the client user specified by the login name.

Always execute the dc_clt_cltin_s function even when you suppress user
authentication.

4. TP1/Client Functions (C Language)

126

(3) Arguments set by UAPs
hWnd

Specify NULL.

cltid

Pointer to the area that receives the client ID (defined in the header file
dcvclt.h; its type is DCCLT_ID).

When authentication of the client user terminates normally, the client ID is set in
the specified area. The client ID must not be destroyed before the
dc_clt_cltout_s function is issued.

The acquired client ID can only be used within the thread in which this function
was issued. If you use dc_rpc_call_s or other functions to pass the client ID
to another thread, the other thread may operate incorrectly.

defpath

Specify the path name of the client environment definition file. The path name
must be specified with the full path or with a relative path from the current drive
and the current directory. The following shows the order in which files are loaded
when the path name is specified.

• In TP1/Client/P

Client environment definition files are loaded in the following order:

1. The BETRAN.INI file in the Windows directory

2. The client environment definition file specified in the defpath argument

The definitions in both the client environment definition file and the
BETRAN.INI file take effect.

If the same definition is specified in each file with a different value, the value
specified in the client environment definition file takes effect.

If neither the client environment definition file nor the BETRAN.INI file
contains the necessary specification, TP1/Client/P uses the defaults.

• In TP1/Client/W

All definitions specified in the environment variables will be invalid. TP1/
Client/W uses the defaults for definitions that are not specified in the client
environment definition file specified in the defpath argument.

You can omit the path name by specifying NULL at the beginning of the defpath
argument. The following describes the operation when the path name is omitted.

• In TP1/Client/P

4. TP1/Client Functions (C Language)

127

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the values specified in the environment variables. If an
environment variable is not specified, TP1/Client/W uses the default.

The following describes operation when the client environment definition file
specified in the defpath argument does not exist or when the contents of the
definition file are invalid.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the defaults. The values specified in the environment
variables will be invalid.

target_host

Specify the host name and port number of TP1/Server that is used as a gateway
when authentication is requested. Multiple TP1/Servers can be specified as
gateways (use commas (,) to delimit them).

You can specify a maximum of 63# characters for the host name. When
specifying multiple host names, you can specify a maximum of 255# characters,
including port numbers, in the target_host argument.

Form:

host-computer-name[:port-number][,host-computer-name[:port-numbe
r],...]
host-computer-name~<character string>

port-number~<unsigned integer>((5001-65535))

Do not place a null character (space or tab) except after the separator (,).

You can specify an IP address in decimal dot notation for the host name.

When the port number is omitted, the value for client environment definition
DCNAMPORT is assumed.

When you have specified more than one TP1/Server in the target_host

4. TP1/Client Functions (C Language)

128

argument and an error is detected in the TP1/Server being used as a gateway,
system operation depends on the specification of DCHOSTSELECT in the client
environment definition. If N is specified for DCHOSTSELECT, the system attempts
to replace the failed node by referencing the next TP1/Server of the currently used
TP1/Server. If Y is specified for DCHOSTSELECT, the system selects a TP1/Server
at random (excluding the TP1/Server in which the error was detected) and
attempts to replace the failed node.

When NULL is specified, the function references client environment definition
DCHOST. If target_host is NULL and DCHOST is not set, a broadcast is
performed to determine the target host computer.

To perform a broadcast in TP1/Client/P, you must specify the broadcast address
in the hosts file (the host name must be broadcast). If the host name is not
specified, the dc_clt_cltin_s function returns a DCCLTER_SYSERR error.

If you specify 00000008 for DCCLTOPTION in the client environment
definition, you can specify a maximum of 255 characters for the host name.
When specifying multiple host names, you can specify a maximum of 1023
characters, including port numbers, in the target_host argument.

logname

Specify the login name of the client user. The login name can have a maximum of
15 characters. To communicate with a server other than TP1/Server, specify a
value other than NULL. If you specify NULL, the function returns an error.

passwd

Specify the password for the login name specified for logname. The password
can have a maximum of 15 characters. Set passwd to NULL if not setting the
password.

set_host

Pointer to a 64-byte# area containing the name of the host that actually received
the client user authentication request. The host name is not stored if NULL is
specified.
If you specify 00000008 for DCCLTOPTION in the client environment
definition, this value is 256 bytes, not 64 bytes.

flags

Specify DCCLT_NO_AUTHENT to suppress user authentication for using the
remote API facility. Specify DCNOFLAGS not to suppress user authentication.

(4) Arguments specifying the containers of returned values
cltid

4. TP1/Client Functions (C Language)

129

Specifies the area for containing the returned client ID.

set_host

Specifies the area for storing the returned host name (or IP address in decimal-dot
notation) of the server that actually performed user authentication. Nothing is
returned if you suppress user authentication.

(5) Return values

(6) Notes
• When TP1/Server runs on UNIX and an asterisk (*) is set in the encryption

password field by the security facility, TP1/Server cannot perform user
authentication. In this case, the dc_clt_cltin_s function returns a
DCCLTER_REJECT error.

• If the dc_clt_cltin_s function returns an error, you cannot specify the cltid
argument in a TP1/Client function to be issued because the specified cltid
argument will be invalid. You will need to start over from execution of the

Return Value Value
(decimal)

Meaning

DC_OK 0 Normal termination

DCCLTER_INVALID_ARGS -2501 Invalid argument

DCCLTER_PROTO -2502 The dc_clt_cltin function has already been issued.
This value is not returned if the dc_clt_cltin_s
function is executed.

DCCLTER_FATAL -2503 Channel initialization failed. Or, the client environment is
wrongly specified.

DCCLTER_NO_BUFS -2504 A necessary amount of buffer could not be allocated.
Alternatively, the resource became insufficient.

DCCLTER_NET_DOWN -2506 Communication fault

DCCLTER_OLTF_NOT_UP -2515 OpenTP1 is not running on the requested service node.

DCCLTER_SYSERR -2518 System error

DCCLTER_REJECT -2527 The specified login name is not registered in the target
host, or the password does not match. Alternatively, the
OpenTP1 server may not support user authentication.
Check whether client_uid_check is specified correctly
in the system common definition.

DCCLTER_PORT_IN_USE -2547 A specified port number is in use. Alternatively, port
numbers that can be assigned automatically by the
operating system are insufficient.

4. TP1/Client Functions (C Language)

130

dc_clt_cltin_s function.

• When you specify the area for receiving the value of the set_host argument,
you must specify at least 64 bytes#. If the area is smaller than 64 bytes#, the area
may be corrupted during TP1/Client internal processing. The argument value is
not stored when you suppress user authentication.

If you specify 00000008 for DCCLTOPTION in the client environment
definition, this value is 256 bytes, not 64 bytes.

• In TP1/Client, you can use a different client environment definition for each
dc_clt_cltin_s function call. To do so, create a separate client environment
definition file for each dc_clt_cltin_s function call, and specify the file name
in the defpath argument of the function.

4.2.2 dc_clt_cltout_s - release of client user authentication
(1) Form

TP1/Client/W or TP1/Client/P

(a) _s version of the function

#include <dcvclt.h>
void dc_clt_cltout_s(DCCLT_ID cltid, DCLONG flags)

(b) Non-_s version of the function

#include <dcvclt.h>
void dc_clt_cltout(DCLONG flags)

(2) Purpose
Releases a client user authentication. The CUP is no longer able to receive OpenTP1
services.

The dc_clt_cltout_s function must be issued before termination of a CUP. When
issue, dc_clt_cltout_s function must be paired with the dc_clt_cltin_s
function.

(3) Argument set by UAPs
cltid

Set the client ID received by the dc_clt_cltin_s function.

flags

Set DCNOFLAGS.

4. TP1/Client Functions (C Language)

131

4.3 Remote procedure calls

4.3.1 dc_rpc_open_s - UAP startup
(1) Form

TP1/Client/W or TP1/Client/P

(a) _s version of the function

#include <dcvrpc.h>
DCLONG dc_rpc_open_s(DCCLT_ID cltid, DCLONG flags)

(b) Non-_s version of the function

#include <dcvrpc.h>
int dc_rpc_open(DCLONG flags)

(2) Purpose
Initializes the environment for calling OpenTP1 SPPs or using the TCP/IP
communication function.

Execute the dc_rpc_open_s function before executing a remote procedure call,
transaction control, or various functions for the transaction control.

(3) Argument set by UAPs
cltid

Set the client ID received by the dc_clt_cltin_s function.

flags

Specifies the environment to be initialized.

DCNOFLAGS

Environment for calling SPPs

DCCLT_ONEWAY_SND

Environment for sending send-only messages

DCCLT_ONEWAY_RCV

Environment for receiving receive-only messages

DCCLT_SNDRCV

4. TP1/Client Functions (C Language)

132

Environment for sending and receiving messages.

If DCNOFLAGS is specified, the TCP/IP communication function cannot be used.

Even if any other than DCNOFLAGS is specified, the RPC function can be used.

If DCCLT_SNDRCV is specified, the DCCLT_ONEWAY_SND and
DCCLT_ONEWAY_RCV must not be specified at the same time.

(4) Return values

(5) Notes
Issuing the dc_rpc_close_s function must not be immediately followed by issuing
the dc_rpc_open_s function with flags set to DCCLT_ONEWAY_RCV, as the following
describes. The dc_rpc_open_s function can only be issued 15-20 seconds later.

• After the dc_rpc_open_s function is issued with flags set to
DCCLT_ONEWAY_RCV, the dc_clt_receive_s function has been issued and a
message is being received. The CUP issues the dc_rpc_close_s function to
free the connection before the remote system frees it.

4.3.2 dc_rpc_close_s - UAP termination
(1) Form

TP1/Client/W or TP1/Client/P

(a) _s version of the function

#include <dcvrpc.h>
void dc_rpc_close_s(DCCLT_ID cltid, DCLONG flags)

Return Value Value
(decimal)

Meaning

DC_OK 0 Normal termination

DCRPCER_INVALID_ARGS -2401 Invalid argument

DCRPCER_PROTO -2402 The dc_rpc_open_s function has already been issued.
Alternatively, the dc_clt_cltin_s function has not been
executed.

DCRPC_FATAL -2403 The return value has been returned because of failure to
initialize, or an invalid client environment definition.

DCRPCER_PORT_IN_USE -2447 A specified port number is in use.

DCCLTER_INVALID_CLTID -2544 The client ID specified in cltid differs from the client ID
received by the dc_clt_cltin_s function.

4. TP1/Client Functions (C Language)

133

(b) Non-_s version of the function

#include <dcvrpc.h>
void dc_rpc_close(DCLONG flags)

(2) Purpose
Releases the environment for calling OpenTP1 SPPs or using the TCP/IP
communication function.

When issued, the dc_rpc_close_s function must be paired with the
dc_rpc_open_s function.

The functions that can be issued after the dc_rpc_close_s function are:

• dc_rpc_open_s

• dc_clt_cltout_s

(3) Argument set by UAPs
cltid

Set the client ID received by the dc_clt_cltin_s function.

flags

Set DCNOFLAGS.

(4) Note
The dc_rpc_close_s function does not return a value. Note that if an invalid value
is specified in an argument, the environment will not be released.

4.3.3 dc_rpc_call_s - remote service request
(1) Form

(a) TP1/Client/W
_s version of the function

#include <dcvrpc.h>
DCLONG dc_rpc_call_s(DCCLT_ID cltid, char *group,
 char *service, char *in,
 DCULONG *in_len, char *out,
 DCULONG *out_len, DCLONG flags)

Non-_s version of the function

#include <dcvrpc.h>

4. TP1/Client Functions (C Language)

134

int dc_rpc_call(char *group, char *service,
 char *in, DCULONG *in_len,
 char *out, DCULONG *out_len, DCLONG flags)

(b) TP1/Client/P
_s version of the function

#include <dcvrpc.h>
DCLONG dc_rpc_call_s(DCCLT_ID cltid, char CLTFAR *group,
 char CLTFAR *service, char CLTFAR *in,
 DCULONG CLTFAR *in_len, char CLTFAR *out,
 DCULONG CLTFAR *out_len, DCLONG flags)

Non-_s version of the function

#include <dcvrpc.h>
int dc_rpc_call(char CLTFAR *group, char CLTFAR *service,
 char CLTFAR *in, DCULONG CLTFAR *in_len,
 char CLTFAR *out, DCULONG CLTFAR *out_len,
 DCLONG flags)

(2) Purpose
Requests an SPP service. Calls a service function, specifying the service group name
and service name, and receives a response from the service function.

OpenTP1 must be running on the server UAP node to which the service request is sent.
The dc_rpc_call_s function returns a DCRPCER_NET_DOWN,
DCRPCER_OLTF_NOT_UP, or DCRPCER_OLTF_INITIALIZING error if OpenTP1 is
not running (or is initializing).

The function returns a DCRPCER_SERVICE_CLOSED error if the target service group
is shut down when the dc_rpc_call_s function is executed.

If the target service group is terminating or has been terminated by commands such as
the dcsvstop command, the function returns a DCRPCER_SERVICE_TERMINATING,
DCRPCER_SERVICE_CLOSED, or DCRPCER_NO_SUCH_SERVICE_GROUP error. The
actual value returned depends on the timing of the dc_rpc_call_s function call.

A socket-receiving type server concurrently controls messages by specifying
max_socket_msg and max_socket_msglen in the user service definition. This
sometimes prevents the user from receiving a service request. If a service request
cannot be received, the dc_rpc_call_s function returns with a
DCRPCER_SERVER_BUSY error. If this value is returned, the CUP may make a service
request by reexecuting the process after a certain time.

4. TP1/Client Functions (C Language)

135

To communicate with XDM/DCCM3 in the normal communication mode, specify the
host name and port number of the XDM/DCCM3 logical terminal in
DCCLTSERVICEGROUPLIST in the client environment definition, and then execute the
dc_rpc_call_s function.

(a) Setting arguments
The CUP reserves an area (out) for the service function response. The CUP also sets
the following values for the dc_rpc_call_s function:

• Input parameter (in)

• Input parameter length (in_len)

• Response length (out_len)

The input parameter, input parameter length, and response length values set for the
dc_rpc_call_s function by the CUP are transferred to the service function without
modification. The response length is ignored if the function requests a no-response
type service.

The maximum values for in_len and out_len are defined with
DCRPC_MAX_MESSAGE_SIZE# in the dcvrpc.h header file.

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

(b) Referencing arguments
The following values are available after the completion of service function processing.

• Service function response (out)

• Service function response length (out_len)

out_len contains the actual length of the response returned from the service function.

For synchronous response type RPCs (DCNOFLAGS set in flags), out and out_len can
be referenced after the dc_rpc_call_s function returns. For no-response type RPCs
(DCRPC_NOREPLY set in flags), out and out_len cannot be referenced. Also, out and
out_len cannot be referenced when the dc_rpc_call or function returns an error.

The function returns a DCRPCER_REPLY_TOO_BIG error if the response is larger than
the response area (out) reserved by the CUP.

(3) Arguments set by UAPs
cltid

Set the client ID received by the dc_clt_cltin_s function.

group

4. TP1/Client Functions (C Language)

136

Set the service group name as a null-terminated character string up to 31 bytes in
length.

service

Set the service name as a null-terminated character string up to 31 bytes in length.

in

Set the service input parameter.

in_len

Set the length of the service input parameter as a value between 1 and
DCRPC_MAX_MESSAGE_SIZE#.

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

out

Set the area for receiving the service response.

out_len

Set the length of the service response as a value between 1 and
DCRPC_MAX_MESSAGE_SIZE#.

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

flags

Set the RPC type.

DCNOFLAGS

Synchronous response type RPC

DCRPC_NOREPLY

No-response type RPC

DCRPC_CHAINED

Chained RPC

If DCNOFLAGS or DCRPC_CHAINED is set, the dc_rpc_call_s function does not
return until a response is received or until a response timeout error occurs. The
response timeout period is specified by DCWATCHTIM in the client environment
definition. When the request destination SPP aborts, the function immediately
returns an error. The error accompanies either of the following values depending

4. TP1/Client Functions (C Language)

137

on the response wait time specified for DCWATCHTIM.

• DCWATCHTIM = 1-65535: DCRPCER_TIMED_OUT

• DCWATCHTIM = 0 (wait indefinitely): DCRPCER_SERVICE_NOT_UP

You can change the response wait time while the CUP is executing. To do this,
execute the dc_rpc_set_watch_time_s function before executing the
dc_rpc_call_s function.

You can specify DCRPC_CHAINED only when a transaction or permanent
connection is active.

If DCRPC_NOREPLY is set, the requested service is treated as a no-response type
service. The dc_rpc_call_s function returns immediately without waiting for
the service to complete execution. The response (out) and response length
(out_len) cannot be referenced. Also, the CUP cannot determine whether the
service function actually executed or not.

An RPC from transaction processing can be changed to a service request for
no-transaction. If DCRPC_TPNOTRAN is specified in the RPC type parameter, the
service request of the applicable dc_rpc_call_s function becomes free from
transaction processing.

Example:

DCNOFLAGS|DCRPC_TPNOTRAN

You can specify this service request only in the transaction processing. If you
specify it outside the transaction, the dc_rpc_call_s function returns a
DCRPCER_INVALID_ARGS error.

(4) Arguments that contain return values
out

The response set by the service function. This value is not returned when
DCRPC_NOREPLY is specified in the flags argument.

out_len

The length of the response set by the service function. This value is not returned
when DCRPC_NOREPLY is specified in the flags argument.

(5) Return values
Return Value Value

(decimal)
Meaning

DC_OK 0 Normal termination

4. TP1/Client Functions (C Language)

138

DCRPCER_INVALID_ARGS -2401 Invalid argument

DCRPCER_PROTO -2402 The dc_rpc_open_s function has not been
executed.

DCRPCER_NO_BUFS -2404 A sufficient amount of buffer could not be secured or
resources became insufficient.

DCRPCER_NET_DOWN -2406 Network error

DCRPCER_TIMED_OUT -2407 The dc_rpc_call_s function processing timeout.
Alternatively the service-requesting SPP aborted
before completion of the processing.

DCRPCER_MESSAGE_TOO_BIG -2408 Input parameter length exceeds the maximum.

DCRPCER_REPLY_TOO_BIG -2409 Returned response length exceeds the area provided
by the CUP.

DCRPCER_NO_SUCH_SERVICE_GROUP -2410 Possible causes are as follows:
• An undefined service group name was specified.
• Although TP1/Client needs to communicate with

TP1/Server, Y is specified for DCCLTNOSERVER of
the client environment definition.

DCRPCER_NO_SUCH_SERVICE -2411 An undefined service name was specified.

DCRPCER_SERVICE_CLOSED -2412 Service group containing the specified service is shut
down.

DCRPCER_SERVICE_TERMINATING -2413 Specified service is terminating.

DCRPCER_SERVICE_NOT_UP -2414 The SPP requested to provide a service was not
started, or terminated abnormally before completing
the processing. This value is returned when 0 is
specified for DCWATCHTIM in the client environment
definition (infinite response wait time is specified).

DCRPCER_OLTF_NOT_UP -2415 OpenTP1 is not running on the specified service
node. Alternatively, communication is impossible
because the TP1/Client is disconnected from the
server during a transaction.

DCRPCER_SYSERR_AT_SERVER -2416 A system error occurred for the specified service.

DCRPCER_NO_BUFS_AT_SERVER -2417 Insufficient memory for the specified service

DCRPCER_SYSERR -2418 System error

Return Value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

139

DCRPCER_INVALID_REPLY -2419 Response length returned to OpenTP1 from the
service function is not within the range: 1 to
DCRPC_MAX_MESSAGE_SIZE#.

DCRPCER_OLTF_INITIALIZING -2420 OpenTP1 is initializing on the specified service node.

DCRPCER_NO_BUFS_RB -2423 Insufficient memory

DCRPCER_SYSERR_RB -2424 System error

DCRPCER_SYSERR_AT_SERVER_RB -2425 A system error occurred for the specified service.

DCRPCER_REPLY_TOO_BIG_RB -2426 Returned response cannot be contained in the area
allocated by the CUP.

DCRPCER_TRNCHK -2427 Transaction attribute mismatch is found among SPPs
in the environment of the inter-node load balancing
function. Alternatively, the version of OpenTP1 on
the node used for load balancing is too old to execute
the inter-node load balancing function. The return
value comes only when a service request is made to
the SPPs using the inter-node load balancing
function.

DCRPCER_CONNFREE -2442 The permanent connection has been released.

DCRPCER_PORT_IN_USE -2547 The specified port number is in use, or port numbers
that can be assigned automatically by the operating
system are insufficient.

DCRPCER_SERVER_BUSY -2456 The target server that receives requests from socket
cannot receive a service request.

DCRPCER_TESTMODE -2466 A service request was issued to an SPP for which
test_mode=no was specified in the user service
definition in an environment where DCUTOKEY was
specified in the client environment definition.
Alternatively, a function was called in an
environment where all of the following conditions
existed:
• DCUTOKEY was specified in the client

environment definition.
• A permanent connection with the CUP executing

process was being established.
• The service request was issued outside the

transaction.
• A service request was issued to an SPP for which

a value other than test_mode=no was specified
in the user service definition.

Return Value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

140

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

(6) Notes
• Do not specify the same buffer for the input parameters (in) and service function

response (out).

DCRPCER_NOT_TRN_EXTEND -2467 After a chained RPC has been used for transaction
processing, the dc_rpc_call_s function that has
DCRPC_TPNORTAN set for flags issues a service
request.

DCRPCER_SECCHK -2470 The service-requested SPP is protected by the
security feature. The UAP that called the
dc_rpc_call_s function has no access privilege for
the server UAP.

DCRPCER_TRNCHK_EXTEND -2472 Transaction branch cannot be started because the
number of transaction branches that can be started
concurrently has been exceeded, or, because the
maximum number of child transaction branches that
can be started from one transaction branch has been
exceeded. Alternatively, DCRPC_TPNOTRAN is not set
at flags in a service request qualified by a domain in a
transaction.

DCRPCER_SERVICE_TERMINATED -2478 The SPP requested to provide a service terminated
abnormally before completing the processing. This
value is returned when 00000001 is specified for
DCEXTENDFUNCTION in the client environment
definition. If 00000000 is specified or the
specification is omitted, DCRPCER_TIMED_OUT or
DCRPCER_SERVICE_NOT_UP returns as the return
value.

DCRPCER_VERSION_CHECK -2479 Since the version of service-requested TP1/Server
Base is old (before 03-03), the data compression
cannot be used. This return value returns when the
service is requested within the range of the
transaction.

DCCLTER_INVALID_CLTID -2544 The client ID specified in cltid differs from the
client ID received by the dc_clt_cltin_s function.

DCRPCER_PORT_IN_USE -2547 The specified port number is in use. Alternatively,
port numbers that can be assigned automatically by
the operating system are insufficient.

Return Value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

141

• None of the following return values are returned if flags is set to
DCRPC_NOREPLY.

Errors that never occur:

DCRPCER_REPLY_TOO_BIG

DCRPCER_INVALID_REPLY

Errors that cannot be detected:

DCRPCER_NO_SUCH_SERVICE

DCRPCER_SERVICE_CLOSED

DCRPCER_SERVICE_TERMINATING

DCRPCER_SYSERR_AT_SERVER

DCRPCER_NO_BUFS_AT_SERVER

DCRPCER_OLTF_INITIALIZING

• The possible factor for the return value DCRPCER_TIMED_OUT is that:

The maximum response-wait time specified in the client environment definition
is insufficient;

The service function issued by the SPP requested to initiate service terminated
abnormally;

An error occurred with the node at which the SPP requested to initiate service
exists; or

The service-requesting SPP aborted before completion of the processing.

A network error occurred.

If any of the above problems occurs, the transaction started from the SPP
requested to initiate service may have been committed and the database updated.
Check whether the database has been updated.

• If the CUP issued the dc_rpc_call_s function following the
dc_trn_begin_s function and one of the following return values was returned,
then issue a rollback request function as necessary:

DCRPCER_TIMED_OUT

DCRPCER_NO_SUCH_SERVICE

DCRPCER_NO_BUFS_AT_SERVER

DCRPCER_INVALID_REPLY

DCRPCER_NO_BUFS_RB

4. TP1/Client Functions (C Language)

142

DCRPCER_SYSERR_RB

DCRPCER_SYSERR_AT_SERVER_RB

DCRPCER_REPLY_TOO_BIG_RB

4.3.4 dc_rpc_call_to_s - Request a remote service with the
communication destination specified
(1) Form

(a) TP1/Client/W
_s version of the function

#include <dcvrpc.h>
DCLONG dc_rpc_call_to_s(
 DCCLT_ID cltid, struct DCRPC_BINDING_TBL *direction,
 char *group, char *service, char *in,
 DCULONG *in_len, char *out,
 DCULONG *out_len,
 DCLONG flags)

Non-_s version of the function

#include <dcvrpc.h>
DCLONG dc_rpc_call_to(
 struct DCRPC_BINDING_TBL *direction,
 char *group, char *service,
 char *in, DCULONG *in_len, char *out,
 DCULONG *out_len, DCLONG flags)

(b) TP1/Client/P
_s version of the function

#include <dcvrpc.h>
DCLONG dc_rpc_call_to_s(
 DCCLT_ID cltid, struct DCRPC_BINDING_TBL CLTFAR *direction,
 char CLTFAR *group, char CLTFAR *service, char CLTFAR *in,
 DCULONG CLTFAR *in_len, char CLTFAR *out,
 DCULONG CLTFAR *out_len,
 DCLONG flags)

Non-_s version of the function

#include <dcvrpc.h>

4. TP1/Client Functions (C Language)

143

DCLONG dc_rpc_call_to(
 struct DCRPC_BINDING_TBL CLTFAR *direction, char CLTFAR
*group,
 char CLTFAR *service, char CLTFAR *in, DCULONG CLTFAR *in_len,
 char CLTFAR *out, DCULONG CLTFAR *out_len, DCLONG flags)

(2) Purpose
In the same way as the dc_rpc_call_s function, the dc_rpc_call_to_s function
requests an SPP service. The dc_rpc_call_to_s function uses the host name, in
addition to the service group name and service name, as a search key for the service
function to restrict the nodes to which service requests are sent.

Before issuing the dc_rpc_call_to_s function, you must issue
DCRPC_DIRECT_SCHEDULE() to create a DCRPC_BINDING_TBL structure. In the
direction argument, specify the address of the DCRPC_BINDING_TBL structure.
Other interfaces are the same as those for the dc_rpc_call_s function.

(3) Arguments set by UAPs
cltid

Specify the client ID acquired by using the dc_clt_cltin_s function.

direction

Specify the address of the DCRPC_BINDING_TBL structure.

Before issuing the dc_rpc_call_to or dc_rpc_call_to_s function, you
must issue DCRPC_DIRECT_SCHEDULE() to specify a value in the
DCRPC_BINDING_TBL structure.

group

Specify the service group name. The service group name can have up to 31
characters and must end with a NULL character.

service

Specify the service name. The service name can have up to 31 characters and
must end with a NULL character.

in

Specify the input parameter for the service.

in_len

Specify the length of the input parameter for the service. You can specify a value
in the range from 1 to DCRPC_MAX_MESSAGE_SIZE#.

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client

4. TP1/Client Functions (C Language)

144

environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

out

Specify the address of the area for containing the service response.

out_len

Specify the length of the service response. You can specify a value in the range
from 1 to DCRPC_MAX_MESSAGE_SIZE#.

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

flags

Specify the RPC mode.

DCNOFLAGS

Synchronous-response RPC

DCRPC_NOREPLY

Asynchronous-response RPC

When DCNOFLAGS is specified in flags, the dc_rpc_call_to_s function does
not return until the function receives a response or a timeout (specified with
DCWATCHTIM in the client environment definition) occurs. However, if the SPP
from which you requested a service aborts, the function immediately returns an
error.

In this case, the return value of this function differs depending on the timeout
specified with DCWATCHTIM:

• When DCWATCHTIM is 1 to 65535, DCRPCER_TIMED_OUT is returned.

• When DCWATCHTIM is 0 (no timeout), DCRPCER_SERVICE_NOT_UP is
returned.

You can also change the timeout during execution of the CUP by executing the
dc_rpc_set_watch_time_s function before executing the
dc_rpc_call_to_s function.

When DCRPC_NOREPLY is specified in flags, the function assumes that the
requested service does not return a response. Therefore, the
dc_rpc_call_to_s function immediately returns without waiting for the
service to terminate. The CUP is not notified that the service function was
successfully executed.

4. TP1/Client Functions (C Language)

145

(4) Arguments that contain return values
out

The response of the service specified in the service function is returned. This
value is not returned when DCRPC_NOREPLY is specified in the flags argument.

out_len

The length of the response specified in the service function is returned. This value
is not returned when DCRPC_NOREPLY is specified in the flags argument.

(5) Return values
Return value Value

(decimal)
Meaning

DC_OK 0 Normal termination

DCRPCER_INVALID_ARGS -2401 An invalid value is specified for an argument.

DCRPCER_PROTO -2402 The dc_rpc_open_s function has not been
executed.
Alternatively, this function was issued while a
permanent connection was being established or was
issued within a transaction.

DCRPCER_NO_BUFS -2404 A sufficient amount of buffer space could not be
secured or resources became insufficient.

DCRPCER_NET_DOWN -2406 Network error

DCRPCER_TIMED_OUT -2407 A timeout occurred during processing of the
dc_rpc_call_to_s function. Alternatively, the
service-requested SPP terminated abnormally before
completing the processing.

DCRPCER_MESSAGE_TOO_BIG -2408 The input parameter length exceeds the maximum.

DCRPCER_REPLY_TOO_BIG -2409 The length of the returned response exceeds the area
provided by the CUP.

DCRPCER_NO_SUCH_SERVICE_GROUP -2410 An undefined service group name was specified.
Alternatively, a service request was sent to a user
server that receives requests from socket
(receive_from=socket is specified in the user
service definition).
Alternatively, the SPP requested to provide a service
was not started when N was specified for
DCCLTONLYTHISNODE of the client environment
definition.

DCRPCER_NO_SUCH_SERVICE -2411 An undefined service name is specified.

4. TP1/Client Functions (C Language)

146

DCRPCER_SERVICE_CLOSED -2412 The service group containing the specified service is
shut down.

DCRPCER_SERVICE_TERMINATING -2413 The specified service is terminating.

DCRPCER_SERVICE_NOT_UP -2414 The SPP requested to provide a service was not
started when Y was specified for
DCCLTONLYTHISNODE of the client environment
definition.
Alternatively, when 0 is specified for DCWATCHTIM in
the client environment definition, the SPP terminated
abnormally before completing the processing.

DCRPCER_OLTF_NOT_UP -2415 OpenTP1 is not running on the node that has the
specified service.

DCRPCER_SYSERR_AT_SERVER -2416 A system error occurred for the specified service.

DCRPCER_NO_BUFS_AT_SERVER -2417 Insufficient memory for the specified service.

DCRPCER_SYSERR -2418 System error

DCRPCER_INVALID_REPLY -2419 The length of the response returned to OpenTP1 from
the service function is not in the range from 1 to the
value of DCRPC_MAX_MESSAGE_SIZE#.

DCRPCER_OLTF_INITIALIZING -2420 OpenTP1 is starting on the node to which the service
request was sent.

DCRPCER_TRNCHK -2427 The version of OpenTP1 on the node used for load
balancing is too old to execute the inter-node load
balancing facility. This value is returned only when a
service request has been issued to the SPPs using the
inter-node load balancing facility.

DCRPCER_TESTMODE -2466 A service request was issued to an SPP for which
test_mode=no was specified in the user service
definition.

DCRPCER_SECCHK -2470 The service-requested SPP is protected by the
security facility. The UAP that called the
dc_rpc_call_to_s function is not authorized to
access the server UAP.

Return value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

147

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

(6) Notes
• If you use the dc_rpc_call_to_s function to send a service request to a user

server that receives requests from a socket (receive_from=socket is specified
in the user service definition), the function returns a
DCRPCER_NO_SUCH_SERVICE_GROUP error.

• The version of OpenTP1 in the destination of a service request must be 03-02 or
later. The operation is not ensured if the version is earlier than 03-02.

• If the dc_rpc_call_to_s function is issued while permanent connection is
being established or issued within the scope of the transaction, the function
returns a DCRPCER_PROTO error.

• The values specified in DCCACHE and DCCLTCACHE in the client environment
definition do not take effect.

• The dc_rpc_call_to_s function sends a request directly to the schedule
service. Therefore, the value specified in DCCLTLOADBALANCE in the client
environment definition does not take effect.

• When the dc_rpc_call_to_s function is issued, DCCLTSERVICEGROUPLIST
in the client environment definition is not referenced.

• When the dc_rpc_call_to_s function is issued, DCSCDDIRECT, DCSCDPORT,
DCSCDMULTI, and DCSCDMULTICOUNT in the client environment definition are
not referenced.

DCRPCER_SERVICE_TERMINATED -2478 The SPP requested to provide a service terminated
abnormally before completing the processing. This
value is returned when 00000001 is specified for
DCEXTENDFUNCTION in the client environment
definition. If 00000000 is specified or if the
specification is omitted, DCRPCER_TIMED_OUT or
DCRPCER_SERVICE_NOT_UP is returned as the return
value.

DCCLTER_INVALID_CLTID -2544 The client ID specified in cltid differs from the
client ID received by the dc_clt_cltin_s function.

DCRPCER_PORT_IN_USE -2547 The specified port number is in use. Alternatively,
port numbers that can be assigned automatically by
the operating system are insufficient.

Return value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

148

• In the client environment definition, when DCCLTONLYTHISNODE is set to N or
omitted, the load balancing is performed with weights assigned to the node that
accepts the service request. When DCCLTONLYTHISNODE is set to Y, load
balancing is not performed.

• If the host name of the node to which to send service requests is incorrect, the
dc_rpc_call_to_s function returns a DCRPCER_INVALID_ARGS error.

• The behavior of the dc_rpc_call_to_s function differs depending on the value
of DCCLTONLYTHISNODE in the client environment definition, as shown below.

Status of SPP Value of DCCLTONLYTHISNODE in the client environment definition

Specified
node

Other
node

N or omitted Y

When the SPPs in these nodes
have equal loads

The job is assigned to the SPP in the
specified node.

The job is assigned to the SPP in the
specified node.

When the SPP in the specified
node has a heavier load than
the SPP in the other node

The job is assigned to the SPP in the
other node.

The job is assigned to the SPP in the
specified node.

Active Shut down
(acceptable)

Which SPP is assigned the job depends
on the load level of the SPP in the
specified node. When the SPP in the
specified node does not have a heavy
load, the job is assigned to the SPP in
the specified node. If the specified
node does have a heavy load, the job is
assigned to the SPP in the other node.

The job is assigned to the SPP in the
specified node.

Shut down
(acceptable)

Active Which SPP is assigned the job depends
on the load level of the SPP in the
other node. When the SPP in the other
node does not have a heavy load, the
job is assigned to the SPP in the other
node. If the other node does have a
heavy load, the job is assigned to the
SPP in the specified node.

The job is assigned to the SPP in the
specified node.

Shut down
(unacceptable)

Active The job is assigned to the SPP in the
other node.

The function returns a
DCRPCER_SERVICE_CLOSED error.

Inactive Active The job is assigned to the SPP in the
other node.

The function returns a
DCRPCER_SERVICE_NOT_UP error.

Inactive Inactive The function returns a
DCRPCER_NO_SUCH_SERVICE_GROU
P error.

The function returns a
DCRPCER_SERVICE_NOT_UP error.

4. TP1/Client Functions (C Language)

149

4.3.5 dc_rpc_set_watch_time_s - Updating the wait time for service
response
(1) Form

(a) _s version of the function

#include <dcvrpc.h>
DCLONG dc_rpc_set_watch_time_s(DCCLT_ID cltid, DCLONG var)

(b) Non-_s version of the function

#include <dcvrpc.h>
DCLONG dc_rpc_set_watch_time(DCLONG var)

(2) Purpose
Changes the timeout for the response of the service request. When the timeout is
changed by using this function, the subsequent dc_rpc_call_s functions will use the
new timeout until the dc_rpc_close_s function is executed. Note that this function
does not change the value of DCWATCHTIM in the client environment definition.

Before you change the timeout by executing the dc_rpc_set_watch_time_s
function, execute the dc_rpc_get_watch_time_s function to acquire the current
value so that you can restore the previous setting after changing the timeout.

(3) Arguments set by UAPs
cltid

Set the client ID received by the dc_clt_cltin_s function.

var

Set the changed service response wait time between 1 and 65535. Specifying 0
provides an infinite wait condition.

(4) Return values
Return Value Value

(decimal)
Meaning

DC_OK 0 Normal termination

DCRPCER_INVALID_ARGS -2401 An invalid value is specified for var.

DCRPCER_PROTO -2402 The dc_rpc_open_s function is not executed.

DCRPCER_NO_BUFS -2404 Insufficient memory

4. TP1/Client Functions (C Language)

150

4.3.6 dc_rpc_get_watch_time_s - Referencing the wait time for
service response
(1) Form

(a) _s version of the function

#include <dcvrpc.h>
DCLONG dc_rpc_get_watch_time_s(DCCLT_ID cltid)

(b) Non-_s version of the function

#include <dcvrpc.h>
DCLONG dc_rpc_get_watch_time()

(2) Purpose
References the response wait time for the current service request.

You can use this function to save the original value before temporarily changing the
service response wait time using the dc_rpc_set_watch_time_s function.

The dc_rpc_get_watch_time_s function returns the service response wait time
changed with the dc_rpc_set_watch_time_s function. When the wait time
remains unchanged, the function returns the DCWATCHTIM value in the client
environment definition.

Values obtained by the dc_rpc_get_watch_time_s function are available for the
dc_rpc_call_s function.

(3) Argument set by UAPs
cltid

Set the client ID received by the dc_clt_cltin_s function.

(4) Return values

DCRPCER_INVALID_CLTID -2544 The client ID specified for cltid differs from the one
received from the dc_clt_cltin_s function.

Return Value Value (decimal) Meaning

- Positive integer Current service response wait time

- 0 The service response wait time is indefinite.

Return Value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

151

Legend:

-: Not applicable

4.3.7 DCRPC_DIRECT_SCHEDULE - Create a
DCRPC_BINDING_TBL structure
(1) Form

(a) TP1/Client/W

#include <dcvrpc.h>
DCRPC_DIRECT_SCHEDULE(
 struct DCRPC_BINDING_TBL *direction,
 char *hostnm,
 unsigned short scdport, DCLONG flags)

(b) TP1/Client/P

#include <dcvrpc.h>
DCRPC_DIRECT_SCHEDULE(
 struct DCRPC_BINDING_TBL CLTFAR *direction,
 char CLTFAR *hostnm, unsigned short scdport,
 DCLONG flags)

(2) Purpose
The DCRPC_DIRECT_SCHEDULE function creates the DCRPC_BINDING_TBL
structure to be specified in an argument of the dc_rpc_call_to_s function.

(3) Arguments set by UAPs
direction

Specify the address of the DCRPC_BINDING_TBL structure. Create a
DCRPC_BINDING_TBL structure for each thread.

hostnm

Specify the address of the area containing the name of the host to which you want

DCRPCER_PROTO -2402 The dc_rpc_open_s function is not executed.

DCRPCER_NO_BUFS -2404 Insufficient memory

DCRPCER_INVALID_CLTID -2544 The client ID specified for cltid differs from the
one received from the dc_clt_cltin_s function.

Return Value Value (decimal) Meaning

4. TP1/Client Functions (C Language)

152

to send service requests. End the address with a NULL character.

If you set NULL, the subsequent dc_rpc_call_to_s function returns a
DCRPCER_INVALID_ARGS error.

You can specify a maximum of 63# characters for the host name.

As the host name, you can also specify an IP address in the dotted decimal format.

If you specify 00000008 for DCCLTOPTION in the client environment
definition, you can specify a maximum of 255 characters for the host name.

scdport

Specify the port number of the schedule service existing in the host to which you
want to send service requests. The port number is specified in the scd_port
clause in the schedule service definition. As the port number, you can set 0 or
another value in the range from 5001 to 65535.

If you specify 0, the subsequent dc_rpc_call_to_s function queries the server
about the name service that authenticates the user.

flags

Set DCNOFLAGS.

4. TP1/Client Functions (C Language)

153

4.4 Permanent connection

4.4.1 dc_clt_connect_s - Establish permanent connection
(1) Form

(a) _s version of the function

#include <dcvclt.h>
DCLONG dc_clt_connect_s(DCCLT_ID cltid, DCLONG flags)

(b) Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_connect(DCLONG flags)

(2) Purpose
Establishes permanent connection with a CUP execution process, a RAP-processing
server or DCCM3 logical terminal.

The CUP execution process for establishing the permanent connection is running on
the OpenTP1 node specified in the target_host in the dc_clt_cltin_s function,
specified in DCCLTRAPHOST or DCHOST in the client environment definition.

To establish the permanent connection with the DCCM3 logical terminal, define
DCCLTDCCMHOST and DCCLTDCCMPORT in the client environment definition. Also
specify DCCLT_DCCM3 for the argument flags in the dc_clt_connect_s function.

When you establish permanent connection with the DCCM3 logical terminal using the
remote API facility, provide DCCLTRAPHOST with the host name and the port number
for the DCCM3 logical terminal. Specify DCNOFLAGS for flags of the
dc_clt_connect_s function.

(3) Arguments set by UAPs
cltid

Specify the client ID received by the dc_clt_cltin_s function.

flags

Specify either of the following to establish permanent connection.

DCNOFLAGS

Permanent connection is established with TP1/Server, a RAP-processing
server or DCCM3 logical terminal.

4. TP1/Client Functions (C Language)

154

DCCLT_DCCM3

Permanent connection is established with a DCCM3 logical terminal.

(4) Return values
Return Value Value

(decimal)
Meaning

DC_OK 0 Normal termination. Or, permanent connection has
already been established.

DCCLTER_INVALID_ARGS -2501 Invalid argument

DCCLTER_PROTO -2502 The dc_clt_connect or dc_clt_connect_s
function is issued in the transaction, or the
dc_rpc_open_s function is not issued. The
establishment request to OpenTP1 is issued while
permanent connection with DCCM3 has already been
established. Or, the establishment request to DCCM3 is
issued while permanent connection with OpenTP1 has
already been established.

DCCLTER_NO_BUFS -2504 A necessary amount of buffer could not be allocated.
Alternatively, resources became insufficient.

DCCLTER_NET_DOWN -2506 Communication error

DCCLTER_TIMED_OUT -2507 A timeout error occurred during establishment of
permanent connection.

DCCLTER_OLTF_NOT_UP -2515 One of the following causes is likely:
• The OpenTP1 server or the DCCM3 logical terminal

has not started.
• The client extended service has not started.

clt_conf is specified incorrectly in the system
service configuration definition.

• The CUP executing process has not started.
clt_cup_conf is specified incorrectly in the client
service definition.

DCCLTER_SYSERR -2518 System error

DCCLTER_WRONG_HOST -2539 The establishment request to the DCCM3 logical
terminal is issued with an invalid host name.

DCCLTER_INVALID_CLTID -2544 The client ID specified in cltid differs from the client
ID received by the dc_clt_cltin_s function.

DCCLTER_PORT_IN_USE -2547 The specified port number is in use, or port numbers that
can be assigned automatically by the operating system
are insufficient.

4. TP1/Client Functions (C Language)

155

(5) Notes
• No permanent connection is established when the dc_clt_connect_s function

returns error. Permanent connection may be established only on the CUP
execution process or DCCM3 logical terminal if the return value is
DCCLTER_NET_DOWN, DCCLTER_TIMED_OUT, or DCCLTER_SYSERR.

In this case, the CUP execution process or DCCM3 logical terminal may keep on
waiting for a response from the CUP. To prevent an infinite wait, specify an
appropriate value for the maximum time interval for the permanent connection.
For a DCCM3 logical terminal, specify an appropriate value for the time during
which the system is unable to determine whether a connection with the terminal
is valid.

• The dc_clt_connect_s function cannot be issued in a transaction.

• You can establish permanent connection with only one of the following two
categories.

• CUP execution process, RAP-processing server, or a DCCM3 logical
terminal that is specified for DCCLTRAPHOST in the client environment
definition

• DCCM3 logical terminal that is specified for DCCLTDCCMHOST in the client
environment definition

If you establish permanent connection with one category, you cannot
communicate with the other until you issue the dc_clt_disconnect_s
function.

• The data compression is unavailable when you establish permanent connection
with DCCM3 logical terminals. You need to omit DCCLTDATACOMP or specify N
for it in the client environment definition.

4.4.2 dc_clt_disconnect_s - Release permanent connection
(1) Form

(a) _s version of the function

#include <dcvclt.h>
DCLONG dc_clt_disconnect_s(DCCLT_ID cltid, DCLONG flags)

(b) Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_disconnect(DCLONG flags)

4. TP1/Client Functions (C Language)

156

(2) Purpose
Releases permanent connection with a CUP execution process, a RAP-processing
server or DCCM3 logical terminal.

(3) Arguments set by UAPs
cltid

Specify the client ID received by the dc_clt_cltin_s function.

flags

Set DCNOFLAGS.

(4) Return values

(5) Notes
• The permanent connection is not released when the dc_clt_disconnect_s

function returns an error with one the following return values:

• DCCLTER_INVALID_ARGS

• DCCLTER_PROTO

• DCCLTER_NO_BUFS (when the error is detected on the client)

• DCCLTER_INVALID_CLTID

• TP1/Client forcibly releases the permanent connection if the
dc_clt_disconnect_s function returns an error with one of the following

Return Value Value
(decimal)

Meaning

DC_OK 0 Normal termination. Alternatively, for TP1/Client/P, the
permanent connection is already disconnected.

DCCLTER_INVALID_ARGS -2501 Invalid argument

DCCLTER_PROTO -2502 The dc_rpc_open_s function is not issued.

DCCLTER_NO_BUFS -2504 A necessary amount of buffer could not be allocated.

DCCLTER_NET_DOWN -2506 Communication error. Alternatively, for TP1/Client/P, the
permanent connection is already disconnected.

DCCLTER_TIMED_OUT -2507 A timeout error occurred during release of permanent
connection.

DCCLTER_SYSERR -2518 System error.

DCCLTER_INVALID_CLTID -2544 The client ID specified in cltid differs from the client ID
received by the dc_clt_cltin_s function.

4. TP1/Client Functions (C Language)

157

return values:

• DCCLTER_NO_BUFS (when the error is detected on the server)

• DCCLTER_NET_DOWN

• DCCLTER_TIMED_OUT

• DCCLTER_SYSERR

In this case, the CUP execution process or DCCM3 logical terminal may keep on
waiting for a response from the CUP, without detecting the release of permanent
connection by TP1/Client. To prevent an infinite wait, specify an appropriate
value for the maximum time interval for the permanent connection. For a
DCCM3 logical terminal, specify an appropriate value for the time during which
the system is unable to determine whether a connection with the terminal is valid.

• Issuing the dc_clt_disconnect_s function in a transaction commits the
transaction.

4.4.3 dc_clt_set_raphost_s - Set the destination of a request to
establish a permanent connection
(1) Form

(a) TP1/Client/W
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_set_raphost_s(DCCLT_ID cltid,
 char *raphost,
 DCLONG flags)

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_set_raphost(char *raphost, DCLONG flags)

(b) TP1/Client/P
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_set_raphost_s(DCCLT_ID cltid,
 char CLTFAR *raphost,
 DCLONG flags)

4. TP1/Client Functions (C Language)

158

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_set_raphost(char CLTFAR *raphost, DCLONG flags)

(2) Purpose
The dc_clt_set_raphost_s function sets the host name and port number of the
node to which you want to send a request to establish a permanent connection. The
host name and port number set by these functions prevail over those specified in
DCCLTRAPHOST in the client environment definition. After the
dc_clt_set_raphost_s function is executed, the dc_clt_connect_s function
uses the host name and port number specified in the dc_clt_set_raphost_s
function.

You may want to restore the host name and port number that were used before the
dc_clt_set_raphost_s function was executed. To do this, before executing the
dc_clt_set_raphost_s function to set a new host name and port number, execute
the dc_clt_get_raphost_s function to acquire the current host name and port
number. Then, after executing the dc_clt_set_raphost_s function to set a new
host name and port number, reexecute the function specifying the previously acquired
host name and port number.

(3) Arguments set by UAPs
cltid

Specify the client ID received by the dc_clt_cltin_s function.

raphost

Specify a pointer to an area of at least 256 bytes# where the host name and port
number of the host to which a request for establishing a permanent connection is
to be sent is set.

#:

When 00000008 is specified for DCCLTOPTION of the client environment
definition, the minimum size of the area is 1024 bytes, not 256 bytes.

flags

Specify DCNOFLAGS.

(4) Return values
Return value Value

(decimal)
Meaning

DC_OK 0 The function normally terminated.

4. TP1/Client Functions (C Language)

159

(5) Notes
• The dc_clt_set_raphost_s functions do not change the value of

DCCLTRAPHOST in the client environment definition.

• If raphost specifies a pointer to a NULL character, DCCLTRAPHOST is placed in
undefined status. When DCCLTRAPHOST is not defined, the
dc_clt_connect_s function establishes a permanent connection to the logical
terminal of the CUP executing process or of DCCM3.

4.4.4 dc_clt_get_raphost_s - Acquire the destination of a request to
establish a permanent connection
(1) Form

(a) TP1/Client/W
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_get_raphost_s(DCCLT_ID cltid,
 char *raphost,
 DCLONG flags)

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_get_raphost(char *raphost, DCLONG flags)

(b) TP1/Client/P
_s version of the function

#include <dcvclt.h>

DCCLTER_INVALID_ARGS -2501 The value specified in an argument is incorrect.

DCCLTER_PROTO -2502 The function has already been issued in the transaction or
is now establishing a permanent connection.
Alternatively, the dc_rpc_open_s function has not been
issued.

DCCLTER_NO_BUFS -2504 A necessary amount of buffer could not be allocated.

DCCLTER_INVALID_CLTID -2544 The client ID specified in cltid differs from the client ID
acquired by the dc_clt_cltin_s function.

Return value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

160

DCLONG dc_clt_get_raphost_s(DCCLT_ID cltid,
 char CLTFAR *raphost,
 DCLONG flags)

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_get_raphost(char CLTFAR *raphost, DCLONG flags)

(2) Purpose
The dc_clt_get_raphost_s function acquires the host name and port number of
the node to which to send a request to establish a permanent connection.

Before executing the dc_clt_set_raphost_s function to specify the new
destination of a request to establish a permanent connection, execute the
dc_clt_get_raphost_s function to save the current destination.

When the dc_clt_get_raphost_s function is executed, the latest destination set by
the dc_clt_set_raphost_s function is returned to raphost. If the
dc_clt_set_raphost_s function has not been executed, the value of
DCCLTRAPHOST in the client environment definition is returned to raphost.

(3) Arguments set by UAPs
cltid

Specify the client ID received by the dc_clt_cltin_s function.

flags

Specify DCNOFLAGS.

raphost

Specify a pointer to the area larger than 256 bytes# for containing the host name
and port number of the current destination of a request to establish a permanent
connection.

If you specify 00000008 for DCCLTOPTION in the client environment
definition, this value is 1,024 bytes, not 256 bytes.

(4) Arguments that contain return values
raphost

The current host name and port number of the destination of a request to establish
a permanent connection are returned to raphost. If DCCLTRAPHOST in the client
environment definition is not defined and the destination is not set by the
dc_clt_set_raphost_s function, a NULL character is returned to the

4. TP1/Client Functions (C Language)

161

beginning of raphost.

Form:

host-name[:port-number][,host-name[:port-number],...]

host-name ~<character string>

The host name of the destination of a request to establish a permanent
connection is returned.

port-number ~<unsigned integer>((5001 to 65535))

The port number of the destination of a request to establish a permanent
connection is returned.

(5) Return values

(6) Note

Specify an area of 256 bytes# or more for the raphost argument. If the area is smaller
than 256 bytes#, the area may be corrupted during TP1/Client internal processing.

#:

If you specify 00000008 for DCCLTOPTION in the client environment definition,
this value is 1,024 bytes, not 256 bytes.

Return value Value
(decimal)

Meaning

DC_OK 0 The function normally terminated.

DCCLTER_INVALID_ARGS -2501 The value specified in an argument is incorrect.

DCCLTER_PROTO -2502 The dc_rpc_open_s function has not been issued.

DCCLTER_NO_BUFS -2504 A necessary amount of buffer could not be allocated.

DCCLTER_INVALID_CLTID -2544 The client ID specified in cltid differs from the client ID
acquired by the dc_clt_cltin_s function.

DCCLTER_DLL_NOT_LOADED -2555 The specified DLL could not be loaded.

DCCLTER_FUNC_NOT_DEFINED -2556 An attempt was made to issue a function not defined in the
specified DLL.

4. TP1/Client Functions (C Language)

162

4.4.5 dc_clt_set_connect_inf_s - Set terminal identification
information
(1) Form

(a) TP1/Client/W
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_set_connect_inf_s(DCCLT_ID cltid,
 char *inf,
 unsigned short inf_len,
 DCLONG flags)

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_set_connect_inf(char *inf,
 unsigned short inf_len,
 DCLONG flags)

(b) TP1/Client/P
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_set_connect_inf_s(DCCLT_ID cltid,
 char CLTFAR *inf,
 unsigned short inf_len,
 DCLONG flags)

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_set_connect_inf(char CLTFAR *inf,
 unsigned short inf_len,
 DCLONG flags)

(2) Purpose
Sets terminal identification information dynamically.

When you use a permanent connection to communicate with a DCCM3 logical
terminal, reporting the terminal identification information to the DCCM3 logical
terminal allows you to use DCCM3's function for allocating a fixed terminal.

4. TP1/Client Functions (C Language)

163

The terminal identification information specified in this function is valid only when
the host name and the port number of the DCCM3 logical terminal are specified in the
DCCLTRAPHOST client environment definition and DCNOFLAGS is specified in the flags
argument of the dc_clt_connect_s function.

When this function is executed, the terminal identification information specified in the
DCCLTCONNECTINF client environment definition is not referenced until the the
dc_rpc_open_s function is reexecuted.

The terminal identification information specified in this function is referenced by the
dc_clt_connect_s function which is executed after this function. These functions
then report that information to the DCCM3 logical terminal.

If this function is executed more than once, the dc_clt_connect_s function
references the terminal identification information specified immediately before the
function.

(3) Arguments set by UAPs
cltid

Specify the client ID received by the dc_clt_cltin_s function.

inf

Specify the terminal identification information. If you want to use hexadecimal
numbers to specify this information, use up to 64 bytes. If you want to use a
character string to specify this information, use up to 64 characters (excluding any
NULL characters).

When you use a permanent connection to communicate with a DCCM3 logical
terminal, use EBCDIK code to specify the logical terminal name of the DCCM3
logical terminal as the terminal identification information. However, DCCM3
only validates the first 8 bytes (the 9th and later bytes are ignored).

inf_len

Specify the terminal identification information length. You can specify a length
between 1 and DCCLT_MAX_CONNECT_INF_SIZE.
DCCLT_MAX_CONNECT_INF_SIZE is defined in the header file. The header file
is dcvclt.h for TP1/Client/W. For TP1/Client/P, the header file is DCVCLT.H.

flags

Specify DCNOFLAGS.

(4) Return values
Return Value Value

(decimal)
Meaning

DC_OK 0 Normal termination

4. TP1/Client Functions (C Language)

164

(5) Notes
• Reporting terminal identification information allows you to use DCCM3'

function for allocating a fixed terminal only when DCCM3 is version 09-03 or
later. For details about the function for allocating a fixed terminal, see the manual
VOS3 Data Management System XDM E2 Description.

• If the logical terminal name of the DCCM3 logical terminal matching the terminal
identification information defined in the dc_clt_set_connect_inf_s
function is not defined in DCCM3, the dc_clt_connect_s function returns a
DCCLTER_NET_DOWN error.

DCCLTER_INVALID_ARGS -2501 The value specified as the argument is incorrect.

DCCLTER_PROTO -2502 The dc_rpc_open_s function is not executed.

DCCLTER_NO_BUFS -2504 A necessary amount of buffer could not be allocated.

DCCLTER_INVALID_CLTID -2544 The client ID specified in cltid differs from the client ID
received by the dc_clt_cltin_s function.

Return Value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

165

4.5 Transaction control

4.5.1 dc_trn_begin_s - Transaction startup
(1) Form

(a) _s version of the function

#include <dcvtrn.h>
DCLONG dc_trn_begin_s(DCCLT_ID cltid)

(b) Non-_s version of the function

#include <dcvtrn.h>
DCLONG dc_trn_begin()

(2) Purpose
Starts a global transaction from the CUP process that issues the dc_trn_begin_s
function.

The dc_trn_begin_s function must be issued after the dc_rpc_open_s function.

One global transaction covers from issuing the dc_trn_begin_s function to a
synchronous point (commit request) of the transaction. In the global transaction, the
dc_trn_begin_s function cannot be duplicated (that of an SPP included).
Duplication of the function causes an error return.

The SPP transaction attribute follows the atomic_update specification of the user
service definition.

(3) Arguments set by UAPs
cltid

Set the client ID received by the dc_clt_cltin_s function.

(4) Return values
Return Value Value

(decimal)
Meaning

DC_OK 0 Normal termination

4. TP1/Client Functions (C Language)

166

DCCLTER_PROTO -2502 The function has been issued from an invalid context
(for example, from within a transaction).
Alternatively, the function has been issued from an
environment where both of the following conditions
exist:
• DCUTOKEY is specified in the client environment

definition.
• A permanent connection is being established with

a RAP-processing server.

DCCLTER_NO_BUFS -2504 Insufficient memory. Alternatively, the resource
became insufficient.

DCCLTER_NET_DOWN -2506 Network error

DCCLTER_TIMED_OUT -2507 Timeout occurred during the dc_trn_begin_s
function processing.

DCCLTER_NO_SUCH_SERVICE_GROUP -2510 The client extended service has not started. Check
whether clt_conf is specified correctly in the
system service configuration definition.
Alternatively, the transactional RPC executing
process has not started. Check whether
clt_trn_conf is specified correctly in the client
service definition.

DCCLTER_OLTF_NOT_UP -2515 OpenTP1 has not been activated.

DCCLTER_NO_BUFS_AT_SERVER -2517 Memory became insufficient in a transaction process.

DCCLTER_SYSERR -2518 System error

DCCLTER_CONNFREE -2542 The permanent connection has been released.

DCCLTER_INVALID_CLTID -2544 The client ID specified for cltid differs from the one
received from the dc_clt_cltin_s function.

DCCLTER_BUSY_AT_SERVER -2545 Transaction cannot occur because of an excessive
load on a transaction process on the server.
Reexecute the transaction, which would be
successful, when receiving this return value.

DCCLTER_PORT_IN_USE -2547 The specified port number is in use, or port numbers
that can be assigned automatically by the operating
system are insufficient.

DCTRNER_RM -3406 An error occurred in the Resource Manager (RM).
No transaction could occur.

Return Value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

167

4.5.2 dc_trn_chained_commit_s - Commit in chained mode
(1) Form

(a) _s version of the function

#include <dcvtrn.h>
DCLONG dc_trn_chained_commit_s(DCCLT_ID cltid)

(b) Non-_s version of the function

#include <dcvtrn.h>
DCLONG dc_trn_chained_commit()

(2) Purpose
Acquires the synchronous point of a transaction.

When the dc_trn_chained_commit_s function terminates normally, a new global
transaction occurs. All functions that follow fall in the range of the new global
transaction.

(3) Arguments set by UAPs
cltid

Set the client ID received by the dc_clt_cltin_s function.

(4) Return values

DCTRNER_TM -3407 No transaction could occur because error was
generated in the transaction service.
Reexecute the transaction, which would be
successful, when receiving this return value.

Return Value Value
(decimal)

Meaning

DC_OK 0 Normal termination

DCCLTER_PROTO -2502 The function has been issued from an invalid context
(for example, from outside a transaction).

DCCLTER_NO_BUFS -2504 Insufficient memory

DCCLTER_NET_DOWN -2506 Network error

Return Value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

168

DCCLTER_TIMED_OUT -2507 A timeout error occurred in the processing of the
dc_trn_chained_commit_s function.

DCCLTER_OLTF_NOT_UP -2515 OpenTP1 has not been activated. Alternatively,
communication is impossible because the TP1/Client
is disconnected from the server.

DCCLTER_NO_BUFS_AT_SERVER -2517 Memory became insufficient in a transaction process.

DCCLTER_SYSERR -2518 System error

DCCLTER_CONNFREE -2542 The permanent connection has been released.

DCCLTER_INVALID_CLTID -2544 The client ID specified for cltid differs from the one
received by the dc_clt_cltin_s function.

DCTRNER_ROLLBACK -3402 Current transaction failed to be committed and was
rolled back. After completion of the rollback, the
process will be under the transaction and in the global
transaction.

DCTRNER_HEURISTIC -3403 One transaction branch was committed and another
was rolled back with heuristic determination.
This return value will be returned if the result of the
heuristic determination does not match the one of the
synchronous point of this global transaction. For
information about causes of this return value and the
result of the synchronous point, see the message log
file.
After this return value is returned, the process is still
under the transaction and in the global transaction.

DCTRNER_HAZARD -3404 A transaction branch of the global transaction
terminated heuristically. However, the result of the
synchronous point of this transaction branch was not
apparent because of the error. For information about
causes of this return value and the result of the
synchronous point, see the message log file.
After this return value is returned, the process is still
under the transaction and in the global transaction.

DCTRNER_NO_BEGIN -3424 Current transaction is committed and terminated
normally. But a new transaction could not start. After
this return value is returned, the process will not
under the transaction.

DCTRNER_ROLLBACK_NO_BEGIN -3425 Current transaction could not be committed and was
rolled back. Further new transactions could not start.
The process is not under the transaction.

Return Value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

169

(5) Notes
To terminate the CUP process after committing the transaction, always execute the
dc_trn_unchained_commit_s function.

4.5.3 dc_trn_chained_rollback_s - Rollback in chained mode
(1) Form

(a) _s version of the function

#include <dcvtrn.h>
DCLONG dc_trn_chained_rollback_s(DCCLT_ID cltid)

(b) Non-_s version of the function

#include <dcvtrn.h>
DCLONG dc_trn_chained_rollback()

(2) Purpose
Rolls back a transaction.

DCTRNER_HEURISTIC_NO_BEGIN -3426 The global transaction that executed the
dc_trn_chained_commit_s function follows the
heuristic determination. Some transactions may or
may not be committed.
This return value will be returned if the result of the
heuristic determination differs from the result of the
synchronous point for the global transaction. For the
result of the synchronous point for the UAP, resource
manager, or global transaction that caused this return
value, see the message log file.
Further new transactions could not start. The process
is not under the transaction.

DCTRNER_HAZARD_NO_BEGIN -3427 The global transaction's transaction branch has
completed heuristically. But an error makes it
impossible to determine the result of the synchronous
point for this transaction branch.
For the result of the synchronous point for the UAP,
resource manager, or global transaction that caused
this return value, see the message log file.
Further new transactions could not start. The process
is not under the transaction.

Return Value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

170

When the dc_trn_chained_rollback_s function terminates normally, a new
global transaction occurs. All functions that follow fall in the range of the new global
transaction.

(3) Arguments set by UAPs
cltid

Set the client ID received by the dc_clt_cltin_s function.

(4) Return values
Return Value Value

(decimal)
Meaning

DC_OK 0 Normal termination

DCCLTER_PROTO -2502 The function has been issued from an invalid context
(for example, from outside a transaction).

DCCLTER_NO_BUFS -2504 Insufficient memory

DCCLTER_NET_DOWN -2506 Network error

DCCLTER_TIMED_OUT -2507 Timeout occurred during the
dc_trn_chained_rollback_s function
processing.

DCCLTER_OLTF_NOT_UP -2515 OpenTP1 has not been activated.
Alternatively, communication is impossible because
the TP1/Client is disconnected from the server.

DCCLTER_NO_BUFS_AT_SERVER -2517 Memory became insufficient in a transaction process.

DCCLTER_SYSERR -2518 System error

DCCLTER_CONNFREE -2542 The permanent connection has been released.

DCCLTER_INVALID_CLTID -2544 The client ID specified for cltid differs from the one
received by the dc_clt_cltin_s function.

DCTRNER_HEURISTIC -3403 One transaction branch was committed and another
was rolled back with heuristic determination.
This return value will be returned if the result of the
heuristic determination does not match the one of the
synchronous point of this global transaction. For
information about causes of this return value and the
result of the synchronous point, see the message log
file.
After this return value is returned, the process is still
under the transaction and in the global transaction.

4. TP1/Client Functions (C Language)

171

(5) Notes
To terminate a CUP process after rolling back the transaction, be sure to execute the
dc_trn_unchained_rollback_s function.

4.5.4 dc_trn_unchained_commit_s - Commit in unchained mode
(1) Form

(a) _s version of the function

#include <dcvtrn.h>
DCLONG dc_trn_unchained_commit_s(DCCLT_ID cltid)

DCTRNER_HAZARD -3404 Transaction branch of the global transaction
terminated heuristically. However, the result of
synchronous point of this transaction branch was not
apparent because of the error. For information about
causes of the return value and the result of the
synchronous point, see the message log file.
After this return value is returned, the process is still
under the transaction and in the global transaction.

DCTRNER_NO_BEGIN -3424 Current transaction rolled back normally. But a new
transaction could not start. After this return value is
returned, the process will not under the transaction.

DCTRNER_HEURISTIC_NO_BEGIN -3426 The global transaction that executed the
dc_trn_chained_rollback_s function follows
the heuristic determination. Some transactions may
or may not be committed.
This return value will be returned if the result of the
heuristic determination differs from the result of the
synchronous point for the global transaction. For the
result of the synchronous point for the UAP, resource
manager, or global transaction that caused this return
value, see the message log file.
Further new transactions could not start. The process
is not under the transaction.

DCTRNER_HAZARD_NO_BEGIN -3427 The global transaction's transaction branch has
completed heuristically. But an error makes it
impossible to determine the result of the synchronous
point for this transaction branch.
For the result of the synchronous point for the UAP,
resource manager, or global transaction that caused
this return value, see the message log file.
Further new transactions could not start. The process
is not under the transaction.

Return Value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

172

(b) Non-_s version of the function

#include <dcvtrn.h>
DCLONG dc_trn_unchained_commit()

(2) Purpose
Acquires the synchronous point of a transaction.

When the dc_trn_unchained_commit_s function terminates normally, the global
transaction also terminates. No SPP can be executed as a transaction from outside the
global transaction.

(3) Arguments set by UAPs
cltid

Set the client ID received by the dc_clt_cltin_s function.

(4) Return values
Return Value Value

(decimal)
Meaning

DC_OK 0 Normal termination

DCCLTER_PROTO -2502 The function has been issued from an invalid context
(for example, from outside a transaction).

DCCLTER_NO_BUFS -2504 Insufficient memory

DCCLTER_NET_DOWN -2506 Network error

DCCLTER_TIMED_OUT -2507 Timeout occurred during the
dc_trn_unchained_commit_s function
processing.

DCCLTER_OLTF_NOT_UP -2515 OpenTP1 has not been activated.
Alternatively, communication is impossible because
the TP1/Client is disconnected from the server.

DCCLTER_NO_BUFS_AT_SERVER -2517 Memory became insufficient in a transaction process.

DCCLTER_SYSERR -2518 System error

DCCLTER_CONNFREE -2542 The permanent connection has been released.

DCCLTER_INVALID_CLTID -2544 The client ID specified for cltid differs from the one
received by the dc_clt_cltin_s function.

4. TP1/Client Functions (C Language)

173

(5) Notes
To terminate a CUP process normally, issue the dc_trn_unchained_commit_s
function to commit the transaction.

4.5.5 dc_trn_unchained_rollback_s - Rollback in unchained mode
(1) Form

(a) _s version of the function

#include <dcvtrn.h>
DCLONG dc_trn_unchained_rollback_s(DCCLT_ID cltid)

(b) Non-_s version of the function

#include <dcvtrn.h>
DCLONG dc_trn_unchained_rollback()

(2) Purpose
Rolls back a transaction.

When the dc_trn_unchained_rollback_s function terminates normally, the
global transaction terminates. No SPP can be executed as a transaction from outside
the global transaction.

DCTRNER_ROLLBACK -3402 Transaction was rolled back because it failed to be
committed.
After this return value is returned, the process will be
outside the global transaction.

DCTRNER_HEURISTIC -3403 Some or all transaction branches were rolled back
with heuristic determination. See details on the
message log file.
After this return value is returned, the process is
outside the global transaction.

DCTRNER_HAZARD -3404 Transaction terminated with heuristic determination,
but its result was not apparent because of the error.
See details on the message log file. After this return
value is returned, the process is outside the global
transaction.

Return Value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

174

(3) Arguments set by UAPs
cltid

Set the client ID received by the dc_clt_cltin_s function.

(4) Return values

(5) Notes
To terminate a CUP process normally after the transaction has been rolled back, issue
the dc_trn_unchained_rollback_s function.

Return Value Value
(decimal)

Meaning

DC_OK 0 Normal termination

DCCLTER_PROTO -2502 The function has been issued from an invalid context
(for example, from outside a transaction).

DCCLTER_NO_BUFS -2504 Insufficient memory

DCCLTER_NET_DOWN -2506 Network error

DCCLTER_TIMED_OUT -2507 Timeout occurred during the
dc_trn_unchained_rollback_s function
processing.

DCCLTER_OLTF_NOT_UP -2515 OpenTP1 has not been activated.
Alternatively, communication is impossible because
the TP1/Client is disconnected from the server.

DCCLTER_NO_BUFS_AT_SERVER -2517 Memory became insufficient in a transaction process.

DCCLTER_SYSERR -2518 System error

DCCLTER_CONNFREE -2542 The permanent connection has been released.

DCCLTER_INVALID_CLTID -2544 The client ID specified for cltid differs from the one
received by the dc_clt_cltin_s function.

DCTRNER_HEURISTIC -3403 Some or all transaction branches were rollbacked
with heuristic determination. See details on the
message log file. After this return value is returned,
the process is outside the global transaction.

DCTRNER_HAZARD -3404 Transaction terminated with heuristic determination,
but its result was not apparent because of the error.
See details on the message log file. After this return
value is returned, the process is outside the global
transaction.

4. TP1/Client Functions (C Language)

175

4.5.6 dc_clt_get_trnid_s - Collection of identifiers for current
transaction
(1) Form

(a) TP1/Client/W
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_get_trnid_s(DCCLT_ID cltid, char *trngid,
 char *trnbid)

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_get_trnid(char *trngid, char *trnbid)

(b) TP1/Client/P
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_get_trnid_s(DCCLT_ID cltid,
 char CLTFAR *trngid,
 char CLTFAR *trnbid)

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_get_trnid(char CLTFAR *trngid, char CLTFAR
*trnbid)

(2) Purpose
Collects the global identifier for the current transaction and the identifier for the
current transaction branch.

These identifiers were assigned by OpenTP1 when the following functions were issued
to start the transaction:

• dc_trn_begin_s

• dc_trn_chained_commit_s

• dc_trn_chained_rollback_s

4. TP1/Client Functions (C Language)

176

(3) Arguments set by UAPs
cltid

Set the client ID received by the dc_clt_cltin_s function.

trngid

Set the area that receives transaction global identifiers.

Although a transaction global identifier consists of 16 characters, allocate an area
of 17 bytes or greater, since NULL is appended to the end of the identifier.

trnbid

Set the area that receives transaction branch identifiers.

Although a transaction branch identifier consists of 16 characters, allocate an area
of 17 bytes or greater, since NULL is appended to the end of the identifier.

(4) Arguments whose values are returned
trngid

The transaction global identifier is returned.

trnbid

The transaction branch identifier is returned.

(5) Return values

(6) Note
Specify an area of 17 bytes or greater for each of the trngid and trnbid arguments.
If the area is smaller than 17 bytes, the area may be corrupted during TP1/Client
internal processing.

Return Value Value
(decimal)

Meaning

DC_OK 0 Normal termination

DCCLTER_INVALID_ARGS -2501 The pointer of trngid or trnbid is NULL.

DCCLTER_PROTO -2502 The function has been issued from an invalid context (for
example, from outside a transaction).

DCCLTER_NO_BUFS -2504 Insufficient memory

DCCLTER_INVALID_CLTID -2544 The client ID specified for cltid differs from the one
received by the dc_clt_cltin_s function.

4. TP1/Client Functions (C Language)

177

4.5.7 dc_trn_info_s - Post information about current transaction
(1) Form

(a) TP1/Client/W
_s version of the function

#include <dcvtrn.h>
DCLONG dc_trn_info_s(DCCLT_ID cltid, char *flags)

Non-_s version of the function

#include <dcvtrn.h>
DCLONG dc_trn_info(char *flags)

(b) TP1/Client/P
_s version of the function

#include <dcvtrn.h>
DCLONG dc_trn_info_s(DCCLT_ID cltid, char CLTFAR *flags)

Non-_s version of the function

#include <dcvtrn.h>
DCLONG dc_trn_info(char CLTFAR *flags)

(2) Purpose
Posts whether the CUP having issued the dc_trn_info_s function remains active as
a transaction.

(3) Arguments set by UAPs
cltid

Set the client ID received by the dc_clt_cltin_s function.

flags

Set NULL.

4. TP1/Client Functions (C Language)

178

(4) Return values

Legend:

-: Not applicable

Return Value Value
(decimal)

Meaning

- 1 The CUP process that issued the dc_trn_info_s
function is in a transaction.

- 0 The CUP process that issued the dc_trn_info_s
function is outside the transaction.

DCCLTER_INVALID_CLTID -2544 The client ID specified in cltid differs from the one
received by the dc_clt_cltin_s function.

4. TP1/Client Functions (C Language)

179

4.6 TCP/IP communication function

4.6.1 dc_clt_send_s - Sending messages
(1) Form

(a) TP1/Client/W
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_send_s(DCCLT_ID cltid, char *buff,
 DCLONG sendleng, char *hostname,
 unsigned short portnum, DCLONG flags)

Non-_s version of the function

#include <dcvclt.h>
int dc_clt_send(char *buff, DCLONG sendleng,
 char *hostname,
 unsigned short portnum, DCLONG flags)

(b) TP1/Client/P
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_send_s(DCCLT_ID cltid, char CLTFAR *buff,
 DCLONG sendleng,
 char CLTFAR *hostname,
 unsigned short portnum, DCLONG flags)

Non-_s version of the function

#include <dcvclt.h>
int dc_clt_send(char CLTFAR *buff, DCLONG sendleng,
 char CLTFAR *hostname,
 unsigned short portnum, DCLONG flags)

(2) Purpose
Sends messages to the MHP.

Before issuing the dc_clt_send_s function, the dc_rpc_open_s function with

4. TP1/Client Functions (C Language)

180

flags set to DCCLT_ONEWAY_SND or DCCLT_SNDRCV must be issued.

(3) Arguments set by UAPs
cltid

Set the client ID received by the dc_clt_cltin_s function.

buff

Set the area that contains messages to send. The area must be greater than the
length specified in sendleng.

sendleng

Set the length of a message to send.

hostname

Specify the host name of the node to be connected when no connection is
established.

If NULL is specified, the function accesses the contents of DCSNDHOST in the
client environment definition that was acquired when the dc_rpc_open_s
function was issued.

You can specify a maximum of 63# characters for the host name.

You can specify an IP address in decimal dot notation for the host name.

If you specify 00000008 for DCCLTOPTION in the client environment
definition, you can specify a maximum of 255 characters for the host name.

portnum

Specify the port number of the node to be connected by establishing a connection
when no connection is established.

If 0 is specified, the function accesses the contents of DCSNDPORT in the client
environment definition that was acquired when the dc_rpc_open_s function
was issued.

flags

Specify whether to release the connection after sending message.

DCNOFLAGS

Does not release the connection after sending message.

DCCLT_SND_CLOSE

Releases the connection after sending message.

Except error situations, specifying DCNOFLAGS maintains the connection until

4. TP1/Client Functions (C Language)

181

you issue the dc_rpc_close_s function.

(4) Return values

(5) Note
If the remote system releases the connection when the function sends a message to the
remote system, depending on the length of the message, the function might not be able
to detect that the connection has been released. However, a subsequent function might
detect it. Keep this in mind when you create a CUP.

4.6.2 dc_clt_receive_s - Receiving messages
(1) Form

TP1/Client/W

Return Value Value
(decimal)

Meaning

DC_OK 0 Normal termination

DCCLTER_INVALID_ARGS -2501 Invalid argument

DCCLTER_PROTO -2502 The dc_rpc_open_s function has not been issued. Or
else, the dc_rpc_open_s function has been issued with
DCCLT_ONEWAY_SND or DCCLT_SNDRCV not specified in
flags.

DCCLTER_NO_BUFS -2504 Insufficient memory

DCCLTER_NET_DOWN -2506 Network error

DCCLTER_TIMED_OUT -2507 A request for connection establishment timed out.

DCCLTER_SYSERR -2518 System error

DCCLTER_RESOURCE -2538 Insufficient resource

DCCLTER_WRONG_HOST -2539 The host name is invalid, or has not been specified in both
hostname and DCSNDHOST.

DCCLTER_CONNREFUSED -2541 A connection establishment request to the remote system
was rejected.

DCCLTER_INVALID_CLTID -2544 The client ID specified for cltid differs from the one
received by the dc_clt_cltin_s function.

DCCLTER_PORT_IN_USE -2547 Port numbers that can be assigned automatically by the
operating system are insufficient.

4. TP1/Client Functions (C Language)

182

(a) TP1/Client/W
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_receive_s(DCCLT_ID cltid, char *buff,
 DCLONG recvleng, DCLONG timeout,
 DCLONG flags)

Non-_s version of the function

#include <dcvclt.h>
int dc_clt_receive(char *buff, DCLONG recvleng,
 DCLONG timeout,
 DCLONG flags)

(b) TP1/Client/P
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_receive_s(DCCLT_ID cltid, char CLTFAR *buff,
 DCLONG recvleng, DCLONG timeout,
 DCLONG flags)

Non-_s version of the function

#include <dcvclt.h>
int dc_clt_receive(char CLTFAR *buff, DCLONG recvleng,
 DCLONG timeout,
 DCLONG flags)

(2) Purpose
Receives messages sent by an MHP.

Before issuing thedc_clt_receive_s function, the dc_rpc_open_s function with
flags set to DCCLT_ONEWAY_RCV or DCCLT_SNDRCV must be issued.

(3) Arguments set by UAPs
cltid

Set the client ID received by the dc_clt_cltin_s function.

buff

4. TP1/Client Functions (C Language)

183

Set the area that contains messages received. The area must be greater than the
length specified in recvleng.

recvleng

Set the length of a message to be received.

timeout

Set the maximum wait time (in seconds) for a message to receive. The value must
be an integer from -1 to 65535.

If -1 is specified, the function waits indefinitely until a message comes. If 0 is
specified, the function does not wait for a message. If there is no message to
receive, the function returns with a DCCLTER_TIMED_OUT error.

If any value between 1 and 65535 is specified, the function waits for a message
to receive by the number of seconds specified. If no message can be received
within the specified number of seconds, the function returns with a
DCCLTER_TIMED_OUT error.

flags

Specify whether to release the connection after message reception.

DCNOFLAGS

Does not release the connection after message reception.

DCCLT_RCV_CLOSE

Releases the connection after message reception.

Except error situations, specifying DCNOFLAGS maintains the connection until
you issue the dc_rpc_close_s function.

(4) Argument returned
buff

Return the received message.

(5) Return values
Return Value Value

(decimal)
Meaning

DC_OK 0 Normal termination

DCCLTER_INVALID_ARGS -2501 Invalid argument

DCCLTER_PROTO -2502 The dc_rpc_open_s function has not been issued. Or
else, the dc_rpc_open_s function has been issued with
DCCLT_ONEWAY_RCV or DCCLT_SNDRCV not specified in
flags.

4. TP1/Client Functions (C Language)

184

(6) Notes
• The dc_clt_receive_s function returns control to the CUP if any of the

following events occurs:

• A message of the length specified in recvleng is received from the MHP.

Control is not returned to the CUP if the received message is shorter than the
specified length.

• A timeout error occurs when a message from the MHP is received.

• The MHP frees the connection.

(Control is not returned to the CUP if the received message is shorter than
the specified length.)

• A network error occurs.

• If the MHP frees the connection when the dc_clt_receive_s function is
issued, the function returns with a DCCLTER_CONNFREE error.

4.6.3 dc_clt_receive2_s - Receiving messages (messages
receivable even if an error occurs)
(1) Form

(a) TP1/Client/W
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_receive2_s(DCCLT_ID cltid, char *buff,
 DCLONG *recvleng, DCLONG timeout,
 DCLONG flags)

DCCLTER_NO_BUFS -2504 Insufficient memory

DCCLTER_NET_DOWN -2506 Network error

DCCLTER_TIMED_OUT -2507 Timeout occurred during reception of the message.

DCCLTER_SYSERR -2518 System error

DCCLTER_RESOURCE -2538 Insufficient resource

DCCLTER_CONNFREE -2542 Connection was freed by the remote system.

DCCLTER_INVALID_CLTID -2544 The client ID specified for cltid differs from the one
received by the dc_clt_cltin_s function.

Return Value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

185

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_receive2(char *buff, DCLONG *recvleng,
 DCLONG timeout, DCLONG flags)

(b) TP1/Client/P
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_receive2_s(DCCLT_ID cltid, char CLTFAR *buff,
 DCLONG CLTFAR *recvleng,
 DCLONG timeout,
 DCLONG flags)

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_receive2(char CLTFAR *buff,
 DCLONG CLTFAR *recvleng,
 DCLONG timeout, DCLONG flags)

(2) Purpose
Receives messages from the MHP.

Before issuing the dc_clt_receive2_s function, you need to issue the
dc_rpc_open_s function with flags set to DCCLT_ONEWAY_RCV or DCCLT_SNDRCV.

(3) Arguments set by UAPs
cltid

Set the client ID received by the dc_clt_cltin_s function.

buff

Set the area that contains messages to receive. The area must be greater than the
length specified in recvleng.

recvleng

Set the length of a message to receive.

timeout

4. TP1/Client Functions (C Language)

186

Set the maximum wait time in seconds for receiving messages. The timeout value
must be an integer between -1 and 65535.

Specifying -1 lets the program wait indefinitely until it receives a message.
Specifying 0 disables the program from waiting for messages. When no
messages are available for reception, the function returns an error with
DCCLTER_TIMED_OUT.

Specifying 1 to 65535 allows the program to wait for messages for the specified
seconds. When no messages are received within the time, the function returns an
error with DCCLTER_TIMED_OUT.

flags

Specify whether to release the connection after message reception.

DCNOFLAGS

Does not release the connection after message reception.

DCCLT_RCV_CLOSE

Releases the connection after message reception.

Except error situations, specifying DCNOFLAGS maintains the connection until
you issue the dc_rpc_close_s function.

(4) Argument returned from
buff

Return the received message.

recvleng

Return the length of the received message.

(5) Return values
Return Value Value

(decimal)
Meaning

DC_OK 0 Normal termination

DCCLTER_INVALID_ARGS -2501 Invalid argument

DCCLTER_PROTO -2502 The dc_rpc_open_s function has not been issued.
Alternatively the dc_rpc_open function has been issued
with DCCLT_ONEWAY_RCV or DCCLT_SNDRCV not specified
in flags.

DCCLTER_NO_BUFS -2504 Insufficient memory

DCCLTER_NET_DOWN -2506 Network error

4. TP1/Client Functions (C Language)

187

(6) Notes
• The dc_clt_receive2_s function returns control to the CUP when:

• The program has received a message for the full length specified in
recvleng from the MHP.

(Control is not returned to the CUP if the received message is shorter than
the specified length.)

• A timeout error occurs during message reception from the MHP.

• The MHP releases the connection.

• A network error occurs.

• When the dc_clt_receive2_s function is issued, a disconnection from the
MHP allows the function to return an error with DCCLTER_CONNFREE.

4.6.4 dc_clt_assem_send_s - Sending assembled messages
(1) Form

(a) _s version of the function

#include <dcvclt.h>
DCLONG dc_clt_assem_send_s(DCCLT_ID cltid, char CLTFAR *buff,
DCLONG sendleng,
char CLTFAR *hostname, unsigned short portnum, DCLONG timeout,
DCLONG flags)

(b) Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_assem_send(char CLTFAR *buff, DCLONG sendleng,
char CLTFAR *hostname,
unsigned short portnum, DCLONG timeout, DCLONG flags)

DCCLTER_TIMED_OUT -2507 Timeout occurred during reception of the message.

DCCLTER_SYSERR -2518 System error

DCCLTER_RESOURCE -2538 Insufficient resource

DCCLTER_CONNFREE -2542 The remote system released the connection.

DCCLTER_INVALID_CLTID -2544 The client ID specified for cltid differs from the one
received by the dc_clt_cltin_s function.

Return Value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

188

(2) Purpose
The dc_clt_assem_send_s function uses the message assembly facility to send
messages. When this facility is used, the function sends four-byte message information
followed by the message body specified in the buff argument. If a connection to the
remote system has not been established, the function first establishes the connection
according to the values specified in the hostname and portnum arguments.

If Y is specified for DCCLTDELIVERYCHECK of the client environment definition, the
function also uses the message delivery confirmation facility. In this case, the size of
the message information sent before the message body is 11 bytes. After receiving the
11-byte message information, TP1/Client returns control to the CUP.

Before issuing this function, make sure that you issue the dc_rpc_open_s function
in which DCCLT_ONEWAY_SND or DCCLT_SNDRCV is specified for the flags
argument.

(3) Arguments set by UAPs
cltid

Specify the client ID received by the dc_clt_cltin_s function.

buff

Specify the area that contains the message to be sent. The area must be larger than
the length specified in sendleng.

sendleng

Specify the length of the message to be sent.

hostname

Specify the host name of the node to be connected if no connection has been
established.

If NULL is specified, the function accesses the contents of DCSNDHOST in the
client environment definition acquired when the dc_rpc_open_s function was
issued.

You can specify a maximum of 63# characters for the host name.

You can also specify an IP address in decimal dot notation for the host name.

#:

If you specify 00000008 for DCCLTOPTION in the client environment
definition, you can specify a maximum of 255 characters for the host name.

portnum

4. TP1/Client Functions (C Language)

189

Specify the port number of the node to be connected when there is no connection
and a connection must be established.

If 0 is specified, the function accesses the contents of DCSNDPORT in the client
environment definition acquired when the dc_rpc_open_s function was issued.

timeout

This argument takes effect when the message delivery confirmation facility is
used. Specify the maximum time (in seconds) that the function waits for
response-only data to arrive. The value must be an integer from -1 to 65,535.

If -1 is specified:

The function waits indefinitely for response-only data.

If 0 is specified:

The function does not wait for response-only data. If there is no message to
be received, the function returns a DCCLTER_TIMED_OUT error.

If any value from 1 to 65,535 is specified:

The function waits for a message, but returns a DCCLTER_TIMED_OUT error
if a message does not arrive within the specified number of seconds.

If divided response-only data arrives, the function repeats the receive processing
until 11-byte response-only data arrives. The timeout specified by this argument
is applied every time the function attempts reception. If you want to use the value
of this argument as the maximum response wait time for the client, specify the
00000002 option for DCCLTOPTION of the client environment definition.

flags

Specify whether to release the connection after sending a message.

DCNOFLAGS

After a message is sent, the connection is not released until the
dc_rpc_close_s function is issued (exception: an error occurs).

DCCLT_RCV_CLOSE

After a message is sent, the connection is released. If the message delivery
confirmation facility is being used, the connection is released after message
information has been received.

(4) Return values
Return value Value

(decimal)
Meaning

DC_OK 0 Normal termination

4. TP1/Client Functions (C Language)

190

DCCLTER_INVALID_ARGS -2501 Invalid argument

DCCLTER_PROTO -2502 Possible causes are as follows:
• The dc_rpc_open_s function has not been

issued.
• The dc_rpc_open_s function was issued but

neither DCCLT_ONEWAY_SND nor
DCCLT_SNDRCV was specified for the flags
argument.

DCCLTER_NO_BUFS -2504 Insufficient memory

DCCLTER_NET_DOWN -2506 A network error occurred. The connection is
released.

DCCLTER_TIMED_OUT -2507 A connection establishment request timed out.
Alternatively, reception of response-only data timed
out when the message delivery confirmation facility
was being used. The connection is released.

DCCLTER_SYSERR -2518 A system error occurred. If the error is a network
error, the connection is released.

DCCLTER_RESOURCE -2538 Insufficient resource

DCCLTER_WRONG_HOST -2539 The host name is incorrect. Alternatively, a host
name is not specified in either hostname or
DCSNDHOST.

DCCLTER_CONNREFUSED -2541 A connection establishment request to the remote
system was rejected.

DCCLTER_CONNFREE -2542 The connection was released by the remote system
when the message delivery confirmation facility
was being used.

DCCLTER_INVALID_CLTID -2544 The client ID specified for cltid differs from the
one received by the dc_clt_cltin_s function.

DCCLTER_PORT_IN_USE -2547 Port numbers that can be assigned automatically by
the operating system are insufficient.

DCCLTER_INVALID_MESSAGE -2548 An invalid message was received when the message
delivery confirmation facility was being used. The
connection is released.

DCCLTER_COLLISION_MESSAGE -2584 Messages collided when the message delivery
confirmation facility was being used. The
connection is released.

Return value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

191

(5) Notes
• If the remote system releases the connection when the function sends a message

to the remote system, depending on the length of the message, the function might
not be able to detect that the connection has been released. The following
describes what occurs in this case according to the facility used:

When the message assembly facility is used:

If the function fails to detect the release of a connection when it sends a
message, a subsequent function might detect the release. This must be kept
in mind when a CUP is created.

When the message delivery confirmation facility is used:

If the function fails to detect the release of a connection when it sends a
message, the function detects the release when it receives response-only
data.

• If the message assembly and message delivery confirmation facilities are used,
short packets are used for sending and receiving. As a result, transmission
processing might take more time. If more time might be required, specify Y for
DCCLTTCPNODELAY of the client environment definition.

4.6.5 dc_clt_assem_receive_s - Receiving assembled messages
(1) Form

(a) _s version of the function

#include <dcvclt.h>
DCLONG dc_clt_assem_receive_s(DCCLT_ID cltid, char CLTFAR
*buff, DCLONG CLTFAR *recvleng,
DCLONG timeout, DCLONG flags)

(b) Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_assem_receive(char CLTFAR *buff, DCLONG CLTFAR
*recvleng,
DCLONG timeout, DCLONG flags)

(2) Purpose
The dc_clt_assem_receive_s function uses the message assembly facility to
receive messages. When this facility is used, the function receives four-byte message
information, and then receives data equivalent to the size set in the message
information. The function then stores the data in the buff argument. The four-byte

4. TP1/Client Functions (C Language)

192

message information is not stored in the buff argument. The length of the received
message is stored in the recvleng argument. The message length stored in the
recvleng argument does not include the message information length.

If Y is specified for DCCLTDELIVERYCHECK of the client environment definition, the
message delivery confirmation facility is used when a message is sent or received. In
this case, the function receives 11-byte message information, and then receives data
equivalent to the size set in the message information. The function then stores the data
in the buff argument. The 11-byte message information is not stored in the buff
argument. The length of the received message is stored in the recvleng argument.
The message length stored in the recvleng argument does not include the message
information length. If the received message information includes a response request,
the function sends 11-byte message information, and then returns control to the CUP.

Before issuing this function, make sure that you issue the dc_rpc_open_s function
in which DCCLT_ONEWAY_RCV or DCCLT_SNDRCV is specified for the flags
argument.

(3) Arguments set by UAPs
cltid

Specify the client ID received by the dc_clt_cltin_s function.

buff

Specify the area where the received message will be stored. The area must be
larger than the length of the message sent by the remote system.

recvleng

Specify the length of the area where the received message will be stored (the area
specified by buff).

timeout

Specify the maximum time (in seconds) that the function waits for a message to
arrive. The value must be an integer from -1 to 65,535.

If -1 is specified:

The function waits indefinitely for a message.

If 0 is specified:

The function does not wait for a message. If there is no message to be
received, the function returns a DCCLTER_TIMED_OUT error.

If any value from 1 to 65,535 is specified:

The function waits for a message, but returns a DCCLTER_TIMED_OUT error
if no message arrives within the specified number of seconds.

4. TP1/Client Functions (C Language)

193

If a divided message arrives, the function repeats the receive processing until the
entire message arrives. The timeout specified by this argument is applied every
time the function attempts a reception. If you want to use the value of this
argument as the maximum response wait time for the client, specify the
00000002 option for DCCLTOPTION of the client environment definition.

flags

Specify whether to release the connection after receiving a message.

DCNOFLAGS

After a message is received, the connection is not released until the
dc_rpc_close_s function is issued (exception: an error occurs).

DCCLT_RCV_CLOSE

After a message is received, the connection is released. If the message
delivery confirmation facility is being used, the connection is released after
message information has been sent.

(4) Arguments that contain return values
buff

The received message is stored in the area specified by this argument. The stored
message does not include message information. If a timeout occurs, the data
received before the timeout is stored.

recvleng

The length of the received message is stored in the area specified by this
argument. The stored length does not include the length of the message
information. If a timeout occurs, the length of the data received before the timeout
is stored.

(5) Return values
Return value Value

(decimal)
Meaning

DC_OK 0 Normal termination

DCCLTER_INVALID_ARGS -2501 Invalid argument

DCCLTER_PROTO -2502 Possible causes are as follows:
• The dc_rpc_open_s function has not been

issued.
• The dc_rpc_open_s function was issued but

neither DCCLT_ONEWAY_RCV nor DCCLT_SNDRCV
was specified for the flags argument.

DCCLTER_NO_BUFS -2504 Insufficient memory

4. TP1/Client Functions (C Language)

194

(6) Notes
• This function returns control to the CUP in the following cases only:

• When the function has received message data equivalent to the length set in
the message information

• When a network error has occurred

• When message reception has timed out

• When the connection is released by the remote system

• When the message storage area (specified by the buff argument) is too
small to hold the message sent by the remote system

• When an invalid message has been received

• If the message assembly and message delivery confirmation facilities are used,
short packets are used for sending and receiving. As a result, transmission
processing might take more time. If more time might be required, specify Y for
DCCLTTCPNODELAY of the client environment definition.

DCCLTER_NET_DOWN -2506 A network error occurred. The connection is released.

DCCLTER_TIMED_OUT -2507 Message reception timed out. The connection is
released.

DCCLTER_SYSERR -2518 A system error occurred. If the error is a network error,
the connection is released.

DCCLTER_RESOURCE -2538 Insufficient resource

DCCLTER_CONNFREE -2542 The connection was released by the remote system.

DCCLTER_INVALID_CLTID -2544 The client ID specified for cltid differs from the one
received by the dc_clt_cltin_s function.

DCCLTER_INF_TOO_BIG -2546 The area prepared by the CUP was too small to receive
the message from the remote system. The connection
is released.

DCCLTER_INVALID_MESSAGE -2548 An invalid message was received. The connection is
released.

Return value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

195

4.7 Facility for receiving one-way messages from the server

4.7.1 dc_clt_accept_notification_s - One-way message reception
(1) Form

(a) TP1/Client/W
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_accept_notification_s(
 HWND hWnd, char *defpath,
 char *inf,
 DCLONG *inf_len,
 unsigned short port,
 DCLONG timeout,
 char *hostname,
 char *nodeid, DCLONG flags)

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_accept_notification(
 char *inf, DCLONG *inf_len,
 unsigned short port,
 DCLONG timeout,
 char *hostname, char *nodeid,
 DCLONG flags)

(b) TP1/Client/P
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_accept_notification_s(
 HWND hWnd, char CLTFAR *defpath,
 char CLTFAR *inf,
 DCLONG CLTFAR *inf_len,
 unsigned short port,
 DCLONG timeout,
 char CLTFAR *hostname,
 char CLTFAR *nodeid,
 DCLONG flags)

4. TP1/Client Functions (C Language)

196

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_accept_notification(
 char CLTFAR *inf,
 DCLONG CLTFAR *inf_len,
 unsigned short port,
 DCLONG timeout,
 char CLTFAR *hostname,
 char CLTFAR *nodeid,
 DCLONG flags)

(2) Purpose
This function waits for the message reported by the dc_rpc_cltsend function
executed on the server side. This function stops waiting for the message if a timeout
occurs before receiving the message. The timeout is specified by the timeout
argument. On reception of the message, this function returns the return value, received
message, host name of the message-originating server, and node identifier of the
message-originating server, and control returns to the CUP. Before issuing this
function, you do not need to issue the dc_clt_cltin_s and dc_rpc_open_s
functions.

(3) Arguments set by UAPs
hWnd

Specify NULL.

defpath

Specify the path name of the client environment definition file. The path name
must be specified with the full path or with a relative path from the current drive
and the current directory. The following shows the order in which files are loaded
when the path name is specified.

• In TP1/Client/P

Client environment definition files are loaded in the following order:

1. The BETRAN.INI file in the Windows directory

2. The client environment definition file specified in the defpath argument

The definitions in both the client environment definition file and the
BETRAN.INI file take effect.

If the same definition is specified in each file with a different value, the value
specified in the client environment definition file takes effect.

If neither the client environment definition file nor the BETRAN.INI file

4. TP1/Client Functions (C Language)

197

contains the necessary specification, TP1/Client/P uses the defaults.

• In TP1/Client/W

All definitions specified in the environment variables will be invalid. TP1/
Client/W uses the defaults for definitions that are not specified in the client
environment definition file specified in the defpath argument.

You can omit the path name by specifying NULL at the beginning of the defpath
argument. The following describes the operation when the path name is omitted.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the values specified in the environment variables. If an
environment variable is not specified, TP1/Client/W uses the default.

The following describes operation when the client environment definition file
specified in the defpath argument does not exist or when the contents of the
definition file are invalid.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the defaults. The values specified in the environment
variables will be invalid.

inf

Specify the area for storing the message sent from the server.

inf_len

Specify the length of the area for storing the message sent from the server. That
is, specify the length of the inf argument. You can specify a value in the range
from 0 to DCRPC_MAX_MESSAGE_SIZE#.

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

4. TP1/Client Functions (C Language)

198

port

Specify a client's port number between 5001 and 65535. Specify a unique port
number for each process or thread if multiple processes or multiple threads are
executed simultaneously on the same machine.

timeout

Specify a timeout value in seconds between 0 and 65535. Value 0 means an
infinite wait.

hostname

Specify an area of 64 bytes# or more for storing the host name of the server that
sent the message. The host name is not stored if you specify NULL.

If you specify 00000008 for DCCLTOPTION in the client environment
definition, this value is 256 bytes, not 64 bytes.

nodeid

Specify the 8-byte area for storing the node identifier of the server that sent the
message.

flags

Specify DCNOFLAGS.

(4) Arguments returned
inf

Notification message from the server.

inf_len

Notification message length from the server.

hostname

Host computer name for the server that notified the message. An IP address in
decimal dot notation is returned if resolution to a host name has failed. This value
is not returned if you specify NULL.

nodeid

Node identifier for the server that notified the message. The node identifier is
suffixed by a NULL character as shown below.

4. TP1/Client Functions (C Language)

199

(5) Return values

(6) Notes

• Specify an area of 64 bytes# or more for the hostname argument, and an area of
8 bytes or greater for the nodeid argument. If the area is smaller than the
required value, the area may be corrupted during TP1/Client internal processing.

If you specify 00000008 for DCCLTOPTION in the client environment
definition, this value is 256 bytes, not 64 bytes.

• Specify a unique port number in the port argument for each process or thread
when multiple processes or multiple threads are executed simultaneously on the
same machine. Do not specify a port number for use by the operating system or
other programs even if one can be specified in the port argument. If you specify
a port number in this case, response data might not be received correctly. The port
numbers used by the operating system depend on the operating system. For
details, see the documentation of your operating system.

Return Value Value
(decimal)

Meaning

DC_OK 0 Normal termination

DCCLTER_INVALID_ARGS -2501 Invalid argument

DCCLTER_FATAL -2503 Unsuccessful initialization. Alternatively, the client
environment definition is specified incorrectly.

DCCLTER_NO_BUFS -2504 A necessary amount of buffer could not be allocated.

DCCLTER_NET_DOWN -2506 Network error

DCCLTER_TIMED_OUT -2507 A timeout occurred during reception of the message.

DCCLTER_SYSERR -2518 System error

DCCLTER_VERSION -2535 Different versions

DCCLTER_INF_TOO_BIG -2546 The received message is too large for the CUP-provided
area. The part that does not fit is truncated. Values have
already been set in the hostname and nodeid
arguments.

DCCLTER_PORT_IN_USE -2547 The specified port number is already used.

DCCLTER_INVALID_MESSAGE -2548 Invalid message received

DCCLTER_ACCEPT_CANCELED -2549 The one-way message reception wait status was
canceled by the dc_clt_cancel_notification_s
function. Values have already been set in the inf,
inf_len, and hostname arguments.

4. TP1/Client Functions (C Language)

200

• In TP1/Client, you can use a different client environment definition for each
dc_clt_accept_notification_s function call. To do so, create a separate
client environment definition file for each dc_clt_accept_notification_s
function call, and specify the file name in the defpath argument of the function.

4.7.2 dc_clt_cancel_notification_s - Canceling one-way message
wait
(1) Form

(a) TP1/Client/W
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_cancel_notification_s(
 HWND hWnd, char *defpath,
 char *inf, DCLONG inf_len,
 unsigned short port,
 char *hostname, DCLONG flags)

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_cancel_notification(
 char *inf, DCLONG inf_len,
 unsigned short port, char
 *hostname,
 DCLONG flags)

(b) TP1/Client/P
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_cancel_notification_s(
 HWND hWnd, char CLTFAR *defpath,
 char CLTFAR *inf, DCLONG inf_len,
 unsigned short port,
 char CLTFAR *hostname, DCLONG
 flags)

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_cancel_notification(

4. TP1/Client Functions (C Language)

201

 char CLTFAR *inf, DCLONG inf_len,
 unsigned short port, char CLTFAR
 *hostname,
 DCLONG flags)

(2) Purpose
Cancels the wait for receiving a one-way message from the server. The wait state is
enabled by the dc_clt_accept_notification_s function.

When canceling the wait state, you can send the message specified for inf to the CUP
that waits for a one-way message.

(3) Arguments set by UAPs
hWnd

Specify NULL.

defpath

Specify the path name of the client environment definition file. The path name
must be specified with the full path or a path from the current drive and the current
directory. The following shows the order in which files are loaded when the path
name is specified.

• In TP1/Client/P

Client environment definition files are loaded in the following order:

1. The BETRAN.INI file in the Windows directory

2. The client environment definition file specified in the defpath argument

The definitions in both the client environment definition file and the
BETRAN.INI file take effect.

If the same definition is specified in each file with a different value, the value
specified in the client environment definition file takes effect.

If neither the client environment definition file nor the BETRAN.INI file
contains the necessary specification, TP1/Client/P uses the defaults.

• In TP1/Client/W

All definitions specified in the environment variables will be invalid. TP1/
Client/W uses the defaults for definitions that are not specified in the client
environment definition file specified in the defpath argument.

You can omit the path name by specifying NULL at the beginning of the defpath
argument. The following describes the operation when the path name is omitted.

• In TP1/Client/P

4. TP1/Client Functions (C Language)

202

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the values specified in the environment variables. If an
environment variable is not specified, TP1/Client/W uses the default.

The following describes operation when the client environment definition file
specified in the defpath argument does not exist or when the contents of the
definition file are invalid.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the defaults. The values specified in the environment
variables will be invalid.

inf

Specify a message notified to the CUP.

inf_len

Specify the message length (inf length). Available values range from 0 to
DCRPC_MAX_MESSAGE_SIZE#. Specifying 0 notifies no messages to the CUP.

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

port

Specify a port number for the one-way message request between 5001 and 65535.

hostname

Specify the name of the host on which the CUP is waiting for one-way messages.
You can specify a maximum of 63# characters for the host name.

You can specify an IP address in decimal dot notation for the host name.

If you specify 00000008 for DCCLTOPTION in the client environment
definition, you can specify a maximum of 255 characters for the host name.

4. TP1/Client Functions (C Language)

203

flags

Specify DCNOFLAGS.

(4) Return values

(5) Note
In TP1/Client, you can use a different client environment definition for each
dc_clt_cancel_notification_s function call. To do so, create a separate client
environment definition file for each dc_clt_cancel_notification_s function
call, and specify the file name in the defpath argument of the function.

4.7.3 dc_clt_open_notification_s - Start reception of one-way
messages
(1) Form

(a) TP1/Client/W
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_open_notification_s(HWND hWnd,
 DCCLT_ID *ntfid,
 char *defpath,
 unsigned short port,

Return Value Value
(decimal)

Meaning

DC_OK 0 Normal termination

DCCLTER_INVALID_ARGS -2501 Invalid argument

DCCLTER_FATAL -2503 Initialization failed. Alternatively, the client environment
definition is specified incorrectly.

DCCLTER_NO_BUFS -2504 A necessary amount of buffer could not be allocated.
Alternatively, resources became insufficient.

DCCLTER_NET_DOWN -2506 Network error

DCCLTER_SERVICE_NOT_UP -2514 The CUP is not in the one-way message reception wait
status.

DCCLTER_SYSERR -2518 System error

DCCLTER_WRONG_HOST -2539 Invalid host computer name

DCCLTER_PORT_IN_USE -2547 The specified port number is in use, or port numbers that
can be assigned automatically by the operating system are
insufficient.

4. TP1/Client Functions (C Language)

204

 DCLONG flags)

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_open_notification(unsigned short port,
 DCLONG flags)

(b) TP1/Client/P
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_open_notification_s(HWND hWnd,
 DCCLT_ID CLTFAR *ntfid,
 char CLTFAR *defpath,
 unsigned short port,
 DCLONG flags)

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_open_notification(unsigned short port,
 DCLONG flags)

(2) Purpose
The dc_clt_open_notification_s function creates an environment for using the
facility for receiving one-way messages from the server.

The dc_clt_open_notification_s and dc_clt_close_notification_s
functions are used in a pair.

(3) Arguments set by UAPs
hWnd

Specify NULL.

ntfid

Specify a pointer to the area for receiving the one-way message reception ID.

defpath

Specify the path name of the client environment definition file. The path name
must be specified with the full path or with a relative path from the current drive

4. TP1/Client Functions (C Language)

205

and the current directory. The following shows the order in which files are loaded
when the path name is specified.

• In TP1/Client/P

Client environment definition files are loaded in the following order:

1. The BETRAN.INI file in the Windows directory

2. The client environment definition file specified in the defpath argument

The definitions in both the client environment definition file and the
BETRAN.INI file take effect.

If the same definition is specified in each file with a different value, the value
specified in the client environment definition file takes effect.

If neither the client environment definition file nor the BETRAN.INI file
contains the necessary specification, TP1/Client/P uses the defaults.

• In TP1/Client/W

All definitions specified in the environment variables will be invalid. TP1/
Client/W uses the defaults for definitions that are not specified in the client
environment definition file specified in the defpath argument.

You can omit the path name by specifying NULL at the beginning of the defpath
argument. The following describes the operation when the path name is omitted.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the values specified in the environment variables. If an
environment variable is not specified, TP1/Client/W uses the default.

The following describes operation when the client environment definition file
specified in the defpath argument does not exist or when the contents of the
definition file are invalid.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

4. TP1/Client Functions (C Language)

206

TP1/Client/W uses the defaults. The values specified in the environment
variables will be invalid.

port

Specify a client's port number between 5001 and 65535. Specify a unique port
number for each process or thread when multiple processes or multiple threads are
executed simultaneously on the same machine.

flags

Specify DCNOFLAGS.

(4) Arguments specifying the containers of returned values
ntfid

Specifies the area for containing the returned one-way message reception ID.

(5) Return values

(6) Notes
• After the dc_clt_open_notification_s function is terminated normally,

always issue the dc_clt_close_notification_s function. If the
dc_clt_close_notification_s function is not issued, the resource used by
the dc_clt_open_notification_s function may remain.

• Specify a unique port number in the port argument for each process or thread
when multiple processes or multiple threads are executed simultaneously on the
same machine. Do not specify a port number for use by the operating system or
other programs even if one can be specified in the port argument. If you specify
a port number in this case, response data might not be received correctly. The port
numbers used by the operating system depend on the operating system. For

Return value Value
(decimal)

Meaning

DC_OK 0 The function normally terminated.

DCCLTER_INVALID_ARGS -2501 The value specified in an argument is incorrect.

DCCLTER_PROTO -2502 The dc_clt_open_notification function has already
been executed. This value is not returned if the
dc_clt_open_notification_s function is executed.

DCCLTER_FATAL -2503 Initialization failed. Alternatively, the client environment
definition is specified incorrectly.

DCCLTER_NO_BUFS -2504 A necessary amount of buffer could not be allocated.

DCCLTER_PORT_IN_USE -2547 The specified port number has already been used.

4. TP1/Client Functions (C Language)

207

details, see the documentation of your operating system.

• In TP1/Client, you can use a different client environment definition for each
dc_clt_open_notification_s function call. To do so, create a separate
client environment definition file for each dc_clt_open_notification_s
function call, and specify the file name in the defpath argument of the function.

4.7.4 dc_clt_close_notification_s - Terminate reception of one-way
messages
(1) Form

(a) _s version of the function

#include <dcvclt.h>
DCLONG dc_clt_close_notification_s(DCCLT_ID ntfid, DCLONG
flags)

(b) Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_close_notification(DCLONG flags)

(2) Purpose
The dc_clt_close_notification_s function deletes the environment for using
the facility for receiving one-way messages from the server.

The dc_clt_open_notification_s and dc_clt_close_notification_s
functions are used in a pair.

(3) Arguments set by UAPs
ntfid

Specify the one-way message reception ID received by the
dc_clt_open_notification_s function.

flags

Specify DCNOFLAGS.

(4) Return values
Return value Value

(decimal)
Meaning

DC_OK 0 The function normally terminated.

DCCLTER_INVALID_ARGS -2501 The value specified in an argument is incorrect.

4. TP1/Client Functions (C Language)

208

4.7.5 dc_clt_chained_accept_notification_s - Receive a one-way
message
(1) Form

(a) TP1/Client/W
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_chained_accept_notification_s
 (DCCLT_ID ntfid, char *inf,
 DCLONG *inf_len,
 DCLONG timeout,
 char *hostname,
 char *nodeid,
 DCLONG flags)

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_chained_accept_notification
 (char *inf, DCLONG *inf_len,
 DCLONG timeout, char *hostname,
 char *nodeid, DCLONG flags)

(b) TP1/Client/P
_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_chained_accept_notification_s
 (DCCLT_ID ntfid, char CLTFAR
 *inf,
 DCLONG CLTFAR *inf_len,
 DCLONG timeout,
 char CLTFAR *hostname,
 char CLTFAR *nodeid,

DCCLTER_NO_BUFS -2504 A necessary amount of buffer could not be allocated.

DCCLTER_INVALID_NTFID -2544 The one-way message reception ID specified in ntfid
differs from that received by the
dc_clt_open_notification_s function.

Return value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

209

 DCLONG flags)

Non-_s version of the function

#include <dcvclt.h>
DCLONG dc_clt_chained_accept_notification
 (char CLTFAR *inf, DCLONG CLTFAR
 *inf_len,
 DCLONG timeout, char CLTFAR
 *hostname,
 char CLTFAR *nodeid, DCLONG flags)

(2) Purpose
This function waits for the message reported by the dc_rpc_cltsend function
executed on the server side. This function stops waiting for the message if a timeout
occurs before receiving the message. The timeout is specified by the timeout
argument. On reception of the message, this function returns the return value, received
message, host name of the message-originating server, and node identifier of the
message-originating server, and control returns to the CUP.

Before issuing the dc_clt_chained_accept_notification_s function, always
issue the dc_clt_open_notification_s function.

(3) Arguments set by UAPs
ntfid

Specify the one-way message reception ID received by the
dc_clt_open_notification_s function.

inf

Specify the area for storing the message sent from the server.

inf_len

Specify the length of the area for storing the message sent from the server. That
is, specify the length of the inf argument. You can specify a value in the range
from 0 to DCRPC_MAX_MESSAGE_SIZE#.

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

timeout

Specify the timeout in seconds. You can specify 0 to 65535. When 0 is specified,
a timeout does not occur.

4. TP1/Client Functions (C Language)

210

hostname

Specify an area of 64 bytes# or more for storing the host name of the server that
sent the message. The host name is not stored if you specify NULL.

If you specify 00000008 for DCCLTOPTION in the client environment
definition, this value is 256 bytes, not 64 bytes.

nodeid

Specify the 8-byte area for storing the node identifier of the server that sent the
message.

flags

Specify DCNOFLAGS.

(4) Arguments that contain return values
inf

The notification message from the server is returned.

inf_len

The length of the notification message from the server is returned.

hostname

The host name of the message-originating server is returned.

If translation to a host name fails, the IP address is returned in the dotted decimal
format. This value is not returned if you specify NULL.

nodeid

The node identifier of the message-originating server is returned. The node
identifier is suffixed by a NULL character as shown below.

(5) Return values
Return value Value

(decimal)
Meaning

DC_OK 0 The function normally terminated.

DCCLTER_INVALID_ARGS -2501 The value specified in an argument is incorrect.

DCCLTER_PROTO -2502 The dc_clt_open_notification_s function has not
been executed.

DCCLTER_NO_BUFS -2504 A necessary amount of buffer could not be allocated.

4. TP1/Client Functions (C Language)

211

(6) Notes

Specify an area of 64 bytes# or more for the hostname argument, and an area of 8
bytes or greater for the nodeid argument. If the area is smaller than the required
value, the area may be corrupted during TP1/Client internal processing.

If you specify 00000008 for DCCLTOPTION in the client environment definition,
this value is 256 bytes, not 64 bytes.

DCCLTER_NET_DOWN -2506 A network error occurred.

DCCLTER_TIMED_OUT -2507 A timeout occurred before a message arrived.

DCCLTER_SYSERR -2518 A system error occurred.

DCCLTER_VERSION -2535 Versions do not match.

DCCLTER_INVALID_NTFID -2544 The one-way message reception ID specified in ntfid
differs from that received by the
dc_clt_open_notification_s function.

DCCLTER_INF_TOO_BIG -2546 The received message is too large for the CUP-provided
area. The part that does not fit is truncated. Values have
already been set in the hostname and nodeid arguments.

DCCLTER_INVALID_MESSAGE -2548 An invalid message was received.

DCCLTER_ACCEPT_CANCELED -2549 The one-way message reception wait status was canceled
by the dc_clt_cancel_notification_s function.
Values have already been set in the inf, inf_len, and
hostname arguments.

Return value Value
(decimal)

Meaning

4. TP1/Client Functions (C Language)

212

4.8 XATMI interface facility

4.8.1 tpalloc - Allocate typed buffer
(1) Form

(a) TP1/Client/W

#include <dcvxatmi.h>
char *tpalloc(char *type, char *subtype, DCLONG size)

(b) TP1/Client/P

#include <dcvxatmi.h>
char CLTFAR *tpalloc(char CLTFAR *type,
 char CLTFAR *subtype, DCLONG size)

(2) Purpose
Allocates the typed buffer.

Some types of buffer must be initialized before use. The tpalloc function initializes
the buffer after the buffer is allocated until it returns. The buffer is returned to the
issuer of the tpalloc function when issuance of a function becomes available.

Define the method of initialization by communication resource managers for TP1/
Client and TP1/Server Base. If not defined, the tpalloc function does not initialize
the buffer.

When the initialization completes successfully, the tpalloc function returns a pointer
to a buffer of the appropriate type aligned on a long word. The function returns NULL
if an error occurs; error information is returned as the return value. If initialization
failed, the allocated buffer is released and NULL is returned.

(3) Arguments set by UAPs
type

Specify X_OCTET as the buffer type.

subtype

Specify NULL as the buffer subtype.

size

Specify the size of the buffer to be allocated.

4. TP1/Client Functions (C Language)

213

(4) Return values
When the initialization completes successfully, the tpalloc function returns a pointer
to a buffer of the appropriate type aligned on a long word. If an error occurs, the
function returns NULL and sets one of the following values in tperrno as a return
value to report the information about the error.

(5) Notes
• The tpalloc function cannot be used with any of these C functions: malloc,

realloc, or free.

Example:

The buffer allocated by the tpalloc function cannot be released by the free
function.

Operation of the system is not guaranteed when above functions are used together.

• The buffer returned by the tpalloc function is initialized to zero.

• The buffer area is acquired from the global heap.

• When TPESYSTEM is returned for an error in TP1/Client, error information is
output to the error log.

• When TPEOS is returned, insufficient memory is suspected as the cause. Error
information is output to the error log when the error occurred in TP1/Client.

4.8.2 tpfree - Release typed buffer
(1) Form

(a) TP1/Client/W

#include <dcvxatmi.h>
void tpfree(char *ptr)

(b) TP1/Client/P

Return value Meaning

TPEINVAL Invalid argument

TPENOENT The value specified in the argument is not defined in the system.

TPEPROTO Inappropriate status for issuing the tpalloc function.

TPESYSTEM An error occurred in the communication resource manager.

TPEOS An error occurred in the operating system.

4. TP1/Client Functions (C Language)

214

#include <dcvxatmi.h>
void tpfree(char CLTFAR *ptr)

(2) Purpose
Releases the typed buffer allocated by tpalloc.

The tpfree function does not return the return value to the caller. The function must
be specified in the void type.

The typed buffer is not released when NULL is specified in the argument ptr.
Processing results of the tpfree function are not guaranteed when the value specified
in ptr is not the pointer to the typed buffer or has already been released by the tpfree
function.

For the buffer type used for requesting information or when it is linked to data,
releasing the buffer also deletes its additional information. The tpfree function
deletes the linkage of additional information before releasing the buffer. Define the
method of deletion of additional information by communication resource managers for
TP1/Client and TP1/Server Base.

Once the tpfree function returns, the argument specified in ptr can no longer be
passed to an XATMI interface function as a new argument or be referenced.

(3) Argument set by UAPs
ptr

Specify the pointer to the typed buffer allocated by the tpalloc function.

(4) Notes
• The tpfree function cannot be used with any of these C functions: malloc,

realloc, or free.

Example:

The buffer allocated by the malloc function cannot be released by the
tpfree function.

Operation of the system is not guaranteed when above functions are used
together.

4.8.3 tpconnect - Establish connection with interactive service
(1) Form

(a) TP1/Client/W

#include <dcvxatmi.h>
DCLONG tpconnect(char *svc, char *data, DCLONG len,
 DCLONG flags)

4. TP1/Client Functions (C Language)

215

(b) TP1/Client/P

#include <dcvxatmi.h>
DCLONG tpconnect(char CLTFAR *svc, char CLTFAR *data,
 DCLONG len, DCLONG flags)

(2) Purpose
Establishes half-duplex connection between TP1/Client and an interactive service.
When the function is processed normally, the descriptor that specifies the connection
is returned.

The issuer of the tpconnect function can pass the specified information to the service
function to the receiver during establishment of connection. To pass information, the
pointer to the buffer allocated by the tpalloc function must be specified in data, and
the data length to send must be specified in len.

The tpconnect function allows information to be received under the interactive
service without issuing the function for receiving data.

(3) Arguments set by UAPs
svc

Specify the service name of the service to request.

data

Specify X_OCTET as the pointer to the typed buffer that contains send data.

len

Specify the length of data to be sent. The maximum length is 500 x 1024 bytes.
Set 0 when the length need not be specified. Do not set 0 for the buffer whose
length must be specified.

flags

Specify any of the following.

TPNOTRAN

When the issuer of the function is in the transaction mode, the started service
does not belong to the issuer's transaction.

Be sure to specify TPNOTRAN when the issuer of the function in the
transaction mode requests the service that belongs to the server unavailable
for transaction processing.

When the issuer of the function is in the transaction mode, a transaction
timeout error may occur even if TPNOTRAN is specified.

4. TP1/Client Functions (C Language)

216

Failure in the service started with TPNOTRAN will not affect the issuer's
transaction.

TPSENDONLY

Connection is established first so that the issuer can send data and the service
called by the function can only receive data. The called service first gains
control of connection.

TPRECVONLY

Connection is established first so that the issuer can receive data and the
service called by the function can only send data. The called service first
gains control of connection.

Either TPSENDONLY or TPRECVONLY must be specified.

TPNOBLOCK

When the blocking status occurs (e.g., the internal buffer is filled with
messages sent), neither connection is established nor data is sent.

If the blocking status occurs with TPNOBLOCK not specified, the issuer
remains blocked until the cause of blocking is removed or a transaction or
blocking timeout error occurs.

TPNOTIME

The issuer is infinitely blocked to prevent blocking timeout error.

Transaction timeout error may occur even if TPNOTIME is specified.

TPSIGRSTRT

System call interrupted by a signal during execution is recalled.

(4) Return values
When the processing completes successfully, the tpconnect function returns a
descriptor to specify the established connection. If an error occurs, the function returns
-1 and sets one of the following values in tperrno as a return value to report the
information about the error.

Return value Meaning

TPEINVAL Invalid argument

TPENOENT Since the value specified in the argument is not defined in the system, connection cannot
be established.

TPEITYPE The value specified in the argument cannot be used in the specified service.

TPELIMIT Since the number of unsolved connections reached to the limit, the request from the caller
is not sent.

4. TP1/Client Functions (C Language)

217

(5) Notes
• When communication is disabled due to the blocking status under OpenTP1,

TPESYSTEM is returned as well as for communication disabled due to network
failure.

• When information unavailable to the service is specified under OpenTP1,
TPESYSTEM is returned. When the issuer of the function is in the transaction
mode, the transaction is rolled back.

• Unless otherwise specified for X/Open, the error that needs rollback of the
transaction under OpenTP1 is TPESYSTEM. Some transactions may not be rolled
back if TPESYSTEM is returned.

• When the service request is not authenticated under the OpenTP1 security facility,
TPEPROTO is returned. Check the detailed error code of the UAP trace to find the
cause of the error.

• TP1/Client cannot issue the tpconnect function in a transaction unless
permanent connection has been established with the facility of establishing
permanent connection.

• If a transaction timeout error occurred under TP1/Client, the CUP execution
process terminates abnormally and all the connections established before the
timeout error are disconnected. TPETIME is returned only for blocking timeout
error.

TPETRAN The specified service belongs to the server unavailable for transaction processing, but
TPNOTRAN is not specified.

TPETIME A timeout error occurred.
• For the issuer in the transaction mode:

A transaction timeout error occurred. The process terminates abnormally. The
transaction is rolled back. TPETIME is returned to any message sent or received by any
connection until rollback is completed.

• For the issuer in other than the transaction mode:
A blocking timeout error occurred where neither TPNOBLOCK nor TPNOTIME is
specified.

TPEBLOCK Blocking status occurred when the tpconnect function was issued with TPNOBLOCK
specified.

TPGOTSIG The signal is received, but TPSIGRSTRT is not specified.

TPEPROTO Inappropriate status for issuing the tpconnect function.

TPESYSTEM An error occurred in the communication resource manager.

TPEOS An error occurred in the operating system.

Return value Meaning

4. TP1/Client Functions (C Language)

218

• When TPESYSTEM is returned for an error in TP1/Client, error information is
output to the error log.

• When TPEOS is returned, insufficient memory is suspected. Error information is
output to the error log when the error occurred in TP1/Client.

4.8.4 tpdiscon - Disconnect connection with interactive service
(1) Form

TP1/Client/W or TP1/Client/P

#include <dcvxatmi.h>
int tpdiscon (DCLONG cd)

(2) Purpose
Disconnects connection with interactive service, and reports the event
(TPEV_DISCONIMM) to the interactive service.

Issuing the tpdiscon function immediately disconnects connection. Data that does
not reach the destination is discarded. The tpdiscon function can also be used when
the interactive service belongs to the transaction of the issuer. In this case, the
transaction is rolled back.

The tpdiscon function can be issued from only the originator of the interactive
service. This function cannot be issued within the interactive service. The issuer of
this function does not need to have a right to control the connection.

The TP1/Client interactive service issues the tpdiscon function that reports the
disconnection when either system completes communication.

(3) Argument set by UAPs
cd

Specify the descriptor of the interactive service for which disconnection is to be
reported.

(4) Return values
If an error occurs, the tpdiscon function returns -1 and sets one of the following
values in tperrno as a return value to report the information about the error.

Return value Meaning

TPEBADDESC The argument is invalid, or is specified as the descriptor of the called interactive service.

TPETIME Timeout error occurred. The specified descriptor is invalidated.

TPEPROTO Inappropriate status for issuing the tpdiscon function.

4. TP1/Client Functions (C Language)

219

(5) Notes
• TPETIME is not returned under OpenTP1.

• When TPESYSTEM is returned for an error in TP1/Client, error information is
output to the error log.

• When TPEOS is returned, insufficient memory is suspected. Error information is
output to the error log when the error occurred in TP1/Client.

4.8.5 tpsend - Send message to interactive service
(1) Form

(a) TP1/Client/W

#include <dcvxatmi.h>
int tpsend(DCLONG cd, char *data, DCLONG len,
 DCLONG flags,
 DCLONG *revent)

(b) TP1/Client/P

#include <dcvxatmi.h>
int tpsend(DCLONG cd, char CLTFAR *data, DCLONG len,
 DCLONG flags, DCLONG CLTFAR *revent)

(2) Purpose
Sends data to the interactive service.

The system with control of connection can issue the tpsend function.

(3) Arguments set by UAPs
cd

Specify the connection for sending data. Specify the descriptor indicated by the
return value of the tpconnect function.

When an event is set for cd, the tpsend function terminates without sending
data, assuming that processing failed.

data

TPESYSTEM An error occurred in the communication resource manager.

TPEOS An error occurred in the operating system.

Return value Meaning

4. TP1/Client Functions (C Language)

220

Specify X_OCTET as the pointer to the typed buffer that contains data to be sent.

Specifying NULL results in error.

Specify the same value that defined in the interactive service.

len

Specify the length of data to be sent. The maximum length is 500 x 1024 bytes.
Specify 0 for the address of the pointer to the buffer for which the length need not
be specified. Do not specify 0 for the buffer whose length must be specified.

flags

Specify any of the following.

TPRECVONLY

The issuer of the tpsend function aborts control of connection after sending
data. The issuer can no longer issue the tpsend function. When the receiver
at the other end of connection receives data sent by the tpsend function, it
also receives the event (TPEV_SENDONLY) that indicates control of
connection. The data receiver can no longer issue the tprecv function.

TPNOBLOCK

When the blocking status occurred (e.g., the internal buffer is filled with
messages sent), neither data nor event is sent.

If the blocking status occurs with TPNOBLOCK not specified, the issuer of the
tpsend function remains blocked until the communication is resumed or a
transaction or blocking timeout error occurs.

TPNOTIME

The issuer of the tpsend function is blocked infinitely. Blocking timeout
error will never occur. However, transaction timeout error may occur.

TPSIGRSTRT

System call interrupted by a signal during execution is recalled.

revent

Specify the pointer to the typed buffer that indicates an event.

The following events can be returned by the tpsend function.

TPEV_DISCONIMM

The connection is immediately disconnected by the tpdiscon function
issued by the initiator. Or, it is disconnected due to a communication error
such as failure of the server, machine, or network.

When the connection is disconnected by the tpdiscon function,

4. TP1/Client Functions (C Language)

221

TPEV_DISCONIMM is reported to the remote system. When the connection
is disconnected due to a communication error, TPEV_DISCONIMM is returned
to both the initiator and the remote system.

TPEV_SVCERR

The remote system that has no control of connection issued the tpreturn
function. TPEV_SVCERR is returned to the initiator.

TPEV_SVCFAIL

The remote system that has no control of connection issued the tpreturn
function. TPEV_SVCFAIL is returned to the initiator.

Also, the tpreturn function was called without TPFAIL or data specified.
TPFAIL is specified in rval and NULL in data.

These events indicate that the connection was disconnected immediately,
causing all data to be lost. The descriptor used for the connection is
invalidated. The transaction that contains the two programs is rolled back.

(4) Return values
If an error occurs, the tpsend function returns -1 and sets one of the following values
in tperrno as a return value to report the information about the error.

Return value Meaning

TPEINVAL Invalid argument

TPEBADDESC Invalid descriptor is specified in cd.

TPETIME A timeout error occurred.
• For the issuer in the transaction mode:

A transaction timeout error occurred. The transaction is rolled back. In this case,
TPETIME is returned to new data transmission or undetermined response until the
transaction is rolled back.

• For the issuer in other than the transaction mode:
A blocking timeout error occurred where neither TPNOBLOCK nor TPNOTIME is
specified.

In either case, the value specified in *data is not changed.

TPEEVENT An event occurred. The return value is returned to revent.

TPEBLOCK Blocking status occurred when the tprecv function was issued with TPNOBLOCK
specified.

TPGOTSIG The signal is received, but TPSIGRSTRT is not specified.

TPEPROTO Inappropriate status for issuing the tpsend function.

TPESYSTEM An error occurred in the communication resource manager.

4. TP1/Client Functions (C Language)

222

(5) Notes
• TPNOBLOCK is invalid for OpenTP1. TPEBLOCK is not returned. When

communication is disabled due to the blocking status under OpenTP1,
TPESYSTEM is returned as well as for communication disabled due to shutdown
of network.

• TPNOTIME is invalid for OpenTP1.

• TPSIGRSTRT is invalid. Whether or not TPSIGRSTRT is specified does not affect
operation. When a signal is received, processing is interrupted and the system call
is recalled. TPGOTSIG is not returned.

• If a transaction timeout error occurred under OpenTP1, the process terminates
abnormally. TPETIME is returned only for a blocking timeout error.

• Unless otherwise specified for X/Open, the error that needs rollback of the
transaction under OpenTP1 is TPESYSTEM. Some transactions may not be rolled
back if TPESYSTEM is returned.

• OpenTP1 cannot report an event by tpsend function even if the remote system
of the service issued the tpdiscon or tpreturn function, unless the event has
been received by the process that calls the tpsend function.

• If a transaction timeout error occurred under TP1/Client, the CUP execution
process terminates abnormally and all the connections established before the
timeout error are disconnected. TPETIME is returned only for a blocking timeout
error.

• When TPESYSTEM is returned for an error in TP1/Client, error information is
output to the error log.

• When TPEOS is returned, insufficient memory is suspected to be the cause. Error
information is output to the error log when the error occurred in TP1/Client.

4.8.6 tprecv - Receive message from interactive service
(1) Form

(a) TP1/Client/W

#include <dcvxatmi.h>
int tprecv(DCLONG cd, char *CLTFAR *data,
 DCLONG CLTFAR *len,
 DCLONG flags, DCLONG CLTFAR *revent)

TPEOS An error occurred in the operating system.

Return value Meaning

4. TP1/Client Functions (C Language)

223

(b) TP1/Client/P

#include <dcvxatmi.h>
int tprecv(DCLONG cd, char CLTFAR *CLTFAR *data,
 DCLONG CLTFAR *len, DCLONG flags,
 DCLONG CLTFAR *revent)

(2) Purpose
Receives data from the interactive service.

The system without control of connection can issue the tprecv function.

When the tprecv function returns with TPEV_SVCSUCC or TPEV_SVCFAIL specified
in revent, the value passed by the application as the tpreturn function argument
can be referenced as the global variable tpurcode.

(3) Arguments set by UAPs
cd

Specify the connection for receiving data. Specify the descriptor indicated by the
return value of the tpconnect function.

data

Specify X_OCTET as the pointer to the typed buffer that contains received data.

Specifying NULL results in error.

len

Specify the length of data to be received. The maximum length is 500 x 1024
bytes. If the specified value is greater than the total buffer length before the
tprecv function is issued, a new value is set in len. If no data received, 0 is set.

flags

Specify any of the following.

TPNOCHANGE

The buffer type specified in data is not converted.

The buffer type of received data must match that specified in data. When
TPNOCHANGE is not specified, the value of data is converted to the buffer
type of the received data.

TPNOBLOCK

The tprecv function does not wait until data arrives.

The tprecv function receives data and returns if data is ready for reception.

4. TP1/Client Functions (C Language)

224

When TPNOBLOCK is not specified and data is not ready for reception, the
issuer of the function is blocked until data arrives.

TPNOTIME

The issuer of the function is blocked infinitely. Blocking timeout error will
never occur. However, transaction timeout error may occur.

TPSIGRSTRT

System call interrupted by a signal during execution is recalled.

revent

Specify the pointer to the typed buffer that stores events.

When an event is set for cd, the type of event is returned to revent. The value
specified in data can be received with the TPEV_SVCSUCC, TPEV_SVCFAIL, and
TPEV_SENDONLY events.

The following events can be specified for the tprecv function.

TPEV_DISCONIMM

The connection is immediately disconnected by the tpdiscon function
issued by the initiator of the interactive service. Or, it is disconnected due to
a communication error.

When the connection is disconnected by the tpdiscon function,
TPEV_DISCONIMM is returned to the remote system. When the connection
is disconnected due to a communication error in which the server, machine,
and network failed, TPEV_DISCONIMM is returned to both the initiator and
the remote system.

TPEV_DISCONIMM is returned immediately after the disconnection, and data
being sent is aborted. The transaction is rolled back. In this case, the
descriptor used for the connection is invalid.

TPEV_SENDONLY

The system at the other end of connection has aborted control of connection.
The system that receives TPEV_SENDONLY can send but cannot receive data
until it aborts control of connection.

TPEV_SVCERR

The remote system of the service initiator has issued the tpreturn function.
Any of the following error occurred during execution of the tpreturn
function.

An invalid argument is passes to the tpreturn function.

The tpreturn function is issued while the service was opening connection.

4. TP1/Client Functions (C Language)

225

When TPEV_SVCERR is returned, data or return values defined for the
application will not affect the operation. The connection is disconnected and
the value of cd is invalidated. If TPEV_SVCERR occurred in the transaction
of the receiver of data, the transaction is rolled back.

TPEV_SVCFAIL

The service of the remote system was specified by the application, but
terminated without being completed (the tpreturn function returns
TPFAIL). TPEV_SVCFAIL is returned to the initiator.

If the remote system's service has control of connection when the tpreturn
function is issued, the service can pass the typed buffer to the initiator.

The server disconnects connection when the tprecv function terminates;
the value of cd is invalidated. If TPEV_SVCFAIL occurred in the transaction
of the receiver of data, the transaction is rolled back.

TPEV_SVCSUCC

The service of the remote system at the other end of service was specified by
the application, and terminated after being completed (the tpreturn
function returns TPSUCCESS). TPEV_SVCSUCC is returned to the initiator.

The server disconnects connection when the tprecv function terminates;
the value of cd is invalidated. If TPEV_SVCSUCC occurred in the transaction
of the receiver of data, the transaction is committed or rolled back by the
server, depending on the transaction mode.

(4) Return values
If an error occurs, the tprecv function returns -1 and sets one of the following values
in tperrno as a return value to report the information about the error.

Return value Meaning

TPEINVAL Invalid argument

TPEBADDESC Invalid descriptor is specified in cd.

TPEOTYPE The issuer of the tprecv function does not identify the buffer type arrived. Alternatively,
the buffer type specified in data does not match the sent buffer type when TPNOCHANGE is
specified in the flags argument.
In either case, the value of data or len remains unchanged. When the service is executed
as a transaction of the issuer of the tprecv function, the transaction is rolled back until the
arrived buffer is aborted.
If the above error occurred, the specified event is aborted and the processing result of the
service is undetermined. The issuer must terminate the service immediately.

4. TP1/Client Functions (C Language)

226

(5) Notes
• When a signal is received, processing is interrupted and the system call is

recalled. TPGOTSIG is not returned. Whether or not TPSIGRSTRT is specified
does not affect the calling of system call.

• If a transaction timeout error occurred under OpenTP1, the process terminates
abnormally. TPETIME is returned only for a blocking timeout error.

• Unless otherwise specified for X/Open, the error that needs rollback of the
transaction under OpenTP1 is TPESYSTEM. Some transactions may not be rolled
back if TPESYSTEM is returned.

• If a transaction timeout error occurred under TP1/Client, the CUP execution
process terminates abnormally and all the connections established before the
timeout error are disconnected. TPETIME is returned only for a blocking timeout
error.

• The tpconnect function cannot be issued to TP1/Client. Only the descriptor
returned by the tpconnect function can be specified in cd.

• When TPESYSTEM is returned for an error in TP1/Client, error information is
output to the error log.

• When TPEOS is returned, insufficient memory is suspected to be the cause. Error
information is output to the error log when the error occurred in TP1/Client.

TPETIME A timeout error occurred.
• For the issuer in the transaction mode:

A transaction timeout error occurred. The transaction is rolled back. In this case,
TPETIME is returned to new data transmission or undetermined response until the
transaction is rolled back.

• For the issuer in other than the transaction mode:
A blocking timeout error occurred where neither TPNOBLOCK nor TPNOTIME is
specified.

In either case, the value specified in data is not changed.

TPEEVENT An event occurred. The return value is returned to revent.

TPEBLOCK Blocking status occurred when the tprecv function was issued with TPNOBLOCK
specified.

TPGOTSIG The signal is received, but TPSIGRSTRT is not specified.

TPEPROTO Inappropriate status for issuing the tpdiscon function.

TPESYSTEM An error occurred in the communication resource manager.

TPEOS An error occurred in the operating system.

Return value Meaning

4. TP1/Client Functions (C Language)

227

4.9 Character code converter (When not using a code mapping
table)

The character code converter provides only the non-_s version of functions. However,
these functions operate normally even in a multi-thread environment.

The character code converter is only available for TP1/Client/P.

4.9.1 dc_clt_code_convert - Converting character codes
(1) Form

TP1/Client/W DLL or TP1/Client/P DLL

#include <dcvclt.h>
DCLONG dc_clt_code_convert(DCLONG request,
 char CLTFAR *source, DCULONG CLTFAR *source_len,
 char CLTFAR *dest, DCULONG CLTFAR *dest_len,
 DCLONG flags)

(2) Purpose
• Converts the character strings consisting of JIS code or Shift JIS code into

character strings of EBCDIC code, EBCDIK code, or KEIS code.

• Converts the character strings consisting of EBCDIC code, EBCDIK code, or
KEIS code into character strings of JIS code or Shift JIS code.

(3) Arguments set by UAPs
request

Specify the conversion method using the following request code.

DCCLT_JISSJIS_TO_EBCKEIS

Converts character strings consisting of JIS code or Shift JIS code into
character strings of EBCDIC code, EBCDIK code, or KEIS code.

DCCLT_EBCKEIS_TO_JISSJIS

Converts character strings consisting of EBCDIC code, EBCDIK code, or
KEIS code into character strings of JIS code or Shift JIS code.

source

Specify the character string to be converted.

source_len

4. TP1/Client Functions (C Language)

228

Specify the length of the character string to be converted. 1 to
DCRPC_MAX_MESSAGE_SIZE can be specified.

dest

Specify the area that receives data after conversion.

dest_len

Specify the length of the area that receives the converted character string. 1 to
DCRPC_MAX_MESSAGE_SIZE can be specified.

flags

Specify the conditions for conversion using the following format (OR of the
specified values).

When 2., 3., 4., 5. or 6. comes first, omit | (stroke).

{DCNOFLAGS }

[1.][|2.][|3.][|4.][|5.][|6.]

1:{DCCLT_CNV_EBCDIC | DCCLT_CNV_EBCDIK}

2:{DCCLT_CNV_SPCHAN | DCCLT_CNV_SPCZEN}

3:{DCCLT_CNV_KEIS78 | DCCLT_CNV_KEIS83}

4:{DCCLT_CNV_INVSPC | DCCLT_CNV_INVERR}

5:{DCCLT_CNV_TAB | DCCLT_CNV_NOTAB}

6:{DCCLT_CNV_CNTL | DCCLT_CNV_NOCNTL}

Description of the specified values

DCNOFLAGS

The following defaults are used.

EBCDIK code is used.

Two-byte spaces remain the same.

The 1983 version of the KEIS code is used.

An error occurs if an invalid code is found.

A tab code is not identified to be single-byte. No shift code is available even
for just the preceding or succeeding two-byte code if any.

A control code is not identified to be single-byte. No shift code is available
even for just the preceding or succeeding two-byte code if any.

DCCLT_CNV_EBCDIC

4. TP1/Client Functions (C Language)

229

EBCDIC code is used.

DCCLT_CNV_EBCDIK

EBCDIK code is used.

DCCLT_CNV_KEIS78

The 1978 version of the KEIS code is used.

DCCLT_CNV_KEIS83

The 1983 version of the KEIS code is used.

DCCLT_CNV_INVSPC

An invalid code is converted to a space.

DCCLT_CNV_INVERR

An error occurs if an invalid code is found.

DCCLT_CNV_TAB

Identifies a tab code to be single-byte. A shift code is given to just the
preceding or succeeding two-byte code if any.

DCCLT_CNV_NOTAB

Does not identify a tab code to be single-byte. No shift code is provided for
just the preceding or succeeding two-byte code if any.

DCCLT_CNV_CNTL

Identifies a control code to be single-byte. A shift code is given to just the
preceding or succeeding two-byte code if any.

DCCLT_CNV_NOCNTL

Does not identify a control code to be single-byte. No shift code is provided
for just the preceding or succeeding two-byte code if any.

(4) Arguments for which a value is returned
dest

The converted character string is returned.

dest_len

The length of the converted character string is returned.

4. TP1/Client Functions (C Language)

230

(5) Return values

(6) Note
When you specify request to be DCCLT_EBCKEIS_TO_JISSJIS and flags to be
DCCLT_CNV_TAB or DCCLT_CNV_CNTL, you need to prepare data that contains
single-byte tab and control codes.

Return Value Value
(decimal)

Meaning

DC_OK 0 Normal termination

DCCLTER_INVALID_ARGS -2501 Invalid argument

DCCLTER_NO_BUFS -2504 Insufficient memory. The function returns this value also
when the specified character length covers the first byte of a
two-byte code that is contained in the character string to be
converted.

DCCLTER_INVALID_CODE -2550 An invalid code is found in the character string.

DCCLTER_OVERFLOW -2551 The length of the converted character string exceeds the area
prepared by the CUP.

4. TP1/Client Functions (C Language)

231

4.10 Character code converter (When using a code mapping table)

The character code converter provides only the non-_s version of functions. However,
these functions operate normally even in a multi-thread environment.

The character code converter is only available for TP1/Client/P.

4.10.1 dc_clt_codeconv_open - Starting character code conversion
(1) Form

TP1/Client/W DLL or TP1/Client/P DLL

#include <dcvclt.h>
DCLONG dc_clt_codeconv_open(char CLTFAR *defpath,
 DCULONG CLTFAR *cnthd1,DCLONG flags)

(2) Purpose
Starts character code conversion to allocate a code mapping table to be used in the
memory.

(3) Arguments set by UAPs
defpath

Specify NULL.

cnthdl

Specify a pointer to an area for receiving the handle of a control table to be used
for character code conversion.

flags

Specify the conversion method.

DCNOFLAGS

Performs conversion by operations without using a code mapping table.

DCCLT_CNV_CommuniNet

Links with CommuniNet for conversion.

(4) Argument for which a value is returned
cnthdl

This argument returns the handle of a character code conversion control table
allocated in the memory.

4. TP1/Client Functions (C Language)

232

(5) Return values

(6) Notes
• The use of this function requires a CommuniNet code mapping table. Before

using this function, create a code mapping table using the CommuniNet code
mapping utility.

• You cannot use a code mapping table using the CommuniNet code mapping
utility unless you first save the table after the installation of CommuniNet. Before
using this function, save a code mapping table using the CommuniNet code
mapping utility.

• The filename of a CommuniNet code mapping table must be CMAPEX.TBL. Store
the code mapping table under a Windows directory before using this function.

• The processing of the character code converter does not reflect the changes in the
contents of a code mapping table made by the CommuniNet code mapping utility
during the use of this function.

• This function does not save error logs and UAP trace information.

• Issue the function for starting character code conversion
(dc_clt_codeconv_open()) only once for code conversion
(dc_clt_codeconv_exec()). Do not issue the function for starting character
code conversion more than once to prevent memory shortage. If you issue two or
more functions, issue one function for terminating character code conversion
(dc_ctl_codeconv_close()) for each of the issued functions.

Return Value Value
(decimal)

Meaning

DC_OK 0 Normal termination

DCCLTER_INVALID_ARGS -2501 The value set for the argument is invalid.

DCCLTER_NO_BUFS -2504 Insufficient memory size

DCCLTER_NOFILE -2557 A code mapping table is not found.

DCCLTER_NOT_SUPPORTED -2558 This value means that using the code mapping table is not
supported. This value is also returned when the code
mapping table has never been saved using the CommuniNet
code mapping utility after the installation of CommuniNet.

DCCLTER_FILE_IO -2559 An I/O error occurred in the code mapping table.

4. TP1/Client Functions (C Language)

233

4.10.2 dc_clt_codeconv_close - Terminating character code
conversion
(1) Form

TP1/Client/W DLL or TP1/Client/P DLL

#include <dcvclt.h>
DCLONG dc_clt_codeconv_close(DCULONG cnthd1, DCLONG flags)

(2) Purpose
Terminates character code conversion to release the area on the memory that contains
a code mapping table allocated.

(3) Arguments set by UAPs
cnthdl

Specify the handle of the control table acquired by the dc_clt_codeconv_open
function for character code conversion.

flags

Specify DCNOFLAGS.

(4) Return values

(5) Notes
• The use of this function requires a CommuniNet code mapping table. Before

using this function, create a code mapping table using the CommuniNet code
mapping utility.

• You cannot use a code mapping table unless you first save the table using the
CommuniNet code mapping utility after the installation of CommuniNet. Before
using this function, save the code mapping table using the CommuniNet code
mapping utility.

• The filename of a CommuniNet code mapping table must be CMAPEX.TBL. Store
the code mapping table under a Windows directory before using this function.

Return Value Value
(decimal)

Meaning

DC_OK 0 Normal termination

DCCLTER_INVALID_ARGS -2501 A value set for the argument is invalid.

DCCLTER_NO_BUFS -2504 Insufficient memory

4. TP1/Client Functions (C Language)

234

• The processing by the character code converter does not reflect changes made in
a code mapping table by the CommuniNet code mapping utility during the use of
this function.

• This function does not save error logs and UAP trace information.

• Issue the function for starting character code conversion
(dc_clt_codeconv_open()) only once for code conversion
(dc_clt_codeconv_exec()). Do not issue the function for starting character
code conversion more than once to prevent memory shortage. If you issue two or
more functions, issue one function for terminating character code conversion
(dc_ctl_codeconv_close()) for each of the issued functions.

4.10.3 dc_clt_codeconv_exec - Executing character code
conversion
(1) Form

TP1/Client/W DLL or TP1/Client/P DLL

#include <dcvclt.h>
DCLONG dc_clt_codeconv_exec(DCLONG request,
 char CLTFAR *source,
 DCULONG CLTFAR *source_len,
 char CLTFAR *dest,
 DCULONG CLTFAR *dest_len,
 DCULONG cnthdl, DCLONG flags)

(2) Purpose
Executes character code conversion as follows:

Converts character strings consisting of JIS code or Shift JIS code into character
strings of EBCDIC, EBCDIK or KEIS codes. Converts character strings consisting of
EBCDIC, EBCDIK or KEIS code into character strings of JIS or Shift JIS code.

(3) Arguments set by UAPs
request

Specify the conversion method using the following request code.

DCCLT_JISSJIS_TO_EBCKEIS

Converts character strings consisting of JIS or shift JIS codes into character
strings of EBCDIC, EBCDIK or KEIS code.

DCCLT_EBCKEIS_TO_JISSJIS

Converts character strings consisting of EBCDIC, EBCDIK or KEIS code
into character strings of JIS or Shift JIS code.

4. TP1/Client Functions (C Language)

235

source

Specify the character string to be converted.

source_len

Specify the length of the character string to be converted. You can specify a value
from 1 to DCRPC_MAX_MESSAGE_SIZE.

dest

Specify the area that receives data after conversion.

dest_len

Specify the length of the area that receives the converted character string. You
can specify a value from 1 to DCRPC_MAX_MESSAGE_SIZE.

cnthdl

Specify the handle of the control table acquired by dc_clt_codeconv_open()
for code conversion.

flags

Specify the conditions for conversion in the following format (logical addition of
the specified values). Omit a stroke (|) 2., 3., 4., 5. or 6. that comes first.

{DCNOFLAGS }

[1.][|2.][|3.][|4.][|5.][|6.]

1:{DCCLT_CNV_EBCDIC | DCCLT_CNV_EBCDIK}

2:{DCCLT_CNV_SPCHAN | DCCLT_CNV_SPCZEN}

3:{DCCLT_CNV_KEIS78 | DCCLT_CNV_KEIS83}

4:{DCCLT_CNV_INVSPC | DCCLT_CNV_INVERR}

5:{DCCLT_CNV_TAB | DCCLT_CNV_NOTAB}

6:{DCCLT_CNV_CNTL | DCCLT_CNV_NOCNTL}

Description of the specified values

DCNOFLAGS

Uses the following defaults.

Uses the EBCDIK code.

Two-byte spaces remain the same.

Uses the 1983 version of the KEIS code.

An error occurs if an invalid code is found.

4. TP1/Client Functions (C Language)

236

A tab code is not identified to be single-byte. No shift code is available even
for just the preceding or succeeding two-byte code if any.

A control code is not identified to be single-byte. No shift code is available
even for just the preceding or succeeding two-byte code if any.

DCCLT_CNV_EBCDIC

Uses the EBCDIC code.

DCCLT_CNV_EBCDIK

Uses the EBCDIK code.

DCCLT_CNV_KEIS78

Uses the 1978 version of the KEIS code .

DCCLT_CNV_KEIS83

Uses the 1983 version of the KEIS code.

DCCLT_CNV_INVSPC

Converts an invalid code into a space.

DCCLT_CNV_INVERR

An error occurs if an invalid code is found.

DCCLT_CNV_TAB

Identifies a tab code to be single-byte. A shift code is given to just the
preceding or succeeding two-byte code if any.

DCCLT_CNV_NOTAB

Does not identify a tab code to be single-byte. No shift code is provided for
even just the preceding or succeeding two-byte code if any.

DCCLT_CNV_CNTL

Identifies a control code to be single-byte. A shift code is given to just the
preceding or succeeding two-byte code if any.

DCCLT_CNV_NOCNTL

Does not identify a control code to be single-byte. No shift code is provided
for just the preceding or succeeding two-byte code if any.

(4) Arguments for which a value is retuned
dest

The converted character string is returned.

dest_len

4. TP1/Client Functions (C Language)

237

The length of the converted character string is returned.

(5) Return values

(6) Notes
• The use of this function requires a CommuniNet code mapping table. Before

using this function, create a code mapping table using the CommuniNet code
mapping utility.

• You cannot use a code mapping table unless you first save the table using the
CommuniNet code mapping utility after the installation of CommuniNet. Before
using this function, save a code mapping table using the CommuniNet code
mapping utility.

• The filename of a CommuniNet code mapping table must be CMAPEX.TBL. Store
the code mapping table under a Windows directory before using this function.

• The processing of the character code converter does not reflect the changes in the
contents of a code mapping table made by the CommuniNet code mapping utility
during the use of this function.

• This function does not save error logs and UAP trace information.

• Issue the function for starting character code conversion
(dc_clt_codeconv_open()) only once for code conversion
(dc_clt_codeconv_exec()). Do not issue the function for starting character
code conversion more than once to prevent memory shortage. If you issue two or
more functions, issue one function for terminating character code conversion
(dc_ctl_codeconv_close()) for each of the issued functions.

• When you specify request to be DCCLT_EBCKEIS_TO_JISSJIS and flags to be
DCCLT_CNV_TAB or DCCLT_CNV_CNTL, you need to prepare data that contains

Return Value Value
(decimal)

Meaning

DC_OK 0 Normal termination

DCCLTER_INVALID_ARGS -2501 A value set for the argument is invalid.

DCCLTER_NO_BUFS -2504 Insufficient memory. The function returns this value also
when the control table contains an invalid handle value and
when the specified character length covers the first byte of a
two-byte code that is contained in the character string to be
converted.

DCCLTER_INVALID_CODE -2550 A character string contains an invalid code.

DCCLTER_OVERFLOW -2551 The length of the converted character string exceeds the area
prepared by the CUP.

4. TP1/Client Functions (C Language)

238

single-byte tab and control codes.

239

Chapter

5. User Application Program
Interface (COBOL Language)

This chapter describes how to create, compile, and link user application programs in
COBOL.

In this chapter, COBOL request statements (such as CBLDCCLS('')) for calling DLLs
are used in explanations. If you use request statements of the normal object library,
replace the COBOL request statement names with the corresponding request statement
names such as CBLDCCLT('').

This chapter contains the following sections:

5.1 COBOL-UAP creation program features
5.2 Compiling and linking user application programs
5.3 COBOL language template
5.4 Example of user application program development

5. User Application Program Interface (COBOL Language)

240

5.1 COBOL-UAP creation program features

To use OpenTP1 features, use the COBOL-UAP creation program placed in the TP1/
Client library. This section covers features of this program.

When creating a CUP, follow the COBOL/2 or COBOL85 coding specifications. Like
an OpenTP1 service user program (SUP), a CUP uses no stubs. Accordingly the user
program needs to convert user data codes including code systems and byte orders.

5.1.1 Correspondence between UAPs and facilities
Table 5-1 shows TP1/Client functions and corresponding COBOL-UAP creation
programs.

The CBLDCCLS('') and other request statements for calling DLLs and those for
converting character codes can be used in a multi-thread environment. When you use
request statements other than those for converting character codes, we recommend that
you use the DLL version of request statements.

Note that all request statements do not always have the DLL versions, depending on
the TP1/Client product. For the request statements that have the DLL versions, see the
Release Notes that comes with the product.

For details on each UAP, see 6 Request Statements Available for TP1/Client (COBOL
Language).

Table 5-1: TP1/Client functions and corresponding COBOL-UAP creation
programs

Function COBOL-UAP creation program
called from the CALL statement

User authentication Client user authentication request CBLDCCLS('CLTIN ')

CBLDCCLT('CLTIN ')

CBLDCCLS('EXCLTIN ')1

CBLDCCLT('EXCLTIN ')1

Release of client user authentication CBLDCCLS('CLTOUT ')

CBLDCCLT('CLTOUT ')

Remote procedure
call

Service response wait time reference CBLDCRPS('OPEN ')

CBLDCRPC('OPEN ')

UAP termination CBLDCRPS('CLOSE ')

5. User Application Program Interface (COBOL Language)

241

CBLDCRPC('CLOSE ')

Remote service request CBLDCRPS('CALL ')

CBLDCRPC('CALL ')

Service response wait time update CBLDCRPS('SETWATCH')

CBLDCRPC('SETWATCH')

UAP startup CBLDCRPS('GETWATCH')

CBLDCRPC('GETWATCH')

Permanent
connection

Establishing permanent connection CBLDCCLS('CONNECT ')

CBLDCCLT('CONNECT ')

Releasing permanent connection CBLDCCLS('DISCNCT ')

CBLDCCLT('DISCNCT ')

Setting the destination of a request to
establish a permanent connection

CBLDCCLS('STRAPHST')2

CBLDCCLT('STRAPHST')2

Acquiring the destination of a request to
establish a permanent connection

CBLDCCLS('GTRAPHST')2

CBLDCCLT('GTRAPHST')2

Transaction control Transaction startup CBLDCTRS('BEGIN ')

CBLDCTRN('BEGIN ')

Commit in chained mode CBLDCTRS('C-COMMIT')

CBLDCTRN('C-COMMIT')

Rollback in chained mode CBLDCTRS('C-ROLL ')

CBLDCTRN('C-ROLL ')

Commit in unchained mode CBLDCTRS('U-COMMIT')

CBLDCTRN('U-COMMIT')

Rollback in unchained mode CBLDCTRS('U-ROLL ')

Function COBOL-UAP creation program
called from the CALL statement

5. User Application Program Interface (COBOL Language)

242

CBLDCTRN('U-ROLL ')

Post information for current transaction CBLDCTRS('INFO ')

CBLDCTRN('INFO ')

Collection of identifiers for current
transaction

CBLDCCLS('GETTRNID')

CBLDCCLT('GETTRNID')

TCP/IP
communication
function

Sending messages CBLDCCLS('SEND')

CBLDCCLT('SEND')

CBLDCCLS('EXSEND ')1

CBLDCCLT('EXSEND ')1

Receiving messages CBLDCCLS('RECEIVE')

CBLDCCLT('RECEIVE')

Receiving messages (messages receivable
even if an error occurs)

CBLDCCLS('RECEIVE2')

CBLDCCLT('RECEIVE2')

Sending assembled messages CBLDCCLS('ASMSEND')

Receiving assembled messages CBLDCCLS('ASMRECV')

Facility for receiving
one-way messages
from the server

Receive one-way messages CBLDCCLS('NOTIFY ')

CBLDCCLT('NOTIFY ')

CBLDCCLS('EXNACPT ')1

CBLDCCLT('EXNACPT ')1

Canceling one-way message wait state CBLDCCLS('CANCEL ')

CBLDCCLT('CANCEL ')

CBLDCCLS('EXNCANCL')1

Function COBOL-UAP creation program
called from the CALL statement

5. User Application Program Interface (COBOL Language)

243

#1

Use this program when you specify 00000008 for DCCLTOPTION in the client
environment definition.

#2

Note that you must increase the data area if you specify 00000008 for
DCCLTOPTION in the client environment definition client.

5.1.2 Format of COBOL-UAP creation program descriptions
When you create a CUP in COBOL, use a CALL statement to call the COBOL-UAP
creation program that corresponds to the function in the TP1/Client library.

In 6. Request Statements Available for TP1/Client (COBOL Language), each
COBOL-UAP creation program is described in a format that consists of the following

CBLDCCLT('EXNCANCL')1

Starting reception of one-way messages CBLDCCLS('O-NOTIFY')

CBLDCCLT('O-NOTIFY')

Terminating reception of one-way messages CBLDCCLS('C-NOTIFY')

CBLDCCLT('C-NOTIFY')

Receiving a one-way message CBLDCCLS('A-NOTIFY')

CBLDCCLT('A-NOTIFY')

CBLDCCLS('EXNCACPT')1

CBLDCCLT('EXNCACPT')1

Character code
converter (When not
using a code mapping
table)

Character code converter CBLDCUTL('CODECNV ')

Character code
converter (When
using a code mapping
table)

Starting character code conversion CBLDCUTL('CNVOPN ')

Terminating character code conversion CBLDCUTL('CNVCLS ')

Executing character code conversion CBLDCUTL('CNVEXEC ')

Function COBOL-UAP creation program
called from the CALL statement

5. User Application Program Interface (COBOL Language)

244

elements:

Form
Shows the form of calling the COBOL-UAP creation program corresponding to
the function in the library using the CALL statement and how to specify areas.

The form is common to COBOL/2 and COBOL85. When you specify a value for
the data name, follow the data format of the PICTURE clause indicated here.
When necessary values are predefined, the VALUE clause specifies them.

Unless otherwise specified, give specific names to the file name and the data
name indicated by the identifier.

Follow COBOL specifications for a character length specified as a data name.

Purpose
Explains the COBOL-UAP creation program function using the following
format.

CBLDCXXX('YYYYYYYY')
YYYYYYYY

Request code

CBLDCXXX
Name of the COBOL-UAP creation program

Data area where the UAP sets values
Provides data names whose values need to be specified in the data area when the
COBOL-UAP creation program is called. The corresponding data in contained
in DATA DIVISION. Specify proper values based on respective data
descriptions.

Data area for containing the returned values
Provides names of data area in which to contain values returned by OpenTP1,
server UAP, and TP1/Client after a CALL statement is executed.

Status codes
Describes values returned when the CALL statement is executed. Values are
presented in a tabular form. A status code shows whether the COBOL-UAP
creation program has executed normally. When an error occurs, the
corresponding status code shows its content.

A COBOL status code consists of five digits. It is contained in the first identifier
that is specified in the USING clause. The following shows how the CALL
statement and the USING clause represent identifiers and a status code.

5. User Application Program Interface (COBOL Language)

245

Notes
Precautions on using respective COBOL-UAP creation programs.

(1) Symbols used for describing the items to be specified
The following table lists the symbols that are used for describing the items to be
specified.

Symbol Description

[] The item enclosed between brackets can be omitted.
Example:

[:port-number]
":port-number" can be omitted.

... This symbol indicates a description is omitted. The item immediately before this
symbol can be specified more than once consecutively.
Example:

host-name [:port-number][,host-name [:port-number],...]
"host-name [:port-number]" can be specified more than once consecutively.

~ The item before this symbol conforms to the rule indicated in < > or (()) after ~.

<character string> Any character(s)

<unsigned integer> Numbers 0 to 9

(()) The specification range of the specified value is indicated.

5. User Application Program Interface (COBOL Language)

246

5.2 Compiling and linking user application programs

How to compile and link user application programs depends on operating system
environments.

5.2.1 Compiling and linking in a UNIX environment
(1) Compile

To create a CUP object file in COBOL, compile the source program using the COBOL
compiler. For details of the compilation, see the manual OpenTP1 Programming
Reference COBOL Language. The following shows how to enter commands for
compiling the source program using COBOL85.

Example:
UAP source programs in COBOL

• cupmain.cbl (main program)

• cupfnc1.cbl (sub-program 1)

• cupfnc2.cbl (sub-program 2)

These source programs are compiled as follows.

ccbl -C2 -Mw cupmain.cbl
ccbl -C2 cupfncl.cbl
ccbl -C2 cupfnc2.cbl

Executing the ccbl command generates the following object files.

• cupmain.o (object file for the main program)

• cupfnc1.o (object file for the sub-program 1)

• cupfnc2.o (object file for the sub-program 2)

(2) Link
To create an executable file for CUP, link the following files.

• CUP object file (main program and sub-programs)

• TP1/Client/W library

• COBOL library (or COBOL85 library for the CUP created in COBOL85)

The following shows how to enter commands for linking these files using COBOL85.

Example:

5. User Application Program Interface (COBOL Language)

247

To create a COBOL CUP executable file "example", link these object files as
shown below.

• Object file for the main program

cupmain.o

• Object files for the sub-programs

cupfnc1.o, cupfnc2.o

ccbl -o example cupmain.o cupfnc1.o cupfnc2.o
 -L/usr/lib -lclt

Note
The -L option is omissible.

5.2.2 Compiling and linking in a Windows environment
(1) Procedure

The following figure shows how to create a CUP using COBOL85.

5. User Application Program Interface (COBOL Language)

248

Figure 5-1: Creating a new COBOL CUP

(2) Compile, linking, and go
(a) Starting the COBOL85 development

Double-click on the icon for the COBOL85 compiler support program to activate the
COBOL85 integrated development environment.

(b) Creating a source program
Select Editor from the Edit menu of the COBOL85 Compiler Support Program
window. The screen editor window appears. Enter a source program in this window.

Instead of starting the editor from the COBOL85 Compiler Support Program window,
you can use any editor for Windows to create a source program.

(c) Creating a project
Select New Project from the File menu of the COBOL85 Compiler Support Program
window.

Based on the instructions in the window, specify the source program's file name, and
linkage options.

5. User Application Program Interface (COBOL Language)

249

For the Import Library/User-Created Library linkage option, specify
CLTW32.LIB. If you use the character code converter, also specify CLTCNV32.LIB.

(d) Compiling and linking
Choose Compile Project from the Compile menu of the COBOL85 Compiler Support
Program window. The project is automatically compiled and linked.

For linkage, do no specify /NOI as a linkage option.

(e) Executing the CUP
Choose Run from the Run menu of the COBOL85 Compiler Support Program
window. After the CUP is created, you can execute it via COBOL85 Compiler Support
Program or CBL85R.

5. User Application Program Interface (COBOL Language)

250

5.3 COBOL language template

When creating a UAP in COBOL, you can use COBOL language template to make the
Data division coding easy. You can find these templates under the following
directories.

• TP1/Client/P

TP1COBOL under the include directory under the user-specified directory.

Or, TP1COBOL under the include directory under the directory specified at the
most recent installation.

• TP1/Client/W

/usr/include/TP1COBOL

5.3.1 COBOL language template files
The following files are available for COBOL language template.

• DCCLT.cbl, DCCLS.cbl

User authentication, TCP/IP communication, and one-way message reception
from the server

• DCRPC.cbl, DCRPS.cbl

Remote procedure call

• DCTRN.cbl, DCTRS.cbl

Transaction control

• DCUTL.cbl

Code conversion (only TP1/Client/P)

5.3.2 Using COBOL language template
When using COBOL language template, you need to modify the following values to
match processing of the UAP to be coded.

• Some of data area sizes

• Values placed in data areas

For values placed in data areas, see each function description in Subsection 6. Request
Statements Available for TP1/Client (COBOL Language). You can use COBOL
language template in these two ways.

5. User Application Program Interface (COBOL Language)

251

(1) Using the call function of the text editor
Use a template as follows.

1. Select a proper template from the installation directory.

2. Using the call function of the text editor, cut DATA DIVISION from the template,
then paste it to the UAP source program.

3. Modify the pasted part so that it can work as a data area for your coding.

(2) Using the COPY statement of COBOL
Use a template as follows.

1. Select a proper template from the installation directory.

2. From the UAP source program, declare COPY using the template file name.

3. Place the template file in the directory the COPY statement can reference. Follow
the COBOL implementation when copying files or setting environment variables.

4. Modify the template file so that it can work as a data area for your coding.

5.3.3 Notes on using COBOL language template
• The data area to be modified for UAP processing declares the PICTURE clause

length to be (n). Compiling a program without changing this value causes an
error.

• When you use a template and modify it according to the UAP processing, we
recommend you to copy the template from the original directory.

5. User Application Program Interface (COBOL Language)

252

5.4 Example of user application program development

This section shows coding examples to describe how to create CUPs and SPPs when
developing UAPs.

5.4.1 Creating CUPs and SPPs
Subsection 3.3.1 provides the configuration for CUP and SPP. The following shows
how to create this CUP in COBOL.

000010 *
000020 **
000030 * CUP sample program *
000040 **
000050 *
000060 IDENTIFICATION DIVISION.
000070 PROGRAM-ID. CUP01.
000080 *
000090 **
000100 * Set the data area *
000110 **
000120 *
000130 DATA DIVISION.
000140 WORKING-STORAGE SECTION.
000150 01 DCCLS-CLTIN-ARG.
000160 02 DCCLS-CLTIN-REQUEST PIC X(8) VALUE 'CLTIN
'.
000170 02 DCCLS-CLTIN-STATUS-CODE PIC X(5).
000180 02 FILLER PIC X(3).
000190 02 DCCLS-CLTIN-FLAGS PIC S9(9) COMP VALUE
ZERO.
000200 02 DCCLS-CLTIN-T-HOST PIC X(64).
000210 02 DCCLS-CLTIN-LOGNAME PIC X(16).
000220 02 DCCLS-CLTIN-PASSWD PIC X(16).
000230 02 DCCLS-CLTIN-S-HOST PIC X(64).
000240 02 DCCLS-CLTIN-HWND PIC 9(4) COMP.
000250 02 FILLER PIC X(2).
000260 02 DCCLS-CLTIN-CLTID PIC 9(9) COMP.
000270 02 DCCLS-CLTIN-DEFPATH PIC X(256).
000280 *
000290 01 DCCLS-CLTOUT-ARG.
000300 02 DCCLS-CLTOUT-REQUEST PIC X(8) VALUE 'CLTOUT
'.
000310 02 DCCLS-CLTOUT-STATUS-CODE PIC X(5).
000320 02 FILLER PIC X(3).
000330 02 DCCLS-CLTOUT-FLAGS PIC S9(9) COMP VALUE
ZERO.

5. User Application Program Interface (COBOL Language)

253

000340 02 DCCLS-CLTOUT-CLTID PIC 9(9) COMP.
000350 *
000360 01 DCRPS-OPEN-ARG1.
000370 02 DCRPS-OPEN-REQUEST PIC X(8) VALUE 'OPEN
'.
000380 02 DCRPS-OPEN-STATUS-CODE PIC X(5).
000390 02 FILLER PIC X(3).
000400 02 DCRPS-OPEN-FLAGS PIC S9(9) COMP VALUE
ZERO.
000410 02 DCRPS-OPEN-CLTID PIC 9(9) COMP.
000420 *
000430 01 DCRPS-OPEN-ARG2.
000440 02 FILLER PIC X(1).
000450 *
000460 01 DCRPS-OPEN-ARG3.
000470 02 FILLER PIC X(1).
000480 *
000490 01 DCRPS-CALL-ARG1.
000500 02 DCRPS-CALL-REQUEST PIC X(8) VALUE 'CALL
'.
000510 02 DCRPS-CALL-STATUS-CODE PIC X(5).
000520 02 FILLER PIC X(3).
000530 02 DCRPS-CALL-FLAGS PIC S9(9) COMP VALUE
ZERO.
000540 02 DCRPS-CALL-DESCRIPTER PIC S9(9) COMP.
000550 02 DCRPS-CALL-SVGROUP PIC X(32).
000560 02 DCRPS-CALL-SVNAME PIC X(32).
000570 02 DCRPS-CALL-CLTID PIC 9(9) COMP.
000580 *
000590 01 DCRPS-CALL-ARG2.
000600 02 DCRPS-CALL-INDATALEN PIC S9(9) COMP.
000610 02 DCRPS-CALL-INDATA PIC X(512).
000620 *
000630 01 DCRPS-CALL-ARG3.
000640 02 DCRPS-CALL-OUTDATALEN PIC S9(9) COMP.
000650 02 DCRPS-CALL-OUTDATA PIC X(512).
000660 *
000670 01 DCRPS-CLOSE-ARG1.
000680 02 DCRPS-CLOSE-REQUEST PIC X(8) VALUE 'CLOSE
'.
000690 02 DCRPS-CLOSE-STATUS-CODE PIC X(5).
000700 02 FILLER PIC X(3).
000710 02 DCRPS-CLOSE-FLAGS PIC S9(9) COMP VALUE
ZERO.
000720 02 DCRPS-CLOSE-CLTID PIC 9(9) COMP.
000730 *
000740 01 DCRPS-CLOSE-ARG2.
000750 02 FILLER PIC X(1).

5. User Application Program Interface (COBOL Language)

254

000760 *
000770 01 DCRPS-CLOSE-ARG3.
000780 02 FILLER PIC X(1).
000790 *
000800 77 FOREVER-FLAG PIC 9 COMP VALUE ZERO.
000810 77 INDATA PIC X(512) VALUE SPACE.
000820 *
000830 **
000840 * Start CUP *
000850 **
000860 PROCEDURE DIVISION.
000870 MAIN SECTION.
000880 PROG-START.
000890 *
000900 **
000910 * Request client user authentication *
000920 **
000930 MOVE 'CLTIN ' TO DCCLS-CLTIN-REQUEST IN
DCCLS-CLTIN-ARG.
000940 MOVE ZERO TO DCCLS-CLTIN-FLAGS IN
DCCLS-CLTIN-ARG.
000950 MOVE SPACE TO DCCLS-CLTIN-T-HOST IN
DCCLS-CLTIN-ARG.
000960 MOVE 'user01' TO DCCLS-CLTIN-LOGNAME IN
DCCLS-CLTIN-ARG.
000970 MOVE 'puser01' TO DCCLS-CLTIN-PASSWD IN
DCCLS-CLTIN-ARG.
000980 MOVE ZERO TO DCCLS-CLTIN-HWND IN
DCCLS-CLTIN-ARG.
000990 MOVE SPACE TO DCCLS-CLTIN-DEFPATH IN
DCCLS-CLTIN-ARG.
001000 *
001010 * *******************************
001020 CALL 'CBLDCCLS' USING DCCLS-CLTIN-ARG.
001030 * *******************************
001040 IF DCCLS-CLTIN-STATUS-CODE
001050 IN DCCLS-CLTIN-ARG NOT = '00000'
001060 THEN
001070 DISPLAY 'CUP01: CBLDCCLS(CLTIN) failed. CODE='
001080 DCCLS-CLTIN-STATUS-CODE IN DCCLS-CLTIN-ARG
001090 GO TO PROG-EXIT
001100 END-IF.
001110 *
001120 **
001130 * RPC-OPEN(initialize RPC environment) *
001140 **
001150 MOVE 'OPEN ' TO
001160 DCRPS-OPEN-REQUEST IN DCRPS-OPEN-ARG1.

5. User Application Program Interface (COBOL Language)

255

001170 MOVE ZERO TO
001180 DCRPS-OPEN-FLAGS IN DCRPS-OPEN-ARG1.
001190 MOVE DCCLS-CLTIN-CLTID IN DCCLS-CLTIN-ARG TO
001200 DCRPS-OPEN-CLTID IN DCRPS-OPEN-ARG1.
001210 *
001220 * *******************************
001230 CALL 'CBLDCRPS' USING DCRPS-OPEN-ARG1
001240 DCRPS-OPEN-ARG2 DCRPS-OPEN-ARG3.
001250 * *******************************
001260 IF DCRPS-OPEN-STATUS-CODE IN DCRPS-OPEN-ARG1
001270 NOT = '00000'
001280 THEN
001290 DISPLAY 'CUP01: CBLDCRPS(OPEN) failed. CODE='
001300 DCRPS-OPEN-STATUS-CODE IN DCRPS-OPEN-ARG1
001310 GO TO PROG-END
001320 END-IF.
001330 *
001340 PERFORM UNTIL FOREVER-FLAG NOT = ZERO
001350 DISPLAY '****** BBS Menu ******'
001360 DISPLAY 'Read Message [1]'
001370 'Send Message [2]'
001380 DISPLAY 'End [9]'
001390 DISPLAY 'Enter a number =>'
001400 ACCEPT INDATA
001410 EVALUATE INDATA
001420 WHEN '1'
001430 *
001440 * ***
001450 * * RPC-CALL(execute RPC) *
001460 * ***
001470 MOVE 'CALL ' TO
001480 DCRPS-CALL-REQUEST IN DCRPS-CALL-ARG1
001490 MOVE ZERO TO
001500 DCRPS-CALL-FLAGS IN DCRPS-CALL-ARG1
001510 MOVE 'spp01' TO
001520 DCRPS-CALL-SVGROUP IN DCRPS-CALL-ARG1
001530 MOVE 'get' TO
001540 DCRPS-CALL-SVNAME IN DCRPS-CALL-ARG1
001550 MOVE DCCLS-CLTIN-CLTID IN DCCLS-CLTIN-ARG TO
001560 DCRPS-CALL-CLTID IN DCRPS-CALL-ARG1
001570 MOVE 'cup01 ' TO
001580 DCRPS-CALL-INDATA IN DCRPS-CALL-ARG2
001590 MOVE 512 TO
001600 DCRPS-CALL-INDATALEN IN DCRPS-CALL-ARG2
001610 MOVE SPACE TO
001620 DCRPS-CALL-OUTDATA IN DCRPS-CALL-ARG3
001630 MOVE 512 TO
001640 DCRPS-CALL-OUTDATALEN IN DCRPS-CALL-ARG3

5. User Application Program Interface (COBOL Language)

256

001650 *
001660 *
**
001670 CALL 'CBLDCRPS' USING DCRPS-CALL-ARG1
001680 DCRPS-CALL-ARG2 DCRPS-CALL-ARG3
001690 *
**
001700 IF DCRPS-CALL-STATUS-CODE IN DCRPS-CALL-ARG1
001710 NOT = '00000'
001720 THEN
001730 DISPLAY 'CUP01: CBLDCRPS(CALL) failed. CODE='
001740 DCRPS-CALL-STATUS-CODE IN DCRPS-CALL-ARG1
001750 GO TO PROG-END
001760 END-IF
001770 DISPLAY 'BBS Contents: ' DCRPS-CALL-OUTDATA
001780 IN DCRPS-CALL-ARG3
001790 WHEN '2'
001800 DISPLAY 'Enter your message =>'
001810 ACCEPT INDATA
001820 IF INDATA = SPACE
001830 THEN
001840 MOVE 'No message' TO INDATA
001850 END-IF
001860 *
001870 * ***
001880 * * RPC-CALL(execute RPC) *
001890 * ***
001900 MOVE 'CALL ' TO
001910 DCRPS-CALL-REQUEST IN DCRPS-CALL-ARG1
001920 MOVE ZERO TO
001930 DCRPS-CALL-FLAGS IN DCRPS-CALL-ARG1
001940 MOVE 'spp01' TO
001950 DCRPS-CALL-SVGROUP IN DCRPS-CALL-ARG1
001960 MOVE 'put' TO
001970 DCRPS-CALL-SVNAME IN DCRPS-CALL-ARG1
001980 MOVE DCCLS-CLTIN-CLTID IN DCCLS-CLTIN-ARG TO
001990 DCRPS-CALL-CLTID IN DCRPS-CALL-ARG1
002000 MOVE INDATA TO
002010 DCRPS-CALL-INDATA IN DCRPS-CALL-ARG2
002020 MOVE 512 TO
002030 DCRPS-CALL-INDATALEN IN DCRPS-CALL-ARG2
002040 MOVE SPACE TO
002050 DCRPS-CALL-OUTDATA IN DCRPS-CALL-ARG3
002060 MOVE 512 TO
002070 DCRPS-CALL-OUTDATALEN IN DCRPS-CALL-ARG3
002080
002090 *
002100 *

5. User Application Program Interface (COBOL Language)

257

**
002110 CALL 'CBLDCRPS' USING DCRPS-CALL-ARG1
002120 DCRPS-CALL-ARG2 DCRPS-CALL-ARG3
002130 *
**
002140 IF DCRPS-CALL-STATUS-CODE IN DCRPS-CALL-ARG1
002150 NOT = '00000'
002160 THEN
002170 DISPLAY 'CUP01: CBLDCRPS(CALL) failed. CODE='
002180 DCRPS-CALL-STATUS-CODE IN DCRPS-CALL-ARG1
002190 GO TO PROG-END
002200 END-IF
002210 DISPLAY DCRPS-CALL-OUTDATA IN DCRPS-CALL-ARG3
002220 WHEN '9'
002230 GO TO PROG-END
002240 WHEN OTHER
002250 CONTINUE
002260 END-EVALUATE
002270 END-PERFORM.
002280 PROG-END.
002290 *
002300 **
002310 * RPC-CLOSE(reset RPC environment) *
002320 **
002330 MOVE 'CLOSE ' TO
002340 DCRPS-CLOSE-REQUEST IN DCRPS-CLOSE-ARG1.
002350 MOVE ZERO TO
002360 DCRPS-CLOSE-FLAGS IN DCRPS-CLOSE-ARG1.
002370 MOVE DCCLS-CLTIN-CLTID IN DCCLS-CLTIN-ARG TO
002380 DCRPS-CLOSE-CLTID IN DCRPS-CLOSE-ARG1.
002390 *
002400 * *******************************
002410 CALL 'CBLDCRPS' USING DCRPS-CLOSE-ARG1.
002420 * *******************************
002430 PROG-EXIT.
002440 MOVE 'CLTOUT ' TO
002450 DCCLS-CLTOUT-REQUEST IN DCCLS-CLTOUT-ARG.
002460 MOVE ZERO TO
002470 DCCLS-CLTOUT-FLAGS IN DCCLS-CLTOUT-ARG.
002480 MOVE DCCLS-CLTIN-CLTID IN DCCLS-CLTIN-ARG TO
002490 DCCLS-CLTOUT-CLTID IN DCCLS-CLTOUT-ARG.
002500 *
002510 * *******************************
002520 CALL 'CBLDCCLS' USING DCCLS-CLTOUT-ARG.
002530 * *******************************
002540 STOP RUN.
002550 *
002560 MAIN-EXIT SECTION.

5. User Application Program Interface (COBOL Language)

258

002570 EXIT.

5.4.2 Creating a user application program that can run in a
multi-thread environment

This subsection describes how to create a COBOL UAP that can run in a multi-thread
environment.

(1) Compilation
The following describes how to compile the source program of a UAP written in
COBOL. The source program of this UAP requires a thread activation program and
the CUP main program.

Write a thread activation program in C, and compile the program by using the cc
command to create an object file. Write the CUP main program in COBOL, and
compile the program by using a COBOL compiler to create the object files.

The following shows the names of example programs used in this subsection, and
shows examples of commands for compiling the programs. The examples assume that
COBOL85 is used as a COBOL compiler.

• Name of the thread activation program written in C:

thdcup_main.c

• Name of the CUP main program written in COBOL:

sample.cbl

Commands to be entered:

xlc_r -c thdcup_main.c
ccbl -c2 -Mt sample.cbl

When the above cc and ccbl commands are executed, the following object files are
created:

• thdcup_main.o (object file of the thread activation program)

• sample.o (object file of the CUP main program)

(2) Linkage
You can use the ccbl or cc command to create the executable file of a UAP. The
following shows how to use the ccbl and cc commands when creating the executable
file of a UAP.

(a) ccbl command
When you use the ccbl command to create the executable file of a UAP, you link the

5. User Application Program Interface (COBOL Language)

259

following files:

• Object file of the thread activation program

• Object file of the CUP main program

• Library of TP1/Client/W

• Library of COBOL (or libraries of COBOL85 for a CUP created with COBOL85)

• Library of the POSIX thread

The following shows the names of files used in this example, and shows an example
of the command for linking the above files by using the ccbl command.

• Name of the COBOL CUP executable file to be created:

CBL.exe

• Name of the object file of the thread activation program:

thdcup_main.o

• Name of the object file of the CUP main program:

sample.o

Command to be entered:

ccbl -Mt -Mp -o CBL.exe thdcup_main.o sample.o -L/usr/lib -lclt
-lpthread

(b) cc command
When you use the cc command to create the executable file of a UAP, you link the
following files:

• Object file of the thread activation program

• Object file of the CUP main program

• Library of TP1/Client/W

• Library of COBOL (or libraries of COBOL85 for a CUP created with COBOL85)

• Library of the POSIX thread

The following shows the names of files used in this example, and shows an example
of the command for linking the above files by using the cc command.

• Name of the COBOL CUP executable file to be created:

CBL.exe

• Name of the object file of the thread activation program:

5. User Application Program Interface (COBOL Language)

260

thdcup_main.o

• Name of the object file of the CUP main program:

sample.o

Command to be entered:

xlc_r -o CBL.exe thdcup_main.o sample.o -L/usr/lib -lclt -L/opt/
HILNGcbl/lib -lcbl85 -lcbl85mp

(3) Examples of coding the thread activation program and CUP main program
The following shows examples of the thread activation program (written in C) and the
CUP main program (written in COBOL) for a UAP written in COBOL.

(a) Coding example of the thread activation program (written in C)
000010 #include <stdio.h>
000020 #include <pthread.h>
000030 #include <sys/errno.h>
000040
000050 #define THDMAX 5
000060
000070 extern void *CUP_THREAD();
000080
000090 main()
000100 {
000110 int i;
000120 int rc;
000130 int exit_value;
000140 pthread_t threads[THDMAX];
000150 struct timeval timeout;
000160
000170 /* Generates a thread */
000180 for (i = 1; i < THDMAX; i++) {
000190 fflush(stdout);
000200 rc = pthread_create((pthread_t *)&threads[i],
000210 NULL,
000220 CUP_THREAD,
000230 (void *)i);
000240 if (rc < 0) {
000250 printf("cup0: pthread_create failed.
CODE=%d\n", errno);
000260 }
000370 }
000380}
000390 /* Waits for the thread to end. */
000300 for (i = 1; i < THDMAX; i++) {
000310 rc = pthread_join(threads[i], (void

5. User Application Program Interface (COBOL Language)

261

**)&exit_value);
000320 if (rc < 0) {
000330 printf("cup0: pthread_join failed. CODE=%d\n",
errno);
000340 }
000350 }
000360
000370 }
000380

(b) Coding example of the CUP main program (written in COBOL)
000010 *
000020 **
000030 * CUP SAMPLE PROGRAM *
000040 **
000050 *
000060 IDENTIFICATION DIVISION.
000070 PROGRAM-ID. CUP_THREAD.
000080 *
000090 **
000100 * DATA AREA SETTINGS *
000110 **
000120 *
000130 DATA DIVISION.
000140 WORKING-STORAGE SECTION.
000150 01 DCCLS-CLTIN-ARG.
000160 02 DCCLS-CLTIN-REQUEST PIC X(8) VALUE
'CLTIN '.
000170 02 DCCLS-CLTIN-STATUS-CODE PIC X(5).
000180 02 FILLER PIC X(3).
000190 02 DCCLS-CLTIN-FLAGS PIC S9(9) COMP
VALUE ZERO.
000200 02 DCCLS-CLTIN-T-HOST PIC X(64).
000210 02 DCCLS-CLTIN-LOGNAME PIC X(16).
000220 02 DCCLS-CLTIN-PASSWD PIC X(16).
000230 02 DCCLS-CLTIN-S-HOST PIC X(64).
000240 02 DCCLS-CLTIN-HWND PIC 9(4) COMP.
000250 02 FILLER PIC X(2).
000260 02 DCCLS-CLTIN-CLTID PIC 9(9) COMP.
000270 02 DCCLS-CLTIN-DEFPATH PIC X(256).
000280 *
000290 01 DCCLS-CLTOUT-ARG.
000300 02 DCCLS-CLTOUT-REQUEST PIC X(8) VALUE
'CLTOUT '.
000310 02 DCCLS-CLTOUT-STATUS-CODE PIC X(5).
000320 02 FILLER PIC X(3).
000330 02 DCCLS-CLTOUT-FLAGS PIC S9(9) COMP
VALUE ZERO.

5. User Application Program Interface (COBOL Language)

262

000340 02 DCCLS-CLTOUT-CLTID PIC 9(9) COMP.
000350 *
000360 01 DCRPS-OPEN-ARG1.
000370 02 DCRPS-OPEN-REQUEST PIC X(8) VALUE
'OPEN '.
000380 02 DCRPS-OPEN-STATUS-CODE PIC X(5).
000390 02 FILLER PIC X(3).
000400 02 DCRPS-OPEN-FLAGS PIC S9(9) COMP
VALUE ZERO.
000410 02 DCRPS-OPEN-CLTID PIC 9(9) COMP.
000420 *
000430 01 DCRPS-OPEN-ARG2.
000440 02 FILLER PIC X(1).
000450 *
000460 01 DCRPS-OPEN-ARG3.
000470 02 FILLER PIC X(1).
000480 *
000490 01 DCRPS-CALL-ARG1.
000500 02 DCRPS-CALL-REQUEST PIC X(8) VALUE
'CALL '.
000510 02 DCRPS-CALL-STATUS-CODE PIC X(5).
000520 02 FILLER PIC X(3).
000530 02 DCRPS-CALL-FLAGS PIC S9(9) COMP
VALUE ZERO.
000540 02 DCRPS-CALL-DESCRIPTER PIC S9(9) COMP.
000550 02 DCRPS-CALL-SVGROUP PIC X(32).
000560 02 DCRPS-CALL-SVNAME PIC X(32).
000570 02 DCRPS-CALL-CLTID PIC 9(9) COMP.
000580 *
000590 01 DCRPS-CALL-ARG2.
000600 02 DCRPS-CALL-INDATALEN PIC S9(9) COMP.
000610 02 DCRPS-CALL-INDATA PIC X(512).
000620 *
000630 01 DCRPS-CALL-ARG3.
000640 02 DCRPS-CALL-OUTDATALEN PIC S9(9) COMP.
000650 02 DCRPS-CALL-OUTDATA PIC X(512).
000660 *
000670 01 DCRPS-CLOSE-ARG1.
000680 02 DCRPS-CLOSE-REQUEST PIC X(8) VALUE
'CLOSE '.
000690 02 DCRPS-CLOSE-STATUS-CODE PIC X(5).
000700 02 FILLER PIC X(3).
000710 02 DCRPS-CLOSE-FLAGS PIC S9(9) COMP
VALUE ZERO.
000720 02 DCRPS-CLOSE-CLTID PIC 9(9) COMP.
000730 *
000740 01 DCRPS-CLOSE-ARG2.
000750 02 FILLER PIC X(1).

5. User Application Program Interface (COBOL Language)

263

000760 *
000770 01 DCRPS-CLOSE-ARG3.
000780 02 FILLER PIC X(1).
000790 *
000800 **
000810 * START OF CUP *
000820 **
000830 PROCEDURE DIVISION.
000840 MAIN SECTION.
000850 PROG-START.
000860 *
000870 **
000880 * CLIENT USER AUTHENTICATION REQUEST *
000890 **
000900 MOVE 'CLTIN ' TO DCCLS-CLTIN-REQUEST IN
DCCLS-CLTIN-ARG.
000910 MOVE ZERO TO DCCLS-CLTIN-FLAGS IN
DCCLS-CLTIN-ARG.
000920 MOVE 'host01:10000' TO DCCLS-CLTIN-T-HOST
000930 IN DCCLS-CLTIN-ARG.
000940 MOVE 'user01' TO DCCLS-CLTIN-LOGNAME IN
DCCLS-CLTIN-ARG.
000950 MOVE 'puser01' TO DCCLS-CLTIN-PASSWD IN
DCCLS-CLTIN-ARG.
000960 MOVE ZERO TO DCCLS-CLTIN-HWND IN
DCCLS-CLTIN-ARG.
000970 MOVE SPACE TO DCCLS-CLTIN-DEFPATH IN
DCCLS-CLTIN-ARG.
000980 *
000990 * *******************************
001000 CALL 'CBLDCCLS' USING DCCLS-CLTIN-ARG.
001010 * *******************************
001020 IF DCCLS-CLTIN-STATUS-CODE IN DCCLS-CLTIN-ARG NOT
= '00000'
001030 THEN
001040 DISPLAY 'CUP01: CBLDCCLS(CLTIN) failed. CODE='
001050 DCCLS-CLTIN-STATUS-CODE IN DCCLS-CLTIN-ARG
001060 GO TO PROG-EXIT
001070 END-IF.
001080 *
001090 **
001100 * RPC-OPEN(RPC ENVIRONMENT INITIALIZATION) *
001110 **
001120 MOVE 'OPEN ' TO
001130 DCRPS-OPEN-REQUEST IN DCRPS-OPEN-ARG1.
001140 MOVE ZERO TO DCRPS-OPEN-FLAGS
001150 IN DCRPS-OPEN-ARG1.
001160 MOVE DCCLS-CLTIN-CLTID IN DCCLS-CLTIN-ARG TO

5. User Application Program Interface (COBOL Language)

264

001170 DCRPS-OPEN-CLTID IN DCRPS-OPEN-ARG1.
001180 *
001190 * *******************************
001200 CALL 'CBLDCRPS' USING DCRPS-OPEN-ARG1
DCRPS-OPEN-ARG2
001210 DCRPS-OPEN-ARG3.
001220 * *******************************
001230 IF DCRPS-OPEN-STATUS-CODE IN DCRPS-OPEN-ARG1 NOT
= '00000'
001240 THEN
001250 DISPLAY 'CUP01: CBLDCRPS(OPEN) failed. CODE='
001260 DCRPS-OPEN-STATUS-CODE IN DCRPS-OPEN-ARG1
001270 GO TO PROG-END
001280 END-IF.
001290 *
001300 * ***
001310 * * RPC-CALL(RPC EXECUTION) *
001320 * ***
001330 MOVE 'CALL ' TO
001340 DCRPS-CALL-REQUEST IN DCRPS-CALL-ARG1.
001350 MOVE ZERO TO
001360 DCRPS-CALL-FLAGS IN DCRPS-CALL-ARG1.
001370 MOVE 'spp01' TO
001380 DCRPS-CALL-SVGROUP IN DCRPS-CALL-ARG1.
001390 MOVE 'svr01' TO
001400 DCRPS-CALL-SVNAME IN DCRPS-CALL-ARG1.
001410 MOVE DCCLS-CLTIN-CLTID IN DCCLS-CLTIN-ARG TO
001420 DCRPS-CALL-CLTID IN DCRPS-CALL-ARG1.
001430 MOVE 'HELLO SPP !! ' TO
001440 DCRPS-CALL-INDATA IN DCRPS-CALL-ARG2.
001450 MOVE 512 TO
001460 DCRPS-CALL-INDATALEN IN DCRPS-CALL-ARG2.
001470 MOVE SPACE TO
001480 DCRPS-CALL-OUTDATA IN DCRPS-CALL-ARG3.
001490 MOVE 512 TO
001500 DCRPS-CALL-OUTDATALEN IN DCRPS-CALL-ARG3.
001510 *
001520 *
**
001530 CALL 'CBLDCRPS' USING DCRPS-CALL-ARG1
DCRPS-CALL-ARG2
001540 DCRPS-CALL-ARG3
001550 *
**
001560 IF DCRPS-CALL-STATUS-CODE IN DCRPS-CALL-ARG1 NOT
= '00000'
001570 THEN
001580 DISPLAY 'CUP01: CBLDCRPS(CALL) failed.'

5. User Application Program Interface (COBOL Language)

265

001590 'CODE=' DCRPS-CALL-STATUS-CODE IN
DCRPS-CALL-ARG1
001600 GO TO PROG-END
001610 END-IF.
001620 PROG-END.
001630 *
001640 **
001650 * RPC-CLOSE(RPC ENVIRONMENT RELEASE) *
001660 **
001670 MOVE 'CLOSE ' TO DCRPS-CLOSE-REQUEST IN
DCRPS-CLOSE-ARG1.
001680 MOVE ZERO TO DCRPS-CLOSE-FLAGS IN
DCRPS-CLOSE-ARG1.
001690 MOVE DCCLS-CLTIN-CLTID IN DCCLS-CLTIN-ARG TO
001700 DCRPS-CLOSE-CLTID IN DCRPS-CLOSE-ARG1.
001710 *
001720 * *******************************
001730 CALL 'CBLDCRPS' USING DCRPS-CLOSE-ARG1
DCRPS-CLOSE-ARG2
001740 DCRPS-CLOSE-ARG3.
001750 * *******************************
001760 PROG-EXIT.
001770 MOVE 'CLTOUT ' TO DCCLS-CLTOUT-REQUEST IN
DCCLS-CLTOUT-ARG.
001780 MOVE ZERO TO DCCLS-CLTOUT-FLAGS IN
DCCLS-CLTOUT-ARG.
001790 MOVE DCCLS-CLTIN-CLTID IN DCCLS-CLTIN-ARG TO
001800 DCCLS-CLTOUT-CLTID IN DCCLS-CLTOUT-ARG.
001810 *
001820 * *******************************
001830 CALL 'CBLDCCLS' USING DCCLS-CLTOUT-ARG.
001840 * *******************************
001850 STOP RUN.
001860 *

267

Chapter

6. Request Statements Available for
TP1/Client (COBOL Language)

6.1 Notes on using request statements
6.2 User authentication
6.3 Remote procedure calls
6.4 Permanent connection
6.5 Transaction control
6.6 TCP/IP communication function
6.7 Facility for receiving one-way messages from the server
6.8 Character code converter (When a code mapping table is not used)
6.9 Character code converter (When a code mapping table is used)

6. Request Statements Available for TP1/Client (COBOL Language)

268

6.1 Notes on using request statements

When you use request statements, we recommend that you use request statements that
are suitable for a multi-thread environment even if you are using a single-thread
environment.

In a multi-thread environment, do not use request statements that are suitable for a
single-thread environment.

6. Request Statements Available for TP1/Client (COBOL Language)

269

6.2 User authentication

6.2.1 CBLDCCLS('CLTIN ') - Client user authentication request
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'CLTIN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC X(64).
 02 data-name-E PIC X(16).
 02 data-name-F PIC X(16).
 02 data-name-G PIC X(64).
 02 FILLER PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-I PIC 9(9) COMP.
 02 data-name-J PIC X(256).

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'CLTIN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC X(64).
 02 data-name-E PIC X(16).

6. Request Statements Available for TP1/Client (COBOL Language)

270

 02 data-name-F PIC X(16).
 02 data-name-G PIC X(64).

(2) Purpose
Requests authentication of the client user specified with the login name corresponding
to the specified TP1/Server to be used as a gateway.

Always execute CBLDCCLS('CLTIN ') even when you suppress user
authentication.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'CLTIN ' as a request code for the client user authentication
request.

data-name-C
Set -2147483648 to suppress user authentication for using the remote API
facility. Set 0 not to suppress user authentication.

data-name-D
Set the host name and port number of TP1/Server you want to use as a gateway
when issuing an authentication request.

You can specify more than one TP1/Server used as a gateway separated by a
comma (,). You can also specify an IP address in decimal dot notation for the
host name.

Format:

host-computer-name[:port-number][,host-computer-name[:port-number],...
]

host-computer-name~<character string>

port-number~<unsigned integer>((5001-65535))

Do not place a null character (space or tab) except after the separator (,).

When the port number is omitted, the system assumes the value for DCNAMPORT
in the client environment definition.

When you have specified more than one TP1/Server in data-name-D and an error
is detected in the TP1/Server being used as a gateway, system operation depends
on the specification of DCHOSTSELECT in the client environment definition. If N
is specified, the system attempts to replace the failed node by referencing the next
TP1/Server of the currently used TP1/Server. If Y is specified, the system selects
a TP1/Server at random (except for the TP1/Server in which the error was

6. Request Statements Available for TP1/Client (COBOL Language)

271

detected) and attempts to replace the failed node.

When data-name-D starts with a blank, the program references DCHOST in the
client environment definition. If data-name-D starts with a blank and DCHOST is
not set, a broadcast is performed to determine the target host computer.

To perform a broadcast in TP1/Client/P, you must specify the broadcast address
in the hosts file (the host name must be broadcast). If the host name is not
specified, CBLDCCLS('EXCLTIN ')returns an error with status code 02518.

Terminate the character string with a blank.

data-name-E
Store the client user's login name.

Terminate the character string with a blank.

data-name-F
Store a password for the login name specified with data-name-E. If no password
is available, place a blank at the beginning of data-name-F.

Terminate the character string with a blank.

data-name-J
Specify the path name of the client environment definition file. The path name
must be specified with the full path or with a relative path from the current drive
and the current directory. The following shows the order in which files are loaded
when the path name is specified.

• In TP1/Client/P

Client environment definition files are loaded in the following order:

1. The BETRAN.INI file in the Windows directory

2. The client environment definition file specified in data-name-J argument

The definitions in both the client environment definition file and the
BETRAN.INI file take effect.

If the same definition is specified in each file with a different value, the value
specified in the client environment definition file takes effect.

If neither the client environment definition file nor the BETRAN.INI file
contains the necessary specification, TP1/Client/P uses the defaults.

• In TP1/Client/W

All definitions specified in the environment variables will be invalid. TP1/
Client/W uses the defaults for definitions that are not specified in the client
environment definition file specified in data-name-J.

6. Request Statements Available for TP1/Client (COBOL Language)

272

You can omit the path name by specifying a blank at the beginning of
data-name-J. The following describes the operation when the path name is
omitted.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the values specified in the environment variables. If an
environment variable is not specified, TP1/Client/W uses the default.

The following describes operation when the client environment definition file
specified in data-name-J does not exist or when the contents of the definition file
are invalid.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the defaults. The values specified in the environment
variables will be invalid.

(4) Data area for which a value is returned
data-name-B
5-digit status code.

data-name-G
The host name (or IP address in decimal-dot notation) of the server that actually
performed user authentication. Nothing is returned if you suppress user
authentication.

The stored host computer name ends with a blank.

data-name-I
A client ID is set when client user authentication is completed successfully. Do
not destroy the client ID before CBLDCCLS('CLTOUT ') is executed.

6. Request Statements Available for TP1/Client (COBOL Language)

273

(5) Status codes

6.2.2 CBLDCCLS('EXCLTIN ') - Client user authentication request
(for an extended host name)
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1 identifier-2 identifier-3

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'EXCLTIN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC X(16).

Status code Meaning

00000 Normal termination

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02502 CBLDCCLT('CLTIN ') has already been executed. This status code is not returned if
CBLDCCLS('CLTIN ') is executed.

02503 The communication path initialization failed. Alternatively the client environment
definition is specified incorrectly.

02504 A necessary amount of buffer could not be allocated.

02506 Network error

02515 OpenTP1 is inactive for the node that has the specified service.

02518 System error

02527 This status code is returned because of one of the following reasons:
The specified data-name-E is not registered in the target host.
The password does not match.
The OpenTP1 server may not support user authentication. client_uid_check is specified
incorrectly in the system common definition.

02547 The specified port number is in use. Alternatively, port numbers that can be assigned
automatically by the operating system are insufficient.

6. Request Statements Available for TP1/Client (COBOL Language)

274

 02 data-name-E PIC X(16).
 02 data-name-F PIC X(n).
01 identifier-2.
 02 FILLER PIC X(9) COMP.
 02 data-name-G PIC X(n).
01 identifier-3.
 02 data-name-H PIC 9(9) COMP.
 02 FILLER PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-I PIC X(n).

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1 identifier-2

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'EXCLTIN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC X(16).
 02 data-name-E PIC X(16).
 02 data-name-F PIC X(n).
01 identifier-2.
 02 FILLER PIC X(9) COMP.
 02 data-name-G PIC X(n).

(2) Purpose
Requests authentication of the client user specified with the login name corresponding
to the specified TP1/Server to be used as a gateway.

Always execute CBLDCCLS('EXCLTIN '), even if you have suppressed user
authentication.

Use this function when using the host name extension function.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'EXCLTIN ' as a request code for the client user authentication

6. Request Statements Available for TP1/Client (COBOL Language)

275

request.

data-name-C
Set -2147483648 to suppress user authentication for using the remote API
facility. Set 0 not to suppress user authentication.

data-name-D
Set the client user's login name.

Terminate the character string with a blank.

data-name-E
Set a password for the login name specified with data-name-D. If no password is
available, place a blank at the beginning of data-name-E.

Terminate the character string with a blank.

data-name-F
Set the host name and port number of the TP1/Server you want to use as a gateway
when issuing an authentication request. You can specify more than one TP1/
Server for use as a gateway by separating them with a comma (,).

You can also specify an IP address in decimal dot notation for the host name.

Format

host-name[:port-number][,host-name[:port-number],...]

host-name~<character string>

port-number~<unsigned integer>((5001-65535))

You can specify a maximum of 63# characters for the host name. When
specifying multiple host names, you can specify a maximum of 255# characters,
including port numbers, in data-name-F. Terminate the character string with a
blank.

Do not place a blank character (space or tab) except after the separator (,). When
the port number is omitted, the system assumes the value for DCNAMPORT in the
client environment definition.

When you have specified more than one TP1/Server in data-name-F and an error
is detected in the TP1/Server being used as a gateway, system operation depends
on the specification of DCHOSTSELECT in the client environment definition. If N
is specified, the system attempts to replace the failed node by referencing the next
TP1/Server of the currently used TP1/Server. If Y is specified, the system selects
a TP1/Server at random (except for the TP1/Server in which the error was
detected) and attempts to replace the failed node.

6. Request Statements Available for TP1/Client (COBOL Language)

276

When data-name-F starts with a blank, the program references DCHOST in the
client environment definition.

If data-name-F starts with a blank and DCHOST is not set, a broadcast is performed
to determine the TP1/Server to be used as a gateway.

To perform a broadcast in TP1/Client/P, you must specify the broadcast address
in the hosts file (the host name must be broadcast). If the host name is not
specified, CBLDCCLS('EXCLTIN ') returns an error with status code 02518.

Terminate the character string with a blank.

If you specify 00000008 for DCCLTOPTION in the client environment
definition, you can specify a maximum of 255 characters for the host name.
When specifying multiple host names, you can specify a maximum of 1023
characters, including port numbers, in data-name-F.

data-name-G

Specify an area of 64 bytes# or more for storing the host name of the server that
actually performed user authentication.

This area must be larger than 255 bytes if you specify 00000008 for
DCCLTOPTION in the client environment definition.

data-name-I
Specify the path name of the client environment definition file. The path name
must be specified with the full path or with a relative path from the current drive
and the current directory. The following shows the order in which files are loaded
when the path name is specified.

• In TP1/Client/P

Client environment definition files are loaded in the following order:

1. The BETRAN.INI file in the Windows directory

2. The client environment definition file specified in data-name-I argument

The definitions in both the client environment definition file and the
BETRAN.INI file take effect.

If the same definition is specified in each file with a different value, the value
specified in the client environment definition file takes effect.

If neither the client environment definition file nor the BETRAN.INI file
contains the necessary specification, TP1/Client/P uses the defaults.

• In TP1/Client/W

All definitions specified in the environment variables will be invalid. TP1/
Client/W uses the defaults for definitions that are not specified in the client

6. Request Statements Available for TP1/Client (COBOL Language)

277

environment definition file specified in data-name-I.
You can omit the path name by specifying a blank at the beginning of
data-name-I. The following describes the operation when the path name is
omitted.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the values specified in the environment variables. If an
environment variable is not specified, TP1/Client/W uses the default.

The following describes operation when the client environment definition file
specified in data-name-I does not exist or when the contents of the definition file
are invalid.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the defaults. The values specified in the environment
variables will be invalid.

(4) Data area for which a value is returned
data-name-B
5-digit status code.

data-name-G
The host name (or IP address in decimal-dot notation) of the server that actually
performed user authentication. Nothing is returned if you suppress user
authentication.

The stored host name ends with a blank.

data-name-H
A client ID is set when client user authentication is completed successfully. Do
not destroy the client ID before CBLDCCLS('CLTOUT ') is executed.

6. Request Statements Available for TP1/Client (COBOL Language)

278

(5) Status codes

6.2.3 CBLDCCLS('CLTOUT ') - Release of client user authentication
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'CLTOUT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(9) COMP.

Status code Meaning

00000 Normal termination

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02502 CBLDCCLT('EXCLTIN ') has already been executed. This status code is not returned if
CBLDCCLS('EXCLTIN ') is executed.

02503 An attempt to initialize the communication path failed.
Alternatively, the client environment definition is specified incorrectly.

02504 A necessary amount of buffer could not be allocated.

02506 Network error

02515 OpenTP1 is not running on the node that has the specified service.

02518 System error

02527 This status code is returned because of one of the following reasons:
The specified login name (data-name-D) is not registered in the target host.
The password (data-name-E) does not match.
The OpenTP1 server may not support user authentication.
Check whether client_uid_check is specified correctly in the system common
definition.

02547 The specified port number is in use. Alternatively, port numbers that can be assigned
automatically by the operating system are insufficient.

6. Request Statements Available for TP1/Client (COBOL Language)

279

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'CLTOUT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

(2) Purpose
Releases the client user authentication and rejects OpenTP1 services afterwards.

Be sure to execute CBLDCCLS('CLTOUT ') before termination of a CUP. When
executed, CBLDCCLS('CLTOUT ') must be paired with CBLDCCLS('CLTIN ').

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'CLTOUT ' as a request code for releasing the client user
authentication.

data-name-C
Set 0.

data-name-D
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

(4) Data area where OpenTP1 returns values
data-name-B
5-digit status code.

(5) Status codes
Status code Meaning

00000 Normal termination

6. Request Statements Available for TP1/Client (COBOL Language)

280

02501 The request code (data-name-A) may be invalid.

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

281

6.3 Remote procedure calls

6.3.1 CBLDCRPS('OPEN ') - UAP startup
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCRPC' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'OPEN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCRPS' USING identifier-1 identifier-2 identifier-3

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'OPEN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(9) COMP.
01 identifier-2.
 02 FILLER PIC X(1).
01 identifier-3.
 02 FILLER PIC X(1).

(2) Purpose
Initializes the environment for calling the OpenTP1 SPP or using the TCP/IP
communication facility.

6. Request Statements Available for TP1/Client (COBOL Language)

282

Always execute CBLDCRPS('OPEN ') before executing any RPC program or
transaction control program.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'OPEN ' as a request code for starting the UAP.

data-name-C
Specify the environment to be initialized. You can specify one of the following
environments:

0: Environment for calling the SPP

4: Environment for sending one-way messages

8: Environment for receiving one-way messages

16: Environment for sending and receiving messages

Specify 4, 8, or 16 to use the TCP/IP communication facility. The RPC facility
is also available, when you specify 4, 8, or 16.

data-name-D
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

(4) Data area for which a value is returned
data-name-B
5-digit status code.

(5) Status codes
Status code Meaning

00000 Normal termination

02401 Invalid value for the data name. The request code (data-name-A) may be invalid.

02402 CBLDCRPS('OPEN ') has already been executed.

02403 One of the following errors occurs.
• Initialization failed.
• No user authentication is performed.
• The client environment definition is specified invalidly.

02415 OpenTP1 is inactive for the node corresponding to the specified service.

02447 The specified port number is in use.

6. Request Statements Available for TP1/Client (COBOL Language)

283

(6) Notes
• Just after you execute CBLDCRPS('CLOSE '), you cannot execute

CBLDCRPS('OPEN ') whose data-name-C is 8 under the following
condition.

After execution of CBLDCRPS('OPEN ') whose data-name-C is 8,
CBLDCCLS('RECEIVE ') is executed to receive messages. Before the remote
system releases the connection, the CUP releases it by executing
CBLDCRPS('CLOSE ').

In this case, wait 15 to 20 seconds, then execute CBLDCRPS('OPEN ').

6.3.2 CBLDCRPS('CLOSE ') - UAP termination
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCRPS' USING identifier-1 identifier-2 identifier-3

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'CLOSE '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(9) COMP.
01 identifier-2.
 02 FILLER PIC X(1).
01 identifier-3.
 02 FILLER PIC X(1).

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCRPC' USING identifier-1

02544 The client ID specified for data-name-D differs from the one received with
CBLDCCLS('CLTIN') or CBLDCCLS('EXCLTIN ').

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

284

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'CLOSE '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

(2) Purpose
Releases the environment for calling the OpenTP1 SPP or using the TCP/IP
communication facility.

When executed, CBLDCRPS('CLOSE ') must be paired with CBLDCRPS('OPEN
'). The following programs are available after execution of CBLDCRPS('CLOSE
').

• CBLDCRPS('OPEN ')

• CBLDCCLS('CLTOUT ')

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'CLOSE ' as the request code for indicating termination of the
UAP.

data-name-C
Set 0.

data-name-D
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

(4) Data area for which a value is returned
data-name-B
5-digit status code.

(5) Status codes
Status code Meaning

00000 Normal termination

02401 The request code (data-name-A) may be invalid.

6. Request Statements Available for TP1/Client (COBOL Language)

285

6.3.3 CBLDCRPS('CALL ') - Remote service request
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCRPS' USING identifier-1 identifier-2 identifier-3

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'CALL '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC X(32).
 02 data-name-F PIC X(32).
 02 data-name-G PIC 9(9) COMP.
01 identifier-2.
 02 data-name-H PIC S9(9) COMP.
 02 data-name-I PIC X(n).
01 identifier-3.
 02 data-name-J PIC S9(9) COMP.
 02 data-name-K PIC X(n).

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCRPC' USING identifier-1 identifier-2 identifier-3

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'CALL '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC X(32).
 02 data-name-F PIC X(32).

6. Request Statements Available for TP1/Client (COBOL Language)

286

01 identifier-2.
 02 data-name-H PIC S9(9) COMP.
 02 data-name-I PIC X(n).
01 identifier-3.
 02 data-name-J PIC S9(9) COMP.
 02 data-name-K PIC X(n).

(2) Purpose
Requests an SPP service by calling the service program that matches the service group
name and the service name and receiving its response.

OpenTP1 must be active for the node corresponding to the server UAP for which the
service is requested. If OpenTP1 is inactive due to a startup procedure, for example,
the CBLDCRPS('CALL ') program returns an error with status code 02406, 02415,
or 02420. The program returns an error with status code 02412 when it is executed but
the target service group is shut down. The program returns an error with status code
02413, 02412, or 02410 when it is executed but the target service group is terminating
or has been terminated due to a dcsvstop command, for example. Which status code
returns depends on the timing when the CBLDCRPS('CALL ') program was
executed.

A socket-receiving type server concurrently controls messages by specifying
max_socket_msg and max_socket_msglen in the user service definition. This
may prevent receiving service requests. In this case, CBLDCRPS('CALL ') returns
an error with status code 02456. When this value returns, wait a while, then reexecute
the CUP. You may succeed in the service request.

For the normal communication mode, specify the host name and port number of the
XDM/DCCM3 logical terminal in DCCLTSERVICEGROUPLIST in the client
environment definition, and then execute CBLDCRPS('CALL ').

(a) Values passed to server UAP
The CUP allocates an area (data-name-K) for responding to the service program. It
also specifies the following values for CBLDCRPS('CALL ').

• Input parameter (data-name-I)
• Input parameter length (data-name-H)

• Response length (data-name-J)

These values are same as those specified for CBLDCRPS('CALL ') in the CUP
and are passed (and unchanged) to the service program. When you call services of a
service program that returns no response, the response length, if specified, is ignored.
The maximum values for the input parameter length and response length are defined
with DCRPC_MAX_MESSAGE_SIZE# in the dcvrpc.h header file.

6. Request Statements Available for TP1/Client (COBOL Language)

287

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

(b) Values returned from server UAP
You can reference the following values after termination of the service program.

• Service program response (data-name-K)

• Service program response length (data-name-J)

Data-name-J shows the length of a response actually returned from the service
program.

After CBLDCRPS('CALL ') returns, a synchronous-response type RPC
(data-name-C set to 0) can reference data-name-K and data-name-J. A no-response
type RPC (data-name-C set to 1) cannot reference these values. When
CBLDCRPS('CALL ') returns an error, data-name-K and data-name-J cannot be
referenced.

When the returned response exceeds the response area (data-name-K) allocated by the
CUP, the program returns an error with status code 02409.

(3) Data area where the UAP sets values
data-name-A
Set VALUE'CALL ' as a request code for the remote service request.

data-name-C
Specify the RPC type as follows.

0: Synchronous-response type RPC

1: No-response type RPC

4: Chained RPC

When you specify 0 or 4 for data-name-C, CBLDCRPS('CALL ') does not
return until a response returns or a response wait timeout error occurs based on
the DCWATCHTIM value in the client environment definition. When the
service-requested SPP aborts, the program immediately returns an error. The
returned status code depends on the response wait time specified with
DCWATCHTIM as follows.

DCWATCHTIM = 1-65535:02407

DCWATCHTIM = 0 (infinite wait): 02414

You cannot specify a response wait time for each service-requested service
program or for each service request.

6. Request Statements Available for TP1/Client (COBOL Language)

288

When you specify 1 for data-name-C, the system assumes that the requested
service does not return a response. Therefore, CBLDCRPS('CALL ')
immediately returns without waiting for the service to terminate. When
data-name-C = 1, you cannot reference the response (data-name-K) and the
response length (data-name-J). The CUP cannot determine if the service program
was executed.

You can change an RPC issued from the transaction to a service request that is not
a transaction. To do this, specify 32 for the parameter that indicates the RPC type.
The service request for the corresponding CBLDCRPS('CALL ') program
will be a non-transaction service request.

32: Synchronous-response type RPC

33: No-response type RPC

36: Chained RPC

If you specify 4 either not in a transaction or when the permanent connection is
not being established, the program returns an error with status code 02401.

data-name-E
Set a service group name using up to 31 ASCII characters ending with a blank.

data-name-F
Set a service name using up to 31 ASCII characters ending with a blank.

data-name-G
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

data-name-H
Set the input parameter length (data-name-I length) except the length of
data-name-H itself. Available values range from 1 to
DCRPC_MAX_MESSAGE_SIZE#.

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

data-name-I
Set an input parameter.

data-name-J
Set the response storage area length (data-name-K length) except the length of
data-name-J itself. Available values range from 1 to
DCRPC_MAX_MESSAGE_SIZE#.

6. Request Statements Available for TP1/Client (COBOL Language)

289

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

data-name-K
Specify the area for storing the response. This area must be larger than the length
specified for data-name-J.

(4) Data area for which a value is returned
data-name-B
5-digit status code.

data-name-D
Area used for OpenTP1.

data-name-J
Response length (data-name-K length). This value is not returned when
DCRPC_NOREPLY is specified in data-name-C.

data-name-K
Response. This value is not returned when DCRPC_NOREPLY is specified in
data-name-C.

(5) Status codes
Status code Meaning

00000 Normal termination

02401 Invalid value for the data name. The request code (data-name-A) may be invalid.

02402 CBLDCRPS('OPEN ') has not been executed.

02403 One of the following errors occurs.
• Initialization failed.
• No user authentication is performed.
• The client environment definition is specified invalidly.

02404 Insufficient memory

02406 Network error

02407 Timeout occurred during execution of CBLDCRPS('CALL '). Alternatively, the SPP
requested to provide a service terminated abnormally before completing the processing.

02408 The input parameter length exceeds the maximum value.

02409 The returned response length exceeds the area provided by the CUP.

6. Request Statements Available for TP1/Client (COBOL Language)

290

02410 The service group name specified for data-name-F is undefined.

02411 The service name specified for data-name-E is undefined.

02412 The service group that contains the service specified with data-name-E is shut down.

02413 The specified service is being terminated.

02414 The SPP requested to provide a service was not started, or terminated abnormally before
completing the processing. This value is returned when 0 is specified for DCWATCHTIM in
the client environment definition (infinite response wait is specified).

02415 OpenTP1 is inactive for the node corresponding to the specified service.

02416 The specified service caused a system error.

02417 The specified service caused insufficient memory.

02418 System error

02419 The response length returned from the service program to OpenTP1 is outside the range
from 1 to DCRPC_MAX_MESSAGE_SIZE#.

02420 OpenTP1 is starting up on the service-requested node.

02423 Insufficient memory

02424 System error

02425 The specified service caused a system error.

02426 The returned response exceeds the area provided by the CUP.

02427 Two or more SPPs use different transaction attributes when the inter-node load balancing
facility is used. This status code returns only when a service is requested for SPP that uses
the inter-node load balancing facility.

02442 A permanent connection was released.

02456 A service request was issued to the socket-receiving type server, which could not receive
the request.

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

291

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

(6) Notes
• Do not specify the same buffer for input parameters and a service program

response.

• When data-name-C = 1, the following status codes do not return.

Errors that do not occur

02466 A service request was issued to an SPP for which test_mode=no was specified in the user
service definition in an environment where DCUTOKEY was specified in the client
environment definition.
Alternatively, a function was called in an environment where the following conditions were
satisfied:
• DCUTOKEY was specified in the client environment definition.
• A permanent connection with the CUP executing process was being established.
• The service request was issued outside the transaction.
• A service request was issued to an SPP for which a value other than test_mode=no

was specified in the user service definition.

02467 After a chained RPC has been used for transaction processing, CBLDCRPS('CALL ')
that sets 32 as data name C issues a service request.

02470 The service-requested SPP is protected by the security facility. The UAP that called
CBLDCRPS('CALL ') has no access right to the server UAP.

02472 Transaction branches cannot be started because the number of transaction branches that can
be started concurrently has been exceeded, or because the maximum number of child
transaction branches that can be started from one transaction branch has been exceeded.
Alternatively, 32 is not set at data name C in a service request qualified by a domain in a
transaction.

02478 The SPP requested to provide a service terminated abnormally before completing the
processing. This value is returned when 00000001 is specified for DCEXTENDFUNCTION in
the client environment definition. If 00000000 is specified or the specification is omitted,
02407 or 02414 returns as the status code.

02479 Since the version of service-requested TP1/Server Base is old (before 03-03), the data
compression cannot be used. This status code is returned when the service is requested
within the range of the transaction.

02544 The client ID specified for data-name-G differs from the one received with
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

02547 The specified port number is in use. Alternatively, port numbers that can be assigned
automatically by the operating system are insufficient.

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

292

02409

02419

Errors that cannot be detected if occurred

02411

02412

02413

02416

02417

02420

• Status code 02407 may return due to the following conditions.

• Too small a value is specified as the maximum response wait time in the
client environment definition.

• The service-requested SPP issued a service program, which terminated
abnormally.

• An error occurred on the node that contains the service-requested SPP.

• The service-requested SSP abnormally terminated before processing of it
finishes.

• A network error occurred.

Any of these situations may commit the transaction initiated from the
service-requested SPP and update the database. Check to see if the database is
updated.

• After the CUP executes CBLDCTRS('BEGIN '), executing CBLDCRPS('CALL
') may return the following status codes. If so, execute a program that requests
rollback as needed.

02407

02411

02417

02419

02423

02424

02425

02426

6. Request Statements Available for TP1/Client (COBOL Language)

293

6.3.4 CBLDCRPS('SETWATCH') - Service response wait time update
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCRPS' USING identifier-1 identifier-2 identifier-3

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'SETWATCH'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(9) COMP.
01 identifier-2.
 02 FILLER PIC X(1).
01 identifier-3.
 02 FILLER PIC X(1).

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCRPC' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'SETWATCH'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

(2) Purpose
Changes the timeout for the response of the service request. When the timeout is
changed by using this program, the subsequent CBLDCRPS('CALL ') programs
will use the new timeout until CBLDCRPS('CLOSE ') is executed. Note that this
program does not change the value of DCWATCHTIM in the client environment
definition.

6. Request Statements Available for TP1/Client (COBOL Language)

294

Before you change the timeout by executing CBLDCRPS('SETWATCH'), execute
CBLDCRPS('GETWATCH') to acquire the current value so that you can restore the
previous setting after changing the timeout.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'SETWATCH' as a request code for updating the service response wait
time.

data-name-C
Set a new service response wait time between 1 and 65535. Specifying 0 means
an infinite wait.

data-name-D
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

(4) Data area for which a value is returned
data-name-B
5-digit status code.

(5) Status codes

6.3.5 CBLDCRPS('GETWATCH') - Service response wait time
reference
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCRPS' USING identifier-1 identifier-2 identifier-3

Status code Meaning

00000 Normal termination

02401 Invalid value for the data name. The request code (data-name-A) may be invalid.

02402 CBLDCRPS('OPEN ') is not executed.

02404 Insufficient memory

02544 The client ID specified for data-name-D differs from the one received with
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

6. Request Statements Available for TP1/Client (COBOL Language)

295

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'GETWATCH'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(9) COMP.
01 identifier-2.
 02 FILLER PIC X(1).
01 identifier-3.
 02 FILLER PIC X(1).

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCRPC' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'GETWATCH'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

(2) Purpose
References the response wait time for the current service request.

You can use CBLDCRPS('GETWATCH') to acquire the current timeout for the response
of the service request so that you can restore the previous setting after temporarily
changing the timeout by using CBLDCRPS('SETWATCH').

The CBLDCRPS('GETWATCH') program returns the service response time that is
changed by CBLDCRPS('SETWATCH'). If the service response time is unchanged, the
program returns the DCWATCHTIM value in the client environment definition.

Returned values are available for CBLDCRPS('CALL ') for OpenTP1.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'GETWATCH' as a request code for referencing the service response

6. Request Statements Available for TP1/Client (COBOL Language)

296

wait time.

data-name-C
Set 0.

data-name-D
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

(4) Data area for which a value is returned
data-name-B
5-digit status code.

data-name-C
The current value for the maximum time that the system waits for a service
response is returned. If 0 is returned, the system waits for a service response
indefinitely.

(5) Status codes
Status code Meaning

00000 Normal termination

02401 The request code (data-name-A) may be invalid.

02402 CBLDCRPS('OPEN ') is not executed.

02404 Insufficient memory

02544 The client ID specified for data-name-D differs from the one received with
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

6. Request Statements Available for TP1/Client (COBOL Language)

297

6.4 Permanent connection

6.4.1 CBLDCCLS ('CONNECT ') - Establish permanent connection
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'CONNECT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'CONNECT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

(2) Purpose
Establishes permanent connection with a CUP execution process, a RAP-processing
server or the DCCM3 logical terminal.

The CUP execution process for establishing the permanent connection is running on
the OpenTP1 node specified in the data-name-D in the CBLDCCLS('CLTIN '), or
specified in DCCLTRAPHOST or DCHOST in the client environment definition.

6. Request Statements Available for TP1/Client (COBOL Language)

298

To establish the permanent connection with the DCCM3 logical terminal, define
DCCLTDCCMHOST and DCCLTDCCMPORT in the client environment definition. Also
specify 32 for data-name-C in CBLDCCLS('CONNECT ').

To establish permanent connection with the DCCM3 logical terminal using the remote
API facility, provide DCCLTRAPHOST with the host name and the port number for the
DCCM3 logical terminal. Also specify 0 for data-name-C in CBLDCCLS('CONNECT
').

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'CONNECT ' as the request code for indicating establishment of
permanent connection.

data-name-C
Specify the node with which you want to establish permanent connection.

0: Permanent connection is established with TP1/Server, a RAP-processing
server or the DCCM3 logical terminal.

32: Permanent connection is established with the DCCM3 logical terminal.

data-name-D
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

(4) Data area for which a value is returned
data-name-B
5-digit status code.

(5) Status codes
Status code Meaning

00000 Normal termination. Or, permanent connection has already been established.

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02502 • CBLDCCLS('CONNECT ') is issued in the transaction, or CBLDCRPS ('OPEN ') is not
issued.

• The establishment request to OpenTP1 is issued while permanent connection with
DCCM3 has already been established.

• Alternatively, the establishment request to DCCM3 is issued while permanent connection
with OpenTP1 has already been established.

02504 A necessary amount of buffer could not be allocated.

02506 Communication error

6. Request Statements Available for TP1/Client (COBOL Language)

299

(6) Notes
• No permanent connection is established when CBLDCCLS('CONNECT ') returns

error. Permanent connection may be established only on the CUP execution
process if the error is returned with the status code 02506, 02507, or 02518.

In this case, the CUP execution process or DCCM3 logical terminal may keep on
waiting for a response from the CUP. To prevent an infinite wait, specify an
appropriate value for the maximum time interval for the permanent connection.
For a DCCM3 logical terminal, specify an appropriate value for the time during
which the system is unable to determine whether a connection with the terminal
is valid.

• CBLDCCLS('CONNECT ') cannot be issued in a transaction.

• You can establish permanent connection with only one of the following two
categories.

• CUP execution process, RAP-processing server, or a DCCM3 logical terminal
that is specified for DCCLTRAPHOST in the client environment definition

• DCCM3 logical terminal that is specified for DCCLTDCCMHOST in the client
environment definition

If you establish permanent connection with one category, you cannot
communicate with the other until you issue CBLDCCLS('DISCNCT ').

• The data compression is unavailable when you establish permanent connection
with DCCM3 logical terminals. You need to omit DCCLTDATACOMP or specify N
for it in the client environment definition.

02507 A timeout error occurred during establishment of permanent connection.

02515 One of the following causes is likely:
• The OpenTP1 server or the DCCM3 logical terminal has not started.
• The client extended service has not started. Check whether clt_conf is specified

correctly in the system service configuration definition.
• The CUP executing process has not started. Check whether clt_cup_conf is specified

correctly in the client service definition.

02518 System error

02539 The establishment request to the DCCM3 logical terminal is issued with an invalid host name.

02544 The client ID specified in data-name-D differs from the one received with CBLDCCLS('CLTIN
') or CBLDCCLS('EXCLTIN ').

02547 The specified port number is in use, or port numbers that can be assigned automatically by the
operating system are insufficient.

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

300

6.4.2 CBLDCCLS ('DISCNCT ') - Release permanent connection
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'DISCNCT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(9) COMP.

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'DISCNCT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

(2) Purpose
Releases the permanent connection with a CUP execution process, a RAP-processing
server or the DCCM3 logical terminal.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'DISCNCT ' as the request code for indicating release of permanent
connection.

data-name-C

6. Request Statements Available for TP1/Client (COBOL Language)

301

Set 0.

data-name-D
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

(4) Data area for which a value is returned
data-name-B
5-digit status code.

(5) Status codes

(6) Notes
• The permanent connection is not released if CBLDCCLS('DISCNCT ') returns

an error with either of the following status codes:

• 02501

• 02502

• 02504 (when the error is detected on the client)

• 02544

• When CBLDCCLS('DISCNCT ') returns an error with one of the following status
codes, TP1/Client forcibly releases the permanent connection.

• 02504 (when the error is detected on the server)

Status code Meaning

00000 Normal termination. Alternatively, for TP1/Client/W, the permanent connection is already
disconnected.

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02502 CBLDCCLS('DISCNCT ') is issued in the transaction, or CBLDCCLS('OPEN ') is not
issued.

02504 A necessary amount of buffer could not be allocated.

02506 Communication error. Alternatively, for TP1/Client/P, the permanent connection is already
disconnected.

02507 A timeout error occurred during establishment of permanent connection.

02518 System error

02544 The client ID specified in data-name-D differs from the one received with
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

6. Request Statements Available for TP1/Client (COBOL Language)

302

• 02506

• 02507

• 02518

In this case, the CUP execution process or DCCM3 logical terminal may keep on
waiting for a response from the CUP, without detecting the release of permanent
connection by TP1/Client. To prevent an infinite wait, specify an appropriate value for
the maximum time interval for the permanent connection. For a DCCM3 logical
terminal, specify an appropriate value for the time during which the system is unable
to determine whether a connection with the terminal is valid.

Issuing CBLDCCLS('DISCNCT ') in a transaction commits the transaction.

6.4.3 CBLDCCLS('STRAPHST') - Set the destination of a request to
establish a permanent connection
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'STRAPHST'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(9) COMP.
 02 data-name-E PIC X(n).

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'STRAPHST'.

6. Request Statements Available for TP1/Client (COBOL Language)

303

 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 FILLER PIC 9(9) COMP.
 02 data-name-E PIC X(n).

(2) Purpose
CBLDCCLS('STRAPHST') sets the host name and port number of the node to which
you want to send a request to establish a permanent connection. The host name and
port number set by these programs prevail over those specified in DCCLTRAPHOST in
the client environment definition. After CBLDCCLS('STRAPHST') is executed,
CBLDCCLS('CONNECT ') uses the host name and port number specified in
CBLDCCLS('STRAPHST').

You may want to restore the host name and port number that were used before
CBLDCCLS('STRAPHST') was executed. To do this, before executing
CBLDCCLS('STRAPHST') to set a new host name and port number, execute
CBLDCCLS('GTRAPHST') to acquire the current host name and port number. Then,
after executing CBLDCCLS('STRAPHST') to set a new host name and port number,
reexecute the function specifying the previously acquired host name and port number.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'STRAPHST' as a request code for setting the destination of a request
to establish a permanent connection.

data-name-C
Set 0.

data-name-D
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

data-name-E
Specify the host name and port number of the node to which you want to send a
request to establish a permanent connection. You can specify an IP address in
decimal dot notation for the host name.

Form:

host-name[:port-number][,host-name[:port-number],...]

• host-name ~<character string>

In host-name, specify the host name of the node to which you want to send a

6. Request Statements Available for TP1/Client (COBOL Language)

304

request to establish a permanent connection.

You can specify a maximum of 63# characters for the host name. When
specifying multiple host names, you can specify a maximum of 255#
characters, including port numbers, in data-name-E.

• port-number ~<unsigned integer>((5001 to 65535))

In port-number, specify the port number of the node to which you want to
send a request to establish a permanent connection.

If you specify 00000008 for DCCLTOPTION in the client environment
definition, you can specify a maximum of 255 characters for the host name.
When specifying multiple host names, you can specify a maximum of 1023
characters, including port numbers, in data-name-E.

(4) Data area for which a value is returned
data-name-B
A five-digit status code is returned.

(5) Status codes

(6) Notes
• This function does not change the value specified in DCCLTRAPHOST in the client

environment definition.

• If you specify a blank at the beginning of data-name-E, DCCLTRAPHOST is placed
in undefined status in the client environment definition. When DCCLTRAPHOST
is not defined, CBLDCCLS('CONNECT ') establishes a permanent connection to
the logical terminal of the CUP executing process or of DCCM3.

Status code Meaning

00000 The program normally terminated.

02501 The value specified in an argument is incorrect. The request code (data-name-A) may be
incorrect.

02502 Possible causes are as follows:
• The program has already been executed in the transaction.
• A permanent connection is being established.
• CBLDCRPS('OPEN ') has not been executed.

02504 A necessary amount of buffer could not be allocated.

02544 The client ID specified in data-name-D differs from the one received with
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

6. Request Statements Available for TP1/Client (COBOL Language)

305

6.4.4 CBLDCCLS('GTRAPHST') - Acquire the destination of a
request to establish a permanent connection
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'GTRAPHST'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(9) COMP.
 02 data-name-F PIC X(n).

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'GTRAPHST'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(9) COMP.
 02 data-name-E PIC X(n).

(2) Purpose
CBLDCCLS('GTRAPHST') acquires the host name and port number of the node to
which you want to send a request to establish a permanent connection.

Before executing CBLDCCLS('STRAPHST') to specify the new destination of a
request to establish a permanent connection, execute CBLDCCLS('GTRAPHST') to

6. Request Statements Available for TP1/Client (COBOL Language)

306

save the current destination.

When CBLDCCLS('GTRAPHST') is executed, the latest destination set by
CBLDCCLS('STRAPHST') is returned to data-name-E. If CBLDCCLS('STRAPHST')
has not been executed, the value of DCCLTRAPHOST in the client environment
definition is returned to data-name-E.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'GTRAPHST' as a request code for acquiring the destination of a
request to establish a permanent connection.

data-name-C
Set 0.

data-name-D
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

data-name-E

Specify an area of 256 bytes# or larger for storing the host name and port number
that are currently set as the destination of a request for establishing a permanent
connection.

If you specify 00000008 for DCCLTOPTION in the client environment
definition, this value is 1,024 bytes, not 256 bytes.

(4) Data area for which a value is returned
data-name-B
A five-digit status code is returned.

data-name-E
The currently set host name and port number of the node that is currently set as
the destination of a request to establish a permanent connection is returned. If the
destination is not specified by CBLDCCLS('STRAPHST') when DCCLTRAPHOST
is not specified in the client environment definition, a space is returned at the
beginning of data-name-E.

Form:

host-name[:port-number][,host-name[:port-number],...]

host-name ~<character string>

The host name of the destination of a request to establish a permanent
connection is returned.

6. Request Statements Available for TP1/Client (COBOL Language)

307

port-number ~<unsigned integer>((5001 to 65535))

The port number of the destination of a request to establish a permanent
connection is returned.

(5) Status codes

6.4.5 CBLDCCLS('STCONINF') - Set terminal identification
information
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'STCONINF'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-F PIC 9(9) COMP.
 02 data-name-G PIC X(n).

(b) In a single-thread environment
PROCEDURE DIVISION

Status code Meaning

00000 The program normally terminated.

02501 The value specified in an argument is incorrect. The request code (data-name-A) may be
incorrect.

02502 CBLDCRPS('OPEN ') has not been executed.

02504 A necessary amount of buffer could not be allocated.

02544 The client ID specified in data-name-D differs from the one acquired by CBLDCCLS('CLTIN
') or CBLDCCLS('EXCLTIN ').

6. Request Statements Available for TP1/Client (COBOL Language)

308

CALL 'CBLDCCLT' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'STCONINF'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-E PIC 9(9) COMP.
 02 data-name-G PIC X(n).

(2) Purpose
CBLDCCLS('STCONINF') dynamically sets terminal identification information.

When TP1/Client communicates with a DCCM3 logical terminal over a permanent
connection, the DCCM3 function for allocating a fixed terminal can be used provided
terminal identification information is reported to the DCCM3 logical terminal.

The terminal identification information is set in data-name-G of this request code.
However, the setting takes effect only when the host name and port number of the
DCCM3 logical terminal are specified for DCCLTRAPHOST in the client environment
definition, and 0 is specified in data-name-C of the CBLDCCLS('CONNECT ')
statement. The CBLDCCLS('CONNECT ') statement executed after this request code
references the terminal identification information, and reports the information to the
DCCM3 logical terminal.

When this request code is executed, the terminal identification information specified
for DCCLTCONNECTINF in the client environment definition is not referenced until
CBLDCRPS('OPEN ') is executed again.

If this request code is executed more than once, the terminal identification information
specified immediately before execution of CBLDCCLS('CONNECT ') takes effect.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'STCONINF' as a request code for setting terminal identification
information.

data-name-C
Set 0.

6. Request Statements Available for TP1/Client (COBOL Language)

309

data-name-D
Set the length of the terminal identification information.

data-name-E
This area is used by OpenTP1.

data-name-F
Set the client ID received by CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

data-name-G
Set terminal identification information.

(4) Data area for which a value is returned
data-name-B
5-digit status code

(5) Status codes

(6) Notes
• Only if the DCCM3 version is 09-03 or later, can the DCCM3 function for

allocating a fixed terminal be used by reporting terminal identification
information to the DCCM3 logical terminal. For details about the function for
allocating a fixed terminal, see the manual VOS3 Data Management System XDM
E2 Description.

• If the DCCM3 logical terminal name corresponding to the terminal identification
information defined by CBLDCCLS('STCONINF') has not been defined in
DCCM3, status code 02506 is returned.

Status code Meaning

00000 Normal termination

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02502 CBLDCRPS('OPEN ') has not been issued.

02504 A necessary amount of buffer could not be allocated.

02544 The client ID specified in data-name-F is different from the client ID received by
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

6. Request Statements Available for TP1/Client (COBOL Language)

310

6.5 Transaction control

6.5.1 CBLDCTRS('BEGIN ') - Transaction startup
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCTRS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'BEGIN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP.

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCTRN' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'BEGIN '.
 02 data-name-B PIC X(5).

(2) Purpose
Starts a global transaction from the CUP process that executes CBLDCTRS('BEGIN
').

Issue CBLDCTRS('BEGIN ') after executing CBLDCRPS('OPEN ').

One global transaction means a process between the point where CBLDCTRS('BEGIN
') is executed and a synchronization point (request to commit) for the transaction.

You cannot issue CBLDCTRS('BEGIN ') twice or more within the global
transaction. This also applies to CBLDCTRS('BEGIN ') for the SPP. If the program

6. Request Statements Available for TP1/Client (COBOL Language)

311

is issued against this rule, it returns an error.

The SPP transaction attribute follows the specification of atomic_update in the user
service definition.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'BEGIN ' as the request code for indicating the start of a
transaction.

data-name-C
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

(4) Data area for which a value is returned
data-name-B
5-digit status code.

(5) Status codes
Status code Meaning

00000 Normal termination

02501 The request code (data-name-A) may be invalid.

02502 The program was issued from an incorrect context (for example, the program was issued
within a transaction).
Alternatively, the function has been issued from an environment where both of the following
conditions exist:
• DCUTOKEY is specified in the client environment definition.
• A permanent connection is being established with a RAP-processing server.

02504 Insufficient memory

02506 Network error

02507 Timeout occurred during processing of CBLDCTRS('BEGIN ').

02510 The client extended service has not started. Check whether clt_conf is specified correctly
in the system service configuration definition. Alternatively, the transactional RPC executing
process has not started. Check whether clt_trn_conf is specified correctly in the client
service definition.

02515 OpenTP1 is inactive.

02517 An insufficient memory condition occurred within the transaction process.

02518 System error

6. Request Statements Available for TP1/Client (COBOL Language)

312

6.5.2 CBLDCTRS('C-COMMIT') - Commit in chained mode
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCTRS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'C-COMMIT'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC 9(9) COMP.

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCTRN' USING identifier-1

DATA DIVISION

01 identifier-1.

02542 The permanent connection was released from the CUP executing process.

02544 The client ID specified for data-name-C differs from the one received with
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

02545 A new transaction could not be started because the server's transaction processing was
overloaded. If this status code returns, it is highly possible that the program will succeed if
reexecuted. Reexecute the program.

02547 The specified port number is in use, or port numbers that can be assigned automatically by the
operating system are insufficient.

03406 An error occurred in the resource manager (RM). No transaction could occur.

03407 A transaction could not be started because an error occurred in the transaction service. If this
status code returns, it is highly possible that the program will succeed if reexecuted.
Reexecute the program.

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

313

 02 data-name-A PIC X(8) VALUE 'C-COMMIT'.
 02 data-name-B PIC X(5).

(2) Purpose
Acquires a synchronous point for the transaction.

When CBLDCTRS('C-COMMIT') terminates normally, a new global transaction
occurs. It controls succeeding programs.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'C-COMMIT' as a request code for committing in chained mode. This
value is unchanged for processing after the commit statement in chained mode.

data-name-C
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

(4) Data area for which a value is returned
data-name-B
5-digit status code.

(5) Status codes
Status code Meaning

00000 Normal termination

02501 The request code (data-name-A) may be invalid.

02502 The program is issued from an incorrect context.

02504 Insufficient memory

02506 Network error

02507 A timeout error occurred in the processing for CBLDCTRS('C-COMMIT').

02515 OpenTP1 is inactive.

02517 An insufficient memory condition occurred within the transaction process.

02518 System error

02542 The permanent connection has been released.

02544 The client ID specified for data-name-C differs from the one received with
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

6. Request Statements Available for TP1/Client (COBOL Language)

314

(6) Notes
To terminate a CUP process after committing a transaction, make sure that you execute
CBLDCTRS('U-COMMIT').

03402 The current transaction could not be committed and rolled back.
The process is now under the transaction and is within the scope of the global transaction.

03403 Due to the heuristic determination, some transaction branches are committed and others are
rolled back. This status code will be returned if the result of the heuristic determination
differs from the result of the synchronous point for the global transaction.
For the cause of this status code or the result of the synchronous point for the global
transaction, see the message log file.
After this status code returns, the process is still under the transaction and is within the scope
of the global transaction.

03404 The global transaction's transaction branch has completed heuristically. But an error makes
it impossible to determine the result of the synchronous point for this transaction branch.
For the cause of this status code or the result of the synchronous point for the global
transaction, see the message log file.
After this status code returns, the process is still under the transaction and is within the scope
of the global transaction.

03424 The transaction has been committed normally. But new transactions could not start. When
this status code returns, the process is no more under control of the transaction.

03425 The current transaction cannot be committed and is rolled back. New transactions could not
start. The process is no more under the transaction.

03426 The global transaction that executed the CBLDCTRS ('C-COMMIT') function follows the
heuristic determination. Some transactions may or may not be committed.
This status code will be returned if the result of the heuristic determination differs from the
result of the synchronous point for the global transaction. For the result of the synchronous
point for the UAP, resource manager, or global transaction that caused this status code, see
the message log file.
New transactions could not start. The process is not under the transaction.

03427 The global transaction's transaction branch has completed heuristically. But an error makes
it impossible to determine the result of the synchronous point for this transaction branch.
For the result of the synchronous point for the UAP, resource manager, or global transaction
that caused this status code, see the message log file.
New transactions could not start. The process is not under the transaction.
If this status code returns, the process is still under the transaction and within the scope of
the global transaction.

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

315

6.5.3 CBLDCTRS('C-ROLL ') - Rollback in chained mode
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCTRS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'C-ROLL '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP.

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCTRN' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'C-ROLL '.
 02 data-name-B PIC X(5).

(2) Purpose
Rolls back the transaction.

When CBLDCTRS('C-ROLL ') terminates normally, a new global transaction
occurs. It controls succeeding programs.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'C-ROLL ' as a request code for rolling back in chained mode.

data-name-C
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

6. Request Statements Available for TP1/Client (COBOL Language)

316

(4) Data area for which a value is returned
data-name-B
5-digit status code.

(5) Status codes
Status code Meaning

00000 Normal termination

02501 The request code (data-name-A) may be invalid.

02502 The program is issued from an incorrect context.

02504 Insufficient memory

02506 Network error

02507 Timeout occurred during processing of CBLDCTRS('C-ROLL ').

02515 OpenTP1 is inactive.

02517 An insufficient memory condition occurred within the transaction process.

02518 System error

02542 The permanent connection has been released.

02544 The client ID specified for data-name-C differs from the one received with
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

03403 Due to the heuristic determination, some transaction branches are committed and others are
rolled back. This status code will be returned if the result of the heuristic determination differs
from the result of the synchronous point for the global transaction.
For the cause of this status code or the result of the synchronous point for the global
transaction, see the message log file.
After this status code returns, the process is still under the transaction and is within the scope
of the global transaction.

03404 The global transaction's transaction branch has completed heuristically. But an error makes it
impossible to determine the result of the synchronous point for this transaction branch.
For the cause of this status code or the result of the synchronous point for the global
transaction, see the message log file.
After this status code returns, the process is still under the transaction and is within the scope
of the global transaction.

03424 A rollback terminated normally but a new transaction could not be started. When this status
code returns, the process is no more under control of the transaction.

6. Request Statements Available for TP1/Client (COBOL Language)

317

(6) Notes
When terminating the CUP process by rolling back the transaction, be sure to execute
CBLDCTRS('U-ROLL ').

6.5.4 CBLDCTRS('U-COMMIT') - Commit in unchained mode
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCTRS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'U-COMMIT'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC 9(9) COMP.

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCTRN' USING identifier-1

03426 The global transaction that executed the CBLDCTRS ('C-COMMIT) function follows the
heuristic determination. Some transactions may or may not be committed.
This status code will be returned if the result of the heuristic determination differs from the
result of the synchronous point for the global transaction. For the result of the synchronous
point for the UAP, resource manager, or global transaction that caused this status code, see the
message log file.
New transactions could not start. The process is not under the transaction.

03427 The global transaction's transaction branch has completed heuristically. But an error makes it
impossible to determine the result of the synchronous point for this transaction branch.
For the result of the synchronous point for the UAP, resource manager, or global transaction
that caused this status code, see the message log file.
New transactions could not start. The process is not under the transaction.
If this status code returns, the process is still under the transaction and within the scope of the
global transaction.

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

318

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'U-COMMIT'.
 02 data-name-B PIC X(5).

(2) Purpose
Acquires the transaction's synchronous point.

When CBLDCTRS('U-COMMIT') terminates normally, the global transaction
terminates. Outside the scope of the global transaction, the SPP cannot execute as a
transaction.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'U-COMMIT' as a request code for indicating the commit in
unchained mode. The content of this area is unchanged for processing after the
commit statement in unchained mode.

data-name-C
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

(4) Data area for which a value is returned
data-name-B
5-digit status code.

(5) Status codes
Status code Meaning

00000 Normal termination

02501 The request code (data-name-A) may be invalid.

02502 The program is issued from an incorrect context.

02504 Insufficient memory

02506 Network error

02507 A timeout error occurred in the processing for CBLDCTRS('U-COMMIT').

02515 OpenTP1 is inactive.

02517 An insufficient memory condition occurred within the transaction process.

6. Request Statements Available for TP1/Client (COBOL Language)

319

(6) Notes
To normally terminate a CUP process, be sure to execute CBLDCTRS('U-COMMIT')
to commit the transaction.

6.5.5 CBLDCTRS('U-ROLL ') - Rollback in unchained mode
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCTRS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'U-ROLL '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC 9(9) COMP.

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCTRN' USING identifier-1

02518 System error

02542 The permanent connection has been released.

02544 The client ID specified for data-name-C differs from the one received with
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

03402 The transaction was rolled back because a commit failed.
After this status code returns, the process is outside the scope of the global transaction.

03403 Due to the heuristic determination, some or all transaction branches rolled back. See the
message log file for details. After this status code returns, the process is outside the scope of
the global transaction.

03404 The heuristic determination completed the transaction. But an error makes it impossible to
determine the result. See the message log file for details.
After this status code returns, the process is outside the scope of the global transaction.

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

320

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'U-ROLL '.
 02 data-name-B PIC X(5).

(2) Purpose
When CBLDCTRS('U-ROLL ') terminates normally, the global transaction
terminates. Outside the scope of the global transaction, the SPP cannot execute as a
transaction.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'U-ROLL ' as a request code for indicating the rollback in
unchained mode. The content of this area is unchanged for processing after the
rollback statement in unchained mode.

data-name-C
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

(4) Data area for which a value is returned
data-name-B
5-digit status code.

(5) Status codes
Status code Meaning

00000 Normal termination

02501 The request code (data-name-A) may be invalid.

02502 The program is issued from an incorrect context.

02504 Insufficient memory

02506 Network error

02507 A timeout error occurred in the processing for CBLDCTRS('U-ROLL ').

02515 OpenTP1 is inactive.

02517 An insufficient memory condition occurred within the transaction process.

02518 System error

6. Request Statements Available for TP1/Client (COBOL Language)

321

(6) Notes
To normally terminate a CUP process after rolling back the transaction, be sure to
execute CBLDCTRS('U-ROLL ') to commit the transaction.

6.5.6 CBLDCTRS('INFO ') - Post information for current transaction
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCTRS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'INFO '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(1).
 02 data-name-C
 03 data-name-D PIC S9(4) COMP VALUE ZERO.
 02 data-name-E PIC 9(9) COMP.

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCTRN' USING identifier-1

02542 The permanent connection has been released.

02544 The client ID specified for data-name-C differs from the one received with
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

03403 Due to the heuristic determination, some or all transaction branches rolled back. See the
message log file for details. After this status code returns, the process is outside the scope of
the global transaction.

03404 The heuristic determination completed the transaction. But an error makes it impossible to
determine the result. See the message log file for details.
After this status code returns, the process is outside the scope of the global transaction.

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

322

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'INFO '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(1).
 02 data-name-C
 03 data-name-D PIC S9(4) COMP VALUE ZERO.

(2) Purpose
Checks if the CUP that issued CBLDCTRS('INFO ') is currently working as a
transaction.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'INFO ' as the request code for indicating the report of
information about the current transaction.

data-name-C
Place 0 in this area that stores information about the current transaction.

data-name-D
Set to 0 the length of an area that stores information about the current transaction.
The length should exclude the length of data-name-D itself.

data-name-E
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

(4) Data area for which a value is returned
data-name-B
5-digit status code.

(5) Status codes
Status code Meaning

00001 The CUP process that executed CBLDCTRS('INFO ') is outside the scope of the
transaction.

00000 The CUP process that executed CBLDCTRS('INFO ') is within the scope of the
transaction.

02501 The request code (data-name-A) may be invalid.

6. Request Statements Available for TP1/Client (COBOL Language)

323

6.5.7 CBLDCCLS('GETTRNID') - Collection of identifiers for current
transaction
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'GETTRNID'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(17).
 02 data-name-D PIC X(17).
 02 FILLER PIC X(2).
 02 data-name-E PIC 9(9) COMP.

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'GETTRNID'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(17).
 02 data-name-D PIC X(17).
 02 data-name-E PIC 9(9) COMP.

02544 The client ID specified for data-name-E differs from the one received with
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

324

(2) Purpose
Collects the current transaction global identifier and transaction branch identifier.

OpenTP1 allocated these identifiers when any of the following programs started the
transaction.

• CBLDCTRS('BEGIN ')

• CBLDCTRS('C-COMMIT')

• CBLDCTRS('C-ROLL ')

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'GETTRNID' as a request code for collecting identifiers for the
current transaction.

data-name-E
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

(4) Data area for which a value is returned
data-name-B
5-digit status code.

data-name-C
Transaction global identifier.

data-name-D
Transaction branch identifier.

(5) Status codes
Status code Meaning

00000 Normal termination

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02502 The program is issued from an incorrect context.

02504 Insufficient memory

02544 The client ID specified for data-name-E differs from the one received with
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

6. Request Statements Available for TP1/Client (COBOL Language)

325

6.6 TCP/IP communication function

6.6.1 CBLDCCLS('SEND ') - Sending messages
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'SEND '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC X(64).
 02 data-name-F PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-H PIC 9(9) COMP.
 02 data-name-I PIC X(n).

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'SEND '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC X(64).
 02 data-name-F PIC 9(4) COMP.
 02 FILLER PIC X(2).

6. Request Statements Available for TP1/Client (COBOL Language)

326

 02 data-name-G PIC 9(9) COMP.
 02 data-name-I PIC X(n).

(2) Purpose
Sends messages to the MHP.

Before executing CBLDCCLS('SEND '), execute or CBLDCRPS('OPEN ') by
specifying 4 or 16 for data-name-C.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'SEND ' as a request code for sending messages.

data-name-C
Specify whether to release the connection after sending message.

0: Does not release the connection after sending message.

1: Releases the connection after sending message.

Except error situations, specifying 0 maintains the connection until you execute
CBLDCRPS('CLOSE ').

data-name-D
Set the length of a message to be received.

data-name-E
Specify the host name of the node to be connected when no connection is
established. Place a space character at the end of the character string. You can
specify an IP address in decimal dot notation for the host name.

Placing a space character at the beginning of the character string references the
content of DCSNDHOST in the client environment definition. This content is saved
when CBLDCRPS('OPEN ') is executed.

data-name-F
Specify the port number of the node to be connected by establishing a connection
when no connection is established.

Specifying 0 references the content of DCSNDPORT in the client environment
definition. This content is saved when CBLDCRPS('OPEN ') is executed.

data-name-H
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

6. Request Statements Available for TP1/Client (COBOL Language)

327

data-name-I
Specify the area for containing the message to be sent. This area must be large
enough for the length specified for data-name-D.

(4) Data area for which a value is returned
data-name-B
5-digit status code.

data-name-G
Area used for OpenTP1.

(5) Status codes

(6) Note
If the remote system releases the connection when this statement sends a message to
the remote system, depending on the length of the message, the statement might not be
able to detect that the connection has been released. However, a subsequent request
statement might detect it. Keep this in mind when you create a CUP.

Status code Meaning

00000 Normal termination

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02502 Neither CBLDCRPS('OPEN ') is executed. Alternately, it is executed but 4 or 16 is not
specified for data-name-C.

02504 Insufficient memory

02506 Network error

02507 A request for connection establishment timed out.

02518 System error

02538 Insufficient resource

02539 Incorrect host computer name. Alternatively, no host computer name is specified for
data-name-E and DCSNDHOST.

02541 A request to establish the connection to the remote system was rejected.

02544 The client ID specified for data-name-H differs from the one received with
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

02547 Port numbers that can be assigned automatically by the operating system are insufficient.

6. Request Statements Available for TP1/Client (COBOL Language)

328

6.6.2 CBLDCCLS('EXSEND ') - Sending messages (for an extended
host name)
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1 identifier-2 identifier-3

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'EXSEND '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-E PIC X(n).
01 identifier-2.
 02 data-name-F PIC S9(9) COMP.
 02 data-name-G PIC X(n).
01 identifier-3.
 02 data-name-H PIC 9(9) COMP.

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1 identifier-2

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'EXSEND '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-E PIC X(n).
01 identifier-2.

6. Request Statements Available for TP1/Client (COBOL Language)

329

 02 data-name-F PIC S9(9) COMP.
 02 data-name-G PIC X(n).

(2) Purpose
Sends messages to the MHP.

Before executing CBLDCCLS('EXSEND '), execute CBLDCRPS('OPEN ') by
specifying 4 or 16 for data-name-C.

Use this function when using the host name extension function.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'EXSEND ' as a request code for sending a messages.

data-name-C
Specify whether to release the connection after sending a message.

0: Does not release the connection after sending message.

1: Releases the connection after sending message.

Except error situations, specifying 0 maintains the connection until you execute
CBLDCRPS('CLOSE ').

data-name-D
Specify the port number of the node to be connected by establishing a connection
when no connection is established.

Specifying 0 references the contents of DCSNDPORT in the client environment
definition which are saved when CBLDCRPS('OPEN ') is executed.

data-name-E
Specify the host name of the node to be connected when no connection is
established. You can specify a maximum of 63# characters for the host name.
Terminate the character string with a blank.

Placing a space character at the beginning of the character string references the
contents of DCSNDHOST in the client environment definition which are saved
when CBLDCRPS('OPEN ') is executed.

You can specify an IP address in decimal dot notation for the host name.

If you specify 00000008 for DCCLTOPTION in the client environment
definition, you can specify a maximum of 255 characters for the host name.

data-name-F

6. Request Statements Available for TP1/Client (COBOL Language)

330

Set the length of a message to be sent.

data-name-G
Specify the area for containing the message to be sent. This area must be larger
than the length specified for data-name-F.

data-name-H
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

(4) Data area for which a value is returned
data-name-B
5-digit status code.

(5) Status codes

(6) Note
If the remote system releases the connection when this statement sends a message to
the remote system, depending on the length of the message, the statement might not be

Status code Meaning

00000 Normal termination

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02502 Possible causes are as follows:
CBLDCRPS('OPEN ') has not been executed.
CBLDCRPS('OPEN ') has been executed, but 4 or 16 is not specified for data-name-C.

02504 Insufficient memory

02506 Network error

02507 A request for connection establishment timed out.

02518 System error

02538 Insufficient resource

02539 The host name is incorrect. Alternatively, no host name is specified for data-name-E or
DCSNDHOST.

02541 A request to establish the connection to the remote system was rejected.

02544 The client ID specified for data-name-H differs from the one received with
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

02547 Port numbers that can be assigned automatically by the operating system are insufficient.

6. Request Statements Available for TP1/Client (COBOL Language)

331

able to detect that the connection has been released. However, a subsequent request
statement might detect it. Keep this in mind when you create a CUP.

6.6.3 CBLDCCLS('RECEIVE ') - Receiving messages
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'RECEIVE '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-G PIC 9(9) COMP.
 02 data-name-H PIC X(n).

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'RECEIVE '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-F PIC 9(9) COMP.
 02 data-name-H PIC X(n).

6. Request Statements Available for TP1/Client (COBOL Language)

332

(2) Purpose
Receives messages issued from MHP.

Before executing CBLDCCLS('RECEIVE '), execute CBLDCRPS('OPEN ') by
specifying 8 or 16 for data-name-C.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'RECEIVE ' as a request code for indicating the rollback in
unchained mode.

data-name-C
Specify whether to release the connection after message reception.

0: Does not release the connection after message reception.

2: Releases the connection after message reception.

Except error situations, specifying 0 maintains the connection until you issue
CBLDCRPS('CLOSE ').

data-name-D
Specify the length of a message to be received.

data-name-F
Area used for OpenTP1.

data-name-E
Set the maximum time (seconds) for receiving messages between -1 and 65535.

Specifying -1 means an infinite wait for a message. Specifying 0 provides no
wait for messages. When there are no messages to receive, the program returns
an error with status code 02507.

When you specify a value between 1 and 65535, the program awaits a message
for the specified time. When no message is received after the specified time
expires, the program returns an error with status code 02507.

data-name-G
Specify the client ID received with CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

data-name-H
Area for storing the received message. This area must have at least the length
specified for data-name-D.

6. Request Statements Available for TP1/Client (COBOL Language)

333

(4) Data area for which a value is returned
data-name-B
5-digit status code.

data-name-H
The received message is returned.

(5) Status codes

(6) Notes
• CBLDCCLS('RECEIVE ') passes control to the CUP when:

• The program received a message of the length specified in data-name-D
from the MHP (control is not returned to the CUP if the received message is
shorter than the set length).

• A timeout occurred while the program was waiting for a message from the
MHP.

• The MHP released the connection.

• A network error occurred.

• When CBLDCCLS('RECEIVE ') is issued, the MHP may release the connection.

Status code Meaning

00000 Normal termination

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02502 Possible causes are as follows:
• CBLDCRPS('OPEN ') has not been executed.
• CBLDCRPS('OPEN ') has been executed, but 8 or 16 is not specified for data-name-C

in CBLDCRPS('OPEN ').

02504 Insufficient memory

02506 Network error

02507 Timeout occurred during message reception.

02518 System error

02538 Insufficient resource

02542 Connection from the remote system is released.

02544 The client ID specified for data-name-G differs from the one received with
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

6. Request Statements Available for TP1/Client (COBOL Language)

334

In this case, the program returns an error with status code 02542.

6.6.4 CBLDCCLS('RECEIVE2') - Receiving messages (messages
receivable even if an error occurs)
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'RECEIVE2'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-G PIC 9(9) COMP.
 02 data-name-H PIC X(n).

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'RECEIVE2'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-F PIC 9(9) COMP.
 02 data-name-H PIC X(n).

6. Request Statements Available for TP1/Client (COBOL Language)

335

(2) Purpose
Receives messages from the MHP.

Before executing CBLDCCLS('RECEIVE2'), execute CBLDCRPS('OPEN ') by
specifying 8 or 16 for data-name-C.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'RECEIVE2' as a request code for receiving messages.

data-name-C
Specify whether to release the connection after message reception.

0: Does not release the connection after message reception.

2: Releases the connection after message reception.

Except error situations, specifying 0 maintains the connection until you issue
CBLDCRPS('CLOSE ').

data-name-D
Specify the length of the message to receive.

data-name-E
Set the maximum wait time in seconds for receiving messages. The value must
be an integer between -1 and 65535.

If -1 is specified:

The statement waits indefinitely for a message.

If 0 is specified:

The statement does not wait for a message. If there is no message to be
received, the statement returns a 02507 error.

If any value from 1 to 65,535 is specified:

The statement waits for a message, but returns a 02507 error if a message
does not arrive within the specified number of seconds.

data-name-F
An area used for OpenTP1

data-name-G
Specify the client ID received by CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

data-name-H

6. Request Statements Available for TP1/Client (COBOL Language)

336

An area for storing received messages

(4) Data area for which a value is returned
data-name-B
5-digit status code

data-name-D
Length of the received message

data-name-H
Received message

(5) Status codes

(6) Notes
• CBLDCCLS('RECEIVE2') returns control to the CUP when:

• The program received a message of the length specified in data-name-D
from the MHP (control is not returned to the CUP if the received message is
shorter than the set length).

• A timeout occurred while the program was waiting for a message from the
MHP.

Status code Meaning

00000 Normal termination

02501 Invalid data name. A request code (data-name-A) may be incorrect.

02502 Possible causes are as follows:
• CBLDCRPS('OPEN ') has not been executed.
• CBLDCRPS('OPEN ') has been executed, but 8 or 16 is not specified for data-name-C

in CBLDCRPS('OPEN ').

02504 Insufficient memory

02506 Network error

02507 Timeout occurred during reception of the message.

02518 System error

02538 Insufficient resource

02542 The remote system released the connection.

02544 The client ID specified for data-name-G differs from the one received with
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

6. Request Statements Available for TP1/Client (COBOL Language)

337

• The MHP released the connection.

• A network error occurred.

• When CBLDCCLS('RECEIVE2') is issued, a disconnection from the MHP
allows the program to return an error with 02542.

6.6.5 CBLDCCLS('ASMSEND ') - Send assembled messages
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1 identifier-2 identifier-3

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'ASMSEND '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-E PIC S9(9) COMP.
 02 FILLER PIC X(4).
 02 data-name-F PIC X(n).
01 identifier-2.
 02 data-name-G PIC S9(9) COMP.
 02 data-name-H PIC X(n).
01 identifier-3.
 02 data-name-I PIC 9(9) COMP.

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1 identifier-2

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'ASMSEND '.
 02 data-name-B PIC X(5).

6. Request Statements Available for TP1/Client (COBOL Language)

338

 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-E PIC S9(9) COMP.
 02 FILLER PIC X(4).
 02 data-name-F PIC X(n).
01 identifier-2.
 02 data-name-G PIC S9(9) COMP.
 02 data-name-H PIC X(n).

(2) Purpose
Uses the message assembly facility to send messages. When this facility is used, the
statement sends four-byte message information followed by the message body
specified in data-name-H. If a connection to the remote system has not been
established, the function establishes the connection according to the host name
specified in data-name-F and the port number specified in data-name-D before
sending messages.

If Y is specified for DCCLTDELIVERYCHECK of the client environment definition, the
message delivery confirmation facility is used when a message is sent or received. In
this case, the size of the message information sent before the message body is 11 bytes.
After sending the 11-byte message information, TP1/Client returns control to the CUP.

Before executing CBLDCCLS('ASMSEND '), make sure that you execute
CBLDCRPS('OPEN ') in which 4 or 16 is specified in data-name-C.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'ASMSEND ' as the request code for sending a message.

data-name-C
Specify whether to release the connection after the message is sent.

0: After a message is sent, the connection is not released until
CBLDCRPS('CLOSE ') is executed (exception: an error occurs).

1: After a message is sent, the connection is released. When the message delivery
confirmation facility is being used, the connection is released after message
information is received.

data-name-D
Specify the port number of the node to be connected when there is no connection
and a connection must be established.

6. Request Statements Available for TP1/Client (COBOL Language)

339

If 0 is specified, the statement accesses the contents of DCSNDPORT in the client
environment definition acquired when CBLDCRPS('OPEN ') was executed.

data-name-E
This argument takes effect when the message delivery confirmation facility is
used. Specify the maximum time (in seconds) that the statement waits for
response-only data to arrive. The value must be an integer from -1 to 65,535.

If -1 is specified:

The statement waits indefinitely for response-only data.

If 0 is specified:

The statement does not wait for response-only data. If there is no message to
be received, the statement returns a 02507 error.

If any value from 1 to 65,535 is specified:

The statement waits for a message, but returns a 02507 error if a message
does not arrive within the specified number of seconds.

If divided response-only data arrives, the statement repeats the receive processing
until 11-byte response-only data arrives. The timeout specified by this argument
is applied every time the statement attempts reception. If you want to use the
value of this argument as the maximum response wait time for the client, specify
the 00000002 option for DCCLTOPTION of the client environment definition.

data-name-F
Specify the host name of the node to be connected when no connection is
established. You can specify a maximum of 63# characters for the host name.
Make sure that the specified character string ends with a space character.

If the specified character string begins with a space character, the statement
references the contents of DCSNDHOST in the client environment definition
acquired when CBLDCRPS('OPEN ') was executed.

You can also specify an IP address in decimal dot notation for the host name.

#:

If you specify 00000008 for DCCLTOPTION in the client environment
definition, you can specify a maximum of 255 characters for the host name.

data-name-G
Set the length of the message to be sent.

data-name-H
Set the area that contains a message to be sent. The area must be larger than the

6. Request Statements Available for TP1/Client (COBOL Language)

340

length specified in data-name-G.

data-name-I
Set the client ID received by CBLDCCLS('CLTIN ') or
CBLDCCLS('EXCLTIN ').

(4) Data area for which a value is returned
data-name-B
5-digit status code

(5) Status codes
Status code Meaning

00000 Normal termination

02501 Invalid argument

02502 Possible causes are as follows:
• CBLDCRPS('OPEN ') has not been executed.
• CBLDCRPS('OPEN ') was executed, but neither 4 nor 16 was specified in

data-name-C.

02504 Insufficient memory

02506 A network error occurred. The connection is released.

02507 A connection establishment request timed out. Alternatively, reception of response-only
data timed out when the message delivery confirmation facility was being used. The
connection is released.

02518 A system error occurred. If the error is a network error, the connection is released.

02538 Insufficient resource

02539 The host name is incorrect. Alternatively, a host name is not specified in either
data-name-F or DCSNDHOST.

02541 A connection establishment request to the remote system was rejected.

02542 The connection was released by the remote system when the message delivery
confirmation facility was being used.

02544 The client ID specified in data-name-I differs from the one received by
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

02547 Port numbers that can be assigned automatically by the operating system are insufficient.

02548 An invalid message was received when the message delivery confirmation facility was
being used. The connection is released.

6. Request Statements Available for TP1/Client (COBOL Language)

341

(6) Notes
• If the remote system releases the connection when the statement sends a message

to the remote system, depending on the length of the message, the statement might
not be able to detect that the connection has been released. The following
describes what occurs in this case according to the facility used.

When the message assembly facility is used:

If CBLDCCLS('ASMSEND ') fails to detect the release of a connection when
it sends a message, a subsequent request statement might detect the release.
This must be kept in mind when you create a CUP.

When the message delivery confirmation facility is used:

If CBLDCCLS('ASMSEND ') fails to detect the release of a connection when
it sends a message, the statement detects the release when it receives
response-only data.

• If the message assembly and message delivery confirmation facilities are used,
short packets are used for sending and receiving. As a result, transmission
processing might take more time. If more time might be required, specify Y for
DCCLTTCPNODELAY of the client environment definition.

6.6.6 CBLDCCLS('ASMRECV ') - Receiving assembled messages
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1 identifier-2 identifier-3

DATA DIVISION
01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'ASMRECV '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
01 identifier-2.
 02 data-name-E PIC S9(9) COMP.

02584 Messages collided when the message delivery confirmation facility was being used. The
connection is released.

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

342

 02 data-name-F PIC X(n).
01 identifier-3.
 02 data-name-G PIC 9(9) COMP.

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1 identifier-2

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'ASMRECV '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
01 identifier-2.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-F PIC X(n).

(2) Purpose
Uses the message assembly facility to receive messages. When this facility is used, the
statement receives four-byte message information, and then receives data equivalent
to the size set in the message information. The statement then stores the data in
data-name-F. The four-byte message information is not stored in data-name-F. The
length of the received message is stored in data-name-E. The message length stored in
data-name-E does not include the message information length.

If Y is specified for DCCLTDELIVERYCHECK of the client environment definition, the
statement also uses the message delivery confirmation facility. In this case, the
statement receives 11-byte message information, and then receives data equivalent to
the size set in the message information. The function then stores the data in
data-name-F. The 11-byte message information is not stored in data-name-F. The
length of the received message is stored in data-name-E. The message length stored in
data-name-E does not include the message information length. If the received message
information includes a response request, the function sends 11-byte message
information, and then returns control to the CUP.

Before executing CBLDCCLS('ASMRECV '), make sure that you execute
CBLDCRPS('OPEN ') in which 8 or 16 is specified in data-name-C.

6. Request Statements Available for TP1/Client (COBOL Language)

343

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'ASMRECV ' as the request code for receiving a message.

data-name-C
Specify whether to release the connection after receiving a message.

0: After a message is received, the connection is not released until
CBLDCRPS('CLOSE ') is executed (exception: an error occurs).

2: After a message is received, the connection is released. If the message
information received when the message delivery confirmation facility is being
used includes a response request, the connection is released after message
information has been sent.

data-name-D
Specify the maximum time (in seconds) that the statement waits for a message to
arrive. The value must be an integer from -1 to 65,535.

If -1 is specified:

The statement waits indefinitely for a message.

If 0 is specified:

The statement does not wait for a message. If there is no message to be
received, the statement returns a 02507 error.

If any value from 1 to 65,535 is specified:

The statement waits for a message, but returns a 02507 error if no message
arrives within the specified number of seconds.

If a divided message arrives, the statement repeats the receive processing until the
entire message arrives. The timeout specified by this argument is applied every time
the statement attempts a reception. If you want to use the value of this argument as the
maximum response wait time for the client, specify the 00000002 option for
DCCLTOPTION of the client environment definition.

data-name-E
Specify the length of the message to be received.

data-name-F
Specify the area where the received message will be stored. The area must be
larger than the length specified in data-name-E.

data-name-G
Specify the client ID received by CBLDCCLS('CLTIN ') or

6. Request Statements Available for TP1/Client (COBOL Language)

344

CBLDCCLS('EXCLTIN ').

(4) Data area for which a value is returned
data-name-B
5-digit status code

data-name-E
The length of the received message is stored in this area. The stored length does
not include the length of the message information.

If a timeout occurs, the length of the data received before the timeout is stored.

data-name-F
The received message is stored in this area. The stored message does not include
message information.

If a timeout occurs, the data received before the timeout is stored.

(5) Status codes
Status code Meaning

00000 Normal termination

02501 Invalid argument

02502 Possible causes are as follows:
• CBLDCRPS('OPEN ') has not been executed.
• CBLDCRPS('OPEN ') has been executed, but 8 or 16 is not specified for

data-name-C.

02504 Insufficient memory

02506 A network error occurred. The connection is released.

02507 Message reception timed out. The connection is released.

02518 A system error occurred. If the error is a network error, the connection is released.

02538 Insufficient resource

02542 The remote system released the connection.

02544 The client ID specified for data-name-G differs from the one received by
CBLDCCLS('CLTIN ') or CBLDCCLS('EXCLTIN ').

02546 The area prepared by the CUP was too small to receive the message from the remote
system. The connection is released.

02548 An invalid message was received. The connection is released.

6. Request Statements Available for TP1/Client (COBOL Language)

345

(6) Notes
• CBLDCCLS('ASMRECV ') returns control to the CUP in the following cases

only:

• When the statement has received message data equivalent to the length set in
the message information

• When a network error has occurred

• When message reception has timed out

• When the connection is released by the remote system

• When the message storage area (specified by data-name-F) is too small to
store the message sent by the remote system

• When an invalid message has been received

• If the message assembly and message delivery confirmation facilities are used,
short packets are used for sending and receiving. As a result, transmission
processing might take time. If more time might be required, specify Y for
DCCLTTCPNODELAY of the client environment definition.

6. Request Statements Available for TP1/Client (COBOL Language)

346

6.7 Facility for receiving one-way messages from the server

6.7.1 CBLDCCLS('NOTIFY ') - Receiving one-way messages
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1 identifier-2

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'NOTIFY '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-E PIC S9(9) COMP.
 02 data-name-F PIC X(64).
 02 data-name-G PIC X(8).
 02 FILLER PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-I PIC X(256).
01 identifier-2.
 02 data-name-J PIC S9(9) COMP.
 02 data-name-K PIC X(n).

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1 identifier-2

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'NOTIFY '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).

6. Request Statements Available for TP1/Client (COBOL Language)

347

 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-E PIC S9(9) COMP.
 02 data-name-F PIC X(64).
 02 data-name-G PIC X(8).
01 identifier-2.
 02 data-name-J PIC S9(9) COMP.
 02 data-name-K PIC X(n).

(2) Purpose
Waits for a message returned by the CBLDCRPC('CLTSEND ') request code issued on
the server side. The program stops waiting for the message if a timeout occurs before
receiving the message. The timeout is specified in data-name-E. On reception of the
message, this program returns the status code, received message, host name of the
message-originating server, and node identifier of the message-originating server, and
control returns to the CUP. Before executing this program, you do not need to execute
CBLDCCLS('CLTIN ') and CBLDCRPS('OPEN ').

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'NOTIFY ' as a request code for receiving one-way notification
messages.

data-name-C
Set 0.

data-name-D
Specify a client's port number between 5001 and 65535. Specify a unique port
number for each process or thread when multiple processes or multiple threads are
executed simultaneously on the same machine.

data-name-E
Specify a timeout value (seconds) between 0 and 65535. Value 0 causes an
infinite wait.

data-name-I
Specify the path name of the client environment definition file. The path name
must be specified with the full path or with a relative path from the current drive
and the current directory. The following shows the order in which files are loaded
when the path name is specified.

• In TP1/Client/P

6. Request Statements Available for TP1/Client (COBOL Language)

348

Client environment definition files are loaded in the following order:

1. The BETRAN.INI file in the Windows directory

2. The client environment definition file specified in data-name-I
The definitions in both the client environment definition file and the
BETRAN.INI file take effect.

If the same definition is specified in each file with a different value, the value
specified in the client environment definition file takes effect.

If neither the client environment definition file nor the BETRAN.INI file
contains the necessary specification, TP1/Client/P uses the defaults.

• In TP1/Client/W

All definitions specified in the environment variables will be invalid. TP1/
Client/W uses the defaults for definitions that are not specified in the client
environment definition file specified in data-name-I.

You can omit the path name by specifying a blank at the beginning of
data-name-I. The following describes the operation when the path name is
omitted.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the values specified in the environment variables. If an
environment variable is not specified, TP1/Client/W uses the default.

The following describes operation when the client environment definition file
specified in data-name-I does not exist or when the contents of the definition file
are invalid.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the defaults. The values specified in the environment
variables will be invalid.

6. Request Statements Available for TP1/Client (COBOL Language)

349

data-name-J
Specify the length of the area (length of data-name-K) for storing a notification
message from the server. Available values are in the range from 0 to
DCRPC_MAX_MESSAGE_SIZE#.

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

data-name-K
Specify the area for storing a notification message from the server. This area must
be larger than the length specified for data-name-J.

(4) Data area for which a value is returned
data-name-B
5-digit status code.

data-name-F
Host computer name for the server that notified the message. If resolution to a
host name fails, the IP address is returned in the dotted decimal format.

data-name-G
Node identifier for the server that notified the message in the following format.

data-name-J
Notification message length from the server.

data-name-K
Notification message from the server.

(5) Status codes
Status code Meaning

00000 Normal termination

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02503 Unsuccessful initialization. Alternatively, the client environment definition is specified
incorrectly.

02504 A necessary amount of buffer could not be allocated.

02506 Network error

6. Request Statements Available for TP1/Client (COBOL Language)

350

(6) Note
Specify a unique port number in data-name-D for each process or thread when
multiple processes or multiple threads are executed simultaneously on the same
machine. Do not specify a port number for use by the operating system or other
programs even if one can be specified in data-name-D. If you specify a port number
in this case, response data might not be received correctly. The port numbers used by
the operating system differ depending on the operating system. For details, see the
documentation of your operating system.

6.7.2 CBLDCCLS('EXNACPT ') - Receiving one-way messages (for
an extended host name)
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1 identifier-2 identifier-3

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'EXNACPT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-E PIC S9(9) COMP.

02507 Timeout occurred during reception of the message.

02518 System error

02535 Different versions

02546 The received message is too large for the CUP-provided area. The part that does not fit is
truncated. Values have already been set for data-name-F and data-name-G.

02547 The specified port number is already used.

02548 Invalid message received

02549 The one-way message reception status was canceled by CBLDCCLS('CANCEL '). Values
have already been set for data-name-F, data-name-J, and data-name-K.

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

351

 02 data-name-F PIC X(8).
 02 data-name-G PIC X(n).
01 identifier-2.
 02 data-name-H PIC S9(9) COMP.
 02 data-name-I PIC X(n).
01 identifier-3.
 02 FILLER PIC 9(9) COMP.
 02 FILLER PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-J PIC X(n).

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1 identifier-2

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'EXNACPT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-E PIC S9(9) COMP.
 02 data-name-F PIC X(8).
 02 data-name-G PIC X(n).
01 identifier-2.
 02 data-name-H PIC S9(9) COMP.
 02 data-name-I PIC X(n).

(2) Purpose
Waits for a message returned by the CBLDCRPC('CLTSEND ') request code issued on
the server side. The program stops waiting for the message if a timeout occurs before
receiving the message. The timeout is specified in data-name-E. On reception of the
message, this program returns the status code, received message, host name of the
message-originating server, and node identifier of the message-originating server, and
control returns to the CUP. Before executing this program, you do not need to execute
CBLDCCLS('CLTIN ') and CBLDCRPS('OPEN ').

Use this request statement when using the host name extension function.

6. Request Statements Available for TP1/Client (COBOL Language)

352

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'EXNACPT ' as a request code for receiving one-way notification
messages.

data-name-C
Set 0.

data-name-D
Specify a client's port number between 5001 and 65535. Specify a unique port
number for each process or thread when multiple processes or multiple threads are
executed simultaneously on the same machine.

data-name-E
Specify a timeout value (seconds) between 0 and 65535.

Value 0 causes an infinite wait.

data-name-G

Specify an area of 64 bytes# or more for storing the host name of the server that
sent a notification message.

This area must be larger than 255 bytes if you specify 00000008 for
DCCLTOPTION in the client environment definition.

data-name-H
Specify the length of the area (length of data-name-K) for storing a notification
message from the server. Available values are in the range from 0 to
DCRPC_MAX_MESSAGE_SIZE#.

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

data-name-I
Specify the area for storing a notification message from the server. This area must
be larger than the length specified for data-name-H.

data-name-J
Specify the path name of the client environment definition file. The path name
must be specified with the full path or with a relative path from the current drive
and the current directory. The following shows the order in which files are loaded
when the path name is specified.

• In TP1/Client/P

6. Request Statements Available for TP1/Client (COBOL Language)

353

Client environment definition files are loaded in the following order:

1. The BETRAN.INI file in the Windows directory

2. The client environment definition file specified in data-name-J
The definitions in both the client environment definition file and the
BETRAN.INI file take effect.

If the same definition is specified in each file with a different value, the value
specified in the client environment definition file takes effect.

If neither the client environment definition file nor the BETRAN.INI file
contains the necessary specification, TP1/Client/P uses the defaults.

• In TP1/Client/W

All definitions specified in the environment variables will be invalid. TP1/
Client/W uses the defaults for definitions that are not specified in the client
environment definition file specified in data-name-J.

You can omit the path name by specifying a space character at the beginning of
data-name-J. The following describes the operation when the path name is
omitted.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the values specified in the environment variables. If an
environment variable is not specified, TP1/Client/W uses the default.

The following describes operation when the client environment definition file
specified in data-name-J does not exist or when the contents of the definition file
are invalid.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the defaults. The values specified in the environment
variables will be invalid.

6. Request Statements Available for TP1/Client (COBOL Language)

354

(4) Data area for which a value is returned
data-name-B
5-digit status code.

data-name-F
Node identifier for the server that sent a notification message in the following
format.

data-name-G
Host name of the server that sent a notification message. If resolution to a host
name fails, the IP address is returned in the dotted decimal format.

data-name-H
Length of the notification message from the server.

data-name-I
Notification message from the server.

(5) Status codes
Status code Meaning

00000 Normal termination

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02503 Unsuccessful initialization. Alternatively, the client environment definition is specified
incorrectly.

02504 A necessary amount of buffer could not be allocated.

02506 Network error

02507 A timeout occurred during message reception.

02518 System error

02535 Different versions

02546 The received message is too large for the CUP-provided area. The part that does not fit is
truncated. Values have already been set for data-name-F and data-name-G.

02547 The specified port number is already used.

02548 Invalid message received

6. Request Statements Available for TP1/Client (COBOL Language)

355

(6) Note
Specify a unique port number in data-name-D for each process or thread when
multiple processes or multiple threads are executed simultaneously on the same
machine. Do not specify a port number for use by the operating system or other
programs even if one can be specified in data-name-D. If you specify a port number
in this case, response data might not be received correctly. The port numbers used by
the operating system differ depending on the operating system. For details, see the
documentation of your operating system.

6.7.3 CBLDCCLS('CANCEL ') - Canceling one-way message wait
state
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1 identifier-2

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'CANCEL '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-E PIC X(64).
 02 FILLER PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-G PIC X(256).
01 identifier-2.
 02 data-name-H PIC S9(9) COMP.
 02 data-name-I PIC X(n).

02549 The one-way message reception status was canceled by CBLDCCLS('CANCEL ') or
CBLDCCLS('EXNCANCL'). Values have already been set for data-name-G, data-name-H, and
data-name-I.

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

356

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1 identifier-2

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'CANCEL '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-E PIC X(64).
01 identifier-2.
 02 data-name-H PIC S9(9) COMP.
 02 data-name-I PIC X(n).

(2) Purpose
Releases a wait state (enabled by CBLDCCLS('NOTIFY ')) for receiving one-way
messages.

When releasing the wait state, the program can issue a message specified for
data-name-I to the CUP that awaits one-way messages.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'CANCEL ' as the request code for indicating cancellation of a
wait for a one-way message.

data-name-C
Set 0.

data-name-D
Specify the port number specified for a request to receive one-way messages
between 5001 and 65535.

data-name-E
Specify the name of the host computer corresponding to the CUP that waits for a
one-way message.

6. Request Statements Available for TP1/Client (COBOL Language)

357

You can specify an IP address in decimal dot notation for the host name.

data-name-G
Specify the path name of the client environment definition file. The path name
must be specified with the full path or with a relative path from the current drive
and the current directory. The following shows the order in which files are loaded
when the path name is specified.

• In TP1/Client/P

Client environment definition files are loaded in the following order:

1. The BETRAN.INI file in the Windows directory

2. The client environment definition file specified in data-name-G
The definitions in both the client environment definition file and the
BETRAN.INI file take effect.

If the same definition is specified in each file with a different value, the value
specified in the client environment definition file takes effect.

If neither the client environment definition file nor the BETRAN.INI file
contains the necessary specification, TP1/Client/P uses the defaults.

• In TP1/Client/W

All definitions specified in the environment variables will be invalid. TP1/
Client/W uses the defaults for definitions that are not specified in the client
environment definition file specified in data-name-G.

You can omit the path name by specifying a space character at the beginning of
data-name-G. The following describes the operation when the path name is
omitted.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the values specified in the environment variables. If an
environment variable is not specified, TP1/Client/W uses the default.

The following describes operation when the client environment definition file
specified in data-name-G does not exist or when the contents of the definition file
are invalid.

• In TP1/Client/P

6. Request Statements Available for TP1/Client (COBOL Language)

358

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the defaults. The values specified in the environment
variables will be invalid.

data-name-H
Specify the message length (data-name-I length).

Available values range from 0 to DCRPC_MAX_MESSAGE_SIZE#. Specifying 0
notifies no messages to the CUP.

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

data-name-I
Specify a message issued to the CUP.

(4) Data area for which a value is returned
data-name-B
5-digit status code.

(5) Status codes
Status code Meaning

00000 Normal termination

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02503 Initialization failed. Alternatively, the client environment definition is specified incorrectly.

02504 A necessary amount of buffer could not be allocated.

02506 Network error

02514 The CUP is not in the one-way message reception wait status.

02518 System error

02539 Invalid host computer name

02547 Port numbers that can be assigned automatically by the operating system are insufficient.

02554 No DLL name is defined in the client environment definition.

6. Request Statements Available for TP1/Client (COBOL Language)

359

6.7.4 CBLDCCLS('EXNCANCL') - Canceling one-way message wait
state (for an extended host name)
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1 identifier-2 identifier-3

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'EXCANCEL'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-E PIC X(n).
01 identifier-2.
 02 data-name-F PIC S9(9) COMP.
 02 data-name-G PIC X(n).
01 identifier-3.
 02 FILLER PIC 9(9) COMP.
 02 FILLER PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-H PIC X(n).

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1 identifier-2

DATA DIVISION

01 identifier-1.

02555 The specified DLL could not be loaded.

02556 An attempt was made to issue the request code not defined in the specified DLL.

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

360

 02 data-name-A PIC X(8) VALUE 'EXCANCEL'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-E PIC X(n).
01 identifier-2.
 02 data-name-F PIC S9(9) COMP.
 02 data-name-G PIC X(n).

(2) Purpose
Releases a wait state (enabled by CBLDCCLS('EXNACPT ')) for receiving one-way
messages.

When releasing the wait state, the program can issue a message specified for
data-name-I to the CUP that awaits one-way messages.

Use this function when using the host name extension function.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'EXCANCEL' as the request code for indicating cancellation of a wait
for a one-way message.

data-name-C
Set 0.

data-name-D
Specify the port number specified for a request to receive one-way messages
between 5001 and 65535.

data-name-E
Specify the name of the host computer corresponding to the CUP that waits for a
one-way message. You can specify a maximum of 63# characters for the host
name. Terminate the character string with a blank.

You can specify an IP address in decimal dot notation for the host name.

If you specify 00000008 for DCCLTOPTION in the client environment
definition, you can specify a maximum of 255 characters for the host name.

data-name-F
Specify the message length. Available values are in the range from 0 to

6. Request Statements Available for TP1/Client (COBOL Language)

361

DCRPC_MAX_MESSAGE_SIZE#.

If you specify 0, no messages are sent to the CUP

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

data-name-G
Specify the area for storing a notification message to be sent to the CUP. This area
must be larger than the length specified for data-name-F.

data-name-H
Specify the path name of the client environment definition file. The path name
must be specified with the full path or with a relative path from the current drive
and the current directory. The following shows the order in which files are loaded
when the path name is specified.

• In TP1/Client/P

Client environment definition files are loaded in the following order:

1. The BETRAN.INI file in the Windows directory

2. The client environment definition file specified in data-name-H
The definitions in both the client environment definition file and the
BETRAN.INI file take effect.

If the same definition is specified in each file with a different value, the value
specified in the client environment definition file takes effect.

If neither the client environment definition file nor the BETRAN.INI file
contains the necessary specification, TP1/Client/P uses the defaults.

• In TP1/Client/W

All definitions specified in the environment variables will be invalid. TP1/
Client/W uses the defaults for definitions that are not specified in the client
environment definition file specified in data-name-H.

You can omit the path name by specifying a blank at the beginning of
data-name-H. The following describes the operation when the path name is
omitted.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

6. Request Statements Available for TP1/Client (COBOL Language)

362

• In TP1/Client/W

TP1/Client/W uses the values specified in the environment variables. If an
environment variable is not specified, TP1/Client/W uses the default.

The following describes operation when the client environment definition file
specified in data-name-H does not exist or when the contents of the definition file
are invalid.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the defaults. The values specified in the environment
variables will be invalid.

(4) Data area for which a value is returned
data-name-B
5-digit status code.

(5) Status codes
Status code Meaning

00000 Normal termination

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02503 Initialization failed. Alternatively, the client environment definition is specified incorrectly.

02504 A necessary amount of buffer could not be allocated.

02506 Network error

02514 The CUP is not in the one-way message reception wait status.

02518 System error

02539 Invalid host computer name

02547 Port numbers that can be assigned automatically by the operating system are insufficient.

6. Request Statements Available for TP1/Client (COBOL Language)

363

6.7.5 CBLDCCLS('O-NOTIFY') - Start reception of one-way
messages
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'O-NOTIFY'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 FILLER PIC 9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-F PIC 9(9) COMP.
 02 data-name-G PIC X(256).

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'O-NOTIFY'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(4) COMP.
 02 FILLER PIC X(2).

(2) Purpose
CBLDCCLS('O-NOTIFY') creates an environment for using the facility for receiving

6. Request Statements Available for TP1/Client (COBOL Language)

364

one-way messages from the server.

CBLDCCLS('O-NOTIFY') and CBLDCCLS('C-NOTIFY') are used in a pair.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'O-NOTIFY' as a request code for starting reception of one-way
messages.

data-name-C
Set 0.

data-name-D
Set the client's port number in the range from 5001 to 65535. Specify a unique
port number for each process or thread when multiple processes or multiple
threads are executed simultaneously on the same machine.

data-name-G
Specify the path name of the client environment definition file. The path name
must be specified with the full path or with a relative path from the current drive
and the current directory. The following shows the order in which files are loaded
when the path name is specified.

• In TP1/Client/P

Client environment definition files are loaded in the following order:

1. The BETRAN.INI file in the Windows directory

2. The client environment definition file specified in data-name-G
The definitions in both the client environment definition file and the
BETRAN.INI file take effect.

If the same definition is specified in each file with a different value, the value
specified in the client environment definition file takes effect.

If neither the client environment definition file nor the BETRAN.INI file
contains the necessary specification, TP1/Client/P uses the defaults.

• In TP1/Client/W

All definitions specified in the environment variables will be invalid. TP1/
Client/W uses the defaults for definitions that are not specified in the client
environment definition file specified in data-name-G.

You can omit the path name by specifying a blank at the beginning of
data-name-G. The following describes the operation when the path name is
omitted.

6. Request Statements Available for TP1/Client (COBOL Language)

365

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the values specified in the environment variables. If an
environment variable is not specified, TP1/Client/W uses the default.

The following describes operation when the client environment definition file
specified in data-name-G does not exist or when the contents of the definition file
are invalid.

• In TP1/Client/P

TP1/Client/P uses the BETRAN.INI file in the Windows directory as the
client environment definition file. If the BETRAN.INI file does not exist or
if the contents of the definition file are invalid, TP1/Client/P uses the
defaults.

• In TP1/Client/W

TP1/Client/W uses the defaults. The values specified in the environment
variables will be invalid.

(4) Data area for which a value is returned
data-name-B
A five-digit status code is returned.

data-name-F
The one-way message reception ID is returned. Do not destroy the returned
one-way message reception ID before CBLDCCLS('C-NOTIFY') is executed.

(5) Status codes
Status code Meaning

00000 The program normally terminated.

02501 The value specified in the data area is incorrect.

02502 CBLDCCLT('O-NOTIFY') has already been executed. This status code is not returned if
CBLDCCLS('O-NOTIFY') is executed.

02503 Initialization failed. Alternatively, the client environment definition is specified incorrectly.

02504 A necessary amount of buffer could not be allocated.

6. Request Statements Available for TP1/Client (COBOL Language)

366

(6) Notes
• After CBLDCCLS('O-NOTIFY') terminates normally, always execute

CBLDCCLS('C-NOTIFY'). If CBLDCCLS('C-NOTIFY') is not executed, the
resources used by CBLDCCLS('O-NOTIFY') may remain.

• Specify a unique port number in data-name-D for each process or thread when
multiple processes or multiple threads are executed simultaneously on the same
machine. Do not specify a port number for use by the operating system or other
programs even if one can be specified in data-name-D. If you specify a port
number in this case, response data might not be received correctly. The port
numbers used by the operating system differ depending on the operating system.
For details, see the documentation of your operating system.

6.7.6 CBLDCCLS('C-NOTIFY') - Terminate reception of one-way
messages
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'C-NOTIFY'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC 9(9) COMP.

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1

02547 The specified port number has already been used.

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

367

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'C-NOTIFY'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

(2) Purpose
CBLDCCLS('C-NOTIFY') deletes the environment for using the facility for receiving
one-way messages from the server.

CBLDCCLS('O-NOTIFY') and CBLDCCLS('C-NOTIFY') are used in a pair.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'C-NOTIFY' as the request code for terminating reception of
one-way messages.

data-name-C
Set 0.

data-name-D
Specify the one-way message reception ID received by
CBLDCCLT('O-NOTIFY').

(4) Data area for which a value is returned
data-name-B
A five-digit status code is returned.

(5) Status codes
Status code Meaning

00000 The program normally terminated.

02501 The value specified in the data area is incorrect.

02504 A necessary amount of buffer could not be allocated.

02544 The one-way message reception ID specified in data-name-D differs from that received by
CBLDCCLS('O-NOTIFY').

6. Request Statements Available for TP1/Client (COBOL Language)

368

6.7.7 CBLDCCLS('A-NOTIFY') - Receive a one-way message
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1 identifier-2

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'A-NOTIFY'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC X(64).
 02 data-name-F PIC X(8).
 02 data-name-G PIC 9(9) COMP.
01 identifier-2.
 02 data-name-H PIC S9(9) COMP.
 02 data-name-I PIC X(n).

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1 identifier-2

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'A-NOTIFY'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC X(64).
 02 data-name-F PIC X(8).

01 identifier-2.
 02 data-name-H PIC S9(9) COMP.

6. Request Statements Available for TP1/Client (COBOL Language)

369

 02 data-name-I PIC X(n).

(2) Purpose
Waits for a message returned by the CBLDCRPC('CLTSEND ') request code issued on
the server side. The program stops waiting for the message if a timeout occurs before
receiving the message. The timeout is specified in data-name-D. On reception of the
message, this program returns the status code, received message, host name of the
message-originating server, and node identifier of the message-originating server, and
control returns to the CUP.

Before executing CBLDCCLS('A-NOTIFY'), always issue
CBLDCCLS('O-NOTIFY').

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'A-NOTIFY' as the request code for receiving a one-way message.

data-name-C
Set 0.

data-name-D
Set the timeout (in seconds) in the range from 0 to 65535. If 0 is set, a timeout
does not occur.

data-name-G
Set the one-way message reception ID received by CBLDCCLS('O-NOTIFY').

data-name-H
Specify the length of the area (length of data-name-I) for storing a notification
message from the server. Available values are in the range from 0 to
DCRPC_MAX_MESSAGE_SIZE#.

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

data-name-I
Specify the area for storing a notification message from the server. This area must
be larger than the length specified for data-name-H.

(4) Data area for which a value is returned
data-name-B
A five-digit status code is returned.

6. Request Statements Available for TP1/Client (COBOL Language)

370

data-name-E
The host name of the message-originating server is returned.

If resolution to a host name fails, the IP address is returned in the dotted decimal
format.

data-name-F
The node identifier of the message-originating server is returned. The node
identifier is suffixed by a NULL character as shown below.

data-name-H
The notification message from the server is returned.

data-name-I
The length of the notification message from the server is returned.

(5) Status codes
Status code Meaning

00000 The program normally terminated.

02501 The value specified in the data area is incorrect.

02502 CBLDCCLS('O-NOTIFY') has not been executed.

02504 A necessary amount of buffer could not be allocated.

02506 A network error occurred.

02507 A timeout occurred before a message arrived.

02518 A system error occurred.

02535 Versions do not match.

02544 The one-way message reception ID specified in data-name-G differs from that received by
CBLDCCLS('O-NOTIFY').

02546 The received message is too large for the CUP-provided area. The excess portion of the
message is truncated. Values have already been set for data-name-E and data-name-F.

02548 An invalid message was received.

02549 The one-way message reception status was canceled by CBLDCCLS('CANCEL '). Values
have already been set for data-name-E, data-name-H, and data-name-I.

6. Request Statements Available for TP1/Client (COBOL Language)

371

6.7.8 CBLDCCLS('EXNCACPT') - Receive a one-way message (for an
extended host name)
(1) Form

(a) In a multi-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLS' USING identifier-1 identifier-2 identifier-3

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'EXNCACPT'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC X(8).
 02 data-name-F PIC X(n).
01 identifier-2.
 02 data-name-G PIC S9(9) COMP.
 02 data-name-H PIC X(n).
01 identifier-3.
 02 data-name-I PIC 9(9) COMP.

(b) In a single-thread environment
PROCEDURE DIVISION

CALL 'CBLDCCLT' USING identifier-1 identifier-2

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'EXNCACPT'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC X(8).
 02 data-name-F PIC X(n).
01 identifier-2.

6. Request Statements Available for TP1/Client (COBOL Language)

372

 02 data-name-G PIC S9(9) COMP.
 02 data-name-H PIC X(n).

(2) Purpose
Waits for a message returned by the CBLDCRPC('CLTSEND ') request code issued on
the server side. The program stops waiting for the message if a timeout occurs before
receiving the message. The timeout is specified in data-name-D. On reception of the
message, this program returns the status code, received message, received message
length, host name of the message-originating server, and node identifier of the
message-originating server, and control returns to the CUP.

Before executing CBLDCCLS('EXNCACPT'), always issue
CBLDCCLS('O-NOTIFY').

Use this function when using the host name extension function.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'EXNCACPT' as the request code for receiving a one-way message.

data-name-C
Set 0.

data-name-D
Set the timeout (in seconds) in the range from 0 to 65535. If 0 is set, a timeout
does not occur.

data-name-F

Specify an area of 64 bytes# or more for storing the host name of the server that
sent a notification message.

This area must be larger than 255 bytes if you specify 00000008 for
DCCLTOPTION in the client environment definition.

data-name-G
Specify the length of the area for storing a notification message from the server.
Available values are in the range from 0 to DCRPC_MAX_MESSAGE_SIZE#.

If you specify 2 or a larger value for DCCLTRPCMAXMSGSIZE in the client
environment definition, the value you specify is used rather than the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

data-name-H
Specify the area for storing a notification message from the server. This area must

6. Request Statements Available for TP1/Client (COBOL Language)

373

be larger than the length specified for data-name-G.

data-name-I
Specify the one-way message reception ID received by
CBLDCCLS('O-NOTIFY').

(4) Data area for which a value is returned
data-name-B
A five-digit status code is returned.

data-name-E
The node identifier of the message-originating server is returned in the following
format:

data-name-F
The host name of the message-originating server is returned.

If resolution to a host name fails, the IP address is returned in the dotted decimal
format.

data-name-G
The length of the notification message from the server is returned.

data-name-H
The notification message from the server is returned.

(5) Status codes
Status code Meaning

00000 Normal termination

02501 The value specified in the data area is incorrect.

02502 CBLDCCLS('O-NOTIFY') has not been executed.

02504 A necessary amount of buffer could not be allocated.

02506 Network error

02507 A timeout occurred during message reception.

02518 System error

02535 Versions do not match.

6. Request Statements Available for TP1/Client (COBOL Language)

374

02544 The one-way message reception ID specified in data-name-I differs from the one received by
CBLDCCLS('O-NOTIFY').

02546 The received message is too large for the CUP-provided area. The excess portion of the
message is truncated. Values have already been set for data-name-E and data-name-F.

02548 An invalid message was received.

02549 The one-way message reception status was canceled by CBLDCCLS('CANCEL ') or
CBLDCCLS('EXNCANCL'). Values have already been set for data-name-F, data-name-G,
and data-name-H.

Status code Meaning

6. Request Statements Available for TP1/Client (COBOL Language)

375

6.8 Character code converter (When a code mapping table is not
used)

The character code converter is only available for TP1/Client/P.

All request statements provided by the character code converter also operate correctly
in a multi-thread environment.

6.8.1 CBLDCUTL ('CODECNV ') - Converting character codes
(1) Form

PROCEDURE DIVISION

CALL 'CBLDCUTL' USING identifier-1 identifier-2 identifier-3

DATA DIVISION

01 identifier-1.
 02 data-name-A PIC X(8) VALUE 'CODECNV '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
01 identifier-2.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-F PIC X(n).
01 identifier-3.
 02 data-name-G PIC S9(9) COMP.
 02 data-name-H PIC X(n).

(2) Purpose
• Converts the character strings consisting of JIS code or Shift JIS code into

character strings of EBCDIC/EBCDIK code or KEIS code.

• Converts the character strings consisting of EBCDIC/EBCDIK code or KEIS
code into character strings of JIS code or Shift JIS code.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'CODECNV ' as a request code for character code conversion.

data-name-C

6. Request Statements Available for TP1/Client (COBOL Language)

376

Specify the total number of options to be used as the conversion condition
(conversion option).

0: Default (this condition is assumed if no option is specified).

• EBCDIK code is used.

• Two-byte spaces remain the same.

• The 1983 version of the KEIS code is used.

• An error occurs if an invalid code is found.

• A tab or control code is not identified to be single-byte. No shift code is
available even for just the preceding or succeeding two-byte code if any.

1: EBCDIC code is used.

2: A two-byte space is converted to two spaces. This specification is valid only
when the value of data-name-D is 1.

4: The 1978 version of the KEIS code is used.

8: An invalid code is converted to a space.

16: A tab code is identified to be single-byte. A shift code is given to just the
preceding or succeeding two-byte code if any.

32: A control code is identified to be single-byte. A shift code is given to just the
preceding or succeeding two-byte code if any.

data-name-D
Specify the conversion method.

1: Converts the character strings consisting of JIS code or Shift JIS code into
character strings of EBCDIC/EBCDIK code or KEIS code.

2: Converts the character strings consisting of EBCDIC/EBCDIK code or KEIS
code into character strings of JIS code or Shift JIS code.

data-name-E
Specify the length of the character string to be converted. 1 to
DCRPC_MAX_MESSAGE_SIZE can be specified.

data-name-F
Specify the character string to be converted.

data-name-G
Specify the size of the area that receives the converted character string.

data-name-H

6. Request Statements Available for TP1/Client (COBOL Language)

377

Specify the area for storing the converted character string. This area must be
larger than the length specified for data-name-G.

(4) Data area for which a value is returned
data-name-B
A status code is returned using a five-digit number.

data-name-G
The length of the converted character string is returned.

data-name-H
The converted character string is returned.

(5) Status codes

(6) Note
• When you specify 2 for data-name-D and 16 or 32 for data-name-C, you need to

prepare data that contains single-byte tab or control codes.

• For details about code conversion specifications, see A. Code Conversion
Specifications.

Status code Meaning

00000 Normal termination

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02504 Insufficient memory.
The program returns this code also when the specified character length covers the first byte
of a two-byte code that is contained in the character string to be converted.

02550 An invalid code is found in the character string.

02551 The length of the converted character string exceeds the area prepared by the CUP.

6. Request Statements Available for TP1/Client (COBOL Language)

378

6.9 Character code converter (When a code mapping table is used)

The character code converter is only available for TP1/Client/P.

All request statements provided by the character code converter also operate correctly
in a multi-thread environment.

6.9.1 CBLDCUTL('CNVOPN ') - Starting character code conversion
(1) Form

PROCEDURE DIVISION

CALL 'CBLDCUTL' USING unique-name-1 unique-name-1 unique-name-1

DATA DIVISION

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'CNVOPN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(256)
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC 9(9) COMP.

(2) Purpose
Starts character code conversion to allocate a code mapping table to be used in the
memory.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'CNVOPN ' as the request code for indicating the start of
character code conversion.

data-name-C
Set a blank.

data-name-D
Specify the conversion method.

1: Links with CommuniNet for conversion.

0: Performs conversion by operations without using a code mapping table.

6. Request Statements Available for TP1/Client (COBOL Language)

379

(4) Data area for which a value is returned
data-name-B
A status code is returned using a five-digit number.

data-name-E
The handle of a character code conversion control table allocated on the memory
is returned.

(5) Status codes

(6) Notes
Specify three unique names 1 for the USING clause in the CALL statement.

• The use of this function requires a CommuniNet code mapping table. Before
using this function, create a code mapping table using the CommuniNet code
mapping utility.

• You cannot use a code mapping table unless you first save the table using the
CommuniNet code mapping utility after the installation of CommuniNet. Before
using this function, save a code mapping table using the CommuniNet code
mapping utility.

• The filename of a CommuniNet code mapping table must be CMAPEX.TBL. Store
the code mapping table under a Windows directory before using this function.

• The processing by the character code converter does not reflect the changes in the
contents of a code mapping table changed by the CommuniNet code mapping
utility during the use of this function.

• This function does not save error logs and UAP trace information.

• Issue the function for starting character code conversion (CBLDCUTL('CNVOPN
')) only once for code conversion (CBLDCUTL('CNVEXEC ')). Do not issue

Status code Meaning

00000 Normal termination

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02504 Insufficient memory

02557 No code mapping table exists.

02558 This status does not support using the code mapping table. This status code is also returned
if a code mapping table is not saved using the CommuniNet code mapping utility after the
installation of CommuniNet.

02559 An I/O error occurred in the code mapping table.

6. Request Statements Available for TP1/Client (COBOL Language)

380

the function for starting character code conversion more than once to prevent
memory shortage. If you issue two or more functions, issue one function for
terminating character code conversion (CBLDCUTL('CNVCLS ')) for each of
the issued functions.

6.9.2 CBLDCUTL('CNVCLS ') - Terminating character code
conversion
(1) Form

PROCEDURE DIVISION

CALL 'CBLDCUTL' USING unique-name-1 unique-name-1 unique-name-1

DATA DIVISION

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'CNVCLS '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.

(2) Purpose
Terminates character code conversion to free an area in the memory for allocating a
code mapping table.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'CNVCLSDD ' as the request code for indicating the termination
of character code conversion.

data-name-C
Set 0.

data-name-D
Specify the handle of the control table acquired by CBLDCUTL ('CNVOPN ')
for converting a character code.

(4) Data area for which a value is returned
data-name-B
A status code returned with only five-digit number.

6. Request Statements Available for TP1/Client (COBOL Language)

381

(5) Status codes

(6) Notes
Specify three unique names 1 for the USING clause in the CALL statement.

• The use of this function requires a CommuniNet code mapping table. Before
using this function, create a code mapping table using the CommuniNet code
mapping utility.

• You cannot use a code mapping table unless you save the table using the
CommuniNet code mapping utility after the installation of CommuniNet. Before
using this function, save a code mapping table using the CommuniNet code
mapping utility.

• The filename of a CommuniNet code mapping table must be CMAPEX.TBL. Store
the code mapping table under a Windows directory before using this function.

• The processing by the character code converter does not reflect changes made in
a code mapping table by the CommuniNet code mapping utility during the use of
this function.

• This function does not save error logs and UAP trace information.

• Issue the function for starting character code conversion (CBLDCUTL('CNVOPN
')) only once for code conversion (CBLDCUTL('CNVEXEC ')). Do not issue
the function for starting character code conversion more than once to prevent
memory shortage. If you issue two or more functions, issue one function for
terminating character code conversion (CBLDCUTL('CNVCLS ')) for each of
the issued functions.

6.9.3 CBLDCUTL('CNVEXEC') - Executing character code
conversion
(1) Form

PROCEDURE DIVISION

CALL 'CBLDCUTL' USING unique-name-1 unique-name-2 unique-name-3

DATA DIVISION

Status code Meaning

00000 Normal termination

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02504 Insufficient memory

6. Request Statements Available for TP1/Client (COBOL Language)

382

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'CNVEXEC'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC 9(9) COMP.
01 unique-name-2.
 02 data-name-F PIC S9(9) COMP.
 02 data-name-G PIC X(n).
01 unique-name-3.
 02 data-name-H PIC S9(9) COMP.
 02 data-name-I PIC X(n).

(2) Purpose
Executes the following character code conversion.

Converts character strings consisting of JIS or Shift JIS code into character strings of
EBCDIC, EBCDIK or KEIS code. Converts character strings consisting of EBCDIC,
EBCDIK or KEIS code into character strings of JIS or Shift JIS code.

(3) Data area where the UAP sets values
data-name-A
Set VALUE 'CNVEXEC ' as the request code for indicating the execution of
character code conversion.

data-name-C
Specify the conversion condition (conversion option) using the sum of the values
of options to be used.

0: Default (The default is applied without an option specified.)

• The EBCDIK code set is used.

• A two-byte space remains a two-byte space.

• The 1983 version of the KEIS code is used.

• If there is an invalid code, an error occurs.

• A tab or control code is not recognized as a one-byte code. Even when there
is a two-byte code immediately before or after the code, a shift code is not
added.

1: Uses the EBCDIC code.

2: Converts a two-byte space into two one-byte spaces. This value is valid only

6. Request Statements Available for TP1/Client (COBOL Language)

383

when the value of data-name-D is 1.

4: Uses the 1978 version of the KEIS code.

8: Converts an invalid code into a space.

16: A tab code is identified to be single-byte. A shift code is given to just the
preceding or succeeding two-byte code if any.

32: A control code is identified to be single-byte. A shift code is given to just the
preceding or succeeding two-byte code if any.

data-name-D
Specify the conversion method.

1: Converts a JIS or Shift-JIS character string into a EBCDIC, EBCDIK, or KEIS
character string.

2: Converts a EBCDIC, EBCDIK, or KEIS character string into a JIS or Shift-JIS
character string.

data-name-E
Specify the handle of the control table acquired by CBLDCUTL('CNVOPN ') for
converting codes.

data-name-F
Specify the length of the character string to be converted. You can specify a value
from 1 to DCRPC_MAX_MESSAGE_SIZE.

data-name-G
Specify the character string to be converted.

data-name-H
Specify the length of the area that receives the converted character string.

data-name-I
Specify the area for storing the converted character string. This area must be
larger than the length specified for data-name-H.

(4) Data area for which a value is returned
data-name-B
A five-digit status code is returned.

data-name-H
The length of the converted character string is returned.

data-name-I

6. Request Statements Available for TP1/Client (COBOL Language)

384

The converted character string is returned.

(5) Status codes

(6) Notes
• The use of this function requires a CommuniNet code mapping table. Before

using this function, create a code mapping table using the CommuniNet code
mapping utility.

• You cannot use a code mapping table unless you first save the table using the
CommuniNet code mapping utility after the installation of CommuniNet. Before
using this function, save a code mapping table using the CommuniNet code
mapping utility.

• The filename of a CommuniNet code mapping table must be CMAPEX.TBL. Store
the code mapping table under a Windows directory before using this function.

• The processing by the character code converter does not reflect changes made in
a code mapping table by the CommuniNet code mapping utility during the use of
this function.

• This function does not save error logs and UAP trace information.

• Issue the function for starting character code conversion (CBLDCUTL('CNVOPN
')) only once for code conversion (CBLDCUTL('CNVEXEC ')). Do not issue
the function for starting character code conversion more than once to prevent
memory shortage. If you issue two or more functions, issue a one function for
terminating character code conversion (CBLDCUTL('CNVCLS ')) for each of
the issued functions.

• When you specify 2 for data-name-D and 16 or 32 for data-name-C, you need to
prepare data that contains single-byte tab or control codes.

Status code Meaning

00000 Normal termination

02501 Invalid value for the data name. The request code (data-name-A) may be invalid.

02504 Insufficient memory.
The program returns this code also when the control table contains an invalid handle value
and when the specified character length covers the first byte of a two-byte code that is
contained in the character string to be converted.

02550 A character string contains an invalid code.

02551 The length of the converted character string exceeds the length of the area prepared by the
CUP.

385

Chapter

7. Definition

This chapter describes the client environment definition.

In this chapter, C functions (dc_xxx_xxx_s) when calling the DLLs are used in
explanations. If you use functions of the normal object library (dc_xxx_xxx) or
COBOL, replace the C function names with the corresponding functions or COBOL
request statements.

This chapter contains the following sections:

7.1 Overview
7.2 Definition details

7. Definition

386

7.1 Overview

This section lists the client environment definition operands and describes definition
conventions.

7.1.1 List of client environment definition operands
The following table lists the client environment definition operands.

Table 7-1: Client environment definition operands

No. Operand Description Specifiable value

1 DCNAMPORT Specifies the port number for the name
server.

<unsigned integer> ((5001
to 65535)) <<10000>>

2 DCHOST Specifies TP1/Server that operates as a
gateway.

<character string>

3 DCWATCHTIM Specifies the maximum time to wait for a
response.

<unsigned integer> ((0 to
65535)) <<180>> (unit:
seconds)

4 DCCLTCONNECTTIMEOUT Specifies the maximum time to wait for a
connection to be established.

<unsigned integer> ((0 to
65535)) <<0>> (unit:
seconds)

5 DCCLTTREXPTM Specifies the expiration time for a
transaction branch.

<unsigned integer> ((0 to
65535)) (unit: seconds)

6 DCCLTTREXPSP Specifies whether the monitoring time
should include the time from when a
transaction branch of the transactional
RPC executing process uses the RPC
facility to call another transaction branch
until processing of the called branch
terminates.

Y|N|F

7 DCCLTTRWATTM Specifies the maximum time interval for a
transaction inquiry response.

<unsigned integer> ((1 to
65535)) <<180>> (unit:
seconds)

8 DCCLTTRCPUTM Specifies the CPU monitoring time for a
transaction branch.

<unsigned integer> ((0 to
65535)) (unit: seconds)

9 DCCLTUTTRCMT When the online tester functionality is
used to start a transaction from the CUP,
this operand specifies whether to commit
or roll back the transaction at a
synchronous point.

Y|<<N>>

7. Definition

387

10 DCRCVPORT Specifies the receive port number for the
CUP.

<unsigned integer> ((1 to
65535)) <<11000>>

11 DCSNDHOST Specifies the name of the node to be
connected.

<character string>

12 DCSNDPORT Specifies the port number of the node to
be connected.

<unsigned integer> ((1 to
65535)) <<12000>>

13 DCSOCKOPENATRCV When the TCP/IP communication facility
is used and a single connection is used for
both sending and receiving, this operand
specifies when to open the receive socket
(the time at which to start waiting for a
connection from the send destination).

Y|<<N>>

14 DCCLTDELIVERYCHECK Specifies whether to use the message
delivery confirmation facility.

Y|<<N>>

15 DCUTOKEY Specifies the test user ID. <1 to 4 alphanumeric
characters>

16 DCCACHE Specifies the number of areas for
temporarily storing service information.

<unsigned integer> ((2 to
10240)) <<8>>

17 DCCLTCACHETIM Specifies the effective period for the
temporarily stored service information.

<unsigned integer> ((0 to
65535)) <<30>> (unit:
seconds)

18 DCCLTLOADBALANCE When a multi-node server is used, this
operand specifies whether to use the
inter-node load-balancing facility. This
facility evaluates the load status of each
node in TP1/Client when an RPC is
performed and distributes processing to
the server with the least load.

Y|<<N>>

19 DCCLTSERVICEGROUPLIST Specifies the name of the file that defines
the correspondence between service
groups and RPC entry points.

<character string>

20 DCCLTCONNECTRETRY Specifies the maximum number of
attempts for establishing a connection.

<unsigned integer> ((0 to
255)) <<0>>

21 DCSCDDIRECT Specifies whether to use the functionality
that directly sends inquires about service
information to the schedule service
without sending inquiries about the
information to the TP1/Server name
service (RPCs that do not use the name
service).

Y|<<N>>

No. Operand Description Specifiable value

7. Definition

388

22 DCSCDPORT Specifies the port number of the schedule
service.

<unsigned integer> ((5001
to 65535))

23 DCCLTDATACOMP Specifies whether to use the data
compression facility.

Y|<<N>>

24 DCEXTENDFUNCTION Specifies the level to which the RPC
service functionality is extended.

<unsigned hexadecimal
number> ((00000000 to
00000001))
<<00000000>>

25 DCCLTINQUIRETIME Specifies the maximum time interval in
permanent connection.

<unsigned integer> ((0 to
1048575)) (unit: seconds)

26 DCCLTPORT Specifies the port number of the client
extended service.

<unsigned integer> ((5001
to 65535))

27 DCCLTDCCMHOST When a DCCM3 logical terminal is asked
to establish a permanent connection, this
operand specifies the host name of the
logical terminal.

Host name of a DCCM3
logical terminal

28 DCCLTDCCMPORT Specifies the port number of a DCCM3
logical terminal.

<unsigned integer> ((1 to
65535)) <<30000>>

29 DCCLTXATMI Specifies whether to use the XATMI
interface for communication.

Y|<<N>>

30 DCWATCHTIMINHERIT When transaction control and connection
control are performed, this operand
specifies whether the client extended
service inherits the maximum CUP
response wait time.

Y|<<N>>

31 DCCLTDELAY Specifies the maximum communication
delay time.

<unsigned integer> ((0 to
65535)) <<0>> (unit:
seconds)

32 DCCLTCUPSNDHOST Specifies the CUP send host. <character string>

33 DCCLTCUPRCVPORT Specifies the receive port number for the
CUP.

<unsigned integer> ((5001
to 65535))

34 DCCLTRAPHOST Specifies the host name and port number
of the TP1/Server's RAP-processing
listener or of the DCCM3 logical
terminal.

RAP-processing listener or
DCCM3 logical terminal

No. Operand Description Specifiable value

7. Definition

389

35 DCCLTRAPAUTOCONNECT Specifies whether to enable automatic
establishment of a connection between
the CUP and RAP-processing server or
DCCM3 logical terminal.

Y|<<N>>

36 DCCLTTRSTATISITEM Specifies the items for which transaction
branch statistics are to be acquired.

statistics-item[,statistics-i
tem]...

37 DCCLTTROPTIITEM Specifies optimization items for
enhancing the performance of a global
transaction consisting of two or more user
servers.

transaction-optimization-it
em[,transaction-optimizat
ion-item]...

38 DCCLTTRWATCHTIME Specifies the maximum time to wait for
communication during transaction
synchronous point processing.

<unsigned integer> ((1 to
65535)) (unit: seconds)

39 DCCLTTRRBINFO If a transaction branch is rolled back, this
operand specifies whether to log the
information about why the transaction
branch was rolled back.

no|self|remote|all

40 DCCLTTRLIMITTIME Specifies the maximum time for
executing a transaction branch.

<unsigned integer> ((0 to
65535)) (unit: seconds)

41 DCCLTTRRBRCV Specifies whether to receive notice of the
completion of a rollback after sending
rollback directions to a destination
transaction branch of an RPC.

Y|N

42 DCCLTTRRECOVERYTYPE Specifies a method for processing a
transaction synchronous point when a
UAP error occurs.

type1|type2|type3

43 DCWATCHTIMRPCINHERIT Specifies whether the server should
inherit the maximum wait time for a CUP
response.

Y|<<N>>

44 DCSYSWATCHTIM Specifies the maximum time that
OpenTP1 control waits for a response.

<unsigned integer> ((0 to
65535)) <<maximum
response wait time>> (unit:
seconds)

45 DCCLTAUTHENT Specifies whether to enable user
authentication when the
dc_clt_cltin_s function is issued.

<<Y>>|N

46 DCCLTCONNECTINF Specifies terminal identification
information.

Terminal identification
information

No. Operand Description Specifiable value

7. Definition

390

47 DCSCDMULTI Specifies whether to use the
multi-scheduler facility.

Y|<<N>>

48 DCSCDMULTICOUNT Specifies the number of multi-scheduler
daemon processes.

<unsigned integer> ((1 to
4096)) <<1>>

49 DCHOSTSELECT Specifies whether to select the gateway
TP1/Server at random.

Y|<<N>>

50 DCSCDLOADPRIORITY Specifies whether to prioritize
distribution of the load on the gateway
TP1/Server that receives service requests.

Y|<<N>>

51 DCCLTONLYTHISNODE Specifies whether to execute services on
the specified node when the
dc_rpc_call_to_s function is issued.

Y|<<N>>

52 DCCLTNOSERVER Specifies whether the environment being
used is an environment in which TP1/
Client never communicates with TP1/
Server.

Y|<<N>>

53 DCHOSTCHANGE Specifies whether to switch the gateway
TP1/Server to another TP1/Server if TP1/
Client receives an error reply from the
gateway TP1/Server in one of the
following cases: (1) when a service
request is issued (when the
dc_rpc_call_s function is executed),
(2) when the schedule service is being
started, or (3) when the schedule service
is being terminated.

<<Y>>|N

54 DCCLTOPTION Specifies the option for extending the
functionality of the client.

<unsigned hexadecimal
number> ((00000000 to
00000008))
<<00000000>>

55 DCCLTNAMEXTEND Increases the number of service
information items acquired and managed
by clients when multi-node servers are
used.

<<0>>|1

56 DCTRCPATH Specifies the path to the directory where
trace files are created.

<character string>

57 DCTRCERR Specifies the size of error log files. <unsigned integer> ((0 to
1073741824)) <<4096>>
(unit: bytes)

No. Operand Description Specifiable value

7. Definition

391

#1:

This operand can be used in TP1/Client/W only.

#2:

This operand can be used in TP1/Client/P only.

58 DCTRCUAP Specifies the size of UAP trace files. <unsigned integer> ((4096
to 1073741824)) <<trace
information is not output>>
(unit: bytes)

59 DCTRCSOC Specifies the size of socket trace files. <unsigned integer> ((4096
to 1073741824)) <<trace
information is not output>>
(unit: bytes)

60 DCTRCSOCSIZE Specifies the data size of a socket trace to
be output.

<unsigned integer> ((64 to
4096)) <<256>> (unit:
bytes)

61 DCTRCMDL Specifies the size of module trace files. <unsigned integer> ((4096
to 1073741824)) <<trace
information is not output>>
(unit: bytes)

62 DCCLTPRFINFOSEND Specifies whether to send identification
information for the performance
verification trace to TP1/Server.

Y|<<N>>

63 DCCLTRPCMAXMSGSIZE Specifies the maximum length of a
message that can be sent or received
when an RPC is used.

<unsigned integer> ((1 to
8)) <<1>> (unit: MB)

64 DCCLTRECVBUFSIZE Specifies the TCP/IP receive buffer size. <unsigned integer> ((8192
to 1048576)) (unit: bytes)

65 DCCLTSENDBUFSIZE Specifies the TCP/IP send buffer size. <unsigned integer> ((8192
to 1048576)) (unit: bytes)

66 DCCLTTCPNODELAY Specifies whether to disable the Nagle
algorithm.

Y|<<N>>

67 DCCLTBACKLOGCOUNT#1 Specifies the number of queues for
storing connection establishment
requests.

<unsigned integer> ((0 to
4096)) <<0>>

68 dcselint#2 Specifies the interval for checking
whether a response has been received.

<unsigned integer> ((0 to
65535)) <<100>> (unit:
milliseconds)

No. Operand Description Specifiable value

7. Definition

392

7.1.2 Definition conventions
This subsection describes the symbols that are used for describing definitions.

The syntax symbols, attribute symbols, and syntax element symbols are not included
in the actual definitions.

(1) Syntax symbols
The following table lists the symbols that describe the syntax.

(2) Attribute symbols
The following table lists the symbols that describe the range of user-specified values.

(3) Syntax element symbols
The following table lists the symbols that describe the contents of user-specified
values.

Syntax symbol Meaning

[] The item between brackets can be omitted.
Example:

CLTRESDN [/U]

Specify CLTRESDN or CLTRESDN /U.

| One of the items separated by vertical bars can be selected.
Example:

DCCLTTREXPSP=Y|N

Specify DCCLTTREXPSP=Y or DCCLTTREXPSP=N.

... This symbol indicates a description is omitted. The item immediately before this
symbol can be specified more than once consecutively.
Example:

host-name [:port-number][,host-name [:port-number],...]
"host-name[:port-name]" can be specified more than once consecutively.

Attribute symbol Meaning

~ Attributes of the user-specified value are inserted after this symbol.

<< >> Default for the user-specified value

< > Syntax element symbol for the user-specified value

(()) Specification range of the user-specified value

Syntax element symbol Meaning

<alphabetic character> Alphabetic character (A to Z, a to z) and underscore (_)

7. Definition

393

<alphanumeric> Alphabetic characters and numbers (0 to 9)

<alphabetic character and
symbol>

Alphabetic characters (A to Z, a to z), #, @, and \

<unsigned integer> Numbers 0 to 9

<unsigned hexadecimal
number>

Numbers 0 to 9, A to F, a to f

<symbolic name> Alphabetic character or symbol and a number (the beginning character must be an
alphabetic character or symbol)

<character string> Any character(s)

<path name> Symbolic name, /, and period (.)
(The path name depends on the operating system used.)

Syntax element symbol Meaning

7. Definition

394

7.2 Definition details

The environment variables shown below set client environment definition. The
method used to set the environment variables varies depending on the operating
system of the client machine. In TP1/Client/W, the method also depends on the shell.

7.2.1 TP1/Client/W format
(1) sh (Bourne shell)

$ DCNAMPORT=name-service-port-number
$ DCHOST=TP1/Server-as-a-gateway
$ DCWATCHTIM=maximum-response-wait-time
$ DCCLTCONNECTTIMEOUT=timeout-for-establishing-connection
$ DCCLTTREXPTM=expiry-time-in-transaction-branch
$ DCCLTTREXPSP=Y|N|F
$ DCCLTTRWATTM=maximum-time-interval-in-transaction-inquiry-response
$ DCCLTTRCPUTM=CPU-monitoring-time-in-transaction-branch
$ DCCLTUTTRCMT=Y|N
$ DCRCVPORT=CUP-receive-port-number
$ DCSNDHOST=connected-node-name
$ DCSNDPORT=connected-port-number
$ DCSOCKOPENATRCV=Y|N
$ DCCLTDELIVERYCHECK=Y|N
$ DCUTOKEY=test-user-ID
$ DCCACHE=number-of-areas-for-temporarily-storing-service-information
$ DCCLTCACHETIM=expiration-of-temporarily-stored-service-information
$ DCCLTLOADBALANCE=Y|N
$
DCCLTSERVICEGROUPLIST=file-defining-correspondence-between-service-groups-
and-RPCs
$ DCCLTCONNECTRETRY=retry-count-for-connection-establishment
$ DCSCDDIRECT=Y|N
$ DCSCDPORT=schedule-service-port-number
$ DCCLTDATACOMP=Y|N
$ DCEXTENDFUNCTION=facility-extension-level-of-RPC-service
$ DCCLTINQUIRETIME=maximum-time-interval-in-permanent-connection
$ DCCLTPORT=client-extended-service-port-number
$ DCCLTDCCMHOST=DCCM3-logical-terminal-host-name
$ DCCLTDCCMPORT=DCCM3-logical-terminal-port-number
$ DCCLTXATMI=Y|N
$ DCWATCHTIMINHERIT=Y|N
$ DCCLTDELAY=maximum-communication-delay-time
$ DCCLTCUPSNDHOST=CUP-send-host

7. Definition

395

$ DCCLTCUPRCVPORT=port-number-used-for-CUP-reception
$ DCCLTRAPHOST=RAP-processing-listener or DCCM3-logical-terminal
$ DCCLTRAPAUTOCONNECT=Y|N
$ DCCLTTRSTATISITEM=statistics-item
$ DCCLTTROPTIITEM=transaction-optimization-item
$
DCCLTTRWATCHTIME=maximum-communication-wait-time-during-synchronous-tran
saction-point-processing
$ DCCLTTRRBINFO=no|self|remote|all
$ DCCLTTRLIMITTIME=maximum-transaction-branch-execution-time
$ DCCLTTRRBRCV=Y|N
$ DCCLTTRRECOVERYTYPE=type1|type2|type3
$ DCWATCHTIMRPCINHERIT=Y|N
$ DCSYSWATCHTIM=maximum-response-wait-time-for-OpenTP1-control
$ DCCLTAUTHENT=Y|N
$ DCCLTCONNECTINF=terminal-identification-information
$ DCSCDMULTI=Y|N
$ DCSCDMULTICOUNT=number-of-multi-scheduler-daemon-processes
$ DCHOSTSELECT=Y|N
$ DCSCDLOADPRIORITY=Y|N
$ DCCLTONLYTHISNODE=Y|N
$ DCCLTNOSERVER=Y|N
$ DCHOSTCHANGE=Y|N
$ DCCLTOPTION=client's-extension-option
$ DCCLTNAMEXTEND=0|1
$
DCCLTBACKLOGCOUNT=number-of-queues-for-storing-connection-establishment-req
uests
$ DCTRCPATH=trace-output-directory
$ DCTRCERR=error-log-size
$ DCTRCUAP=UAP-trace-file-size
$ DCTRCSOC=socket-trace-file-size
$ DCTRCSOCSIZE=socket-trace-record-size
$ DCTRCMDL=module-trace-file-size
$ DCCLTPRFINFOSEND=Y|N
$ DCCLTRPCMAXMSGSIZE=maximum-RPC-message-length
$ DCCLTRECVBUFSIZE=TCP/IP-receive-buffer-size
$ DCCLTSENDBUFSIZE=TCP/IP-send-buffer-size
$ DCCLTTCPNODELAY=Y|N
$ export DCNAMPORT DCHOST DCWATCHTIM DCCLTCONNECTTIMEOUT
 DCCLTTREXPTM DCCLTTREXPSP DCCLTTRWATTM DCCLTTRCPUTM
 DCCLTUTTRCMT DCRCVPORT DCSNDHOST DCSNDPORT DCUTOKEY
 DCCACHE DCCLTCACHETIM DCCLTLOADBALANCE
 DCCLTSERVICEGROUPLIST DCCLTCONNECTRETRY DCSCDDIRECT
 DCSCDPORT DCCLTDATACOMP DCEXTENDFUNCTION
 DCCLTINQUIRETIME DCCLTPORT DCCLTDCCMHOST

7. Definition

396

 DCCLTDCCMPORT DCCLTXATMI DCWATCHTIMINHERIT
 DCCLTDELAY DCCLTCUPRCVPORT DCCLTRAPHOST
 DCCLTRAPAUTOCONNECT
 DCCLTTRSTATISITEM DCCLTTROPTIITEM DCCLTTRWATCHTIME
 DCCLTTRRBINFO DCCLTTRLIMITTIME DCCLTTRRBRCV
 DCCLTTRRECOVERYTYPE DCWATCHTIMRPCINHERIT DCSYSWATCHTIM
 DCSOCKOPENATRCV DCCLTAUTHENT DCCLTCONNECTINF DCSCDMULTI
 DCSCDMULTICOUNT DCHOSTSELECT DCSCDLOADPRIORITY
 DCCLTONLYTHISNODE DCCLTNOSERVER DCHOSTCHANGE DCCLTOPTION
 DCCLTNAMEXTEND DCCLTBACKLOGCOUNT DCTRCPATH DCTRCERR
DCTRCUAP
 DCTRCSOC DCTRCSOCSIZE DCTRCMDL DCCLTRPCMAXMSGSIZE
 DCCLTRECVBUFSIZE DCCLTSENDBUFSIZE DCCLTTCPNODELAY

(2) csh (C shell)

% setenv DCNAMPORT name-service-port-number
% setenv DCHOST TP1/Server-as-a-gateway
% setenv DCWATCHTIM maximum-response-wait-time
% setenv DCCLTCONNECTTIMEOUT timeout-for-establishing-connection
% setenv DCCLTTREXPTM expiry-time-in-transaction-branch
% setenv DCCLTTREXPSP Y|N|F
% setenv DCCLTTRWATTM maximum-time-interval-in-transaction-inquiry-response
% setenv DCCLTTRCPUTM CPU-monitoring-time-in-transaction-branch
% setenv DCCLTUTTRCMT Y|N
% setenv DCRCVPORT CUP-receive-port-number
% setenv DCSNDHOST connected-node-name
% setenv DCSNDPORT connected-port-number
% setenv DCSOCKOPENATRCV Y|N
% setenv DCCLTDELIVERYCHECK Y|N
% setenv DCUTOKEY test-user-ID
% setenv DCCACHE number-of-areas-for-temporarily-storing-service-information
% setenv DCCLTCACHETIM expiration-of-temporarily-stored-service-information
% setenv DCCLTLOADBALANCE Y|N
% setenv DCCLTSERVICEGROUPLIST
file-defining-correspondence-between-service-groups-and-RPCs
% setenv DCCLTCONNECTRETRY entry-count-for-connection-establishment
% setenv DCSCDDIRECT Y|N
% setenv DCSCDPORT schedule-service-port-number
% setenv DCCLTDATACOMP Y|N
% setenv DCEXTENDFUNCTION facility-extension-level-of-RPC-service
% setenv DCCLTINQUIRETIME maximum-time-interval-in-permanent-connection
% setenv DCCLTPORT client-extended-service-port-number
% setenv DCCLTDCCMHOST DCCM3-logical-terminal-host-name
% setenv DCCLTDCCMPORT DCCM3-logical-terminal-port-number
% setenv DCCLTXATMI Y|N

7. Definition

397

% setenv DCWATCHTIMINHERIT Y|N
% setenv DCCLTDELAY maximum-communication-delay-time
% setenv DCCLTCUPSNDHOST CUP-send-host
% setenv DCCLTCUPRCVPORT port-number-used-for-CUP-reception
% setenv DCCLTRAPHOST RAP-processing-listener or DCCM3-logical-terminal
% setenv DCCLTRAPAUTOCONNECT Y|N
% setenv DCCLTTRSTATISITEM statistics-item
% setenv DCCLTTROPTIITEM transaction-optimization-item
% setenv DCCLTTRWATCHTIME
maximum-communication-wait-time-during-synchronous-transaction-point-processi
ng
% setenv DCCLTTRRBINFO no|self|remote|all
% setenv DCCLTTRLIMITTIME maximum-transaction-branch-execution-time
% setenv DCCLTTRRBRCV Y|N
% setenv DCCLTTRRECOVERYTYPE type1|type2|type3
% setenv DCWATCHTIMRPCINHERIT Y|N
% setenv DCSYSWATCHTIM maximum-response-wait-time-for-OpenTP1-control
% setenv DCCLTAUTHENT Y|N
% setenv DCCLTCONNECTINF terminal-identification-information
% setenv DCSCDMULTI Y|N
% setenv DCSCDMULTICOUNT number-of-multi-scheduler-daemon-processes
% setenv DCHOSTSELECT Y|N
% setenv DCSCDLOADPRIORITY Y|N
% setenv DCCLTONLYTHISNODE Y|N
% setenv DCCLTNOSERVER Y|N
% setenv DCHOSTCHANGE Y|N
% setenv DCCLTOPTION client's-extension-option
% setenv DCCLTNAMEXTEND 0|1
% setenv DCCLTBACKLOGCOUNT
number-of-queues-for-storing-connection-establishment-requests
% setenv DCTRCPATH trace-output-directory
% setenv DCTRCERR error-log-size
% setenv DCTRCUAP UAP-trace-file-size
% setenv DCTRCSOC socket-trace-file-size
% setenv DCTRCSOCSIZE socket-trace-record-size
% setenv DCTRCMDL module-trace-file-size
% setenv DCCLTPRFINFOSEND Y|N
% setenv DCCLTRPCMAXMSGSIZE maximum-RPC-message-length

7.2.2 TP1/Client/P format

[betran]#
dcnamport=name-service-port-number
dchost=TP1/Server-as-a-gateway
dcwatchtim=maximum-wait-time
dccltconnecttimeout=maximum-connection-establishment-monitoring-time

7. Definition

398

dcclttrexptm=expiry-time-in-transaction-branch
dcclttrexpsp=y|n|f
dcclttrwattm=maximum-time-interval-in-transaction-inquiry-response
dcclttrcputm=CPU-monitoring-time-in-transaction-branch
dccltuttrcmt=y|n
dcrcvport=CUP-receive-port-number
dcsndhost=connected-node-name
dcsndport=connected-port-number
dcsockopenatrcv=y|n
dccltdeliverycheck=y|n
dcutokey=test-user-ID
dccache=number-of-areas-for-temporarily-storing-service-information
dccltcachetim=expiration-of-temporarily-stored-service-information
dccltloadbalance=y|n
dccltservicegrouplist=file-defining-correspondence-between-service-groups-
and-RPCs
dccltconnectretry=retry-count-for-connection-establishment
dcscddirect=y|n
dcscdport=schedule-service-port-number
dccltdatacomp=y|n
dcextendfunction=facility-extension-level-of-RPC-service
dccltinquiretime=maximum-time-interval-in-permanent-connection
dccltport=client-extended-service-port-number
dccltdccmhost=DCCM3-logical-terminal-host-name
dccltdccmport=DCCM3-logical-terminal-port-number
dccltxatmi=Y|N
dcwatchtiminherit=Y|N
dccltdelay=maximum-communication-delay-time
dccltcupsndhost=CUP-send-host
dccltcuprcvport=port-number-used-for-CUP-reception
dccltraphost=RAP-processing-listener or DCCM3-logical-terminal
dccltrapautoconnect=Y|N
dcclttrstatisitem=statistics-item
dcclttroptiitem=transaction-optimization-item
dcclttrwatchtime=maximum-communication-wait-time-during-transaction-sync
hronous-point-processing
dcclttrrbinfo=no|self|remote|all
dcclttrlimittime=maximum-transaction-execution-time
dcclttrrbrcv=Y|N
dcclttrrecoverytype=type1|type2|type3
dcwatchtimrpcinherit=Y|N
dcsyswatchtim=maximum-OpenTP1-control-response-wait-time
dccltauthent=y|n
dccltconnectinf=terminal-identification-information
dcscdmulti=Y|N

7. Definition

399

dcscdmulticount=number-of-multi-scheduler-daemon-processes
dchostselect=Y|N
dcscdloadpriority=Y|N
dccltonlythisnode=Y|N
dccltnoserver=Y|N
dcselint=reception-check-interval
dchostchange=Y|N
dccltoption=client's-extension-option
dccltnamextend=0|1
dctrcpath=trace-output-directory
dctrcerr=error-log-size
dctrcuap=UAP-trace-file-size
dctrcsoc=socket-trace-file-size
dctrcsocsize=socket-trace-record-size
dctrcmdl=module-trace-file-size
dccltprfinfosend=Y|N
dccltrecvbufsize=TCP/IP-receive-buffer-size
dccltsendbufsize=TCP/IP-send-buffer-size
dcclttcpnodelay=Y|N

#

This operand specifies TP1/Client/P definition start declaration and is mandatory.
[] does not mean "omissible."

This operand can be omitted.

Include the above client environment definitions in the betran.ini file under the
Windows directory.

When you use the _s version of a function (dc_xxx_xxx_s), you can use any client
environment definition file you created. When you use your own client environment
definition file, specify the pathname of the file in the defpath argument of the
dc_clt_cltin_s function. The pathname must be specified with the absolute path
or relative path from the current drive (current directory).

When you use the facility for receiving one-way messages from the server, you can
specify any client environment definition file in the
dc_clt_accept_notification_s, dc_clt_cancel_notification_s, or
dc_clt_open_notification_s function.

7.2.3 TP1/Client/W
Defines the environment for using the OpenTP1 client function.

As a general rule, enter these definition commands in /etc/profile or $HOME/
.profile for sh (Bourne shell), or in /etc/cshrc or $HOME/.cshrc for csh (C
shell).

7. Definition

400

In a multi-thread environment, you can create your own client environment definition
file that contains definitions in the TP1/Client/P format. To use your own client
environment definition file, specify the absolute pathname of it in the defpath
argument of the dc_clt_cltin_s function. If you want to use a different client
environment definition for each thread, issue the dc_clt_cltin_s function,
specifying the pathname of the desired file in the defpath argument for each thread.

7.2.4 TP1/Client/P
Defines the environment for using the OpenTP1 client function.

Create a client environment definition file named BETRAN.INI under the Windows
directory (generally, \WINDOWS) and define the definition commands listed above in
that file.

When you use the _s version of a function (dc_xxx_xxx_s), you can use any client
environment definition file you created. When you use your own client environment
definition file, specify the pathname of the file in the defpath argument of the
dc_clt_cltin_s function. The pathname must be specified with the absolute path
or relative path from the current drive (current directory).

When you use the facility for receiving one-way messages from the server, you can
specify any client environment definition file in the
dc_clt_accept_notification_s, dc_clt_cancel_notification_s, or
dc_clt_open_notification_s function.

7.2.5 Operands common to TP1/Client/W and TP1/Client/P
For Windows, use lowercase alphabetic characters to specify operands.

For details about the operands that are specific to TP1/Client/W, see TP1/Client/
W-specific operands. For details about the operands that are specific to TP1/Client/P,
see TP1/Client/P-specific operands.

DCNAMPORT=name-service-port-number ~<unsigned integer> ((5001-65535))
<<10000>>

Specify the port number of the name service. The target TP1/Server must use this
port number to start the name service.

You can also specify the port number of the name service using DCHOST in the
client environment definition.

DCHOST=TP1/Server-as-a-gateway ~<character string>

Specify the host computer name and the port number for the TP1/Server used as
a gateway. You can specify two or more TP1/Servers as gateways using a comma
(,) as a separator.

Format:

7. Definition

401

host-computer-name[:port-number][,host-computer-name[:port-number],...
]

host-computer-name~<character string>

port-number~<unsigned integer>((5001-65535))

You can specify a maximum of 63 characters for the host name. When
00000008 is specified for DCCLTOPTION in the client environment
definition, you can specify a maximum of 255 characters. The maximum
number of characters you can specify in this operand is 1,023.

Do not place a blank character (space or tab) except after the separator (,).

You can specify an IP address in decimal dot notation for the host name.

When the port number is not specified, the system uses the value for DCNAMPORT
in the client environment definition.

When you have specified more than one TP1/Server in DCHOST and an error is
detected in the TP1/Server being used as a gateway, system operation depends on
the specification of DCHOSTSELECT in the client environment definition. If N is
specified for DCHOSTSELECT, the system attempts to replace the failed node by
referencing the next TP1/Server of the currently used TP1/Server. If Y is specified
for DCHOSTSELECT, the system selects a TP1/Server at random (excluding the
TP1/Server in which the error was detected) and attempts to replace the failed
node.

Note that when you issue a client user authentication request with the gateway
TP1/Server specified, this specification overrides the specification of DCHOST in
the client environment definition. If the gateway TP1/Server is not specified
either in a client user authentication request or in DCHOST in the client
environment definition, TP1/Client uses a broadcast to determine the TP1/Server
to be used as the gateway. To perform a broadcast in TP1/Client/P, you must
specify the broadcast address in the hosts file (the host name must be
broadcast).

DCWATCHTIM=maximum-response-wait-time~<unsigned integer> ((0-65535))
<<180>> (unit: seconds)

For response type RPCs, specify the maximum wait time between a CUP sending
a service request to an SPP and the return of the service response. An error is
returned to the CUP if no response is received within the specified duration.

If DCWATCHTIM is set to zero, the function waits for a response indefinitely.

DCCLTCONNECTTIMEOUT=timeout-for-establishing-connection ~<unsigned
integer>((0-65535))<<0>>(unit: seconds)

Specify the timeout for establishing connection in non-blocking mode for data
transmission.

7. Definition

402

When you specify 0 or omit this operand, connection is established in blocking
mode and the operating system monitors whether connection is established.

If this operand is incorrectly specified, the KFCA02401-E message is output to
the error log and the dc_clt_cltin_s function returns a DCCLTER_FATAL
error.

The function issued by the CUP may return an error before the time specified in
this operand elapses. This error occurs, for example, when the remote system is
not running. This error occurs because the operating system's timeout for
establishing a connection prevails over the timeout specified in this operand. The
operating system's timeout for establishing a connection differs depending on the
platform you are using.

This operand monitors the time elapses after a connection establishment function
of TP1/Client is executed. This time does not include the processing time of the
function itself. Depending on the function or program you use, its processing
time may be longer than the time specified in this operand.

DCCLTTREXPTM=expiry-time-in-transaction-branch ~<unsigned integer>
((0-65535)) (Unit: seconds)

Specify the maximum expiry time in a transaction branch. This operand is valid
only when the transaction is started from a CUP.

If the transaction branch is not completed within the specified expiry time, its
process is terminated abnormally and rolled back. Specify 0 not to perform
monitoring.

If this operand is not specified, the process follows the specification of the
trn_expiration_time operand in the client service definition. If the
connection destination is a RAP-processing server, the process follows the
specification of the trn_expiration_time operand in the RAP-processing
listener service definition.

When using the RPC function, use DCCLTTREXPSP to specify whether the
processing time for transaction branches executed in other processes is to be
included in the monitoring time.

DCCLTTREXPSP=Y|N|F

Specify whether the following time is to be included in the monitoring time for a
transaction branch:

The time required for a transaction branch of the transactional RPC executing
process to call another transaction branch using the RPC function and to wait for
completion of the processing

Y: Includes the time in the monitoring time.

N or F: Does not include the time in the monitoring time.

7. Definition

403

If this operand is not specified, the process follows the specification of the
trn_expiration_time_suspend operand in the client service definition. If
the connection destination is a RAP-processing server, the process follows the
specification of the trn_expiration_time_suspend operand in the
RAP-processing listener service definition.

DCCLTTRWATTM=maximum-time-interval-in-transaction-inquiry-response~
<unsigned integer> ((1-65535))<<180>>(Unit: seconds)

Specify the maximum time interval in transaction processing between an inquiry
made from the CUP to a server (by issuing a transaction control function or the
dc_rpc_call_s function) and another inquiry. This operand is valid only when
a transaction is started from the CUP.

The maximum time interval in transaction inquiry response must be smaller than
the expiry time in transaction branch.

If no inquiry occurs within the specified time, the system rolls back the
transaction process on the server.

DCCLTTRCPUTM=CPU-monitoring-time-in-transaction-branch ~<unsigned
integer> ((0-65535))(Unit: seconds)

Specify the CPU time that can be used by a transaction branch before
synchronous-point processing. This operand is valid only when the transaction is
started from a CUP.

If 0 is specified, the CPU time is not monitored.

If the specified time is exceeded, the process of the transaction branch is
terminated abnormally and rolled back.

If this operand is not specified, the process follows the specification of the
trn_cpu_time operand in the client service definition. If the connection
destination is a RAP-processing server, the process follows the specification of
the trn_cpu_time operand in the RAP-processing listener service definition.

DCCLTUTTRCMT=Y|N ~<<N>>

Specify whether the transaction started from a CUP using the online tester is to be
committed or rolled back.

Y: The transaction is committed.

N: The transaction is rolled back.

DCRCVPORT=Receive-CUP-port-number ~<unsigned integer>((1-65535))
<<11000>>

Specify the port number of the CUP that receives messages when you use the
TCP/IP communication facility to receive messages. Specify this port number on
the message-originating side. Specify a unique port number for each process or

7. Definition

404

thread when multiple processes or multiple threads are executed simultaneously
on the same machine.

Do not specify a port number for use by the operating system or other programs
even if one can be specified. If you specify a port number in this case, response
data might not be received correctly. The port numbers used by the operating
system differ depending on the operating system. For details, see the
documentation of your operating system.

DCSNDHOST=connected-node-name ~<character string>

Specify the host name of the node to be connected by establishing a connection
when you use the TCP/IP communication facility to send messages.

You can specify an IP address in decimal dot notation as a host name.

You can specify a maximum of 63 characters for the host name. You can specify
a maximum of 255 characters when 00000008 is specified for DCCLTOPTION in
the client environment definition.

DCSNDPORT=connected-port-number ~<unsigned integer>((1-65535))
<<12000>>

Specify the port number of the node to be connected by establishing a connection
when you use the TCP/IP communication facility to send messages.

DCSOCKOPENATRCV=Y|N ~<<N>>

Specify when to open the receive socket for sending and reception performed with
one connection, when using the TCP/IP communication facility. Here, when to
open the receive socket means when TP1/Client begins to wait for connection
from the other party.

This definition is effective only when DCCLT_SNDRCV is specified in the flags
argument of the dc_rpc_open_s function.

Y: Opens the receive socket if no connection has been established when any of the
following functions is issued:

• dc_clt_receive_s

• dc_clt_receive2_s

• dc_clt_assem_receive_s

N: Opens the receive socket when the dc_rpc_open_s function is executed. This
is the default.

DCCLTDELIVERYCHECK=Y|N ~<<N>>

Specify whether to use the message delivery confirmation facility.

Y: The message delivery confirmation facility is used.

7. Definition

405

N: The message delivery confirmation facility is not used.

When the message delivery confirmation facility is used, if the
dc_clt_assem_send_s function is issued, the function sends a message,
receives response-only data, and then returns control. If the
dc_clt_assem_receive_s function is issued, the function receives a message,
sends response-only data, and then returns control.

If either the dc_clt_assem_send_s or dc_clt_assem_receive_s function
is issued when this operand is set to N, the function uses the message assembly
facility to send or receive a message.

DCUTOKEY=test-user-ID ~<1-4 alphanumeric characters>

Specify this operand when executing a CUP using the online tester.

With this operand specified, SPPs started from the CUP can be executed in test
mode.

DCCACHE=number-of-areas-for-temporarily-storing-service-information
~<unsigned integer> ((2-10240)) <<8>>

For when you execute an RPC from a client, specify the number of cache areas
that store the service information provided by the TP1/Server name service that
is used as a gateway. Each cache area stores one service information item.

The stored service information is deleted from the cache areas when the effective
period, specified using DCCLTCACHETIM in the client environment definition,
expires.

When you specify this operand, use the following as a guideline:

When DCCLTLOADBALANCE=N is specified

Specify the number of servers to which the client sends RPC-based requests.

When DCCLTLOADBALANCE=Y is specified

Specify the number of all servers in the nodes that are started as multi-node
servers.

Each cache area consumes about 150 bytes of memory. When DCSCDDIRECT=Y
is specified in the client environment definition, this operand is invalid.

DCCLTCACHETIM=expiration-of-temporarily-stored-service-information
~<unsigned integer> ((0-65535)) <<30>> (Unit: seconds)

Specify the effective period for the service information that is acquired from the
TP1/Server name service that is used as a gateway. When the effective period
expires, the service information is deleted from the cache areas. When you
specify 0, no effective period is specified. Once the service information is stored,
it will be valid until the dc_rpc_close_s function is issued or the existing

7. Definition

406

information is overwritten by new service information when free cache areas run
short. This operand is valid only when DCCLTLOADBALANCE=Y is specified in the
client environment definition. This operand is invalid when DCSCDDIRECT=Y is
specified in the client environment definition.

DCCLTLOADBALANCE=Y|N ~<<N>>

Specify whether to use the inter-node load-balancing facility when multi-node
servers are used. The inter-node load-balancing facility evaluates the load status
of each node internally within TP1/Client when an RPC is executed, and
distributes the load to servers with less load.

Y: Uses the inter-node load-balancing facility.

N: Does not use the inter-node load-balancing facility.

When you specify Y for this operand, specify the following operands in the client
environment definition according to the number of nodes or the number of servers
that handle RPC-based requests.

• DCCACHE

• DCCLTCACHETIM

• DCCLTNAMEXTEND

This operand is invalid when DCSCDDIRECT=Y is specified in the client
environment definition.

DCCLTSERVICEGROUPLIST=file-defining-correspondence-between-service-grou
ps-and-RPCs ~<character string>

Specify a text file (with its path name) that defines correspondence between the
service group and the RPC entry point for the corresponding server. This file is
used for issuing an RPC to a server other than OpenTP1. Define this file as
follows.

Format:

<service-group-name> <server-host-computer-name>
<entry-point-port-number> [,<server-host-computer-name>
<entry-point-port-number>,...] [<comment>]

• Define a pair of the service group and the RPC entry point per line in a text file.
When two or more RPC entry points are available, use as many lines as these
entry points.

• Separate each item with a space or a tab.

• Specify each item as follows.

7. Definition

407

service-group-name
Any character string with up to 31 characters.

server-host-computer-name
Host name of the connection destination host. You can specify a maximum
of 63 characters for the host name. You can specify a maximum of 255
characters when 00000008 is specified for DCCLTOPTION in the client
environment definition. You can also specify an IP address in decimal dot
notation as a host name.

entry-point-port-number
Numeric value between 1 and 65535 as a port number for accepting RPCs.

comment
Any text beginning with #. This is assumed to be a comment to the end of
the line and is ignored for the processing. The comment is optional.

When you specify multiple RPC entry points, the system selects one of them at
random and attempts to connect it. If an attempt to connect the selected host fails,
that host is eliminated from the connection destination options. Then, the system
selects another RPC entry point at random in an attempt to connect. This step will
be repeated. If all the attempts to connect a RPC entry point fail, the
dc_rpc_call_s function returns an error.

Evaluating the file content:

When the file is defined incorrectly, TP1/Client ignores the invalid line. It
also outputs the corresponding line number to the error log.

If the name of the service group called by the dc_rpc_call_s function has not
been defined in the file specified in this operand, operation follows the
specification of the DCCLTNOSERVER operand in the client environment
definition:

• When DCCLTNOSERVER=Y is specified:

The function immediately returns a DCRPCER_NO_SUCH_SERVICE_GROUP
error.

• When DCCLTNOSERVER=N is specified or the DCCLTNOSERVER operand is
omitted:

On recognizing that the name of the called service group is not defined in the
file specified in this operand, the function performs an RPC to TP1/Server.

DCCLTCONNECTRETRY=retry-count-for-connection-establishment ~<unsigned
integer> ((0-255)) <<0>>

Specify the maximum number of times a request to establish connection should

7. Definition

408

be retried if a timeout occurred for a request because the server was offline or
turned off, for example. When 0 is specified in this operand or when this operand
is not specified, TP1/Client does not perform a retry. If this operand is specified
incorrectly, TP1/Client assumes 0. This definition is effective when you attempt
user authentication (specify DCCLTAUTHENT=Y and execute the
dc_clt_cltin_s function with DCNOFLAGS specified in the flags argument).

DCSCDDIRECT=Y|N ~<<N>>

Specify whether to use the function to directly inquire into the schedule service
without inquiring service information from the TP1/Server name service (RPC
that does not use the name service).

Y: Uses an RPC that does not use the name service.

N: Does not use an RPC that does not use the name service.

When DCSCDPORT in the client environment definition specifies the port number
for the schedule service, the client makes an inquiry using that port number.
When no DCSCDPORT is defined, the client acquires the port number for the
schedule service from TP1/Server, then makes an inquiry.

When this function is used, the program cannot call socket-receiving type SPPs.
Definitions of DCCACHE, DCCLTCACHETIM, and DCCLTLOADBALANCE in the
client environment definition are ignored. When DCCLTSERVICEGROUPLIST is
specified in the client environment definition, the definition of DCSCDDIRECT is
ignored.

DCSCDPORT=schedule-service-port-number ~<unsigned integer>
((5001-65535))

Specify the port number of the schedule service. When DCSCDMULTI=Y and
DCSCDDIRECT=Y are specified in the client environment definition, specify the
port number which is used as the base of the multi-scheduler daemon. The target
TP1/Server must use this port number to start the schedule service or the
multi-scheduler daemon. For details about the specification of the schedule
service or the multi-scheduler daemon of TP1/Server, see the manual OpenTP1
System Definition.

This operand is valid only when DCSCDDIRECT=Y is specified in the client
environment definition.

When DCSCDMULTI=Y and DCSCDDIRECT=Y are specified in the client
environment definition, also see the description of DCSCDMULTICOUNT in the
client environment definition.

If you omit this operand, the name service is sent a request regarding the port
number of the schedule service or the multi-scheduler daemon.

DCCLTDATACOMP=Y|N ~<<N>>

7. Definition

409

Specify whether to use the data compression.

Y: The data compression is used.

N: The data compression is not used.

DCEXTENDFUNCTION=facility-extension-level-of-RPC-service ~<unsigned
hexadecimal integer> ((00000000-00000001)) <<00000000>>

Specify either of the following as the extension level of the RPC service facility.
Specify all the zeros written below. Even if you specify a value that cannot be
specified, TP1/Client may operate incorrectly without generating an error code.

00000000

The RPC service facility is not extended.

00000001

If the SPP that is executing a service request terminates abnormally, the
dc_rpc_call_s function return an error code
(DCRPCER_SERVICE_TERMINATED) to isolate the error. If this
specification is not made, DCRPCER_TIMED_OUT and
DCRPCER_SERVICE_NOT_UP are returned.

This definition is invalid when a service request (dc_rpc_call_s function) is
executed during establishment of a permanent connection or within the scope of
a transaction. During establishment of a permanent connection or within a
transaction, the specification of the rpc_extend_function operand in the user
service default definition is valid.

DCCLTINQUIRETIME=maximum-time-interval-in-permanent-connection
<unsigned integer> ((0-1048575)) (unit: seconds)

Specify the maximum interval between an inquiry from the CUP to the server and
the next inquiry. The CUP execution process or RAP-processing-server monitors
this interval, and forcibly releases the permanent connection if no inquiry is made
within the specified period of time.

This definition is ineffective when you establish permanent connection with a
DCCM3 logical terminal. DCCM3 provides the equivalent feature using the
terminal monitoring time. For DCCM3, specify the terminal monitoring time in
the LEFTLIMIT clause of the TERMINAL statement for the data communication
definition.

If expiration of the maximum interval is detected in a transaction, the transaction
is rolled back.

If 0 is specified, the system waits infinitely for an inquiry from the CUP. When
you omit this specification, the process follows the specification of the
clt_inquire_time operand in the client service definition or

7. Definition

410

rap_inquire_time operand in the RAP-processing listener service definition.
If the connection destination is a RAP-processing server, the process follows the
specification of the rap_inquire_time operand in the RAP-processing listener
service definition.

The maximum time interval in permanent connection specified in the definition
monitors the time between the dc_clt_connect_s function and the
dc_clt_disconnect_s function when a permanent connection is established.
The maximum time interval in transaction inquiry response (DCCLTTRWATTM)
monitors the time between inquiries up to the dc_trn_unchained_commit_s
function when the dc_trn_begin_s function is issued without establishing a
permanent connection.

DCCLTPORT=client-extended-service-port-number ~ <unsigned integer>
((5001-65535))

Specify the port number of the client extended service. The target TP1/Server
must use this port number to start the client extended service. Specify the port
number of the client extended service using the clt_port operand in the client
service definition.

If this definition is not specified, the port number of the client extended service is
inquired from the name service.

DCCLTDCCMHOST=DCCM3-logical-terminal-host-name
When you request establishing the permanent connection with a DCCM3 logical
terminal, specify the host name of the connection target logical terminal. At this
time, specify DCCLT_DCCM3 in the flags argument of the dc_clt_connect_s
function.

Specify as follows.

host-name:[port-number][,host-name[:port-number],...]

host-name ~<character string>

port-number ~<unsigned integer> ((1-65535))

You can specify a maximum of 63 characters for the host name. When
00000008 is specified for DCCLTOPTION in the client environment
definition, you can specify a maximum of 255 characters. The maximum
number of characters you can specify in this operand is 1,023.

You can use a blank character (space or tab) only after a delimiter (,).

You can specify an IP address in decimal dot notation as a host name.

If you do not specify a port number, the port number of the DCCM3 logical
terminal specified in the DCCLTDCCMPORT client environment definition is
assumed.

7. Definition

411

When you specify multiple DCCM3 logical terminals, the system selects one of
them at random and attempts to connect it. If an attempt to connect to the selected
DCCM3 logical terminal fails, that DCCM3 logical terminal is eliminated from
the connection destination options. Then, the system selects another DCCM3
logical terminal at random in an attempt to connect. This step will be repeated.
If all the attempts to connect a DCCM3 logical terminal fail, the
dc_clt_connect_s function returns an error.

When you establish a permanent connection to communicate with a DCCM3
logical terminal, the value specified in the DCCLTSERVICEGROUPLIST client
environment definition is ignored. Note that the data compression cannot be
performed.

DCCLTDCCMPORT=DCCM3-logical-terminal-port-number ~ <unsigned integer>
((1-65535)) <<30000>>

Specify the port number with which the CUP makes a request of permanent
connection to the DCCM3 logical terminal.

DCCLTXATMI=Y|N ~ <<N>>

Specify whether to use the XATMI interface for communication. If this operand
is specified incorrectly, TP1/Client assumes N.

Y: Use the XATMI interface.

N: Do not use the XATMI interface.

DCWATCHTIMINHERIT=Y|N ~ <<N>>

Specify whether an extended client service should inherit the maximum CUP
response wait time for transaction or connection control.

Y: An extended client service inherits the maximum CUP response wait time.

N: An extended client service does not inherit the maximum CUP response wait
time.

When you specify Y for this operand, refer to DCCLTDELAY in the client
environment definition.

DCCLTDELAY=maximum-communication-delay-time ~ <unsigned integer>
((0-65535)) <<0>> (units: seconds)

Specify this item when terminating server response monitoring earlier than the
client response monitoring, considering the communication overhead between the
CUP and an extended client service. This definition allows terminating the server
monitoring quickly by the specified time. Prompt termination prevents the
improper transmission of messages due to the time-out of client monitoring.

This definition is valid only when Y is set for DCWATCHTIMINHERIT in the client
environment definition. The definition of DCCLTDELAY is ignored when 0 is set

7. Definition

412

for client environment definition DCWATCHTIM. If the subtraction of a value
specified in DCCLTDELAY from a value specified in DCWATCHTIM provides 0 or
negative value, the definition of DCCLTDELAY is ignored, with 1 defaulted to.

You can dynamically change a value specified for DCWATCHTIM in the client
environment definition by issuing the dc_rpc_set_watch_time_s function.
If such value has been dynamically changed, the new value is calculated by the
dc_rpc_watch_time_s function.

DCCLTCUPSNDHOST=CUP-send-host ~<character string>

Specify the host that sends a connection establishment request.

You can specify a maximum of 63 characters for the host name. If you specify
00000008 for DCCLTOPTION in the client environment definition, you can
specify a maximum of 255 characters for the host name.

You can also specify an IP address in decimal dot notation for the host name.

If you specify localhost as the host name or an IP address that begins with 127,
the dc_clt_cltin_s function returns a DCCLTER_FATAL error.

If you specify a host that is not on the same machine on which the CUP runs, the
communication function returns a DCCLTER_NET_DOWN or DCRPCER_NET_DOWN
error.

If you omit this operand, the send host is assigned automatically.

DCCLTCUPRCVPORT=port-number-used-for-CUP-reception ~ <unsigned
integer> ((5001-65535))

Specify the port number of a CUP that receives a message from the server.

The port number specified in this definition is valid when you use the following
functions.

• Ordinary RPC function (for reception)

• Transaction control function

• Permanent connection establishment function

If you omit this operand, the system uses the port number assigned by it.

Specify a unique port number for each process or thread when multiple processes
or multiple threads are executed simultaneously on the same machine.

Do not specify a port number for use by the operating system or other programs
even if the port number is valid. If you specify a port number in this case,
response data might not be received correctly. The port numbers used by the
operating system differ depending on the operating system. For details, see the
documentation of your operating system.

7. Definition

413

DCCLTRAPHOST=RAP-processing-listener or DCCM3-logical-terminal
Specify the host name and port number of a RAP-processing listener or the
DCCM3-logical-terminal supported in TP1/Server.

The following items give the formats.

host-name:port-number[,host-name:port-number,...]

host-name ~ <character string>

port-number ~ <unsigned integer> ((5001-65535))

You can specify a maximum of 63 characters for the host name. When
00000008 is specified for DCCLTOPTION in the client environment
definition, you can specify a maximum of 255 characters. The maximum
number of characters you can specify in this operand is 1,023.

You can use a blank character (space or tab) only after a delimiter (,).

You can also specify an IP address in decimal dot notation as a host name.

If you issue the dc_clt_connect_s function with DCNOFLAGS set at flags, the
system requests a RAP-processing listener or the DCCM3 logical terminal for
TP1/Server to establish a permanent connection when you specify this definition.
If you do not specify this definition, the system requests an extended client service
for TP1/Server to establish a permanent connection.

When you request establishing the permanent connection with a DCCM3 logical
terminal, the data compression is unavailable.

Note, however, that, if a firewall exists between the CUP and the RAP-processing
listener or the DCCM3 logical terminal, the host name and port number specified
in DCCLTRAPHOST become the host name and port number of the firewall,
respectively.

When you specify several pairs of a host name and the port number of the
RAP-processing listener (or the port number of the DCCM3 logical terminal), the
system selects one of the pairs at random and attempts to connect the selected
host. If an attempt to connect the selected host fails, that host is eliminated from
the connection destination options. Then, the system selects another host at
random in an attempt to connect. This step will be repeated. If all the attempts to
connect a host fail, the dc_clt_connect_s function returns an error.

When you establish a permanent connection to communicate with a
RAP-processing listener or with a DCCM3 logical terminal, the value specified
in the DCCLTSERVICEGROUPLIST client environment definition is ignored.

The following table shows the relationships between the client environment
definition and flags on the dc_clt_connect_s function. You can find the target
of permanent connection.

7. Definition

414

Legend:

Y: Specified

Blank: Not specified

1

Establish permanent connection for a DCCM3 logical terminal specified by
DCCLTRAPHOST.

2

Establish permanent connection for a DCCM3 logical terminal specified by
DCCLTDCCMHOST.

DCCLTRAPAUTOCONNECT=Y|N ~ <<N>>

Specify whether to automatically establish permanent connection between a CUP
and a RAP-processing server or between a CUP and a DCCM3 logical terminal.

Y: Automatically establishes a permanent connection.

N: Does not automatically establish a permanent connection.

Specifying Y in this definition automatically establishes the permanent
connection if the permanent connection is not yet established when the following
functions are executed. The requested permanent connection destination is a
RAP-processing listener or a DCCM3 logical terminal defined in the
DCCLTRAPHOST client environment definition.

Argument flags Client environment definition Establishing permanent
connection for:

DCCLTDCCMHOST DCCLTRAPHOST

DCNOFLAGS Y Y RAP-processing server or
DCCM3 logical terminal1

 CUP execution process

 Y RAP-processing server or
DCCM3 logical terminal1

 CUP execution process

DCCLT_DCCM3 Y Y DCCM3 logical terminal2

 DCCM3 logical terminal2

 Y Error return

 Error return

7. Definition

415

1. dc_rpc_call_s function

2. dc_trn_begin_s function

However, if you execute function number 2 for a DCCM3 logical terminal, an
error is returned.

When you specify Y in this definition, you need not execute the
dc_clt_connect_s function. In addition, the dc_clt_disconnect_s
function need not be executed since the permanent connection is automatically
released when the dc_rpc_close_s function is executed.

DCCLTTRSTATISITEM=statistics-item[,statistics-item]...
Specify the string constant that specifies the transaction branch statistics to be
acquired. This definition is valid only when a transaction is started from the CUP.

nothing

Does not acquire statistics.

base

Acquires the following information as basic information.

Transaction branch's identifier

Result of the transaction branch's settlement

Type of the transaction branch's execution process

Name of the transaction branch's execution server

Name of the transaction branch's execution service

executiontime

Acquires basic information and execution time information about a
transaction branch.

cputime

Acquires basic information and CPU time information about a transaction
branch.

You can specify nothing only once. Another statistics item has priority over
nothing.

When acquiring statistics about a transaction, specify one of the following.

• trn_tran_statistics=Y in the transaction service definition

• -s option in the trnstics command

If this operand is not specified, the system follows the specification of the
trn_statistics_item operand in the client service definition. If the

7. Definition

416

connection destination is a RAP-processing server, the process follows the
specification of the trn_statistics_item operand in the RAP-processing
listener service definition.

DCCLTTROPTIITEM=transaction-optimization-item[,transaction-optimization-it
em]...
Specify, by the following character string, an optimization item for enhancing the
performance of a global transaction consisting of two or more user servers. This
definition is valid only when a transaction is started from the CUP.

base

Optimizes the entire synchronous point acquisition processing (preparation,
commit and rollback processing). OpenTP1 transaction control is performed
in a two-phase commit way. Commit control between two transaction
branches, therefore, requires four cycles of inter-process communication.

If all of the following requirements are satisfied, the parent transaction
branch performs commit processing instead of child transaction branches to
reduce four cycles of inter-process communication required for commit
control.

- The parent transaction branch and child transaction branches are located
under same OpenTP1.

- The parent transaction branch uses a synchronous response RPC to call
child transaction branches.

- The object for the XA interface for a resource manager accessed by a child
transaction branch is also linked to the parent transaction branch.

asyncprepare

Optimizes prepare processing if the system cannot optimize all the
synchronous point acquisition processing because requirements on base are
not satisfied. If all of the following requirements are satisfied, the system
performs preparation before an RPC return when a child transaction branch
executes a service request using an RPC issued from the parent transaction
branch. The result is that two cycles of inter-process communication are
reduced.

Processing cannot be optimized using base. The parent transaction branch
uses a synchronous response type PRC to call a child transaction.

This optimization, however, delays the response time of a synchronous
response type of RPC issued by the parent transaction branch. For a child
transaction branch, this optimization increases the interval from prepare
processing to commit processing. (In this status, a transaction cannot be
settled if directions are not given from the parent transaction branch.) If

7. Definition

417

OpenTP1 for the parent transaction branch is out of order, the
communication between transaction branches impossible. Therefore, that
lack of communication between those branches delays the validation of a
journal file swap and check point dump file. The result may be that OpenTP1
for a child transaction branch is also out of order.

A duplicate transaction optimization item can be specified. Base, however, has
priority over asyncprepare.

If this operand is not specified, the system follows the specification of the
trn_optimum_item operand in the client service definition. If the connection
destination is a RAP-processing server, the process follows the specification of
the trn_optimum_item operand in the RAP-processing listener service
definition.

DCCLTTRWATCHTIME=maximum-communication-wait-time-during-transaction-sy
nchronous-point-processing ~ <unsigned integer> ((1-65535)) (units: seconds)

Specify the maximum reception wait time for the communication between
transaction branches (prepare, commit, rollback directions or response) during
transaction synchronous point processing. This definition is valid only when a
transaction is started from the CUP.

If the system does not give directions or response within a specified period, the
transaction branch is rolled back if the first phase of two-phase commit is being
processed. After the completion of the first phase, the system retries transaction
settlement processing in a system process for a transaction service.

If this operand is not specified, the system follows the specification of the
trn_watch_time operand in the client service definition. If the connection
destination is a RAP-processing server, the process follows the specification of
the trn_watch_time operand in the RAP-processing listener service definition.

DCCLTTRRBINFO=no|self|remote|all

Specify whether to save information about the cause of a rollback as logs if a
transaction branch has been rolled back. This definition is valid only when a
transaction is started from the CUP.

no

Does not obtain rollback information.

self

Obtains rollback information in a log. The rollback information is only for
the transaction branch that caused the rollback.

remote

Obtains rollback information in a log. The rollback information is the same

7. Definition

418

information as self, plus the rollback information for any transaction
branch that requested a rollback from another node's transaction branch.

all

Obtains rollback information in a log. The rollback information is the same
information as remote, plus the rollback information for any transaction
branch that requested a rollback from the local node's transaction branch.

If this operand is not specified, the system follows the specification of the
trn_rollback_information_put operand in the client service definition. If
the connection destination is a RAP-processing server, the process follows the
specification of the trn_rollback_information_put operand in the
RAP-processing listener service definition.

DCCLTTRLIMITTIME=maximum-transaction-branch-execution-time ~
<unsigned integer> ((0-65535)) (units: seconds)

Specify the maximum transaction branch execution time. This definition is valid
only when a transaction is started from the CUP.

The system automatically sets the expiration time of communication in
synchronous point processing and of the dc_rpc_call_s function. This
automatic setting prevents the period from the start of a transaction branch to the
termination of synchronous point processing from exceeding a period specified in
this operand.

• Time-out period of the dc_rpc_call_s function

If K is equal to or greater than a period specified in this operand, the system
does not perform request processing, and returns as if a timeout error
occurred.

If K is smaller than a period specified in this operand and if W is equal or less
than a period specified in this operand minus K, the system adopts W as the
time-out period.

If K is less than a period specified in this operand and if W is greater than a
period specified in this operand minus K, the system adopts the period
specified in this operand minus K as the time-out period.

K: Current time minus transaction branch start time

W: Time specified in the DCWATCHTIM operand

• Time-out period of communication in synchronous point processing

If K is equal to or greater than a period specified in this operand, the
expiration time is one second.

If K is less than a period specified in this operand and if W is equal or less
than a period specified in this operand minus K, the system adopts W as the

7. Definition

419

time-out period.

If K is less than a period specified in this operand and if W is greater than a
specified period in this operand minus K, the system adopts the period
specified in this operand minus K as the time-out period.

K: Current time minus transaction branch start time

W: Time specified in the DCCLTTRWATCHTIME operand (or, if the
DCCLTTRWATCHTIME operand is omitted, the time specified in the
DCWATCHTIM operand)

If processing other than the above reception wait takes much time, a transaction
branch may not be terminated within a period specified in this operand.

If the period specified in this operand has passed before the start of synchronous
point processing, the transaction is rolled back.

If you specify 0, the system does not monitor the time.

If this operand is not specified, the system follows the specification of the
trn_limit_time operand in the client service definition. If the connection
destination is a RAP-processing server, the process follows the specification of
the trn_limit_time operand in the RAP-processing listener service definition.

DCCLTTRRBRCV=Y|N

Specify whether to receive notice of the completion of a rollback after sending
rollback directions to a destination transaction branch of an RPC. This definition
is valid only when you start a transaction from the CUP.

Y: Receives rollback completion notification.

N: Does not receive rollback completion notification.

If you specify N, the system terminates the local transaction branch without
receiving notice of the completion of a rollback from a destination transaction
branch of an RPC (without waiting for the completion of rollback processing in a
destination transaction branch of an RPC).

If this operand is not specified, the system follows the specification of the
trn_rollback_response_receive operand in the client service definition. If
the connection destination is a RAP-processing server, the process follows the
specification of the trn_rollback_response_receive operand in the
RAP-processing listener service definition.

DCCLTTRRECOVERYTYPE=type1|type2|type3

Specify a method for processing a transaction synchronous point when a UAP
incurs an error. This definition is valid only when a transaction is started from the
CUP.

7. Definition

420

If the time-out of an RPC occurs and the address of a process for an RPC
destination is not determined or if a UAP for executing a transaction gets out of
order, a transaction branch may not smoothly communicate with another
transaction. In this case, therefore, transaction settlement may take a long time.

If the following failures occur, the system selects one of the following three
methods of transaction synchronous point processing.

type1

Failure 1: Time-out of an RPC

In this case, the RPC source transaction branch cannot determine the process
in which a service request is being executed. It cannot, therefore, send a
transaction synchronous point message to the RPC source transaction
branch. Both of the RPC source transaction branch and the RPC destination
transaction branch wait for a transaction synchronous point message. The
result is that transaction settlement takes a long time.

type2

Failure 2: Malfunction of the RPC source UAP before reception of an RPC
response

In this case, the RPC source transaction branch cannot determine the process
executing a service. It cannot, therefore, send a transaction synchronous
point message to the RPC source transaction branch. The RPC destination
transaction branch waits for a transaction synchronous point message. The
result is that transaction settlement takes a long time.

type3

Failure 3: Nearly concurrent malfunction of the RPC source and destination
UAPs after reception of a response from the RPC source UAP

In this case, the transaction recovery process that has inherited each
transaction branch is not notified that the remote UAP process is out of order.
It, therefore, sends a transaction synchronous point message to a UAP
process that does not exist. The result is that transaction settlement may take
a long time.

In the following cases, transaction settlement may take a long time even if this
operand is assigned type2 or type3.

• During the execution of an RPC, the status of the RPC destination UAP was
changed (because of an increase in the load, the termination of the UAP,
shutdown or the like). A service request has been re-transferred to the same
UAP in another node.

• The version of destination OpenTP1 does not support this option.

7. Definition

421

• The destination transaction branch is occupied by processing other than
processing for transaction synchronous point message reception.

If this operand is not specified, the system follows the specification of the
trn_partial_recovery_type operand in the client service definition. If the
connection destination is a RAP-processing server, the process follows the
specification of the trn_partial_recovery_type operand in the
RAP-processing listener service definition.

DCWATCHTIMRPCINHERIT=Y|N ~ <<N>>

Specify whether the server should inherit the maximum wait time for a CUP
response. By inheriting the maximum wait time for a CUP response, the server
can be prevented from executing a service if the time-out of the CUP occurs.

Y: The server inherits the maximum wait time for a CUP response.

N: The server does not inherit the maximum wait time for a CUP response.

DCSYSWATCHTIM=maximum-OpenTP1-control-response-wait-time ~ <unsigned
integer> ((0-65535)) <<maximum-response-wait-time>> (units: seconds)

Specify the maximum value for the wait time from the sending of a request to the
return of a response when under the control of OpenTP1. If a response is not
returned within a specified period, the system returns an error message to the
CUP.

If you specify 0, the system waits endlessly for the return of a response. In the
default mode, the system applies DCWATCHTIM to the client environment
definition.

You cannot dynamically change the maximum wait time for the OpenTP1 control
response.

DCCLTAUTHENT=Y|N ~ <<Y>>

Specify whether to authenticate the user for executing the dc_clt_cltin_s
function.

Y: Authenticates the user.

N: Suppresses user authentication.

DCCLTCONNECTINF=terminal-identification-information
Specify the terminal identification information. If you want to use hexadecimal
numbers to specify this information, add 0x at the beginning of the information
and use up to 128 digits (excluding the beginning 0x). If you use a character
string, you can specify up to 64 characters.

When you use a permanent connection to communicate with a DCCM3 logical
terminal, use EBCDIK code to specify the logical terminal name of the DCCM3

7. Definition

422

logical terminal as the terminal identification information. However, DCCM3
only validates the first 8 bytes (the 9th and later bytes are ignored).

The terminal identification information specified in this definition is referenced
by the dc_rpc_open_s function. These functions then report that information
to the DCCM3 logical terminal.

If you omit this definition, terminal identification information is not reported to
the DCCM3 logical terminal.

However, if you execute the dc_clt_set_connect_inf_s function, the
terminal identification information specified in this function is reported to the
DCCM3 logical terminal when the dc_clt_connect_s function is executed.

This definition is valid when the host name and the port number of the DCCM3
logical terminal are specified in the DCCLTRAPHOST client environment
definition and the dc_clt_connect_s function (specify DCNOFLAGS in the
flags argument) is executed.

DCSCDMULTI=Y|N ~<<N>>

Specify whether to use the multi-scheduler facility.

Y: Uses the multi-scheduler facility.

N: Does not use the multi-scheduler facility.

When you use the multi-scheduler facility, the system randomly selects one of
multiple multi-scheduler daemons that are activated, to reduce the scheduling
load.

When you specify Y for this operand, also see the description of DCSCDDIRECT,
DCSCDPORT, and DCSCDMULTICOUNT in the client environment definition. This
operand is invalid when the dc_rpc_call_to_s function is executed.

DCSCDMULTICOUNT=number-of-multi-scheduler-daemon-processes ~<unsigned
integer> ((1-4096)) <<1>>

Specify the number of multi-scheduler daemon processes. Specify the number of
processes specified in the -m option in the scdmulti schedule service definition
or less.

This operand is valid when DCSCDMULTI=Y, DCSCDDIRECT=Y, and DCSCDPORT
are specified in the client environment definition. In this case, the system
randomly selects one of the port numbers in the following range:

A to (A + B - 1)

where,

A: The port number specified in DCSCDPORT

B: The number of processes specified in DCSCDMULTICOUNT

7. Definition

423

• Lower limit: Port number value specified in DCSCDPORT of the client
environment definition

• Upper limit: Lower limit value + the number of processes specified in
DCSCDMULTICOUNT of the client environment definition - 1

DCHOSTSELECT=Y|N ~<<N>>

Specify whether you want to have a gateway TP1/Server selected at random. This
definition is valid only when multiple TP1/Servers are assigned as gateways.

Y: Selects TP1/Server to be used as the gateway at random.

N: Does not select TP1/Server to be used as the gateway at random.

When you specify Y, a gateway TP1/Server is selected at random from TP1/
Servers that are specified at user authentication.

If an error occurs while the system is inquiring information from the name service
of the gateway TP1/Server, TP1/Server where the error occurred is eliminated
from the options. Then, the system selects another gateway TP1/Server at random
in an attempt to switch.

When you specify N, gateway TP1/Servers are selected sequentially from the
beginning of TP1/Servers that are specified at user authentication or those
specified in the DCHOST client environment definition. If an error occurs while
the system is inquiring information from the name service of the gateway TP1/
Server, the system attempts to switch to the next specified TP1/Server.

When you specify Y in the DCSCDDIRECT client environment definition, the
system attempts to switch the TP1/Server gateway if sending to the applicable
port number fails.

DCSCDLOADPRIORITY=Y|N ~<<N>>

Specify whether to distribute the load on the gateway TP1/Server that receives
service requests with priority.

Y: Distributes the load on the gateway TP1/Server that receives service requests
with priority.

N: Accepts the specification of the scd_this_node_first operand in the
schedule service definition.

This definition is valid only when an RPC is executed without using the name
service (specify Y in the DCSCDDIRECT client environment definition).

DCCLTONLYTHISNODE=Y|N ~<N>

Specify whether to execute services on the specified node when the
dc_rpc_call_to_s function is issued.

Y: Executes services only on the specified node.

7. Definition

424

N: First, attempts to execute services on the specified node. Depending on the
service execution status, service requests may be transferred to another node.

DCCLTNOSERVER=Y|N ~<<N>>

Specifies whether the environment being used is an environment in which TP1/
Client never communicates with TP1/Server.

Y: In the environment being used, TP1/Client communicates with only a DCCM3
logical terminal and never communicates with TP1/Server.

N: In the environment being used, TP1/Client communicates with TP1/Server.

Always issue the dc_clt_cltin_s function even when Y is specified. In the
logname argument, specify a value other than NULL. If you specify NULL, the
dc_clt_cltin_s function returns a DCCLTER_INVALID_ARGS error. In the
passwd argument, specify any value you like. You can specify NULL in the
passwd argument.

DCHOSTCHANGE=Y|N ~<<Y>>

Specify whether to switch the gateway TP1/Server to another TP1/Server if TP1/
Client receives an error from the gateway TP1/Server in one of the following
cases: (1) when a service request is issued (when the dc_rpc_call_s function
is executed), (2) when the schedule service is being started, and (3) when the
schedule service is being terminated.

Y: Switches the gateway TP1/Server.

N: Does not switch the gateway TP1/Server.

If this operand is incorrectly specified, TP1/Client assumes that Y is specified.

When N is specified, a service request (the dc_rpc_call_s function)
immediately returns an error. If the schedule service is being started, a
DCRPCER_OLTF_INITIALIZING error returns. If the schedule service is being
ended, a DCRPCER_OLTF_NOT_UP error returns.

This definition is valid when more than one TP1/Server is specified with the
target_host argument of the user authentication function and is specified with
DCHOST in the client environment definition. This definition is invalid when a
service request (the dc_rpc_call_s function) is executed during establishment
of a permanent connection or within a transaction.

DCCLTOPTION=client's-extension-option ~<unsigned hexadecimal integer>
((00000000-00000008)) <<00000000>>

Specify the option for extending the functionality of the client. To specify
multiple options, specify the logical sum of the values of them. Even if you
specify a value that cannot be specified, TP1/Client may operate incorrectly
without generating an error code.

7. Definition

425

00000000

When this option is specified, the functionality is not extended.

00000002

When this option is specified, the client's timeout for awaiting a response
(the value of DCSYSWATCHTIM or DCWATCHTIM in the client environment
definition) is applied to reception processing of communication functions.
This timeout is not applied every time a reception occurs. This timeout is
applied only to the wait for a response from communication functions.

Note that processing may be delayed if, for example, a fraction occurs during
the decrement of time.

00000008

When this option is specified, the host name length that TP1/Client can
handle is extended from 63 characters to 255 characters.

If this operand is specified incorrectly, the KFCA02401-E message is output to
the error log, and one of the following functions returns a DCCLTER_FATAL error.

• dc_clt_cltin_s function

• dc_clt_accept_notification_s function

• dc_clt_cancel_notification_s function

• dc_clt_open_notification_s function

DCCLTNAMEXTEND=0|1 ~<<0>>

Increase the number of service information items acquired and managed by
clients when multi-node servers are used.

0: Acquires a maximum of 128 service information items.

1: Acquires a maximum of 512 service information items.

Specify 1 for this operand when nam_service_extend=1 is specified in the
name service definition of the TP1/Server that is used as gateway in a multi-node
server configuration with 129 or more servers.

This operand is valid only when DCCLTLOADBALANCE=Y is specified in the client
environment definition. When DCSCDDIRECT=Y is specified in the client
environment definition, the specification of this operand is invalid.

DCTRCPATH=trace-output-directory ~<character string>

Specify the absolute pathname of the directory for storing the error log files and
trace files.

No files are output if the specified directory does not exist or the specification is

7. Definition

426

invalid.

If this operand is omitted, the current directory is assumed.

DCTRCERR=error-log-size ~<unsigned integer> ((0-1073741824)) <<4096>>
(unit: bytes)

Specify the size of the error log files (dcerr1.trc and dcerr2.trc). These
files are created in the directory specified with DCTRCPATH in the client
environment definition, or in the directory where the CUP was executed.

If you specify 0 or an invalid value, or if there is no information to be output, then
error log information is not output.

Although you can specify a maximum of 1 GB, when you have saved the error
log trace in a file in an edited format, your machine may not be able to open such
files, depending on the specifications of the machine. You must specify a valid
value in accordance with the environment you are using.

DCTRCUAP=UAP-trace-file-size ~<unsigned integer> ((4096-1073741824))
(unit: bytes)

Specify the size of the UAP trace files (dcuap1.trc and dcuap2.trc). These
files are created in the directory specified with DCTRCPATH in the client
environment definition, or in the directory where the CUP was executed.

If the specification is incorrect or omitted, or if there is no information to be
output, UAP trace information is not output.

Although you can specify a maximum of 1 GB, when you have saved the UAP
trace in a file in an edited format, your machine may not be able to open such files,
depending on the specifications of the machine. You must specify a valid value
in accordance with the environment you are using.

DCTRCSOC=socket-trace-file-size ~<unsigned integer> ((4096-1073741824))
<<do not output>> (unit: bytes)

Specify the size of the socket trace files (dcsoc1.trc and dcsoc2.trc). These
files are created in the directory specified with DCTRCPATH in the client
environment definition, or in the directory where the CUP was executed.

If the specification is incorrect or omitted, or if there is no information to be
output, socket trace information is not output.

Although you can specify a maximum of 1 GB, when you have saved the socket
trace in a file in an edited format, your machine may not be able to open such files,
depending on the specifications of the machine. You must specify a valid value
in accordance with the environment you are using.

DCTRCSOCSIZE=socket-trace-data-size ~<unsigned integer> ((64-4096))
<<256>> (unit: bytes)

7. Definition

427

Specify the data size of a socket trace to be output.

If the specification is incorrect or omitted, the default is validated.

DCTRCMDL=module-trace-file-size ~<unsigned integer> ((4096-1073741824))
<<do not output>> (unit: bytes)

Specify the size of the module trace files (dcmdl1.trc and dcmdl2.trc).
These files are created in the directory specified with DCTRCPATH in the client
environment definition, or in the directory where the CUP was executed.

If the specification is incorrect or omitted, or if there is no information to be
output, module trace information is not output.

Although you can specify a maximum of 1 GB, when you have saved the module
trace in a file in an edited format, your machine may not be able to open such files,
depending on the specifications of the machine. You must specify a valid value
in accordance with the environment you are using.

DCCLTPRFINFOSEND=Y|N ~<<N>>

Specify whether to send the identification information for a performance
verification trace to TP1/Server.

Y: The identification information for a performance verification trace is sent to
TP1/Server.

N: The identification information for a performance verification trace is not sent
to TP1/Server.

When Y is specified for this operand and DCTRCUAP in the client environment
definition is set to include performance verification trace information in the UAP
trace, performance verification trace information is included in the UAP trace. If
the identification information for the performance verification trace is sent to
TP1/Server and the UAP trace is acquired, you can check the TP1/Client function
execution time against the TP1/Server service execution time. In addition, you
can also determine the progress of processing.

DCCLTRPCMAXMSGSIZE=maximum-RPC-message-length~<unsigned integer>
((1-8)) <<1>> (unit: megabytes)

Specify the maximum length of user data that can be sent and received by using
an RPC or the facility for receiving one-way messages from the server. This
definition is valid when the following functions and arguments are specified.

Function Argument

Input parameter
length

Output parameter
length

dc_rpc_call_s function in_len out_len

7. Definition

428

Legend:

-: Not applicable

If you specify 2 or a larger value in this operand, the maximum length of user data
that can be sent and received is the value of this operand x 1024 x 1024 (bytes),
rather than the value of DCRPC_MAX_MESSAGE_SIZE. If the specified value of
an argument of one of the above functions is larger than the value of this operand
x 1024 x 1024, the function returns a DCRPCER_INVALID_ARGS or
DCRPCER_MESSAGE_TOO_BIG error.

If the length of received user data is larger than the value of the inf_len
argument, the dc_clt_accept_notification_s function or
dc_clt_chained_accept_notification_s function of the facility for
receiving one-way messages returns a DCCLTER_INF_TOO_BIG error.

When specifying 2 or a larger value in this operand to send or receive user data
larger than the value of DCRPC_MAX_MESSAGE_SIZE, note the following:

• You must also specify an appropriate value for the
rpc_max_message_size operand in the system common definition for the
TP1/Server to which you want to send a service request. Specify the same
value for all the nodes specified for the all_node operand in the system
common definition.

• If a request for a service is made to TP1/Server that does not support the
rpc_max_message_size operand in the system common definition,
operation is not guaranteed. If you execute either of the following RPCs,
TP1/Server may go down:

Specify Y for DCSCDDIRECT in the client environment definition and issue
the dc_rpc_call_s function.

Specify N for DCCLTONLYTHISNODE in the client environment definition
and issue the dc_rpc_call_to_s function.

• If the response data length specified in the service function is larger than the

dc_rpc_call_to_s function in_len out_len

dc_clt_accept_notification_s function -- inf_len

dc_clt_cancel_notification_s function inf_len --

dc_clt_chained_accept_notification_s function -- inf_len

Function Argument

Input parameter
length

Output parameter
length

7. Definition

429

value of rpc_max_message_size in the system definition x 1024 x 1024,
the dc_rpc_call_s function or dc_rpc_call_to_s function returns a
DCRPCER_INVALID_REPLY error.

• If the TP1/Server inter-node load-balancing facility transfers a service
request to another node, a DCRPCER_NET_DOWN error may be returned.

• When using the permanent connection establishment function or transaction
control function, you must specify an appropriate value for the
rpc_max_message_size operand in the system common definition. If
you do not specify an appropriate value, the dc_rpc_call_s function
returns a DCRPCER_MESSAGE_TOO_BIG or DCRPCER_INVALID_ARGS
error.

• If the service is not running on TP1/Server that supports the
rpc_max_message_size operand in the system common definition, the
dc_rpc_call_s function or dc_rpc_call_to_s function returns a
DCRPCER_NO_SUCH_SERVICE_GROUP or DCRPCER_TRNCHK error.

DCCLTRECVBUFSIZE=TCP/IP-receive-buffer-size ~<unsigned integer>
((8192-1048576)) (unit: bytes)

Specify the size of the TCP/IP receive buffer secured for each connection.
Adjusting this value in relation to the buffer length of the remote system can
improve the effectiveness of communication.

Note:

Upon receiving data, TCP returns a delivery confirmation packet (ACK).

However, if the amount of received data is less than the size of the receive
buffer, TCP does not immediately return the ACK (the ACK is delayed).

In a communication environment in which the value of this operand is large
and a small amount of data is sent and received, a delayed ACK might
degrade performance. For details about delayed ACKs, see the TCP/IP
documentation.

Make sure that the value of this operand is less than the size of the TCP/IP
receive buffer available in the OS.

If this operand is omitted, the system default is used.

DCCLTSENDBUFSIZE=TCP/IP-send-buffer-size ~<unsigned integer>
((8192-1048576)) (unit: bytes)

Specify the size of the TCP/IP send buffer secured for each connection. Adjusting
this value in relation to the buffer length of the remote system can improve the
effectiveness of communication.

Note:

7. Definition

430

Make sure that the value of this operand is less than the size of the TCP/IP
send buffer available in the OS.

If this operand is omitted, the system default is used.

DCCLTTCPNODELAY=Y|N ~<<N>>

Specify whether to disable the Nagle algorithm.

Y: The Nagle algorithm is disabled.

N: The Nagle algorithm is not disabled.

Specifying Y for this operand might degrade sending efficiency during INET
domain communication, increasing network load. Before specifying Y for this
operand, carefully consider whether it is necessary to disable the Nagle algorithm
in light of DCCLTSENDBUFSIZE and DCCLTRECVBUFSIZE operands in the client
environment definition, and the network bandwidth.

For details about the Nagle algorithm, see the TCP/IP documentation.

7.2.6 TP1/Client/W-specific operands
DCCLTBACKLOGCOUNT=number-of-queues-for-storing-connection-establishment-
requests ~<unsigned integer> ((0-4096)) <<0>>

Specify the number of queues that store the connection establishment requests. If
you specify 0 or omit the specification, the number of queues is as follows:

• For AIX 5L: 1024

• For Linux: 128

• For HI-UX/WE2: 20

• For HP-UX: 20

• For Solaris: 5

Note that the actual number of queues may be greater than the specified value.
The upper and lower limits for the number of queues differ depending on the
operating system. If the upper and lower limits for the number of queues are
restricted by the operating system, the specified values may not become valid.

For details about queues that store connection establishment requests, see the
documentation of the applicable operating system or the TCP/IP documentation.

This operand is invalid when the dc_clt_accept_notification_s function
is executed.

If the operand is specified incorrectly, one of the following functions returns an
error with DCCLTER_FATAL and the KFCA02401-E message is output to the error
log.

7. Definition

431

• dc_clt_cltin_s function

• dc_clt_open_notification_s function

• dc_clt_cancel_notification_s function

7.2.7 Operands for TP1/Client/P only
dcselint=reception-check-interval ~<unsigned integer> ((0 - 65535))
<<100>> (unit: milliseconds)

Specify the interval for checking whether a response has been returned from the
server.

When 0 is specified, the check result will be immediately acquired. However,
other windows in the thread waiting for the response cannot operate until the
server returns a response.

The value of the operand must be smaller than the value of DCSYSWATCHTIM and
DCWATCHTIM in the client environment definition.

7.2.8 Notes on TP1/Client/W
• The environment variables are analyzed during dc_clt_cltin_s and

dc_rpc_open_s function processing. Therefore, do not change the client
environment definition after you call the dc_clt_cltin_s function. Similarly,
do not change the client environment definition after calling the
dc_clt_open_notification_s function.

• In TP1/Client/W, you can use a different client environment definition for each
dc_clt_cltin_s function call. To do so, create a separate client environment
definition file for each dc_clt_cltin_s function call, and specify the file name
in the defpath argument of the function. This information also applies to the
following functions:

• dc_clt_accept_notification_s

• dc_clt_cancel_notification_s

• dc_clt_open_notification_s

• TP1/Client/W accesses the files specified in the defpath arguments so that the
following functions can read the definitions:

• dc_clt_cltin_s

• dc_clt_accept_notification_s

• dc_clt_cancel_notification_s

• dc_clt_open_notification_s

If the value of the defpath argument is NULL, the environment variables are

7. Definition

432

loaded into TP1/Client/W. If a file is specified in the defpath argument, the
client environment definitions specified as environment variables do not take
effect.

7.2.9 Notes on TP1/Client/P
• The environment variables are analyzed during the processing of the

dc_clt_cltin_s function and the dc_rpc_open_s function. Therefore, do
not change the client environment definition after you call the dc_clt_cltin_s
function. Similarly, do not change the client environment definition after calling
the dc_clt_open_notification_s function.

• In TP1/Client/P, you can use a different client environment definition for each
dc_clt_cltin_s function call. To do so, create a separate client environment
definition file for each dc_clt_cltin_s function call, and specify the file name
in the defpath argument of the function. This information also applies to the
following functions:

• dc_clt_accept_notification_s

• dc_clt_cancel_notification_s

• dc_clt_open_notification_s

• TP1/Client/P first accesses the betran.ini file in the Windows directory to read
the definition. It then accesses the files specified in the defpath arguments so
that the following functions can read the definition items. Definition items loaded
later overwrite those loaded previously.

• dc_clt_cltin_s

• dc_clt_accept_notification_s

• dc_clt_cancel_notification_s

• dc_clt_open_notification_s

If any definition items that are not specified in any of the files specified in the
defpath arguments of the above functions are contained in the betran.ini file
in the Windows directory, those definition items take effect.

433

Chapter

8. Operating Commands

This chapter explains how to code and use TP1/Client operating commands.

In this chapter, C functions (dc_xxx_xxx_s) when calling the DLLs are used in
explanations. If you use functions of the normal object library (dc_xxx_xxx) or
COBOL, replace the C function names with the corresponding functions or COBOL
request statements.

This chapter contains the following sections:

8.1 Operating command syntax
8.2 Operating command descriptions

8. Operating Commands

434

8.1 Operating command syntax

Operating command syntax is shown below.

command-name option

command-name
Name of the command to be executed.

option
TP1/Client/W

A character string beginning with a minus sign (-) and taking no or one flag
argument.

Option syntax is as follows.

-option-flag

 or

-option-flag flag-argument

Legend:

option-flag: A single alphanumeric character

flag-argument: The argument for the option flag

TP1/Client/P

A character string beginning with a slash (/) and taking no or one flag
argument.

Option syntax is as follows.

/option-flag

 or

/option-flag flag-argument

Legend:

option-flag: A single alphanumeric character

8. Operating Commands

435

flag-argument: The argument for the option flag

8. Operating Commands

436

8.2 Operating command descriptions

TP1/Client operating commands are described following.

8.2.1 cltdump (edit and output a trace)
(1) Form

When you use the cltdump command with TP1/Client/P, enter the command from the
MS-DOS prompt.

(a) TP1/Client/W

cltdump [-u|-s|-m|][-n][-f file-name]

(b) TP1/Client/P

cltdump32 [/u|/s|/m][/n][/f file-name]

(2) Purpose
Edits the trace of TP1/Client and outputs the edited data to the standard output. To save
the edited data in a file, redirect the standard output to a file. This command can edit
the following traces:

• UAP trace (dcuap1.trc and dcuap2.trc)

• Socket trace (dcsoc1.trc and dcsoc2.trc)

• Module trace (dcmdl1.trc and dcmdl2.trc)

Each trace is stored in two files. The cltdump command first outputs the data in the
older file.

Although the contents of the socket trace and module trace are not disclosed,
maintenance personnel may use them for troubleshooting.

Before using this command, make sure that the version of the command is the same as
the version of TP1/Client that outputs the trace you want to edit and output. If you use
the command of a different version, the editing results may be incorrect.

(3) Option
-u or /u

Use this option to edit and output the UAP trace (dcuap1.trc and
dcuap2.trc).

-s or /s

8. Operating Commands

437

Use this option to edit and output the socket trace (dcsoc1.trc and
dcsoc2.trc). The contents of the socket trace are not disclosed.

-m or /m

Use this option to edit and output the module trace (dcmdl1.trc and
dcmdl2.trc). The contents of the module trace are not disclosed.

-n or /n

You can add this option when editing and outputting the UAP trace. Use this
option when you want to output function names for user-issued functions. If you
do not use this option, the command outputs function codes for user-issued
functions.

This option takes effect only when you edit and output the UAP trace.

-f file-name or /f file-name
Use this option to output a specific trace file to the standard output. Specify the
full path name or file name. The file is assumed to be in the current directory if
the file name only is specified.

When you specify this option, only the specified file is edited and output, and the
two files (for a UAP trace, dcuap1.trc and dcuap2.trc) are not merged.

When you omit this option, the two files (for a UAP trace, dcuap1.trc and
dcuap2.trc) that are output to the CUP executing directory or the directory
specified using DCTRCPATH in the client environment definition are merged,
edited, and output.

(4) Output example
The contents of the socket trace and module trace are not disclosed. The following
shows an output example of the UAP trace.

8. Operating Commands

438

aaaaaaaaaa
UAP trace date

Format: yyyy/mm/dd (year/month/day)

bbbbbbbbb
UAP trace time

Format: hh:mm:ss:sss(hour:minute:second:millisecond)

ccccc
Process ID of the process that collected the UAP trace.

When TP1/Client/W is used, the process ID is displayed in the
process-ID:client-ID format.

When TP1/Client/P is used, the process ID is displayed in the
process-ID:thread-ID format.

ddd
Data size

eeeeeeee
Type code 1 of the called function

180000 (hexadecimal): Request from TP1/Client

f
Type code 2 of the called function

1: dc_rpc_open_s function

8. Operating Commands

439

2: dc_rpc_close_s function

3: dc_rpc_call_s function

4: dc_clt_cltin_s function

5: dc_clt_cltout_s function

6: dc_clt_send_s function

7: dc_clt_receive_s function

8: dc_trn_begin_s function

9: dc_trn_chained_commit_s function

1a: dc_clt_set_raphost_s function

1b: dc_clt_get_raphost_s function

1c: dc_clt_assem_send_s function

1d: dc_clt_assem_receive_s function

a: dc_trn_chained_rollback_s function

b: dc_trn_unchained_commit_s function

c: dc_trn_unchained_rollback_s function

d: dc_trn_info_s function

e: dc_clt_get_trnid_s function

f: dc_rpc_get_watch_time_s function

10: dc_rpc_set_watch_time_s function

13: dc_clt_connect_s function

14: dc_clt_disconnect_s function

17: dc_clt_receive2_s function

18: dc_clt_set_connect_inf_s function

19: dc_rpc_call_to_s function

100: dc_clt_accept_notification_s function

101: dc_clt_cancel_notification_s function

102: dc_clt_open_notification_s function

103: dc_clt_close_notification_s function

104: dc_clt_chained_accept_notification_s function

200: tpalloc function

8. Operating Commands

440

201: tpfree function

202: tpconnect function

203: tpdiscon function

204: tpsend function

205: tprecv function

ggggg
Return code of the called function (decimal)

See Section 4. TP1/Client Functions (C Language) or Section 5.1 COBOL-UAP
creation program features for code values.

1. Call information for the OpenTP1 function#

2. Address of call information for the OpenTP1 function

3. Hexadecimal display of call information for the OpenTP1 function

4. ASCII character display of call information for the OpenTP1 function

#

For the format of call information of each function, see (5).

(5) Format of call information
Table 8-1: Call information for the dc_rpc_open_s function (function code: 1)

Note:

There is no function exit information.

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

8 4 cltid 0 The value of the cltid argument for the
dc_clt_open_s function.
When the dc_clt_open function is used, the area
is cleared to 0.

4 flags 4 The value of the flags argument for the
dc_clt_open_s function

8. Operating Commands

441

Table 8-2: Call information for the dc_rpc_close_s function (function code: 2)

Note:

There is no function exit information.

Table 8-3: Call information for the dc_rpc_call_s function (function code: 3)

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

8 4 cltid 0 The value of the cltid argument for the
dc_rpc_close_s function.
When the dc_rpc_close function is used, the area
is cleared to 0.

4 flags 4 The value of the flags argument for the
dc_rpc_close_s function

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

140 4 cltid 0 The value of the cltid argument for the
dc_rpc_call_s function.
When the dc_rpc_call function is used, the area
is cleared to 0.

32 group 4 The value of the group argument for the
dc_rpc_call_s function

32 service 24 The value of the service argument for the
dc_rpc_call_s function

60 in 44 The value of the in argument for the
dc_rpc_call_s function

4 in_len 80 The value of the in_len argument for the
dc_rpc_call_s function

4 out_len 84 The value of the out_len argument for the
dc_rpc_call_s function

4 flags 88 The value of the flags argument for the
dc_rpc_call_s function

Function exit
information

64 60 out 0 The value returned to the out argument for the
dc_rpc_call_s function

4 out_len 3C The value returned to the out_len argument for the
dc_rpc_call_s function

8. Operating Commands

442

Table 8-4: Call information for the dc_clt_cltin_s function (function code: 4)

Table 8-5: Call information for the dc_clt_cltout_s function (function code: 5)

Note:

There is no function exit information.

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

168 4 hWnd 0 The value of the hWnd argument for the
dc_clt_cltin_s function.
When the dc_clt_cltin function is used, the area
is cleared to 0.

64 defpath 4 The value of the defpath argument for the
dc_clt_cltin_s function.
When the dc_clt_cltin function is used, the area
is cleared to 0.

64 target_h
ost

44 The value of the target_host argument for the
dc_clt_cltin_s function

32 logname 84 The value of the logname argument for the
dc_clt_cltin_s function

4 flags A4 The value of the flags argument for the
dc_clt_cltin_s function

Function exit
information

68 4 cltid 0 The value returned to the cltid argument for the
dc_clt_cltin_s function.
When the dc_clt_cltin function is used, the area
is cleared to 0.

64 set_host 4 The value returned to the set_host argument for
the dc_clt_cltin_s function

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

8 4 cltid 0 The value of the cltid argument for the
dc_clt_cltout_s function.
When the dc_clt_cltout function is used, the
area is cleared to 0.

4 flags 4 The value of the flags argument for the
dc_clt_cltout_s function

8. Operating Commands

443

Table 8-6: Call information for the dc_clt_send_s function (function code: 6)

Legend:

-: Not applicable.

Note:

There is no function exit information.

Table 8-7: Call information for the dc_clt_receive_s function (function code: 7)

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

144 4 cltid 0 The value of the cltid argument for the
dc_clt_send_s function.
When the dc_clt_send function is used, the area
is cleared to 0.

64 buff 4 The value of the buff argument for the
dc_clt_send_s function

4 sendleng 44 The value of the sendleng argument for the
dc_clt_send_s function

64 hostname 48 The value of the hostname argument for the
dc_clt_send_s function

2 portnum 88 The value of the portnum argument for the
dc_clt_send_s function

2 - 8A Reserved area

4 flags 8C The value of the flags argument for the
dc_clt_send_s function.

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

16 4 cltid 0 The value of the cltid argument for the
dc_clt_receive_s function.
When the dc_clt_receive function is used, the
area is cleared to 0.

4 recvleng 4 The value of the recvleng argument for the
dc_clt_receive_s function

4 timeout 8 The value of the timeout argument for the
dc_clt_receive_s function

4 flags C The value of the flags argument for the
dc_clt_receive_s function

8. Operating Commands

444

Table 8-8: Call information for the dc_trn_begin_s function (function code: 8)

Table 8-9: Call information for the dc_trn_chained_commit_s function
(function code: 9)

Function exit
information

64 64 buff 0 The value returned to the buff argument for the
dc_clt_receive_s function.

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

4 4 cltid 0 The value of the cltid argument for the
dc_trn_begin_s function
When the dc_trn_begin function is used, the area
is cleared to 0.

Function exit
information

32 16 trngid 0 The transaction global identifier for the global
transaction that occurred

16 trnbid 10 The transaction branch identifier for the global
transaction that occurred

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

36 4 cltid 0 The value of the cltid argument for the
dc_trn_chained_commit_s function
When the dc_trn_chained_commit function is
used, the area is cleared to 0.

16 trngid 4 The transaction global identifier for the current
global transaction

16 trnbid 14 The transaction branch identifier for the current
global transaction

Function exit
information

32 16 trngid 0 The transaction global identifier for a new global
transaction that occurred

16 trnbid 10 The transaction branch identifier for a new global
transaction that occurred

Type Length
(bytes)

Area
name

Position
(hex.)

Description

8. Operating Commands

445

Table 8-10: Call information for the dc_clt_set_raphost_s function (function
code: 1a)

Note:

There is no function exit information.

Table 8-11: Call information for the dc_clt_get_raphost_s function (function
code: 1b)

Table 8-12: Call information for the dc_clt_assem_send_s function (function
code: 1c)

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

136 4 cltid 0 The value of the cltid argument for the
dc_clt_set_raphost_s function
When the dc_clt_set_raphost function is used,
the area is cleared to 0.

128 raphost 4 The value of the raphost argument for the
dc_clt_set_raphost_s function

4 flags 84 The value of the flags argument for the
dc_clt_set_raphost_s function

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

8 4 cltid 0 The value of the cltid argument for the
dc_clt_get_raphost_s function
When the dc_clt_get_raphost function is used,
the area is cleared to 0.

4 flags 4 The value of the flags argument for the
dc_clt_get_raphost_s function

Function exit
information

128 128 raphost 0 The value returned to the raphost argument for the
dc_clt_get_raphost_s function.

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

148 4 cltid 0 The value of the cltid argument for the
dc_clt_assem_send_s function
When the dc_clt_assem_send function is used,
the area is used by TP1/Client.

64 buff 4 The value of the buff argument for the
dc_clt_assem_send_s function

8. Operating Commands

446

Legend:

--: Not applicable.

Note:

There is no function exit information.

Table 8-13: Call information for the dc_clt_assem_receive_s function (function
code: 1d)

4 sendleng 44 The value of the sendleng argument for the
dc_clt_assem_send_s function

64 hostname 48 The value of the hostname argument for the
dc_clt_assem_send_s function

2 portnum 88 The value of the portnum argument for the
dc_clt_assem_send_s function

2 -- 8A Unused area

4 timeout 8C The value of the timeout argument for the
dc_clt_assem_send_s function

4 flags 90 The value of the flags argument for the
dc_clt_assem_send_s function

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

16 4 cltid 0 The value of the cltid argument for the
dc_clt_assem_receive_s function
When the dc_clt_assem_receive function is
used, the area is used by TP1/Client.

4 recvleng 4 The value of the recvleng argument for the
dc_clt_assem_receive_s function

4 timeout 8 The value of the timeout argument for the
dc_clt_assem_receive_s function

4 flags C The value of the flags argument for the
dc_clt_assem_receive_s function

Function exit
information

68 64 buff 0 The value returned to the buff argument for the
dc_clt_assem_receive_s function

4 recvleng 40 The value returned to the recvleng argument for
the dc_clt_assem_receive_s function

Type Length
(bytes)

Area
name

Position
(hex.)

Description

8. Operating Commands

447

Table 8-14: Call information for the dc_trn_chained_rollback_s function
(function code: a)

Table 8-15: Call information for the dc_trn_unchained_commit_s function
(function code: b)

Note:

There is no function exit information.

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

36 4 cltid 0 The value of the cltid argument for the
dc_trn_chained_rollback_s function.
When the dc_trn_chained_rollback function
is used, the area is cleared to 0.

16 trngid 4 The transaction global identifier for the current
global transaction

16 trnbid 14 The transaction branch identifier for the current
global transaction

Function exit
information

32 16 trngid 0 The transaction global identifier for a new global
transaction that occurred

16 trnbid 10 The transaction branch identifier for a new global
transaction that occurred

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

36 4 cltid 0 The value of the cltid argument for the
dc_trn_unchained_commit_s function.
When the dc_trn_unchained_commit function
is used, the area is cleared to 0.

16 trngid 4 The transaction global identifier for the current
global transaction

16 trnbid 14 The transaction branch identifier for the current
global transaction

8. Operating Commands

448

Table 8-16: Call information for the dc_trn_unchained_rollback_s function
(function code: c)

Note:

There is no function exit information.

Table 8-17: Call information for the dc_trn_info_s function (function code: d)

Note:

There is no function exit information.

Table 8-18: Call information for the dc_clt_get_trnid_s function (function code:
e)

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

36 4 cltid 0 The value of the cltid argument for the
dc_trn_unchained_rollback_s function.
When the dc_trn_unchained_rollback
function is used, the area is cleared to 0.

16 trngid 4 The transaction global identifier for the current
global transaction

16 trnbid 14 The transaction branch identifier for the current
global transaction

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

8 4 cltid 0 The value of the cltid argument for the
dc_trn_info_s function
When the dc_trn_info function is used, the area
is cleared to 0.

4 flags 4 The value of the flags argument for the
dc_trn_info_s function (address)

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

4 4 cltid 0 The value of the cltid argument for the
dc_clt_get_trnid_s function
When the dc_clt_get_trnid function is used, the
area is cleared to 0.

8. Operating Commands

449

Table 8-19: Call information for the dc_rpc_get_watch_time_s function
(function code: f)

Note:

There is no function exit information.

Table 8-20: Call information for the dc_rpc_set_watch_time_s function
(function code: 10)

Note:

There is no function exit information.

Function exit
information

32 16 trngid 0 The value returned to the trngid argument for the
dc_clt_get_trnid_s function.

16 trnbid 10 The value returned to the trnbid argument for the
dc_clt_get_trnid_s function.

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

4 4 cltid 0 The value of the cltid argument for the
dc_rpc_get_watch_time_s function
When the dc_rpc_get_watch_time function is
used, the area is cleared to 0.

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

8 4 cltid 0 The value of the cltid argument for the
dc_rpc_set_watch_time_s function
When the dc_rpc_set_watch_time function is
used, the area is cleared to 0.

4 var 4 The value of the var argument for the
dc_rpc_set_watch_time_s function

Type Length
(bytes)

Area
name

Position
(hex.)

Description

8. Operating Commands

450

Table 8-21: Call information for the dc_clt_connect_s function (function code:
13)

Note:

There is no function exit information.

Table 8-22: Call information for the dc_clt_disconnect_s function (function
code: 14)

Note:

There is no function exit information.

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

8 4 cltid 0 The value of the cltid argument for the
dc_clt_connect_s function
When the dc_clt_connect function is used, the
area is cleared to 0.

4 flags 4 The value of the flags argument for the
dc_clt_connect_s function

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

8 4 cltid 0 The value of the cltid argument for the
dc_clt_disconnect_s function
When the dc_clt_disconnect function is used,
the area is cleared to 0.

4 flags 4 The value of the flags argument for the
dc_clt_disconnect_s function

8. Operating Commands

451

Table 8-23: Call information for the dc_clt_receive2_s function (function code:
17)

Table 8-24: Call information for the dc_clt_set_connect_inf_s function
(function code: 18)

Legend:

-: Not applicable.

Note:

There is no function exit information.

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

16 4 cltid 0 The value of the cltid argument for the
dc_clt_receive2_s function
When the dc_clt_receive2 function is used, the
area is cleared to 0.

4 recvleng 4 The value of the recvleng argument for the
dc_clt_receive2_s function

4 timeout 8 The value of the timeout argument for the
dc_clt_receive2_s function

4 flags C The value of the flags argument for the
dc_clt_receive2_s function

Function exit
information

68 64 buff 0 The value returned to the buff argument for the
dc_clt_receive2_s function.

4 recvleng 40 The value returned to the recvleng argument for
the dc_clt_receive2_s function.

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

76 4 cltid 0 The value of the cltid argument for the
dc_clt_set_connect_inf_s function

2 inf_len 4 The value of the inf_len argument for the
dc_clt_set_connect_inf_s function

2 - 6 Reserved area

64 inf 8 The value of the inf argument for the
dc_clt_set_connect_inf_s function

4 flags 48 The value of the flags argument for the
dc_clt_set_connect_inf_s function

8. Operating Commands

452

Table 8-25: Call information for the dc_rpc_call_to_s function (function code:
19)

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

236 4 cltid 0 The value of the cltid argument for the
dc_rpc_call_to_s function
When the dc_rpc_call_to function is used, the
area is cleared to 0.

8 tbl_nid 4 Reserved area (cleared to 0)

64 tbl_host
nm

C Value of the hostnm member of the
DCRPC_BINDING_TBL structure

2 tbl_port
no

4C Value of the portno member of the
DCRPC_BINDING_TBL structure

2 tbl_fill
er1

4E Reserved area

4 tbl_flag
s

50 Reserved area (0x00000002)

16 tbl_fill
er2

54 Reserved area

32 group 64 The value of the group argument for the
dc_rpc_call_to_s function

32 service 84 The value of the service argument for the
dc_rpc_call_to_s function

60 in A4 The value of the in argument for the
dc_rpc_call_to_s function

4 in_len E0 The value of the in_len argument for the
dc_rpc_call_to_s function

4 out_len E4 The value of the out_len argument for the
dc_rpc_call_to_s function

4 flags E8 The value of the flags argument for the
dc_rpc_call_to_s function

Function exit
information

64 60 out 0 The value returned to the out argument for the
dc_rpc_call_s function.

4 out_len 3C The value returned to the out_len argument for the
dc_rpc_call_s function.

8. Operating Commands

453

Table 8-26: Call information for the dc_clt_accept_notification_s function
(function code: 100)

Legend:

-: Not applicable.

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

84 4 hWnd 0 The value of the hWnd argument for the
dc_clt_accept_notification_s function
When the dc_clt_accept_notification
function is used, the area is cleared to 0.

64 defpath 4 The value of the defpath argument for the
dc_clt_accept_notification_s function
When the dc_clt_accept_notification
function is used, the area is cleared to 0.

4 inf_len 44 The value of the inf_len argument for the
dc_clt_accept_notification_s function

2 port 48 The value of the port argument for the
dc_clt_accept_notification_s function

2 - 4A Reserved area

4 timeout 4C The value of the timeout argument for the
dc_clt_accept_notification_s function

4 flags 50 The value of the flags argument for the
dc_clt_accept_notification_s function

Function exit
information

140 64 inf 0 The value returned to the inf argument for the
dc_clt_accept_notification_s function.

4 inf_len 40 The value returned to the inf_len argument for the
dc_clt_accept_notification_s function.

64 hostname 44 The value returned to the hostname argument for
the dc_clt_accept_notification_s function.

8 nodeid 84 The value returned to the nodeid argument for the
dc_clt_accept_notification_s function.

8. Operating Commands

454

Table 8-27: Call information for the dc_clt_cancel_notification_s function
(function code: 101)

Legend:

-: Not applicable.

Note:

There is no function exit information.

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

208 4 hWnd 0 The value of the hWnd argument for the
dc_clt_cancel_notification_s function
When the dc_clt_cancel_notification
function is used, the area is cleared to 0.

64 defpath 4 The value of the defpath argument for the
dc_clt_cancel_notification_s function
When the dc_clt_cancel_notification
function is used, the area is cleared to 0.

64 inf 44 The value of the inf argument for the
dc_clt_cancel_notification_s function

4 inf_len 84 The value of the inf_len argument for the
dc_clt_cancel_notification_s function

2 port 88 The value of the port argument for the
dc_clt_cancel_notification_s function

2 - 8A Reserved area

64 hostname 8C The value of the hostname argument for the
dc_clt_cancel_notification_s function

4 flags CC The value of the flags argument for the
dc_clt_cancel_notification_s function

8. Operating Commands

455

Table 8-28: Call information for the dc_clt_open_notification_s function
(function code: 102)

Legend:

-: Not applicable.

Table 8-29: Call information for the dc_clt_close_notification_s function
(function code: 103)

Note:

There is no function exit information.

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

76 4 hWnd 0 The value of the hWnd argument for the
dc_clt_open_notification_s function
When the dc_clt_open_notification function
is used, the area is cleared to 0.

64 defpath 4 The value of the defpath argument for the
dc_clt_open_notification_s function
When the dc_clt_open_notification function
is used, the area is cleared to 0.

2 port 44 The value of the port argument for the
dc_clt_open_notification_s function

2 - 46 Reserved area

4 flags 48 The value of the flags argument for the
dc_clt_open_notification_s function

Function exit
information

4 4 ntfid 0 The value returned to the ntfid argument for the
dc_clt_open_notification_s function.

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

8 4 ntfid 0 The value of the ntfid argument for the
dc_clt_close_notification_s function
When the dc_clt_close_notification
function is used, the area is cleared to 0.

4 flags 4 The value of the flags argument for the
dc_clt_close_notification_s function

8. Operating Commands

456

Table 8-30: Call information for the dc_clt_chained_accept_notification_s
function (function code: 104)

Table 8-31: Call information for the tpalloc function (function code: 200)

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

16 4 ntfid 0 The value of the ntfid argument for the
dc_clt_chained_accept_notification_s
function
When the
dc_clt_chained_accept_notification
function is used, the area is cleared to 0.

4 inf_len 4 The value of the inf_len argument for the
dc_clt_chained_accept_notification_s
function

4 timeout 8 The value of the timeout argument for the
dc_clt_chained_accept_notification_s
function

4 flags C The value of the flags argument for the
dc_clt_chained_accept_notification_s
function

Function exit
information

140 64 inf 0 The value returned to the inf argument for the
dc_clt_accept_notification_s function.

4 inf_len 40 The value returned to the inf_len argument for the
dc_clt_accept_notification_s function.

64 hostname 44 The value returned to the hostname argument for
the dc_clt_accept_notification_s function.

8 nodeid 84 The value returned to the nodeid argument for the
dc_clt_accept_notification_s function.

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

20 8 type 0 The value of the type argument for the tpalloc
function

8 subtype 8 The value of the subtype argument for the
tpalloc function

4 size 10 The value of the size argument for the tpalloc
function

8. Operating Commands

457

Table 8-32: Call information for the tpfree function (function code: 201)

Note:

There is no function exit information.

Table 8-33: Call information for the tpconnect function (function code: 202)

Table 8-34: Call information for the tpdiscon function (function code: 203)

Function exit
information

8 4 return 0 The value returned by the tpalloc function
(address)

4 tperrno 4 Value set in tperrno

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

4 4 ptr 0 The value of the ptr argument for the tpfree
function (address)

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

100 32 svc 0 The value of the svc argument for the tpconnect
function

60 data 20 The value of the data argument for the tpconnect
function

4 len 5C The value of the len argument for the tpconnect
function

4 flags 60 The value of the flags argument for the
tpconnect function

Function exit
information

4 4 tperrno 0 Value set in tperrno

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

4 4 cd 0 The value of the cd argument for the tpdiscon
function

Function exit
information

4 4 tperrno 0 Value set in tperrno

Type Length
(bytes)

Area
name

Position
(hex.)

Description

8. Operating Commands

458

Table 8-35: Call information for the tpsend function (function code: 204)

Table 8-36: Call information for the tprecv function (function code: 205)

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

72 4 cd 0 The value of the cd argument for the tpsend
function

60 data 4 The value of the data argument for the tpsend
function

4 len 40 The value of the len argument for the tpsend
function

4 flags 44 The value of the flags argument for the tpsend
function

Function exit
information

12 4 revent 0 The value returned to the revent argument for the
tpsend function.

4 tpurcode 4 Value set in tpurcode

4 tperrno 8 Value set in tperrno

Type Length
(bytes)

Area
name

Position
(hex.)

Description

Function
entrance
information

12 4 cd 0 The value of the cd argument for the tprecv
function

4 len 4 The value of the len argument for the tprecv
function

4 flags 8 The value of the flags argument for the tprecv
function

Function exit
information

76 60 data 0 The value returned to the data argument for the
tprecv function.

4 len 3C The value returned to the len argument for the
tprecv function.

4 revent 40 The value returned to the revent argument for the
tprecv function.

4 tpurcode 44 Value set in tpurcode

4 tperrno 48 Value set in tperrno

459

Chapter

9. Error Recovery

This chapter outlines measures to be taken in the event of an error.

This chapter contains the following sections:

9.1 Communication errors
9.2 Client errors
9.3 Errors in a remote operation request to XDM/DCCM3

9. Error Recovery

460

9.1 Communication errors

This section provides notes on communication errors in TP1/Client and how they are
handled.

• Output of an error message when a communication error occurs

TP1/Client uses TPC, a connection-type communication protocol, and
implements it with a socket interface. TP1/Client therefore detects
communication errors as system call errors at the sockets interface. If a system
call error occurs, TP1/Client outputs an error message to identify the error cause.

Error messages are output to error log files. For details on error log files, see
2.11.1 Error logging.

• Communication error related to ports

TP1/Client establishes and releases a connection each time communication
occurs. If multiple CUPs repeatedly issue the dc_clt_cltin_s function and
dc_clt_cltout_s function or issue processing in succession that repeatedly
performs the dc_rpc_call_s function, an error may occur because the ports of
the operating system are all temporarily being used. If such an error occurs,
increase the number of ports to tune the setting to a value acceptable for operation.
Alternatively, wait until ports are released and ready for operation, and then retry
the communication.

• Communication error that occurs when the dc_rpc_call_s function is used

If the dc_rpc_call_s function is issued while the communication destination
schedule service is starting or terminating, the system switches to another host to
perform the processing. If one of the hosts specified in the target_host
argument of the dc_clt_cltin_s function or DCHOST in the client environment
definition has not started, the dc_rpc_call_s function may require some time
until it returns.

If the dc_rpc_call_s function is issued during establishment of a permanent
connection or within a transaction, the host is not switched when an error response
is received.

9. Error Recovery

461

9.2 Client errors

PC processing can be stopped by simple causes such as power failure or misoperation.
Data cannot be guaranteed if such problems occur during processing of an RPC
execution request, even if a response has been received from the SPP.

9. Error Recovery

462

9.3 Errors in a remote operation request to XDM/DCCM3

(1) DCRPCER_NET_DOWN during a remote operation request to XDM/DCCM3
When you issue a remote operation request to XDM/DCCM3, not only a network
failure but also the following conditions cause DCRPCER_NET_DOWN.

• Incorrect message format

• Incorrect transaction name

• Invalid combination of the transaction type and the RPC call type

• Invalid combination of the transaction type and the virtual terminal type

• Inhibited transaction input

• Transaction shutdown

• Security error

• Input queue error

(2) Duplicate input error on XDM/DCCM3
When the same personal computer or workstation uses multiple CUPs on TP1/Client,
you may issue a synchronous-response type RPC to an XDM/DCCM3 terminal that is
dedicated to the remote host computer and concurrently works as a send/receive
terminal. In this situation, specifying an XDM/DCCM3 transaction to be
inquiry-response type causes a duplicate input error. As a solution, specify the
transaction type to be no-inquiry-response type.

463

Chapter

10. Messages

This chapter describes the messages output by TP1/Client.

In this chapter, C functions (dc_xxx_xxx_s) when calling the DLLs are used in
explanations. If you use functions of the normal object library (dc_xxx_xxx) or
COBOL, replace the C function names with the corresponding functions or COBOL
request statements.

This chapter contains the following sections:

10.1 Format of output messages
10.2 Format of message descriptions
10.3 List of messages

10. Messages

464

10.1 Format of output messages

Messages are output in the following format:
KFCA00000-X

YY...YY

KFCA00000-X

Message ID (11 half-size alphanumerics)

YY...YY
Message text

10. Messages

465

10.2 Format of message descriptions

This section shows the format of message descriptions and explains the elements in a
message ID.

(1) Description format
This subsection shows the format of message descriptions in this manual.

KFCAn1n2n3n4n5-X (Y)
Message text

An explanation of the message follows the message text.

S: The main processing performed by the system after message output.

O: Action to be taken by the operator.

Countermeasure:

Action to be taken by the TP1/Client system administrator.

Note

"Contact maintenance personnel" in the message text, operator action, or recovery
section indicates that Hitachi staff or the Hitachi Sales Division should be
contacted.

(2) Message IDs
The meanings of the message IDs are as follows:

KFCA

OpenTP1 message

n1n2n3n4n5
Message sequence number

X

Message type (Table 10-1)

Table 10-1: Message types

Type Meaning

E The error disables the TP1/Client library and operating commands.

The operation cannot be performed due to an invalid definition or incorrectly specified operand in the
operating command.

10. Messages

466

Y

Message output destination. If there are two or more destinations, the possible
destination codes are combined with a plus (+) sign. (Table 10-2)

Table 10-2: Message output destinations

W Even though there is an invalid definition or incorrectly specified operand in the command, the operation
continues assuming a correct value.

I Information messages which do not fit the categories described in E, W above and simply report an
operation.

Type Output Destination

E Standard error output

S Standard output

R Error log file

Type Meaning

10. Messages

467

10.3 List of messages

Messages output by TP1/Client are described in message number order.
KFCA02401-E (R)

environment definition error, variable=aa...aa, reason=bb...bb

There is a specification error in the client environment definition.

aa...aa
Name of the incorrect operand in the client environment definition

bb...bb
Reason

NO VALUE

No value is specified.

OUT OF RANGE

The specified value is out of range.

INVALID CHAR

The specified value includes an invalid character.

NET ENVIRONMENT

The specified value is inconsistent with the network environment.

UNMATCH LENG

The number of digits in the specified value is invalid.

S: Stops processing, or continues processing by using defaults.

O: Contact the TP1/Client system administrator.

Countermeasure:

Correct the definition error.
KFCA02402-E (R+E)

memory shortage, size=aa...aa, inf=bb...bb

Memory with the number of bytes shown at "size" cannot be allocated.

aa...aa
Number of bytes that should have been allocated

bb...bb

10. Messages

468

Maintenance information

S: Stops processing.

O: Contact the TP1/Client system administrator.

Countermeasure:

Re-estimate the memory requirement. When memory is sufficient, collect the
error log and traces, and contact maintenance personnel.

KFCA02403-E (R)
aa...aa version error, TP1/Client(bb...bb):object(cc...cc)

Processing is impossible because the version of aa...aa OpenTP1 program is
inconsistent with that of TP1/Client library linked to CUP.

aa...aa
Program whose version is inconsistent

NAM

NAM of TP1/Server Base

bb...bb
Version of TP1/Client library linked to CUP

cc...cc
Version of OpenTP1 program

S: Stops processing.

O: Contact the TP1/Client system administrator.

Countermeasure:

• For bb...bb < cc...cc
Relink CUP.

• For bb...bb > cc...cc
Check if TP1/Client is installed correctly.

KFCA02404-E (R)
parameter error, func=aa...aa, item=bb...bb

The function cannot be executed because of an argument specification error.

aa...aa
Name of the function in which the error occurred (If the _s version of the function
was executed, the corresponding non-_s version function name might be output.)

10. Messages

469

bb...bb
Argument with an error

S: Returns the requested function as an error.

O: Contact the TP1/Client system administrator.

Countermeasure:

Correct the argument error.
KFCA02406-E (R)

error occurred in TP1/Client, reason=aa...aa, inf=bb...bb

An error occurred during internal processing of TP1/Client.

aa...aa
Reason for the error

MEMORY

Insufficient memory

RESOURCE

Resource shortage

NETWORK

Network failure

UNEXPECT

Unexpected error

NO SUCH SERVICE

An illegal request code for the server

TIMER

Unsuccessful timer setting

bb...bb
Maintenance information

S: The system stops processing.

O: Record the error log to which this message was output, and then contact the TP1/
Client system administrator.

Countermeasure:

Examine and remove the cause of the error according to the output error log. Note
that reason=UNEXPECT is also output when you specify a port number of the

10. Messages

470

schedule service for an operand for which you must specify a port number of the
name service. In this case, check the port number.

KFCA02407-E (R+E)
error occurred in TP1/Client, reason=aa...aa

An error occurred in TP1/Client.

aa...aa
Reason for the error

One of the following is displayed.

cltin not executed

dc_clt_cltin function has not been issued.

cltin already executed

dc_clt_cltin function has already been issued.

host name

Host name specification is incorrect.

TP1/Server not up

OpenTP1 is inactive at the target node.

S: Stops processing.

O: Check the error log to which this message was output, and examine and remove the
cause of the error. Then restart CUP.

KFCA02410-E (R)
TP1/Server replied error, code=aa...aa, IPaddr=bbbbbbbb, port=cc...cc,
inf=dd...dd

An error reply was received from TP1/Server Base.

aa...aa
Error code returned from TP1/Server Base

bbbbbbbb
Sender IP address (hexadecimal number)

cc...cc
Sender port number

dd...dd
Maintenance information

S: Performs one of the following actions:

10. Messages

471

• Ends the processing that is being executed.

• Ignores the error reply and waits for a reply message. If no reply message
arrives after the maximum response wait time in the client environment
definition expires, the system returns an error with DCRPCER_TIMED_OUT.

• Switches the TP1/Server that is used as a gateway and continues processing,
when Y is specified for DCHOSTCHANGE in the client environment definition.

O: Hand in the error log for this message to the TP1/Client system administrator.

Countermeasure:

Determine the sender process from the sender IP address and the sender port
number. Check whether an error has occurred in TP1/Server.

KFCA02411-E (R)
invalid message received, IPaddr=aaaaaaaa, port=bb...bb, inf=cc...cc

A message that cannot be analyzed was received.

aaaaaaaa
Sender IP address (hexadecimal number)

bb...bb
Sender port number

cc...cc
Maintenance information

S: Ignores the received message and waits for the next message.

O: Contact the TP1/Client system administrator.

Countermeasure:

Determine the sender process from the sender IP address and port number, and
check the network environment. This message also appears when a function
receives a response message that the previous OpenTP1 function could not
receive due to a timeout. In this case, ignore the message.

KFCA02412-W (R)
error-reply received, code=aa...aa, IPaddr=bb...bb, port=cc...cc,
inf=dd...dd

An error response was received from TP1/Server.

aa...aa
Error code returned by TP1/Server

bb...bb

10. Messages

472

IP address of the sending source (in decimal dot notation)

cc...cc
Port number of the sending source

dd...dd
Maintenance information

S: Performs one of the following actions:

• Ends the processing that is being executed.

• Updates the cache information and retries communication.

• Switches the TP1/Server that is used as a gateway and continues processing,
when Y is specified for DCHOSTCHANGE in the client environment definition.

O: Record the error log containing this message and contact the TP1/Client system
administrator.

Countermeasure:

Determine the sender process from the sender IP address and the sender port
number. Check whether an error has occurred in TP1/Server.

KFCA02419-W (R)
error occurred in data compression process, group=aa...aa,
service=bb...bb, reason=cc...cc

An error occurred during internal processing of data compression.

aa...aa
Name of the service group that is requested to perform service

bb...bb
Name of the requested service

cc...cc
Cause of the error

VERSION

Version mismatch

MEMORY

Insufficient memory

NOEFFECT

The data compression is ineffective.

10. Messages

473

UNEXPECT

Unexpected error

S: Requests the service without compressing the data.

O: If the cause of the error is version mismatch, check the version of TP1/Server Base
that is requested to perform service and see if it can perform data compression (version
03-03 or later).

If the cause is insufficient memory, follow the instruction in the message that is
output before this message.

If the cause is ineffective data compression, check if this message has been output
elsewhere in the same CUP since the data becomes larger after compression.
Then re-determine whether to use the data compression for each CUP.

If the cause is an unexpected error, contact the TP1/Client system administrator.

Countermeasure:

Examine the cause of the error. If necessary, contact maintenance personnel.
KFCA02420-E (R)

protocol error, IPaddr=aaaaaaaa, port=bb...bb, reason=cc...cc

Incorrect information was detected in the header of the TACT/KERNEL inter-process
communication protocol.

aaaaaaaa
Sender IP address (hexadecimal number)

bb...bb
Sender port number

cc...cc
Reason

SIZE OVER

A message more than 12 bytes was received as the TACT header.

SIZE SHORT

A message less than 12 bytes was received as the TACT header.

INF2 ERROR

The contents of additional information 2 are incorrect.

S: Closes the connection and waits for the other system to re-establish a connection.
Alternatively, cancels the processing that is being executed and returns the function
with an error.

10. Messages

474

O: Contact the TP1/Client system administrator.

Countermeasure:

When this message is output, the following causes are likely:

• An invalid message was received.

• When cc....cc is SIZE SHORT, a FIN packet or a RESET packet was
received.

• When cc....cc is SIZE SHORT, a TACT header is divided when it was sent to
the TCP buffer.

Determine the sender process from the sender IP address and port number, and
check the network environment.

KFCA02421-E (R)
invalid size, received size=aa...aa, size in head=bb...bb,
IPaddr=cccccccc, port=dd...dd

Processing is canceled because the length of the data that reports completion of
reception is less than the data length in the header of the TACT/KERNEL inter-process
communication protocol.

aa...aa
Received data length

bb...bb
Data length in the header

cccccccc
Sender IP address (hexadecimal number)

dd...dd
Sender port number

S: Cancels processing.

O: Contact the TP1/Client system administrator.

Countermeasure:

Determine the sender process from the sender IP address and the sender port
number. Check whether an error has occurred in TP1/Server.

KFCA02431-E (R)
servicegroup list error, file=aa...aa:bb...bb, reason=cc...cc

The file specified with DCCLTSERVICEGROUPLIST in the client environment
definition contains an error.

10. Messages

475

aa...aa
File specified with DCCLTSERVICEGROUPLIST in the client environment
definition

bb...bb
Number of the line that contains an error

cc...cc
NO VALUE: No value is specified.

OUT OF RANGE: The value is out of the specifiable range.

INVALID CHAR: The value contains a character that cannot be specified.

S: Ignores the faulty line, and continues processing.

O: Contact the TP1/Client system administrator.

Countermeasure:

Correct the faulty line.
KFCA02444-E (R)

communication error, func=aa...aa, errno=bb...bb

A communication error occurred.

aa...aa
Socket interface function with an error

bb...bb
Error number

S: Stops processing.

O: Contact the TP1/Client system administrator.

Countermeasure:

Examine the cause of the error referring to the function name and error number.
KFCA02445-E (R)

host resolution failed, func=aa...aa, errno=bb...bb, data=cc...cc

Host resolution failed.

aa...aa
Name of a socket interface function in which an error occurred

Either gethostbyname or gethostbyaddr is output here.

bb...bb

10. Messages

476

Error number

cc...cc
Host name or IP address from which the host could not be resolved (in decimal
dot notation)

S: The function either stops processing and returns an error, or ignores the error and
continues processing.

O: Contact the TP1/Client system administrator.

Countermeasure:

Make sure that the specified host name or IP address is correct. If DNS is used for
host name resolution, check whether there is an error on the network connected
to the DNS server or on the DNS server itself.

KFCA02446-E (R)
communication error occurred while aa...aa function was being
executed, func=bb...bb, errno=cc...cc, c-info=dd...dd:ee...ee,
s-info=ff...ff:gg...gg

A communication error occurred.

aa...aa
Name of the executed function

bb...bb
Name of the socket interface function for which the error occurred

cc...cc
Error number

dd...dd
Local IP address (in decimal dot notation)

ee...ee
Local port

ff...ff
Remote IP address (in decimal dot notation)

gg...gg
Remote port

S: Cancels processing.

O: Contact the TP1/Client system administrator.

10. Messages

477

Countermeasure:

Determine the cause of the error from the information in this message and the
applicable data on the server.

KFCA02447-E (R)
timeout occurred while aa...aa function was being executed,
sts=bb...bb, time=cc...cc, c-info=dd...dd:ee...ee, s-info=ff...ff:gg...gg

A timeout occurred.

aa...aa
Name of the executed function

bb...bb
Wait status of the function before the timeout occurred:

CONNECT: The function was waiting for a response for connection establishment.

ACCEPT: The function was waiting for a connection establishment request.

RECV(T): The function was waiting for the TACT header to be received.

RECV(D): The function was waiting for data to be received.

RECV(D2): The function was waiting for data to be received.

RECV(D3): The function was waiting for data to be received.

RECV(M): The function was waiting for message information to be received.

RECV(R): The function was waiting for response-only data to be received.

RECVFROM: The function was waiting for broadcast data to be received.

cc...cc
Timeout value specified in the client environment definition or as an argument of
the function (seconds)

dd...dd
Local IP address (in decimal dot notation)

ee...ee
Local port

ff...ff
Remote IP address (in decimal dot notation)

gg...gg
Remote port

10. Messages

478

S: Cancels processing.

O: Contact the TP1/Client system administrator.

Countermeasure:

Check whether the specified timeout value is appropriate. If the value is
appropriate, server processing might have been delayed for a reason such as a line
failure. Determine the cause of the error from the information in this message and
the applicable data on the server.

KFCA02449-E (R)
communication error, func=aa...aa, errno=bb...bb, remote node
addr=cc...cc, remote port=dd...dd

A communication error occurred.

aa...aa
Function name of the socket interface that caused the error.

bb...bb
Error number

cc...cc
Send destination IP address

dd...dd
Send destination port number

S: Stops processing.

O: Contact the TP1/Client system administrator.

Countermeasure:

Examine the cause of the error referring to the function name and error number.
KFCA02450-W (R)

The client-ID of a different thread has been specified.
func=aa...aa, thread1=bb...bb, thread2=cc...cc

The client-ID of a different thread has been specified.

This message is output only once after execution of the dc_clt_cltin_s function.

aa...aa
Name of the client function

bb...bb
ID of the thread that started the client function

10. Messages

479

cc...cc
ID of the thread that acquired the client ID

S: Continues processing.

O: Record the error log containing this message and contact the TP1/Client system
administrator.

Countermeasure:

The same client ID is used across threads. Correct the CUP to ensure that client
IDs are specified correctly when functions are executed.

KFCA02451-W (R)
The function was executed twice.
func1=aa...aa, thread1=bb...bb, func2=cc...cc, thread2=dd...dd

A duplicate client functions was executed.

This message is output only once after execution of the dc_clt_cltin_s function.

aa...aa
Name of the client function for which duplication was detected

bb...bb
ID of the thread that started the function for which duplication was detected

cc...cc
Name of the client function already being executed

dd...dd
ID of the thread that started the function already being executed

S: Continues processing.

O: Record the error log containing this message and contact the TP1/Client system
administrator.

Countermeasure:

The error occurred because client functions with the same client ID were executed
concurrently. Correct the CUP to ensure that duplicate functions are not executed.

KFCA02460-I (E+S)
usage: aaaaaaa [bb pathname]

This message shows the format of the trace edit and output command. This message
appears if the specification of the trace edit and output command is incorrect.

aaaaaaa

10. Messages

480

UAP trace edit and output command

bb
Option

TP1/Client/W

usage: cltdump [-u|-s|-m] [-n] [-f pathname]
TP1/Client/P

usage: cltdmp32 [/u|/s|/m] [/n] [/f pathname]
S: Stops processing.

O: Reenter the command in the correct format.
KFCA02461-E (E)

file(aa...aa)not found

The specified file was not found upon input of the trace edit and output command.

aa...aa
File name specified by the user

S: Stops processing.

O: Correct the file name and then reenter the trace edit and output command.
KFCA02462-E (E)

no file to edit: aa...aa

There is no trace file to edit and output.

aa...aa
Type of trace file to edit and output.

UAP: UAP trace

SOC: Socket trace

MDL: Module trace

S: Stops processing.

O: If the CUP run-time trace file has not been created, the client environment
definition may have an error. Review the specification according to the string
indicated in aa...aa:

If UAP is output, see the DCTRCUAP specification.

If SOC is output, see the DCTRCSOC specification.

If MDL is output, see the DCTRCMDL specification.

10. Messages

481

If TP1/Client/W is used, see the DCTRCPATH specification.

If the specification is incorrect, correct the error, and then re-execute the CUP.
KFCA02463-E (E)

error occurred, file=aa...aa

An error occurred while executing the trace edit and output command.

aa...aa
File with an error

S: Stops processing.

O: Contact the TP1/Client system administrator.

Countermeasure:

Examine the cause of the error. If necessary, contact maintenance personnel.
KFCA02466-I (R)

TP1/Server Base ready, hostname=aa...aa, port=bb...bb

The TP1/Server (host that the name service queries) to be used as a gateway is
determined. Note that the gateway TP1/Server may change depending on the contents
of the error.

aa...aa
Host name of the TP1/Server that is used as a gateway

bb...bb
Port number of the TP1/Server that is used as a gateway (port number of the name
service)

KFCA02468-I (R)
TP1/Client changed connected TP1/Server Base, hostname=aa...aa,
port=bb...bb

Because an error occurred during communication with the TP1/Server (host that the
name service queries) used as a gateway, the gateway TP1/Server was changed.

aa...aa
Host name of the TP1/Server used as a gateway after switchover

bb...bb
Port number of the TP1/Server that is used as a gateway (port number of the name
service) after switchover

KFCA02470-E (R)
the error commitment for transaction(aaaaaaaabbbbbbbb) occurred,
return value=cc...cc

10. Messages

482

An attempt was made to execute the dc_rpc_close_s, dc_clt_cltout_s function
without commit or rollback in unchained mode. TP1/Client then automatically
performed commit in unchained mode and caused an error in synchronous point
processing.

aaaaaaaa
OpenTP1 system node ID (eight letters)

bbbbbbbb
Global transaction number (eight hexadecimal characters)

cc...cc
Return value (4-digit positive number) for synchronous point processing

S: Continues processing.

O: Contact the TP1/Client system administrator.

Countermeasure:

1. Take action against a synchronous point processing error.

2. After issuing a request for commit or rollback in unchained mode, terminate
the CUP.

KFCA02471-W (R)
Current status is outside a transaction. trngid=aa...aa,
trnbid=bb...bb

The current transaction status is out of range. The connection to the transaction
executing process has already been released because of an error. Therefore, the
dc_trn_unchained_commit_s or dc_trn_unchained_rollback_s function
returned a DCCLTER_OLTF_NOT_UP error.

aa...aa
Transaction global identifier of the transaction where an error occurred

bb...bb
Transaction branch identifier of the transaction branch where an error occurred

S: The executed function returns a DCCLTER_OLTF_NOT_UP error. Currently, TP1/
Client is placed outside a transaction.

O: Contact the TP1/Client system administrator.

Countermeasure:

Find the cause of the error from the message output before this one, and correct
the error. If the error was due to a timeout, review the definition and settings so
that a timeout does not occur at the client before the server.

10. Messages

483

To restart the transaction, execute the dc_trn_begin_s function. Note that the
previous transaction indicated by trngid and trnbid remains active until the
transaction inquiry interval expires.

KFCA02472-E (R)
The function has been issued from an invalid context. func=aa...aa

The function indicated by func was called from incorrect context.

The connection to the transaction executing process has already been released because
of an error. Therefore, the function indicated by func returned a
DCCLTER_OLTF_NOT_UP or DCRPCER_OLTF_NOT_UP error.

aa...aa
Function name

S: The executed function returns a DCCLTER_OLTF_NOT_UP or
DCRPCER_OLTF_NOT_UP error. TP1/Client remains inside a transaction.

O: Contact the TP1/Client system administrator.

Countermeasure:

Find the cause of the error from the message output before this one, and correct
the error. If the error was due to a timeout, review the definition and settings so
that a timeout does not occur at the client before the server.

To restart the transaction, execute the dc_trn_unchained_commit_s or
dc_trn_unchained_rollback_s function, and then the dc_trn_begin_s
function.

We recommend that you write a program so that the
dc_trn_unchained_commit_s or dc_trn_unchained_rollback_s
function is executed if an error occurs during transaction processing.

KFCA02480-I (R)
The permanent connection was established. IPaddr=aa...aa,
port=bb...bb

Permanent connection has been established. The connection is established with a CUP
executing process, a RAP-processing listener, or a DCCM3 logical terminal.

aa...aa
IP address of the destination of the established permanent connection

bb...bb
Port number of the destination of the established permanent connection

KFCA02481-I (R)
The permanent connection was cut off. IPaddr=aa...aa, port=bb...bb

10. Messages

484

Permanent connection has been disconnected. The connection is established with a
CUP executing process, a RAP-processing listener, or a DCCM3 logical terminal.

aa...aa
IP address of the destination of the established permanent connection

bb...bb
Port number of the destination of the established permanent connection

KFCA02482-E(R)
communication error, func=aa...aa, errno=bb...bb, port=cc...cc

A communication error occurred.

aa...aa
Function name of the socket interface that incurred the error

bb...bb
Error number

cc...cc
Number of the port being used

S: Terminates processing.

O: Contact the TP1/Client system administrator.

Countermeasure:

Reference an error number to examine the cause of the error.
KFCA02485-E (R)

invalid message received while aa...aa function was being executed.
expected message=bb...bb, received message=cc...cc,
c-info=dd...dd:ee...ee, s-info=ff...ff:gg...gg, action=hh...hh

While the message assembly facility or message delivery confirmation facility was
being used, a message with an invalid value set was received.

aa...aa
Name of the executed function

bb...bb
Expected message (hexadecimal characters) (If there is no information to be
output, **** is output.)

cc...cc
Received message (hexadecimal characters)

10. Messages

485

dd...dd
Local IP address (decimal dot notation)

ee...ee
Local port

ff...ff
Remote IP address (decimal dot notation)

gg...gg
Remote port

hh...hh
System action

RETRY:

The system continues processing, and retries receive processing.

STOP:

The system cancels processing. The function returns an error.

O: Contact the TP1/Client system administrator.

Countermeasure:

Depending on the hh...hh value, take action as follows.

RETRY:

The system has retried receive processing because the message ID of the
received message was invalid. Accordingly, the function might have now
terminated normally after receiving a valid message. If the function has not
terminated normally, see the message output after this one.

STOP:

The system has canceled processing because the length or segment
information of the received message was incorrect. Review the settings of
the remote system. If messages collided (the dc_clt_assem_send_s
function returned a DCCLTER_COLLISION_MESSAGE error), try again if
necessary.

KFCA02486-E (R)
receive buffer overflowed. argument length=aa...aa, received
length=bb...bb, received message=cc...cc, c-info=dd...dd:ee...ee,
s-info=ff...ff:gg...gg

When the message assembly facility or message delivery confirmation facility was

10. Messages

486

being used, a message could not be received because the buffer area prepared by the
CUP was too small.

aa...aa
Value of the recvleng argument for the dc_clt_assem_receive_s function
(decimal number)

bb...bb
Length of the message to be received (decimal number)

cc...cc
Received message information (hexadecimal characters)

dd...dd
Local IP address (decimal dot notation)

ee...ee
Local port

ff...ff
Remote IP address (decimal dot notation)

gg...gg
Remote port

S: Terminates processing. The dc_clt_assem_receive_s function returns a
DCCLTER_INF_TOO_BIG error. The connection with the remote system is released.

O: Record the error log containing this message and contact the TP1/Client system
administrator.

Countermeasure

The message length specified in the function argument is less than the message
length set in the received message information. Check whether the value specified
in the recvleng argument of the dc_clt_assem_receive_s function is
appropriate. Alternatively, review the UAP on the remote system.

487

Appendixes

A. Code Conversion Specifications
B. Version Changes

A. Code Conversion Specifications

488

A. Code Conversion Specifications

This appendix explains the code conversion specifications that apply when the
character code converter is used. The character code converter can only be used with
TP1/Client/P.

The following table shows the character code sets supported by TP1/Client/P.

Table A-1: The character code sets supported by TP1/Client/P

A.1 Codes supported by TP1/Client/P
This appendix explains the codes supported by TP1/Client/P.

Character type Code set (PC) Code set (mainframe)

Hankaku JIS EBCDIK
EBCDIC

Zenkaku Shift-JIS KEIS

A. Code Conversion Specifications

489

(1) Supported shift-JIS codes

#:

The codes in this area are converted as shift-JIS gaiji codes. For details about the
conversion of gaiji codes, see the manual CommuniNet Version 3.

Note that the dc_clt_code_convert function converts these codes to spaces.

A. Code Conversion Specifications

490

(2) Supported KEIS codes

#:

The codes in this area are converted to shift-JIS gaiji codes. For details about the
conversion of gaiji codes, see the manual CommuniNet Version 3.

Note that the dc_clt_code_convert function converts these codes to spaces.

A.2 Conversion of shift-JIS codes and KEIS codes
The following table explains how shift-JIS codes and KEIS codes are converted.

A. Code Conversion Specifications

491

Table A-2: Specifications for conversion of Shift-JIS and KEIS codes

The following table shows conversion from shift-JIS to KEIS83.

Table A-3: Conversion from shift-JIS to KEIS83

Shift-JIS
code range

KEIS code
range

Conversion specifications

Shift-JIS to KEIS KEIS to shift-JIS

1st byte:
81 to 9F and
E0 to EF
2nd byte:
40 to 7E and
80 to FC

1st byte:
A1 to FE
2nd byte:
A1 to FE

The Shift-JIS codes are mapped to the
KEIS basic character set and extended
character set 1.

The KEIS codes are mapped to the
shift-JIS standard kanji code area.

1st byte:
F0 to FC
2nd byte:
40 to 7E and
80 to FC

1st byte:
41 to A0
2nd byte:
A1 to FE

The Shift-JIS codes are mapped to the
KEIS gaiji area by using the
CommuniNet code mapping utility.
For details, see the manual
CommuniNet Version 3.
Note that the
dc_clt_code_convert function
converts these codes to spaces.

The KEIS codes are mapped to the
shift-JIS gaiji area by using the
CommuniNet code mapping utility.
For details, see the manual
CommuniNet Version 3.
Note that the
dc_clt_code_convert function
converts these codes to spaces.

L/H 81 82 ... 9E 9F E0 E1 ... EE EF F0...FC

00
...
3F

#1

40 A1A1 A3A1 ... DBA1 DDA1 DFA1 E1A1 ... FBA1 FDA1 #2

41 A1A2 A3A2 ... DBA2 DDA2 DFA2 E1A2 ... FBA2 FDA2

...

7E A1DF A3DF ... DBDF DDDF DFDF E1DF ... FBDF FDDF

7F #1

A. Code Conversion Specifications

492

Legend:

...: Omitted.

#1:

These codes are assumed to be undefined kanji codes. The
dc_clt_code_convert and dc_clt_code_convert_exec functions
convert these codes to spaces or else return an error, depending on the
specification of the flags argument.

#2:

These codes are converted to shift-JIS gaiji codes.

However, if the dc_clt_code_convert function is used, these codes are
converted to spaces.

The following table shows conversion from KEIS83 to shift-JIS.

80 A1E0 A3E0 ... DBE0 DDE0 DFE0 E1E0 ... FBE0 FDE0 #2

81 A1E1 A3E1 ... DBE1 DDE1 DFE1 E1E1 ... FBE1 FED1

...

9D A1FD A3FD ... DBFD DDFD DFFD E1FD ... FBFD FDFD

9E A1FE A3FE ... DBFE DDFE DFFE E1FE ... FBFE FDFE

9F A2A1 A4A1 ... DCA1 DEA1 E0A1 E2A1 ... FBA1 FEA1

A0 A2A2 A4A2 ... DCA2 DEA2 E0A2 E2A2 ... FBA2 FEA2

...

FB A2FD A4FD ... DCFD DEFD E0FD E2FD ... FBFD FEFD

FC A2FE A4FE ... DCFE DEFE E0FE E2FE ... FBFE FEFE

FD
...

#1

L/H 81 82 ... 9E 9F E0 E1 ... EE EF F0...FC

A. Code Conversion Specifications

493

Table A-4: Conversion from KEIS83 to shift-JIS

Legend:

...: Omitted.

#1:

These codes are converted as one-byte control codes in EBCDIK and EBCDIC.

#2:

These codes are converted to shift-JIS gaiji codes.

However, if the dc_clt_code_convert function is used, these codes are
converted to spaces.

#3:

These codes are assumed to be undefined kanji codes. The
dc_clt_code_convert and dc_clt_code_convert_exec functions
convert these codes to spaces or else return an error, depending on the
specification of the flags argument.

The following tables show the code mappings between shift-JIS, KEIS78, and

L/H 00...40 41...A0 A1 A2 ... FD FE FF

00 #1 #3

...

A0

A1 #2 8140 819F ... EF40 EF9F #3

A2 8141 81A0 ... EF41 EFA0

A3 8142 81A1 ... EF42 EFA1

A4 8143 81A2 ... EF43 EFA2

...

DF 817E 81DD ... EF7E EFDD

E0 8180 81DE ... EF80 EFDE

E1 8181 81DF ... EF81 EFDF

...

FE 819E 81FC ... EF91 EFFC

FF #3

A. Code Conversion Specifications

494

KEIS83.

Table A-5: Code mappings between shift-JIS, KEIS78, and KEIS83 (1)

A. Code Conversion Specifications

495

Table A-6: Code mappings between shift-JIS, KEIS78, and KEIS83 (2)

A. Code Conversion Specifications

496

The following two tables show code conversion from JIS to EBCDIK.

Table A-7: Code conversion from JIS to EBCDIK (1)

A. Code Conversion Specifications

497

Table A-8: Code conversion from JIS to EBCDIK (2)

A. Code Conversion Specifications

498

The following two tables show code conversion from EBCDIK to JIS.

Table A-9: Code conversion from EBCDIK to JIS (1)

A. Code Conversion Specifications

499

Table A-10: Code conversion from EBCDIK to JIS (2)

A. Code Conversion Specifications

500

The following two tables show code conversion from JIS to EBCDIC.

Table A-11: Code conversion from JIS to EBCDIC (1)

A. Code Conversion Specifications

501

Table A-12: Code conversion from JIS to EBCDIC (2)

A. Code Conversion Specifications

502

The following two tables show code conversion from EBCDIC to JIS.

Table A-13: Code conversion from EBCDIC to JIS (1)

A. Code Conversion Specifications

503

Table A-14: Code conversion from EBCDIC to JIS (2)

A.3 Code conversion examples
The result of converting some characters is different depending on the value specified
for the flags argument of the dc_clt_code_convert or
dc_clt_codeconv_exec function. This section shows the differences.

(1) If DCCLT_CNV_SPCHAN is specified
If DCCLT_CNV_SPCHAN is specified for the flags argument of the
dc_clt_code_convert or dc_clt_codeconv_exec function, a zenkaku space is
converted to two hankaku spaces. The following table shows the character code
correspondence when DCCLT_CNV_SPCHAN is specified.

A. Code Conversion Specifications

504

Figure A-1: Character code correspondence when DCCLT_CNV_SPCHAN is
specified

(2) If DCCLT_CNV_TAB is specified
If DCCLT_CNV_TAB is specified for the flags argument of the
dc_clt_code_convert or dc_clt_codeconv_exec function, a tab code is
converted to the corresponding hankaku code. If a tab code is adjacent to a zenkaku
code, shift codes are inserted. The following table shows the character code
correspondence when DCCLT_CNV_TAB is specified.

Figure A-2: Character code correspondence when DCCLT_CNV_TAB is
specified

A. Code Conversion Specifications

505

(3) If DCCLT_CNV_CNTL is specified
If DCCLT_CNV_CNTL is specified for the flags argument of the
dc_clt_code_convert or dc_clt_codeconv_exec function, a control code is
converted to a hankaku code. If a control code is adjacent to a zenkaku code, shift
codes are inserted. The following table shows the character code correspondence when
DCCLT_CNV_CNTL is specified.

Figure A-3: Character code correspondence when DCCLT_CNV_CNTL is
specified

A.4 Notes on code conversion
• If the input data begins with a KEIS code, add the zenkaku start code (0x0A42).

• If there is no gaiji mapping table, gaiji characters are converted to spaces. For
details about the gaiji mapping table, see the manual CommuniNet Version 3.

• During code conversion from EBCDIK, EBCDIC, or KEIS to JIS or shift-JIS, a
code that does not exist in the conversion table is converted as shown below.

• If DCCLT_CNV_INVSPC is specified for the flags argument of the
dc_clt_code_convert or dc_clt_codeconv_exec function, 0x0A is
converted to the applicable code unless the byte immediately after 0x0A is
either 0x41 or 0x42.

• If a hankaku code in the range from 0x00 to 0x40 is detected during
conversion in zenkaku mode, the code is converted to the applicable
one-byte code.

B. Version Changes

506

B. Version Changes

This appendix shows the changes made in specific versions by type of modification as
follows:

• Addition and deletion of functions, definition operands, and commands

• Operation change

• Change of function, definition operand, and command default values

B.1 Changes made in 07-02
The following table shows the addition and deletion of functions, definition operands,
and commands made in TP1/Client/W 07-02 and TP1/Client/P 07-02.

Table B-1: Addition and deletion of functions, definition operands, and
commands made in TP1/Client/W 07-02 and TP1/Client/P 07-02

The following table shows the operation changes made in TP1/Client/W 07-02 and
TP1/Client/P 07-02.

Table B-2: Operation changes made in TP1/Client/W 07-02 and TP1/Client/P
07-02

Modification
type

Category Explanation

Addition Function dc_clt_assem_send_s

dc_clt_assem_receive_s

CBLDCCLS('STCONIF ')

CBLDCCLS('ASMSEND ')

CBLDCCLS('ASMRECV ')

Operand DCCLTDELIVERYCHECK operand in the client environment definition

DCCLTPRFINFOSEND operand in the client environment definition

DCCLTCUPSNDHOST operand in the client environment definition

Command None

Deletion None

Category Explanation

Function None

B. Version Changes

507

The following table shows the default-value changes made in TP1/Client/W 07-02 and
TP1/Client/P 07-02.

Table B-3: Default-value changes made in TP1/Client/W 07-02 and TP1/Client/
P 07-02

B.2 Changes made in 07-01
The following table shows the addition and deletion of functions, definition operands,
and commands made in TP1/Client/W 07-01 and TP1/Client/P 07-01.

Table B-4: Addition and deletion of functions, definition operands, and
commands made in TP1/Client/W 07-01 and TP1/Client/P 07-01

No operation changes were made in TP1/Client/W 07-01 and TP1/Client/P 07-01.

Operand The range of specifiable values for the DCSOCKOPEN operand in the client environment
definition has been changed to 1 to 4096.

Command None

Other category The message assembly facility has been added.

The message delivery confirmation facility has been added.

A facility that allows you to specify the CUP send host has been added.

Category Explanation

Function None

Operand The default value of the DCSCDMULTICOUNT operand in the client environment definition has
been changed to 1.

Command None

Modification
type

Category Explanation

Addition Function None

Operand DCCLTRECVBUFSIZE operand in the client environment definition

DCCLTSENDBUFSIZE operand in the client environment definition

DCCLTCPNODELAY operand in the client environment definition

Command None

Deletion None

Category Explanation

B. Version Changes

508

Also, no function, definition operand, and command default-value changes were made
in TP1/Client/W 07-01 and TP1/Client/P 07-01.

B.3 Changes made in 07-00
The following table shows the addition and deletion of functions, definition operands,
and commands made in TP1/Client/W 07-00 and TP1/Client/P 07-00.

Table B-5: Addition and deletion of functions, definition operands, and
commands made in TP1/Client/W 07-00 and TP1/Client/P 07-00

The following table shows the operation changes made in TP1/Client/W 07-00 and
TP1/Client/P 07-00.

Table B-6: Operation changes made in TP1/Client/W 07-00 and TP1/Client/P
07-00

Modification
type

Category Explanation

Addition Function CBLDCCLS('EXCLTIN ')

CBLDCCLS('EXSEND ')

CBLDCCLS('EXNACPT ')

CBLDCCLS('EXNCANCL')

CBLDCCLS('EXNCACPT')

Operand DCCLTRPCMAXMSGSIZE operand in the client environment definition

Command None

Deletion None

Category Explanation

Function The maximum length of the host name specifiable for or returnable to an argument of the
following functions by using the DCCLTOPTION operand in the client environment definition
was changed from 63 characters to 255 characters:
• dc_clt_cltin_s

• DCRPC_DIRECT_SCHEDULE

• dc_clt_set_raphost_s

• dc_clt_get_raphost_s

• dc_clt_send_s

• dc_clt_accept_notification_s

• dc_clt_cancel_notification_s

• dc_clt_chained_accept_notification_s

• CBLDCCLS('STRAPHST')

• CBLDCCLS('GTRAPHST')

B. Version Changes

509

No function, definition operand, and command default-value changes were made in
TP1/Client/W 07-00 and TP1/Client/P 07-00.

The maximum length of user data specifiable for or returnable to an argument of the
following functions was changed from 1 MB to the DCCLTRPCMAXMSGSIZE value in the
client environment definition:
• dc_rpc_call_s

• dc_rpc_call_to_s

• dc_clt_accept_notification_s

• dc_clt_cancel_notification_s

• dc_clt_chained_accept_notification_s

• CBLDCRPS('CALL ')

• CBLDCCLS('NOTIFY ')

• CBLDCCLS('EXNACPT ')

• CBLDCCLS('CANCEL ')

• CBLDCCLS('EXNCANCL')

• CBLDCCLS('A-NOTIFY')

• CBLDCCLS('EXNCACPT')

Operation was changed so that the host name was not stored when NULL was specified for
the hostname argument of the following functions:
• dc_clt_accept_notification_s

• dc_clt_chained_accept_notification_s

Operand For the DCCLTOPTION operand in the client environment definition, the 00000008
specification, which extends the maximum host name length, was added.

The maximum length of the host name specifiable for any of the following operands in the
client environment definition by using the DCCLTOPTION operand in the client environment
definition was changed from 63 characters to 255 characters:
• DCHOST

• DCCLTRAPHOST

• DCCLTDCCMHOST

• DCSNDHOST

• DCCLTSERVICEGROUPLIST

Command None

Other category A facility that extends the maximum host name length was added.

Category Explanation

511

Index

A
allocate typed buffer 212
assembled message

receiving 341
sending 337

authentication RPC 20

C
canceling one-way message wait

[C language] 200
[COBOL language] 355

CBLDCCLS('A-NOTIFY') 368
CBLDCCLS('ASMRECV ') 341
CBLDCCLS('ASMSEND ') 337
CBLDCCLS('C-NOTIFY') 366
CBLDCCLS('CANCEL ') 355
CBLDCCLS('CLTIN ') 269
CBLDCCLS('CLTOUT ') 278
CBLDCCLS('CONNECT ') 297
CBLDCCLS('DISCNCT ') 300
CBLDCCLS('EXCLTIN ') 273
CBLDCCLS('EXNACPT ') 350
CBLDCCLS('EXNCACPT') 371
CBLDCCLS('EXNCANCL') 359
CBLDCCLS('EXSEND ') 328
CBLDCCLS('GETTRNID') 323
CBLDCCLS('GTRAPHST') 305
CBLDCCLS('NOTIFY ') 346
CBLDCCLS('O-NOTIFY') 363
CBLDCCLS('RECEIVE ') 331
CBLDCCLS('RECEIVE2') 334
CBLDCCLS('SEND ') 325
CBLDCCLS('STCONINF') 307
CBLDCCLS('STRAPHST') 302
CBLDCCLT('A-NOTIFY') 368
CBLDCCLT('ASMRECV ') 341
CBLDCCLT('ASMSEND ') 337
CBLDCCLT('C-NOTIFY') 366

CBLDCCLT('CANCEL ') 355
CBLDCCLT('CLTIN ') 269
CBLDCCLT('CLTOUT ') 278
CBLDCCLT('CONNECT ') 297
CBLDCCLT('DISCNCT ') 300
CBLDCCLT('GETTRNID') 323
CBLDCCLT('GTRAPHST') 305
CBLDCCLT('NOTIFY ') 346
CBLDCCLT('O-NOTIFY') 363
CBLDCCLT('RECEIVE ') 331
CBLDCCLT('RECEIVE2') 334
CBLDCCLT('SEND ') 325
CBLDCCLT('STCONINF') 307
CBLDCCLT('STRAPHST') 302
CBLDCRPC('CALL ') 285
CBLDCRPC('CLOSE ') 283
CBLDCRPC('GETWATCH') 294
CBLDCRPC('OPEN ') 281
CBLDCRPC('SETWATCH') 293
CBLDCRPS('CALL ') 285
CBLDCRPS('CLOSE ') 283
CBLDCRPS('GETWATCH') 294
CBLDCRPS('OPEN ') 281
CBLDCRPS('SETWATCH') 293
CBLDCTRN('BEGIN ') 310
CBLDCTRN('C-COMMIT') 312
CBLDCTRN('C-ROLL ') 315
CBLDCTRN('INFO ') 321
CBLDCTRN('U-COMMIT') 317
CBLDCTRN('U-ROLL ') 319
CBLDCTRS('BEGIN ') 310
CBLDCTRS('C-COMMIT') 312
CBLDCTRS('C-ROLL ') 315
CBLDCTRS('INFO ') 321
CBLDCTRS('U-COMMIT') 317
CBLDCTRS('U-ROLL ') 319
CBLDCUTL('CNVCLS ') 380
CBLDCUTL('CNVEXEC ') 381
CBLDCUTL('CNVOPN ') 378

Index

512

CBLDCUTL('CODECNV ') 375
character code converter

(when code mapping table is not used) 79,
375
(when code mapping table is used) 80, 378

client environment definition
list of operands 386
TP1/Client/W 394

client errors 461
client extended service 10
client extended service port number 410
client user authentication request

[C language] 125
[COBOL language] 269

client user authentication request (extended host name)
[COBOL language] 273

cltdump 436
COBOL language template 250
COBOL-UAP creation program features 240
COBOL-UAP creation programs when host name
extension function is used 92
code conversion

EBCDIC to JIS 502, 503
EBCDIK to JIS 498, 499
JIS to EBCDIC 500, 501
JIS to EBCDIK 496, 497

code mapping
between shift-JIS, KEIS78, and KEIS83 494,
495

collecting identifiers for current transactions 45
[C language] 175
[COBOL language] 323

commit 38
in chained mode 38
in unchained mode 38

commit in chained mode
[C language] 167
[COBOL language] 312

commit in unchained mode
[C language] 171
[COBOL language] 317

communication data type [interactive service] 77
communication errors 460
compiling [C language]

UNIX environment 108
Windows environment 109

compiling [COBOL language]
UNIX environment 246
Windows environment 247

connected node name 404
connected port number 404
connection

timeout for establishing connection 401
converting character codes

(when code mapping table is not used) 375
(when code mapping table is used) 378
[C language] 227

CPU monitoring time in transaction branch 403
CUP 2

creating 114
CUP coding example

[C language] 114
[COBOL language] 252

CUP execution process 10
CUP send host 412

D
data compression 29
dc_clt_accept_notification 195
dc_clt_accept_notification_s 195
dc_clt_assem_receive 191
dc_clt_assem_receive_s 191
dc_clt_assem_send 187
dc_clt_assem_send_s 187
dc_clt_cancel_notification 200
dc_clt_cancel_notification_s 200
dc_clt_chained_accept_notification 208
dc_clt_chained_accept_notification_s 208
dc_clt_close_notification 207
dc_clt_close_notification_s 207
dc_clt_cltin 125
dc_clt_cltin_s 125
dc_clt_cltout 130
dc_clt_cltout_s 130
dc_clt_code_convert 227
dc_clt_codeconv_close 233
dc_clt_codeconv_exec 234
dc_clt_codeconv_open 231

Index

513

dc_clt_connect 153
dc_clt_connect_s 153
dc_clt_disconnect 155
dc_clt_disconnect_s 155
dc_clt_get_raphost 159
dc_clt_get_raphost_s 159
dc_clt_get_trnid 175
dc_clt_get_trnid_s 175
dc_clt_open_notification 203
dc_clt_open_notification_s 203
dc_clt_receive 181
dc_clt_receive_s 181
dc_clt_receive2 184
dc_clt_receive2_s 184
dc_clt_send 179
dc_clt_send_s 179
dc_clt_set_connect_inf 162
dc_clt_set_connect_inf_s 162
dc_clt_set_raphost 157
dc_clt_set_raphost_s 157
dc_rpc_call 133
dc_rpc_call_s 133
dc_rpc_call_to 142
dc_rpc_call_to_s 142
dc_rpc_close 132
dc_rpc_close_s 132
dc_rpc_get_watch_time 150
dc_rpc_get_watch_time_s 150
dc_rpc_open 131
dc_rpc_open_s 131
dc_rpc_set_watch_time 149
dc_rpc_set_watch_time_s 149
dc_trn_begin 165
dc_trn_begin_s 165
dc_trn_chained_commit 167
dc_trn_chained_commit_s 167
dc_trn_chained_rollback 169
dc_trn_chained_rollback_s 169
dc_trn_info 177
dc_trn_info_s 177
dc_trn_unchained_commit 171
dc_trn_unchained_commit_s 171
dc_trn_unchained_rollback 173
dc_trn_unchained_rollback_s 173

DCCACHE 405
DCCLTAUTHENT 421
DCCLTBACKLOGCOUNT 430
DCCLTCACHETIM 405
DCCLTCONNECTINF 421
DCCLTCONNECTRETRY 407
DCCLTCONNECTTIMEOUT 401
DCCLTCUPRCVPORT 412
DCCLTCUPSNDHOST 412
DCCLTDATACOMP 408
DCCLTDCCMHOST 410
DCCLTDCCMPORT 411
DCCLTDELAY 411
DCCLTDELIVERYCHECK 404
DCCLTINQUIRETIME 409
DCCLTLOADBALANCE 406
DCCLTNAMEXTEND 425
DCCLTNOSERVER 424
DCCLTONLYTHISNODE 423
DCCLTOPTION 424
DCCLTPORT 410
DCCLTPRFINFOSEND 427
DCCLTRAPAUTOCONNECT 414
DCCLTRAPHOST 413
DCCLTRECVBUFSIZE 429
DCCLTRPCMAXMSGSIZE 427
DCCLTSENDBUFSIZE 429
DCCLTSERVICEGROUPLIST 406
DCCLTTCPNODELAY 430
DCCLTTRCPUTM 403
DCCLTTREXPSP 402
DCCLTTREXPTM 402
DCCLTTRLIMITTIME 418
DCCLTTROPTIITEM 416
DCCLTTRRBINFO 417
DCCLTTRRBRCV 419
DCCLTTRSTATISITEM 415
DCCLTTRWATCHTIME 417
DCCLTTRWATTM 403
DCCLTUTTRCMT 403
DCCLTXATMI 411
DCCM3 logical terminal host name 410
DCCM3 logical terminal port number 411
DCEXTENDFUNCTION 409

Index

514

DCHOST 400
DCHOSTCHANGE 424
DCHOSTSELECT 423
DCMAXDNSNAME 91
DCNAMPORT 400
DCRCVPORT 403
DCRPC_DIRECT_SCHEDUL 151
DCSCDDIRECT 408
DCSCDLOADPRIORITY 423
DCSCDMULTI 422
DCSCDMULTICOUNT 422
DCSCDPORT 408
DCSNDHOST 404
DCSNDPORT 404
DCSOKOPENATRCV 404
DCSYSWATCHTIM 421
DCTRCERR 426
DCTRCMDL 427
DCTRCPATH 425
DCTRCSOC 426
DCTRCSOCSIZE 426
DCTRCUAP 426
DCUTOKEY 405
dcvclt.h 91
DCWATCHTIM 401
DCWATCHTIMRPCINHERIT 421
definition

conventions 392
overview 386

description of symbols specified as arguments 107
detecting synchronous point of transaction when error
occurs 46
disconnect connection with interactive service 218
disconnecting connection [interactive service] 73
disposal in case of heuristic situation 40
distributing load on gateway TP1/Server with
priority 28

E
edit and output UAP trace [operating command] 436
error log 86
error log file size 426
error logging 86
error recovery 459

establish connection with interactive service 214
establish permanent connection

[C language] 153
[COBOL language] 297

establishing connection [interactive service] 72
establishing permanent connection [facility] 10
example of user application program development

[C language] 114
[COBOL language] 252

executing character code conversion
[C language] 234
[COBOL language] 381

expiration of temporarily stored service
information 405
expiry time in transaction branch 402

F
facility extension level of RPC service 409
facility for receiving one-way messages from
server 67, 195, 346
firewall 31
fixed receive-port facility 97
forcibly disconnecting connection [interactive
service] 73
format of COBOL-UAP creation program
descriptions 243
function

for allocating fixed terminal 13
format of, descriptions 106
interface 102
table of 102

G
generating transaction [interactive service] 74

H
host name extension 91
host name length and host name storage area length
that can be specified in arguments of C functions 91

I
inter-node load-balancing facility 17
interactive service 72

Index

515

interactive service communication 71
interactive service time monitoring [interactive
service] 75
internode load-balancing 17

L
linking [C language]

UNIX environment 108
Windows environment 109

linking [COBOL language]
UNIX environment 246
Windows environment 247

load distribution for TP1/Server as gateway 28
load distribution when RPC for DCCM3 logical
terminal is executed 22

M
master scheduler daemon 24
MAXHOSTNAME 91
maximum communication delay time 411
maximum communication wait time during
transaction synchronous point processing 417
maximum OpenTP1 control response wait time 421
maximum response wait time 401
maximum RPC message length 427
maximum time interval in permanent connection 409
maximum time interval in transaction inquiry
response 403
maximum transaction branch execution time 418
message assembly facility 55
message delivery confirmation facility 55
messages 463
module trace collection 87
module trace file size 427
multi-scheduler daemon 24
multi-scheduler facility 24
multi-thread environment

UAP that can run in 258
multi-threading 82

CUP suitable for multi-threading
(overview) 82
executing functions not suited to multi-
threading 82

N
no-response type RPC 15
number of areas for temporarily storing service
information 405
number of characters that can be specified in operand
in client environment definition 93
number of multi-scheduler daemon processes 422
number of queues for storing connection establishment
requests 430

O
one-way message reception

[C language] 195
[COBOL language] 346

one-way message reception (extended host name)
[COBOL language] 350

one-way message wait state (extended host name)
[COBOL language] 359

online tester 85
operands, list of

client environment definition 386
operating commands 433
operating with OpenTP1 dc_rpc_call function
[interactive service] 74
option for extending client functionality 424
originator 72

P
performance verification trace (TP1/Server) 88
permanent connection 10, 153, 297
port number

client extended service 410
CUP reception 412
name service 400
receive CUP 403
schedule service 408

post information for current transaction 45
[C language] 177
[COBOL language] 321

R
receive message from interactive service 222
receive-only messages 50

Index

516

receiving assembled message 191, 341
receiving data [interactive service] 73
receiving event [interactive service] 77
receiving messages 65

[C language] 181
[COBOL language] 331

receiving messages (messages receivable even if error
occurs)

[C language] 184
[COBOL language] 334

reducing server loads during timeout at synchronous
response type PRC 34
referencing arguments [C language] 135
referencing wait time for service response [C
language] 150
relationship between no-response type RPCs and
synchronous points 41
release of client user authentication

[C language] 130
[COBOL language] 278

release permanent connection
[C language] 155
[COBOL language] 300

release typed buffer 213
remote API facility 31
remote procedure calls 14

[C language] 133
[COBOL language] 281

remote service request
[C language] 133
[COBOL language] 285

reporting terminal identification information 12
to DCCM3 logical terminal 12

retry count for connection establishment 407
rollback 39

in chained mode 40
in unchained mode 40

rollback in chained mode
[C language] 169
[COBOL language] 315

rollback in unchained mode
[C language] 173
[COBOL language] 319

RPC 14

RPC not using name service 23
RPC to servers other than OpenTP1 21
RPC to XDM/DCCM3 21
RPC using multi-scheduler facility 23

S
scheduler 16
scheduler daemon

master scheduler daemon 24
multi-scheduler daemon 24

selecting gateway TP1/Servers at random 28
send messages to interactive service 219
send-host specification facility 95
send-only messages 49
sending and receiving messages 53
sending assembled message 187, 337
sending data [interactive service] 73
sending messages 64

[C language] 179
[COBOL language] 325

sending messages (extended host name)
[COBOL language] 328

server that receives requests from socket 17
service response wait time reference

[COBOL language] 294
service response wait time update

[COBOL language] 293
set terminal identification information 162
setting arguments [C language] 135
socket trace collection 87
socket trace data size 426
socket trace file size 426
SPP 2

creating 114
SPP coding example 117
starting character code conversion

[C language] 231
[COBOL language] 378

statistics item 415
subordinator 72
switching facility of TP1/Server as gateway 27
symbols used for describing items to be specified 245
symbols used for describing values specified as
arguments 106

Index

517

synchronous point, acquiring 38
synchronous response type RPC 14
synchronous-response type RPCs and synchronous
points 41

T
TCP/IP communication function 49

[C language] 181
[COBOL language] 331

TCP/IP receive buffer size 429
TCP/IP send buffer size 429
terminal identification information 12, 421
terminating character code conversion

[C language] 233
[COBOL language] 380

test user ID 405
time monitoring

RPC time monitoring 20
watching chained RPC time 16

timeout of maximum response waiting time
[interactive service] 76
timeout of maximum time interval in permanent
connection [interactive service] 76
timeout of transaction branch expiration time
[interactive service] 76
TP1/Client 2
TP1/Client/P 2

note 432
TP1/Client/W 2

note 431
TP1/Server as gateway 4
tpalloc 212
tpconnect 214
tpdiscon 218
tpfree 213
tprecv 222
tpsend 219
trace output directory 425
transaction control 36

[C language] 165
[COBOL language] 310

transaction optimization item 416
transaction startup

[C language] 165

[COBOL language] 310
troubleshooting 86

U
UAP creation in C

acquire destination of request to establish
permanent connection 159
create DCRPC_BINDING_TBL
structure 151
receive one-way message 208
request remote service with communication
destination specified 142
set destination of request to establish
permanent connection 157
start continuous reception of one-way
messages 203
terminate continuous reception of one-way
messages 207

UAP creation in COBOL
acquire destination of request to establish
permanent connection 305
receive one-way message 368
receive one-way message (extended host
name) 371
set destination of request to establish
permanent connection 302
start continuous reception of one-way
messages 363
terminate continuous reception of one-way
messages 366

UAP startup
[C language] 131
[COBOL language] 281

UAP termination
[C language] 132
[COBOL language] 283

UAP that can run in multi-thread environment
creating 258

UAP trace 86
UAP trace collection 86
UAP trace file size 426
updating the wait time for service response

[C language] 149

Index

518

user application program that supports multi-thread
environment

creating 120
user authentication 8

[C language] 125
[COBOL language] 269

V
values passed to server UAP [COBOL language] 286
values returned from server UAP [COBOL
language] 287

X
X_OCTET [interactive service] 77
XATMI interface facility 212

[facility] 105

Reader’s Comment Form

We would appreciate your comments and suggestions on this manual. We will use
these comments to improve our manuals. When you send a comment or suggestion,
please include the manual name and manual number. You can send your comments
by any of the following methods:

• Send email to your local Hitachi representative.
• Send email to the following address:

 WWW-mk@itg.hitachi.co.jp
• If you do not have access to email, please fill out the following information

and submit this form to your Hitachi representative:

Manual name:

Manual number:

Your name:

Company or
organization:

Street address:

Comment:

(For Hitachi use)

